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"A FINAL REPORT ON THE MARUSSI HYPOTHESIS
IN DIFFERENTIAL GEODESY"

J.D. Zund

Summary:
The present report was originally written as an invited paper to be presented at

the III Hotine-Marussi Symposium on Mathematical Geodesy (L'Aquila, May/June
1994). As circumstances developed I was not able to attend this conference and only
a very brief version of the report will be submitted for publication. The manuscript
is rather detailed and gives a full discussion of the primary conceptual aspects of the
Marussi-liotine theory of differential geodesy, and how it stands today. In addition
to reviewing the theory, the report includes a derivation of why Hotine's normal
coordinate system is inadmissible, and a covjecture on the type of local coordinate
systems which are permitted in the Marussi-llotine theory.
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1 INTRODUCTION

The purpose of this paper is to give a final report on my research concerning the
Marussi-Hypothesis and the corresponding Marussi-Hotine, (MH), theory of differ-
ential geodesy. I will discuss not only its achievements, but also its limitations and
the prospects that it offers for future development.

Since my attention will primarily be focussed on the latter two aspects of the
MH-theory, let me briefly comment on the achievements and significance the MH-
approach for theoretical geodesy. First, I would sa y that, regardless of the success, or
failure, of the MH-theory, it has been important in that it has conclusively demon-
strated the possibilities and power of the use of differential-geometric techniques in
geodesy. Moreover, it is largely due to Marussi and Ilotine that geodesists have be-
come acquainted with tensors and differential forms. Truly, as Sir Alan Cook wrote
in his preface to Marussi (1985), Marussi

"... left us thinking about the gravity field of the Earth and of geodesy
in ways very different from those he found."

Likewise, flotine by the sheer force of his personality and intellect, as indicated in
his monumental treatise, llotine (1969); and collected differential geodetic papers.
llotine (1992); has left a lasting impression on our thinking. While I will argue in
this report that the MH-theory is limited in its applicability, the methodology which
they pioneered in their original expositions are noteworthy and may ultimately turn
out to be of lasting importance.

The fact that creators of a new scientific theory often fail to formulate it in final
form, or grasp the ultimate significance of their work, is familiar to historians of
science. I am inclined to liken the efforts of Marussi and Hotine to those of Sir
\Williani Rowan llamilton [1805-1865] and his mathematical work on quaternions.
Hamilton was firmly convinced that quaternions represented his greatest achievement

indeed, he raited their discovery as of as great an importance for the middle of the
19th century as the discovery of the calculus was for the close of the 17th century!
- vet today they are largely ignored. Hlowever, the effort which lie lavished on their

development during the last twenty years of his life was of vital importance for the
mathematical and physical sciences. As a legacy, they have left us a rigorous theory
of complex numbers, a new conception of vectors (which resulted in vector analysis
as a byproduct), and gave imp,-tus to a serious investigation of the general structure
of algebras. Relative to this last topic, quaternions provided a concrete example of
a non-commutative algebra, or more precisely a division algebra (or ring), which I.-
led to a rich mathematical theory which includes as a special case, matrix thee
Of course, without Hamilton, these things would undoubtably have been done, bu
his enthusiasm and influence prob)ably hastened their development. Like Hamilton,
Marussi and llotine may not have done what they sought to do, but nevertheless their
work is undeniably the first step in the geometrization of geodesy. While it is a fool's
game to prognosticate about the future, in Section .5 1 will suggest an extension of



the MH-theory, the generalized MH-tlcory, which appears to offer some interesting
possib.ilities.

Before proceeding with a detailed critique of the MH-theory, it should be noted
that the theory in their hands was somewhat loosely definited. It was formally initi-
ated in Marussi (19419) and was actively' pursued by him during the years 1947-1960,
while Hotine's contributions appeared in 1957-1968 and culminated in his posthumous
treatise, Hotine (1969). As these dates indicate, Marussi's main period of geodetic
research effectively ended about the time that Hotine's activities began. While it is
clear that Marussi greatly influenced Hotine - see his acknowledgement on pages
xiii-xiv of llotine (1969) - Ilotine's irfinence onl Marussi is less obvious. Indeed,
while one could think of Marussi as the architect and Liotine as the constructor of
the theory (see Zund (1990a), for a di!!3cussion of their backgrounds) it is not evi-

dent, that Marussi was in complete accord --- or even satisfied -with the results
of' Ilotine's efforts. In effect, although they were close friends, they both had strong

personalities, held independent vie-.s, aid eniployed almost totally different method-
ologies. As sticli. t heir work ~inay be r'egardedl as complementary with the caveat that
to a siirprishiig extent t here was lilt Ie overlap in their research onl specific topics, viz.
Miarlissi did one thling While I lotine did another. Hlence, Iin reality tlie M H-theorN,
is anl abstriact ion andl suiperposition of their efforts and gaps occur. While one can
e'xtract and la ,% ow ta commnon uinat henat ical framnework for their work, their enii-
phasis. feel inlgs. andl hopes are frequient ly unis~tat ed in their writings. IHow-vver, since
the b~road cotit ext of t heir I heor '% is wel l-4'4ined, i.e. it is t he physical differential

geoinet r.. of thle gravi ty field Iii 3-d ininesioulal Euci'lidean space, the omissions in their
e'xposi t ions (10 uot pose at scrioiis liindr1 aiice to an ii nderst anding of w~hat t~hei! theory
iniust be a 1)11ti. N evert heless on miore t hani ouie occasion, Iin t ry ingto uniravel a knotty
issute, I lia%-( fervent ly wished t hat It woulid be 1,ossi Ide to ask Marussi or liotine -
preferrahly bot h what t hey had ii minildI onl a particular topic (see Zu ud (1994) for
a hist-lissit~li of iiunsolved puiizles in Ible NIH-theory).

2 AN OVERVIEW OF MH1-THEORRY
Niarussi caine to I lie( basic ideas of his t lueory. g(odcsui 10lrtns~r a, after fifteen ' ears of

p~ract ical experience of stirvevilig obt ainedl as a geographical engineer at the Istituito
( hografico NIi IitIare. IUt il Ithe appel)arance~ of Nlaruissi (19.17t). which contained hIls
first sketchy and t enlat i ye accouin~t of intrinsic geodesy, essentially hie hiad published
no0 I ieoret i(al Work iii geodlesy. Hlowever. the vears' 1932- 19417 were not idle,. buti
const itw itie period of profoti id gest at ion during which, arnied with a doctorate- in

puire matheimat ics ( iuiversiit (Iit Bologna 1932), he embarked Iin a voracious digestionl
of t he geodetic lite(rat uire. Illis read in g inzcluded not only the geodetic classics of
I lelmnert . Jordlan ando E'ggert . et c. , ht also led hini into the more esoteric geomletrnc
andl ljlysical nionographs of (art an and Veyl (see 'bind (1 990a) for specific cit at ions).

H enice. NIariissi (1 919)), was iiot al orii 1nar 'y paper onl geodesy, biut rather the product
of dee~p prolonuged reflect ion anid thlought ab~out how a phyisical theory should be(
formulated. It s Jproftindlity was apparently lost onl most of his listeners, Indeed, it
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was presented in Section V: The Geoid under the presidency of J. de Graaf Hunter,
and the secretary, G. Bomford (1949) wrote the following dispassiona"ý summary of
it:

"This paper gives an account of the possible application of the methods
of vector analysis to the study of the Earth's gravitational field and of the
simplifications which may be derived from its use. It concludes that the
most useful programme of work would be to make such observations of
gravity, the deviations of the vertical, and their gradients, as can best
determine the second derivatives of the potential of intervals of (say) 10
minutes of latitude and longitude over a large area."

But Hotine recognized its importance - and the spark of genius - in his ideas (see
Zund (1991)). The 1949 paper was followed by a literal flurry of publications of which
Marussi (1951) was the most detailed exposition of his ideas. His 1951/52 American
lectures, which I had the honor and privilege of revising and republishing as Marussi
(1988), are of particular interest, since they were given at the peak of his geodetic
activity, and knowing that his audience would not be familiar with his motivation
and viewpoint, they were unusually detailed and included material assumed known
in his formal publications. Marussi's theory can best be comprehended by regarding
it as set out in three stages:

10 fundamental ideas;

20 basic rules/conditions for investigation; and

V0 mnethod for realizing in practice the theory given in 10 and 20.

The first stage con~sidlered of the observation that a physical theory can be formu-
lated in two ways: in an absoluth manner for which the fundamental ideas and basic

equations are given independent, or without preference, of the choice of a particular
reference system: and a r(latirt manner iM which special reference systems are chosen
and utilized. The ab.,oiu/ist and rlattlrist formulations are reminiscent of those in
Euclidean geometry in which one has ýwo versions of the theory - a synthetic and
an analytic version. The former gives th, basic assumptions and notions in a pristine

logical form (which is primarily concerned with the various interrelationship occur-
ring in the structure) while the latter is concerned with a useful analytic formulation
of this structure.

T he second stage involves setting out certain guidelines, or working rules, for
carrying out an investigation of the theory. These include the following eight as-
suimptions:

(i) the geometry of space is Euclidean and three-dimensional;

(ii) the vqmiipotential suirfaces of the Earth's gravity field are locally isometrically
imbedded in a three-dimensional Euclidean space;
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(iii) the choice of reference systems should be natural and not contrived;

(iv) the reference systems should involve no additional hypotheses or otherwise im-
pose any loss of generality in our description of the gravity field;

(v) the reference systems employed in the analysis must be susceptible of an imme-
diate physical interpretation;

(vi) the components of all vectors/tensors occurring in the theory should be readily
measurable;

(vii) the domain of the reference systems must be sufficiently large to be useful, viz.
to allow one to make measurements and give a description of the gravity field
in a required vicinity;

(viii) the 6.omains of various reference systems should be continuable, or extend-
able, in the sense that they are compatible and one can readily pass between
neighboring systems of reference.

Actually Marussi (1988) omitted (i) and (ii) which he assumed as obvious in order
that the conceptual framework of classical Gaussian differential geometry be em-
ployed. While each of the Marussi Conditions (i)-(viii) is reasonable, they are re-
markable not only for their comprehensive character, but also for the rigid standard
they require of the theory. Seldom in the history of science, has a physical theory
been proposed - virtually at its inception -- with such lucidity and precision.

The third stage then seeks a methodology in which the previous two stages, and as
many of the guidelines (i)-(viii) as possible, can be realized. Marussi believed that
this could be achieved by using a family of privileged coordinate systems which he
called intrinsic coordinates. This is the Marussi Hypothesis, and originally he stated
his conditions in terms of (local) coordinate systems and not reference systems as
we have done. The adjective 'intrinsic' apparently stems from his conviction that
such 'privileged coordinates' exist and can be found. In a sense the word 'intrinsic'
is overused in mathematics, particularly in geometry, where usually it conveys more
feeling than actual content. Often it is literally employed as a synonym for 'very nice',
or 'natural', with the implied suggestion that other choices are 'less nice', over even
'unnatural'. For example, in Newtonian dynamics inertial systems would be intrinsic,
while non-inertial systems would not be intrinsic. With conditions (iii)-(vi) in mind,
Marussi then took the bold step of making the Ansatz 21 that curvilinear coordinates
.r could be chosen so that

21, : x 3 N,

where N is the geopotential function of the gravity field, and

% 2: X' _=U', (a = 1, 2)

where the u" are the Gaussian parar;'ie:rs on an equipotential surface

S : A' = constant.

4



Symbolically we write (Z1) = (211) + (212), and note that these properties essentially
characterize the MH-theory of differential geodesy. The assertions are independent,
and neither is immediately obvious. However, it is undeniable that if they could
be achieved they would apparently yield a great simplification in the mathematical
structure of the theory. It is not clear whether either of these choices had previously
been employed in theoretical geodesy, prior to Marussi, although it is hard to believe
that someone had not entertained such possibilities. In any case, unquestionably
Marussi and Hotine were the first investigators to systematically base a geodetic
theory on such a Kunstgriff (artifice) as 21.

The immediate question is whether 21 is legitimate, i.e. whether it is compatible
with (iii) and (iv). During the lifetimes of Hotine and Marussi, no one was able
to sort out this issue, and in the absence of conclusive evidence against 21, they did
the obvious thing: i.e. they employed it and sought to investigate its consequences.
One of these was the Hotine Problem which proposes constructing a family of geode-
tically useful coordinate systems satisfying 21. His solution, which we will discuss
in Section 3, is called the Hotine Hierarchy S) and consists of five purported valid
coordinate systems SiO, " ' - ,-&, which were derived in Part II of Hotine (1969). As
an example of the dichotomy of methodologies mentioned at the end of Section 1, we
note that in his work Hotine made no explicit mention of conditions (i)-(viii), and
it is not known whether he knew of them1, or would have regarded them as either
agreeable/satisfactory.

Relative to the acceptance of the Marussi Ansatz, three alternatives immediately
come to mind:

1) a choice such as (%2) is certainly mathematically admissible, since a priori the
tensor calculus permits the use of any (local) coordinate systems, say x' and
-- , as long as they are regular (i.e. smoothly differentiable of some order, and
invertible);

2) maintains that while the alternative 1) is true, the choice of (21) is not just
any coordinate system, but one which is inextricably tied to a particular ge-
ometric situation, i.e. a family of equipotential surfaces (N-surfaces) and their
plumblines (N-lines = orthogonal trajectories of the N-surfaces). One then
inquires whether this situation necessarily demands use of 21, or whether (21)
actually imposes conditions generally consistent with the geometric situation?;

3) observes that (21) is not useful in the general working framework of theeretical
geodesy, i.e. in determining the geopotential function for a given geodetic situ-
ation.

Presumably, Marussi and Hotine consciously, or otherwise, took the alternative 1)
and left it to adherents of 2) to produce evidence of the restrictiveness of (2). Hence

'The original manuscript of Marussi (1988) was dated 12 March 1952 and was Technical Paper
No. 159 of the Mapping and Charting Research Laboratory of the Ohio State University Research
Foundation. It was apparently not widely distributed, and I obtained my copy from Prof. E.W.
Grafarend.
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2), until recently remained a possibility with only insufficient evidence to confirm or
deny it. Probably, alternative 3) was the common view of most people who did not
seriuusly study the MH-theory. Actually, as we will further discuss in Section 5,
3) is a substantive contention, although the reason for it being so were likely not
properly understood. The fact is that - without becoming deeply involved in the
mathematical details - (1) implicitly requires that the geopotential function N be
known. Hence, (21) reduces the MH-theory to being a descriptive theory in which one
is concerned exclusively with describing a given gravity field, rather than determining
an unknown N subject to specified geodetic/geometric circumstances. Of course,
neither Marussi nor Hotine could have failed to notice this fact, but curiously it is
nowhere emphasized in their writings.

Finally, it is reasonable to inquire which part of (21), i.e.(%1,) or (%2), is the most
restrictive and, hence, most likely to cause difficulties. The obvious answer is that
(Q11) is the stronger condition, and that if it is imposed, then (212) can be obtained
almost effortlessly by a coordinate transformation. This may be true, however, it
does not insure that the choice (212) does not somehow incur a loss of generality as
suggested in alternative 2). While my results presented in the next section show
why (21) is mathematically restrictive, it does not suffice to identify which of (2(1)
and (212) plays the conclusive r6le in (21). It would appear that (2(2) is the weaker
condition, but in this regard it should be remembered that (!22), in effect, is a form
of the Mongian parametrization of surfaces. This is important since it is Gaussian,
rather than Mongian, differential geometry which gives a complete description of the
classical differential geometry of surfaces in three-dimensional Euclidean spaces.

3 THE HOTINE PROBLEM AND ITS
SOLVABILITY

Before beginning our discussion of the Hotine Problem (HP), and his solution of it,
i.e. the Ilotine Hierarchy ), it is necessary to step back and consider why these things
are of crucial significance for the MH-theory of differential geodesy. Indeed, we will
argue that the HP is the most important problem in their theory, and that in effect,
the ultimate usefulness of the MH-theory depends on the solvability of this problem.
In this section we will present a critique of the HP and .), and make a conjecture
which we believe essentially categorizes the MH-theory and its applicability.

In a sense the HP really concerns how, and to what extent, one can bridge the
gap between the absolutist and relativist approaches to the theory. In this respect,
since the basic mathematical tool employed in the discussion is the tensor calculus,
one must have a clear understanding of the principal advantages and difficulties which
are encountered when any geometric/physical theory is formulated in tensor-theoretic
terms. While there is no question that the creation of the tensor calculus by Ricci
and his coworkers was one of the major mathematical achievements of importance to
physics during the nineteenth century, the mere fact that is employed in a specific
context is no guarantee that the resulting theory is either correct, or of any practical
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use. A prime example of such a situation is furnished by Einstein's work on relativity.
His original theory, special relativity (which made no use of tensors), was set out
in 1905 and during the next decade achieved widespread acceptance and became
one of the seminal parts of modern physics. In contrast, his relativistic theory of
gravitation, general relativity, (which made essential use of the tensor calculus and is
virtually incomprehensible without tensors), followed in 1915, but did not become of
immediate relevance for almost a half century until it became important in relativistic
astrophysics in the theory of gravitational collapse of neutron stars, e.g. black holes.
While many factors - both mathematical and physical - contributed to this delay,
one aspect is easily understood: the inherent complexity and difficulty of solving the
Einstein equations in a situation which is of direct physical significance. The core
of these difficulties was the transition from a rather obvious coordinate system (a
spherically symmetric non-rotating coordinate system, the Schwarzschild solution of
1915/16 for what we now interpret as a non-rotating black hole) to a vastly more
complicated coordinate system describing rotating black holes as in the celebrated
Kerr solutions of 1963/65. Without this new coordinate system, and the special
mathematical apparatus which Kerr devised to work with it, this new physically
relevant solution of Einstein's equations would not have been possible. The new
results involved no change in the Einstein equations, or their structure, but really
consisted in the construction of a convenient coordinatc/reference system.

Since quaternions have been mentioned in Section 1, we mention another example
in which for our present purposes the reader may mentally replace the term 'quater-
nion' by 'tensor'. At the end of the last century a major controversy raged over the
relative merits and superiority of the quaternion and vector formalisms. Finally, the
great British mathematician, Arthur Cayley [1821-1895] was drawn into the fracas,
and in 1894, in one of his last papers, he wrote:

"My own view is that quaternions are merely a partic-ilar mtthod, or
say a theory, in coordinates. I have the highest admiration for the notion
of a quaternion; but ... as I consider the fill moon far more beautiful
than any moonlit view, so I regard the notion of a quaternion as far more
beautiful than any of its applications. As another illustration ... I compare
a quaternion formula to a pocket-map - a capital thing to put in one's
pocket, but which for use must be unfolded: the formula to be understood,
must be translated into coordinates."

As noted in Zund (1991), the notion of a quaternion is not totally irrelevant to
the MH-theory, since it was the progenitor of the homographic calculus which was
Marussi's favorite approach to the tensor calculus.

Hence, in order to be more than a particular methodology, the tensor calculus
requires having at its disposal various local coordinate systems - hopefully more
than one! - which permit it to be applied, or to use Cayley's term, unfolded, in
order to be applicable in a variety of different geometric/physical situations. The
HP is specifically concerned with constructing such systems - always subject to (%)
- and .' is the solution which he proposed in Part II of his treatise, Hotine (1969).

7



The Hotine hierarchy 35 thus consists of the following five (local) coordinate sys-
tems:

S50: (w, 0, N)-system of Chapter 12;

S)I: normal-system of Chapter 15;

-52: triply-orthogonal-system of Chapter 16;

-53: (w, €, h)-system of Chapter 17;

S54: symmetric (w, 4, h)-system of Chapter 18,

(the references are to chapters of Hotine (1969) and the Gaussian parameters u? =

(w, ¢) are respectively the longitude and latitude on the N-surface S). The con-
struction of Sio marked Hotine's first major c- itribution, Hotine (1957a, 1957b), to
differential geodesy. The system 15o was introduced by Marussi (1947, 1949), and,
in effect, Hotine (1957a) represented Hotine's attempt to recase Marussi's work on a
purely tensor theoretic basis without reference to the ideas of the homographic cal-
culus. In this paper, the metric tensor associated with .50 was called the 'Marussi
metric', however, probably at Marussi request, this terminology was not employed
in Hotine (1969). The content of Hotine (1957b) was devoted to seeking more gen-
eral coordinate systems, however, the results are tentative and should be regarded
- at best - as forerunners of the systems S5 1, &3 and C)4. None of these are fully
worked out in Hotine (1957b), and it is now merely of historical interest in that it
shows that, ab initio, Hotine was trying to solve the HP. It is interesting to observe,
that although he occasionally toyed with the idea of systems more general than -5o,
Marussi never seriously became involved with solving the HP. However, (see our
discussion of S53 below), there is evidence that Marussi keenly followed his friend's
endeavors to construct new coordinate systems.

The hierarchy S5 has several curious features. First, it is by no means clear how
Hotine thought of it, and whether he really regarded it - as a whole - as a bona
fide solution of the HP. in his preface to Hotine (1969), (see page xi), he wrote:

"Part II deals with coordinate systems of special interest in geodesy. In
Chapter 12, the properties of a general class of three-dimensional systems
are developed from a single-valued, continuous and differentiable scalar
N which serves as one coordinate, while the other two coordinates are
defined by the direction of the gradient of N. In Chapters 15-18, the
scalar N is restricted to provide simpler systems, whose properties can
then be derived at once from the general results of Chapier 12."

A literal interpretation would then suggest that Hotine regarded each of the -i
(i = 1,2,3,4) as specializations of S50, viz.

bi C 550 (i = 1,2,3,4), (1)

8



where "C" indicates inclusion of bi as a subcase of Do. An examination of these Di
shows that such a suggestion is false, although it is true that

C3 5D1 (2)

and
C4 C 2 - (3)

The second feature is concerned with how general did he regard 15o. On page 69, he
begins his discussion of Jo by referring to it as

"... a special, but quite general, coordinate system ...,"

so his feelings are rather ambiguous. What is clear is that he devoted more space to
&o (almost twenty pages) than the other bi (i = 1, 2,..., 4). However, a mere page

count is somewhat misleading since Chapter 12 contains much more, e.g. his theory
of the Marussi tensor, than merely an explication of the properties of &o per se. My
personal suspicion, not withstanding his remarks quoted above from the preface, is
that Hotine considered bo as a prima-facie example of what could, and ultimately
should, be done with the remaining fDi (i = 1,2,3,4). If this were the case - and

we believe it was the most likely possibility - then, as we will see, Hotine was sadly
mistaken.

Since it turns out Sjo is the only system in S5 which is valid, we will defer our
discussion of it to Section 4 where its r6le in the MH-theory will be explained. Our
immediate task is then to indicate why the systems .i (i = 1,2,3,4) are defective.

By virtue of (2) and (3), we need consider only two systems S5 and f2 since their
failure automatically exclude Sj3 and J54 respectively.

We first consider the normal systems S51 and b3. The notionl of such a system
is at first glance one of the most attractive possibilities in differential geodesy and
it is truly disappointing that such a system is impossible to realize in practice. The
idea for D1 is derived fron, Riemannian geometry and the notions of Riemannian,
geodesic, or normal coordinates although the terminology in the literature is not
quite uniform (see Weatherburn (1938) or Synge and Schild (1949) for a discussion).
The general theory is valid for an n-dimensional Riemannian space V, however,
for our purposes we will always take n = 3. Essentially, the idea is very simple:
starting from a surface - which one calls a base surface and denotes by S' - one

considers a family of orthogonal trajectories of S', say r, which by hypothesis are

geodesics of V 3. In geometric language, the orthogonal trajectories r' of So are
said to be a normal geodesic congruence, and one then considers the corresponding
family of surfaces E = {S', S2,. . .} which also have the original congruence IF as
their orthogonal trajectories. This configuration is known to exist in V 3 , although its
construction is not altogether trivial. The members of E are parallel t.o cach other
and also to S', and the resulting system of surfaces is said to be a geodesic parallel
system, or simply a parallel system 79. The line element for P is given by

ds 2 := g-,dx1dxP + g33 (dx3) 2  (4)
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where (a, 1 = 1,2), and by virtue of (21 ) and (22) this reduces to

S= a,(l1 lu'dut + Id2 (5)

where ao is the first basic tensor. I.e. the coefficients of the first basic form I of S,

and n is the local gravity, viz.
112 rsN (6)

where N, is the gradient. of the geopotential function N. Equation (4) is Hotine's
line element for his 15, system. Starting from (5) Hotine ingeniously derives the
properties of -1, which include a set of equations -- the variational equations --
which purportedly describe how the first, second, and third basic tensors ag, bo
and c,•o respectively vary from surface to surface of E as one moves along 1C in space.
His variational equations are - in a notation slightly different from that employed
by Hotine - as follows:

Oa

O___ (Pap -- Ce , (7)

t =

where t is the arclength along r and

•p := n (n-1)C,
(8)

V• : aP7 (bo, + bpp~ct);

with the covariant differentiation in the set (8) being taken with respect to the surface
metric. The variational equations (7) are original and do not occur in Gaussian
differential geometry, except in the simple case when

ýOafl = OCO = 0 (9)

which corresponds to 1 reducing to a linear convergence A of straight lines. Hotine's
derivation of them is not totally convincing (although it is not quite clear that it is
wrong!). The difficulty of assessing the validity of S51 is that (7) is very attractive,
despite the fact that one cannot either integrate them or show that they are incon-
sistent. I have spent a great deal of time trying to work with them, and ultimately
came to the conclusion that relative to the status of FI they are a red herring. The
equations per se are formally consistent and as such cannot be used to show that (9)
is the only case which occurs within the context of Gaussian differential geometry.
Such a result is indeed the case, but its derivation comes from other aspects of the
construction of -i and not from (7).
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When these conditions are comtVhined with the lIotin~e 3-leg vectors it follows that
these gradients assume the form (where a, b, h. and 4, are scalars)

11, =(LA,. + l/ip,.
Vr = kA,. + bi,., (11)
Nr = nr,.,

andD := ab - hk $ 0. But then the Pfafflan forms associated with (5) become

01 = (bdU - hdV) /D
02 = (-kdU -adV)/ID (12)
03 = dN/n.

When these are substituted into the Cartan structural equations one finds that

a/3 = b13 = h13 =k13 = 0 (13)

where "/" denotes the directional derivative in the v, direction which is tangent to r
and, hence, orthogonal to S. The conditions (13) are highly restrictive and require that
both the Gaussian and Germain curvatures of S vanish identically 2. The vanishing
of either of the-- surface curvatures is inadmissible and shows that the construction
is invalid.

Hence, what has actually been shown is that the usual conditons (21k) and (22),
i.e. the full Marussi Ansatz, is inconsistent with the Hotine Ansatz (213) when E is a
non-trivial family of curved surfaces. The only admissible case turns out to be when
n = constant, i.e. the local gravity is constant, and this not only trivializes the line
element (5) but also shows why (9) is the only possible case in Gaussian differential
geometry.

The triply-orthogonal system J and its special subcase 554 is a curious situation.
The presentation of the former in Chapter 16 of Hotine (1969) is very brief (less than
three pages) and barely an outline, so for details of his reasoning one must turn to
Hotine (1966a, 1966b). Apparently, it was a favorite topic of his, and the first mention
of it occurs in Hotine (1965). The issue centers around the Cayley-Darboux equation,

21n terms of the leg coefficients discussed in Section 4 and exhibited in (**), (13) requires that

k, = k?= = C3 = 0.
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.,iad III Zlund and Mioore (I 1987a) 1t wvas tioted that. inl its iiiost general form (14) involves
:121 ernits! I lot ilt bl~eivede thai~t anIv smuoothi function (-ouilrl be chosen as a member
of it Iriplv- onhiogonal family of swfaces C1, in a FLuchidean 3-space, (this is known
as fhe Ilatint ( ti'rhirictnr), which is t antamount to the assertion that (14) is always

ideii wulysalsicud 'Illue falsity of this con'ecture was conclusively settled in Zund
and1( Moore ( 1 987h ), however,1 it is almost, invx A icable how Ilotine could have held
to his views in Sp~ite of the exist~ing evidence to the contrary. In Ilotine (1964), (14)
was a('kilowledlged to be' "a comphllicate'd partial-differential equation" and sometime
later, hlotine derived an erroneous version of it -see equation (16.04) on page 114
Of Ilotine (1969) --- which he apparently refused to believe was not genuinie. The
root of the. difficulty was that his version of (14) was an identity, Jn fact, one of the
B~ianchi identities which are, of course, always identically satisfied in a 3-dimensional
Euclidean space. The evidence against his conjecture, viz, that (14) is not an identity,
was overpowering yet llotine would not accept it. For example, at the beginning of
Chapter XI of Forsyth (1920) -- one of Hotine's favorite references and probably
where he first learned differential geometry -- it is explicitly stated:

".. in 1846, it, was pointed out by Bouquet that any arbitrarily chosen
surface cannot, belong to a trijply-orthogonal system. In 1862 Bonnet had
shown that the determination of such a system mist depend upon a partial
dlifferenltial equation of the third order; and this equation of the third order
was first obtained by Cayley in 1872. Soon there followed the researches
of lDarboiux ... and miany other workers, amnong whomn Bianchi may be
sp~ecialty named, have laboured in the field,"

Needless to say, (see the niultitudeof references in Zund and Moore (1987)), geometers
of the stature of Bouqiuet, Bonnet, Cayley, Darboux, and B~ianchi did not miss much,
and it is incredible that they could have failed to note that (14) was an identity,
if this had been the case. Since H~otine did not challenge the procedure leading to
the Cayley Darboux equation, he could only have thought that everyone - except
himself! - had made a horrendous calculational error. However, this is unlikely,
since merely to cite the example of Cayley, it has been said that in his 966 papers his
computational errors can be counted on one hand! Moreover, Marussi wvas unable to
dissuade Hlotine from his belief in his conjecture, and in Marussi (1967) - without
exp~licit reference to ilotine's work - hie stated

"... the family of equipotentiai surfaces of the Earth's gravity field is
not of' Laiin6's type (for it to be so, Darboux's third order partial differ-
ential equation would need to be satisfied) ..
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This was not an idle comment on Marussi's part, he had had a doctoral student
investigate the iiituation, see the unpublished Tesi di Laurea of N. Milani (1960).'
This thesis, essentially dealt with various ways of expressing (14) and in some sense
anticipates some of the results later given in Zund and Moore (1987a).

Hence, since Hotine's conjecture is false, the system 3 and its subcase N must
be rejected.

4 THE (w, 0, N) COORDINATE SYSYTEM AND
A CONJECTURE

In the previous section we indicated why the Hotine hierarchy h contains only a
single valid coordinate system fjo, i.e. the (w, 0, N) system. We now address two
issues about this system: Hotine's derivation of it, and the question relative to the
generality of this system. Both of these are important in that the first reveals the
inadequacy of his methodology, while the second concerns the delicate question of
the generality/utility of the 5jo system. Finally, we conclude with an open conjecture
about the •o system and its r~le in the Marussi-Hotine theory.

ttotine's construction of fjo in Chapter 12 of his treatise is one of the most difficult
discussions in this work. The difficulty is not that of Chapters 15 and 16 where the
exposition is maddeningly sketchy, but rather that of an embarrassment of riches,
where now in the possession of a coordinate system in which to express his ideas,
he does everything all at once! The result is a dazzling and virtuoso performance
which, given tHotine's computational ability and agility, must be experienced to be
appreciated. Unfortunately, the result is a melange of equations: some relevant to
the construction at hand, with others quite irrelevant and of dubious applicability
to differential geodesy. 'lo understand his procedure, one must carefully delete the
unnecessary material, or to borrow a famous comment of Dirac 'eliminate the dead-
wood' from the construction. This was done by the author in Zund (1993), aad
it becomes clear that Hotine trivialized the construction by an ingenious procedure
which avoided making full use of the curvature parameters:

(*) k 2,t1,71,12;

which, in fact, he introduced in his derivation! His presentation is flawed by two crucial
omissions. First, having observed as early as in Hotine (1957a) that the geometry of
the geopotential field, i.e. its family of equipotential surfaces E and plumblines r,
can be described by the parameters (*), he failed to note that this description was
not complete. Indeed, instead of the five scalars exhibited in (*), in general there are
nine scalars, which we call leg coefficients:

(**) kl k2, t 2 1 7 12, O'1, 0'2, 63

31 am indebted to Prof. M. Caputo for bringing this to my attention, and kindly furnishing me
with a copy of this thesis in 1993.
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II is work ill (C ha t (ters 7 aIid 8 accounted for t Ihe relationshitp 12 = -1t and the geodesic
curvat tires (TI, .7: but not Ihe scalar ý-:l (which was an important ingredient in resolv-
ing the linti ie ( nI jecthi re). Second,I he nowhere exhibited the system of differential
equationls withih lhe leg coeflicients (**) miust satisfy in order that the family E, or
illore precisely, a sitigle sitrface S of this family. h~e locally isometrically imbedded
in E:, (recall the ,I aartissi ('ondition (ii) of Section 2). We call these equations the
HlotItit -.. arti.sI i• qaItiofn, (R.,") since so int of them do occur in their work. However,
the full set (HL''.") is never cited in general form. and could not be done since one of
tie key v',. bles e:, was unavailable to him. It turns out that for the ho construc-
tion. these equations reduce to a mininial set of eleven equations. Hiotine's procedure
was to follow alt ap~proach which fornially avoided the full set (HMI), but which
almost in i racu louslyv insured t hat these equations were identically satisfied! The
difficulty was that it did not pin (town, i.e. completely specify, the values of the leg
coefficients (**). Moreover, as Ite, himself had argued, these scalars --- at, least those
given in (*) at',. the b~asic quantities which occur in the description of the geom-
et ry of the geopotenttial fieldl in ot her words, the exposition lie gave in Chapter 12
is intcotplete in that the reader is given tlihe impression that there is some freedom
heft in the specificat ion of the parameters (*), wh.r.'as it reality this arbitrariness is
!imit el by set (R." ). A concrete example of this ambiguity was indicated in Zund
(l 9)Oh) in contection with the degeneracy the ',,:-degeneracy' - which occurs
in the deli iitiou of the longitudinal coordinate ,,. Ilence, we can conclude that. by
virtiue of the Intaterial gi'ven ill Zlu (d (1993), thle -)0 systemn is a valid local coordinate
svstemi ill E*(. Ihowe'ver. Ilotine's derivat ion is not adequate to conclusively establish
I Itis validit v.

The, above ,'riti uqe of lhintiie's discussion of thlie (,. O, N) system leads to the foi-
lowinig quest ion: 'T what extelt did llot in,' properly tirderstand what was involved in

Ite const rtict ion of t he .) 0-systei'? Our answer is t lhat lie did not fully understand the
st ruct ural aspects of t lie problems, and was likely misled by the apparent familiarity
of t lie issue wit I t he usual pract ice of employing the longitude U; and latitude , as the
first two coordinates ill the fj 0-systetn. Hence, regarding the construction as working
with knowti coordinales, he did not ask the more general question of how to intro-
duce coordinates in a less familiar situation. Indeed, Hotine's trivialization worked
precisely because lie knew the geometric significance of the uo = (w, <) and could
write down 'geometrical equations', (see Section 3 of Zund (1993)), relating them
to ordinary Cartesian coordinates (r, y, z) in E 3. This fortuitous - and unique! -
circumstance permitted him to obtain equations which ultimately identically satisfied
the set (HM). Moreover, this observation also explains why his attempted deriva-
tions of the hjt and -F2 were inadequate. In these systems he knew that one could
not choose ui' = (w., 0), but misled by his 'success' with the 150-system he did not
realize that unconsciously he had overlooked the essential structural features of the
construction, viz. the set (7"M). Moreover, Marussi's coolness, or lack of enthusiasm,
for the material in Part II cf Hotine's treatise probably suggests that he was less than
convinced by Ilotine methodology. Otherwise, one would have expected him to try
to complete his friend's work, something which conspicuously he did not attempt to
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do.
The question of the generality of the &o-system is much more elusive, and difficult

to settle. Clearly, both Marussi and Hotine believed - or at least fondly hoped -
that it was a very general system. However, apart from stating it (recall the Hotine
quotations cited in Section 3), neither of them produced any substantive argument
purporting to prove its generality. Their probable justification was merely to invite the
skeptical critic to examine the complicated character oi the line element ds2 of the D0-
system (see equation (12.069), page 77, of Hotine (1969)) where the components gro
of the metric tensor were exhibited. It is indeed a complicated line element, however,
recently Wilkes and Zund (1994) have produced evidence which strongly suggests
that its 'generality' is illusory. Based on the notion of orthogonality specializations,
which are a set of three specializations which ultimately reduce the general fo line
element ds 2 to diagonal form we have proven the remarkable and surprising result
that the only permissible specialization of bo is that one can take the geodesic torsion
1L to be zero on the N-surface. The other specializations are invalid - indeed, they
collapse the (w, 0, N) system to ordinary spherical polar coordinates (w, 0, r) in E3 !
The derivation is lengthy and tedious since of necessity it entails a careful analysis of
the eleven equations of (H.M). Thus, if one took the view that a situation was only as
general as the number of useful specializations it possesses, then the Djo-system cannot
be regarded as being very general. The Wilkes-Zund argument, of course, does not
prove the lack of generality of the D0-system, however, this is the obvious implication
since diagonal line elements are quite reasonable things to have in differential geodesy,
e.g. the orthogonal curvilinear coordinate systems possess such line elements. On the
other hand, the reduction of the (w, 0, N)-system to an (w, q, r)-system when one
imposes the conditions:

t,=0andyi =7 2 =0 (15)

on the leg coefficients in (*) does inescapably demonstrate the delicacy on the D0o-
system.

As a preliminary to the conclusion of our discussion of the S 0-system, we now add
two additional , nditions to the eight Marussi conditions stated in Section 2. These
two conditions seem especially relevant to questions of handling the set (HM) which
now appear as the central feature of the MH-theory. These conditions are:

(ix) the equipotential surfaces are general convex surfaces;

(x) assuming appropriate smoothness hypotheses on the equipotential surfaces and
the geometric quantities associated with them.

In effect, the addition of these conditions provides a setting in which one can ask
and have some expectation of obtaining sensible answers about solutions of the set
(1-tM) .

Condition (ix) is highly non-trivial but essentially corresponds to what one ex-
pects equipotential surfaces to look like. For our purposes, by a convex surface we
mean a surface which
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1) can be regarded as a 2-dimensional oriented Riemannian manifold,

2) is simply connected, and

3) has strictly positive Gauss curvature K.

Condition (x) is required to insure that the quantities on which derivatives have
been taken are well-defined, i.e. everything that should be continuously differentiable
of a certain order is continuously differentiable. The order of differentiability varies
from situation to situation, hence, the adjective 'smooth' is employed in a general
all encompassing sense as including whatever order of differentiability is required in
a given situation. This condition is cruciai in establishing existence and uniqueness
theorems for both equipotential surfaces and the leg coefficients, viz. (*) or (**)
appearing as unknown functions in the set (HM).

The preceding discussion of the .T•o-system now leads us to make the following:

Conjecture

Up to a smooth change of coordinates/parameters, the 55o-system is the only
class of local coordinate systems permitted in the MH-theory.

Before discussing in detail the significance of this conjecture, we must clearly un-
derstand its conteut. The first part means that by means of a suitable change of
curvilinear coordiiates, or Gaussian parameters, any curvilinear coordinate system
X' appearing in the MH-theory can be reduced to the bo-system. Hence, there is
not a single (w, 0, N) coordinate system, but rather a class of such systems which are
equivalent to it in the sense that by an appropriate change of variable they can be
reduced to it.

We do not have a proof of this conjecture or realistically see how a proof could
be done. In effect, it is a 'non-existence' statement and such things are notoriously
difficult to prove in mathematics. Of course, the conjecture wouid be disproven if one
could produce a coordinate system which satisfied the tenets of the MH-theory, viz.
the Marussi Ansatz 2, and a reasonable number of tihe Marussi Conditions (i)-(x).
By the latter we mean that the offered counterexample should not violate the spirit
of these conditions, i.e. be pathological.

One can advance two general observations tending to favor the conjecture. First,
in the twenty-five years since the publication of Hotine's treatise, no one has offered
anything better than the Sbo-system within the context of the MH-theory. Indeed, if
one goes back to Marussi's original proposal the date can be pushed back forty-seven
years. The second reason is that having taken 21t, then 212 seems quite reasonable.
Moreover, since one expects S: N = constant to be a curved surface, then the pa-
rameters u0 = (U, V) on it should be curvilinear, viz. angles!, and a choice of angles
cannot differ much from (w, qS) if they are correctly defined. For example, there is no
essential difference between latitude and colatitude since one can easily convert one
into the other by a simple equation.
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5 GENERALIZED MARUSSI-HOTINE THEORY
AND CONCLUSIONS

The results of Sections 3 and 4 suggest that the scope of the MH-theory is limited,
and, if indeed our conjecture is valid, then the entire theory essentially is that of a
single coordinate system! Such a conclusion certainly does not justify the elaborate
formalism set forth by Hotine in his treatise. However, as we now will suggest, even
though the MH-theory is limited, the formalism admits a more general interpretation
which can be regarded as the basis of a new approach to differential geodesy which
we call the generalized Marussi-Hotine, (gMH), Iheory. In some respects the gMH-
theory is radical in the sense that it involves a critical rethinking of how coordinates
are introduced into differential geodesy, and although we believe it offers a bold new
approach to the subject, it would be quite unjustified to claim that either Marussi
or Ilotine would necessarily be receptive to our efforts. Nevertheless, the appellation
'generalized MH-theory' is appropriate since it is a generalization of their theory, and
upon being given a geopotential function N and imposing (2t), the generalized MH-
theory does formally reduce to the MH-theory. There is, however, a fundamental
difference in how local coordinates are viewed in the two theories. In order to explain
this feature we must now consider the various role of coordinates in theoretical geodesy

-both in classical theory and differential geodesy.
Following Zund (1992), we may distinguish between three different types of coor-

dinates:

determinative, descriptive, anid permissible coordinates.

In the first two cases, coordinates are the primary variables of the theory and geomet-
ric paramters (such as those displayed in (*) and (**) of Section 4) play a secondary
r6le. Ddterminative coordinatts are those of classical theoretical geodesy and are so
named since they are the coordinates employed in the determination of the geopoten-
tial function N from an appropriate Laplace-like equation. Usually they are chosen
for their efficacy in solving the basic equations, and although they may be related
to a special symmetry exhibited in the geodetic situation, they need not be conve-
nient for the purposes differential geodesy. The coordinates of the MH-theory are
purely descriptive and presumne that a geopotential function N is known. Then by
using Z one seeks to describe the geometric properties of the given geopotential field.
This requires satisfying the set (UM) and, in effect, involves a considerable degree of
guesswork since the derivatives appearing in the set (HM) are directional derivatives,
i.e. the projections along the directions of the Hotine vectorial 3-leg {A, i, v}. These
3-leg vectors are respectively the tangent vectors to the equipotential surface S, and
the normal to this surface (which is, hence, a tangent vector of the plumblines of S).
The coordinates occur as variables in the components of these vectors, and while these
Xr are known the values of the components of the 3-leg vectors must be deduced. By
virtue of a theorem in the Ricci congruence calculus, the nine components of the three
3-leg vectors are equivalent to the nine leg-coefficients exhibited in (**). Thus, for
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example, in the case of t ie fo-systeni, the MH-theory seeks to fit a geometry to the
families E and r in E:i. The example of Wilkes and Zund, cited in Section 4 shows
that somei choices of the leg coefficients are incompatible with the structure of the

bo-system. Indeed, if our conjecture is valid it is very likely that possible values of the
leg coefficients (**) are severely limited, since the entire theory would be rigidly tied
to those particular geodetic situations which are readily adaptable to the .bo-system.

Our proposal to remedy this restrictiveness is to approach the situation in a totally
different manner, and regard the primary variables as being the set of leg coefficients
(**) with the geopotential being an unknown function. We would then seek to solve
the set (H-/M) subject to the general rules of the Marussi Conditions (i)-(x) and some
geometric assumptions on the leg coefficients (**). The latter serve as Cauchy data,
i.e. 'boundary conditions', for the solution of the Cauchy problem of solving the set
("/M). For example, one might ask for a solution of (1H.M) such that

K > 0 -= kk 2 - t1 > 0,

with
X $ 0 _= Y1,Y 2 not both zero;

i.e. for a convex S having curved plumblines. Typically, either one will be able
Lo solve the set (7"M) (possibly with additional assumptions); or the assumptions
will b- incompatible with the set (H-.M). In the former case, one has constructed
a geopotential field (i.e. a geopotential function N) having prescribed geometric
properties; while in the latter case, one would see that the chosen assumptions are
inidequate/inconsistent with the set (HM) - viz. there the desired solution is not
possible. Given a solution, one then derives a coordinate system x- associated with
the obtained leg coefficients/components of the 3-leg vectors. Such coordinates are
said to be permisaible, since they are the coordinates permitted by the Cauchy data
and solution of the Cauchy )roblem. These coordinates should be physically useful,
since by construction they possess certain geodetic/geometric properties.

One might regard such an approach as overly difficult and unrealistic, except for
that fact that it is essentially the procedure employed by Kerr in his solution of
Einstein's equations. These equations are much more difficult than the set (H"tM),
and, hence, one may reasoiably expect with some effort and ingenuity that there is
a good chance of success of solving them. Indeed, there is a close analogy between
the sot (1-t),l) and the corresponding formulation of the Einstein equations. The
latter has been given in several forms, however, the most useful is due to Newman
and P~enrose (1962) and known as the Newman-Penrose, (ANP), equations. It involves
twelve complex quantities which are known as spin-coefficients, which are analogous
to our leg-coefficients (**). The difference is that - as Hotine ,bserved -- the leg-
coefficients have an immediate geometric interpretation, whereas the interpretation
of the spin-coefficients is less apparent since it involves a four-dimensional Rieman-
nian geometry. Actually, it is ironic in that Hotine recognized the significance of the
curvature paameters (*), but appa:.ently not that they were part of a more general
formalism, i e. the Ricci ,'ongruence calculus, or what we have called the leg calcu-
lus. This formalism dates back Into the years 1895-1901 and the original work of G.
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Ricci [1853-1925] and his pupil T. Levi-Civita [1873-1941] on the tensor calculus. Un-
fortunately, in their attempt to sketch the framework of n-dimensional Riemannian
geometry, they did not develop the n = 2 and 3-dimensional theory to the extent that
it became an alternative way of treating Gaussian differential geometry. Although
some of this was included in Cartan's theory of exterior differential forms, its appli-
cability to the classical differential geometry of curves and surfaces is relatively new
and unexplored. The Newman-Penrose formalism offers serveral advantages which we
can expect will be carried over to the (H.tM) equations. First, it permits the solution
of the set subject to certain geometric/physical assumptions; and second, it specifies
a procedure - a definite order - in which the equations are integrated. As this
procedure is followed, one successively restricts the freedom of the coordinate system
which is derived from the values of the spin-coefficients and the components of the
leg vectors.

In conclusion, I feel obliged to offer a few personal comments about differential
geodesy and the work of Marussi and Hotine, in particular. I came to theoretical
geodesy some ten years ago after nearly twenty years of active research in geome-
try and mathematical physics (my academic training was in mathematics). While
geodesy is obviously a rather more mundane discipline than either of these subjects
one certainly hopes it is more 'down to Earth' than either Kummer's quartic surface
or the theory of gravitational radiation and black holes! In studying the contributions
of Marussi and Hotine, I have found no dimunition of depth and ingenuity in their
ideas than those I previously experienced in the writings of Einstein, Dirac, and Weyl.
It has been my privilege to learn from Marussi and Hotine, and I have found it to be
the most challenging and satisfying period of my academic research. Not only have I
found differential geodesy to be exciting and intriguing, but the geodetic community
at large has been unstinting in its encouragement and generous support of my efforts.
I hope that my forthcoming monograph, Zund (1994/95), will be regarded. not only
as a tribute to Marussi and Hotine, but also a partial repayment of my debt to all
geodesists for their many kindnesses (both personal and professional) to me.

The vision of a geometric formulation of geodesy which Marussi and Hotine saw
is undiminished by their passing from us. I believe that the words of the great French
physiologist and anatomist Claude Bernard [1813-1878] well describe them:

"Great men may be compared to torches shining at long intervals, to
guide the advance of science. They light up their time, either by discov-
ering unexpected and fertile phenomena which open up new paths and
reveal unknown horizons, or by generalizing acquired scientific facts and
disclosing truths which their predecessors had not perceived."
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