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1. Overview

Funding for an EPSCoR student in the area of control systems engineering
(masters level) was requested and received as a supplement to an ARPA funded project
"Application of Neural Networks to Seismic Signal Discrimination”. This EPSCoR
funded student was directly involved in the application of neural networks and fuzzy logic
as part of the investigation of seismic signal detection and classification. The graduate
advisory committee for the EPSCoR student was comprised of three faculty members
directly involved in the research project.

Two different students filled the EPSCoR funded position. Initially, Mr. Mike
Murphy was selected based on undereraduate achievement and supplemental sponsorship
by Eagle Research Corporation of Charleston, West Virginia. Eagle Research provided
Mr Murphy with a two year leave of absence from his employment and agreed to
continue insurance benefits and provide material support in Mr. Murphy's endeavers. Mr.
Murphy completed one semester or campus but chose to return to full time employment
upon learning of his wife's pregnancy towards the end of his first semester. Mr. Murphy
left under favorable circumstances and continues his studies as a part time student. A
second student. Mr John Martin, began his program of study the same time as Mr
Murphy as a research assistant on the ARPA funded project and assumed the role of
EPSCoR student the second semester of the program

The goals of the EPSCoR position was for the active participation of the student in
the parent research project working with the principle investigator and co-investigators in
developing mathematical models of neural networks and implementing both neural nets
and fuzzy logic The student was expected 10 prepare and present a major paper Mr
Murphy prepared a paper eniitled "Neural Network Techmques Applied to Seismic Event
Classification” that was presented at the South I:ast Symposium on System Theory,
University of Alabama, March 8, 1993  Mr Martin has prepared and has been notified of
acceptance of a paper at the West Virgima Universitv Mining Symposium to be held July
11,1694

Mr Martin's role in the parent project was substantial  He wa' instrumental in
writing the major parametnic transformation codes used in the extensive network testing
schemes  His main research nvolved the application of neural networks to seismic
discnimination using an ARMA signal model This work was used as his required masters
project and the final version, as presented and approved by " VIT graduate school, is
attached to this report




main research team covering topics such as programming in ADA, various neural
networks, and presentations on seismology.

3 Research Related Activities

Course attendance and work assignments werz expected and assumed in
connection with tne students program of study. Other project related activities outside the
normal realm of course study enhanced the EPSCoR stu {ents learning experience.

An Intel Neural Network Development System was purchased for use by the
student as part of his research program. Use of this system allowed the student to
independently study neural networks from a users point of view as well as conduct
research on training and classification of different seismic parametric data transformations.
The students was required to prepare and present 2 seminar on Intel System to the
research group. Additionaliy, he trained other members of the research group in the use
of the development system for preliminary testing of the main seismic data sets. The
conference paper wnitten bv Mr Murphy was based on test results obtained form the
development system  Mr Marun extensively used the development system in his
preliminary ARMA modeling work The development system was used mainly for quick
experimentation and education. The software was not used for final result tabulation due
to speed limitations and copy restrictions

A mathematics software package, Matlab, was used by the research project to pre-
process the raw seismic waveforms and derive different parametric transformations The
EPSCoR student was responsible for taking the rough transformations developed by the
co-investigators and modify the routines into the propei format used for test result
generation.  These modifications ranged from re-coding the algorithms for more efficient
operation to the addition of data file manipulation routines that allowed auto execution of
data processing routines

The process of selecting a masters research projeci lead te the exploration of
combinations ci the different parametric transformations for presentation to the neural
networks for (raining and testing A detailed study of the size and amount of overlap
needed in the windowing of the seismic waveforms is presented in the masters project
paper attached to this report

4 Travel

Part of the EPSCoR students funding was utilized for travel The following travel
was conducted by the EPSCoR student




1 South East Symposium on System Theory, University of Alabama, March 8-,
1993, Alabama. The EPSCoR student attended multiple sessions at the conference and a
student paper was presented.

2. Artificial Meural Networks in Engineering, St. Louis, Missouri, November 11,
1993., The EPSCoR student attended an eight hour tutonial session on neural networks as
well as attending three days of paper presentations.

3 Research trip to the Center for Seismic Studies, Arlington, VA. This trip
introduced the EP5CoR student to some of the members of the Centers staff as well as
providing an opportunity to ask several questions to the Centars staff pertaining to the
seismic database.

4 West Virginia University Symposium on Mining, July 11, 1994 The EPSCoR
student will present a paper on research findings at this conference.

s Summary

The EPSCoR funded position provided a nch environment for the student involved
above and beyond that of the normal graduate student at West Virgima Tech The direct
interaction with research faculty, provision of office space, computer equipment. neural
network development tools, and tiavel money allowed the student to fuily develop the
skills and knowledge needed to conduct research. The additional resources of the parent
research project made available an extensive reseairch database and additional computer
facilities at the Center for Seismic Studies While the research project was not a thesis in
the traditional sense, many of the elements of the project paper re-enforced the skills
necessary to conduct appled research and report the results.
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AN ABSTRACT OF A MASTERS PROJECT

SEISMIC EVENT CLASSIFICATION USING NEURAL NETWORKS
WITH ARMA COEFFICIENT MODELING

John R. Martin

Master of Science in Control Systems Engineering

An artificial neural network is incorporated as part of a software simulation system
for the purpose of classifying seismic events from waveform data. Neural network
techniques augment traditional methods of seismic evert classification to enhance
classification flexibility and accuracy. Unprocessed seismograms are not well suited for
presentation to neural networks because of the large number of data points required to
represent a seismic event in the time domain. Parametric representation of the seismic

waveform numerically extracts those features of the waveform that enable accurate event

classification.

Coefticients of an Auto-Regressive Moving Average (ARMA) model are extracted
to form a parametric representation of a seismic event  This parametric reprerentation
provides adequate information for accurate event classification, while significantly
reducing the minimum size of the neural network The data set is comprised of 75 wave
forms, five signal classes, with 2400 samples per seismic trace. Each waveform in this
database i1s parametrically represented by the windowed ARMA feature extraction stated

above These features are presented to the neural network for classification.
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1.0 INTRODUCTION

In recent years, detection and classification of seismic events have been studied

extensively and require nighly trained seismologists to accurately interpret seismic traces.

15000 ™ ' ‘ '
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5000 | [T “
-5000 | ‘
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Figure 1 Time Series Plot of FEBMEI16.W

Figure | presents the seismic trace of a typical marine explosion. There are two
methods which a seismologist might use to classify a seismic event. The easiest event
classification occurs when information such as location and time are known prior to the
event occurrence.  Seismologists are then prepared to monitor the event and may easily
verify the event type and location The second method does not provide the seismologist
with information prior to the event occurrence. Without this a-prionn knowledge, the

seismologists job becomes significantly dithicult.
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Upon initial examination of a seismic trace, a seismologist would begin the
classification procedure by identifying features of the seismic event Typical features of
interest are the arrival and ampl.ude of primary surface waves, secondary waves, and long
waves. After the initial phase identificac.on, a classification is tentatively associated with
the waveform. The seismologist would attempt to confirm the trace origin and type with
someone at the event location or through published schedules of such events. To improve

the probability of a correct classification, this procedure is usually verified by other

seismologists.

Signal classitication of this type is time consuming and is prone to error in
interpreting the signal phases and arrival times. To a great extent, this type of signal
classification 1s subjective at best. The purpose of this project is to determine the

usefulness of a neural network in seismic event discrimination.

1.1  Project Description

Seismologists use heuristics and intuition in classifying seismic traces. The
heuristics are based upon various features of the signal. Extraction of these various

features, as performed by the seismologist, can introduce significant error in signal

discrimination.

Feature extraction and classification error can be reduced by implementing these
functions in an expert system. Heuristics, or rules of thumb, suggest parametric
«wransformations that could potentially prove useful in developing a neural network based
system.  Since each signal in the seismic trace database consists of 2400 points, an

excessive amount of data tor a neural network, some method of data reduction must be

11




included One such method of parametric data reduction s in calculaung the Auto-
Regressive . foving Averag: (ARMA) filter coethicients  This method will be used to
determine if the frequency content of the event and kow it changes over the event life
provide any useful information in discnmination of seismic events  Classification of
seismic signals will be evaluated using supervised Kohonen and Back-propagation neural

networks.

1.2 Scupe of Activities

Determination of neural network usefulness in classifying seismic traces wiil
require collecting known data for training and testing, development of ARMA coefficient
calculation, research on back-propagation and Kohonen neural networks, and performance

evaiuation of the algorithms. Specifically, the project scope involves:

¢ Data collection

¢ ARMA coeflicient development

¢ Signal preprocessing

¢ Back-propagation research znd development

+ Supervised Kohonen research and development
¢ Neural network training and classification

¢ Examination of results.

12




1.3 Report Overvien

A bnef descniption of the problems in seismic event classificaion has been
provided along with an approximaie research plan The remainder of the paper discusses

those topics 1n detail

Chapter 2 describes the data base used for testing as discussed throughout this
paper. The various tables listed in Appendix A with seismic wave form naimes, stations
and Julian dates are sufficient references such that anyone accessing the on-line data base
at the Center for Seismic Studies can retrieve the related seismic wave forms. Appendix B

provides seismic monitoring station inforroatton.

Chapter 3 offers background information on seismology. The broad classification
of seismic events as used by seismologists is presented along with plots of sample wave
forms. Qualitative assertions and heuristics that are commonly used for seismic event

classification are discussed.

Seismic parametric conversicns are covered in Chapter 4  Parametric data 1s
derived from the sampled wave form and is independent of the identification of various
seismic phases associated with most classification schemes. The parametric data is derived
from ARMA coeflicients Appendix C contains the Matlab script file for the ARMA

coefficient extraction.

Chapter 5 describes the neural networks utilized in the training and testing of the
seismic parametric data. Basic neuron models, activation functions, neural network
structure, network training methods, and differences between back-propagation and

Kohonen neural networks are discussed at the introductory level

13




Test results, network training times and performance, and remarks are covered in

Chapter ©  Detailed tes: resuits are inciuded in Appendix D




2.0 SEISMIC DATABASE

The Center for Seismic Studies (CSS) is an agency funded by the Advanced
Research Projects Agency (ARPA) with the principle objective of providing the research
community easy access to saismic data.  Since 1982, CSS has been improving ihe
teleseismic database procedures and programs of the Lawrence Berkeley Laboratory and
the Discrimination Group at Lincoln l.aboratories. A more progressive database was
needed to meet the standards of the seismic research community and an interactive method
needed to access the database In 1987, the version 2.8 database was released adhering to
the Intelligent Array System (IAS), a type of seismic data collection standard. The version
2 8 database also embedded Ansi Standard Query Language (SQL) to interactively access
the seismic database. In 1989, CSS modified the version 2.8 database to handle regional
as well as teleseismic events The modified database, Veision 3.0, also has a simple

daiabase structure that was less complicated for the interactive use and lessened

matntenance

2.1 Databases at the Center for Seismic Studies

The Seismic Operations LAM (SOL) is the primary host for interactive analysis
from the seismic research community  SOL 13 automated to coliect and process external
seismic information from vanous international seismic stations.  Using the processing
power of a SUN workstation, SOL 1s the heart of the interactions of CSS to the seismic
community The Central Data Repository (CDR), the seismic data archives of CSS, is the
storage facility for SOL. The CDR consists of a 600 Gigabyte Tape drive system

dedicated to waveform storage, a 6 Gigabyte database management system, and a 400




Gigabyte Optical Jukebex to store satellite imagery, map graphics, and waveform

segments Figure 2 displays the <urrent configuration at CSS.

CDR Tap. Archsve

Waveforms
600 Gigabytes
SOL.CSS.GOV
CDR D.t.b“e ‘ . . Intcncdvc
Management System Sa@c Data Acquisition
Parametnc Data Operations
. Local Area Net
6 Gigabytes WVNET
CDR File Systems Applied
Waveforms External Collection Neural
and Processt
Sattchtc Images e Net;;:rks
300 Gigabytes O O

O

Sasmuc Stations

Figure 2 CSS Database

Although the Center has many databases consisting of seismic data that has been
collected worldwide, the three major databases are the GSETT, the IMS, and the
EXPLOSION.  These three databases represent 75% of the entire parametric and

waveform data stored at the Center.

The GSETT database was the work of the Ad Hoc Group of Scientific Experts to

Consider International Co-Operative Measures (0 Detect and Identify Seismic Fvents,
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called GSE [6] GSE was formed in 1976 by rn international group of scientisis during
the Conference on Disarmament for the sole purpose of exchanging data useful for
monitoring a limited or comprehensive nuclear test-ban treaty. Using approximately 50
international seismic stations, GSE conducted the first international exchange of seismic
data in 1986 during the GSETT-! test. Due to the complexity and size of the exchange of
parametric and waveform data, the test was only a limited success [6]). Waveform data
were to be available on request, but never exchanged routinely. But with the increasing
technology and the availability of larger computer networks, the second international full-
scale test was conducted from the 22nd of April 1991 to the 2nd of June 1991. During
these 42 days, over 3,700 seismic events were classified and 85,000 waveform segments
were collected and stcred into 1.2 Gigabytes of information.  Although, the second

international test had some small procedural problems, the test was a seismological

success [6].

The Intelligent Monitoring System (IMS) is a ARPA-sponsored computer system
for automated processing and interpretation ot seismic data recorded by arrays and single
stations. It was integrated into CSS computer systems, and has been operational since
1990, The IMS data has been cataloged in the IMS database at CSS, which contains

seismic traces from the two largest seismic stations in Norway, ARCESS and NORESS

ARRAYS.

The EXPLOSION database consists of all unclassified seismic data on nuclear
testing. Another database currently being investigated is the GROUND TRUTH database,
created by Lon Grant at CSS [12]. This database 1s currently being compiled from both
the IMS and GSETT databases. The GROUND TRUTH database consists of a hand
picked group of seismic events that were verified through means of seismic bulletins,

mining records, and personal contact. Although the database has been released to the

17




public, the number and type of events are not sufficient for training and testing a neural
network as investigated in this research.  The database presently consists of 62 waveforms
with sample rates and durations that vary A fixed sample rate and duration was needed

for the development of ARMA models.

2.2 Applications at the Center for Seismic Studies

The heart of database maragement at CSS is the SQL/ORACLE database host.
This gives users an interactive method of accessing data. Since SQL querying can be quite
taxing, CSS has created some tools making the collection and examination of data easier.
To make the seismic tools accessible from many different operational platforms, CSS

programmed the tools to be used as Xwindows applications.

CENTERVIEW was the first programmed tool from CSS [2]. Using this tool, one
can directly access the database without using the burdensome SQL queries, and still have
the power to select the data on a variety of constraints. With this program, one can
compile data for downloading, review parametric data, and transfer data to the other
seismic tools. The next tool was MA/ This tool displayed the location of the seismic
events [epicenters] and the location of the seismic stations that recorded each event
These locations can be displayed on a variety of geographic maps stored at CSS by using
the MAP program. The last tool created was GEOTOOL. This tool gives researchers the
ability to view the waveform in a time series plot, seismogram. It also has some signal

processing capabilities such as FFT's, filtering, spectrogram, and others.




2.3 Research Database

The research database, SU/BSET!, is a subset of the GSETT and IMS databases.
SUBSETI contains 75 seismic traces composed of S event types with 15 waveforms each.
The event types selected included both man-made and natural events as follows;

¢ marine explosions
¢ quarry blasts

¢ iocal

¢ regional and

¢ teleseismic.

The waveforms were recorded in the Euro-Asian area with a fixed wavelength of

2400 samples and a sample rate of 20 Hertz Each event classification was verified

through the REMARKS database table [ 1]




3.0 SEISMIC BACKGROUND

The various aspects of seismology include observational seismology, instrumental
seismology, theoretical seismologv, and daia analysis of seismic events The primary
focus of applying neural networks to seismology was the analysis and subsequent
classification of seismic data Some introductory terminclogy as applied to seismic data

analysis wili be reviewed.

3.1 Seismic Event Classifications

The types of seismic events can be roughly divided into two categories: natural and
man made. Natural seismic events include tectoaic plate movement, volcanic activity,
collapse earthquakes, and oceanic microseisms. Man made seismic events can be the
result of a controlled event or that of an induced event Controlled events are typically
explosions and cultural noises while induced events will result from reservorr impounding,
mining, quarry and fluid injection Table | lists the broad categories of natural and man

made seismic events

Seismogram interpretation 1s dependent on the location of the recording station
and the type of structural model utilized for wave propagation in the geological region of
the recording station The structural models and propagation paths have lead
seismologists to three different categones of seismic events, without regard to the source
of seismic activity These categones are based on distance between the source epicenter
and the recording station It 1s common practice to use a spherical mode! of the earth

and express the distance from seisnue event focus to the recording station as the angle




subtended at the center or the earth between the focus and the station (10 =111 km). The

categories thus established are:

Local events < 100
Regional events 100 to 209

Teleseimic > 200

Table 1 Types of Seismic Events

Natural events:
tectonic
volcanic
collapse earthquakes
ocean miCroseisms

Man Made - Controlled
explosions
cuitural noises

Man Made - Induced
reservoir impounding
mining
quarry
fluid injection

Raw seismograms are relatively lengthy  Typical sampling rates vary between 20
Hz to 40 Hz with high frequency instruments operating at sampling rates up to 1 KHz.
The duration of seismic events range from a few minutes for discrete events to day for
seismic swarms.  Seismograms used in this research all result from discrete events
sampled at 20 Hz, with a total of 2400 data points per sampled waveform. Waveforms
were taken trom the GSETT database at the Center for Seismic Studies  Figure |, shown

below, illustrates a typ:cal marine explosion The start of the seismic event occurs at




sample number 600. This starting alignment represents a 30 secor.d pre-event leader and

1s common for all seismic traces used in the GSETT database.
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Figure 3 Marine Explosion Febmel w from GSETT Database

In analyzing waveforms such as the one presented in Figure 3, seismologists will
identify different phases of the seismogram based on the time of arrival and the mode of

propagation through the earth.

There are two basic types of seismic waves, body waves and surface waves [21].
Body waves are radiated by the seismic source and propagate in all directions while
surface waves are concentrated along the surface Body waves can be further subdivided

into compressional (longitudinal) and shear (transversal) waves Compressional waves are

2%
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often called primery waves or P waves and transversal waves are called secondary or S
waves. P waves tend to travel at a rate 1.7 times that of S waves and are normally the

first portion of the seismic waves to be present in a seismogram.

The P waves are always the first waves to amive [21, 34]. The P waves are
surface waves that cause the rock particles to oscillate back and forth in the direction of
propagation and car be compared to the propagation of sound waves. S waves cause
rock motion perpendicular to the motion of P waves and represent a shear wave. Motion
o’ § waves through the liquid parts of the earth's interior is not possible since liquids do
not sustain shear forces. Two additional waves oftzn associated with a seismic event are
the LQ and LR surface waves. The L stands for long , Q represents Love waves and R 1s
Rayleigh waves [21]. These two waves are often dominate in terms of relative amplitude.
Love and Rayleigh waves exhibit velocity dispersion which can be observed as frequency

variant whereas P and S waves tend to be velocity invanant.

The P, S, LQ, and LR, portion of the seismic trace zic referred to as phases.
These phases are further subdivided to give indication of propagation path A Pn or Sn
phase indicates a path that 1s in the upper crust and is confined to the gramtic layer.
Retlection of phases are possible off other layers in the earth. A phase reflected ofY the
Moho layer is referred to as a PmP or SmP phase {21] Many other combinations are used

as dictated by the seismuc event being evaluated

3.2  Analysis of a Regional Seismic Event

A regional seismic event from the GSETT data base 1s now presented to llustrate

the type of parametric information determined by a seisnuc analyst  Data base notation as

v
-




assigned by the Center for Seismic Studies is utilized in the seismic event description that
follows. The regional event considered is illustrated in Figure 4 The event is assigned an
origin identification within the GSETT data base of ORID = 36907. This event occurred
on April 28th, 1991 [Julian date of JDATE = 1991117 ], and was determined to be a

regional event. A summary of the seismogram analysis is given in Table 2.

The STASSID label represents a station association identification number assigned
as part of the data base record. The wave train of a single event may be made up of a
number of arrivais and the STASSID allows amvals believed to have come trom a

common event to be joined together in the data base.

The signal amplitude is denoted AMP and represents a zero to peak amplitude of
the earth's displacement in umts of nanometers. The duration of a particular phase is

designated PER and is in units of seconds.

Figure 4 is a regional event with three recorded phases. The magnitude scale was
normalized to +/- i with actual displacement magnitudes indicated in Table 2. The first
arrival wave is the Pn wave that traveled through the earth's ciust from the epicenter to
the recording station A secondary suriace wave, Pg, armved from a deeper propagation
path followed by a large magnitude 1.Q or Long-Love wave The first 618 sample points
(approximately 30 seconds) before the arrival of the Pn wave is a period of no seismic
activity  This repre,cnts normal background noise and will tend to drift in magnitude

throughout the course of the day due to cultural noises.

The recording station for this particular waveform was located in Boyern,
Germany It was recordad with a single vertical channel that measures earth dispiacement.

Tuable 3 gives the station location and instrument cahbration factors  The trequency




response of the instrument is plotted in Figure 5. The 3 dB bandwidth is 3 Hz. A usable

bandwidth of about 10 Hz can be created with appropriate inverse filtering of the seismic

waveform.

TABLE 2 Seismic Analysis of Regional Event FEBR9. W
ORID 36907
Date April 28, 1991
Julian Date 1991117
Event Time 672777893 .300 seconds from January 1, 1970.
Classification Regional event

Recording Station  Grafenberg Array, Boyern, Germany (GRAI)

Event L.ocation

Latitude 46.22°
Longitude 15.44°
Depth 8 Kilometers

Phase Information
3 phases recorded at GRAI
Surface Wave Magnitude measured at 2 nanometers
Body wave Magnitude measured at 3.50 nanometers

Phase Summary

Phase Start Start ARID STASSID AMP  PER
Time Sample number

Pn 6727779573 619 492530 36844/ 412 0.65

Pg 672777971.3 886 492531 368442 3236 0.082

Lg 672778033 8 2136 492532 368443 468 0 0.71
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Figure 4 Regional Seismogram of FEBR9. W




Tabie 3 Station Information
GRAL1 - Grafenberg Array -- Boyern, Germany

Single Station

Channel Type: bz
Channel Id: 51671
Location
Latitude 49.692°
Longitude 11.222°
Depth 0.5 Kilometers From Mean Sea Level

Noise Measurements - Correction Factor

Mean Noise - 6.5 nM
Stand Dev -0.2 nM
Signal to Noise Threshold 1.5

Magnitude
30 T
L
L
o
I
B
10 | i f
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5| 1
NI
0.001
Frequency
e=s\agnitude

Figure S Frequency Response of Grafenberg Array Channel bz




2.3  Qualitative Assertions and Heuristics

When evaluating a given seismic event, the seismologist must base his reasoning
on a physical model of the earth with respect to the recording station location and the
suspected seismic epicenter. Qualitative assertions, based largely on the identification of
seismic phases, must be made concerning the propagation in a global scale. Table 4 lists

several such qualitative assertions.

Table 4 Qualitative Assertions

1 The dominant frequency of the seismic signal is inversely proportional to
the distance of the event.

2. The Pg wave is the first arriving wave for local events, Pn for regional
events P or PKP for teleseismic events.

3. The longer the duration, the greater the magnitude.

4 Presence of a sirong S-wave is a distinctive feature of natucal events such
as earthuakes.

5. The absence of S-waves or weakness with respect to P waves indicate an
explosive or artificial seismic source.

6 Similar waveforms arc present in seismograms that originate in the same
seismological area.

These assertions may be supplemented by seismologist developed heuristics as

listed in Table 5. Many of the heuristics can be utilized as linguistic descriptors in the

development of a neural network seismic event discriminator.
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Table S Seismic Heuristics
If the duration of a signal is less than one second, it is most likely noise.

If two difterent signals have dominant signals whose ratio is above 10, then
they probably belong to two different events.

If the dominant frequency of the first arrival is above 7 Hz, then the
seismogram belongs to a local event.

If the dominant frequency of the first arrival is between 2-7 Hz , then it
belongs to a regional event.

If the dominant frequency of the first arrival is below 2 Hz then it belongs
to a teleseismic event.

The beginning of a seismic event can be detected using Dixon's test [10].
Cultural noise will have dominant frequencies above 1 Hz.

Microseismic events will exhibit low frequency broad band noise from less
than 0.01 to 0.5 Hz with periods of 2 to 100 seconds.

P wave is normally recorded first.

P is normelly followed by S, LQ, and LR

P waves have linear polarization

LR will have elliptical polanzation.

Earthquakes produce approximately equal amounts of P and S waves.
Explosions produce more P waves than natural events.

Earthquakes give anaseismic and kataseismic first onsets.

Explosions give anaseismic first onsets everywhere.

Earthquakes have relatively deep foc!

Explosions have shallow foci

Wave train durations are shorter for explosions than for earthquakes




Most of the qualitative assertions and heuristics are based on the various phases of
a waveform as identified by a seismologist. The listed assertions and heuristics offer

several clues which aid in the development of neural network parametric conversions.

The heuristics dealing with dominate frequency raised questions as to the
usefulness of the remaining frequency information. One method of obtaining additional

frequency information is through generation of the ARMA filter coefficients which wili be

discussed in Chapter “.
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4.0 ARMA COEFFICIENT MODELING

Several of the heuristics stated in Chapter 3 deal with the dominant frequency of
the first arrival wave of a scismic signal. These heuristics offer information on local,
regional, and teleseismic events only, no information i1s provided for man-made events

such as marine explosions or quarry blasts.

Since the given heuristics are limited to natural events, additional information must
be provided for further discrimination of man-made events. One method of creating this
information is in generating the power spectrum for each seismic event. The power
spectrum may be obtained by processing the time series data through a FFT. However,
the resulting frequency data is as large as the original time data. As the original time series
contains 2400 points, the data size must be reduced since a 2400 point vector is

excessively large for neural network training and classification.

The power spectrum information may be retained while significantly reducing the
volume of data through calculation and use of the ARMA filter coefficients. The ARMA
filter is designed from the time series data and can approximate the original frequency

response with a filter of proper order.

As thc ARMA model significantly reduces the amount of data, it was decided to
include information pertaining to the frequency variation over time which is accomplished
by windowing the time series data. The process of windowing divides the data into a
specified number of consecutive segments. Each segment or time slice is usually of equal

size or duration.
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4.1 ARMA Model Derivation

The time domain design problem can be stated as tollows:

Given a sequence gn), n 0, 1, ..., K, design a digital system of prescribed
degree such that its impulse response h(n) approximates g(n) as well as possible.

This problem arises as an unusual design task. In many cases, g(n) is ihe sampled output
of a continuous system. When this occurs, the unknown system is to be modeled by a
rational transfer function. The modeling of the system is very important. The modeling

procedure described here was named for Prony who developed it in 1795 for problems in

gas and hydro mechan.cs [23].

Let the transfer function H(z) be designed to be

i bk.z'-k
H(z) - ktop : Zh(n)-z'“
1+ Z ak.z~k 1u=0
k:

1

4.1)

where p is an element of the set of natural numbers. Here, the order of the numerator and
denominator are assumed to be equal. First, the number of given values g(n) is chosen to
be equal to the number of coefficients to be determined At least one recursive system

always exists, the impulse response of which satisfies exactly the condition

h(n)=g(n), n=01 K. (42)
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Multiplying Eq. (4.1) by the denominator, substituting for Eq. (4 2), and comparing the

terms of equal order, you get the matrix equations shown below.

by
$(0) 0 .- 0
b g(1)  g(0) : .
: : ) 3
b(p-l] - g(p-1) g(1) g(9) 0
*
b g® .. 8(2) (1) g(0)
A I Bvieneaie il o -1
~o 1 |8peD) 8(2) (1)
] : . : %
o 82) ... g(p+D) g(P)
: (4.3)
The indicated partition in Eq. (4.3) leads to the pair of matrix equations
b=G,a (4.4a)
0=G,a (4.4b)
where G, is a (p+1) x (p+1) lower tnangular toeplitz matrix, and
G,=lg.8 .8 ] (4.4¢c)

is a p x (p+1) rectangular matrix. Equation (4.4a) yields the vector b of the numerater
coefficients for any denominator such that the impulse response has the desired values for

n-0 1, .p

To calculate the denominator, we write Eq (4 4b) as
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0=g +[8 g, 1%
=g +G3*a

where a' = [ a,, a,, ..., a, ]" is the vector of the unknown coefficients.

If G3 has rank p, we obtain

a'=-Gyitg, . (4.5)

Together with b from Eq. (4.4a) we then have the coefficients of H(z).

4.2 ARMA Coefficient Extraction

Once the method for creating the ARMA coefficients has been determined, the
next step is to implement the feature extractiori. The Prony method as described above
handles ARMA modeling through matrix manipulation. At this point, the Matlab™
software package was chosen for feature extraction. Matlab is a software package which
was written for the processing of mathematical functions especially in its handling of
matrices The Matlab script file used to extract the ARMA coefficients is included in
Appendix C Direct implementation of the Prony method can be accomplished using the

prony command (25]. The command format 1s

[b,a] = prony( h, nb, na)

where b - numerator coeflicients in desc::nding powers of z

a - denomunator coeflicients in descending powers of z
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h = desired impulse response
nb = numerator order

na = denominator order.

After calculating the filter coefficients, the results are stored with the exception of
the constant 1 of the denominator. This constant 1, the a, term, was left out of the
training data since it would be the same for each signal and provided no significant

information to the neural networks for training or ciassification.

The next step in creating a reduced parametric data set is in determining the
number of windows and the filter order required to optimize neural network training and
classification. By varying both the number of windows and filter order between 8 and 24,
a series of 25 data sets were obtained. Each data set was divided into a 45/30 split, 45
signals for training and 30 signals for classification, then placed into a back-propagation

neural network for training and classification. Network training was limited to 1000

epochs before event classification.

Table 6 contains the window size and filter order testing. The data of highest
importance is the classification percentagz From Table 6, it can be determined that using
16 windows and a fourth order ARMA model will provide the best ‘raining and

discrimination results This modeling will reduce the size of each signal from 2400 poitns

to 144 points
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Table 6 Test Data for Determining Window Size and Filter Order

Filter Order

2 3 4 5 6
8 |157/10/80/6.7|/80/10|80/15|83/16

Number 12 78/20{87/2384/30|86/26|86/23

of
Windows

16 1 96/13193/22/93/35194/3090/26

20190/12/94/18 (92/20(93/22|93/22

24194/10(95/12195/13194/15(95/10

Note Table formatis a / b where ais the training % and
b 15 the classification %

A comparison of the frequency plots of the time series and ARMA model
demonstrates the information contained in the reduced parametric data. Figure 6 gives the
time series frequency plots for Febmel6.W over the chosen four windows. The resuiting
ARMA filter frequency response piots are contained in Figure 7 A companson of the
respective windows shows the ARMA model to contain the same frequency information
as the time series. The resuiting ARMA plots are significantly smoother than the time
series plots This is due to the time series plots being created from the actual frequency
information contained in the signal while the ARMA plots show the true frequency
response curve. The plots shown in Figure 6 and Figure 7 are normalized to a magnitude
of one (1) to elim.nate any amplitude information. Elimination of amplitude information
can be justified as the original project intention was to determine the usefulness of

frequency mformation other than the frequency heuristic of the first arrival wave which

was descnibed in Chapter 3.
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Figure 7 Frequency Response of the ARMA Model of FEBMET6 W
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5.0 NEURAL NETWORK IMPLEMENTATION

Currently, there are several types of neural network algorithms available for use.
These networks are developed based upon various learning methods or processes
including synaptic learning, linear associator, adaptive resonance, autoassociation, and
feature detection. A few of the more popular neural network types are back-propagation,

ART, Hopfield, neocognitron, Kohonen, and ADALINME.

For this research, two neural networks were chosen, back-propagation and
supervised Kohonen. These networks were used du: to their ease in implementation,

learning processes, and for their differences in classification procedures.

Prior to discussing the usage and resuits of the networks, a description of the basic

neural network model is presented.

5.1 Neural Network Model

Pattern recognition techniques have been used since the early 1950's when the field
of neural networks was introduced [22]. One early type of neural network was the
perceptron [37]). Simplv stated, a perceptron is a node which takes a set of inputs,
multiplies them by a weighted value, then sums the terms. The result is a single weighted

value related to the input terms which can be expressed mathematically as

NET = Wi + 2W2 +  + Wy (51.1)

A diagram of a perceptron 1s shown in Figure &
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One problem with a perceptron is that the output is unbounded. This can cause
overflow conditions in digital systems and saturation in analog systems. In creating a

bounded perceptron output, the neuron was developed. A neuron provides the basic

building block of a neural network [37] (see Figure 9).

4 =W,
W2 NET
ln ’l E;n
Figure 8 Perceptron Model
i 1 - W]
I
1, — W, Activation
_2 + | Function l ouT
. : ; WET!
1 n e wn

Figure 9 Neuron Model

The neuron takes the perceptron output, processes it through an activation function and

produces a bourded output value as shown

OUT=F(NET) . (5.1.2)
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Severa! types of activation, or logistic, functions exist, one of the most common being the

sigmoidal activation function. The sigmoid function is given by:

OUT = F(NET) = NET
1+e

(5.1.3)

and the first derivative becomes

FNET) = 29T - Gut.(1-0UT)
8 NET

(5.1.4)

A plot of the activation function output is shown in Figure 10. The sigmoid is desirable

since it is continuous and has a simple derivative which is alsc continuous.

1 ( //,,»f—————-
0.8} |
0.6t
Neuron
QOutput
0.2t
0 —— : :
-10 -5 0 5 10

Perceptron Output

Figure 10 Sigmoidal Activation Function
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The logistic function compresses the perceptron output range such that the output
lies between O and 1. It also introduces a nonlinearity which allows for better prediction
or classification in multi-laver networks [37]. The sigmoidal function provides an
automatic gain control thereby eliminating network saturation. It should be noted that any

non-linear function may be used providing that it is differentiable over the entire range

[37].

Figure 11 illustrates a typical neural network consisting of an input iayer, hidden
layers, and an output layer. Each network layer may contain a different number of
neurons. The input layer reurons receive data from the outside world without making any
modifications. The hidden laver neurons provide intermediate calculations for internal
feature maps. Hidden neurons are named as such because their inputs and outputs cannot
be seen. The output layer neurons display the network results which contain the
prediction or classification information. Interpretation of the output neurons depends

upon the initial definition of the network.

Input Hidden Output
Layer Layer Layer

Figure 11 Basic Neural Network Model

After creating a base neural network, the next step is to decide how the network 1s

to operate and implement a training algorithm  Network operation and training 1s different
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for back-propagation and supervised Kohonen networks. These networks and their

training is described below.

5.2 Back-Propagation Neural Networks

The back-propagation neural network gets its name from the training method.
Back-propagation training is accomplished in two stages, a forward pass and a reverse
pass. in the first stage, or forward pass, an input vector is applied to the network and an
output vector created. The second stage, or reverse pass, calculates an error vector and
propagates backwards through the network to adjust the intermediate weight vectors so as
to minimize the error. Initially, the network weights are set to small random numbers to

prevent the network irom saturating with large numbers. The basic training steps are as

follows:

Forward Pass
1. Select input information
2. Calculated output of network k
Reverse Pass
3. Calculate the error between the network and target
4. Adjust weights to minimize the error

5. Repeat steps 1-4 until error is acceptable.

Once training i1s complete, the network can be used for recognition or prediction,

depending upon the type of training data.




In a forward pass, the output of each layer is the input to the next layer. This can

be mathematically described as

O =F (XW) (5.2.1)

where X = input vector
O = output vector for given layer
W = Matrix of weights between nzurons

F() = activation function as described in Eq. (5.1.3).

The final output vector is calculated by stepping between tne individual layers.

The output from the input layer is
0 =X, (52.2)
The hidden layer output vector is
On = F(OWy) (5.2.3)
and the final output vector, Y, becomes
Y = F(OnWn) = F[ F{OiW:) Wh| (5.2.4)

Now that an output vector has been calculated, the task of adjusting the weights
begins. Back-propagation uses a moditied version of the Delta rule to adjust the weights

as follows
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& = 0i(1-O;}(TARGET-Q)) (5.2.5)

This & is then multiplied by the source neuron for the weight being calculated. This
product is in turn multiplied by the learning rate coefficient n (typically 0.01 to 1.0) and
this result is now added to the weight. This process in mathematical matrix form is as

follows:

Aqu.k = T]*éq.k*Op\j (526)

Woak(N+1) = Wpak(N) + AWpqk (5.2.7)

whiere Wpqek(n) = value of weight from neuron p in the hidden layer to neuron q in the
output layer at step N (before adjustment). k indicates that the weight is
associated with its destination layer.
Wpqk(N+1) = value of weight @ step N-+1 (after adjustment)
dq.k = the value of 6 for neuron q in output layer k
Op, = the value of OUT for neuron p in hidden layer )

Note: p & q refer to a specific neuron, j & k refer to a specific layer.

Back-propagation trains the hidden layers by propagating the output error back
through the network layer by layer. The equations previously discussed are still valid, but
they must be modified due to a lack of a TARGET vector. This modification is
accomplished by first calculating the 6 for the output layer, which is used to calculate 6 for

all the previous layers by propagating it back through all the weights. This is represented

mathematically as -

5p\1 - OpJ( i -Op‘,)(Z (Sq,k*“/pq.k) (528}
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where

2 Sqk*Wpak (5.2.9)

is the sum of the weighted errors. Using this we can now adjust the weights using the

previously discussed equations. Using vector notation:

D;j = DkWit # [O; # (1 - 05)] (5.2.10)

where Dk = set of § at output layer

Wik = set of weights for output layer

I

Dj = & vector for hidden layer

# a component by component multiplication of the two vectors.

O; = the output layer for layer j and

I = matnx where all components are 1.

5.3 Supervised Kohonen Neural Network

In the early 1970's, Tuevo Kohonen published a paper proposing a model for an
associative memory, the linear associator [22] The linear associator uses neurons with
linear transfer functions rather than non-linear activation functions such as the sigmoid.
The neurons respond to input changes by changing the firing rate of the outputs. This
network will map similar inputs to similar outputs, leading automatically to the ability to

generalize [22]
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With the back-propagation neural network, the number of output layer neurons
depended upon the number of classes in the data set. Each output neuron was assigned to
a specific class and the interior network weights were adjusted so that for a given input
vector, the output vector had a one (1) for the correct class and zero (0) for the other
classes. The Kohonen neural network has a slightly different structure which is

demonstrated in Figure 12.

© OO Input Layer

T

fitRee

/ Output Layer

Figure 12 Kohonen Neural Network Architecture

A Kohonen network, shown in Figure 12, consists of two layers of neurons, an
input layer and an output layer. This structure does not contain the hidden layer neurons
of the back-propagation networks. The number of input layer neurons is determined by
the input data vector length whereas the number of output layer neurons is chosen based
upon the number of classes and the users intuition as to the number of neurons required to

properly represent each particular class
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Kohonen networks contain two types of interconnections. The first set of
connections is between the input and output neurons where each input neuron is
connected to each output neuron. The second set of connections allows interaction
between the output neurons themselves. These output neuron interactions determine

which neuron will fire and make the classification.

One advantage of Kchonen networks is the ability to self organize feature maps.
During training, the output neurons are adjusted so as to cluster around groups or features
of the data presented to the network. lia a back-propagation network, ail neuron weights
are adjusted such that the neuron representing the correct class approaches a value of one
(1) and the incorrect class neuron values are reduced to zero (0). In simpler terms, for
each back-propagation network adjustment, every neuron is updated for error
minimization. The Kohonen network is adjusted differently. For each given input only the
winning newon is adjusted. As the winning neuron is the only ong adjusted, the concept
of competition is introduced into the output layer. Determination of the winning neuron is
accomplished through closest output neuron to the input data with respect to any given
metric. One of the most common methods of choosing a winning neuron uses the

Euclidean distance, whereby the winning neuron would have the smallest distance from

the input vector.

At this point, it should te noted that Kohonen neurons are not handled in the same
manner as back-propagation neurons. For input layer neurons, there are no difrerences
between networks as these neurons are single valued and contain one point of the input
vector. From Figure 12, it is shown that Kohonen networks do not have hidden layer
neurons, however there is a significant number of output neurons as compared to the
back-propagation network. The Kohonen output neurons are treated as vectors with the

same number of components as the input vector. Since the lengths of the input vector and
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the output neurons are equal, choosing the distance between them is a simple method of

determining the winning output.

Suppose that the training data consists of n vectors with M components each.

Then the Euclidean distance is calculated by

m
ai = | Y (i - won):
j=1
(5.3.1)

where i=12,..,n
x[1] = components of the input vector
WIi][j] = elements of the weight matrix

dfi] = Euclidean distance for the ith input vector

and the neuron associated with the smallest d[i] value is the winning neuron. This neuron
will adjusted during training or determine the class when discriminating signals. When
caiculating this distance, it is not necessary to include the square oot since the comparison

15 related to magnitude only.

The training of Kohonen networks differs from that of back-propagation nets. In a
back-propagation network, an error vector is used to adjust the weight values for each
neuron, whereas Kohonen networks typically adjust only the neuron that wins.

Adjustment of the winning neuron uses the delta ruie and a learning rate in the form

w new(i][j] = w_old[i]{j} + A € x[j} - wli)(j] ) (532)
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where A is the learning rate. The learning rate typically star's at 0.2 and decreases to 0O

over the training period by
A _new =A old-(\ start/N) (5.3.3)
where A_start is the initial learning rate and N is the number of iterations for learning,

Kohonen learning is much simpler than back-propagation learning, but there are
two possible disadvantages in its use. First, Kohonen networks are slow to lcarn the input
data. For each input vector applied, only one output neuron has its weights adjusted.
Since the weights of one neuron are affected, the other neurons are not adjusted toward or
away from their respective classes. The second problem is again related to the restriction
of adjusting neurons independently. If the clusters of input data are close together and the
Kohonen neurons are significantly far away, most of the neurons will never be adjusted
toward the data clusters. This can be easily demonstrated through a 2-space example.
Figure 13 contains two data clusters represented by D1 and D2 and Kohonen neurons K.
From this plot, it can be seen that reqardless of which input is used for training, the neuron
K' will win and be adiusted toward the appropriate cluster. When the next input i1s
applied, this same neuron will win again. As a r2sult, the K' neuron will always win, the
remaining neurons will never move toward either cluster, and the netvvork will never

distinguish between classes. This particular problem can be overcome by using supervised

Kohonen learning.
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Figure 13 2-Space Vector Mapping

In supervised Kohonen networks each output neuron is assigned to a particular
class. By knowing the class of the neuron and the input class, it can be determined
whether the winning output neuron should be adjusted towards or away from the input

vector. Using Eq. 5.3.2 will move the neuron towards the input vector while a slight

modification,
w_new[il[j] = w_old[i][] - A (x{j]- wlilli] ). (53.4)
will increase the distance between the neuron ard input. Controlling the direction of

adjustment will force neurons toward their assigned class. However, this does not address

the problem of adjusting all neurons toward their respective vactor spaces
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To insure that all neurons are adjusted toward their proper vector spaces, it is
necessary to count the number of firings for each neuron. By monitoring neuron firings
over a user defined number of training epochs, it can be determined which neurons are not
being properly adjusted. After the specified number of training epochs, any neuron that

has not fired, or fired few times, will be adjusted by the procedure described above.

By forcing every output neuron to be adjusted toward its assigned class, the
grouping of Kohonen neurons will better represent the data clustering. As a result, the

supervised Kohonen network will have good pattern recognitior and noise tolerance.

5.4 Software lmplementation

Currently, there are many commercial software packages that implement various
types of neural networks. For this research, the neural networks implemented are included
in the SeisNet neural network package which was created for usc by the Apphed Neural
Networks Lab at West Virginia Institute of Technology [36]. This program provides a

significant amout of user contro! over the network mmplementation Several of the user

determined options are as follows

total number of records
number of traimng records
number of testing records
number of training epochs
number of network layers
number of neurons per layer

learming rate
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termination error.

Seisnet generates a report which includes the network parameters, as determined

by the user, training rc.ults, and the classification results. A typical network report is

included in Appendix D.




6.0 TESTING AND ANALYSIS

The detailed results of the testing for this project are included in Appendix D with
a summary in Table 7. The first page of Appendix D is a typical neural network report file
which contains information on network training parameters, training results, and
ciassification results in the following order. The first section of the report gives the
number of traiming records, testing records, network size, momentum, learning rate, and
the computer on which the network was rained. Section two states the training threshold,
training time per cpoch, and training error values. Section threec shows the training results

in tabular form  Finally, sectior four lists the classification results in tabular form.

Since the GROUND TRUTH database at CSS was in the process of being created
at the time of this testing, the number of known good signals for testing was limited to 75.
Due ‘o variations in seismic events and event types, a database of this size is limited in its
ability to provide a sufficient base for proper neural network traiming. In order to

overcome the small number of signals available, the testing was limited to five classes as

follows:
class 1 quarry blast
class 2 local earthquake
class 3 teleseismic earthquake
class 4 regional earthquake
class 5 marine explosion

It was also decided to split the database such that one part of the signals were used

for training and the remaining signals used for testing
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The back-propagation network implemented consisted of 144 input neurons, 70

hidden neurons, and 5 output neurons wher2 each output neuron represents one of the five

event classes.

Ideally, for any given seismic event, the output vector would consist of onc neuron
of u value equal to 1 and four neurons with a value of zero. In reahty this never happens,
so a method must be implemented to chose between the five output neurons in case of

contention. To be constdered the winning output, the neuron must meet the following

two condiiions;

1. a value greater than 0.7 and

2. a value of 0.2 greater than the other four neurons.

The supervised Kohonen network consists of 144 input neurons and 360 output

neurons. This configuration uses 72 neurons to represent the vector space for each class.

Signal discrimination in supervised Kohonen networks do not require the post-

processing of back-propagation networks. This is due to each output neuron having a

designated class. Since only one neuron may fire for any given input, signal discrimination

is determined by the class designation of the winning neuron

6.1 Test Results

A statistical average for training and testing can be obtained using the database
splitting method mentioned above. Before splitting the database the signal order was

randomized to prevent the network from learning tiic pattern in which they were presented




to the netwoik. To tuild a statistical base, 70 randomized data sets were generated.
These randomized sets were then divided into two groups. The first group was split into
30 signals for traiming and 45 for testing while the split for the second group were
reversed, 45 for training and 30 for testing. The complete results from this procedure are
shown in Appendix D where the tests denoted by SP1 tc SPIC are the 30/45 split and

SP11 to SP20 are the 45/30 split.

Back-propagation Network
Class

30 /45 Split 2.11 9.33 | 33.01 | 818 [18.10

45/ 30 Split 0.00 | 10.27 | 36.98 | 143 |32.26

Supervised Kohonan Network
Class

30/45Spht | 53.38 | 25.85 | 47.58 | 37.04 | 49.21

45 /30 Sphit 57.58 | 26.94 | 67.83 [22.40 | 27.50

Table 7 Network Classtfication Results (%)

Table 7 presents the average classification results per class. These results were
obtained after 10000 training iterations for the back-propagation network and 2500
iterations for the supervised Kohonen network. The back-propagation network, based
upon the information in Table 7, does not prove to be useful in discrimmation of seismic

signals using the ARMA coetlicient model However, the supervised Kohonen network

AR




yields significantly higher recogmtion rates. This is moct likely due to the noise tolerance

of Kohonen networks.

6.2 Training Time

Training of the neural networks varies between different computers as would be
expected. The average training times of the back-propagation and Kohconen networks for

the different database splits is shown in Table 8.

Back-propagation Network

IBM P70 Gateway Flex
386 - DX 486 - DX2 486 - DX
20 MH=z 50 Mhz 50 Mhz
30/4S Split 27.45 4.80 3.39
45 /30 Splt 41.02 7.43 i 5.05
Supervised Kohonan Network
IBM PS70 Gateway Flex
386 -DX | 486 -DX2 486 - DX
20 MHz 50 Mhz 50 Mhz
30/45 Spht 23.69 3.48 2.66
45 /30 Split 36.11 578 3.81

Table 8 Average Network Training Times (sec / epoch)




6.3 Summary

Overall, the results of this study demonstrate that the ARMA coefficient model is
insutficient as a stand alone seismic signal discriminator. The ciass:fication results of the
back-propagaticn network are poor at best. Back-propagation does acheive a recognition
rate of 36 98% for teleseismic events but, this is not a promicing number. The supervised

Kohonen network, however, has recognition rates of 67.83% for teleseismic events and

57.58% for quarry blasts.

This information suggests that a supervised Kohonan network using ARMA

modeling in conjunction with other preprocessing techniques could produce an acceptable

seismic signal discriminator.
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APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN
Febmel w ARU bz
Febmel6.w ESLA SZ
Febmel7.w ESLA 5z
Febmel8.w ESLA SZ
Febmel9.w ESLA 5z
Febme43 w GAR bz
Febmed4S.w GAR bz
Febmed47.w GAR bz
Febmed48.w GAR bz
Febmed49.w GAR bz
FebmeS5.w KIV bz
Febme56.w KIV bz
Febme5S.w OBN bz
Febme®6.w OBN bz
Febme67 w OBN bz
Febr0.w GRAI bz
Febro. w GRAI bz
Febr15.w GRA! bz
Febr2l.w GRAI bz
Febr46. w WRA SZ
FebrS2.w WRA cb
Febr58.w WRA cb
Febro6.w WRA cb
Febr72. w WRA cb
Febr86.w WRA cb
Febry9. w WRA cb
Febr103.w WRA cb
Febr109.w WRA cb
Febrl12.w WRA cb
Febr115.w WRA cb

NOTE: All signals arc 2400 samples at 20.00 sampics per second.
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JDATE

1991119
1991114
1691114
1991135
1991135
1990051
1991124
1991139
1991141
1991146
1991133
1991146
1991139
1991144
1991146

1990331
1991117
1991127
1991136
1990331
1991114
1991119
1991121
1991129
1991141
1991143
1691147
1991151
1991152
1991153




APPENDIX A Data Base Wave Form Files from CSS

FNAME STA CHAN JDATE
Febta25. w GRAI bz 1991132
FebtaS2 w WRA Sz 1990123
Febta69 w WRA SZ 1990334
Febta78 w WRA sz 1990335
Febta8{. w WRA sz 1990335
Febta86.w WRA Sz 1990051
Febta97.w WRA sz 1990065
Febtal 50 w WRA cb 1991114
Febtal 77.w WRA cb 1991118
Febta229 w WRA cb 1991121
Febta309. w WRA cb 1991125
Febtad!7 w WRA cb 1991125
Febta408.w WRA cb 1991133
FebtaSI13. w WRA cb 1991137
Febta542 w WRA cb 1991138
FeblaO. w BIT SZ 1991147
Febla5. w GAR bz 1991115
Febla7 w GAR bz 1991117
Feblas. w GAR bz 1991119
Febla9. w GAR bz 1991145
Feblal 1. w GRAI bz 1991112
Feblal3. w GRAI bz 1991116
Feblalo.w GRAI bz 1991122
Feblal9.w GRAI bz 1991149
Febla20.w HEFS Sz 1991135
Feblz26.w HFS cb 1991138
Febla73 w WRA cb 1991137
Febla75.w WRA cb 1991143
Febla76.w WRA cb 1961143
Febla82 w WRA cb 1991146

NOTE: Al signals are 2400 samples at 20.00 samples per second




APPENDIX A

FNAME

FebgbO.w
Febgbi2 w
Febqb20.w
Febyb33.w
Febgb4S.w
Febgb93.w
Febgb100. w
Febgbl14.w
Febgbl17.w
Febgb118 w
Febgb122 w
Febqb147 w
Febgb154. w
Febgb158 w
Febqb180.w

NOTE: Ail signals are 2400 samples at 20.00 samples per second.

STA

ASAR
CTA
CTA
KAF
KAF
KAF
KAF
KAF
KAF
KAF
KAF
KAF
KAF
STK
WRA

Data Base Wave Form Files from CSS

CHAN

cb
bz
bz
Sz
Sz
Sz
sz
Sz
Sz
sz
sz
Y4
sz
bz
cb

JDATE

1991123
1991123
1991141
1990331
1991114
1991133
1991135
1991140
1991140
1991140
1991142
1991150
1991154
1991121
1991141




APPENDIX B GSETT-Subsetl Station Names and Locations
O

[ISTA STATION NAME LATITUDE LONGITUDE

ARU  ARTI - SVERDLOVSK. OBLAST 56.4000 58.6000
'JASAR ALICE SPRINGS ARRAY - NORTH TERRITORY, AUSTRALIA 23.7040 133.9620
BJT  BAUIATUAN - BAJIATUAN, CHINA 40.0403 116.1750
JICTA CHARTERS TOWERS - QUEENSLAND, AUSTRALIA 20.0880 146.2540
“JESLA SONSECA ARRAY STATION - SPAIN 39.6700 -3.9600
" 'GAR. GARM - GARM. USSR 39.0000 70.3000
i IGRA} GRAFENBERG ARRAY - BOYERN. GERMANY 49.6920 11.2220

JHFS  HAGFORS ARRAY - SWEDEN 60.1335 13.6836
'KAF KANGASNIEMI - FINLAND 62.1127 26.3062
UKIV  KISLOVODSK - WESTERN CAUCASUS USSR 43.9500 42.6833
i :OBN OBNINSK - OBNINSK. USSR 55.1167 36.5667
(JSTK STEPHENS CREEK - NEW SOUTH WALES, AUSTRALIA 31.8820 141.5920

['WRA WARRAMUNGA ARRAY - NORTH TERRITORY, AUSTKALIA -19.7657 134 3891




APPENDIX C ARMA Coefficient Extraction Routine

% -
% File: ARMA M (Matlab Script Fiie)
%
% Author:  John R. Martin
% Date: 01-26-1993
% -
% Purpose:  This program calculates the auto-regressive-moving average
% coefficients for an equivaleut approximation of the time series.
% The results are stored with the numerator coefficients then
% denominator coefficients per window for the given number of
% windows.
%
% Changes: 08-18-93 JRM Store data on individual basis not as full matnx.
0 e e e em e me e -
ciear,
clc;
clf.
LY ——- -
% Variable List
0 e wmm e mmm e mmmemn
wave_dir = 'c:\data\ssl’, % dir for *.w files
out file = 'c)\data\arma. dat’ % output filename
inde.:_filename ="file', % name of index file
no class =5, % number of classes
slice =16, % nurber of time slices
filt ord =4 % order of ARMA filter
auto len = 1; % automatic samples/window
no samp =0 % manual samples/window
% lgnored if auto len - 1
graphics = 1, % U - no graphics
% 1 - create plois
norm 2. % 0 - no Normalization
% 1 - normalize input data
% 2 - normahize outpui data
win type - 0, % O - Rectangular

% | - Hamming
% 2 - Hanning




APPENDIX C ARMA Coeefficient Extraction Routine

O/U ———— -
% External Variables

% These Variables should be in the file pointed to by index_filename
%

% File =[] The name of the waveforms

% class =[] The class of the waveforms in the same order as
% the file name listing

% wave_length Length in samples of the waveforms

% should be the same per waveform.

% file_number Number of waveforms

%

disp([ ']);
disp (['Auto-Regressive Moving Average Extraction Rouiine']);

disp([' '],
disp ({'L.oading Waveforir Index from ',wave dir]);

eval (index_filename); %Loads File Prefix FILE.M
ciear index_filename;

FIO = -1, % -1 is default for failure to open file

while FID == +]
FID = fopencout_file 'at' 'n'); % Append ASCII format to IBM

end
data out - zeros(i (shce/4)*(filt ord+filt ord+i)+tno class),

“o Wavetorm loop
O

T s e e

66




APPENDIX C ARMA Coefficient Extraction Routine

% Remove blanks from the filename
for file_no = 1 file number
clf;
namesize = 0,
for character = 1:8
if strcmp(File({ile_no,character),'’) == 0
namesize = namesize + |;
end
end

% Get name from the filelist |
fname = File(file no, l:namesize),

% Diplays which file is currently be worked on
disp([' Evaluating: ' fname]);

% Retreives the datafile froin the waveform_directory
eval (['load ',wave_dir,"\',fname,' w']);

eval({'data='fname,",']), % assign to working variable
eval(['clear ', fname]); % free variable from memory

if auto_len == |
no_samp = wave_length / slice;
end

% Calculate the window smoothing

if file no ==
for n = 1:no_samp
if win_type == % Rectangular
window(n) = 1,
end
if win_type == | % Hamming
window(n) = 0.54 - (.46*cos((2*pi*n)/no_samp),
end
if win_type == 2 % Hanning
window(n) = 0.50 - 0.50*cos({2*pi*n)/no_samp),
end
end
end

n7




APPENDIX C ARMA Coefficient Extraction Routine

% Normalize the input data
if norm == |

data = data / max(abs(data)),
end %if

for win = 1 slice/4

disp(win)

start = (win-1) * no_samp + 1,
stop = win * no_samp;
g win_data = data(1 start:stop);
if win_data(1) ==

win_data(i) = .01;
end

%pmnm - —
% Get ARMA filter coefficients
e e e e e e

[b,al = prony(win_data, filt_ord, filt_ord);

0y e e e
~ % store data
i 77 S, — -

start = (win-1)*(fiit_ord+filt ord+1)+1;

stop = win*(fili_ord+filt_ord+1);

data out(1,start:stop) = [b a(1,2:filt_ord+1)];

freq = fft(win_dataj,

tmp = size({req),

f = freq(1.imp(2)/2)/max(abs(freq)),
thn} = freqa(b.a.tmp(2)/2),

h = h/max(abs(h));




APPENDIX '  ARMA Coefficient Extraction Routine

% Plot Graphics

0 m e m e e

if graphics == |
cif:
ploi(1:tmp(2)/2,abs(f), | :tmp(2)/2,abs(h)),
title(['FFT / ARMA Response Plot']),
xlabel(['Frequency'));
ylabel(['Magnitude']),

end

end% window loop

0/0___ _____
% Normalize the output data
O/G ————
if norm ==
data_out(l,:) = data_out(1,:)/max(abs(data_out(1,:))),
end

%
% Class identifier

%gmmmmmean -

if class(file_no) == 1, classifier ={1.00.0 0.0 0.6 .0},
elseif class(file_no) == 2, classifier ={0.0 1.0 0.0 0.0 0.0);

elseif class(file_no) == 2, classifier = [G.0 0.0 1 0 0.0 0.0];

elseif class(file_no) == 4, classifier ={0.0 0.0 0.0 1.0 0.0},

elseif class(file_no) == 5, classifier ={0.00.00.00.010};

end

O e o mmmm
% Save data in ASCII format

Dy m e #mmmm s e m e
for count = 1:63,
fprintf{lFID. ' %12 8f, data_out(l,count)j,
end
forintflFID, = %3.1f %3 1f %3 1f %3.1f %3.1f\n", classifier);
end% waveform loop

close(FID);
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AFPPENDIX D> Neural Network Data

Typical Neural Network Classification Report

Network: Back Propagation Run Date: 7/ 8/1993
Input Data
Wavcform File Name..................... SP1A: PRM
Rumber of Data Records........... .. 75
Number of Traming Records. ... . 30
Number of Testing Records... ... 45
Nuinber of Traming Epochs............. 10000
Number of Network Lavers............. 3
Number of Neurons Per Layer....... . 144 70 5
Learning Rate Delta...................... 0.2006
Momeium........... ... ... C.1000
Termination Ervor... ... ... 0.000E+C0
Saving Weight in....................... S5PIATBWT
Computer............oooci 20 MHz IBM Model 70
Training Summary
Training Threshold. ....................... 0.7000
Traimine Threshold Difference......... 0.2000
Average Time Per Epoch.(sec)........ 28.10
Ave Error.................... 7.187E-05
Max. Error.. ... 1.691E-04
Min Error.. .. ... . .. 8.139E-06
Ouzput Clasc | Percent
0 ] 2 3 4 5 | Cotrect
\ema
I} 0/6 6/6 0/6 0/6 0/6 6 | 100.00
Input 2 | 04 0/4 4/4 0/4 G/4 0/4 | 100.00
Class 3 | 05 0/5 0/5 5/5 0/5 0/5 | 100.00
4 1 09 0/9 0/9 0/9 99 /9 | 100.00
5 | 0/6 0/6 0/6 0/6 0/6 6/6 i 100.00

Classification Summary
Classtfication Threshold ... ... 0.7000
Classification Threshold Difference.. 0.2000

Output Class | Percent

0 1 2 3 4 5 | Correct
\ e o e i e s [

LS 179 2/9 0/9 179 0/9 [ 1]

fnput 2 | S/41 Lo/t 01y 310 240 | 0.00
Class 3 | 540 /1o 0o/10 /10 21 /10 | 20000
4 | 46 0/6 1/6 0/6 1/6 /6 | 16.67

S 739 179 3/9 0/9 179 0/9 | 0.00




APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input Output Class
Class 0 | 2 3 4 5 Total % CORR
SP1 ] 0 6 0 0 0 0 6 100.00
2 0 0 4 0 0 0 4 100.00
3 0 0 0 5 0 0 5 100.00
4 0 0 0 0 9 0 9 100.00
5 0 0 0 0 6 6 6 100.00 ‘
SP2 1 0 3 0 0 0 0 3 100.00
2 0 0 6 0 0 0 6 100.00
3 0 0 0 6 0 0 6 100.60
4 0 0 6 0 7 0 7 100.00
5 0 0 0 0 0 8 8 100.00
SP3 ] 0 6 0 0 0 0 6 100.00
2 1 0 5 0 0 0 6 83.33
3 0 0 0 3 0 0 5 100.00
4 0 0 0 0 4 0 4 100.00
5 0 0 0 0 0 9 9 100.00
SP4 1 0 5 0 0 0 0 5 100.00
2 0 0 7 0 0 0 7 100.00
3 2 0 0 2 0 0 4 50.00
4 0 0 ) 0 7 0 7 100.00
5 0 0 0 0 0 7 7 100.00
SPs 1 0 4 0 0 0 0 4 100.00
2 0 0 8 0 0 0 8 100.00
3 1 0 0 6 0 0 7 85.71
4 0 0 0 6 4 0 4 100.00
5 0 0 0 0 0 7 7 100.00
SP6 l 0 5 0 0 0 0 5 100.00
2 0 0 6 0 0 0 6 100.00
3 0 0 0 6 0 0 6 100.00
4 0 0 0 0 6 0 6 100.00
5 0 0 0 0 0 7 7 100.00
SP7 1 0 4 0 0 0 0 3 100.00
2 0 0 8 0 0 0 8 100 00
3 I 0 0 2 0 0 3 66 67
3 [§] 0 §] () 8 () 8 160 .00
5 Q0 0 () () 0 7 7 1H00.00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input Output Class
Class 0 ] 2 3 4 5 Total % CORR
SP8 1 0 3 0 0 0 0 3 100.00
2 0 0 7 0 0 0 7 100.00
3 1 4] 0 5 0 0 6 83.33
4 0 0 0 0 6 0 6 100.00
N 0 0 0 0 0 3 8 100.00
SP9 1 0 5 0 0 0 0 § 100.00
2 0 0 7 0 0 0 7 100.00
3 2 0 0 3 0 0 5 60.00
4 1 0 0 0 4 0 5 80.00
5 0 0 0 0 0 8 8 100.00
SPi0 1 0 8 0 0 0 0 8 100.00
2 0 0 5 0 0 0 5 100.00
3 0 0 0 7 0 0 7 100.00
4 0 0 0 0 7 0 7 100.00
5 0 0 0 0 0 3 3 100.00
SP11 I 0 9 0 0 0 0 9 100.00
2 0 0 1 0 0 0 11 100.00
3 2 0 0 8 0 0 10 80.00
4 0 ¢ 0 0 6 0 6 100.00
5 0 0 0 0 0 9 9 100.00
5P12 1 0 12 0 0 0 0 12 100.00
2 0 O 9 0 0 0 9 100.00
3 3 0 0 6 0 0 9 66.67
4 1 0 0 0 7 0 8 87.50
5 0 0 0 0 0 7 7 100.00
SP13 1 I 8 0 0 0 0 9 88 89
2 0 0 9 0 0 0 9 100.00
3 0 0 0 i0 0 0 10 [LES I}
4 0 0 0 0 11 0 1 100.00
5 0 0 0 0 0 6 6 100.00
SP14 1 0 10 0 O 0 0 1 10« 00
2 0 0 8 0 0 0 8 106 00
3 0 0 0 1] 0 0 i1 100.00
4 0 0 0 0 8 0 8 100.(K)
] 0 0 0 ( 0 ] 8 100,00
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APPENDIX D Neural Network Data

Back-propagation Neural Network Training Data

Input
Class
SP15s 1
2

3

4

S
SPl6 1
2

3

4

5
SP17 1|
2

3

4

5
SPI1g8 1
2

3

4

5
SP19 |
2

3

4

5
SP20 |
2

3

4

N}

0

0

11
0
0

0

1
0
0
0
0

10
0]

0
0

Output Class
2 3
0 0
6 0
0 8
0 0
0 0
0 0
9 0
0 7
0 0
0 0
0 0
6 0
0 10
0 0
0 0
0 0
8 0
0 9
0 0
0 0
0 0
8 0
0 9
0 0
0 0
0 0
10 0
0 S
0 0
0 0
73

0
0

0

0

10

Total

~N N O e

% CORR

100.00
85.71
100.00
81.82
100.00

90.00
100.00
77.78
100.00
100.00

100.00
85.71
83.33
100.00
100.00

91.67

100.00
100.00
100.00
100.00

100 00
100.00
90.00

100.00
100.00

100.00
100.00
52.50

100.00
100.00




APPENDIX D Neural Networx Data

Back-propagation Neura! Network Classification Data

Input Output Class
Class 0 I 2 3 4 S Total % CORR
SP1 i 5 l 2 0 ] 0 Y 1111
2 ] I 0 0 3 2 11 0.00
3 5 1 0 2 2 0 10 20.00
4 4 0 1 0 1 0 6 16.67
5 3 | 3 0 2 0 9 0.00
SP2 1 4 0 i 2 5 0 12 0.00
2 ) 0 0 3 1 0 9 0.00
3 4 0 0 5 0 0 9 55.56
4 4 l 2 1 0 0 8 0.00
5 0 0 1 0 0 0 7 0.00
SP3 1 7 0 1 0 1 0 9 0.00
2 6 0 0 0 2 1 9 0.00
3 6 0 0 2 2 0 10 20.00
4 7 0 0 0 2 2 11 18.18
5 4 0 0 0 0 2 6 33.33
SP4 1 5 1 0 i 2 1 10 10.00
2 4 0 0 0 0 4 8 0.00
3 5 0 2 3 1 0 1 27.27
4 5 | 2 0 \] 0 8 0.00
5 3 I 0 0 0 4 & 50.00
SPS ] 6 0 0 1 3 1 1 0.00
2 6 0 0 0 0 1 7 0.00
3 5 0 0 3 0 0 8 27.50
4 ¢ 0 2 2 1 0 It 9.09
5 3 0 2 0 ] 2 8 25.00
SP6 1 4 0 0 1 4 i 10 0.00
2 b 1 1 ! 0 1 9 1Ll
3 4 0 2 3 0 0 9 33.33
4 3 0 2 2 0 2 9 0.00
5 2 0 2 0 1 3 ¥ 3750
SpP7 1 4 0 4 0 0 3 1 0.00
2 i 0 4 0 1 } 7 5714
3 8 0 2 ] 0 1 12 813
4 2 0 3 0 1 1 7 1429
5 4 0 3 0 0 1 8 12 50
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APPENDIX D Neural Network Data

Back-propagation Neural Nctwork Classificatier Data

Input
Class

0

Output Class
2 3
3 1
1 3
1 5
1 0
4 0
2 0
1 0
3 1
4 0
1 0
0 0
0 1
0 5
0 ]
1 1
1 0
1 0
0 ]
4 0
4 0
1 0
0 ]
2 3
2 0
1 0
1 0
1 2
0 0
0 l
1 1
0 2
0 2
Q0 3
1 ]
2 )

75

[ SR

Total

~N L D K -

10

10
10

[ WV ~RRV I e

~N N

@x

~F ~3 &= ~J '

% CORR

0.00
12.50
55.3%6
1111
0.00

0.00
12.50
10.00
0.00
14.29

0.00
0.60
62.50
12.50
8.33

0.00
25.00
20.00
0.00
0.00

0.00
0.00
50.00
14.29
62.50

0.09
16.67
0.00
0.00
3333

0.00
0.00
7500
0.00
28.57




APPENDIX D Neural Network Data

Back-propagation Neurai Network Classification Data

Input Output Class
Class 0 1 2 3 4 5
SP1S ¥ 0 0 0

Total

% CORR

0.00
12.50
42 .86
0.00
28.57

0.00
0.00
50.00
0.00
42.86

0.00
(.00
33.33
0.00
14.29

0.00
0.00
50 00
0.060
0.00

0.00
28.57
20.00
0.00
12.50

0.00
20.00
72857
0.00
10000




APPENDIX D Neurai Network Data

Supervised Kohonan Neural Netweork Training Data

Input Output Class
Class 0 1 2 3 4 5 Total % CORR
SPiI 1 0 6 0 0 0 0 6 100.00
2 0 0 4 0 0 0 4 100.90
3 0 0 0 5 0 0 5 100.00
4 0 0 0 0 9 0 9 100.00
5 0 0 0 0 0 6 6 100.00
Sp2 1 0 3 0 0 0 0 3 100.60
2 0 0 6 0 0 0 6 100.00
3 J 0 0 6 0 0 6 100.00
4 0 0 0 0 7 0 7 100.00
5 0 0 0 { 0 8 8 100.00
SP3 1 0 6 0 0 ¥ 0 6 100.00
2 0 0 6 0 0 0 6 100.00
3 0 0 0 5 0 0 5 160.00
4 0 0 0 0 4 0 4 106.00
5 0 0 0 0 0 9 9 100.00
SP4 ! 0 5 ¢ 0 0 0 5 100.00
2 0 0 7 0 0 0 7 100.00
3 0 0 0 4 0 0 4 100.00
4 0 0 0 0 7 0 7 100.00
5 0 0 0 0 0 7 7 10000
SP5 1 0 4 0 0 V] 0 4 100.00
2 0 0 8 0 0 0 8 100.00
3 0 0 0 7 0 0 7 1K) .00
4 0 0 0 \] 4 0 4 100.00
s { 0 0 0 0 7 7 100.00
SP6 1 0 h] 0 0 G 0 5 100.00
2 0 0 6 0 0 4] 6 100.00
3 0 0 Y 6 0 0 6 100.00
4 0 0 0 0 6 0 6 100.00
5 0 0 0 0 0 7 7 100.00
N 1 ) 4 0 0 0 0 4 100,00
2 0 0 8 0 0 0 b 10O (X)
3 0 0 0 3 0 1] 3 100040
3 0 0 0 0 8 0 8 100 00
5 0 0 0 0 0 7 7 100 00
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APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Training Data

Input
Class
SP8 ]
2
3
4
5
SP9 1
2
3
4
S
SPI) 1
2
3
4
5
SP11 1
2
3
4
5
SpP12 |
2
3
4
5
SPI3 1
2
3
4
8
SP14

1
2
3
4
ﬁ

0

0
0
0

0

0
0
0
0
0

jo% )

0
0
0
O

o

0
0

0
0
0

Qutput Class

2 3
0 0
7 0
0 6
Y 0
0 0
0 0
7 0
0 5
0 0
0 0
0 0
5 0
0 7
0 0
0 0
0 0
1 0
Y] 10
0 0
0 0
0 0
Y 0
0 Y
0 0
U 0
4 0
9 0
U 10
0 0
0 0
0 0
4 0
0 B
(0 0

0
0
0
6

0
0
0

0
0

0
0

‘i'otal

X I W

L IRV, N BRP

o0

il B BRI )

10

1o
H
[

10

11

% CORR

100.00
100.00
100.00
160.00
100.00

200.00
100.00
100.00
100.00
100.00

100.00
100.00
100.00
100.00
100.00

100.00
100.00
100.00
100.00
100.00

100.00
100,00
100 .0}
100.00
100 .00

100,00
100.00
100.00
100,00
10U OO

HH OO
100.00
100 .00
100 00
104 00




APPENDIX D Neural Netwerk Data

Supervised Kohonan Neural Network Training Data

Input Output Class

Class 0 1 2 3 4 5 Total % CORR
SP15 1 0 10 0 0 I 0 11 90.91
2 0 0 7 0 0 0 7 10¢.00

3 0 0 0 ] 0 0 8 100.00

4 0 > 0 0 11 0 11 100.00

S 0 0 0 0 8 8 100.60
SP16 1 0 10 0 0 0 0 10 100.00
2 0 0 9 0 0 0 9 106.00

3 0 0 0 9 0 0 9 100.00

4 0 0 0 ] 9 0 9 100.00

5 0 0 0 0 0 8 8 100.00
SP17 1 0 10 0 0 1 0 11 90.91
2 0 0 7 0 0 0 7 106.00

3 0 0 0 12 0 0 12 100.00

4 0 0 ! 0 7 0 7 106.00

5 0 0 Q0 0 0 8 8 100.00
SP18 | 0 12 0 0 0 0 12 100.00
2 0 0 8 0 v 0 8 100.00

3 ¢ 0 0 9 0 0 9 160 .00

4 0 0 0 0 9 0 9 100.00

5 0 0 0 Q 0 7 7 100.00
SP19 1 0 10 0 0 0 0 10 100.00
2 v 0 8 0 0 0 8 100.00

3 0 () Y] 9 | 0 10 9G.00

4 0 0 0 () 10 0 10 100.00

5 0 0 0 0 0 7 7 100.00
SP20 ] () 7 0 0 0 0] 7 10000
2 0 0 10 0 0 ) 10 100,00

3 0 D) 0 8 0 0 8 100.00

4 0 () 0 0 ¥ ¥ 3 100 00

5 0 Y 0 0 0 12 12 10000
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Supervised Kohonan Neural Network Classification Data

Input Output Class
Class 0 1 2 3 4 S Total % CORR
5P 1 0 R 0 0 | 0 9 88.89
2 0 7 ] 0 1 2 11 9.09
3 0 7 0 1 2 0 10 10.00
4 0 4 1 O 0 1 6 0.00
5 0 2 4 0 2 1 9 .11
SP2 1 0 7 0 | 3 1 12 58.33
2 0 0 0 1 4 4 9 0.00
R () 0 0 6 3 0 9 06.67
4 0 0 1 0 6 1 8 75.00
5 9] 1 0 0 2 4 7 5714
SP3 1 0 5 3 0 0 1 9 55.56
2 0 4 3 0 0 9 33.33
3 0 | 2 3 4 0 10 30.00
4 0 0 4 1 1 5 11 9.09
5 ; 2 3 0 0 1 6 1667
SP4 1 0 7 0 I 2 0 10 70.00
2 0 0 | 0 5 8 25.00
3 0 0 8 0 0 H 72.73
4 0 0 2 1 5 0 ¥ 62.50
5 0 I 0 0 3 4 8 50.00
SPs ] 0 2 3 1 1 4 i 18.18
2 0 & 3 2 | | 7 42.86
3 () 0 3 § 0 0 8 62 50
4 0 0 6 0 0 h 11 0.00
5 0 { 3 () 4] 5 8 62.50
SP6 ! 0 6 0 U 2 2 60.00
2 0 2 1 i 2 3 9 1111
3 0 2 ¢ 5 ] 1 9 55 56
4 ] () ] 0 2 O 9 2222
5 () | | 0 ] s 8 62 50
SP7 | 0 4 4 () 2 1 11 36.36
2 0 0 4 0 ] 2 7 5714
3 € {) 0 I 2 0 |12 833
i () (0 2 0 4 | 7 5714
5 0 1 2 O ] 4 R 50 .00




APPENDIX D Neural Network Data

Supervised Kohonan Neural Network Classification Data

Input
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SP8 i
2

3

4

5

SPY 1
2

3

4

5
SPI0 1
2

3

4

5
SP11 1
2

3

4
SPi2 i
2

3

4

5
SPi3z |
2

3

K1

5
SPi14 |
2

3

4

5

0
0
0
0
0

0
0
0
0
0

0
0
0
0

Output Class

2 3
2 1
0 4
0 9
0 1
] 0
l 0
4 0
8 2
1 1
0 0
0 0
3 1
2 4
\ 0
3 0
0 1
0 1
0 5
5 )]

0
0 0
1 3
2 4
4 1
3 0
0 0
| 1
0 5
0 2
I 0
] 0
3 ]
1 3
4 1]
7 [}

S 20N AN

Total

~N O N 0

10

10
10

~) o~ de - N

% CORR

25.00
0.00
100.00
44.44
71.43

50.00
50.00
20.00
0.00

85.71

71.43
30.00
50.00
100.00
25.00

50.00
0.00
100.00
44.44
33.33

33.33
16.67
06.67
0.00

37.50

83.33
16 67
100.00
50.04)
0.00

60.00
42 86
75.00
28.57
0.0




APPENDIX D Neuial Network Data

Supervised Kohonan Neural Network Classification Data

Input Outpui Class
Class 0 ] 2 3 4 S Total %% CORR
5PIS i 0 2 0 1 I 0 4 50.00
2 0 3 s 0 0 0 8 62.50
3 0 2 3 2 0 0 7 28.57
4 0 2 2 0 { 0 4 0.00
s 6 3 | 0 0 3 7 42.86
SPi6 I 0 4 0 1 0 0 5 80.00
2 0 0 0 1 0 2 6 0.00
3 0 0 0 6 0 0 6 100.00
4 0 0 0 2 4 0 6 66.67
S 0 0 0 | 4 2 7 28.57
SP17 i 0 2 | 0 1 0 4 50.00
2 0 2 2 2 0 2 8 25.00
3 0 0 0 3 0 0 3 100.00
4 0 5 1 0 1 8 0.00
5 0 3 | 0 1 2 7 28.57
SP18 I 0 2 ] 0 0 0 3 66.67
2 0 3 1 0 0 3 7 14.29
3 0 1 4 ] 0 0 6 16 .67
4 0 2 4 0 0 0 o 0.00
5 0 5 1 0 0 2 8 2500
SP1y 1 0 2 1 0 0 | 5 40.00
2 0 1 hJ I 0 0 7 7143
3 ] () 3 1 1 0 5 20.00
4 0 1 3 0 1 0 s 20.00
5 0 2 3 0 2 1 8 12.50
SP20 | 0 5 0 I l ] 8 62 50
2 0 0 1 2 \ 2 5 20.00
3 0 0 2 5 Y] 0 7 7143
4 0 l ? 2 ! ] 7 1429
5 (} ) i 0 0 2 3 66 07
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