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Foreward and Introduction

Computational Fluid Dynamic (CFD) methods based on the Euler equations have been a subject of intensive research and
development over the past 10 to 15 years. They have uow reached a stage where applications are an almost routine matter in
most aerospace industries, research laboratories and universities.

After the pioneering work of Lax and Wendroff in the early sixties there was a first, relatively short burst of activities
involving Euler methods in the late sixties and early seventies. These activities were closely related to the reviving interest in
transonic flow and supercritical wing technology in particular; they were soon to be overtaken by developments in transonic
potential flow methods triggered by the work of Murman and Cole.

The main reasons for this shift of attention were an apparent lack of robustness of the Euler methods that had evolved so far
but in particular the fact that potential flow methods offered an almost order-of-magnitude reduction of computational effort.
Given the level of computer technology at the time, the latter was mandatory if computational transonics were 10 become a
practical tool for the aerospace industry.

While the concentrated efforts on transonic potential flow methods of the seventies and early eighties led to widespread use
of such methods in aerospace applications,* a revival of interest in Euler methods was bound to happen and indeed did take
place around 1980, in particular through the interest created by the works of Rizzi and Jameson. The main driving factors for
this revival were:

— the inherent limitations of potential flow theory, in particular the inability to model vorticity;
— the fact that computer power had increased by a iactor 10 to 15 since around 1970;

— the fact that a new generation of more efficient discretization schemes and algorithms held promise for future
practical applications.

Research on discretization schemes and algorithms for the Euler equations continues today: not in the least because of the
fact that the convective (i.e. “Euler™-) fluxes play a dominant role in CFD methods at the next highest level in mathematical
flow modeling, that is, the Navier-Stokes equations. At the same time however, Euler “codes” have reached a level of
proliferation in the aerospace aerodynamic community that justifies a review of the state of the art. It is worth noting that
Euler methods not only are being used for the simulation of flows for which the modeling of vorticity is mandatory, such as
leading-edge vortex flows and flows involving propulsion simulation, but that they are also being used for non-vortical flows
around complex geometries, since transonic potential flow methods for complex configurations did not fully mature.

The objective of this AGARDograph, then, is to provide a survey of the state-of-the-art in Computational Aerodynamics
Based on the Euler Equations. In terms of technology application, it concentrates on the numerical simulation of extemal
flows about aerospace vehicles.

Internal flows and turbomachinery applications are ot extensively treated but touched upon where considered appropriate. In
terms of “‘audience” this AGARDograph is, in the first place, aimed at the applied computational aerodynamicist who wants
to get started in this field. However, it might also assist the aerodynamic engineering manager in judging whether his CFD-
tools are sufficiently “state-of-the-art” and, if not, in what direction improvement or extension of capabilities shoud be
sought. Finally, it might also help the research community to identify niches for further research. For those readers who
would like to consult basic text books on CFD and Euler methods, some general references are suggested at the end of this
Foreword and Introduction.

Chapter 1 is intended to provide a background of the fluid and thermodynamic theory required for understanding the physics
modelled by the Euler equations. Chapter 2 describes numerical schemes and algorithms. Although this is done from a CFD
specialist’s point of view, the reader should be able to identify the algorithm descriptions given in this chapter with the
methods given in the following chapter. In order to meet the objectives for this report, it was felt that the core of the
AGARDograph should consist of a survey and description of numerical schemes and algorithms, capabilities, and limitations
of the major Euler codes that are currently in use in the NATO countries. For that purpose, requests for information were sent
to institutions, industries and individuals who, to the authors’ knowledge, were or had been active in this area. The response
has been collected in Chapter 3, with examples of application given in Chapter 4.

* A survey can be found in AGARDograph 266 “Applied Computational Transonic Aerodynamics™ by T. Holst, et al. 1982.




The preparation of this AGARDograph has been a team effort involving scientists from both Europe and North America.
Each of the authors contributed to several if not all of the chapters. In addition, each author took responsibility for
coordinating the cfforts for the following:

Chapter 1
Chapter 2

Chapter 3
Chapter 4

Nigel Weatherill

Philippe Morice

Herbert Rieger and Wolfang Schmidt
Jim Thomas and Kyle Anderson

Writing it and putting it all together was . substantial amount of work. We thank the authors for their efforts and enthusiasm
and their organisations for making it possiui..

We also thank all the individuals from the NATO countries that provided material to the authors. Without their help this
AGARDograph would have been less complete.

Joop Slooff,
Wolfgang Schmidt
Editors,

Fluid Dynamics Panel
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Avant-propos et introduction

Les méthodes de 1'aérodynamique numérique (CFD) basées sur les équations d'Euler ont fait I'objet de recherches et
développement intensifs depuis une quinzaine d’années. Aujourd’hui ces méthodes sont appliquées de fagon quasi-courante,
dans la plupart des industries aérospatiales, des laboratoires de recherche et des universités.

Les travaux d’avant-garde de Lax et Wendroff du début des années soixante ont été suivis d’une premiére période d’activités,
relativement courte, concemant les méthodes d’Euler, 2 la fin des années soixante et au début des années soixante-dix. Ces
activités étaient étroitement liées av regain d’intérét qu'il y avait 3 I'époque pour les écoulements transsoniques et les
technologies de profil d’aile supercritique en particulier. Cependant, elles furent rapidement dépassées par le développement
des méthodes de calcul des écoutements potentiels transsoniques engendrées par les travaux de Murman et Cole.

Les principales raisons de ce changement de direction furent fe manque de robustesse apparent des méthodes d’Euler de
1'époque et en particulier le fait que les méthodes de calcul des écoulements potentiels permettaient la réduction du temps de
calcul d’environ un ordre de grandeur. Considérant le niveau des technologies de I'informatique a I'époque, cette réduction
s'imposait si 1'on voulait que 'aérodynamique transsonique numérique puisse devenir un outil pratique pour 1'industrie
aérospatiale.

Etant donne que les efforts consacrés aux méthodes de calcul des écoulements potentiels transsoniques dans les années
soixante-dix et au début des années quatre-vingts ont conduit 2 la banalisation de ces méthodes dans les applications
aérospatiales, un regain d'intérét pour les méthodes d’Euler était inévitable et ceci s’est produit en 1980, grice, en particulier,
A Pintérét suscité par les travaux de Rizzi et Jameson. Les principaux éléments moteur de ce renouveau furent :

— les limitations propres 2 la théorie de I'écoulement potentiel et, en particulier, 1a non-faisabilité de 1a modélisation du
rotationnel;

— le fait que la puissance de calcu! avait augmenté d'un facteur de I'ordre de 10 a 15 depuis 1970;

— le fait qu'une nouvelle génération de méthodes de discrétisction et d’algorithmes plus efficaces semblaient promettre
des applications pratiques a I'avenir.

Les travaux de recherche sur les méthodes de discrétisation et les algorithmes pour les équations d’Euler se poursuivent
aujourd’hui, principalement a cause du fait que les flux convectifs (c’est-3-dire «d’Euler) jouent un réle prédominant dans
les méthodes de 1'aérodynamique numérique au niveau immédiatement supérieur de la modélisation mathématique de
I'écoulement, c'est-3-dire au niveau des équations Navier-Stokes. Parallzlement 2 ces développements pourtant, les «codes»
Euler ont atteint un niveau de prolifération au sein de Ja communauté de }'aérodynamique aérospatiale qui justifie une revue
de I'état de art.

11 convient de noter, ici, que les méthodes d'Euler ne sont pas utilisées uniquement pour la simulation d’écoulements pour
lesquels la modélisation du rotationnel est obligatoire, tels que les écoulements tourbillonnaires de bord d’attaque et les
écoulements avec simulation de la propulsion car, en raison du fait que les méthodes de calcul des écoulements potentiels
transsoniques ne sont jamais arrivées 3 maturité, les codes d’Euler sont utilisés aussi pour les écoulements non
tourbillonnaires autour de géométries complexes.

L'objectif de cette AGARDographie est, donc, de donner un apergu de 1'état de I'art dans le domaine de 1'aérodynamique a
partir des équations d’Euler. En mati¢re d’application de la technologie 1'accent est mis sur la simulation numérique
d’écoulements externes autour de véhicules aérospatiaux. Les flux internes et les applications turbomachines ne sont pas
traités en profondeur, mais simplement abordés, le cas échéant.

En mati¢re de «public», cette AGARDographie est destinée, en premier lieu, 3 'aérodynamicien concemé par le CFD qui
souhaite se familiariser avec ce domaine. Cependant, elle est susceptible d’intéresser aussi le manager d'étude et de
conception en matidre d’aérodynamique de génie aérodynamique et de lui faire savoir si ses outils CFD correspondent 2
«1'état de P'art» ou sinon, quelles sont les améliorations et quelles sont les nouvelles capacités A rechercher. Enfin, elle
pourrait apporter une aide & la communauté des chercheurs dans I'identification de projets futurs. Pour ceux qui
souhaiteraient consulter des ouvrages de caractire général sur |'aérodynamique numérique et les méthodes d’Euler, un certain
nombre de références sont proposées 2 Ia fin de cette Introduction et avant-propos.




Le chapitre | présente I'essentiel de la théorie de 1a thermodynamique et des fluides nécessaire A 1a compréhension de la
physique modelée par les équations d’Euler. Le chapitre 2 donne la description de méthodes numérigues et d'algorithmes.
Bien que cette description soit donnée du point de vue du spécialiste CFD, le lecteur devrait pouvoir identifier les descriptions
des algorithmes données dans ce chapitre en se servant des méthodes données dans le chapitre suivant. Compte «wnu de ces
objectifs, les auteurs partageaient 1’avis que 1'essentiel de I’AGARDographie devait consister en un tour {'horizon et un
descriptif des théories numériques et des algorithmes, ainsi que des capacités et des limitations des principaux codes d'Euler
actuellement utilisés par les pays membres de I'OTAN. Ayant cet objectif en vue, des demandes ont été adressées aux
établissements, aux industries et aux particuliers, qui, 3 la connaissance des auteurs, étaient, ou avaient été actifs dans ce
domaine. Les réponses obtenues sont exposées au chapitre 3, avec des exemples d’applications au chapitre 4.

La rédaction de cette AGARDographie a été un véntable travail d’équipe, mobilisant des scientifiques de 1'Europe et de
P Amérique du Nord. Chacun des auteurs a contribué 2 plusieurs, sinon 2 I'ensemble des chapitres. En outre, chaque auteur
était responsable de la coordination des efforts consacrés & un chapitre en particulier, comme suit :

Chapitre 1 Nigel Weatherill

Chapitre 2 Philippe Morice

Chapitre 3 Herbert Rieger et Wolfang Schunidt
Chapitre 4 Jim Thomas et Kyle Anderson

La rédaction et la mise en forme ont représenté un travail considérable. Nous tenons a remercier les auteurs de leurs efforts et
leur enthousiasme, ainsi que leurs organisations respectives, sans lesquelles cette publication n’aurait pas vu le jour.

Nos remerciements sont également diis aux différentes personnes de la majorité des pays de I'OTAN qui ont founi des
informations aux auteurs. Sans leur concours, cette AGARDographie aurait été moins complete.




Nomenclature

The objective has been to define all symbols locally in the text.

The main symbols and notations are summarnized below.
General

Bold
vectors of vanables indicated in bold

matrices indicated in BOLD capitals
overbar
geometrical/physical vectors indicated by an overbar

Bold
tensors indicated in Bold with overbar

circumflex
indicates quantity expressed in generalized coordinates

~
tilde
denotes quantity obtained through averaging process
Arabic
a speed of sound
Cy drag coetficient
& litt coefficient
C, side force coefficient
G, rolling moment coefficient
(& pressure coefficient (p-p.)/0.5»p . U |
CFL Courant number
€p specific heat at constant pressure
[ specific heat at constant volume
D dissipation flux tensor
DP/P = (p~p.)p-
E total energy per unit volume
[ intermal energy per unit mass
F Flux vector/tensor with components f,g,h (or
F.GH)
£ force (vector)
g gravitational constant
H total enthalpy
h enthalpy per unit mass
Pk cariesian unit vectors
J Jacobian of coordinate transformation
k reduced frequency
M Mach number
n normal vector
I, Prandtl number
p pressure
q vector of primitiv. variables
R unjversal gas constant, residuat
R’ Riemann variables
R. Reynolds number
or position (vector)
S discontinuity surface
s entropy per unit mass
T temperature
t time
Uv.w contra-variant velocity components

u velocity of moving surface

v volume

v specific volume

v velocity vector with canesian components

uvw

w vector of conserved vanabies

X.y.2 canestan coordinates

Greek

a angle of attack

B angle of sde slip

I circulation

Y ratio of specific heats

At time step

Ax.Ay.Az
spatial steps

A%.AnAQ

5 fimte ditterence (operator)

e vorticity (vector)

0 weighing factor in generalized exphait/
implicit ditference scheme (section 2.1)

i spectral radius or cigenvalue

n averaging operator

v kinematic viscosity

z weighting tactor in generalized forward/
backward difference formulae (section 2.1)

ing curvilinear coordinates

p density

L boundary of domain

o = At/dx

T compressibility of a gas or fluid. artificial
time

W stream function

Q volume of a domain

o) angular velocity. relaxation tactor

Subscripts

i,j.k refers to spatial mesh point location

min minimum value

max maximum value

m mean value

n normal (component)

0 stagnation value

T at constant temperature

t tangential component, time derivative

XyZ | components in x.y.z. /6. directions

1

Eng [ derivatives with respect to x.y.z/n.§

B {freestream value

Superscripts

n iteration/time level

T transposed (matrix
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Chapter 1

Basic Theory

1.1 FLUID, GAS AND THERMO DYNAMICS

A general definition of a fluid is any material that cannot sustain
4 1angental, or shearing force when at rest and that undergoes a
continuous change in shape when subjected to a stress. This
continuous and irrecoverable change of position of one part of
the material relative to another part when under shear stress
constitutes flow, a characteristic property of fluids. In contrast,
the shearing forces in a solid, held in a twisted or flexed
position, are maintained; the solid undergoes no flow and can
spring back to its oniginal shape.

Various simplifications, or models, of fluids have been devised
to analyze fluid flow. The simplest model, and the one primarily
of interest in this document, called a perfect, or ideal fluid is one
that is unable to conduct heat or to offer any internal resistance
1o one portion flowing over another. A perfect fluid cannot
sustain a tangential force, that is, it lacks viscosity and is called
an inviscid fluid.

The study of the effects of forces and energy on liquids and
gases is known as fluid mechanics. Like other branches of
classical mechanics, the subject subdivides into statics (often
called hydrostatics) and dynamics (fluid dynamics,
hydrodyramics, or aerodynamics). Hydrostatics is a
comparatively elementary subject with a few classical results of
importance but little scope for further development. Fluid
dynamics, in contrast, is a highly developed branch of science
that has been the subject of continuous and expanding research
activity from around 1800 to the present day.

The development of fluid dynamics has been strongly influenced
by its numerous applications. In the area of aeronautical
engineering and the study of flight the importance of fluid
dynamics is obvious.

Traditionally, fluid dynamics has been studied both theoretically
and experimentally. The phenomena of fluid motion, as will be
described in the following sections, are governed by known
laws of physics - conservation of mass, the laws of classical
mechanics (Newton's laws of motion), and the laws of
thermodynamics. As will be demonstrated, these can be
formulated as a set of nonlinear partial differential equations,
and in principle one might hope 10 infer all the phenomena from
these. In practice. this has not been possible; the mathematical
theory is difficult and the nonlinear nature of the equations are
no: amenable to classical mathematical approaches. More
recently, with the advent of high speed computers, the science
of computational fluid dynamics has emerged which aims to
solve the governing fluid flow equations with the use of
numerical techniques which are carried out in the computer.
However, the complexity of the problems associated with either
the mathematical or computational approaches to fluid dynamics
necessitates the continuing research in observations of fluid
motion both in the laboratory and in nature.

Traditionally, liquids and gases are classified together as fluids
because, over a wide range of sitvations, they have identical
cquations of motion and thus exhibit the same phenomena.
However. in the applications to be discussed here, flow speeds
are comparable with that of the speed of sound, where the
density of the fluid changes significantly. This phenomena is of
practical importance only for gases. However, throughout the
document the term fluid will be assumed 1o be used in a generic
sense, with the implied assumption of application to gases.

Some of the issues alluded to in this introduction will now be
considered in further detail. The intention is that, within this
chapter, the basic formulations required in the study of
computational inviscid aerodynamics will be presented.

1.1.1 Compressibility of Gases

In general terms, a compressible flow is one in which there is a
vanation in density of the fluid. This rather vague definition
must be enhanced if it is 1o be of value. Consider a small
element of fluid of volume V., in which the pressure exerted

upon it is p. If the pressure is increased by a small amount 8p,
the volume of the element will be compressed by an amount §V.
Hence the compressibility of the fluid , can be defined as

18V

T=-5—
Vsp

which, in the limit, can be expressed in derivative form as,

1dv

1= _V&E (1.1.1)

The negative sign indicates a decrease in volume for an increase
in pressure.

Compressibility is, therefore, the fractional change in volume of
the fluid per unit change in pressure. However, this description
is not adequate. since when a gas is compressed the temperature
will, in general, change. Hence, it is necessary to introduce the
idea of an isothermal compressibility in which the temperature
is held constant. The definition is now extended to

1 dV
tT::-V(%ET (1.1.2)
where the subscript T denotes that the change in volume takes
place at constant temperature.

Alternatively, if no heat is added to, or taken away from, the
fluid element (i.e. the compression is adiabatic) then the
compressibility is isentropic and is defined as

1dv

t5='v($s (1.1.3)

where now the subscript S denotes that the change in volume
takes place at constant entropy. If the fluid element is assumed
1o have a unit mass, v is then the specific volume and the density

p= \17 Eq. (1.1.1) can then be expressed in terms of the density
in the form

Q-IQ.
h=Rh-)

(1.1.4)

)
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It is evident from Eq. (1.1.4) that whenever a fluid experiences
a change in pressure. dp. the corresponding change in density

will be dp, where

dp=p tdp (1.1.5)

From this statement, it is clear that all fluids are compressible to
some extent. However, some fluids have very low values of




compressibility. For water, t1=35x IO-lO m2/N at |

atmosphere(atm), whereas. gases have a high compressibility,

-5 32
typically. forair t=5x10 5m'/N at 1 atm. The concept of
an incompressible fluid is an assumption which is only true if
density changes are negligibly small. Primarily, in this
document flow conditions are such that changes in density are
significant and the approximation of an incompressible fluid
cannot be made.

1.1.2 Gas Laws

The relationships between the volume of a gas and its
temperature and pressure are fundamental properties of gases.
These relationships are described in the so-called gas laws.

The first law is due to Boyle and states that the volume of a
given quantity of gas, V, varies inversely with the pressure
exerted on it, if the temperature is constamt. From experiment the
constant of proportionality can be found and then Boyie's law
can be written

V=kl/p.

The second law is due to Charles and states that the volume of
gas varies directly as its absolute temperature, if the pressure is
kept constant. Again the constant of proportionality can be
determined from experiment and then Charles’s law written as

V=k,T.

If both pressure and temperature are changed at the same time,
both these equations must be used to calculate the change in
volume, pressure or temperature. A single equation can be
derived from Boyles's and Charles's laws: the product of the
pressure and the volume equals the product of the temperature
and a constant, called the universal gas constant, R. This can be
wrilten as

pV =RT. (1.1.6a)

where V' is the volume of one mole of gas.

It is possible 10 also derive this fundamental gas relationship
from the kinetic theory of gases. It is known that molecules
possess a force field which interacts with neighbour molecules.
A perfect gas is one in which these intermolecular forces are
negligible. From this assumption it is possible to derive from
kinetic theory the equation of state for a perfect gas.
Historically, the equation of state was derived in the form

pV = MRT (1.1.6b)

where V is the volume of the system, M is the mass of the
system, and is equivalent to (1.1.6a). Many different forms of
this equation can be derived. [t follows that, on dividing by the
mass of the system, (1.1.6) can be expressed as

pv =RT (1.1.7)

where v is the specific volume, or, alternatively, using the fact
i
thatp = v

p=pRT. (1.1.8)

Other expressions are also possible.

It is worth considering the accuracy of the assumption of a
perfect gas. Experimentally, it has been determined that, at low
pressures {near ! atm or less) and at high temperatures (273
Kelvin(K) and above), the value pv/RT for most pure gases
deviates from unity by less than 1 percent.

An ideal gas, or perfect gas obeys the gas relation.

However, at very low temperatures and high pressures,
molecules are more closely packed and intermolecular effects
can be significant. Under these conditions, the gas is defined as
a real gas. In such cases the perfect gas relations (1.1.6 - 1.1.8)
are replaced by more accurate relations.

The first serious attempt to understand the behaviour of real
gases was made by van der Waals in 1873. The van der Waals
equation,

(p+3)(v-b)=RT (1.1.9)
2

contains the two adjustable parameters a and b which are
dependent upon the gas. Eq. (1.1.9) shows that, with molecular

attraction, the pressure p is incremented by the term aiv2, whilst
the finite volume occupied by the molecules reduces from v to
(v-b). There are now over 100 emperical thermal equations of
state available for a whole range of gases. Of the two best
known, one contains S adjustable parameters whilst the other
contains 8 such parameters. These equations can reproduce the
complete range of pressure, volume and temperature behaviour
from gas phase to condensation. The main use of such relations
is that, through interpolation, the behaviour of the gas at non-
measured values can be approximated.

One of the most convenient ways of expressing the thermal
equation of state for a real gas is to use the virial equation of
state. This can be expressed as

v B(M) T DM
%:1'0'——*-“—;‘***“3—*

v ve v

The quantities B(T), C(T), D(T), etc. are called the second, third
and fourth virial coefficients, the first virial coefficient being
unity. They are all independent of the gas pressure and density,
and dependent upon the temperature only. Clearly for a nerfect
gas this reduces to the ideal gas law.

In the microscopic view of a gas, individual molecules are in
random motion, colliding with other molecules. Evidently, there
are many forms of energy inherent 10 motion of this type. The
internal energy, e, of a gas is the total sum of all these different
energies. If the particles of the gas are in a state of maximum
disorder, then the system of particles is in equilibrivm, i.e. no
gradients in velocity, pressure, temperature and chemical
concentrations exist in the system. It proves appropriate to
introduce a further property of a gas and that is enthalpy. The
enthalpy, h, is defined, per unit mass, as

h=e+pv (1.1.10)
If a gas is not chemically reacting, and intermolecular forces are
ignored, then the resulting system is a thermally perfect gas
where internal energy and enthalpy are functions of temperature

only and where the specific heats at constant volume and
pressure, ¢, and Cp- are also functions of temperature only:

e=e(T),h=h(T),de=cvdT,dh=cpdT. (1.1.11H)

The ratio cplcv =Y, where, for air at standard conditions, y=1.4.

For a real gas it should be noted that the internal energy and
enthalpy are functions of both temperature and volume, i.e.

e =e(T,v). h=h(T.p). (1.1.12)

If the specific heats are constant, the system is a calorically
perfect gas, where

e=¢, T, h=cPT. (1.1.13)

Useful expressions for the specific heats are




(1.1.14)

p

I

¢, = — (1.1.15)
v ¥l

Eqs (1.1.14) and (1.1.15) are valid for a thermally or calorically
perfect gas but are not valid for either a chemically reacting or a
real gas.

In many compressible flow applications the pressures and
temperatures are such that the gas can be considered as
calorically perfect. However, it should be noted that in some
applications associated with hypersonic flows, where
temperatures can be high, the assumption of a calorically perfect
gas is invalid. At excessive temperatures, where molecules start
to dissociate, chemical reactions occur and then the internal
energy depends on both the temperature and volume, and the
enthalpy on temperature and pressure. As the temperature of a
gas increases it changes behaviour from calorically perfect to
thermally perfect.

The behaviour of gases at high temperatures can be predicted
accurately using statistical mechanics. Many varied forms of
behaviour can be studied using these ideas and the fundamental
relationships relating temperature and pressure to density and
enthalpy can be derived.

Air at normal room temperature and pressure is composed of
approximately 79% nitrogen, 20% oxygen and 1% trace
species. Hence, to a reasonable level of approximation the
behaviour of the 2 species, oxygen and nitrogen are important.
As the temperature is increased to within the range
2500K<T<%000K. chemical reactions take place between
oxygen and nitrogen, producing not only O, and N5 but also O,

N. NO, NO*, and e”. If a fixed temperature and pressure are
maintained, then in time the condition of chemical equilibrium is
reached. In the case of an equilibrium chemically reacting gas,
the chemical composition i.e. the amounts of each species, is
determined uniquely by the pressure and temperature. In the
tme required to reach steady state, the behaviour is that of a
non-equilibrium chemically reacting gas.

Details of the gas laws for these different states can be found in

appropriate texts 2. For an equilibrium chemically reacting gas,

in addition to the flow equations, it is necessary to determine the
chemistry of the gas. In general, if the gas has K species and H
elements then (K-H) independent chemical equations are needed
together with equations for mass balance and partial pressures.

For air, with elements O, N and electric charge e, and 7
species, Og. Ny, O, N, NO, NO*, and ¢ this results in 7 non-
linear, simultaneous algebraic equations.

When non-equilibrium chemical reactions are considered, it is
necessary to also determine the evolution of the chemical

species. This is achieved by solving the appropriate chemical
rate equations, which take the form of

dpoy dpoju  dpayv  dpoyw
Tt Ty T G

where a; are the mass fractions of the chemical species, and Q;
are the source terms.

It is useful at this stage to consider further definitions related to
compressibie gas dynamics. The first law of thermodynamics
states that the heat added to a system, 8q, and the work done on
the system, dw, cause a change in energy, and since the system
is stationary. this change in energy, 8e, is

Be = 8q + dw

For a given 8e, there are many ways in which heat can be added
and work done on the system. Some of particular interest are

Adiabatic process - one in which no heat is added to or taken
from the system.

Reversible process - one in which no dissipative phenomena
occur, i.e.. where the effects of viscosity, thermal conductivity
and mass diffusion are absent.

Isentropic process - one which is both adiabatic and reversible.

The second law of thermodynamics states in which direction a
thermodynamic process will occur. To provide a more formal
definition, the state variable entropy is inroduced as

_8
ds—T.

where s is the entropy of the system, 8q is an incremental
amount of heat added reversibly to the system, and T is the
system temperature. Altemnative definitions exist, such as

ds =8T_q*d5irrev (1.1.16)

which clearly states that the change in entropy during an
incremental process is equal to the actual heat added divided by
the temperature plus a contribution from the irreversible
dissipative phenomena of viscosity, thermal conductivity and
mass diffusion occurring within the system. These dissipative
phenomena always increase the entropy

d 0.

Sirrev >
The entropy can be computed from a variety of expressions,
such as

Tds =de + pdv (1L.117)
and

Tds=dh-vdp (I.1.18)
Above, an isentropic process was defined as adiabatic and
reversible and hence ds = 0. i.e. the entropy is constant.

Disturbances in fluids are transmitted through the flow field by
molecular action. Molecules collide with their neighbours,
transferring the newly acquired energy to others. This wave of
energy travels through the air at a velocity that is related to the
molecular velocity. The energy increase causes the pressure, as
well as density and temperature, to change slightly. In this way,
any disturbance is propagated throughout the flow field. As will
be described, the velocity at which disturbances are propagated
is of central importance to the field of aerodynamics.

Consider a sound wave moving with velocity, a, through a gas.
The flow through the sound wave is one dimensional. Applying
conservation of mass across the wave front, leads to

pa = (p+dp) (a+da), (1.1.19)

which, if products of small quantities are ignored, leads to

da
a=-p— (1.1.20)
pd

Conservation of momentum across the wave front, can be
similarly be expressed as
p+paZ = (p+dp) +(p+dp) (a + da)2 (1.1.21)

Expanding and using Eq. (1.1.20) to find da, gives an
expression for the speed of sound;




a2 =9 (1.1.22)
dp

The changes which occur across the wave front are small. This
implies that the irreversible, dissipative effects of friction and
thermal conduction are negligible. Further, there is no heat
addition to the system, and hence the process inside a sound
wave is isentropic. Hence, the rate of change of pressure with
density is an isentropic change and hence Eq. (1.1.22) can be
written

a2 = (42 (1.1.23)
dp
This equation demonstrates that the speed of sound is a direct

measure of the compressibility of a gas. Using the expression
for compressibility, Eq. (1.1.23 ) can be written as

= A ,(gﬁ)s = /:} (1.1.24)

In turn, for a calorically perfect gas this can be expressed as

2= \/(:’P] = VT (1.1.25)

Tt is noted that for a perfect gas the speed of sound is a tunction
of temperature only. At standard sea level conditions the speed
of sound is

ag = 340.9 m/s = 1117 fus.

For aeronautical flows, a useful classification of flows arises if
the local speed, g, is normalised with respect to the speed of
sound. This normalisation introduces the concept of the Mach
number M, defined as

M=2 . (1.1.26)

Three natural classifications of different flow regimes then
follow:

M«<l subsonic flow
M=1 sonic flow
M>1 supersonic flow.

The Mach number plays an important role in aeronautics, since
the physical nature of flows is radically different dependent
upon the Mach number. Clearly, interesting phenomena are 1o
be expected if an object is travelling at a speed which is greater
than that at which disturbances created by it are propagated.
Further discussions on this will be given later in this document.

1.1.3 References

1. LIEPMANN H. W. and ROSHKO A., Elements of
Gasdynamics, Wiley, New York, 1957.

2. ANDERSON J. D. Madern Compressible Flow, McGraw-
Hill, 1989.




1.2 CONSERVATION EQUATIONS FOR
INVISCID FLOWS

The fundamental equations of fluid dynamics have been known
for over a century. The French engineer Claude-Louis-Marie
Navier and the British physicist George Gabriel Stokes are
credited with the original derivation, and hence the governing
fluid flow equations are known by their respective names. On
the basis of a molecular hypothesis, Navier armived in 1827 ata
theory of elasticity of isotropic solids (solids in which elasticity
is uniform in all directions) that contained only one elastic
constant. Later in 1845, Stokes, using phenomenological
concepts. produced the modern theory which invokes concepts
of shear and bulk modulus. Careful experiments tater confirmed
the work of these two scientists. These equations govern the
dynamics of all fluid flow and it is only the imposed boundary
conditions and the physical natuwe of the fluid which
distinguishes the different fluid motions.

Before Navier and Sto'es. the Swiss scientist Leonhard Euler
had deriv.d in 1775 a s:t of equations valid for a fluid assumed
to be non-viscous and non-heat conducting. These equations are
a subset of the Navier-Stokes equations where the viscous and
heat conduction terms are neglected.

The dynamics of fluid motion are governed by fundamental
physical principles. To construct the relevant equations for fluid
motion it is neces.ary lo select the appropriate laws of physics
and to apply them to a suitable model of the fluid. From these
the governing mathematical equations can be extracted. The
properties of a fluid will be fully defined once the velocity field

v, pressure p, density p and temperature T are known, in the

Eulerian sense, as functions of the space coordinate r and the
time t s0 as to satisfy a sufficient set of boundary and initial
conditions.

All fluids satisfy the laws that mass, momentum and energy are
conserved. The conservation of momentum is equivalent o
Newton's laws of motion, in particular, the force applied to a
body is equal to the product of the body's mass and its
acceleration. These physical laws, in principle. are sufficient to
enable the equations for fluid motion to be derived. However, it
is clearly necessary, before these laws can be implemented, to
define and describe how a fluid is to be modelled.

A fluid can be thought of in a number of different ways. For
example, on a microscopic scale, a fluid element of voiume dV
which, although infinitesimal on a macroscopic scale, will
contain a representative number of molecules, ndV. For a
monatomic gas, it can be assumed that these molecules move at
constant wut widely different and independent velocities, with
collisions between molecules taking place in a random manner.
Application of the fundamental physical laws to this model of a
fluid, often called the kinetic theory, would result in an
appropriate mathematical description of fluid flow.

Alternatively, a fluid can be thought of at a macroscopic level,
and the physical laws applied 1o a closed small fluid element,
which is, however, large enough 10 contain a very large number
of molecules so that it can be viewed as a continuous mecium.
This approach invokes the continuum hypothesis on which
many classic theories of fluid motion are based.

Whichever modef of a fluid is chosen it is to be expected that the
resulting governing equations are equivalent. In this section the
equations which govern inviscid, non-conducting fluids will be
derived.

1.2.1 Governing Equations
Derivation from Kinetic Theory
The approach relies upon the fact that the Euler equations of
fluid mechanics can be obtained by taking moments of the

Boltzmann equation, with a Maxwellian velocity distribution
function .

The Boltizmana equation from the Kinetic Theory of gases can
be expressed as,

of - of
v _é(?j. -1 (2
X

where f,, 15 the velocity distribution function which gives the
number density. in phase spac 2, of molecules with position x
and velocity v at time t. The function, J. on the nght hand side

of the equation, represents a molecular collision term which
vanishes in the Euler limit. The Maxwellian velocity distribution
in 2 dimensions is given by

2 1

sz—PE expl -ﬁ(\'l-ul)z -Bivy-ug)T ) - i

Ion - Y
where B=1/(2RT), p=mass demsity, T the emperature, R the
gas constant per unit mass, v =(vl,v2)T is the molecular
velocity vector, U =) is the fluid velocity vector, | the
internal energy variable corresponding to non-translational
degrees of freedom needed 1o force the given value of  for the
gas consisting of pseudo particles, I, is the internal energy due
to non-translational degrees of freedom ,

specific heats.

and ¥ the ratio of

The Euler equations can be derived by taking moments of the
Boltzmana equation. The appropriate moment vector is defined
as

2 2
o= lvpva I (vI+v§)/2] (1.2.2)

Applying the moment vector Eq. (1.2.2) to the Boltzmann
equation, Eq. (1.2.1). leads to the Euler equations in the familiar
differential form,

dw of  9Jg
x +§x—1 axz =0, (1.2.3)
where
p pu pv
w=l P = pu+p a=| Y (1.2.4)
pv puv pviep
PE u(p+pE) v(p+pE)

and the equations of state, with p the density, u.v the Cartesian
velocity components, p the pressure and E the total energy per
unit volume. The relationship between the Boltzmann and Euler
equations can be written as

ofpm an an

—a‘ +vl§iT+ vza;i

_9w of og
T oot +3xl * ax2 (1.2.5)

<wv,

where the moments are defined as

<W.f\y> =({d] jdv, de\':‘PFM. (1.2.6)

with v| and v, the components of the molecular velocity vector

and fyg the Maxwellian distribution in 2 dimensions!. It
follows, therefore, that the following relations hold




e

w=<'¥, fijg>, f=<'¥, v )y > and g=<¥, vafp> (1.2.7

The formulation presented thus involves two levels; the
Boltzmann level, Eq. (1.2.1), and the Euler level, Eq. (1.2.3),
with the connection given by the moments defined in Eq.
(1.2.6).

Eulerian Approach to the Governing Equations

From a macroscopic continuum approach the governing
equations of fluid motion are derived by considering the three
fundamental physical principles that

a) mass is conserved,
b) force = mass x acceleration
) energy is conserved.

If each of these physical laws are applied in a control volume
formulation the governing motion of a fluid can be derivedZ.

Consider an arbitrary, but stationary, control volume Q, as
shown in Fig. 1.2.1, bounded by a closed surface L, which has
an outward unit normal vector n at a point A on the surface.

Let dZ be an increﬂmal area on the bounding surface around
point A. Define df =n dEZ. Let v and p be the local
velocity and density at the point A, respectively, with v atan
angle 8w n.

Figure 1.2.1 Domain Q enclosed by contour Z.

Mass Conservation

The mass flow through any surface arbitrarily oriented in a
flowing fluid is equal to the product of density, the component
of velocity normal to the surface, and the area. Thus,

mass flow = p (Vcos §)dZ=p V dZ=p V.ndZ

The net mass flux into the control volume 2, through the entire
control surface I, is the sum of all incremental mass flows, i.e.

- Jp—v”.‘erZ
z

The negative sign indicates that the mass flow is into the control
volume in the opposite sense of the outward vector n . The total

mass inside an incremental control volume is p d€2. Hence, the
total mass in €2 is the volume integral

j.p dQ
Q

Since, in the absence of any mass sources or sinks, the mass of
the fluid is conserved then, the time rate of change of the mass

in the domain { must equal the change in mass across the

domain boundary Z. Hence, in integral form, this can be written
as

d _—
4 fpaa=- J'p V. ndL (1.2.8)
Q b

This is the continuity equation, or conservation of mass
equation, in integral form.

Conservation of momenta

Newton's second law can be stated as the time rate of change of
momentum of a body equals the net force exerted on it. This

principle is valid for the control volume, Q and when apptied
leads to the equation for the conservation of momenta.

Consider first the contribution to the forces. The net forces
acting on the volume, excluding frictional forces can be thought
of as taking two forms. Firstly, body forces acting on the fluid

inside Q. Such forces arise from, for example, eleciromagnetic
or gravitation effects. If T denotes the body force per unit mass
of fluid, then the force on an incremental volume d€2 is equal to
the product of the mass and the force per unit mass, namely
{ de)_f . For the entire control volume this is summed to give

J‘p TdQ

Q
The second type of force on the fluid arises from surface effects.
These arise from pressure and shear stress distributions over the

surface. Since, here only inviscid fluids are to be considered,
these latter contributions will be ignored. The pressure force

acting on an elemental area ndZI is -p ndX, where the

negative sign indicates that the pressure acts inwards. The
pressure effect can be summed 10 give a contribution to the
forces from pressure over the complete surface in the form

- j pndZ.
=

The principle of conservation of momenta can be applied within
a control volume. The mass, in the control volume, can be

expressed as pT._n'dZ, which has a momentum of

(pv.—;d}:)v. The net rate of flow of momentum is,
therefore,

- I(pV. nd)v .
z

In addition to this contribution, there can arise a contribution of
momentum of (pdQ) v for an elemental volume dQ, from

unsteady effects taking place within the control volume Q.
Hence, another contribution should be added in the form of

d J—
d j(p vdQ) .
Q
The conservation of momentum now gives

d I(p'v’)dn = - j’(pV.Fdz)V + J'p?dn . ijdz
Q z Q £
(1.2.9)




Equation (1.2.9) is called the momentum equation for inviscid
tflow and is presented here in its integral form.

Conservation of Energy

Finally, it is necessary to consider the equation for energy.
Energy cannot be created or destroyed, it can only change its
form. If the energy principles are applied to the control volume

€ then clearly, the rate of heat added to the fluid plus the rate of
work done on the fluid is equal to the rate of change of energy
of the fluid as it flows through the control volume i.e. energy is
conserved.

If the rate of heat added per unit mass is g, then the rate of heat
added to an incremental volume with mass (pd€Q) is g(pd€Q).
Summing all such effects with the control volume Q, gives

I(qp)dQ .
Q

The pressure force acting on the elemental area dZ is -pdZ. The
rate of work done on the fluid which passes through n dZ with

velocity v is therefore, (-p n dZ) v . Hence, over the complete
surface the contribution is

- J.prn .vdl
p3

The rate of work done by the body force, T per unit mass on

the elemental volume dQ is (p fdQ). v and thus the
contribution for the entire control volume is

fp Ta. v
Q

The internal energy, for a stationary fluid was previously
rep.esented as €. It the fluid is also in motion then, in addition,

. i . 1—2

it possesses kinetic energy in the form of 5 v <. Hence. the total
energy per unit muss of the moving fluid is the sum of the
. - . 1—

internal and kinetic energies. ¢+ 5 v 2. For an elemenal control

surface dZ. the flux of energy across dZ is V. ndX(e+ %—\7 2y,

For the complete bounding surface this sums to

[pVv.n (e+ %Tz)di
s 2

The time rate of change of energy in Q due to transient
variations of the flowfield variables can be expressed as

(% (p(e+ %7 2))dQ.
Q

Hence. rearranging the integrands. and applying the law that the
time rate of change of the conserved quantity must be equal to
the flux through the boundary surface, together with production
terms, leads to

7
gi f(p(n liv 2))d(2 +[pv.n e+ %72)d2 =
Q ' L i
fpras- fpn v az+ [p Tamnv (1.2.10)

Q T Q

It should be noted that this energy equation does not include
work done by viscous stresses or heat added to the system due
to thermal conduction and diffusion. Equation (1.2.10)
represents the conservation of energy written in integral form for
an inviscid fluid.

The conservation equations derived above Eq. (1.2.8), (1.2.9).
and (1.2.10) represent, in 3 dimensions, S equations for the 6
unknowns p, v =(u.v.w), ¢ and 7. The sysiem of equations is
closed with the addition of an equation of stare, namely,

p=pRT
These together with the thermodynamic relation ¢=e¢(T.v) which,
as discussed previously, simplifies to e=cT for a perfect gas,
are sufficient equations 1o analyse inviscid compressible flows
of an equilibrium gas. These equations can be written in many
different forms, and two are worthy of note here since they will
be used later.

1.2.2 Governing Equations in
Conservative Integral Form

To standardise the equations @ unified representation often used
in computational aerodynamics is

gi fwde + If.;dzzpredQ (r.2.11)
Q 3

The conserved variable w and the Cartesian flux function F
are given by :

P pu pv pw
pu pu+p puv puw
w=}ov | f=] puv jg-= pviep th=| pvw
pw puw pvw pwl+p
pE puH pvH pwH

and the force vector

<o

w—
i

- "
- K

...
< |N

1.

where, u,v and w are the Cartesian velocity components, E and

H=h+v2/2 are, respectively, the total energy and total enthalpy
per unit volume. The temperature T is obtained from the
equation of state which closes the system, namely

p=pRT.




1.2.3 Governing Equations in Conservative
Differential Form

Integral forms of the equations, derived from an analysis of
conservation laws within a domain, can be coaverted to
representation at a point using th w21l known vector identities,

J'K.T{dz - I(V.X)dn (12.12)

z Q

jodz = fiverua (1.2.13)

L Q
where A and O are arbitrary vectors and scalars, respectively.

it can be readily shown that the application of Eq. (1.2.12) and
(1.2.13) 10 Eq.(1.2.11) leads to the following differential forms
of the governing equations of inviscid fluid motion.

%‘T’+v.(p7)=o

a(TOU) +V.(puv) =- g‘g + pfy
Apv) | TV ) =_g£ +pty (1.2.13)
IHpw)

S +V.pw v)=- gg +pf,
and
gi (pE)+V.(pET )=»V.(p‘\7 )+pq+p(7 V)
Again, the equation of state, Eq. (1.1.8)
p=pRT
and the energy relation

e=¢e(Tv)

augment these equations.

1.2.4 Rotating Frame of Reference

In many applications it is necessary to describe the goveming
equations in a rotating frame of reference. If the system is
rotating steadily with angular velocity @ around an axis along

which a coordinate z is aligned, and “w is the velocity field
relative to the rotating frame of reference, then

V=w+oxr.
The rotating frame of reference does not effect the conservation

of mass equation, but introduces additionai terms into the
momenta and energy equations. Full details of the complete

equations can be found in standard texts >4,

1.2.5 Physics of Inviscid Flows

It is important 1o understand both in a mathematical and a
physical sense the consequences of neglecting the viscous
stresses inherent to any tluid. Reviewing the governing
equations 1t is noted that the temperature only appears in the
torm of the equation of state and that the flow is governed by a
system of non-linear partial ditferential equations of first order.

The equations descnbe tlows with or without rotation and it is
appropriate 1o introduce a refationship known as Crocco's
equation which, for steady flows, can be written as

v xw =VH-TVS

where v 1s the velocity vector, @ the vorticity vector, H the

total energy and S the entropy. Thus, neglecting viscosity and
heat conduction, vorticity is present in the field of flow
whenever the distribution of the total energy H or the entropy S
is not uniform. This can happen, for example, when the fluid
starts from a state of rest but of non-uniform temperature, or
downstream of a curved shock wave. If vorticity is present
and/or is created, then the convective terms in the Euler
equations ensure that it will be convected around the flow field.
It also implies that once vorticity has been created it is modelled
in a mathematically consistent form. The ability of the equations
1o admit vorticity is important in such applications as flows
involving jets. flows involving propeller slip streams and
rotating systems like propellors and helicopter rotors.

The uniqueness of a solution derived from the Euler equations s
ensured by imposing the additional condition that entropy may
not decrease along a streamline {(Second Law of
Thermodynamics). This then precludes the existencz of
expansion shocks.

The Euler equations admit ‘weak’ solutions with contact or
vortex sheet type discontinuities. This raises the interesting issue
of how the equations model lift. In the Full Potential equation it
is necessary to introduce a cut carrying a jump in potential from
a trailing ¢dge to downstream infinity in order to model the
circulation in each section of a wing. By contrast, however,
since vortex sheet discontinuities represent possible weak
solutions. it can be argued that circulation and hence lift are
phenomena that are inherently modelled by the Euler equations.

Much discussion has taken place on such issues and many of the
issues have been resolved through numerical experimentation. It
is now known that, with suitable artificial viscosity models,
vortex sheets can be captured like shock waves and that in a time
dependent solution approach (with artificial viscosity) the
circulation and lift of airfoils and wings come out at the correct
level without having to impose a Kutta condition. It is now
thought that this situation arises because the artificial viscosity
plays a similar role to real time dependent viscosity. So,
although the Euler equations do not have a mechanism for the
generation of vorticity, apart from at shock waves, the antificial
viscosity inherent within the numerical solution of the equations
plays a role similar to the physical viscosity in the sens that it
generates vorticity which can cause, for example, the flow to
separate.

[t can also be argued that an inviscid shear flow negotiating a
pressure gradient will separate when the static pressure equals
the total pressure of the surface streamline. It therefore seems
reasonable that we may expect solutions of the Euler equations
with added artificial viscosity to exhibit separation and vortex
sheets when 1) sufficient vorticity has been generated through
the artificial viscosity (in particular, at the surface of a
configuration) and ii) there are sufficiently large variations in
flow angle andfor pressure gradients. However, there iIs a
general lack of knowledge on the behaviour of the mathematical
solutions of the Euler equations near non smooth boundary
surfaces.




The amount of vorticity generated by the antificial viscosity is
giepen(!cnl upon many aspects of the numerical procedure,
including mesh charactenstics and imposition of boundary
conditions. In the case of flow around a sharp edge the positive
and adverse pressure gradients are so large that the inviscid’
separation always takes place. On smooth surfaces ‘inviscid’
separation may of may not take place, depending on the amount
of vorticity generated by the antificial viscosity and local adverse
pressure gradient.

Probiems and issues raised here may be considered tn the more
general context of existence and uniqueness of steady solutions
of the Navier-Stokes equations in the limit of vanishing
viscosity. The conditions for existence and uniqueness of such
solutions are not generally known. However, there is
expenmental evidence that for finite but high Reynolds numbers
there may be conditions where a steady flow solution does not
exist or where there may be multiple steady solutions.

1.2.6 References
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Symmerric Form, and Entropy Conservation for the Euler
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3. BATCHELOR G. K. An Introduction to Fluid Dynamics,
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4. HIRSCH C. Numerical Computation of Internal and External
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1.3 JUMP RELATIONS, WEAK SOLUTIONS,
RIEMANN PROBLEM

Discontinuous solutions of the system of Euler equations may
exist and develop due to the hyperbolic nature of these equa-
tions. They are actually contained in the integral conserva-
tion laws for an arbitrary volume I bounded by a surface ¥
moving with velocity iy :

d & _ _

:l; LW(L‘*IZ(F—Wuz).R);d(S:O (1.3.1)
Assuming that a discontinuity surface S moving with velocity
dy is present inside Q and divides it in two volumes €, and
€, we apply the conservation laws separately to each
volume and subtract the result from Eq. (1.3.1), that leads to:

JteF-wiag). g 1do=0 {1.3.2)
s

where [ @ | stands for ( @, — @, ), the jump of & through S.

This integral being zero independently of the choice of Q, we
get
[(F-wdag). Ag =0 (1.3.3)

Replucing F by its expression we find the “jump relations” :

[p(F—~iig).al=0 (1.3.44)
[pr(v—-dg ). A+pnAa)=0 (1.3.4h)
[pE(V-ag)y. a+pv.aAl=0 (1.34¢)

or, after introducing v,. the normal relative velocity of the
fluid on §

v, =(V —ag ) A

with v, and v, not necessarily equal, we get the Rankine
Hugeoniot relations :

lpv, 1=0 (1.3.50)
[pyv, Vv+pnAa =0 (1.3.5b;
IpEv, +pv. A }=0 (1.3.5¢)

Further developments follow from considering the value @ of
the mass flow through § :

@=pv, =pyv, =p2v, (1.3.6)
with the decomposition of ¥ into :

Vo=V . and V, =V —v, A
Then. Eq. (1.3.5b) gives :

Qlv, I+[p)=0 (1.3.7)

Qv 1=0 (1.3.8)
and Eq. (1.3.5¢) gives :

QIE]+Ilpv,1=0 (1.39)
or

QIH]+[pluas. A=0 (1.3.10)

since H=(E +p/p)

The discussion about the properties of a discontinuous solu-
uon of the Euler system is based on Eq. 11.3.7-9) and
depends on the value of Q.

1.3.1 Contact discontinuity - Vortex sheet

When 0 = 0, the mass flow through § is zero, 8 acts like an
impervious surface with continuity of the pressure since from
Eq. 1.3.7 we have :

lpj=0
[t is also clear from Eq. (1.3.9) that
[v,1=0

However [ v, | is arbitrary and we can distinguish two situa-
tions :

a)| v, 120

We have v, =v, but ¥, # 7 and the discontinuity is &
"vortex sheet"”.

bylv, )=0
Then [ v | = 0. velocity and pressure are continuous across §
whereas p. £, 5. H may have a jump through this "contact
discontinuity”.

1.3.2 Shock surfaces
We assume that Q # 0 then from Eq. (1.3.8) we find that
{ v, 1=0
The case of [ v, ] = 0 gives the trivial situation where there
is not any discontinuity through § :
[vi=01lpl={pl=[E]=0

It appears that we must have [ v, | 20 so that p, p, E are
discontinuous through §. From Eq. (1.3.7) and Eq. (1.3.10)
we can calculate the normal velocity of the shock :

[H ]
[v.n]

ug =g . A =

We note also that for a steady shock [ H | = 0. Therefore, in
a steady flow, H is constant on streamlines and when H is
uniform at infinity the energy equation can be replaced by the
Bernoulli equation :

H=H,
From the second principle of thermodynamics one can write:
d o = =
= [psde + [psv-apazde 20 (131D
dr g £

and as for conservation laws we derive the following condi-
tion for the entropy jump through a shock § :

[ps(v-ag).ag 120 or
Qls120

It can be proved that { s ] = O should imply the continuity of
all variables thus

(1.3.12)




Qls|>0

The entropy must increase through a shock along the flow
direction and from the Rankine-Hugoniot relations, we
deduce:

gipi>0. @ipl>0

Only a compression can occur i a physical discontinuity and
unphysical "expansion shocks” are ruled out by Eq. (1.3.12)

1.3.3 Weak solutions and uniqueness

The system of Euler equanons in conservative differential
form Eq. (1.2.14) has been derived from the integral conser-
vation laws by assuming continuity and derivability of the
physical variables. One can consider that discontinuous solu-
tions of Eq. (1.2.14) exist only in the sense of distributions.

To formalize this notion it is necessary 10 introduce a weak
formulation of the Euler system of equations. Each equation
in differential form is first multiphed by a "est function” ¢
infinitely differentiable. then space and time integration by
parts allows to free physical unknowns from any partial
derivation. We get :

LN
[ fw P aE Vodour -
) or

f

t

= | %0 dx dr forall test functions & (1.3.13)
o R

where g, takes into account the external forces.

It can be checked that if S ¢ v .1 ) =0 is the equation of a
surface on which w and F (w ) are discontinuous we find
from Eq. (1.3.13) :

B o o
L s =0
(w15 +1F, )95

since 7 Vs " s Vs
and since Ag = ~ Cradt -

We obtain Eq (1.3.3):

[(F —w, ag).Agl=0 i=1..,m

The set of weak solutions obeying Eq. (1.3.13) comprises
discontinuous solutions with both physical and non physical
discontinuities. As said above. the non physical discontinui-
ties are the so-called "expansion shocks” satisfying the Rank-
ine Hugoniot relations, they correspond locally to a flow with
a valid compression shock in which the direction of velocity
should have been reversed. It is necessary. in order to discard
uiese non physical weak solutions and thus to avoid non
uniqueness problems, to take into account the entropy tne-
quality.

Theoretical studies have been done on hyperbolic systems of
conservation laws in order to complement them by an entro-
py inequality in divergence form with the definition of an en-
tropy function and of the corresponding entropy fluxes ensur-
ing that an entropy condition holds (Godunov', Lax’, Har-
ten'). Interesting consequences of these studies are the intro-
duction of “entropy variables” mainly used in the finite ele-
ment methods (see below Section 2.1) and recent studies on
discre‘lc entropy inequalities and entropic schemes {Tadmor®,
Lerat’).

In order to discuss the uniqueness of an Euler flow solution.
it 15 necessary not only to look at the discontinuities and on

u

the entropy mequabity for the Howheld but also 1o give pre-
vise information on the choice of the boundary conditions in
the farfield or at the entrance and exit boundaries and on a
wall boundary In fuct. htide can be sad tor umiquencess ot
solutions i the large. except that the chowe and the role of
boundary conditions 1» very important and it suffices to look
at the problem of a subzonic flow past an ellipse at a given
angle of aunack (T.H. Pulbam®) or at a vortcal tlow with
closed streamlines in wo dimensions 0 see the difficulty of
this question.

1.3.4 The Riemann problem

The Riemann problem consists of the initial value problem in
one space dimension with imtial data (at 1 = ) given by two
constant states { w; . wy |} separated by an arbitrary discon-
tinuity located at v =0 This problem i1s of special interest
since it represents (with the inviscid assumption) the unsteady
flow 1n a "shock wbe” after the bursing of a diaphragm and
moreover ats solution can be found as a system of simple
waves with only a single nonlinear equation to be solved.
Another very important reason for introducing the Riemann
problem is its current use in the design of numencal schemes
for solving Euler equations since the pioneenng scheme of
Godunov’.

To study the Riemann problem it is convenient to use not
only the conservative varables but also (p, v, p) variables.

The  initial  data  are W =(p,. v, p ) and
Uy = Pg. Vg, Pr ) representing respectively left and nght
constant states.

At 1 > 0, the solution depends only on x/t (it 1s auto-simtlar)
and is made (for a typical shock tube problem with p;, > pg)
of a rarefaction wuave (I-wave), a contact discontinuity (2-
wave) and a shock (3-wave), with :

Aj=voa. Ay=v. A=y +a.

the eigenvalues of the Jacobian di‘,’dw each associated with
a characteristic curve and a Riemann invariant.

Two constant states appear between the expansion fan and
the shock © (p. v .p Yand (pg.v .p )

Note the continuity of the velocity and pressure across lhp
contact discontinuity.  The behaviour of the solution is
described in Fig. 1.3.1.

Contact

1 - Rarefaction Disconiinuity

3 - Shock

(Pe ¥+ Py)

x=0

Figure 1.3.1 The Riemann problem

The details of solving the Riemann problem for the general
case can be found in many text books (see for example
Courant and Friedrichs®).

We give below only some indications on the way towards the
solution.
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From ( Y~ I¥2 v + a = csr on a 3-charactenstivs and from
s =cst on a 2-characteristics both crossing the rarefaction
fan (1-wave), a relation can be derived giving v" as a (non-
linear) function of p°.

From the Rankine- Hugumot relations  through the shock
another equation can be derived giving v in terms of p .
Elimination of v" leads to a non-linear equation to be solved
for p’ by Newton iteration. Then v' is calculated and also

pL and pg.

Finally, in the expansion fan made of straight |-
charactenstics of slope © E=x/t=v —a, v and a are
both constant for a given &,

By use of (Y~ 102y +a = o8t in the expansion fan, v 13
expressed as a linear function of § and so 1> ¢ The pressure
15 _obtained lhruugh the isentropic relation 1n terms of
M=\l ra®
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1.4 BOUNDARY CONDITIONS

The time-dependent Euler equations are a hyperbolic system
of equations. Numerical computations must be done on a fi-
nite mesh and. thus, waves which are incoming and outgoing
with respect to the computational domain cross the boundary
of the mesh. Application of the interior point algorithm at the
boundary requires information from outside the domain, which
is generally not completely available. A characteristic decom-
position at the boundary indicates that the equations represent-
ing outgoing waves can be differenced using information from
the computational domain. The equations representing incom-
ing waves cannot be stably differenced using only information
available in the interior; hence. those equations need to be
replaced by boundary conditions. Thus, the number of bound-
ary conditions to be specified at the boundary comes from a
straightforward characteristic analvsis at the boundary.

The type of boundary condition to be specified is problem de-
pendent and as Moretti' noted: “A physically consistent model
of the outside world must be provided.” For instance. the up-
strecam boundary conditions to be specified for a subcritical
two-dimensional converging-diverging nozzle might consist of
the recognition that the fluid comes from a uniform reservoir
condition, corresponding to specified total pressure and en-
tropy conditions, as well as a specification of the direction of
the velocity. Lakewise, since the mass flow through a one-
dimensional nozzle is known to be set by the back pressure,
a valid downstream boundary condition is the specitication of
the pressure. The variables at the boundary can be constructed
from these boundary conditions, supplemented by characteris-
tic equations corresponding to the outgoing waves applied at
the boundary.

1.4.1 Characteristic Equations

Linearized Equations

The conservation law form of the time-dependent Euler equa-
tions arc written here as

ow  OF  0G OH

—_ — —_— 4 — = 141

ot + dr + 3y Dz ¢ )
The linearized form of the equations can be written as

w aw ow Jw

— +A-—+B— -— =1 14.2

N N r + Ay +C e ‘ )
where A.B. C are Jacobian matrices (i.e., A = JF/0w).
The lincarized cquations can be cast in terms of a set of
primitive variables using chain-rule differentiation as

9]
M‘)q+AM';q+BMOq+ M‘—g_n (143
0(1 {)q bv?q 0q

= =1 1.4.4
ot ta or dy N ( )

where M = ow/dq.M™! = 0q/dw.anda=M"'AM. . ...

The choice of primitive variables is not unique and is gener-
ally selected 1o make the Jacobian matrices a.b.c simpler than

their counterparts using the conserved variables.* A common
choice is the set
P
"
q=|r (1.4.5)
mw
’)
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for which
1 0 0 )] 0
@« po 000
M= " }] P ) 3] (1.4.6)
w 0 0 » 0
212 pu pe e 1k
1 0 0 0 §]

—ufp  1fp [§] 0 {]
Mti=1!_—s/p 0 1/p 0 0 (147
—wfp 0 0 I/p 0
Eel2 —Ku =~k K

where n =1 — 1. v = u® + r? + w?. The Jacobian matrix

a. for this choice. 1s

a p O 0 0
0 u 0 0 1/p
a= (|0 O w 00 (4.8
0 0 0 «u [}
0 pd? 00w

trom which the eigenvalues of a can be casny computed as

vououou o~ (1.4.9)
All of the Jacobian matrices have real eigenvalues and a set
of lincarly independent cigenvecters and cach. individually,
can be diagonalized. although not simultancously since the
Jacobian matrices do not have the same eigenvectors. The
characteristic equations result from diagonalizing the Jacobian
matrices as

r)q -1 <)q

+TxAxTy
ot

14T, A, T, %— +TzA, T, ! ";q 0
(1.4.10)

where Ax.Ay.A; are diagonal matrices.

Cor::dering a planc boundary as coincident with a surface of
constant .r, the derivatives in the two directions tangent to
the boundary, y. :. can be determined from information on the
boundary. In general. the computation of the derivative normal
to the boundary requires information about the state vector
at locations outside the computational domain. Defining the
terms cotresponding to derivatives in the plane of the boundary
as a source term S. the cquations may be written as™*

T" “7“ AT s -

1.4.11
Ty { )

where the r-subscript notation has been dropped. This can also
be written in terms of cach component of the equation as

l ()q

+\1 +lS—u (1.4.12)

where 1, is the left eigenvector of the Jacobian matrix a.
corresponding to the ith cigenvalue (and also forms the /th
row of T~!

Characteristic Variables

If a characteristic vanable 1, can be detined to satisty the
so-called compatibility cquations below

AV, = Ldq+1,Sdt (1.4.13)
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then Eq. (1.4.12) reduces to a set of wave equations

oV, o
— + A= =0 1.4.14
at + dr { )
for which the charactenstic variable is constant along charac-
terist:. urves detined in the r — ¢ plane as dx/dt = \,.** The
characenstic directions are sketched in Fig. 1.4.1 for subsonic
and supersonic flow. Positive o is indicated; outflow condi-

Subsonc flow: outfiow (i > 0)

Region intenor to Regon extenor to
computational domain/q computational domain

Supersonic flow; outflow (v > 0)

Region mtenor to
computational domain

Region exterior to
computabonat doman

Figure 1.4.1 Sketch of charactenistic directions
at the boundary. Outflow (inflow) corresponds
to the exterior domain described by » > 0 (r < 0).

tions correspond to the exterior boundary defined by .« > .
The characteristics are traced back from the new time level
1" =" for the three characteristic directions, C°.C'™. (", cor-
responding to the repeated eigenvaluc Ay and Ay As.

The construction of 1) is generally not possible for the Eu-
ler equations without assuming the diagonalizing matrices are
constant.>' Assuming the exterior domain is described by
r > 0, the characteristic form, cither Eq. (1.4.12) or (1.4.14),
indicates that outgoing waves are described by equations with
A, > 0 and depend on information at and within the boundary.
Iacoming waves, representing information reaching the bound-
ary from the exterior, are described by equations with A, < 0.
These wave equations cannot be differenced stably using just
interior and boundary information since the numericai domain
of dependence would not include the physical domain of de-
pendence:. hence. these cquations need to be replaced with
boundary conditions.

Diagonal Equations
The diagonalizing matrices 1 the above case are given as

(S S | B S W
noo0 1 0
T '={0 0o o 1 0 (1.4.15)
0 1 00 1fpa
[ I T RV B

1 0 0 pf2a pfla
oo 1/2 —1/2
T=j0 1 0 1] 0 (1.4.16)
001 0 0
0 B0 paf2 puf?

Using the primitive variable diagonalization results, the con-
served variable Jacobians can be diagonahzed casily as

A=MTAT 'M™! (14.17)

Assuming no variations in the plane of the boundary and the
diagonalizing matrices to be constant, the equations can be
reduced to a set of diagonal equations

W ow
- —_— =) 14.18
Ot Or ¢ )

where the linearized characteristic variable is defined as

l’ p = plag
»
w=T,'q= w (1.4.19)
[ u 4 pfpoan
—u + pf o

and the subscript notation denotes evaluation at a nearby ref-
erence value. Note that the lincarized characteristic variables
can also be cast in terms of the conserved variable veetor® as
w = T;'My'w.

Homentropic Equations
Assuming locally homentropic flow (i.c.. that the entropy is

uniform everywhere) and no spatial variations in the plane of
the boundary, the equations can be reduced to

! !
5;(1') =10 along % =u (1.4.200
d dr
—{w) = B U e = 4.2
'”(u ) } dong T [l (1421
1
:’I—l;(l?x) =0 aloug "-I:— = uta (142D

where the Riemann variables are detined as
RE = 2{2u/(% - 1)) (1.4.23)

and r is the local normal pointing out of the domain. The
cquations are in a form very similar to onc-dimensional un-
steady flow. except that the tangential veloeities. in addition
to the entropy. are convected along the particle path.




1.4.2 Numerical Procedures

The equations which replace the characteristic equations for
the incoming waves are gencrally referted to as the phys-
wal boundary conditions. The procedures to determine the
remaining variables at the boundary. which should be as com-
patible as possible with the outgoing charactenistic equations.
are sometimes referred to as numerical boundary conditions.
but chould be more properly termed numerical treatments at
the boundary.'

The numerical procedures at the boundary are different than
those used at the interior scheme. Thus, two factors of the cou-
pled system need to be taken into account: the accuracy and
the stability. Gustafsson” has pointed out that the accuracy of
the numenical procedure for a linear equation can he one order
lower than the order of the interior scheme without adversely
influencing the global accuracy of the solution. The stability of
the boundary procedure can be analyzed in many cases using
the analysis of Gustafsson, Kreiss, and Sundstrom.” Generally,
the closer the numerical scheme is coupled to the characteristic
equations, the more well-behaved the numerical procedure.

The equations and procedures for a stationary boundary anal-
ysis are indicated here, where a local orthogonal coordinate
system is assumed at the boundary. This is consistent with
the methods itn common usc. although the choice of coordi-
nate system is not unique and need not be taken normal to the
boundary. as pointed out by Roe.” The extension to a moving
boundary can bhe accomplished in a straightforward manner.
The eigenvalues of the Jacobian matrices are changed by the
addition of a term which is the speed of the grid normal to the
boundary. However, the eigenvectors and, hence, the basic
character of the equations are unchanged from those for the
stationary generalized coordinate system.™"

Characteristic Methods

The characteristic equations dictate that the cquations corre-
sponding to the incoming waves be replaced with boundary
conditions as

B,=10 =1 (1.4.24)
where Ny is the number of incoming waves and .\ is the
total number of equations. Thus. numerical procedures are
required at the boundary, in general, to solve the N physi-
cal boundary condition cquations and the . — N, outgoing
characteristic equations. Chakravarthy'"developed a unitied
approach. in which the incoming-wave equations are replaced
with time-dependent boundary condition equations and solved
numerically in a way consistent with the interior point scheme.

For example, at & subsonic outflow boundary (.V; = 1), the
equation associated with the A\, = u — « cigenvalue can be
replaced with a lincarized form of a time-invariant physical
boundary condition

IB, O_Q =0

1425
9q Ot 425

An example and often-used boundary condition is the specifi-
cation of pressure as:

Bi=p-pe=0 (1.4.26)
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in which case OB, /0q = (0.0.0.0.1). Thus, the character-
ISuC eyuations become

), L L
1, Aole 1.
: 5 | :
1, T"‘ vl )—“+ L{S=0 (427
1 ' A | 1l
o, fiq 1} 0

which can serve to detine the two matrices Py Py as

Y
¢

)
P, “ + \P,“‘

+ P2S =0 (1.4.28)

3 -
‘q+P APy +P PaS =0 (1429
The above equation can then be differenced at the boundary
using one-sided derivatives. It can also be expressed as an
equation in the conserved variables as

dw - < F

— + MP;'P,M

— +MP," ‘PSS =0
ot

(1.4.30)
Either equation can be advanced in time explicitly or implicitly
at the boundary: generally. the choice is made on the hasis of
compatibility with the interior point scheme.

Nonreflecting Methods

A closely related procedure is the so-cafled nonreflecting, or
radiation, boundary conditions of Hedstrom'" and Thompson.*
tn this approach. the amplitudes of the incoming waves are
taken as constant, in time. at the boundary. This corresponds o
specifying that the incoming characteristic variable is specified
at the boundary, or

oy,

=1 =1\
ot ! !

(1430

In terms of the subsonic outflow condition example above, the
characteristic equations become

i AN I
.y Al 1.
A2 I DL fs=0 (1.4.32)
l‘ Ot iy l" ar la
l:. y] Is

This can be written as below, where A7 is the diagonal matnx
composed of the nonnegative eigenvalues of a:

1199 4 A- T"‘7“+T“s—0

4.33
B «l )

The nonreflecting charactenstic cquations can also he written
in ‘erms of conserved variables as

QT‘T+A"&+MS-n>

(1.4.34)
where the spatial ditference can be evaluated using onc-sided
ditferencing at the boundary. The above equation appears as
a nonconservative scheme evaluated locally at the boundary.
where the strength of the incoming wave is detined to he zero.
With the equations in this form. it is apparent that any upwind
scheme can be used to define a nonreflecting operator at the
boundary by defining the strengths of the incoming waves to
be zcro.
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Rudy and Strikwerda”rccognizcd that this procedure. designed
to minimize reflections from the boundary. is usually not con-
sistent with physical boundary conditions defined on the basis
of steady-state ideas. For example. the specification of con-
stant pressure in the subsonic outtlow case above ensures thal
a wave is reflected back into the interior. Rudy and Strikwerda
added a parameter-dependent source term so that the solution
1o the discrete equations went (o a specitied value at steady
state.  More recent developments in nonreflecting boundary
conditions are given by Giles:'' quasi-three—dimenstonal ap-
plications to internal cascade flow are given by Saxer and
Giles."* Atkins and Casper'* developed a boundary condition
procedure by connecting the boundary values to the uniform
far-field conditions and the interior conditions through several
simple wave fields and demonstrated an improved calculation
tor one-dimensional wave propagations using higher order dis-
cretizatons.

Analytic Methods

An alternative procedure has been developed by Verhoft ot
al.' and Hirsch and Verhoff.'” It is a consistent method for
coupling linearized analytic solutions with nonlinear numer-
ical solutions through the computational boundary condition.
While limited 1o steady flow, the procedure is derived from
an asymptotic expansion to the Euler equations and, thus, is
more general than a far-field potential correction method, since
the method can treat strong shocks and rotational lows. The
analysis is based on a linearization about a true uniform steady
state valid at fur distances with the equations cast in terms of
Riemann-like variables using a streamline coordinate system.
The linearized characteristic equations representing incoming
waves are solved 1n the extenor domain using a Founer trans-
form technique: the solution involves integration along com-
putational boundanies. which arc taken as a parabola at inflow
and a straight line at outtiow. Two-dimensional procedures and
results for internal and external flows have been obtained:'"”
an example is given subscquently in this section.

Extrapolation Methods

Simpler procedures are alse used frequently which are based
on honoring the domain of dependence of the characteristic
equations. For example, the characteristic variables. evaluated
at local vonditions, are often extrapolated to the boundary
instead of solving the characteristic equations.*

Homentropic Methods

Assuming a locally orthogonal coordinate system where .+ is
the local normal pointing out of the domain (skeiched in Fig.
1.4.2). then the homentropic equations. Egs. (1.4.20)-(1.4.22).
can be used 10 update the cquations along the boundary at

the new lime level. For subsonic flow. for instance, B can

Figure 1.4.2 Sketch of local coordinate system at the
boundary used for characteristic methoed in homentropic ow.

be evaluaied from the far tield, corresponding to conditions
outside the boundary. and 7 can be evaluated locally from
the interior of the domain.  Then, the normal velocity and
speed of sound can be evaluated as

i

(R + B )72 (1.4.35)
a={R" - R7}i~ -~ L/ (1.4.36)

Depending on the sign of the normal velocity., the entropy
and tangential velocities are extrupolated from the exterior or
interior of the domain, Thus. the three velocity components,
entropy. and speed of sound can he constructed at the new tme
level. Note that the state vector can be determined wathout
an explicit construction of the tangential boundary direction
cosines. Denoting the velocity components corresponding to
the regiop from which the entropy and tangential velocities
are extrapolated as w. v« (these are free-stream velocities for
inflow conditions at the boundary). the velocity vector at the
new time level is

' =u+nloe—u 437
A= - 11.4.38%)
Wt = i — (1430

Note that the procedure does not ensure the conservation of
total enthalpy. and in some schemes the conservation of total
enthalpy is an important feature of the interior point scheme. In
those cases. some maditication of the procedure is required.™
such as the redefinition of the speed of sound from Eq. (1.4.36)
to ensure constant total enthalpy.

1.4.3 Inflow/Outfiow Boundaries

Supersonic Flow

For supersonic flow normal to the boundary. all of the charac-
teristic directions are of the same sign. At inflow, all quantities
should be specified. At outflow, the characteristic equations
can be differenced in a one-sided manner using information in
the computational domain. It is quite common, however. to
just honor the domain of dependence constraint and extrapoliate
the statc variable to the houndary trom the interior.




Subsonic Flow

For subsonic flow normal to the boundary. four boundary
conditions can be set at inflow and one at outflow. However,
it is difficult 1o specify the boundary conditions accurately
since the influence of the computed airfoil (body) is felt at
large distances upstream and downstream; the assumption of
uniform flow at the boundary necessitates the construction of
a grid which extends quite far from the airfoil. By including
the first-order etfect of the circulation imposed by the airtoil to
the state variable vector at locations exterior (o the boundary,
the boundary need not extend as far; thus, the computations
can be restricted to a smaller domain with fewer grid points
and/or less stretching. A far-field boundary correction is used
in most transonic potential flow methods, derived from the
linearized small-disturbance equation, although the early work
of Murman and Cole' used an expansion of the nonlinear
small-disturbance potential equation. For two-dimensional
flow, the nondimensional velocity components in the far ficld
can be given as

n=conn + Fsiné (1.4.40)
r=sina — Feos# (1.4.41)

where
(l',t'/«lﬂ')(,f/r)

[U= M2 sin? (8 - o)l

F= (1.4.42)
where r.8 are the radius and polar angle. respectively; the
coordinate system is located at the center of lift (generally
the quarter-chord for an airfoil) and the angle # is detined
positive clockwise from the chord line extended downstream
of the trailing edge. With constant total enthalpy and con-
stant entropy specitied in the far field, the state vector can
be constructed at regions outside the boundary of use in the
chosen boundary condition procedure. An example of includ-
ing this effect on the lift coefficient of an airfoil is shown in
Fig. 1.4.3. Assuming a locally orthogonal coordinate sys-
tem. where 7 is the local normal pointing out of the domain
(sketched in Fig. 1.4.2), then the homentropic equations, Eqgs.
(1.4.20)+1.4.22), can be used to update the equations along

the boundary at the new time level. Subcritical and supercriti-
NACA 0012, 192 « (40 - 60) 0 - Mesh
Condihons extenor 16 boundary
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Figure 1.4.3 Effect of far-field boundary
location on lift coefficient for NACA (012
airfoil at subcritical and supercritical conditions.

cal cases are shown. Using free-stream conditions to cvaluate
far-field boundary contributions, the lift coefficient shows an
inverse radial dependence on the boundary extent, which is the
same functional dependence as the leading-order term in the
far-field expansion. Updating the boundary conditions with
the far-field contribution corrected as above, the sensitivity of
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the solution is dramatically reduced  The supercritical case
shows a stronger dependence on the outer boundary extent, as
expected. due to the increased lateral extent ol the disturbances
at the hugher Mach number. The correction term, which scales
on the lift. is eftective in both cases. For subenical cases. cir-
culation and 1ift are both constant un hines which encircle the
airfoil; for supercritical flow, the circulation vanes in the near
tield since vorucity can be generated at shocks. The three-
dimensional cxtension for the perturbations due to circulabion
for thin lifting wings ts given by Klunker.™

A sample calculation using the unalytic method of Verhotf
et al." is shown in Figs. 1.4.4-1.4.5 for the computation of
the flow over a NACA 0012 airfoil at subentical conditions.
Computations were done using a baseline grid that extends 40
chords from the airfoil and a subset of the gnd that extends
only a small distance from the airfoil. The inner portion
of the baseline gnd is shown. The pressure contours from
computations on the inner grid using free-stream (zero-order)
and corrected (first-order) conditions exterior to the houndary
are compared to calculations made with the complete baseline
gnd. The pressure contours of the inner grid calculation agree
much closer when the tirst-order corrections are applied with
those corresponding to the complete baseline gnd.

1.4.4 Surface Boundaries

At a surface, the boundary condition is usually taken as tan-
gency, so that the inviscid velocity component normal to the
boundary 15 that of the boundary, which is normatly zero. This
is consistent with the charactenstic analysis since only one
wave is incoming at the boundary. One wave is outgoing and
the rest travel along the boundary. The flux at the boundary
simply reverts to the specification of the pressure

#
rn,
F=|pn, (1.4.43)
pn;
fl

The pressure at the boundary can be determined from the
outgoing characteristic relation. Alternately. the pressure can
be extrapolated to the surface.

Normal Momentum Eguation

Rizzi*' replaced the outgoing characteristic relation with the
normal momentum cquation at the surface to determine the
pressure. This is one of the most accurate and commonly
used methods for determining pressure. For the analysis, a
local coordinate system

(&.n.¢) (1.4.44)

is used, where the houndary corresponds to a surface of con-
stant 7. for example. The normal momentum cquation can
be written in terms of the variations in the surface and the
normal pressurc gradient as

op, 2 2 2 p . i )
%(n, +o,4+n7)=- Iw.g. + 9y + 10D
- Qﬁ(mér + €y + 0 E)

[23 Y T




v i)u+ ()r+ Ow)
PTG T e T T

Ju v duw
—pW{{=— oy — — {1.4.45
’ (“ ac teac e n ) ’
The contravanant velocities are below
U=&u+ge+&nw (1.4.46)
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and the contravarant velocity 17 is zero to enforce the bound-
ary condition. The gradient of pressure at the surface can
be used o extrapolate accurately to the surface using the in-
tenior values. Note that the urid need not be orthogonal to
the surtace. The derivativ: i essure requires the evaluation
of metric terms and ulso iate vanables along the boundary.
Generally, these addittonal state variables used to determine
the gradient are obtained by cxtrapolation. For example, the
density and total magniiaie of velocity can be determined by
extrapolating entropy 1. cnthalpy from the interior. The di-
rection of the velocity n the plane of the surface must also be
extrapolated in three dimensions.

The normal momentum equation approach generally requires
more operations than the extrapolation approaches. 1t is more
difficult to implement implicitly in a general-purpose code
since both normal and tangential derivatives are involved at the
boundary. For example, an implicit treatment of the normal
momentum equation leads to a tridic *onal system of equation
to be solved at the boundary in two dimensions. For this
rcason, these equations are usually solved explicitly.

Kutta Condition

It is well known from exact solutions 10 the potential (in-
compressible and inviscid) equations that the circulanon or,
equivalently, the lift must be set in addinon o enforcing flow
tangency on the surface.”” Al a sharp or a cusped trailing edge.
the circulation is usually set through the enforcement of a
condition which avoids the occurrence of infinite velocities in
the solution. This condition, known as the Kutta or Kutta-
Joukowski condition. sets the overall lift tn good agreement
with experimental observations:™ generally. the inviscid lift is
slightly greater than experiment because of the decambering
of the airfoil associated with boundary-layer displacement ef-
fects. For 4 smooth body such as a cylinder, the circulation
has to be specitied a prion.

For numerical solutions 10 the Euler equations for sharp-cdge
geometries, the Kutta condition 1s usually not set directly in
the method. Rather, the dissipation inherent in the numerical
scheme precludes the occurrence of intinite velocities in the
solution. The resulting lift values agree well with compressible
potential solutions which enforce the Kutta condition direculy,
usually through the specitication of tangent low 1o the trailing-
edge bisector angle at the trailing edge. For subernitical flows,
a single value of pressure at a sharp trailing cdge results
from the streamlines along both the lower and upper surtaces
being brought to stagnation. For tlows which have incurred
a loss of total pressure (e.g.. through a shock). the local
structure of the Euler solutions downstream of the trailing
edge corresponds to a ship line. across which the pressure is
continuous ard the velocity is discontinuous. The velocity
stagnates on only one side at the trailing edge: equal pressure
at the trailing edge 1s attained through stagnation of the surface
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Figure 1.4.4 Computational grid of reduced size for subcritical Euler
computations using zero- and first-order far-ficld boundary conditions.
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streamlines associated with the higher stagnation loss. On the
surface of lower stagnation loss, the velocities remain nonzero
and tangent to the local surface orientation.  Stagnation on
both surtaces is physically impossible in this case since the
total pressures are different along upper and lower surface
streamlines.  This structure oceurs in o local region of the
trailing edge. and it is difficult to resolve the resulting ship line
in numerical computations.

The tlow separation trom sharp leading edges oceurning in the
subsonic cross-flow plane of swept wings at high angles of
attack is also associated with a Kutta condition which enforces
smooth low from the surface. A number of such results are
presented in the chapter on Applications and were obtained
with the Kutta condition enforced by the dissipation inherent
in the numerical scheme. For lows over smooth surfaces, the
lift is set either by flow separation (a viscous effect) or through
specification of the circulation in the far ticld: the results
of Pulliam presented in the chapter on Applications pose 4
currently unresolved challeage to state-of-the-art schemes in
this respect.

Transpiration and Displacement Effects

For simulating viscous effects in Euler codes. the surface
can be moved so that the flow is langent to an anificial
surfuce detined by projecting the boundary layer displicement
thickness distribution normal to the surface.” ™ Equivalently,
the surface boundary condition can be moditied to specity a
normal velocity. Both methods are used and give equivalent
accuracy for representation of viscous effects, although the
latter formulation is somewhat simpler since the grid need not
be moved to sinwlate the houndary layer interaction. Raj™
used the transpiration model to eftectively model the effect of
vanable fap deflections during the developmeni phase of an
advanced aircraft program.

1.4.5 Propulsion Simulations

in many applications, it is not necessary to simulate the full
details of the propulsion system. Rather. the propulsion system
can be considered as a “black box™ across or through which
the solution can change i o manner consistent with that of a
complete modeling. The additional energy and/or swirl added
by a jet cngine can be specitied at a location which might
represent a faired-over representation of the actual geometry
as a function of engine thrust, for example. and thus avoid
the considerable cost and complexity associated with a {ull
simulation. The inflow and outflow conditions appropriate to
an actuator disk maodel are given below.

QOutflow

Modeling the downstream end of an cngine or propeller cor-
responds to an outflow case, since the computational domain
is downstream and certain boundary conditions need to be
specified at a given location (generally on a portion of an ax-
ial-normal or slanted plane). For a supersonic outflow. all of
the characteristics which reach the actuator disk at the new
time level originate from the engine side and, thus, all of the
quantities can be specified. The total temperature. total pres-
sure, nozzle pressure ratio, and directions of velocity can be

specitied, corresponding to @ complete reconstruction of the
pressure. density. and velocity protiles

For a subsonic outtiow condition, one charactenstic reaches
the actuator disk at the new time level from the downstream
stde, corresponding to the computationa! domain. Thus, one
vanable needs to be extrapolated from the computation exte-
nor 1o the disk and the remaining tour have to be specitied.
Generally, the totel enthalpy and towal pressure of the engine
is specified. as well as the two components of veloctty. There
is some Hexiblity in the selection of the vanable to be extrap-
olated from the computational domain. For instance. pressure,
density. or magnitude of velooty are all vahid choices. Taking
|v] as the extrapolated vanable, the temperature of the jet can
be determined by matching total enthalpy as

r=1 - L (14,38

2Ry

The pressure can be determined by assumiung an sentropic
expansion to stagnation conditions s

A SR
r=rlg)

and then density can be recovered through the equations of
state po= p/RT). The three velocity components can be
detennined from the velocity magmiude and the imposed two
direchions of velocity. The boundary conditions in this case
are similar to those required at the upstream end of a wind-
wnnel simufation, in which the total conditions and velocity
directions are prescrnibed and one vanable is extrapolated from
the interior.

(14493

Inflow

The upstream end of an actuator disk generally corresponds
to an inflow case, in which the interior of the computational
domain is exterior to the disk. For supersonic inflow. all of
the variables should be extrapolated from the interior of the
computanona) domain. Thus. all of the mass which impinges
on the disk is swallowed by the device. For subsonic inflow,
one chiaracteilsiy ivaviics thic disk at the acw time leved from
the interior of the modeled system. Thus, four quantities can be
extrapolated from the computational domain and one variable
specified. The pressure and all velocity components can be
extrapolated from the computational domain interior.  Since
the mass flow should be conserved. an attractive boundary
condition option™ is 1o specify the mass flow at inflow 1 to
provide a means of specitying the deasity as

p =1 A /(v-na) (1.4.50)

Here. .1 is the local surface arca of cells that abut the disk,
v-n is the velocity normal to the disk extrapolated from the
interior of the computational domain, and

A = Z A

where the summation cxiends over those cell arcas that abut
the inlet disk arca.
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1.5 EXACT SOLUTIONS

Knowledge of exact solutions to the Euler equations is in-
valuable in evaluating numerical accuracy and provides an in-
creased understanding of the mathematical and physical nature
of inviscid flow. Before recent advances in numencal tech-
nigues and an increase in computational capabilibes, much
theoretical work was conducted to obtain analytic solutions
for inviscid flow. This work combines to form the fundamen-
tal basis for our understanding of much of gas dynamics. In
particular, the solutions of primary importance in this category
include shock waves, expansion fans, and contact discontinu-
ities.

However. in spite of several successes at obtaining analytical
solutions such as those mentioned above, a general technique
for obtaining closed-form solutions is not available. With few
exceptions, further simplifying assumptions must be made In
order for the governing cquations (o be solvable in closed form.
Therefore. much of the theoretical work 1s centered around the
potential flow equations. which assume irrotational and isen-
tropic flow. Despite the limitations of these assumptions, po-
tential flow theory has provided many reference solutions. as
well as valuable insight into the character of both incompress-
ible and compressible flows.

1.5.1 Similarity

Betore numerical solution of compressible lows became preva-
lent, theoretical work concentrated on extending incompress-
ible solutions to represent compressible ones and to relate
flows at a given Mach number to those at another Mach num-
ber. These techniques rely largely on simplitied forms of the
Euler equations. By first assuming isentropic and irrotational
tlow, the governing equations can be expressed in terms of a
velocity potential as'

2
u- uy
(1 - ——_7)0"" - 2‘('—2-0,-!,+

(1 - _) LU

-

where the velocities in the r, y. and = directions are given in
terms of the velocity potential as

=0,
= Oy (1'5-2)
u =0,

Equation (1.5.1) represents a nonlinear partial differential
equation for o in terms of r, y. and :.

Unfortunately, because this equation remains nonlinear, ana-
Iytic solutions of this equation are still not available without
further simplifications. For example. invoking the assump-
tion of incompressible flow (¢ — x) immediately yields
Laplace’s equation: a linear parial differential equativn with
well-established solution techniques such as complex vari-
ables. Also, because the resulting equation is linear, many
solutions can be obtained by superposition of other known
solutions. Examples of exact solutions that reflect the incom-
pressible assumption include source/sink flows. vortices, and

doublets.  These fundamental solutions can be combined to
obtain solutions over simple contiguratons such as circles and
other elliptically shaped bodies both with and without circula-
tion. In addition to the wealth of knowledge avatlable o an-
alytically solve Laplace’s equation for simple contigurations,
many numerical techaigues abso exist tor obtaining sofutions
over ¢complicated shapes; the predominuant methods are panel
methods that are based on Green's function solutions.

Because of the advantages of solving Laplace’s equation, 1t
1s natural 1o seek other assumptions that will further simplify
Eq. (1.5.1) to make it amenable to solunhon. One method
of achieving this goal 1s to assume that the flow is perturbed
only slightly tfrom the free-stream. With this assumpuon. the
velocity potential in Eq. (1.5.1) can be written as a free-stream
component plus a perturbation:

ol g2 =V +u/u'.y.:) (1.5.3)

After substitution into Eq. (1.5.1) cenain terms are discarded
based on an order-of-magnitude analysis. and Eq. (1.5.1) can
be written as?

t1.5.4)

This is the so-called small-perturbation equation, which 1s
vahd for subsonic. supersonic, and transonic flow.

It the free-stream Hlow 18 subsonic and not oo close to Mach
1. Eq. (1.5.4) can be further simplitied 10
Dot e D

ar? ady? + az?
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‘This can be expressed agoin in the form ot Laplace’s equation
by applying an affine transformation to this equation.  This
leads to scaling laws such as the Prandtl-Glauert and Gothert
rules, which allow the subsonic compressible flow past a
certain profile to be related to the incompressible flow past
a second aftinely related protile.

If. on the other hand. the flow is purely supersonic, Eq. (1.5.5)
can be written as

(1.5.6)

which is a hyperbolic. sccond-order. linear partial differen-
tial equation. Although this equation can not be reduced to
Laplace’s equation, it is, ncvertheless, a linear quation and
can be solved using lincar techniques.

Transonic similarity laws have also been obtained by Guderley'
in 1946 and by Von Karman® and Oswatitsch® in 1947, Ex-
tensive review of similarity laws for compressible flow can be
found in Refs. 6 and 7 as well as in several texthooks such
as Refs. 2 and .8Considering two-dimensional flow, through
a transformation of the form

, Vi
o(.r.y):.l‘%d)({.q) (1.5.7)

the parameters M ., -. and the thickness parameter 7 can be
combined into a single transonic shnilarity parameter »
1 - ML

o= e (1.5.8)
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Similar sofutions are obtained by keeping this parameter tn-
variant regardless of Mach number, thickness parameter, or
ratio of specific heats. Afterward. the Lt and pressure coetti-
cients can be corrected according o

(";. = ‘\( ';‘
) (1.5.9)
Cpy = AC,,
where M- M
LM - (LS

L+ LM TS

For exampie. if the flow over a specified airfoil is known for
air (% = 1.4) at a Mach number of 0.8, then by matching the
similarity parameter. it is found that this solution corresponds
to one at a Mach number of 0.814 in different gas correspond-
ing to » = 1.1, Although the preceding discussion is for
two-dimensional flow. three-dimensional scaling laws exist as
well, but require moditications to the aspect ratio 10 mamntain
similanity.”

1.5.2 Hodograph Solutions

For obtaining analytical solutions for purely supersonic Hows,
or for subsonic flows not too close to a unity Mach number.
the linearized potential tlow Egs. (1.5.5) and (1.5.6) can be
utitized as previously meationed.  However, for Hlows with
mixcd regions of subsonic and supersonic tlow, one must re-
sort to using Eq. (1.5.4) which is not generally solvable in
closed form. However, one method that has been effective
lor yielding exact iwo-dimensional solutions is the hodograph
method." which transforms the stream-function form of the
transonic smali-disturbance equatton into a linear partial dif-
ferential equaton by changing the dependent vanables trom
the spatial coordinates o and g 1o the flow speed V' and the
flow angle # as

, . i
Voo +d (1 + -I—_,—)c'l'+

-

7
(l — = Jtpe =0
at

Solutions to this equation are found using standard techniques
such as separatton of var ables. Once a solution has been tound
for this equation, the piysical geometry must be determined
for which the solution apolies. Although many solutions may
not yicld physically realistic si>oes. several papers present so-
lutions for the hodograph equatic. for which the corresponding
geometrics are representative of a flow of interest.™''"* Ref-
crence 21 contains extensive theory, as well as application of
the hodograph transformation while Retf. 18 presents a useful
summary of exact solutions and refcvant references.

(LS.1hH

One of the most widely used hodograph solutions in recent
years for validating accuracy of numerical solutions to the
Euler equations is that of Ringleb.'"** Shown in Fig. 1.5.1.
the physical flow corresponds to that through a curved duct.
The flow begins subsonically. accelerates to supersonic flow
around the “nosc™ of the duct. and then decelerates to subsonic
flow without a shock. As previously mentioned, this flow has
been used by various rescarchers to evaluate the numerical
accuracy of Euler solutions by comparison with this exact
solution

/ BY
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Figure 1.5.1 Ringleb flow

1.5.3 Shockless Airfoils

Although Ringleb flow is cleardy a case i which the flow can
decelerate trom supersonic o subsonic flow without a shock.
shock-free transonic flows over airfoils are rare. In the work
of Bauer, Garabedian. and Korn,™* numerical solutions 10 the
hadograph equation have been used to obtain shock-tree tran-
sonic solutions for airfoils. A tunher example of a shock-
free transonic airfoil is the NLR 7301 airfoil, which has been
used as a standard test case for aumerical methods for invis-
cid fiow. Note that these solutions are obtained by discretzing
the hodograph equation and obtaining a solution numerically.
These solutions are, thercfore, not exact in that they have not
been analytically obtained. but do provide solutions for tran-
sonic flow in which isentropic deceleration from supersonic to
subsonic flow is present.

1.5.4 Nonunique Solutions

Although nonunique solutions have been known to exist for
the potential flow equations. ™" until recently, the existence of
nonunique solutions for the Euler cquations has been largely
speculative.  In fact. the Euler equations were used in the
previous references 26-27 to validate the nonuniqueness of
the potential assumption. During these studies. nonunigue
solutions were sought with the Euler equations: however none
were found.

For the potential tlow equations. the nonunigueness has been
attributed to the breakdown of the validity of the assumptions
inherent in the equation (namely. the assumptions of irrota-
tional and isentropic flow). Because the Euler equations do
not make these assumptions, the appearance of nonuniqueness
has until recently been somewhat doubtful. However, in 1991,
Jameson™ computed nonunique solutions for four airfoils de-
signed by an optimization method based on control theory ™

An example of nonuniqueness for one of the airfoils (denoted
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as J)-78) is shown in Fig.

1.5.2

This airfoil was designed

44/
~12 ~08 -0604)l 02 0 o2

Figure 1.5.2 Examples of nonunique
solutions to Euler equations.

for a Mach number of 0.78 and a lift coefficient of 0.6.
Figure 1.5.2 clearly <hows the nonunique behavior of this
airfoil as evidenced by the lift coefficient exhibiting multipie
values at a given angle of attack. As mentioned in Ref.
28. this nonuniqueness persists even on very fine gnds and
provides strong evidence that Euler solutions for airfoils are
not necessanly unigue.

1.5.5 Exact Solutions for Supersonic Flows

For supersonic flows, several exact solutions exist. Particu-
larly, for flows without shocks. the equations are isentropic
and irrotational and lead to solutions such as Prandtl-Meyer
expansions. However, even for flows with shock waves.
many solutions exists for simple wave flows such as wedges.
cones, converging-diverging ducts, diamond-shaped airfoils,
and flows around blunt bodies. Techniques for solving these
problems are discussed in many textbooks on gas dynamics
and acrodynamics. ¥ ¥

1.5.6 Riemann Problem

One of the most important cxact solutions, which has proved
very useful in designing numerical schemes. is Riemann’s
witial value problem.” This is a generalization of a shock
tube problem in which initial conditions are specified across
a diaphragm. but the velocity on either side of the diaphragm
may be nonzero. At t = (), the diaphragm is instantaneously
broken. and the evolution of the flow-field is tracked. At a
given time. the general solution consists of a shock wave and
a contact discontinuity traveling in one direction with a speed

of u+u and u. respectively. while an expansion tan is traveling
10 the opposite direction at speed v ~ . (See Fig. 1.3 3
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Figure 1.5.3 Riemann problem

In Fig. 1.5.3. a shock wave 1s travehing 1o the nght which
results in a sharp increase in the density, velocity, and pressure
as it passes. The expansion 1s traveling to the left and induces
a more gradual increase in the velocity of the fluid that was
originally to the feft of the diaphragm. The contact. also
traveling to the right. induces a jump in the density. but has
no effect on the pressure and velocuy.
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Chapter 2

Numerical Schemes and Algorithms

2.1 DISCRETIZATION TECHNIQUES

In order to describe the numerical methods currently used for
solving the system of Euler equations, we have to begin with
a brief presentation of the discretization techniques which al-
low to transform the continuous problem into a system of
discrete equaiiuns to be solved on a computer.

Three main steps can be considered. First, the space-lime
discretization concerning the independent variables (this is
the mesh generation problem), then the choice of a discrete
representaticn of the flow variables (approximation of depen-
dent variables) and thirdly the derivation of a set of discrete
equations linking the flow variables on the grid in space and
time (definition of a numerical scheme).

Grid generation

The mesh generation techniques have become a field of
research and expentise which the quality of numerical results
greatly depends on. This important subject is treated in detail
in Section 2.2, but it is necessary to introduce here a few
ideas for presenting the following steps of equation discreti-
zation.

At first, the space-time domain where the problem is to be
solved must be discretized. Except for very special situations,
the time and the space dimensions are treated independently
and however complex could be the space discretization, the
dependent variables are all represented at same time values.

The space discretization process consists in replacing the con-
tinuous three-dimensional domain where the flow is studied
by a mesh or a grid made of points or nodes connected by
edges and faces which bound cells or elements. The union of
the cells forms a partition of the whole computational
domain.

The common practice in mesh generation is to use either tri-
angular or quadrilateral cells in two dimensions (tetrahedral
or hexahedral in three dimensions).

The cverall arrangement of these cells may be either "struc-
tured Or unstructured”.

The structured grids are made of families of gnd lincs in two
dimensions (2D) and of families of grid surfaces in three di-
mensions (3D). These grid lines or grid surfaces are indexed
by integers so that each node at their intersection is indexed
by a set of indices. The cells with the nodes as vertices can
be indexed in the same way. Connectivity rules are identical
for all cells so that we can invoke a “stencil”.

In contrast, the unstructured grids consist of an arbitrary as-
sembly of cells with only the possibility to index each one by
a single integer and no regular pattern or relationship exists
between cell and node numbering. The data structure
management necessitates the definition and the storage of
pointers and index tables.

Besides the nodes previously described as vertices of the
cells, it can be useful to consider other points in the grid
where discrete dependent variables are defined. We mean for
example mid-points of edges and centroids of faces or cen-
troids of primary cells. It is natural to use these auxiliary

points to build secondary cells and this will be illustrated in
the subsection 2.1.2 about finite volume methods where the
distinction between cell-centered and cell-vertex schemes is
made.

Approximation of dependent variables

After the discretization of the space and time independent
variables we can proceed to the discrete representation of the
dependent or flow variables. The crudest and the simplest
discrete representation of a scalar function of several in-
dependent variables is limited to setting up the values of this
function at the grid points without concern of its value else-
where. This idea is the basis for the finite difference ap-
proach which is almost always applied with structured 2D
quadrilateral or 3D hexahedral grids of either cartesian or
more often body-fitted curvilinear type.

The alternative for the discrete approximation of functions on
a grid is to consider piecewise polynomials locally defined on
each cell by a small number of values or "degrees of fre-
dom”. This topic is covered by the theory of approximation
and interpolation in many mathematical textbooks and is par-
ticularly important for the design of finite element methods
and of spectral methods.

The pointwise approximation used for finite differences could
be included in the general theory of approximation by resort-
ing to the Dirac measure but that is of little practical interest.

In the class of piecewise polynomial approximations, the sim-
plest one is the piecewise constant approximation and it is

the basis for the finite volume methods described in subsec-
tion 2.1.2.

Piecewise lincar approximation is generally associated with
triangular or tetrahedral meshes, piecewise bilinear with qua-
drilateral meshes and trilinear with hexahedral meshes. The
approximate functions arc cither continuous (most frequently
in finite element methods) or discontinuous (in finite volume
methods).

Higher order polynomials also deserve some attention. For
:nstance, piecewise parabolic interpolation ha< been the
specific device attached to the PPM method proposed by
Woodward and Collela'. More recently, high order polynomi-
al interpolation has been included in the “reconstruction step”
for Essentially Non Oscillatory (ENO) schemes developed by
Harten? and Osher®.

Derivation of the discrete equations

We now reach the third stage in the discretization process,
namely the derivation of the discrete equations linking flow
variables on the grid at differera (me steps. Three distinct
routes may be taken according to the choice of a formulation
representing the system of Euler equations.

1.- Finite Difference Methods:

Starting from one system of first order partial differential
equations (in cor-.rvation form or not), time and space
derivatives are rcplaced by finite differences resulting from
the application of Taylor series at grid points.
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2.- Finite Volume Methods:

The integral form of the Euler equations given by Eq. (1.3.1)
and corresponding to the laws of conservation for mass,
momentum and energy are applied on each cell with the as-
sumption of a constant value for the conservative quantities
(p.pid .pE) whereas the definition of the fluxes on the cell
boundary aliows a considerable number of variants for con-
trolling the accuracy, the robustness and the efficiency of
these methods. The only mandatory rule is that the flux
evaluation on an interface between two cells be the same for
ensuring the conservation property.

3.- Finite Element Methods.

The weak formulation of Euler equations, such as the one
given by Eq. (1.3.13) is applied after the choice of the spaces
of approximation both for the dependent variables and the
test functions. Triangles in 2D and tetrahedra in 3D are sys-
tematically chosen by practitionners of finite element
methods. However, the name of finite element method should
be reserved to the case where test functions are at least poly-
nomial of degree one, since the use of a test function which
is constant by cell boils down to the finite volume approach.

At this point it is interesting to notice that the three previous
methods for deriving discrete equations can fead to very simi-
lar results and it is often possible to show the equivalence of
some finite difference and finite volume schemes on struc-
tured grids and of some finite volume and finite element
methods on unstructured triangular grids. Other discretization
methods exist but are only marginally used compared to the
three previously mentioned methods. Namely they are the
spectral methods and fluctuation splitting approaches. the first
one is somewhat related to finite element discretization since
it uses continuous basis functions which are gene:ally some
high order polynomials but of non local support, in contrast
with the case of finite elements. Some link can be found
also with finite differences by the fact that the grid of collo-
cation points is of structured type for two- or three-
dimensional problems. The continuous approximation is not
very suitable for solution of Euler equations with discontinui-
ties without resorting to complicated shock-fitting or shock-
tracking and it seems that no production code exists based on
spectral methods. The fluctuation splitting approach is rela-
uvely recent * and it can be considered as an altempt to mim-
ic the propagation of characteristic waves in order to replace
the rather one-dimensional evaluation of normal fluxes in
finite volume methods by a more multidimensional concept.

Time and space discretization

What has been said above concerns more the space discreti-
zation than the way the time variable influences the design of
a numerical method. Let us assume first that we are consider-
ing a time-dependent problem where the time evolution of
the discrete solution must be represented accurately. It seems
natural with present day three-dimensional problems to pro-
pose that time and space discretization would be made
separately. However, with one space dimension equations for
which the early finite difference schemes where studied, it
was logic to discretize together the time and space deriva-
trves.

The Lax-Friedrichs and Lax-Wendroff schemes which were
at the basis of the numerical solution of hyperbolic systems
of equations indeed combine time and space discretization
(see section 2.4 beiow). Both are two-level explicit schemes.
This is also the case for the family of implicit schemes
derived by Lerat as an extension of the Lax-Wendroff
schemes. They also combines both time and space discretiza-
tion in a coupled manner.

By contrast. when space discretization is made first, leading
to what is called a semi-discretization, the resulting system of
ordinary differential equations in time can be solved by vari-
ous methods. Two classes of time integration methods widely
used for solving Euler equations are the linear multistep
methods specially siudied and used by Beam and Warming *
and the Runge hutta methods mainly developed by Jameson,

Schmidt and Turke! ®.

2.1.1 Finite Difference Techniques

As said before, the finite difference methods rely upon the
approximation of a derivative by the ratio of two differences
according to the definition of this derivative and with an ord-
er of accuracy which is estimated by Taylor expansions. The
simplest and largest use of finite difference discretization for
solving the Euler system of cquations actually appears in the
approximation of the time derivative.

For a function u(x, ) =4, (1) its first derivative at time ¢
is defined by:

du; ) u(t + At) - u (1)
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If we consider a uniform time discretization with 1" =n As
and u," =u,(t"), this time derivative can be approximated
by the following finite difference formulas:

rdu"" rdu, Au," ol 512
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where Af” = /"% - "

These formulas are respectively forward, bac. ward and cen-
tral finite difference approximations at " and are first order
accurate for the ome-sided difference formulas Eq. (2.1.2-3)
and second order accurate for the central approximation Eq.
(2.1.4) . However one can see that Eq. (2.1.2) is second ord-
er accurate with respect to the value of the time derivative at
t=1""2 = (n41/2) Ar .

In order to be more precise and to give an example of such
finite difference formulas, consider the one dimensional Euler
system of equations:

-+ = (2.1.5)

It can be discretized in time (semi-discretization) by finite
differences according to:

n+ 1 n
(|+§)Aw"—gAw"-'z_mleL+(1~e)a—F—]
dax dx

+(0-%—1/12) 0(AH + O(A)

The linearization of the F**! term us introduced by Briley
and Mc Donald 7 can be used:

F'H' = F" + A (%%)" + 0(Ar?)

F oF

" = A"AW" + O (A, A=—
(at) (Ar) ow

giving:

(1+§+A191A")Aw"=
dx

n
- At a—:- +Eaw' ! 4 (8-E-1/2) O(A1) (2.1.6)
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with second order accuracy if 8 = /2 + &,

Explicit (8 = 0) and implicit schemes are obtained after a




space discretization and we get the family of the Beam and
Warming schemes * if central discretization is used for the
space derivatives (see Section 2.4.2 for a discussion of these
schemes).

When space and time discretizations are made independently,
we can reverse the order of them and begin with the space
discretization. For a function v (x), considering a uniform dis-
tribution of points x, = iAv. with nodal values v, = v(x,),
the approximation of the first derivative of v can be chosen
according to one of the following finite difference formulas:

N 3
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Direct application of these finite difference formulas to the
derivative in Eq. (2.1.5) can be considered with a preference
for the third one which is second order accurate giving:

dw
—«d‘ +(F,2~F _12/8x=0 (2.1.10)
1

Expressing F,,, 1 in terms of the nodal values w, (with a
very large number of possibilities) leads to a (non linear) sys-
tem of ordinary differential equations to be solved by an ap-
propriate time integration such as the linear multistep or the
Runge-Kutta methods.

If we restrict ourselves o the case of two- (lime) level

difference schemes, the most useful formulation of such
schemes is:

— + =0 (2.0.11)

or else:
Aw, = —0(h; .~ h_j2) . ©=Ar/dx

with a numerical flux:

hooa=h 0w, W AW, L AW, o) (2.112)

where h'/? is a continuous function satisfying the consistency
condition:

hY (w...w0,.0.:0) = F(w) for any w (2.1.13)

Eq. (2.1.11) represents a discrete conservation faw in a cell
¢, =[(i-1/2) 8x . (i+1/2) & ] if we consider w, as a local
average:

w, = —8!; !w(x nALdx

and h,,, > as a time average of the flux accross the cell side
X = (i+1/2)0x.

Schemes written in the form given by Eq.(2.1.11-13) are said
to be conservative because summation of Eq.(2.1.11) over a
set D of contiguous cells provides, by cancellation of numer-
ical fluxes at interior interfaces, a discrete form of the conser-
vation law on D:

D = (JC =Hp-1/2)8x (q+1/2)dx]).
t=pq

j [wixn+DAr) - wlx.nAn)ldx =~ 8t(h, )2 - h,_ ;)
)

»

The usefulness of conservative schemes results from their
property of capturing discontinuities with the correct levels
corresponding 10 the Rankine-Hugoniot relations. We shall
come back on this point when discussing the finite volume
discretization.

A very detailed study of finite difference schemes for 1-D
hyperbolic problems has been presented by Lerat * with em-
phasis on space-centered approximation. From the large class
of schemes discussed une can extract a yet very general sub-
class of two-level either explicit or linearly implicit schemes
involving at most three points at the new time level:

Aw, + 2 o 3[Mu(Aw)), - 1/4 B{PS(AW)],
= - o 3uF), + 112 &Qdw), (2114

where  pw; = 1722 (w+w, ). and M, P, > and
Q, .2 are 3x3 matrices depending on the values of w at 1",

This class of schemes contains most of two-level schemes
such as tirst order upwind and TVD schemes, the second ord-
er centered schemes of Beam and Warming and the generali-
zation of explicit and implicit Lax-Wendroff schemes pro-
posed by Lerat®. A good representative of this family, namely
an implicit Lax-Wendroff scheme of second order of accura-
cy. is given below:

Aw, - 1/2 &* S[(pA ) SAw)),
=~ 0 S(uF), + 112 6 §{(pA) 8F], (2.1.15)

Until now, we have considered only one dimensional finite
difference schemes. Extension of these schemes to the multi-
dimensional Euler system:

oW/t +dF /dx +3G/dy +dH /d: =0 (2.1.16)

is relatively straightforward it a cartesian grid is used even
though the number of possibilities is quickly increasing for
the approximation of higher order space derivatives. for the
linearization of the F, G and H fluxes and for the combina-
tion of differentiation and lincarization.

For example, direct extension of the explicit Lax-Wendroff
scheme can be made either according to the Ni scheme using
a predictor at the mid-cell point or according to another
scheme with a predictor step centered at the mid-point of in-
terfaces giving better dissipative properties. This explicit
scheme was defined to be used in combination with the im-
plicit step cousisting of successive application of the left

n,and side of Eq.{2.1.15) in each direction (sec Lerat. Sides
).

Use of cartesian grids (without local refinement) is not suit-
able for computing flows past bodies with curved boundaries
presenting too small a radius of curvature or a complex
geometry. Boundary conforming curvilinear meshes are much
more preferred.

The current procedure for applying finite differencing on cur-
vilinear structured grids is founded upon a mapping from the
physical space (x.y.z) to a computational (or reference)
space (§.n.0) equipped with a uniformly spaced cartesian
grid. The transformation has to be one - to - one and is as-
sumed to be smooth enough for being differentiable. Then
the system of Euler equations to be solved can be formulated
in the computational space by the change of independent
variables (space coordinates). Special care must be taken in
order to keep a conservative formulation with cartesian com-
ponents of velocity as unknowns (see Viviand'' and Vi-
nokur'?). With the introduction of contravariant velocity com-
ponents as:

U=ul, +vE +wi,

V=un, +vn, +wn,




rne, v o

W=ul, +v{, +wl,
the system (2.1.16) can be wrilten as follows:
oW/ +F 13 +aG /m+oH/ =0
and J =9EnL/dxy.2).
F={Uw+p(0, VE 0Y]/J

(2.7

with: w=w//J,

G=[Vw+p(0.Vn 0]/ J
A={Ww+p© YV, 0Y]/J

Special care must be exercised during the discretization pro-
cess in order to satisfy requirements such as the free-stream
or uniform flow is an exact solution of the discretized equa-
tions. The conservalive property of the final finite difference
scheme has also to be checked.

This induces a close dependence between the choices of the
finite difference formulas for the dependent variables w, and
for the independent variables x,y.z with respect to the carte-
sian coordinates &,1n. in the computational domain.

The alternative to a discretization in a computational domain
after a coordinate transformation is to directly work out the
discretization in the physical space. This is the basic principle
for the finite volume formulation.

2.1.2 Finite Volume Techniques

As said above. the finite volume approach relies directly on
the application of the integral form of balance laws. Assum-
ing that the domain of integration is independent of time, we
write these conscrvation laws for an arbitrary spatial domain
Q bounded by Z.

d(| wdx dy dz)/dt + [ (FA)do=0 (2.1.18)
Q I

where w is the vector of conservative variables and F the

flux tensor.

If we assume that the physical domain is covered by a collec-
tion of elementary polyhedral cells forming a partition of this
domain, the application of Eq.(2.1.18) at the level of each
elementary cell ensures a conservative discretization, that is
to say ensures the validity of Eq.(2.1.18) for any union of
elementary cells if the numerical approximation for (F.77) is
unique on the interface between iwo contiguous cells.

To be more specific, let us consider two neighbouring cells
Q, and Q. their common interface X;; with its unit normal
ni oriented from £, toward ;. We denote by w, the mean
value of w on £;:

1w, = [ wdxdyd:
Q,

(2.1.19)

and by F,,. the mean value of the normal flux on X,
I, Fy=| Fado (2.1.20)

)
If we call N, the set of indexes of the cells surrounding £,

and having an interface in common with it, Eq.(2.1.18) ap-
plied to £, becomes:

diw, 'Qhrdi+ 3 F, lZ,!=0
JeN

(2.1.21)

Considering the set of all cells {Q,}, we get the discretized
equations_ for the whole physical domain with unknowns
{w;} if F;; is evalvated from a finite number of cell unk-

nowns such as at least w, and  w, but also from w, ., with
K belonging to N, and N, and possibly to other cells (see
Fig. 2.1.1 in 2D for simplification).

Figure 2.1.1 Control volumes and nodes in a general
finite volume method.

The set of equations resulting from Eq.(2.1.21) is clearly a
semi-discretization with possibly a large freedom not only for
the choice of the grid and for the definition for cells or “con-
trol volumes” on which Eq.(2.1.18-21) are applied but aiso
for the choice of the dependency of F,; with respect to the
unknowns {w,} both in space and in time.

About the first topic, clearly both structured and unstructured
gnds are concerned by this formulation. In both cases the
three-dimensional grid is made of polyhedra where we can
distinguish the sets of vertices, edges, faces and cells. Three
types of cell arrangements are used in practice: cell vertex,
node centered and cell centered methods.

Cell vertex methods

Cell vertex finite volume methods seem to be the oldest ones
{McDonald"* 1971, MacCormack and Paullay'* 1972) and
were devised for the solution of two-dimensional time-
dependent Euler equations. They keep strong favour with
several variants such as the Ni scheme'* or its modification
by Hall'®.

Figure 2.1.2 Cell vertex finite volume method.

In the cell vertex methods the flow variables are assigned to
vertices (mesh nodes) and the control volume attached to
node / is made of the collection of elementary cells (indexed
by the set N;) surrounding this node. With this choice of
control volumes, we see, for example in a two dimensional
structured grid (see Fig. 2.1.2), that two neighbouring control
volumes have in common one or two mesh celis and that the




union of all the control volumes covers four limes the physi-
cal domain since each quadrilateral belongs in general to four
different control volumes. For an unstructured grid with trian-
gles, each triangle belongs to the three control volumes at-
tached to its three vertices. Any edge belongs to two control
volumes and for conservation of physical quantities the fluxes
must be evaluated in the same manner for both adjacent con-
trol volumes on their interface.

Cell centered methods

. known approach consists in taking elementary
.~ control volumes. Thus the mean value w; can be
‘0 some centroid of the mesh cell.

For triangles or tetrahedra the centroid is normally the point
of intersection of medians and for quadrilaterals and hexahe-
dra it is located at the intersection of straight lines joining the
mid-points of opposite sides. There is not much room for
geometric variants in the cell centered finite volume schemes.
The only dilemma is for evaluating fluxes on the interface
between two cells. This evaluation can be either a central in-
terpolation or an upwind formulation.
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ahedral gnds, there is about the same number of control
cells (thus of unknowns) and of flux evaluations whereas in
the case of triangular or tetruhedral grids the number of con-
trol volumes (thus of unknowns) is larger in the cell centered
approach with a ratio of about two for triangles and of about
five or six for tetrahedra.

This is one reason why the following third class of finite
volume discretization has been increasingly adopted by prac-
titioners of finite volume methods on unstructured grids.

Node centered methods

In the node centered approach for finite volume discretiza-
tion, the unknowns are associated with the mesh vertices and
a control cell is constructed around each mesh vertex without
overlapping neighbouring cells in a manner that provides a
complete partition of the computational domain.

A strong motivation for this choice lies in the fact that for
solving the Navier-Stokes equations a continuous approxima-
tion with unknowns defined at the mesh nodes is best suited
for central differencing of second order derivatives. The na-
wral practice of extending Euler flow solvers to the solution
of Navier-Stokes equations is also an explanation for the in-
terest related to this formulation which combines the choice
of the nodes from cell vertex with the choice of non over-
lapping cells as in the cell centered approach.

The construction of the control volumes is based on the
definition of a centroid in each mesh cell Then a "dual
mesh” is built which connects these centroids. There are two
possibilities: either two adjacent centroids are joined by a
straight line (“centroid dual mesh”) or a mid-point is firstly
introduced on the common interface and is used (with mid-
points on the edges in three dimensions) to complete the
boundary of the control volume by median lines (or planes)
providing the so-called "median dual mesh” (see Fig. 2.1.4).

Figure 2.1.3 Cell centered finite volume methods.

The first choice was taken by Jameson et al.® and Rizzi'’
with a simple mean value of fluxes from the two adjacent
cells, the lack of dissipative properties of the resulting
scheme imposes to add artificial dissipation as shown in Sec-
tion 2.3. This choice can be also identified in the explicit Lax
Wendroff step of Lerat Sides schemes'® but then the flux
evaluation takes into account values of w over a larger
number of cells (six in two dimensions on a structured qua-
dniateral grid).

The second possibility is related to upwind schemes of either
first or higher order. The most typical example of such
upwind schemes is the basic first order Godunov scheme'?
which rests on the assumption of a piecewise constant func-
tion for representing w and on the solution of a Riemann
problem at the mid-point of each interface between two cells.
This Riemann problem solution provides an intermediate phy-
sical state for the flux evaluation.

If we compare the cell centered approach with the cell vertex
one, it is easy to see that, in the case of quadrilateral or hex-

Figure 2.1.4 Node centered finite volume method:
a) . Median dual mesh; b) ....Centroid dual mesh.

The first possibility is more economical as flux evaluation is
concerned but it can lead to large inconsistency in these flux
evaluations for very distorted and elongated meshes and the
second choice is recommended in that situation.

This choice of a node centered finite volume approach can be
used with both central or upwind schemes but it is specially
well adapted to Godunov-type methods and to unstructured
grids made of triangles or tetrahedra. In this case, strong
analogy can be shown'” between a node centered finite
volume method on a median dual mesh and the cell vertex or
the Galerkin finite element method with linear approximation
proposed by Jameson et al*.

2.1.3 Finite Element Techniques

As indicated above, finite element methods are characterized
by the use of a weak formulation as a basis for the discretiza-
tion of the equations to solve.

The subdivision of the computational domain is generally
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achieved with simplicial elements (tnangles in 2D. tetrahedra
in 3D) which made possible a linear interpolation over each
clement. However the use of quadnlaterals or hexahedra is
also met either in combination with simplicial elements or
not. The only restriction on the grid arrangement is that a
vertex, edge, or face of an clement has to be also a vertex.
edge, or face of any adjacent element.

Finite element methods found their origin in the field of solid
mechanics at the beginning of the sixties and their use for
fluid dynamics appeared in the mid seventies. This extension
was rather natural since at that time the first attempts to ap-
ply finite element techniques to a fluid flow problem con-
cerned elliptic partial differential equations namely the Stokes
problem and the full potential equation.

Variational principles are well known for the derivation of
these equations. This is not the case for the system of the
Euler equations of hyperbolic type, and it was carly recog-
nized that the direct use of the classical Galerkin approach in
space-time is inefficient for these equations.

Therefore the few timite element methods existing for solving
the Euler system of equations have been mostly devised from
a semi- discrete approach with only a space discretization by
finite element techniques and often with a strong link to well
known finite difference > finite volume schemes. The notice-
able exception is the Galerkin Least Square or Streamline
Upwind Petrov Galerkin (SUPG) methods which have pro-
gressively evolved from research studies on scalar advection-
diffusion problems to full compressible Navier-Stokes
solvers. This approach is now presented by Johnson (under
the name of Streamline Diffusion) as a general unified ap-
proach to CFD?".

The presentation will be limited here to a simple overview of
the main methods namely the Galerkin method with artificial
dissipation of Jameson et ul.**, the Taylor-Galerkin method
studied by Peraire, Morgan, Lohner et al.>*3*3* after Donea®,
the Richtmyer-Galerkin approach from Angrand, Dervieux et
al.”’-l:“ and the Galerkin Least Square after Hugues and John-
son”).

All of these methods are based on a continuous piecewise
linear approximation on a triangular or tetrahedral mesh
eventhough it could be possible in theory to use higher order
polynomials.

Standard Galerkin methods

We consider first the Jameson finite element method and for
stmplification we extract from the set of Euler equations one
of the scalar conservation laws:

™ v . F=0 (2.1.22)
ot

This scalar equation is then transformed with multiplication

by a test function ¢, space integration over the flow domain

Q and integration by parts for the space derivatives giving:

Iﬂ 0dQ - [FV9dQ + | Fii ¢da=0 (2.1.23)
QO or Q a0

aW = . .
We assume now that —— and F are linearly interpolated on

t

each element from their value at nodes and that ¢ is the
piecewise linear function with value unity at node / and zero
at all other nodes in . Then the last integral vanishes except
in the case when node I is on the boundary of Q. Also V¢ is
constant in every element and differs from zero only in ele-
ments sharing the common vertex /. In such an elemeat £,
shown in Fig. 2.1.5, it is easy to show that:

Si Ay

1
%’_3 Ve

where S, and A, are the area and the outer normal of the
face opposite to node [ and V, is the volume of the element.

Thus the second integral evaluated on this clemient 82 15 ¢

o (F) +E, « Fe + F) 850
J FVdQ = - L_(f._jw._"__l;.;“,i v,

(2129
i 3 4 v,

and since, by summation over all elements with a common
vertex /. we have T 85,4, = 0,
k

we can discard the £, term in the sum over all elements sur-
rounding I getting tfrom Eq. (2 1 24y

L S, Fy+Fy+F
-3 [ FVedQ = ¥ S —)
« 0, c 4 3
which clearly appears as a discrete approximation of
% ‘Z'KJ; Fii do

Finally, Eq. (2.1.23) gives for a node /:

1
with F, = lx Y P -

where the subscript M denotes the three exterior nodes of the
k -th tetrahedron in the set of elements containing node /.

Figure 2.1.5 Tetrahedral element.

If only steady solution is of interest it is convenient to re-
place the "Galerkin mass matrix” (the coefficients of which
appear in Eq (2.1.25)) by a “lumped mass matrix” thus avoid-
ing the coupling of equations:

dw, = .
(X Vi — -+ ZFom s =0
k k

This formulation could as well have been found by a finite
volume approach and this explains why it is sometimes
difficult to make a distinction between the two class of
discretization techniques.

Moreover, time discretizations other than the Euler explicit
one are often advocated by finite element practitioners. In
particular, it is worth to mention at least Richtmyer-Galerkin
schemes 27 and two-step Taylor-Galerkin schemes 3%,

These schemes are the finite element counterpart of classical
predictor-corrector explicit schemes of Lax-Wendroff type in
finite difference or finite volume approaches such as
described by Lerat. Sides® or by Ni'* .




The predictor step can be understood as a first order explicit
step of cell-centered finite volume type applied on each ele-
ment with a time step 0.

fwi" (1) dQ = [w" dQ - aar J’F,w )7 do
r T

with w, "*%(T) a piecewise constant approximation.

The corrector step corresponds to the previous Galerkin finite
clement approximation with a time step A7 and a blending of
fluxes taken at time " and at the end of the predictor step

with a weighting factor 2 in order to get second order ac-
curacy.

nel _ o0 _ _
| " 0da=[Fw"HVoda+
! Ar 0

_L . I QY _ (N
a (j}(nw )= Fw" ).V dQ

where I means that a one point numerical quadrature is made

{2
on each element.

The case a =1 comresponds to Lax-Wendroff type schemes
called Taylor‘Galerkm schemes in the finite element littera-
ture after Donea® and coworkers.

All these schemes give (on uniformiy spaced grids) central
space discretization and they need the addition of artificial
viscosily in order to avoid spurious oscillations due to the
decoupling of nodes or to the presence of strong gradients.

Several possibilities have been studied to give a finite ele-
ment equivalent of an explicit'v added artificial viscosity.
Some are derived from the discretization of a Laplacian
operator, other are related to upwind schemes with Roe split-
ting (see section 2.3) but at least one is typical of the fin:te
element approximation. It is based on the observation that the
difference between the exact Galerkin mass matrix and the
lumped mass matrix is a diffusion operator which can be
used in combination with a pressure switch in order to play
the role of a second order dissipation near the shocks. De-
tails can be found in Ref. 30 for a precise definition of this
artificial viscosity and more generally in Ref. 25 for the class
of finite element schemes of central differencing type with
numerous references.

Petrov-Galerkin, Galerkin-Least-Square methods

A class of methods more specific of the finite element ap-
proach found its origin in the numerical approximation of
convection-diffusion flows by Hughes and Brooks®' with the
Streamline Upwind Petrov-Galerkin (SUPG) schemes which
progressively evolved towards a large family of schemes™*
with its theoretical analysis made by Johnson and Szepessy™.

The space-time approximation has been developed but is
mainly of interest for moving boundaries so we restrict here
the presentation to the semi-discrete form of these finite ele-
ment methods.

To give an idea of the different variants in this large class of
discretization techniques we can restrict the problem to the
case of a scalar steady advection diffusion equation:

w =a%w - V.(kVw)=f

The standard Galerkin method consists of choosing the same
approximation space V" (generally a piecewise linear ap-
proximation) for the approximate solution w),, and for the test
function v, :
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Find w? € V" such that for all v* ¢ V*
byt wh) = 1) {2.1.26)
where by definition:
+ Vv Uty dQ

bivtwh) = J(-Jv»'" wh
Q
Iwh) = ' dQ
12

Notice that here and in the following the boundary integrals
resulting from integration by parts are discarded.

The classical artificial viscosity approach, as described above,
leads to replace Eq (2.1.31) by :

b(v"wh) +e[VuhVwh dQ = 17
0

Another possibility is to choose different approximation
spaces for the numerical solution and for the test function in
the weak formulation. This approach is named the Petrov-
Galerkin method. An example of such a technique is the
SUPG concept which relies upon:

bty + AVt uiwh - £y aQ =10
2

A related technique is the Galerkin Least Square method
which corresponds to:

b wh) + [Lvttlw" - f)dQ=1(:")
Q

The choice of the parameters € and T is made from theoreti-
cal analysis in order to enforce stability and accuracy.

It appears that for a purely convective sysiem, SUPG and
Galerkin Least Square are identical.

For the system of Euler equations, the necessary extension of
the above formulation led to the introduction of rather com-
plicated non linear operators*>*

Another originality in the formulation of those methods is the
use of entropy variables. Indeed. starting from the observa-
tion that the L%(Q) inner product for trying to derive a varia-
tional statement directly from the Euler equations has no phv
sical meaning:

J'W’(ﬂ+ —~l—-—a—j PAl +ul+ e dQ +..
a ot 20ty
the authors® advocate the use of entropy vambles allowing a
symmetrization of the system of Euler equations*®. They give
a formulation comprising the full compressible Navier-Stokes
equations which accounts for a continuous approximation and
a non divergence form of the convective terms and which can

be written (here with repeated indices indicating summation):

LA, AN R LAY

i 2
o "M T Mo @127

where K, =K,;* + K" ,

and K;;* corresponds to the physical viscosity and K
the heat coefficients.

The entropy variables are defined by:

-1
where S =—ps =-p Log(L(L) )
Po Po
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The change of variables w = w(u) gives:

G v _ 9 g du
Ao 5+ A, " e K, 5 Y+ o (2.1.28)

where A=A A

du

The cocfficient matrices possess the following properties:

klj = Kl] A() .

Ay is symmetric posilive definite, the A, are sym-
metric and the K,, are symmetrnic positive semi-definite.

A dot product of Eq (2.1.28) by u gives after integration:

u . o Q N

0= ¢ < I I N .« -
I)u A5+ A, o o (K, o )- D dQ
(s, 9 Jdu , o du
= - \ Pubalit ~
J( 3 r),r{ w51+ PN ' K, o
- f) w K, ;’,",, SN dQ (2.1.29)
i, !

(,(’

that leads to a l.xusms-Duhem type inequality or second law
of thermodynamics ™

podps 9 A -
j 3 + a_ (pu,~) m‘( - W dS2

A

o - Jdu
— —— >
‘j; o, K,; o, dQ 20

where g is the heat flux vector.

For the Euler equations Eq.(2.1.29) gives:

du

]u (Ao——+A 5 Ay Q=

j(gp—s- + —-—(Pu 5))dQ=0

showing that a Galerkin formulation based on the entropy
variables with a continuous approximation cannot lead to an
entropy production.

This is a justification for resorting to a Petrov-Galerkin for-
mulation:

Find u such that for any ¥

du

- du -
V(A = + A, ) dQ=0 (2.1.30)
!x or ' ox;

with  v=v+T, aa" T,=T,+T,?,

where T, is a streamline diffusion matrix and T, a
discontinuity capturing operator. A precise description of
these matrices is beyond the scope of this shost presentation
and more details may be found in the references mentionned
above. Implementation of such Galerkin Least Square finite
elcmem methods has been made for complex high speed
fAows*".

To conclude this subsection on finite element methods it is
worth to say a few words about the practical use of these
techniques. Firstly, we insist on the fact that for Euler solvers
it is not legitimate to identify every unstructured grid method
with a finite element one since most of the unstructured grid
methods are of finite volume type*®3*% specially for upwind
schemes. The main advantage of unstructured grids is based

on their ability 10 represent complex geometnes hosever
with a need of some effort for a prion controlling the distri-
bution of nodes. A strong increase of interest resulted from
the introduction of adaptive mesh technigues by local
refinement and coarsening of the grid according 10 some flow
solution error indicator. This can favourably counterbalance
the extra cost of unstructured grid solution algorithms and
programming techniques.

The effectiveness of the udaptive gnd methodology depends
on the quality and accuracy which can be reached for “a pos-
teriori ervor indicators” and it is in that direction that finite
element analysis could bring powertul promising techniques.
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2.2 COMPUTATIONAL GRIDS

In Chapter One the conservation laws relating to mass, momenta
and energy were described in mathematical form. These
conservation statements assume the continuum hypothesis, in
which a gas is assumed to be a continuous medium, rather than
made up from individual atoms and molecules. The mathematical
eyuations are presented in both integral and differential form, but
both forms assume that the variables are defined continuously
through the flow domain. The conservation equations, for the
majonty of flows of interest, are non-linear and hence are not
amenable to classical mathematical analysis. Alternative methods
of solution have to be sought and one of thesc approaches is a
numerical solution of the equations. In the previous section of
this chapter, several of the major techniques for representing
equations, in a form required for numerical analysis. were
presented. All of these methods assume that the flow domain has
been spatially discretized into a grid or mesh which consists of a
set of points, and connections between points, called cells or
elements. The process of spatial discretization is called grid or
mesh generation.

The spatial discretization plays an important role in the numerical
analysis procedure. The distribution of points in the domain
must, firstly, adequately represent the geom 'y of the region. In
general, regions of the boundary of the domain which change
rapidly will require a concentration of points to adequately
represent the shape. Secondly, for accurate flow simulations, it
is necessary that there are adequate points in regions of the
flowfield where there is high activity, i.e., where the flow
variables are changing rapidly. These two major requirements
cannot be achieved in an arbitrary way. The accuracy of the
numerical discretizations are dependent upon the properties of
the underlying spatial discretization. For example, the classical
second order accurate finite difference representation of a second
derivative is only second order in space if the grid point spacing
is uniform. Furthermore, it can be shown that other spatial
derivatives only achieve second order accuracy if the grid lines
are approximately orthogonal. Hence, the spatial discretization
of the domain must be achieved without discontinuous grid point
spacing and without the introduction of highly skewed cells or
clements. These restriciions make the generation of suitable
computational grids a non-trivial problem. Considerable
atiention in the last decade has been given to the problem of grid

generation -7,

Before discussing, in detail, some of the more popular and
successful approaches, it is necessary to comment on different
methodologies used in grid generation. One of the first aspects
to cover is the spatial pattern and arrangement of points and
cells.

Structured and Unstructured Grids

The basic difference between structured and unstructured grids
lies in the form of the data structure which most appropriately
describes the grid. A structured grid of quadrilaterals consists of
a set of coordinates and connectivities which naturally map into
clements of a matrix. Neighbouring points in a mesh in the
physical space are the neighbouring elements in the mesh point
matrix (Fig. 2.2.1).

Thus, for example, a 2-dimensional array x(i,j) can be used to
store the x-coordinates of points in a 2D grid. The index i can be
chosen to describe the position of points in one direction, whilst
] describes the position of points in the other direction. Hence, in
this way. the indices i and j represent the 2 families of
curvilinear lines. These ideas naturally extend to 3 dimensions.

However, for an unstructured mesh the points cannot be
represented in such a manner and additional information has to
be provided. For any particular point. the connection with other
points must be defined explicitly in the connectivity matrix.
(Figure 2.2.2)

&

Figure 2.2.1 Data ordering of a structured grid.
Quadrilaterals formed by
Cy oap fistjats fijet) (=1.4,)=1.5).

Elemnent, Nodes
1.

[ I YT SO R N
Norme

PRONLN LG
D RO WY~

figure 2.2.2 Data ordering of an unstructured ;-'d

A typical form of data format for an unstructured grid in 2
dimensions is;

Number of points, number of elements
1N
X2.¥2
X3.¥3

. ng, a3
4. ns, N
n7, “8' n9

where (x;, y;) are the coordinates of point i, and n;, 1=1,N are
the point numbers with, for example, the triad (n{, ny, n3)

forming a triangle. Other forms of connectivity matrices are
equally valid, for exampie, connections can be based upon
edges.

The real advantage of the unstructured mesh is, however,
because the points and connectivities do not possess any global
structure. It is possible, therefore, to add and delete nodes and
elements as the geometry requires or, in a flow adaptivity
scheme, as flow gradients or errors evolve. Hence the
unstructured approach is ideally suited for the discretization of
complicated geometrical domains and complex flowfield
features. However, the lack of any global directional features in
an unstructured grid makes the application of line sweep solution
algorithms more difficult to apply than on structured grids.

Boundary Conforming and Non-Aligned
Grids

The solid boundaries within a flowfield play a vitally important
role. In most applications the solid boundaries create the flow
features of interest. Hence, it is essential that the solid

boundaries are accurately represented in the spatial grid and then
the numerical formulation of the solid wall boundary conditions
can be implemented accurately and efficiently. These
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requirements have resulted in the use of boundary or body
conforming grids, in which points lie on the boundaries and grid
lines are aligned with the geometrical surfaces (Figure 2.2.3).

Solid Boundary

Figure 2.2.3 Boundary conforming grid

Such an approach, although probably the natural approach from
the viewpoini of the upiementanon of the Jow boundary
conditions, places a severe restriction on grid generation
procedures. An alternative appxoachg‘l U is 10 relax this
restriction on the grid generation and ullow grid lines to pass
through the solid boundary in a non-aligned manner (Fig 2.2.4).

7

Solid Boundary
Figure 2.2.4 Non-aligned grid
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The problem of the accurate imposition of boundary conditions
is then transferred to the solution algorithm and the construction
of appropriate techniques.

Both the non-aligned and boundary conforming approaches have
been investigated. Today the boundary conforming strategy is
the most popular and most widely used.

One of the features of constructing grid generation techniques,
which is different from the developmer. = ‘low or other
analysis algorithms, is that there are no ~~ . . il laws which
govern grid gencraton. Any suitable ec or geometrical
constructions can be used. This is refleci ¢ ..+ ...e many different
and diverse techniques which have becn exnlored. However,
after a period of exploration and numerical experiinent2*on,
several approaches are now becoming standard procedures. The
major techniques will be discussed.

2.2.1 Structured Grids from
Partial Differential Equations

Elliptic Systems

The motivation for the use of elliptic equations as gencrators of
grid points can be derived from a number of sources. The nature
of elliptic equations is to smooth boundary data and this affords
a most desirable property. Laplace's equation with Cauchy-
Riemann type boundary conditions can be used to generate
conformal mappings. In fact, the real and imaginary parts of an
analytic transformation are harmonic functions. An alternative
viewpoint, and one which is most appropriate in computational
fluid dynamics, is to note that inviscid steady incompressible
flow is described in terms of Laplace's equation in the potential
function and the stream function.

A starting point for elliptic equations is to choose a system of
Poisson equations, expressed in the form
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Exx * gyy + 8= PEND)
Max *fyy *Mzz = QAENY) (2.2.1)
cxx + ny + gzz = R(E,.Y\,C)

in which P, Q and R are the source functions which can be used
to control the grid point spacing and distribution. These
equations. as expressed in Eq. (2.2.1), are in an inappropriate
form for grid generation, since in gencral, boundary data will be

specified in terms of x, y and z and not §, n, and {. Hence,

following Thompson, Thames and Mastin}2, these equations
are transformed so that they are written in terms of the unknown
spatial physical variables x,y and z with the independent
variables &, 1, and {. The transformation leads to the eguations

O 1TEE #A22 Ty 33 FCLH @1 2MEn 1 3L T A23ME)
=42 (Pr§+an#ch) 2.2.2)

where r =(x‘y.z)T. o = b Ymi Ymj and ij is the ij-th cofactor
of the matrix

xg xn xg
M=| YE Yq Y (2.2.3)
lé Zn Zg

and the Jacobian J is the determinant of M.

An interesting altemative derivation of these equations was given

by Brackbill and Saltzman'3, Working on adaptive grids, they
introduced global smoothness as one property required from the

mesh. Smoothness, in a 2-dimensional domain Q with boundary
Z, can be written as

L= JIve)? + (vm2idq.
z

which when transformed and optimized leads to the 2-
dimensional equations equivalent to those expressed in Eq.
(2.2.2). Hence, the inverted Laplacian, without grid control
functions. maximises the smoothness of the distribution of grid
points.

The above equations rcpresent a non-linear boundary value
problem. The solution of these equaticns can be achieved using
any appropriate technique. However. central ditfeicices and
relaxation schemes are commonly used. To illustrate a solution
procedure, consider the commonly used 2-dimensional form,
r=r(x,y)7T, of the equations with the control functions set to
zero, namely,

argg - req + 7n =0,

where
o={ 2+ 2)
={x N
1" n
B=(xgxn+yeyn
and
2
Y=(x§+ yz)

Using central finite differences for the representation of the
derivatives, the residual on a square mesh with E=ih,

(i=0.1,2,....m) and n=jh, (j=0.1,2,......n) can be represented
as
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n P . .
where 5 represents the unknown at the point (i,j) at iteration
level n. It is noted that in the numerical formulation a

linearization is applied to the terms in a. B, and y. In practice,
once x and y are known, at the new iteration level n+1, they can

be immediately utilis~d in the terms a;}. B:‘J and ‘(3 1t follows

that the solution to the equations can be obtained using the
stationary and linear successive over-relaxation scheme.

n
el n Rij
Y v 2(01;34»7;})

where  is a relaxation parameter, with 1<w<2. A similar
numerical scheme can be applied to the equations, Eq. (2.2.2).

Boundary conditions for these equations are most generally
applied in the form of Dirichlet or Neumann conditions. Dirichlet

conditions specify fixed (x,y) values for a particular constant §

or 1} and are used, for example, to specify aerofoil or
outerboundary positions. Neumann conditions are used to
specify fixed derivatives on boundaries. In the case of the grid
equations, this type of boundary condition amounts to the
specification of grid line directions. The positions of (x,y), on a

boundary of constant § and n, are allowed to move in order to
satisfy the slope conditions. Typically, such boundary
conditions are applied on lines where one of the coordinates x or
y is fixed whilst the other is computed under the Neumann
condition. Such a boundary condition may be applied at an outer
boundary or on a cut in the wake of an aerofoil. Similar
boundary conditions are applied in 3 dimensions.

Central to the practical use of these equations is the appropriate
form for the control functions P, Q and R. The inherent
smoothing properties of Laplace’s equation ensures that, in the
absence of boundary curvature, the grid points are evenly
spaced. However, near convex boundaries the grid points will
become more closely spaced, whilst near concave boundaries the
mesh spacing will be more sparse. These properties are not
always desirable for grid generation where it is essential that the
grid near a boundary reflects the shape of that boundary. Control
of &g;i‘d point spacing can be achieved by the source terms P, Q
and R.

Typical effects of the source functions, in 2 dimensions, are
shown in schematic form in Fig. 2.2.5.

‘7\
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Figure 2.2.5. Effects of the control functions

Negative values of Q tend to cause the n-coordinate lines 1o
move in the direction of decreasing N, while negative values of P

cause &-lines 1o move in the direction of decreasing §. Similar
effects occur in 3 dimensions.

Automatic procedures for the computation of the source terms

have been devised!4. A populas approach is to derive the control
functions from the boundary point spacing and then to
interpolate the values wiiv the interior. In this way, point spacing

in the field reflects the point spacing on boundaries!5.

To illustrate some of these ideas the equations in 2 dimensions,
which include the control terms, are

a(rgg«rPrg) - 2Br§“ + y(',m+Qr,q) =0. (2.2.4)

The work of Thomas and Middlecoff!3 demonstrated that the
distribution of points on boundaries of a domain can be used to
generate the control functions so as 1o have the effect of
extending the point distribution into the interior. Eliminating Q
in Eq. (2.2.4) leads to

2 *n *n
ofyn(xge+Pxe)-xy(yee +Pye)l = v 1 28 (;;)j HE)“]
2.2.5)

Imposing two conditions on an NN=constant boundary, namely.
zero curvature,

X
(3

anI:O'

and the condition for orthogonality

XgXn + YEYD = 0.




Eq. (2.2.5) reduces 10

P=- (2.2.6a)
Ir§|2
A similarly expression can be derived for Q
Tyl
Q=- 1 (2.2.6b)
Ir'.,l2

It is noted that the evaluation of P involves the point distribution
on a line of constant £, whilst Q involves data on a constant 1.

These forms for P and Q can thus be evaluated directly from the
houndary point distributions.

Once values for P and Q have been obtained for each boundary
point the values at interior mesh points can be obtained by linear
interpolation along lines of constant § and 1. This procedure
ensures that the grid throughout the interior of the domain
reflects the distribution of points on the boundaries. This effect
is illustrated in Fig. 2.2.6.

[N
1

|
.

Figure 2.2.6 Effects of control functions on the spacing of
points inside the domain. The interior point distribution
reflects the point spacing on the boundary.

Although this approach works well in many cases there are
circumstances when local control of orthogonality in the mesh is
important. This is particularly relevant for meshes to be used for
viscous flow simulation. To implement local orthogonality, a
further modification to the computation of the control terms can

be made 14,

For orthogonality, B = 0 and thus the grid equations become
a(r§§+Pr§) + Aty +Qrp) = 0.

Taking the scalar product of this equation with 143 and ™ and
again using the condition for orthogonality leads to
_ETE T

= (2.2.7a)
el g

and

nr fn-fl
Q- . Tin g

. (2.2.70)
2
g2 gl

The first terms of Eq. (2.2.7) for P and Q are equivalent 1o the
control functions of Thomas and Middlecoff. However, the
second terms are the corrective terms for orthogonality which are
not only dependent upon the boundary points but also on the
field points. Hence, it is not possible to use these equations
without some interaction with the grid as it evolves in the
solution procedure.

The iterative procedure for the control functions then follows the
steps:-
1. Compute P and Q from the boundary point distribution

g e n-fan
P=-" Q=- Ty
lrgl" lrnl
2. Obtain an initial grid.
3. Calculate the corrective terms
rg.r Ip fE
r:-g—%’—‘ and Q =- =2
Irnl Irél"

4. Add to the control terms
P=P+PandQ=Q+Q
5. Solve Eq. (2.2.4) to produce a new grid

6. Repeat steps 3,4,5 until the correction terms P and Q' are
zero.

It is clear that the method adds correction terms for orthogonality
until they are zero. Fig. 2.2.7 shows the effects of this iterative
control of the source terms.

Figure 2.2.7 Effect of the boundary orthogonality control.
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Further discussions of the approach and the specification of the
control terms can be found elsewherz Y.

Oher elliptic partial differenuas equations have been used for
gnd gencra(ionl(\ Higher order systems have been used since
they provide the flexibility for specifying more conditions on the
boundary. In this way, it is possible 1o not only specify point
spacing, but also slopes etc..

Hyperbolic Systems

Computational grids can also be generated by solving hyperbolic
partial differential equations which are marched outwards from a
specified distribution of points on an inner boundary”.
Differential constraints on mesh size and angles are generally
used to determine the governing grid generation equations.
Because the outer boundary of a grid cannot be specitied in
hyperbolic grid generation, the method is best suited to
applications which have asymptotic-like outer boundaries. In
external acrodynamics, for example, the outer boundary is
generally a farfield condition of undisturbed flow. However.
domain decomposition methods that use overset composite
meshes for complex field simulations can also effectively
employ hyperbolic grid generation. For example, a number of
recent flow simulations which employ the ' Chimera' overset
grid method have relied almost exclusively on Jyperbolic grid

generation 1819

In three-dimensional applications of hyperbolic gnd generation,
a body surface is chosen to coincide with {(x.y.z) = 0, { is used
as the marching direction, and the outer boundary {(x,y.z)
=L max 18 not specified On the body surface, grid-line
distributions of &=constant and n=cc - ~+ant are user-specified. In
three-dimensions, there are three oninogonality relations to

choose from and one cell volume constraint. Recause { is the
marching direction, it is natural to use only the two orthogonality
relations tha involve {. This leads to the goveming equations

TE M= XE XL YEYLH 7z zr =0,
L EXg ALY yﬂy§+z’ﬂz‘::0’

9(x.y.2)

3(&.n.{)

=XE ¥ 2R YE Pt X Y 2 XY 20

‘nyizi"‘iynzi=“‘v

with r is defined as (x.y.z)T. The first two equations represent

orthogonality relations between & and { and between 1y and (,
and the last equation is the volume or finite Jacobian constraint.

AV can be prespecified to give appropriate point spacing.

The equations comprise a system of nonlinear differential

equations in which x, y,and z are specified as initial data at {=0.
A local linearization is performed and the equations are then
solved with a noniterative approximately factored implicit finite
difference scheme so that the marching step size, in {, can be
arbitrary selected. Further details of this approach can be found

in Slegcr”‘

Parabolic Systems

Grid generation based upon parabolic partial differential

equations can also be pcrformedzo. In general, such equations
are constructed by modifying elliptic generation systems so that
the second derivatives, in one coordinate direction, do not
appear. The solution of the parabolic equations can then be

marched away from a boundary 1n much the same way as that
previously described tor hyperbolic gnid generation. Here,
however, some 1nduence of the other boundaries is retained 1n
the equations. Althaugh some development of such schemes has
been made, 1t has proved to be linnted 10 its flexibility and
applicability.

2.2.2 Structured Grids from Algebraic
Methods

Algebraic gnd generation distinguishes itself trom iher grid
generation methodologies by the ability to proviae a direct
functional description of the coordinate transformations between
the computational and physical domuins. The roots of algebraic
grid generauon are found in conformal mapping. defined by
explicit analytical functions of a ciuplen ariable.

Conformal Mapping
The concept of a mapping, in 2 dimensions, 15 to define a
transformation which takes a domain D, defined in the plane

(x.y) onto a rectangular aomain R on the plane (§.m) The
geometrical relationship between D and R 15 described by the
components »f the metric 1ensor £jj (i,y=1.25. From the tormal

L - . h -
definition of a conformal mappmg-] i follows that the
components of the metric teasor are subject t the constraint

gy =gppandgp=0

and as such the mapping funciions xt&n) and y(§.n) must
satisfy the Cauchy: Riemann retstions in the domain R, namety,

X = ¥p andxn=-\:

4‘3 -
Consequently, the condition of integrabiliy yields

2 2
Vx=0and V'y =0

It is clear from these relationships that it is not possible to fix
both x and y on the boundary of R for the solution of the

Laplacians. One possibility is to fix the sides E=constant of the
rectangle R with the value of the function of x and from the
second Cauchy-Riemann relation the value of the derivative YE-
while on the sides ni=constant the function y and the derivatives
Xy are specificd. llence, it is apparent that in the case of
conformal mapping it is not possible 10 specify the distribution
of the grid points because of the constraint placed upon the
metrics gy and g15. A slightly more flexible approach can be

achieved if the constraint gy | =g>7 is relaxed and the relationship
is taken as

2
g11=F (&n) gy andgyr=0

where the specification of F. a dilatation function. permits a
certain flexibility without the loss of onhogonalh_vzz.

As an example of conformal mapping applied to grid generation,
consider the particularly attractive method for 2-dimensional
aerofoil configurations based upon the Joukowski mapping,

t2

. |
7= ¥
-
A circle in the { plane maps to a so-called Joukowski aerofoil in
the z plane. A generalisation of this to general aerofoil
geometries is the Von Karman - Trefftz mapping




where z is the aerufoil plane complex coordinates, § the near-

circle plane complex coordinate, x=2-A/x, with A the included
trailing edge angle, 2y, and z;, are two singular points in the z
planc at the trailing edge and at the inidway between the nose of
the acrofoil and its centre of curvature, respectively, and the
parameter s is related to zy and z,, through the relations  zj=
2+ ksy and 2y, = z, - ksy. A polar mesh with appropriate
stretching in the radial direction generated around the near circle,
when mapped back to the physical plane, produces a high
quality structured mesh. The technique is computationaily
efficient and has been used to provide a suitable set of points for
aerofoil-like geometries. An example of this is shown in Fig.
2.2.8.

Figure 2.2.8 A structured conformal grid

Conformal mappings have found many early applications in the

numerical simulation of potential flow?3. Although the resulting
grids preserve a basic cell shape, the amount of local control
provided is not sufficient for many problems. As indicated, one
by one, the intrinsic properties of conformal mappings must be
dropped to provide greater flexibility. Cell shape preservation
can be replaced by only orthogonality, thus allowing the grid to
stretch in one or more of the coordinate curve directions.
Shearing transformations, in turn, can overcome further
shortcomings of the conformal mapping. Extensions to three
dimensions can be achieved by conformal mappings in two
dimensions followed by an algebraic stretching in the third
dimension.

The requirement for more general algebraic grid generation
procedures has lead to the investigations of general uni-
directional interpolation methods based upon Lagrange and
Hermite interpolations, which can then be extended to multi-
directional formulations. Shearing transformations, and general
interpolants have been studied and effective techniques, such as

the multisurface24-26 and transfinite inlerpolationz-l'28
procedures, have been developed.

Transfinite Interpolation

In its basic form transfinite interpolation can be described
initially in tums of one dimensional shearing transformations. In
2 dimensions consider the transformation

Rg(é.m = (1-§)R(0.m) + ER(1.0)

which expresses the interpolation Ré derived by interpolating

between the boundaries ni=constant. Similarly, for the boundary
E=constant, the interpolant

Rn(i.ﬂ) = (1-mR(E,0) + NRE, 1)

ts obtained. The tensor product of R;; and R'\ gives an

interpolant which maps the four corners of the computational
domain to the four corresponding corners of the physical
domain. The remaining boundary points between the two
domains have no correspondence under this mapping. This
occurs because the boundaries map into line segments berween

4)

comers. By coatrast, the simple sum Ré + R"I maps each

boundary to the sum of a line segment and the actual physical
boundary. By using the tensor product mapping 1o remove the
boundary line segments, the Boolean sum is obtained

RieRTl = R§+Rn-R§ Rn
where the tensor product is defined as
RéRl‘f“’ém L-RO.0+RO.DI+E[(1-MR(1.0)+nR(1.1)] .

This represents transfinite interpolation. In practice, the previous
equation is broken down into several components. For example,
in three dimensions the interpolant would be expressed as

Fy =Ry F|
Fy= Fy+RyIF-F)| (2.2.8)

F3 = Fr+ RE“IF-F2|

where  is the computational variable in the third direction. F-F

represents the mismatch between the actual surface and the first
interpolant.

In the above description, uni-directional interpolants of the
Lagrange form have been used. If control of local boundary
slopes are required then these interpolants can be expressed in
Hermite form to give

af

Ry = f(él‘ma[(iwaé

a2(§)+t‘(§2.n)a3(§)+§—: ayld) .
)

Similar expressions can be written for the interpolants Ry and
Rg. The coefficients a;. i=1.4 are the blending functions with

again correspondin equivalent terms for the 1N and {
interpolants.

It should be noted that transfinite interpolation is a direct
evaluation of Eq. (2.2.8, and hence is computationally very fast
and efficient.

2.2.3 Structured Grids from Variational
Methods

As seen in Section 2.2.1, elliptic grid generation through the
inverted Laplacian without grid control functions can be obtained
by optimizing the smoothness of the distribution of grid points.
Based on this observation, different variational techniques have
been developed in order to minimize a global functional which
amalgamate different grid properties to be
optimized13'3()'3l'33.

The general form of these variational methods allows a
competitive enhancement of grid smoothness, orthogonality and
point concentration by representing each of these desired
properties by integral measures over the grid and minimizing a
weighted average of them.

The scope of the variational methods used for optimizatior of

structured grids is also applicable to the optimizai.on of
. . 3

unstructured grids (Section 2.2.5)"".

Among the propertie; considered for mesh optimization, some

are quantified either in terms of mapping between the physicn!

space x(x.,y.z) and a uniformly discretized reference space £n.0

or in terms of mapping between the reference space §,1.0, and
the physical space x.
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Belonging to the first type, the global functional ¢ used by

Brackbill and Saltzman' } measures the grid quality as a
combination of smoothness, orthogonality and volume contro]
by the following integral:

o=j;cs|vgz+v“2+v:;2;

o (VEVM 2V v 2 VeV 23
+c, WEn.0)) ) dxdydz

where ¢, Co» Cy are the weight factors chosen in order to stress

one of the desired properties, and w is a variable factor used to
control the volume of the cells. Belonging to the second type,

the method of Carcaillet, Kennon and Dulikravich 0 uses a
functional that can be written, in a continuous form, as follows:

o= J' { cslk,(E,.n.C>(xg)2+k2(€,n.C)(xn )2+k3(§,n,§nx;)2|

+Col(xg.xn)2 + (xn.xg)2 + (xC.xg)zl
oy, WEND) J21 dE dn df

where ky,ky,k3 can be seen as variable stiffness coefficients, in

clear analogy with a system where grid points are connected to
their immediate neighbours by tension springs.

In the references33-35 a generalized measure of the mesh

deformation between the reference space is presented. The
deformation on a non-uniform mesh and the physical space is
presented. The deformation characterizes the energy of an
hyperelastic, isotropic, homogeneous material satisfying the
axiom of frame indifference. In order to establish a well posed
minimization problem, the functional is enforced to be locally
convex in the neighbourhood of a rigid transformation.

According to these mechanical and mathematical properties, the
functional 6, in a continuous form, can be expressed as

o= j tep (13223120 Dyve30- 1) )& dn G

where

1y = o) 2 sou) e’
Iy = (xg x "ﬂ)2+ (xp x x§)2+ (xg x xg)2
= (xgxxn).xc

Solution algorithm

The basic pattern of development with variational methods
consists in defining a pointwise positive measure gathering
together some desired grid features, to integrate this measure
over the field and to minimize the resulting functional.

Two alternative approaches are commonly used for the solution
of the minimization process:

1. The first approach consists in expressing the optimality
conditions known as the Euler Lagrange equations giving a
system of partial differential equations to be discretized and

solved by an appropriate numerical method13.14,

2. The second approach is simply the direct minimization of the

global function o after its discretization. The most popular
algorithms used for such an optimization problem are the
Fletcher-Reeves and the Polak-Ribiere conjugate gradient
methods. Further discussion of the minimization process an be

found elsewhere30.34.

2.2.4 The Muitiblock Approach

The techniques discussed for the generation of structured grids
imply a mapping between the physical space, (x.y.z) and the

regular transformed space (&.n.0). This indicates that, whatever
the shape of the domain in the physical space. it is topologically
equivalent to a cuboid. For general shaped flow domains this is
a major restriction, since this can give rise to inappropriate grid
structures and, in general, an over constraining of the grid
generation equations. At the heart of this problem is the global
conservation of the curvilinear coordinates. For application to
general shapes this proves too restrictive and it is necessary to

introduce a multiblock subdivision of the domain3-7.36.37,

The idea behind multiblock is that, instead of utilising one global
curvilinear coordinate system, several curvilinear systems are
constructed and subsequently connected together. The domain is
subdivided into regions, each of which is topologically
equivalent to a cuboid and within which a structured gnid is
generated. The block subdivision provides the necessary
flexibility to construct structured meshes for complex shapes.
The approach represents a compromise between the globally
structured grid and an unstructured grid.

The multiblock concept has proved to be powerful in the
construction of high quality grids for aerospace geometries. The
arrangement of blocks defines how the local curvilinear systems
connect and th: resulting connectivities between the blocks
define the global grid topology. It is possible to construct a wide
range of mesh topologies for any given configuration. In
particular, it is possible to construct ‘component adaptive' mesh
topologies to ensure that the mesh lines close to a component are
appropriate to the geometrical shape of that component. The
muttiblock concept 1s not particular to any grid point generation
technique. The generation of points can be achieved using the
algebraic or elliptic procedure.

The form of a structured grid is often described by the
topological structure. The 3 basic forms are ‘O’ or polar, 'H'
and 'C’ grids. To achieve these different topologies, 3 different
mappings are required. Figure 2.2.9 a, b and ¢ show the 3
mappings. in 2 dimensions, required for these grid structures.
They are shown here in multiblock form, where the convention
has been applied that there is only one grid boundary condition
type along any edge.

These basic mappings can be used to build differct grid
structures for any given configuration. For example, consider a
2 aerofoil system, arranged in a tandem configuration. An 'H
grid could be constructed local to each aerofoil in a way which is
shown in schematic form in Fig. 2.2.10.

Alternatively, the forward aerofoil could be favoured with a 'C’
topology, whilst the grid around the aft component remains of
‘H’ type. The schematic for this is shown in Fig. 2.2.11. In a
more adventurous way, it may be appropriate to construct a C-
structure around the leading edge of both aerofoils, as shown in
Fig. 2.2.12 or a polar mesh around both aerofoils, as indicated
in Fig. 2.2.13. Either of these grid topologies are valid, and the
associated block structure for the 2 are shown in Figs. 2.2.12b
and 2.2.13b, respectively. The 'C' structure requires 18 blocks
whilst the polar mesh requires 36.
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Figure 2.2.12
a) C-C grid topology for a tandem configuration.
b) Biock structure for the C-C grid topology

0-0-0-0-0
S oy

0-0-0-0-0

— - - Figure 2.2.13
a)O-0 grid topology for a tandem configuration.
7 b) Block structure for the C-C grid topology
\__/ As indicated by this simple configuration, it is possible to

construct many different grid topologies for any configuration.
The final choice will be made on the grounds of the detailed
geometry of the configuration and on flow conditions.

Figure 2.2.9 The basic mappings of structured grids.

The arrangements of blocks is defined in a way analogous 1o the
connectivity matrix for an unstructured grid. One approach is to
specify for each side of every block,

i) The number of points on the side,

it) The type of boundary condition

and

iii) if appropriate, a) the adjacent block number
b) the adjacent side of the adjacent block
¢) the orientation of the coordinate system

[ of the adjacent block relative to that of the
current block.
—

The procedure for multiblock grid generation begins with a
suitable subdivision of the flow domain into regions, each of
which is topologically equivalent to a cuboid in that each has 8
corner points, 12 edges and 6 faces. These regions are
Figure 2.2.10 H-grid topology for a tandem connected together to form the grid topology. The connections

configuration. between blocks are specified in a topology or block connectivity
matrix. Such connectivity matrices are of the form used to
describe element connections in an unstructured grid.

Once defined, the block connectivity matrix is used to derive the
grid structure on the surface of a configuration. This is
necessary to generate the grid on the component surfaces and
/| clearly the grid structure on the surfaces must be compatible with
the structure in the field.

At this stage, no grid generation has been performed, only the )
4 gnd g pe y
- connection between blocks. However, once this has been
I~ achieved the grid generation procedure can begin.

5l

The grid structure on the surfaces of the configuration is known v
and points can be generated on edges of the blocks. To ensure

continuity of grid lines across block boundaries it is necessary to

form the same computational molecules for all points, including

points which are in corners, on edges of faces and on block )
boundaries. This methodology ensures that grid lines are smooth )

Figure 2.2.11 C-H grid topology for a tandem
configuration.
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everywhere, including across block boundaries. This is an
attractive procedure since the block subdivision was utilised only
to achieve an appropriate grid structure for the geometry under
consideration. It would detract from this approach if, as a by-
product, it was to produce grid lines which were discontinuous
in slope and higher derivatives across block boundaries. The
practical implementation of smooth lines across boundary faces
requires the use of a halo or pointer system, but is relatively easy
to achieve.

The approach has proved to be very popular and successful and
many impressive compulations in acrospace engineering have
been performed’. It has some disadvantages which are now
widely recognised. Firstly, a criticism is the difficulty of use of
such an approach and secondly, its applicability to all aerospace
geometries and flow computations. The first difficulty primarily
relates to the specification of the block connectivities. This is a
difficult task, since it requires expert user effort and,
furthermore, if an inappropriate grid topology is defined it is
likely to lead to problems late in the grid or flow process.
Automatic ways of subdividing a domain have been explored
with limited success. Now emphasis appears to be given to
interactive specification and grid generation using a graphics
workstation” 273 However. although this decreases the time
for the task it still requires expert user effort and is prone to
mistakes. The second problem is the application of the approach
to all aerospace geometries. For some configurations, the
specification of a suitable block decomposition is difficult and
even if achieved can lead to highly constrained grids of poor
quality. Much is now understood of the mathematics of
structured grid generation and it is likely that grid quality
techniques will continue to improve.

2.2.5 Unstructured Grid Methods
Delaunay Triangulation

Dirichlet™® in 1850 proposed a method whereby a given domain
could be systematically decomposed into a set of packed convex
polygons. Given two points in the plane, p; and P the
perpendicular bisector of the line joining the two points
subdivides the plane into two regions, V; and VjA The region V;
is the space closer to p; than to pj. Extending these ideas, it is
clear that for a given set of points in the plane, the regions V;
are termitories which can be assigned to each point such that V;
represents the space closer to p; than 1o any other point in the
set. This geometrical construction of tiles is known as the
Dirichlet tessellation. This tessellation of a closed domain results

in a set of non-overlapping convex polygons, called Voronoi
regions, covering the entire domain.

A more formal definition can be stated. If a set of points is
denoted by {p;}. then the Voronoi region {V;} can be defined as

{Vil ={p:lippil < hp-pjl. for all j#i }

1e. the Yoronoi region {V;] is the set of all points that are closer
to p; than to any other point. The sum of all points forms a
Voronoi polygon.

From this definition, it is apparent, that in two dimensions, the
territorial boundary which forms a side of a Voronoi polygon
must be midway between the two points which it separates and
1s thus a segment of the perpendicular bisector of the line joining
these two points. If all point pairs which have some segment of
boundary in common are joined by straight lines, the result is a
triangulation of the convex hull of the set of points {p;}. This

triangulation is known as the Delaunay triangulation”. An
example of this construction, illustrated in two dimensions is
shown in Fig. 2.2.14.
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Figure 2.2.14 The Delaunay and Voronoi constructions.

Equivalent constructions can be defined in higher dimensions. In
three dimensions, the territorial boundary which forms a face of
a Voronoi polyhedron is equidistant between the two points
which it separates. If all point pairs which have a common face
in the Voronoi construction are connected then a set of tetrahedra
is formed which covers the convex hult of the data points.

The Delaunay triangutation has somie rather imteresting
propenies‘m. One of particular interest is the so-called in-circle
criterion. The vertices of the Voronoi diagram are at the
circumcentres of the circles which pass through the three points
which forms a triangle. In three dimensions, the Voronoi
vertices are at the centre of the sphere which passes though the
four poiats which form a tetrahedron. It follows from the
definition of the Dirichlet tessellation that no points, other than
the so-called forming points which form the triangles or
tetrahedra, fall within the circles or spheres. If a point did fall
inside then this would contradict the basic definition. This
geometrical property is the in-circle criterion.

This criterion forms the basis for the most popular algorithms
for the construction of the tessellation which were proposed by

BowycrA 1 and Watson2.

The basic outline of the algorithm of Bowyer, which is
applicable in 3 dimensioas is:-

i). Define the convex hull within which all points will lie. It is
appropriate to specify 8 points together with the associated
Voronoi diagram structure.

ii). Introduce a new point anywhere within the convex bhull
{1....8}.

iii). Determine all vertices of the Voronoi diagram to be deleted.
A point which lies within the sphere, centred at a vertex of the
Voronoi diagram and which passes through its four forming
points, results in the deletion of that vertex. This follows from
the ‘'in-circle’ definition of the Voronoi construction.

iv). Find the forming points of all the deleted Voronoi vertices.
These are the contiguous points to the new point.




v). Determine the Voronoi vertices which have not themselves
been deleted which are neighbours 1o the deleted vertices. These
data provide the necessary information to enable valid
combinations of the contiguous points to be consaructed.

vi). Determine the forming points of the new Voronoi vertices.
The forming points of new vertices must include the new point
together with the three points which are contiguous to the new
point and form a face of a neighbouring tetrahedra (these are the
possible combinations obtained from Step v).

vii). Determine the neighbouring Voronoi vertices to the new
Voronoi vertices. Following Step vi, the forming points of all
new vertices have been computed. For each new vertex, perform
a search through the forming points of the neighbouring vertices
as found in Step v to identify common pairs of forming points.
When a common combination occurs, then the three associated
vertices are neighbours of the Voronoi diagram.

viii). Reorder the Voronoi diagram data structure, overwriting
the engies of the deleted vertices.

ix). Repeat steps (ii-viii) for the next point.

The Delaunay triangulation is a systematic way to connect
together an arbitrary set of points in either 2 or 3 dimensions. It
does not provide a technique by which the coordinates of points
can be generated. In the early applications of the method, grid
points were computed using a technique based on structured grid
gencration43'44. A set of grid points was generated for each
individual component of a configuration and the resulting
collection of all points was then connected to form an
unstructured grid. Points which fell inside component
boundaries were automatically detected and then rejected. Such
an example is shown in Figure 2.2.15.
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Figure 2.2.15 Delaunay triangulation of a structured set
of grid points.

This proved to be successful, but it is a clearly limited approach
when applied to arbitrary geometries since it involved the
definition of an auxiliary set of points. This motivated the search
for automatic ways to generate points within the Delaunay
triangulation procedure. Several have now been developed and

applied to realistic conﬁgumtions45‘49.

An example of a procedure to add interior grid points in two
dimensions in the Delaunay triangulation is prescnted48'49. The

computational domain is defined in discrete form by the
boundary points. It will be assumed that this point distribution
reflects appropriate geomertrical features, such as variation in
curvature 2nd gradient. An zlgorithm which creates points within
the domuin which reflects the boundary point spacing is as
foilows:

45

i) Compute the point distribution function for each boundary
point r;= (x.y), i.e. for point i

dp; = 0-5(54“("]+l'ri)2 + sqri(r;ry | ),
where it is assumed that points i+] and i-1 are contiguous 1o i.
ii) Generate the Delaunay triangulation of the boundary points.
iii) Initialize the number of interior field points created, N=0.

iv)For all triangles within the domain,
a) Define a prospective point, Q, to be at the centroid of the
triangle.
b) Derive the point distribution. dp, for the point Q. by
interpolating the point distribution function from the nodes
of the triangle, dp,p,. m=1,2,3.
¢) Compute the distances d;,, m=1,2.3 from the prospective
point, Q, to each of the points of the triangle.
If {dpy, < adpyy, } for any m=1,2,3 then reject the puint :-
Return to the beginning of step (iv).
i {dy, > adpy,} for any m=1.2,3 then
Compute the distance s;, (j=1. N), from the prospective
point Q, to other points to be inserted. Pj. =1LN.
If lsj < Bdp,y,} then reject the point :- Return to
the beginning of step (iv).
if {sj > Bdpyy,} then accept the point Q for
insertion by the Delaunay triangulation algonthm.
Inciude Q in the list Pj. J=LN.

d) Assign the interpolated value of the point distribution
function, dp. to the new node, Py.

) Next triangle.
v) If N=0 g0 10 step (vid).

vi) Perform Delaunay triangulation of the derived points, Pj,
j=1LN. Go to step (iii)

vii) Smooth the mesh.

The coefficient & controls the grid point density, whilst B has an
influence on the regularity of the wriangulation. The effects of the

parameters a and B are demonstrated in the following examples.
Figs. 2.2.16a and b, show two triangulations obtained from the
boundary points which define the region between 2 concentric
circles.

A more realistic example of the automatic point creation
algorithm is given in Fig. 2.2.17, where a grid is shown around
a multiply connected airfoil system and a value of B=0.02 has
been used. It is clear from the examples given that the ‘exclusion

zone' for point creation, which is a circle of radius Bdpp,, has an
effect of controlling the regularity of the triangulation.

The method proposed for creating points can be generalised and
applied with a background mesh or point and line sources to
control grid point spacing. In these cases, the local point
distribution function is computed from a background mesh or
distance from a source which are either specified by the user or
derived from a previous flow computation, if grid adaptivity is
applied. Fig. 2.2.18 shows some examples of these techniques.




Figure 2.2.16
a) Automatic point creation a=1.0, $=10.0
b) Automatic point creation a=1.0, $=0.10
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Figure 2.2.18 Examples of the use of point and line
sources in the automatic point creation routine.

The method also extends with complete generality into three
dimensions48.49.

As was briefly discussed in the introductory comments, one of
the basic requirements of the grid is for it to be boundary
conforming. In the Delaunay triangulation, boundary conformity
has to be checked and if necessary enforced by the use of special
techniques. Given a set of points which describe a geometry in 2
or 3 dimensions and the Delaunay connections between these
points there is no guarantee that the resulting triangulation will
contain edges or faces which conform 10 the boundary surface.
In fact, for complicated shapes, the boundary edges and faces
will almost centainly not be recovered. The techniques devised to
correct the triangulation or force boundary integrity are many. In
2 dimensions, the given boundary edges can be recovered by
edge swapping and does not reaily represent a significant
problem. In 3 dimensions the problem is much more severe.

Baker50 chooses to introduce skeleton points 1o ensure
boundary integrity whilst Gcorgc5l and Weatherill#849 have

chosen to perform tetrahedral transformations to recover
boundary faces. This problem is often overlooked in favour of
the triangulation algorithm. However, the construction of the
algorithm to form the connections is very well defined and can
be relatively easily programmed. Boundary integrity is a less
well defined problem and as such is more problematic to solve.

Advancing Front

A grid generation technique which is based upon the
simultaneous point generation and connection is the advancing
front method. Given a set of points which defines a geometrical
boundary or boundaries and a measure of the local spacing
required within the domain, the method extends or advances the
boundary connectivity into the field. Grid points are generated
and connected to other local points and in this way the grid is
advanced away from the boundaries. The grid point density is
controlled by the user specified parameters which is often called
the background mesh. For a uniform distribution of points, the
background mesh can be a single triangle with point spacing
parameters assigned to each of the three nodes. Points in the
interior of the domain are created to be consistent with the
background spacing.

The nature of the method makes it ideally suited to complicated
geometries and requires a minimal input from the user. The

approach, first discussed by George52 has been enhanced and
extended into 3 dimensions by Peraire et at.33.54 4pq

Lohner3.

The approach of Peraire et al. is to define a mesh parameter 8
which controls the local node spacing and a local stretching

parameter & and the local direction t of stretching. These
parameters allow a grid to be generated with variable sized
elements and which are clustered and stretched in such a way
that one-dimensional features in a solution can be captured in a
very efficient manner.

Before starting to generate triangles inside a domain, the body
points are created and the initial front, containing the information
about all the boundary sides, is initialized. The orientation of the
boundary contours is such that the interior of the domain is
always to the left. The initial front is defined by two integer
vectors which have as many components as actual active sides.
In one vector the number of the first node of each side is stored
whereas the second node number is kept in the other vector. The
generation front changes continuously throughout the process of
triangulation and must be updated whenever a new element is
formed. Thus the front changes during the triangulation process
and reduces to zero when the end of the triangulation is reached.
Every time a triangle is gencrated its sides are added as new
entries in the front.

In the process of generating a new triangle, the following steps
are involved.
1) A front side, with nodes A and B, to be used as the base for a

triangle is selected. With distance 8; from points A and B, a




point C is chosen. 8 is chosen as

8 if 0.55°AB<8<2*AB
8= 0.55*AB if 0.55*AB >8
2*AB  if §>2*AB

2) Find all the nodes which belong to any of the current front
sides and lic inside the area determined by the circle (centre C
and radius r=3*AB) and the points A and B. Order nodes (a;,

i=1,n) according to their distance from the point C, in such a
way that the first node in the list is the closest o C.

3) Decide whether or not point C is added to the list. If
Aaj < 1.5*9;
Baj < 1.5*3)
then C is not included. Otherwise C is placed in the first position

of the list and the other nodes are shifted by one place.

4)Determine the connecting point a. This is taken to be the first

node in the list that satisfies the two following validity
requirements.
i) the interior of the triangle ABa; does not contain any of

the remaining nodes in the list (excluding C).
ii) The segment line ;M (M midpoint of AB) does not
intersect any of the existing sides of the front.
5) Form and store the new element. If C is chosen as the
connecting point a new node is created

This approach can be extended to a non-uniform distribution of
8 and also the inclusion of element stretching.

2.2.6 Other Grid Types

Overlaid grids

The basic techniques outlined indicate that the generation of a
grid around a simple geometrical shape is not too problematic. In
fact, sufficient is now known of the mathematics of grid
generation that high quality. controlled grids can be generated.
Only when the geometrv becomes complicated i< it necessary to
resort to more complex strategies, such as multiblock. The idea
that any complicated shape can be broken into geometrically
stmple components, each of which can be gridded, is at the heart
of the overlaid grid approach.

The overlaid approach generates a suitable grid around
components of a configuration and each grid is allowed to
overlap other grids. Inierpolation of flow data is then used in the
region of overlap. This approach, which has been taken to a
considerable degree of sophistication is often called the
'Chimera’ method!8:19. The key problem in the approach is the
accurate and conservative transfer of data between component

grids. The approach has been used with considerable success in
simulating moving boundary problems.

Hybrid grids

The hybrid grid approach is similar to the overlaid grid method
in that a structured grid is used wherever is appropriate, but
where the geometry becomes complicated an unstructured grid is

uscd56'59. Both grid types are then connected together in a
node-to node cont:nuous manner. The hybrid approach can be
utilised with a multiblock approach. A multiblock grid is
generated around a part of the configuration, with the additional
components gridded with an unstructured grid. The unstructured
grid can be generated using either the advancing front or
Delaunay technique. Fig. 2.2.19 shows a typical example of a
hybrid grid in 2 dimensions. Fig. 2.2.20 shows a typical
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example in 3 dimensions, where the nacelle and pylon have been
discretized with an unstructured grid which has then been
connected to a structured mulublock gnd.

Figure 2.2.20 An example of a hybrid grid in 3
dimensions.




2.2.7 Surface Grids

Surface mesh generation is, in itself, one of the most difficult
and yet important aspects of mesh generation in 3 dimensions.
The surface mesh influences the field mesh close o the
boundary, which is often where rapid changes in flow variables
take place. Surface meshes have the same requirement for
smoothness and continuity as the field meshes for which they act
as boundary conditions, but in addition, they are required to
conform to the configuration surfaces, including lines of
component intersection and to adequately model regions of high
surface curvature. Several approaches have been suggested in
u:ﬂ_litermun. but most rely upon a parametric representation of a
surface.

A suitable numerical representation of a surface involves aspects
of geometry modcllingw'GL Geometry modelling is a means by
which a continuous surface can be defined from a discrete set of
points. Such a description of a surface is valuable for the
generation of surface meshes which, in general, will not
coincide with the original geometry definition. A parametric
representation of a surface is straightforward to construct and
provides a description of a surface in terms of two parametric
coordinates. This is of particular importance, since the
generation of a mesh on a surface then involves using grid
generation techniques, developed for 2 space dimensions, in the
parametric coordinates.

In this way, surface mesh generation can be viewed as a

transformation of the Euclidian Space, R to a parametric
representation in coordinates (s,t) within which the grid is

generated to be subsequently mapped back to 9!3 to give the
surface mesh. Clearly, a key aspect of this procedure is the
mapping between the Euclidian space and the parametric space.

Many such transformations are available. One classic
formulation is a due to Ferguson and can be expressed as

1(s,1) = F(s) QT F(1)
where

F(s)=[1 s 2 53]
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r(0,0) r(0.1) r(0,0) r(0,1)
r(1,0) r(1,1) rn(1,0) r(L1)
15(0,0) 1(0,1) rg,(0,0) rg,(0,1)
r(1,0) rg(1,1) rg(1.0) rg(1,1)

The matrix Q involves coordinates, derivatives in s and t, and
Cross, or twist derivatives in s and t. The surface is represented
by a set of quadrilateral patches and within each quadrilateral
patch the Ferguson represemtation is applicable. Hence any
surface which is defined in terms of a network of lines which
form quadrilateral patches can be expressed in parametric
coordinates (s.1). The grid generation is performed in the
coordinates (s,t) before using the Ferguson foymulation to
convert to physical coordinates. Fig. 2.2.21 shows the sequence
involved in the process to generate a structured grid on the
surface of a configuration.
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Figure 2.2.21 The steps in the surface grid generation.

A similar procedure is followed to generate an unstructured grid
on a surface.

Surface-to-surface intersections

One aspect relating to surface grid generation which is often
encountered is the compuiation of surface-to-surface
intersections. Obviously, it is necessary to place grid points on
such intersection curves.

If two surfaces intersect and they are both represented in
parametric form as just described then it is possible to formulate
an equation which defines the intersection curve.

Assume the two surfaces x1 and x2 are represented by

3
2
xlz (xy2)! =1 s3s2s 1) M; t;'
1

1=x.y.2
and
v3
,
x2= (x.y,z)2 =] wWuly 1N Vv"
1
i=x,y,z

The (s,t) and (u,v) are sets of parametric coordinates and M; and
N; matrices containing the blending functions and parametric

derivatives of x. For an intersection for a constant parameter,
say v, the following equation must be satisfied

l3 v

3 2
{s szsl]Ml tt
1

3
(]
2
Judue 1Ny | Yo
Vo
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This results in three non-linear algebraic equations for s, t and v
which can be solved using the Newton-Raphson method.
Having solved, it is then possible to convert these parametric
coordinates to obtain the position of the intersection in the
physical space, x = (x.y.z).




2.2.8 Grid Adaptivity Techniques

To resolve features of a flowfield accurately it is, in general,
necessary 1o introduce grid adaptivity tcchniqucs°2‘7 1
Adaptivity is based upon the equidistribution of errors principle,
namely,

w; ds; = constant

where w; is the error or activity indicator at node i and ds; is the
local grid point spacing at node i.

Central 10 adaptivity techniques, and the satisfaction of this
equidistribution principle, is 10 define an appropriate indicator
wj. Adaptivity critcria are based upon an assessment of the error

in the solution of the flow equations or are constructed to detect
features of the flowfield. These estimators are intimately
connected to the flow equations to be solved. For example,
some of the main features of a solution of the Euler equations
can be shock waves, stagnation points and vortices, and any
indicator should accurately identify these flow characteristics.
However, for the Navier-Stokes equations, it is important not
only to refine the mesh in order to capture these features but, in
addition, to adequately resolve viscous dominated phenomena,
such as the boundary layers. Hence it seems likely, that certainly
in the near future, adaptivity criteria will be a combination of
measures each dependent upon some aspects of the flow and, in
turn, upon the flow equations.

Many different physical criteria have been suggested for use
with the Euler equations. Such measures include,

1u.Vsi, lu.Vul, . Vpl, lu.Vpl, IVM, IVpl, 1Vpi

where s, u, p, p, M are entropy, velocity, density, pressure and
Mach number, respectively.

There is also an extensive choice of criteria based upon error
analysis. Such measures include, a comparison of computational
stencils of different orders of magnitude, comparison of the
same derivatives on different meshes. e.g. Richardson's
extrapolation and resort to classical error estimation ‘iieory. No
generally applicable theory exists for errors associated with
hyperbolic equations, hence, 1o date combinations of rather
adhoc methods have been used.

It is important that the adaptivity criteria resolve both the
discontinuous features of the solution (i.e. shock waves,
contacts) and the smooth features as the number of grid poinis
are increased. A desirable feature of any adaptive method to
ensure convergence is that the local cel! size goes to zero in the

limit of an infinite number of mesh poimsm.

Once an adaptivity criterion has been established the
equidistribution principle is achieved through a variety of
methods, including point enrichment, point derefinement, node
movement and remeshing, or combinations of these.

Grid refinement

Grid refinement, or h-refinement, involves the addition of points
into regions where adaptivity is required. Such a procedure
clearly provides additional resolution at the expense of
increasing the number of points in the computation.

Grid refinement on unstructured grids is readily implemented.
The addition of a point or points involves a local reconnection of
the elements, and the resulting grid has the same form as the
initial grid. Hence, the same flow solver can be used on the
enriched grid as was used on the initial grid. An example of this
approach is given in Fig. 2.2.22.

Figure 2.2.22 H-refinement on an unstructured grid.

Grnid refinement on structured or multiblock grids is not so
straightforward The addition of points will, in general, break the
regular array of points. The resulting distributed grid points no
longer naturally fit into the elements of an array. Furthermore,
some points will not ‘conform’ 10 the grid in that they have a
different number of connections to other points. Hence grid
refinement on structured grids requires a modification to the
basic data structure and also the existence of so-called non-
conforming nodes requires modifications to the flow solver.
Clearly point enrichment on structured grids is not as natural a
process as the method applied on unstructured grids and hence is
not so widely employed. Work has been undertaken to
implement point enrichment on structured grids and the results
demonstrate the benefits to be gained from the additional effort
in modifications to the data structure and flow solver. Fig.
2.2.23 shows point enrichment on a multiblock structured grid
together with the flow contours of pressure and Fig. 2.2.24
shows grid refinement on a single block structured grid.

Figure 2.2.23 H-refinement on a multiblock grid




Figure 2.2.24 H-refinement on a sing
grid

le block structured
Grid Movement

Grid movement satisfies the equidistribution principle through
the migraton of points from regions of low activity 1nto regions
of high activity. The number of nodes in this case remains fixed.
Traditionally, algorithms to move points involve some

optimization principlel 3. Typically, as indicated in Section 2.2.3
expressions for smoothness, orthogonality and weighting
according to the flowfield or errors are constructed and then an
optimization is performed such that movement can be driven by
a weight function, but not at the expense of loss of smoothness
and orthogonality.

An alternative approach is to use a weighted Laplacian function.
Such a formulation i> often used to smooth grids, and of course
the formal version of the formulation is used as the elliptic grid
generator presented earlier, Eq. (2.2.1). Written in a general
form for both structured and unstructured grids the weighted

Laplacion is
M
Zcio (rin - rg)

n+t_p o i=1

' =fo* ]
3 Cio

i=t

where r=(x.y), r(';*hl is the position of node 0 at relaxation level
n+1, C;q is the adaptive weight function between nodes i and 0

and w is the relaxation parameter. The summation is taken over
all edges connecting point O to i, where it is taken that there are
M surrounding nodes. In practice, this relaxation is typically
applied over 50 cycles with a relaxation parameter of 0.1. The
weight function Cjq can be taken as a measure of any flow

parameter such as pressure, density or a measure of local error.
This approach proves trivial to implement on all mesh types, but
yet its effects are impressive. Fig. 2.2.25 shows a
demonstration of the method applied to both a structured and
unstructured mesh, respectively.
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Figure 2.2.25 Node movement

Combinations of Node Movement, Point
Enrichment and Derefinement

An optimum approach to adaptation is to combine node

movement and point enrichment with derefinement’ .. These
procedures should be implemented in a dynamic way, ie.
applied at regular intervals within the flow simulation. Such an
approach also provides the possibility of using movement and
enrichment to independently capture different features of the
flow. An example of combinations of these adaptive
mechanisms is given in Fig. 2.2.26.

Figure 2.2.26. Combinations of adaptive strategies




Grid Remeshing

One method of adaptation which, 1 daie has been primarily used

on unstructured grids, is adaptive rcmcshingés‘ As already
indicated, unstructured meshes can be generated using the
concept of a background mesh. For an initial mesh this is
usually some very coarse triangulation which covers the domain
and on which the spatial distribution is consistent with the given
geometry. For adaptive remeshing, the flowfield achieved on an
initial mesh is used to define the local point spacing on the
background mesh which was itself the initial mesh used for the
flow simulation. The mesh is regenerated using the new point
spacing on the background mesh. Such an approach can result in
a second adapted mesh which contains fewer points than that
contained in the initial mesh. However, there is the overhead of
regencration of the mesh which in 3 dimensions can be
considerable. Never-the-less impressive demonstrations of its
;sc have been published and such an example is shown in Fig.
2.27.

Figure 2.2.27 Grid remeshing for inviscid flows
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2.3 SPACE DISCRETIZATION
- DISSIPATION

All numerical schemes used for obtaining solutions to the Euler
equations must contain a certain level of dissipation to prevent
odd-even point decoupling, 10 maintain stability at discontinu-
ities, and to eliminate nonphysical solutions such as expansion
shocks. The dissipation may be explicitly added on top of
a nawrally nondissipative scheme such as pure centrat difter-
encing, or it may arise naturally trom the spatial discretization
such as occurs with upwind differencing algerithms. The ex-
act form of dissipation has a large impact on the accuracy of
the scheme. as well as the stability and robustness of the over-
all aigorithm. While some discrenzations rovide suine dis-
sipation due to the coupling of the space-ume discretizations.
these schemes generally have a steady state that depends on the
time step and are discussed eisewhere. Below. methods of ex-
plicitly adding dissipation to central differencing schemes are
discussed, as well as methods of achicving naturally dissipa-
tive schemes through upwind differencing. Also discussed are
methads of capluring sharp discontinuities without introducing
nonphysical oscillations into the compuatations.

2.3.1 Artificial Dissipation Models for
Central-Difference Schemes

Because the basic numerical scheme uses central differences o
represent spatial derivatives, the artificial dissipation required
to avoid spurious oscillations in the vicinity of shocks and to
stabilize the scheme is implemented in a convenient manner
by modify.ng the convective fuxes:

Hijuuy = 5(Hijn+ Hi ktn) ey

The terms diyy . dijygee and dj, 4 represent the
dissipative terms in the i. j. and k directions. respectively.
Although many variations in dissipation models are presented
in the fiterature, only two specific forms are discussed in this
paper.

N 1/~ .

Fisgin= S(Fu.u +Fii1j,k) -dieg

- 1= -

Gijf% x = g(Gn‘k + Gi.jtl‘k) - da,gx; k2D
1
3

Scalar Dissipation Model

The basic dissipation model is a nonisotropic model, where
the dissipative terms are functions of the spectral radii of the
Jacobian matrices associated with the appropriate coordinate
directions. The details of the model vary with specific re-
searchers. and no attempt is made here to describe the many
variations. However. the essential ingredients are described
below, and more details can he found in many cxcellent ret-
erences (e.g.. Refs. 1,2.3. 4.5, 6 and 7)

For clarity, a detailed description of the dissipative terms for
the i direction is given as
di gk = Nag “:5., W Wi — Wi
- f‘lr*_l_‘(win ik —3Wiitjx (2.3.2)

+ IW ik~ Wiogjxll

in the sbove expression, the coethicients « = and ' are related
10 the pressure gradient paiameter v,
ey 56 =200 4 + Poen L k]

v, = - 233
Peot a +200 0 +po

SUT A max v, ) (2.3.4)
RN - . b b
'..;!,L—"mx{“‘(" '.,4’_,,&)} (2.1.5)

where 57" and ~' are constants with typical values of 1/2 and
1/64. respectively. The vanable W iy related 1o the soluton
vector w by the equation

W=w+[o000p| (2.3.6

The term A 4 18 the scaling factor associated with the
E—coordinate. This scale factor 1s defined as

1 -
I 5[(,\5)‘”“,\5)”“‘] (2.37)

E

where \; is related 1o the spectrat radii of the Hux Jacobian
matrix in the three coordinate directions as follows

sl () 3)]

12.3.8)
The spectral radii for the &, 4, and ( directions are
Ae = gl + AVAT +.£_.','-T
Au = lgul +ay/ni +ni + 02 (239)

Ay =g+ uv‘/g;' +

In the above equations, « is the local speed of sound. and
qe.q, and g are the contravanant velocity vectors in the i,
j. and k (£, directions. respectiva!y. and are given by the
relations

Eu+&r+Ew

Gy = et + 0+ o

‘f€

(2.3.10)
0o = (el + e+

Expressions for the artificial dissipation cocfticients in the )
and k directions can be derived in a similar manner and take
the form

. A" Ay
(,\.,)=<,\,,;[1+(\—‘) +(:¢) ] (2.3.11
LAy v Ay

) ] (2.3.12)

The pressure switch given in Eqs. (2.3.3). (2.3.4), and (2.3.5)
serves to increase the second difference dissipation while
switching off the fourth differcnces near discontinuities. This
formulation is given by Jameson et al.® and increases the
sharpness of the shock wave without the introduction of un-
wanted oscillations due to differencing across the shock.
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Matrix-Valued Dissipation

The dissipation model described above is not optimal in the
sense that the same dissipation scaling is used for all the gov-
erning equations i a given coordinate direction. Reduced ar-
tificial dissipation can be obtained by individually scaling the
dissipation contribution to cach equation, as is done implicitly
in upwind schemes.*® The scalar coefticients used in the arti-
ficial dissipation mode! are replaced by the modulus (absolute
values) of flux Jacobian matrices. Thus Egs. (2.3.8)-(2.3.12)
can be rewntten as

Xe = Al A, =Bl A; = [C] (2.3.13)

The matrices A, B, and C have very few nonzero elements and
can be found in Ref. 7 in their entirety. The absolute value
of these matrices, illustrated here for the mairia A, is defined
in the following manner. Let

A =TAT;' (2,304

where A¢ is a diagonal matrix with the eigenvalues of A as
tts elements. Then

[Af = T¢|A| T (2.3.15)

where

B E | S | Y | 1
D] 0 0w
Ael=1] " 0 M D0 12.3.16)
00 0 a0
N0 0 0 Ay

The diagonal eleme nts of the above matrix are’®

Ay =g+ 'I\/f.‘f +&

Nemoqe -G+ &+ & (2310

Ay = qs

After considerable algebra JA| can be expressed in the fol-
lowing manner as

Al = AT + (L‘i}'—\—’ - 1,\1|)

[{'."_UE + LE ] (2.3.18)
2 T a1 e o

M) = A2
+ —%L.~—~—Q_}(E,+ (~ = DHEg)
Za&i+ & + €7

where 1 is the identity matrix, and E;. E:, Es, and E, are
given by the relations

VA2 —n —-r —u 1
wV3J2  —unm - —ww ow

Ei= | Vi —vuw —vv —ruw v (2.3.19)
wl?,2 —we —we —ww ow

WMF/2 ~hw =he —hw  h

}' 0 f)
~&iqr &8

3
< <

= '“&v’[{ wsa N

l'{.’l( &6 &

—dqede 1€ e

0 }] 0

& &E B

& &E 0 (1.3.20)
& &6 0 J

& qe&e 0
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—q¢ &r & §: "1
—uye  uby  uf, uf. 4y

Ea= | ~-vqe ¢& v& € B 2321
~-wqge w€, w§, wf 0
~hge hE,  hE, hE. O

0 0 V] §] )

£r"vz/‘-) -&ou =& —-&,uw &,
Es = Eu‘;.‘/? =& =&r L &
EVG/2 w60 -tiw & J
qeVP /2 —qgu —qee —qpw g
2.3.22)
and V3 = u* + % 4+ w15 the wtal velocity.

By taking advantage of the special form of the elements
of |A|. one can evaluate the matrix-vector products of the
form [A[(W..y ,« — W, 1) very efficienly. without ever
evaluating [A} directly.

In practice. \i. A2 Ay cannut be chosen as given by Eq.
(2.3.17).  Near sta:nation points. Az approaches zero; near
sonic lines. A\, or .» approaches zero. Since zero artificial
viscosity can create numerical difficulties, these values are
limited in the following manner

Yy
]\_.] = max (JA]. V3, \¢)
DG = max (A Vi)

max (A 15 Ag)

12.3.23)

where U, limits the eigenvalues associated with the nonlinear
characteristic fields to a minimum value that is a fraction of
the spectral radius, while 1 provides a similar limiter for the
cigenvalues associate:! with the hinear characteristic tields. The
values for the limiting coetticients V', and V7§ are determined
through numerical experimentation such that sharper shocks
and suction peaks are captured without the introduction of
spurious oscillations in the solution while still maintaining
good convergence properties. By setting U, = V7 = 1, we
recover the scalar form of the artificial dissipation. whereas
Vo, = V1 = 0 corresponds to the use of actual cigenvalues
without any limiters. The cigenvalues obtained from Eq.
2.3.23) are then modificd for large changes in cell aspect ratios
with the expressions given in Eq. (2.3.8). Similar expressions
can be derived for the matrices B and C by replacing the
contravanant velocity ¢ by ¢y and 4¢ and € by 5 and (.
respectively, in Eqs. (2.3.14) through (2.3.22).

Note that if the dissipative fluxcs are interpreted as madifiers to
the physical fluxes at the interfaces of the ditference molecule.
then the central- fifference scheme with the matrix dissipation
closely resembles the characteristic decomposition used in
upwind schemes.*"!!

A comparison o' results obtained with both scalar and matrix
dissipation is shown in Fig. 2.3.1. These results have been
obtained with the code described in Ref. 9. The case shown
is the invisc'd flow over an NACA 0012 ainoil at a free-
stream Mach omber of 0.8 and an angle of attack of 1.25°,
This flow ficld is characterized by a meoderate strength shock
on the upper surface and a much weaker shock on the lower
surface. As scen in the figure. the results obtained with both
the scalar and matrix dissipation are very similar. However,

® o@e
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the solution obtained with matrix dissipation exhibits slightly
sharper shocks on both the upper and lower surfaces.

25 LANIND SRuns S S SE SRS S EE
Scalar Dissipation | |
~-2.0 | Matrix Dissipation| ]
_15 - J
-1.0 + e ;
- \ 4
S -05 b TN\ ?

H ./ ~

0.0 47/ L ]
05 L \
1.0 + )
15—t L ]

00 02 04 06 08 1.0
x/c

Figure 2.3.1 Central-difference scheme
results with scalar and matrix dissipation for
NACA 0012 with M. = 0.8 and n = 1.25°.

2.3.2 Upwind Differencing

Flux-Vector Splitting

For flux-vector splitting. the fluxes in generalized coordinates,
F. G, and H are split into forward and backward contributions
according to the signs of the eigenvalues of the Jacobian
matrices and are differenced accordingly. For example. the
flux in the ¢ direction can be differenced as

aF = 0 F" 40 F” (2.324)
because F* has all nonnegative eigenvalues and F~ has all
nonpositive cigenvalues. Two methods of flux-vector splitting
are discussed below.

The first methnd is the technique outlined by Steger and
Warming in Ref. 12. Since the flux vectors are homogeneous
functions of degrec one in w, they can be expressed in terms
of their Jacobian matrices. For example. considering the flux
vector in the & direction, F can then be written as
F=Aw=2gu

5
o (2.3.25)

A similanity transformation allows Eq. (2.3.25) to be written
as

F=AW=TAT'w (2.3.26)

where the matrix A¢ is a diagonal matrix composed of the
cigenvalues of A and is given by

U § R | B | B}
g A 0 0 0
A= 0 0 Ny 08
0 0 0 X 0
UV I S | R

(2.3.27

where

Mas=ge=Seu+ &+

N =g +ayJE + 6+

(2.3.28)
——
No= - a8+ 6+ &

The eigenvalues can then be decomposed into nonnegative
and nonpositive components

A= AT 4N

2.3.29)

where
At = AN
. 5

(2.3.30)

Similarly, the eigenvalue matrix Ag can be decomposed into
Ag=A0+ 4] (2.3.31)

where .\: is made up of the nonnegative contributions of A
and .\ is constructed of the nonpositive contributions of A"
This splitting of the eigenvalue matrix, combined with Eq.
(2.3.26). allows the flux vector F to be rewritten as

F=Tg(A] + AT 'W
T T (2.3.32)
= (A" +A )W=F"+F"

The flux vector F has tire: dissinet eigenvalues given by Eq.
2.3.28) and can therefi re be written as a sum of three subvec-
tors. each of which has a d-sinct eigenvalue as a coefficient’”

F=I‘<| +F;+FI (2.3.33)
where
/l
"1 P
Fi=\ ’—’:-* pr (2.3.34)
. pu
_‘:,'(n" 4+ 4 u"")
”o
pux ,mé,
i‘_)“ = (\, -'_]~17— ne + /NI{: (2}15)

pu x pal,

cHrt NGEGESR:

and the direction cosines of the directed interface in the §
direction are

c &
S =
I¥¢)
- [
£ = I;I‘l (2.3.36)
~
S &
AN
where —_—
Vel = & + & +e2 (2337)

The forward and backward flux vectors F~ and F~ are formed
from Eq. (2.3.33).12.3.34), and (2.3.35) by inserting \, = \[
and N, = A, respectively.




For supersonic and sonic flow in the £ direction (ie.. |M¢| =
lii/a| > 1), where i = 4¢ /| V& represents the velocity normal
to a § = Constant face, the fluxes in this direction become

*=F =0 (Mc>1)
t=g F =F (Me < -1)

) "))

(2.3.38)

" Wy

The split fluxes in the other two directions are easily obtained
by interchanging n or ¢ in place of .

The fluxes split in the aforementioned manner are not con-
tinuously differentiable at zeros of the eigenvalues (i.c., sonic
and stagnation points). (See Ref. 14.) This is illustrated in
Fig. 2.3.2, where the split mass flux contributions for the one-
dimensional Epler equations, nondimensionalized by pa. are
shown as a function of Mach number. The gradient disconti-
nuities in the split fluxes are evident as the cigenvalues pass
through zero. The lack of differentiability of the split fluxes
has been shown in some cases to cause small oscillations at
sonic points that are rarely noticeable for most acrodynamic
applications but can be remedied by biasing the eigenvalues
near zero to a small value."
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Figure 2.3.2 Variation of Steger and
Warming split mass flux with Mach number.

The Jacobian matrices of F~ and F~ that are required for
proper linearization for an implicit scheme do not share the
same eigenvalues as A* and A" defined in Eq. (2.3.32).
However. the Jacobian matrices of F~ and F~ do have eigen-
values with the same signs as A~ and A~ so that upwind dif-
ferencing of the spatial derivatives remains appropriate.’* Al-
though A are casier to form. their us¢ in implicit schemes, in-
stead of the correct linearizations (OF £ /0w ), has been shown
in many cascs to cause severe time-step limitations.'*!*1*

In 1982, a new method of splitting the flux vector was pro-
posed by Van Leer.'” Herce. the fluxes are split so that the
forward and backward flux contributions blend smoothly at
eigenvalue sign changes (i.e.. near sonic and stagnation points).
Just as for the Steger-Warming splitting, the Jacobian matrices
OF* /W must have nonncgative eigenvalues and OF ~ /0w
must have nonpositive eigenvalues so that upwind differencing

——
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can be used for the spatial derivatives. In addition, both Jaco-
bians have one zero cigenvalue for subsonic Mach numbers.
which leads to steady transonic shock structures with only
two transition zones.'” In practice, when second-order spa-
tial differencing is used, shocks with only one interior zone
are usually obtained.' This feature is not observed with the
Steger-Warming flux splitting.

The three-dimensional splittings of Van Leer are given below
for o Hirection; the others are obtained similarly.

slit according to the contravariant Mach
i . arection, which is defined previously as

| M) = yuyaf 2 1. For supersonic flow ({Mg| > 1),
Fr=F F =0 (M >
N ~ - 2.3.39)
F =0 F =F (Mg < -1)

and for subsonic flow (JM| < 1.

i
fyfm{ Er(—il x2a)/~| + u}

F* = I—Ié| .f'ﬁ"“{ Eul—ii £2a)/~| + "} (2.3.40)
. f"t‘;\_gi{[g:(“‘ﬁizll)/"’-] + 11'}
Flhoens
where
[ = £pa{M¢ £ 1) /4 (2.3.41)

f‘_ﬁ”m_\. = f"j“,m([-—(*; — 1)t 2204 = l)ia + 2:12}/(7“) -1}
+ (:I"' + 0%+ 11'2)/2}

R (2.342)
To form f‘i. the dircction cosines 5 . &y und &A: are given
by Eq. (2.3.36) and & is the velocity normal to a ¢ = Con-
stant face. The fluxes in the other two directions are easily
formed by interchanging £ with » or {. In Fig. 2.33 the
nondimensionalized mass flux using the Van Leer splitting is
shown as a function of Mach number for the one-dimensional
Euler cquations. The split fluxes are continuously differen-
tiable at sonic and stagnation points; the improvement over
the Steger-Warming splitting is apparent.
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Figure 2.3.3 Variation of Van Leer
split mass flux with Mach number.




An interesting numerical consequence of splitting the fluxes
can be observed by examining the differencing of the mass
and energy fluxes. Considering a simplified onc-dimensional
case, an approximation to the spatial derivatives of the mass
and energy flux is given by

TP SIS SR
ANy gr z
‘,...;7\.* —tpulhy (2.3.43)

i
energy (%n‘lll ~ oy

(pud oy = (pud iy

At a steady state, so the energy equa-

tion can be written as

NpuH) H.,-H_,
(“:?—‘:-" R (pu) gy~ (2.3.44)

Because this will also equal zero at a steady state, the total en-
thalpy will be preserved numerically as it should be physically.
When the fluxes are split with either the Steger-Warming or
Van Leer method (as well as flux-difference splitting), it is no
longer possible 1o obtain a similar relation because the mass
and encrgy fluxes are differenced in different manners. The
consequence js that, although mass, momentum, and cnergy
are conserved by the numerical algorithm, the total enthalpy
is not conserved. In 1987, Hanel' moditied the energy for-
mulation for the Van Leer flux-vector splitting so that the split
energy flux is given simply by

ey = fELH (2.3.45)

By defining the energy flux in this way, the total enthalpy is
preserved. In addition. because the total enthalpy is a constant
at steady state, the energy flux remains degenerate so that the
shock-capturing capabilities are not compromised.

Godunov’s Method

A very successful scheme for solving the Euler equations that
has led to significant improvements in the accurac  f modern
numerical algorithms is due to Godunov (e.g.. see Ref. 20).
For this scheme. a piecewise constant approximation of the
data in each cell is obtained. which represents the average of
the data in the cell

-4

w; = i / wir. tidr (2.3.46)
Sy

Each cell interface, lucated at 1 & 1/2, is then considered to
separate two regions of constant properties in the same manner
as a diaphragm separates regions of high- and low-pressure
gas in a shock tube. Because an exact solution exists for
this problem, the evolution of the flow field can be easily
determined by solving for the interaction of the resulting wave
>ysiem, provided that waves from neighboring cells do not
interact.  Afterwards. the solution in each cell is averaged,

and the process is repealed. The process described above is
summarized in Figs. 2.3.4, 2.3.5, and 2.3.6.

w -1/2 1+1/2
+

Figure 2.3.4 Average state at time t = n.

w »1/2 1+1/2

contact

expansion shack

Figure 2.3.5 Solution of local Riemann problem.

w -1/2 1+1/2
n+1

w

+1

n+1

n+1
i-1

Figure 2.3.6 Average state at time t = n + 1.

To advance the solution in time. the one-dimensional time-
dependent Euler equations are integrated over both space and
time to yield an equation that describes the time evolution of
the cell average in each cell. For example. in cell 1,

el gn %[F(w%) -F(w,_y)] @3

Here, F(wii%) represents the time average of the flux be-
tween times n and n + 1. Recall that in advancing the solution
in time, At is chosen so that there is no interaction of the
waves from neighboring cell faces. Therefore. the solution at
the interface is constant over the time interval of interest. The
solution can then be advanced in time by forming the fluxes




on the faces from the data obtained by solving the Riemann
problem and advancing the solution using Eq. (2.3.47).

The above process can be broken down into a “projection”
and an “evolution” stage as described by Van Leer.? In
the projection stage, the behavior of the data in each cell is
reconstructed whereas the evolution stage refers 1o the solution
of the Riemann problem. In Godunov's method. the data in the
cell arc reconstructed by assuming it to be piecewise constant,
which leads to first-order spatial accuracy. By replacing this
approximation by a piecewise linear representation ui lne data.
the accuracy of the scheme can be raised 10 second order.?

Osher’s Scheme

In Godunov's technigue. the solution of the Riemann problem
requires an iterative procedure at each imerface whenever a
shock wave is present. To circumvent the iterative process. an
approximate soltution to the Riemann problem can be obtained
by replacing a shock wave with an overtumed rarefaction.” ™%
Therefore, because all nonlinear waves are expressed in terms
of rarefactions, explicit relations are obtained for the interme-
diate state variables connected by cach wave.

Flux-Difference Splitting

For flux-difference splitting. the solution of the Riemann prob-
lem is again considered. However. the solution of the Riemann
problem is foregone in favor of an exact solution to an ap-
proximate problem that does not require any iteration. More
specifically. for one space dimension. data arc advanced in
time through a linearized version of the Euler equations given
by I3 Y

W T UW

e + I = 0 (2.3.48)
where A isa specially constructed constant matrix that satisfies
the property that for any wy and wg (which represent the left
and right state variables on either side of a cell face),

A(wr.wr)dw = AF (2.3.49)

where A() = (+), — (-], (i.e. the jump across an interface).
Note that the tilde (~) denotes that the matrix is constructed
with a specific averaging procedure that is described below.

Equation (2.3.49) can also be written as

TAT 'Aw = AF (2.3.50)
Since the cigenvalues represent wave speeds of individual
waves, Aq = T 7' Aw represent jumps in the variables due to
the influence of each wave. Hence. the change in flux between
the left and right states is expressed in terms of the jumps in
these states projected onto the eigenvectors:

AF =) (AT (2.3.5D)
By considering Ehc backward-moving (Xk < 0) and forward-
moving waves (A > () separately, the flux on the face at i+§
in Fig. 2.3.5 can be determined through any of the following
equations (all of which are equivalent):

Fy=Fu+) (LdgT, (2.3.52)

N

F-”* =Fr ~ Z(XLAQ)&‘L (2.3.53)

;»U
1 1 N
Fi»g = E(FL +Fr) - Szl:l!z\t!Aq)TA; (2.3.54)

The last form can be considered to represent a central-
difference term plus a dissipative term.

Note that if w, and wgr are such that only a single disconti-
nuity 18 prescit, Bg. (2.3.49) seduces o

SAw = AF 12.3.55)

where S is the speed of the discontinuity and is an eigenvalue
of A. In this case. the discontinuity will be resolved exactly.

The specific determination of A presented in Ref. 25,
Here. note that the flux F and dependent variables w are both
quadratic in the components of a parameter vector given by

w' = /p(lou e w H)' {2.3.56)

With this relation, the jumps across a wave in both the de-
pendent variables and the fluxes can be expressed in terms of
jumps in the parameter vector

Aw = BAw (2.3.57)

AF = CAw' (2.1.58)

In Ref. 25, the exact form of B and C are shown 10 be rea-
sonably simple. For example. for three-dimensional Cartesian
coordinates.

B={ i 0 W 0 0 2.3.59)
iy 0 0 w 0
Lo RE-LT I L =y =4
I’ 1y W) 1} 0 )
Ao PR | Ao
N =i, ey Ay Ly A=y
C= 1] Wy i {) 0
1 Wy ) e )]
() i, 0 1§ s
(2.3.60)

Here. the overbar denotes the arithmetic average of w' from
the left and right states. From Egs. (2.3.57) and (2.3.58). the
matrix A is given by

A=CB™' {2.3.61)
This matrix corresponds to the Jacobian matrix A = JF/dOw,
evaluated at an averaged statc given by

= (/)/./ln)'/"’
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For three-dimensional flows in generalized coordinates. the
flux on each face is determined in a one-dimensional manner.,
based on the assumption that the waves travel in the directions
of the grid lines. Considering the £ direction as an example,

1 &
u—nf: (u—:l{:)ﬁ-‘+ t
Te= |v- % (" - “E-")E‘
(

H - ia (5_%', - l'la){x + ua (‘J,—

L+ ) - -
E(1+a-Far) - atag 4 Uk
T = 1604 s - 500 -5 g -5
(4% - Far) - x atng - Ll
M-+ ) G -1t

H~a

0

A{: )]

0

0

where @ is the dot product of the velocity vector with the unit
vector normal to a cell face.

Many researchers currently use the flux-difference splitting
technique described above. Further, Van Leer et al."* demon-
strate that for viscous Hows, this flux function is more accurate
than central-difference formulations with scalar dissipation, as
well as upwind formulations based on flux-vector splitting.
The explanation lies in the consideration of Eq. (2.3.54) as
a central-difference flux with an added dissipative term. By
considering the influence of the individual waves, it is appar-
ent that as an eigenvalue associated with the wave vanishes,
the corresponding dissipation alse vanishes. This mechanism
is the means through which the exact solution 10 a single dis-
continuity is obtained, as shown in Eq. (2.3.55). For viscous
flows, the boundary layer is considered to consist of a series
of shear waves normal to the body. Because the velocity in
this direction is small, the corresponding dissipation is also
small; the result is that boundary layers are captured with very
high accuracy.

Observe that vanishing cigenvalues thence artificial viscos-
ity for the wave) occur at shock waves, where X =i —u
passes through zero, as well as contact discontinuities, where
Ax = & = 0. Unfortunately. vanishing eigenvalues also oc-
cur at sonic points at which the flow transitions from subsonic
to supersonic flow and Ny = it — « is again zcro. This is a
consequence of replacing the full nontinear problem with a lin-
earized version in Eq. (2.3.48) which considers an expansion
to be described by a single wave instead of a series of waves.
This can lead to expansion shocks in which the flow transi-
tions from subsonic 1o supersonic in a discontinuous manner.
To remedy the situation. the eigenvalue A; = i ~ « is often

ag,
al)e (vmaf)h (w-ud)

the fux is determined on a cell face located at ¢+ + & with Eq.
(2.3.54), where Aq = T ' Aw, T = T¢. and the subscript ¢
denotes that the matrices are formed from the vectors normal
0 a £ = Constant face. The matrices, T¢ and T;' are
formed with the averaged values from Eq. (2.3.62) as are
the eigenvalues. The resuiting matrices are given as

E)A 1 R
(u - a{x){. (u - u(.( ){, i+ aly
(\' - x{y)f_\. +a ( ){, v + af, (2.3.63)
E + a w4 ;\E,
ua)£\ + va (‘_,' - ll.\)é +wa H+aa
—R-ns SR -FEY S 5
e P V1. F Ay
a a ", s N AT ,
g, 4l g, ot iy (2364)
I e 1T
£, Wl L. , _
il il el o
n o0 1]
0 0 0
(TR ) 12.3.65)
0 n 0
0 0 i+a

moditied stightly so that it does not vanish at these points. As a
result, a small amount of dissipation is added to the scheme so
the wave is spread slightly over several mesh points. Although
many forms of this modification exist, the most common 1m-
plementation is to modify the eigenvalue according t0™

il

i 2 ¢
!X{ E{ R : o
1<_L* +,) iy <

.

(2.3.66)

An exampic of an expansion shock s shown in the lower
portion of Fig. 2.3.7. which depicts the Mach number distri-
bution through a quasi-one-dimensional converging/diverging
nozel obtained with a first-order spatially accurate discretisa-
tion. As seen, without the smoothing of the eigenvalue. an
expansion shock appears as the Mach number_passes through
unity. However, by restricting the value of A\ = & - o to
be nonzero, a smooth transition through the sonic point is ob-
tained. and the expansion shock is climinated. In practice.
the addition of eigenvalue smoothing is often not required for
higher order methods. However. several conditions. usually
associated with very strong shocks. nccessitate the inclusion
of dissipation through the cigenvalue. similar to Eq. (2.3.66).
Several researchers have independently observed these phe-
nomena: an interesting summary of many of these conditions
is given in Ref. 27.

_
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Figure 2.3.7 Example of expansion shock
and the effectiveness of Eq. (2.3.66).

Several other Hux tunctions have been developed in recent
years that are not as widely utilized as those discussed above.
but are nevertheless worthy of mention. The advection up-
stream splitting method (AUSM)™ is a fux-vector splitting
method that includes some of the favorable properties of flux-
difference splitting while maintaining the computational effi-
ciency of flux-vector splitting and i~ casier to linearize for use
in implicit methods. It has been ~hown to captare contact dis-
continuities with accuracy similar to flux<iitference splitting
but does not sutfer some of the deficiencies. such as expan-
sion shocks. Two similar methodologies are the wave/particle
sphit (WPS) method recently developed and reporied in Ref. 29
and the convective upwind and split pressure (CUSP) scheme
developed by Jameson." Both of these schemes are similar to
the AUSM scheme and exhibit similar accuracy. Several other
variations to flux-vector splitting have also been derived and
are discussed in Ref. 30. These include flux-splitting schemes
based on higher order polynomials of the Mach number. sim-
ilar to those of Liou and Steffen.' In addition, Coquel and
Liou™* have recently developed flux functions which com-
bine the hest features of both flux-vector splitting and flux-
difference splitting by using tlux-vector splitting for non-linear
waves such as shocks, while using using a flux-dific.. .. ol
ting for the linear waves. This approach simuitaacousty

serves the robustness associated with flux-vec:
well as accuracy in capturing stationary contact 4: - -t o

splitting

The characteristic flux extrapolation technique of Eberle has
been used for computing low~ . out many practical geome-
tries and is described in nofs. 34, 35, 36, 37, and 38. This
method has been shown to be capable of capturing strong
shocks and can also recover a consta! total temperature. In
Ref. 37. modifications to the flux-limiter of Van Albada™ are
also discussed, as well as the incorporation of equilibrium real
gas.

Multidimensional Upwind Methods

The upwind techniques discussed abave are applicable strictly
to one-dimensional problems. To apply these techniques to

6}

two- and three-dimensional problems, the usval procedurs is
10 assume that waves propagate normal to gnd lines, which
allow Riemann solvers to be applied in a one-dimensional
manner separately in each coordinate direction. This approach
leads to quite sausfactory solutions when features such as
shock waves and shear waves are essentiaily ahigned with the
mesh. However. severe degradation of accuracy can occur
when the features are oblique to the gnd lines because they
are interpreted by the Riemann solver (o be composed of pairs
of grid-aligned waves instead of a single wave. The result is
that shocks and shear waves may be severely smeared. An
illustration is given in Fig. 2.3.8 in which a single shear wave
(dashed line) is misrepresented as a compression plus a shear
wave because of the onentation of the gnd (solid line). The
consequence 10 this case is that an incorrect pressure difference
across the wave is obtained. which may manifest itselt i a

computation as a pressure distortion *"*!
= c— -— ' '
shear compression shear

Figure 2.3.8 Representation of an oblique
shear wave by two waves aligned with the grid.

fn recent years, several research efforts have been aimed at
overcoming the possible loss of accuracy attributable to the
dimenston-by-dimension approach to upwind difterencing. A
summary of some of the more promising technigues is given
in Refs. 40 and 42.

In general, the approaches to multidimensional upwinding can
be categorized into tlwo groups: those based on computing
a flux function and those that rely on fluctuation splitting.
The first approach can turther be divided into technigues that
usc a single dominant direction and those that use more than
one direction. Flux-function methods that use a single dom-
inant wave direction use a frame of reference aligned with
the assumed wave direction to compute fluxes that arc then
rotated back into the gnd-aligned frame. Examples of this
type of approach include the work by Davis,'' Dadone and
Grossman.* Goorjian.** Hirsch et al.**7 and Levy. Powell.
and Van Leer.™ Generally, these methods show good im-
provement over grid-aligned methods for first-order accurate
spatial differencing. For higher order methods. the improve-
ments are less dramatic, and convergence to a steady state is
sometimes difficult. ™

Flux-function-bascd methods that utilize more than onc wave
direction include those of Rumsey et al.***' Parpia and
Michalek.”" and Powell. Barth. and Parpia.®' In Refs. 41,
49, and 50, states are obtained on cither side of a cell face
in much the same manner as in the dimension-by-dimension
approach. However the fluxes are computed by assuming that
the states on cither side of the face are connccted by two
acoustic waves and an catropy wave, all in the direction of
the velocity difference. as well as a fourth (shear) wave that is
normal to the first three. In Rumsey ct al..* the dircctions are
usually frozen after a certain aumber of iterations (o enhance
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coavergence. This requires that a fifth wave also be added
because the four wave model can no longer correctly connect
the states on either side of the face. The tifth wave 1s a weak
shear wave that is assumed to be perpendicular to the velocity
difference direction. In this way, the difference in states can
be cxpressed as

Aw = Z arRi

b=

(2.3.67)

where ay is the swength of the &' wave and Ry is an
cigenvector of the matrix A cost#y + Bsind, (A and B are
flux Jacobian matrices, and #; 1s the propagation angle of the
k'™ wave). The flux on the cell face is now computed by
accounting for the influence of cach wave as

1 1
F,.4=3(FL+Fr)~ 52“‘4],\;-!_5\")&( (2.3.68)

In general, the success of schemes based on this methodology
is stmilar to that described previously.

Muitidimensional schemes based on fluctuation splitting are
rapidly evolving. In general, these schemes are composed of
three primary pieces:

1. A residual calculation method for the cell (typically a
trapezoidal numerical intcgration of the fluxes)

2. A method for decomposing the cell residual into wave-
like components (the “wave model™)

3. A method for distributing changes caused by waves w0
the vertices of the cell, in such a way that the positivity
of the resulting scheme is maintained.

Perhaps the most familiar fluctuation-splitting scheme is that of
Ni* in which the Lax-Wendroff scheme is cast as a cell-vertex.
or fluctuation-splitting method. More recent work in fluctua-
tion splitting has improved this method in two important ways:
the residual-distribution scheme (i.¢., the method for “pushing”
the changes to the vertices of the cell) has been improved with
careful study of the scalar advection case'™ ™ **** and var-
ious ways of breaking the residual into picees duc to planar
waves (i.c., wave model) have been developed.*™ Progress
on the residual-distribution schemes has been quite good, and
positive, accurate methods for distributing the pieces of the
residual have been developed and extensively tested. Many
wave models have been developed to date, and the advan-
tages and disadvantages of the various models have not been
clearly established. Some of the differences among the wave
models include the number of waves that are used (typically
between four and six) and the directions in which the waves
are assumed to propagate.

The fuctuation-splitting schemes have been shown to work
quite well in supersonic tflows, but issues of solution conver-
gence and accuracy in subsonic flows have not been thoroughly
addressed. Current work. such as that of Paillere et al.™ is

concentrated on these issues, and substantial progress is being
made.

Higher Order Schemes

Up to this point in the discussion of upwind schemes, the de-
termination ot the lcft and right state variabies on cither side of’
a cell face has been. for the most part. Jeft unspecitied. Recall
that for Godunov's method, it a piecewise constant approxi-
mation of the data in cach cell is assumed. then the resulung
scheme is first-order accurate 1 space. The accuracy of the
approximation can be rused to higher order by replacing the
piecewise constant approximation of the data with a piecewise
polynomial approximation.®~™  For instance. the state van-
ables on the left and right side of the cell interface located at
1+ 172 Fig. 2.3.9 can be determined as

1
WL = Wi + ]{(l ~ KA+ (1 + 1AL

1 (2.3.69)
WR = Wisy — ][(l SR YR B U S T
where
AL, Zwi - w,
(2.3.70)
(A, =wi—w
Equation (2.3.69) represents a one-parameter famuly  of
schemes. A fully one-sided approximation of the data is
obtained by inserting » = —1 while » = 1/3 leads 10 a

third-order upwind-biased approximation. and » = +1 yields
a second-order central-difference scheme.  All the upwind-

-2 i-1 i i+1 1+2

i-1/2 1+1/2

Figure 2.3.9 Higher order interpolation stencil.

hiased approximations use the same number of cells for the
residual computation as the fully one-sided scheme and may
be implemented with only a slight increase in computational
cffort. The third-order scheme is strictly third-order accurate
only in one-dimensional calculations. To obtain a third-order
scheme in two or three dimensions, computation of the flux
across a cell face on the basis of an averaged state is not suffi-
cient because the difference between that average flux and the
flux computed from the averaged states is a term of second
order and vanishes only for a iincar system of conservation
laws. Nevertheless, by switching from a fully upwind approx-
imation (1 = —1) to the third-order (x# = 1/3) scheme. the
accuracy of smooth solutions can be increased.™

A deficiency in using Eq. (2.3.69) for reconstructing the data
at the cell taces is that new extrema can be introduced even
when the original data s monotone.  For example, in Fig.
2.3.10, a nonmonotonc 1nterpolation is obtained between cells
i — 1 and /. If this protile 1s convected and the cell averages




are then reconstructed, nonphysical osciilations can result 1n
the solution.

-1 i i+l

Figure 2.3.10 Iintroduction of new extrema
using upwind-biased interpolation.

For determining acceptable limits on the slopes, the data in
each cell are first represented by a Taylor series expansion
about the center of the cell. For example, the data on the
boundaries of cell i in Fig. 2.3.10 can be determined as

w,+§=w.+ 1({)—v!>Ax=w;+‘—l-bw (2.3.71)

2\ 9% 2
! (ﬁ)Ax =w, - %hw (2.3.72)

wltg W ax

where Ar is the width of the cell and

1

fw=Cl(l-mAL + 1+ (2.3.73)

tot

For monotone increasing data. a sufficient bound on the size of
AL and AL is obtained by rcquiring that the tnterpolated data
on the cell faces does not exceed the values in the surrounding
cells. This limit is achieved provided that

wi + %5“’ SWiy 20w <25,

1 2.3.79)
w; — §bw >wiy = sw < 20

In order to ensure a monotone interpolation, the magnitude of
éw may have to be limited to be no larger than either 2,
or 2A_:

(dw) <min(2A;.28_) (2.3.7%)

Equation (2.3.75) provides a guideline for reducing the mag-
nitude of any gradient that would result in 2 nonmonotone
interpolation. Following Van Leer,”’ the value of dw that
will maintain monotone interpolation will be referred to as
(dwr) .4 and can be written as

limite

(6W)y0ca = Rlo)bw (2.3.76)

where 0 = %f— and R(o) serves to limit the size of the original
gradient. From Egs. (2.3.73). (2.3.75), and (2.3.76). R(o} is
written as

4 10

(-} +{(1+mo (1-r+(1+x)o
2377

R(o) = min
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in Fig. 2.3.11, a plot of R{o} from Eq. (2.3.77) is shown,
where ~ has been assumed o be zero (v = 1) in Eq. (2.3.73).
n the figure, the avea that lies inside the curve is the region

2.0 X T T T d T - T
4 ! V'\\y 4
15+ ° .
- p E
R(¢) 1.0 | :
w
0.5 p .
OO i ) I S RPN | e

Figure 2.3.11 Boundary of R(v)
for monotone interpolation.

for which monotone interpolation is obtained.

Foro = 1. A, isequal to A _. and the data in the cell appears
linear. Because a second-order scheme should reconstruct
linear data exactly. a basic requirement on the Jimiter function
is that it pass through unity for ¢ = 1, which can easily be
achieved by modifying Eq. {2.3.77) 1o read

. 4 o

R = L

(o) = nun (1=r)+(1+nj0 (1—;;)+(1+:;):3J
12.3.78%)

In this manner, the slopes as calculated from Eq. (2.3.73) are
left unchanged. provided the interpolations remain monotone.

Many variations for R(o) have appeared in the literature that
preserve monotonicity and are second-order accurate. One
of the most commonly used limiters is developed by Van
Albada® and is given by

R 20 2379
o) = ———— 23
(0) = =" (2.3.79)
while a limiter function of Van Leer is given by®
4o
Rioy = ———— (2.3.80)
(o + 1)°

Note that as long as R(©) maintains second-order accuracy and
remains within the monotone region. RB(o) does not nced to
remain below | in magnitude. Therefore. the limiter tunction
can actually serve to increase the slope calculated from Eq.
(2.3.73). An example of such a limiter is Roe's “superbee”
limiter®*

10

1
w1 0Z2e<s
2 ]
= 3 Se<l
Rioy= ;> 2=" 7] {2.3.81)
(|+'0| 1 <o S -
APy 0>2
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A plot of the Van Albada, Van Leer, and Roe’s superbee
limiters is shown in Fig. 2.3.12. Nete that all the limiters

2.0 e
Superbee 1
Van Albada 4
1.5 Van Leer
Monotonicity Boundary l

R(¢) 1.0

0.5 r S A

Figure 2.3.12 Superbee, Van
Albada, and Van Leer limiters.

shown pass through unity when © = 1 which maintains
second-order accuracy.

In the previous discussion, it has been assumed that the data are
monotonically increasing: simifar arguments hold for mono-
tonically decreasing data. For nonmonotone data in which the
sign of A, and A_ differ. (Aw), ., can be simply set to
zero to make sure that any cxtrema are aot mageitied.” In
the work of Spekreijse.™** general conditions are derived for
the limiter function that will maintain second-order accuracy
as well as monotone steady-state solutions that do not set the
gradient to zero at the extrema.

Another method that is usefu! to the design of nonoscillatory
schemes is based on the definition of total variation. For a
discrete one-dimensional scalar solution on an infinite domain,
the total variation is defined at time level n as

TV = Zluzq -1 (2.3.82)

N

In the top part of Fig. 2.3.13. for a monotone grid tunction.
the total variation is determined strictly by the endpoints (i.c.
(W22 ~ W2 ). However, if a new extrema is introduced
as in the lower half of the figure. the total vanation will
increase. Hence, for a scheme to remain nonoscillatory, the
total variation should remain the same or decrease as the
solution is updated:

TV(W ™) < TV (21.83)
)

Schemes derived from these guidelines urc appropriately catled

toal vanation diminishing (TVD).

.
L)
Time Levei n

- X

w Time Level n+1

- X
Figure 2.3.13 Exampie of increasing total variation.

Sutticient conditions tor constructing TVD schemes were first
developed by Hanen.™ While many investigators have exam-
ned criteria for coastructing TVD schemes, te.g.. 67 and 68).
the method of analysis given by Banh in reference 69 rehes
upon a matrix interpretation and is described below,

For obtaining bounds on the vanation. g general torm for g
conservative difference scheme is tirst wntien as

i
ti b . hoe
”‘ + E D(-”..%A,—-§>,” -
peop (2.3.84)

a1
Wi+ S Cip W
J=-r :

where D(j), are nonlinear funcuons of 11

al the grid points and

,oand Ty

A B | R 1 (2.3.85)
By assuming a periodic domain, the detinition ot the discrete
total variation can be expressed in terms of a difference matrix
H as

-1 1 (3] () 8
0 -1 1 ] )
0 0 -1 i 4]
H= 12.3.80)

4] ] 0 -1 1
1 ) 0 0 0 -1

With Eq. (2.3.86). the total vanation can be written as

TV = [T HITE, (238N
where ||v]|, is the L vector norm given as
vl =Y te)l (2.3.88)
)
The TVD condition can then be expressed as
=W < HW) (2.3.39)
e e i




The general difference scheme, Eq. (2.3.84). can be rewritien
with the forward-difference matrix as

[1 + vﬁu]w"" ={I- il - MHW" (2390

where M and M are matrix operators that may be nonlinear
functions of W because the C's and D’s in Eq. (2.3.84) are
themselves functions of W. For 8 = (1, a fully explicit method
is obtained and implicit formulations are otherwise obtained.

Multiplying Eq. (2.3.90) from the left by the forward-
difference matrix H and regrouping terms yields an cquation

tor the evolution of the variation

CHW" ') = RHW") >

o 2391)
HW""' = " R(HW")
where _
c={1+ #HM| (23.92)
R={I-1(1-#HM] (2.393)
By taking the L, matrix norm of Eq. (2.3.91)
}’;HW""&'“ = ’”L'“'R\HW“)HI
<L 'RYL PEW, 12.3.94)
<HET IR IHW,

a sufficient condition for the scheme to remain TVD is
HC'RIL, < 1. In addition. because JC'RY), <
fC7 IR, it both £ 7', < 1 and |[R|l, < L. the re-
sulting scheme will he TVD as well.

By first considering the explicit operator R, one can sum the
clements in the columns by multiplying on the left by a row
matrix s = [1. 1. ... 1]. Now, because sH = [0. 0, ..... 0], Ey.
(2.3.93) shows that the columns of R will sum 1o unity regard-
less of the choice of M. The L, matrix norm corresponds to
summing the absolute value of cach of the columns and tak-
ing the largest of these values. Because cach column sums 1o
unity. a necessary and sufficient condition for || R}, < 1isthat
cach clement of R be nonnegative. Otherwise. when the ab-
solute value of the individual elements is taken to compute the
norm, the sum would be greater than unity (e, g Kif, 2 1

Application of this criteria to explicit schemes results in iden-
tical requirements given originally by Harten.® as can be seen
by considering a gencral explicit scheme written at 2 node
point j in the form

W 0 O - )

T (2.3.95)
~CT V=)

By subtracting the cxpression at node j from that at j+1. an
expression for the evolution of HW at node point j can be
obtained:

EURMES) BTN b Lt
+ O HIWL, + 7 HIY,

e =1

(2.3.96)
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If this expression is wnitlen at each niesh point and assembled
into a matnx, then

)
1
-~
-
|
~
. 1
'
|
~
-
H

(2397)
Now._ it cach element of this matrix is requtred to be positive.
then the TVD critena given by Harten in Ref 66 results:

(2.39%)

A similar procedure can be used for implhicit schemes and is
not repeated here.

Many schemes have been developed and applied 1o ditticult
acrodynamic problems that rely heavily on the TVD concepts
discussed above. While by no means complete, a few exam-
ples can be found in Refs. 24, 26, 70, 71, and 72, as well as
in the references contained theren.

The methodologres described above only achieves higher order
accuracy for smoothly varying meshes. To obtain lgher order
accuracy on general meshes, as well as 1o extend the accuracy
beyond second order. an extensive amount of rescarch has been
conducted for both structured and unstructured gnds. An im-
portant class of such schemes is the essentially nonoscitlatory
(ENO) schemes. Aithough no details are given here, the es-
sential ingredients include a polynomial reconstruction of the
data from cell-averaged data that 1s .00t up to a speatied
order of accuracy:

Rie:W)=wiry + 0" 12,399
where R(r:W) represents the data reconstructed from the
cell averages and wir) is the exact value.  The scheme
also must be conservative in the sense that il one integrates
the reconstructed data over the cell. then the cell average is
recovered. The fast criteria i1s that the reconstructed data be
“esseatially nonoscillatory.” That is,

TVIR(r:w)) <TViw(ry) + O™ 2.3.100)
In order to satisfty Eq. 2.3.100) in a smooth region of a
discontinuous solution. the stencil used in the reconstruction
process is varied as the calentation proceeds. Further details
and descriptions of the theors, as well as applications of this
type of technique. can be tound in many reterences. ™t 747 ™

Another technigue 1o obtain higher order accuracy that has
been particularly usetul for unstructured grids is the so-called
“k-exact” method. Here. the conservation of the mean is en-
forced. and the reconstruction is such that a polynomial of
degree k or less is reconstructed exactly.™ In the implemen-
ations of Retfs. 77, 79, and 80, the stencil generallv remains




fixed which results in a somewhat lower computational ex-
pense. However, in order 1o avoid oscillations, a limsung pro-
cedure must be applied where steep gradients are present in or-
der to avoid nonphysical oscillauons. This tends to reduce the
order of accuracy in these regions. More recently. algonthms
have heen proposed that incorporate stencil-varying techniques
into high-order ENO methods for unstructured grids.”’ **

High-order ENO schemes can also be implemented in a timte-
difference manner in which the reconstruction operator acts
upon pointwise tluxes.”'

2.3.3 Extension to Real Gases

Many of the flux functions discussed above have been ex-
tended for use with real gases. including both equitibrium and
finite-rate chemistry. In Ref. 84, for example. the flux-sphitting
schemes of Steger-Warming'? and Van Leer'” are extended for
real-gas considerations as well as for the flux-difference spht-
ting of Roe.™® Alernaic Jderivations that do not rely on some
of the assumptions made 1n the previous reference are given
for an equilibrium real gas in Ref. 85 for flux-vector splitung
and in Ref. 86 tor Roe’s tlux-difference sphiting scheme.
Additional real-gas extensions are given in Refs. 87 and 88.
For the characteristic flux extrapolation technique of Eberle.”
real~gas extensions have also been made and are reported in
Refs. 34, 37. and 89.
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24 TIME DISCRETIZATION

A number of different explicit and implicit schemes which
have been used to compute three-dimensional solutions to the
Euler equations are reviewed below. The general process of
discretizing the governing flow equations leads to a system of
equations of the tform

Hiw) =0 (241

where w is the vector of unknowas at all grid points tur a aode-
based schzme and at elements for a celi-based formulation.
The solution of these equations can be obtained by using
an cxphiait or imphent formutation for w. Algorithms ot an
explicit tormulation ¢ be wntten as

w' = Hiw™ 242
while an imphicit scheme can be expressed as
Hiw" ' w'i=0 (243

Here, w” can be interpreted as the value of wat cither ume
level or iteration level n: the particular term of H arises from
the type of ume discretization used. Most of the appli-suons
to date have been for steady flows. in which the role of the
time discretization s o factlate or accelerate convergence to
steady Mate. A requirement also exists for time-accurate sim-
ulations of the unsteady flow ficlds associated with dvnamic
vehicle motions or time-dependeat flud motions arising rom
separated and/er vortical flow nelds.

The time discretization methodds used co solve the Euler equa-
tons can be typed into two classes' coupled space-time meth-
ods and semdiserete algornhms. In the latter approach. the
spatial discretization is decoupled t.om the temporal discretiza-
tion by first ditferencing the spatial derivative terms; the partial
differennal cquations are thus transtormed 1o a system ol first-
order ordinary ditferential ecquations in tme. For steady flows,
the time-rate-of-change of the spatial residual cqustion can be
drivep (o zero, and the resutting physical solution 1< indepen-
dent of the particular path taken 1o convergence or the ime so:p
used 0 advance the equations. As a consequence. the solution
Is oaty dependent on the spatial differencing approximation.

Explicit schemes (predictor-corrector or Runge-Kutta, for ex-
ample) are simpler techniques than impheit schemes and
lend themselves 1o extremely efticient implementations on
cither vector or parallel processing computers. The ex-
pheit schemes have a time-step hmitation. corresponding to 4
Courant-Fricdnchs-Levy (CFL) number on the v der of unity,
i order 1o mantain nmerical stability of the solution. The
tme step tor a CEL number of unity scales on the distance he-
tween the grid points: this time step himitauon generally leads
to ncthicient simulations of unsteady flows corresponding to
low reduced frequencies. In these cases, the time step required
for accurate resolution of the ime-dependent phenomena (gen-
erally assoctated wath a tixed number of tme steps per cyveley
can be much larger than the alfowable time sep based on
stability

One of the motivations tor developing an implicit Luler solver
st senve as @ vehicle for solving the viscous equations For
a diftusion-dominated low. the allowable exphon time step

69

scales on the square of the distance between the grid points; -
for the highly clustered gnds required for the resolution of
viscous flows at high Reynolds numbers, the maximum ume
step of purely explicit schenes is prohibitively small. Implicn
sehemes have a less restricive time step himitation and are
o rrahy more versatile and efticient, especially for time-
dependent computations. However, the implicit schemes entail
more arithmetic operations, since the soistion of a coupled
system of equations is generally required

The implicit methods discussed below are restiicted o the
class of semidiserete algorithms. Direet methods, winch
have been used to solve the accompanying large banded sys-
tem of lincar equations i a fixed number of operations.,
are contristed with approximate factonization micthods, which
have beer used Lo approximate the linear system as a proa-
uct of wmpler and more casily invertible matrices. The
tactorizations discussed. which rely on a regular ordering
of the grid. have been widely used in structured-gnd ap-
plications.  lteranve techniques are then discussed. includ-
ing relaxation, hybnd relaxation-igctorization approaches, and
minimum-residual methods, such as conjugate-gradient o;
Krvlov-subspace methods. The direct methods and the ster-
ative techmgues can be generalized for use as implcit sotvers
for unstructured-gnd schemes. Convergence aceeleration weeh-
nigues. sich as multignd. can be applied o cither the lincar
or nonlincar implicit schemes above. as well as to expheit
schemes, and are discussed 1na subsequeni section.

2.4.1 Explicit Schemes

To ilustrate the expict procedures, consider the mader prob-
lem )
— =1 (244

where u=uex. and = {57 woxotl Equations of this type

artse in many branches of continuum mechanices, for example.

one-dimensional unsteady Hurd low. where the equastion
P

o = 12.4.5)
[ SENREAN

FCPresents comervation of miss

In the application of the tinmite ditterence method. difterences
must be taken with respect to time tand distanee x. A\ grd s
constructed over the (<. plane and the equation s solved
at cach mesh point or cell. A typical mesh point can he
represented as ¢ 1 = (L Ax.nA. The value of u at this
mesh point is u” el n” = iAo n At and the squation
evaluated at 1™ s

A u
—i .+, =0 (24,

U

Using a simple Torward difterence tor the ume dervanne and
a central ditterence tor the space dervative, the diseretized
formulation takes the form

W= - Al J2Axculx ) 24T

Given the solutos ot tme level notor =120 . the explien

form, tation van be used 10 evaluate directly the solupon at

ume Jevel nel As g specitic example. the transpon cquation
T ol

e - =1 [
S i

® o@e
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where "a” is a constant, can be expressed as the exphcit
formulation

n n
uy = n' - alt (%) 249
A formulation of this type indicates that time can be used
to progress the numerical solution to steady state and is often
referred w as the method of false transients. In such cases. Eq
(2.4.9) indicates that steady state can be achieved by choosing
the time step At to be large. However, it this were true, it
would appear that At could be chosen 1o achieve sieady state
in one step. This is clearly unrealistic and can be confimed
by investigating the stability of the numernical formulation.

Stability Analysis

Two main techniques are commonly used to assess the stability
of numerical formulations. The first is called the Von Neumann
or Fourier method. and the second is called the matrix method.!

The Fourier method expresses an initial distribution (line) of
crrors in terms of a finite Founer series and considers the
growth or decay of the errors. It proves convenient 1o cxpress
the errors in terms of a complex potential form

A, b (2.4.10)

where i = /—1. [0.1} is the interval throughout which the
function is defined. and h is the grid spacing. Denote the
errors at the mesh points along t=0. between x=0 and Nh, by
Etph) = E;. p=0.1.2....N. Then the (N+i) equations

T P Ny

are sutticient to determine the (N+1, unknowns Ay, Aj.A>. AN
Assuming the finite difference cquations to be linear. it is
necessary to only consider the propagation of a single term,
such as ™" To investigate the propagation of this error as
t (defined as 1=gk) increases. i is necessary to find a solution
of the tinite difference equation which reduces to ¢ '™ when
1=0.  Assume

PRITLITITIN viph
:r'q‘l:vli'

where S=¢’™ and . in general, s a complex constant. This
$
reduces to ¢ '™ when g=0. The error will not increase as t

increases provided that
N

Hence. the stability of a scheme can be mvestigated by apply-
g a Founcr made of the torm

agt e 2410

to the discretized equations; the scheme s siable provided a1
does not increase 10 ttme for all k

Applyving these adeas 10 the imple cxample of the transport
cquatton by substituting Ey (2.4 TH i Eg. 12491 leads 1o

[N SRR IR
U sty

A

Wet s

A, P oage

which reduces 10

W O "
ay T =g - Risin (%)

and
ay ™t = = ACsin G dAX ) ay

with (' = 22! The scheme is stable if

i1 —iCsin(3Ax)] < 1
It the amplitication factor g, detined as ¢ = iy complex,
4 . *k
then lgi™ = gg*. with g* as the complex conjugate. Hence, the
stability condition is

14+ CFsin’ (5Ax €1

which is not satistied for any Ax, At > 0 thus, the simple
scheme s unstable and so not of much pracucal use. In prac-
tice the numerical errors produced would grow unbourdedly
and the numerical answer after 4 few time steps would be
meaningless. It is clear from this simple >xample that st is not
possible 1o formulate arbitrary explicit schemes.

In the above analysis no account has been taken of the etfect
on stability of the boundary conditions. The Founer method is
not able to take such etfects into account and for such analysis
the afternative matrix method of stability is required.’

Lax Schemes of Iirst Order Accuracy

I s clear from stability analysis that the method of forward
difference in ume and central difference in space is uncondi-
ucnally unstable. To alleviate this problem, Lax® proposed a
modification to give a stable explicit numerical procedure. As
an example consider the tollowing form for the discrenzed
transport Zy. (2.4.8)

nel . i " " "
L S LI S Py TR |

——— i =10

At 2%

(2.4.12)

This is similar 1o the unstable Euler method (2.4.9), except
that 1] has been replaced by %('l'ﬁ.t +0) )

A Founer stability analysis of this formulation reveals that

o= cost JAN - s FAX

where (0 = ‘A—’\“'- For stabbiny, gl <} henee,

et =1+ {7

" Sl sinT oA

and so the scheme s stable for C < 10 Coas referred (o as the
Courant pumber and for a given constant speed “a7 and mesh
spacing Ax, ot deternmnes the b o at which the numenca)

tormulation can be stepped tn ime o steady state

By well known why the Laxds scheme as stable while the
torward tme. central space scheme 1s uncondinonally unstable
The Lax formulation can be wnten as




or
nel _ o0 w W 2 Al T \
4w, iy palle TWo Axt (nf — 20 oy )
At 2Ax 25t Ax?

which shows that the averaging of the term u)' leads to the
introduction of a term which is a central difterence of 4 second
space derivative. In other words Lax’s scheme can be seen as
an Euler scheme applied to a moditied equation

Au Jn Ax? 2u
u o OuAx O 2413
o e T oA 0w (23,19

where the right hand side is a term which represents an added
diffusion-like term with a grid dependent coefticient. 1t is the
right hand side which provides the stability. A truncation error
analysis reveals that the scheme, for a fixed Courant number,
is first order accurate in space and time.

The Lax scheme can be applied to the system of Euler equa-
tions in two dimensions

ow  Of OB _

_— —_— 2.4.14
w Tox oy (2414

to give, for a structured grid.

el _

i u n n n
S 1(w|9l\+w\-\j+w\)+( +wu—l’

Mo
S (6, - )

o

At N .
- K‘—_(g.,-x ~ guo-1) (24.13)
Schemes of this type together with many vanants are classed
as Lax or Lax-Friedrichs schemes. They have played a major
role in the development of numerical schemes. However, they
are not generally applied now becausc of their lack of accuracy.

Lax-Wendroff Schemes of Second
Order Accuracy

Schemes with second order accuracy are generally clasved
as Lax-Wendroff schemes of which today there arc many
variations on that originafly proposed.’

The major criticism of the Lax scheme is its first order accu-
racy. The Lax-Weadroff class of techniques uses central space
representation but achieves second order accuracy. Again con-
sider the first order eguation
(’)ll of _
at T ox

A Taylor series expansion in time shows

4]

- " At At
W ="+ Aty + St —(7——n',, ......
- H

which, using the oniginal partial differential equation. can be
expressed as
() At 9 L
R NG L L ,——(,\i) +0(ArY
ax 2 Ox Ix

where the Jacobian A = 2L

cyuation gives

The discretized torm ot this

1l

Wt = ".1._.)-—\\"”,"" S (2410
LAV e W

T

with either

or |
:\"‘k = ';(\. -+ :\.A 1)

This scheme requires the evaluation ol the Jacobian matrix

A. which can be costly. To alleviate this, several two-step

schemes have been developed.

One such scheme, which has proved to be very popular, was
devised in 1969 by MacCormack.** The scheme is a two-step
predictor-corrector method which for the equation

i‘—l L)—t = ()
eli Jx
takes the form
. PR | I
Ve i~
1 1 _\x( y)
- » R L .
Wtz 5""‘ + o, )—R(f... ) 2447
ay iffustrated in Fig. 241
level n+1
level *
level n
i-1 i i+1

Figure 2.4.1 Information used in
the two-step MacCormack scheme.

The scheme is second order accurate in both space and time.
The scheme readily extends to both two and three dimensions:
for example. in two dimensions, for the equation

I af Jg

— - — =1
o Tax Ty
the scheme is
. e L P At .
1y, :".,-;(f.,‘f. 1,)“;(,‘:.,*’-:.. 0
:‘," = %(n',', +1,)
At . At .
- E(I"” - fil- J’A‘T{’(!I.pn = uy ) 12.4.08)

A techmque which v often used in the representation of
veneral schemes 18 operator spliting. The one-dunensional
prediclor-corrector sequence i By (2417118 represented by

Wl = Ar” (23419




n
Combining i and j operators then gives
W= LiAoL(Agu” (24.20)

which is a representation of a 2D scheme. However, this
unsymmetrical sequence is only first order accurate. The
MacCormack scheme results from a symmetric split sequence
of the form

W = L,(—%})L,(AUL-(#)"“ 2.4.21)

in this form, it is clear how such a scheme could be used
to advantage if for some flows the time step s limited hy
a particular direction, either Ax or Ay. In such cases, a
sequence could be devised which takes more steps in one of
the directions so as to reduce the computational cost.

Time Stepping Schemes

A common practice for the solution of the time-dependent Eu-
ler equations is to first discretize the equations in space while
ignoring the time derivative. This semidiscrete procedure then
results in a system of ordinary differential equations which
must be integrated in time. For steady state problems, the
cquations are integrated in time using any appropriate integra-
tion routine and flexibility is present for convergence accelera-
tion techniques {such as local time stepping) to be used. Such
schemes are independent of the time step At at convergence
to the steady state.

Time stepping procedures can be based upon the schemes
available extensively in the literature for the solution of or-
dinary ditferential equations. Single-step micthods can be used
based upon Euler and Taylor series methods. Consider the
first-order scalar differential cquation

dy \
—— = {(x.¥v(x}} 12.4.22)
dx
with the initial conditions
VIX,) = v,

The simplest numerical method for treating this initial value
problem consists of approximating the solution curve y(x)
by its tangent. With the step size h and the corresponding
equidistant support abscissac

xy =x,+kh (k=1.2.... ... )

an approximation yi to the exact solution can be obtained by
the gencral formula

Viet = V0 4 Df(xe.vy) (2.4.23)

At cach point (xc.y«), this method (named after Euler) uses
the slope of the directional field that is defined by the given
ditferential equation to determine the next approximation yi.,.
This procedure is oSviously guite coarse and its accuracy
is dependent upon the size of h. However. the procedure
represents the simplest member of a one step method which
uses only the known approximate value y, at the suppon
abscissa Xy 10 compute the approximation yi. at Xxa = a + h

An alternative procedure is 1o note that in a small neighbor-
hood of the initial point (xu,yn). a better appruximation of the
desired solution y(x) can be obtained by means of the Taylor
series with a remainder term

ix - xn?
Vixe) + ——— v x4+

(X — Xo)
1!

¥ix} = ¥ixa) +

(X = xo)"
———"L- vixe) 4 Ry
P

It the remainder term Ry, is neglected, the approximate value
of yi.y for the step size h=txi,;-xi) 1> given by the general
formula

Lo, ! " 13 (e}
Vit Sk vk + vt
1! 2! }

Here. v, denotes the value of the mth derivative al the
point (xi.yx). This procedure requires the derivative . of the
function yix) and this, for general cases, can prove waccurate
or unwieldy to compute. However, with a shightly different
fosinulation the method can be used cttectively.”

Various methods exist for improving these simple formula-
tions. Since Euler’s method is of order one. an extrapolation
can be applied.  Assuming that (wo integrations have been
performed, the first with step h und the second with step h/2
and then using the principles of Richardson extrapolation. an
improved Euler method of the torm

o= fioxovy)
h 1
k=1 Xg‘f;.)‘k‘f-;hkl 12.4.24)

Yoot TV + Lk,

can be used. This is a second order formulation: a single step
requires the evaluation of the function f(x.v) at two different
pairs of values.

Other single step miethods for the solation of the differental
equations can be obtained by the use of standard dehinite
integration methods. The trapezoidal method can be invoked
to derive the formulation

h
Vi = vk Sy F v ) (2.4.25)

For a general nonlinear equation this represents an implicit
equation for the unknown y.,.

In practice such schemes can be implemented using a sequence
. . . . (p N
of successive approxtmations to vi,;. denoted as )',\"'|. One

such procedure. known as Heun's method. can be written

o A
vWo= v+ s v

I / o
Viep = ok + :(fixx.}'u)+ f(.\L-n.\Ll',l )) (24200

The explicit first order Euler method (2.4.26a) is used to deter-
mine a predictor value )'(L",', which is subseyuently corrected
in Eq. (2.4.26b) by mcany of the implicit trapezoidal method
to obtain yi.y. This is called a predictor-corrector method:
it 1s second order accurate and for practical purposes can he
rewritten as

ke =fia. 0wy

Ky =1fixy + hovy + Lk (2427
I

Viep =+ %!k. + ke

L




The improved Euler method and Heun's method are examples
of explicit two-stage second order Runge-Kutta methods.

The formal derivation of Runge-Kutta methods is covered in
many standard texts on ordinary differential equations. Here.
it is worth quoting the classical fourth-order Runge-Kuita
method

Ky = f{xi. v
’ 1 1
k= f(XL + ;II.)’L + —)Ill\;)

1 1
ki = f(x;. +5hove+ ;hk:) (24.28)

ka = f(xi + hovi + hky)
i
Vel = v+ F:“" + 2ka + 2Ky + Ky

It is clear trom these formulations that to compute yi.; they
require information based upon the previous approximation
point (xx.yx). ln contrast, an alternative set of methods is to
use a multistep approach which uses information at previous
support abscissae Xy.i, Xg2. Xk v..Xkm. These methods are
referred to as linear multistep methods, and they can be cither
explicit or implicit in time. A classical example is the method
of Adams-Bashforth which can be expressed as

i
NViel = Ve %(53&- =59 o + 3oy — Moy
N (2.4.29)

This formulation, which assumes equal spacing h, is an ex-
plicit. linear tour-step method. It requires only one function
evaluation at cach step. but requires previous values i, .
fx.2. fi.x. Other variants of this multistep method exist, as well
as generalized formulations.”

It is clear tfrom this discussion that multistage. twa level
schemes of the Runge Kutta type have the advantage that they
do not require any special starting procedures. in contrast to
the multistep methods of Adams-Bashtorth type. 1n addition,
extra stages in the multistage methods can be used to improve
accuracy or to extend the stability region. Jameson et al.””
have used Runge-Kutta methods to great advantage for the
solution of the Euler equations. In general. the selection of
a particular temporal integration scheme is closely tied to the
type of discretization selected for the spatial derivatives.

The extension of these ideas discussed for the one-dimensional
model problem to the governing tlow equations is straightfor-
ward. The discretization of spacial operators in the equations
leads to a system of coupled ordinary differential cquations of
the torm
dw +R(w)=0
dt
where R{w) is the vector of the residuals. Let w" he the
numerical result after n time steps: the formulation to advance
the solution to time level n+l is
(D) n

12.4.30)

w = W
w' = w7 o MR
(-1 ) (=21 24.3h
w = w —~ a1 MR
w(mb — w(wl _ A'R““AH
net ()

n
The residual in the g+) stage s evaluated as
Y
R = ¥ i,R{w") (24321
r=0 ’
where
‘4
Y ode=1
r=20

Typically. three-. four-. or five-stage schemes have been ex-
tensively used.

The stability properties of the mulustage method have been
used to auvamage in the solution of the Euler equations.
Consider a time stepping scheme for

_\l‘—l2 = An

ot

The stability region is the region of the complex plane for
which the scheme is stable in terms of the me step multiplied
by the eigenvalues of A: the time step is selected so that the
cigenvalues of the A matrix lic within the stability region. For
a multistage scheme,

[N} " 0
w = a' oA
2 1 i
W =o' A’
R ] 2
W=t o A )

Thus, for a complete step

" u
= v
n i

where the amplilication factor g is a polynomual in A:
e=l+ HhA+ HhA 4+

and ) =1, Ja=ay gL fa=aggng, . The stability region is the
region in which lgI<1. and we require the Fourier symbol z(()
= 2(.3Ax) to hie in the region of stability Tor all wave numbers
0<(<m. Figure 2.4.2 shows the stability region for commonly
used Runge-Kutta methods.

Re (2)

Figure 2.4.2 Stability regions
for explicit Runge-Kutta methods.
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The equation
e+ iy F AU = 1)

is more typical of an appropriate model equation for the
Euler equations, where dissipation 1s added expliculy to the
convective terms. In this case, moditications o the stability
plots can be obtained with single or muitiple evaluations of
the dissipationlike term within the multistage procedure. The
variety of possibilities have been considered by Jameson.'

2.4.2 Implicit Schemes

In the discussion that follows, the system of ordinary differ-
ential equations to be solved is wntten as

d/w

— = = 2.4.33
'“(_I)+R(w) ) (2.4.33)
where R(w) is the discrele representation of the spatiaf deriva-
tive terms evaluated as a function of the solution vector w.
The prototype implicit algorithm considered is the backward

time differencing cquation, given as

Aw"

2w n—t=”
.lAr+R

(24.34)

where At is the time step. R"™' is the discrete residual
evaluated at time level (n + 1) At and Aw" = w" ™! — w"
is the change in the dependent variables over a time siep.
The scheme is tirst order accurate in time. The Trapezoidal

scheme can be wnitten as

Aw" 1 o ne+11 Y
- = 2.4.35
.,At+2[R +R"'| =0 (24.35)

and the three—point backward-time scheme can be written as

113 "

AT SAwW - Aw""} +R" =0 (2436)

ol

both of which are second order accurate in time. The three
schemes above can be considered as examples from the well-
known class of linear multistep methods developed for solving
ordinary differential equations. The stability of such methods
can be determined from an analysis of the cigenvalues of the
coefticient matrix arising from linearization of the nonlinear
terms. For discrete solutions to the Euler equations, these
cigenvalues generally lie in the left haif of the complex plane.
A method without any time step stability limit in such a case is
referred to as an A-stable method. 1t is known from a theorem
of Dahlquist that:

(1) The order of an A-stabie method cannot exceed two.

(2) The second-order A-staple scheme with lowest trun-
cation error is the Trapezoida! scheme.

Generally, the three~point backward-time scheme is preferred
for second order accuracy since the Trapezoidal method, also
known as Crank-Nicholson. is susceptible to an odd-even
decoupling in time of the highest frequencics in the solution.

Either Eq. (2.4.34) or (2.4.36) rcpresents a nonlinear system
of equations to be solved at each time step and can be written
generically as

R=10 (2.4.37)

where the hatted notation denotes that the residual contains
both temporal and spaual discretization terms. Applying New-
ton’s method for the root of a nonlincar system 0f eyuations
gives 4 linear system to be solved iterauvely.

. N R
R™'=R' + '—R~ (w"‘ ﬁw‘) =0
Jw
1= 1203 (2.4.3%)

The lincanzation 1y about an estimate w'. which can be taken
initially as w", and the solution converges to the solution
at the new time level w7 . The requirement 1o solve a
linear equation arises from the hineanzation of the nonlinear
spatial residuai terms at the new time level. In that respect.
the treatment of second order accuracy n bime s sinular
to that of the first order scheme. since the additonal terms
involved are all evaluated at time levels which have already
been computed. Hence. restricung the discussion below to the
tirst-orders backward time scheme. the hinear system s written
as

[I+hg—wri}‘(W"' -w') = _[wi_w-. +hR(w')]

12.4.39)

where b = JA 1t For cach sieranon. Eq. 12.4.39) reguires
the solution of a block-banded hinear system of equations with
the property thal quadratic canvergence can be attained at cach
iteration if the approximation 1s suthiciently near the root of the
equation. For large time steps. Newton's method s recovered
for the solution of the steady-state residual cquation

A generas tock-matrix cquation solved with Gauss elimination
requires

(N Yin ‘) operations (2.4.40)

wheic Vs the total number of equations and w1 is the block
size. A general block-banded matrix equation can be solved
n

O(ND ) operations: b= marip.q) 12441

where p is the number of nonzero oft-diagonals in the matnx
at or above the main diagonal and 4 is the number at or below
the main diagonal of the matrix to be solved.

The computational work for typical structured-grid solvers
can be estimated assuming an implicit computational stencii
which spans three points in each coordinate direction.  For
a three-dimensional ordering of the unknowns by generalized
coordinate directions,

N=J K- L
[;:,lz.I-I\-
where .J. k. L is the number of points in each of the three

coordinate directions. respectively.  For a two-dimensional
case with ordering by rows,
N=J K
p=g=.
Hence, the computational work scales as
()(.\'T’ b ‘) operations ;3 - D 12440

()(.\"‘m‘) opcrations s 2~ D (2443




———

assuming equal number of points in cach coordinate direction.
fn two dimensions. the relative bandwidth is smaller which
results in a smaller operation count; since both .V and m
are usually smaller in this case, direct solutions of the linear
system are possible with available computers,'"'* at least for
steady-state solutions.

Because of the number of operations and storage involved in
a direct solution of the linear system at each iteration, the
complexity which can arise in linearizing the cquations ex-
actly. and the reahization that quadratic convergence is only
obtained when the approximation is near to the exact solution,
the method as outlined above is rarely used in application.'
A number of approximate wenmques have been devised. Ap-
proximate luicanzations, denoted with double tilde overscripts.
can be used on e left side of the equation (1) to reduce the
bandwidth of the linear system or (2) to reduce the complexity
associated with un exact linearization, as
~ 11

I+h Sw (w"' —w') = —[w' -w" +hR(w')]

t=1.2.30. (2.4.44)

Since the equation is cast in delta form.'" the nonlinear equa-
tion on the right-hand side will be satisfied as long as the
sequence of iterates converge. With an approximate lineariza-
tion, the property of quadratic convergence at a minimum is
lost. Furthermore. all approximate lincarizations are not sta-
ble, even if the linear system is solved exactly."™"* For ex-
ample. Jesperson and Puliiam'® show a one-dimensional sta-
bility analysis corresponding to steady-state convergence of a
second-order accurate scheme: an exact linearization with
first-order implicit stencil was unconditionally stable. How-
ever, with a second-order implicit stencil but an approximate
Jacobian (lincarization terms), stability was only conditional.

Another approach is to determine a solution to the linear
system but accept the tirst iteration as the solution at the new

time level, as a so-called single-step scheme.' ™' ie..
[I +h Q—E} (W' —w") = —[h R{w")] (2.4.45)
ow

The equation is now of the standard form Ax = b. where
x = Aw, and a number of iterative methods adapted from
the study of linear algebraic equations can be applied to solve
the linear system of equations. Note that the convergence of
the solution to the linear system depends only on the coefficient
matrix. The use of large time steps and the retention of the
A-stabie properties of the implicit integration scheme can be
attained if the lincar system is solved to near completion.
However, in most cases. the lincar equation need not be
solved exactly, since for stcady flows the ultimate objective
is the solution to a nonlinear cquation. Likewise. for unsteady
simulations. it is necessary only to solve the equation to a
tolerance bhelow that of the truncation and linearization errors
associated with the single-step approximation.

The two approximations can be combined. as an approximately
linearized implicit scheme. in which the lincar equation is
hopefully much casier o solve. as

n

25 (w"™' — w") = ~[h R(w")] (2.4.46)

I+% -
dw

s

A number of schemes are in current use which are based on
this model. For example. since this coefficient matrix depends
only on the left-side spatial-difference approximation of Eq.
(2.4.45), tirst-order upwind differencing can often be used
to ensure block-diagonal dominance of the coefficient matnx
and relaxation methods can be used eflectively.  Abso, the
approximate tactonization methods discusscd subsequently are
a special case of the algorithms described by Eg. (2.4.46).

Direct Methods

Direct methods can be used 10 soive the system ot hincar
equations associated with the implictt schemer abhor o0 Birect
methods are distinet from iterative solvers in that they soive
the system of equations in a tinite and predetermined amount
of work. Solutions o the hnear system using direet methods
are exact if infinite precision arithmetic is used. On computers,
direct solvers will generate solutions that are as accurate as the
arithmetic used to generate them.

The coefticient matrices resulting trom Euler solvers are gen-
erally sparse (i.e.. composed of few nonzero and many zero
coefficients). Lincar systems resulting from structured gnd
Euler solvers will have an ordered structure of nonsero coet-
ficients. For example. a two-dimensional tirst-order upwind
scheme results in a pentadiagonal matrix composed ot two
“diagonal entnes” clusiered around the central diagonal and a
diagonal entry farther out on either side. Adding more dimen-
sions and/or higher order accuracy leads to a matrnix composed
of more diagonal entries. This form of sparseness 1s known
as structural sparseness since it is known a prion which co-
efficient elements are zero and which are nonzero. The use
of unstructured grid Euler solvers leads to implicit matnices
with nonzero coefficients located on the diagonal entry and
randomly located off the diagonal entry.

Specialized versions of Gaussian climination are used for
sparse linear systems to minimize storage costs and reduce op-
eration counts." * Banded-matrix direct solvers are perhaps
the most common approach to reducing the storage and op-
eration count of a full Gaussian climination. Banded solvers
store diagonal cntries of the matrix as vectors and. hence. store
all coefficient elements of the matrix out to the last diagonal
entry that has a nonzero coefticient in it In large part. most
work on banded direct solvers has been done in the structural
finite-clememt ticld. Consequently, most banded solvers are
specialized for symmetric positive-detinite matrices.

Matrices that possess general, rather than structural. sparse-
ness have nonzero coetticients randomly located in the array.
Conscquently, very few nonz_ro coefficicnts exist next to the
maximum bandwidth of the matrix. Skvline solvers take ad-
vantage of this fact by only storing row or column vectors
from the diagonal to the last nonzero coefficient in each row
(lower triangular) or column tupper triangular). respectively.
Skyline solvers are also known as envelope. profile. or vari-
able bandwidth solvers.

The most common approach o solving general sparse matri-
ces has been to renumber the grid to mimimize the bandwidth
or minimize the numerical fill-in during the solution process.
Bandwidth minimization will make both band solvers and sky-
line solvers much more efficient for any linear problem. Sev-
eral methods have been proposed to minimize the bandwidth of
sparse lincar systems. The most successtui and best known of
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the bandwidth minimization algorithms is the Cuthill-McKee'”

ordering algorithm. This algorithm makes extensive use of

graph theory as do most reordering algorithms. For each node
(equation), a list of adjacent nodes can be generated from the
graph of the matrix. If ¢ is the node number, then Adjir)
is a list of the nodes immediately adjacent to v. The algo-
rithm takes a list of nodes and the associated list of adjacent
nodes and generates a new list of nodes. The oid and new
list of nodes acts as a translation table for the matrix so that
the graph of the matrix may be renumbered. The matrix as-
sociated with the new graph of the nodes will ofien have
dramatically reduced bandwidth.

Matrix dissection,”™ or nested dissection, is a method to
renumber the graph of a matrix. The bandwidth of the matrix
is not reduced but the numerical fill-in that oceurs during the
matrix factorization is greatly reduced. The minimum degree
method also reduces fili-in through a minimization process and
has proved useful for unstructured grids.™

The principal advantage of the direct solvers is their robust-
ness, since steady-state solutions can be generated in cases
where iterative methods fail to converge and there are fewer
parameters lo adjust for improved convergence.'' ™' The
rapid convergence of the scheme allows solutions to be ob-
tained in four to five iterations: because of the increased op-
eration count of the direct solution, the method is generally
only invoked after an approximate solution is generated with
an iterative solver.

Approximate Factorization Methods

Within the tramework of approximate factorization (AF) meth-
ods, implicit schemes which factor spatially the unsplit ma-
tnix cquation into a sequence of simpler matrix equations are
known as alternating direction implicit (ADI) schemes' ™' and
have been widely used. In addition to the classical spatially
factored scheme, a number of alternative schemes are possible
by factoring the implicit operator according to the cigenval-
ues of the split Jacobian matrices and using type-dependent
differencing.” ** These alternate factorizations can be used o
split the full operator into a lower (L) and an uppe: (U) fac-
tor independent of the number of spatial dimensions of the
problem. thereby increasing the allowable time step based on
stability considerations and/or a decrease in the number of
operations. These LU schemes can be used to converge dis-
cretizations corresponding to cither central or upwind schemes
(¢.g.. Rieger and Jameson™).

For the compressible Euler and Navier-Stokes equations, Beam
and Warming'® and Briley and MacDonald" laid the foun-
dations of the current ADI algorithms which are generaliza-
tons of the alternating-direct: n implicit algorithms devel-
oped in the 1950s for solving parabolic equations. The ADI
algonithms approximate the left-hand implicit matrix of Eq.
(2.4.39) as a product of one-dimensional matrices, solved in
a series of sweeps through the mesh. The nonlinear implicit
scheme for first-order backward-time differencing can be writ-
ten

1+ ,\(£> Aw" =R (2.4.47)
ow

I1+h *.,(2(—;—) Aw' = Aw™ (2.4.48)
ow

J

oA\ )
L+ ho, ( —)i—l) Aw' = Aw 12.4.49)

vl

w o =w + Aw 12.4.50)

where R’ denotes the nght side of Eq. 12.4.39) and & 15 a
spatial difference operator. Each sweep requires the solution
of a block tndiagonal or pentadiagonal matnx equation. The
computational molecule for a three-point spattal differencing
is shown in Fig. 2.4.3(a). Since the solution on a given
Itne 1n the gnd decouples from the other hines on a sweep,
the operations can be pertormed cthiciently on either vector-
processing or parallel-processing computers by simultancous
solution of the lincar system along paraliel coordinate lines 1o
the mesh. On the basis that the factonzation and hnearizatnon
errors can be considered small. the algorithm is usually apphed
as a single-step nonterative schemic

LeL, Lo (w'™ —w") = —[h Riw™)] 12450

for both steady and unsteady apphications. The spatial tactor-
ization is largely independent of the type of spanal differenc
ing (te. central or upwind). The algorithm is widely used.
in part because the thin-layer torm of the viscous terms can
be ecasily accommodated; cross-derivative terms ansing trom
mixed-derivative terms are difficult to treat with the spatially
factored algorithm, however, and are generally treated explic-
idy or lagged in time

Pulliam and Chaussce™* developed a diagonalized scheme in
arder to reduce the number of operations assoctated with the
ADI solution. The similanty transformation of the inviseid
Jacobian matrix is used to derive an approxumate set of scalar
equations on ¢ach sweep. as shown tor the leti-hand side of
the & sweep:

T (I+h0:A T AW’ €24.52)

where A = OFfow =T AT, ' The lincar system is un-
coupled since Ag is a diagonal matrix o cigenvalues: note
that the similanty transformation matrix has been moved out-
side the differencing operator to achieve the cthiciency. The
original block-tridiagonal or block-pentadiagonal inversion 1s
replaced by scalar inversions and two matrix multiplications.
leading to approximately a tactor of two reduction in the over-
all computational time of the ADL algorithm, with generally
no appreciable loss in convergence.
Obayashi et al.™ have used flux splitting 1o simplify the matrix
inversions further by factoring cach sweep into two bidiagona
inversions. Applying type-dependent one-sided differencing to
the eigenvalue-split components of the Jacobian matrix as
MA=AAT EMA (24350

where »” and 8] are backward and forward difference
operators. respectively: the left-hand side of the & sweep can
be represented with the LU-ADI scheme as

T[T+ ho, Al

[T+bsl A TT AW 12.4.54)
To enhance the diagonal dominance of the cquations, the im-
plicit equation on cach sweep can be factored <hghtly differ-
ently following the work of Lombard ct al.™” as
T [T+7(h Al - A )
[T+1 (A A )
(IT+0h (A A7 +A7 VT, AW (2455
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where the diagonal entry of each bidiagonal inversion becomes
D =1+ h|A¢|. Termed LDU-ADL™ the operator in each
direction can be considered a single iteration of a symmetric
Gauss-Seidel relaxation sweep, as discussed n greater detail
later. The extension of the diagonalized methods 1o the viscous
equations is not so straightforward, since these terms cannot
be simultancously diagonatized with the inviscid terms ap ' are
cither ignored or represented approximately.™ as. for example,
by approximating the viscous Jacobian with its spectral radius.

The largest deticiency of the spanally factored approach s
that the factored operator incurs a splitting error in three di-
mensions which s proportional o the cube of the time step.
(A1), and the resulting algorithm is only conditionally stable
at best. ™ For example. South' has presented a proof that the
three—tactor spatiatly sphit AF scheme with central difterenc-
ing is unconditionally unstable according to a Von Neumunn
stability analysis for a scalar three-dimensional model, time-
dependent hyperbolic cquation.  [n practice, the addition of
artificial viscosity can be applied 10 stabilize the scheme. as
the second-order upwind scheme twhich can be viewed as a
ventral difference scheme plus dissipation) is conditionally sta-
ble. In two dimensions, the splitting error is only (A 17 and
unconditional stability can be attained. although the splitting
error causes a general deterioration in convergence rate as A ¢
tends 1o infinity. The LU schemes. on the other hand. incur
only (& 117 splitting errors in two and three dimensions and
can attain larger stability bounds.

Considering only the Euler equations and factoring the oper-
ator according to the positive and negative eigenvalues of the
«plit and type-dependently differenced Jacobian matrices.™ a
two-fuctor scheme s

{I + h(ﬁ;A. + 0, B~ +(\:C')]I .
(I+ /(A A7 +5/B” +27C7 )1 Aw' = R’ (24.50)

Detining L~ and L™ as the factors containing the hackward
and forward difference. respectively, the scheme can be written
as

L'L” Aw =R (2457
The computational molecule is shown in Fig. 2.4.3(b). and the
operation counts for several schemes are given in Table 2.4.1.
The operation count for the cigenvalue-factorization scheme is
reduced to 25 pereent of that required with the ADI scheme., ™
since only bidiagonal inversions are required on cach ol the
two LU sweeps. Onginally thought to be inefficient on vector-
processing computers. the operations can. in fact. be vectorized
by simultancous operations along 1+ j+ & = Constant coordi-
> The algorithm is unconditionally stable in three
dimensions. For a scalar wave cquation, the cigenvalue-split
scheme becomes a direct solver for the unfactored cquations.
The results from a lincarized analysis of the coupled Euler
cquations at a Mach number of 0.8 for several schemes is
shown in Fig. 2.4.4. The results indicate unconditional stabil-
ity with the two-factor cigenvalue-split scheme:™ the spatally
split scheme shows only conditional stability. However. as is
true of factored schemes in general. the optimum damping of
the error oceurs at refatively small time steps. on the order of
a time step of five to ten times that of an explicit scheme.

. 1
nates lings.

The extension of the methodology for viscous flows is not oh.
vious: however, the viscous terms can be included by express-
g the three-point diffusion operator as the sum of a forward

n

and backward difference and factonng accordingly. although
some form of approximation 1s generally required tor the com-
pressible equations. For example, a spectral radius scaling ot
the viscous Jacobian matrices is readily incorporated, simi-
lar 10 that used tor the dragonalized schemes, Often, as in
the work of Gatlin and Whittield."" the imphcit viscous terms
arc ignored without an adverse effect on the stabality of high
Reynolds number viscous Hows

Operations per point per

factor

LU decom- | Buck sub-
Scheme position stitution Total operattons

per point

Three-tactor | S50 145 Ous « 3 = 2088
spatially-
sphit
2-factor 225 45 270 x 2 = 540
cigenvalue-
spht
2-factor 600 145 48 = 2 = 1490
hyvbrid

Table 2.4.1 Operation counts for solving the
implicit approximate factorization schemes.

Relaxation Methods

With the development and use of upwind discretizations tor the
Euler cquations, Chakravanthy ' and Van Leer and Mulder”
observed that the lincanized implicit equations can be solved
ctticientty with classical relaxation methods. For cxample,
with tirst-order upwind differencing, the coefticient matrix
on the feft side of Eq. (2.4.39) cun be constructed o he
hlock-diagonally dominamt for any time step and standard
refaxation techniques, such as Jacobr or line Gauss-Seidel. for
the aterative solution of large lincar systems can be used. Also,
tor supersonic flows, relaxation schemes can be constructed
to recover efticient space-marching schemes. " For tugher
order spatial differencing. the coefficient matric s no longer
diagonally dominant: it is more difticult to construct ctiicient
schemes. and generally symmetric Gauss-Serdel schemes are
required. ™

There are two general approaches to incorporating reluxation
technigues tor the Navier-Stokes equations. The first approach
Is to solve the linear system via refaxation to acar completion
before updating the residual equation. Thus, as mentoned pre-
viously. using first-order upwind ditferencing, the coetticient
matrix can often be constructed to be block-diagonally dom-
inant.  The second approach is to approximate the left-side
matrix of Eq. (2.4.39) as a diagonal (Jacobny or bidiagonal
{Gauss-Seidel) matrix and solve tor a sequence of iterations,
with a nonlincar evaluation ot the residual after every pass
through the mesh. At convergence. the nonlinear Ey. (2.4.34)
is satistied. The convergence depends on the spatiat difterenc-
ing of both the left and right sides of Eq. (2.4.39).%

The first approach is illustrated below for the ditterence equa-
tions arising from the Euler cquations.
(2.4.39) as an cquanion (o be solved at each neration tor Aw',

Considenng  kq.
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a sequence of subiterates Aw™ ' i = 1,2.3. ..., 1s compuled.
Using a symmetric point Gauss-Seidel procedure, one sweep
through the mesh with Aw" ‘= 0 can be wnitten as below

[T+ hia; AT +6,;B” +2.C”
~A -B -CTjlAw'' =R (2458

The second pass becomes

[T+ hpJA” +0;B” +087C
+AT+BT +CTH Aw’!
=R - hid A" +8,;B" +2.C”
-A" -B” -C" Aw"’ (2.4.39
On subsequent passes. Eqs. (2.4.58)—(2.4.59) are solved re-
peatedly, except Eq. (2.4.58) is moditied to use available val-
ues of Aw™' from the previous iteration. If the iterations to
the linear system are continued sutficiently far to convergence,
Eq. (2.4.39) is classitied as a quasi-Newton method. since ap-
proximate lin=arizations of the right-hand-side are generally
used to simplify the operations or ensure diagonal dominance.
The second pass can be rewritte®! using Eq. (2.4.5%) and the
two passes written as below

[T+ ha A” +4, B +4.C"

~A =B -CT)jAw'" =R' (2460

[T+ hie, A" +0,B” +27C"
+AT+ B+ CT)Aw’ =D Aw'' (246D

where D=1+ 1 (JA}l+ |B] 4 |C]) is a £x5 block-diagonal
matrix in three dimensions. Defining L~ and L~ as the diag-
onally dominant factors containing the backward and forward
differences. respectively. the scheme can be written as

I-D'L-Aw =R (24.62)
Thus the symmetric Gauss-Seidel, Eqs. (2.4.60)-(2.4.61),
can be viewed as an approximate factorization, termed LU-
$GS.* and consequently considered as a time accurate scheme
tor unsteady applications. The complete viscous terms can he
casily incorporared into the algorithm, and Chakravarthy®' has
shown that the cross-derivative terms can be ditferenced to
enhance the diagonal dominance of the coetticient matnx. Of
the schemes considered above, the relaxation scheme is the
only one, other than direct inversion, for which the cross-
derivative terms can be treated implicitly. Note that the relax-
ation approach can be incorporated directly into unstructured
gnd methods since the coefficient matrix can be considered
to be a general banded system to be solved iteratively. The
factored schemes rely on a regular ordering of the grid and are
not applicable to unstructured grid methods.

The second approach. in which nonlinear residual evaluations
are used in each sweep of the mesh. can be written as

L aw' = R"

- . (2.4.63)
MWt =R = —(w~w'+ IR

“

corresponding to a forward and a hachward sweep. Expanding
R° in a Tavlor series about R" and retaiming only the hirst-
order terms. the total change over the two sweeps 1s composed
of the sum of the two sweeps as

Aw" = Lw'T + Aw' (24.64)

Combining the two sweeps into a single sep-scheme. the
scheme can be written as

LD 'L aw" =R" 2465
which 1s very simular 10 the symmetne Gauss-Seidel relaxation
Egs. (24.60)+24.6}).

Eberle et al** ™" have deseloped implicit solvers based on the
use of approximate imphait Jucobian matoces and veclonzable
relaxation schemes. The schemes are designed so that the tme
step can be arbitranly large for steady-state applications o
taken as a global constant along with subiterations for tme-
accurate simulations. A number of different transtormanons
from the usual conservation varables as the implicit variables
in delta form have been used o improve the robusiness of
the procedure at higher Mach numbers, Breancis, Eberle. and
Schmatz** show the effect of large aspect ratio n reducing or
even eliminating the diagonal dominance of upwind schemes
in more than one dimension; with the use of alternate vanables
this problem can be overcome.  Itas interesting to note that
several hinear upwind schemes which are unstable tor model
hyperbolic equations according 10 the usual Von Neumann
stability analysis have been used routtnely i applications to
the full Euicr cquations.™ 1u the apphications, the ditterencing
stencils vary because of the nondinear fimiters used to maintain
monotonic results near discontinutties and the coetticients of
the lincarized equations change from point to posat in the gnid:
both effects are neglected in the Von Neumann anatysis.

It is sufticient for diagonal dominance of the matrix cquations
to spht the plus and minus Jacobian matrices snto matnces
with nonnegative and nonpositive cigenvalues, respectively.
The convergence of the quasi-Newton process, however, de-
pends op the form of the lincarization: the convergence is
improved as the implicit Jacobian matnix approaches that of
a true linearization ot the residual equation to be satisfied at
convergence. A true lincarization is often difficult or imprac-
tical to attain in practice. as shown for example by Barth®™
using the flux-differencing sofitting of Roe. Al approximate
lincarizations are not stable, as discussed carlier. A crude es-
timate of the Jacobian matrices using the spectral radius (i.c.
At = (A% pall/2). results in a strictly diagonal form for
the matrix D = I+ h (pa + pB + pc)1 and. consequently, a
reduced operation count for the LU-SGS scheme. This sim-
ple lincarization proved cttective in the incompressible viscous
flow calculations of Yoon and Kwak:™' the reduced operation
count of the scheme with the approximate Jacobian compen-
sates for the reduction in convergence per ieration.

Hybrid Methods

An alternate LU factorization can be derived by splittine “he
Jacobian matrices in a single coordinate direction, generally 1in
the direction tangential to the body surtace.”" The algorithis
can be writicn as

[T+ 0{a7 A" +4,B)]
j

[T+h{d A" +5.C)1 Aw =R (24.00)
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Figure 2.4.4 Stability analysis of three-dimensional
approximate factorization schemes; M. = 0.8:0 = (.




Since the implicit spatial discretizations ol two ot the coor-
dinate directions are not required to be sphit. cither central or
upwind differencing can be used in those directions: 1 1s 4
simple matter to extend the method to include the correspond-
ing thin-layer viscous terms. The computational molecule 1s
showan in Fig. 2.4.3(¢). The hnearized stabiliny analysis of the
coupled Euler equations™ is shown in Fig. 2.4.3¢) the algo-
rithm retains uncondiional stabifity. The operation count for
the implicit inversion is 71 percent™ of that of the spatially
sphit scheme, as given in Table 2.4 1, and the computations
van be vectorized. although the vector lengths are smaller than
the spatially sphit scheme.

Hybrid relaxation-factonization schemes have abo been devel-
oped to tmprove the stability characteristics ot the three-tactor
ADI scheme.™" Relaxation 1s apphed along one coordinate
direction only (generally streamwise) und approximate factor-
1zation 1s applied in the other two directions. The resufting
matnix equation 0 be solved in cach crossflow plane can be

wntten for relaxation in the & direction as

[T+ AL+ 0,BV T + hiA]L]

1
[+ A+ Cilaw = R(w w'™')

12.4.67)

where the night-hand-side indicates the nonlinear updatung ot
the residuad while sweeping back and torth in the £ direc-
ton. Each factor has the same block tridiagonal or pentadiag-
onal form of the spatislly sphit scheme and all the operations
can be vectorized. The hybrid scheme. termed an AF-SPGS
{Symmetric Planar Gauss-Seidel) scheme.™ avoids the (215"
splitting error common to the three-tactor schemes and s un-
conditionally stable tor a scalar wave equation. The thin-layver
viscous terms can be incorporated casily n the two coordimate
directions perpendicular 1o “Laxation since the operators can
remain unsplit in those disections.

Minimum-Residual Methods

A class of algonthms that can be very effective and is apph-
cable to both structured— and unstructured—grid methods are
minimum-residual methods. For non-symmetric matrices that
appear 1n the solution to the Euler equations. methods such
as Conjugate Gradient Squared (CGS).™ BiConjugate Gradi-
ent Stabilized (Bi-CGSTAB).™ and the Generalized Minimum
Residual Method (GMRES)Y™ are often used. One of the most
widely used and most reliable procedures is GMRES which is
brietly described below,

The tfoundanion of GMRES i the projection of the residual er-
ror, duc to an approximate sofution. onto an orthonormal hasis
for the Krylov subspace which is of smaller dimension than
the oniginal problem. Arnoldi’s method.”' which is essentially
a Gram-Schmidt procedure. is used to generate an orthonormal
basis for the Krylov subspace of dimension b detined as

Ki = pan(f ARG AR AT R Q46w
where 1o, 1s the residual of the initial guess (r, = Ax. + by
and o = 1o/ {ref]. The resulting vectors are orthonermal and
satisty the relation

AV, =V, H 12.4.69)

where Wigoa s a NV on b+ 1 matna tonmed Trom the &+ |
vectors obtained after A steps of Arnoldi’s method and H s o
b Liox A upper Hesseaberg matna

For sofving a hnear system otV cguations in N vnhnowns
the tingl sulutton s given by

X = v 24 T
where X s an umnal approvimation o the solulion and 2 s
a correctton o the itial gaess that satishies

Az+r1r - u D4 T

Consdenng 2 gs an approximnale ~solution to by 24 71 then
the error is made to be orthogonal to gl vectors ain Vg oy
o AZ v 0 (24Th

Assunung that z hies inthe & dimensional Keviow subspace
such that

2= V.y = viv, +vive sy Ly 2470
then unhizing Egs 2469 and choosing the immat vector an
the Knvlov subspace ta be the mutiad residual divided by ats
magnitude. Eg. 123725 can be owrtien as

Hy + lir e, — 0 24 7h
wiicre € is a4 column vector with umity as 1t hist clement and
reto tor all the remamning clements. By (2.4 74y represents
a system of A+ | equations with & unknowas which can he
solved with g feast squares procedure using Grvens” rotations
Note that if the error had been projected onto & subspace of
vectors of dimenston &oanstead of Lo o By 12472 this
would vichd a system of & eguations in & unknowns which
could be solved ruang standard chiminanon technigues and o
referred o as the full orthogonahization method.”" However,
the least-square approach allows an efficient stopping critersa
sthee the Jast element i the night-hand-side s ector atier apply -
g the Givens rotaiions will represent the error in the soluton

Note that vi.y is computed during the 5% step ot the algo-
rithm and will be nonzero unless the exact solution obtwned
This Jeads to an important propetty of GMRES 1o that the algo-
rithm can break down only after the exact solution 1s abtained.
Another related property is that when solving an Vv x .V omia-
tnx equation, the exact solution will be obtained 1 at most
N steps.

The disadvantages of the GMRES algorithm are that laree
memory requirements are required for the Arnoldi procedure
because cach vector must be stored i order o orthogonatize
cach new vector with respect to all the previous vectors using
a moditied Gram-Schmidt process. This also ancreases the
computational time as more veators are accumulated. o
circumvent these problems the procedure s usually “restarted”™
by using a tixed number of vectors to obtamn an approvimate
sodution which 1s then used as an smtial suess trom which the
process can he repeated

The GMRES procedure s usualls apphied to o srecoadr
tioned™ system of equations such as

M,'AM. " M.x. =M, 'b 12475




where M, and M., are called the lett and night precondition-
ers, respectively. The role ot the preconditioners 1> to obtain
a more favorabie distribution of ¢igenvalues than the orignal
system in order to obtain faster convergence so that suitable
accuracy can be obtained while reducing the dimension of the
Krylov subspace. In practice, the success of using GMRES de-
peads very strongly on the effectiveness of the precondiboners.

The GMRES pracedure. as originally developed and as de-
seribed above, iy for sobving g linear system of equations.
Wigton ¢t al.*? have extended this algonithm for accelerat-
ing the convergence of nonlinear equations such as the Euler
cquations with pood success. This procedure s desenibed 1in
section 2.5.5.

Extensions to Unstructured Grids

With unstructured grids, no regular o poon ordening of the
gnds exists such that the matrix equation can be factored ex-
phently as a product of simpler matnices, as in the ADI al-
gonthms.  Hence, the general approach s 1o solve the ma-
trix cquation with a direct method or iteratively with re-
faxation methods.” ™ Consider as the starting point the lin-
carized single-step backward-Euler time ditferencing scheme.
Ey. (2.4.45). wnitten as

[Al"tAaw " = {R}" (2.4.76)
where
1 OR"
A = - 2477
(Al Ja7 + v (2477

The solution of Eq. (24764 can. 1 principle. be obtained
by a direet mversion of [A]". This technique. while guite
successtul in two dimensions. is currently not very feasible
for practical caleulations in three dimensions.

Instead. tirst-order-accurate upwind approximations on the left
hand side of Eq. (2.4.76) can be utilized in order to reduce
both the bandwidth of the cquations and thereby the required
storage. as discussed previousty. The resulting scheme can
retain the desirable property of stahility tor large time steps, for
cither first or second order spatial difterencing of the residual,
it the lincar system is solved to a sufticiently low tolerance.

Now consider a sample configuration of triangles in which
the cells are randomly ordered. shown in Fig. 245, The
corresponding form of the matrix [A]" s shown in Fig. 2.4.6
where a circle represents the nonzero entries.

" 12 7

Figure 2.4.5 Sample Cell Configuration.
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Figure 2.4.6 Form of Matnx for Celis in Fig. 2.4.5

A vancety of relaxation schemes Co be comstructed i which
the solution of Eq. 124761 iy obtuined through a sequence
of uerations 1 which an approximation of Aw is continuaily
retined.

To facibtate the denvabon ot these schemes: TA]T i first
writien ds o hinear combimation of three matrices representing
the diagonal, subdiagenal, and superdiagonal enms, 1o |

[A]" = {D]" + [M]" + [N]" (2.4.78)
The simplest aterative scheme for obtaiing o solution to
the lincar <vstem of equations is a Jacobr type method
m which all the oft-diggonal terms of (A" Aw} (e
MI"{Aw} + [N]"{Aw i, are taken to the night-hand side
ol Eq. (2.4.76) and are evaluated using the values of 3w}
tfrom the previous subiteration lesel i This scheme can be
represented as

D {aw) ' = [IRY - M+ NJ" L aw )]

= IRy - ;oz“mw;'] (2379
where [0} denotes the off-diagonal terms in the matrix The
disadvantage of the above scheme s that the sequence of
Jacobi iterations may converge somewhat stowly  tn order 1o
accelerate the convergence. a Gauss-Seidel procedure may e
employed in which values of { Aw } are used on the right-hand
side of Eg. (24.79) as soon as they are avanlable. An example
of this scheme, corresponding 1o a sequential solution of the
cquations from the tiest ta the last clement, can be written as

I 1
i
|

Di{Aw} ™ = R} - [M]"{aw} "' - (N]" {Aw}’

(2430
where the latest values of { Aw} assocrated with the subdi-
agonal terms are immediately used on the nght hand side of
the wteration cquation. A shght modihication 1o the abose al-
gorithm in which the latest values of {Aw} associated with
the superdiagonal are used. corresponding 1o a sequential solu-
ton from the last to the first element. results 10 a very similar

scheme which is given by

DIAw} " = [{R})" - [M]"{aw}’ - [NI"{ 2w} ']
L (2481
A symmetric Gauss-Seidel tvpe procedure 1s obtained by al-
ternating the use of Eg. (2.4 80) with Eq. (2481

Note that the algorithms given above ny Egs. 12.4.8(h and
(2.4.81) can both be implemented by sweeping sequentially
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through cach mesh cell and sunply using the latest values ot

{Aw)} for all tne off-diagonal terms which have been tuken

te the right hand side. This can be represented as
DHAwr ™" = iR} - 0" {aw} T

12482

where w'T' 1y the must recent value of woand will be at
subtteration tevel 1+1 tor the cells which have been previ-
ously updated and at tevel 1 tor the eells which reman o
be updated. The disunction between alponthms (2.4 80) and
(2.4.81) comes about from the sequential solution of the equa-
tons i opposite directions (forward and backward. respec
tivelyy through the elements.

There are two disadvantages of the scheme as described above
The tirst disadvantage is that the process is nob vectonzable,
stnee the solution of cach clement must he obrained betore
proceeding to the neat one. {he second disadvaatage ol this
scheme 1s that the degree of implicitness 1s set by the ordering
ot the clements. This can be llustrated by noung that although
the off-diagonal terms may be updated und immediately used
on the nght-hand side. the solution of the next unknown inay
or may aot depend on previousty determined quantities. For
example, as can he seen trom Fig. 2.4.5, when salvng tor
unknown number 2 using Eq. 12.4.80). the updated value ol
the solution at clement | is not used so the solution for point
2 rematas g Jacobt swep.

Note that tor structured gnds i which the cells are ordered
in u natural manner {e.g., left to nght and top to hottom).
the latest information will be used immediately for calculation
of the next unknown,  This 15 because the ordering of the
cells produces o banded matnx with terms grouped along
the diagonal.  The fact that the latest available data s not
necessarity used for updating information in unstructured gnds
15 atrictly duc to the random ordering of the cells.

An improvement can be obtained by simply renumbenny the
cells in such o way as to group terms along the diagonal of
the matrtx.  In this manner, the solution of cach point will
tend o ensure that previously updated information from the
surfounding cells s used as soon as it s avallable. An ex-
ample of this is shown in Fig. 241 where the sume sample
set of cells used in Fig. 2.4.5 ix simply renumbered from bot-
tom to top and left to night. The resulting form of the matrix.
shown in Fig. 24K shows that the grouping along the di-
agonal is greatly improved. The ordering ot the cells in this
way results in a faster convergence of the lincar system than o
random ordering of cells. For general unstructured-gnid coet-
ticient matrices. the bandwidth reduction algorithms discussed
previously are etfective in clustering unknowns along the di-
agonal. Again, it should be noted that several varistions of

this scheme can be nbtained by using vanous combinations of

Egs. (2480 and (24.81). An important disadvantage of this
scheme, however, is that it stll sufters from the fact that the

contribution of the off-diagoral terms to the nght-hand side of

Eq. (2.4.82) is not vectorizable.
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Figure 2.4.7 Sampie Cells.
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Figure 2.4.8 Form of Matrix for Cells in Fig 2.4.1

The Jacobi. Gauss-Seidel. and  symmetnic Gauss-Sedet
schemes desenibed abose have all been used i practice by var-
ious researchers. Applicanons™ 10 a circulur are in a channel
ndicated that the symmietric Gauss-Seidel scheme extubited
the tastest convergence rate of these three schemes The sym-
metric Gauss-Seidel algonthm of Bauna”" apphied 1o transomc
flow over dirtmils. cnhanced the grouping of the unknowns
along the dragonal by sorting them according o the x voor-
dimate directton. Vartants of hine-relaxation schemes can be
constructed by ordertng the clements into groups of approws
mately colhinear elemenis and then updating e clements by
groups  Note that in the particular case above corresponding
to the use of tirst-order apwind tmpliait ditferencing. the re-
laxation is applied o solve the hincar system of equatior s and.
as g consequence, no particufar sweepig directions need be
maintained, such as symmetric Gauss-Seiuet. However of the
relaxation s apphied directdy to the nonhnear imphicit equation.
where the residual cquation s evaluated at every iteranion, then
the stability of the scheme s coupled o the discrenzation of
both the implicit operator and the spatial discretizanon. In
that vase. 2 Von Neamann stability analysis aindicates that
second-order spanal ditferencing of the residual requires an
alternating Gauss-Scide! scheme in order 1o remain stabie

A numbenng of the cells which has proved asetul on vector
processing computers s shown in Figo 249 The ordening s
obtained by grouping cells o that no two cells 0 gnen
group share a common cdge. The resultiug matnix torm
fur {A] is given in Fig. 2.4.10. Nete that for the current
example, only two groups are formed: the (st group consists
of the cells numbered 1 -6 and the seeond group contains cells
7-12. In practice. tour groups are generally sufficient for twa
dimensional calculations and hve groups for three dimensonal)
calculations.

~2 s 11
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Figure 2.4.9 Sample Cells.
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Figure 2.4.10 Form of Matrix for Cells in Fig. 2.4.9.

The solution scheme can be written as betore using Ey
(2.4.82) and 1s implemented by solving for all the unknowns
na group at a time. In this manner, the cells in the first group
are solved using a Jacobt type iteration while the cells in all
the subsequent groups are obtained by using the most recently
updated values of { Aw} from the off-diagonal contributions.
In this way. a Gauss-Seidel type scheme is obtained which is
casily implemented and is tully vectorizable. The relaxation
can be considered as a generalization of the checkerboard re-
laxation schemes used for structured grids with a three-point
stencil in each coordinate directions. The points are colored
i a checkerboard fashion as cither red or black: all the red
pomnts are updated simultancously. followed by all the black
points, and so forth. Note that in the discussions above, the
exact number of subiterations required in order to sufficiently
converge the hnear problem (Eq. (2.4.76)) has not been spec-
itied. The optimum number of subiterations used for cach
global time step is generally determined through numerical
experiments and is problem dependent.®?
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2.5 CONVERGENCE A« . . i t.RATION

The acceleration of the convergence rate of numencal compu-
tations 1s very important when conducting gnd convergence
studies to verify the accuracy of numerical solutions. An in-
tegral part of this process is the uniform retinement of the
grd in cach direction until little or no vanation in the solu-
tion is observed with increased grid size. Unfortunately. with-
out convergence acceleration, the convergence rate of iterative
methods severely degrades as the grid spacing is decreased
through the grid refineinent process. To mitigte the penalties
associated with the use of tine grids. several methods of ¢on-
vergence acceleration have been introduced and are discussed
below. These methods are especially important in three di-
mensions, where an cight-fold increase in the number of grid
points occurs when the points are doubled in all three coor-
dinate Jirections.

2.5.1 Local Time Stepping

One of the simplest and most commonly used methods of
convergence acceleration is the usce of local time stepping.’
When a steady-state solution is of interest, a spatially varying
step stze can be used for cach cell independent of the other
cells. The time step is generally based on a combination of
the flow variables in cach cell as well as the cell size.

Perhaps the most commonly used method of local time step-
ping is to basc the time step in cach cell on a local CFL
number. Examples of this can be found in many references.
as can be seen in the citations of the code summaries in chapter
3. in which the time step in cach cell is determined by

Aty =CFL- Mooy on (2.5.H

where At p1.y, is the ume step required for a CFL of
unity and may be determined with a varicty of definitions for
multidimensional problems. One form that is commonly used
is given by

2r

Aty = ———— 5.
e~ f(lv-nl+u)tl.-\ (

~
n
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where the integral is cvaluated over the surface of each control
volume.
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An example of the ceffectiveness of local ume stepping is
shawn mn Fig 2.5.1, where an explicit method is used to com-
pute the flow around an NACA 0012 airfoil at a Mach number
of (.8 and an angle of attack of 1.23". The effect of local time
stepping iy dramatic. By using local tme stepping. the resid-
ual is reduced 10 orders of magnitude in approximately 3000
iterations: without local time stepping. httle progress towards
vonvergence is achieved. The ettect is even more dramatic on
the tift coetticient, where, with loca) tme stepping. the tinal
lift value is obtained in about SO0 iterations. The solution ob-
ined without local time stepping has tailed to reach a steady
state alter 3000 ieranons. This technique s very simple and
casily 1mplemented and offers a clear advantage woward aceel-
cration of the solution to a steady state.

2.5.2 Residual Smoothing

To accelerate the convergence of exphcit algorithms, one
methodology that has been extremely etfective is residual
smoothing.™" For this method, the steady-state residual caleu-
lated at cach step is moditied in such a way that the suppont

of = © . is enhanced, which increases the impliciiness
o - n In practice, this technique has been par-
t. B . for central-differencing schemes when used
inco w1 with multistage time stepping, aithough recent
improve  .ts for upwind discretizations have been reported.”

For this reason, the general procedure is vutlined below for a
four-stage Runge-Kutta type of algorithm. applied to a one-
dimensional model problem with central differencing. The ef-
feet of residual smoott g on the stability is examined through
the application of a ¥o. . analysis.

Consider the model probler civen by
e+ +pdrtu,, = v (LA

A tour-stage Runge-Kutta type method 1s given by
ol = g
utth = gt A
w = w't - ":A,R(l)
WY = gt o AR
”(“ - "(I\\ - Arn\.\v
1}

“4.,*“ -~ "-.1

(2.5.4)

where B = a, ' +pA0*s, ., 0" denotes the discretized
steady-state residual formed from data at stage level /. Note

Lift
0.30 T T
0.25 LL‘ T —-
F 4
0.20 1
Q .4[ *
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Figure 2,5.1 Effect of local time stepping on convergence rate.
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that in the present form this scheme is one in which the
dissipative term is evaluated at each stage. lt is possible (and
more economical) 1o use schemes in which the dissipation 1s
only c¢valuated periodically, for example on the first and third
stages." However, for illustrative purposes. the dissipation
will be evaluated on each stage.

To determine the stability of the current scheme, a Founer
mode is substituted for u:

w=Ue"" (25.5)
The Fourier symbol for AtR' is now written as
AtRY = Tz 12.5.6)
where
Z = —\isin& + 4p(1 — cos€)7) (2.5.7)

and \ = At/ Ar is the Courant number. Substitution of Egs.
(2.5.5), (2.5.6), and (2.5.7) into Eq. (2.5.4) yiclds an equation
for the amplitication factor

g=1+2Z+a 2z + H:”:;Z“ + =....»_»'...Z" (2.5.8)

which indicates the extent to which errors decrease (or grow)
from one iteration to the next. Stability of the scheme requires
that |g} < 1 for all Z.

By cycling through values of 0 < & < ., with Eq. (25.7)
used in Eq. (2.5.8), the amplification factor can be obtained
for a fixed value of A and a dissipation coefficient jr. Figure
2.5.2 shows the amplification factor as a function of £ with a
“standard™ set of coefficients given by a; = 1/4, a2 = 1/3,

nq = 1/2, and g = 1/32. As shown in the figure, the
1.0 T
0.8 ﬂ
lgl 0.6 -
0.4 .
1
Q.2 e
4] 1 2 3 4

Figure 2.5.2 Amplification factor for standard
four-stage scheme; A\ = 2.8, oy = 1/4,
nr = 1/3, ny = 1/2, and p = 1/32.

algorithm with these parameters is indeed stable. If. however,

'{"
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the value of A is increased 10 3, then the scheme becomes
unstable near £ = n/2. as shown in Fig. 2.5.3.

1.5 —— e ——————r
1.0 i
lgl
05 F N
OO n 1 e L i 1 i
o) 1 2 3 4
H

Figure 2.5.3 Amplification factor for standard
four-stage scheme; \ = 3.0, a, = 1/4,
ar = 1/3, 0y = 1/2, and p = 1/32.

To obtain 4 stable algorithm tor higher values of \, the support
of the scheme may be increased by replacing the residuals
o R RR -+ 4) at each point with an average of the
residuals on either side:

Ro=cB_i+(1=20R +R., =(1+:, R, (259

With this moditication to the residual. the Fourier symbol Z
is now given by

Z= -—,\{ia’iué + (1 — (‘ns{)"”l = 2¢{1 — cos &)
(2.5.1)
With the addition of the second factor, the value of X may
be increased. An example is shown in Fig. 2.54 for the
four-stage scheme described above. but A = 3 is used where
the residual is replaced by the averaging procedure in Eg.
(2.5.9) with ¢ = 1/4. As shown in the figure, the scheme is
now stabilized for A = 3, whercas it was previously unstable.
Experimentation has shown that for ¢ = 1/4 an increase of
approximately 50 percent in the value of A can be obtained.

1.0

0.9

gl
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0.7

Figure 2.5.4 Ampilification factor for standard four-stage
scheme with explicit residual smoothing; A = 3.0,
e=1/4, v =1/4 a2 =1/3, na = 1/2, and pp = 1/32.

A disadvantage of the above procedure can be illustrated for
1/4. For this value of ¢, if the residuals exhibit an

=
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odd-even type of behavior, the value of R, computed with
Ey. (2.5.9) will be zero, so that no update of the dependent
variables at each gnd point would occur regardless of the value
of R, at that point. To overcome this difticulty and to allow
arbitrary values of ¢, an average residual may be calculated
from an implicit relation given by

R+ (1420, +¢R,.1 =(1 - (b,,)ﬁ, =R,
(25.1h
In this manner. the support of the scheme can be made to ¢x-
tend over the entire grid thus relaxing the time step limitation.
The Fourier symbol of the resulting scheme is given by
—A[ising + 4p(l — cos€)?

Z= -

i 25
2512
[l+'.’6(l—t‘n.~£)] { )

The denominator is greater than 1 for all vatlues of £ > 0 and
reduces the magnitude of Z so that larger time steps can be
taken. Reference S shows that in the absence of dissipation,
stability is maintained tor any value of X if ¢ is chosen so that

=3 ]

where A is the limit for the original scheme without residual
averaging.

(2.5.1%

The success of this techrigue is demonstrated in Fig. 2.5.5,
where the value of A* is assumed to be 2.8, which is the
stability fimit of the standard four—stage scheme without added
dissipation (1 = 0). For example. to achieve stability for
A = T, Eq. (2.5.13) indicates that a value of ¢ of 1% is
appropriate.  As shown in the figure, the amplification factor
remains below unity for all values of 3 < £ < 7.
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Figure 2.5.5 Amplification factor for standard four-stage
scheme with implicit residual smoothing; A = 7,
e=13 0y =1/4 ny = 1/3, 00 = 1/2,and ¢ = 1/32.

To implement Eqg. (2.5.11) for multidimensional problems, two
prominent methodologies can be used. For structured grids
in two dimensions. an approximate factorization procedure is
often used. in which the implicit operator is spatially split into
a product of two more casily invertible ones.’
(1 —eby, — by B (1=, (1 — b, )R = RB;
(2.5.14)
This equation is solved in two steps: both steps involve the
solution of a tridiagonal system of equations.

Another technique tor implementing residual smoothing in
muludimensions is to solve the system of cquations with a
point Jacobt or Gauss-Seidel type of procedure. This tech-
nigue has been predominantly used for unstructured grid algo-
rithms in which a spatial factorization is not casily achieved:”
however. the implementation of residual smoothing into struc-
tured grid codes has also been achieved in this manner +nd
has yielded advantageous convergence properties over the fac-
tored form.”

As previously mentioned. the technique of imphicit residual
smoothing has been ex.cnded to include upwind discretiza-
tions for the implicit smoothing operator.*®  For the one-
dimenstonal model problem, the previously central-differenced
smoothing operator given by Ey. ¢2.5.11) is replaced by an
upwind operator

—R . +(t+0R =R, (2.5.15)

With this modification. a signiticant increase in the allowable
CFL number is achieved over the central-ditterence tormula-
tion without destroying desirable smoothing properties of the
high-frequency error components While the implementation
of this technique is not straightforward for multidimensional
problems because of omnidirectional wave propagation, re-
sults in Refs. 4. 7. and 8 for two-dimensional Euler computa-
tions indicate significant improvements over residual smooth-
ing with pure central differencing.

2.5.3 Vector Sequence Extrapolation

Sequence Acceleration

Vector-sequence extrapolation is a well-known technique tor
accelerating the convergence rate of sequences. An cxample
of this is the well-known Aitken-#7 method, in which a new
sequence is derived from the original sequence, which hope-
fully converges much faster than the original one.” Although
many variants of this technique and many related algorithms
exist, concentration below focuses on one particular method,
commonly referred to as Wynn's ¢ algorithm. First, a brief
discussion of the essential ingredients of vector-sequence ex-
trapolation methods is presented. followed by the extension of
these algorithms to the Euler equations as well as examples.

For the Aitken-6* method. the sequence is derived by assuming
that the original members of the sequence s, can be adequately
described as

TR T (2.5.16)

where s is the iimiting valuc of the sequence and » and p are
constants. By evaluating Eq. (2.5.16) at n. n + 1. and » + 2,
the limiting value of the sequence may be obtained from the
solution of the set of simultancous equations for s, #. and p. If
the original sequence is accurately described by Eq. (2.5.16),
then the exact answer will be obtained. If. on the other hand.
Eq. (2.5.16) does not provide a precise description of s,,. then
application of the procedure will be only approximate. but inuy
stitl provide a better estimate for s than is currently available.
This estimate for the value of s is given by

)y (i (0} 3?
o Speate T A Sa
ki = e—

LT )y

B L

(2.5.17




where the superscript () is used to denote terms in the original
sequence. This new sequence may now be used to define
another sequence given by

(S NN ARV
12 Sugpate — (5,024}
Sao =T N (2.5.18)

A
Nz + 50 = 28,4

which may supply a further improvement '» the limiting value
of the sequence. This procedure can be applied repeatedly.
increasing the accuracy each time over the previous estimate.

An example of this procedure, borrowed from Ref. 9, s given
below. The original sequence is taken to be the first nine
terms in the series given by

lL-vl

< _n .
§—~— 2519
3 (2.5.19

k=1

which is the Taylor series expansion for In (1 + ») evaluated
at r = L.

in the current exaiipie, tie suluiion s ubtained to «2ven-digit
accuracy u (2) = 1.6931472) at the end of the extrapolation
procedure with only the first nine partial sums. Note that
to obtain similar accuracy from simply summing the series
dircctly would require approximately 10 million terms.” The
acceleration procedure is clearly very useful in this case.

A shortcoming of the above technique lie« in the underlying as-
sumption that the sequence behaves similarly to that described
by Eq. (2.5.16). For this reason. the above extrapolation pro-
cedure is most effective on geometric series and becomes less
effective as the serics deviates from this behavior. To over-
come this shortcoming. Shanks™ derived other extrapolations
based on the assumption that the sequence may be described
in the more general form

S=an ) o Rvpy (2.5.20)

which is referred to as the V'™ order Shank’s transformation.
Equation (2.5.20) is evaluated for five values of » resulting
in a set of equations that can be used to solve for s in
much the same manner as to obtain Eq. (2.5.17). Although
this higher order trunsformation may provide a more accurate
representation of a general sequence, the implementation in
this manner can be inefticient for higher order transforms.
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In Ret. 11, Wynn describes an algonithm for computing
the higher order extrapolations that is more efficient than the
process described above. In this method, a table of values is
constructed from the original sequence with the relationship

-1
() Gty ) oy
A () 2.5.21)

<t

where the values of ™' are assunied to be arranged in a
format shown in Fig. 2.5.7.
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Figure 2.5.7 Format for ¢ algorithm.

The initial conditions arc taken to be

() = (.

— B
4 m=1.2....

G (2.5.22)
fh = S m=01....

where s,, represents the terms of the original sequence. Note
that the odd numbered columns do not represent actual ap-
proximations to the terms in the sequence. but are intermediate
calculations necessary tor the calculation of the even columns
e (=001

n Sn NIl S AL Sh

1 1.0 0.7 0.6932773 0.6931439 0.6931472
2 0.5 0.6904762 0.6931058 0.6931467

3 0.8333333 0.6944444 0.6931633 0.6931474

4 0.5833333 0.6924242 0.6931399

5 0.7833333 0.6935897 0.6931508

6 0.6166667 0.6928571

v 0.7595238 0.6933473

8 0.6345238

9 0.7456349

Figure 2.5.6 lllustration of Aitken-4‘ method.
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In this procedure, each valu of «.”!) shown in Fig. 2.5.8 is
calculated from Eq. (2.5.21).

(o
as ()
Cem ford

(m+1)
<

Figure 2.5.8 Module used for the computation of «7').
In Ref. 12, a relation is given that ailows the computation
of the even columns without direct computation of the odd

columns. This relationship is given by

(N ~-CHS-0O)

E=0C+ — - e (2523
(S-Cy+ (N —(')—(—(——(T_&r-,—‘*
where
~ L mw) oL tme)y v __ )
E=e¢, W= O = (2.5.24)

. ) c (e
N =" S="

Note that 8 is zero for the first column and unity for subsequent
columns: the continuous use of ¢ = () corresponds to repeated
tirst-order transformations.  Although not shown, the use of
the ¢ algorithm as described above to the series given in Eq.
(2.5.19) yiclds results comparable to those shown in Fig. 2.5.6.

As previously mentioned. the effectiveness of the acceleration
technigue is strongly dependent on the assumption that the se-
quence behaves in the manner given by Eq. (2.5.20). Because
only N termas are included. only cigenvectors assoctated with
the first .V dominant cigenvectors of the iteration scheme may
be effectively climinated. Theretore, an algorithm must be
used that acts as a preconditioner, so that most of the cigen-
values of the iteration scheme are forced to be approximately
equal. In this way. the number of terms contained in the orig-
inal sequence may be kept as low as possible.

Application for the Euler Equations

To apply the above technigue to systems of equations such
as those that arisc in Euler solvers. the ¢ algorithm has been
generalized for systems bv Halez ia Ref. 12. In this reference,

a form similar w0 that in Eq. (2.5.23) is given by
E-C NX-C §-¢ W-C
= . . 282
as PR ot 28
where
o = 2 = Fd N
h3=[(\f,( +5“,C — ol f,C) ] (2.5.26)
a? 72 2
4i2 = H_\‘. - (’vi
s#=|$-¢ (2.5.27)
4= } [ g (“',
and the inverse of a vector is defined by
_ Ay
X'= T (2.5.28)

In Figs. 2.5.9 and 2 5.10, examples are presented from Ref.
12 in which the above procedure is applied 10 the computation
of a NACA 0012 airfoil at wransonic conditions.  For the
computation, the explicit. multigrid. multistage time-stepping
scheme of Jameson is used, and only five terms are included
in the initial sequence.
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Figure 2.5.9 Effect of vector-sequence
acceleration applied after 250 time steps for
NACA 0012 airfoil; M. = 0.3 and n = }.25°.
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Figure 2.5.10 Effect of vector-sequence acceleration
applied after 100, 200, and 300 time steps
for NACA 0012 airfoil; M. = 0.5 and n = 1.25°.

Shown in Fig. 2.5.9 is the convergence history obtained by
using the ¢ algorithm after 250 time steps. As scen, the
residual drops dramatically at this point, which indicates the
effectiveness of the acccleration procedure. Note. however,
that at the point the acceleration is applied. the residual has
been reduced by about 6 orders of magnitude. which should
be more than sufficient for obtaining global quantities such as
lift and drag. An attempt to apply the procedure carlier in
the iteration history is shown in Fig. 2.5.10. As secn, the
effectiveness of the current algorithm, when applied after 100
iterations, is minimal. After 200 erations, however, a sudden
drop in the residual is observed. and a further drop is scen at
300 iterations. where the algorithm is applied once again.




Although the ¢ algorithm can be very effective at achieving
dramatic reductions in the residuals, systematic knowledge of
when to apply the algonithm and how often is not clear. In
the results shown above, for example. although the accelera-
tion is impressive, at the point the method is applied and is
effective. global quantities such as lift and drag are likely to
be fully converged. Further research s required to gain more
knowledge in this area. Furnthermore, the implementation of
this technique of convergence acceleratton requires storage of
twice the number of terms included in the intial sequence;
for the example given above in which tive terms in the initial
sequence are used, the solution would need te be stored 1)
times. For very large problems this requirement could become
prohibitive.

2.5.4 Multigrid Acceleration

Introduction to Multigrid

One of the most successful and widely used methods of con-
vergenee aceeleration is multignd. The greatest benetit of this
method is that the convergence rate (.., the spectral radius
that measures the ratio of errors at successive time steps) fe-
mains constant, independent ol the mesh spacing. In this way,
solutions can be obtained in ¥ (N operations (i.c.. the compu-
tational cost varies lincarly with the total number of grid points
V). Without convergence acceleration, the computationaf cost
1s constderably higher because of the penalty associated with
a deterioration of the convergence rate as the mesh spacing
decreases. Although most of the existing theory on multigrid
methods pertains specitically to elliptic equations, a number of
reterences (for example, 3. 13, 14,15, and 16) have shown that
the multignd method can greatly accelerate the convergence
rate of numerical schemes used to solve the Euler equations.

A bricf description of the clements of multigrid s given
below. The method is first deseribed for the solution of a
general nonlinear equation. The implementation of the full-
approximation scheme (FAS) for the Euler cquations is then
discussed.

Description of Multigrid

The multigrid method most widely used for accelerating the
convergence of terative methods o solve the Euler equations
is the full-approximation scheme (FAS) that appears in many
references '™ and is summarized below  First, consider
the solution of a general nonlinear system of equations

LiQy=S5 (2.5.29)

where L is a general nonlincar operator, () is the solution
vector of unknowns, and S represents a forcing function.

Equation (2.5.29) is solved numerically by dividing the domain
into discrete cells that yield a system of equations to be solved
simultancously at cach point as

LyiQv) =Sy (2.5.30)
where Qv is the exact solution to the discretized system and

L~ is the discrete analog of the operator L. If initial condi-
tions are close cnough to the tinal solution. Eq. (2.5.30) could
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be solved ueratively with Newton ateration. This approach,
however, may be prohibitively expensive if the number of un-
knowns s Targe which typically occurs in muludimenstonal
problems. Many other werative schemes have, theretore, been
devised that require significantly fewer operations. After o tew
werations, however, these methods generally exhibie a slow
convergence rate. which reduces the residuals by a very small
amount each time.™ The reason for the stow asymptotic con-
vergence rate iy the inadequate damping of the low-trequency
errors.”!

The multigrid method etticiently damps the low -frequency
crrors by usint a sequence of gnds (oGl Gy where
(ra denotes dhe tinest gnd, from which successisely coarser
grids vy Gy a0 e ereated. In g structured-god
tull-coarsening algorthm, the coarser grnids are constructed by
deleting every other prid line in cach coordinate direction. In
practice, and particularly for unstructured gnds. the coarser
grids need not be constructed as a subset of the tinest grd,
fi.c.. they can be created independently of the finest grid). In
this context. the high-frequency error components on i given
grid are those that cannot be resolved on the next coarser mesh
because of the increased gnid spacing. 1t an iterative method
is chosen that quickly damps the high-trequency errors on a
given grid. then after a few iterations, the remaining crrors
will be those associated with the smoother. low-frequency
error components. Because these components appear as higher
frequencics on coarser meshes, a sequence of coarser grids can
he effectively used to accelerate the convergence rate on the
tinest grid. Therefore, the low-frequency crrors on the fine
grid that are usually responsible for slow convergence can be
etticiently damped on the coarser grids. These computanons
are relatively inexpensive so the total overhead of the method
i1s not excessively high. For example. the work required to
solve the equations on all the gnds in refation to that required
to solve on just the tinest grid can be estimated by

1 1 ! 1
S I A 2530
bt 1+m+m 3 ‘
for two dimensions and
1 1 ! 1
o e ool 2532
itmtaet : (e

for three-dimensional calculations. Note that the above esti-
mates are for structured grids from which coarser grids are
formed by removing every other mesh hine in all directions.
Also, these estimates only account for the number of unknowns
on the various grids and do not consider the extra residual com-
putations necessary to compute the relative truncation error.

To use the coarser grids an equation must he obtained on the
fine mesh that can be accurately represented by the coarser
mesh. Neither the solution nor the high-frequency error com-
ponents on the fine grid can generally be resolved on a coarser
grid. The high-frequency crrors, however, can be sufticiently
damped on a tine grid by using iterative schemes speciti-
cally designed to damp high-frequency crrors in the solution,
so that the remaining errors will be composed of only ow-
frequency components that can be adequately represented on
coarser meshes. Because only the low-frequency crrors may
be represented well on coarser meshes., it s necessary to obtain
an equation on the fine mesh i terms of the errons,

To solve iteratively, Eq. (2.5.30) is solved approximately at
cach step as

L Vg = Sv+ By (2.5.3%)
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where g5 is the most current approximation to Qv and Rv
15 the residual vat will be zero only when ¢y = Qv Hence,
the exact discrete solution is obtained. Equation 2.5.33 is
subtracted from Eq. (2.5.30) to yield an equation on the finest
grid in terms of the residual:

LyoiQ@y) ~ Latyvy=--Ry (253

With the assumption that the high-trequency errors have heen
previously smoothed. the fine-gnd residual Eq. (2.5.34) can
be adequately approximated on a coarser mesh as

Ly od@Qv o) = R =R+ Ly (137 1y ) 2539)

where 1Y and I3 ™" are restriction operators for transferring
both the dependent variables and the residual from the tine gnd
to the coarse grid, respectively. Here. I\\ Ty serves as an
tnitial approximation to the solution on the coarse mesh: (v _ ¢
is the exact solution of the coarse-grid problem and is the sum
of the initial approximation and a correction.™ Because the
full solution is computed and stored on cach grid level (as
opposed to only the corrections, which is all that is required
for a linear equation). this process is referred to as the FAS.

On a sufficiently coarse grid. Eq. (2.5.35) can be solved
exdactly with a variety of numerical techniques to obtain Qv ;.
from which the coarse-grid correction can be formed as

Vo= Qv = IS (2.5.36)

This can then be transterred 1o the fine grid and used as a
correction to 4. which is replaced by its previous value plus
the prolongated correction

qN — gy + i\?'_l"\ —1 (2.5.37)

This process yields a simple FAS two-level algorithm where
the operations on the coarse grid (Eqs. 2.5.35)-(2.5.37) used
to update the finc-grid solution are termed the coarse-grid
correction.  Normally, the exact solution of Eq. (2.5.35)
can be expensive to obtain.  Also, because the correction
on the coarse grid serves only as an approximation to the
fine-grid correction, the exact solution of Eq. (2.5.35) is
not required. Therefore, instead of sol.ing Eq. (2.5.35)
to completion, several iterations can be carried out to get
a reasonable approximation of (Jv_,. For an approximate
solution 45 _, of Eq. (2.5.35), a corresponding coarse-grid
residual Ry _; can be defined from

Lyostgvod =T8T (=Ryi+ Ly (I8 74k ) + Boy

(2.5.38)
whose solution differs trom the solution of Eq. (2.5.35)
only by the residual term R~ _,, which will be zero when
gvoy = Qv 1. If the errors are smooth, then subtraction of
Eq. (2.5.38) from Eq. (2.5.35) yields an cquation that can
be well represented on 1 still coarser mesh Gx_p. If this
equation is written on G _ -, then

Ly Qv 2)= i\?“_‘f(—‘n.\'—l )+ L\'—z(l,\\::.f’lx ‘1)
(2.5.39)
where Eq. (2.5.38) is used to determine Ry _;. The solution
may be obtained in one of three ways: by solving Eq. (2.5.39)

exactly, by approximaung by several iteiations. or by introduc-
ing more coarse-gnd levels. On all coarse gnds. one or more
FAS cycles (smoothing followed by coarse-grd correction) are
completed. In this manner. each of the coarse meshes 1s used
to obtain a comection for the solution on the next hinest mesh.
Because only the equations for smooth error components may
be represented well on coarser gnds, only the corrections tand
not the full solution) must be passed trom a coarse grid 1o the
next finest gnd.'

By using Eq. (2.5.33), note that Eg. 12.5.35) can be recast as

Ly Qv ) =585y o +rv =0y (2.5
where .

Sv o, =13 'Sy (2.5.41)

rva =L l(l:" ':/'\) —l\\ ';L\'w'\-h (2542

Here, rv ., is the relative truncation error (or detect correc-
tioni between the grids, so that the solution on the coarse gnd
is driven by the tine grid. and the defect correction accounts
for the difference in the truncation error between the coarse
and tine grids."™ The analogous equauon for grid Gy, i
given by

(2.54%)

Sy, = i: TSy (2544

and

rvoa =Ly »-'-’(I\t‘tf"l'\'- ,)—l—\\: ',"[L\'Altqv\- _,)]+is 7,:1'\' |

(2.545%)
Note that the relative truncation error on the N ~ 2 gnd s
the sum of the relative truncation error between grids N and
N~ L oas well as NV — 1 and .V - 2. Thus, the equations
solved on the coarser meshes (Egs. (2.5.40) and (2.5.43), for
example, appear exactly as the original equation. except that a
torcing function appears on the coarser meshes. The result is
that the coarse meshes can be updated with the same scheme
that is used on the tine mesh. with only a slight moditication
to the right-hand side.

Algorithm for Euler Equations

For the steady Euler cquations that are written in generalized
coordinates. Eq. (2.5.30) can be written as

LviQy)= b F4o,G+o-H=0 (25.46)

In the multigrid solution process. a forcing function arises ¢n
the coarse grids from restricting the residual equation on a fine
mesh to the coarser mesh. The resulting equation. to be solved
on any mesh (. can be written as

L(Q) = (2.5.47)

where 7, is equal to 0 on the finest mesh and is the relative
truncation error on cach of the coarser grids. The solution
of Eq. (2.5.47) is generally updated by introducing a time
derivative of the dependent variables to the left-hand side so
that the solution can be advanced in time with methods such

| i




as Runge-Kutta, approximate factontzation, or relaxation meth-
ods previousty described. For imphicit methods, the resuling
scheme, wntien on mesh (. 1y given by

NAy = ALy - ] = - AR, 12.548)
where Vs the implicnt operator of the considered scheme and
L.y, ) on the right-hand side results trom the hinearizauon ot
L., ) trom the haciward Euler tme integration.  Note. as
mentioned previously, that even on the coane meshes, where
roas ponzero, By, (2.5.48) maintins the same form as the
cquation on the fine mesh.

Several strategies exast tor deciding when to switch from one
gnd level o another: these generally tall under the categones
of fixed- or adaptive-cyele algorthms.  Fhe srategy most
commonly used 1s a tixed-cyele strategy. in which cach global
vycle consists of a st number of FAS cycles on cach of the
coarser grids. Recall that une FAS cyele on any gnd vonssts
of a smoothing step. tollowed by a coarse-gnd correcnon A
predetenmined number of aterafions are performed on cach gnd
level o smoath the errors

The conserved vanables are transterred to successively coarser
grds cach ume by the rule

(2.5490

where ] 18 a4 volume-weighted restiction operator that
transfers values on the tine gnd to the coarser gnd and is
detined by
N
£t = s
¢ S

12.5.50)

The summations are taken over all the tine-gnd cells that
make up the coarse-grid cell. Restniction of the dependent
vartables in this manner conserves the total mass, momentum,
and cnergy of the tine gnd on the coarser grids. In general, the
relative truncation error is caleulated on the coarse grid as

soa=Lo8 ) - LR (2550

where I!
defined as

' is the restriction operator for the residual, generally

I' 'R, = Z R,

where, again. the summation 15 over the cells on the tine grid
that make up the coarse-grid cell. By summing the residuals.,
the surface integral of the fluxes that cross the cell boundaries
on the coarse grid is the same as would occur by integrating
around the tine-grid cells that make up the coarse grid. Several
time steps can be conducted with an aterative scheme to get an
approximation to the steady solution on (&, _ . with the right-
hand side modificd to inctude the refative truncation error. If
only one coarse grid is used to correct the finest gnd, the result
is the simple FAS two-level cycle. On the other hand. if more
gnd levels are introduced so that one or more FAS cycles
can be recursively carried out on cach subseguent coarse-grid
level to better approximate (2~ . then a multilevel algorithm
resubts

(2.5.52)

When only one FAS cycle is carried out for cach of the coarser
grids, the resulting global cychng strategy 1s termed a V-evcle.

t
+
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which i depreted i Frgo 25 11 Another cychag strategy of
mterest, which s shown i Figo 2512008 termed 4 Wecwele
and resufts when two FAS cycles are used on cach of the
coarser meshes. Results will be shown ain the next section for
buth types of cycles  Fhe corrections on coarse meshes are
profongated to the next inest mesh wath tnhinear interpolation
and no addinonal steration steps between meshes. When o
Wocyele is used. however, note that an iteration 1s carned ot
at the beginming of cach FAS ¢vele correctuon to smooth the
high frequencies

Poobuivt calonidoen ¢
U Kosaduatr) colkainen J
I U st il pedaticn

Fuler v ah ulation

Residuaiit) colhoa o i
I Coreation ks peodation 0] @ O @ 0)

®| ®l

Figure 2.5.12 Multigrid W-cycle.

To further chinty the multignd procedure. the overall process
summarized as tollows tor an exemplary case. where three
end levels are used 10 o Veewele

1. Start on the tinest gnd and smooth the errors by completing
onc iteration of Eq. (2.5.4%) with -, = 1),

2. Caledlate the residual on the tine gnd trom Eg. (2533,
where Lvigy ) is given on the right-hand side of Eq. (2.5 461
and Sv = O

3. Restrict the dependent vanables to the first coarse grid
(v o1 by using Ey. (2.549).

4. Restrict the residual from the finest gnd to (/v | with
Eq. (2.5.52) and calculate the relative truncation error with
Eq. (255N,

5. Calculate the nght-hand side of Eg. (2.5.48) and update
the solution on mesh (v -y (This smooths the errors on this
grid so that a coarser grid can be introduced.)

6. Calculate the residual on this mesh with Eq. (2.5.38). Note
that this can be wntten as

By v =Ly tgy (i=1v (2553
Because 7v .y has been previously calculated. the residual is
casily calculated by simply caleubating Ly (g () from the
most current values of the dependent vanables on the mesh
and then subtracting =\

7. Restrict the dependent varables on Gy oy o Gy, by
using Eq. t2.549).
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% Restnict the residuad trom Eq (2880 o the V2 pnd
and caleulate 7y from Eg (285D

9. Calculate the nght-hand side ot Eg (25481 and update
the solution on this mesh. Because this as the coanest inesh
wsed i the preseat example. three aierations o) By 12 S48y
Wre used Lo ge an approvimation o of s
the nght-hand side s updated 10 use the most current values
ol the dependent variables i Lo oy .0 Note that o~
will not vhange

Dunng cach siep,

10 Cakeulate the correction on this mesh o ginve

to
n
»

Ve oo IS :/\_ , | S

HE o Pass the correction o the aent tinest miesh swath edhinear
interpotation and update the solution to give

T AN 1255%

Note that steps S through 11 make uy one FAS oyele on
s V- Lo whach steps 6 0 T constitute o coanse-gnd
correctton AL thes point, 1t a Weeyele was employed, another
FAS ovele isteps S 1o 1H would be repeated to update
further.

12 Calculate the correction on the N — 1 mesh as
Yo =g, 19 T 125,50

P30 Pass this correcnon to the tinest mesh and update the
solution o give

RN 12557

14 Perform one smoothing ateration with Eg. (2.548) 1o
smooth the crror,

Smoothing Algorithms

Many algonthms can be used to smooth the high-trequency
crrors. Both explicit and implicit algorthms have been used
with success. For multigrid to suceeed. the high-frequency
errors must be ctfectively damped.  The ctfectivencss of a
scheme can be esimated by determining the smoaothing factor
of the algonthm with a Fourier analysis. The smoothing tac-
tor 1s detined as the masimum etgenvalue of the algorithm for
frequencies greater than 7 /2 and less than 37/2. These fre-
quencies represent those on a tine grid that are not resolvable
on & coarser grid.

Examples of expheit algorithms that have been used success-
fully include the pioncering work done by Jameson =441
tn which a multistage Runge-Kutta scheme was used along
with implicit residual smoothing.  In addition, the coetti-
cients of the Runge-Kutta algorithm have been chosen so that
the damping of the high-frequency errors is enhanced. Vari-
ous rescarchers who have used implicit algonithms including
Anderson.'t Mulder.”® Yoon.™* and Spekreijse ™

Examples of Multigrid Applications

An example o the applicaton ot multgnd for the Baler
cquations s ~hown belew for g three-dimensional transonic
flow computation over the ONERA M6 wing ' Compansons
are made with experimiental data at g Reynolds number of 117
mithon.™ which corresponds to conditions for which yviscous
ctects are retatively small The wing consists of symmetrical
arrford sections wath a plantorm swept at 36 along the leading
edge. anaspect rate of 3 X and o taper rano of 0560 A
solution s obtmned on a C-H mesh. which has o O type of
mesh wpology around the airtod protde and an H type mesh
m the spanwise direction

The cttectinveness of multignd acedleranon is demoastrated for

G4 computation at transonie conditions with o Mach nuinber ot

O x4 and an angle of attack of 300 Tigures 2513 and 2514
show the etfect of using mudtgnd on the resedual and hift-
coctticient histories 1or a mesh with over 210000 points. As
prevously meationed, the mesh s a0 193 33933 C-H mesh
that has 193 points along the airtorl and wake (110 of which are
on the wirtorh, 33 ponts approxiimately normal to the airtonl,
and 33 ponts i the spanwise direction 17 of which are on
the wing plantormi. For this calcatation, an unplicit, upwind
ditferencing method s used for smoothing the errors, with
a4 Veevele and tour god levels fone tine and three coarser
eridsy. the multignd method is very cHective in aceelerating
comvergence of both the residual and Bift coetticiems. The
residual s reduced 1o machine zero e 400 cycles, whereas
the single-grnid method has reduced the residual only between
Iand 2 orders of magnitude. The benefit of muligrid i<
espectally pronounced in the litt-coefticient history where the
lift-coetticient value s obtained to within (L1 pereent of its
tinal value tin 41 cycles. This is a dramane improvement over
the single-gnd result, which requited more than 400 cycles o
converge 10 the same level of accuracy for the hit coefticient.
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Figure 2.5.13 Effect of multigrid on residual history for
ONERA M6 wing with M/, = (.54 and o = 3.06".
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Figure 2.5.14 Effect of muitigrid on lift history for
ONERA M6 wing with A/, = (.84 and a = 3.06°.

The multigrid procedure has also been implemented into
multiblock  versions of several codes to handle complex
geometries. %™ ¥ 10 addition, several examples of the
application of multigrid 1o reduce the computational times re-
quired for time-accurate calculations can be found in Rets.
32,033 34, and 3S.

2.5.5 GMRES

The generalized minimat residual (GMRES)™ algorithm for
solving a nonsymmetric linear system of equations has been
extended o nonlinear problems and applied to Euler calcula-
tions by Wigton ct al."” In this implementation. the equation
considered for solution is wntten as

R(w)=0 (2.5.58)

where, for the Euler equations, R{w) = 0 represents the
steady-siate residual.  The differeglial of Riw) = 0 in a
general direction p is denoted by R{w: p) and is given by

- hm R(w + :-p) - R(w)

R(w:p)= o (2.5.59)

Analogous to the procedure for linear systems. the GMRES
algorithm  first  obtains k orthonormal search directions
P:-Pa..... Pi and then updates the solution as

N
whl = w4+ Z a,p, (2.5.60)
=1
where the 4, are chosen to minimize
| & ¢
[R(w")]" = ”RW" +3 a,p)
=t 2.5.61)

) 2

*|

X Iy
R(w") +Z;\,R(w“:p,)H
;=1

The orthogonal search directions are determined by a Gram-
Schmidt process:
R{w")

| ——— (2.5.62
P = Rewel ’

For y = L2,k - 1.

3
p,-. = Riw"p,) - Y b,p, 12560

pl + 1

1) IR}
where b,, is the projection of R(w":p,) in the direction of
P

P+ = (2.5.64)

b, = [R(w":p,).p,] (2.5.65)

In practice, the above process is actually applied to a “precon-
ditioned” equation that has the same solution as the original
problem, but has a more favorable distribution of eigenvalues.
For the problem R{w) = (. most computer codes generate
an improved approximation to the current estimate of the so-
lution as

w' = M(w") (2.5.60)

where M represents some methodology such as line relax-
ation, approximate factorization, or Runge-Kutta time step-
ping. Couvergence is achicved when w" ™' = w". Therefore,
the solution of Eq. (2.5.58) can be replaced by the equation

R'(w)=w ~ M(w) (2.5.6M

for which GMRES is much more cffective. Note, however,
that every evaluation of R'(w) involves an evaluation of M.

An example of results with GMRES to accelerate the conver-
gence of an existing flow solver for a transonic calculation
is shown in Fig. 2.5.15. Here. GMRES is applied 10 2 two-
dimensional central-differenced implicit Euler code denoted as
ARC2D.* As seen in the figure, the use of GMRES can re-
sultin a significant increase in the convergence rate. After 400
function calls {where one function call is onc evaluation of Eq.
(2.5.67)). the residual is reduced about 4 orders of magnitude
over that without GMRES.

10
ARC2D
106}
Average 44-8l
residual
GMRES + ARC2D
10-10

10712 o0 300 400
0 100 200 300 400 500
Function calls

Figure 2.5.15 Convergence acceleration with GMRES.

2.5.6 Preconditioning

Recent work has been undertaken to accelerate the conver-
gence rate of iterative schemes by essentially multiplying the
time derivative by a matrix that allows faster convergence. but
does not alter the steady state. The motivation for this is casily
scen by examining the one-dimensional Euler equations

1 1)
Tw  IE (2.5.68)
Iii4 ar

After this equation is lincarized and a similarity transformation

is used, this equation can be recast into the form

= 2.5.69
it dr ¢ )
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where A is a diagonal matrix whose entries are the eigenvalues
of the flux Jacobian

" 0 )]
A= |0 u+an 0 (2.5.70)
0 Q0 u~a

The equations given by Eq. (2.5.69) are now uncoupled. so
that each equation can be approximated separately. For ex-
ample. simple explicit time diftcrencing can be used in con-
junction with first-order spatial accuracy, where each equation
is differenced according to the sign of the eigenvalue. The
allowable time step for stability depends on the size of the
maximum eigenvalue as well as on the grid spacing through
the CFL number (defined as the product of the convective
speed and the time step divided by the grid spacing). If a CFL
is maintained less than unity for the simple explicit scheme
considered. then the numerical characteristics completely en-
close the physical ones. If all equations arc advanced in time
with the same A¢, then the CFL number for the equation whose
convective speed (eigenvalue) is smallest may not be advanced
ne: sly as fast as the stability criteria allows. For example, for
u = 0.5 and a4 = 1, the limiting condition corresponds to the
largest eigenvalue. which is ¢ + o = 1.5, This corresponds
to determining the time step by the speed of an acoustic wave
that is moving to the right with a speed # +a. Note, however.
that choosing the time step based on this eigenvalue means
that the first equation (associated with the cigenvalue Ay = )
is advanced at a time step somewhat lower than the stability
cnitenia requires. For the conditions chosen above, this restric-
tion is not too prohibitive. However. for a low-speed flow,
the wide disparity in the size of the eigenvalues can lead to
slow convergence unless a time step is used separately for cach
equation, bhased on the individual cigenvalues.

The hasic premise ot preconditioning is to advance cach equa-
ton with an optimum time step for cach. For the one-
dimensional case, this can be easily achicved by multiplying
the right-hand side of Eq. (2.5.68) by a matrix. so that when
the equation is diagonalized. all eigenvalues are equal:

ow  poF
Ot ar

=3

=4 (2371
Note that the preconditioning matrix does not change the
steady state.  Also note that P should be a positive definite
matrix. Otherwise, the nature of the Aow could be changed.
as tt would if P = -1, which would correspond to marching
backward in time. For the one-dimensional case. this matrix
1s given by

P=lA"|= IT(%)T“1 (25.72)

where T and T are the right and left eigenvectors of the
matrix A = JF/Jdw and 1/A is a diagonal matrix whose
entries arc the inverse of the cigenvalues of A.

In the above example the criteria used in determining the
optimum time step for cach equation is based solcly on taking
the largest allowable time step for cach equation.  Other
cntena can be used. such as selection of a time step to
provide maximum damping of certain frequencies for use in
a multigrid algorithm. Also note that if all the cigenvalues
are of comparable size. such as for hypersonic fiow. then no
significant benefit would be expected.

The simplicity of the matnix in Ey. (2.5.72) is attnbutable to
the fact that the one-dimensional Euler equations are casily
diagonalized. The complexity of devising a preconditioner
arises in multidimensions because the equations cannot be
simultancously diagonatized (with the exception of supersonic
flow). However, recent work at preconditioning the equations

in multidimensions has been undertaken with some success.
Wa04042.83

In the work in Ref. 42, the preconditioning matrix is devised
by first transforming the conservative dependent variables to
those that yield a symmetric form for the linearized equations.
The equations are then rotated into a coordinate system that
is aligned with the flow direction; the resulting cquations are
given by

U 00 L0U

A B-— =0 2.5.73
Ot + s + In { )
where - .
q a O 0
< a 4 00 5
= 2.5.
A 00 40 (2:3.74)
Lo 0 0 ]
00 a 0]
~ 00 00
= i
B a O 0O 0 (2.5.75)
L0 0 0 0]
4”1/})4!
40 = du {2.5.76)
dr

l]]l ke U"II/!

and ¢ = vcosf + vsin b is the magnitude of the velocity in
the streamwise direction.

Considering the case of supersonic flow first and multiplying
the residual terms in Eq. (2.5.73) by ,A"l (cqual to A~
for supersonic flow) yiclds

%L'»I:—<IQH+A“'§O—U) (2.5.77)
( "

Because the flow is assumed io be supersonic. this equation can
be simultancously diagonalized with a transformation dV =
T7'dU 10 yield

T o T

V[V, a0V ) (2.57%)
Here. A is the diagonal matrix of the cigenvalues of A'B,
and T. T~ arc diagonalizing matrices. As discussed in Ref.
42, the wave speeds in the streamwise direction have been
equalized. Unfortunately, the disparity in the acoustic wave
speed in the direction normal to the streamlines is amplitied:
the ratio of the acoustic wave specds to the convective wave

speed is M/ M? -1

To make the acoustic and convective waves speeds equal, the
ratio VvV M? ~ 1/ is used to scale the acoustic waves by
multiplying the right-hand side of Eq. (2.5.78) by the matrix
X. which is defined as

r0o0 o0
B T W e
X= 0010 (2.5.79)
000 -




where 1 = VM? — 1/M. After converting back to symmetry
variables. the preconditioned system of equations in stream-
lined coordinates, which 1s valid for supersonic flow, is given
by

N - ~P(A—;— + B—) (2.5.80)
where
HM M 0D

P TXT A = |~FM F+1 00

0 0 r 0
0 0 01
(2.5.81

d=VvMiI-1ladr=VI-M-"

Difficulties arise for subsonic flow because the equations are no
longer able to be simultaneously diagonalized. By assuming
that the preconditioning matrix has a structure similar to Eq.
(2.5.81), a preconditioning matrix can be obtained by requiring
the convective waves be unchanged and that the acoustic
waves travel at the flow velocity in the limit of zero Mach
number. The final preconditioning matrix in the stream-aligned
coordinate system in symmelry variables is identical to Eq.
(2.5.81) except for subsonic flow:

l=r=v1-M* M<l (2.5.82)

Recall that the preconditioning matrix given by Eq. (2.5.81) is
for the stream-aligned coordinate system and symmetry van-
ables: this matrix must be transformed back into the variables
that will be solved numerically. For example, if the dependent
variables are the conservative variables, the tinal precondition-
ing matrix. which simply multiphies the steady-state residual,
is given by

p=¥Ia0U ﬂﬂzﬂ (2.5.83)
()q U aU U (’)q ow

where dw/Jq is the Jacobian matrix for transforming trom
primitive 1o conservalive variables, 9q/3U transforms the
symmetry variables to primitive ones, and QU /)T relates the
symmetry variables in the stream-aligned coordinate system to
those in a Cantesian system:

1 B 0 )]
ow " P 0 0
m = . 0 0 (2.5.84)
Slu + 07 pu opr ‘——'r'
pla 00 —1fd?
aq 0 10 0 )
1 _ 2585
au 0o 010 (2585
pa O 0 1}
1 0 0 0
ou 0 cos# —sinf# 0 (2586)
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To devise flux formulas for computing the steady-state resid-
ual, the aruficial viscosily must be modified for certain tormu-
tations. In particular, for Roe's approximate Riemann solver,”
Refs. 42 and 43 show that the dissipation matrix must be mod-
itied in order to maintain the full benetits of preconditiomng.
both in stability and in accuracy.

An example from Ret. 42 is shown in Fig. 2.5.16, in which
the preconditioning discussed above is apphied to obtain the
flow ticld around a NACA 0012 airtoil at a low Mach number
(0.05). The numerical scheme used for this calculation s
an explicit two-stage Runge-Kutta scheme, which uses Roe’s
approximate Riemann solver for discretization of the residual.
The preconditioning dramatically decreases the number of
iterations requircd to obtain a fully converged solution.

10
-10
-30 without preconditioning

—

-50F -

Log(res) 3
-70}

90 1 with preconditioning

X \ .
-110¢
_,30 . 1 1 1 ) U W L Ao L 1.)
0 429 857 1286. 1714 2143 2571 3000
lterations

Figure 2.5.16 Convergence history with and
without matrix preconditioning from Ref. 42.

2.5.7 Enthalpy Damping

The last method to be discussed for accelerating the conver-
gence of numerical schemes to solve the Euler equations re-
quires a moditication of the governing equations that does not
alter the steady-state solution. For a steady-state solution, be-
cause the total enthalpy is constant. a term proportional to the
difference H — H . may be used as a forcing function to ac-
celerate convergence. This technique has been introduced in
Ref. 45 and is referred to as enthalpy damping.

A source term is simply added so that the governing equations
are given by

Gedt 2 aptH - Hi=0

ar

a{putep)

dpu dprs _
Eraly (+“T) FoputH =H =05 s x)
e b H - H ) =0

el el el L G HH - Ho =0

where a typical value of o is 0.25. Because H is equal to
H~ at convergence the steady-state solution is not altered.
Note that this technique is only applicable for Hows with a
constant total enthalpy and. therefore, may not be used for
some simulations where propulsion ctfects are accounted for
through specification of variations in total enthalpy.
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2.6 SPECIAL METHODS

This section is devoted to several vartants in the solution of
the Euler equations. These non conventional methods are:

1) Space-marching techniques for supersonic steady flow

problems.

2) Shock-fitting techmiques in which a shock wave is con-
sidered as a true discontinuity of the flow field represented
cither as an internal curve or surface in the computational
mesh (floating shock tracking) or more often as a boundary
of the computational domain (bow-shock fitting).

3) Inverse and dJesign lechniques which can be interpreted as
the fiting of a vortex sheet (or a stream-surface in the steady
case). This surface may be considered either as an interface
between two flow fields both computed by solution of the
Euler equations or, more gencrally, as the external boundary
of one flow domain on which a pressure condition is
prescribed (for a free-surface flow like an isobaric jet or for
design purpose).

These methods are valuable alternatives to the use of the
time-dependent, shock-capturing and direct (in the sense of
fixed-boundary) solution of the Euler equations.

Indeed, the classical unsteady approach, described in the
above subsections of this chapter, can be applied to special
problems such as the steady-state solution of fully supersonic
Hows comprising or not internal and hbow shocks or such as
the design of a wall boundary 10 be iteratively modified by
numerical optimization. However, in these special circon-
stances, it may be interesting to benefit from large savings in
computing time (space-marching or inverse design methods)
and from a noticeable increase in accuracy (shock-fitting
techniques).

The discussion on the relative merits of standard and special
methods is made more difficult by the uninterrupted progress
of researchers finding new techniques which succeed in
filling the gap between two opposite strategies. This is the
case for example of the space-marching technique where the
old method with the marching solution of the steady Euler
equations (which in general requires a standard method for
setting upstream conditions at a blunt nose) can be replaced
efficiently by pseudo space-marching techniques using a
modified unsteady Euler code (see below in subsection 2.6.1).
This is also the case when combining shock-capturing for
internal shocks and shock-fitting for the bow shock. Another
example is given with the shock-fitting technique being even-
tually replaced by shock-capturing in association with mesh-
fitting and adaption of either algebraic or variational type.
Lastly. inverse techniques can be devised which make use of
slightly modified direct solvers with a good efficiency (see
below subsection 2.6.3).

In the following, we give some details on the special tech-
niques mentioned above but it is remarkable that there are
many common features and affinities between them and prob-
ably the more clear reason for that is their use of quasi-linear
or characteristic forms of the Euler equations.

Therefore, after the presentation made in Chapter 1, we begin
by a complement to the description of some characteristic
forms of the Euler equations in order to describe the numeri-
cal treatment of the boundary conditions for shock-fitting and
inverse design techniques.

Starting from the conservation law form:

w  OF 3G  oH _
Yty T 70 @e.h

the quasilinear form (given in Eq.(1.4.2)) is:

o

dw ow Iw aw
5 + A 8x+B av+C R =0 (2.6.2)

We define the matrix A, as a linear combination of the Jaco-
bian matrices A , B, C formed with the components of 7,
an arbitrary unit vector:

A,=nA+nB+nC (2.63)

and 1o introduce a local orthonormal basis made of @ and of
two other unit vectors € and i so that a cartesian derivative
iy expressed (locally) in werms of derivatives in the new basis:

Jd .. d dJ
= =10, +5 - +n,— 264
o, Man TaE T Von (=64
Due to the hyperbolicity of the Euler system of equations, the
matrix A, has real eigenvalues A, and a set of linearly in-
dependent lefi eigenvectors m, .

To get the required characteristic form of the equations (also
called the compatibility relations). we form the linear combi-
nations of Eq.(2.6.2) obtained by multiplication with each
eigenvector:

- Ow aw
I -
m' (= +A — =0, =1,..5 265
¢ ot " ax, ! ¢ )

giving through the use of Eqs.(2.6.3-4):

‘T(a_w+l‘ﬂ)+m‘7-k:() (2.6.6)
N an

where R involves only derivatives of w in the plane & . n.

m

Assuming that these derivatives are known, Egs.(2.6.6) can
be interpreted as transport equations for a plane wave moving
with velocity A, .

The expression for the eigenvectors m, is more complicated
than for the eigenvectors |, attached to the use of the primi-
tive variables @ =(p. ¥ .p ), as described in section 1.4
With the shightly modified notations of Egs.(2.6.6), we have
here:

& 3
LT eShen ShhsTs=0 (26.7)

An important difference with Section 1.4 is that we have to
consider a boundary moving with the velocity iy. The nor-
mal relative velocity of the fluid on I is:

v, =(V—dy). A = v, ~ug (2.6.8)
The discussion for the number of numerical boundary condi-
tions to use rests on the sign of ( A, — wy ) and on the value
of the normal relative Mach number on X

M, =v, la (2.6.9)

Discretization of characteristic relations
Concerning the discretization of the characteristic relations
given by Egs.(2.6.6-7). it is convenient, like for the internal
node discretization, to separate the spatial discretization from
the time discretization. In fact, it is preferable to have a rath-
er similar treatment for internal and boundary nodes. even
though space derivatives in outgoing wave characteristic rela-
tions are necessarily one-sided and in general one order less
accurate than for interior schemes.

A practical matching technique based on characteristic rela-
tions' which is of special interest for the fitting of discon-
tinuities and quite easy to implement at least for explicit time
stepping schemes, is described below for the case of cell-
vertex or node-centered discretization schemes.

Two steps ar= considered. First a provisional value w* is




computed on L at ime (n + 1) fiom a complete discretized
Euler system on €2 and Z without tuking into account any
boundary condition. For simplicity, we restrict the presenta-
tion to 4 boundary treatmert which is only of first order ac-
curacy in time so that w™ can be .vruten:

w' = w" — A (8F, / 8x, )" (26.10)

where 8F / 8x, is a discrete approximation of oF, < dx, on
X (obtained using only the discrete values of w" 1n'Q and on
)

The second step rests on the use of the characteristic relations
of type (2.6.6) which are wntten in discretized form on I

mTyow oWt =0, i=1...5 (2611
where we have used Eq.(2.6.10).

However. due to the comp.c-te expression of m,, it is con-
venient to replace these characteristic relations by those based
on the non-.onservative variables. After having deduced
p .V . p directly from v ', the system corresponding to
£q.(2.6.7) 1> he following:

ay Ay=v, "t =pt —wW@y ' -pTr=0

b) Ay= v, ;(\'g" —r;‘ )=0

) A-v, s0R - =0 (2.6.12)
dy hy=v, +a . " =py+pa) o' —vH=0

ey hs=v, —a " =pTy—(pay o1 - =0

The characteristic relations for which (X, — ug ) 2 0 have to
be used whereas thuse correponding to A, - uy < 0 should be
replaced by physical boundary conditions from the outside of
Q.

These equations will be used below for shock-fitting and in-
verse methods.

2.6.1 Space-marching techniques

Steady supersonic flows have been studied numerically for a
long time with a strong impetus given to the development of
finite difference methods at the beginning of the 70's (after
carly studies based on the method of characteristics) by the
first three-dimensional computations of flow fields past the
Space Shuttle-.

The governing Euler equations for the steady supersonic
flows are hyperbolic with the flow direction as a time-like
direction. Thus the numerical solution can be obtained by
marching by plane in this direction (say the z-direction). For
solving such a three-dimensional steady supersonic flow
problem, it is natural to use a numerical method quite similar
to those concerning the solution of a two-dimensional un-
steady flow problem with time-dependent boundaries (either
known or to be partly computed as a free-boundary). There-
fore, a space-marching method can afford a considerable
reduction in computer storage and in computer time in com-
parison with the unsteady approach in three dimensions.

Finite difference methods were first devised in non-
conservative form with ipl'imitive variables p. ¥, p * or with

characteristic variables®*9:

P=inpy. v. S=ym(Ty-(y-H P

For those methods, not only the bow shock but also internal
shocks have to be fitted.

By contrast, other finite difference methods>"*, mainly with
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capturing of internal shock waves, were developed based on
the conservation law form of the Euler equations. They are
generally wnitten in cyhindrical coordinates adeguate for com-
putation of flows past slender bodies which we choose here
as a typical application of these techniques.

With u, v, w as components of v in Z. r. 8 coordinates, the
equations write:

% U Y s
- Tar T T

x©

=0 12.6.13)

U=(pu, p+pu’, puv, puw )

P ={pv ., puv . p+p\':. pyw y
| (2.6.14)
0 = Upw L puw L puw p+pn’: V
r
& 1 > B r
R=--(pv.pm . piv-—w=), 2pww )
r
The steady character of the tlow permits the replacement of

the conservation law for total energy by the Bernoulli equa-
tion:

X e,
+ip
The shock layer is bounded by the given body surface,

r = b(8, z), and by the bow shock wave r = (8, z). which
1s an unknown surface to be determined.

4 5 5
(u-+v-+w-)=H

-

This flow domain (between two plane sections ;, <z <)
can be mapped1 into a computational region z,<Z <.
(X.Y)ye [0. 1) with:

X =X(z.r ®
Y=Yz .r .0

where X.Y are curvilinear grid coordinates stretched in
each Z plane according to the flow features.

The governing equations Eqs.(2.6.13) when transformed in
this computational space become:

W, W, ,
2zt ax vy TR=O (2613

with: U=0GrJ
P=(X.U+X,P+XsQ/J
Q=(r.U+Y,P+YeQ)/J
R=R/J i J=XYg-XgY,

The system of Eqs.(2.6.15) is hyperbolic in Z and it can be
discretized in a same manner as an unsteady two-dimensional
problem. A very common approach has been a discretization
by finite differences and a solution with MacCormack explicit
scheme” 3919 Another more recent possibility is a discretiza-
tion by finite volume techniques with a Godunov method!! or
with other upwind schemes. Solution with an explicit scheme
proceeds by starting from a known solution at plane Z and
computing a new solution in plane Z + AZ with boundary
conditions '3 taking into account the evolution of the body
shape and the change in the shock wave position by satisfy-
ing the Rankine-Hugoniot relations (see next Subsection).

One problem related to the use of the conservation law form
is that the unknowns (conservative fluxes in the Z-direction)
need to be “"decoded” into the physical variables
p, . v, w,p in order to evaluate the transverse fluxes and
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the source terms. For a perfect gas, this decoding reduces to
a simple root tinding problem. Starting from:

Ui=pu. Us=p+pu*, Us=puv, U,=puw
we get:
p=U.~Uu,

E)- =l v =UU, . w=U, U,

and by substitution in Bernoulli equation we obtain a second
degree equation for u:

(DU =0V + (- DRUTH, - U - U1 =0

Only the largest root 1s meaningful. giving:

] 577 3 3 3 5
= YU, + NPUT - (F-DQUFH_ - UT - U]
ROTAILE VPrUsi - i {-Ug

Another guestion related 1o the space-marching technique is
the step size limitation in the Z-direction assoctated with an
explicit scheme.

A CFL condition links AZ to the space step size in the
cross-flow plane, typically:

AZ £ AX oM

with ¢ is the maximum of local eigenvalues of a mainx M
of the form €' A with the notations of Eq.(2.6.2). This
limitation  the step size for marching in space is not oo
severe in zones where the body section has fast variations but
it can be considered as too costly when the flow is very
smooth in the Z-direction like in the case of nearly conical
flows.

The use of implicit stepping for space-marching schemes is
not in general use for solving the steady Euler equations
when the bow shock is fitted. Indeed, there is a himited in-
terest in using an implicit scheme for interior points if an ex-
phicit treatment of the bow shock positioning yet restricts the
maximum step size in the marching direction.

Fully implicit treatment of both the interior poimt calculation
and the bow-shock adjustment was shown to be very efficient
on a one-dimensional flow in a variable area duct with an
internal shock wave which was computed for a steady solu-
tion via a lime asymptotic approach™. Such a method could
clearly be used for a supersonic conical axisymmetric flow.
Extension to one more space dimension should be directly
applicable to the solution of conical flows for example past
conical wings at angle of attack. but should not be so much
necessary for non conical bodies where accuracy in the Z
direction cannot be obtained with too large values of AZ.

If the bow shock is captured and the wall boundary condition
is treated implicitly, an implicit scheme for space marching is
very efficient and it appears even more useful for the solution
of Parabolized Navier-Stokes (PNS) equations due to the
severe CFL restriction on the AZ with an explicit scheme and
the very smali grid spacing needed at the wall.

In the case of a blunt body, a supersonic space-marching
code must be completed by an other one capable of comput-
ing the subsonic flow region between the detached shock
wave and the body nose, thus providing the necessary initial
solution of the space-marching procedure.

Moreover, realistic high speed flight vehicle configurations
often give rise to subsonic pockets inside the shock layer.
The conventional space-marching method then fails for such
flows and it can be necessarv to combine a space-marching
technique for supersonic parts and an unsteady Euler solver
for subsonic parts with delicate problems of different grid
systemns to be coupled.

Space-marching procedures by local iteration

To avoid this coupling, several authors have proposed a
“unified approach” based on unsieady Euler equations with a
plane by plane strutegy and local or global iterations accord-
ing to the fully supersonic or mixed character of the flow.

Although some mvestigations about this wdea were led in the
70°s with the conventional MacCormack scheme, the full
development of this technique tound its actual stant in the
middle of the 80's'*™Y in relation with upwind discretization
and relaxation methods for implicit ume-siepping™='.

These now well-estabhished techniques have revealed o be
both efficient for obtaining numerical solutions over realistic
configurations and very eavy to amplement in a 3-D code.
They provide the possibihity of building the three-dimensional
mesh system before the fiow calculation, which can be of 1n-
terest for a better control of the grid stretching or adaption.
Besides that. the turther development which consists in tak-
ing into account a discretizanon of viscous terms to be added
to the Euler code 1 rather straightforward; this development
leads to a PNS-like approximation. We will focus our atten-
tion hereafter on these "pseudo space-marching” techmques
based on the unsteady Euler equations.

Space-marching technigues making use of the unsteady Euler
cquations  have mainly been developed using the finite-
volume TVD discretization. They are based on enther expli-
cit or implicit time differencing, and suppose a “plune by
plane” orgamization of the computation.

Explicit Approach

The simplest approach is based on an explicit upwind scheme
as described in Ref.19. The space-marching procedure simply
amounts to fun out, unil convergence. the 3-D ume-
dependent explicit scheme  plane  after plane, with the
upstream conservative variables in the plane k-1 tixed at their
previously computed value. and with the downstream values
in the plane k+1 extrapolated trom the upstream and current
values.

Basically. in the notations of Eq.(2.6.2) with cantesian coordi-
nates, the explicit algorithm can be written as:

!
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where w is the solution vector of the conserved quantities,
F. G. H are the numerical fluxes at the sides of the control
volume (i.j k) including metric terms, and &k is the marching
direction. Clearly, Egs.(2.6.16) represent an iterative process
which, if converged, provides a discretized solution of the
steady Euler equations. Since the F and G flux evaluation
depends explicitely on w/, the only delicate point is the
definition of (H, ;). In order to get conservation, the flux
(H, _;,»)* has to be computed with the same formula as the
one used for (Fl, ;)" at the previous k—} plane calculation
(a""’ denotes here a frozen upstream quantity).

We assume that a flux vector splitting (FVS) scheme is used
for the numerical flux evaluation:

(Hiao = B Cwh 0 + HOwE, (2.6.17)

with wb and w¥ the left and right values for the i.j.k+1/2
cell face. Actually, the second term remains at zero for a ful-
ly supersonic flow. Therefore, we can get:

a) a first order scheme with

Lo w!
(W) =W, 4




b) a second order scheme with

Lol % ow! *
(W) =W, + R R APY
Initialization for w! . follows easily either simply with
w," =w,_, or from a ‘ngher order extrapolation.

In contrast with a pure space-marching scheme, the stability
of the process depends not only on AZ, but also from Az,
which remains limited by a CFL condition for a small AX,
but permits an increased AZ, .

This local iteration with an explicit time-stepping permits
significant gains in efficiency with respect to a global itera-
tion and improvements in accuracy. robustness and program-
ming simplicity with respect to a classical pure space-
marching scheme.

Implicit Approach
This approach'>'*171 regts on a planar Gauss-Seidel relaxa-
tion scheme combined with an approximate factorization in
the plane Z; . It can be derived from:

1+] !

Wk —wx/k

w ~ i+l
— +F - F

16,2 - G, !
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+(H -

H .,oW*"=0 (2618

Using a "delta” formulation, an implicitation of only the first
order terms and a linearization of the Jacobians, Eq.(2.6.18)
leads to the following matrix system to be solved:

’;(l/Al,‘ Aw, ;. + A Aw

4 +AAw,

1+A‘Aw‘/,( 1+ Dy AW, + B Aw

« + D,Aw . + B Aw
L+ D Aw,]k + BIAW,J,,H

\ = RHS,

17k

IR E 14y A

(2.6.19)
1A+

where RHS represents the explicit part of the scheme and

The pseudo space-marching approximation leads to:

Awl._/.l(—l =0 and Awl./l(#l = Awr./.k'

which amounts, in Eq.(2.6.19), to cancel the term A; and to
add the term B; to the diagonal D,. In order to get a sym-
metric formulation in the case of subsonic pockets, the term
B, is cancelled according to Ref.1S.

The overall implicit approximate factorization procedure can
be summed up, in matrix formulation, as:

+D"My U+D'M) Aw=D' RHS  (2.6.20)
shere M,, M, represent the matrix terms along the crossflow
directions, and

Dy = LAy + Dy

Realistic configurations require the use of multi-domain tech-
niques. For relatively simple configurations the multi-domain
gridding can be restricted to the marching (supersonic) direc-
tion'”. The general multi-domain gridding associated with
the implicit approach opens the door to the computation of
complex supersonic flows such as a vortical structure at the
leeward of an hypersonic delta wing’? or vehicle
configurations such as.a realistic fighter configuration or the
Space Shuttle Orbiter'

2.6.2 Shock-fitting techniques

Shock-fitting techniques are founded on the choice of
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representing a shock wave as a boundary of the computation-
al domain or eventually as an interface between two such
domains. They are used when the presence and the general
shape of a shock 1s a priori known as a key feature of the
flow solution. This can be the case in a divergent choked
nozzle and even 1n a transonic or supersonic external flow
past an airfoil, however the most frequent use of shock-fitting
corresponds to the fiting of a bow-shock in front of the nose
of a vehicle or of a projectile in supersonic thght. Another
mnterest of such technigues. when no other shock is prosent
inside the computational domain, 15 the possibility of choos-
ing a convenient non-conservative set of eguatioas ( in place
of the conservative tormulation needed for shock-capturing).
However, this possibility has been mainly used in two dimen-
sions.

We describe here a general methodology to treat the fitting of
such a shock wave surface X

Let €2, be the upstream domain, with unit normal 77| pointing
downstream with &y . /7| the normal velocity of the shock.
For Q,. L is a supersonic outflow boundary ( M > 1)
whereas for € (the downstream domain, with normal n
pointing outwards of ), it is a subsonic inflow boundary
(-1 <M; <0) Therefore, on the upstream side of X, all
the flow quantities cither are mmpuled irom the full set of
the discretized Euler equations 41"t =q) or they are given
by the freestream supersonic flow conditions in the general
case of bow-shock-fitting.

On the downstream side of Z, only Eq.2.6.12-d) must be
used:

(p-pHr+par (v, —v1=0 (2.6.21)

omitting the superscript tn+1) on p and v,,.

The supplementary conditions are the R.mkmc Hugoniot
jump relations (Eq.(1.3.5)) with uy = iy .

a) plv, —ug)=p{vy, ~usg)=Q

by p+Quv,=p +Q vy,

¢y v.8=v,.E (2.6.22)
d) v. A=V .0

¢y pv,+Q E=p v, +QE

where the superscript (n+]) has been omitted on all vari-
ables.

These jump relations together with Eq.(2.6.21) appear as a
system of 6 equations for the 6 unknowns p, V, p, uy. This
non-linear system is solved by an iterative method based on
successive approximations of uy (thus of Q) starting with the
known vafue uy". For a given @, the values of p and v,
are determined from Eq.(2,6.21) and Eq.(2.6.22 b). Tangen-
tial velocity components are given by Eq.(2.6.22 c¢.d). Then
Eq.(2.6.22 €) is solved for p (after expressing £ in terms of
the non-conservative variables) and a new value wy is deter-
mined from Eq.(2.6.22 a) leading to a new iterative step.

In the case of fitting a bow-shock upstream of a body, the
computational domain  can be meshed with a4 body-fitted
grid moving like a concertina between the bow shock and the
body with all nodes sliding along fixed lines roughly normal
to the body and the shock. This family of normal lines has to
be generated in a preprocessing step by any method giving a
regular body-conforming mesh system between the vehicle
and an outer surface which must be far enough from the
body to be upstream of the bow shock. The normal family
of grid lines is replaced by smooth curves obtained by piece-
wise polynomial interpolation with an explicit parametriza-
tion.
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The trace of the shock on each of these curves provides a
detinition of the boundary moving at each time step at a
velocity calculated according to the method indicaled above.

A straightforward implementation of the interlaced grid mo-
tion and solution evolution is given below.

For a steady flow, calculation of the solution until conver-
gence consists, at each tme step A, in successively execut-
ng the three following stages:

1) The flow solution at time 1"*' is obtained from values at
time " by applying the basic numerical scheme in a fixed
mesh M" which coincides with the moving mesh at ume 7.

i) The new boundary is determined by using the normal
velocity of the shock calculated as indicated above. Then in-
terior nodes are defined giving the mesh M”*! at time 1"+,

il1) The Aow quantities at time 1" *! on the mesh M" are pro-
jected onto the mesh M""! using a first order Taylor expan-
sion:

U™ M Ty =0t MMy + At VUt MM (2623

where ¢ is any tlow vanable and where 7 denotes the mesh
point velocity which is tangent to the given mesh lines

Due to the independence between the stages i)-i) and the
stage 1), this process is €asy to implement 1n an existing code
written with an explicit scheme for a fixed grid.

Other techniques have been used for the bow-shock fitting
problem and in particular the coordinate transformation
method which consists in using the mapping of the moving
physical domain to the fixed computational domain and
working directly on the transformed equations in these fixed
coordinates and on the non-linear boundary conditions on the
image of the shock boundary to iterate towards a steady solu-
tion.

A deailed discussion of the relative merits for different pos-
sibilities of mixing the use of an explicit or an implicit
scheme for interior nodes with the weak or strong coupling
between flow solution and shock tracking can be found in
Ref.14.

2.6.3 Inverse design and free-surface flows

Free surface flows, shock-fitting methods, inverse and design
problems all belong to the same mathematical class of free-
boundary problems as opposed to the more usual fixed-
boundary problems.

For all those flow problems, a part of the boundary limiting
the domain occupied by the fluid is a priori unknown and has
to be found during the solution process.

By comparison with a fixed-boundary problem, it is clear that
the relaxation of the parameters defining the position of the
flow domain boundary yields a larger class of solutions
among which the selection of a particular one may result ei-
ther from the optimization of some criterion or from the
prescription of a supplementary boundary data (in principle
the pressure) in order to get uniqueness.

The first case corresponds to optimum design problems,
whereas the second is usually named an inverse problem. A
detailed classification of the various methods for solving
these problems can be found in Ref. 23 whereas several of
them are described in Refs. 24 and 25.

Optimum design problems are generally solved by coupling a
“direct solver” (a solver with a given fixed boundary), a
boundary shape and grid updating algorithm and a numerical
optimization code allowing to progressively modify the boun-
dary shape until an optimum is reached. The definition of the

critenion to be mimmized opens many possibilities based ei-
ther on physical or mathematical principles. In numerical op-
tmyzation technigues for optimum design the direct solver is
most often used as a "black box” and the quahles that a
good design requires for such a solver are: short ume
response, low  sensitivity  to  its  numerical  discretization
parameters and high sensttivity to the aerodynamic design
parameters.

Therefore numerical optimization is not yet frequemly used
with Euler direct solvers. Indeed, for the design of a transon-
ic transport wing, it is often said that full-potential equations
with a simple guasi three-dimensional integral houndary layer
correction is adequate tor solving this problem *° . However,
for the case of purely supersonic flows, Euler solvers can be
used with benetit has shown in Section 4.8 where design ap-
plications by Schonc™” and by Rieger-® are presented. It is
quite clear that with the progress of Euler codes as analysis
tools, their usefulness will be increasing for design problems
treated by numerical optimization.

The sccond category of free-boundary problems results from
the specification of a flow quantity on the unknown boun-
dury. We shall concentrate the present discussion on this kind
of problem and its discretization.

We consider the problem of a fluid flow 1n a domain Q with
a boundary I" which comprises a slip-hine or slip-surface Z,
not a priori known and which must be found as a part of the
solution process. This boundary surface is considered as a
material surface. In other words, if a flwid particle Is on the
free surface it forever remains on it. Let assume that T can
be represented by a single-value function:

c=B(x.,yv.1) (2.6.24)

Then the above assumptions mean that there is a kinematical
boundary condition holding on X:

dp _ 9B + MQE + \»ap = uy (2625
dr or dax v =

The other condition is a pressure condition:

p=Erlx,y. 1) on X (2.6.26)

The simplest case is T = constant for a free-surface flow like
in the hydrodynamic ship wave problem sll‘J‘()!ged in Ref. 29 or
for an engine jet with external flow at rest I

The case ® = f(x ,v) can correspond to an inverse design
problem where a pressure distribution is &reuribed on a part
% of a body limiting the flow domain %7,

As in the previous Subsection on shock-fitting, there are two
main possibilities for treating the moving mesh problem with
curvilinear body-fitted grids:

1) Working in the physical moving domain € with three
stages at each time step towards a steady state solutior*.

2) Working in the computational domain after a transforma-
tion of coordinates from x, v,z to & n. ¢ and solving the
transformed flow equations and free-surface conditions in al-
ternate stages at each time step .

It is also possible to replace the alternate stages of solving
the flow equations with a given provisional boundary shape
and then of updating the position of the boundary, by a
simuitaneous solution in a strong coupling between these two
stages but at the cost of a more complex solution method.
This is the case for the Newton solution of the mixed inverse
method of Drela and Giles **.

The most important points are in any case the choice of the
boundary conditions and of the updating method for the posi-
tion of the material surface Z.

¢ oo




Coming back to Eq.(2.6.12), we are in the situation where the
relative fluid velocity is zero (v, = uy) and only the charac-
teristic relations corresponding to Ag = v, ~ a has 10 be re-
praced by the pressure boundary condition Eq.(2.6.26), in-
dependently of the subsonic or supersonic character of the
flow in the tangential direction in € along L.

At each time step, the flow solution can be solved with these
boundary conditions ¢, Z, then from the relation b)c) and d)
in Eq.(2.6.12) and from the known value of p"*', the fluid
velocity is obtained at time n+1. Thus a new value of @y is
available which can be used with Eq.(2.6.25) to get a new
position of T at time n+1.

This system of equations for the unknown free surface s
discretized in a straightforward manner but must include a
dissipation term at least in the flow direction (or an upwind-
ing differencing} in order to avoid decoupling of the solution
with purely centered differencing =1,
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Chapter 3

Survey of Major Individual Euler Codes and their Capabilities

The increasing importance of compulational aerodynamic meth-
ods, based on the Euler equations, in industrial design work is
evident from the widespread development activities in all major
aerospace industnes.

In the following sections an attempt is made to gather all pub-
licly available information on relevant Euler codes currently in
industrial use in the NATO countries. Other countries, with the
exception of Sweden and Switzeriand, have not been considered
and were not in the scope of this publication. Although a great
deal of time was invested in accumulating this information we
realize that other codes may exist in industrial sectors and re-
search establishments that we are not aware of. Nevertheless,
we believe that most of the codes are represented, which en-
ables us to call this collection an Euler-code comjxendium.

In addition to a short overview of the capabilities of the individ-
ual codes, the essential characterisitics are aiso compiled in ta-
bles. Related references are pointed out and a person serving as
point of contact (POC) for questions is listed for each code. We
have tried to keep the list as concise as possible. The presenta-
tion is focused on general purpose codes with respect to their
capability in treating 3-D complex problems in a regime that
ranges from subsonic to supersonic flow. Based on recent pro-
jects in the United States and Europe, many codes also have the
capability to handle hypersonic flow problems and can address
gas states in chemical and thermodynamical equilibrium and
in non equilibrium.

The following codes focus mainly on external aerodynamics,
but some of them are also applicable for internal flow, espe-
cially on turbomachinery flow problems. Although the basic
theory for treating numerically inviscid flow problems is out-
lined in previous chapters it has to be pointed out that a thor-
ough treatment of the specific aspects of turbomachinery flow
simulation can be found in the pubiication of another AGARD
working group under the editorial supervision of Prof. Ch.
Hirsch, VUB-Brussels.

A high percentage of codes are based on structured multiblock
grid approaches that rely on a conservative finite-volume dis-
cretization technique, a numerical approximation scheme being
outlined in the late 70’s. The success of the methodology in the
acrospace industry can be attributed to the fact that a discretiza-
tion and time integration scheme was made available early
which proved to be robust, simple and accurate enough to be
accepted in industrial environments. Therefore, the landmark
paper of Jameson, Schmidt and Turkel' stood as initial baseline
for many first efforts in the field of inviscid flow simulation by
solution of the Euler equations. In the meantime the concepts
for numerically approximating the convective terms in the gov-
erning equations have been improved and refined and have
been implemented in many advanced general-putpose codes.

Essential to the success of numerical field methods for solution
of the steady-state inviscid flow equations is the invention of
the so-called multigrid technique as one of the most effective
and cost-efficient convergence acceleration methods known to-
day. The improvements in performance of computer hardware
over the last 20 years together with such algorithmic quantum
steps, has enabled the introduction of Euler methods into rou-
tine industrial design and optimization cycles.

However, as the strength of the codes continue to increase with
respect to their ability to treat geometrically complex flow
problems, structured multiblock mesh generation appears to be
the costly bottleneck in the Euler flow-simulation business.

In the face of high investments in sufficient cost-efficient grid
generation systems, strong cfforts in the development of
unstructured-grid approaches have been supported to circum-
vent a possible deadlock between industrial task requirements
and costs. An early view of emerging problems have led to the
systematic development of finite-element methods for fluid
flow problems at INRIA in France. However, it secems now that
unstructured approaches, based on finite-volume schemes, are
likely to achieve a similar success and acceptance in industry
5 1he structured multiblock approaches have both now and in
the past. In this context it may be of some interest that past and
future trends in numerical techniques are discussed in recent
overviews.™

The inviscid methods in industrial use today have reached a
sufficient maturity and can be applied with confidence. There-
fore, in Chapter 4 we have provided a limited but representa-
tive selection of simulation resuits that spans a fairly wide field
of practical applications.

Highly accurate 2-D datum solutions past airfoils {section 4.1)
and 3-D computational results of flows around wings (section
4.2) are presented as well as the capability of the Euler equa-
tions to capture vortical flows (section 4.3). The challenging
aim of the 80's to treat complete air-vehicle configurations
(section 4.4) has been achieved by some of the codes described
subsequently. Euler simulations address also many relevant is-
sues to propeller and propulsion flow problems as outlined in
section 4.5 and are «r importance for design support of space
transportation systems that operate at hypersonic speeds (sec-
tion 4.6). Applications for 3-D unsteady flows are emerging
(section 4.7) as well as early attempts at integrating Euler solv-
ers into optimization procedures to improve the design for rele-
vant design parameters (section. 4.8).

It has to be pointed out that all results presented have been
gained by the methods and codes described subscquently. De-
spite the fact that the results obtained so far are impressive, in-
dustrial needs and pressure to reduce costs will push develop-
ments of those methodologies that no longer require the
permanent interaction of CFD experts and, therefore, can be
operated directly by the dusign team. Evidence that support this
conclusion can already be seen in the code compilation.

1. JAMESON A., SCHMIDT, W. and TURKEL, E. "Numeri-
cal Solutions for the Euler Equations by Finite Volume Meth-
ods Using Runge-Kutta Time Stepping Schemes”, AIAA Paper
81-1259, June 1981.

2. "CFD - Part I, An Assessment of Critical Technologies,"
Aerospace America, pp. 16-61, January 1992.

3. JAMESON A. "Numerical Wind Tunnel - Vision or Real-
ity,” AIAA-Paper 93-3201, 1993.
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3.1 CODES FROM NORTH AMERICA

3.1.1 Overview

This section wbulates computer codes that are being used to
solve the Euler equations in the United States and Canada. The
codes are developed and are available through umversity, gov-
ernment, and industrial organizations. The majunty of the algo-
tithm developments have occurred at government research
laboratories and through government-sponsored university re-
search; the resulting codes, often general-purpose algorithms,
are in the public domain and are widely disseminated. The
codes developed by industry are often tailored to a specific
need and are usually proprietary software. A general discussion
of the distinguishing capabilities of the codes are discussed be-
low.

Discretization Technique

In their basic discretization, the majority of the codes use the
finite-volume techaique or the closely related Galerkin finite-
element method; the rest are finite-difference discretizations.
Approximately half of the codes solve for the flow variables as
cell-centered quantities, as opposed to cell-vertex or node-
centered vanables. For codes designed for unsteady flow simu-
lations, the cell-centered finite-volume approach is most com-
monly used.

Grids

In terms of grids, the recent trend has been toward the develop-
ment of unstructured grid methods; for 2-D Euler applications,
these methods are sufficiently developed that to be the method
of choice, largely because of the generality and simplicity of
the grid generation. For 3-D  Euler applications, the
unstructured-grid codes are demonstrated to be competitive
with the structured-grid methods. The adaptive-grid method is
incorporated in several of these codes (NS72, FUN2D, LaRC-
1, WLiLeggo) to increase the efficiency of the unstructured-
grid codes considerably. The adaptive-grid codes generally use
tetrahedral cells in three-dimensions, although the WL/Leggo
code adapts through the continual refinement of hexahedral
cells. The LaRC-1 code incorporates both temporal and spatial
adaption capabilities for the time-accurate simulation of 3-D
flows.

The structured-grid methods have been under development and
in use longer than the unstructured-grid methods for aerody-
namic applications and are highly evolved However, the gen-
eration of a muitiblock structured-grid generally requires con-
siderably more man hours than the computer time required to
generate the solution to either the Euler or Navier-Stokes equa-
tions on the resulting grid. The majority of the codes listed are,
i fact, multiblock structured-grid codes. The multiblock
structured-grid codes are also those that form the basis for most
general-purpose codes for solving the Euler or Navier-Stokes
equations. The patched grid method is used n several general-
purpose codes (CFL3IDE, F3D, UTRC-1) to simplify the task
of grid generation for complex configurations and is used in
several of the space-marching solvers (EMTAC-MZ,
CFL3DE). The overset-grid method is less frequently available
and is included in only two of the codes listed. The monoblock
structured-grid codes are generally special-purpose codes, such
as the shock-fitting GAUSS2D code or the finite-rate chemistry
SPARK3D code.

Space/Time Discretization

The majority of the codes use the method-of-lines technique to
decoupie the spatial discretization from the temporal discretiza-
tion. The advantage to this approach is that the steady state is
independent of the time step. The coupled space/time discreti-
zation methods are predictor-corrector MacCormack schemes.
The SPARK3D code is a predictor-corrector scheme with
second-order-accurate temporal differencing : d second- or
four h-order-accurate spatial accuracy. It is the only code listed
with a spatial accuracy greater than second order. The temporal
accuracy of the codes listed is no greater thau second order.

The spatial differencing methods of the codes can be roughly
equally divided into central or vpwind-biased discretization.
The dissipation of the central difference schemes is universally
patterned after the second- and fourth-difference operators in-
troduced by Jameson, Schmidt, and Turkel. This discretization
is used in the FLO-S7/FLO-67/AIRPLANE series of codes de-
veloped by Jameson, which are widely used in the aircraft in-
dustry and form the basis of many of the codes listed, such as
the TEAM and TLNS3D codes. The dissipation model most
frequently used is a scalar (spectral radius scaling) type with
coefficient similar to those introduced originally. The coeffi-
cients have been modified in some codes to improve the shock-
capturing performance at hypersonic speeds (TLNS3D), and
several codes have the option of using dissipative operators de-
signed on the basis of maintaimng total-vanation-diminishing
(TVD) features for improving the capture of strong shocks
(TEAM, MDTSL3D). The matrix dissipation technique is used
in codes that also serve as Navier-Stokes solvers, such as in
TLNS3D, in order to improve the resolution of the viscous lay-
ers.

The upwind-biased discretizations generaily use the MUSCL
approach of Van Leer. A coordinate-by-coordinate decomposi-
tion of the hyperbolic equations is used in afl of the codes
listed. The locally 1-D Riemann problem solved at the interface
is generally accomplished with the flux-vector splittings of
cither Van Leer or Steger-Warming, or the flux-difference
splitting of Roe. The ZEUS code solves the full, locally 1-D
Riemann problem at the interface. The flux-difference-splitting
approach is preferred for codes that also serve as viscous solv-
ers because the resolution of the boundary layers is improved.

The use of shock-capturing schemes is nearly universal. Only
one floating-shock-fitting code (GAUSS2D), which uses the
nonconservative split-coe{ficient method as the basic discreti-
zation, is listed for 2-D airfoil flows. The SCRAM code is also
a nonconservative discretization: that uscs Riemann variables,
but uses a shock-fitting technique for the bow shock wave.
Several other space-marching codes (SWINT, ZEUS) us»
shock-fitting of the bow shock wave to improve the resolution.

A hybrid discretization is used in several codes (MIM3D, F3D,
LeRC-1) that combines central differencing in two directions
with upwind differencing in a single direction. The hybrid dif-
ferencing of MIM3D is designed to facilitate space-marching
solutions by using an upwind discretization and an explicit
space-marching schemes in the supersonic streamwise direc-
tion: in the crossflow direction, a central-differencing discreti-
zation with a Runge-Kutta explicit scheme with convergence
acceleration is used. In the F3D and LeRC-1 codes, the upwind
differencing is “‘one in a single generalized-coordinate direc-
tion in order to tacilitate the introduction of two-factor implicit
schemes.

Nearly all of the codes listed are implicit schemes, if one ad-
mits that the Runge-Kutta explicit schemes with residual
smooting are actually implicit schemes, because the solution to
a system of algebraic equations is required 1 advance the solu-
tion in time. The Runge-Kutta scheme introduced by Jameson,
Schmidt, and Turkel with residual smoothing and enthalpy
damping is used widely in the central-difference codes listed.
Other implicit codes use an approximaticn to the direct solu-
tion of the linear system arising from backward-time discretiza-
tion; the approximations arise from spatial factorizations
(CFL3D, USA, ARC3D, PARC3D, NASTD, FDL3DI), eigen-
value factorizations (EAGLE, CENS3D), or hybrid factoriza-
tion relaxations (F3D, CFL3DE, EMTAC/EMTAC-MZ,
LeRC-1). Several codes listed use the diagonalization method
of Pulliam and Chaussee to reduce the block inversions o sca-
lar inversions for the tric ~gonal or pentadiagonal equatiuns as-
sociated with the approxicate factorizations (.AF). In only two
codes (ISES and FEMSAP2D) are direct solver used and both
are limited to 2-D flows.

Convergence Acceleration
All of the codes usc local time stepping to accelerate conver-
gence to steady state. The multigrid technique is incorporated
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in many of the central-difference Runge-Kutta codes (FLO-57,
FLO-67, TLNS3D, MIM3D), patterned after the methodology
of Jameson which uses the full approximation scheme (FAS).
The residual smoothing, enthalpy damping, and Runge-Kutta
coefficients have been designed such that convergence has
been demonstrated in O(N) operators for both inviscid and vis-
cous flows. This basic approach is also used in the
unstructured-grid code (NS72) developed by Mavriplis and in
the FUN2D scheme. The maltigrid scheme is also incorporated
in the Lax-Wendroff UTRC-1 code, the MGFD code from
Canada, and the implicit approximately factored CFL3D code,
all of which are multiblock structured-grid codes.

Several of the codes (LaRC-1, CFL3D, EAGLE, FDL3DI,
AutoFEM) offer the option of local subiterations to improve
the initial approximations to the lincar systems that arise from
single-step Vactorizations or relaxations. This feature is gener-
ally used for codes that are used to solve unsteady flows. For
codes that incorporate finite-rate chemistry models, the source
terms that arise are treated implicitly to accelerate convergence
and to overcome restrictive time-step limitations.

Special Features

The special features of the codes indicate un:que or extensive
application areas, flow models, boundary conditions. and/or so-
lution algorithms. Many of the special features are highlighted
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in the applications section that follows. The inclusion of vis-
cous effects is generally accomplished through incorporation of
the Navier-Stokes terms. The resulting discretization uses the
methodology of the bascline Euler solver to treat the convec-
tive and pressure terms; the viscous shear and heat transfer
terms are treated with central differences. A number of these
general-purpose codes are listed. As exceptions, the ISES code
uses an integral boundary-layer model and can accommodate
mild!y separated flows through coupling of the integral equa-
tions with the direct Euler solution method. The UTRC-1 code
uses a surface shear stress model to approximate viscous ef-
fects. Several codes that have evoived from space-marching
Euler algorithms also can serve as parabolized Navier-Stokes
sofvers (LaRC-2, CFL3DE). two codes (USA, GASP) are suf-
ficiently general to allow ume-dependent solutions to both the
Euler and Navier-Stokes cquations and supersonic  space-
marching solutions to the Eusler and parabolized Navier-Stokes
equations. The codes SPARK3D, USA, GASP, SCRAM, and
MDNS3D have generalized equations of state and/or finite-sate
chemistry capabilities that were developed for applications to
high Mach-number flows.

The majority of the codes are designed 1o recover steady-state
solutions to the Euler equations. The ability to simulate un-
steady flows, including dynamic forced-oscillation and acro-
elastic coupling motions, are available in the codes F3D,

3.1.2 Presentation of Individual Codes

CFL3D, LaRC-1, EAGLE and AutoFEM.

COMPANY / INSTITUTION: NASA Ames Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured | central differencing, tocal time stepping Euler/Navier-Stokes | 33
ARC3-D |finte-difference implicit three-factor AF solver
scheme with diagonal or
block inversions
3-0. muttiblock-structured, y hybrid: central local time stepping Euler/Navier-Stokes | 34
finite-difference |Patched and overset | differencing in crossflow solver
FID | grids direction and flux-vector !
| spltting in streamwise
; i direction, implicit
i ; two-tactor AF scheme
13-0. muttiblock-structured | central differencing with | local time stepping Euler/Navier-Stokes | 35
finite-dtterence flux limited dissipation, solver
CENS30 impficit two-factor
LU-SGS (symmet. -
Gauss-Seidel) scheme
COMPANY / INSTITUTION: Grumman Corporate Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNKQUE DISCRET. ACCELERATION FEATURES
3D, muttiblock-structured | hybrid: upwind-differenc- | local time stepping, conical coordinate 7
finite-volume, ing and implicit scheme | residual smoothing, system, supersonic
cefll-vertex in streamwise direction; | multigrid flow, fighter aircraft
MIM3D central differencing, and design applications 2
Runge-Kutta explicit
scheme in crossflow
directions
COMPANY / INSTITUTION: Princeton University
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3.0. unstructured, central differencing, locai time stepping, 30.
AIRPLANE | finite-element, |tetrahedrons Runge-Kutta explicit residual smoothing, 3t 3
cell-vertex scheme enthalpy damping
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COMPANY / INSTITUTION: Princeton University

differencing, implicit
red-black Gauss-Seidel
schemes

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. mutltiblock-structured | central differencing, local time stepping, Euler/Navier-Stokes | 8
FLO-s7 | finite-volume, Runge-Kutta explicit residual smoothing. solver
cell-vertex scheme enthalpy damping
multigrid
3.0, multiblock-structured | central differencing. | local time stepping, Euler/Navier-Stokes | 45,
FLO-57 | finte-volume, Runge-Kutta explicit residual smoothing, solver 46
ceil-centered scheme enthalpy damping ,
Lmultigrid
COMPANY / INSTITUTION: Lockheed Aeronautical Systems Company
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0, muttiblock-structured | central differencing focal time stepping, Euler/Navier-Stokes | 12,
finte-volume, | patched grids scheme or upwind residual smoothing, solver, turbine 13,
TEAM | cell-vertex symmetric TVD scheme. | enthalpy damping applications 14
Runge-Kutta explicit
scheme
COMPANY / INSTITUTION: NASA Langley Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, unstructured, upwind biased local time stepping. advancing-front grid | 18
USM30 |finte-volume, |tetrahedrons (flux-difference-splitting) | residual smoothing generation
cell-centered differencing. Runge-Kutta
explicit scheme
3-0, muttiblock-structured | upwind-biased local time stepping, Euler/Navier-Stokes | 19,
finite-volume, | patched and/or {flux-vector- or muttigrid sotver, aeroelastic 20
CFL3D |cell.centered | overset grids flux-ditference-splitting) applications
differencing, three-factor
AF scheme with diagonal
or block inversions
3-D. unstructured, central differencing, local time stepping, 17
NS72 finite-element, | tetrahedrons, Runge-Kutta explicit residual smoothing,
cell-vertex spatially adaptive scheme multigrid
\ 2-D, monablock-structured| upwind (spiit coefficient | local time stepping floating shock 21
GAUSS2D | finite-difference method), implicit fitting, porosity
(diagonal) AF boundary conditions
3-0, monoblock Predictor-corrector: local time stepping. Euler/Navier-Stokes | 24,
finite-difference | structured second-ffourth-order implicit source terms solver, finite-rate 52
SPARK3D spatial ditferencing, chemistry,extensive
second-order temporal appilications to
differencing combustors/nozzies
3-0, multiblock-structured | central differencing with | local time stepping, Euler/Navier-Stokes | 26,
TLNS3D | finte-volume, scalar or matrix residual smoothing, solver, aeroelastic | 27
cell-centered dissipation, Runge-Kutta | enthalpy damping, coupling
explicit scheme multigrid applications
3-D, unstructured, upwind-biased local time stepping, aeroelastic coupling | 22,
finite-volume, | tetrahedrons, {fiux-vector- or residual smoothing, applications 23,
(LaRC-1) |cell-centered | spatially and flux-difference-spiitting) | enthalpy damping, a7
temporally adaptive | differencing, Runge-<utta | subiterations
explicit scheme or impilicit
Gauss-Seidel schemes
finite-difference |monoblock-structured| upwind local time stepping supersonic Euler or | 25
(LaRC-2) (Aux-difference-splitting) parabolized Navier-
differencing. explicit Stokes solver,
space marching axisymmetric option
2-0, unstructured, upwind-biased local time stepping, Euler/Navier-Stokes | 44,
finito-volume, | triangles, spatially (flux-vector- or muttigrid solver 53
FUN2D | cell-vertex adaptive flux-difference-splitting)
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COMPANY / INSTITUTION: McDonneli Aircraft Company

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, muliblock-structured | upwind-biased local time stepping Euler/Navier-Stokes | 15
NASTD | tinite-volume, {flux-difference-splitting, solver
cell-centered three-tactos AF scheme
3.0, imonoblock-structured| upwind differencing with | local time stepping predominantly 16
finite-difference Riemann variables, supersonic space-
SCRAM explicit scheme marching scheme,
fitted bow shock,
real-gas equation of
state
3-D. muftiblock-structured | central-differencing with | local time stepping, Euler/Navier-Stokes | 1 6
MDTSL3D | finite-volume. scatar or TVD dissipation. | residual smoothing sotver
cell-centered Runge-Kutta explicit
scheme
3-D. multiblock-structured | central-differencing with | local time stepping Euler/Navier-Stokes | 2
finite-volume, scalar or TVD dissipation, solver, finite-rate
MDNSJID | cell-centered Runge-Kutta explicit chemistry,
scheme extensive plume
applications
3-0, unstructured, central-differencing with | local time stepping Euler/Navier-Stokes | 3
finte-element, |tetrahedrons scalar or flux-corrected- solver
MOFENS | cell-vertex- transport dissipation,
based Galerkin Runge-Kutta or
Lax-Wendroff explicit
scheme
COMPANY / INSTITUTION: Mississippi State University
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, muttiblock-structured | upwind-biased local time stepping. Euler/Navier-Stokes | 28,
finite-volume, (flux-vector- or discrete solver, unsteady 29
EAGLE | celi-centered fiux-difference-splitting) | Newton-relaxation and aeroelastic 7
differencing, two-factor applications,
LU implicit scheme propelier models,
turbine applications
COMPANY / INSTITUTION: Rockwelt International
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.{ POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured | upwind-biased (flux- local time stepping Euler/parabolized 4
finite-volume, difference-splitting) Navier-Stokes/
cell-centered differencing, three-factor Navier-Stokes
usa AF implicit scheme with solver
dagonal or block
inversions or explicit
Runge-Kutta scheme
3-D, monoblock-structured| upwind-biased (flux- local time stepping predominantly 5 8
finite-volume, difference-splitting) supersonic Euler
EMTAC | cell-centered differencing, two-factor space-marching
AF implicit scheme solver, finite rate
chemistry
3-D, muttiblock-structured | upwind-biased (flux- local time stepping predominantly 6
finite-volume, | patched grids difference-splitting) supersonic Euter
EMTAC-MZ | coji-centered differencing, two-factor space-marching
AF implicit scheme solver, finite rate
chemistry
COMPANY / INSTITUTION: United Technologies Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured | central-differencing, local time stepping. surface shear stress| 9,
finite-volume, | patched grids Lax-Wendroff explicit multigrid viscous model, 10, 9
{(UTRC-1) ;
cell-vertex scheme extensive appl. to 11
turbines & cascades
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COMPANY / INSTITUTION: Virginia Polytechnic Institute and State University
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. multiblock-structuced | upwind-biased local time stepping. Euler/parabolized 36,
tinte-volume, {flux-vector- or implicit source terms Navier-Stokes a7
celi-centered flux-difterence-splitting) sotver, finte-rate
GAsP differencing, chemistry
explict/implicit relaxation
scheme with block or
diagonal inversions 10
3-0. multiblock-structured | upwind-biased local time stepping Euler/parabotized 43
finite-volume, | patched grids (flux-vector- or Navier-Stokes
cell-centered flux-difference-splitting) solver
CFL3DE differencing, hybrid
implicit relaxation
scheme
COMPANY / INSTITUTION: NASA Lewis Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured | central-differencing, local time stepping aeroelastic and 32
(LeRC-1) | finite-difference hybrid explicit/implicit propetior 11
scheme applications
COMPANY / INSTITUTION: Massachusetts Institute of Technology
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2D, muttiblock-structured | central-differencing, local time stepping coupled integiau 38,
ISES finite-volume direct-solver implicit boundary-ilayer 39 12
scheme scheme, design
capability
COMPANY / INSTITUTION: Naval Surface Warfare Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL [ REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured | explicit MacCormack local time stepping space-marching, 40,
SWINT | finite-volume predictor-corrector cylindrical coord.. 41
scheme appl. to thin fins,
fited bow shock 13
3-r multiblock-structured | second-order Godunov | local time stepping space-marching, 40,
ZEUS  finite-volume predictor-corrector fitted bow shock 42
scheme
COMPANY / INSTITUTION: Wright-Patterson Air Force Base
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. | POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, monoblock-structured| central-differencing, local time stepping, Euler/Navier-Stokes | 48,
FOL3DI finite-difference implicit three-factor AF subiterations solver 49
with diagonat or biock
inversions
3-D. monoblock-structured; upwind-biased local time stepping Euler/Navier-Stokes | 50
finite-volume, differencing (flux-vector- solver
cell-centered or flux-difference-
FOL3DE! splitting), Runge-Kutta 14
explicit scheme or
impficit-line Gauss-Seide!
scheme
3-D. unstructured, upwind (Roe, Harten, local time stepping Euler/Navier-Stokes | 51
WLALeggo |finite-volume, |hexahedrons, Yee TVD), Runge-Kutta solver
adaptive capability | explicit scheme
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COMPANY / INSTITUTION: Ecole Polytechnique / CERCA - Canada

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.; POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
30, unstructured, upwind flux-difference local time stepping mowving boundaries, | 54
MC3 finite-volume. | moving, adaptive splitting, explicit time evolving topology. 15
celi-centered marching electric arc
interaction
COMPANY / INSTITUTION: University ot Toronto, institute for Aerospace Studies - Caneda
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.; POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D. mukiblock-structured | central-differencing, local time stepping Euler/Navier-Stokes | 55
uTMB2D | finite-difference implicit two-factor AF solver 16
scheme with diagonal
inversions
COMPANY / INSTITUTION: The University of British Columbia - Canada
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL I REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES ‘
[ finite-volume, | muliblock-structured power-law discretization, | multigrid Euler/Navier-Stokes 17
MGFD | cell-centered implicit scheme sobver
COMPANY / INSTITUTION: CANADAIR - Canada
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
| TECHNIQUE DISCRET. ACCELERATION FEATURES
{3-D. monoblock central-differencing, local time stepping. boundary-layer 8
FLOB7WB finite-volume, | structured (C-H) Runge-Kutta, explicit residual smoothing, coupling
cell-vertex scheme enthalpy damping . FLOB7WBV
multigrid
3-D. multiblock-structured | central-differencing, focal time stepping, s | 18
MBTEC |finte-volume, |(H-H), wingbody | Runge-Kutta, explicit residual smoothing,
cell-vertex scheme enthalpy damping,
multigrid
COMPANY / INSTITUTION: DE HAVILLAND - Canada
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. structured central-differencing. local time stepping, 45,
finite-volume, Runge-Kutta, explicit residual smoothing, 46 18
MGAERO | cell-centered scheme enthalpy damping,
muitigrid
COMPANY / INSTITUTION: Concordia University - Canada
CODE | DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D, monoblock steady equations, marching in artificial Euler/Navier-Stokes
FEMSAP20D | Galerkin unstructured, Newton linearization and | viscosity solver, 19
finite-element | bilinear elements direct solver axisymmetric coord.
option
COMPANY / INSTITUTION: Carieton University - Canada
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, unstructured, Gresho's formulation with | preconditioned time-accurate
AUtoFEM | finte-element | 8- or 15-node brick | operator splitting conjugate gradient option, hierchical 20
elements, solver elements
tetrahedra or
triangular elemens
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3.1.3 Points of Contact

Peiat of Contact (PFOC) Ne. L:

Code(s): ARC3D, F3D, CENS3D

Name: T. Pulliam

Dept. Fluid Dysamics Division

Tet.: (415) 604-6417

Mailing Address: NASA Ames Research Center
MS 202A-2

Moffett Field, CA 94035-1000
Tel.-Company: (413} 604-6417
Fax-Company: (415) 604-1095

References: 33-35

Code(s): MIM3D

Name: F. Marconi

Dept.: Aero Science Directorate

Tel.: (516) 575-2228

Mailing Address: Grumman Corporate Research Center
MY AU8-35

Bethpage, NY 11714
Tel.-Company: 316) 575-2228
Fax-Company: 1516) 575-7716

References:

Point of tact Ne. 3:

Code(s): AIRPLANE, FLO-67, FLO-57

Name: A. Jameson

Dept.: Department of Mechanical and
Aerospace Engineering

Tel.: (609) 258-5138

Mailing Address: Princeton University
Princeton, NJ 08544
Tel.-Company: (609) 258-5138
Fax-Company: (609) 258-1939
References: 8, 30, 31, 45, 46

Point of Contact (POC) No. 4:

Code(s): TEAM

Name: P. Raj

Dept.: Aerodynamics Department
Tel.: (404) 494-3801

Mailing Address: Lockheed Aeronautical Systems Company
D/73-07, 2/0685, B/L-10
Marietta, GA 30063-0685

Tel.-Company: (404) 494-3801

Fax-Company: (404) 494-3055

References: 12-14

Point of Contact No.

Code(s): USM3D, CLF3D, NS§72, GAUSS2D,
SPARK3D, TLNS3D, LaRC-1,
LaRC-2, FUN2D

Name: 1. L. Thomas

Dept.: Computational Aerodynamics Branch

Tel.: (804) 864-2146

Mailing Address: NASA Langley Research Center
Mail Stop 128

Hampton, VA 23681
Tel.-Company: (804) 864-2146
Fax-Company: (804) 864-8816
References: 17-27,44,47,52,53

Code(s): NASTD, SCRAM, MDTSL3D, MDNS3D,
MDFENS

Name: D. Halt

Dept.: Acrodynamics and Flight Controls

Tel.: (314) 232-0519

Mailing Address: McDonnell Aircraft Company

Mail Code 111/ 1041

P. O. Box 516

St. Louis, MO 63166
Tel.-Company: (314) 232-0519
Fax-Company: (314) 777-1328

References: 1-3, 15, 16

t of Coatact No. 7:
Code(s): EAGLE
Name: D. M. Belk
Dept.: WL/MNAA
Tel.: (904) 882-3124
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3.2 CODES FROM FRANCE, BELGIUM, ITALY
GREECE AND TURKEY

3.2.1 OVERVIEW

Among the 3-D Euler codes used in industry for complex con-
figurations, a majority of them is of the multiblock structured
grid type and practically all codes are derived from a finite-
volume discretization. These codes, developed either directly
by industrial companies or by research institutes, are generally
implemented together with an independent grid generation sys-
tem.

It is noted that in France and in Belgium upwind schemes have
been largely favoured for many years and that, for the case of
space centered differencing, classical variants of the Lax Wen-
droff scheme (SESAME, AEROLOG) or a more original one
(WAVES) have been preferred over the Runge-Kutta central
schemes of Jameson et al (e.g. Ref. 3.0,1). By contrast Jameson
schemes are favoured in the 3-D codes used by industry in It-
aly.

However, the tendency for most of multi-application codes has
been 10 progressively incorporate variants which are added to
existing capabilities in order to provide the users with a larger
choice according to their needs. [ndeed, the different objectives
of robustness, accuracy or low computer costs can strongly in-
fluence the choice of the options available in a general code for
various applications.

Another common tendency is the extension of Euler codes to
Navier-Stokes solvers by including viscous terms and turbu-
ience models.

After these general statements we will survey the various codes
developed to solve the Euler equations by different companies
or research laboratories.

In France at ONERA (French National Aerospace Research
Institute) several different Euler codes have been worked out.
The SESAME code is a multidomain'? solver with or without
overlapping of blocks based on a Lax-Wendroff-Ni finite-
volume method of cell vertex type with a multigrid accelera-
tion technique.,** It has been recently completed with a Runge-
Kutta time stepping scheme in a cell-centered discretization
making the multiblock boundary treatment easier. Both internal
(turbomachinery*®) and external (transport aircraft’) flows can
be computed with this code which has a closely related Navier-
Stokes extension (CANARI). The WAVES code is more spe-
cific and it is founded on the implicit Lerat scheme which has
the unique feature of being a centered scheme without any
added antificial viscosity.”' Its domain of application has been
mainly helicopter rotor flows.® Its fusion with the SESAME
code has been recently achieved.

Two other codes have reached a level of industrial use, both in
the class of upwind methods. Firstly, the FLU3C code was de-
veloped in close cooperation with the Missiles Division of
AEROSPATIALE® specially for supersonic applications. ™
Mainly developed at ONERA and much more general with its
multiblock capability and its large number of options (various
numerical fluxes in a MUSCL approach, different multizone
techniques, implicit time stepping, Navier-Stokes extensions)
and its efficiency particularly for supersonic and hypersonic
flows (space-marching, real gas effects), the FLU3M code'>*!
has a structure which allows both complex applications and the
implementation of new modules at the research or development
level. Other Euler codes can be quoted which are developed at
ONERA in the Structures Department for aeroelasticity
(EF3D*"*) and in the Propulsion Depanment.z'm’

AEROSPATIALE uses Euler codes provided by ONERA
(FLU3C, SESAME, FLU3M) but has also made some develop-
ment of codes such as CELGR3D in the Space and Defence
Division. This solver is of unstructured type with hexahedra
and upwind schemes and finds ;gs domain of application in su-

=4

personic or hypersonic flows. >

A Lax-Wendroff-Ni scheme was the basis of the development
of a multiblock structured grid code, the AEROLOG code at
MATRA DEFENSE™®. This code with acceleration by multi-
grid and implicit residual smoothing is used for steady or un-
steady flows past missiles.

The Euler code EUGENIE developed at DASSAULT AVIA-
TION is the result of joint research studies’’* with INRIA on
unstructured grid methods and upwind schemes in a finite-
volume node centered formulation. Multigrid and implicit ap-
proach are combined in order to improve convergence. Mesh
adaption either by displacement or refinement and hypersonic
capabilities are available. It is worth to mention here the strong
impetus given through Europe to the research on hypersonic
flow solvers through the Hesmes programme and the wokshops

on hx 1sonic flows for reentry problems held at IN-
RIA.'®931325166.7072

Two research centers have been concerned in Belgium with the
development of CFD codes, namely the von Karman [nstitute
(VKI) and the Free University of Brussels (VUB).

Many 2-D, research codes were developed at VKI both for un-
structured®'>* and structured”™ grids with a 3-D Euler code
M3D**" containing several options in particular with different
upwind and varicus time stepping schemes. A noteworthy ac-
tivity at VKI is the development of genuinely multidimensional
upwind schemes™ >,

The EURANUS™® code drveloped at VUB in cooperation
with FFA for ESA appears as a general software system capa-
ble of solving both Euler and Reynolds-Averaged Navier-
Stokes equations. This structured multiblock code includes
both upwind TVD and central Jameson schemes with the FAS
multigrid method. Special care has been paid to the data man-
agement in order to give flexibility in the choice of the com-
puter used.

in Italy, industrial codes are developed by ALENIA in the To-
rino and Naples centers. In ALENIA Defence Aircraft Divi-
sion, the UES3D**® code is based on a generalization of a cen-
tral differencing scheme of Jameson type for unstructured
grids, using a node-centered finite-volume approach. Explicit
Runge Kutta time stepping is used with convergence accelera-
tion by local time stepping, residual averaging and enthalpy
damping. Grid generation is done with the unstructured mesh
generator M3DU giving the code the capability to calculate a
complete aircraft. Another 3-D code is in use at ALENIA DAD
which is of multiblock structured type. This code (MES3D®**%)
contains a cell-centered scheme with central differencing and it
is built with the same options as those described above for
UES3D.

A code in vse at ALENIA GAT is ENSOLV which has been
developed in cooperation with NLR. This code is described in
section 3.4 and offers features rather similar to those mentioned
for MES3D.

CIRA has also a 3-D Euler code ETF3D, a monoblock struc-
tured grid solver with Jameson type scheme, dedicated to the
calculation of transonic wing flows. The 2-D multiblock ver-
sion of this code has been coupled with an integral boundary
layer method in direct or inverse mode®**>. Several other 2-D
solvers have been developed upon upwind schemes with the
Borelli/Pandolfi Rieman-solver in a finite-volume cell-centered
formulation. These research codes are aimed at solving super-
sonic or hypersonic flows with real gas effects. %

In the same line of studies for hypersonic problems it is worth
mentioning the research codes developed at the University of
Roma. These 2-D Euler codes are based on upwind schemes of
different types, a generalization of the Moretti scheme with ap-
plication to reactive flows, "’* a hybrid of non-conservative
and conservative schemes”™’® and a Godunov-type scheme in
predictor-corrector formulation.”’

In Greece at the National Technical University of Athens
(NTUA) several Euler codes have been developed aiming on
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external as well as internal (turbomachinery applications) aero-
dysamic flow problems.

The 2-D single-block, structured finite-difference EU2D™*
code is mainly used for investigations of unsteady, internal and
external flow problems in the range from the subsonic to super-
sonic regime. The code is based on a central discretization
scheme inciuding an arntificial dissipation operator providing
the necessary upwind bias. Both, time and space discretization
are of 2nd order accuracy. An alternating direction implicit
(AD!) procedure is used for time integration. The code has a
moving mesh capability to treat appropriate unsteady problems.

As a further development the 2-D  multiblock finite-volume
code NSWIND"'** is mentioned. The code has various discre-
tization options like a modified upwind flux vector splitting as
well as the flux difference spliting method including the
Godunov-type Riemann-solver approach of Eberle (see also
Ref. 3.3,22-31). By a multi-leve! mesh sequencing and multi-
grid technique convergence is accelerated to steady state. A
composite zonal solution technique, in which for various flow

1Yy

regions differeat governing equations are soived is also noted.
The code is also able to operate in ime-accurate mode. The 1m-
plicit operator is inverted by an unfactored method using
Gauss-Seidel reiaxation for solution.

A 2.D and 3-D mulublock finite-difference code ATHENA™
essentially based on Jameson’s central-differenced operator for
convective terms including the blended second and fourth dif-
ference dissipation operator is applied mainly for turbomachin-
ery flows. For time integration an explicit fractional step or an
implicit ADI method may be used. The code has also a Navier-
Stokes capability.

In Turkey a 3-D, celf-vertex, finite-volume code, called
ER3D", is developed at the ROKETSAN company, which is
based on a hexahedral elementary control volume and an un-
structured data structure to enhance flexibility. Time stepping
is based on second order accurate Lax-Wendroff scheme. Ap-
plications are covering the subsonic to supersonic {low regime.

3.2.2 Presentation of Individual Codes
COMPANY / INSTITUTION: ONERA - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured, | space-centered with local time stepping, Navier-Stokes 1-7
finite-vofume,  [patched or either Lax-Wendroff-Ni or | muttigrid (Ni-method) or | extension: CANARI
SESAME |cell-vertex or  |overlapping blocks | Runge-Kutta time implicit residual code
cell-centered stepping scheme smoothing (Lerat)
3-D, monoblock-structured| space-cenered with local time stepping no addition of 8-12
finite-volume, Lax-Wendtoff-type (Lerat antificial viscosity
WAVES | cell-centered extension) , implicit stage !
with AD! factorization
3-0, multiblock-structured | upwind explicit/implicit local time stepping Euler/Navier-Stokes | 13-21
finte-volume, | overlapping MUSCL schemes (van solver, space
node centered | subdomains Leer, Roe, Osher, marching capability,
FLU3M | o ceil-centered | (Chimera technique) | Approximate Riemann equilibrium real gas,
solvers), block implicit two species gas
AD| factorization scheme
COMPANY / INSTITUTION: ONERA & Aerospatiale - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TF.CHNIQUE DISCRET. ACCELERATION FEATURES
3-0, monoblock, second order upwind local time stepping space marching 22-26
finve-volume, | structured explict MUSCL scheme capability for
FLUIC  |node ~entered with van Leer flux vector supersonic flows, 1
splitting industrial application:
missiles, launchers,
etc.
COMPANY / INSTITUTION: Aerospatiale - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. | POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, unstructured MUSCL scheme with local time stepping equiibrium real gas |32-33
finite-volume, | hexahedra Sanders-Prendergast option
CELIGR | cell-centered flux splitting scheme or
Osher Riemann solver, 2
time stepping by two step ¥
Runge-Kutta or linearized
implicit Jacobi relaxation
L
°® o
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COMPANY / INSTITUTION: Matra Defense - France

dissipation, explicit
Runge-Kutta time
stepping scheme

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3D, muliblock-structured | Lax-Wendroff one step multigrid (Ni-method), | steady ot time 34-3§
finte-volume, explict scheme, steady | impiicit residual accurate mode.
AEROLOG | celi-ventex or time accurate mode | smoothing (Lerat) inertial or non- 3
inertial frame of
reference, two
species capability
COMPANY / INSTITUTION: Dassauit Aviation - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, Galerkin | unstructured upwind MUSCL multigrid reactive flow 36-47
formulation, multielement, mesh | extension, simulation option,
EUGEMNIE | finte-volume, | refinement and generalized implicitty edge based data 4
node centered | mash deformation | linearized Osher structure
capability Riemann-solver
COMPANY / INSTITUTION: Vrije Universiteit Brussel - Belgium
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.' POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured | Roe upwind TVD, Yee local time stepping, Euler/Navier-Stokes | 48-50
finite-volume, symmetric TVD or central | multigrid (FAS), solver,
ceil-centered Jameson scheme with implicit residual node coincidence at
blended second and smoothing for block interfaces
fourth difference Runge-Kutta 5
EURANUS dissipation operator,
explicit Runge-Kutta and
SOR / SLOR implicit
relaxation time stepping
schemes
COMPANY / INSTITUTION: VKI (Von Karman Institute for Fluid Dynamics) - Belgium
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. monoblock-structured| Roe flux difference local time stepping, shock capturing, 55-57
finite-volume, splitting, van Leer flux explicit and implicit subsonic to
cell-centered vector splittting upwind residual smoothing hypersonic (coid)
and MUSCL TVD flow 6
M3D scheme, explicit Euler
forward, explicit Runge-
Kutta and implicit Euler
backward relaxation time
stepping scheme
COMPANY / INSTITUTION: Alenia Aeronautica, DAD - Haly
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3.0, unstructured, local | central Jameson scheme | local time stepping, 59-62
finite-volume, | mesh refinement with blended second and | residual smoothing,
UES3D | node-centered fourth difference enthaly damping
dissipation, explicit
Runge-Kutta time
stepping scheme 7
3-0, multiblock-structured | central Jameson scheme | local time stepping, 62-63
finite-volume, with blended second and | residual smoothing,
MES3D | cel-centered fourth difference enthaly damping




COMPANY / INSTITUTION: Alenia Asronautica G.A.T. - italy o
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC I
TECHNIQUE DISCRET. ACCELERATION FEATURES !
30, multiblock-structured | central Jameson scheme | local time stepping. Euler/Navier-Stokes | in ]
finte-voiume, | block-to-biock mesh | with biended second and | impiicit residual solver. | sect i
cell-contered refinement and ' fourth difference averaging. enthalpy part of CFD system | 3.4 8 !
ENSOLV adaptation dissipation, explicit damping, muitigrid - full | ENFLOW 121-41 ‘
multistage Runge-Kutta | & semi-coarsening (see section 3.4) |
time stepping scheme ) 77}» e ;
COMPANY / INSTITUTION: C.LRA. - Raly ]
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL | REF.| POC !
TECHNIQUE DISCRET. ACCELERATION FEATURES | i
3-D. monoblock-structured| central Jameson scheme | FAS muttignd ‘76465 !
finite-volume, with biended second and | ’
ETF30 | celi-centered fourth difference ‘[ 9 |
dissipation, explict , !
Runge-Kutta time i !
stepping scheme J !
COMPANY / INSTITUTION: National Technical University of Athens (NTUA) - GREECE
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC |
TECHNIQUE DISCRET. ACCELERATION FEATURES i
2-D. axisymm., [single block- second order central time accurate code. | 78-80 ],
finite-difference structured discretization, antificial moving mesh |
EU2D dissipation scheme, capabilty ;
approximate factorization i
procedure, ADI, second i
order time accuracy |
2-D, axisymm., imultiblock-structured. | upwind flux vector (FVS) |local time stepping, time accurate 81-85
finite-volume,  jblock-by-block grid splitting and flux multi-level procedure. | option, zonal
cell-centered  (refinement, difference splitting (FDS) | multignid methods capability. |
NSWIND discretization. Eberle's real gas option I .
Riemann-solver, second [ 0
order MUSCL scheme,
implicit unfactored
Gauss-Seidel relaxation
2-D.3-D,and |muitiblock-structured | central Jameson scheme | local time stepping Euler/Navier-Stokes | 86
quasi 3-D, with biended second and soiver,
finite-difference fourth difference quasi 2-D
ATHENA dissipation, expiicit streamtube turbo-
tractional step and machinery option
implicit ADI time
L integration scheme

3.2.3 Points of Contact

Point of Contact (POC) No. 1:

Point of Contact (POC) No. 2:

Code(s): SESAME, WAVES, FLU3M, FLU3C Code(s): CEL3GR
Name: J.P. Veuillot Name: F. Dubois
Dept.: Aerodynamics Department Dept.: Applied Mathematics Department
Tel.: (+33)146734268 Tel.: (+33) 134922857
Mailing Address: OgEgA Mailing Address: AEROSPATIALE Espace et Defense
BP 7 BP2
F-92322 Chitillon Cedex F-78133 Les Mureaux Cedex
France France

Tel.-Company: (+33) 1 46 73 40 40
Fax-Company: (+33) 1 46 73 41 41
References: 1-26

Tel.-Company: (+33) 134921234
Fax-Company: (+33)1349239 15
References: 32-33
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Buint of Contact (POC) Neo. 3:

Code(s): AEROLOG

Name: M. Bredif

& Acrodynamics Department

'?:lp‘ (+3r§;j{ 3488 3747

Mailing Address. MATRA DEFENSE
37 Avenue Louis Breguet
F-78146 Velizy Cedex
France

Tel.-Company:  (+33) 1 34 88 30 00

Fax-Company: (+33) 134651215

References: 34,35

Point of Contact (POC) No. 4;

Code(s): EUGENIE

Name: B. Swoufflet

Dept.: Acrodynamics Department

Tel.: (+33) 147113422

Mailing Address: DASSAULT AVIATION
78 Quai Marcel Dassauit
F-92214 Saint Cloud
France

Tel.-Company: (+33) 147 11 4000
Fax-Company: (+33) 147 11 490t
References: 36 - 47

Point of Contact (POC) Ne. S:

Code(s): ZURANUS
Name: C. Lacor
Dept. Computational Fluid Dynamics Group
Tel.: (+32)264123 79
Mailing Address: Vrije Universiteit Brussel (VUB)
Pleinlaan 2
B-1050 Brussel
Belgium
Tel.-Company: (+32) 26412391
Fax-Company: (+32) 7 41 28 80
References: 48-50

Point of Coatact (POC) No. 6:

Code(s): M3D

Name: H. Deconinck

Dept.: Computational Fluid Dynamics Group
Tel.: (+32) 2 358 19 01 ext 237

Mailing Address: Von Karman Inst. for Fluid Dynamics (VKI)
72 Chaussee de Waterloo
B-1640 Rhode - St - Genese

Belgium
Tel.-Company: (+32) 2358 19 01
Fax-Company: (+32) 2 358 28 85
References: 55-57

Point of Contact (POC) No. 7:

Code(s): MES3D, UES3D

Name: M. Borsi

Dept.: Defence Aircraft Division
Tel.: (+39) 11 718 1017

Mailing Address: ALENIA
Corso Marche 41
1-10146 Torino

Tel.-Company: (+39)11 718 1789
Fax-Company: (+39)11 718 1078
References: 59-63

3 0. 8:
Code(s): ESOLVB
Name: P.L.Vitaghano
Dept.: GAT.
Tel.: (+39) 081 845 3459

Mailing Address: ALENIA
Viale dell’ Aeronautica
1-80038 Pomgliano d’Arco (NA)

Tel.-Company: (+39) 081 845 3459
Fax-Company: (+39) 081 845 2142
References: (see sect. 3.4, ref. 21 - 41)

Point of ¢ ontact (POC) No. 9:

Code(s): FTF3D
Name: P. de Matteis
Dept.: Aerodynamics
Tei.: (+39) 823 623311
Mailing Address: CLR.A.
Via Maiorise
[-81043 Capua
Tel.-Company:  (+39) 823 623111
Fax-Company: [+39) 823 622060
References: 64, 65

Point of Contact C) No. 10;

Code(s): EU2D, NSWIND, ATHENA
Name: S. Tsangaris
Dept.: Aerodynamic Laboratory
Tel.: (+30) 1-77-13060
Mailing Address: National University of Athens (NTUA)
P.O. Box 64070
157 10 Zografou
Greece
Tel.-Company: (+30) 1-77-13060
Fax-Company: (+30) 1-77-06545 or 1-77-84582
References: 78 - 86
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3.3 CODES FROM GERMANY AND
SWITZERLAND

3.3.1 Overview

In the following the essential Euler codes from Germany and
Switzerland are presented. Most codes being developed in in-
dustry follow a structured arproach whereby either a flexible
monoblock or a general multiblock strategy is applied to ac-
comf?lish the treatment of complex geometries including full
configurations of aircraft, missile and space vehicles. To
achieve a reasonable level of productivity with respect to flow
computations most industries have interfaced their codes to a
dedicated grid generation system providing all necessary
block-interface informations for the soiver. Another observa-
tion which can be made is the fact that almost all general pur-
puse Euler-codes can also be used for viscous simulation by
solving the Navier-Stokes equations.

Research and development of new approaches concerning dis-
cretization schemes and solution techniques take place mainly
at universities and research establishments. From there a broad
variety of codes are reported which mostly are limited in their
ab(i’g;y 1o treat geometrically complex problems or physical
models.

To characterize the major individual Eulet-codes from industry
and research institutions by their underlying basic schemes and
the intended range of applications comresponding short descrip-
tions are provided below. The presentation is ordered accord-
ing to the institutions where codes were developed.

MELINA:

At the DASA Airbus Division company essentially the codes
developed at the DLR-Institute for Design Aerodynamics in
Braunschweig are used and implemented as the code baseline.

However further development and refinement for production
purposes takes place within the company.

The finite-volume cell-vertex code MELINA is the result of
these efforts. The code is multiblock-structured and is applied
mostly to transonic problems for transport aircraft design.'”
MELINA is based on an explicit 5-stage Runge-Kutta time
stepping scheme and a cell-centered discretization combined
with the blended artificial dissipation operator as proposed by
Jameson et al.’ Convergence acceleration is provided by a fuil
approximation (FAS) multigrid method whereas increased spa-
tial accuracy can be achieved by a block-oriented local grid re-
finement capability. Recently the code was extended to a
Navier-Stokes solver.

Apart from routine tasks as the flow simulation around wings
and wing/body configurations emphasis is on support for lami-
nar wing design, integration of propulsion systems and flap
track fairing design.

Grid generation is tailored to design oriented tasks and is pro-
vided by the INGRID system, an in-house development.

IKARUS :

At the DASA Regional Turboprop Division, which is formed
by the Dornier Luftfahrt company, the general purpose code
IKARUS is in continuous development since 1984. The code
development was initiated from and based essentially on the
work of Jameson and Schmidt.*® The 3-D version of that basic
approach was Jameson’s FLO-57 from which an early mul-
tiblock version was derived by Jameson and Leicher’ forming
the basis for Dornier’s IKARUS code.

The structured multiblock code IKARUS is based on a cell-
centered, finite-volume discretization for solving the steady
and unsteady, compressible 3-D Euler and Navier-Stokes equa-
tions in integral form, thus providing numerical solutions to in-
viscid and viscous flow problems tn almost arbitrary geome-

tries. The wreatment of complex geometries is facilitated by an
advanced multiblock technique allowing a general segmenta-
tion of block faces leading to a high flexibility concerning the
application, the connection and the built-up of any types of grid
block topologies. Explicit and implicit integration schemes are
available based on the same cell-centered spatial discretization
assuring identical steady state results.

Explicit integration is performed by a linear multistage Runge-
Kutta-type time-stepping scheme. Convergence acceleration is
provided by several techniques like local time- ing, im-
plicit residual averaging, enthapy forcing and a FAS muitigrid
scheme, offering V- and W-cycle options.

Implicit steady state solutions are also enabled by an approxi-
mate Newton-method operating on the steady state equations.
The corresponding relaxation method is called the LU-SSOR
scheme which can be used together with the muitigrid option to
enhance convergence.

From early 3-D flow simulations past wings and wing/body
combinaticns®® the code was also applied to inviscid flow
problems around in.e1™"" and propfan™ configurations as well
as vortical flows past delta wings.”>'® Moreover IKARUS was
successfully applied for great number of flow problems ranging
from in the low subsonic (incompressible) up to the hypersonic
flow range'” which includes also simulations based on the
equilibrium real gas assumption.!

The flow solver IKARUS is logically complemented by an in-
teractive grid generator called DOGRID which allows a fast
and easy generation of complex blockstructured meshes.

EUFLEX, INFLEX, ROTFLEX:

Essentially based on the work of Eberle at DASA Military Air-
craft Division (formerly MBB/UF) a 3-D Euler code, called
EUFLEX, is continuously developed since 1984. In the mean-
time the code has achieved a high level of theoretical sophisti-
cation. For these reasons the code is applied with great success
in practical acrodynamic project work as a general purpose de-
sign tool not only in the military aircraft division but also at the
corresponding missile, helicopter and propulsion divisions of
DASA.

EUFLEX is based on a monoblock, finite-volume method for
solving the integral form of the conservation laws for inviscid
flow. A "Godunov-type" differencing approach is followed,
enforcing the efficient solution of the Riemann problem at each
cell face for definition of interface states.

Because of the very special approach some essential aspects of
the method are described in more detail. The basic theory™*
starts the development by considering the Riemann problem in
the non-conservative, differential form of the Euler equations
resulting in an exact, iteration-free solution to the Riemann
problem. However the basic approach has the disadvantage that
into the corresponding solution of the primitive solution vector
at the interface also entropy values from right or left states en-
ter. In practical computations this fact lead to non-negligible
entropy errors. To overcome that problem an successful at-
tempt is made to find a solution of the Riemann-problem in
terms of the conservative variables. In the development of the
so-called "homogeneous” Riemann-solver properties and as-
sumptions of acoustic wave theory are exploited. Essentially
the isentropic transport of entropy along streamlines is used to
define appropriate interface pressure values. Using the homo-
geneous property of the Euler fluxes :hen allows the transfor-
mation to the corresponding Riemann solution in terms of con-
servative variables.

Into the relations defining the conservative variables at the in-
terface as a solution of a locally one-dimensional Riemann-
problem, values for the conservative variables associated with
the individual eigenvalues have to be determined. This is per-
formed by a third order interpolation between left and right
states. A symmetric weighted average of corresponding cigen-
values between left and right states are taken. By that the




scheme is kept fully differeatiable, preventing any glitches in
the solution whenever cigenvalues are changing sign. This
process is called the "characteristic flux averaging” scheme.
Higher order accuracy is achieved by the MUSCL-approach in
concert with an improved van Albada-flux limiter. Correspond-
ing non-oscillalm‘y”exlmpolalion formulas are given and tested
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up to fifth order.”™

In the original version of the code time integration to steady
state was performed by an explicit scheme supported by the lo-
cal time stepping technique. Acceptable convergence rates,
however, could only be realized with point relaxation
schemes.™ Some problems are reported concerning possible
singular implicit block operator matrices for high aspect-ratio
cells = As a remedy a local transformation to non-conservative
. "es s proposed, which avoids this ill-coaditioning prob-

-heme outlined so far was applied to a number of real life
.ases, with the simulation of the inviscid flow around a
complete Q§htcr aircraft as an exceptional highlight at the time
published. ™ A special effort was made to increase code robust-
ness for hypersonic applications.™*" ™ This was due 1o the ob-
servation that the method produced pre-shock spikes during the
shock movement process for very strong shocks resulting in
possible negalive pressures. This is overcome by a generalized
flux formulation in which the Riemann-flux vectors and the
Beam/Warming split flux vectors are combined such, that at
strong shocks the Riemann-fluxes are switched off smoothly
and the more stable Beam/Warming fluxes are activated. The
success of the propesed approach is demonstrated by results of
intake™ and nozzle™ flow computations. A comprehensive
description of the overall a‘?proach is given in the textbook of
Eberle, Hirschel and Rizzi.’

The treatment of complex configurations is enabled by a
monoblock technique in which for each cell the desired bound-
ary conditions are specified. Also available is multiblock ver-
sion of the EUFLEX-code. A Navier-Stokes version, derived
from the EUFLEX-code is developed as NSFLEX*.

Code development was also extended to the time-accurate
treatment of unsteady flow problems. These efforts led to the
unsteady version, called INFLEX. 3-D applications were made
to oscilfating, but rigid wings in pitching motion.”>* For time
integration an implicit unfactored relaxation scheme is em-
ployed, which allows a dramatic shortening of computation
time as compared to the explicit scheme. Careful studies are
conducted concerning the effect of different convergence crite-
ria controlling the iteration process during one time step on the
solution.’

At the EUROCOPTER Deutschland company, a joint company
of AEROSPATIALE and DASA in the helicopter business EU-
FLEX is modified and adjusted to rotorcraft problems.**® The
resulting ROTFLEX code includes an unsteady and time-
accurate computation capability.

DAINV.SPACE, DAINV-SPLIT, DAVIS-VOL.:

In the DASA Space Infrastructures Division the corresponding
aerodynamic department is working for more than a decade on
inviscid flow problems essentially related to supersonic exter-
nal and nozzle type flows. In recent years strong emphasis is on
hypersonic reentry and cruise probiems. Hypersonic flow prob-
lems are emerging from the European and national projects fo-
cussing on the reentry vehicle HERMES and the two-stage
space transportation system SANGER. Continuous efforts have
led to the development of a series of Euler codes, called
DAINV-SPACE, DAINV-SPLIT and DAVIS-VOL, which
will be characterized subsequently.

DAINV-SPACE”™ is being developed since many years and
belongs to the class of supersonic space-marching codes. The
numerical approach, originally based on a central-difference
scheme, has been developed to a split-matrix finite difference
method solving the quasiconservative and steady-state form of
the inviscid conservation laws. The outer shock wave is fitted
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to the outer computational region (shock fitting approach)
whereas shock waves embedded inside the shock layer are cap-
tured. The code is abie to deal with perfect and equilibrium gas
conditions.’® An upwind discretization approach is used relying
on sign-splitting of the associated flux Jacobians. Some efforts
are made to accomplish the eigenvalue decomposition with an
appropriate set of eigenvectors. Originally space integration
was performed with an explicit Runge-Kuita scheme. For sta-
bility reasons each space integration step is now considered as
the steady state solution of a time-dependent problem. Some
emphasis s put on the formulation of the wall boundary condi-
tion, which is carried out in the frame of characteristic com-
patibility relations. Results are presented for supersonic flows
past a cone at incidence as well as for a delta wing and a ge-
nericwconﬁguralion of a hypersonic space transportation sys-
tem.”

The DAINV-SPLIT"™ code is based on a finite-difference
method for solving the time-dependent and quasi-conservative
form of the 2-D and 3-D Euler equations. A diagonalisation of
the tlux Jacobians is performed to allow the proper implemen-
tation of a second order upwind scheme according to the sign
of the associated eigenvalues. An explicit multi-stage
Runge-Kutta time integration scheme is used in concert with
local time stepping to achieve steady state solutions. Solid wall
boundary conditions are based on characteristic compatibility
relations. The code has the capability for shock and shear layer
fitting and can treat flows under perfect, equilibrium as well as
non-equilibrium gas conditions. First applications of the
method are reported to nozzle flow problems* and flow simu-
lations past the forebody as well as complete configurations of
a reeentry vehicle under equilibrium real gas conditions.**"

The DAINV-SPLIT code is also extended to account for non-
equilibrium chemistry.*™* Chemical non-equilibrium condi-
tions add to the conservation equations for inviscid flow addi-
tional equations accounting for the mass conservation of the re-
acting gas species. For low pressures, representative for reentry
situations, the specfic enthalpy of the various species can be
considered as only depending on temperature, whereas the
mixture of reacting gases is assumed to behave according to
Dalton’s law. So formally the non-equilibrium code option has
been developed along similar concepts already proved for ideal
or equilibrium real gas applications. The well-known Park’s 5
species/17-reactions model without ionization is used and inte-
grated by an explicit multistage time-stepping scheme. How-
ever, if in the chemistry model the various reaction time scales
are smaller by orders of magnitude compared to the character-
istic time scales of the locally frozen mixture then the chemis-
try is determining locally the time step size for the whole sys-
tem of equations. In this situation the code switches to a
point-implicit scheme for time integration of the source term
appearing in the species mass conservation equations.

Interestingly DAINV-SPLIT has an option to operate also with
an enthalpy correction technique improving the convergence
rate to steady state as well as code robustness in transient solu-
tions stages. This is due to the fact that a constant freestream
total enthalpy is enforced in the whole flowfield. An additional
option is called "pseudo space marching”. By that acronym the
possibility is understood to march over the flowfield in stream-
wise direction with a stack of several grid planes. This tech-
nique provides a steady state solution for a specific grid plane
in the middle of the stack. Assuming supersonic flow and a
proper implementation of a pure upwind schemc the final
steady state flowfield solution should be identical to a global
solution approach where at each time step a sweep over the
whole solution domain has to be carried out. Results are pre-
sented for non-equilibrium flows past a cylinder and a sphere
which are compared to available experimental data.*’

For shock fitting a general formulation of the Rankine-
Hugoniot relations was developed valid for ideal, equilibrium
and nonequilibrium real gas in a co-moving coordinte system.
A procedure is outlined to reduce the general shock relations
resulting in an efficient numerical scheme. Results are pre-
sented for the flow past a complete HERMES configuration
under non-equilibrium conditions at Mach 25.*

@
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DAVIS-VOL® is a aumerical method for solution of the 2-D
and 3-D strong conservative form of the integral conservation
laws. The approach follows the finite-volume time stepping
concept. The numerical fluxes are evaluated according 1o a
symmetric TVD scheme essentially proposed by Yee with the
definition of the eigenvector matrices at the cell faces accord-
ing to Roe. An implicit point or line Gauss-Seidel relaxation
sciemc is adopted for time integration. In the associated im-
plicit operator the fluxes are approximated to first-order accu-
racy using the Roe-averaged, sign-splitted flux Jacobians.

To accelerate convergence to steady state the local time step-
ping technique is applied together with a so-called "switch-off”
scheme, which controls the iteration process such that only
those cells are updated where a change of the solution vector
beyond some prescribed criteria can be anticipated. As an op-
tion for supersonic flow problems the DAVIS-VOL code is
also able to operate in the "pseudo-marching” mode (described
previously), leading to a considerable gain in computational ef-
ficiency for approppriate problems. This is demonstrated for
the flow past a HERMES forebody under ideal and equilibrium
real gas, assumptions. Using the pseudo-marching technique a
gain of a factor 10 is claimed compared to the global solution
approach. Applications are also presented for the 3-D interact-
ing flow of a two-fin model configuration.

The natural extension of the scheme is also presented to handle
viscous flow problems by solution of the Navier-Stokes equa-
tions.

In the DASA Jet Engine Division (MTU Munich) quasi 3-D
(in S1 blade-to-blade and S2 hub-to-tip planes) as well as full
3-D Euler codes are under development since 1985.

The quasi 3-D approach as described by Happel et al.% is based
on the 2-D approximation of the conservation laws along
stream surfaces taking into account the streamwise mean radius
of curvature of the surface as well as the stream tube thickness.
For flow simulation past rotor blades the conservation laws are
formulated in a rotaung frame of reference The numerical
scheme is based on a finite-volume cell-vertex discretization
in which the convective fluxes are approximated to first order
in space. An explicit first order time-stepping scheme is used to
integrate the unsteady equations to steady state. Convergence
acceleration is provided by a local time-stepping and by a mul-
tigrid technique. A so-called "damping surface technique” is
applied to provide a post-correction of the resuits to enhance
the spatial accuracy. The method is applied to transonic flow
problems past turbine stator and rotor blades as well as to com-
pressor cascades.

A fufl 3-D code extension is presented by Happel and Stu-
berts” aiming on flow simulations past complete biade rows.
Interesting comparisions between experimental data and results
from 3-D Euler and Navier-Stokes computations in the cascade
rig of an inlet guide vanc of a low pressure turbine are reported
by Niehuis et al.*

CA VCATS:

In the German Aerospace Research Establishment (DLR) sys-
tematic development work on Euler codes as tools for aerody-
namic design is performed mainly at the DLR-Institute for De-
sign Aerodynamics in Braunschweig.

Euler code development has started there in 1983/84 and was a
major focus point for theoretical work over the years. The basic
apgroach was the finite-volume concept outlined by Jameson et

I.> which led to a 3-D, block-structured, cell-centered and
ccmral-diffgsggccd code, called CATS, described by Radespiel
and Kroll. Convergence acceleration of the baseline
Runge-Kutta-type linear multistage time-stepping scheme for
steady state problems is achieved by local time-stepping, en-
thalpy damping and implicit residual averaging techniques.
Flexibility of the blockstructured code has been increased sub-

sequently by introduction of a mesh embedding technique al-
lowing the change of mesh density by a factor of 2 for portions
of a mesh block. Corresponding improvement of the method
concerning efficiency in terms of computer time for specified
accuracy was demonstrated by Radespiel™ for a transport air-
craft wing/body combination.

A cell-vertex variant of the CATS-code. called CEVCATS,
was introduced by Rossow™ and Rossow et al *” CEVCATS
has been developed further to a general purpose fluid simula-
tion package for the whole speed range, also handling viscous
flows as a Navier-Stokes solver. Application examples are
found in Kroll et al.™ where a variety of aerospace configura-
tions are analyzed operating in the transonic as well as super-
sonic flow regime. Transport aircraft type wing/body as well as
generic canard-deita wing configurations were treated success-
fully in subsonic and transonic flow, whereas a generic fighter
type forebody, a waverider type delta wing and an eariy con-
figuration of the European HERMES reentry vehicle were
studied at supersonic flow conditions.

A FAS multigrid technique for acceleration of convergence to
steady state is implemented into CEVCATS based on the work
of Radespic! and Swanson™. A discussion on experiences with
multignd techniques applied to higl supersonic flow fields
(Ma<10) can be found in Kroll et al.™ A method for proper im-
plementation of the baseline multigrid techniques in the multi-
block framework of CEVCATS is discussed by Atkins.®'

In recent years CEVCATS has found widespread application in
aerodynamic design problems. The work of Schone et al.*®
reflect this effort whereas CEVCATS and an implementation
of the symmetric TVD discretization scheme of Yee is com-
pared® with respect of accuracy and shock resolution issues for
a flow around blunted biconic at Mach 6. A comparison of two
Euler codes, pamely CEVCATS and FLU3C, is presented in
Schone et al.®* FLU3C is developed at ONERA and is based on
a flux-vector splitting technique according to van Leer. Exten-
sive and detailed comparisons have been made for supersonic
flow computations around a vertical tail alternate reentry vehi-
cle configuration to the baseline HERMES concept.

Another topic of continuous research are transport aircraft de-
sign problems. Due to increasing importance of optimal air-
frame integration of present and future high bypass ratio jet en-
gines systematic experimental and theoretical studies were
conducted to investigate the position as well as the influence of
thrusted and unthrusted jet engine operation on aerodynamic
wing characteristics. Hoheisel et al.” used a turbo-powered
simulator for low speed experiments at Mach 0.17 for basic in-
vestigations. A corresponding theoretical study taking into ac-
count a future uitra high bypass jet engine with considerable
higher nacelle diameter as compared to existing engines was
analyzed by Rossow™. The inviscid simulation of an isolated
thrusted high-bypass jet engine was considered by Rudnik.”
Whereas in such inviscid simulations the influence of py-
lon/nacelle combinations on aerodynamic wing performance
duc to pure displacement effects can be studied quite success-
fully, interference effects due to viscous jet stream mixing
processes are neglected. An integrated attempt f several com-
putational tools including CEVCATS for possible design of a
laminar flow nacelle is reported by Radespiel et al.®

Research on inviscid flow analysis for slender wings by Euler
methods is a major lopic since 1986. Kumar and Das® studied
subsonic and transonic flow around a cropped delta wing con-
figuration defined for purpose of Euler code validation as pan
of the US/European vortex flow experiment project. The CATS
code was applied to investigate sharp and round leading edges
up to high angles of attack producing vortex flow breakdown.
Extensions of that work to a coupled canard/delta configuration
using CEVCATS is presented subsequently by Scherr and
Das.%® In an attempt to clarify the role of dissipation in Euler
solutions of different codes for vortical flows over delta wings
Longo™ made systematic comparisons concerning the effect of
mesh density and level of artificial dissipation in the CATS/
CEVCATS codes, respectively the level of truncation errors in
the EUFLEX code on global and local data. Detailed compari-
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sions between experimental and theoretical results for close-

canard-wing and double-delta wing are presented by
Longo and Das’’. [t was demonstrated that primary vortices
shed from leading edges are captured quite well. However
cross-sectional total pressure surveys show distinct quantitative
differences between simulation and experiments which may be
attributed to viscous cffects and missing resolution of vortex
sheets.

Thorough discussions on the most suitable numerical formula-
tions related to rotating frame of reference for flow simulations
past propellers and hovering rotors can be found in Kroll.” The
corresponding rotorcraft version of the CATS code was applied
to steady state problems around two-blade propellers.”

An optimum design method where the CEVCATS code was
coupled_to an optimization algorithm has been developed by
Schone.™ The method was applied to the design of conical and
general 3-D wings at supersonic speeds.

Recent efforts at DLR are related to the enhancement of spatial
accuracy by the use_of high resolution schemes’™® and gnd re-
finement suategiﬁ." Systematic work is underway concerning
the improvement of the various algorithmic elements of the
multigrid technique.

Beside development efforts directed to the CEVCATS code
some e,gons aiming on unstructured methods have to be men-
tioned.

Euler-Codes from Research Institutions and Universities

DLR-Institute for Theoretical Fluid Mechanics:

At the DLR-Institute for Theoretical Fluid Mechanics in Got-
tingen no continuous cfforts are made for development of a
general purpose Euler-code. However basic work on high reso-
lution discretization schemes by Miiller et al.™ and correspond-
ing agplications to hypersonic waverider problems® are re-
ported.

3.3.2 Presentation of Individual Codes
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FL-Ecole Polytechnique Federal sanpe:

At the EPFL-Institut des Machines Hydrauliques et de
Mechanique des Fluides in Lausanne cooperative efforts to-
gether with CERFACS (France) are made towards the develop-
ment of 3 3-D general purpose multiblock finite-volume Euler
code®™ including equilibrium and non-equilibrium real gas ca-
pabilily.”‘“ The celi-centered discretization approach is based
on Jameson’s aritificial dissipation operator* and for time inte-
gration an explicit linear multistage time-stepping scheme is
applied. Another direction of Euler-code application concerns
incompressible flow simulation problems in water turbines.

Institut fir Strahlantriebe und Turboarbeitsmaschinen. RWTH-
Aachen:

At the RWTH-Institut fur Strahlantricbe und Turboarbeits-
maschinen efforts are made for development of a general pur-
pose finite-volume code aimin&al steady and unsteady turbo-
machinery flow applications. -9 Besides structured also
unstructured codes are under development.”

Institut fur Aero- und Gasdynamik, Universitat Stultgart:

At the Institut fiir Aero- und Gasdynamik main efforts are di-
rected to development of a finite-volume Euler code aiming at
rotorcraft flow applicalions."”5 Basis for development is the
EUFLEX code from the DASA Military Aircraft Division.

Institut fiir Raumfahrtsysteme, Universitit Stutigart :

At the [nstitut fiir Raumfahrtsysteme main efforts are directed
to development of a 3-D finite-volume Euler code aiming at
turbomachinery flow applications.™”

Institute for Computer Applications, Universitét :
At the Institute for Computer Applications serious efforts are
underway for development of a general purpose finite-clement
Euler/Navier-Stokes code includirg equilibrium and non-
equilibrium real gas capabilities.™> Focus point are reentry
flow applications related to the European reentry vehicle pro-
ject HERMES.

COMPANY / INSTITUTION: DASA - Airbus Division / Bremen - Germany

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured, | central differencing, local time stepping, Euler/Navier-Stokes | 1-3
finite-voiume.  |blockwise mesh Jameson’s second and | implicit residual solver,
MELINA cell-vertex refinement fourth difference smoothing, enthalpy actuator b.c.,
dissipation operator, damping, multigrid shock capturing
expiicit Runge-Kutta
scheme

COMPANY / INSTITUTION: DASA - Regioprop Division / Dornler Luttfahrt / Friedrichshafen - German

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured, | central differencing, local time stepping. Euler/Navier-Stokes | 7-21
finte-volume,  |blockwise mesh Jameson’s blended implicit residual solver,
cell-centered  [refinement, arbitrary |second and fourth smoothing, enthalpy actuator b.c.,
IKARUS block face difference dissipation damping, mutltigrid shock capturing,
segmentation operator, Runge-Kutta equilibrium real gas
explicit or LU-SSOR option
implicit scheme
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COMPANY / INSTITUTION: DASA - Military Aircraft Division / Ottobrunn - Germany
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL 'REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. monoblock-structured| upwind (combined Steger | local time stepping Navier-Stokes 22-3
finte-volume, flux vector and Godunov version: "“NSFLEX",
EUFLEX | coli-centered -type) differencing. point shock capturing,
Gauss-Seidel implicit equilibrium real gas
scheme option
3-0. monobiock-structured| upwind (combined Steger time accurate 32| 3
finite-volume, flux vector and Godunov version of EUFLEX
cell-centered -type) differencing, point
INFLEX Gauss-Seidel impiict
scheme, 1st order Euler !
backward time operator L
COMPANY / INSTITUTION: EUROCOPTER Deutschiand / Ottobrunn - Germany
CODE DISCRET. GRIDS ' SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE i DISCRET. ACCELERATION FEATURES
3-0. monoblcck-structured1r upwind (combined Steger | iocai time stepping, rotorcraft version of 35,36
finte-volume, | flux vector and Godunov EUFLEX,
ROTFLEX | cefl-centered | -type) differencing, point also time-accurate 4
| Gauss-Seidel impilicit version available
| } scheme i
[COMPANY / INSTITUTION: DASA - Space infrastrucures / Ottobrunn - Germany
CODE OISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2D&3D, single block. upwind flux-vector space marching 37-40
finite-difference | structured spitting scheme, method, shock
DAINV- ; Runge-Kutta explicit fitting, equilibrium
SPACE spacsftime integration gas option
scheme
2-D&30D. multiblock-structured | upwind (flux-vector local time stepping shock fitting, 41-48
finite-difference splitting) differencing, quasi-conservative
DAINV- Runge-Kutta explicit time Euler formufation,
SPLIT stepping scheme / point pertect gas, 5
Gauss-Seidel implicit for equitibrium and
species source terms non-equilibrium real
gas option
2-D&3-D multiblock-structured | central (symmetric TVD) | local time stepping Euler/Navier-Stokes | 49
finite-volume, differencing, implicit Euler solver,
DAVIS-VOL | cell-centered backward time stepping. equilibrium real gas
symmetric Gauss-Seidel option
relaxation
COMPANY / INSTITUTION: DASA - Jet Engine Division (MTU - Munich) - Germany
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.] POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D& 3D, multiblock-structured | central differencing with | local time stepping, shock capturing, 50-52
finite-volume, second difference multigrid post-correction of 6
MTU-EULER | celt-vertex dissipation operator, results by *damping
exphicit first-order Euler surface” procedure
time stepping scheme
COMPANY / INSTITUTION: DLR - institute for Design Aerodynamics / Brunswick - Germany
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3D, multiblock-structured, | central differencing, local time stepping, shock capturing 53-55
finite-volume,  [blockwise mesh Jameson's blended implickt residual
cell-centered  |refinement second and fourth smoothing, enthalpy
CATS difference dissipation damping, multigrid 7
operator, explicit
Runge-Kutta time
stepping scheme
PR astnstiSh NSRS Sty -
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COMPANY / INSTITUTION: OLR - Institute for Design Asrodynamics / Brunswick - Germany

[oe 2 DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3D, multiblock-structured. | central (Jameson's local time stepping, Euler/Navier-Stokes | 56-75
finte-volume,  |blockwige mesh biended second and implicit residual solver,
cell-vertex refinement fourth difference smoothing, enthalpy actuator be.,
CEVCATS dissipation operator, damping, multigrid shock capturing, 7
symmetric TVD scheme) equilibrium real gas,
and upwind differencing, general config.
explicit Runge-Kista time capability
stepping scheme
COMPANY / INSTITUTION: DLR - institute for Theorstical Fiuid Mechanics / Gottingen - Germany
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, single block, upwind (Harten-Yee) local time stepping shock capturing 80,81
(ITS-Euler) finite-ditference | structured TVD scheme, 3-tactor AF 8
implicit Beam-Warming
scheme
COMPANY / INSTITUTION: EPFL - institute / Lausanne - Switzerland
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCC SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured | central differencing, focal time stepping, shock capturing, 82-88
finite-volume, Jameson's blended residual averaging equilibrium and
celi-centered second and fourth non-equilibrium real 9
(EPFL-Euler) difference dissipation gas option
operator, explicit
Runge-Kutia time
stepping scheme
3.3.3 Points of Contact
oint of Co! 0. 1: Point of Contact (POC) No. 3:
Code(s): MELINA Code(s): EUFLEX, INFLEX
Name: S. Rill Name: A. Eberle
Dept.: EF10 Dept.: LME21t
Tel.: (+49) 421-538-4499 Tel.: (+49) 89-607-24912
Mailing Address: Deutsche Aerospace Airbus GmbH Mailing Address: Deutsche Aerospace AG
D-28183 Bremen Military Aircraft Division
Germany D-81663 Miinchen
Tel.-Company:  (+49) 421-538-01 Germany
Fax-Company:  (+49) 421-538-3320 Tel.-Company:  (+49) 89-607-0
References: 1,2 Fax-Com (+49) 89-607-26481
References: 22-34
Point of Contact (POC) No. 2:
Peint of Contact (POC) No. 4:
Code(s): IKARUS
Name: H. Rieger / S. Leicher Code(s): ROTFLEX
Dept.: LREV3 Name: H. Stahl-Cucinelli
Tel.: (+49) 7545-84203 /-84819 Dept.: D/EE4t
Mailing Address: Dornier Luftfahrt GmbH Tel.:. (+49) 89-607-23681
D-88039 Friedrichshafen Mailing Address: Eurocopter Deutschiand GmbH
Germany D-81663 Miinchen
Tel.-Company:  (+49) 7545-80 German
Fax-Company:  (+49) 7545-84411 Tel.-Company:  (+49) 89-607-0
References: 7-21 Fax-Company:  (+49) 89-607-26888
References: 35,36
AN A st
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Peint of Contyct (POC) No. 5:

Code(s): DAINV-SPACE, DAINV-SPLIT,
DAVIS-VOL

Name: C. Weiland

D:Pt.: RIT73

Tel.: (+49) 89-607-28473

Mailing Address: Deutsche Acrospace AG

Infrastructures

D-81663 Mitinchen
Germany

Tel.-Company:  (+49) 89-607-0

Fax-Company:  (+49) 89-607-26481

References: 37-49

Poiat of Cogtact (POC) No. 6:

Code(s): MTU-EULER

Name: H.-W. Happel

Dept.: EWTS

Tel.: (+49) 89-1489-2535

Mailing Address: MTU Motoren- und Turbinen-Union
Miinchen GmbH
D-80991 Miinchen
Germany

Tel.-Company: (+49) 89-14 89-0

Fax-Company:  (+49) 89-150 2621

References: 50-52

oint of Contact [N

Code(s): CATS, CEVCATS

Name: N. Krofl / R. Radespiel

Dept.: Numerische Aerodynamik

Tel.: (+49) 531-295-2440 / -2488

Mailing Address: Deutsche Forschungsanstalt fiir
Luft- und Raumfahrt e.V. (DLR)
Institut fiir Entwurfsaerodynamik
Lilienthalplatz 7

D-38108 Braunschweig
Germany
Tel.-Company:  (+49) 531-295-0
Fax-Company:  (+49) 531-295-2320
References: 53-75
Point of Contact No. 8:
Code(s): ITS-EULER
Name: W. Kordulla
Dept.:
Tel.: (+49) 551 709-2274 or -2275

Mailing Address: Deutsche Forschungsanstalt fiir
Luft- und Raumfahrt e.V. (DLR)
Inst. fiir Theoretische Stomungsmechanik
SM-SM
Bunsenstraie 10
D-37073 Géttingen
Germany
Tel.-Company:  (+49) 551 709-1
Fax-Company:  (+49) 551 709-2446
References: 80, 81

Point of Contact (POC) No. 9:

Code(s): EPFL-EULER

Name: C. Bergmann

Dept.:

Tel.: (+21) 693-3503 or -3504

Mailing Address: Swiss Federal Institue of Technology
Institut de Machines Hydraulique
et de Méchanique des Fluides
Bitiment DME
EPFL-Ecublens
CH-1015 Lausanne

Switzerland
Company: (+21) 693-1111
Fax- pany:  (+21) 693-3646 or -2525
References: 82-88

tact o. 10:

Code(s): RWTH-EULER
Name: H.E. Gallus
Dept.:
Tel.: (+49) 241 80-5500

Mailing Address: Rheinisch-Westfilische

Technische Hochschule Aachen (RWTH)
Institut fir

Strahlantriebe und Turbomaschinen
Templergraben S5

D-52062 Aachen

Germany

(+49) 241 86-5504

(+49) 241 8888-229

89-92

Tel.-Company:
Fax-Company:
References:

Point of Contact (POC) No. 11:

Code(s): IAGS-EULER
Name: S. Wagner

Dept.:

Tel.: (+49) 711-685-3580

Mailing Address: Universitit Stuttgan
Institut fiir Aero- und Gasdynamik

Pfaffenwaldring 21

D-70569 Stuttgart

Germany
Tel.-Company:  (+49) 711-685-1
Fax-Company:  (+49) 711-685-3438 or -3500
References: 93-95

Point of Contact (POC) No. 12:

Code(s): IRS-EULER

Name: H.-H. Friihauf
Dept.

Tel.: (+49) 711 685-2382

Mailing Address: Universitat Stuttgart
Institut fiir Raumfahrisysteme
Pfaffenwaldring 31
D-70569 Stuutgart
Germany

Tel.-Company:  (+49) 711-685-1
Fax-Company:  (+49) 711-685-3596 or -3500
References: 96 - 97

Point of Contact (POC) Ne. 13:.

Code(s): ICA-EULER

Name: J. Argyris

Dept.:

Tel.: (+49) 711-685-3594

Mailing Address: Universitat Stuttgart
Institut fiir Computer-Anwendungen

Pfaffenwaldring 27
D-70569 Stuttgart
Germany
Tel.-Company:  (+49) 711-685-1
Fax-Company:  (+49) 711-685-3669 or -3500
References: 98, 99
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3.4 CODES FROM GREAT BRITAIN,
THE NETHERLANDS and SCANDINAVIA

3.4.1 Overview

The majority of solution techniques routinely used to solve the
Euler equauons are based upon the Lax-Wendroff (structured
gnids), Taylor-Galerkin (unstructured grids), and Jameson ex-
plicitly added artificial dissipation with Ruage-Kutta time step-
ping methods (structured and unstructured grids). Structured
grids are primarily used but recently there appears to be grow-
ing interest within industry for the use of unstructured grnids
with their inherent advantages for adaptation techniques and
flexibility for complex geometrics.

Major uses of the multiblock grid and flow procedure for com-
plex three-dimensional geometries include the National Aero-
space Luboratory (NLR), The Netherlands, with the code
ESOLVB, British Acerospace (BAe - Commercial Aircraft) with
the code EJ83, SAAB, Sweden, with the code MULTEUL and
CFD norway, Norway, with the code ThreeFlow. For the solu-
tion techniques it is interesting to note that they all use the clas-
sic Jameson™™ procedure with the main features of celi-
centered central differencing, explicit local time stepping,
added artificial dissipation with combipations of second and
fourth order differences.

In the United Kingdom, the British Aerospace code EI43 has
multigrid convergence acceleration and a viscous capability
with options for viscous simulation with a coupled boundary
layer based upon 2D strip theory or full 3D boundary layer the-
ory. In addition to their multiblock code, British Aerospace
have developed a suite of codes using the Jameson soluiion
technique for particular applications. The code EJ61, which is
applicable to two-dimension.. ~ofoils has a full adaptation
capability with both point refinement and node movement,
EJSO and FJS3 are specifically used for intakes and forebody
geometries, EJ63 and EJ65 for wing/body configurations. The
latter two codes, in common with the multiblock code EJ83,
have a viscous coupled capability.

The Defence Research Agency (DRA), Farnborough, UK have
developed several different codes for the solution of the Euler
equations. The technique used to simulate the flows over iso-
lated wings is based on the work of Ni' and enhanced by Hall®
and relies upon the Lax-Wendroff method with a multignid ca-
pability. Their unsteady capability uses an implicit Beam and
Warming® scheme with central differencing approximations
and an artificial dissipation approach.

Oxford University, UK have developed Euler solvers for both
two and three-dimensional geomctries which utilise a two pa-
rameter Lax-Wendroff time stepping with node based multigrid
and Jameson artifivial viscosity terms.” The solvers are appli-
cable to single block grids, in particular, C-H grids for isolated
wings.

In tsolation within the survey, Swansea University and Compu-
tational Dynamics Research, Swansea, UK have developed the
codes BRITE3D, FLITE3D, TG and HYBRID each of which is
based upon unstructured triangular and tetrahedral grids.'"> '

The code BRITE3D and FLITE are both based upon the Jame-
son method'>*" and have a face and side based data structure
implementation, respectively. BRITE3D contains a tetrahedral
grid generator based upon the Delaunay triangulation'®” and
the FLITE3D has an advancing front generator. The FLITE3D
solver also has a multigrid capability'”. Both have grid adapta-
tion capabilities based upon the methods of grid remeshing,
point refinement and the use of sources. The code TG is based
upon _the Taylor-Galerkin formulation on unstructured
grids.'>"* All the codes BRITE3D, FLITE3D and TG are appli-
cable to a wide range of aerodynamic configurations. The code
HYBRID™ has a cell centered Runge-Kutta time stepping al-
gorithm which is applicable to unstructured, structured and hy-
brid grids. These grids can be automaticaily generated and both

the grid and flow are executed through a menu drivea MOTIF
user interface. The code also has 4 viscuus capability with op-
tions of a Baldwin-Lomax and k-¢ turbulence models and gnd
adaptation on any gnd type can be iniplemented using point re-
finement, point derefinement, remieshing, source adaptaion
and point movement. It is primarily used 1n the research envi-
ronment.

in The Netherlands, at the National Acrospace Laburatory
NLR, the software system ENFLOW for the calcutation of
Euler flows around complex acrodynamic configurations is
available. The system may also be used for the calculation of
Navier-Stokes flows. In parucular, ENFLOW 1« applied for the
computational analysis of the aerodynamics o. tlows around
transport aircrafts, including the aerodynamic effects of propel -
lers and/or jet-cagines. Based on carly technical concepes™
the system was implemented in cooperation with FOKKER ot
The Netherlands. ALENIA and CIRA, both of ftaly, paru
pated in the deveiopment of an carly version of the system
ENFLOW as a CFD user environment is operational on a di-
versity of hardware and available 1n vanious releases tor indus-
try and research institutions.

To treat the acrodynamic flow simulation task efficicatly with
the ENFLOW system a decomposition into five subtasks has
been accomplished. By such a design 1t became possible to iso-
late critical topics like geometry manipulation and gnd genera-
tior {ro.n the other CFD work. ™"

The five subtasks are the geometric surface modelling and ap-
propriate modification of acrodynamic surtaces, the, dgcqon)n\;m-
sition of the tiow domain into subdomarns or blocks™ =" by
the software ENDOMO, the multublock mesh gencra-
tion™ """ the flow calculation with the flow solver EN-
SOLV™ =333 and finaily the graphical mteracuve data
analysis and flow visuahzation.* The various code elements
within the system are interfaced by standarized file formats.

The multiblock grids which are accepted by the flow solver
ENSOLV should have the following characteristics.” ™
Blocks are patched to each other, without gaps or overlaps.
Block-faces are allowed to be sub-structured or segmented,
which gives additional flexibility concerning the handling of
complex boundary conditions. The code ENSOLYV has also the
capability for a block-by-block grid adaptation using point re-
finement.

ENSOLYV is based on a celi-centered finite-volume discretiza-
tion using explicit second and fourth difference dissipation op-
erators for treatment of comvective terms according to Jame-
son'”. Integration to steady state is performed by various
multi-stage Runge-Kutta schemes. Convergence speed is es-
sentially accelerated by a multigrid procedure offering full or
semi-coarsening options. As much as 14 different kinds of so-
called external boundary conditions are accepted, inciuding in-
let, outlet and propeller boundary conditions, the latter being
modelled as actuator disk. Second order accuracy is maintained
also across discontinuous block interfaces by special block-
coupling routines.

The ENFLOW system has been applied successfully to a mani-
fold of inviscid flow problems. Reported are simulations past
transport aircrafts ;gg‘l%i;gg propeller slipstream effects™!

and past delta wings.” >

NLR is developing also an unstructured flow solver, called
D2EUL™. It is based on a finite-volume cell vertex discre:isa-
tion with flux difference upwinding** and second order accu-
racy extension according to the MUSCL scheme.*”’ Grid gen-
eration based on triangles is automated and requires minimal
user interaction. The code is highly vectorized and is planned
to be extended to a 3D capability.

The Aerospace Faculty of Delft University of Technology, The
Netherlands, has developed an Euler solver for three-
dimensional geometries,” which is an extension of a 2D
solver® from CWI, The Netherlands. This code™ uses several




upwind-biased discretization techniques (van Leer, Osher and
Roe) and an unfactored relaxation method within a multigrid
solution procedure. The solver is applicable to single block
structured grids.

In Swedes, §AAB relies essentially on their multiblock code
MULTEUL"" for the treatment of general three-dimensional
complex configurations. The code is able to handle general
flow simulations past complete missile, aircraft and aerospace
vehicles. As indicated by the name, the MULTEUL code has
built in a multigrid convergence acceleration technique. Mesh
generation is based on a commercial system, called ICEM-
MULCAD. It should be noted that MULTEUL has also a vis-
cous option enabling Navier-Stokes simulations.

In addition to MULTEUL a general space-marching code,
called GEMINI* is in productive use at SAAB for treatment of
supersonic flow problems. According to a specific time/space
integration technique the code circumvents the integration step
size restrictions posed by stability reasons. Essentially the un-
known steady state at the new space position is determined by
solution of a time-dependent problem. Which means that the
originally hyperbolic problem in space is converted to a prob-
lem being hyperbolic in time. This approach leads to improved
algorithmic stability and makes the extension to parabolized
Navier-Stokes solver straightforward. The grid is structured

3.4.2 Presentation of Individual Codes
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and is automatically generated plane-by-plane with an alge-
braic interpolation procedure at each section, as needed. There-
fore, the code GEMINI is applied for inviscid and viscous flow
simulations past general missiles and aircrait configurations
with emphasis on aerodynamic flows around wings, rudders,
inlets and diverters.

In Norway a key institution in the field of flow simulation is
the company "CFD norway as". The company has developed a
complete package consisting of grid generators, flow solvers
and visualization tools for the treatment of 2-D and 3-D flows
in complex geometries that are based on a structured mul-
tiblock approach.

The grid generation package uses algebraic and elliptic-type as
well as combined lechnwues for generating blockstructured
grids.*” The flow solvers™ are based on a cell-centered finite-
volume discretization using the switched second and fourth or-
der dissipation operators according to Jameson' for approxi-
mating the convective terms. Time integration is performed
with a linear 3-stage Runge-Kutta scheme. The flow solvers in-
clude also options for solving either the thin-layer or the full
Navier-Stokes equations with several zero-equation and two-
equation eddy viscosity turbulence models. Options for operat-
ing the code in a rotating frame of reference as well as with
real gas assumptions are available.

COMPANY / INSTITUTION: BRITISH AEROSPACE (BAe) - Commercial Aircraft Division / United Kingdom

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2:0, structured central differencing, local time stepping coupling to 2D b.\. 3
finite-volume Jameson-type and fourth
EJ61 difference dissipation
operator, explicit
multistage Runge-Kutta
scheme
EJ50 3-D, central differencing, local time stepping E5550,563 pure 3
€Js3 finite-volume Jameson-type and fourth Euler, E563,E565
difference dissipation viscous coupling to
£J63 operator, explicit 20 strip theory and
EJ65 multistage Runge-Kutta full 3-D b.i.
scheme
3-D, multiblock-structured | central differencing, local time stepping viscous coupling to 3
finite-volume Jameson-type and fourth 2D strip theory and
EJs3 difference dissipation full 3-Db.l.
operator, explicit
multistage Runge-Kutta
scheme
COMPANY / INSTITUTION: : DEFENSE RESEARCH AGENCY (DRA) / Famborough - United Kingdom
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D, single grid, Riemann solver, explicit | local time stepping
ROE/LITTON | finte-volume | structured, O-type | multistage Runge-Kutta
scheme
HALL- 30, single grid, explicit Lax-Wendroff local time stepping, isolated wing 45
SALMOND- ﬁn:}e-volume. structured, C-H type | scheme multigrid applications
LTTON cell-vertex
3-0, single grid, explicit Lax-Wendroff local time stepping. b.c of jet orifice 4.5
EMJET finite-volume structured scheme mutigrid
cefl-vertex cantesian box
2-0/3-D structured centrai differencing, airfoits (2-D) and 6
finite-volume, Jameson-type second wing (3-0)
UNSTEADY | celi-centered and fourth difference applications
EULER dissipation operator,
implicit Beam-Warming
scheme
2-D, multiblock-structured | explicit Lax-Wendroft local time stepping, 4.5
ECUMB2D me‘volume. scheme multigrid
vertex
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COMPANY / INSTITUTION: OXFORD UNIVERSITY / Oxford - Unlted Kingdom
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D, singb block, centrat differencing, local time stepping, Euler/Navier-Stokes | 7.8
finte-volume, | O/C-type Jameson-type second | multigrid solver
CV FLOW2 | celi-vertex and fousth difference
- dissipation ator,
explictt Lax-Wendroft
e
3-D, ingie block, centrai differencing, local time stepping, Euler/Navier-Stokes | 9 3
finite-volume, -type Jameson-type second muttigrid solver
THREE | cell-vertex and fourth ditference
FLOW dissipation operator,
explicit Lax-Wendroff
scheme
COMPANY / INSTITUTION: SWANSEA UNIVERSITY / Swansea - United Kingdom
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.] POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, unstructured, central differencing, focal time stepping Euler/Navier-Stokes | 10,
finite-volume, | adaptation with Jameson-type second solver 11,
BRITE3D |ceii-verex mesh refinement and fourth difference 12
and remeshing dissipation operator,
multistage Runge-Kutta
scheme
3-0, unstructured, Taylor-Galerkin local time stepping unsteady 2-0 13, 4
finite-element | adaptation with finite-element formulation version available 14
TG mesh refinement
and remeshing
3-0, unstructured with central differencing, local time stepping, edge based data 1317
FUTE3D !finite-element | mesh refinement explicit, multistage multigrid structure
and remeshing Runge-Kufta,
COMPANY / INSTITUTION: NATIONAL AEROSPACE LABORATORY (NLR) / Amsterdam, - The Netheriands
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured | central differencing, local time stepping, Euler/Navier-Stokes | 21-41
finte-volume, | block-to-block mesh | Jameson-type second | implicit residual ver,
ENSOLV | cell-centered refinement and and fourth difference averaging, enthalpy part of CFD system
adaptation dissipation operator, damping, multigrid - full | ENFLOW,
explicit mutistage & semi-coarsening propeller and jet
Runge-Kutta scheme propulsion options 5
2-D, unstructured Dick-upwind flux local time stepping 42-44
finite-volume, difference discretization,
D2EUL | cell-vertex MUSCL extrapolation for
2nd order accuracy,
explicit multistage
Runge-Xutta scheme
COMPANY / INSTITUTION: SAAB - SCANIA A.B. / Linképing - Sweden
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured | central differencing, local time stepping, Euler/Navier-Stokes | 47
finite-volume, Jameson-type second explicit and implicit soiver
MULTEUL | cell-centered and fourth difference residual averaging,
dissipation operator, multigrid
multistage Runge-Kutta
schme 6
3-D, structured, spaceftime marching local time stepping, Euler/Parabolized 48
finite-volume, | automatic grid scheme, time integration |eigenvalue extrapolation| Navier-Stokes
cell-centered generation plane by | by explicit Runge-Kutta  jtechnique solver,
GEMINI plane pe scheme, space general missile
iscretization by Roe flux and aircraft
difference splitting configurations
upwind scheme
COMPANY / INSTITUTION: CFD norway as / Trondheim - Norway
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D0, muttiblock-structured | central differencing, local time siepping Euler/Navier-Stokes | 49
finte-volume, Jameson-type second solver
TwoFlow | cell-centered and fourth difference 7
dissipation operator,
explicit 3-stage
Runge-Kutta scheme
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COMPANY / INSTITUTION: CFD norway as / Trondhelm - Norway
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF.| POC
TECHNIQUE DISCRET. ACCELERATION FEATURES
3.0, multiblock-structured | central differencing, local time stepping Euler/Navier-Stokes | 49
finite-volume, Jameson-type second sotver, e
ThweeFlow | cell-centered and fourth difference rotating frame of 7
dissipation operator, reference option
explicit 3-stage
Runge-Kutta scheme
3.4.3 Points of Contact
Point of Contact No. 1: Point of Contact (POC) No. §:
Code(s): EJ51, EJ50, EJS3, EJ63, EJ6S5, EJ83 Codes): ENSOLYV, D2EUL
Name: A. Pagano Name: J.W. Boerstoel, B. Oskam
Dept.: Aerodynamics Dept.: Theoretical Aerodynamics Department
Tel.: (+44) 272-693831 Tel.: (+31) 20-511 3357
Mailing Address: British Aerospace Ltd. (BAe) Mailing Address: National Aerospace Laboratory NLR
Airbus Division P.0. Box 90502
P.O. Box 77 1006 BM Amsterdam
Bristol BS99 7AR The Netherlands
United Kingdom Tel.-Company: (+31)20-511 3113
Tel.-Company: (+44) 272-693831 Fax-Company: (+31) 20-511 3210
Fax-Company: (+44) 272-362828 References: 21-44
References: 3

Point of Contact (POC) No. 2:

Code(s): ROE/LITTON, HALL/SALMOND,
EMIJET SERIES, UNSTEADY EULER,
ECUMB2D

Name: B. Williams

Dept.: Aerodynamics

Tel.: (+44) 252-392576

Mailing Address: Defence Research Agency (DRA)
Aerodynamics Department
Farnborough
Hants, GU14 6TD
United Kingdom

Tel.-Company:  (+44) 252-24461

Fax-Company: (+44) 252-375890

References: 4-6

Point of Contact (POC) No. 3:

Code(s): CV_FLOW2, THREE FLOW
Name: K.W. Morton

Dept.:

Tel.: (+44) 865-273885

Mailing Address: Oxford University Computing Laboratory
11 Keble Road
Oxford, OX1 3QD

United Kingdom
Tel.-Company: -
Fax-Company: (+44) 865-273839
References: -9
Point of Contact 0. 4:
Code(s): BRITE3D, TG, FLITE3D, HYBRID
Name: 0. Hassan
Dept.: Aerodynamics
Tel.: (+44) 792-295625

Mailing Address: Computational Dynamics Research
Innovation Centre
University College of Swansea
Singleton Park
Swansea, SA2 8PP
United Kingdom

Tel.-Company: (+44) 792-295625
Fax-Company: (+44) 792-295613
References: 10- 18

Point of Contact (POC) No. 6:

Code(s): MULTEUL, GEMINI
Name: B. Arlinger

Dept.: Aerodynamics

Tel.: (+46) 1318-2583

Mailing Address: SAAB SCANIA A B.
Saab Aircraft Division
Military Aircraft Sector
581 88 Linkoping

Sweden
Tel.-Company: (+46) 1318-0000
Fax-Company: (+46) 1318-1802
References: 47,48

Point of Contact (POC) No. 7:

Code(s): TwoFlow, ThreeFlow

Name: N. Kubberud

Dept.:

Tel.: (+47) 73-54-0340

Mailing Address: CFD norway as
Teknostallen
Professor Brochsgt. 6
N-7030 Trondheim
Norway

Tel.-Company: (+47) 73-54-0340

Fax-Company: (+47) 73-94-3861

References: 49, 50
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Chapter 4

Applications

4.1 AIRFOILS

The Euler equations have been extensively applied to and
correlated for the flow over two-dimensional airfoils. The
early method developments centered on oscillation-free shock-
capturing schemes, either through incorporation of adaptive
dissipation coefficients or upwind discretizations. The recent
trend has been towards the incorporation of general-geometry
adaptive-grid schemes for the treatment of complex configura-
tions, such as the multielement airfoil solutions shown below.
These adaptive-grid methods have gained popularity due to
their potential to provide highly accurate solutions with rela-
tively few grid points. This gain in popularity owes in large
part to the difficulty in modeling complex three-dimensional
geometries with globally refined “structured” grids. Several
typical solutions over the NACA 0012 airfoil are shown be-
low, as well as several reference (datum) solutions which serve
as well-defined test cases for the evaluation of schemes. The
computational challenge posed by Pulliam in numerical so-
lutions to the Euler equations for the subcritical flow over a
smooth body is also discussed. Finally, an example of the use
of Euler equations to scale the results obtained in a gas with
nonideal behavior to that of air is reviewed.

4.1.1 NACA 0012 Airfoil

The flow around a NACA 0012 airfoil at M. = 0.8 and n
= 1.25 deg is shown in Fig. 4.1.1 using an extension of the
1985 implicit scheme of MacCormack developed at Deutsche
Airbus (DA).' The pressures indicate an upper surface shock
and a weaker lower surface shock. Results include second~
and third—order-accurate flux vector splitting formulations to-
gether with a second—order treatment of the surface boundary
condition. The resuits demonstrate the sensitivity to discretiza-
tion and boundary conditions; the first-order resvlts reveal
strongly disturbed isoMachlines near the surface of the model
over several layers of finite volumes associated with exces-
sive total pressure losses generated in the region of strong ac-
celeration near the leading edge. The pressure distribution is
most influenced by the truncation error of the scheme, whereas
the entropy error is most influenced by the boundary condi-
tion treatment. Third-order accurate spatial discretization and
second-order surface boundary condition lead to the entropy
variation to be expected, with small losses except for the jump
at the upper shock. A small rise of total pressure loss in the
field occurs at the transition from subsonic to supersonic flow
and is commonly observed in flux vector splitting results.

The flow field and convergence history for the inviscid super-
sonic flow past a NACA 0012 airfoil (M = 3, @ = 7 deg)
is shown in Fig. 4.1.2. Al computations were carried out
using the same explicit multistage sccond-order upwind TVD

scheme.? Standard V-type multigrid cycles were applied. The
upwind implicit residual smoothing method (UIRS) is com-
pared to the widely used central implicit residual smoothing
(CIRS) method. The CPU times were measured on a sin-
gle processor CRAY Y-MP. The CIRS method performed best
with a (3.2)-scheme (3 stages. 2 dissipation evaluations). The
UIRS method performed best with a (3.3)-scheme. The UIRS
scheme took more iterations, but the total ime to converge 5
orders of magnitude was approximately 35 seconds for either
of the schemes with residual smoothing. Further extensions of
the residual smoothing concepts are presented by Zhu et al.’

4.1.2 Datum Solutions

In 1985 the AGARD Working Group 07 completed the work
on the evaluation of numerical results obtained for specified
test cases by inviscid flow field methods. The aim of the effort
was to compile the state-of-the-ant capabilities for computing
two- and three-dimensional numerical solutions of the Euler
equations for airfoils and wings. Solutions from many re-
searchers of weli-known institutions and companies were sub-
mitted and subsequently compared with respect to various cri-
teria concerning local and global flow field properties. An
evaluation strategy was developed 1o determine the "best” nu-
merical solution(s) for each test czse. Judgments of quality
were on the basis of comparisons with known solutions and
numerical sensitivities, including grid density, far-field bound-
ary location, and entropy error vanations. Datum solutions
which can be used as high-quality reference sotutions for the
comparison of methods are presented in Ref. 4. Two transonic
cases from that study are shown in Figs. 4.1.3—.1.6. Recent
adaptive-grid computations for a third test case from that study
are shown in Fig. 4.1.7; these more recent computations re-
solve the large spread in the originally contributed results.

NLR 7301: M. = 0.721, &« = -0.194 deg

As a remarkable example of the solution accuracy which
could be obtained at that time, the Mach number contours
from the numerical results of Schmidt/Jameson® for their two-
dimensional computation around the NLR 7301 airfoil sec-
tion at “shock-free™ design conditions are presented in Fig.
4.1.3. Euler computations around the NLR 7301 profile with
the specified flow conditions pose a special difficulty as an
“exact” hodograph solution by Boerstoel and Huizing® exists
which indicates the development of a supercritical shockless
flow. Many contributors were unable to compute a shockless
flow and. therefore, failed to predict accurate global forces
and moments. The shock-free solution is an isolated design
point, and slight variations in geometry or angle of attack will
cause a single or double shock to appear on the airfoil. The
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shock-free solution was generated from a hodograph solution
which, unfortunately, is not without some discretization er-
ror, as particularly evidenced in the pressure variation near the
occurrence of the first sonic point. The airfoil itself is only
defined discretely at a large number of points. It is difficult to
retain the shock-free feature as the grid is refined.® There is
some question whether this is due to: slight errors in the hodo-
graph solution, or the exirapolated infinite-gnd solution being
computed on a geometry which is inconsistent with a shock-
free case because of limitations in the geometry specification.
The accuracy of the solution is probably best judged by mon-
toring for convergence of the global forces and moments as
the grid is refined uniformly with well-posed boundary condi-
tions and by checking tor inconsistencies in the solution, such
as entropy losses upstream of shocks.

Two numerical sofutions, namely those by Rizzt and
Schmidv/Jameson, were considered as numerical reference so-
lutions according to their high quality.® In Fig. 4.1.5. the
surface distributions of pressure and total pressure loss of
Schmidi/Jameson are depicted together with the curves ac-
cording to the “exact” hodograph solution (E). The overall
agreement s very good cxcept at the leading edge. where a
disagreement is noticed in the representation of the suction
peak. This defect seems to be systematic in nature and can
be found in all numerical solutions presented to the working
group. Also, minor deviations from the hodograph solution
are evident on the upper and lower surfaces wherever stronger
pressure gradient changes occur. Considering the total pressure
loses, all values are well below 1 percent. With the exception
of the suction peak region and the arca around the midchord
lower side, very small or almost zero values underline the
high numerical standard achieved.

of the shock posiuons. The outer boundary distance and nu-
mencal properties (such as artificial viscosity, truncation error.
or convergence) were important influencing factors.

The results of Salas/South and Schmidv/Jameson were selected
as the best two contributing solutions.* The coefticients tfrom
these two datum solutions are shown in Table 4.1.2 and indi-
cate close agreement. Both solutioas are plotted in Fig. 4.1.6
as surface pressure and total pressure loss distnbutions. The
latter solution shows extremely small total pressure vanations
over almost all the upper and lower side, with the excepuon
of some minor excursions at the shock positions. The errors
in both methods are small enough that either can serve as nu-
mencil reference solutions.

Source Mesh (@] [ (Y]
Salas 192x 39 0.34721 0.0557 | -.1167
/South O-type

Jameson 320x64 0.3584} 0.0580 ] -.1228
/Schmidt O-1ype

Source Mesh Cr. Cn oAt

Rizzi 160x32 0.597 1 0.0002 -0.130
O-type

Jameson 322x66 0.594 1 0.0005 -0.132

/Schmidt O-type

Exact 0.594 1 0.0005 -0.130

Table 4.1.1 Aerodynamic
coefficients for NLR 7301 test case.

The forces and moments from the two datum solutions are
compared 1o the exact solution in Table 4.1.1; the variations
arc very small. A full discussion of the variations between
cighteen solutions for global tforces and moments are summa-
rized in Ref. 4, including usefu! information regarding solution
features, such as mesh extent and grid topology and density.

NACA 0012: M, = 0.85. v = I deg

Fig. 4.1.4 shows the Mach number distribution from the datum
solution of Schmidvlameson.® An analysis of all seven con-
tibutions concerning global forces and moments is provided
in Ref. 4: there was a relatively high scatter of 16 percent in
lift and 36 percent in moment coefficient. The reasons for that
behavior arc attributed to the uncertainty in the determination

Table 4.1.2 Aerodynamic coefficients for NACA
0012 test case; /. =0.85and « = 1 deg.

NACA 0012: M = 0.95, o = 0 deg

This test case, onginally considered by the AGARD working
gmup.J is characterized by an oblique shock structure cmanat-
ing from the trailing edge. with a weak normal shock in the
wake as shown in Fig. 4.1.7. The contributed computations
showed wide variations in the predicted location of the sonic
point on the downstream chord-line extension, from 1.4 to 3.t
chords downstream [rom the trailing edge. associated with the
large cell sizes downstream of the airtoil.

The normal shock is relatively weak with a Mach number
of less than 1.1 ahead of the shock. An analysis indicates
that the location of the downstream normal shock wave is
very sensitive to the resolution of the expansion waves in the
supersonic zone above the airfoil, since that sets the obligue
shock angle at the trailing edge.” The normal shock Tovation
is quite sensitive to small errors because the length the
oblique shock emanating from the trailing edge to ¢ wk
triple point is about five chord lengths.

The correct location of the normal shock downstream of the
trailing edge has been determined through a grid convergence
study’ performed using a structured-grid code. The grids
utilized include 65 x 25, 129 x 49. 257 x 97. and 2049 x 765
O-type grids. The effect of grid density on the location of the
normal shock is shown in Fig. 4.1.7, where the shock location
is measured downstream of the trailing edge. The infinite-grid
normal-shock location obtained in this manner is about 3.35
chutds trons tie Ladang edge. Corresponding mesh-refinement
results using the GAUSS2D method of Hartwich® are also
shown and indicate a similar shock location of approximately
332

The ability of adaptive methods to obtain accurate results
is examined using two different Euler solvers in Ref. 7.

PP




The (wo solvers corresponded to upwind-biased methods: a
fully unstructured-grid method using tnangular cells and a
semiunstructured-grid method using quadnlateral celis. The
adapted grids from these two methods are shown in Fig. 4.1.7.
The adaptive grids demonstrate that the shock teatures can be
resolved well at large distances from the airfoil since small
cell sizes can be maintained all along the shock waves. The
accuracy, however, is determined more by the resolution of the
smooth portions of the flow than by the resolution of the more
prevalent low features, such as discontinuities. The results
presented used an adaption critena which led to consistent
results in normal-shock position as the number of points is
increased. The adaption criteria used repaired inconsistencies
in several commonly used methods of adaption.

4.1.3 Multielement Airfoils

The capability to compute flows over complex geometries is
extremely important to the aerodynamic designer. As alterna-
tives 1o block-structured grid methods, the unstructured grid
methods have greatly expanded the capabilities 1n that direc-
tion using bhoth Euler and Navier-Stokes equation scts. These
methods are natural as a framework for the accommodation of
arbitrary geometries and the incorporation of adaptive mesh-
ing techniques.

Results from the computations of Mavriplis and Jameson™!"
tor a two-clement airfoil (slat and main airtoil) are shown in
Fig. 4.1.8. The method uses tnangular and adaptive grids,
and the results shown were some of the tirst which demon-
strated the power of the unstructured grid method in aero-
dynamic applications. A node-based central-difference tinite-
volume scheme is used, which has been shown to be equiva-
lent to a Galerkin finite-clement method. with a lumped-mass-
matrix term.” '' Several of the computational grids which are
used in the solution process are shown in the top half of Fig.
4.1.8: the grids shown are the finest adapted mesh and three of
the coarser grids used in the mesh :equencing and multignid
acceleration processes. The grids have been generated inde-
pendently of cach other, thus decoupling the grid generation
process from the multigrid acceleration scheme. Finer grids
can be obtained by global refinements or by adapting previ-
ous coarser grids: the grids communicate through an efficient
tree-scarch algorithm. The lower half of the figure shows the
pressures on the slat/airfoil and the convergence rate of the
algorithm using single and multiple grids. The pressures have
been compared clsewhere” to experimental and potential re-
sults for unadapted meshes at slightly different conditions with
generally good results. The convergence rate shown is com-
parable to that attained in structured-grid multigrid codes and
substantially improved over that attainable with only a single
grid: comparisons (not shown) of the unadapted and adapted
grid solutions indicate that higher accuracy can be obtained
with fewer points in the latter approach.

The flow over a three-element NLR 422 airfoil computed with
an unstructured finite-volume, vertex-centered code'” is shown
in Fig. 4.1.9. A sccond-order-accurate upwind flux-difference-
splitting algorithm'* is solved to steady state using an explicit
Runge-Kutta scheme. The far-ficld and near-field views of the
grid indicate a gradual enlargement of the grid away from the
surface. The grids are generated in an automatic way. driven
by overall user-defined parameters, like maximum allowable
grid spacing and curvawre. The pressure distributions over the
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slat, main cleie. o and Hap at a subsonic condition (M, =
0.20, o = lu ¢ ndicate excellent correlation with a potential
flow method !ms particular case was chosen 10 order to
make a comparison of Euler computations with a potential
flow result. Other adaptive-gnd computations for a similar
case are given by Dimier and Ronzheimer.'

4.1.4 6:1 Ellipse

Numerical solutions of the Euler equations obtained for sub-
sonic airfoils with sharp trailing edges have faithtully repro-
duced the expected solutions obtained for viscous flow, namely
smooth flow at the traiting edge. Euler solutions have, with
grid retinement, returned those of potential theory with a Kuuta
condition imposed at the trailing cdge. For a smooth trailing
edge, Puitiam'*® has presented a currently unresolved problem:
the inviscid suberitical tlow over a 6:1 ellipse section. The
potential tlow solution is unique up to the specitication of the
circulation or, equivalently, the rear stagnation point on the
surface. Assuming irrotational initial and boundary conditions,
the inviscid solution should remain irrotational. However, the
discrete Euler solutions obtained by Pulliam with a central-
difference finite difference solution and by several others with
different formulations return an arbitranly large value of |ift
for any combination of grid and/or angle of attack which is
nonsymmetric. The resulting solutions, however, agree closely
with potential flow solutions with a circulation imposed equal
10 that obtained in the discrete Euler solutions, as shown in Fig.
4.1.10. The Euler solutions are sensitive to solution parameters
such as gnd refinement and stretching, boundary conditions,
dissipation coefticients, convergence level, ete. However, no
consistent explanation of the discrepancy obtained with the dif-
ferent discrete Euler solution could be found. Winterstein and
Hafez'® show the numerical interplay of the dissipation forms
and the boundary conditions for blunt bodies. For viscous al-
gorithms which use Euler tormulations as a building block for
the convective and pressure terms, the issue is not considered
to be relevant as the viscous scparation at the trailing cdge
serves to set the lift coefficient.

4.1.5 Heavy-Gas Airfoil Computations

The capability 1o conduct threc-dimensional wind-tunnel tests
at full-scale Reynolds number has long been an important aero-
dynamic need. Full-scale tunnels arc only available at low
speeds because of size and power constraints: high Reynolds
number ground-bascd testing is generally achieved through
combinations of high pressure. cryogenic temperatures, or al-
ternate test gases. The cryogenic temperature approach enables
Mach number to be varied independently of Reynolds num-
ber, but testing is expensive and complex. Heavy gases. such
as sulfur hexafluoride (SFs), arc an attractive alternative to
air because of the increased Reynolds number available duc
to lower viscosity and increased density. for fixed length and
velocity.  In addition, power consumption and model loads
are less than that for air at a constant Mach number. Un-
fortunately. most heavy gascs behave as nonideal gases, and
the results obtained have to be correlated with those for air,
since the ultimate objective is the performance of the tested
configuration in a high-Reynolds number air flow.

The difticulty introduced by the nonideal gas behavior is shown
in Fig. 4.1.11; the pressure distribution over a NACA (012
airfoil at M« = 0.8 and «» = 1.25 dcg is shown for air and for
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a heavy gas, SFe. at various pressures.'” The air results would
be the same independent of the pressure since air behaves as an
ideal gas. The pressure distnbutions shown are quite different
because of the nonideal behavior of the SFe. As the pressure
is increased, the upper surface shock moves forward relative
10 air and the lower surface shock disappears. A numerical
scaling procedure was developed'” based on the use of the
Euler equations and the transonic small disturbance equations.
Using the transonic scaling procedure in which an equivalent
gamma is determined based on both temperature and pressure,
the pressure distributions are shown in Fig. 4.1.11 for air and
for SF, at various combinations of pressure and temperature.
Note the Mach number for the SFs calculations is different
from that in air in order to match the transonic similanty
parameter. The procedure closely correlates inviscid results in
SF;s to those in air. The viscous scaling between air and SFy,
introduces additional complications, especially at transonic
speeds; the inviscid scaling procedure used above leads to
different shock locations in viscous flow at high Reynolds
numbers. Further details and references to earlier works in
this area are given in Ref 17.
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Iso-Mach lines of solution n° 9.2
(AM = 0.05, curve parameter = 100M).

Figure 4.1.3 Mach contours for NLR 7301 datum solution; M, = 0.721, a = ~0.194 deg.

lso-Mach lines of solution n° 9
(AM = 0.05, curve parameter = 100M).

Figure 4.1.4 Mach contours for NACA 0012 datum
solution; M, = 0.85, a = 1.0 deg.
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4.2 WINGS

Applications are shown below of Euler codes applied to at-
tached flows over wing components. These types of computa-
tions can be done routinely with modern computers and algo-
rithms. Without the modeling of viscous terms, the solutions
to the Euler equations generally overestimate the experimen-
tal lift and, at transonic speeds. produce shock locations which
are generally too far aft of high Reynolds number experimental
data. Calculations for the ONERA M6 wing are shown be-
cause it is a widely used test case for the comparison of Euler
codes, using both structured and unstructured grds. The other
three examples are comparisons of the capabilities of differ-
ent codes for a transport-type wing and two lower aspect-ratio
fighter-type wings. The cxamples include comparisons be-
tween different Euler methods and with irrotational methods.
such as nonconservative and conservative potential methods.

4.2.1 ONERA M6 Wing

The ONERA M6 wing at transonic conditions (M~ = 0.84
and n = 3.06 deg) has been used extensively as a test case
for the verification of Euler methods. The results shown
in Fig. 4.2.1 are typical of those that are attainable with
finite-volume codes. in this case an upwind-biased implicit
scheme' using the flux-vector splitting of Van Leer. At these
conditions, the predicted shock is slightly aft of the measured
experimental data, obtained at a Reynolds number of 117
million.? The pressures are shown for a 97x17x17 C-O mesh
and a 193x33x33 C-O mesh: the differences between the two
structured meshes are limited to the regions of the upper
surface shocks. The surface pressures are shown at the right
of the figure for a C-O mesh and a C-H mesh: the resolution
of the C-O mesh at the tip is considerably better and leads to a
greatly improved resolution of the pressures in the tip region.

cell-vertex method of Mavriplis® is shown. The grid is adapted
to the shock patterns on the wing and plane of symmetry. For
the nonadaptive case, the lift coefticient on meshes of 9,428
cells, 53,961 cells, and 357,900 cells was 0.2713, 0.2872, and
0.2923. With adaption. the lift coefficient was 0.290! with
173412 cells, close to that of the finest mesh with better
resolution in the shock and leading-edge regions. The full
multigrid method is used to accelerate convergence of the
scheme, with an order of magnitude benefit in efficiency.

The results of Mavriplis demonstrated that complex ge-
ometries could be solved on unstructured grids with sim-
ilar multignd performance to that attained with structured
grids. The computer resources for the scheme were some-
what higher (approximately 100 words/vertex and 75-100
microseconds/multigrid-cycle/vertex on the CRAY-YMP com-
puter) compared with the structured-grid codes (40 words/cell
and 30 microseconds/multigrid-cycle/cell on the CRAY-
YMP computer). The additional resources required by the
unstructured-grid scheme are offset by the ease in which the
grid can be adapted to the local features ol interest.

4.2.2 DFVLR F4 Wing

In order to increase the understanding of the prediction accu-
racy for the flow around general acrodynamic configurations.
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a detailed study was made under the auspices of the Euro-
pean GARTEUR Action Group AGOS regarding the predic-
tion capabilities of a number of different codes for the flow
over a simple wing.! The wing sclected was the DFVLR F4
wing, shown in Fig. 4.2.3 at two conditions: one subsonic
(M = 0.30, a = 0.84 deg) and one transonic (M, = 0.75,
a = 0.84 deg). Ten methods were applied, which included
nonconservative and conservative potential methods and three
Euler methods. Studies were made and reported of conver-
gence characteristics, grid refinement. and gnid extent. A few
selected results from the study are shown.

For the subsonic case, the global itt and drag predictions in-
crease from nonconservative potential to conservative potential
to Euler; somewhat surprisingly. the variations also decrease in
the same manner, although some of this effect may be hecause
the three Euler solvers were closely related central-difterence
schemes. The largest discrepancies occurred outboard on the
wing. pnncipally due 10 different modelings of the wing tip.
The pressure distributions from all of the contributions at a
semispan location ot 0.821 are shown and indicate "essentially
the same pressure distribution in a fairly narrow band,” thus
lending high confidence to their validity in predicting pressure
variations due to contigurations changes.

The global lift and drag coefticients for the transonic case,
however, indicate substantially lurger differences than for the
subsonic case. The nonconservative potential codes predicted
the shock position too far forward in relation to conservative
potential or Euler codes, atiributed to the lack of mass conser-
vation in the former class of schemes. The predictions trom
the latter two classes arc shown at the semispan location of
0.821 and indicate that the variations in lift cocfficients are
largely attributed to variations in shock position. Additional
computations for this case includes the embedded grid compu-
tations of Radespicl® and the grid refincment computations of
Leicher.® As pointed out in the reference.® the results indicate
only a "snapshot” of capability existing in 1986. advances in
computational capability have occurred since that ime which
have allowed greater confidence for engineering computations
of transonic flows with the Euler equations.

4.2.3 RAE Wing-Fuselage

Accurate prediction of transonic and supersonic wave drag is
critical in fighter aircraft design optimization. The flows are
complex and highly nonlinear; the Euler equations, although
neglecting viscosity. with consequent errors in shock position
and strength, can be used to predict overall configuration cf-
fects including rotational flows due 1o shock curvature or free
vortices. Three different Euler solvers were compared for tran-
sonic flow field computations on a wing-fuselage contigura-
tion by Agrawal ct al.” The three schemes compared were the
explicit central-difference FLO67 code. the implicit upwind-
biased code CFL3D, and a nonconservative upwind code ET2.
The three codes were compared on two configurations and
were evaluated with respect 1o accuracy and convergence. A
sample calculation is shown in Fig. 4.2.4 for the transonic flow
over an RAE wing-fuselage geometry at My =09 and v =
| deg. The results predicted by the three methods are similar,
except for differences in coarse-grid regions and near shocks.
The upwind finite-volume code predicted shock waves with
the best resolution and was least sensitive to grid refinement.
The best convergence was obtained with the central-ditference
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FLO67 code using local time stepping and full multigrid ac-
celeration. The latter code was particularly robust in this range
of application; its predictions generally suffice for flows near
design conditions where shock/boundary-layer interaction ef-
fects are small.

4.2.4 FS Wing

As pan of a code validation study. a number of transonic
computations were made using the implicit upwind Euler
code CFL3D and the transonic small-disturbance code CAP-
TSD for both steady and unsteady applications. The smait-
disturbance code incorporated both entropy and vorticity cor-
rections, thereby extending its applicability into regimes where
shock strength normally precludes its use. The purpose of the
evaluation was to determine the accuracy and applicability of
the methods by performing detailed studies to assess the influ-
ence of several parameters in the numerical modeling of the
solution. The F-5 wing was used as a test case; it has a panel
aspect ratio of 1.58, a leading-edge sweep angle of 31.9 deg.
and a taper ratio of 0.28. The calculations are compared with
the experimental pressure data from Tijdeman et al.” Unsteady
comparisons are shown in a subsequent section.

Three-dimensional steady flow computations at M. = 0.95
and n = 0.0 deg are shown in Fig. 4.2.5. Comparisons between
the Euler and potential flow pressures shown indicate excellent
correlation for all three span stations. Along the upper surface
of the wing, there is a mild shock wave that is predicted by
both the Euler and potential codes. although it is not evident
in the experimental data. Euler computations were made using
three grids with approximately (1) 1,000,000 :(2) 250,000; and
(3) 140,000 grid points. The f est grid and the medium grid
resulted in essentiaily identical results.
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(a) Pressure distribution at 0.60 semispan location.
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Figure 4.2.4 Sectional and surface pressures on RAE wing-fuselage; M, = 0.90, a = 1 deg.
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43 VORTICAL FLOWS

Vortical flows play an important role in the high-angle-of-
attack aerodynamic performance of acrodynamic configura-
tions, especially contemporary military aircraft. The growth,
interaction, and decay of these vortices are highly nonlinear
with angle of attack and are difficult to predict accurately with
numerical methods. Current design practices rely extensively
on experimental test programs.

For thin lifting surfaces, the Euler equations can model the
principal features of the interactions, in that pnmary separa-
tions ansing from sharp leading edges can be predicted; suf-
ficient artificial viscosity is introduced to faithfuily model the
effects of the true viscosity, Secondary separation anising trom
boundary-layer separations, as well as from pnmary separation
arising from round leading edges, is common in practice and
must be modeled by incorporation of boundary-layer etfects
in the Euler model or by considering the Reynolds-averaged
Navier-Stokes equations. The solutions from the Euler equa-
tions can be regarded as limit solutions of the viscous equations
at high Reynolds numbers, in which boundary-layer interac-
tions are small. These solutions, accounting for the principal
interactions. can be especially useful for configuration effects.
For bodies, the primary vortices are shed from flow separations
on smooth surfaces; thus, some form of viscous modeling (ei-
ther a boundary-layer or prescribed-separation model) must be
incorporated for the Euler equations 1o be of use.

4.3.1 Delta Wings

The flows over simpie delta and double-delta wings have
been studied extensively, both cxperimentally and computa-
tionally. The overall physical structure of the subsonic flow-
field over a low aspect ratio delta wing at angle of attack is
well understood.' * The characteristics of the flow field are
dominated by the two counterrotating primary vortices which
form over the wing because of scparation along the leading
edges. The flow reattaches close to the lceward symmetry
plane of the wing; as the flow proceeds outboard, it expe-
riences an adverse pressure gradient, leading to a secondary
separation-induced vortex. The secondary vortex can in turn
lead to a tertiary vortex underneath and inboard of the sec-
ondary vortex. The influence of turbulence is to delay the
secondary separation to a more outboard position and gener-
ally to eliminate any tertiary separation.

At supersonic speeds. the now classical work of Stanbrook and
Squire” revealed that the boundary between attached and sepa-
rated flow patterns could be classified readily in terms of Mach
number and angle of attack. both measured normal to the lead-
ing edge. Their original experimental work was extended fur-
ther in a number of experimental studies™ to identify regions
associated with shock-induced separations, separation bubbles,
and crossflow shocks. McMillin et a).” performed a system-
atic computational investigation of the parametric experiments
of Miller and Wood." including computations with both Eu-
ler and Navier-Stokes algorithms. The flow classification of
Miller and Wood was refined near the boundary between at-
tached and separated flows based on a reexamination of the
experimental data in the light of the additional insight obtained
with the computational methodology: the resulting classifica-
tion is shown in Fig. 4.3.1. For Mach numbers normal to the
feading edge less than 1, the variation of the separated flow
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patterns with angle of attack is simular to that found al subsonic
speeds. For supersonic normal Mach numbers. the low tran-
sitions with increasing angle of attack from attached flow with
an inboard crosstflow shock to separated vortical flow with an
inboard crossflow shock located above the vortex.

For supersonic flows, the reduction in computational work as-
sociated with the comical equations has been used 1o advan-
tage in computations fur vortical flows over conical bodies
and wings, both for Euler and Navier-Stokes equations. With
an adaptive conical-flow solver, Powell et al.""!" has studied
extensively the total pressure losses in vorucal flows simu-
lated by the Euler equations over sharp leading edges. An
example is shown in Fig. 4.3.2 for the flow over a 75-deg
swept delta wing at a Mach number of 1.95 and 10 deg an-
gle of attack. The pitot pressures computed with an adaptive,
central difference solver for the conical Euler equations are
compared 1o the experimental results of Monnerie and Werle'”
at a Reynolds number of 0.95 million. based on root chord.
The flow tield induced by the primary vortex is very similar
between the Euler calculation and experiment. The secondary
separation underneath the primary vortex leads to a secondary
vortex which is not modeled in the Euler equations; a cross-
flow shock. rather than a secondary separation, ts predicted
under the primary vortex.

McMillin et al.” have made extensive comparisons with both
Euler, laminar, and turbulent How models for parametnc vari-
ations in wing sweep, angle of attack, and Mach number. A
comparison of pressure between Euler, laminar Navier-Stokes,
and experiment is shown in Fig. 4.3.3 for sweeps of 75, 67.5.
and 60 deg over a range of angles of attack. The predominant
features of the experiment are captured by the Euler calcu-
lations, especially as the angle of attack is increased. Based
on these and other parametric computations, McMillin et al.”
produced the envelope of conditions. shown in Fig. 4.3.4,
where Navier-Stokes and Euler solutions give similar results
for the primary vortex flow structure. The envelope corre-
sponds to regions where the flow is cither clearly separated
at the leading edge (through a subsonic leading-edge condi-
tion or a high angle of attack) or regions where the flow is
clearly attached (through a supersonic leading-edge condition
at low angle of attack). At intermediate angles of attack for
supersonic Mach numbers, both measured normal to the lead-
ing edge, the vortical/separated flow structures lie close to the
surface and shows a marked sensitivity to the viscous model.
In fact, as the Mach number was increased. the laminar flow
computations tended to agree best with the nominally turbu-
lent experiments of Miller and Wood, believed to be associated
with an incomplete transition to turbulent flow at the model
trailing edge for the higher Mach numbers. In all cases. the
Euler computations were incapable of predicting any of the
secondary flow features such as secondary vortices or separa-
tion induced by a shock.

4.3.2 Delta Wing in Yaw

The adaptive method of Powel] et al.'"™'! has been applied to a
series of delta wings tested parametrically by Miller and Wood.
including effects of flap deflection and yaw. The general trends
of the experiments are well predicted. An example is shown
in Fig. 4.3.5 for the flow over a 75-deg swept delta wing
in sidestip (M=1.7, a=12 deg. .3=8 deg). The rcfinement
possible with the adaptive mesh in the region of the leading
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edges is evident. The grid corresponds to an equivaient mesh
of 256 x 128. The pressures show an asymmetrical flow
patiern, corresponding (0 a stroager shallower vortex on the
port side relative to a weaker more circular vortex on the
starboard side. The pressures agree well with expenment.
although both vortices are predicted too far outboard and the
suction levels are overpredicted.

4.3.3 Double-Delta Wing

Longo and Das'’® numerically investigated the vortical flow
past a double-delta wing at moderate angles of attack. For this
study, the DLR multiblock Euler solver CEVCATS was used.
The selected configuration is a thin flat plate double-delta wing
with sweep angles of 80 deg and 60 deg for the strake and the
wing, respectively. A body-fitted mesh with an O-O topology
is used to discretize the physical domain. It contains 56 cells
in the chordwise direction, {12 cells in the spanwise direction,
and 48 ceils in the normal direction. Solutions are evaluated
for the subsonic case M. = 0.30 at « = 7 and 1] degs by
correlating with available experimental data.'*

The numerical results 10 Fig. 4.3.6 indicate that at a = 7 deg
(sequence of left side figures), two vortices are formed on each
side of the wing which originate from the wing apex and from
the wing leading-edge kink. Downstream of the leading-edge
kink, the strength of the inner vortex decreases because it is
no longer fed with vorticity. On the other hand. the whole
vorticity shed from the rear part of the leading cdge is fed
into the outer vortex. Thus, its strength increases downstream.
The two vortices with the same sense of rotation tend to move
around each othcr. Since the outer vortex is stronger, the
tendency leads to an outward and downward movement of the
inner vortex. At «« = || deg (sequence of right side figures),
the two vortices merge over the wing. Due to the influence
of the outer vortex, the weaker inner vortex moves outwards
and joins to the outer vortex. At the wing trailing edge, only
a single vortex can be identified. The Euler solution predicts
the general changes of the vortices structure in good agreement
with the experimental data. Discrepancies between computed
and measured location of the merging vortices are due to the
neglect of secondary vortices on the numencal solution.

4.3.4 Vortex Breakdown

For delta wings. the maximum lift generally occurs at an-
gles of attack above that corresponding to the onset of vortex
breakdown at the trailing edge of the wing; with increasing
sweep, the maximum lift becomes coincident with the occur-
rence of vortex breakdown at the trailing edge. Vortex break-
down computations have been made by Agrawal et al.'* using
Euler and both laminar and turbulent Navier-Stokes equations
for a 70—deg swept delta wing. Streamwise vorticity contours
in the pre- and post-breakdown regions of the wing at a=30
deg are shown in Fig. 4.3.7. The experimental data obtained
using Laser Doppler Velocimetry (LDV) is compared to Euler
and faminar, turbulent, and embedded laminar Navier-Stokes
computations. The predicted contour levels in the primary vor-
tex are similar, although peak levels are much higher in the
experiment, which can be attributed to the diffusion associated
with the numerical truncation of the scheme. Secondary vortex
structures are evident in the viscous computations and experi-
ment, as expected. The vorticity levels in the post-burst posi-
tion are much smaller, in relation to pre-burst levels, for both

computation and experiment. The computauons are asymmet-
ric with respect to the vortex core. atuibuted to the inability
of any of the computations (0 model the increased levels of
turbulence associated with the burst vortex region. as shown
by LDV data. The progression of vortex breakdown position
with angle of auack for both Euler and Navier-Siokes compu-
tations was shown 10 be consistent with the experimental data.
The turbulent flow calculations showed breakdown upstream
of both laminar and Euler compuwiations and, in general, at
angles of attack where breakdown approached the apex of the
wing, either viscous calculation showed signiticantly improved
agreement with expenimentally observed breakdown locations.
Hitzel'* " presents extensive studies of the vortex breakdowns
computed with the Euler equations for a swept delta wing.

43.5 IEPG Vortex Flow
Computation/Experiment

To assess the capabilities of computational methods for sim-
ulating the flow around a typical military aircraft planform,
a collaborative program among four nations (United King-
dom, Germany, ltaly, and the Netherlands) was started in 1987
under the auspices of the Independent European Programme
Group (IEPG)." The isolated sharp-edged cropped delta wing
planform shown in Fig. 4.3.8 was modeled through compu-
tations with the Euler and Navier-Stokes equations and com-
pared 1o results of an experiment conducted by Elsenaar and
Hocijimakers.™ The section of the wing is an NACA 64A005
section which is blended into a bi-convex section ahead of the
maximum thickness location. The case selected was a tran-
sonic flow case (M =0.85, a=10 deg) corresponding to a tull-
span leading-edge vortex flow with weak shocks only. Vortex
breakdown over the wing occurs expenmentally at angles of
attack greater than 20-22 degs.

The IEPG effort is actually a follow-on to an carlier Interna-
tional Vortex Flow Experiment on Euler Code Validation,™'
which was conducted from 1983-1987 with the cxpress intent
of obtaining and comparing detailed experimental data, cspe-
cially at transonic speeds, for a 65—deg swept cropped delta
wing with existing computational methods. The participating
organizations included the FAA, NLR, AFWAL, DLR, MBB,
DORNIER, and the technical universities at Delft and Braun-
schweig. The experimental and computational data base form
this rather successful program is summarized in Ref. 2! and
the entire program is reviewed in Ref. 22. The planform
chosen for the 1EPG effort was similar to that in the earlier
cffort; the experimental data base was enlarged. especially in
the transonic range. and computations included both Navier-
Stokes and Euler solvers.

Euler solutions were obtained using a single body-fitted grid of
approximately 300.000 points with seven different Euler codes.
The dissipation coefticients were reduced as much as possible
within the constraint of obtaining a converged solution. The
results indicated that the pressure distributions were predicted
reasonable closely for all of the methods; the differences
were most noticeable in the apex. leading-edge, and trailing-
edge areas. There were significant differences between the
various total pressure predictions attributed to the magnitude
of the truncation errors on a single. fixed grid. However,
the correlations of the Euler solutions with experimental data
show much larger differences because of the neglect of the
boundary-layer-induced secondary separation effects in the




Euler method. The lift coefficient differences between the
predictions was 5 percent; the average Euler-predicted lift
values were {2 percent larger than in the experiment.

The surface pressure contours and lateral pressures at two lon-
gitudinal stations are shown in Fig. 4.3.8. Only two of the
seven Euler solutions, which are representative, are compared
10 results from a experiment and with the Reynolds-averaged
(turbulent) Navier-Stokes computation of DLR-Gottingen on a
grid of about 2 million cells. The Euler resulits show the single
suction peak corresponding to a primary separation from the
leading edge. The secondary separation at x/Cu 0f 0.6 and 0.8
occurs experimentally at 81 and 83 percent semispan, respec-
tively; the Navier-Stokes calculations predict secondary sep-
aration at 78 percent at the same longitudinal locations. The
secondary separation induces a secondary suction peak out-
board of the primary and is noticeably stronger in the compu-
tation than experiment. The results of the Reynolds-averaged
Navier-Stokes methed demonstrate an improved correlation of
theory and experiment.

4.3.6 Wing Canard

The Euler equations, in accounting for the primary leading-
edge vortices, can be used to determine the principal inter-
actions between components, including the interaction of free
vortices with lifting surfaces.**** An example of the correla-
tion with the finite-volume Euler TEAM code and experiment
for a wing canard at transonic conditions (1 =0.9, a=4 deg)
is shown in Fig. 4.3.9. The wing pressures are shown with and
without the canard surface. The influence of the canard is to
decrease the wing leading edge pressures. The pressure com-
putations agree well with the experimental values, cxcept in
the immediate vicinity of the wing upper surface trailing edge.
attributed to a local shock/boundary-layer interaction. The in-
crement in pressures from canard oft to canard on is predicted
more closely than the wing pressures, as is generally expected.
Scherr and Das®™® draw similar conclusions from Euler com-
putations of a slender canard-delta contiguration at high angle
of attack. More demonstrations of the capabilities of Euler
methods in free vortex simulations can be found in Ref. 24.

4.3.7 Asymmetric Cone Flows

The flow over a cone at high angle of attack is dominated
by the vortices which arise over the leeward side of the body
from boundary-layer crossflow separations. These vortices ex-
ert considerable influence on the local pressure distributions
and can interact with other components downstream. Exten-
sive cxpertmental investigations have revealed that for sub-
sonic crossfiow conditions, the tlow ficld remains symmetric
until the value of angle of attack exceeds approximately 2-3
times that of the nose half-angle.® The flow then is charac-
terized by a markedly asymmetric pattern of vortices, giving
rise to large side forces and lateral instabilities. Since these
vortices arise from viscous separations over a smooth surface.
computational studies require direct account of viscosity (i.c..
the Euler equations need to be augmented with a boundary-
layer or empirical scparation model).

Because of the reduced computational cost and the ability
to perform parametric studies easily. considerable insight has
been gained through the use of inviscid methods with pre-
scribed separations. Fiddes?” and Fiddes and Smith™ assumed
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incompressibie. smail disturbance flow and modeied the vorti-
cal flow over a circular cone as either a concentrated fine vor-
tex or a vortex sheet. With prescribed symmetnc separation
ponts, two tamilies of solutions were found at angles of attack
beyond twice the come half-angle: a symmetne solution and
a pair of mior-image asymmetric solutions. The side torce
vanations tfrom the asymmetnc solutions were in reasonable
agreement with expenimental resuits, thuy providing evidence
that the ongin of the asymmetry is inviscid in nature. Also,
with asymmetric separation points presenbed from expenment,
two stable families of asymmetries were tound: one with 4
small side force and a shight asymmetry and the other with
a large side force and a pronounced asymmetry. The larger
asymmetry family produced side torce values which were on
the order of the side force values measured experimentally.

Marconi™ solved the Euler equations at supersonic speeds us-
ing the conical equations and a prescnbed-separation model,
thus removing the small disturbance limitation of Fiddes. The
resuits obtained were in substantial agreement wath the presvi-
ous findings of Fiddes, in that a pair of mirror-image asym-
metric solutions were found at angles of attack greater than
twice the cone half-angle. The results tor a 7-deg halt-angle
cone at M= 1.6 are shown in Fig. 4.3.10. The streamlines
and surface pressures at alpha=23 deg indicate the asymmet-
ric flow pattern; one vortex i located closer to the bady and
tarther from the plane of symmetry than the other. The on-
set of asymmetry is shown versus angle of attack tor 7-deg
and S-deg cones. The 5—deg cone computations were made
with symmetrical separations presenbed at 120 and 150 de-
grees: the prescribed separation location of 150 deg shows
better agreement with the experiments. Beyoud the point of
asymmetry, complete agreement would not be expected since
viscous effects would asymmetncally change the separation
locations from those prescribed. In contrast to the tindings of
Fiddes. Marconi found that in the range where asymmetries
occurred, the symmetric solutions (obtained with symmetry
imposed) were unstable and always cvolved to asymmetric
solutions. Thus, the Euler computations have yielded valuable
insights into the nature of the asymmetric Hows: further stud-
ies. including Navier-Stokes computations, are summarized in
Ref. 30.
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Figure 4.3.1 Classification of experimental data for supersonic tlow over sharp-leading-edge
delta wings.
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Figure 4.3.2 Comparison of measured (left) and Euler (right) pitot pressures for 75 deg
swept delta wing; M. = 1.95, @ = 10 deg.
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3 Conditions where the Navier-Stokes
and Euler codes are equivaient in
prediction of primary flow structure
Figure 4.3.4 Envelope of conditions at which the Euler codes predict correctly the primary flow
structure in supersonic wing design.
Computation grid
1.5 i
1.2 06¢ — Comp.utation
* Experiment
0.9 0.4}
s 0.6 T H 0.2}
Y a1 Cp
0.3 H-—H 0.0}
0.0 O—4-F -Q.2¢
i i e At
0.3 RRARE S
-12 09 -06 -0.3 0.0 03

-0.4 - . > . s
06 09 1.2 -12 09 ~06 -03 00 03 06 09 1.2
n's /s

Figure 4.3.5 Comparison of adaptive conical-flow Euler with experiment for yawed 75 deg swept
delta wing; W = 1.7, o = 12 deg, 3 = 8 deg.
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Figure 4.3.7 Comparison of predicted vorticity levels (x-direction) from Euler and Navier-Stokes
solutions; M., = 0.3, a = 30 deg, Re. = 1 x 10°.
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44 AIR-VEHICLE CONFIGURATIONS

The representative capabilities of Euler solvers to predict the
inviscid flow over gencral air-vehicle configurations are de-
scribed below. The configurations able to be treated are geo-
metrically complex, including representations of wings, bod-
ies, pylons, nacelles, flap-track fairings, flaps, elevons. em-
pennage, ctc. The examples shown use both structured- and
unstructured-grid methods, which are tailored to the appli-
cation arcas of interest. The use of Euler methods to treat
engine-airframe integration studies 1s widespread, as shown
for the subsonic transport examples. The capabilities of Eu-
ler solvers for fighter-type configurations are demonstrated in
several applications. An example from the advanced tacti-
cal tighter (ATF) development illustrates an application of an
Euler solver to an aircraft design which proved useful in com-
plementing wind-tunnel experiments and uncovering some de-
ticiencies early in the design cycle. An example application of
the sonic boom signature for a supersonic transport aircraft is
shown; the Euler equations are necessary to supplement linear
theory methods as the Mach numbers approach 3. A com-
plete cruise missile simulation with a counterrotating proptan
propulsion system is shown; time-accurate simulations were
used to determine model loads before construction of a large-
scale powered test model. Application to the prediction of
store carnage flow fields are shown with both structured- and
unstructured-grid methods. For reentry contigurations, the ap-
plication of multiblock structured-grid Euler solvers to the
prediction of flap loads for a Hermes reentry contiguration is
shown. as well as computations for the U.S. Space Shuttie
configuration.

4.4.1 Subsonic Transport Aircraft
Structured-Grid Applications

Several examples which demonstrate the capabilities of Eu-
ler solvers to calculate transonic flows over jet transport air-
craft are shown below. At Deutsche Airbus GmbH (DA),' the
multiblock muitigrid Euler integration algorithm MELINA, to-
gether with the INteractive GRID generation system INGRID
and the Practical Interactive Solution Analysis system PISA for
post processing, forms the tool package for three-dimensional
inviscid compressible flow analysis. Problems of complex ge-
ometry (body/wing/pylon/engine) and of jet or nacelle flow
can be solved. The Euler code MELINA is a Jameson-type,
explicit, multiblock, multigrid, celi-vertex code and is contin-
uously upgraded and adapted for the applications which are of
interest to the transpon aircraft designers at DA.

With the interactive algebraic grid generator INGRID, several
tasks can be tackled. It serves as a gecometry definition and
manipulating system to create the configuration to be evaluated
from given input data. At any stage of the construction, user-
defined curves describing the geometry can be graphically dis-
played for error checking and judgment of the configuration.
In a second step, the surface is covered with a surface grid
with full user control of the noce distribution. Then a global
multiblock mesh can be generated for a wing-body configura-
tion. In order to add further components like pylon, engine,
tail etc., local blocks are then cut out of the global mesh and
reconfigured corresponding to the components.

The CFD system described above is used alongside other ap-
plications to analyze the problems arising with enginc/airframe
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integration. Two different calculations are compared with each
other and with wind wnne!l measurements: a body/wing con-
figuration and a body/wing/pylon/nacelle configuration of a
modem transport aircraft.

Plate 4.1 shows the general arrangement of the configuration
with pylon and nacelie. The distribution of the pressure coef-
ficient is projected onto the surface. The spanwise stations, at
which experimental pressure data near the pylon were avail-
able, are depicted in Fig. 4.4.1 together with the surface gnd
on the lower wing side. Compansons of the computed pres-
sure distnbutions for the contiguration with and without pylon
and nacelle and the corresponding experimental data show a
good correspondence in all cases, considering that the code is
inviscid. The flow at the leading edge is modelled with high
accuracy, which is a consequence of the correct angle of at-
tack in the Euler calculation. The wing was decambered to
account for boundary layer effects: thus. there was no need to
modify the experimental angle of attack for the inviscid flow
calcutation. The residual discrepancies between experiment
and simulation occur in the region behind the shock. at the
lower wing side. and at the trailing edge. The problems at
the shock (shock/boundary-layer interaction) and the trailing
edge are a consequence of lacking boundary layer thickness
modeling in the code. Some differences at the lower wing
side mainly result from flap track fainngs that were mounted
on the wing in the experiment and were not modelled in the
simulation.

In order to find out whether the engine installation effects are
predicted accurately with the Euler code MELINA. the pres-
sure distribution of the engine mounted configuration and the
clean wing case were subtracted from each other (Fig. 4.4.1).
It was expected that duc to the subtraction the uncertainties.
inherent in both the method (simplified viscous effects) and
the experiment could be climinated and that the effect of the
flap track fairings which were not present in the numerical
simulation could be filtered out. Positive and negative Cp val-
ues correspond to deceleration and accelerauon of the flow
due to the engine installation. respectively. There i an ex-
cellent correlation between the interference effects of theory
and experiment.

In view of the development of ultra-high bypass (LJHB) en-
gines, the aerodynamic interference between airframe and en-
gine becomes more and more important. Figure 4.4.2 shows
the capability of Euler solvers to simulate the flow ficld
around the DLR-ALVAST wing-body combination® with dif-
ferent wing-mounted cngines. The CFM-56 engine represents
the conventional engine and the UHB engine corresponds to
the DLR-CRUF simulator.’ The geometry of the wing-body
combination represents a typical modern wide-body transport
aircraft of Airbus type. The flow ficld computations for the
different configurations have been performed by the use of the
DLR Euler-code CEVCATS. This code is written in a block-
structured form using a multignd acccleration technique and
allows an arbitrary application of houndary conditions on the
block faces.*

The first step in the mulublock approach for complex con-
figurations is to decide on a global grid topology. In case
of a wing-body-enginc-pylon (whep) contiguration. an H-type
structure in the streamwise direction is used: an O-type struc-
ture is used in the spanwise direction for the wing-body grid
and in the circumferential direction for the engine (Fig. 4.4.2).
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A three-dimensional view of the held gnds for the different
engine types is also shown. Both ficid grids consist of 11
computational blocks with a total of approximately 600,000
mesh cells.

Transonic pressure distributions (Mx = 0.75 and o = 0.84
deg) at different spanwise sections for both engine types are
compared to those of the wing-body configuration. The pres-
ence of the engine results in a forward movement of the shock
and influences the complete upper surface of the wing. On
the lower side of the wing, the influence is more local and
the closer position and the larger geometry of the UHB en-
gine causes a stronger interference. Due to the movament of
the shock caused by the propulsion system, lift is considerably
decreased. as shown in the lift versus semispan comparisons.
In case of the UHB engine, an additional loss of lift occurs in
the region around the engine location.

Computational time for a single flow calculation is about half
an hour on a CRAY-YMP. Compansons between calculated
and measured pressure distributions demonstrate the capabil-
ity of the CEVCATS code to predict essential interference ef-
fects due to the propulsion system.*® The capabilities shown
above are typical of the geometric complexities which can be
analyzed with multiblock structured-grid codes.” ™

Unstructured-Grid Applications

The unstructured-grid methods have also been applied to
complex transport configurations. as shown below for a
generic McDonnell Douglas Corporation (MDC) Tri-Jet
contiguration.'’ Generally. in this latter approach, considerably
fewer manpower resources are expended to generate the field
grids. The surface triangulation and the pressure contours of
the under-wing engine at transonic cond:tions of M = 0.825
and o = 1.0 deg are shown in Fig. 4.4.3. The conditions corre-
spond to unforced flow through the engine-cowl components.
The grid and solutions were computed with the AIRPLANE
program developed by Jameson and Baker.'? The surface defi-
nition required two days: the flow field mesh contains 384,914
nodes and over 2 million tetrahedra. The grid is determined by
triangulating a series of graded-refinement Cartesian meshes;
the flow solver advances in time using Runge-Kutta time step-
ping in combination with a central-differenced residual with
explicitly added dissipation terms.

The pressure distributions on the wing at 24 and 32 percent
semispan show good agreement with experimental measure-
ments. The pressure peaks and general behavior are predicted
well with a slight discrepancy near the shock on the wing
upper surface. The capability to study component interfer-
ence is also shown through wing pressures with and without
the under-wing engine. On the lower wing, the retardation
effect ahead of the pylon and the acceleration over the aft
end closely matches the experimemal trend. In addition, the
changes in pressures due to the nacelle and pylon compare
well. In this case. less than one man-minute of editing was
required to remove the engine assembly from the configura-
tion: the resulting field-grid generation required 18 minutes on
a single-processor CRAY-YMP supercomputer.

The transonic flow over a transport configuration computed
with an unstructured-grid Euler method' is shown in Figs.
4.44-445. The unstructured surface-grid modeling is de-
tailed and includes the wing-body-pylon-nacelle geometry as

well as the covenings of the flap-deployment mechanisms at
four semi-span posiiors on the wing. The engine 15 mod-
eled as an actuator disk: inflow and outflow conditions are
specified at upstream and downstream cross-sectional stations.
The pressure contours over the configuration are shown at a
transonic cruise condiion: M. = 0.801 and o = 2.738 deg:
the longiudinal pressure vanations at a circumferential posi-
tion located 22 deg outboard from the centerline of the na-
celie shows excellent agreement with expenimental data. On
the wing. the Euler computations at the semispan locauion of
0.293 indicate an upper surface shock located turther aft than
the experimental results, as eapected because of boundary-
layer interaction effects. On the subcnitical lower surface, i
chordwise vanations due to the presence of the pylon-nacetle
and the streamwise tlap-track fairings are substantial and are
well predicted by the inviscid method.

A similar capabilily is shown in Plate 4.2 tor a Dassauit Avi-
ation transport configuration'*!* with fusclage-mounted na-
celles and vertical and horizontal control surfaces. The Mach
contours are shown at a transonic condition'® (M. = 0.85.
a = 3.0 deg). The surface tnangulation shown is the result
of two successive refinements and has 40.000 nodes. The
numerical formulation uses upwind approximations based on
Osher’s approximate Riemann solver and MUSCL interpola-
tion. The time advancement is implicit and is combined with
adaptive mesh retinement and unnested multigrid acceleration
techniques. The solutions were obtained after a three-order-
of-magnitude reduction in the steady-state residual equations,
corresponding to 300 iterations at a Courant number of 20.

4.4.2 Supersonic Transport Aircraft

Recently, new inttiatives towards the design of a tollow-on
to the Concorde supersomic transport have begun. Studies
have focused in the area of configuration design for sonic
boom minimization in order to mitigate the noise associated
with the sonic boom and determine the feasibility of overland
supersonic flight. The sonic boom signature for two supersonic
transport configurations was studied by Siclari and Darden.'
A central-difference finite volume method in the cross-flow
planes and an implicit upwind finite difference technique in
the marching direction was used to solve the three-dimensional
unsteady Euler equations.

Computer codes used in the design and analysis of low boom
configurations have traditionally been based on Whitham's
modified linear theory analysis, '” which was extended to apply
to lifting bodies by Walkden."® Studies have demonstrated
that the traditional modified linear theory methods become
inaccurate as the free stream Mach number approaches 3. At
higher Mach numbers, stronger shocks arc generated and the
assumption of isentropic flow becomes invalid. Thus, Euler
and Navier-Stokes methods applicable to the area of sonic
boom prediction and minimization at Mach numbers above 2.7
are needed. These near-field prediction methods can provide
detailed flow field information for guidance in component
integration or provide flow field input for nonlinear or modificd
linear theory extrapolation methods.

Two low boom aircraft concepts,'” designed for low sonic
booin at Mach 2 and Mach 3, which were designed. built, and
testeu at NASA, are schematically shown in Fig. 4.4.6. The
Mach 2 configuration has a flat platypus nose and the Mach




3 concept has a needle nose. Both have highly swept leading
edges inboard with cranked lower sweep outboard wings for
improved low-speed performance. Both concepts were studied
without engine nacelles; the corresponding wind-tunnel data
were also available for companison.

Approximately 850,000 points were used to compute the flow
.n the vicinity of cach aircraft, and approximately 1.1 million
points were used to compute the flow to 15 body lengths
downstream of the aircraft. The computational surface model
and computed aft pressure contours at Mx = 3.0 and 0 =
1.97 deg for the Mach 3 low boom configuration are shown
in Fig. 4.4.6. The cranked wing generates a strong shock as
indicated by the isobars. The computed isobars tn a plane at
the end of the sting show a strong shock in the leeward region,
atributed to the coalescence of the wing trailing-edge shock
and sting attachment shock. On the windward side, a strong
shock occurs due to the wing crank; the circular isobars just
to the right and left to the sting are vortices generated by the
wing lips expansions.

The computed pressure signatures are compared to recent
wind tunnel model data for both the Mach 2 and Mach 3
configurations. Both models were 1/300 scale or about 12
inches in length. The wind tunnel model data were converted
to full scale in feet to compare to the computations. The
wind tunnel data were taken at two different distances below
the aircraft for cach configuration. For both configurations,
good correlation with the data is shown tor both distances for
the forward half of the signature. At h/f = 0.5, the Mach 2
data show a series of shocks and expansions in the last half
of the signature. The computation shows a single shock and
expansion. At /€ = 1.0, slightly better correlation is achieved.
The data stills show a series of shocks and expansions with
a very large. final, expansion twice that of the computation.
Virtually the same type of correlation is shown for the Mach 3
configuration. Further studies'® indicate that it is necessary t0
consider three-dimensional effects in the design of low boom
concepts, since the Mach 2 concept showed sonic booms along
the side of the ground footprint with magnitudes as much as
40 percent greater than those directly along the tlight path axis.

4.4.3 Fighter Aircraft Configurations

In 1986, Eberle and Misegades™ presented some of the first
inviscid solutions of a complete fighter aircraft using a high-
resolution Euler code. The underlying numencal method uses
a Godunov-type averaging procedure based on the cigenvalue
analysis of the Euler equations: the fluxes are evaluated at
the finite volume faces, thus generating separate constant sets
of flow variables on either side. The procedure is third-order
accurate on equidistant meshes (in one dimension) and locally
monotonicity preserving, which seems to avoid the drawbacks
of global TVD schemes.”'

The grid generation for complex configurations like a fighter
aircraft is performed from solutions of linear biharmonic equa-
tions in which only one parameter is necessary to be pre-
scribed. H-type grids are used in a monoblock approach where
spectfic coordinate planes are made coincident with cerain
surface elements of the configuration at kand. With this pro-
cedure, dummy grid points are genera‘ed inside the configu-
rations which have to be blanked out. The resulting code can
be run for steady state solutions by using either an explicit
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tme stepping mlegration scheme or g point-imphcit relaxation
scheme; the later scheme 1s implemeated as a pomt Jacoby
extrapolation procedure.

The aircratt model studied was based on design studies for the
early MBB-ACA tighter conducted in 1985. The computations
were carned out on g CRAY-XMP/2 computer using a mesh
with a total of 520.000 grid points tor modeling the complete
configuration.

Plate 4.3 shows the pressure distnibution on the aircratt tor
the foitowing tlow conditions: M, = 0.85. a= 7.5 deg.
t =5 deg. To enable a realisuc simulation, mass flow
through engine intakes and nozzles was allowed based on the
tollowing parameters: po/Puunc® 1. MedMpae= 3, Minwe =
0.75. The windward side (due to yaw) is the left side of the
aircraft. Shocks can be detected at the canard and the wing
trailing edges. Plate 4.4 shows temperature contours over the
aircraft and in the region downstream of the engine exhaust ot
transonic conditions. A good estimate of the accuracy achieved
with the Euler solver applied to a complete airplane can be
obtarned by checking the total pressure distnbution. Although
not shown here, the windward surfaces of the conhiguration
do not exhibit total pressure variations except at part of the
fuselage underside: the errors in this region were traced to o
triangular interpolation between input points which was oo
disparate.

F-18 Aircraft

A demonstration of the complete vehicte modeling capability
available with unstructured-grid methods™ is shown 1n Fig.
+4.4.7. The surface geometry of a complete F-18 highter con-
figuration is described by 37 surface components and 87 hine
components. The surface mesh extends into the engine inket
and exhaust and the halt-domain discretization consisted of
nearly 500,000 tetrahedral elements and 100,000 nodal points
The inlet conditions took the form of a specitiecd Mach num-
ber of 0.4 and the exit conditions specitied a jet pressure ratio
ol 3. The pressure distribution at a transonic Mach number
of 0.9 and 3 deg angle of attack 1s shown. The results shown
were obtained in 19907 and were initial demonstrations of the
power of the unstructured-grid methods for acrodynamic apphi-
cations; the entire time from surface geometry demonstration
to flow solution was less than two wecks.

Advanced Fighter Configuration

Another example of the unstructured-grid Euler capability
for complex configurations is the application to an advanced
fighter configuration developed by Alenia Acronattica. shown
in Fig. 4.4.8. The results are from a validation study to assess
the capability of Euler methods. with emphasis on the transonic
regime, for a new generation of fighter aircraft.”™ The grid was
generated using the advancing-front grid generation of Peraire
et al.™, which allows highly anisotropic meshes (i.c.. meshes
where the clements can be stretched along arbitranly-oriented
directions) and is tightly coupled to an cxisting CAD system.
The geometric modeling is detailed. includes the inlet. exhaust.
control surfaces, flaptrack fairings. store pylons, and tip pods.
The definition of the surface consists of 154 CAD surfaces and
the construction of the surface mesh required onc week. The
generation of the volume mesh was donc overnight using an
engineering workstation. The grid consisted of 141,339 nodes
and 763,566 tetrahedrons.
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The pressure conlours at a transonic speed in slight yaw
(Mx =080, o = 4.0 deg. 3 = 2 deg) were computed with
the UES3D code, which is an explicit node-centered fimite-
volume-based central-difference spatial discretizaton.  The
flux balance is done by a summation over the faces of the
tetrahedrons in the volume, with each face being by two tetra-
hedrons. The engine simulation imposed a given mass-flow
rate. The scheme requires 45 microseconds per gnd point per
iteration on 3 CRAY-YMP-2E single-processor computer and
70 words of storage per node. Solutions can be obtained in
an hour of CPU time. A moditication of the geometry and
the corresponding flow field can be obtained in less than a
day. indicating the numerical strategy can be used profitably
n the industnal environment. Although not shown here, com-
parisons of the computations with detailed pressure measure-
ments made during wind-tunnel tests have been reported and
have shown good accordance.™

Advanced Tactical Fighter (ATF) Aircraft

Application of the multiblock structured-grid TEAM code to
the complete advanced tactical fighter prototype configuration
(for which surface pressure contours at transonic speeds are
shown in Plate 4.5) began in earnest in 1988.7 *7 This aircraft
features multiple lifting surfaces, twin tails, and an integrated
airframe/propulsion system. Based on the capabilities of the
code at the time and the schedule constraints of the project.
only an inviscid Euler analysis of this complex contiguration
was considered feasible in order to have an impact on the
design. Solutions were obtained for several transonic and su-
personic Mach numbers and angles of attack for both flow-
through and powered nacelles under symmetrical and asym-
metrical fhight conditions. Powered conditions were simulated
by prescribing mass-tlow fatio values at the nacelle face. The
TEAM code™ was used in a truly predictive mode for a new
design. The computational solutions were obtained before the
wind-tunncl pressure-model data were available. No attempt
could, therefore, be made to adjust the grid or the code to im-
prove correlations with data. Many valuable lessons leamed
from this excrcise are summanzed in Refs. 26-27.

Generating a grid on this contiguration was a tedious and very
time-consuming task. A few hundred man-hours and several
weeks were expended to constru:t a 43~zone H-H type grid
with about [.5 million grid points for half the configuration.
Such slow turnaround was a major impediment in cvaluating
the impact of pumerous geometric changes on aerodynamic
nerfuninance. TEAM s inability to accurately predict absolute
drag levels was another disappointing aspect for the project
personnel. On the other hand, detailed surface pressures pre-
dicted by the code proved valuable in estimating airloads for
the structural analysis of the vehicle as weil as for the ther-
modynamic analysis. Until data from a wind-tunnel pressure-
model test became available, this capability was particularly
helpful in expediting structural analysis using more realistic
transonic and supersonic flow data than could be obtained us-
ing potential low methods alone. TEAM's application to the
ATF contiguration was quitc helpful to its developers also since
it uncovered carly in the design cycle some deficiencies which
have since been rectitied.

In Fig. 4.4.9, TEAM Euler predictions of lift coefficient at a
transonic Mach number and three angles of attack are corre-
lated with the wind-tunnel data. (The vertical axis is deliber-
ately left blank). Good agreement is clearly seen. Corrclations

of computed and measured surface pressures al (wo statiofls
on the wing for one condition (one close w mid-span and the
other close 1o the hip) are also shown. In examining these cor-
relauons, caution must be exercised because: (1) the computed
solutions. being 1nviscid, do not account tor viscous effectsm
and (2) even minor geometne difterences between the compu-
tational and wind-tunnel models can produce relatvely large
changes at transomic Mach numbers. For the nreseat case. no
special effort was made to miumimize any surface protile mis-
match between the computational and wind-tunnel models due
to time and resource constraints. The data were not collected
for TEAM validation but 10 meet the project needs. The pre-
dicted loads were more consistent with high Reynolds number
limit solutions (since houndary-layer effects are not modeled).
although vortical flows from sharp leading edges are predicted.
The Reynolds number for the wind-tunnel test was typically
an order of magnitude less than its value in fight; thus, dif-
ferences between wind-tunnel and flight pressures would be
expected in regions when the flow exhibits shock-induced sep-
aration. The Euler analyses proved quite useful as one of the
tools to provide information regarding contiguration moditi-
cations during the evolution of the design. A summary of
the CFD usage i the F-22 development program has been
compited by Bangen et al.;”’ the complete airloads prediction.
including control surtace vanatons over a range of Mach num-
bers, angles of attack, and sideslip was done using the TEAM
Euler code and consumed 4.5 months of dedicated supercom-
puter usage. corresponding to 1600 CPU hours.

4.4.4 Missile Configurations
Cruise Missile

The solution depicted in Plates 4.6 and 4.7 is a single time
trame (spapshot) of the unsteady pressure field around a prop-
fan cruise missile. The geometry is essentially a complete
cruise missile (as modeled in the wind tunnel) with a coun-
terrotating proptan propulsion system operating at cruise con-
ditions of M« = 0.7 and four degrees angle-of-attack. Re-
searchers at Mississippi State University were contracted to
simulate the unsteady flow field of several potential design
concepls prior to the wind tunnel testing to help estimate the
material strength of the wind tunnel model to maintain struc-
tural integrity. The project. a formal cooperative citont be-
tween the U.S. Depantment of Defence (Navy and Air Force)
and the NASA Ames and NASA Lewis Rescarch Centers, is
sponsored by the Cruise Missile Project in Washington, D.C.
lts purpose is to help determine the applicability of propfan
propulsion for stand-off wecapons using advanced unstecady
aerodynamic codes™ % and a large-scalc power-model wind
tunnel test.

A complete animation of this configuration (with the blades
moving) can be tormed from a collection of How-field snap-
shots (a total of ninety-six for this particular configuration). All
ninety-six solutions were used to predict the unsteady forces
and moments on all the appendages (wings. fins, and blades)
prior to the wind tunnel test. There was concern about the
placement of the fins, so a fins-forward (ot the propfan) config-
uration and a fins-aft configuration were analyzed using CFD
prior to the wind tunnel experiment. CFD simulations were
not limited to aondeflected fins. as in this case. but inciuded
cases involving fin deflections of five degrees. The analyses




gave an indication of the material strength necessary (o with-
stand the unsieady acrodynamic loading on the wind tunnel
model. The Row-tield analysis required 4 million words of
inlemnal memory and 32 million words of solid-state storage
device (SSD) on a CRAY-XMP, consuming nearly cighteen
hours of CPU time to produce the solution shown. Presently,
the CFD solutions and the data collected from the wind tunnel
(NASA Ames) are undergoing comparative scrutiny.

ANS Missile

Applications of the Euler equations to an air-breathing missile
project {ANS) studied by Aerospatiale and MBB is shown in
Plate 4.8.* The configuration is powered by a ramjet propul-
sion with 4 circular air intakes and is a follow-on to the EXO-
CET family of missiles. The surface gnd is composed of about
16,000 nodes for halt of the configuration and uses a CAD
surface definition. The surface pressure coefficients shown
correspond 10 a supersonic condition (M. = 2.0, a= 4.0 deg,
i = 0 deg). with open air intakes operating in the supercrit-
ical regime. The computations were made with the FLU3C
code, and are representative of the capability at Aerospatiale
to calculate missile aerodynamics in an industrial environment.
The methodology tightly couples the CAD surface genera-
tion and the mesh generation schemes and uses two numencal
procedures: a space-marching procedure for supersonic flows
and a multizonal approach for transonic and subsonic flows.
Applications to several missiles, an Ariane S plus Navelle
Hermes configuration, and a supersonic transport are shown
¢lsewhere.

4.4.5 Store Configurations

A good understanding of the fluid mechanics associated with
carniage and release of stores from an aircraft is of primary im-
portance to the aircraft designer. The flow field encountered
on stores in the presence of an airframe is usually complex be-
cause of the many aerodynamic interactions which occur. Tra-
ditionally, the designers have relied on extensive experimen-
tal wind-tunnel tests to estimate interference effects. Recent
progress in unstructured-grid methods is beginning to have an
impact on that progress. For example, an extensive wing-
pylon-store computation is reported in Ref. 37. The method-
ology consisted of an advancing-front grid generation scheme
closely coupled to an upwind, finite-volume scheme. System-
atic comparisons of the interference effects were made with
experimental data® for the baseline (instore) position and two
other store positions at Mach numbers of 0.95 and 1.2. The
surface geometry is shown in Fig. 4.4.10 and the longitudi-
nal variations of pressures for three store positions at M, =
0.95 are compared with experiment in Fig. 4.4.11. There is
a substantial effect of the store position on the pressures and
the comparison with experiment is excellent at all three posi-
tions. The comparisons presented in Fig. 4.4.11 are typical
of the others presented in Ref 37. The demonstrated accuracy
and the fast gnd generation makcs the approach attractive as
a preliminary design/analysis tool.

At MBB. monoblock structured-grid codes have been used
since the early beginnings of field method applications. Now
they have reached a high level of matunty and universality.
Configurations of very high complexity can be <fficiently mod-
elled: CAD-tools like CATIA and DOGRID-5.3% are used as
preprocessors. The resulting monoblock-structures are used

in

in different flow solvers. but especially for Euler (EUFLEX,
INFLEX) and for Navier-Stokes (NSFLEX) computauons. A
new technique based on smar-cell structures 1n monoblocks
recently led 1o two efficient apptications:*

« multiple overlapping monoblocks (MOM)
« dynamically overlapping gnd (DOG)

MOM is an EUFLEX-type solver and is applied for steady
and rigid multiple body contigurauons. DOG is a combination
between a INFLEX-type time accurate algonthm with the SSP
code®' for the adequate time accurate representation of Hight
mechanically described motions and simultaneously occurring
commanded control deflections

In the present stage. both codes v able to handle two over-
lapping monoblock structures. The basic approach to descnbe
the exchange of flow informauons between both flow regions
have been derived from descriptions of the Chimera method®
whereby the synchronization of time between the blocks s
regulated similarly to the ESE technique.'’ MOM and DOG
are highly suitable for store integration investigations. As seen
in Fig 4.4.12, two typical trajectory positions are showa for a
missile separating from an aircratt, which has not been fully
represented geometrically due to the supersonic flight condi-
tions.

The accuracy of such predictions has already been success-
fully demonstrated for subsonic and supersonic cases for a
variety of complicated store geometries. A good correlation
between flight test (FT), wind tunnel (WT), and MOM results
for a store-wing configuration has been obtained; isobars are
shown in Plate 49 for M, = 0.9. The correlated rolling
moments, well-known as most sensitive to misrepresentation,
agree closely. as shown in Fig. 4.4.13. These results have been
achieved with only 60.000 cclls in both monoblocks together.

The application of such an approach is very universal. The
present code, uniquely designed for store integration studies
can be easily extended to other completely different problems.
even such as to the flow around a compleie helicopter in
forward flight inclusive ground effects. for high speed vehicle
flow with realistic ground/wall effects and other nontrivial
boundaries.

4.4.6 Reentry Configurations
HERMES

Computations of Rieger et al.** are shown for the HERMES
1.0 configuration in Plates 4.10 and 4.11 and in Fig. 4.4.14.
Because of the size and specific position of controls on the con-
figuration, the performance of the control system is strongly
influenced by flow field effects through large gaps and slits be-
tween body flap. elevons, and winglet flaps. This is important
insofar as the size of the controls are by far not small com-
pared to the oveizli size of the vehicle. For purpose of iaviscid
flow field simulations. a mesh system was constructed by usc
of the interacti*» mesh generation system DOGRID developed
at Domier which consists of 7 mesh blocks and in the finest
mesh ;.ossesses some 1.5 million grid points. The various
mesh blocks are interconnected by use of segmentation tech-
nigues which allows the arbitrary connection of block faces
or parts thereof. Particle traces are shown in Plate 4.10: Plate
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4.11 displays some flow features in form of Mach number dis-
tnbutions on the body surface, 1n the symmetry plane, ang in 8
specific cross-sechon. The interesting poiat 1s the behavior ot
the How jet coming up on the leeside wing through the gap be-
tween clevon and winglet flap. Because of high velocites and
low pressure level of the wing leeside flow. the gap jet with
high pressure acts approximately like a ngid body. which pro-
duces an additional shock system that is indicated by the blue
spot (low Mach number) 1n the tuselage end section. In the
body flap end section, the interaction between the expansions
around the trailing edges of the windward tiow and the cross-
flow phenomena. including the gap shock system, evolves to
4 highly complicated fow structure. The computations were
performed with the block-structured code supporting a regular
data structure. ™

Reference 45 describes the application of the DLR code CEV-
CATS with central discretization and the upwind scheme used
by ONERA's code FLUIC in order 1o validate inviscid flow
calculations for reentry vehicles at supersonic conditions. The
coordinate mesh used for this study is displayed in Fig. 4.4.14.
Pressure contours in Fig. 4.4.14 show that the flow tields pre-
dicted by both codes are almost identical. The only ditference
in the results is a slightly better shock resoiution by the up-
wind scheme. Detailed comparisons of computed global forcer
and moments with wind-tunnel measurements indicate that hift.
drag. and priching moment are in very good agreement. The
differences for roll and yaw moments are somewhat larger ***
Nevertheless, the etfect of Mach number and angle of attack on
iateral and directional stability is well predicted. Other com-
ptations for HERMES-like configurations have been made by
Pfitzner® and Mennc and Wieland:™ a general survey of in-
dustrial applications to reentry and hypersonic contigurations
is given by Ricger. Stock, and Wagner. ™

Space Shuttle

The numerical computation of an inviscid tlow field about a
very complex airplane and reentry spacecraft is of consider-
able interest to the research and designer. A unified approach
1o cfficienily solve the Euler equations for the entire Mach
aurber range has been developed (Euler Marching Technigue
for Acenrate Computations (EMTAC) code) by Chakravarthy
and Szema ¥ The approach is based on the unsteady Euler
cquations: an infinitely Jarge time step and a space-marching
technique is used in the supersonic flow region. The large
time step makcs the transient terms of the discretized unsteady
equation vanish. In the subsonic flow region. a finite time step
and @ rclaxation method are used and the steady state is ap-
proached asymptotically. A tinite volume implementation of
high accuracy (up to third order in one dimension) TVD dis-
cretizations is used. and thus the method is more accurate and
reliable than other Euler space- and time-marching techniques
based on central difference approximations. More recently. a
multi-zone version of the code has been developed (EMTAC-
MZ) as a superset to the single zone EMTAC. In the following
text. the name EMTAC is used to denote eithier code. A similar
modified space-marching approach is used by Rieger.”

Single-zone grid generation for a very complex geometry. such
as the mated Shuttle orbiter with external tank (ET) and ~olid
rocket booster (SRB), is difficult and requires some confisura-
tion approximations. To avoid these geometry modifications,
a multizone technique is applied to solve the flow field for
this type of geometry

Fig. 4.4.15 llustrates the mulubody interaction problem of
the Shuttle orbiier in 4 mated contiguraton with the ET and
SRBs. The cross-section gnds at vanous constant x-locations
are also given. The solutons are obtamed at M . = 1 % and
n= 0.0 deg. Fig. 4.4.15 shows the pressure contours trom x
= 200 in. to x = 1780 1n.; five zones are used in thy region.
The SRB and Shuttle Orbiter are treated as a pownt. and the
<ero lux boundary condition is apphied 10 these points. At x
= 220. the conical solution of the ET is obtained. and the bow
shock 1s tormed.

The solutions are very smooth and continuous across the zonal
boundaries despite a very unconventional three-sigea computa-
tional grid. The expansion wave from the surface at x = 400 10
can be clearly seen in this figure. The apex ot the SRB stants at
x = 425 1n. and produces an attached bow shock. This shock
expands and finally hits the ET surface. as can be seen at x =
610 in. Notice that a very symmetne solution 1s generated by
using this unsymmetnic gnd. The orbiter nose 1s at x = 640 in.
The detached shock and subsomic flow tield behind the shock
are calculated by using the relaxation method. The reflected
orbiter bow shock on the external surface 15 clearly evident
at x = 810 in. At x = 1670 in., the embedded wing shoct 1s
indicated which wr.ps around the leading cdge of the wing.
Another detached shock is formed further downstream by the
orbital maneuvering system (OMS) pod. Since the subsonic
pocket is big and the Mach number 1s almost Zero near the root
of the OMS pod. a total of 20 relaxation marching sweeps are
required 1o give & goad converged result. The OMS pod and
vertical tail shocks are clearly shown in this figure at x = 1780
in. The relaxation method is used to ca'culate the subsonic
flow field and detached bow shock. The chordwise pressure
distributions on the upper surface of the wing at several span
stations compare well with experimental data. including in the
region where OMS pod shock interacts with the wing surface.
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Figure 4.4.5 Surface grids and pressure contours from an unstructured-grid computation of an
advanced fighter configuration.
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4.5 PROPULSION SIMULATIONS

Applications of the Euler equations to simulate propulsion low
fields are shown below. The Euler equations have been used
extensively in propulsion simulations and propulsion-airframe
integration studies. These equations admit vorticity and, thus,
can be used to simulate the acrodynamic performance (ne-
glecting boundary-layer effects) of rotating machinery such as
propetiers, rotors, or turbines. Simulations of propeller, rotor.
cascade, and fan blade passage calculations are shown below,
including simulations in which an approximate model is used
to determine the inflow conditions to a local Euler solution
and several more detailed computations in which the entire
flow is modeled. Because of the geometrical complexity of
the three-dimensional, generally unsteady flow fields, and the
difficulties in resolving free wakes in the flow field, the com-
putational demands associated with the latter classes are high:
such calculations are yet in their infancy. The modeling of
the propulsion system is often done using an actuator disk
model, admitting specified changes in total pressure. enthalpy.
and rotation, and an example for a twin tractor configuration
is shown; several other airframe-integration examples shown
previously also used actuator disk modeling. Euler computa-
tions for nonrotating machinery. such as inlets, nozzles, and
nacelles are comparatively much more evolved: several de-
tailed computations are shown, including a nacelle analysis
system which has been extended into the design stage (Sec-
tion 4.8) and several higher Mach number applications. At
high Mach numbers, simulations of inlets and nozzles associ-
ated with high-speed aircraft must consider the Euler equations
at a minimum since the potential equations are inadequate.

4.5.1 NACA Propeller

Figure 4.5.1 shows results’? of a calculation for a NACA
propetler with M. = 0.56. an advance ratio of A = 0.73, and
a blade tip Mach number of My, = 0.96. Lines of constant
pressure are plotted in four crossplanes perpendicular to the
blade in the upper part of the figure. A shock can be seen in
the outward planes for 2/Z, > 0.7, where Z; denotes the radial
position of the blade tip. This shock is getting stronger and its
position is getting closer to the trailing edge with increasing
radius 2. This effect is clearly represented in the lower part of
Fig. 4.5.1, which shows the lines of constant pressure on the
blade’s upper surface. The comparison between calcufated and
measured pressure distributions along the chord for the same
case at four selected cross sections shows good agreement. The
calculation produces a shock that is stronger and its position
is more downstream than the experiment, which is attributed
to viscous effects.

4.5.2 Hovering Rotor

Approximate Wake Model

Figure 4.5.2 shows a comparison between computation'* and
experiment” for a two-bladed rotor with untwisted rectangular
NACA 0012 blades in hover. The blade tip Mach number M,
is 0.794 and the collective angle of attack 8 is 8 deg. The pres-
sure distributions along the chord at four different cross sec-
tions are presented. These flow conditions produce a transonic
flow in the region of the blade tip. The agreement between
computation and experiment is good in all four sections, The

position and sirength of the shock are well reproduced by the
numerical algorithm. Other computations are given by Stahl.*

Complete Wake Model

In the model described above, only a small region around the
blade has to be discretized since a wake model is used to set
the inflow conditions for the blade. Consequently, the flow
induced by the advancing blade is not the flow that impacts
the foliowing blade. This leads to large saviags in computer
time but the solution is dependent on the wake model used. To
remedy this deficiency, the physical domain can be extended
so that the complete rotor disk is enclosed. This ensures that
the following blades are exclusively exposed to an induced
flow that is calcuiated by the pure Euler procedure itself.
The problem associated with this is a further increase in the
number of grid cells and, consequently, in the computational
expense. On the other hand, the main function of the cells
inside the expanded regions is only to provide the esseniial
distance between the blade and the far field boundary. Since
the flow gradients that are expected in these regions are less
substantial than in the blade’s vicinity and their influence on
the blade is small, the discretization can be much coarser than
in the interior.

Using this approach. Kramer ct al.* found that if the grid is
too small, especially in the radia) and downward dircctions,
the development of the rotor wake is obstructed significantly.
To overcome this deficiency, the dimensions of the original
grid (twelve blade chords, which is twice the blade length, in
the radial direction, and eight blade chords above and below
the rotor disk) were enlarged by a factor of 2-3 in the radial
and 3-4 in the normal direction. The original grid is actually
used as an inner component of the extended grid, generated
separately by a simple analytical algorithm. An example for
an 0-O grid generated in this manner is given in Fig. 4.5.3.

An Euler calculation based on a free stream initial condition
corresponds to the physical situation of a helicopter rotor start-
ing instantancously from rest. The flow behavior associated
with the beginning of rotation is very complex and character-
ized by a long transient period before a steady state is reached.
As lift develops, the starting vortex created by the rotor blades
plays a dominant role. The formation and the further temporal
cvolution of the rotor wake within the starting phase is known
from several experimental investigations.

Figure 4.5.3 shows the results obtained in terms of the circula-
tion per unit arca using an expanded 0-O grid. The temporal
evolution of the wake within the starting phase is plotted at
different iteration levels. The figures clearly show the move-
ment of the tip vortex, as well as that of the vortex arising
al the inner blade root. The reproduction of the inner vortex
and the highly three-dimensional interference between the in-
ner and the outer vortex is not possible unless the physical
domain completely extends to the rotor axis. If the region of
small radii was not considered. as is oft>n done in practice,
these effects would be ignored.

The results of the Euler procedure show the typical phenomena
of the starting process as in the experiments: initiaily. the
vortex ring remains located near the tip. being continuously fed
with circulation. Likewise, its geometric extension continues
to grow. After some time, the vortex begins to descend
and new vortices arise. This is indicated by the isolines
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becoming more and more clongated. With the extended gnd,
however, there is no impeding boundary and the movement
proceeds undisturbed. Some time later, one can sce that the
isolines are directea inwards. which is a typical sign of the
beginning contraction of the newly ansing vortices. This
process intensifies as the starting vortex ring retains its radial
position. In the last frame, the starting vortex is approximately
15 blade chords beneath the rotor disk. At this distance, any
influence on the blade has been lost.

A quantitative proof of the agreement between calculation and
expennment can only be performed for the time-asymptotic
state because a steady code was used to calculate the transition
phase and. erefore, time coasistency does not exist. The
geometric locations of the outer tip vortices for the steady casc
corresponding to a collective pitch of § deg and a tip Mach
number of 0.815 is plotted into the isoline diagram of the final
iteration state. These results are in a very good qualitative
agreement with the experiments. The agreemem between the
numerical and the experimental data is very good. except at
the very tip, where the tip release is overestimated. The
reason for this is not yet clear, since the discrepancy could
not be improved by using the expanded grid and was also
unaffected by any gnd refinement. geometric tip modeling. or
other measures of that kind.

Figure 4.5.3 also shows the results obtained in terms of
the pressure distribution for the two-bladed mode! rotor of
Caradonna and Tung' for a tip Mach number of My, = 0.815
and a collective pitch angle of 8. = § deg. The measured
pressures agree closely with the predictions.

4.5.3 Turbine and Compressor Cascades

The reliability of modern axial-flow turbomachines is partic-
ularly influenced by flow-induced vibrations. They may be
caused through blade row interactions, turbulence. stall, inlet
distortion, and self-exited blade vibrations.

Based on the explicit predictor/corrector MacCormack
scheme.® a numerical method has been established for two-
dimensional computation of unsteady inviscid subsonic flow
through oscillating compressor and turbine cascades by the Eu-
ler equations.”™ As a typical result for an unsteady oscillating
blade application of the numerical method, the travelling wave
mode (TWM) of a compressor cascade in bending motion is
investigated and compared to corresponding measurements. In
TWM. all blades vibrate at the same frequency and amplitude,
but a circumferential constant phase lag exists between each
blade and its ncighbors.

A computational mesh (51x17 points) typical for such an
application is shown in Fig. 4.5.4. The geometry presented
corresponds to the standard configuration no. 4 as defined
for the 1986 workshop®’ on "Aeroelasticity in Turbomachines”
organized by the EPFL-Lausanne. In the numerical procedure.
the H-type mesh is smoothed at each time step by an elliptic
operator in order to improve convergence characteristics.

The tocation of the various numerical boundanes with special
algorithmic treatments are depicted in Fig. 4.54. As indi-
cated. the following boundary types have to be distinguished:
inflow (B1) and outflow (B2), wall (B3, B4), slip (BS. B6),
and periodical boundary in circumferential direction (B7. B8).
Downstream of the blade. a slip-line leaves the trailing cdge
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which allows the representation of a discontinuity in the tan-
gential velocity field for simulation of vorticity effects.

The numerical results are compared with experimental data
in Fig. 4.5.4. The profiles of the compressor cascade were
equipped with five pressure transducers on the pressure side
(D1-DS) and six pressure transducers on the suction side (S1-
$6). For these locations, experimental and numerical data in
the form of the dynamic pressure distributions are plotted as a
tunction of time. The comparison with computed results shows
very good agreement in amplitude and phase except for DI1.
Unfortunately. the pressure transducer S! was out of order.
The acceleration measured in the experiment shows a second,
higher frequency corresponding to the first torsional mode.
Therefore, all measured data exhibit a high oscillation. The
difference at point D1 is caused by the relatively coarse grid.
The good calibration between measurement and numerical
simulation with respect to phase shifts can be examined by
the correspondence of acceleration data.

Other Euler computations of the internal flow in cascades,
turbines, and ducts are reported by Saxer et al.,"" Happel ct
al. '? Lecheler et al.,'’ and Leicher '

4.5.4 Fan Stage Passage

A cooperative program between Mississippi State Univer-
sity and the National Acronautics and Space Administration
(NASA) has been in place for 6 years to develop software
capable of the time-accurate analysis of complex rotating
machinery.'" ' Recently, NASA’s interest has shifted toward
ducted rather than unducted advanced turboprop designs; con-
sequently the computational fluid dynamic (CFD) effort was
steered to extend the flow analysis software developed for
the time-accurate simulation of unducted geometries (prop
fans) by incorporating additional domain decomposition mech-
anisms to enable the simulation of unsteady ducted prop-fan
flows (i.e., combined external and internal flow).'” This ef-
fort uses computational techniques and experience gained in
computing unsteady flows about complex geometries using
dynamic multiblock grids (i.e.. relative-motion subdomains).
Although initially intended for the numerical solution of ro-
tating machinery problems, the computational tools that were
developed at Mississippi State essentially comprise a struc-
tured multiblock flow solver and have been used for the Row-
field simulation of a complete aircraft configuration, such as
the prop-fan powered cruise missile shown in a previous sec-
tion. The references cited present a detailed discussion of
the numerics of the flow solver which includes the equation
formulation (finite volume), the numerical flux at cell faces
for this cell centered scheme (flux-difference split with Roe
averaging), and the implicit sofution aigorithm (block LU ap-
proximate factorization with iterative refinement). along with
a discussion of the dynamic multiblock grid approach, includ-
ing techniques that have been developed for this particular
type of problem involving rotating blocks. One configura-
tion presently undergoing investigation is a .15 pressure ratio
fan stage extensively tested by NASA.Y The 225x52x15 H
grid was used to model one-twelth of the geometry, one rotor
passage. and three stator passages (benefitting from solution
symmetry). The configuration operates at an advance ratio of
2.86 with a free stream Mach number of (.75. The predicted
surface pressure contours of the present Euler flow solver are
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shown in Plate 4.1. Other three~dimensional Euler computa-
tions for a propeller are given by ‘Bocci et ab.?!

4.5.5 Propeller Slipstream

An e:mmplc::2 indicating the use of Euler equations 1o model
propetler-slipstream effects is shown in Fig. 4.5.5. The surface
grid for a high-wing transport aircraft configuration intended
for subsonic flight is shown; two wing-mounted propeliers
mounted in the tractor position provide thrust. The propelier is
modeled as an actuator disk in the compuuationg and generates
a slipstream having swirl and increased totaf pressure. The
calculations were done using a multiblock grid consisting of
1.2 million cells and solved with an explicit central-difference
discretization. A top view of the surface pressure contours
from (wo computations. with propellers off and propellers on,
is shown at @ Mach number of 0.3 and an incidence of two
degrees; the block boundaries of the surface blocks appear
as lines in the figure. The pressure distribution on the wing
and also on the horizontal tail surface is modified due to the
prescnce of the propeller. The total pressure contuurs in the
vertical plane of symmetry of the nacelle indicate the total
pressure is practically constant in the entire flow field except in
the region downstream of the actuator disk. The actuator disk
mode} allows the assessment of slipstream-induced effects on
the aerodynamic performance. stability, and control for general
aerodynamic configurations, without the expense of computing
the details of the rotating propeller flow.

4.5.6 Turbofan Nacelle Analysis System

A three-dimensional turbofan nacelle design system based on
CFD has been in use at General Electric Aircraft Engines for
several years.”® The system was created to assist nacelle de-
signers in the efficient assessment, modification, and improve-
ment of design concepts. The grid generation, flow solution,
and post processing arc highly integrated in the system and
tailored to the design applications of interest; the improved
capabilities have reduced the design cycle time for the nacelle
design process. While the code has the capability to model
viscous effects by including the Reynolds-averaged Navier-
Stokes terms. the Euler equations are generally solved in or-
der to reduce the computational time. The engine is modeled
as an actuator disk and the specification of the mass flow is
equivalent to setting the lift coefficient for an extemnal flow
application, so that Euler computations would be expected to
be very accurate outside the areas where significant viscous
separation occur. An example of the validation studies which
have been conducted for extensive applications at design and
off-design conditions is shown in Fig. 4.5.6; the schematic of
the nacelle geometry and the computationa! grid illustrate the
multiblock structured-grid approach. The operating conditions
for the computation corresponds to a typical cruise condition
( M. =082, MFR = 0.65, a = 0 deg). The parameter MFR
is the ratio of the captured free stream tube area to the in-
let area and is representative of the engine mass flow ratio.
The ideal Mach number is a commonly used design patame-
ter and is computed using the local surface pressure and the
free stream total pressure value. The longitudinal variation of
the ideal Mach number indicates excellent agreement with the
experiment. The entire computational time for a case is 30
minutes: 5 minutes for grid generation, 15 minutes for flow
solution, and 10 minutes for post processing and initial design

evaluation. Extensive computations are summarized in Ref.
23 for more than fifty cases, representing cruise. off-design,
and take-off conditions, which have produced similar levels of
agreement with experimental data.

4.5.7 Inlets

From the designer’s point of view, an intake design delivers a
specitied mass flow with specified flow conditions at the engine
face. An optimal design would provide these flow conditions
with losses as low as possible. In particular, for hypersonic air-
breathing vehicles, the specific intake design can be governed
by the overall performance of the vehicle (i.e., it may no longer
be possible to sclect an intake that is optimized by itself).

Therefore, flow simulation is an attractive 100! 1o suppont
inake design by providing detailed information on the flow
structure which is necessary for the shape optimization process
of all configurational elements and which is normally not
provided by wind tunnel testing. Also, the scaling of wind
tunnel data to realistic Mach and Reynolds numbers can bhe
carried out by the help of flow simulation information, thereby
lowering considerably uncertainty margins.

The application of Euler mcthods for intake design may be
of high interest for all those cases where viscous effects are
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expected to be small. Another aspect is the question as
to whether the underlying inviscid approximation scheme of a
Navier-Stokes method is able to provide Euler solutions with
a minimum of numerical dissipation.

Although the calculations of scramjet flows presented in Ref.
25 demonstrated quite clearly the capability of the EUFLEX
code to cope with flow phenomena in hypersonic intakes. these
calculations also showed room for enhancements. This experi-
ence and insight led to further improvements of corresponding
flux and limiter formulations. The benefits of these efforts
are demonstrated by calculations for realistic two-dimensional
airbreathing engine (turbo or RAM) intakes. The type of grid
system used for corresponding computations is shown in Fig.
4.5.7. The grid depicted is called the fine mesh and consists
of 301 grid points in x-direction and 107 grid points in z-
direction. There are 52 cells spanning the height of the intake
duct. The length of the intake duct behind the throat is some-
what shorter for the tine grid than for the medium grid (161x65
points) which was also considered. Some crude shock fitting
has been attempted by arranging the surface grid points such
that the point of the leading edge of the third ramp corresponds
to the point on the tip of the intake lip.

The Mach number distribution for the Euler calculations on
the fine grid is shown in Fig. 4.5.7. This finer grid produces
sharper shocks in comparison to the coarser mesh; the third
ramp shock for which the grid is adapted best is extremely thin
in the fine grid solution. However, as a result of this "shock
fitting” approach, the shock originating at the intake lip appears
to be thicker than expected. The distribution of the mass flow
deficit has been improved by the increase in grid points. From
the computation, it is evident that the external ramp shocks
merge outside the intake just below and behind the tip of the
intake lip. On the outside of the intake lip, an expansion wave
is generated which interacts with the slip stream behind the
intersection point of the external ramp shocks and the shock
formed by coalescence of all these shocks. Additional air-




intake computations for aircraft at transonic and supersonic
speeds have been made by Buers et al. ™ and Grashott.”

4.5.8 Scramjets

In 1990, Eberle et al.** made improvements to an earlier Eu-
ler scheme with the intent to enable the accurate and robust
treatment of hypersonic flows. Emphasis was on improved ca-
pabilities of the characteristic-based method to capture shocks
of any strength, to repiesent lee-side flows, and to represent
base flows past vehicles cruising at any speed, particularly for
hypersonic flow applications. An application of this general-
ized method is presented in Fig. 4.5.8, where high resolution
results are shown for a Mach 3 scramjet problem quite often
used to demonstrate inviscid code performance. The complex
flow pattern exhibiting shocks. expansion fans, and slip lines
is well resolved as can be deduced from the Mach conlour
and density contour plots. The numerical approach. which
is based on a sophistic.ed flux formulation, may be viewed
as an alicinative 0 heuristic tools such as local grid enrich-
ment or similar approaches. Although the shocks are far away
from being aligned with grid lines, the capturing property of
the characteristic-based method is good. {t should be pointed
out that the axial massflux error monitored is very small, and
for most portions is weil below one permille. Other calcula-
tions for nozzle flow felds are reported by Reidelbauch and
Weiland. ™

4.5.9 Noazzles

Euler codes intended for nozzle simulations at high Mach num-
bers require a high degree of numerical robustness. The EU-
FRYEX Jlenrithm inchedes onoaccurate Riemann solver, to-
tal temperature-preserving split flux vectors, as well as dif-
ferentiable switches and interpolations. For preserving pres-
sure/density positiveness at hypersonic speeds, an efficient im-
plicit update procedure is proposed. Specific matrix precon-
ditioning techniques are introduced to circumvent singularity
effects of the associate Jacobian matrices. An application™
in which all these items have proved beneficial is the invis-
cid flow simulation past a two—dimensional twin jet nozzle
(Fig. 4.5.9). This configuration is a candidate design for a
hypersonic aircraft. Computations are shown for the nozzle
operating over a range of Mach numbers. The lower nozzle is
that of a turbine. whereas the upper nozzle corresponds 1o a
ramjet exhaust. At high Mach numbers (3. = 6.8). only the
ramjet is running. At medium supersonic Mach numbers (M
= 3.5). both engines are in operation: at transonic speeds (M
= 1.2). the ramjet is off and acts as a boundary layer ejector.
in each case, the Mach number isoplots reveal extraordinarily
sharp resolution of the flow structure.
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4.6 HYPERSONIC FLOWS

Because of recent renewed interest in the development of
hypersonic air-breathing aircraft, such as the National Acro-
Space Plane in the U.S., there has been active research and de-
velopment of Euler solvers for hypersonic flows. The emphasis
has been principally in two areas: the design of oscillation-free
schemes capable of capturing strong shocks and the incorpora-
tion of gas models more sophisticated than a perfect gas. Both
are central ingredients of an algorithm able to operate at high
Mach numbers reliably that could form the framework for a
hypersonic, viscous algorithm. Several examples of the im-
proved shock resolution available through either adaptation or
improved dissipation models are shown below for the case of
a plane shock intersecting a blunt body at hypersonic speeds,
corresponding to a shock-shock interaction problem. The hy-
personic flow over a double ellipsoid body was computed ex-
tensively with different Euler solvers at the INRIA Workshop
on Hypersonic Flows for Reentry Problems:' two examples are
shown: a perfect gas and a real gas computation. The proceed-
ings of the workshop provide a summary of the methodology
which currently exists for applications to hypersonic flows. An
application of Euler sofvers to the equilibrium and nonequilib-
rium flow over a Hermes configuration is also shown.

4.6.1 Blunt Cylinders

Algorithmic details and general capabilities for the simulation
of inviscid hypersonic flows in chemical non-equilibrium con-
ditions are given by Pfitzner.>® The flow solver is based on
a quasi-conservative split matrix method with upwind-biased
space discretization coupled to a Runge-Kutta time-stepping
scheme. The chemistry source terms are treated either explic-
itly or (point) implicitly. The chemical kinetics are based on
the 5-species 17-reaction model according to Park.* For simu-
lation of nonequilibrium reentry air flows at heights above S0
km, explicit treatment of source terms was sufficient.

Figure 4.6.1 shows a comparison of fringe patterns for inflow
of partially dissociated nitrogen about a 2~inch diameter cylin-
der at the following flow conditions: My = 6.14. px =
2010 Pu. T = 1833K. ux = 5590m/s. e = 0.073.
Corresponding experiments were conducted by Hormung.*
Whereas the shock position is reproduced well, the fringe pat-
temns differ somewhat due to the one-temperature model used
which does not allow for an appropriate delay of chemical re-
actions by thermal nonequilibrium in the vibrational degrees
of freedom.

Figure 4.6.1 displays a comparison of temperature contours of
a flow about a 1/4 inch sphere in air at free stream conditions
off M =153 pac =664 Pa, T =293 deg K. u =
5280m/s. The resuits illustrate the effects of ideal. equilib-
rium and chemical nonequilibrium real gas assumptions. Also
shown (top right of Fig. 4.6.1) is a comparison of the resulting
shock contours with the experiment of Lobb.* The experimen-
tal shock standoff distance is slightly larger than the calculated
one due to thermal non-equitibrium cffects.

4.6.2 Shock-Shock Interactions
Adaption Effects

The adaptive-grid method can be used to resolve multiple-
shock interactions computed with shock-capturing methods.

An example (shown in Fig. 4.6.2) uses an unstructured data
management scheme allowing flexible grid adaptation with lo-
cal refinement in one or two coordinate directions. Special-
ized adaption criteria account for the expected phenomena in
super- and hypersonic flows, for example. strong shrncks and
slip lines. The Euler equations are solved using a second
order upwind discretization”® according 1o Harten and Yee®.
The scheme is a finite volume method based on quadrilateral
meshes.

Fig. 4.6.2 presents a complex example which permits an
evaluation of the cffectiveness of unidirectional cell division.®
This study uses a Mach 8.03 shock-shock interaction’ as a
test case. This example is well suited for comparisons of
methods since the flow field complexity stems from the gas
dynamic interaction and not from some arbitranly chosen
boundary. Additionally, the solution demands resolution of
many different and disparate convective length scales and
contains both sub- and supersonic regions.

Taking the origin at the center of the cylinder, the problem
is completely specified by a Mach 8.03 free stream containing
an impinging shock which follows a prescribed line (y=0.3271
x + 0.41471). Figure 4.6.2 contains two discrete adapted-
grid solutions to this problem (each was converged with a
constant global time step for 25.0 characteristic times). The
top solution did not make use of unidirectional cell division,
and the mesh shown contains 12869 nodes. The Mach contours
displayed maintain an increment of 0.25 and the Mach 1 line
is marked. The bottom solution used directional adaptation
at the finest level. and resulted in 8510 nodes. Inspection of
this case reveals that the bow shock. the slip lines that bound
the supersonic jet. and the supersonic region near the upper
portion of the cylinder are adapted unidirectionally. Prior to
the final division sequence, both meshes were identical and
contained 5500 nodes.

Upwind Discretization Effects

The effect of upwind discretization is shown for this same test
case in Fig. 4.6.3; a sketch of the flow field is also shown. The
CEVCAT code was modified and extended for the calculation
of super- and hypersonic flows, which are characterized by
strong nonlinearities. like shocks, slip lines. and shock-shock
interactions. The central spatial discretization of the convec-
tive fluxes has been better adapted to the artificial dissipative
operator."” In connection with a special boundary treatment
of the discretization at the walls, the robustness of the central
method was significantly improved and solutions with strong
shocks at high Mach numbers and high angles of attack were
computed. For a better resolution of discontinuities, the up-
wind TVD discretization according to Harten and Yee® was
implemented.!’ Figure 4.6.3 shows the comparison between a
centra) and an upwind weighted discretization.'? In contrast to
the central scheme, the upwind scheme resolves shocks within
2 grid cells and gives a good prediction of the complex flow
with shock-shock interaction. Further comparisons between
schemes are compared systematically by Kroll et al."? for this
shock-shock interaction.

4.6.3 Double Ellipsoid
Perfect Gas

The flow over a double ellipsoid shape (representative of the




forward section of a hypersonic vehicle), computed with an
adaptive unstructured-grid method.'™** is shown in Fig. 4.6.4.
The conditions correspond 10 M. = 8.15 and o = 30 deg:
the case is one of the test conditions defined for the Workshop
on Hypersonic Flows for Re-Entry Problems' and has been
extensively computed by a number of different contributors.
The mesh and pressure contours are shown for the surface,
the longitudinal plane of symmetry, and a lateral plane at the
end of the body for an initial solution and an adapted mesh
solution. The bow shock is positioned very close to the body
at this Mach number and is resolved much more sharply with
the adapted mesh, owing to the clustering of points near the
body and a thinning of points outside the bow shock. The
cross flow shock is similarly much better resolved.

Real Gas

At higher Mach numbers, the density distributions in the cross-
flow and in the symmetry plane are qualitatively very simi-
lar between real gas and perfect gas computations. However,
there are some major differences within the Mach number dis-
tribution, as shown in the computations by Dortmann'*® (Fig.
4.6.5). where the temperature distribution and the mole frac-
tion distnibution of molecular oxygen is given. The conditions
correspond to M« = 25 and n = 30 deg, corresponding to
another of the conditions prescribed for the INRIA Workshop
on Hypersonic Flows for Re-Entry Problems.! On the wind-
ward side. the complete oxygen dissociation takes place within
or shortly behind the bow shock. On the leeward side. the
temperature jump across the bow shock is not as strong and
the dissociation occurs within a small layer which emanates
from the bow shock necar the nosc and follows a plane of con-
stant temperature, T=2500 deg K. This relatively rapid change
within the gas mixture leads to a sudden change in the speed
of sound, which influences the Mach number. The same effect
due to mitrogen dissociation can be observed on the windward
side following a plane of constant temperature with T=5000
deg K. However, the dissociation is not complete since the
temperature level is not high enough.

4.6.4 Hermes

National and European projects supporting manned space ac-
tivities have initiated over the last years considerable efforts
aiming on the improvement of simulation tools as essential ele-
ments for a cost-effective design procedure for manned reentry
vehicles. The pacing item of that development is the need to
reduce uncertainty margins from the aerothermodynamic data
set. Uncertainties can be reduced considerably if ceriain ex-
trapolation rules relating experimental to free flight data arc
verified. as could be done with the use of validated flow sim-
ulation methods. Increased uncertainty results especially from
the fact that for the most critical parts of a typical reentry tra-
jectory. an application of simple similarity laws does not allow
one to relate ground-based measurements to free-flight data.

Those numerical methods which could contribute to the simu-
lation of relevant fluid mechanical phenomena during reentry
have been systematically developed the last years. One of
the Euler codes enabling three-dimensional inviscid flow sim-
ulation under equilibrium and nonequilibrium conditions was
developed by Weiland and Pfitzner™'* and applied by Han-

mann and Weiland'" to a configuration of the Hermes reentry
verhicle. The code is built around a quasi-conservative split-
matrix formulation relying on a shock-fitting technique for the
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outermost bow shock and a capturing approach for all other
embedded shock waves.

The configuration with deflected elevon flaps in different per-

. spective views is shown in Fig. 4.6.6. The surfacc mesh

reveals a different mesh structure for the forebody and aft
fusclage region indicating a mesh retinement in the circumfer-
ential direction to improve the flow resolution past the fuselage
in the region of the main wing and winglet sections. Because
the shock-fitting approach used mesh adaptation capabilities.
the volume mesh is divided into two blocks (as displayed for
the last mesh cross-section). The inner mesh block is fixed in
time whereas the outer boundary of the second mesh block can
be adjusted to the bow shock shape according to the Rankine-
Hugoniot conditions.

Euler solutions are presented for equilibrium and chemical
nonequilibnum real gas conditions for the following How con-
ditions: M. = 25, @ = 30 deg. 4 = 0 deg. Fig. 4.66
shows corresponding Mach number distributions on the vehi-
cle surface. Contour lines are clustered on the leeside wing
and the upper fuselage. as well as in front of the canopy sec-
tion. Whereas the canopy region is exposed to a recompression
shock due to the ramp effect of the forebody geometry. on the
leeside of the wing a strong expansion around the round wing
leading edge takes place. This expansion leads to a cross flow
recompression shock near the wing/tuselage intersection. The
same cffect is responsible for the Mach contour clustering on
the upper fuselage near the svmmetry planc. Although the
same free-flight conditions are used in both computations, it is
interesting to note that under the assumption of chemical non-
equilibrium. the footprint of the lceside wing cross flow shock
is changed dramatically and also affects the winglet sections.

Whereas inviscid flow solutions show interesting gas dynamic
effects one, viscous interaction effects can alter any conclu-
sions drawn from inviscid flow results. However, for deter-
mining the bandwidth of results for global forces and moments
and the identification of effects due to basic physical assump-
tions, Euler simulations are quite valuable for direct design

support.
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Figure 4.6.5 Real gas effects on a double ellipsoid at hypersonic speeds; M, = 25, o = 30 deg.
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4.7 UNSTEADY FLOWS

A gencral review of the current status of computational meth-
ods for unsteady aerodynamics and aeroelasticity is given by
Edwards and Malone in Ref. 1. The demands imposed on the
computation of acroelastic applications such as flutter bound-
ary predictions are intensive, so much so that linear and po-
tential methods are used almost exclusively in the current air-
craft design cycle. For example. Edwards and Malone' show
for transonic, low-a dynamic computations for a wing that a
nearly two-orders-of-magnitude computer time penalty is ex-
pected when advancing from the transonic small-disturbance
(TSD) potential equations to the Euler equations; Navier-
Stokes solutions require yet another order-of-magnitude in-
crease. Euler and Navier-Stokes methods are being steadily
improved into tools usable to the acroelastic designer, through
the incorporation of more efficient and stable time-integration
algorithms and the advent of faster computers. Validation com-
putations to assess the viability of using the Euler equations
as opposed 1o the potential equations have been made; ex-
amples of forced oscillation computations for the F-5 wing
made with two different Euler solvers are shown below in Figs.
4.7.14.7.2. A recent three-dimensional flutter calculation us-
ing an unstructured-grid Euler method is also shown. The use
of spatial and temporal adaptive-grid schemes are expected
o have a significant payoff in this area, and one example is
shown below for two-dimensional flow.

4.7.1 Forced Oscillations
F-5 Wing

Unsteady calculations have been performed for forced sinu-
soidal pitching motion for the F-5 wing (sketched in Fig. 4.7.2)
pitching harmonically about a line perpendicular to the root
midchord. The pitching motion is described by a = ay +
ccos (wt), whereas au represents the mean value of angle
of attack and a; corresponds to the amplitude. The reduced
frequency k is defined as k = »c/(2U ). where ¢ is based on
the mean aerodynamic chord length. The Euler computations
of Ref. IV.2.8 correspond to an = 0. deg. o} = 0.109 deg and
k = 0.274. Fig. 4.7.1 shows the real and imaginary compo-
nents of the unsteady pressure distributions at the same three
span stations as the steady results shown previously for Euler
and modified TSD solvers. On the upper surface, there is a
shock pulse in the calculated pressure distributions near 50-60
percent chord, which is produced by the motion of the shock
wave. The experimental data (Ref. 1V.2.9) does not show a
shock pulse in the pressures at the two inboard stations, com-
mensurate with the absence of the shock at these stations in
the steady computations. On the lower surface. there are pos-
itive and negative spikes in the real and imaginary pressure
distributions, respectively, which are much more pronounced
in the outboard region of the wing. These spikes are produced
by an embedded region of supersonic flow. In general, the
two sets of calculated pressures agree well, except near the
upper surface shock pulse and in the midchord region along
the lower surface. These differences may be attributed to the
sharper shock-capturing ability of the Euler code. Also, com-
parisons with the experimental data are qualitatively good for
both the Euler and potential results.

Generally favorable agreement between the Euler and TSD
calculations incorporating both entropy and vorticity correc-
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tions have been found. For TSD cahulauons, the gnd re-
mains fixed for calculating both steady and unsteady Hows so
that computations over complex contigurations are relatively
straightforward. Similar calculations with the Euler equations
are complicated by the need for new gnds at each ume step.
Also, since the solution of the three dimensional Euler equa-
tons iavolves tive unknowns at each gnd posnt, the compuler
ume required for the Euler calculations is much higher than
that required by the solution of the TSD equation. For the
Euler code used in the present study. the computational rate
for three-dimensional calculations was approximaicly 60 mi-
croseconds/grid pointiteration; the TSD code required only
S microseconds/grid pointiiteration. Both the Euler and TSD
calculations were done on a CRAY -2 supercomputer at the Na-
tional Aerodynamic Simulator facility located at NASA Ames
Research Center.

The INFLEX code®' was also applied to the problem of the
harmonically oscillating F-5 wing in pitching motion and com-
pared 1o corresponding measurements. The EUFLEX method
was extended as a time-accurate inviscid simulation method,
called INFLEX. by Brenneis and Eberle.” The method is char-
actenzed by corresponding Godunov-type flux formulations
known from the basic Eberle Euler method and a first-order
accurate backward Euler-type time discretization. Time inte-
gration is performed by solving the unfactored implicit op-
erator by a point Gauss-Seidel relaxation method using con-
sistent Jacobi flux matrices. The baseline implicit formula-
tion is secured against singularity effects during inversion of
the corresponding block-diagonal matrix by a suitable matrix-
conditioning procedure combined with local transformation of
conservative to nonconservative vanables.

The F-5 wing planform, the surface mesh and the airfoil geom-
etry (modified NACA 65-A-004.8 section) is outlined in Fig.
4.7.2. Because the experimental data revealed large acroclas-
tic deformations during the pitching cycle. the assumption of
a rigid body motion was dropped. and the measured aeroclas-
tic mode shape (Ref. 1V.2.9) was used to simulate the real
body motion.

The calculation of the transonic test case (M = 0.95, k =
0.132, ap = 0.0 deg. n, = 0.523 deg) was performed on a
grid with 106x54x58 points and a CFL number equivalent
to 100 Avcycle. The comparison between the computed
mean surface pressure distribution and the experimental one
is favorable at all span stations (Fig. 4.7.2). The suction
peak at the leading edge on the lower surface due to the
droop nose is reproduced exactly. Both shocks on lower
and upper surfaces are overpredicted and shifted aft of the
experimental positions, as expected from inviscid simulations.
Consequently, the peaks in the real and imaginary parts of the
pressures are overpredicted and too far downstream. Except
for these small deviations, the results from computation and
measurement correlate very well.

LANN Wing

An application of the INFLEX code to a typical transport-
aircraft type supercritical wing with an aspect ratio of 7.92
(known as the LANN wing*®) is found in Ref. 6. The
wing was experimentally investigated at the NLR facilities
and performs harmonic rigid solid body pitching oscillations
about the axis normal to the wing root section. The oscillation
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is charactenzed by the mean angle of attack oy = 0.6 deg, the
amplitude «r) = 0.25 deg, and a reduced frequency k = 0.132.

Details of the plantorm with the location of the six spanwise
sections for the pressure evaluations and details of the wing tip
surface .nesh are shown in Fig. 4.7.3. The supercritical root
profile section and the wing tip section are also displayed. The
pitching axis ts located at 62.1 percent of the root chord trom
the wing apex. The position of the wing inside the compu-
tational domain is sketched: the calculations were performed
on a3 H-type mesh with 80x38x46 gnd points, where on the
wing |8 grid lines are piace in the spanwise direction and 50
grid points are used to discretize the lower and upper side of
the profile section.

The mean pressure distributions of individual wing sections
indicate that except for a shght overprediction on the upper
surface behind the shock, the overal! agreement of numernical
results to experimental data is quite good. The computation of
further tests cases confirm this statement. However. at higher
Mach numbers, shock boundary-layer interaction effects are
responsible for systematic deviation, of the shock positions
from experimental findings.

Spatial and Temporal Adaption

Ir order to reduce the computational time associated with
acroclastic solutions, adaptive grid methods that are adaptive
in both space and time can be used.”™ Two-dimensional calcu-
lations are shown in Fig. 4.7.4 for one such adaptive method
applied to a pitching NACA 0012 airfoil. The baseline Eu-
ler method is an upwind, explicit finite-volume scheme. The
“computational grid and the density contours at several points in
the cycle of oscillation are shown. {he mesh adapts spatially
and temporally 1o the acrodynamic response to the oscilla-
tion; the comparison with expenments and oiler established
schemes for this case indicates that highly accurate solutions
can be obtained with a significant savings in computer time
over standard global time-stepping schemes.

4.7.2 Flutter Predictions

The flutter predictions from a time-marching aeroelastic
procedure.” which couples an implicit, three-dimensional. up-
wind, unstructured-grid Euler code to the structural equations
of motion, is shown in Fig. 4.7.5. The unstructured-grid for
the 45-deg sweptback wing was developed using an advancing-
front method. The mesh deforms during the calculation due
to aerodynamic loading and is modeled as a spring network
where each edge of the tetrahedra represents a spring with a
stiffness proportional to the edge ength. As the surface mesh
moves, static equilibrium equations are solved to determine
the interior grid points. The implicit scheme is a Gauss-Seidel
scheme in which the relaxation is impiemented by ordering
the elements in a downstreain-to-upstream pattern. Large time
steps selected on the basis of temporal accuracy of the simu-
tation are possible

The wing is an AGARD standard aeroelastic configuration
which was tested in the Transeaic Dynamic Tunnel' at NASA
Langley Rescarch Center. i1nhe wing is modeled structuraily
using the first four natural vibration modes. The expcrimental
flutter speed index and the nondimensional flutter frequency
as a function of free-stream Mach number define a typical

transonic flutter dip with the bottom of the dip near sonic con-
diticns. The computed results agree well with the experimen-
tal data a1 M . = 0.499 and 0.678 in flutter speed index and
in frequency. Near the transonic Rutter dip, the computations
differ from experiment in Hutter speed index, but agree reason-
ably well in flutter frequency ratio. Robinson et al.'! present
Euler computations using a structured-gnd code for this case.
which agrees closely with that presented. Other results for a
SUPErsonic transport conliguration arg given elsewhere.”
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4.8 DESIGN APPLICATIONS

Examples of design applications using the Euler equations are
shown below. A summary of acrodynamic design methods is
given by Sloof' and Dulikravich.® Much of the design process
of aircraft is conducted using repeated analyses of candidate
geometries constructed through the background knowledge and
experience of the designer. ln such an approach, the tumn-
around for analysis must be rapid and, until recently, the design
of aircraft components at transonic speeds was done almost ex-
clusively using potential methods coupled with boundary-layer
schemes. Euler methods were used to assess component inter-
ference problems and to address flows at higher Mach num-
bers, where the potential equations are inadequate. With faster
turnaround of the Euler and Navier-Stokes solvers, these meth-
ods are being used more frequently.' The parametric approach
is shown below for the design of a porous airfoil at tran-
sonic speeds. Of automated approaches. there are two general
methods that are being used currently: (1) global optimization
methods in which a number of trial shapes are examined to
amive at a minimum of an objective function and (2) inverse
design procedures in which the local geometry is changed in
order to maich a prescribed variation of the pressures. The op-
timization approach is shown for the design of conical wings
and low-drag bodies; the inverse approach is shown for the
design of a supercritical airfoil and an engine nacelle.

4.8.1 Airfoils

Supercritical Airfoil

Drela® developed a two-dimensional mixed inverse procedure
where the pressure is prescribed over a portion of the geometry.
denoted as a freewal) segment. and the geometry prescribed on
the other. The procedure is an extension of an analysis method
which uses a direct solver for the Euler equations coupled to
an integral boundary-layer method. An example of this ca-
pability is shown in Fig. 4.8.1, in which the wave drag is
reduced for a transonic airfoil by weakening the shock wave
in the flowfield. A mixed inverse calcufation was performed
for the RAE 2822 Case 6 airfoil* with the freewall segment
encompassing nearly the entire suction surface. Starting with
the analysis pressure distribution. a smoothed-out pressure dis-
tribution was somewhat arbitrarily specified over the freewall
segment.

The mixed inverse calculation was started from the analysis
solution, and required five additional Newton iterations to con-
verge to machine zero. The boundary layer coupling option
was retained for this calculation. The resulting pressure distri-
bution from the inverse output differs slightly from the inverse
input because the geometry is constrained to be continuous at
the freewall segment cndpoints. Fig. 4.8.1 shows the geome-
try comparison between the original and modified airfoils and
the Mach number contours for the original and modified so-
lutions. The shock has indeed been eliminated. resulting in a
substantial drag reduction.

Porous Transonic Airfoil

In the early 1980's, a number of experimental and compu-
tational studies were conducted to look at the advantages of
delaying the drag rise of airfoils by venting the shock through
a porous surface." as shown schematically in Fig. 4.8.2. The

porous surface induces a separation bubble in the vicinity of
the upper surface shock and an oblique compression wave
forms which decreases the strength of the terminating normal
shock. The drag rise is reduced when the resulting energy loss
associated with the normal shock and the separated boundary
layer is less than that for the nonporous airfoil.

Hantwich’ studied computationally the effect of shock vent-
ing for the NACA 0012 and a supercritical-type section. The
surface houndary conditions were modeled to induce a normal
velocity determined by the difference between the surface pres-
sure and the cavity pressure. In general, this velocity would be
determined by viscosity and the porosity of the surface, but the
approximate boundary condition and the Euler equations were
used in lieu of viscous solutions because of the uncertainty
associated with current turbulence models. The porosity level
a was varied for both airfoil sections. A typical pressure dis-
tribution for the porous and nonporous NACA 0012 section is
shown. The lift is increased, in some instances by 65 percent.
The lift and wave drag indicate that an order of magnitude
reduction in wave drag at constant lift has been attained for
overspeed conditions (low lift levels). The supercritical section
results also demonstrated a reduced drag at constant lift. The
extents of porous areas used are greater than those considered
previously; the results demonstrate a potential for designing a
transonic airfoil for reduced drag at multiple design points.

4.8.2 Engine Nacelles

A fast, cfficient and user-friendly inverse design system for
three-dimensional nacelles is in use at General Electric.” The
system allows the fan cowl designer 1o modify either all or
a portion of the three—dimensional fan cowl. The designer
specifies the target pressure distribution on the crown, side.
and keel cuts of the nacelle. as in Fig. 4.8.3. A modification of
the predictor/corrector design approach” enables the geometry
to be altered based on the difference between the calculated
and target pressures. A number of example applications for the
design of both axisymmetric and three-dimensional nacclles is
given in Ref. 8.

The design method” uses two design algorithms. one for sub-
sonic flow and the other for supersonic low. The supersonic
algorithm is blended with the subsonic algorithm to design re-
gions of transonic flow. Both algorithms assume that AC, is
proportional to the change in geometry. The subsonic algo-
rithm is based on the assumption that changes in curvature are
directly proportional to changes in pressure coefficient. The
relationship used to express the change in curvature as a func-
tion of change in pressure coefficient is:

AC=ACA(1+ )
where
C is the curvature
C, is the pressure coefficient
A = +1/-1 for the upper/lower surface
B = input constant ranging from 0.0 to 0.5

The change in curvature is converted to a change in r' through
a relation valid for smali changes in the surface slope.




arr=aca(1+ ")’ :

where r, ' and r" are the surface radius, slope. and curvature,
respectively.

The supersonic algonthm is based on supersonic thin airfoil
theory. Based on relations between the pressure coefficients
and surface slope the cxpression

Ar'=KAC,

can be derived.” Differentiating this expression gives the fol-
lowing relationship between r” and AC;.

Ar’ = [\’M
dr
The value for the constant K is 0.05 and is used to under relax
the changes in the geometry during each design iteration.

The required change in curvature is thus calculated at each
point along the fan cowl. To ensure geometrical closure at the
downstream station, the procedure of Lin et al.'” is used. A
sine function is added to the target pressure with the maximum
modification at the center of the design region and zero at
the ends. The amplitude of the sine function is iteratively
determined to close the geometry by modifying the target
pressure distribution.

The results for the three-dimensional test case shown in Fig.
4.8.3 correspond to a design range starting at the nacelle
leading ~?ge and ending 10 inches upstream of the nacelle
traifing euge. The Mach number distributions along the crown,
side and keel cuts of the original naceile as well as the desired
target Mach number distribution are shown. The target Mach
number distribution was achieved after 40 design iterations; the
resulting modified geometry is shown on an enlarged vertical
scale.

4.8.3 Supersonic Conical Wings

A procedure for the design of wings at supersonic speed based
on a numerical optimization technique'’ coupled with a solu-
tion scheme for the Euler equations is given in Ref. 12. The
wings considered can be either conical or three-dimensional
delta wings with a straight leading edge. The surface is given
by a set of Legendre polynomials. The coefficients of this set
are the design parameters in the optimization task; the object
function is the lift-to-drag ratio. Results of the optimization
are shown for conical wings at an onflow Mach number of
Mo = 4.8. The convergence of the optimization process is
monitored as a function of the number of numerical L/D com-
putations and the number of design variables. The influence of
geometrical and aerodynamic parameters on the optimization
result is examined in Fig. 4.8.4. An example for the design
of a three-dimensional wing is given in Ref. 12.

4.8.4 Low-Drag Bodies

The optimization code COPES'? was combined with an Euler
space-marching method by H. Rieger'' for the analysis of
two- and three—dimensional bodies in supersonic flow. The
fundamental equations to be solved are the conservation laws
in integral form. By restriction to purely supersonic flows the

2s

problem becomes hyperbolic. By use of the balance of flux
values across the surfaces of finite volumes, all flux values of
one finite volume layer normal to the stream direction can be
deduced from the values of the preceding layers. This allows
the application of a Runge-Kutta integration method to the flux
values in downstream direction.

Although the present method can be used for more general
three~dimensional bodies,'* here only bodies of revolution
are considered. These are of special interest because Miele'
presents some optimized shapes derived under special assump-
tions (lincarized potential cquation, slender body simplifica-
tion). To convert the contour optimization into a parameter
optimization problem, the radius of the body of revolution is
represented by the superposition of a constant and Legendre
polynomials. The coefficient of this superposition are take as
design variables. Only the constant and the last Legendre co-
efficient are analytically determined in order to get a pointed
nose and a desired base radius.

To demonstrate the efficiency of the combined code, the fol-
lowing optimization problem was examined:

design objective: Find a closed and pointed body of revolution
with minimum wave drag coefficients Cpp (referred to actual
cross section area).

constraint: Least volume V/ic' > 0.005.

design variables: The contour is approximated by superposi-
tion of the first five Legendre polynomials. The first four coef-
ficients are used as design variables, while the fifth is adapted
for the base radius zero.

constant value: M = 3.0.

start-up design: The starting contour is a parabola with the
thickness 2 Fmax/c = 0.1 and the volume V/c* = 0.00419, shown
in Fig. 4.85.

For this starting design the computational grid was selected
fine enough to give reasonable accuracy concerning the wave
drag. The corresponding pressure Jistribution is shown on the
left side. The integrated wave drag is C;) = 0.07289. In order
to save computation time, at the beginning the analysis code
was run with a coarser grid and later continued with the fine
grid to find the best design. Increasing the body volume, which
is too small at the beginning, leads to a growing wave drag.

In Fig. 4.8.5, the resulting optimum body is compared to the
Sears-Haack body which is the optimum under the assumption
of a linearized potential equation and slender body simplifica-
tions. For M = 3.0 there are some differences. For M = 1.5
the above mentioned assumptions are violated less and so the
present method optimum is much nearer to the Sears-Haack
body.

As the Sears-Haack body has a vertical tangent and therefore
a small subsonic flow area at the leading and trailing edge,
it cannot be calculated by the present Euler space-marching
method. At M = 3.0 some modifications were possible to
get the drag value nevertheless. It is considerably higher (3.6
%) than for the best design found even with the restrictions
implied in the superposition formuta.
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Figure 4.8.1 Mixed redesign of supercritical airfoil.
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Piate 4.1 Pressure distribution on wing-body-pylon-nacelle configuration with flow-through na-

Bottorn view Top view

Side view

Plate 4.2 Isomachlines of unstructured-grid computation of the Dassauit Faicon
aircraft; M,, = 0.85, a = 3.0 deg.
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Plate 4.3 Pressure distributions over a complete fighter configuration. ®

Plate 4.4 Temperature contours over 2 fighter configuration with propulsion simulatior

Plate 4.5 Surface pressure contours for an advanced tactical fighter configuration.




Platg 4.6 Surface pressure contours for a cruise missile configuration.

Plate 4.7 Details of aft region for a cruise missile configuration.

Plate 4.8 Surtace grid and pressure coefficient for a missile configuration; Vi, =2.0, « = 4.0deg.
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Plate 4.9 Isobars for pylon-mounted store configuration; split-line 50% between store and wing.

Plate 4.10 Mach contours for HERMES 2
1.0 configuration with non-defiected ;
flaps.

Particle traces

W comL e R

‘, Plate 4.11 Particle traces for HERMES
Wi1.0 configuration. o i

[
¥
Plate 4.12 Surface pressure contours for Euler
computation of fan stage passage. g
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Concluding Remarks

Our alm has been to give a survey of the state of the art of
Computational Aerodynamics Based on the Euler
Equaticuns as of 1993, Numerical schemes, algorithms, grid
generation, physical and numerical aspects, as well as a
wide range of applications have been presented from
different points of view,

It has been our intention that the AGARDograph would
provide a balanced picture covering fundamental,
technical/numerical as well as engineering application
aspects. For this reason we have sought for (and found!) a
team of authors with different backgrounds ranging from
Academia through Research Establishments to Industry.
We think the authors did an excellent job in representing
the points of view of each of these communities.

We believe that, as reflected in Chapter 1, the physics of
inviscid flow and the mathematics of the Euler equations
are reasonably well, but not yet fully, understood. Our
knowledge on the existence, uniqueness and behaviour of
the mathematical solutions of the Euler equations is not
complete and the related question of how the Euler
equations model flows with separation, circulation and
vortices is still subject of discussion. It is suggested that
there is (still) room for considering such problems and
issues in the more general context of existence and
uniqueness of (steady) solutions of the Navier-Stokes
equations in the limit of vanishing viscosity, It is also
suggested that the choice and the role of the boundary
conditions and their numerical implication are crucial in
this context.

With respect to numerical schemes and algorithms the

picture emerging from chapters 2 and 3 is the following:

- the great majority of codes is based on finite volume
(cell-centered or cell-vertex) formulations

- the principle division between codes is between those
using  (block-)structured grids and those with
unstructured grids. The main trade-off factors are
efficiency of grid generation and efficiency of flow
solver. Although unstructured (adaptive) grid methods
seem to gain in importance, in particular for complex
geometries and/or for complex flows, block-structured
grid methods are, as yet, the most common

- most "production-type® codes for sub/transonic flows
use central difference type space discretization. A
substantial fraction of codes, in particular those
intended for supersonic and hypersonic applications,
use some form of upwind discretization technique

- Explicit time stepping schemes of the Runge-Kutta type
are characteristic for most codes, in particular those
with central difference space discretization. However,
implicit features in the form of residual smoothing,
have been added in many cases. Other implicit schemes
are also represented.
Convergence acceleration in the form of local time
stepping is a feature of all codes. Several if not man;,
production-type codes also use multi-grid (as well as

implicit residual smoothing).

It is the editors impression that in several cases
improvements in solver efficiency should be possible.
Further research into the possibilities of relatively
novel techniques like GMRES and Preconditioning
(Chapter 2) is also recommended.

The chapter (4) on Applications illustrates that by now
Euler methods are recognized and used in practice as
engineering and research tools for the analysis and design
of aerospace vehicles in the complete range of speeds from
low subseonic to high supersonic and hypersonic. Although
different groups of people in the NATO countries have
followed different strategies, schemes and algorithms, it
seems that all of their methods can provide good results
for either specific or more general applications.

The big limitation of Computational Aerodynamics Based
on the Euler Equations is, ofcourse, in the absence of
modelling of viscous effects at finite Reynolds number.
Euler methods are therefore being overtaken rapidly by
methods based on the Reynolds-averaged Navier-Stokes
equations. This is illustrated by the fact that several of the
codes listed in Chapter 3 can be run in Euler as well as in
Navier-Stokes mode. (It also leads to the suggestion that
the Fluid Dynamics Panel of AGARD should undertake the
publication of an AGARDograph on Reynolds-averaged
Navier-Stokes methods before the turn of the century!).

It is important to note that proper functioning in Euler
mode is a prerequisite for Navier-Stokes codes because of
the dominance at high Reynolds numbers of the inviscid,
advective terms in the greater part of the flow field. Hence
the "Euler technology”, subject of this AGARDograph, is
equally important for Navier-Stokes codes. It is, in spite of
the current shift in emphasis from Euler to Navier-Stokes,
also not to be expected that Euler ¢: will vanish from
the aerodynamicist’s tool box in due se. The reason is
that the computational effort (an. probably also the
manpower) involved with Euler computations is
significantly smaller than for Navier-Stokes. This makes
Euler methods more attractive for preliminary design
studies,

It is in the nature of this AGARD publication that no
information is contained about work that has been done in
Russia or other non-NATO countries. We probably also
missed significant work from people within the NATO
community that did not come to our notice. All of those,
please accept our apologies.

Finally, we would like to thank again all authors and
colleagues from Universities, Research Establishments, and
Industries, who contributed and helped to put together this
AGARDograph.

Joop Slooff,
Wolfgang Schmidt
Editors,

Fluid Dynamics Panel
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