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Foreward and Introduction 0

Computational Fluid Dynamic (CFD) methods based on the Euler equations have been a subject of intensive research and
development over the past 10 to 15 years They have now reached a stage where applications are an almost routine matter in
most aerospace industries, research laboratones and universities.

After the pioneering work of Lax and Wendroff in the early sixties there was a first, relatively short burst of activities
involving Euler methods in the late sixties and early seventies. These activities were closely related to the reviving interest in
transonic flow and supercritical wing technology in particular; they were soon to be overtaken by developments in transonic
potential flow methods triggered by the work of Murman and Cole.

The main reasons for this shift of attention were an apparent lack of robustness of the Euler methods that had evolved so far
but in particular the fact that potential flow methods offered an almost order-of-magnitude reduction of computational effort.
Given the level of computer technology at the time, the latter was mandatory if computational transonics were to become a
practical tool for the aerospace industry.

While the concentrated efforts on transonic potential flow methods of the seventies and early eighties led to widespread use
of such methods in aerospace applications,* a revival of interest in Euler methods was hound to happen and indeed did take 0
place around 1980, in particular through the interest created by the works of Rizzi and Jameson. The main driving factors for
this revival were:

- the inherent limitations of potential flow theory, in particular the inability to model vorticity;

- the fact that computer power had increased by a lactor 10 to 15 since around 1970; * *
- the fact that a new generation of more efficient discretization schemes and algorithms held promise for future

practical applications.

Research on discretization schemes and algorithms for the Euler equations continues today; not in the least because of the
fact that the convective (i.e "Euler"-) fluxes play a dominant role in CFD methods at the next highest level in mathematical
flow modeling, that is, the Navier-Stokes equations. At the same time however, Euler "codes" have reached a level of
proliferation in the aerospace aerodynamic community that justifies a review of the state of the art. It is worth noting that
Euler methods not only are being used for the simulation of flows for which the modeling of vortiity is mandatory, such as
leading-edge vortex flows and flows involving propulsion simulation, but that they are also being used for non-vortical flows
around complex geometries, since transonic potential flow methods for complex configurations did not fully mature.

The objective of this AGARDograph, then, is to provide a survey of the state-of-the-art in Computational Aerodynamics
Based on the Euler Equations. In terms of technology application, it concentrates on the numerical simulation of external 0
flows about aerospace vehicles.

Internal flows and turbomachinery applications are trot extensively treated but touched upon where considered appropriate. In
terms of "audience" this AGARDograph is, in the first place, aimed at the applied computational aerodynamicist who wants
to get started in this field. However, it might also assist the aerodynamic engineering manager in judging whether his CFD-
tools are sufficiently "state-of-the-art" and, if not, in what direction improvement or extension of capabilitiet shoud be
sought. Finally, it might also help the research community to identify niches for further research. For those readers who
would like to consult basic text books on CFD and Euler methods, some general references are suggested at the end of this
Foreword and Introduction.

Chapter I is intended to provide a background of the fluid and thermodynamic theory required for understanding the physics
modelled by the Euler equations. Chapter 2 describes numerical schemes and algorithms. Although this is done from a CFD
specialist's point of view, the reader should be able to identify the algorithm descriptions given in this chapter with the
methods given in the following chapter. In order to meet the objectives for this report, it was felt that the core of the
AGARDograph should consist of a survey and description of numerical schemes and algorithms, capabilities, and limitations
of the major Euler codes that are currently in use in the NATO countries. For that purpose, requests for information were sent
to institutions, industries and individuals who, to the authors' knowledge, were or had been active in this area. The response
has been collected in Chapter 3, with examples of application given in Chapter 4.

* A survey can be found in AGARDograph 266 "Applied Computational Transonic Aerodynamics" by T. Hoist, et al. 1982.
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The preparation of this AGARDograph has been a team effort involving scientists from both Europe and North America.
Each of the authors contributed to several if not all of the chapters. In addition, each author took responsibility for
coordinating the efforts for the following:

Chapter I Nigel Weatherill
Chapter 2 Philippe Morice
Chapter 3 Herbert Rieger and Wolfang Schmidt
Chapter 4 Jim Thomas and Kyle Anderson

Writing it and putting it all together % as , substantial amount of work. We thank the authors for their efforts and enthusiasm
and their organisations for making it possiu:..

We also thank all the individuals from the NATO countries that provided material to the authors. Without their help this 0
AGARDograph would have been less complete.

Joop Slooff,
Wolfgang Schmidt

Editors,
Fluid Dynamics Panel

General References

1. Hirsch. Ch. "Numerical Computation of Internal and External Flows", Vols. I & 2. John Wiley & Sons Ltd., 1988/90.
ISBN 0 471 91762 1/0 471 92351 6.
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Avant-propos et introduction 0

Les m~thodes dec l'a6rodynamique num6rique (CFD) basses sur les Aquations d'Euler ont fait l'ob'jct de recherches et
ddveloppement intensifs depuis une quinzaine dl'anndes. Aujourd'hui ces mndthodes, sont appliqu&s dc faqon quasi-courante,
dans la plupart des industries airospatiales, des laboratoires de recherche et des universit6s.

Les travaux d'avant-garde de Lax et Wendroff du debut des ann~es soixante ont 6t suivis d'une premiee pdriode d'activit~s,
relativement courte. concernant les m~thodes d'Euler. i la fin des atndes soixante et au debut des ann~es soixante-dix. Ces
activitks etaient 6troitement li~es au regain dl'int~ret qu'il y avait A l'6poque pour les 6coulements transsoniques et les
technologies de profil d'aile supercritique en particulier. Cependant, diles furent rapidement ddpassdes par le developpement
des mndthodes de calcul des 6coulements potentiels tranissoniques engendr~es par les travaux de Murman et Cole.

Les principales raisons de ce changement de direction furent le manque de robustesse apparent des mndthodes d'Euler de
l'dpoque et en particulier le fait que les m~thodes de calcul des dcoulements potentiels permettaient la r~luction du temps de
calcul d'environ un ordre de grandeur. Considdrant le niveau des technologies de l'inforniatique ii l'dpoque, cette r&Juction
s imposait si l'on voulait que Va~rodynamique transsonique num~rique puisse devenir un outil pratique pour P'industrie
afrospatiale.

9tant donne que les efforts consacris aux indthodes de calcul des 6coulements potentiels transsoniques dans les ann~es
soixante-dix et au debut des ann&s quatre-vingts ont conduit A la banalisation de ces methodes dans les applications
adrospatiales, un regain d'intdret pour les mdthodes d'Euler dtait indvitable et ceci s'est produit en 1980, grice. en particulier.
A l'intdtet suscMt par les travaux de Rizzi et Jameson. Les principaux 616ments moteur de ce renouve-au furent :

- les limitations propres i ]a thA-orie de l'6coulement potentiel et, en particulier. la non-faisabilit6 de la moddisation du* *
rotationnel;

- le fait que la puissance de calcul avait augmne d'un facteur de P'ordre de 10 A 15 depuis 1970;

- le fait qu'une nouvelle g~ndration de m~thodes de discrdtisvtion et d'algorithnies plus efticaces semblaient promettre
des applications pratiques A l'avenir.

Les travaux de recherche sur les thfodes de discr~tisation et les algorithmnes pour les 6quations d'Euler se poursuivent
aujourd'hui. principalement A cause du fait que les flux convectifs (c'est-A-dire od'Euler,,) jouent un r~le prddominant dans
les m~thodes de l'adrodynainique numdrique au niveau imm~latement sup~rieur de la modelisation math6matique de
l'&oulement. c'est-A-dire au niveau des 6quations Navier-Stokes. Parall~lement A ces ddveloppements pourtant. les * codes*
Euler ont atteint in niveau de prolif~ration au sein de ]a communautd de l'adrodynaznique adrospatiale qui justifie une revue
de l'6tat de l'art.

11 convient de noter, ici, que les indthodes d'Euler ne sont pas utilis~es uniquement pour la simulation d'6coulements pour
lesquels Ia mod6lisation dui rotationnel est obligatoire. tels que les &coulements tourbillonnaires de bord d'attaque et les
dcoulements avec simulation de Ia propulsion car, en raison dui fait que les mdthodes de calcul des 6coulements potentiels
transsoniques ne sont jamais arrnvies i maturit6, les codes d' Euler sont utilisks aussi pour les icoulements non
tourbillonnaires autour de geomietries complexes.

L'objectif de cehte AGARDographie est. donc, de donner un aperqu de l'6tat de ]'art dans le domaine de Fa~rodynam-ique A
partir des 6quations d'Euler. En matitre d'application de la technologie l'accent est mis sur la simulation numdrique
d'~oulemenits externes autour de vdhicules adrospatiaux. Les flux internes et les applications turbomachines ne sont pas
trait~s en profondeur. mais simplement abordes, le cas dcheant.

En matitre de ftpublic*. cette AGARDographie est destin&., en premier lieu, A l'a&odynamicien concerad par le CFD qui
souhaite se familiariser avec: ce domaine. Cependant, elle est susceptible d'intdresser aussi le manager d'6tude et de
conception en mati~e d'adrodynamique de g~nie aerodynamique et de liii faire savoir si ses outils CFD correspondent k
Qd'6tat de P'art* ou sinon, quelles sont les amnliorations et quelles sont les nouvelles tcapacitA-s A rechercher. Enfin. e
pourrait apporter une aide A )a communaut des chercheurs dans i'identification de projets futurs. Pour ceux qui
souhaiteraient consulter des ouvrages de caractare g~n~ral sur I'ahrodynamique num~rique et les m~thodes d'Euler. un certain
nombre de r~firences sont proposdes A [a fin de cette Introduction et avant-propos.



Le chapitre I prsente l'essentiel de la th~orie de Ia thermodynamique et des fluides n~cessaire i Ia comprifhension de la
physique model~e par les Equations d'Euler. Le chapitre 2 donne la description de mithodes num~riques et d'algorithmes.
Bien que cette description soit donn~c du point de vue du spdcial iste CFD, le lecteur devrait pouvoir identifier les descriptions
des algorithines donn~es dans ce chapitre en se servant des m~thodes donn~es dans le chapitre suivant. Compte tenu de ces
objectifs, les auteurs partageaient l'avis que 1'essentiel de l'AGARDographie devait consister en un tour d'horizon et un
descriptif des th~ories numdriques et des algoritbmes, ainsi que des capacites et des limitations des principaux codes d' Euler
actuellement utilisds par les pays membres de I'OTAN. Ayant cet objectit en vue. des demandes ont Wt adress~es aux
dtablissements. aux industries et aux particuliers, qui, A la connaissance des auteurs. Etajent, ou avaient &6E actifs dans ce
dontaine. Lcs rdponses obtenues sont expos~es au chapitre 3, avec des exemples d'applications au chapitre 4.

La r~daction de cette AGARDographie a Wt un v~ritable travail d'6quipe, mobilisant des scientifiques; de l'Europe et de
l'Amdrique du Nord. Chacun des auteurs, a contribu6 A plusieurs, sinon A l'ensembie des chapitres. En outre, chaque autcur
Etait responsable de la coordination des efforts consacr~s k un chapitre en particulier, comme suit:

Chapitre I Nigel Weatherill
Chapitre 2 Philippe Morice
Chapitre 3 Herbert Rieger et Wolfang Schmnidt
Chapitre 4 Jim Thomas et Kyle Anderson

La r~daction et ]a misc en fonme ont reprdsente un travail consid~rable. Nous tenons A remercier les auteurs de leurs efforts et
Icur enthousiasme. ainsi que leurs organisations respectives, sans lesquelles cette publication n'aurait pas vu Ie jour.

Nos remerciements sont dgalement dOs aux diff~rentes personnes de Ia majorit6 des pays de I'OTAN qui ont fourni des
informations aux auteurs. Sans ]cur concours, cette AGARDographie aurait &t6 momns compl~e.
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Nomenclature

The objective has been to define all symbols locally in the text. u velocity of moving %urtace
The main symbols and notations ae summarzed below. V volume

v specific volume
(,mnl ekicity vector w ith cartesian components

Boldv vector of conservced variable,
vectors of variables indicated in bold x,y , cartesian coordinates

matrices indicated in BOLD capitals Greek 0

or---ar a angle of attack
geometrical/physical vectors indicated by an overbar 0 angle ot side slip

F circulation

tensors indicated in 84d with overbar - ratio of specific heat',

A A( time step
circumflex AxAyAz
indicates quantity expressed in generalized coordinates spatial steps

tilde 8finite difference (operator)l

denotes quantity obtained through averaging pricess n

Arabic ,vorticity (vector)

a speed of sound 0weighing factor in generalized explicit/

drag coefficient implicit difference scheme (section 2.11

C, lift coefficient X spectral radius or eigenvalue

C, side force coefficient f averaging operator * W

C, rolling moment coefficient v kinematic viscosity
CP pressure coefficient (p-p.)/0.5*p. U weighting factor in generalized forward/
CFL Courant number backward difference formulae (section 2.1
C, specific heat at constant pressure ;,.r,; curvilinear coordinates
c, specific heat at constant volume p density
D dissipation flux tensor 1 boundary of domain .1 0
DP/P = (p-p")/p." Y At/&s
E total energy per unit volume compressibility of a gas or fluid. artificial
e internal energy per unit mass time
F Flux vector/tensor with components f.gh (or stream function

F,G.Ii)

fT force (vector) volume of a domain
g gravitational constant W angular velocity, relaxation factor

H total enthalpy
h enthalpy per unit mass Subscripts
i. J, k cartesian unit vectors ik refer% to spatial mesh point location
J Jacobian of coordinate transformation in refers t alemin minimum value
k reduced frequency max maximum value
M Mach number ma man value 4nnormal vector mma au

n, Prandtl number n normal (component)
P pressue o stagnation value

vector of primitesr variables T at constant temperatureq eto fprmt aialst tangential component. time derivative
R universal gas constant, residual tan ti component ieeivie
Rt Riemann variables x~y~z components in y directions
R. Reynolds number derivatives with respect to x.yzI4sl.
r.r position (vector) .r w e.

S discontinuity surface freestream value
s entropy per unit mass
T temperature Superscripts

t time n iteration/time level
U.V.W contra-variant velocity components T transposed (matrix) 0
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Chapter 1 *

Basic Theory
Some of the issues alluded to in this introduction will now be
considered in further detail. The intention is thai, within this
chapter, the basic formulations required in the study of

1.1 FLUID, GAS AND THERMO DYNAMICS computational inviscid aerodynamics will be presented. 0

A general definition of a fluid is any material that cannot sustain
A tangential, or shearing force when at rest and that undergoes a 1.1.1 Compressibility of Gases
continuous change in shape when subjected to a stress. This
continuous and irrecoverable change of position of one part of In general terms, a compressible flow is one in which there is a
the material relative to another part when under shear stress variation in density of the fluid. This rather vague definition
constitutes flow, a characteristic property of fluids. In contrast, must be enhanced if it is to be of value. Consider a small
the shearing forces in a solid, held in a twisted or flexed element of fluid of volume V, in which the pressure exerted
position, are maintained; the solid undergoes no flow and can upon it is p. If the pressure is increased by a small amount p,
spring back to its original shape. the volume of the element will be compressed by an amount 6V.

Various simplifications, or models, of fluids have been devised Hence the compressibility of the fluid t. can be defined as
to analyze fluid flow. The simplest model, and the one primarily
of interest in this document, called a perfect, or ideal fluid is one
that is unable to conduct heat or to offer any internal resistance =Iv

to one portion flowing over another. A perfect fluid cannot Vsp'

sustain a tangential force, that is, it lacks viscosity and is called
an inviscid fluid. which, in the limit, can be expressed in derivative form as,

The study of the effects of forces and energy on liquids and I dV
gases is known as fluid mechanics. Like other branches of t -1. 1)

classical mechanics, the subject subdivides into statics (often
called hydrostatics) and dynamics (fluid dynamics,
hydrodynamics, or aerodynamics). Hydrostatics is a The negative sign indicates a decrease in volume for an increase
comparatively elementary subject with a few classical results of
importance but little scope for further development. Fluid in pressure.

dynamics, in contrast, is a highly developed branch of science Compressibility is. therefore, the fractional change in volume of
that has been the subject of continuous and expanding research the fluid per unit change in pressure. However, this description

activity from around 1800 to the present day. is not adequate. since when a gas is compressed the temperature

The development of fluid dynamics has been strongly influenced will, in general, change. Hence, it is necessary to introduce the

by its numerous applications. In the area of aeronautical idea of an isothermal compressibiliy in which the temperature

engineering and the study of flight the importance of fluid is held constant. The definition is now extended to 0
dynamics is obvious. 1 dV)'IT :" V T(1.1.2)

Traditionally, fluid dynamics has been studied both theoretically

and experimentally. The phenomena of fluid motion, as will be where the subscript T denotes that the change in volume takes
described in the following sections, are governed by known place at constant temperature.
laws of physics -conservation of mass, the laws of classical
mechanics (Newton's laws of motion), and the laws of Alternatively, if no heat is added to, or taken away from, the
thermodynamics. As will be demonstrated, these can be fluid element (i.e. the compression is adiabatic) then the
formulated as a set of nonlinear partial differential equations, compressibility is isentropic and is defined as
and in principle one might hope to infer all the phenomena from
these. In practice, this has not been possible; the mathematical I dV
theory is difficult and the nonlinear nature of the equations are =(1.13)
no: amenable to classical mathematical approaches. More
recently, with the advent of high speed computers, the science where now the subscript S denotes that the change in volume
of computational fluid dynamics has emerged which aims to takes place at constant entropy. If the fluid element is assumed
solve the governing fluid flow equations with the use of to have a unit mass, v is then the specific volume and the density 0
numerical techniques which are carried out in the computer.
However, the complexity of the problems associated with either p = v. Eq. ( 1. 1) can then be expressed in terms of the density
the mathematical or computational approaches to fluid dynamics in the form
necessitates the continuing research in observations of fluid
motion both in the laboratory and in nature.

SI dp(.1)

Traditionally. liquids and gases are classified together as fluids = P p
because, over a wide range of situations, they have identical
equations of motion and thus exhibit the same phenomena. It is evident from Eq. (1.1.4) that whenever a fluid experiences
However. in the applications to be discussed here, flow speeds a change in pressure, dp. the corresponding change in density
are comparable with that of the speed of sound, where the
density of the fluid changes significantly. This phenomena is of will be dp, where
practical importance only for gases. However. throughout the
document the term fluid will be assurned to be used in a generic dp = p T dp (1.1.5)
sense, with the implied assumption of application to gases.

From this statement, it is clear that all fluids are compressible to 5
some extent. However, some fluids have very low values of

*
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compressibility. For water. t T =  x 10- 1 0 m 2/N at I However, at very low temperatures and high pressures,
atmosphere(atm). whereas, gases have a high compressibility, molecules are more closely packed and intermolecular effects

can be significant. Under these conditions, the gas is defined as
-5 2 a real gas. In such cases the perfect gas relations (1.1.6 - 1.1.8)typically. for air T T = 5 x 10 im N at I atm. The concept of are replaced by more accurate relations.

an incompressible fluid is an assumption which is only true if
density changes are negligibly small. Primarily, in this The first serious attempt to understand the behaviour of real
document flow conditions are such that changes in density are gases was made by van der Waals in 1873. The van der Waals
significant and the approximation of an incompressible fluid equation,
cannot be made.

(p+-4)(v-b)=RT (1.1.9)
1.1.2 Gas Laws V
The relationships between the volume of a gas and its contains the two adjustable parameters a and b which are

temperature and pressure are fundamental properties of gases. dependent upon the gas. Eq. (1.1.9) shows that, with molecular
These relationships are described in the so-called gas laws. attraction, the pressure p is incremented by the term a/v2. whilst

the finite volume occupied by the molecules reduces from v to
The first law is due to Boyle and states that the volume of a (v-b). There are now over 100 emperical thermal equations of
given quantity of gas, V, varies inversely with the pressure state available for a whole range of gases. Of the two best
exerted on it, if the temperature is constant. From experiment the known, one contains 5 adjustable parameters whilst the other
constant of proportionality can be found and then Boyle's law ccan e wrttencontains 8 such parameters. These equations can reproduce the
can be written complete range of pressure, volume and temperature behaviour

V=k lP. from gas phase to condensation. The main use of such relations

is that, through interpolation, the behaviour of the gas at non-
The second law is due to Charles and states that the volume of measured values can be approximated.
gas varies directly as its absolute temperature, if the pressure is
kept constant. Again the constant of proportionality can be One of the most convenient ways of expressing the thermal
determined from experiment and then Charles's law written as equation of state for a real gas is to use the virial equation of

state. This can be expressed asV=k2,T.

p I+ BIT) C(T) DIT)
If both pressure and temperature are changed at the same time, RT- v v v2 - "
both these equations must be used to calculate the change in
volume, pressure or temperature. A single equation can be The quantities B(T), C(T), D(T), etc. are called the second, third
derived from Boyles's and Charles's laws: the product of the and fourth virial coefficients, the first virial coefficient being
pressure and the volume equals the product of the temperature unity. They are all independent of the gas pressure and density,
and a constant, called the universal gas constant, R. This can be and dependent upon the temperature only. Clearly for a .erfect
written as gas this reduces to the ideal gas law.

pV = RT, (1.1.6a) In the microscopic view of a gas, individual molecules are in
random motion, colliding with other molecules. Evidently, there

where V is the volume of one mole of gas. are many forms of energy inherent to motion of this type. The
internal energy, e, of a gas is the total sum of all these different

It is possible to also derive this fundamental gas relationship energies. If the particles of the gas are in a state of maximum 0
from the kinetic theory of gases. It is known that molecules disorder, then the system of particles is in equilibrium, i.e. no
possess a force field which interacts with neighbour molecules, gradients in velocity, pressure, temperature and chemical
A perfect gas is one in which these intermolecular forces are concentrations exist in the system. It proves appropriate to
negligible. From this assumption it is possible to derive from introduce a further property of a gas and that is enthalpy. The
kinetic theory the equation of state for a perfect gas. enthalpy, h, is defined, per unit mass, as
Historically, the equation of state was derived in the form

pV = MRT (. 1.6b) h

If a gas is not chemically reacting, and intermolecular forces are
where V is the volume of the system, M is the mass of the ignored, then the resulting system is a thermally perfect gas
system, and is equivalent to (1.1.6a). Many different forms of where internal energy and enthalpy are functions of temperature
this equation can be derived. It follows that, on dividing by the only and where the specific heats at constant volume and
mass of the system, (1.1.6) can be expressed as pressure, cv and cp, are also functions of temperature only:

pv=RT (1.1.7) e = e(T), h = h(T), de = cv dT, dh = cp dT. (0.1.11)

where v is the specific volume, or, alternatively, using the fact

thatp=I. as The ratio cp/cv = y, where, for air at standard conditions, y1.4.

For a real gas it should be noted that the internal energy and
p = pRT. (1.1.8) enthalpy are functions of both temperature and volume, i.e.

e =e(T,v). h =h(T~p). (1.1.12)

Other expressions are also possible. e

If the specific heats are constant, the system is a calorically
It is worth considering the accuracy of the assumption of a perfect gas, where
perfect gas. Experimentally, it has been determined that, at low
pressures (near I atm or less) and at high temperatures (273 e= cv T, h= Cp T. (1.1.13)
Kelvin(K) and above), the value pv/RT for most pure gases
deviates from unity by less than I percent. Useful expressions for the specific heats are

An ideal gas, or perfect gas obeys the gas relation. 0

-- i I l i i i il i ~ i i .... 0. .
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yR I For a given &, there are many ways in which heat can be added

cp I(1.1.14) and work done on the system. Sonic of particular interest are

and R Adiabatic process - one in which no heat is added to or taken 0
Cv= (1.1.15) from the system.

Reversible process - one in which no dissipative phenomena
Eqs (1. I. 14) and (1. . 15) are valid for a thermally or calorically occur, i.e.. where the effects of viscosity. thermal conductivity
perfect gas but are not valid for either a chemically reacting or a and mass diffusion are absent.
real gas. Isentropic process - one which is both adiabatic and reversible.

In many compressible flow applications the pressures and
temperatures are such that the gas can be considered as The second law of thermodynamics states in which direction a
calorically perfect. However, it should be noted that in some thermodynamic process will occur. To provide a more formal
applications associated with hypersonic flows, where definition, the state variable entropy is introduced as
temperatures can be high, the assumption of a calorically perfect
gas is invalid. At excessive temperatures, where molecules start
to dissociate, chemical reactions occur and then the internal ds -
energy depends on both the temperature and volume, and the
enthalpy on temperature and pressure. As the temperature of a where s is the entropy of the system, 8q is an incremental
gas increases it changes behaviour from calorically perfect to
thermally perfect. amount of heat added reversibly to the system, and T is the •

system temperature. Alternative definitions exist, such as
The behaviour of gases at high temperatures can be predicted
accurately using statistical mechanics. Many varied forms of ds = - + ds
behaviour can be studied using these ideas and the fundamental T = rrev (I.1.16)
relationships relating temperature and pressure to density and
enthalpy can be derived, which clearly states that the change in entropy during an

incremental process is equal to the actual heat added divided by
Air at normal room temperature and pressure is composed of the temperature plus a contribution from the irreversible S
approximately 79% nitrogen, 20% oxygen and 1% trace dissipative phenomena of viscosity, thermal conductivity and
species. Hence, to a reasonable level of approximation the mass diffusion occurring within the system. These dissipative
behaviour of the 2 species, oxygen and nitrogen are important. phenomena always increase the entropy
As the temperature is increased to within the range
2500K<T<9000K. chemical reactions take place between dsirre v > 0.
oxygen and nitrogen, producing not only 02 and N, but also 0,

N, NO. NO-, and e. If a fixed temperature and pressure are The entropy can be computed from a variety of expressions, * *
maintained, then in time the condition of chemical equilibrium is such as
reached. In the case of an equilibrium chemically reacting gas, Tds = de + p dv (1.1,17)
the chemical composition i.e. the amounts of each species, is and
determined uniquely by the pressure and temperature. In the
time required to reach steady state, the behaviour is that of a Tds dh - v dp (1.1.18)
non-equilibrium chemically reacting gas.

Details of the gas laws for these different states can be found in Above, an isentropic process was defined as adiabatic and

appropriate texts 1.2 For an equilibrium chemically reacting gas, reversible and hence ds = 0. i.e. the entropy is constant.

in addition to the flow equations, it is necessary to determine the Disturbances in fluids are transmitted through the flow field by
chemistry of the gas. In general, if the gas has K species and H molecular action. Molecules collide with their neighbours,
elements then (K-H) independent chemical equations are needed transferring the newly acquired energy to others. This wave of
together with equations for mass balance and partial pressures. energy travels through the air at a velocity that is related to the
For air, with elements 0, N and electric charge e-, and 7 molecular velocity. The energy increase causes the pressure, as

02. N-, 0, N. NO, NO+ and - this results in 7 non- well as density and temperature, to change slightly. In this way,
species, 0any disturbance is propagated throughout the flow field. As will
linear, simultaneous algebraic equations. be described, the velocity at which disturbances are propagated

is of central importance to the field of aerodynamics.
When non-equilibrium chemical reactions are considered, it is
necessary to also determine the evolution of the chemical Consider a sound wave moving with velocity, a, through a gas.
species. This is achieved by solving the appropriate chemical The flow through the sound wave is one dimensional. Applying
rate equations, which take the form of conservation of mass across the wave front, leads to

aPoti ipcEiu apativ apctiw pa = (p+dp) (a+da), (1.1.19)-- + - -+ -- - + =Qi
which, if products of small quantities are ignored, leads to

where cai are the mass fractions of the chemical species, and Qi da (1.1.20)
are the source terms. a = - p

It is useful at this stage to consider further definitions related to •
compressible gas dynamics. The first law of thermodynamics Conservation of momentum across the wave front, can be

states that the heat added to a system, Sq , and the work done on similarly be expressed as

the system, 8w, cause a change in energy, and since the system p+pa2 = (p+dp) +(p+dp) (a + da)2  
(1.1.21)

is stationary. this change in energy, &-, is
Expanding and using Eq. (1.1.20) to find da, gives an

8e = 8q + 8w expression for the speed of sound;

S *
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a2 = OR (1.1.22)
dp

The changes which occur across the wave front are small This
implies that the irreversible, dissipative effects of friction and 0
thermal conduction are negligible. Further, there is no heat
addition to the system, and hence the process inside a sound
wave is isentropic. Hence, the rate of change of pressure with
density is an isentropic change and hence Eq. (1.1-22) can be
written

a2 =OS (1.1.23)

This equation demonstrates that the speed of sound is a direct
measure of the compressibility of a ga,,. Using the expression
for compressibility, Eq. (. 1.23 ) can bc Aritten as

a = = (1. 1.241

In turn, for a calorically perfect gas this can be expressed as

It is noted that for a perfect gas the speed of sound is a function
of temperature only. At standard sea level conditions the speed .
of sound is

as=340.9 m/s =1I117 ft/s.

For aeronautical flows, a useful classification of flows arises if 0 0
the local speed. q. is normalised with respect to the speed of
sound. This normalisation introduces the concept of the Mach
number M. defined as

MY (1.1.26)
a

Three natural classifications of different flow regimes then 

follow:

M < I subsonic flow

M =l sonic flow

M > I supersonic flow.

The Mach number plays an important role in aeronautics, since
the physical nature of flows is radically different dependent
upon the Mach number. Clearly, interesting phenomena are to

be expected if an object is travelling at a speed which is greater
than that at which disturbances created by it are propagated.
Further diseussions on this will be given later in this document.

1.1.3 References

I. LIEPMANN H. W. and ROSHKO A., E/ements of
Gasdynamics, Wiley, New York, 1957.

2. ANDERSON J. D. Modern Compressible Flow. McGraw-
Hill. 1989.
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1.2 CONSERVATION EQUATIONS FOR The Boltzmann equation from the Kinetic Theor) of gases can

INVISCID FLOWS be expressed as,

The fundamental equations of fluid dynamics have been known )fv -.- J.
for over a century. The French engineer Claide-Louis-Marie + v o (1. 21)
Navier and the British physicist George Gabriel Stokes are
credited with the original derivation, and hence the governing
fluid flow equations are known by their respective names. On where fv is the velocity distribution function which gives the
the basis of a molecular hypothesis, Navier arrived in 1827 at a
theory of elasticity of isotropic solids (solids in which elasticity number density, in phase spac :. of molecules with position x
is uniform in all directions) that contained only one elastic
constant. Later in 1845. Stokes, using phenomenological and velocity v at time t. The function. J, on the right hand side

concepts. produced the modern theory which invokes concepts of the equation, represents a molecular collision term which
of shear and bulk modulus, Careful experiments later confirmed vanishes in the Euler limit. The Maxwellian velocity distribution
the work of these two scientists. These equations govern the in 2 dimensions is given by
dynamics of all fluid flow and it is only the imposed boundary
conditions and the physical natu"- of the fluid which
distinguishes the different fluid motions. fM - expl- lv i-u ) ., -u2

)2  
-

Before Navier and Sto:es. the Swiss scientist Leonhard Euler where 0=1/2RT), p=mass density, T the temperature, R the
had derivd in 1775 a svt of equations valid for a fluid assumed T
to be non-viscous and nan-heat conducting. These equations are gas constant per unit mass, v =(v1Iv 2) is the molecular
a subset of the Navier-Stokes equations where the viscous and velocity vector, u- =tu.v)T is the fluid velocity vector, I the
heat conduction terms are neglected. internal energy variable corresponding to non-translational

The dynamics of fluid motion are governed by fundamental degrees of freedom needed to force the given value of y for the
physical principles. To construct the relevant equations for fluid gas consisting of pseudo particles, 10 is the internal energy due
motion it is neces.,ary to select the appropriate laws of physics to non-translational degrees of freedom , and y the ratio of
and to apply them to a suitable model of the fluid. From these
the governing mathematical equations can be extracted. The specific heats.
properties of a fluid will be fully defined once the velocity field
v , pressure p, density p and temperature T are known, in the The Euler equations can be derived by taking moments of the

Eulerian sense, as functions of the space coordinate r and the Boltzmann equation. The appropriate moment vector is defined
time t so as to satisfy a sufficient set of boundary and initial as

condition,.

All fluids satisfy the laws that mass, momentum and energy are l,v ,v2 , I + v2+v2V)/21 T 1.2.2)
conserved. The conservation of momentum is equivalent to
Newton's laws of motion, in particular, the force applied to a
body is equal to the product of the body's mass and its Applying the moment vector Eq. (1.2.2) to the Boltzmann
acceleration. These physical laws, in principle, are sufficient to equation, Eq. (1.2. 1). leads to the Euler equations in the familiar
enable the equations for fluid motion to be derived. However, it differential form,
is clearly necessary, before these laws can be implemented, to a af
define and describe how a fluid is to be modelled. -+ a + ax =, (1.2.3)1 x2

A fluid can be thought of in a number of different ways. For
example, on a microscopic scale, a fluid element of volume dV where
which, although infinitesimal on a macroscopic scale, will
contain a representative number of molecules, ndV. Fora F 1 p 1 F 1
monatomic gas, it can be assumed that these molecules move at [ pu pv
constant but widely different and independent velocities, with pu pu2 ,p v
collisions between molecules taking place in a random manner. w Lp+p pu v (1.2.4)

Application of the fundamental physical laws to this model of a pv puv [ pv-+p
fluid, often called the kinetic theory, would result in an pE Lu(p+pEd v(p+pE)_]

appropriate mathematical description of fluid flow.

Alternatively, a fluid can be thought of at a macroscopic level,
and the physical laws applied to a closed small fluid element, and the equations of state, with p the density, uv the Cartesian
which is. however, large enough to contain a very large number velocity components, p the pressure and E the total energy per
of molecules so that it can be viewed as a continuous medium. unit vol-ime. The relationship between the Boltzmann and Euler
This approach invokes the continuum hypothesis on which equations can be written as
many classic theories of fluid motion are based.

Whichever model of a fluid is chosen it is to be expected that the <, a + Va + v2 fM = aw + a. 2-5)
resulting governing equations are equivalent. In this section the at v2 ax2 > at ax I2 .
equations which govern inviscid, non-conducting fluids will be
derived. where the moments are defined as

1.2.1 Governing Equations <,P~fM> = dl fdv l rd,,, q-P f." r.2
Derivation from Kinetic Theory .d..

The approach relies upon the fact that the Euler equations of with v I and v2 the components of the molecular velocity vector
fluid mechanics can be obtained by taking moments of the and fm the Maxwellian distribution in 2 dimensions'. it
Boltzmann equation, with a Maxwellian velocity distribution d i
function. follows, therefore, that the following relations hold

.... ... . . . 'm* *m l to* m mit 'l lllltamm lnt ~ dm t m " I l ... .. ." . ..
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w='<P. fM>. f-<p, vlfM >, and 9"P, v2fM> (1.2.7) in the domain Q must equal the change in mass across the
domain boundary E. Hence, in integral form, this can be written

The formulation presented thus involves two levels; the as

Boltzmann level, Fq (.2. 1), and the Euler level, Eq. (1.2.3), d
with the connection given by the moments defined in Eq. - Jpd.Q= - p v. n d: (1.2.8)

(l2.2.8)

This is the continuity equation, or conservation of mass
Euerian Approach to the Governing Equations equation, in integral form.

From a macroscopic continuum approach the governing
equations of fluid motion are derived by considering the three Conservation of momenta
fundamental physical principles that

Newton's second law can be stated as the time rate of change of
a) mass is conserved, momentum of a body equals the net force exerted on it. This
b) force = mass x acceleration principle is valid for the control volume. 2 and when applied
c) energy is conserved, leads to the equation for the conservation of momenta.

If each of these physical laws are applied in a control volume Consider first the contribution to the forces. The net forces

formulation the governing motion of a fluid can be derived
2 .  acting on the volume, excluding frictional forces can be thought

of as taking two forms. Firstly, body forces acting on the fluid

Consider an arbitrary, but stationary, control volume 0, as inside Q. Such forces arise from, for example, electromagnetic

shown in Fig. 1.2.1. bounded by a closed surface Z,, which has or gravitation effects. If f denotes the body force per unit mass

an outward unit normal vector n at a point A on the surface. of fluid, then the force on an incremental volume dQ is equal to

Let d2- be an incremental area on the bounding surface around the product of the mass and the force per unit mass, namely

point A. Define d -n- d. Let v- and p be the local (pd)f. For the entire control volume this is summed to give

velocity and density at the point A, respectively, with v at an

angle 0 to n. f dQ

n v The second type of force on the fluid arises from surface effects.
n These arise from pressure and shear stress distributions over the

surface. Since, here only inviscid fluids are to be considered, 0 0
A Tthese latter contributions will be ignored. The pressure force

acting on an elemental area n d 1 is -p n dl, where the

negative sign indicates that the pressure acts inwards, The
pressure effect can be summed to give a contribution to the
forces from pressure over the complete surface in the form

Figure 1.2.1 Domain 0 enclosed by contour 1. f

Mass Conservation The principle of conservation of momenta can be applied within
a control volume. The mass, in the control volume, can be

The mass flow through any surface arbitrarily oriented in a -v .

flowing fluid is equal to the product of density, the component expressed as p v . n dE, which has a momentum of

of velocity normal to the surface, and the area. Thus, (p v . n d1) v . The net rate of flow of momentum is,

therefore,
mass flow = p (Vcos 0) dY = p Vn dl = p v . n dE

The net mass flux into the control volume , through the entire Pp v . n dZ) v

control surface 1. is the sum of all incremental mass flows, i.e.

In addition to this contribution, there can arise a contribution of 0

JP v .n d momentum of (pdQ)-v for an elemental volume dil, from

E unsteady effects taking place within the control volume Q.
Hence, another contribution should be added in the form of

The negative sign indicates that the mass flow is into the control

volume in the opposite sense of the outward vector n . The total d f(pdQ)

mass inside an incremental control volume is p dQ. Hence, the di d .

total mass in 0 is the volume integral

The conservation of momentum now gives

fp dUl
di = - .j(Pv.nudv ) JPO- /pd - Jpn-dQa dt(p-) dQ f( v nd v fQ n dl

Since, in the absence of any mass sources or sinks, the mass of Y 2:

the fluid is conserved then, the time rate of change of the mass (1.2.9)

, I I I I - i . . . . . .. . . . . i 0 0
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Equation (1.2.9) is called the momentum equation for inviscid d I? I--2 dl . + -d

flow and is presented here in its integral form. di A P(e+ 5 v -dQ + p P . n -)d 2:

Consert'alion of Energy qd -Jp .vd+Jpfd2.-0
,.'qp~d0 - .'p 11- -v-+ .f ( p f dU). v- ,(1.2.10)

Finally, it is necessary to consider the equation for energy- . :
Energy cannot be created or destroyed. it can only change its
form. If the energy principles are applied to the control volume

0 then clearly, the rate of heat added to the fluid plus the rate of It should be noted that this energy equation does not include

work done on the fluid is equal to the rate of change of energy work done by viscous stresses or heat added to the system due

of the fluid as it flows through the control volume i.e. energyis to thermal conduction and diffusion. Equation (1.210)

conserved. represents the conser,,s,tin of energy written in integral form for
an inviscid fluid.

If the rate of heat added per unit mass is q, then the rate of heat T'he conservation equations derived abu~ve Eq. (1.2.X). 1.2.9).

added to an incremental volume with mass (pd(2) is q(pdf2), and (1.2.10) represent, in 3 dimensions. 5 equations for the 6

Summing all such effects with the control volume 0, gives unknowns p, v =tu.v.w). e and T. Trhe system of equations is

closed with the addition of an equation of state, namely,

'(qp)dil .
fqp p=pRT

These together with the thermodynamic relation ce(T.v) which,

The pressure force acting on the elemental area dE is -pdE. The as discussed previously, simplifics to e=cvT for a perfect gas,

rate of v,'rk done on the fluid which passes through n dl; with are sufficient equations to analyse inviscid compressible flows
- of an equilibrium gas. These equations can be written in many

velocity v is therefore. (-p n dl) v . Hence, over the complete different forms, and two are worthy of note here since they will

surface the contribution is be used later.

p n . v dL 1.2.2 Governing Equations in
I Conservative Integral Form

The rate of work done by the body force. f per unit mass on To standardise the equations a unified representation often used

the elemental volume dK1 is (p fdMy v and thus the in computational aerodynamics is *
contribution for the entire control volume is fJwdQ+ fF.nd> JPfedl (1.2.11)

J (p dl).

The conserved variable w and the Cartesian flux function F

The internal energy, for a stationary fluid was previously are given by:
rep.esented as e. If the fluid is also in motion then, in addition,

it possesses kinetic energy in the form of_5 v . Hence, the total P PL pv

energy per unit mass of the moving fluid is the sum of the pu pu-+p puv puw

1--2 w pv2+p h |pw
internal and kinetic energies, e+ v . For an elemental control pv f P'

S1-- L pw puw Pvw pw-+p

surface dZ, the flux of energy across dY is v . n dl;(e+ V " pE- puH pvH pwH

For the complete bounding surface this sums to

p - - 1-2 and the force vector

fv . n(e+ 5v ) dZ

The time rate of change of energy in 0 due to transient
variations of the flowfield variables can be expressed as f= fz

d~p(e+ 1 v 2) dQ.

where, uv and w are the Cartesian velocity components. E and

H=h+V
2/2 are, respectively, the total energy and total enthalpy

Hence. rearranging the integrands. ind applying the law that the per unit volume. The temperature T is obtained from the
time rate of change of the conserved quantity must be equal to equation of state which closes the system, namely
the flux through the boundary surface, together with production
terms, leads to p=pRT.

0i



1.2.3 Governing Equations in Conservative 1.2.5 Physics of Inviscid Flows
Differential Form It is important to understand both in a mathematical and a

Integral forms of the equations, derived from an analysis of physical sense the consequences of neglecting the viscous
conservation laws within a domain, can be converted to stresses inherent to any tluid. Reviewing the governing
repfsentatuon at a point using th ... l1 known vector idetine, equations it is noted that the temperature only appears in theform of the equation of state and that the flow is governed by a

dY . system of non-linear partial differential equations of first order.
d (V.A-)d (..12) The equations descnbe flow, with or without rotation and it is

" appropriate to introduce a relationship known as Crocco's
equation which, for steady flows, can be written as

and

v x to =VH-TVSJe.dY = J(V8)d12 (1.2.13)

where v is the velocity vector, to the vorticity vector, H the
where A and are arbitrary vectors and scalars, respectively, total energy and S the entropy. Thus, neglecting viscosity and

heat conduction, vorticity is present in the field of flow
whenever the distribution of the total energy H or the entropy S

It can be readily shown that the application of Eq. (1.2.12) and is not uniform. This can happen, for example, when the fluid 0
(1.2.13) to Eq.(1.2. I1) leads to the following differential forms starts from a state of rest but of non-uniform temperature, or
of the governing equations of inviscid fluid motion. downstream of a curved shock wave. If vorticity is present

and/or is created, then the convective terms in the Euler
d_+ - equations ensure that it will be convected around the flow field.

V.(P -)=0 It also implies that once vorticity has been created it is modelled
in a mathematically consistent form. The ability of the equations

+.( -= - + Pf to admit vorticity is important in such applications as flows
+ V.(pu v F involving jets, flows involving propeller slip streams and 0

a(pv) = a rotating systems like propellors and helicopter rotors.)i + V .(pv - ) = o + Ply (1.2.14)
+ V( The uniqueness of a solution derived from the Euler equations is

(pw) - a + f ensured by imposing the additional condition that entropy may
-.-- (pw v ? + Pz not decrease along a streamline (Second Law of

Thermodynamics). This then precludes the existence of
and expansion shocks. * O

Oj (pE)+V.(pEv)=-V.(pv-)+pq+p(f. ) The Euler equations admit 'weak' solutions with contact or
vortex sheet type discontinuities. This raises the interesting issue
of how the equations model lift. In the Full Potential equation it

Again, the equation of state, Eq. (1.1.8) is necessary to introduce a cut carrying a jump in potential from
a trailing edge to downstream infinity in order to model the

p=pRT circulation in each section of a wing. By contrast, however,
since vortex sheet discontinuities represent possible weak

and the energy relation solutions, it can be argued that circulation and hence lift are
phenomena that are inherently modelled by the Euler equations.

e = e(T,v) Much discussion has taken place on such issues and many of the

augment these equations. issues have been resolved through numerical experimentation. It
is now known that, with suitable artificial viscosity models,
vortex sheets can be captured like shock waves and that in a time
dependent solution approach (with artificial viscosity) the
circulation and lift of airfoils and wings come out at the correct S
level without having to impose a Kutta condition. It is now1.2.4 Rotating Frame of Reference thought that this situation arises because the artificial viscosity

In many applications it is necessary to describe the gplays a similar role to real time dependent viscosity. So,
eqion s in a rotating frame of reference. If the goveming although the Euler equations do not have a mechanism for the
equations inf system is generation of vorticity, apart from at shock waves, the artificial

rotating steadily with angular velocity to around an axis along viscosity inherent within the numerical solution of the equations
plays a role similar to the physical viscosity in the sens- that it

which a coordinate z is aligned, and w is the velocity field generates vorticity which can cause, for example, th,' flow to 0
relative to the rotating frame of reference, then separate.

-- - It can also be argued that an inviscid shear flow negotiating av = w + to x r . pressure gradient will separate when the static pressure equals
the total pressure of the surface streamline. It therefore seems

The rotating frame of reference does not effect the conservation reasonable that we may expect solutions of the Euler equations
of mass equation, but introduces additional terms into the with added artificial viscosity to exhibit separation and vortex
momenta and energy equations. Full details of the complete sheets when i) sufficient vorticity has been generated through S
equations can be found in standard texts3' 4. the artificial viscosity (in particular, at the surface of a

configuration) and ii) there are sufficiently large variations in
flow angle and/or pressure gradients. However, there is a
general lack of knowledge on the behaviour of the mathematical
solutions of the Euler equations near non smooth boundary
surfaces.

.. ..... ... . am m, m, t~ lmlllali a. .. i ll i I ... . . . .. . + + -.. ..
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The amount of voicity generated by the artificial viscosity is
dependent upon many aspects of the numerical procedure,
including mesh charactenstics and *mposition of boundary
conditions. In the case of flow around a sharp edge the positive
and adverse pressure gradients are No large that the 'inviscid
separation always takes place. On smooth surfaces 'inviscid'
separation may or may not take place, depending on the amount
of vonicity generated by the artificial viscosity and local adverse
pressure gradient.

Problems and issues raised here may be considered in the more
general context of existence and uniqueness of steady solutions
of the Navier-Stokes equations in the limit of vanishing
viscosity. The conditions for existence and uniqueness of such
solutions are not generally known. However, there is
experimental evidence that for finite but high Reynolds numbers
there may be conditions where a steady flow solution does not
exist or where there may be multiple steady solutions.

1.2.6 References

1. DESHPANDE S. M. "On the Maxwellian Distribution,
Symmetric Form, and Entropy Conservation for the Euler
Equations", NASA TP-2583, 1986.

2. ANDERSON J. D. Modern Compressible Flow, McGraw-
Hill, 1989. 0

3. BATCHELOR G. K. An Introduction to Fluid Dynamics,
Cambridge University Press, 1974.

4. HIIRSCH C. Numerical Computation olnternal and External
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1.3 JUMP RELATIONS, WEAK SOLUTIONS, The discussion about the properties of a discontinuous solu-
REEMANN PROBLEM lion of the Euler system is based on Eq. I J.37-9) and

depends on the value of Q.

Discontinuous solutions of the system of Euler equations may
exist and develop due to the hyperbolic nature of these equa- 1.3.1 Contact discontinuity - Vortex sheet
tions. They are actually contained in the integral conserva-
tion laws for an arbitrary volume Q bounded by a surface I
moving with velocity ii:: When Q = 0, the mass flow through S is zero, S acts like an

impervious surface with continuity of the pressure since from
d- f wdx + f(-w ) '4xdO=O (1.3.1) Eq. 1.3.7 we have:

lp 1=0 0
Assuming that a discontinuity surface S moving with velocity
u. is present inside U and divides it in two volumes Q1 and It is also clear from Eq. 1.3.9) that
U, we apply the conservation laws separately to each
volume and subtract the result from Eq. (1.3.1), that leads to: f 0

I - w j is I. do = 0 (1.3.2) However I v, I is arbitrary and we can distinguish two situa-

s tions :

where [ I stands for ( 02- 01 ), the jump of 0 through S. I 0

This integral being zero independently of the choice of U, we We have = i'=. but vj v,: and the discontinuity is a
get = "vortex sheet".

I ( P - w us )is I= 0 (1.3.3) bI v, 0

Replacing F by its expression we find the "jump relations" Then t [ = 0, velocity and pressure are continuous across S

whereas p. E, s. H may have a jump through this "contact
P ( V: - us I. h ] = 0 1.3.4a) discontinuity".
lP v( C - is ). +p Pf n 0 (1.3.4h)

1.3.2 Shock surfaces[pEt -ii 5 Lrin+p .i =0 (t.3.-4:( *

or. after introducing v,. the normal relative velocity of the We assume that Q 0 then from Eq (1.3.9) we find that
fluid on S

I v, =0

V V - u.i f The case of 1 vn  I = 0 gives the trivial situation where there

with v,, and v, not necessarily equal, we get the Rankine is not any discontinuity through S
Hugoniot relations •

S[=0. 1 p I= p I E I = 0
I p i> = 0 t1.3.5a( It appears that we must have v [ 0 so that p, p. E are
[p v, i + p n j = 0 (1.3.5h; discontinuous through S. From Eq. (1.3.7) and Eq. (1.3.10)

we can calculate the normal velocity of the shock
Ip E v, +p v .f =0 (.3. 5c)

Further developments follow from considering the value Q of = US. =
the mass flow through S :

We note also that for a steady shock I H I = 0. Therefore, in
Q = p V, = Pt, = P2 1',: (1.3.6) a steady flow, H is constant on streamlines and when H is

uniform at infinity the energy equation can be replaced by the
with the decomposition of i: into Bernoulli equation :

vi =i
v .  and v,=v v-, n H = H 1

Then. Eq. (1.3.5b) gives : From the second principle of thermodynamics one can write:

Q I's I+[P I=0 (1.3.7) d j ps dx + J ps(V- q).ffdo - 0 (1.3.11)

Q [i 1t ]= 0 (1.3.8) I

and as for conservation laws we derive the following condi- 0
and Eq. (1.3.5c) gives t tion for the entropy jump through a shock S :

Q [E ]+[p v, 10 (1.3.9) [ps (V-ff ).T [ 0 or
or or Q HI+JpId i 0Q I s 12!>0 (1.3.12)

It can be proved that I s 1 = 0 should imply the continuity of
since H = E + p p all variables thus

-.- . , .,... ii i si l l .. ml al . . .. .. .. - i0- ..
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If

Q is I> 0 the entlropy inequality for the flowield but also to give pre-
cise information on the choice o1 the boundar) conditions in

The entropy must increase through a shock along the flow the fartield or at the entrance and exit boundaries and on a

direction and from the Rankine-Hugoniot relations. we wall boundary In fact. ltle can he sAid for uniqueness of

deduce: solutions in the large, except that the choice and the role of
boundary conditons is sers important and it suffices to hok S
at the problem of a subsonic flowh past an ellipse at a given

Q I P I >0 Q P i >0 angle of attack (J.H Pulliani") or at a vortical flow with
closed streamlines in two ditnensions to see the difficulty of

Only a compression can occur in a physical discontinuity and this question.
unphysical "expansion shocks" are ruled out by Eq+ 1 3.12)

1.3.4 The Riemann problem

1.3.3 Weak solutions and uniqueness 1

The Riemann problem consists of the initial value problem in
The system of Euler equations in conservauve differential one space dimension with initial data tat i = 0) given by two
form Eq. (1 2.14) has been derived from the integral conser- constant states I WL. w l separated by an arbitrary discon-
vation laws by assuming continuity and derivability of the tinuity located at = 0 This problem is of special interest
physical variables. One can consider that discontinuous solu- since it represents with the inviscid assumption the unsteady
tions of Eq. (1.2.14) exist only in the sense of distributions, flow in a "shock tube" after the bursting of a diaphragm and

moreover its solution can be found as a system of simple
To formalize this notion it is necessary to introduce a weak waves with only a single nonlinear equation to be solved.
formulation of the Euler system of equations. Each equation Another very inportant reason for introducing the Riemann
in differential form is first multiplied by a "test function- 0 problem is its current use in the design of numerical schemes
infinitely differentiable, then space and time integration by for solving Eulcr equations since the pioneering scheme of
parts allows to free physical unknowns from any partial Godunov'.
derivation. We get

To study the Riemann problem it is convenient to use not
only the conservative viriables but also (p. v, p) variables.JtJ w, r

W + F, . Vo- dt tit =The initial data are . u1 = ( . , and

. tp . v,, pR ) representing respectivelv left and right
constant states.

- J f 0 t dt it . for all test functions 1 13 131 At r > 0, the solution depends only on xAt (it is auto-similar)
0 and is made (for a typical shock tube problem with Pl. > I' )

of a rarefaction wave (I-wave), a contact discontinuits (2- * *
where g, takes into account the external forces. wavei and a shock (

3-wave). with i

It can be checked that if S '. )= 0 is the equation of a
surface on which w and F (w are discontinuous we find v -a. v = + a.

from Eq. (1.3.13) : the eigenvalues of the Jacobian dF/dw each associated with

a characteristic curve and a Riemann invariant.

, 1-~a Two constant states ap[:ear between the expansion fan and 0

the shock: (p;,.%'.p )and( pR.'.P 1 .V~S as VS

nVS - d, VS. Note the continuity oif the velocity and pressure across thecontact discontinuity. The behaviour of the solution is
We obtain Eq (1.3.3) : described in Fig. 1.3.1.

t[(F,- w, its  ?.is 1 = 0  
i = 1 ..... m 1

The set of weak solutions obeying Eq. (1.3.13) comprises Comat

discontinuous solutions with both physical ,und non physical I - Rarefat'ion IW,,r;inuity
discontinuities. As said above, the non physical discontinui- 3- Shock

ties are the so-called "expansion shocks" satisfying the Rank-
me Hugoniot relations, they correspond locally to a flow with ,* tp,.,*.I
a valid compression shock in which the direction of velocityshould have been reversed. ft is necessary, in order to discard .,,\

tiese non physical weak solutions and thus to avoid non
uniqueness problems, to take into account the entropy ine-
quality.

Theoretical studies have been done on hyperbolic systems of (p V, PL . /P.. . I

conservation laws in order to complement them by an entro-
py inequality in divergence form with the definition of an en- t _ _

tropy function and of the corresponding entropy fluxes ensur- X = O
ing that an entropy condition holds (Godunov', Lax2. Har-
teni). Interesting consequences of these studies are the intro- Figure 1.3.1 The Riemann problem
duction of "entropy variables" mainly used in the finite ele-
ment methods (see below Section 2.1) and recent studies on The details of solving the Riemann problem for the general
discrete entropy inequalities and entropic schemes (Tadmor

4 ,  case can be found in many text books (see for example
Lerat'). Courant and Friedrichs').

In order to discuss the uniqueness of an Euler flow solution. We give below only some indications on the way towards the 0
it is necessary not only to look at the discontinuities and on solution.

" i / I I ' II~~~ 0 i -. . . .
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From ( Y - 1)/2 v + a - cst on a 3-chardcteristics and from
I - cat on a 2-churatenistics both crossing the rarefaction
fan (1-w4avcj. a relation can be derived giving v* as a (non-
linear) function of p*

From the Rantkine-Hugomiot relations through the shock
another equation can be derived giving v * in terms of p '
Elimination of v* lead% to a non-linear equation to be solved
for p *by Newton iteration. Then v ' is calculated and also
PL an Pit

Finally, in the expansion fan made oft straight I-
characteristics of slope sIt = v - a, v and a are
both constant for a given ~
By use of ( y - 1)J/2 i? +0 a csi in the expansion fan. v is
expressed as a linear function of E, and so is a -The pressure
Is Iobtained through the isentropic relation in terms of

MV a.
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1.4 BOUNDARY CONDITIONS for which

The time-dependent Euler equations are a hyperbolic system 1 0 0 I) i)
of equations. Numerical computations must be done on a fi- u p I) II
nite mesh and. thus, waves which are incoming and outgoing M I) , 4 ) t 1.4.6)
with respect to the computational domain cross the boundary . 0 0 1, 0j
of the mesh. Application of the interior point algorithm at the 1/2 ,'" 

r  i/1
boundary requires information from outside the domain, which
is generally not completely available. A characteristic decom- 1 I ) I ~
position at the boundary indicates that the equations represent- a -/ /P ( I 0
ing outgoing waves can be differenced using information from = -/ ) 1 (1.4.7)
the computational domain. The equations representing incom- -/) 0 1/ /, 1

ing waves cannot be stably differenced using only information n,:/2 -K'a -- ,. - N; P

available in the interior: hence, those equations need to he where N - - 1. ; = at+ + 2r The Jacobian matrix
replaced by boundary conditions. Thus, the number of bound- a. for this choice. is
ary conditions to be specified at the boundary comes from a
straightforward characteristic analysis at the boundary. u p ) 4) 1

(4 1 1 0 p' 1
The type of boundary condition to be specified is problem de- a = it I o o) (I .4.8)
pendent and as Moretti' noted: "'A physically consistent model I 0 0 1)
of the outside world must be provided." For instance, the up- ,12 0J
stream boundary conditions to be specified for a subcritical
two-dimensional converging-diverging nozzle might consist of from which the eigenvalucs of a can be easily computed as
the recognition that the fluid comes from a uniform reservoir
condition. orresponding to specified total pressure and en- ,. u. . + i. - a (1.4.9)
tmpy conditions, as well as a specification of the direction of
the velocity. Likewise, since the mass flow through a one- All of the Jacobian matrices have real eigenvalues and a set
dimensional nozzle is known to be set by the hack pressure, of linearly independent eigenvectors and each. individually,
a valid downstream boundary condition is the specification of can be diagonali.ed. although not simultaneously since the
the pressure. The variables at the boundary can be constructed Jacobian matrices do not have the same eigenvectors. The
from these boundary conditions, supplemented by characteris- characteristic equations result from diagonalizing the Jacobian
tic equations corresponding to the outgoing waves applied at matrices as
the boundary.

- + T.A.T L TA ' - +T.A.T. '  
i=

1.4.1 Characteristic Equations 0t ". + y:(1.4.10)

where Ax.Ay.A. are diagonal matrices.
linearized Equations

Cor,,,-Jering a plane boundary as coincident with a surface of 0
The conservation law form of the time-dependent Euler equa- constant .r, the derivatives in the two directions tangent to
tions are written here as the boundary, y. :. can be determined from information on the

/w OF G OH boundary. In general, the computation of the derivative normal
'it + i + + = (1.4.1) to the boundary requires information about the state vector

at locations outside the computational domain. Defining theThe linearized form of the equations can be written as
terms corresponding to derivatives in the plane of the boundary.9 Aw O w O w

-'7" + AO + B + C =1 (1.4.2) as a source term S. the equations may he written as'
at 1),r 0/ 1 Os

where A.B. C are Jacobian matrices (i.e., A = 0F/Ow). T + TqT

The linearized equations can be cast in terms of a set of T Ox

primitive variables using chain-rule differentiation as where the .x-subscript notation has been dropped. This can also

Mi- q -+ AMd + BM q9 + CM0- q = 0 (b1.4.3) he written in terms of each component of the equation as •

.9 t t J r o xi i I Z 1 , ' + \ 1 . O c + 1 S = 0( . .
-q +- b"q + q = 1 (1.4.4)

-t o.r Oy -0

where M = Ow/Dq. M = oq/Jw. and a=M-AM..... where 1, is the left eigenvector of the Jacobian matrix a.
The choice of primitive variables is not unique and is gener- corresponding to the .th eigenvalue (and also forms the ith
ally selected to make the Jacobian matrices a.b.c simpler than row of T- i).
their counterparts using the conserved variables.2 '1 A common
choice is the set Characteristic Variables

If a characteristic variable V can he delined to satisfy theq (1.4.5) so-called compatibility equations below

I ,1|. = LIq + 1, Sdt (1.4.13)
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then Eq. (1.4.12) reduces to a set of wave equations Diagonal Equations

A . auThe diagonaiing matrices in the above case are given asof: =1)(l.4.14)

FI It i It -l/,,"1

for which the characteristic variable is constant along charac- T 1 i 1
ten.s, urves defined in the xr - f plane as da.ldt = A,. The T = 0 0 0 t (1.4. 5)

chara,,coristic directions are sketched in Fig. 1.4.1 for subsonic 0 1 0 0 11/p"

and supersonic flow. Positive a is indicated; outflow condi- 0 -1 1 t I/0 , .' J

Subsone flaw: outw (6 0) 1 I) 0 p/2i 1 /2,1
/ 1) 1) I) 1/2 -1/2T=[ 0 t) (t ()) 11 (14.16)

T_ [) t0 1 0I 0
_

"
_ I 

() I) /

Using the primitive variable diagonalization results, (he con-
served variable Jacobians can be diagonalized easily as

dt

A- A = MTAT-'M 14 17)

Xa Assuming no variations in the plane of the boundary and the

Regionmntenorto Rogon einorto diagonalizing matrices to be constant, the equations can he
computational domain computaalaj donarm reduced to a set of diagonal equations

Supesooc tow: oiulow (u 0) 0*~ d*
A -, = 01.4.18

where the linearized characteristic variable is defined as

= TO- = (1.4.19)

-n ~, + )/h

CO. ! e + o/sa,,d

-: -- =u-cX* - Cand the sub.,cript notation denotes evaluation at a nearby ref-

erence value. Note that the linearized characteristic variables
Region mntenor to Region exerior to

computa.tonal domain corrdtaotaidnaam can also be cast in termos of the conserved variable sector" as
C = TolMoiw.

Figure 1.4.1 Sketch of characteristic directions
at the boundary. Outflow (inflow) corresponds Homentropic Equations

to the exterior domain described by .r > ) (.r < 0).
Assuming locally homentropic flow (i.e.. that the entropy is
uniform everywhere) and no spatial variations in the plane of

tions correspond to the exterior boundary defined by .r > ). the boundary, the equations can be reduced to
The characteristics are traced back from the new time level
t" -' for the three characteristic directions. C". (-. C-. cor- ,

responding to the repeated eigenvaluc Ai and .\,..A-,. -(I') = i aliu - (1.4.20)
,I ,It •

The construction of , is generally not possible for the Eu- -t) I iITi -= 1 (1.4.211)
ler equations without assuming the diagonalizing matrices are xd

constant.2' Assuming the exterior domain is described by d I alMtmo ) d - i 1 + 1.4.22)

.- > 0. the characteristic form. either Eq. ( 1.4.12) or 1.4.14).

indicates that outgoing waves are described by equations with where the Riemain variables are defined as
., > 1) and depend on information at and within the boundary.

Incoming waves, representing information reaching the bound- R- 1 .4.3)
ary from the exterior, are described by equations with .\, < It. = " : -

These wave equations cannot be differenced stably using just
interior and boundary information since the numericai domain and .r is the local normal pointing out of the domain. The
of dependence would not include the physical domain of de- equations are in a form very similar to one-dimensional un-
pendence; hence, these equations need to he replaced with steady flow. except that the tangential velocities, in addition
boundary conditions. to the entropy, are convected alonL the panicle path.
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1.4.2 Numerical Procedures in which case 31i/iq -I0).0). 1),0, 1), Thus. the character-
istic equations become

The equations which replace the characteristic equations for

the incoming waves are generally referred to as the phys- A:I
.al boundary conditions. The procedue to deemn the +remaining variables at the boundary. which should be as corn- I ,i ) I _ dS=0 (.427)

patible as possible with the outgoing characteristic equations. 1 -t [ .' 0.1 [ 1.7
are sometimes referred to as numerical boundary conditions. i)B /1Jq
but .:hould be more properly termed numerical treatments at
the boundary. which can serve to define the two matrices P -P2 as

The numerical procedures at the boundary are different than PI)q + AP2 +(

those used at the interior scheme. Thus. two factors of the cou- P P..

pled system need to be taken into account: the accuracy and Oct )q +

the stability. Gustafsson' has pointed out that the accuracy of ) 4.)

the numerical procedure for a linear equation can be one order The above equation can then he diflerenced at the boundary
lower than the order of the interior scheme without adversely using one-sided derivatives. It can also be expressed as an
influencing the global accuracy of the solution. The stability of equation in the conserved variables as 0
the boundary procedure can he analyzed in many cases using
the analysis of Gustafsson, Kreiss, and Sundstrom.' Generally. Ow )MpF PM + MP1  P 2 S I l 4.3,)
the closer the numerical scheme is coupled to the characteristic 7t+ i 2

equations, the more well-behaved the numerical procedure. Either equation can be advanced in time explicitly or implicitly

The equations and procedures for a stationary boundary anal- it the boundary: generally, the choice isi madc on the basis of
ysis are indicated hcre. where a local orthogonal coordinate compatibility with the interior point scheme. 0
system is assumed at the boundary. This is consistent with
the methods in common use, although the choice of coordi- Nonreflecting Methods
nate system is not unique and need not be taken normal to the r
boundary/', as pointed out by Roe." The extension to a moving A closely related procedure is the so-called nonrellecting, or
boundary can be accomplished in a straightforward manner, radiation. boundary conditions of Hedstrom' and Thompson.
The eigenvalues of the Jacobian matrices are changed by the In this approach. the amplitudes of the incoming waves are *
addition of a term which is the speed of the grid normal to the taken as constant, in time. at the boundary. This corresponds to
boundary. However, the eigenvectors and, hence, the basic specifying that the incoming characteristic variable is specified
character of the equations are unchanged from those for the at the boundary. or
stationary generalized coordinate system." ii

- =1) t = .. ... . (1431)
Characteristic Methods Of

In terms of the subsonic outflow condition example above, the 0
The characteristic equations dictate that the equations corre- characteristic equations become
sponding to the incoming waves be replaced with boundary
conditions as A 1 1

B, ) j =.1.4.24) 1- + l A2 I, S if1 (1.4.32)

where .\[ is the number of incoming waves and N is the 1i i 0
total number of equations. Thus. numerical procedures are
required at the boundary, in general, to solve the -' physi- This can be written as below, where A' is the diagonal matrix
cal boundary condition equations and the N - AV, outgoing composed of the nonnegative eigcnvalues of a:
characteristic equations. Chakravarthy'developed a unilied
approach, in which the incoming-wave equations are replaced T - + A + T- ' L + T- S = 0 q1.4.33)

with time-dependent boundary condition equations and solved Of•

numerically in a way consistent with the interior point scheme. The nonrellecting characteristic equations can also be written
in terms of conserved variables as

For example, at a subsonic outflow boundary (N, = 1), the
equation associated with the A,; = a - i eigenvalue can be Ow /#w

replaced with a linearized form of a time-invariant physical )t 
+ A + -- =. --.-

boundary condition
where the spatial difference can be evaluated using one-sided

OB -0q differencing at the boundary. The above equation appears as
dq O - a nonconservative scheme evaluated locally at the boundary.

where the strength of the incoming wave is detined to be ,ero.
An example and often-used boundary condition is the specifi- With the equations in this form. it is apparent that any upwind
cation of pressure as: scheme can be used to define a nonreflecting operator at the

boundary by defining the strengths of the incoming waves to
Bi 0- (1,4.26) be zero.

•0*
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Rudy and Strikwerda'2recognized that this procedure, designed the new time level. For subsonic flow. for instance. I? can
to minimize reflections from the boundary, is usually not con-
sistent with physical boundary conditions defined on the basis
of steady-state ideas. For example, the specification of con- Outer boundary
stant pressure in the subsonic outflow case above ensures that

a wave is reflected back into the interior. Rudy and Strikwerda

added a parameter-dependent source term so that the solution
to the discrete equations went It) a specified value at steady
state. More recent developments in nonreflecting boundary
conditions are given by Giles:l" quasi-three-dimensional ap-
plications to internal cascade flow are given by Saxer and y
Giles. " Atkins and Casper"s developed a boundary condition
procedure by connecting the boundary values to the uniform x
far-field conditions and the interior conditions through several "

simple wave fields and demonstrated an improved calculation
for one-dimensional wave propagations using higher order dis- Figure 1.4.2 Sketch of local coordinate system at the
cretizations. boundary used for characteristic method in homentropic (low.

be evaluated from the far field, corresponding to cotnditions
outside the boundary. and ? can be c.aluated locally from
the interior of the domain. Then. the normal velocity and

Analytic Methods speed of sound can be esaluated as

An alternative procedure has been developed by Verhoff et t = (I? + 1? )/2 1.4.35)

ali ' and Hirsch and Verhoff." 7 It is a consistent method for I = {/7) - -P1 - 1.4.36)
coupling linearized analytic solutions with nonlinear numer-
ical solutions through the computational boundary condition. "
While limited to steady flow, the procedure is derived from Depending on the sigi of the normal ',lhctt'. the enropy
an asymptotic expansion to the Euler equations and, thus, and tangential velocities are extrapolated trom the exterior or

aninterior itf the domain. Thus, the three eelocity compents.
more general than a far-field potential correction method. since
the method can treat strong shocks and rotational flows. The entropy. and speed of sound can he constructed at the ne time *
analysis is based on a linearization about a true uniform steady level. Note that the state vector cant he determined Withoul

state valid at fdr distances with the equations cast in terms of an explicit construction of the tangential boundary direction

Riemnann-like variables using a streamline cotordinate sstem. cosines. Denoting the velocity compots corresponding t

The linearized characteristic equations representing incoming the region fron which the entropy and tangennial velocities

waves are solved it the exterior domain using a Fourier rans- are extrapolated as u. . (these are free-strcam selocitic' Ior
inflow conditions at the boundary), the velocity vector at the

form technique: the solution involves integr-ation along coin- -

putational boundaries, which are taken as a parabola at itflow new time level is

and a straight line at outflow. Two-dimensional procedures and
results for internal and external flows have been obtained:

"
'' ,,"' =  + 11, i t 1.4.37)

an example is given subsequently in this section. ," - + n,,- - I 1.4.38)

' =5' + n " u (1.4.39)

Note that the procedure does not ensure the conservaion of'
total enthalpy. and in some schemes the conservation of total

Extrapolation Methods enthalpy is an important feature ofthe interior point scheme. In
those cases, some modification of the procedure is required." x

Simpler procedures are also used frequently which are based such as the redefinition of the speed of sound from Eq. ( 1 4.36)
on honoring the domain of dependence of the characteristic to ensure constant total enthalpy.
equations. For example, the characteristic variables, evaluated 0
at local conditions, are often extrapolated to the boundary
instead of solving the characteristic equations.4  1.4.3 Inflow/Outflow Boundaries

Supersonic Flow

For supersonic flow normal to the boundar., all of the Charac- 0
Homentropic Methods ieristic directions aire of the same sign. At inflow, all quantities

should be specified. At outflow, the characteristic equations
Assuming a locally orthogonal coordinate system where .r is can be differenced in a one-sided manner using information in
the local normal pointing out of the domain fsketched in Fig. the computational domain. It is quite common, however. to
1.4.2). then the homentropic equations. Eqs. (1.4.20)-(1.4.22). just honor the domain otfdependence constraint and extrapolate
can be used to update the equations along the boundary at the state variable to the boundary from the interior.

. . . , - t i ii ii -- i i - I i -i ... .. .
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Subsonic Flow the solution is dramatically reduced The supercritical case
shows a stronger dependence on the outer boundary extent, as

For subsonic flow normal to the boundary, four boundary expected. due to the increased lateral extent of the disturbances
conditions can be set at inflow and one at outflow. However, at the higher Mach number The correction term. which wales
it is difficult to specify the boundary conditions accurately on the lift. is effective in ioh cases For subcritical cases,. cir-

since the influence of the computed airfoil (body) is felt at culation and lift are both constant on lines which encircl, ihc
large distances upstream and downstream; the assumption of airfoil; for supercritical flow. the circulation saries in the near
uniform flow at the boundary necessitates the construction of field since voricity can be generated at shocks. The three- k.'

a grid which extends quite far from the airfoil. By including dimensinal extension for the perturbations due to circulation
the first-order effect of the circulation imposed by the airfoil to for thin lifting wings is given by Klunker.2"
the state variable vector at locations exterior to the boundary.
the boundary need not extend as far; thus, the computations A sample calculation using the analytic method of Verhoff 0
can he restricted to a smaller domain with fewer grid points et al.'8 is shown in Figs. 1-4.4-1.4.5 for the computation of
and/or less stretching. A far-field boundary correction is used the flow over a NACA Wl)12 airfoil at subcritical conditions.
in most transonic potential flow methods, derived from the Computations were done using a baseline grid that extends 40
linearized small-disturbance equation, although the early work chords from the airfoil and a subset of the grid that extends
of Murman and Cole" used an expansion of the nonlinear only a small distance from the airfoil. The inner portion
small-disturbance potential equation. For two-dimensional of the baseline grid is shown. The pressure contours from
flow, the nondimensional velocity components in the far field computations on the inner grid using free-stream (,ero-order)
can be given as and corrected (first-orderl conditions exterior to the boundary

are compared to calculations made with the complete baseline
a = cos o + F sin (1.4.40) grid. The pressure contours of the inner grid calculation agree

= sino - FcoN (1.4.41) much closer when the tirst-order corrections are applied with
those corresponding to the complete baseline grid.

where 0
f - ,.,,./ ( ) (1.4.42) 1.4.4 Surface Boundaries

where r. t are the radius and polar angle, respectively: the At a surface, the boundary condition is usually taken as tan-

coordinate system is located at the center of lift (generally gency, so that the insiscid selocity component normal to the

the quarter-chord for an airfoil) and the angle 0 is defined boundary is that of the boundary. which is normally zero. This

positive clockwise from the chord line extended downstream is consistent with the characteristic analysis since only one * *
of the trailing edge. With constant total enthalpy and con- wave is incoming at the boundary. One wave is outgoing and

stant entropy specified in the far field, the state vector can the rest travel along the boundary. The flux at the boundary

be constructed at regions outside the boundary of use in the simply reverts to the specilication of the pressure

ing this effect on the lift coefficient of an airfoil is shown in In
Fig. 1.4.3. Assuming a locally orthogonal coordinate sys- F = [pn, 1.4.43)
tem. where .? is the local normal pointing out of the domain 1,n:
(sketched in Fig. 1.4.2). then the homentropic equations. Eqs.
(I.4.20" 1.4.22). can be used to update the equations along
the boundary at the new time level. Subcritical and supercriti- The pressure at the boundary can be determined from the

outgoing characteristic relation. Alternately. the pressure can
NACA DO' 2. 19q2 J 40 - 60)l 0 - kh

SAA,0'2.,.0-,0,o-,.0 be extrapolated to the surface.

S-------------- - ---- ....... Normal Momentum Equation

"-- Rizzi~ replaced the outgoing characteristic relation with the
normal momentum equation at the surface to determine the

M'" o L- s 63 . pressure. This is one of the most accurate and commonly
used methods for determining pressure. For the analysis, a

-___0_____________ _________,0______ local coordinate system
40 20 '08 s Q 20 0 8 5

8a-f, ..-, . (' .q. 0 (1.4.44)

Figure 1.4.3 Effect of far-field boundary
location on lift coefficient for NACA 0012 is used. where the boundary corresponds to a surface of con-

airfoil at subcritical and supercritical conditions. stant il. for example. The normal momentum equation can
be written in terms of the variations in the surface and the 0

cal cases are shown. Using free-stream conditions to evaluate normal pressure gradient as

far-field boundary contributions, the lift coefficient shows an
inverse radial dependence on the boundary extent, which is the +, + g + ,, ) = - h+ '

same functional dependence as the leading-order term in the +- + 
+

far-field expansion. Updating the boundary conditions with Ip + l,, , + q: )

the far-field contribution corrected as above, the sensitivity of 01, 0

u - 1 I Ir .... I - p •- .. . - - 0 0



( di v a- ) Kutta Condition/)V 1) +  fl ": Piz ,

Ott + , Or + .44 ) It is well known from exact solutions to the potential (in-
/
1'4"45)  

compressible and inviscid) equations that the circulation or.
equivalently, the lift must he set in addition to enforcing flow

The contravaniant velocities are below tangency on the surface.2, At a sharp or a cusped trailing edge.
the circnulation is usually set through the enforcement of a
condition which avoids the occurrence of infinite velocities in

U + , + r (1.4.46) the solution. This condition, known as the Kutta or Kutta-

lt ' (_u + ,i' + w t, 1.4.47) Joukowski condition, sets the overall lift in good agreement
with experimental observations, 22 generally. the inviscid lift is
slightly greater than experiment because of the decambering

and the contravariant velocity V is zero to enforce the bound- of the airfoil associated with boundary-layer displacement ef-
ary condition. The gradient of pressure at the surface can fects. For a smooth body such as a cylinder, the circulation
be used to extrapolate accurately to the surface using the in- has to be specified a priori.

terior values. Note that th. nd need not be orthogonal to
the surface. The derivati' ; :iessu"e requires the evaluation For numerical solutions to the Euler equations for sharp-edge
of metric terms and Ai .... ariables along the boundary. geometries. the Kuita condition is usually not set directly in
Generally, these additunl ',.1 state variables used to determine the method. Rather, the dissipation inherent in the numerical
the gradient are obtained h\ extrapolation. For example, the scheme precludes the occurrence of infinite velocities in the
density and total mag!1,. of velocity can he determined by solution. The resulting lift values agree well with compressible
extrapolating entropy ;, cnthalpy from the interior. The di- potential solutions which enforce the Kutta condition directly.
rection of the velocity in the plane of the surface must also be usually through the specitication of tangent flow to the trailing-
extrapolated in three dimensions, edge bisector angle at the trailing edge. For subcritical flows.

a single value of pressure at a sharp trailing edge results
The normal momentum equation approach generally requires from the streamlines along both the lower and upper surfaces
more operations than the extrapolation approaches. It is more being brought to stagnation. For flows which have incurred
difficult to implement implicitly in a general-purpose code a loss of total pressure (e.g.. through a shock), the local
since both normal and tangential derivatives are involved at the structure of the Euler solutions downstream of the trailing
boundary. For example, an implicit treatment of the normal edge corresponds to a slip line, across which the pressure is
momentum equation leads to a tridi;, -,nal system of equation continuous and the velocity is discontinuous. The velocity *
to be solved at the boundary in two dimensions. For this stagnates on only one side at the trailing edge; equal pressure
reason, these equations are usually solved explicitly, at the trailing edge is attained through stagnation of the surface

Figure 1.4.4 Computational grid of reduced size fior subcritical Euler
computations using zero- and tirst-order far-field boundary conditions.

... ... " . = J i l l il ~ mi l i i i lil i . . ...... . . . . ...
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Figure 1.4.5. Pressure contours for NACA 001l2 airfoil using zcro- and tirst-order boundary
conditions on baseline grid and reduced-extent grid of Fig. 1.4.4 at .11- 4 14-~g.
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streamlines associated with the higher stagnation loss. On the specoed. corresponding to a complete reonkstruction of the

surface of lower stagnation loss. the velocities remain nonzero pressure, density. and selocity profiles

and tangent to the local surface orientation. Stagnation on
both surfaces is physically impossible in this case since the For a subsonic outflow condition, one characteristic reaches

total pressures are diflerent along upper and lower surface the actuator disk at the new time level from the downtreun

streamlines. This structure occurs in 4. local region of the side, corresponding to the computational domain. Thus, one

trailing edge. and it is difficult to resolve the resulting slip line variable needs to be extrapolated from the computation exte-

in numerical computations, nor to the disk and the remaining tour have to be specified.
Generally. the total enthalpy and total pressure of the engine

'l'he flow separation from sharp leading edges occurring in the is specified, as well as the two components of "elictt't. rhere

subsonic cross-flow plane of swept wings at high angles of is soie flexibility in the selection of the ,vartable to be extrap-
attack is also associated with a Kutta condition which enforces olated from the computational domain. For instance. pressure,
smooth flow from the surface. A number of such results are density. or magnitude of velocity are all valid chitces. taking

presented in the chapter on Applications and were obtained lvi as the extrapolated %artable, the temperature ot the let cati

with the Kutfa condition enforced by the dissipation inherent be determined by inatching total enthalp' as
in the numerical scheme. For flows over smooth surfaces. the

lift is set either by flow separation (a viscous effect) or through - , 1'
specification of the circulation in the far field the results T -1 4.4

of Pulliam presented in the chapter on Applications pose a 0
currently unresolved challenge to state-of-the-art schemes in The pressure can he determined hi assuning an isentropic

this respect. expansion to stagnatitn conditions as

Transpiration and Displacement Effects 1 4.4)

F-or simulating viscous effects in Euler codes, the surface 0
can be moved s) that the flow is tangentt to an artificial and then density can he recovered ihrough the equations of
surface defined by prolecting the boundary layer displacement state 1 ,"= = f. The three velicity components cai he 

thickness distribution normal to the surface.- ' Equivalently. detentined frot the %cloc(t magitude and the imposed two

the surface boundary' condition can be modified to specify a directions of elocit. . The botindary conditions iii this case

normal velocity. Both methods are used and give equivalent arc similar to those required at the upstream end of a wind-
accuracy for representation of viscous effects. although the tunnel simulation, in which the total conditions and c .ity * *
latter formulation is somewhat simpler since the grid need not directions are prescribed atid one sariable is extrapolated from
be moved to sinulate the boundary layer interaction. Raj-'  the interior.

used the transpiration model to effectively model the effect of
variable flap deflections during the development phase of an

adsartced aircraft program. Inflow

The upstream end of an actuator disk generally corresponds 0
1.4.5 Propulsion Simulations to an inflow case, in which the interior of the computational

domain is exterior to the disk. For supersonic inflow. all of

In many applications, it is not necessary to simulate the full the variables should be extrapolated from the interior of the

details of the propulsion system. Rather. the propulsion system computatiotal domain. Thts. all of the mass which impitges

can be considered as a "black box" across or through which on the disk is swallowed by the device. For subsonic inflow,
ibe solution can chace i. a imanner consistent with that if a one chldractctui~i, --. 1CS tlic disk at OWc tIcu ¢ titne level frol•

complete modeling. The additional energy and/or swirl added the interior of the modeled system. Thus, four quantities can be
by a jet engine can be specified at a location which might extrapolated from the computational domain and one variable
represent a faired-ovcr representation of the actual geometry specified. The pressure and all velocity components can be

as a function of etgine thrust, for example. and thus avoid extrapolated froi the computational domain interior. Since
the considerable cost and complexity associated with a full the mass flow should be conserxed, an attractive boundary
simulation. The inflow and outflow conditions appropriate to condition option:" is to specify the mass flow at inflow pi to
an actuator disk model are given below, provide a means of specifying the density as 0

Outflow V ii.1,,i. /(v nAi )14.50)

Modeling the downstream end of an engine or propeller cor- Here. . is the local surface area of cells that abut the disk.
responds to an outflow case, since the computational domain v-n is the velocity normal to the disk extrapolated from the

is downstream and certain boundary conditions need to be interior of the computational domain, and 0
specified at a given location (generally on a portion of an ax-

ial-normal or slanted plane). For a supersonic outflow, all of

the characteristic, which reach the actuator disk at the new .. , .1 1.4.51)
time level originate from the engine side and, thus. all of the
quantities can be specified. The total temperature, total pres- where the summation extends over those cell areas that abut

sure. nozzle pressure ratio, and directions of velocity can be the inlet disk area.

"I illlll illi lllll I li - - .. -.. . . .. ... ...
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1.5 EXACT SOLUTIONS doublets. These fundamental solutions can e combined to
obtain solutions over simple configurations such as circles and

Knowledge of exact solutions to the Euler equations is in- other elliptically shaped bodies both with and without circula-
valuable in evaluating numerical accuracy and provides an m- tion. In addition to the wealth of knowledge available to an-
creased understanding of the mathematical and physical nature al)tically solve Laplace', equation for simple configurations. 0
of inviscid flow. Before recent advances in numerical tech- many numerical techniques also cxist for obtaining solutions
niques and an increase in computational capabilitic., much r conplicated shapes: the predominant nehods are panel
theoretical work was conducted to obtain analytic solutions methods that are based on Gicci' function .u)[uttons.
for inviscid flow. This work combines to form the fundamen-
tal basis for our understanding of much of gas dynamics. In Because of the advantages ot solving Laplace's equation, it
particular, the solutions of primary importance in this category is natural to seek other assumptions that will further simplify 0
include shock waves, expansion fans, and contact discontinu- Eq. (1.5.1) to make it amenable to solution. One method 0
tries, of achieving this goal is to assume that the flow is perturbed

only slightly from the Itree-stream. With this assumption. the
However, in spite of several successes at obtaining analytical ,elocity potential in Eq. ( 1.5 1 ) can be written as a free-stream
solutions such as those mentioned above, a general technique component plus a perturbationw
for obtaining closed-form solutions is not available. With few
exceptions, further simplifying assumptions must be made in ,.i'. !J, = , " + (1. . I 5.3) 0
order for the governing equations to he solvable in closed form.
Therefore. much of the theoretical work is centered around the bwd sbin int q. and cermaiii ca
potential flow equations, which assume irrotational and isen- be on atdequaion. wichbe written as"

tropic flow. Despite the limitations of these assumptions, po-
tential flow theory has provided many reference solutions, as - 1 +

well as valuable insight into the character of both incompress- " +.

ible and compressible flows. 
(+ 1 ; ,.

+ I i),.r,' r -'

1.5.1 Similarity This is the so-called small-perturbation equation, which is
salid for subsonic. supersonic. and transionic flow.

Before numerical solution of compressible flows became preva-
lent, theoretical work concentrated on extending incompress- If the free-stream flow is subsonic and not ioo close it) Mach
ible solutions to represent compressible ones and to relate I. Eq. (1.5.41 can be further simplified to *
flows at a given Mach number to those at another Mach num- _,)" ;,' , ,

ber. These techniques rely largely on simplified forms of the (1 - AI ) + - -t- t) (1.5.5)
Euler equations. By first assuming isentropic and irrotational
flow, the governing equations can be expressed in terms of a ')l'hs can be expressed again in the form of Laplace's equation
velocity potential as' by applying an affiie It ar.tormation to this equation. 'This

leads to scaling laws such as the Prandti-Glauer and Gothert

fI- ,,, rules, which allow the subsonic compressible flow past a 0
S- ,.. - 2 ,certain profile to be related to the incompressible flow past

'.: a second affinely related profile.(1 -T)O'.' - 2!
'

o,r o! + (I.5.1)
a2 If. on the other hand, the flo%k i purely supersonic. Eq. (1.5.5)

2 w, can be written as

-.1 )_ 1- (1.5.6)
where the velocities in the .r, . and directions are given in - 1- -'

terms of the velocity potential as which is a hyperbolic, second-order, linear partial differen-

tial equation. Although this equation can not be reduced to
1 = 0 Laplace's equation. it is. nevertheless. a linear "quation and

, (1.5.2) can be solved using linear techniques.

Transonic similarity laws have also been obtained by Guderley'
Equation (1.5.1) represents a nonlinear partial differential in 1946 and by Von Karman 4 and Oswatitsch' in 1947. Ex-
equation for o in terms of .-, y. and :. tensive review of similarity laws for compressible flow can he

found in Refs. 6 and 7 as well as in several textbooks such
Unfortunately, because this equation remains nonlinear. ana- as Refs. 2 and .gConsidering two-dimensional flow, through
lytic solutions of this equation are still not available without a transformation of the form
further simplifications. For example. invoking the assump- '
tion of incompressible flow (a - x) immediately yields I(.rq . 1'Q..1) (1.5.7)
Laplace's equation: a linear partial differential equation with '1

well-established solution techniques such as complex vari- the parameters .1_, - and the thickness parameter r can be
ables. Also, because the resulting equation is linear, many combined into a single transonic similarity parametert
solutions can be obtained by superposition of other known -

solutions. Examples of exact solutions that reflect the incom- ,. = ( + 1.5.
pressible assumption include source/sink flows, vortices, and [ + 1)-'t 0

0 0
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Similar soltons are obtained by keeping this parameter in-
variant regardless of Maclh number. thickness parameter, or V S hit
ratio of specific heats. Afterward. the lift and pressure coetti-
cients can be corrected according to 4 --'

" t 1.5.9) ,1e m m.,.t , . .. il..
=', A",~v V 2t, 4; %9 7;11 yl "W lie

where 'ln

. = + I .i1 1 -.
,+ .1/ I .,5

For example, if the flow over a specified airfoil is known for
air (-, = 1.1) at a Mach number of 0.8, then by matching the
similarity parameter. it is found that this solution corresponds
to one at a Mach number of 0.814 in different gas correspond-
ing to -, =" .I. Although the preceding discussion is for Figure 1.5.1 Ringleb flow

two-dimensional flow, three-dimensional scaling laws exist as
well, but require moditications to the aspect ratio to maintain 0
similarity."

1.5.2 liodograph Solutions 1.5.3 Shockless Airfoils

For obtaining analytical solutions for purely supersonic flows.
or for subsonic flows not too close to a unity Mach number. Although Ringleb flow is clearly a case in "hich the lowk can 0
the linearized potential flow Eqs. (1.5.5) and (1.5.6) can be decelerate from supersonic to subsonic flow without a shock.

utilized as previously mentioned. However, for flows with shock-free transonic flows os-er airfoils arc rare. In the work

mixed regions of subsonic and supersonic flow, one must re- of Bauer. Garaedian. and Korn: numerical solutions to the

sort to using Eq. (1.5.4) which is not generally solvable in hodograph equation have been used to obtain shock-free iran-

closed form. However, one method that has been effective sonic solutions for airfoils. A further example of a shock-

for yielding exact two-dimensional solutions is the hodograph free transonic airfoil is the NLR 73,01 airfoil, which has been

method.
"' which transforms the stream-function form of the used as a standard test case for numerical methods for invis-

transonic small-disturbance equation into a linear partial di)- cid low. Note that these solution,, are obtained by discreti/ing

lerential equation by changing the dependent variables from the hodograph equation and obtaining t solution numerically.

the spatial coordinates .r and y/ io the flow speed V and the These solutions are, therefore, not exact in that they have not

flow angle N as been analytically obtained, but do provide solutions ior Iran-
sonic flow in which isentropic deceleration from supersonic to

+ ( ) ±subsonic flow is present.

(I.5.11)

1.5.4 Nonunique Solutions

Solutions to this equation are found using standard techniques
such as separation of varables. Once a solution has been fotnd Although nonunique solutions have been known to exist for
for this equation, the p tysical geometry must be determined the potential flow equations. t

'- until recently, the existence tf
for which the solution al~lolies. Although many solutions may nonunique solutions for the Euler equations has been largely
not yield physically realistic s'es, several papers present so- speculative. In fact, the Euler equations were used in the
lutions for the hodograph equati',n for which the corresponding previous references 20-27 to validate the nonuniqueness of

geometrics are representative of a flow of interest. ' l "". Rf the potential assumption. During these studies, nonunique
erence 21 contains extensive theory, as well as application of solutions were sought with the Euler equations. however none
the hodograph transformation while Ref. 18 presents a useful were found.
summary of exact solutions and relevant references.

One of the most widely used hodograph solutions in recent For the potential tlow equations, the nonuniqueness has been
years for validating accuracy of numerical solutions to the attributed to the breakdown of the validity (if the assumptions
Euler equations is that of Ringleh.l'2 '

! Shown in Fig. 1.5.1. inherent in the equation (namely, the assumptions of irrota-
the physical flow corresponds to that through a curved duct. tional and isentropic flow). Because the Euler equations do 0
The flow begins subsonically. accelerates to supersonic flow not make these assumptions, the appearance of nonuniqueness
around the "no-e" of the duct. and then decelerates to subsonic has until recently been somewhat doubtful. However. in 1991.
flow without a shock. As previously mentioned, this flow has Jameson -' computed nonunique solutions for four airfoils de-
been used by various researchers to evaluate the numerical signed by an optimization method based on control theory. 29

accuracy of Euler solutions by comparison with this exact
solution." "- An example of nonuniqueness for one of the airfoils (denoted

.... . ... I w ml li l lrl illli Iil l li l l liillll :: ... . = " .. ..
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as J-78) is shown in Fig. 1.5.2. This airfoil was designed of u-+a and u. respectively, while an expansion tan is traveling
in the opposite direction at speed a - See Fig. 1.5 3.)
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Figure 1.5.3 Riemann problem

Figure 1.5,2 Examples of nonunique In Fig. 1.5.3. a shock wave is traveling to ihe right which

solutions to Euler equations. results in a sharp increase in the density, velocity, and pressure
as it passes. The expansion is traveling to the left and induces
a more gradual increase in the velocity of the fluid that was 0
originally to the left of the diaphragm. The contact, also

for a Mach number of 0.78 and a lift coefficient of 0.6. traveling to the right, induces a jump in the density. but has
Figure 1.5.2 clearly shows the nonunique behavior of this no effect on the pressure and velocity.
airfoil as evidenced by the lift coefficient exhibiting multiple
values at a given angle of attack. As mentioned in Ref. 1.5.7 References
28. this nonuniqueness persists even on very fine grids and * *
provides strong evidence that Euler solutions for airfoils are
not necessarily unique.
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Chapter 2 ° 0

Numerical Schemes and Algorithms

2.1 DISCRETIZATION TECHNIQUES

In order to describe the numerical methods currently used for points to build secondary cells and this will be illustrated in
solving the system of Euler equations, we have to begin with the subsection 2.1.2 about finite volume methods where the
a brief presentation of the discretization techniques which al- distinction between cell-centered and cell-vertex schemes is
low to transform the continuous problem into a system of made.
discrete equadons to be solved on a computer.

Three main steps can be considered. First, the space-time Approximation of dependent variables 0
discretization concerning the independent variables (this is
the mesh generation problem), then the choice of a discrete After the discretization of the space and time independent
representation of the flow variables (approximation of depen- variables we can proceed to the discrete representation of the
dent variables) and thirdly the derivation of a set of discrete dependent or flow variables. The crudest and the simplest
equations linking the flow variables on the grid in space and discrete representation of a scalar function of several in-
time kdefinition of a numerical scheme). dependent variables is limited to setting up the values of this

function at the grid points without concern of its value else-
where. This idea is the basis for the finite difference ap-

Grid generation proach which is almost always applied with structured 2D
quadrilateral or 3D hexahedral grids of either cartesian or

The mesh generation techniques have become a field of more often body-fitted curvilinear type.
research and expertise which the quality of numerical results
greatly depends on. This important subject is treated in detail The alternative for the discrete approximation of functions on
in Section 2.2, but it is necessary to introduce here a few a grid is to consider piecewise polynomials locally defined on
ideas for presenting the following steps of equation discreti- each cell by a small number of values or "degrees of fre-
zation. dom". This topic is covered by the theory of approximation

and interpolation in many mathematical textbooks and is par-
At first, the space-time domain where the problem is to be ticularly important for the design of finite element methods
solved must be discretized. Except for very special situations, and of spectral methods.
the time and the space dimensions are treated independently
and however complex could be the space discretization, the The pointwise approximation used for finite differences could
dependent variables are all represented at same time values, be included in the general theory of approximation by resort-

The space discretization process consists in replacing the con- ing to the Dirac measure but that is of little practical interest.

tinuous three-dimensional domain where the flow is studied in the class of piecewise polynomial approximations, the sim-
by a mesh or a grid made of points or nodes connected by plest one is the piecewise constant approximation and it is
edges and faces which bound cells or elements. The union of the basis for the finite volume methods described in subsec-
the cells forms a partition of the whole computational tion 2.1.2.
domain.

Piecewise linear approximation is generally associated with
The common practice in mesh generation is to use either tri- triangular or tetrahedral meshes, piecewise bilinear with qua-
angular or quadrilateral cells in two dimensions (tetrahedral drilateral meshes and trilinear with hexahedral meshes. The
or hexahedral in three dimensions). approximate functions arc ither continuous (most frequently

in finite element methods) or discontinuous (in finite volume
The overall arrangement of these cells may be either "struc- methods).
turea or unstructured.

Higher order polynomials also deserve some attention. For
The structured grids are made of families of grid lines in two fistance, piecewise parabolic interpolation has been the
dimensions (2D) and of families of grid surfaces in three di- specific device attached to the PPM method proposed by
mensions (3D). These grid lines or grid surfaces are indexed Woodward and Collela'. More recently, high order polynomi- 0
by integers so that each node at their intersection is indexed al interpolation has been included in the "reconstruction step"
by a set of indices. The cells with the nodes as vertices can for Essentially Non Oscillatory (ENO) schemes developed by
be indexed in the same way. Connectivity rules are identical Harten2 and Osher3 .
for all cells so that we can invoke a "stencil".

In contrast, the unstructured grids consist of an arbitrary as- Derivation of the discrete equations
sembly of cells with only the possibility to index each one by We now reach the third stage in the discretization process, 0
a single integer and no regular pattern or relationship exists namely the derivation of the discrete equations linking flow
between cell and node numbering. The data structure variables on the grid at different time steps. Three distinct
management necessitates the definition and the storage of routes may be taken according to the choice of a formulation
pointers and index tables, representing the system of Euler equations.

Besides the nodes previously described as vertices of the I.- Finite Difference Methods:
cells, it can be useful to consider other points in the grid Starting from one system of first order partial differential
where discrete dependent variables are defined. We mean for equations (in corn.,rsation form or not), time and space
example mid-points of edges and centroids of faces or cen- derivatives are replaced by finite differences resulting from
troids of primary cells. It is natural to use these auxiliary the application of Taylor series at grid points.

0 0
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2.- Finite Volume Methods: Schnidt and Turkel"

The integral form of the Euler equations given by Eq. (1.3. 1)
and corresponding to the laws of conservation for mass, 2.1.1 Finite Difference Techniques
momentum and energy are applied on each cell with the as-
sumption of a constant value for the conservative quantities As said before, the finite difference methods rely upon the
(p,pai.pE) whereas the definition of the fluxes on the cell approximation of a derivative by the ratio of two differences
boundary allows a considerable number of variants for con- according to the definition of this derivative and with an ord-
trolling the accuracy, the robustness and the efficiency of er of accuracy which is estimated by Taylor expansions. The
these methods. The only mandatory rule is that the flux simplest and largest use of finite difference discretization for
evaluation on an interface between two cells be the same for solving the Euler system of equations actually appears in the
ensuring the conservation property. approximation of the time derivative.

3.- Finite Element Methods: For a function u {r, t) = u, (t) its first derivative at time t
The weak formulation of Euler equations, such as the one is defined by:
given by Eq. (1.3.13) is applied after the choice of the spaces
of approximation both for the dependent variables and the du, U, (t + At) - u, (t)
test functions. Triangles in 2D and tetrahedra in 3D are sys- - = lim (2.1.1)
tematically chosen by practitionners of finite element dt v At

methods. However, the name of finite element method should
be reserved to the case where test functions are at least poly- If we consider a uniform time discretization with t' = At

nomial of degree one. since the use of a test function which and 11," = u,(t
n

), this time derivative can be approximated

is constant by cell boils down to the finite volume approach. by the following finite difference formulas:

At this point it is interesting to notice that the three previous Fdu, " du, 1u 1
methods for deriving discrete equations can lead to very simi- dt dt -t + O(At) (2.1.2)
lar results and it is often possible to show the equivalence of i i At

some finite difference and finite volume schemes on struc- d du1 AU n-
tured grids and of some finite volume and finite element , + O(At) (2.1.3)
methods on unstructured triangular grids. Other discretization dt dt Jr=. At
methods exist but are only marginally used compared to the
three previously mentioned methods. Namely they are the du 1 (Au," + Au,"

-
I)

spectral methods and fluctuation splitting approaches. the first -I- = I dt - + O(At 2
) (2.1.4)

one is somewhat related to finite element discretizatioti since d 2 t-
it uses continuous basis functions which are generally some wh f,+_
high order polynomials but of non local support, in contrast where Af - .
with the case of finite elements. Some link can be found
also with finite differences by the fact that the grid of collo- These formulas are respectively forward, bac, ward and cen-
cation points is of structured type for two- or three- tral finite difference approximations at t" and are first order 0

dimensional problems. The continuous approximation is not accurate for the one-sided difference formulas Eq. (2.1.2-3)
very suitable for solution of Euler equations with discontinui- and second order accurate for the central approximation Eq.
ties without resorting to complicated shock-fitting or shock- (2.1.4) . However one can see that Eq. (2.1.2) is second ord-
tracking and it seems that no production code exists based on er accurate with respect to the value of the time derivative at
spectral methods. The fluctuation splitting approach is rela- r = 0+11

2 = (n+l/2) At
tively recent I and it can be considered as an attempt to mim-
ic the propagation of characteristic waves in order to replace In order to be more precise and to give an example of such
the rather one-dimensional evaluation of normal fluxes in finite difference formulas, consider the one dimensional Euler 0

finite volume methods by a more multidimensional concept. system of equations:

aw aF
Time and space discretization -- = 0 (2.1.5)

What has been said above concerns more the space discreti- It can be discretized in time (semi-discretization) by finite
zation than the way the time variable influences the design of differences according to:
a numerical method. Let us assume first that we are consider-
ing a time-dependent problem where the time evolution of aF" i  aF"
the discrete solution must be represented accurately. It seems (1 +WAw" - Aw"- -- At [0 a +(1 -0) -]
natural with present day three-dimensional problems to pro- X
pose that time and space discretization would be made + ( - 1/2) O(A 2

) + O(At13)

separately. However, with one space dimension equations for
which the early finite difference schemes where studied, it The linearization of the F" t term as introduced by Briley
was logic to discretize together the time and space deriva- and Mc Donald 7 can he used:
tives.

The Lax-Friedrichs and Lax-Wendroff schemes which were F"+ = F" + At ) + O(At 
2
)

at the basis of the numerical solution of hyperbolic systems a(
of equations indeed combine time and space discretization aF aF(see section 2.4 below). Both are two-level explicit schemes. (t)" =A"Aw + (At),
This is also the case for the family of implicit schemes

derived by Lerat as an extension of the Lax-Wendroff giving:
schemes. They also combines both time and space discretiza- a
tion in a coupled manner. (I + +At 8 A")Aw" =

By contrast, when space discretization is made first, leading
to what is called a semi-discretization, the resulting system of (0At + + ( O(At (2.1.6)
ordinary differential equations in time can be solved by van- + At x Aw" 1 + 112)

ous methods. Two classes of time integration methods widely
used for solving Euler equations are the linear multistep with second order accuracy if 0 = 1/2 + E.
methods specially studied and used by Beam and Warming 5
and the Runge Kutta methods mainly developed by Jameson. Explicit (0 = 0) and implicit schemes are obtained after a
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space discretization and we get the family of the Beam and The usefulncs of conservative schemes results from their
Warming schemes " if central discretization is used for the property of capturing discontinuities with the correct levels
space derivatives (see Section 2.4.2 for a discussion of these corresponding to the Rankine- Hugoniot relations. We shall
schemes). come back on this point when discussing the finite volume

discretization.

When space and time discretizations are made independently.

we can reverse the order of them and begin with the space A very detailed study of finite difference schemes for I-D
discretization. For a function v (x). considering a uniform dis- hyperbolic problems has been presented by Lerat I with em-
tribution of points x, = i&t. with nodal values v, = %-, !, phasis on space-centered approximation. From the large class
the approximation of the first derivative of I can be chosen of schemes discussed one can extract a yet very general sub-
according to one of the following finite difference formulas: class of two-level either explicit or linearly implicit schemes

involving at most three points at the new time level:

dv A ds + O(&V v, 1.7) Aw, + 1/2 a IMpl(Aw)I, - 1/4 SIP&Aw)l,

= - d 8rqF, + 1/2 SQ5w), (2.1.14)
.rd"I [dv .... + -S'" I

L /= -j + o(6x);&,, =v,-i',, (2.1.8) where P.W,..2 = 1/2 (W,+W,,). and M,,,2 P, 2 and
Q,+,2 are 3x3 matrices depending on the values of w at t".

I r = + ,4; & 8, V, 2 -V ,-,12 (2.1.9) This class of schemes contains most of two-level schemes S
dxj dj & such as first order upwind and TVD schemes, the second ord-

er centered schemes of Beam and Warming and the generali-

Direct application of these finite difference formulas to the zation of explicit and implicit Lax-Wendroff schemes pro-

derivative in Eq. (2.1.5) can be considered with a preference posed by Lerat
'

. A good representative of this family, namely

for the third one which is second order accurate giving: an implicit Lax-Wendroff scheme of second order of accura-
cy, is given below:

dw, + (F,_ - F_ 1 9/ & = 0 (2.1.10) Aw, - 1/2 (2 3I(lpA)2 &,AW)j, 5

Expressing F,, 2 in terms of the nodal values w, (with a 
,- pF), + 1/2 & 81(pA 6F], (21.15)

very large number of possibilities) leads to a (non linear) sys- Until now. we have considered only one dimensional finite
tern of ordinary differential equations to be solved by an ap- difference schemes. Extension of these schemes to the multi-
propriate time integration such as the linear multistep or the dimensional Euler system:
Runge-Kutta methods. wi!3t +aFl/h +- G/ + HIaz =0 (2.1.16) •

If we restrict ourselves to the case of two- (time) level
difference schemes, the most useful formulation of such is relatively straightforward if a cartesian grid is used even
.schemes is: though the number of possibilities is quickly increasing for

+he approximation of higher order space derivatives, for the
Aw, +hlinearization of the F, G and H fluxes and for the combina-
A/ 4 =- tion of differentiation and linearization.

or else: For example, direct extension of the explicit Lax-Wendroff 0
scheme can be made either according to the Ni scheme using

Aw, =- (h,. h, -a At/x a predictor at the mid-cell point or according to another
scheme with a predictor step centered at the mid-point of in-

with a numerical flux: terfaces giving better dissipative properties. This explicit
scheme was defined to be used in combination with the im-

S. w.12) plicit step consisting of successive application of the left
hand side of Eq.(2.1.15) in each direction (see Lerat. Sides

where h
1
f
) is a continuous function satisfying the consistency

condition: Use of cartesian grids (without local refinement) is not suit-

able for computing flows past bodies with curved boundaries
h''(w,...w.O,...OAo) = F(w) for any w (2.1.13) presenting too small a radius of curvature or a complex

geometry. Boundary conforming curvilinear meshes are much
Eq. (2.1.11) represents a discrete conservation law in a cell more preferred.
c = [(i-1/2) 8x . (i+1/2) & I it we consider w, as a local
average: The current procedure for applying finite differencing on cur- •

vilinear structured grids is founded upon a mapping from the
I ~ rw(x .n ,tphysical space (x,v , ) to a computational (or reference)

8x . space (jrl, ) equipped with a uniformly spaced cartesian
grid. The transformation has to be one - to - one and is as-

and h,, 2 as a time average of the flux accross the cell side sumed to be smooth enough for being differentiable. Then

x (i+l/2)&r. the system of Euler equations to be solved can he formulated
in the computational space by the change of independent

Schemes written in the form given by Eq.(2.1.11-13) are said variables (space coordinates). Special care must be taken in

to be conservative because summation of Eq.(2.1.11) over a order to keep a conservative formulation with cartesian com-

set D of contiguous cells provides, by cancellation of numer- ponents of velocity as unknowns (see Viviand" and Vi-

ical fluxes at interior interfaces, a discrete form of the conser- nokur"). With the introduction of contravariant selocity com-

vation law on D: ponents as:

D = t_, C, = [(p-112)&.(q+l/2)6xr. U = u ' + v , + I%-

V = MutI, + VT, + V' 1:
0"l(.nl,/ ~ ~ lx=-,.~ :-h~2
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nowns such as at least w, and w1 but also from w, . withW = + V + W K belonging to N, and Nj and possibly to other cells (see

the system (2.1.16) can be written as follows: Fig. 2. 1.1 in 2D for simplification).

,*/ ar +4 1 +Gi t / an +A1 Kd =O (2.1.17).0

with: * =w/J, and J = ,c)(4j) / (x.y z),

I= jUw + p(O. V4l, 0)] JG [V w + p (O , V , O ) 11 J EI n .~

= IWw + p(O. V , 0)'] / J

Special care must be exercised during the discretization pro-
cess in order to satisfy requirements such as the free-stream
or uniform flow is an exact solution of the discretized equa-
tions. The conservative property of the final finite difference
scheme has also to be checked.

This induces a close dependence hetween the choices of the
finite difference formulas for the depeodent variables w, and
for the independent variables v ,y .z with respect to the carte- Figure 2.1.1 Control volumes and nodes in a general
sian coordinates 4,, in the computational domain, finite volume method.

The alternative to a discretization in a computationa domain The set of equations resulting from Eq.(2. 1.21) is clearly a
after a coordinate transformation is to directly work out the semi-discretization with possibly a large freedom not only for
discretization in the physical space. This is the basic principle the choice of the grid and for the definition for cells or "con-
for the finite volume formulation. trol volumes" on which Eq.(2.1.18-21) are applied but also S

for the choice of the dependency of Fj with respect to the
unknowns {w/} both in space and in time.2.1.2 Finite Volume Techniques
About the first topic, clearly both structured and unstructured

As said above, the finite volume approach relies directly on gnds are concerned by this formulation. In both cases the
the application of the integral form of balance laws. Assum- three-dimensional grid is made of polyhedra where we can
ing that the domain of integration is independent of time, we distinguish the sets of vertices, edges, faces and cells. Three
write these conservation laws for an arbitrary spatial domain types of cell arrangements are used in practice: cell vertex, 0
Q bounded by 1. node centered and cell centered methods.

d(J w dr dy dz) / dt + j (F.)dc=0 (2.1.18) Cell vertex methods

where w is the vector of conservative variables and F the Cell vertex finite volume methods seem to be the oldest ones
flux tensor. (McDonald' 1971, MacCormack and Paullay'4 1972) and

were devised for the solution of two-dimensional time-
If we assume that the physical domain is covered by a collec- dependent Euler equations. They keep strong favour with
tion of elementary polyhedral cells forming a partition of this several variants such as the Ni scheme' 5s or its modification
domain, the application of Eq.(2.1.18) at the level of each by Hall' 6.
elementary cell ensures a conservative discretization, that is
to say ensures the validity of Eq.(2.1.18) for any union of
elementary cells if the numeri--l approximation for (F.ff) is
unique on the interface between two contiguous cells.

To be more specific, let us consider two neighbouring cells
0 and fj,. their common interface F-,j with its unit normal L
fi oriented from Q, toward 0j. We denote by w, the mean
value of w on 0,: 4 K

0, Iwt = f wdxdvd: (2.1.19)

and by F,,. the mean value of the normal flux on Xjt: 1

- 2
1E, I F,=J F.ido (2.1.20)

If we call N, the set of indexes of the cells surrounding D/
and having an interface in common with it, Eq.(2.1.18) ap- Figure 2.1.2 Cell vertex finite volume method.
plied to 1, becomes:

In the cell vertex methods the flow variables are assigned to
d(w, 10 ,) / dr+ 1: F,, 11, 1 = 0 (2.1.21) vertices (mesh nodes) and the control volume attached to

J e N, node I is made of the collection of elementary cells (indexed
by the set NI) surrounding this node. With this choice of

Considering the set of all cells 10, , we get the discretized control volumes, we see, for example in a two dimensional
equations for the whole physical domain with unknowns structured grid (see Fig. 2.1.2). that two neighbouring control 0
Iw, I if F,. is evaluated from a finite number of cell unk- volumes have in common one or two mesh cells and that the

,,,r-......... 0
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union of all the control volumes covers four times the physi- ahedral grids, there is about the same number of control
cal domain since each quadrilateral belongs in general to four cells (thus of unknowns) and of flux evaluations whereas in
different control volumes. For an unstructured grid with trian- the case of triangular or tetrahedral grids the number of con-
gles, each triangle belongs to the three control volumes at- trol volumes (thus of unknowns) is larger in the cell centered
tached to its three vertices. Any edge belongs to two control approach with a ratio of about two for triangles and of about
volumes and for conservation of physical quantities the fluxes five or six for tetrahedra.
must be evaluated in the same manner for both adjacent con-
trol volumes on their interface. This is one reason why the following third class of finite

volume discretization has been increasingly adopted by pra-

Cell centered methods titioners of finite volume methods on unstructured grids.

known approach consists in taking elementary Node centered methods
control volumes. Thus the mean value w, can be

:o some centroid of the mesh cell. In the node centered approach for finite volume discretiza-
tion. the unknowns are associated with the mesh vertices and

For triangles or tetrahedra the centroid is normally the point a control cell is constructed around each mesh vertex without
of intersection of medians and for quadrilaterals and hexahe- overlapping neighbouring cells in a manner that provides a
dra it is located at the intersection of straight lines joining the complete partition of the computational domain.
mid-points of opposite sides. There is not much room for
geometric variants in the cell centered finite volume schemes. A strong motivation for this choice lies in the fact that for
The only dilemma is for evaluating fluxes on the interface solving the Navier-Stokes equations a continuous approxima-
between two cells. This evaluation can be either a central in- tion with unknowns defined at the mesh nodes is best suited
terpolation or an upwind formulation. for central differencing of second order derivatives. The na-

tural practice of extending Euler flow solvers to the solution
of Navier-Stokes equations is also an explanation for the in-
terest related to this formulation which combines the choice
of the nodes from cell vertex with the choice of non over-
lapping cells as in the cell centered approach.

The construction of the control volumes is based on the
e1 * definition of a centroid in each mesh cell Then a "dual

mesh" is built which connects these centroids. There are two
possibilities: either two adjacent centroids are joined by a
straight line ("centroid dual mesh") or a mid-point is firstly
introduced on the common interface and is used (with mid-
points on the edges in three dimensions) to complete the
boundary of the control volume by median lines (or planes) 0 O
providing the so-called "median dual mesh" (see Fig. 2.1.4).

Figure 2.1.4 Node centered finite volume method:
Figure 2.1.3 Cell centered finite volume methods a) - Median dual mesh; b) .... Centroid dual mesh.

The first choice was taken by Jameson et al.6 and Rizzi"? The first possibility is more economical as flux evaluation is
with a simple mean value of fluxes from the two adjacent concerned but it can lead to large inconsistency in these flux
cells, the lack of dissipative properties of the resulting evaluations for very distorted and elongated meshes and the
scheme imposes to add artificial dissipation as shown in Sec- second choice is recommended in that situation. S
tion 2.3. This choice can be also identified in the explicit Lax
Wendroff step of Lerat Sides schemes" but then the flux This choice of a node centered finite volume approach can be
evaluation takes into account values of w over a larger used with both central or upwind schemes but it is specially
number of cells (six in two dimensions on a structured qua- well adapted to Godunov-type methods and to unstructured
drilateral grid), grids made of triangles or tetrahedra. In this case, strong

analogy can be shown'9 between a node centered finite
The second possibility is related to upwind schemes of either volume method on a median dual mesh and the cell vertex or
first or higher order. The most typical example of such the Galerkin finite element method with linear approximation
upwind schemes is the basic first order Godunov scheme'8  proposed by Jameson et al2".
which rests on the assumption of a piecewise constant func-
tion for representing w and on the solution of a Riemann 2.1.3 Finite Element Techniques
problem at the mid-point of each interface between two cells.
This Riemann problem solution provides an intermediate phy- As indicated above, finite element methods are characterized
sical state for the flux evaluation, by the use of a weak formulation as a basis for the discretiza-

tion of the equations to solve.
If we compare the cell centered approach with the cell vertex o

one, it is easy to see that, in the case of quadrilateral or hex- The subdivision of the computational domain is generally

*--
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achieved with simplicial elements (triangles in 2D, tetrahedra where SA and ti, are the area and the outer normal of the
in 3D) which made possible a linear interpolation over each face opposite to node I and Vj is the volume of the element.
element. However the use of quadrilaterals or hexahedra is
also met either in combination with simplicial elements or Thus the second integral evaluated on this elecient , is 0
not. The only restriction on the grid arrangement is that a
vertex, edge. or face of an element has to be also a vertex.
edge, or face of any adjacent element. J K dI F, +.J.+F .+ V 2..24 )

i113 4 V4. K %'
Finite element methods found their origin in the field of solid
mechanics at the beginning of the sixties and their use for and since, by summation over all elements with a common
fluid dynamics appeared in the mid seventies. This extension vertex I. we have I S -, = 0,
was rather natural since at that time the first attempts to ap-
ply finite element techniques to a fluid flow problem con-
cemed elliptic partial differential equations namely the Stokes we can discard the F, term in the sum over all elements sur-
problem and the full potential equation. rounding I getting from Eq. (2 I 24):

Variational principles are well known for the derivation of S + + .

these equations. This is not the case for the system of the _ X . dJ + -( 3 . ,

Euler equations of hyperbolic type, and it was early recog- A u, 4 3
nized that the direct use of the classical Galerkin approach in
space-time is inefficient for these equations, which clearly appears as a discrete approximation of :

Therefore the few tinite element methods existing for solving 1 I: J Fm d a
the Euler system of equations have been mostly devised from 4 K,
a semi- discrete approach with only a space discretization by A '
finite element techniques and often with a strong link to well Finally, Eq. (2.1.23) gives for a node/:
known finite difference ,A finite volume schemes. The notice-

able exception is the Galerkin Least Square or Streamline
Upwind Petrov Galerkin (SUPG) methods which have pro- V dwt 1 3 divA,0 .
gressively evolved from research studies on scalar advection- V, -X - + dI ) + ,.hk S, 0 (2.125)

diffusion problems to full compressible Navier-Stokes 5 dt 5 AA=

solvers. This approach is now presented by Johnson (under
the name of Streamline Diffusion) as a general unified ap- with F5  - X
proach to CFD2 1.

The presentation will be limited here to a simple overview of where the subscript M denotes the three exterior nodes of the

the main methods namely the Galerkin method with artificial k -th tetrahedron in the set of elements containing node 1.

dissipation of Jameson et al.-2-, the Taylor-Galerkin method
studied by Peraire. Morgan. Lohner et al.2_.24.2' after Donea26 ,

the Richtmyer-Galerkin approach from Angrand, Dervieux et nk
al.27-25 and the Galerkin Least Square after Hugues and John-X

All of these methods are based on a continuous piecewise
linear approximation on a triangular or tetrahedral mesh
eventhough it could be possible in theory to use higher order
polynomials.

Standard Galerkin methods

We consider first the Jameson finite element method and for
simplification we extract from the set of Euler equations one
of the scalar conservation laws:

Figure 2.1.5 Tetrahedral element.

- + V . F = 0 (2.1.22) If only steady solution is of interest it is convenient to re-
place the "Galerkin mass matrix" (the coefficients of which

This scalar equation is then transformed with multiplication appear in Eq (2.1.25)) by a "lumped mass matrix" thus avoid-

by a test function i. space integration over the flow domain ing the coupling of equations:

Q- and integration by parts for the space derivatives giving: dir1  0
a,.( I vi, -+-  i, ,

.t .d Q V. d Q+ J F. n do= 0(2.1.23) ki 0

(X2 This formulation could as well have been found by a finite

We atvolume approach and this explains why it is sometimes
We assume now that -t- and F are linearly interpolated on difficult to make a distinction between the two class of

each element from their value at nodes and that 0 is the discretization techniques.
piecewise linear function with value unity at node I and zero
at all other nodes in Q .Then the last integral vanishes except Moreover, time discretizations other than the Euler explicit
in the case when node I is on the boundary of Ql. Also V4 is one are often advocated by finite element practitioners. In
constant in every element and differs from zero only in ele- particular, it is worth to mention at least Richtmyer-Galerkin
ments sharing the common vertex I. In such an element 2k  schemes 2" and two-step Taylor-Galerkin schemes -3-24
shown in Fig. 2.1.5. it is easy to show that: These schemes are the finite element counterpart of classical

I S,fk predictor-corector explicit schemes of Lax-Wendroff type in
finite difference or finite volume approaches such as 0

3 V, described by Lerat. Sides -29 or by Ni'.
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The predictor step can be understood as a first order explicit Find wh e V such that for all v4 E V
step of celf-centered finite volume type applied on each ele-
ment with a time step uat. b(vh ,wh ) = 1(, h ) (2.1.26)

I wi",'(T) d!f. jkf dil - oAti I Fk(wmyf.f doy where by definition:
T

with w 5"O(T) a piecewise constant approximation. b(vh'wh) = J(-J.Vvh wh + Vv".-Vwh) dil ()
Q

The corrector step corresponds to the previous Galerkin finite 1(v h ) = jvhf dil
element approximation with a time step At and a blending of
fluxes taken at time t and at the end of the predictor step
with a weighting factor I in order to get second order ac- Notice that here and in the following the boundary integrals
curacy2a resulting from integration by parts are discarded.

The classical artificial viscosity approach, as described above,
w n -w" dQ j + leads to replace Eq (2.1.31) by:

b(v.,w
) + EjVv0Vw

h 
dQ = I(vh)

(F(w ) - ) dO

Another possibility is to choose different approximation
spaces for the numerical solution and for the test function in

means that a one point numerical quadrature is made the weak formulation. This approach is named the Petrov-where mGalerkin method. An example of such a technique is the
on each element. SUPG concept which relies upon:

The case ot = I corresponds to Lax-Wendroff type schemes b(th'w h ) + f Vt,h (Lwh -f)dfl = 16-' )
called Taylor-Galerkin schemes in the finite element littera- t-
ture after Donea 26 and coworkers.

A related technique is the Galerkin Least Square method
All these schemes give (on uniformly spaced grids) central which corresponds to:
space discretization and they need the addition of artificial
viscosity in order to avoid spurious oscillations due to the
decoupling of nodes or to the presence of strong gradients. bkvh ,wh) + JLvh (Lw" - f) d f2 = I(vh )

Several possibilities have been studied to give a finite ele-
ment equivalent of an explicit', added artificial viscosity. The choice of the parameters F and T is made from theoreti-
Some are derived from the disretization of a Laplacian cal analysis in order to enforce stability and accuracy.
operator, other are related to upwind schemes with Roe split-
ting (see section 2.3) but at least one is typical of the fin'te It appears that for a purely convective system, SUPG and
element approximation. It is based on the observation that the Galerkin Least Square are identical.
difference between the exact Galerkin mass matrix and the
lumped mass matrix is a diffusion operator which can be For the system of Euler equations, the necessary extension of 0
used in combination with a pressure switch in order to play the above formulation led to the introduction of rather cor-
the role of a second order dissipation near the shocks. De- plicated non linear operators3 - .
tails can be found in Ref. 30 for a precise definition of this Another originality in the formulation of those methods is the
artificial viscosity and more generally in Ref. 25 for the class use ointropy ia de tatin f the obsrva
of finite element schemes of central differencing type with use of entropy variables. Indeed, starting from the observa-
numerous references. tion that the L241) inner product for trying to derive a varia-

tional statement directly from the Euler equations has no phvsical meaning:

Petrov-Galerkin, Galerkin-Least-Square methods

A class of methods more specific of the finite element ap- wJ( +  ) d p2(l + u2 + e 2) d+...
proach found its origin in the numerical approximation of f
convection-diffusion flows by Hughes and Brooks3 with the
Streamline Upwind Petrov-Galerkin (SUPG) schemes which the authors32 advocate the use of entropy variables allowing a
progressively evolved towards a large family of schemes 32 "3 symmetrization of the system of Euler equations 3 . They give
with its theoretical analysis made by Johnson and Szepessy 4. a formulation comprising the full compressible Navier-Stokes

equations which accounts for a continuous approximation and
The space-time approximation has been developed but is a non divergence form of the convective terms and which can
mainly of interest for moving boundaries so we restrict here be written (here with repeated indices indicating summation):
the presentation to the semi-discrete form of these finite ele-
ment methods. aw + aw (K awt+  (Kx - . , -) +f (2.1.27)

To give an idea of the different variants in this large class of
discretization techniques we can restrict the problem to the where K = Ki " + Ki) h
case of a scalar steady advection diffusion equation: i'

and K,v corresponds to the physical viscosity and K,, h to
Lw = &Vw - V.(k w) =f the heat coefficients.

The standard Galerkin method consists of choosing the same The entropy variables are defined by:
approximation space Vh (generally a piecewise linear ap-
proximation) for the approximate solution wh and for the test S=ps=p (L
function v)h: 11:, where Po P0

dw PO0P
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The change of variables w w(u) gives: on their ability to represent complex geometres hot-ever
with a need of some effort for a priori controlling the distri-

o A -- . . ) bution of nodes- A strong increase of interest resulted from
) )+f (2.1.28) the introduction of adaptive mesh techniques by local

at a x, ay refinement and coarsening of the grid according to some flow
whr solution error indicator. This can favourably counterbalance

where Ao A, A K, A,) the extra cost of unstructured grid solution algorithms and
programming techniques. @

The co. fficient matrices possess the following properties. The effetiveness of the adaptive grid methodology depends
on the quality and accurc which can be reached for "a pos-

A0 is symmetric positive definite, the A are sym- teriori error indicators' and it is in that direction that finite
metric and the K,) are symmetric positive semi-definite, element analysis could bring powerful promising techniques.

A dot product of Eq (2.1.28) by u gives after integration

du - du a - du
0 f u I' tA,, o , - -- f) dil
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2.2 COMPUTATIONAL GRIDS

In Chapter One the conservation laws relating to mass, momenta
and energy were described in mathematical form. These
conservation statements assume the continuum hypothesis, in
which a gas is assumed to be a continuous medium, rather than 0
made up from individual atoms and molecules. The mathematical
equations are presented in both integral and differential form, but
both forms assume that the variables are defined continuously
through the flow domain. The conservation equations. for the
majority of flows of interest, are non-linear and hence are not
amenable to classical mathematical analysis. Alternative methods A
of solution have to be sought and one of these approaches is a
numerical solution of the equations. In the previous section of •
this chapter, several of the major techniques for representing
equations, in a form required for numerical analysis. were Figure 2.2.1 Data ordering of a structured grid.
presented. All of these methods assume that the flow domain has Ouadrilaterals formed by
been spatially discretized into a g or mesh which consists of a
set of points, and connections between points, called cells or .11' ri+lj+,, rij+l) (i= 4, j=1.5)
elements. The process of spatial discretization is called grid or
mesh generation. 3

The spatial discretization 'lays an important role in the numerical 2 1 1 . 5. 7
analysis procedure. The distribhtion of point, in the domain 2 1. 4, 2
must, firstly, adequately represent the geom .. of the region. In 1 1 2. 3
general, regions of the boundary of the domain which change 4 1 3. 5
rapidly will require a concentration of points to adequately 5 1 7. 6
represent the shape. Secondly, for accurate flow simulations, it 6 1. 6. 8
is necessary that there are adequate points in regions of the 8, 4
flowfield where there is high activity, i.e., where the flow 9 8 7. 9. 6 0
variables are changing rapidly. These two major requirements
cannot be achieved in an arbitrary way. The accuracy of the
numerical discretizations are dependent upon the properties of Figure 2.2.2 Data ordering of an unstructured ;'d
the underlying spatial discretization. For example, the classical
second order accurate finite difference representation of a second A typical form of data format for an unstructured grid in 2
derivative is only second order in space if the grid point spacing dimensions is;
is uniform. Furthermore, it can be shown that other spatial
derivatives only achieve second order accuracy if the grid lines Number of points, number of elements * *
are approximately orthogonal. Hence, the spatial discretization x I, Yl
of the domain must be achieved without discontinuous grid point
spacing and without the introduction of highly skewed cells or x), Y2
elements. These restrictions ,hake the generation of suitable x3, Y3
computational grids a non-trivial problem. Consideral"!e
attention in the last decade has been given to the problem of grid
generation1-7 .  n1, n2, n3n 4 ,  15  n 6 •
Before discussing, in detail, some of the more popular and n7, n8, n9
successful appr,,hcs, it is necessary to comment on different
methodologies used in grid generation. One of the first aspects
to cover is the spatial pattern and arrangement of points and
cells, where (xi, yi) are the coordinates of point i, and ni, I=I,N are

the point numbers with, for example, the triad (nI, n2 , n3)
Structured and Unstructured Grids forming a triangle. Other forms of connectivity matrices are

equally valid, for example, connections can be based upon

The basic difference between structured and unstructured grids edges.
lies in the form of the data structure which most appropriately The real advantage of the unstructured mesh is, however,
describes the grid. A structured grid of quadrilaterals consists of because the points and connectivities do not possess any global
a set of coordinates and connectivities which naturally map into structure. It is possible, therefore, to add and delete nodes and
elements of a matrix. Neighbouring points in a mesh in the elements as the geometry requires or, in a flow adaptivity
physical space are the neighbouring elements in the mesh point scheme, as flow gradients or errors evolve. Hence the
matrix (Fig. 2.2.1). unstructured approach is ideally suited for the discretization of

complicated geometrical domains and complex flowfield
Thus, for example, a 2-dimensional array x(i,j) can be used to features. However, the lack of any global directional features in
store the x-coordinates of points in a 2D grid. The index i can be an unstructured grid makes the application of line sweep solution
chosen to describe the position of points in one direction, whilst algorithms more difficult to apply than on structured grids.
j describes the position of points in the other direction. Hence, in
this way, the indices i and j represent the 2 families of
curvilinear lines. These ideas naturally extend to 3 dimensions. Boundary Conforming and Non-Aligned

However, for an unstructured mesh the points cannot be Grids
represented in such a manner and additional information has to
be provided. For any particular point, the connection with other The solid boundaries within a flowfield play a vitally important
points must be defined explicitly in the connectivity matrix, role. In most applications the solid boundaries create the flow
(Figure 2.2.2) features of interest. Hence, it is essential that the solid

boundaries are accurately represented in the spatial grid and then
the numerical formulation of the solid wall boundary conditions
can be implemented accurately and efficiently. These

,, .. . if li i " I Ip i .. . . - ..
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requirements have resulted in the use of boundary or body xx +  yy +  zz = (22,))
conforming grids, in which points lie on the boundaries and grid
lines are aligned with the geometrical surfaces (Figure 2.2.3). fx, 

+ fyy + rzz = Q(4'q' )
Cxx + Cyy + z= R(.rlC)

in which P. Q and R are the source functions which can be used
to control the grid point spacing and distribution. These
equations. as expressed in Eq. (2.2.1). are in an inappropriate
form for grid generation, since in general, boundary data will be

specified in terms of x, y and z and not , 11, and . Hence,

following Thompson, Thames and Mastin 12. these equations
are transformed so that they are written in terms of the unknown 0

__ Solid Boundary spatial physical variables x,y and z with the independent

Figure 2.2.3 Boundary conforming gnd variables ', rl, and r. The transformtion leads to the equations

Such an approach. although probably the natural approach from aI Ir +v22 rq+Cz3 3 r(+2(Ctl2rE,,+a I "r(+at2 3 rrl)
thc viewpoini of the ia,pleientation of ahe .,w boundary
conditions, places a severe restriction on grid generation =-j 2 (Pr4+Qr,+RrV (2.2.2)
procedures. An alternative approach 8 - 1  is to relax this 0
restriction on the grid generation and allow grid lines to pass T
through the solid boundary in a non-aligned manner (Fig 2.2.4). where r =(x.y,z) = Ymi Ymj and yij is the ij-th cofactor

of the matrix

x, xr x

M= y, yTr yC (2.2.3)

- Solid Boundary and the Jac,'bian J is the determinant of M.

Figure 2.2.4 Non-aligned grid
The mfi urte iontion o nday cAn interesting alternative derivation of these equations was givenThe problem of the accurate imposition of boundary conditions

is then transferred to the solution algorithm and the construction by Brackbill and Saltzman 13. Working on adaptive grids, they

of appropriate techniques. introduced global smoothness as one property required from the
mesh. Smoothness, in a 2-dimensional domain f2 with boundary

Both the non-aligned and boundary conforming approaches have e. can be written as

been investigated. Today the boundary conforming strategy is

the most popular and most widely used.
s= Jl(V )2 + (Vr!) 2 1 d 2.

One of the features of constructing grid generation techniques,
which is different from the developmer,. 'ow or other
analysis algorithms, is that there are no . laws which which when transformed and optimized leads to the 2-
go'ern grid gccr:in. Any suitable cc .... or geometrical dimensional equations equivalent to those expressed in Eq.
constructions can be used. This is refle~uc ..e many different (2.2.2). Hence, the inverted Laplacian, without grid control
and diverse techniques which have betn explored. However, functions. maximises the smoothness of the distribution of grid
after a period of exploration and numerical experimen ,'on points.
several approaches are now b,-oming standard procedures. The
major techniques will be discussed. The above equations represent a non-linear boundary value

problem. The solution of these equatiLns can he achieved using 0
any appropriate technique. However, central ditlcia,;es and

2.2.1 Structured Grids from relaxation schemes are commonly used. To illustrate a solution
procedure, consider the commonly used 2-dimensional form,Partial Differential Equations r=r(x,y)T , of the equations with the control functions set to
zero, namely,

Elliptic Systems
atr - 23r~r + WTrlq =O. •

The motivation for the use of elliptic equations as generators of

grid points can be derived from a number of sources. The nature where
of elliptic equations is to smooth boundary data and this affords 2 2

most desirable property. Laplace's equation with Cauchy- t=(x +y ),
Riemann type boundary conditions can be used to generate (Xr 1
conformal mappings. In fact, the real and imaginary parts of an
analytic transformation are harmonic functions. An alternative '3 + Y Yri)
viewpoint, and one which is most appropriate in computational and 0
fluid dynamics, is to note that inviscid steady incompressible 2 2
flow is described in terms of Laplace's equation in the potential y= (x + y )
function and the stream function.

Using central finite differences for the representation of the
A starting point for elliptic equations is to choose a system of derivatives, the residual on a square mesh with =ih,Poisson equations, expressed in the form

(i--0.,2 ...... m) and if=jh, (j=0,1,2 ....... n) can be represented
as

... . . ... .. . ... . .* ..
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t n n n
Rsa (r 2 +r j)ij ii i+lj ij i-Ij

-0n ,n n +n n V

n n n +n

w i h+ y ij ( r ij + " 2 r ij +r ij _ I I

n n n 2 n n 0 <0atj {((xii+ I- Xij. 1) + (yij+lI- yij_ 1)  114 '

n n n n+ n
[ ij ~ ~ ~ = j) I(il'il ijl xij-l

n n n n
+(Yi+ lj-Yi j)(Yij+1 _ Yij i_ 1 /4

n n f n f 2  n n I/
fij i+ l" i-l Y +ilj Y i-j 1/4

nwhere rij represents the unknown at the point (ij) at iteration

level n. It is noted that in the numerical formulation a
linearization is applied to the terms in a, . and y. In practice,
once x and y are known, at the new iteration level n+l, they can

ft n n
be immediately utilis -d in the terms a-, Onj and yi. It follows

. U3 tJ <

that the solution to the equations can be obtained using the
stationary and linear successive over-relaxation scheme.

n+l= n ij Figure 2.2.5. Effects of the control functionsrij = i+ (rij + n)
iJ YiJ Negative values of Q tend to cause the ri-coordinate lines to * *

move in the direction of decreasing Ti, while negative values of P
where o) is a relaxation parameter, with l<o<2. A similar cause -lines to move in the direction of decreasing . Similar
numerical scheme can be applied to the equations, Eq. (2.2.2). effects occur in 3 dimensions.

Boundary conditions for these equations are most generally Automatic procedures for the computation of the source terms
applied in the form of Dirichlet or Neumann conditions. Dirichlet have been devised 14. A popular approach is to derive the control
conditions specify fixed (xy) values for a particular constant ; functions from the boundary point spacing and then to
or rt and are used, for example, to specify aerofoil or interpolate the values iao the interior. In this way, point spacing
outerboundary positions. Neumann conditions are used to in the field reflects the point spacing on boundaries 15 .
specify fixed derivatives on boundaries. In the case of the grid
equations, this type of boundary condition amounts to the To illustrate some of these ideas the equations in 2 dimensions,
specification of grid line directions. The positions of (xy), on a which include the control terms, are
boundary of constant and r. are allowed to move in order to
satisfy the slope conditions. Typically, such boundary (rtk+Prk ) - 21r, + yq+Qrq) =0. (2-2.4)
conditions are applied on lines where one of the coordinates x or
y is fixed whilst the other is computed under the Neumann The work of Thomas and Middlecoff15 demonstrated that the
condition. Such a boundary condition may be applied at an outer distribution of points on boundaries of a domain can be used to
boundary or on a cut in the wake of an aerofoil. Similar .tiuino onso onaiso oancnb sdt
boundary condion are apinhed win 3 dimensions. generate the control functions so as to have the effect of
boundary conditions are applied iextending the point distribution into the interior. Eliminating Q

in Eq. (2.2.4) leads to

Central to the practical use of these equations is the appropriate 2 2 (Xn+. xn  0
form for the control functions P, Q and R. The inherent eelY(X+Px4)-x(Y+PY)1 = Yr 12 -) + (_) I
smoothing properties of Laplace's equation ensures that, in the YTJ y"
absence of boundary curvature, the grid points are evenly t2.2.5)
spaced. However, near convex boundaries the grid points will
become more closely spaced, whilst near concave boundaries the
mesh spacing will be more sparse. These properties are not Imposing two conditions on an Tl=constant boundary, namely.
always desirable for grid generation where it is essential that the zero curvature,
grid near a boundary reflects the shape of that boundary. Control z
of grid point spacing can be achieved by the source terms P, Q
and R. xy T

Typical effects of the source functions, in 2 dimensions, are (-
shown in schematic form in Fig. 2.2.5.

and the condition for orthogonality

x~xri + y~q=0.,

*-.
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Eq. (2.2.5) reduces to rn'rIn rn r k (
-Q - - (227b)., rr 12 , P

P (22.6a) r 2

The first terms of Eq. (2.2.7) for P and Q are equivalent to the
control functions of Thomas and Middlecoff. However, the

A similarly expression can be derived for Q second terms are the corrective terms tor orthogonality which are
not only dependent upon the boundary points but also on the

r .r1TT field points. Hence, it is not possible to use these equations
Q =- (2.2.6b) without some interaction with the grid as it evolves in the

.r 
2  

solution procedure.

The iterative procedure for the control functions then follows the
It is noted that the evaluation of P involves the point distribution steps:-
on a line of constant 4. whilst Q involves data on a constant o1.
These forms for P and Q can thus be evaluated directly from the 1. Compute P and Q from the boundary point distribution

hound-ry point distributians.

Once values for P and Q have been obtained for each boundary P = -1 Q r 2

point the values at interior mesh points can be obtained by linear r 2

interpolation along lines of constant and TI. This procedure
ensures that the grid throughout the interior of the domain 2. Obtain an initial grid.
reflects the distribution of points on the boundaries. This effect
is illustrated in Fig. 2.2.6. 3. Calculate the corrective terms

P 2 and Q 2........ .... - - - - Ir~il 2  
I~

4. Add to the control terms

. P = P+ and Q Q + Q

5. Solve Eq. (2.2.4) to produce a new grid

• _ 6. Repeat steps 3,45 until the correction terms P and Q are
zero.

.. It is clear that the method adds correction terms for onhogonality
until they are zero. Fig. 2 . 7 shows the effects of this iterative
control of the source terms.

Figure 2.2.6 Effects of control functions on the spacing of
points inside the domain. The interior point distribution

reflects the point spacing on the boundary.

Although this approach works well in many cases there are 7 - -'' . .
circumstances when local control of orthogonality in the mesh is
important. This is particularly relevant for meshes to be used for
viscous flow simulation. To implement local orthogonality, a
further modification to the computation of the control terms can
be made 14

.

For orthogonality. = 0 and thus the grid equations become

a(r%+PrO) + T(rrl+Qrq) =0.

Taking the scalar product of this equation with rt and rrl and

again using the condition for orthogonality leads to II

P - - (2.2.7a)

tr 12  Trn 2

and Figure 2.2.7 Effect of the boundary orthogonality control.
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Further discussions of the approach and the specification of the marched away trom a boundary in much the ,ame way as that

control terms can be found elsewhere
14

_ previously described for hyperbolic grid generation. Here,
however. some n,luence of the other boundaries is retained in

Other elliptic partial differenti, equations have been used for the equations Ahh,,ugh soln de'.elopmeni of such schenes has
16been made, it has proved it- be limited in its flexibility and

grid generation 16. Highet order systems have been used since applicability h
they provide the flexibility for specifying more conditions on the
boundary. In this way, it is possible to not only specify point
spacing, but also slopes etc.. ,

2.2.2 Structured Grids from Algebraic

Hyperbolic Systems Methods

Computational grids can also be generated by solving hyperbolic Algebraic grid generation distinguishes itself from ,her grid

partial differential equations which are marched outwards froma generation methodologies by the ability to prouu a dire.
specified distribution of points on an inner boundary 17 functional description of thr coordinate transformations between

nr .ry the computational and physi,:al domains. The roots of algebrai
Differential on grid generation are found in conformal mapping. defined b
used to determine the governing grid generation equations, explicit analytical functions of a'-"\..lex .ar le.
Because the outei boundary of a grid cannot be specified in
hyperbolic grid generation, the method is best suited to
applications which have asymptotic-like outer boundaries. In Conformal Mapping
external aerodynamics, for example, the outer boundary is M
generally a farfield condition of undisturbed flow. However.doman dcomositon ethds tat se verst cmpoite The concept of a mapping, ir. 2 dimensions, is to define a
domain decomposition methods that use overset compositle transformation which takes a domain 1), defined in ihe plane
meshes for complex field simulations can also effectively
employ hyperbolic grid generation. For example, a number of lx.yl onto a rectangular ,omain R on the plane .m ) The
recent flow simulations which employ the ' Chimera' overset geometrical relationship between ) and R is described bs the
grid method have relied almost exclusively on iyperbolic grid components -f the metric tensor gij (jJ= 1.21. F:roni thc tornial

generation1 8.19 definition of a conformal mapping
-

l , ,llows that 1he

components of the metric tensor are subject t) 01C Onstraint
In three-dimensional applications of hyperbolic grid generation,

a body surface is chosen to coincide with (x,yz) = 0, is used g I = g2 2 and g1 2 0

as the marching direction, and the outer boundary (xy,z)

= max is not specified On the body surface, grid-line and as such the mapping furtions xt,rl) and r i mustsatisfy the Cauchs Piemann relations in the domain R. namely.

distributions of =constant and r.c--Ant are user-specified. In

three-dimensions, there are three ortnogonality relations to an x

choose from and one cell volume constrrint Recause is the Y"" 1

marching direction, it is natural to use only the two orthogonality

relations that involve . This leads to the governing equations Consequently, the condition of integrabty yields

rc. r = x: x + yr. yC + z z = 0, V x = Oand V
2

y =0.

It is clear from these relationships that it is not possible to fix •
r rr = x + yT yr + zT z =0, both x and y on the boundary of R for the solution of the

Laplcians. One possibility is to fix the sides ,,=constant of the
rectangle R with the value of the function of x and from the

__(___,v . zsecond Cauchy-Riemann relation the value of the derivative y ,
while on the sides Tl=constant the function y and the derivatives

xy yI z ,- x, Yr, z, = AV x are specified. lence, it is apparent that in the case of
T conformal mapping it is not possible to specify the distribution

with r iv defined as (x~y.zl
T

. The first two equations represent of the grid points because of the constraint placed upon the

orthogonality relations between and C and between il and , metncs g, I and g 12. A slightly more flexible approach can be

and the last equation is the volume or finite Jacobian constraint, achieved if the constraint g, 1=g 22 is relaxed and the relationship

AV can be prespecified to give appropriate point spacing. is taken as

The equations comprise a system of nonlinear differential gl I = 
F( ,7)g22 and 12=0

equations in which x. yand z are specified as initial data at g--n.
A local linearization is performed and the equations are then where the specification of F. a dilatation function, permits a
solved with a noniterative approximately factored implicit finite certain flexibility without the loss of orthogonality2 2 .

difference scheme so that the marching step size, in , can be
arbitrary selected. Further details of this approach can be found
in Steger

1 7 . As an example of conformal mapping applied to grid generation,
consider the particularly attractive method for 2-dimensional
aerofoil configurations based upon the Joukowski mapping,

Parabolic Systems 12

Grid generation based upon parabolic partial differential -

equations can also be performed 2 0 . In general, such equation,
are constructed by modifying elliptic generation systems so that A circle in the r plane maps to a so-called Joukowski aerofoil in
the second derivatives, in one coordinate direction, do not the z plane. A generalisation of this to general aerofoil
appear. The solution of the parabolic equations can then be geometries is the Von Karman - Trefftz mapping

0



41

where z is the aerofoil plane complex coordinates, the near- comers. By contrast, the simple sum R4 + R, maps each
circle plane complex coordinate, ic=2-kx. with X the included boundary to the sum of a line segment and the actual physical
trailing edge angle, zIt and zlIn are two singular points in the z boundary. By using the tensor product mapping to remove the
plane at the trailing edge and at the midway between the nose of boundary line segments, the Boolean sum is obtained
the aerofoil and its centre of curvature, respectively, and the
parameter s I is related to Z 1t and z In through the relations zI t R4R1 = R+R-R, Rr
zIs + ks1 and zIn = zIs - ksj. A polar mesh with appropriate ()
stretching in the radial direction generated around the near circle, where the tensor product is defined as
when mapped back to the physical plane, produces a high
quality structured mesh. The technique is computationally RIR =(I- ){(l-ql)R(0.0)+qR(0,1)+11lllJR(l,0)+qR(ll).
efficient and has been used to provide a suitable set of points for
aerofoil-like geometries. An example of this is shown in Fig. This represents transfinite interpolation. In practice, the previous
2.2.8. equation is broken down into several components. For example,

in three dimensions the interpolant would be expressed as

FI = RrF

F2 = FI + R IF: - FI (2.2.8)

F3 = Fj+ R;IF- F2 I

where is the computational va-riable in the third direction. F-F 1

. represents the mismatch between the actual surface and the first
interpolant.

Figure 2.2.8 A structured conformal grid In the above description, uni-directional interpolants of the
Lagrange form have been used. If control of local boundary

Conformal mappings have found many early applications in the slopes are required then these interpolants can be expressed in

numerical simulation of potential flow23 . Although the resulting Hermite form to give

grids preserve a basic cell shape, the amount of local control if if
provided is not sufficient for many problems. As indicated, one RP= f(, 1r) aI(,)+- a-)(,;)+f( 2 ,fl)U 3 (,)+- C(4 (;)
by one, the intrinsic properties of conformal mappings must be
dropped to provide greater flexibility. Cell shape preservaition
can be replaced by only orthogonality, thus allowing the grid to Similar expressions can be written for the interpolants RrT and
stretch in one or more of the coordinate curve directions.
Shearing transformations, in turn, can overcome further R;. The coefficients txi, i=1,4 are the blending functions with
shortcomings of the conformal mapping. Extensions to three again correspondin equivalent terms for the rl and
dimensions can be achieved by conformal mappings in two nterlants
dimensions followed by an algebraic stretching in the third
dimension. It should be noted that transfinite interpolation is a direct

The requirement for more general algebraic grid generation evaluation of Eq. (2.2.8, and hence is computationally very fast
procedures has lead to the investigations of general uni- and efficient.
directional interpolation methods based upon Lagrange and
Hermite interpolations, which can then be extended to multi-
directional formulations. Shearing transformations, and general 2.2.3 Structured Grids from Variational
interpolants have been studied and effective techniques, such as Methods
the multisurface 2 4- 2 6 and transfinite interpolation27 ,2 8

procedures, have been developed. As seen in Section 2.2.1. elliptic grid generation through the
inverted Laplacian without grid control functions can be obtained
by optimizing the smoothness of the distribution of grid points.

Transfinite Interpolation Based on this observation, different variational techniques have

In its basic form transfinite interpolation can be described been developed in order to minimize a global functional which

initially in turns of one dimensional shearing transformations. In amalgamate different grid properties to be
2 dimensions consider the transformation optimized 13,30,31,33.

R (4,.q) = (l-4)R(Jrl) + 4R(Irl) The general form of these variational methods allows a
competitive enhancement of grid smoothness, orthogonality and

which expresses the interpolation R, derived by interpolating point concentration by representing each of these desired
properties by integral measures over the grid and minimizing a

between the boundaries il=constant. Similarly, for the boundary weighted average of them.
=constant, the interpolant The scope of the varia'ional methods used for optimizatior

Re ( )= (-Fil)R( ,0) + 1R( ,) structured grids is also applicable to the optimiz..on of

unstructured grids (Section 2.2.5) 3 2 .

is obtained. The tensor product of R4 and Rj gives an Among the propertie.i considered for mesh optimization, some
interpolant which maps the four corners of the computational are quantified either in terms of mapping between the phyic7!
domain to the four corresponding comers of the physical space x(xy.z) and a uniformly discretized reference space ,,,
domain. The remaining boundary points between the two
domains have no correspondence under this mapping. This or in terms of mapping between the reference space , and 0
occurs because the boundaries map into line segments between the physical space x.
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Belonging to the first type, the global functional a used by 2. The second approach is simply the direct minimization of the

Brackbill and Saltzman 1 measures the grid quality as a global function a after its discretization. The most popular
combination of smoothness. orthogonality and volume control algorithms used for such an optimization problem are the
by the following integral: Fletcher-Reeves and the Polak+Ribiere conjugate gradient

methods. Further discussion of the minimization process an be

o=fcss2v+Vi2+V;2 2 found elsewhere3 0 ,34 .

+Co((V V1) 2+(Vr1 V2) +(V V;)2 J3  2.2.4 The Multiblock Approach

+cw( .flQ)J dxdydz The techniques discussed for the generation of structured grids

where cs co, c, are the weight factors, chosen in order to stress imply a mapping between the physical space, (x,y,z) and the
regular transformed space ( ,), ). This indicates that, whatever

one of the desired properties, and w is a variable factor used to the shape of the domain in the physical space, it is topologically
control the volume of the cells. Belonging to the second type, equivalent to a cuboid. For general shaped flow domains this is

the method of Carcaillet, Kennon and Dulikravich30 uses a a major restriction, since this can give rise to inappropriate grid
functional that can be written, in a continuous form, as follows: structures and, in general, an over constraining of the grid

generation equations. At the heart of this problem is the global
)2 21 conservation of the curvilinear coordinates. For application to

o=f{cs[kl(FTC)(x '+k2( ,r, )(xrI + general shapes this proves too restrictive and it is necessary to
introduce a multiblock subdivision of the domain 3 "7 ,3 6 ,37 .

+cI(X .x) 2 + (xx)2 + (xr.x )2 1

2I ~The idea behind multiblock is that, instead of utilising one global
+cw w( .Tl ) J2 } d dTl d curvilinear coordinate system, several curvilinear systems are

constructed and subsequently connected together. The domain is
where kl,k2 ,k3 can be seen as variable stiffness coefficients, in subdivided into regions, each of which is topologically

clear analogy with a system where grid points are connected to equivalent to a cuboid and within which a structured grid is
generated. The block subdivision provides the necessarytheir immediate neighbours by tension springs. flexibility to construct structured meshes for complex shapes.

a3-35 gThe approach represents a compromise between the globally
In the references a generalized measure of the mesh structured grid and an unstructured grid.
deformation between the reference space is presented. The
deformation on a non-uniform mesh and the physical space is The multiblock concept has proved to be powerful in the
presented. The deformation characterizes the energy of an construction of high quality grids for aerospace geometries. The
hyperelastic, isotropic, homogeneous material satisfying the arrangement of blocks defines how the local curvilinear systems
axiom of frame indifference. In order to establish a well posed connect and th: resulting connectivities between the blocks •
minimization problem, the functional is enforced to be locally define the global grid topology. It is possible to construct a wide
convex in the neighbourhood of a rigid transformation, range of mesh topologies for any given configuration. In

particular, it is possible to construct 'component adaptive' mesh
Accord:h-,g to these mechanical and mathematical properties, the topologies to ensure that the mesh lines close to a component are
functional a, in a continuous form, can be expressed as appropriate to the geometrical shape of that component. The

multihlock concept is not particular to any grid point generation
technique. The generation of points can he achieved using the

o=Jl c I(11 IJ~.2)T..( -2J'- 1 )+c3(J- 1) )-d drl dC algebraic or elliptic procedure.

The form of a structured grid is often described by the

where topological structure. The 3 basic forms are 'Or or polar, 'H'
and 'C' grids. To achieve these different topologies, 3 different

2 2 mappings are required. Figure 2.2.9 a, b and c show the 3
) = ( 2+(x+ 2 mappings, in 2 dimensions, required for these grid structures.They are shown here in multiblock form, where the convention

2 xhas been applied that there is only one grid boundary condition

12 = (x% x xl)2+ (xl x ) (x x x) 2  type along any edge.

These basic mappings can be used to build differ.t grid

J = (x X Xq). structures for any given configuration. For example, consider a
2 aerofoil system, arranged in a tandem configuration. An 'H
grid could be constructed local to each aerofoil in a way which is

Solution algorithm shown in schematic form in Fig. 2.2.10.

The basic pattern of development with variational methods
consists in defining a pointwise positive measure gathering Alternatively, the forward aerofoil could be favoured with a 'C
together some desired grid features, to integrate this measure topology, whilst the grid around the aft component remains of
over the field and to minimize the resulting functional. H' type. The schematic for this is shown in Fig. 2.2.11. In a

more adventurous way, it may be appropriate to construct a C-
Two alternative approaches are commonly used for the solution structure around the leading edge of both aerofoils, as shown in
of the minimization process: Fig. 2.2.12 or a polar mesh around both aerofoils, as indicated

in Fig. 2.2.13. Either of these grid topologies are valid, and the
I. The first approach consists in expressing the optimality associated block structure for the 2 are shown in Figs. 2.2.12b
conditions known as the Euler Lagrange equations giving a and 2.2.13b, respectively. The 'C' structure requires 18 blocks
system of partial differential equations to be discretized and whilst the polar mesh requires 36.

solved by an appropriate numerical method 13 .14 .

* 0I
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Figure 2.2.12
a) C-C grid topology for a tandem configuration.

b) Block structure for the C-C grid topology

IJ F77 J-El -E--

Figure 2.2.13
a)O-O grid topology for a tandem configuration.

b) Block structure for the C-C grid topology

As indicated by this simple configuration, it is possible to * 0
construct many different grid topologies for any configuration.
The final choice will be made on the grounds of the detailed

Figure 2.2.9 The basic mappings of structured grids. geometryoftheconfigurationandon flowconditions.

The arrangements of blocks is defined in a way analogous to the
connectivity matrix for an unstructured grid. One approach is to
specify for each side of every block,
i) The number of points on the side, 0
ii) The type of boundary condition
and
iii) if appropriate, a) the adjacent block number

b) the adjacent side of the adjacent block
c) the orientation of the coordinate system
of the adjacent block relative to that of the
current block.

The procedure for mutiblock grid generation begins with a
suitable subdivision of the flow domain into regions, each of
which is topologically equivalent to a cuboid in that each has 8
corner points, 12 edges and 6 faces. These regions are

Figure 2.2.10 H-grid topology for a tandem connected together to form the grid topology. The connections
configuration. between blocks are specified in a topology or block connectivity

matrix. Such connectivity matrices are of the form used to
describe element connections in an unstructured grid.

Once defined, the block connectivity matrix is used to derive the
grid structure on the surface of a configuration. This is
necessary to generate the grid on the component surfaces and
clearly the grid structure on the surfaces must be compatible with
the structure in the field.

At this stage, no grid generation has been performed, only the
connection between blocks. However, once this has been
achieved the grid generation procedure can begin.

The grid structure on the surfaces of the configuration is known
and points can be generated on edges of the blocks. To ensure
continuity of grid lines across block boundaries it is necessary to

Figure 2.2.11 C-H grid topology for a tandem form the same computational molecules for all points, including
configuration. points which are in comers, on edges of faces and on block

boundaries. This methodology ensures that grid lines are smooth

.. 1
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everywhere, including across block boundaries. This is an
attractive procedure since the block subdivision was utilised only
to achieve an appropriate grid structure for the geometry under
consideration. It would detract from this approach if, as a by-
product. it was to produce grid lines which were discontinuous
in slope and higher derivatives across block boundaries. The
practical implementation of smooth lines across boundary faces
requires the use of a halo or pointer system, but is relatively easy
to achieve. 1.

The approach has proved to be very popular and successful and
many impressive computations in aerospace engineering have
been performed 7 . It has some disadvantages which are now
widely recognised. Firstly, a criticism is the difficulty of use of
such an approach and secondly, its applicability to all aerospace
geometries and flow computations. The first difficulty primarily
relates to the specification of the block connectivities. This is a
difficult task, since it requires expert user effort and.,- -...-
furthermore, if an inappropriate grid topology is defined it is -
likely to lead to problems late in the grid or flow process.
Automatic ways of subdividing a domain have been explored
with limited success. Now emphasis appears to be given to '
interactive specification and grid generation using a graphics
workstation7 2 .7 3 . However, although this decreases the time
for the task it still requires expert user effort and is prone to
mistakes. The second problem is the application of the approach
to all aerospace geometries. For some configurations, the
specification of a suitable block decomposition is difficult and
even if achieved can lead to highl) constrained grids of poor S
quality. Much is now understood of the mathematics of
structured grid generation and it is likely that grid quality
techniques will continue to improve.

Figure p.2.14 The Delaunay and Voronoi constructions.

2.2.5 Unstructured Grid Methods Equivalent constructions can be defined in higher dimensions. In
three dimensions, the territorial boundary which forms a face of

Oelaunay Triangulation a Voronoi polyhedron is equidistant between the two points
which it separates. If all point pairs which have a common face
in the Voronoi construction are connected then a set of tetrahedra

Dirichlet 38 in 1850 proposed a method whereby a given domain is formed which covers the convex hull of the data points.
could be systematically decomposed into a set of packed convex
polygons. Given two points in the plane, Pi and pj, the The Delaunay triangulation has some rather interesting
perpendicular bisector of the line joining the two points properties40. One of particular interest is the so-called in-circle
subdivides the plane into two regions, Vi and Vj. The region Vi  criterion. The vertices of the Voronoi diagram are at the
is the space closer to pi than to pj. Extending these ideas, it is circumcentres of the circles which pass through the three points

which forms a triangle. In three dimensions, the Voronoi
clear that for a given set of points in the plane, the regions V i  vertices are at the centre of the sphere which passes though the
are territories which can be assigned to each point such that Vi  four points which form a tetrahedron. It follows from the
represents the space closer to Pi than to any other point in the definition of the Dirichlet tessellation that no points, other than

the so-called forming points which form the triangles orset. This geometrical construction of tiles is known as the tetrahedra, fall within the circles or spheres. If a point did fall
Dirichlet tessellation. This tessellation of a closed domain results inside then this would contradict the basic definition. This
in a set of non-overlapping convex polygons, called Voronoi geometrical property is the in-circle criterion.
regions, covering the entire domain.

This criterion forms the basis for the most popular algorithms
for the construction of the tessellation which were proposed by

A more formal definition can be stated. If a set of points is Bowyer 4 1 and Watson4 2 .
denoted by ( Pi , then the Voronoi region Vi ) can be defined as

ppi 5 <p-pjl. f The basic outline of the algorithm of Bowyer, which is 0
for all applicable in 3 dimensions is:-

i.e. the Vomnoi region { Vi) is the set of all points that are closer i). Define the convex hull within which all points will lie. It is
to pi than to any other point. The sum of all points forms a appropriate to specify 8 points together with the associated
Voronoi polygon. Voronoi diagram structure.

ii). Introduce a new point anywhere within the convex hull
From this definition, it is apparent, that in two dimensions, the 1 Inrdc aw
territorial boundary which forms a side of a Voronoi polygon .
must be midway between the two points which it separates and W). Determine all vertices of the Voronoi diagram to be deleted.
is thus a segment of the perpendicular bisector of the line joining A point which lies within the sphere, centred at a vertex of the
these two points. If all point pairs which have some segment of Voronoi diagram and which passes through its four forming
boundary in common are joined by straight lines, the result is a points, results in the deletion of that vertex. This follows from
triangulation of the convex hull of the set of points I Pi). This the 'in-circle' definition of the Voronoi construction.

triangulation is known as the Delaunay triangulation 3 9 . An
example of this construction, illustrated in two dimensions is iv). Find the forming points of all the deleted Voronoi vertices.
shown in Fig. 2.2.14. These are the contiguous points to the new point.
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v). Determine the Voronoi vertices which have not themselves i) Compute the point distribution function for each boundary
been deleted which are neighbours to the deleted vertices. These point ri= (xy). i.e. for point i
data provide the necessary information to enable valid
combinations of the contiguous points to be constructed dpi = O.5(sqrt(ril -ri)2  sqrt(riri-I )2).

vi). Determine the forming points of the new Voronoi vertices, where it is assumed that points i+ I and i- I are contiguous to i.
The forming points of new vertices must include the new point
together with the three points which ae contiguous to the new ii) Generate the Delaunay triangulation of the boundary points.
point and form a face of a neighbouring tetrahedra (these are the ( )
possible combinations obtained from Step v). iii) Initialize the number of interior field points created, N=O.

vii). Determine the neighbouring Voronoi vertices to the new iv)For all triangles within the domain.
Voronoi vertices. Following Step vi, the forming points of all a) Define a prospective point. Q. to be at the centroid of the
new vertices have been computed. For each new vertex, perform triangle.
a search through the forming points of the neighbouring vertices b) Derive the point distribution. dp. for the point Q. by
as found in Step v to identify common pairs of forming points, interpolating the point distribution function from the nodes
When a common combination occurs, then the three associated of the triangle, dpm. m=1,2,3.
vertices are neighbours of the Voronoi diagram. c) Compute the distances dm . m= 1.2.3 from the prospective

viii). Reorder the Voronoi diagram data structure, overwriting point, Q. to each of the points of the triangle.
the entries of the deleted vertices. If Idm < odpm} for any m= 1.2,3 then reject the point:-

x. Repeat steps (ii-viii) for the next point. Return to the beginning of step (iv).
If (dm > (xdpmI for any m=1,2,3 then

The Delaunay triangulation is a systematic way to connect Compute the distance sj, (j=l. N), from the prospective
together an arbitrary set of points in either 2 or 3 dimensions. It point Q, to other points to be inserted, Pj, j=l.,N.
does not provide a technique by which the coordinates of points
can be generated. In the early applications of the method, grid If {sj < 3dPm) then reject the point :- Return to
points were computed using a technique based on structured grid the beginning of step iv).

generation4 3 ,4 4 . A set of grid points was generated for each If (sj > IldPm} then accept the point Q for •
individual component of a configuration and the resulting insertion by the Delaunay triangulation algorithm.
collection of all points was then connected to form an Include Q in the list Pj, j=l,N.
unstructured grid. Points which fell inside component d) Assign the interpolated value of the point distribution
boundaries were automatically detected and then rejected. Such function, dp. to the new node. PN
an example is shown in Figure 2.2.15. e) Next triangle.

') If N=O Z-_ to stcp (vii). 0 0
""' " 7 " 't i ! I ,- vi) Perform Delaunay triangulation of the derived points, Pj,

'k,. ! ,, .'< - j=I,N. Go to step (iii)

1 - vii) Smooth the mesh.

The coefficient a controls the grid point density, whilst 13 has an
influence on the regularity of the triangulation. The effects of the
parameters it and 13 are demonstrated in the following examples.
Figs. 2.2.16a and b, show two triangulations obtained from the

4" boundary points which define the region between 2 concentric
-+ .,. : *~& *,';, ' ;circles.

k"0 0-0- A more realistic example of the automatic point creation

I, ilff x 1 algorithm is given in Fig. 2.2.17, where a grid is shown around 0
S . i , ~fi'~LI f-f \ia multiply connected airfoil system and a value of A3=0.02 has

been used. It is clear from the examples given that the 'exclusion

zone' for point creation, which is a circle of radius 1dpm, has an
effect of controlling the regularity of the triangulation.

Figure 2.2.15 Delaunay triangulation of a structured set

of grid points. The method proposed for creating points can be generalised and •

This proved to be successful, but it is a clearly limited approach applied with a background mesh or point and line sources to
when applied to arbitrary geometries since it involved the control grid point spacing. In these cases, the local point
definition of an auxiliary set of points. This motivated the search distribution function is computed from a background mesh or
for automatic ways to generate points within the Delaunay distance from a source which are either specified by the user or
triangulation procedure. Several have now been developed and derived from a previous flow computation, if grid adaptivity is

applied to realistic configurations
4 5 -4 9 . applied. Fig. 2.2.18 shows some examples of these techniques.

An example of a procedure to add interior grid points in two

dimensions in the Delaunay triangulation is presented4 8 ,4 9 . The
computational domain is defined in discrete form by the
boundary points. It will be assumed that this point distribution
reflects appropriate geometrical features, such as variation in
curvature and gradient. An algorithm which creates points within
the domamn which reflects the boundary point spacing is as
follows: 0

*..

• 1
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As was briefly discussed in the introductory comments. one of
the basic requirements of the grid is for it to be boundary

" A I, conforming. In the Delaunay triangulation, boundary conformity
has to be checked and if necessary enforced by the use of special

A:- techniques. Given a set of points which describe a geometry in 2
or 3 dimensions and the Delaunay connections between these
points there is no guarantee that the resulting triangulation will
contain edges or faces which conform to the boundary surface.
In fact, for complicated shapes, the boundary edges and faces
will almost certainly not be recovered. The techniques devised to
correct the triangulation or force boundary integrity are many. In
2 dimensions, the given boundary edges can be recovered by
edge swapping and does not really represent a significant
problem. In 3 dimensions the problem is much more severe.a Baker 5 0 chooses to introduce skeleton points to ensure
boundary integrity whilst George51 and Weatherill4 g ,49 have
chosen to perform tetrahedral transformations to recover
boundary faces. This problem is often overlooked in favour of
the triangulation algorithm. However, the construction of the
algorithm to form the connections is very well defined and can
be relatively easily programmed. Boundary integrity is a less 0

S ,t well defined problem and as such is more problematic to solve.

Advancing Front

Figure 2.2.16 A grid generation technique which is based upon the
a) Automatic point creation ct=1.0, 5=10.0 simultaneous point generation and connection is the advancing

front method. Given a set of points which defines a geometrical
b) Automatic point creation c=1.0, 3=0. 10 boundary or boundaries and a measure of the local spacing
. . . .. .required within the domain, the method extends or advances the

boundary connectivity into the field. Grid points are generated
and connected to other local points and in this way the grid is

....... .advanced away from the boundaries. The grid point density is
controlled by the user specified parameters which is often called

. , the background mesh. For a uniform distribution of points, the
: background mesh can be a single triangle with point spacing"-'.;'-'Zrl, L.,,;:..'. , * parameters assigned to each of the three nodes. Points in the

interior of the domain are created to be consistent with the
" " background spacing.

..,-.. * :-~ " " The nature of the method makes it ideally suited to complicated
. geometries and requires a minimal input from the user. The

.,.* -. '-*.< :: * .! * ~ approach, first discussed by George5 2 has been enhanced and

.- W. extended into 3 dimensions by Peraire et al.5 3 5 4 and
,. ., -. • ,, . Lohner 5 5 .

Figure 2.2.17 Multi-component aerofoil system. The approach of Peraire et al. is to define a mesh parameter 8

which controls the local node spacing and a local stretching

parameter _Q and the local direction t of stretching. These
. .parameters allow a grid to be generated with variable sized

elements and which are clustered and stretched in such a way
that one-dimensional features in a solution can be captured in a
very efficient manner.

Before starting to generate triangles inside a domain, the body
points are created and the initial front, containing the information
about all the boundary sides, is initialized. The orientation of the

L_ . -, Wt*., ,* boundary contours is such that the interior of the domain is
always to the left. The initial front is defined by two integer
vectors which have as many components as actual active sides.
In one vctor the number of the first node of each side is stored•" ' " werea thesecond node number is kept in the other vector. The
weeaton seond ndchanges continuously throughout the process of
triauation ndmust be updated whenever a new element is
trangulaothe front changes during the triangulation process
and reduces to zero when the end of the triangulation is reached.

a, , v'=,,hsi. 5 Is".o.a.d r Every time a triangle is generated its sides are added as new
"d"N'"&Id. entries in the front.

Figure 2.2.18 Examples of the use of point and line In the process of generating a new triangle, the following steps
sources in the automatic point creation routine, are involved.I) A front side, with nodes A and B, to be used as the base for a

The method also extends with complete generality into three triangle is selected. With distance 81 from points A and B, a
dimensions4 8 ,49 .

• • . i a I I i P Ir* 0
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point C is chosen. 81 is chosen as example in 3 dimensions, where the nacelle and pylon have been
discretized with an unstructured grid which has then been
connected to a structured multiblock grid.8 if 0.55*AB<8<2*AB . . .

8i  0.55*AB if O.55*AB >8

2*AB if 3>2*AB

2) Find all the nodes which belong to any of the current front
sides and lie inside the area determined by the circle (centre C
and radius r=3*AB) and the points A and B. Order nodes (ai,

i=l,n) according to their distance from the point C. in such a
way that the first node in the list is the closest to C.

3) Decide whether or not point C is added to the list. If

Aal < 1.5*81

Ba1 < 1.5*81
then C is not included. Otherwise C is placed in the first position
of the list and the other nodes are shifted by one place.
4)Determine the connecting point aj. This is taken to be the first

node in the list that satisfies the two following validity
requirements.

i) the interior of the triangle ABaj does not contain any of

the remaining nodes in the list (excluding C).
ii) The segment line aiM (M midpoint of AB) does not

intersect any of the existing sides of the front.
5) Form and store the new element. If C is chosen as the
connecting point a new node is created Figure 2.2.19 A hybnd gnd in 2 dimensions

This approach can be extended to a non-uniform distribution of

8and also the inclusion of element stretching.

2.2.6 Other Grid Types • *
Overlaid grids

I he basic techniques outlined indicate that the generation of a
grid around a simple geometrical shape is not too problematic. In
fact. sufficient is now known of the mathematics of grid
generation that high quality, controlled grids can be generated.
Only when the geometry become complicated i- it -ere;sary to 0
resort to more complex strategies, such as multiblock. The idea
that any complicated shape can be broken into geometrically
simple components, each of which can be gridded, is at the heart
of the overlaid grid approach.

The overlaid approach generates a suitable grid around
components of a configuration and each grid is allowed to
overlap other grids. Interpolation of flow data is then used in the
region of overlap. This approach, which has been taken to a
considerable degree of sophistication is often called the
'Chimera method

1 8, 19. The key problem in the approach is the Figure 2.2.20 An example of a hybrid grid in 3
dimensions.

accurate and conservative transfer of data between component
grids. The approach has been used with considerable success in
simulating moving boundary problems.

Hybrid grids

The hybrid grid approach is similar to the overlaid grid method
in that a structured grid is used wherever is appropriate, but
where the geometry becomes complicated an unstructured grid is 0

ud56-59
used

5  9 . Both grid types are then connected together in a
node-to node continuous manner. The hybrid approach can be
utilised with a multiblock approach. A multiblock grid is
generated around a part of the configuration, with the additional
components gridded with an unstructured grid. The unstructured
grid can be generated using either the advancing front or
Delaunay technique. Fig. 2.2.19 shows a typical example of a
hybrid grid in 2 dimensions. Fig. 2.2.20 shows a typical

* 0
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2.2.7 Surface Grids

Surface mesh generation is, in itself, one of the most difficult
and yet important aspects of mesh generation in 3 dimensions. [i...
The surface mesh influences the field mesh close to the /Qk
boundary, which is often where rapid changes in flow variables
take place. Surface meshes have the same requirement forsmoothness and continuity as the f'id meshes for which they act --- " : ;::-- -- :'=-..

as boundary conditions, but in addition, they are required to . *. *: -.-
conform to the configuration surfaces, including lines of " ....
component intersection and to adequately model regions of high .......
surface curvature. Several approaches have been suggested in
the literature, but most rely upon a parametric representation of a . . , ...

surface.

A suitable numerical representation of a surface involves aspects
of geometry modelling 60 .6 1. Geometry modelling is a means by
which a continuous surface can be defined from a discrete set of
points. Such a description of a surface is valuable for the
generation of surface meshes which, in general, will not
coincide with the original geometry definition. A parametric
representation of a surface is straightforward to construct and
provides a description of a surface in terms of two parametric Figure 2.2.21 The steps in the surface grid generation
coordinates. This is of particular importance, since the
generation of a mesh on a surface then involves using grid A similar procedure is followed to generate an unstructured grid
generation techniques, developed for 2 space dimensions, in the o a rce i

parametric coordinates. on a surface.

In this way, surface mesh generation can be viewed as a

transformation of the Euclidian Space, 9t3 to a parametric Surface-to-surface intersections
representation in coordinates (st) within which the grid is

generated to be subsequently mapped back to 9t3 to give the One aspect relating to surface grid generation which is often
surface mesh. Clearly, a key aspect of this procedure is the encountered is the computation of surface-to-surfacehprocedre se intersections. Obviously, it is necessary to place grid points onmapping between the Euclidian space and the parametric space, such intersection curves.

Many such transformations are available. One classic if two surfaces intersect and they are both represented in
formulation is a due to Ferguson and can be expressed as parametric form as just described then it is possible to formulate

r(sT) = F(s) Q F(t) an equation which defines the intersection curve.

Assume the two surfaces xI and x2 are represented bywhere

0 0 1 0 x = (x.y,z)1  s 3 s 2 s 11 M i t
F(s)=II s s2 s31 -3 3 -2 -t

2 -2 1 1
i=x'yz

and and

r(0,0) r(0.1) rt(0,0) rt(0,1) 2 2I v 2

Q = r(I.O) r(l,I) rt(1,0 )  r(,I )  
X XYZ2 3 2 , 1 i 2

Q rs(0,0) rs(O,I) rst(0,0) rst(0,I) V
rs(l,0) rs(l,l) rst(,0) rst(ll) i=x,y,z

The matrix Q involves coordinates, derivatives in s and t, and The (st) and (u,v) are sets of parametric coordinates and M i and

cross, or twist derivatives in s and t. The surface is represented Ni matrices containing the blending functions and parametric
by a set of quadrilateral patches and within each quadrilateral derivatives of x. For an intersection for a constant parameter,
patch the Ferguson representation is applicable. Hence iny say vo, the followig equation must be satisfied
surface which is defined in lernis oi a network of lines which
form quadrilateral patches can be expressed in parametric 3
coordinates (s,t). The grid generttion is performed in the31v
coordinates (s,t) before using the Ferguson foirmulation to 2 0
convert to physical coordinates. Fig. 2.2.21 shows the sequence [s3s2s llMi t - u 3 u 2 u I lNi  vo  = 0
involved in the process to generate a structured grid on the
surface of a configuration. I v0

This results in three non-linear algebraic equations for s, t and u
which can be solved using the Newton-Raphson method.
Having solved, it is then possible to convert these parametric
coordinates to obtain the position of the intersection in the
physical space, x = (x,y,z).

=-.- , edli~il =a d HHHi H 'i 'm * 0
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2.2.8 Grid Adaptivity Techniques

To resolve features of a flowfield accurately it is, in general,
necessary to introduce grid adaptivity techniques6 2 - 7 1.
Adaptivity is based upon the equidistribution of errors principle,
namely,

where wi is the error or activity indicator at node i and dsi is the
local grid point spacing at node i.

Central to adaptivity techniques, and the satisfaction of this
equidistribution principle, is to define an appropriate indicator
wi.Adaptivity criteria are based upon an assessment of the error
in the solution of the flow equations or are constructed to detect
features of the flowfield. These estimators are intimately
connected to the flow equations to be solved. For example,
some of the main features of a solution of the Euler equations
can be shock waves, stagnation points and vortices, and any 0
indicator should accurately identify these flow characteristics.
However, for the Navier-Stokes equations, it is important not
only to refine the mesh in order to capture these features but, in
addition, to adequately resolve viscous dominated phenomena.
such as the boundary layers. Hence it seems likely, that certainly
in the near future, adaptivity criteria will be a combination of
measures each dependent upon some aspects of the flow and, in
turn, upon the flow equations. O

Many different physical cnteria have been suggested for use Figure 2.2.22 H-refinement on an unstructured grid.
with the Euler equations. Such measures include. ,Grid refinement on structured or multiblock grids is not so

iuVsl, luVul, lu.Vpl, lu.Vpl, IVMI, JVp, 1VpI straightforward The addition of points will, in general, break the
regular array of points. The resulting distributed grid points no
longer naturally fit into the elements of an array. Furthermlore,

where s, u, p, p, M are entropy, velocity, density, pressure and some points will not 'conform' to the grid in that they have a * 0
Mach number, respectively, different number of connections to other points. Hence grid

refinement on structured grids requires a modification to the
There is also an extensive choice of criteria based upon error basic data structure and also the existence of so-called non-
analysis. Such measures include, a comparison of computational conforming nodes requires modifications to the flow solver.
stencils of different orders of magnitude, comparison of the Clearly point enrichment on structured grids is not as natural a
same derivatives on different meshes e.g. Richardson's process as the method applied on unstructured grids and hence is
extrapolation and resort to classical error estimation .ieory. No not so widely employed. Work has been undertaken to
generally applicable theory exists for errors associated with implement point enrichment on structured grids and the results 0
hyperbolic equations, hence, to date combinations of rather demonstrate the benefits to be gained from the additional effort
adhoc methods have been used. in modifications to the data structure and flow solver. Fig.

2.2.23 shows point enrichment on a multiblock structured grid
It is important that the adaptivity criteria resolve both the together with the flow contours of pressure and Fig. 2.2.24
discontinuous features of the solution (i.e. shock waves, shows grid refinement on a single block structured grid.
contacts) and the smooth features as the number of grid poinis
are increased. A desirable feature of any adaptive method to
ensure convergence is that the local cv-l? ;ize goes to zero in the
limit of an infinite number of mesh pointslo. /

Once an adaptivity criterion has been established the
equidistribution principle is achieved through a variety of
methods, including point enrichment, point derefinement, node
movement and remeshing, or combinations of these. ,

Grid refinement

Grid refinement, or h-refinement, involves the addition of points
into regions where adaptivity is required. Such a procedure
clearly provides additional resolution at the expense of
increasing the number of points in the computation.

Grid refinement on unstructured grids is readily implemented. It

The addition of a point or points involves a local reconnection of
the elements, and the resulting grid has the same form as the
initial grid. Hence, the same flow solver can be used on the
enriched grid as was used on the initial grid. An example of this 0
approach is given in Fig. 2.2.22. Figure 2.2.23 H-refinement on a multiblock grid

0-,
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Figure 2.2.25 Node movement

Figure 2.2.24 H-retinement on a single block structured
grid

Grid Movement gCombinations of Node Movement, Point
Enrichment and Derefinement * 0

Grid movement satisfies the equidistribution principle through
the migration of points from regions of low activity into regions An optimum approach to adaptation is to combine node
of high activity. The number of nodes in this case remains fixed. movement and point enrichment with derefinement 7 1. These
Traditionally, algorithms to move points involve some procedures should be implemented in a dynamic way, i.e.

optimization principle 13 . Typically, as indicated in Section 2.2.3 applied at regular intervals within the flow simulation. Such an
expressions for smoothness, orthogonality and weighting approach also provides the possibility of using movement and
according to the flowfield or errors are constructed and then an enrichment to independently capture different features of the
optimization is performed such that movement can be driven by flow. An example of combinations of these adaptive
a weight function, but not at the expense of loss of smoothness mechanisms is given in Fig. 2.2.26.
and orthogonality.

An alternative approach is to use a weighted Laplacian function.
Such a formulation is often used to smooth grids, and of course
the formal version of the formulation is used as the elliptic grid
generator presented earlier. Eq. (2.2.1). Written in a general
form for both structured and unstructured grids the weighted 0
Laplacian is

M

XCo (r~ n n

n+1 n i=1
too .. .. ....-

i=Il
n+l

where r=(x.y), r0  is the position of node 0 at relaxation level

n+ 1. Ci 0 is the adaptive weight function between nodes i and 0

and (o is the relaxation parameter. The summation is taken over -

all edges connecting point 0 to i, where it is taken that there are - . 0
M surrounding nodes. In practice, this relaxation is typically
applied over 50 cycles with a relaxation parameter of 0.1. The t :
weight function Cio can be taken as a measure of any flow
parameter such as pressure, density or a measure of local error.
This approach proves trivial to implement on all mesh types, but
yet its effects are impressive. Fig. 2.2.25 shows a
demonstration of the method applied to both a structured and
unstructured mesh, respectively. Figure 2.2.26, Combinations of adaptive strategies

. .......... ..... ,;.*o 0
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In th. aoose expression, the coetictents t and L' are related
2.3 SPACE DISCRETIZATION to the pressure gradient pa ameter v,.

DISSIPATION

All numerical schemes used for obtaining solutions to the Euler 1. + 21, , + , ..

equations must contain a certait lev.l of di sipation to prevent
odd-even point decoupling, to maintain stability at discontinu- 1 . ,

= 
hLX) i,, i. ('. 2.3.4)

ities. and to eliminate nonphysical solutions such as expansion
shocks. The dissipation may he explicitly added on top of (2 = j (.. '. ... 3.5)
a naturally nondissipative scheme such as pure central difter- - = a_ /£
encing, or it may arise naturally for the spatial discretization where t:> and h' are constants with i)pical s alues of 1/2 and 0
such as occurs with upwind differencing algorithms. The ex- 1/64. respectively. The %anable W is related to the solution
act form of dissipation has a large impact on the accuracy of vector w by the equation
the scheme, as well as the stability and robustness of the over-
all algorithm. While some discrtizations pr-1" stiome dis- w (+ . 0. it0. ,] (2.3.6)

sipation due to the coupling of the space-time discretizattons.
these :.chemes generally have a steady state that depends on the The term X. is the scaling factor associated with the
time step and are discussed elsewhere Below. methods of ex- -cx)rdinate. This scale factor is detined as
plicitly adding dissipation to central differencing schemes are
discussed, as well as methods of achieving naturally dissipa- \,. , = (:K) + (,)._, J 2.3.7)
tive schemes through upwind differencing. Also discussed arc " 2

methods of capturing sharp discontinuities without introducing where N is related to the spectral radii of the flux Jacobian
nonphysical oscillations into the computations, matrix in the three coordinate directions as follows

2.3.1 Artificial Dissipation Models for + 'x)y' +

Central-Difference Schemes ,,
t2.3.8)

Because the basic numerical scheme uses central differences to
represent spatial derivatives, the artificial dissipation required The spectral radii for the 1. q. and ( directions are

to avoid spurious oscillations in the vicinity of shocks and to • *
stabilize the scheme is implemented in a convenient manner AX l + is / + +
by mdlifyng the convective fluxes:

, +(2.3.9)

f ~ ~ ~ ~ + 2- i~ +i ±it ij'k ) - +

[ j i= .i k + di dj 1 k (2.3 1)

) d In the aboe equations, . is the local speed of sound. and
. ,I = + k,,. q, and 1 are the contravanant velocity vectors in the i.

The terms d i . d i j± ik and d Jakt represent the j, and k (,.q.C)directions. rtvecti"!', and are given by the

dissipative terms in the i, j. and k directions, respectively, relations

Although many variations in dissipation models are presented h = i' + , + /. ii

in the literature, only two specific forms are discussed in this q, = 
)r + It"I, + i 11

paper. q. = ii + (, +' ( .1 0

Scalar Dissipation Model
Expressions for the artificial dissipation coefficients in the j

The basic dissipation model is a nonisotropic model, where and k directions can he derived in a similar manner and take

the dissipative terms are functions of the spectral radii of the the form

Jacobian matrices associated with the appropriate coordinate .'

directions. The details of the model vary with specific re- 0,) = (.,,) I + y + (2.3.11)
searchers, and no attempt is made here to describe the many [ , A, 1

variations. However. the essential ingredients are described
below, and more details can he found in many excellent ref- V, - '1
erences (e.g.. Refs. 1. 2. 3. 4.5. 6 and 7) (AS) =(..) [1+ - + l--T) (2.3.12)

!
For clarity, a detailed desription of the dissipative terms for
the i direction is given as The pressure switch given in Eqs. (2.3.3), (2.3.4), and (2.3.5)

d i '... X_ (W - Wi.k) serves to increase the second difference dissipation while
" - . k switching off the fourth differences near discontinuities. This

-
1 
, .W'j.k - 3W .J.k (2.3.2) formulation is given by Jameson et al.' and increases thesharpness of the shock wave without the introduction of un-

+ 3Wijk - Wi-1j.k ) wanted oscillations due to differencing across the shock.

* 0i
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Matrir-1 lued Dissipaion

The dissipation model described above is not optimal in the -,qt &, t ., ii t3

sense that the same dissipation scaling is used for all the gov- E, - r f' ,, 1 . Ii (2.3.21

ering equations , a given coordinate direction. Reduced ar- / "1 , t , , 0

tificial dissipation can be obtained by individually scaling the L-hq, h, h , h

dissipation contribution to each equation, as is done implicitly ( (1 tI III II

in upwind schemes. '9 The scalar coefficients used in the arti- ] 1./2 - -, -1. ,

ficial dissipation model are replaced by the modulus (absolute E4  , , I/2 -4,, -4, r -, w ,
values) of flux Jacobian matrices. Thus Eqs. (2.3.8)-(2.3.12) 1l -/2 - ,, -,. -,: ,

can be rewritten as L(l2/ 2  -q1 " - -qt i,' qtJ
(2.3.22)

At = JAI. A, = IBI. Ac = IC (2.3.13) and 1,2 =.-u + r2 + i 2 is the zoial velocity.

The matrices A. B, and C have very few nonzero elements and By taking advantage of the special form of the elements
can be found in Ref. 7 in their entirety. The absolute value of JAI. one can evaluate the matrix-vector products of the
of these matrices, illustrated here for the matrix A. is defined form IAI(ll,> . - IV, s) very efficiently. without ev.er
in the following manner. Let evaluating JA I directly. •

ATA,T-' (2.3.14 1A In practice. A. A, \I cannot be chosen as given by Eq.

where At is a diagonal matrix with the eigenvalues of A as (2.3.17). Near stalnation points. Ai approaches zero; near

its elements. Then sonic lines. A, or .'- approaches zero. Since zero artificial
viscosity can create numerical difficulties, these values arc

JA = TtjAJT (2.3.15) limited in the following manner

where LA' I = max (LA I. I*,, At)

A) I 1 t D ) 1 L'\21 = max (A,.. '.I.. 3)
0I = A2  t 0 0\ I) 1 I,\,j = max (IAI. I,At)

IA , I jA., II 1) (2.3.16)
0 11 0 I L:I l*,) () t) o .'-, J

where V ,, limits the eigenvalues associated with the nonlinear
The diagonal elemt n ts of the above matrix are* characteristic fields to a minimum value that is a fraction of

the spectral iadius, while I* provides a similar limiter for the
, q2 + , -I- + C, cigenvalues associate/ with the linear characteristic fields. The

values for the limiting coefficients 1., and I are determined• -'= It - t i, + (+ ' 2.3.17
A -:.,ugh numerical experimentation such that sharper shocks
A = '12 and suction peaks are captured without the introduction of

spurious oscillations in the solution while still maintaining
good convergen,- properties. By setting I;, = I I = 1. we
recover the scalar form of the artificial dissipation, whereas

After considerable algebra JAI can be expressed in the fol- I", = It = 0 corresponds to the use of actual !igenvalues
lowing manner as without any limiters. The cigenvalues obtained from Eq.

JAI = t., I + - + I-'I -) (2.3.23) are then modified for large changes in cell aspect ratios
AL L\+2 L/ with the expressions given in Eq. (2.3.8). Similar expressions

[L_:jL E, + E2 ]can e derived for the matrices B and C by replacing the
1 E2 + , + 1 + (2.3.18) contravariant velocity q by qi, and qi and k by il and .

, + + I' respectively, in Eqs. (2.3.14) through (2.3.22).

+ JA I - LAL (E3 + _ I)E4)
2, ' + + t " Note that if the dissipative fluxes are interpreted as modifiers t,

the physical fluxes at the interfaces of the difference molecule.whvere bs the detits mdthen the central- ,ifference scheme with the matrix dissipation
given b) the relations closely resembles the characteristic decomposition used in

,' /2 -. -,. -,. upwind schemes.
: '

it V', /2 -)1 ) -it I -, i .i , i

E, = 1 2 1, -,1, -#1 V -V IV V (2.3.19) A comparison o', results obtained with both scalar and matrix
', 2 -It'l ,.,. -I' ,, I. dissipation is shown in Fig. 2.3.1. These results have been 0

I,1;-/2 -I, , - 1 - ,- .i, obtained with the code described in Ref. 9. The case shown

is the inviswd flow over an NACA )12 ai,,oil at a free-[ ) 1) it 1) 0 1  stream Mach i,,mber of 0.8 and an angle of attack of 1.2.'.

-'4, 'I & &, ., , This flow field is characterized by a moderate strength shock
E- /-"q " (1.3.20) on the upper surface and a much weaker shock on the lower[ -& &.' , ' I surface. As .:ten in the figure. the results obtained with both

-Icqc 14 , qt 1 It 0 the scalar and matrix dissipation are very similar. However.

,,A.
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the solution obtained with matrix dissipation exhibits slightly where
sharper shocks on both the upper and lower surfaces.

A\ .2 :3 = = ,U + ,I' + :If

-2.5 ' "' q + i ; + U. + (23.28)

-0Scal Dissipation
Matrx Dissipation, = 'I - + , + ,

-1.5 The eigenvalues can then be decomposed into nonnegative

and nonpositive components

- 7.5 = X, + ,- (2.3.29) •

where
0.0 \, ± -

0 .5 (2.3.30)

0.5 Similarly, the eigenvalue matrix A4 can he decomposed into

1.0 .AE = . + .J (2.3.31) 0

1.5
0.0 0.2 0.4 0.6 0.8 1.0 where A' is made up of the nonnegative contributions of A-

and A, is constructed of the nonpositive contributions of ,\,.
X/C This splitting of the eigenvalue matrix, combined with Eq.

Figure 2.3.1 Central-difference scheme (2.3.26). allows the flux vector F it) be rewritten as

results with scalar and matrix dissipation for F = T, (At + _7 )T ,

NACA 0012 with .1-.. = 0.8 and o = 1.2 5 ' .  
" (2.3.32)

S(A + +A-) = F + '  (23.2

2.3.2 Upwind Differencing The flux vector f has irc: di-inct eigenvalucs given by Eq.

(2.3.28) and can thereft re be v ritten as a sum of three subvec-
Flux-Vector Splitting tors, each of which has a d stwct eigenvalue as a coefficient' • *
For flux-vector splitting, the fluxes in generalized cooidinates. F = F + F2 + F, (2.3.33)

F. G. and H are split into forward and backward contributions
according to the signs of the eigenvalues of the Jacobian where

matrices and are differenced accordingly. For example. the

flux in the direction can he differenced asf ;I } (.3)0
= ,F + , F- (2.3.24) F = A,

because F' has all nonnegative eigenvalues and F- has all 1 ,(+-, . + 11)

nonpositive eigenvalues. Two methods of flux-vector splitting

are discussed below. (,
\ l I'l' ± fI,.

The first meth-d is the technique outlined by Steger and F 2., = ,, . (2 3.35)
Warming in Ref. 12. Since the flux vectors are homogeneous 1. +/, ,2+

functions of degree one in w, they can be expressed in terms
of their Jacobian matrices. For example, considering the flux

vector in the , direction, F can then he written as and the direction cosines of the directed interface in the
direction are

wOF (2.3.25) _

A similarity transformation allows Eq. (2.3.25) to be written

as ,, = - (2.3.36)
=A'=T, A, T, @ (2.3.26)

where the matrix A( is a diagonal matrix composed of the

eigenvalues of A& and is given by 0
where.. ..

N ) + I= 2 
+ 2± (2.3.37)

= 0 s 5 0 ~ (2.3.27) The forward and backward flux vectors F - and F are formed

05 t) A (5 from Eq. (2.3.33). (2.3.34), and (2.3.35) by inserting A, = A\7
L f) ) )A ; and A\, = -. respectively.

" • • -l i i I I F - " . .... .. . .
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For supersonic and sonic flow in the direction (i.e.. 111 = can be used for the spatial derivatives. In addition, both Jaco-
Iti/la > 1). where it = q/ V j represents the velocity normal bians have one zero eigenvalue for subsonic Mach numbers.
to a = Constant face. the fluxes in this direction become which leads to steady transonic shock structures with only

two transition zones. 17 In practice, when second-order spa-

=o (.14 > ) tial differencing is used, shocks with only one interior zone
o (2.3.38) are usually obtained." This feature is not observed with the

-< Steger-Warming flux splitting.

The split fluxes in the other two directions are easily obtained The three-dimensional splittings of Van Leer are given below
by interchanging it or ( in place of 1 irection; the others are obtained similarly.

ldit according to the contravariant Mach
The fluxes split in the aforementioned manner are not con- , accow din e rvioul as

fi, oic,.tion, which is defined previously as
tinuously differentiable at zeros of the eigenvalues (i.e., sonic 1311 s ,/qi 1_ 1. For supersonic flow (1.11 I 1),
and stagnation points). (See Ref. 14.) This is illustrated in

Fig. 2.3.2, where the split mass flux contributions for the one- Fo = F - I .14 > 1)
dimensional Euler equations, nondimensionalized by pa. are - (2.3.39)
shown as a function of Mach number. The gradient diseonti-
nuities in the split fluxes are evident as the eigenvalues pass and for subsonic flow (I.I1f < I )
through zero. The lack of differentiability of the split fluxes
has been shown in some cases to cause small oscillations at + u
sonic points that are rarely noticeable for most aerodynamic ! ±2a V 1
applications but can be remedied by biasing the eigenvalues + I I f'1140"
near zero to a small value.'

4 
1,1 j t -) + 2.

1,5I

1.5 1

f./pa where =+,(.11+ 1 /4 (2.3.41)

1.0 f /pa
f/pa

- =, {~-(. - 1,i- + 2(,. - l , ,, + 2,,1(,. -
0,5 + (is + ,"+ .,- )121

X (2.3.421

To form FZ. the direction cosines .,. and are given
0.0.'" by Eq. (2.3.36) and u is the velocity normal to a = Con-

stant face. The fluxes in the other two directions are easily
-0.5 formed by interchanging t with q or (. In Fig. 2.3.3 the

nondimensionalized mass flux using the Van Leer splitting is
shown as a function of Mach number for the one-dimensional

-1.0 Euler equations. The split fluxes are continuously differen-

tiable at sonic and stagnation points: the improvement over

-1.5 j the Steger-Warming splitting is apparent.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Mach Number 2

Figure 2.3.2 Variation of Steger and Jr-Ipa

Warming split mass flux with Mach number. f./pa

The Jacobian matrices of F and F- that are required for 7
proper linearization for an implicit scheme do not share the
same eigenvalues as A' and A- defined in Eq. (2.3.32).
However. the Jacobian matrices of F and F- do have eigen- 0 0
values with the same signs as A- and A- so that upwind dif- V)

ferencing of the spatial derivatives remains appropriate."4 Al-
though A± are easier to form. their use in implicit schemes, in-
stead of the correct linearizations (Wk' /Ow). has been shown -1

in many cases to cause severe time-step limitations. i4.1SJv 7

In 1982. a new method of splitting the flux vector was pro-
posed by Van Leer. 7 Here. the fluxes are split so that the -2
forward and backward flux contributions blend smoothly at -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
eigenvalue sign changes (i.e., near sonic and stagnation pointsl. Mach Number
Just as for the Steger-Warming splitting, the Jacobian matrices
3F' / ,9d must have nonnegative eigenvalues and )F- /0 Figure 2.3.3 Variation of Van Leer
must have nonpositive eigenvalues so that upwind differencing split mass flux with Mach number. 0

* 0



An interesting numerical consequence of splitng the fluxes and the process is repeated. The process described above is

can be observed by examining the differencing of the mass summarized in Figs. 2.3.4. 2.3.5. and 2.3.6.
and energy fluxes. Considering a simplified one-dimensional 1
case, an approximation to the spati.,l derivatives of the mass w 1-1/2 1+1/2 !
and energy flux is given by

,A,etnergy . ,7' -,,, , (..3

At a steady state. ( / (Iu)u.-/ so the energy equa- W W 1

tion can be written as
x

t(puH) H,,,- H Figure 2.3.4 Average state at time t= n.
- - (2.3.41)

Because this will also equal zero at a steady state, the total en- W 1-1/2 1+12

thalpy will he preserved numerically as it should he physically.
When the fluxes are split with either the Steger-Warming or
Van Leer method (as well as flux-difference splitting), it is no contact

longer possible to obtain a similar relation because the mass expansion shock
and energy fluxes are differenced in different manners. The
consequence is that. although mass, momentum, and energy
are conserved by the numerical algorithm, the total enthalpy
is not conserved. In 1987, Hanel'9 modified the energy for-
mulation for the Van Leer flux-vector splitting so that the split W, W

energy flux is given simply by
.5 0H

= f (2.3.45) Figure 2.3.5 Solution of local Riemann problem.

By defining the energy flux in this way. the total enthalpy is W 1 +112
preserved. In addition, because the total enthalpy is a constant = n+l
at steady state, the energy flux remains degenerate so that the W
shock-capturing capabilities are not compromised.

n+1
w1

n+1

Godunov's Method W 1

A very successful scheme for solving the Euler equations that 0
has led to significant improvements in the accurac .f modern
numerical algorithms is due to Godunov (e.g.. see Ref. 20).
For this scheme, a piecewise constant approximation of the
data in each cell is obtained, which represents the average of Figure 2.3.6 Average state at time t= i + 1.
the data in the cell

To advance the solution in time, the one-dimensional time-

dependent Euler equations are integrated over both space and
wi W(.r. t),j. (2.3.46) time to yield an equation that describes the time evolution of

- the cell average in each cell. For example, in cell i.

Wn+1= Wn At-- ,F(w- (.3.47)

Each cell interface, located at i ± 1/2, is then considered to
separate two regions of constant properties in the same manner
as a diaphragm separates regions of high- and low-pressure Here. F(wi 1 ) represents the time average of the flux be-
gas in a shock tube. Because an exact solution exists for tween times n and n + I. Recall that in advancing the solution
this problem, the evolution of the flow field can he easily in time, At is chosen so that there is no interaction of the
determined by sol*!ing for the interaction of the resulting wave .,aves from neighboring cell faces. Therefore, the solution at
:.,m, pro.ided that waves front neighboring cells do not the interface is constant over the time interval of interest. The

interact. Afterwards. the solution in each cell is averaged, solution can then be advanced in time by forming the fluxes

- -i l lli i ~ ,,~i~lm . ..... .i i i l l l li i ii
*.. .0
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on the faces from the data obtained by solving the Riemann
problem and advancing the solution using Eq. (2.3.47). Fi = FR - Y(Avi, (2.3.53)

The above process can be broken down into a "projection" 1I
and an -evolution" stage as described by Van Leer.21 In Fi = -(FL -FR) - i i l

AIAq)T 4 (2.3.54)

the projection stage, the behavior of the data in each cell is
reconstructed whereas the evolution stage refers to the solution The last form can he considered to represent a central- (")
of the Riemann problem. In Godunov's method, the data in the difference term plus a dissipative term.
cell are reconstructed by assuming it to be piecewise constant.
which leads to first-order spatial accuracy. By replacing this Note that if WL and WR are such that only a single disconti-
approximation by a piecewise linear representatio, u tne data. nuity is prcnt, Lbq. t2.3.-ig, icdu.,cs to
the accuracy of the scheme can he raised to second order.. SAw = AF (2.3.55)

Osher's Scheme where S is the speed of the discontinuity and is an eigenvalue
of A. In this case. the discontinuity will e resolved exactly.

In Godunov's technique. the solution of the Riemann problem
requires an iterative procedure at each interface whenever a The specific determination of A is presented in Ref. 25.
shock wave is present. To circumvent the iterative process. an Here. note that the flux F and dependent variables w are both 0
approximate solution to the Riemann problem can be obtained quadratic in the components of a parameter vector given by

by replacing a shock wave with an overturned rarefaction ." W 1 a. H 12.6)
Therefore. because all nonlinear waves are expressed in terms
of rarefactions, explicit relations are obtained for the interme- With this relation, the jumps across a wave in both the de-
diate state variables connected by each wave. pendent variables and the fluxes can he expressed in terms of

jumps in the parameter vector S
Flux-Difference Spliting _w = I(Aw, 2.3.57)

For flux-difference splitting, the solution of the Riemann prob-
lem is again considered. However. the solution of the Riemann AF = C Aw! (2.3.58)
problem is foregone in favor of an exact solution to an ap- In Ref. 25. the exact form of b and 1 are shown to be rea-
proximate problem that does not require any iteration. More
specifically. for one space dimension, data are advanced in sonably simple. For example. for three-dimensional Cartesian 0 *

coordinates.
time through a linearized version of the Euler equations given
by 2 ii I I LI

Ow + Ow 23&2 1i t 0 0(

Of O. 0 = I) Bi, LI 00 12.3.59)

where A is a specially constructed constant matrix that sat~sties i) I0 1

the property that for any WL and wi (which represent the left if, -II +,w

and right state variables on either side of a cell face). 0., I I) I

A&(WL.WR)AW = AF (2.3.49) I1 ,i': Si 0 0

where A(.) - (') - (i.e. the jump across an interface). I I Ir.,

Note that the tilde (-) denotes that the matrix is constructed (I w', 0 LI 0 i' -
with a specilic averaging procedure that is described below. (2.3.60) 0

Here. the overbar denotes the arithmetic average of w' from

Equation (2.3.49) can also be written as the left and right states. From Eqs. (2.3.57) and (2.3.58). the
matrix A is given by

iTk"-'Aw = AF (2.3.50) A = CbI' (2.3.61)

Since the eigenvalues represent wave speeds of individual This matrix corresponds to the Jacobian matrix A = OF/Ow.
waves. Aq = T- 1 Aw represent jumps in the variables due to evaluated at an averaged state given by 0
the influence of each wave. Hence. the change in flux between
the left and right states is expressed in terms of the jumps in = /2

these states projected onto the eigenvectors: /_, /
E 112 I/I,

AF = Y(,.Aq)t, (2.3.51) 1U + 1/2
I' Ii2

By considering the backward-moving (Ak < 0) and forward- t". I ,2 + ,

moving waves A > 0) separately. the flux on the face at i+ + (2.3.62)

in Fig. 2.3.5 can he determined through any of the following I,1/+ I1I

equations (all of which are equivalent): (I / + /;t/

Fi = FL + Z.Ac.)t (2.3.52) If [ ll + P; 1
/2 + l2

0 0
I / 2
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the flux is determined on a cell face located at i + 1 with Eq.
(2.3.54), where Iq = T'Aw, T = T". and the subscript t

For thre-dimensional flows in generalized coordinates, the denotes thai the matrices are formed from the vectors normal

flux on each face is determined in a one-dimensional manner, to a = Constant face. The matrices, "i and are
based on the assumption that the waves travel in the directions formed with the averaged values from Eq. (2.3.62) as are
of the grid lines. Considering the direction as an example, the eigenvalues. The resulting matrices are given as

T - '- a< v- ~) (v - + a ( a, 5 . (23.63) 0
H - +,, ( - - + ( -. i + ,

T- + + 23.63)- ~ + +

2 ,, 2. 2 , 2. 2 . 2..
"r Z -

-- ;Z 1Z i

Q'( + 1 1-2) -7- _7. - ,, 77,- :-

2I MI) + ) I)

T ,i+ L l .1) - - 'j_ .. 2Z, + (2G .: _ ',- -,"t-( 2.3.()4)

I( _!.' + .'T. .1 2 ... - ,-- L- , .

At = 4 1 I) V, I) 1) k2.3.65)
1) 0) i) t ( )

0 ) ) n,+al

where iT is the dot product of the velocity vector with the unit moditied slightly so that it does not vanish at these points. As a 0
vector normal to a cell face. result, a small amount of dissipation is added to the scheme so

the wave is spread slightly over several mesh points. Although

Many researchers currently use the flux-difference splitting many forms of this modilication exist, the most Lommon tin-

technique described above. Further. Van Leer et al.' demon- plementation is to modify the cigenvalue according -

strate that for viscous flows, this flux function is more a..:urate
than central-difference formulations with scalar dissipation, as 0
well as upwind formulations based on flux-vector splitting.
The explanation lies in the consideration of Eq. (2.3.54) as f- H,_ ifIA l  -

a central-difference flux with an added dissipative term. By 2(36

considering the influence of the individual waves, it is appar- + if' <,

ent that as an eigenvalue associated with the wave vanishes. ,. -
the corresponding dissipation also vanishes. This mechanism
is the means through which the exact solution to a single dis-
continuity is obtained, as shown in Eq. (2.3.55). For viscous
flows, the boundary layer is considered to consist of a series
of shear waves normal to the body. Because the velocity in
this direction is small, the corresponding dissipation is also
small: the result is that boundary layers are captured with very
high accuracy. portion of Fig. 2.3.7. which depicts the Mach number distri-

bution through a quasi-one-dimensional converging/diverging 0
nozel obtained with a first-order spatially accurate dis-retisa-

Observe that vanishing eigenvalues (hence artificial viscos- tion. As seen, without the smoothing of the eigenvalue. an

ity for the wave) occur at shock waves, where A. = a - , expansion shock appears as the Mach number passes through
easses through zero. as well as contact discontinuities, where unity. However. by restricting the value of A1 = a - a to

,\k = i = 0. Unfortunately. vanishing eigenvalues also oc- be nonzero, a smooth transition through the sonic point is ob-
cur at sonic points at which the flow transitions from subsonic tained, and the expansion shock is eliminated. In practice.
to supersonic flow and A. = u - a is again zero. This is a the addition of eigenvalue smoothing is often not required for
consequence of replacing the full nonlinear problem with a lin- higher order methods. However. several conditions, usually

earized version in Eq. (2.3.48) which considers an expansion associated with very strong shocks, necessitate the inclusion
to be described by a single wave instead of a series of waves, of dissipation through the eigenvalue. similar to Eq. (2.3.66).
This can lead to expansion shocks in which the flow transi- Several researchers have independently observed these phe-
tions from subsonic to supersonic in a discontinuous manner. nomena; an interesting summary of many of these conditions

To remedy the situation, the eigenvalue \A. = ii - a is often is given in Ref. 27.

= . , . III " . . . | . . . . .. .. . . .. - ". . .
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1 4 _____ _ _ _ _._two- and three-dimensional prblems, the usil proeedti- i,

to assume that waves propagate normal to grid lines, which
12 .,j allow Riemann solvers to be applied in a one-dimensional

t 0 - I manner separately in each coordinate direction. This approach

0.8 r. leads to quite satisfactory solutions when features such as
shock waves and shear waves are essentially aligned with the

06 ,, * E0 0 mesht Howeair. seaere degradation of accurace can scur
04 r_. when the features are oblique to the grid lines because they

0.0 0 2 0 4 0 6 08 1 C are interpreted by the Riemann solver to he composed of pairs
of grid-aligned waves instead of a single wave. The result is

1.4. thai shocks and shear waves may be severely smeared. An
1.2 ,- I illustration is given in Fig. 2.3.8 in which a single shear wave

(dashed line) is misrepresented as a compression plus a shear
1 0 wave because of the orientation ol the grid (solid line). The
08, consequence in this case is that an incorrect pressure difference

across the wave is obtained, which may manilest itself in a

0 6 E... o :O 0 ' computation as a pressure distortion. "
A.' 

o.0 0.2 0.4 0.6 0.8 0O

L R L' R L R
F~gure 2.3.7 Example of expansion shock

and the effectiveness of Eq. (2.3.66). ~ j.V - . . +

Several other flux functions hase been developed in rekent 0
years that are not as widely utilized as those discussed above. shear compression shear
but are nevertheless worthy of mention. The advection up-
stream splitting method (AUSM) ' " is a flux-vector splitting Figure 2.3.8 Representation of an oblique
method that includes some of the favorable properties of flux- sigre 2 3 8Rpesaion of an rid.
difference splitting while maintaining the computational effi- shear wave by two waves aligned with the grid.
ciency of flux-vector splitting and i, easier to linearize for use
in implicit methods. It has been hown to cap'ure contact dis- In recent years, several research efforts have been aimed at O
continuities with accuracy similar to flux -sfference splitting overcoming the possible loss of accuracy attributable to the

but does not suffer some of the deticienLIes. such as expan- dimension-by-dimension approach to upwind differencing. A

sion shocks. Two similar methodologies are the wave/particle summary of some of the more promising techniques is given

split (WPS) method recently developed and reported in Ref. 29 in Refs. 41 and 42.

and the convective upwnd and split pressure (CUSP) scheme
developed by Jameson.6 Both of these schemes are similar to In general, the approaches to multidimensional upwinding can

the AUSM scheme and exhibit similar accuracy. Several other he categorized into two groups: those based on computing 0
variations to flux-vector splitting have also been derived and a flux function and those that rely on fluctuation splitting.

are discussed in Ref. 30. These include flux-splitting schemes The first approach can further be divided into techniques that

based on higher order polynomials of the Mach number. sim- use a single dominant direction and those that use more than

ilar to those of Liou and Steffen." In addition, Coquel and one direction. Flux-function methods that use a single dom-

Liou 2 3  have recently developed flux functions which com- inant wave direction use a frame of reference aligned with
bine the best features of both flux-vector splitting and flux- the assumed wave direction to compute fluxes that are then

difference splitting by using flux-vector splitting for non-linear rotated back into the grid-aligned frame. Examples of this 0
waves such as shocks, while using using a flux-dill .,. .ii- type of approach include the work by Davis,

4 Dadone and

ting for the linear waves. This approach simu_,louo, :.. Grossman.
4 Goorjian.4  Hirsch et al. uA7 and Levy. Powell.

serves the robustness associated with flux-vet. plitorn.- and Van Leer." Generally, these methods show good im-
well as accuracy in capturing stationary contact o . provement over grid-aligned methods for first-order accurate

spatial differencing. For higher order methods, the improve-

The characteristic flux extrapol, iitln technique of Eberle has ments are less dramatic, and convergence to a steady state is

been used for computing llo, o.out many practical geome- sometimes difficult.
"

tries and is described in ',..fs. 34. 35, 36, 37, and 38. This
method has been shown to be capable of capturing strong Flux-function-based methods that utilize more than one wave

shocks and can also recover a constant total temperature. In direction include those of Rumsey et al.. 4 4 ' Parpia and
Ref. 37. modifications to the flux-limiter of Van Alhada'9 are Michalek. " ' and Powell. Barth, and Parpia.

5
' In Refs. 41.

also discussed, as well as the incorporation of equilibrium real 49, and 50. states are obtained on either side of a cell face

gas. in much the same manner as in the dimension-by-dimension 0
approach. However the fluxes are computed by assuming that
the states on either side of the face are connected by two

Multidimensional Upwind Methods acoustic waves and an entropy wave. all in the direction of

the velocity difference, as well as a fourth (shear) wave that is
The upwind techniques discussed above are applicable strictly normal to the first three. In Rumsey et al..4" the directions are
to one-dimensional problems. To apply these techniques to usually frozen after a certain number of iterations to enhance

0 0
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.onvergence. This requires that a fifth wave also be added Higher Order Schemes
because the four wave model can no longer correctly connect
the states on either side of the face. The fifth wave is a weak Up to tht point in the discussion of upwind scheres, the de-
shear wave that is assumed to be perpendicular to the velocity termination of the left and right state variables on either side of
difference direction. In this way, the difference in states can a cell face has been. for tle most part. left unspecified. Recall
be expressed as that for Godunov's method, it a piecewise constant approxi-

h sation of the data in each cell is assumed, then the resulting

scheme is first-order accurate in space. The accuracy ol the

w = II (2.3.67) approximation can he raised to higher order by replacing the

k=1 piecewise constant approximation of the data with a piecewise
polynomial approximation. " For instance, the state van-
ables on the left and right side of the cell interface located at

where a- is the strength of the k"' wave and Rk is an i + 1/2 in Fig. 2.3.9 can be determined as
eigenvector of the matrix A cos H. + B sin 0, 1A and B are
flux Jacobian matrices, and 04 is the propagation angle of the
4 wave). The flux on the cell face is now computed by I

accounting for the influence of each wave as WL -- W +I 9+ 2. 69)

WR = w,., - - , + ( +,)-X-l,

-(FL +FR) - 22.3.68)
where

In general, the success of schemes based on this methodology (A i , I - w(2.3.70)
is similar to that described previously. t wi - wi I

Multidimensional schemes based on fluctuation splitting are Equation (2.3.69) represents a one-parameter anily ot
rapidly evolving. In general, these schemes are composed of schemes. A fully one-sided approximation of the data is
three primary pieces: obtained by inserting o = -I while t; = 1/3 leads to a

third-order upwind-biased approximation, and o; = +1 yields
I. A residual calculation method for the cell Itypically a a second-order central-difference scheme. All the upwind- 0 0

trapezoidal numerical integration of the fluxes)

2. A method for decomposing the cell residual into wave-
like components (the "wave model")

3. A method for distributing changes caused by waves to i-2 0 1 i+1 i+2
the vertices of the cell, in such a way that the positivity
of the resulting scheme is maintained. i-1/2 +1/2

Perhaps the most familiar fluctuation-splitting scheme is that of
Ni

'
2 in which the Lax-Wendroff scheme is cast as a cell-vertex.

or fluctuation-splitting method. More recent work in fluctua- Figure 2.3.9 Higher order interpolation stencil.
tion splitting has improved this method in two important ways:
the residual-distribution scheme (i.e.. the method for 'pushing"
the changes to the vertices of the cell) has been improved with
careful study of the scalar advection case42 5"'  ss'

9 and var- biased approximations use the same number of cells for the
ious ways of breaking the residual into pieces due to planar residual computation as the fully one-sided scheme and may
waves (i.e., wave model) have been developed.42

5
7 Progress he implemented with only a slight increase in computational

on the residual-distribution schemes has been quite good, and effort. The third-order scheme is stricily third-order accurate
positive, accurate methods for distributing the pieces of the only in one-dimensional calculations. To obtain a third-order
residual have been developed and extensively tested. Many scheme in two or three dimensions, computation of the flux
wave models have been developed to date, and the advan- across a cell face on the basis of an averaged state is not sufli-
tages and disadvantages of the various models have not been cient because the difference between that average flux and the
clearly established. Some of the differences among the wave flux computed from the averaged states is a term of second
models include the number of waves that are used (typically order and vanishes only for a linear system of conservation
between four and six) and the directions in which the waves laws. Nevertheless, by switching from a fully upwind approx-
are assumed to propagate. imation p; = -1) to the third-order u; = 1/3) scheme, the

accuracy of smooth solutions can be increased."'

The fluctuation-splitting schemes have been shown to work
quite well in supersonic flows, but issues of solution conver- A deficiency in using Eq. (2.3.69) for reconstructing the data
gence and accuracy in subsonic flows have not been thoroughly at the cell faces is that new extrema can be introduced even
addressed. Current work. such as that of Paillere et al." is when the original daa is monotone. For example. in Fig.
concentrated on these issues, and substantial progress is being 2.3.10, a nonmonotonc interpolation is obtained between cells
made. I- and i. If this profile is convected and the cell averages

0 0
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am then reconsmruted. nonphysical oscillations can result in In Fig. 2.3.11, a plot of R(o) from Eq (2.3.77) is shown,
the solution, where K has been assumed to be zero (,n = 0) in Eq. (2.3.73).

In the figure, the area that lies inside the curve is the region

2.0

1.5

R(0) 1.0,

0.5
W1 W W

I0 
.0

Figure 2.3.10 Introduction of new extrema 0 2 4 6 8 10
using upwind-biased interpolation.

For determining acceptable limits on the slopes, the data in
each cell are first represented by a Taylor series expansion Figure 2.3.11 Boundary of B(o)
about the center of the cell. For example, the data on the for monotone interpolation.

boundaries of cell i in Fig. 2.3.10 can be determined as

_ w w + "I I + for which monotone interpolation is obtained.
w,. W, + 2 5x = wi + 2b" (2.3.71)

For o = 1. 1 is equal to _. and the data in the cell appears
w- = w, - w ),x = w, - 7)hw (2.3.72) linear. Because a second-order scheme should reconstruct

2 OXI 7 linear data exactly. a basic requirement on the limiter function

where Ax is the width of the cell and is that it pass through unity for :, = 1, which can easily be

= 1 + ( + P (2.3.73) achieved by modifying Eq. (2.3.77) to read 0
2

For monotone increasing data, a sufficient bound on the size of R(o) = min 1( 4 40I

A., and -.. is obtained by requiring that the interpolated data + )" (1 - ;) + ( 1 +T. )o(2.3.71)
on the cell faces does not exceed the values in the surrounding In this manner, the slopes as calculated from Eq. (2.3.73) are
cells. This limit is achieved provided that left unchanged, provided the interpolations remain monotone.

wi + I-6w < Wi(2.3.74) Many variations for R(o) have appeared in the literature that

1 -w > w- : w < 2A preserve monotonicity and are second-ordcr accurate. One2 -S_ of the most commonly used limiters is developed by Van

In order !o ensure a monotone interpolation, the magnitude of Albadal" and is given by

6w may have to he limited to he no larger than either 2A...
or 2A..-: Rko) - 2o (2.3.79)

)(o2 + I)

(6w) 5 min (2.1+. 2A- (2.3.75)

while a limiter function of Van Leer is given by'2

Equation (2.3.75) provides a guideline for reducing the mag- R(0) = .4o (2.3.80) 0
nitude of any gradient that would result in a nonmonotone ( ,,+ I)

interpolation. Following Van Leer,6' the value of 6w that
will maintain monotone interpolation will he referred to as Note that as long as R(o) maintains second-order accuracy and

and can be written as remains within the monotone region. R(o) does not need to

(6w),,,,.,. ...= R(o)6w (2.3.76) remain below I in magnitude. Therefore. the limiter function
can actually serve to increase the slope calculated from Eq.

whereo =o and R(o) serves to limit the size ofthe original (2.3.73). An example of such a limiter is Roe's "superbe'
A-

gradient. From Eqs. (2.3.73). (2.3.75). and (2.3.76). Ro) is limiter6'

written as

4 4

R4 Iooi= <. oo 1< <2 (2.3.81)K ))= i ( 1 + ( 1 + # )0 * 1 - ' + ( 1 + t )0 o ( 1+ -
7 ( o>2(2.3.77) '4.*'.,'

0-
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A plot of the Van AlbAda. Van Leer, and Rue's superbee total variation diminishing (TVD).
limiters is shown in Fig. 2.3.12. Note that all the limiters

Time Level [n

2.0

Superbee
Va. Albada

Uonoamcity Boundary

R(O) 1.0 .-
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0.0 I
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Figure 2.3.13 Example of increasing total variation.

Figure 2.3.12 Superbee, Van Sufficient conditions tor constructing '11D scheme% wre first

Albada, and Van Leer limiters, developed by Harten!" While miany insestigators have exam-
tred criteria for constructing TVD schemnes. ie.g., 07 and h8l.
the method of analysis given by Barth in reference 69 relics
upon a matrix interpretation and is described) beOtm

shown pass through unity when o =I which maintains
second-order accuracy. For obtaining bounds oin the variation, a general lormi for a

conservative difference schemne is first written as

In the previous discussion, it has been assumed that the data areS 0
monotonically increasing: similar arguments hold for mono- If" +± w
tonically decreasing data. For nonmonotone data in which the . - ,, 4)
sign of A, and A - differ. 1w 1 , can be simply set toq
zero to make sure that any extrema are not magnified." In llV,' +
the work of Spekreijse,46" general conditions are derived for
the limiter function that will maintain second-order accuracy
as well as monotone steady-state solutions thai do no! set the where D(j ), and Ci g ) -arc nonlinear funictions of IIV
gradient to zero at the extrema. at the grid points and

Another method that is useful to the design of 'nonoscillatory A,~ II 1'= 1"- - II (2.3 85)

schemes is based on the definition of total variation. For a By assuming a periodic domain, the detinitioin ol the discrete
discrete one-dimensional scalar solution on an infinite domain. ttlvraincnh xrse ntrso ifrnemti
the total variation is defined at time level n as toa arito a eepesdi trso ifrnemti

H as3.6

In the top part of Fig. 2.3.13. for at monotone grid function, 1) 1) 0i
the total variation is determined strictly by the endpoints (i.e.
IIV, - I7j.However, if' a new extnema is introduced With Eq. (2.3.86). the total variation can be written as
as in the lower half of the figure. the total variation will T IF I123,(
increase. Hence, for a scheme to remain nonoscillatory. the T V ~ Il
total variation should remain the same or decrease as the whr vI iteLeconrmgena
solution is updated:whr v1isteLveortrmgena

l~vII 1= .Z (2.3.88)

TV-(II-' *) < TI01" i 2.3.93)

The TVD condition can then be expressed as

Schemes derived from these guidelines arc atppropriately called jiIV-lr' < llHII-111 12.3.99)
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The general difference scheme. Eq. t2.3.84). can he rewritten If this expression is wnitten at each mesh point and assembled
with the forward-dilference matrix as into a matrix, then

+ MHW"" = fl -(I - hMHIW' (2.3.90 1t i

( ' (I 1/

where M and M are matrix operators that may be nonlinear C I C
functions of W because the C's and D's in Eq. (2.3.84) are R = " - - - (' U
themselves functions of W. For 0 = i, a fully explicit method
is obtained and implicit formulations are otherwise obtained. -

Multiplying Eq. (2.3.90) from the left by the forward- t2 3971
difference matrix H and regrouping terms yields an equation Now. it each element of this matrix is required to be posit %c,
for the evolution of the variation then the TVD criteria gisen by Harten in Ref 66 results:

C (HW" )=R HW"I C t" -(

HW" C 'R (HW") (' >1i )2.3.8) 0

where C' > 0

C [I + OHMI (2.3.92)

A similar procedure can be used for implicit si.hemes and is

R = [I - (1 - H)HM] (2.3.93) not repeated here.

By taking the L1 matrix norm of Eq. (2.3.91) Many schemes have been developed and applied to difficult 0
aerodynamic problems that rely heavily on the TVD concepts

= i HW , discussed abovc. While by no means complete, a tew exam-
< L 'Ri jHW', 2.3.94 ples can he found in Refs. 24. 26. 710. 71. and 72. as well as

in the ret'rences contained therein.

li ' lil 1, R lH W "ll,
The nethodologies described above only achieves higher order * *

a sufficient condition for the scheme to remain TVD is accuracy tor smoothly varying meshes. ro obtain higher order
C - 11J < 1. In addition, because LC-' RJ, < accuracy on general meshes, as well as to extend the accuracy
C ill,, if both JC -'1, < 1 and 11 R11; < I. the re- beyond second order, an extensive amount of research has been

suiting scheme will e TVD as well. conducted for both structured and unstructured grids. An im-
portant class of such schemes is the essentially nonoscillatory

By first considering the explicit operator P?, one can sum the (ENO) schemes. Although no details arc given here, the es-
elements in the columns by multiplying on the left by a row sential ingredients include a polynomial reconstruction of the 0
matrix s = [1.1 ...... I1]. Now, be,:ause sH = (I.t) ...... 01. Eq. data from cell-averaged data that is ,..-' tn to a specitied
(2.3.93) shows that the columns of R will sum to unity regard- order of accuracy:
less of the choice of M. The L, matrix norm corresponds to
summing the absolute value of each of the columns and tak- Rt.r: W) = w( I + )1:'" (2.3,99)
ing the largest of these values. Because each column sums to
unity. a necessary and sufficient condition for IRIt 1 is that where R(.r: W) represents the data reconstructed trom the 0
each element of R be nonnegative. Otherwise. when the ab- cell averages and w(.r) is the exact value. The scheme
solute value of the individual elements is taken to compute the also must be conservative in the sense that it one integrates
norm. the sum would be greater than unity (i.e. i;il1 - I J. the reconstructed data over the cell, then the cell average is

recovered. The last criteria is that the reconstructed data be
Application of this criteria to explicit schemes results in iden- "essentially nonoscillatory." That is,
tical requirements given originally by Harten. "w as can he seen
by considering a general explicit scheme written at a node Tl'(R?(.: W)) < T(w(.r) + ()h" (2.3.1( W) 0
point j in the form

In order to satisfy Fq. (2.3.1(X)) in a smooth region of a
I II" + (' w(", - 11") discontinuous solution, the stencil used in the reconstruction

-.- ( " " 12.3.95) process is varied as the calclation proceeds. Further details
- ( , and descriptions of the thelr\ , as well as applications 01 this

type of technique. can be found in man'v references. "
By subtracting the expression at node j from that at j+. an
expression for the evolution of H1 " at node point j can he Another technique to obtain higher order accuracy that has
obtained: been particularly useful for unstructured grids is the so-called

"k-exact" method. Here, the conservation of the mean is en-
lY'" = [1 - ('74" -( ]H

H
;' forced, and the reconstruction is such that a polynomial of

(-7g--l , - HI , )degree k or less is reconstructed exactly.'x In the implemen-
H- -1 tations of Refs. 77. 79. and 4l0. the stencil generally remains 0



fixed which results in a somewhat lower tompuiauonal ex- vol. 101. pp, 2'-306. 1992 Also ICASE Report 90,-
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cedure must be applied where steep gradients are present in or- 10 VAN LEER. B. THOMAS. J. ROE. P. arid NEW-
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order of accuracy in these regions. More recently, algorithms for the Euler and Nasier-Stokes Eq.uations.-AIAA 87-
haive been proposed that incorporate stencil-vaiying techniques I I(A' 19X~7
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difference manner in which the reconstruaction operator acts 1 TGR .L.adWRIG :."lx\co

uponpoinwisefluxs."Splitting of the Inviscid (iasdynamtc Equations %iih
Applicaiion it) Finite-Difference Meihirds." J. (oiip

2.3.3 Extension to Real Gases Phs. vol 40, pp. 26,3-293. Apr 198I
13 JANUS. I M.. The Deselopmeni of a Three.

Many of the flux functions discussed above have been ex- Dtmenstonai Split Flux Vector Euler Solver With D,_

tended for use with real gases, including both equilibrium arid namic Grid Applications. Master', ihests, Mississippi

finie-rate chemistry. In Ref. 84. for example. thc flux-splitting State University. Aug. 19X4

schemes of Stcger-Warming'
2 and Van L~eer'
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scatles on the square of the distance beiween the grid po)ints;.

2.4 TIME DISCRETIZATION for the highly clustered grids required for the resolution of-
viscous flows at high Rc:ynolds numbers, the miaximium time

A number of different explicit and imiplicit schemes which step ot purely explicit schemes is prohibitis ely small Implicit
have been used to compute three-dimensional solutions ito ihe "-hemes have a less restricit'.e time step limitation aind are
Euler equations are reviewed below. The general process of ,. "1r:tli~ more versatile and efficiet. especially for time-
discretiuing the governing flow equations leads ito a systemn of dependenit computations. Hiowever, the implicit schentes entail
equations of the form more arithmetic operations. since the sojution oft a coupled

svsem of equations is generally required
Htw =t 0 2.4.1)

The implicit mnethods discussed beloss are restricted to the
w.here w is the sector of unknowns at all grid points tora node- Class of semidiscrete algorithnms Dirct methods. sstiich
based schome and at elements for a celt-based forimulation. have been used to solve the accompanying large banded sss-

Tesolution of these equations, can be obtainted busing tein of linear equations in a fixed number of opterations.
it explicit or implicit formuilation for w. AlIgorithmns of an are contrasted with approxmtate factori at i ii t h ds. \%hliv-h
explicit formu laion c-in ie written as base beer used to approximate the linear s.\1C 1, d ii is

uct oif imtpler and mtore easilyv insertible matrices. The
W ih~' 2.4.2) factorizations discussed. wshich rely il a regular ordcrinit

(if the grid, have been widely used in structured-grid iap-
swhile an implicit skcme can be cxprelssd a:. plications. Iterative techitiques arc then discussed. iclud-

ing relaxation, hybrid raato-ac iaittapproaches.. and

lw, =' 12.4.3) mninimumn-residual mtethods. such as conjugate-gradient o;:
Krxluv-subspace itiethods. Rhe ditct tmethods atid the iter-

Here. w" can be interpreted as the value ot w at either time atise teehiqules can be generali/ed for use as imtplict olcr er1
level or iteration level n; the parti,:ular te:rm of' H arises, front frmsrcue-rd hic.Cncuneaclrto eh

the t% pe of tinie discretizatioti used. Most of the appli 'itilins niques. vich as multiizrid. cotn be applied it) either the linear

to date base been for steadv flows, in whi. -h the role of the or nonlinear implicit s,:cmes abuse. as, \&ell ais to explicit
time diseretitation i.. to facilitate or accelerate convereence: to schemtes. atid are discussed itta ,ibequteitu sCiioi
steady state. A requirement also ecsi~ts for tittte-accuraie irn-
tilatitins of the unsteady low tield, ssociatcd vsith dvtiamic 2.4.1 Explicit Schemes
%chicle inot ions, or time-dependc~t tluiJt 

mtiontis arising I.ruin 0o ilutaete0pcpoeurs osdrtemd r
separated and/or vortical tioss tields.liilutaeteeii:pidre.ctsdrtteiyc ri-

The time discreti/aiion nitho,!, used;it o;\cis the Euler equa- i - ± it (2 4.ti

tisn can be t%. 1id into i i.i classes- coupled space-timite mteith-
od, atid seitidiscrete algoriihms. it te latter approach. the c here U=U XAi and I - I i- :. t. Ii Equittins ot this 1_ P-

spaitial jiscretteatiuti is decoupled tutu the tentptral discreti/a- ,irtse in ntany braitehes of cOMtUhiiu mttechantics. Ior e.atiple.
titin h t irsi ditfereiicing the spatial iberis atise term-t,. the partitl one-dimeisnional tinsteads fluidt lovs. iwhere the equattin0
differential equations are thus tranistormed iti a sy stein u tifirst- i

iorder ordinars differettoajl equaiins in time, Vor teads flosss I i ..

the i te-rate-. t-chatt ge of the spatial residual eqluatiion calhe rpsntC1wafn it bea
driser it) cro. and thc result intg physical solution is intdepen - reeet-colsrati itt-s

dent of the particular path taken iiiconvergeiteor lie timei -p'i It the applicatiotn of the uiei difference mteithod. ditteretics
used to adsvance the equationts. A, a consequece. the solution mtust be taken wsith respect iii timie t atid distince x \ grid is
is oinly dependent tin the spatial di fferenci ng approx imnation. ,uts ruidise h tpat i h qi tnssld

Explicit schenies (predictitn-citrrecior ior Runge-Kuita. fur ex- at each mtesh point or cell, Ai tical mteshit~ cani he
amle are sipe ehiusthan inP1,1schemes and represetited as i t' I sji = The %ilue o! it at this

ale sit)ereniqu\efipiit On esh point i, ti " ie.. ii" = iii A-x. Ait )i. amid the -quation

either sector or parallel princessing coinputer,. The ex- cautda \1)1

Illicit schtemes hasve at time-tep li mitation. correspuindi ng ito 1u 11i iift2At

Courant -Friedrich s- Le v &b-Et number on the o Jcr of unity.-n
in order lo maintain niimerical stability oif the solution. The
tine step bor a CH[, number iof untity scales on the distance be-
imeen the grid points: this time step limitation generally leads I. sing a simple titrsard ditference for the ime de:nso tseAnd

tinefficient simulations o f tin .eads- floss s corresponding to at central dilIterence titr the sptace dens atns . the discreticd
low reduced frequencies. In these case:., the tine step required formnulation takes the unit
or accurate resolutin(ittb the ltie-dependent phenomena ugen- - 10

eralls associated witnh a fised itiniber- (fittitme steps per eyelet 11 - ),-Atfl~? H N -- 1i _\\ t d1x (14 7 1

vail be miuch lairger than the allowsable time sep based on (xe h ottti ttnec e itn =.. i h xiii
siahi I iiV orn, lainon Liai h- tied in esilitt dirctts the solhton at

One of the motisaiins for deseloung iii implicit Euler solser tim- tesel n+l A, ai pceitie examtple-. the tritispo equationi

is ton scrse as a vehticle ton solving the %iscous equationis Foir i*~
a dithuiitn-dominated flow, tte allow ,ible explicit time tell ifi
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where "d" is a constant. can be expressed as the explicit which reduces to
formulation ( ,

- (* "2" x - ) (2.4.9) 2
= - .2Ax and 9

A formulation of this type indicates that time can be used { - i( ''il (Ax)};=

to progress the numerical solution to steady state and is often with C The scheme is stable if
referred to as the method of false transients. In such cases. Eq -

2.4.9) indicates that steady state can be achieved by choosing 1 - i( ill( J.Xx < I
the time step At to be large. However, it this were true, it
would appear that ..At could he chosen to achieve steady state 0
in one step. This is clearly unrealistic zand can be confirmed If the amplification factor g. delined as l. = i complex.

by investigating the stability of the numerical formulation. then lgl2 
= gg*. with g* as the complex conjugate. Hence, the

stability condition is

Stability Analysis
1 +('"sii( -Ax) < 1

Two main techniques are commonly used to assess the stability
of numerical formulations. The first is called the Von Neumann which is not satisfied for any Ax, At > 0 thus, the sinple 0
or Fourier method, and the second is called the matrix method.' scheme is unstable and so not of much practical use. In praL-

tice the numerical errors produced woul' grow unbourdedl\
The Fourier method expresses an initial distribution (line) of and the numerical answer after a few time steps would he

errors in terms of a finite Fourier series and considers the meaningless. It is clear from this simple :\ample that it is not
growth or decay of the errors. 11 proves convenient to express tssile t) formulate arbitrary explicit schemes.

the errors in terms of a complex po~tential form In the above analysis no account has been taken of the effect 0

on stability of the boundary conditions. The Founer method is
(2.4.10) not able to take such effects into account and for such analysts,

where i 10.11 is the interval throughout which the the alternative matrix method of stability is required.'

function is defined, and h is the grid spacing. Denote the
errors at the mesh points along t=O. between x=O and Nh. by Lax Schemes of First Order AccuracyE(ph) =Er. p=O.2..N. Then the )N+l) equations *

It is clear from stability analysis that the method of forward
.N difference in time and central difference in space is untondi-

E. A \,, . (p = t .... N tionally unstable. To alleviate this problem. Lax2 proposed a
ii 0 tmodification to give a stable explicit numericai procedure. As

an example consider the following form for the discreti/ed
are sufficient to determine the (N+I, unknowns Al, A,.A2.As. transport . 2.4.9):
Assuming the finite difference equations to be linear, it is 0
necessary to only consider the propagation of a single term. -:n. + ii> ) - '

such as I-' ""'. To investigate the propagation of this error as t 2x2.4.12)
i (defined as t=qk) increases, it is necessary to find a solution

of the finite difference equation which reduces to e' Jph when

t=0. Assume This is similar to the untable Euler method (2.4.9). except
. -, ... ... - i. , that ii"' has been replaced !, - (it". + it' ).

A Fourier stability analysis of this formulation reveals that
Where 1=c" and .k. in general. is a complex constant. This

reduces to e' 1 when q=t. The error %ill not increase as i = , .Xx - 't" , A fX

increases prosided that

where ( = For stabillts. i _ I. hence.

Hence, the stability of a scheme can be insestigated by appl- - 1 + .A,, 1 ii ...

ing a Fourier InmMJe o~f the forni ifnd so the scheme is stable for C <. I C is referred to as the

124.11) ('ourant number and for a gisen -i~ansti speed a and mesh

spacing Ax. it determines the i, at ss fich tihe numerntal

to the dicrlii/ed equations.; the scheme i, ;able proided al t firmulation can be stepped in time to sl.adN, stite
d. ,, notl inc.reasea in time f'ot all k I is vell knoini ,.hs the L.ax', cheie is stable While the

.pplivg these idea, to the simple exa.nplte ot the transport forward time. central space schemc Is iincondiliinlls uistable

equation by substitutitg Eq t 4 11 in :q 12 4 9 leads to The L.ax I.iritno,1ii n citn ,, s.riltlcin is

2At A

0 0
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or with either

At 2Ax 2 -1t AX, n\

which shows that the averaging of the term o7' leads to the or 0
introduction of a term which is a central difference of a secondspace derivative. In other words Lax's scheme can he seen as -

an Euler scheme applied to a modiifed equation This scheme requires the esaluation of the Jacobian matrix

,'1 01 X2 0 11u A. which can he cos'
t v To alleviate this. several two-step

-+ -- -A x (2.4.13) schemes have been developed.
Ot+i ) 2A t0

where the right hand side is a term which represents an added One such scheme, which has proved to he very popular, was

diffusion-like term with a grid dependent coefficient. It is the devised in 1969 by MacCormack.
4  The scheme is a two-step

right hand side which provides the stability. A truncation error predictor-corrector method which for the equation

analysis reveals that the scheme, for a fixed Courant number.
is tirst order accurate in space and time. 01 of

The Lax scheme can be applied to the system of Euler equa-
tions in two dimensions takes the form

idw 0f ,ag At ,w + - + 1 = (2.4.14) = ii2 At

Atatt ox o v. ~, -,) 12.7

to give, for a structured grid. ' 1:, + u: A(f,*. f- (2.4.17)

w:; = (W it + W,- +w 0

' +
t + W:;- 1  as illustrated in Fig. 2.4.1.

At level n+l
-2-A ., ( , , , ,

- j..it -

2At- x (g> ' ' - g>' ') (2.4.15)s

Schemes of this type together with many variants are classed
as Lax or Lax-Friedrichs schemes. They have played a major level * *
role in the development of numerical schemes. However, they
are not generally applied now because of their lack of accuracy.

Lax-Wendroff Schemes of Second
Order Accuracy level n

Schemes with second order accuracy are generally clas,,cd i1 i i+1

as Lax-Wendroff schemes of which today there are many
variations on that originally proposed.) Figure 2.4.1 Information used in

The major criticism of the Lax scheme is its first order accu- the two-step MacCormack scheme.

racy. The Lax-Wendroff class of techniques uses central space The scheme is second order accuratc in both space and time.
representation but achieves second order accuracy. Again con-
sider the first order equation The scheme readily extends to both two and three dimcnsions:

for example. in two dimensions, for the equation
,;)-t +  0 =  ( ). 111 j,t =11 di f "A'-tOx- + - ----

A Taylor series expansion in time shows 
st +
O is

At- Ati the scheme is

n+ + 2 n,, + -t ........

which, using the original partial differential equation, can he .A Ar
expressed as ' -=(II--tf:;-f )--(g:+-,, )

_Of Atv .Of ,

At - ft- +At' i) k i ± ()( At = 1 + )I,;
;.Ox 2t _0 .At

where the Jacobian A - The diseretited form of this 2.x

equation gives
A technique which is often used in the representation tof

n: = Q, - (2416) general schemes is operator splitting The one-dimensional
2 AX predictor-corrector sequence in Eq. 2.4.171 is represented b,,

+ A- ,2(' A x At 1" (14 11))
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Combining i and j operators then gives An alternative procedure is to note that in a small neighbor-
hood of the initial point (x,,y,). a better approximation of the

= L,(At)L,(At)u" (2.4.20) desired solution ytx) can be obtained by means of the Taylor
series with a remainder term

which is a reprLsentation of a 2D scheme. However, this
unsymmetrical sequence is only first order accurate. The x")- x ) -X,
MacCormack scheme results from a symmetric split sequence 1(x') + (x' ) + + 4'2%
of the form (x -X,,)/ x,)

'  =L, -A-- L,(At)L, (tu", (2.4.21)p
S4 If the remainder term R, is neglected. the approximate value

of yk.,t for the step size h=tx,-xk) is gien by the general
In this form, it is clear how such a scheme could be used formula
to advantage if for some flows the time sten is limited by h.
a particular direction, either Ax or Ay. In such cases, a yk., = vk + -- vk(k) + - N'k + ... + -

sequence could be devised which takes more steps in one of " -
"

the directions so as to reduce the computational cost. Here. ) '"" denotes the value of the ith derivative at the
point (X,yk). This procedure requires the derivativu, of the

Time Stepping Schemes function ytx) and this. for general cases, can prove inaccurate
or unwieldy to compute. However, with a slightly different

A common practice for the solution of the time-dependent Eu- foi ulation the method can be used ctfectively."
ler equations is to first discretize the equations in space while
ignoring the time derivative. This semidiscrete procedure then Various methods exist for improving these simple formula-
results in a system of ordinary differential equations which tions. Since Euler's method is of order one, an extrapolaton
must be integrated in time. For steady state problems. the can be applied. Assuming that two integrations have been
equations are integrated in time using any appropriate integra- perfotred, the first with step h and the second with step hi2
tion routine and flexibility is present for convergence accelcra- and then using the principles i f Richardson extrapolation. an

tion techniques Isuch as local time stepping) to he used. Such improved Euler method of the form
schemes are independent of the time step At at convergence k, = f, .
to the steady state. f,

Time stepping procedures can be based upon the schemes \ 2 y +  k) *44
available extensively in the literature for the solution of or- - , + hk,
dinary differential equations. Single-step methods can be used
based upon Euler and Taylor series methods. Consider the can be used. This is a second order formulation. a single step

first-order scalar differential equation requires the evaluation of the function f(x.y) at two different
pairs of values.

Is
-:- = I (x..'( ))j (2.4.22)
,IX f Other single step methods lor the solation of the differential

equations can be obtained by the use of standard definite
with the initial conditions integration methods. The trapezoidal method can he insoked

to derive the formulation

%"k I = y, + 1(f( xk,, y1 ) + f(xk - I k +,- 1 (2.4.25)

The simplest numerical method for treating this initial value

problem consists of approximating the solution curve ytx) For a general nonlinear equation this represents an implicit
by its tangent. With the step size h and the corresponding equation for the unknown yk. .
equidistant Support abscissae In practice such schemes can be implemented using a sequence

= + khi (k = 1.2... of successive approximations to y,,. denoted as NQ(', One
such procedure, known as licun's rhetbod. can be written

an approximation Yk to the exact solution can be obtained by .

the general formula Y = + . + lf(.YL )
Yk.-.- = y , + hlf x .Vt, (2.4.23)2

The explicit first order Euler method (2.4.26a) is used to deter-
mine a predictor value .-, which is subsequently corrected
in Eq. (2.4.26b) by means of the implicit trapezoidal method

At each point (xk.yk). this method (named after Euler) uses to obtain yh.j. This is called a predictor-corrector method:
the slope of the directional field that is defined by the given it is second order accurate and for practical purposes can he b
differential equation to determine the next approximation yk.i. rewritten as
This procedure is o",viously quite coarse and its accuracy ki = L . I.k/
is dependent upon the size of h. However. the procedure
represents the simplest member of a one step method which k2 fx t,- Ii. v i k, i (2.4.27t
uses only the known approximate value y, at the support h
abscissa xk to compute the approximation V., at X ., = Xk + h. '

" • - = i l - -I I I P .I . .. ... . .
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The improved Euler method and Heun's method are examples The residual in the q.l stage is evaluated is
of explicit two-stage second order Runge-Kutta methods.

te formal derivation of Runge-Kutta methods is covered in ROO 1,R(vv ) (2.4.32

many standard texts on ordinary differential equations. Here. r =

it is worth quoting the classical fourth-order Runge-Kutta where
method 4

k) =flxi.v5 ) L. ,,, =
r~l

k= Xk+ .11-Y 2 )Ik Typically, three-, four-, or live-stage schemes have been ex-

lit = f(x I, + .11 , ' + lk>2 (2.4.28) tensively used.

S 2 ) The stability properties of the multistage method have been

ki = f(x, + i.YI + lik:i used to advinage in the solution of the Euler equations.

h + Consider a time stepping scheine forYL,i = Yk + -(k, + 2k2 + 2k., + k i

It is clear Irom these formulations that to compute yk.1 they -It- = Ait

require information based upon the previous approximation
point (xk,yk). In contrast., an alternative set of methods is to The stability region is the region of the complex plane for

use a multistep approach which uses information at previous which the scheme is stable in terms of the time step multiplied

support abscissae Xk 1, MX 2. Xk I... Xk _. These methods are by the eigenvalues of' A: the time step is selected so that the

referred to as linear multistep methods, and they can be either eigenvalues of the A matrix lie within the stability region. For

explicit or implicit in time. A classical example is the method a multistage scheme,

of Adams-Bashforth which can be expressed as fill = I, "' + ,i"'

It
Yk I= Yk + -5 ( 7)' f k 

- 59fk - + 37ffk -9fk- 1  UtI = It"" + 1. I
24

(2.4.29) 11 0, = I
t '

) + 1 t

This formulation, which assumes equal spacing h, is an ex-
plicit. linear four-step method, It requires only one function Thus, for a complete step

evaluation at each step. but requires previous values t,. I 1., ,,

Ik 2,. I' 1. Other variants of this multistep method exist, as well
as generalized formulations.' where the amplilication factor g is a polynomial in A:

It is clear from this discussion that multistage, two level
schemes of the Runge Kutta type have the advantage that they
do not require any special starting procedures. in contrast to and .li=l, .J2='ik . .. The stability region is the
the multistep methods of Adams-Bashforth type. In addition, region in which lgl! l. and we require the Fourier symbol z

extra stages in the multistage methods can be used to improve = /. )Ax) to lie in the region of stability for all wave numbers
accuracy or to extend the stability region. Jameson et al.7'  

O<,_r. Figure 2.4.2 shows the stability region for commonly
have used Runge-Kutta methods to great advantage for the used Runge-Kutta methods.
solution of the Euler equations. In general. the selection of
a particular temporal integration scheme is closely tied to the
type of discretization selected for the spatial derivatives. 33

The extension of these ideas discussed for the one-dimensional
model problem to the governing low equations is straightfor- RK4

ward. The discfetization of spacial operators in the equations
leads to a system of coupled ordinary differential equations of RK3

the form
dw S

-w + RIw) = 12.4.30)z
lit RK2 lm (z)

where R(w) is the vector of the residuals. Let w' be the
numerical result after n time steps: the formulation to advance
the solution to time level n+l is RK1

w10) = w -

.2.4.311 -3 -2 -1 0
w .. = w ' 

.... R '' - '  
Re (z)

wt,-) = w"" - AIR"-'

W - Figure 2.4.2 Stability regions
So =for explicit Runge-Kutta methods.

" *- = -- =,* I l~s . li I il .i Li- -S -- *
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The equation where the hatted notation denotes that the residual contains
both temporal and spatial discretization terms. Applying New-

it, + it, + tii it = If ton's method for the root o a nonlinear system of equations
gives a linear system to he solved iteratively.

is more typical of an appropriate model equation for the
Euler equations, where dissipation is added explicitly It the i) +-
convective terms. In this case. modifications to the stability + R W W! t.
plots can he obtained with single or multiple evaluations of

the dissipationlike term within the multistage procedure. The i = 1. 2. :.. (24 3N)

variety of possibilities have been considered by Jameson." The linearization is about an estimate w'. which can be taken

initially as w", and the solution converges to the solution
2.4.2 Implicit Schemes at the new time level w"-'. The requirement to solve a

linear equation arises from the linearization ot the nonlinear
In the discussion that follows, the system of ordinary differ- spatial residual termis at the new tune level. In that respect.
ential equations to be solved is written as the treatment of second order accuracy in time is si ilar

d wto that of the first order scheme, since the additional terms
( ) + Rw) = II (2.4.33) involved are all evaluated at time levels which hast already

been computed. Hence. restricting the discussion below to the
where R(w) is the discrete representation of the spatial deriva- first-order backward tune scheme, the linear %stcm i, written
tive terms evaluated as a function of the solution vector w. as
The prototype implicit algorithm considered is the backward
time differencing equation, given as I+hi

)  '(w '  -w')-w -w

Aw' + R" f (2.4.34) i = 1.2.3 (2.4.39)
.t At•

where h = ,IX t. For each iieratton. Eq. 2.4.39) requires
where A t is the time step. R"" is the discrete residual the solution of a block-banded linear system of equations with
evaluated at time level (ii + 1) -1 t. and Aw" - I - W the property that quadratic cons,:rgence can be attained at each
is the change in the dependent variables over a time step. iteration if the approximation is sufficiently near the root of the
The scheme is first order accurate in time. The Trapezoidal equation. For large time steps. Newton's method is recovered
scheme can be written as for the solution of the steady-state residual equation

• I [ R" + R"' = 0 (2.4.35) A genia, lo-k-matrix equation solved with (auss elimnation

requires

and the three-point backward-time scheme can he written as ()(') ,, rfi,,,. 12.4.41)

wherc A. is the total number of equations and m, is the block

., w L - A w" + R" 0 ( 2.4.361 size. A general block-banded matrix equation can be solved
.It in

both of which are second order accurate in time. The three O(.Vl,1ii) pt rttnms: Ii - urii,. , k 12.441)
schemes above can be considered as examples from the well-
known class of linear multistep methods developed for solving where 1) is the number of nonzero off-diagonals in the matrix
ordinary differential equations. The stability of such methods at or above the main diagonal and q is the number at or below
can he determined from an analysis of the eigenvalues of the the main diagonal of the matrix to be solved.
coefficient matrix arising from linearization of the nonlinear
terms. For discrete solutions to the Euler equations, these The computational work for typical stnictured-grid solvers 0
eigenvalues generally lie in the left half of the complex plane. can be estimated assuming an implicit computational stencil
A method without any time step stability limit in such a case is which spans three points in each cooirdinate direction. For
referred to as an A-stable method. It is known from a theorem a three-dimensional ordering of the unknowns by generalized
of Dahlquist that: coordinate directions.

(I) The order of an A-stable method cannot exceed two. X .-It' L

(2) The second-order A-stable scheme with lowest trun- 1,

cation error is the Trapezoidal scheme. where .J. K. L is the number of points in each of the three
coordinate directions, respectively. For a two-dimecnsitinal

Generally, the three-point backward-time scheme is preferred case with ordering by rows.

for second order accuracy since the Trapezoidal method, also

known as Crank-Nicholson. is susceptible to an odd-even V = .1 A'
decoupling in time of the highest frequencies in the solution. 1, = q 

= .1

Either Eq. (2.4.34) or (2.4.36) represents a nonlinear system Hence. the computational work scales as
of equations to be solved at each time step and can be written
generically as )(.v' ,t) ,t ,fl,,o : -1) 12.4.42)

R= 0t (2.4.371 qn(\-: I) ,,tit,,. : 2 -) 12.4 43 1

0 @1
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assuming equal number of points in each coordinate direction. A number of schemes are in current use which are based on
In two dimensions, the relative bandwidth is smaller which this model. For example, since this coefficient matrix depends
results in a smaller operation count; since both A" and in only on the left-side spatial-difference approximation of E.,
are usually smaller in this case, direct solutions of the linear (2.4.45), first-order upwind differcncing can often he used
system are possible with available computers, '  at least for to ensure block-diagonal dominance of the coefficient matrix
steady-state solutions, and relaxation methods can be used eflecti'ely. Also, the

approximate factorizatton methods discussed subsequently are
Becaus of the number of operations and storage involved in a special case of the algorithms described by Eq (2.4.46).
a direct solution of the linear system at each iteration, the
complexity which can arise in linearizing the equations ex-
actly, and the realization that quadratic convergence is only Direct Methods
obtained when the approximation is near to the exact solution. 0
the method as outlined above is rarely used in -- 2 Direct methods can be used to solhc the 5stem of linear

A number of approximate iccnniques have been devised. A equations associated ;with the implicit schci- ::: . :methods are distinct from iterative solvers in that they solve
proximate li,.,irizations, denoted with double tilde overscripts, the system of equations i a finite and predetermined amount
can be used on the left side of the equation (I) to reduce the of work. Solutions to the inear system using direct methods

bandwidth of the linear system or (2) to reduce the complexity are exlc t i ite inarh ei usedret cmpters
assoiatd wth a exct ineaizaion asare exact if infinite precliion arithmetic is used. ()nt computer,,.

associated with an exact linearization, as direct solvers will generate solutions that are as accurate as the 0
S i ](arithmetic used to generate them.

OR w - = - [w'- w"+ , w
'

I The coefficient matrices resulting from Euler solvers are gen-
erally sparse (i.e., composed of few nonzero and many zero

1.2.3 :.. (2.4.44) coefficients). Linear systems resulting from structured gnd

Since the equation is cast in delta form." the nonlinear equa- Euler sobers will have an ordered tnicture of nontero coet-

tion on the right-hand side will be satisfied as long as the ticients. For example. a two-dimensional first-order upwind

sequence of iterates converge. With an approximate lineariza- scheme results in a pentadiagonal matrix composed of two

tion, the property of quadratic convergence at a minimum is **diagonal entries'" clustered around the central diagonal and a

lost. Furthermore, all approximate linearizations are not sta- diagonal entry farther out on either side Adding more dimen-
ble, even if the linear system is solved exactly." " For ex- sions and/or higher order accurac) lead, to a matrix composed

ample. Jesperson and Pulliam' show a one-dimensional sta- of more diagonal entries. This form of sparsenc,s is known

bility analysis corresponding to steady-state convergence of a structural sparseness since it is known a priori which co-hiity nalsiscorespndig t stadystae cnvegene o" a efficient elements are z'ero and which are nonzero. The tusc

second-order accurate scheme: an exact linearization with a

first-order implicit stencil was unconditionally stable. How- of unstructured grid Euler solvers leads to implicit matrice
with nonzero coefficienis located on the diagonal entry and

ever, with a second-order implicit stencil but an approximate randomly located off the diagonal entry.
Jacobian (linearization terms), stability was only conditional.

Another approach is to determine a solution to the linear Specialized versions of Gaussian elimination are used for

system but accept the first iteration as the solution at the new sparse linear systems to minimize storage costs and reduce op-

time level, as a so-called single-step scheme,' -" i.e.. eration counts. ' Banded-matrix direct solvers are perhaps
the most common approach to reducing the storage and op-

R"(w" ....- w") -[h R(w" )1 (2.4.45) eration count of a full Gaussian elimination. Banded solvers

-R2Ow 44 store diagonal enines of the matrix as vectors and. hence, store
all coefficient elements of the matrix out to the last diagonal

The equation is now of the standard form Ax = b, where entry that has a nonzero coeflicient in it. In large part. most
x - Lw, and a number of iterative methods adapted from work on banded direct solvers has been done in the structural S
the study of linear algebraic equations can be applied to solve finite-element field. Consequently, most banded solvers are
the linear system of equations. Note that the convergence of specialized for symmetric positive-definite matrices.
the solution to the linear system depends only on the coefficient
matrix. The use of large time steps and the retention of the Matrices that possess general. rather than structural. sparse-
A-stable properties of the implicit integration scheme can be ness have nonzero coefficients randomly located in the array.
attained if the linear system is solved to near completion. Consequently, very few nonz-ro coefficients exist next to the
However, in most cases, the linear equation need not be maximum bandwidth of the matrix. Skyline solvers take ad-
solved exactly, since for steady flows the ultimate objective vantage of this fact by only storing row or column vectors
is the solution to a nonlinear equation. Likewise. for unsteady from the diagonal to the last nonzero coefficient in each row
simulations, it is necessary only to solve the equation to a (lower triangular) or column (upper triangular), respectively.
tolerance below that of the truncation and linearization errors Skyline solvers are also known as envelope. profile. or van
associated with the single-step approximation. able bandwidth solvers.

The two approximations can be combined, as an approximately The most common approach to solving general sparse mai-
linearized implicit scheme, in which the linear equation is ces has been to renumber the rid to minimize the bandwidth
hopefully much easier to solve. as or minimize the numerical fill-in during the solution process.

Bandwidth minimization will make both band solvers and sky-

OR 24 line solvers much more efficient for any linear problem. Sev-
I + h ' (w eral methods have been proposed to minimize the bandwidth of

sparse linear systems. The most successful and best known of
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the bandwidth minimization algorithms is the Cuthill-McKee" I +]
ordering algorithm. This algorithm makes extensive use of + h I ( Aw = Aw" (2.4,49)
graph theory as do most reordering algorithms. For each node \ 12.49

(equation), a list of adjacent nodes can be generated from the w", = w, + iw' t2 450.

graph of the matrix. If v is the node number, then Adjir) where it ' denotes the right side ot Eq. t2.4.39 and 5 is a 0
is a list of the nodes immediately adjacent to v. The algo- spatial difference operator. Each sweep requires the solution
rithm takes a list of nodes and the associated list of adjacent of a block tridiagonal or pentadiagonal matrx equation. The
nodes and generates a new list of nodes. The old and new computational molecule for a three-point spatial diferencing
list of nodes acts as a translation table for the matrix so that is shown in Fig. 2.4.3(a). Since the solution on a given
the graph of the matrix may be renumbered. The matrix as- line in the grid decouples from the other lines on a sweep.
sociated with the new graph of the nodes will often have a the operations can be performed efticiently on either vector-
dramatically reduced bandwidth, processing or parallel-processing computers by sjnultaneous 0

,-20 nested d solution of the linear system along parallel coordinate lin, in
the mesh. On the basis that the tactonzation and linearitatiot

renumber the graph of a matrix. The bandwidth of the matrix
is not reduced but the numerical lill-in that occurs during the errors can be considered small, the algorithm is uualls applid
matrix factorization is greatly reduced. The minimum degree as a single-step toiteratise see
method also reduces till-in through a minimization process and L, L,, L, (w" - w") = -11, Hiw" 124.51

has proved useful for unstructured grids. i for both steady and unsteady applications. The spatial factor-

The principal advantage of the direct solvers is their robust- ization is largely independent ofthe type ot spatial dilenc

ness, since steady-state solutions can be generated in cases ing (i.e. central or upwind). The algorithm is widely used.

where iterative methods fail to converge and there are fewer in part because the thin-layer form of the viscous terms can

parameters to adjust for improved convergence.'' ' 21 The be easily accommodated: cross-deris.itive tcns arising troin

rapid convergence of the scheme allows solutions to be oh- mixed-derivatise temis are difticult to treat with the spatially

tained in four to tive iterations. because of the increased op- factored algorithm. howeser. and are generally treated explic-

eration eont of the direct solution, the method is generally itly or lagged in tone

only invoked after an approximate solution is generated with Pulliam and Chaussee developed a digonalh, ed scheme in
an iterative solver. order to reduce the number of operations associated with the

ADI solution. The similanty transformation of the insiscid
Approximate Factorization Methods Jacobian matrix is used to derive ait approximate set of scalar

Within the framework of approximate factorization iAF) meth- equations on each sweep. as shown for the left-hand side of

ods. implicit schemes which factor spatially the unsplit ma- the k sweep:

trix equation into a sequence of simpler matrix equations are T, I + h zA, T- ,w'" 2.52
known as alternating direction implicit (ADI) schemes " and
have been widely used. In addition to the classical spatially
factored scheme, a number of alternative schemes are possible coupled since A is a diagonal ndtrix of eigenvalues. note

by factoring the implicit operator according to the cigenval- that the similarity transformation matrix has been inoscd out-
side the differencing operator to achieve the efficiency. The

ucs of the split Jacobian matrices and using type-dependent

differencing.: -
' These alternate factorizations can be used to original block-tridiagonal or block-pentadiagonal incrsiot is

split the full operator into a lower (L) and an uppe: fU) fac- replaced by scalar inversions and two matrix multiplications.

tor independent of the number of spatial dimensions of the leading to approximately a factor of two reduction in the over-
all computational time of the ADI algorithm, kth generally

problem, thereby increasing the allowable time step based on - oputial tn ote Dg ohher
stability considerations and/or a decrease in the number f no appreciable loss in convergence.
operations. These LU schemes can be used to converge dis- Obayashi ei al.2" have used flux splitting to simplify the matrix
cretizations corresponding to either central or upwind schemes inversions further by factoring each sweep into two bidiagonal

(e.g.. Rieger and Jameson "). inversions. Applying type-dependent one-sided diflerencing to

For the compressible Euler and Navier-Stokes equations. Beam the eigenvalue-split components if the Jacobian matrix as

and Warming" and Briley and MacDonald' laid the foun- ,,A = ,',A - ." A (2.4.53i
dations of the current ADI algorithms which are generaliza- where N and are backward and forsard diffrence
tiw:,, of the alternating-direct, n implicit algorithms devel-
oped in the 1950's for solving parabolic equations. The ADI operators, respectively, the left-hand side of the , sweep can

algorithms approximate the left-hand implicit matrix of Eq. be represented with the LU-ADI scheme as

(2.4.39) as a product of ,-e-dimensional matrices, solved in T,[I + , 1, A-
a series of sweeps through the mesh. The nonlinear implicit I + t 7 A, 1 T.-' Aw'" 12.4.54)
scheme for tirst-order backward-time differencing can be writ- - , !

ten To enhance the diagonal dominance of the equatiotns, the in-
plicit equation on each sweep can be Jactored slightly differ-

I h h 0( )Aw " )2.4.47) ently following the work of L.ombard et al." as
\ ;) w~~~~l T I, I + I /, ,sA ,, -- A ,; )

)w Aw * ' (14.47- . )

I + h (, , Aw Aw" (2.4.48) [+ It (A- A,
I+h (,7A,, - A IT, -' w'" i2.4.55)
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where the diagonal entry of each bidiagonal inversion becomes and backward difference and factoring accordingly, although
D = I + h IA I. Termed LDU-ADI,"2 the operator in each soni form ot approximation is generalls required tor the corn-
direction can he considered a single iteratiOn Of a symmetric presNible equations. For example, a spectral radius scaling 01

Gauss-Seidel relaxation sweep, as discussed in greater detail the Niscous Jacobian matrices is readilv incorporated, sinm-
later. The extension of the diagonalized methods to the vi.cous lar to that used for the diagonalied schemes. Often. as in
equations is not so straightforward, since these terms cannot the work of Gatlin and Whitield, " the implicit sctous terms
be simultaneously diagonalized with the inviscid terms an ' are are ignored without an adxerse eftect on the stability of high
either ignored or represented approximately>" as, for example. Reynolds number viscous tlows
by approximtating the viscous Jacobian with its spectral radius.

The largest deticiency of the spatialk factored approach is Operatiins per poit per

that the factored operator incurs a splitting error in three di- fco

mensions which is proportional to the cube of the time step. Lt decoi- Back su-
A t) . and the resulting algorithm is only conditionally stable Scheme position tttuttin Total tterattons

at best.2'" For example. South"l has presenied a proof that the _ptC point
three-factor spatially split AF scheme with central differenc- Three-tactor 55tt 145 t95i = 2tnS5
ing is unconditionally unstable according to a Von Neumann spatially-
stability analysis for a scalar three-dimensional model, time-
dependent hyperbolic equation. In practice, the addition at" split

artilicial viscosity can be applied to stabilize the scheme, as 2-factor 225 45 270 x 2 = 540
the second-order upwind scheme (which can be viewed as a eigenvalue-
central difference scheme plus dissipation) is conditionally sta- split
ble. In two dimensions, the splitting error is onlN s A W , and
unconditional stability can be attained, although the splitting 2-factor N)(t 145 745 x 2 = 149)

error causes a general deterioration in convergence rate as A / hybrid

tends to intinitv. The 1.11 schemes. on the other hand. incur
only A I-) splitting errors in two and three dimensions and
cawm attain larger stability bounds. Table 2.4.1 Operation counts for solving the

implicit approximate factorization schemes.
Cousidertng only the Euler equations and factoring the tper-

ator according to the positive and negative cigenvmalucs of the Relaation Methods
split and type-dependently differetced Jacobian matrices,:" a * 0
two-tactor scheme is With the development ,iid use of upwind discreti/atons Ior the

Euler equations. ('hakravarhs ' and Van Leer and Mulder'"
S+ 'I,-A+ 

+ ',, B+ + ] C )observed that the linearized implicit equations can be solved

I + ,s A + , ,;B - + C - ) Aw' = (2.4.56) efficiently with classical relaxation method,. For example.
with tirst-order upwind differencing, the coctticiei iTatrix

Detining L and L- as the factors containing the backward on the left side of Eq. (2.4.39) carl ie cOfnStri,'dc- he
and forward difference, respectively, the scheme can be written bli'ck-diagonally dominant for an, time lp and standard
as relaxation techniques. such as Jacobi or line (;auss-Seidel. tor

L - L - Aw' = a' (2.4.57) the iterative solution of large linear systems can be used. Alsu,
Ior supersonic flows. relaxation schemes can be conistruced

The computational molecule is shown in Fig. 2.4.3(b). and the to recover etticient space-marchitig schemes, '7 For higher
operation counts for several schemes are given in Table 2.4.1. order spatial difterencing. the coetticient matrix is no longer
The operation count for the cigenvalue-factorization scheme is diagonally dominant: it is more difticult tit) construct efticient O
reduced to 25 percent of that required with the ADI scheme, schemes, and generally symmetric Gauss-Seidel schemes are
since only bidiagonal inversions are requir.-d on each of the required.i.is
two LU sweeps. Originally thought to be inefficient on vector-
processing computers, the operations can. in fact. be vectorized There are two general approaches to incorporating relaxaiion
by simultaneous operations along i (uitismtatt comordi- techniques tor the Navicr-Stokes equations. The lirst approach
nates lines. ' " The algorithm is unconditionally stable in three is tom solve the Itear system via relaxation to near completion
dimensions. For a scalar wave equation, the eigenvalue-split before updating the residual equation Thus,. as mentioned pre- 0
scheme becomes a direct solver for the unfactored equations. viously. using tirst-order upwind differencing. the coefticient
The results from a linearized analysis of the coupled Euler matrix can often be constrncted to be block-diagonally dom-
equations at a Mach number of 0t.8 for several schemes is inant. The second approach is to approximate the elm-side
shown in Fig. 2.4.4. The results indicate unconditional stabil- matrix of Eq. 12.4.39) as a diagonal Jacobi or hdiagiinal
ity with the two-factor cigenvalue-split scheme:ii the spatially ((auss-Seidel matrix and solve for a sequence of iterations.
split scheme shows only conditional stability. However. a. is with a nonlinear esaluation of the residual after ever pass
true of factored schemes in general. the optimum damping of through the mesh. At convergence. the nonlinear Eq. (2.4.14)
the error occurs at relatively small time steps. an the order of is satislied. The consergence depends on the spatial diflerenc-
a time step oif live to ten times that of an explicit scheme. in" of both the left and right sides of Eq. 124.391).

The extension of the nmcth(xologv for viscous flows is not oh- The lirst approach is illustrated below for the difference equa-
vtus; however, the x iscous terms can be included by express- lions arising from the Euler equatiuns. C'msidering Eq.
ing the three-point diffusion operator as the sum of a firward 12.4,39) as an equation Io he solved al each iteration hr \w'.

......... .. .... ... . . + ,- , +.- + a +a. i mll lU~ll I i+ u ++0 . . . . .
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a sequenc of subiterates Aw" ' i. = 1,2.3..... is computed. corresponding to a forward and a backward sweep Expanding
Using a symmeuic point Gauss-Seidel procedure, one sweep R" in a Taylor series about R" and retaining onls the first-
through the mesh with Aw'-= 0 can be wntten as below order terms, the total change over the two sweeps is composed

of the sum of the two sweeps as
[I + h tI 6 -A ' + 6 1,1B ' + 6 1- C ' L w " = LW " - + w , ' 2 4 6 4•

-A - - C-) -w R ' P2.4.5St
Combining the two sweeps into a single step-schemc. the

The second pass becomes scheme can be written as

L-D Lw -- (2" t2 5)I +h,(1,1 TA - + ,;B- + ,' C-

which is sery similar to the sytmetric (Gauss-Seidel relaxation+A" B* C*)]w"'Eqs. 12 .4.61-H2.4blL
=R' -hA +Cb, +zC,

-A- - B- - C-) Aw' (2.4.59) Eberle et al.'
2 " have decloped implicit solvers based ot the

use of approximate implicit Jacobian niatrtcs and cectiorizable
relaxation schemes. The scheise, arc dcsigned so that the time

On subsequent passes. Eqs. (2.4.58)-2.4.59) are solved re-
step cart he arbitrarily large for steady -staie applications orpeatedly. except Eq. (2.4.5 ) is m oditied to use available val- t e n a bia l con r st cad ,s tat ioapp le t time-A frmtervus t Iftet' taken as a global constant along wi th subiterations for tinme- 0

ues o w pr iteration. I tirations accurate simulations. A number ot different transtornsations
the linear system are continued sufficiently far to convergence, from the usual conservation variablcs as the implicit variables
Eq. (2.4.39) is classified as a quasi-Newton method. since ap- in delta form have been used to improve the robustness of
proximate [in-arizations of the right-hand-side are generally the procedure at higher Mach nuibers. Brenncis. Eberle. and
used to simplify the operations or ensure diagonal dominance. Schmat,

4  
show the effect of large aspect ratio in reducing or

The second pass can he rewrittela using Eq. r2.4.5X) and the
'the pseondass riten he eow ueven eliminating the diagonal dominance of upwind scheme,
two passes written as below in more than one dimension, with the use it alternate variables

this problem can be overcome. It is interesting to note that
I + il,-A" + ,,B* + - C* several linear upwind schemes which are unstable tor model

-A - B - - C n i w' 2' (2.4.(-A)) hyperbolic equations according to the usual Von Neumann
stability analysis hae been used routinely in applications it)
the full Eulcr equation,."' In the applications, the ditlerencing
stencils vary because til the nonlinear limiters used ito maintain ) *

[I + it() 'A- + + , -C monotonic results near discontinuities and the coctticients of
the linearized equations change trom pmit to point in the grid:

+A' + B- + C)l nw ' =D ,w'' (2.4.61) both effects are neglected in the Von Neumann analysis.

where D = I + It (JAI + IBI + ICI) is a .x5 block-diagona It is sufficient for diagonal dominance of the matrix cquatio

matrix in three dimensions. Defining L- and L as the diag- to split the plus and minus Jacobhia matrices into matrices

onally dominant factors containing the backward and forward with nonnegative and nonpositive etgenvalues, repectively 0
differences, respectively, the scheme can be written as 'he convergence of the quasi-Newton process. hitwever. de-

pends on !he form of the linearization: the consergence is

L-D - Aw' = ' (2.4.62) improved as the implicit Jacobian matrix approaches that of
a true linearization of the residual equation to he satisfied at

Thus the symmetric Gauss-Seidel. Eqs. (2.4.60(2.4.61), convergence. A true linearization is often difticult or imprac-

can he viewed as an approximate factorization. 2 termed LU- tical to attain in practice. as shown for example by Barth'"
SGSati and consequently considered as a time accurate scheme using the flux-differencing -litling of Roe. All approximate

SGS," ad coseqenty cosidredas atim acurat sceme linearizations are not stable, as discussed earlier. A crude cs-for unsteady applications. The complete viscous terms can be linato the n stes usse eal rus e-

easily incorpor:a'ed into the algorithm, and Chakravarthy' t has timate of the Jacobian matrices using the spectral radius i.e.
shown that the cross-derivative terms can be differenced to = (A ± /'AlU1

2 ), results it a strictly diagonal form for

enhance the diagonal dominance of the coefficient matrix. Of the matrix D = I + h (('A + to + ic I and, consequently, a

the schemes considered above, the relaxation scheme is the reduced operation count for the LU-SGS scheme. This son-

only one, other than direct inversion, for which the cross- pie linearization proved effective itt the incompressible viscous

derivative terms can be treated implicitly. Note that the relax- flow calculations of Yoo)n and Kwak;
4 " the reduced operation

ation approach can he incorporated directly into unstructured count of the scheme with the approximate Jacobian coimpen-ation asatescforathe reductionatin convergencetpernstructirn

grid methods since the coefficient matrix can be considered sales for the reduction in convergence per )teraijon.

to be a general banded system to be solved iteratively. The
factored schemes rely on a regular ordering of the grid and are Hybrid Methods
not applicable to unstructured grid methods.

An alternate LU factorization can be derived by splittic he

The second approach, in which nonlinear residual evaluations Jacobian matrices in a single coordinate direction, generally ]n

are used in each sweep of the mesh, can be written as the direction tangential to the body surface." The algorithit
can be written its

U Aw R" (2.4.63) I 4 1,(, A + ,B)1'

L-w = -w- w" + I R" I + t " A + C) Aw B' = (2.4.(i)

" ... . * , , m ml ---=u ~ i~lliilllll~l i III i ' . . .. . - -
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o Time level n

STime level n + 1

Time level n + 1
(previously calculated)

A Maximum eigenvalue
TI 0 Average eigenvalue

- - Smoothing factor

12 (a) Three-factor spatially split.
1 .
•.8

(a) Three-factor spatially split. .6

sweep. .4
~.2-

1.2k- (b) Two-factor eigenvalue split.~ ~~~~~1.0j .i .......... ',

.8-
X..6

(b) Two-ftc eigenvalue split. .

Positive eigenvalue sweep.

1.2k- (c) Two-factor combination split.

.2 -

(c) Two-factor combination split. 0 10 20 30 40 50

- sweep. CFL number

Figure 2 4.3 Computational molecules for advancing the Figure 2.4.4 Stability analysis of three-dimensional
solution in time using approximate factorization schemes. approximate factorization schemes; .\!.. ).: '.

or



Since the implicit spatitti discretizations at two at the coor- w here Vk', Iis a itiatris tinaed frontl th j, -, I
dinate directions are not required to be split. either central or sectorN otined alter s teps it \Aiodi s iithod Anid H i
upwind differencing can be used in those directions: it is a I A- 4 upper 1-lesscnberg miatrix.

imeiniter to extend the method to include the corre.spond-
ing thin-layer viscous terms. The computational molecule is tinO sali lug d liineal *' sieilil ot \ eqUations% itl \ ''iiktiow

shown in Fig- 24.3(c). The linearized siabiiv analssis aft> he [tic inial solutioin I, ithtib
coupled Euler equations". is shown in Fig. 244ici. the algii-
rithm retains unconditional stability. The operation count tor = X 4 zi

the implicit inversion is 71 percent') at that at the spatially w here x., i.. ani imal iprva i tile olUion aid zi
split schenme, as given in "fable 2.4 1, and the computations a relo to the initial guess that sauisns

can he '.ectorized. although the vector length., arc smnaller thani
the spatially split scheme. Az ,r i 4'I

Hybrid relaxation-tactoritatianinee hja' ilsi, been dexci
aped it) improve the stability characteristics at the three-factor
ADI scheme2''." Relaxation is applied along one ciioriioe ("uttsidcriiig z a, ani approk.iniic soltttoiil to Lq _2 4 " hl

directiiin only t(generally streamwisc and approxi mate la~ tar- th hcerror 1i miade ii be 'vi lii ,ooi t all ' c,tor, it V,.
,tatton is applied in the iither two directions. The resulting
matrix equation to be sol,,ed iii each crosstloiw plane call hc ',, , Az ,r - i2 4 -'

wraien tar relaxation in the di rectittn as -,surri l thait z I' t lie d iteth1 diii sional Isry los aibspac

( I +r Ii] A + s,,B) j( 1 4- fiAI! such that

2.4.ttC i theni uili/iiig Eqs (2.4 0u9) and clioosiuie the inal ec t, itl

the Isr,%lii' suhpacc to be the ititial icsiduail di'. dcd) b\ its
where the right-hand-side indicates the nonlinear updlating ait iiigigiiit tide. 1-q.; 2 4 72 i can be w.'ritteii

the residual while sweeping hack arid torth in the ,dtrec-

lion. Each factor has the same bloick tridtagiinal or peitiadiag- Hly :1Ir i 4 4 14

,inal form of* the spatially split scheme and all the operations
can be vectorited. The hybrid scheme, termed an AF-SPGS whr s- oun'c a ' t iit.a i is luiitai

i Symmeitric Planar Gauss- Seidel) schemie.' avoids the ,er to- f) a (tk+ t e viaiiiu wviits. Eq 2.4o(1 1,010 ie e* 0
splitting error common ito the three-tactiir schemes, and is un- sl' dwt es qae rcdr ste(i.Ct ~iin
conditionally stable fir a scalair wase equation. The thin-layer Noetaitherorhdbenrlcedot.isslc t
viscous terms can he incorporated easily iii the twit ciirdintate clir l imniton k instead at i. in 1Eq. 1 2.4 72 )this
directions perpendicular to -- axat tan since the operators cait n a d c yi i tI qaiisiiI itt s.i .. tcI

remai unslit n thoe diect anscould he sal'. d instanidard Cli ito natit in techtiiiques aiid is

reterred ito as the t 1il iorthoieonali/atton mtihodv."'' ltui'.'eCr.
Minimum-Residual Methods the least-square appriiach allows inl etticicit aippim-, criteria

since the last elemtent ill the right-hitid-ide sctor atter ipllt-
A class at algorithms that can he very etlectise and is appli- ate the Giveits rot~uiins w'ill represent thle error in the soluttoni
cable to both structured- and unstructured-ttid methods are
mini mumr-residual methodls. For non-symmeritric matrices that Nate that V1. - is cOPAitute dutring the C; atep at tile algii-
appear in the Soluttion iii the Eler equations, methods such rithm and will he iiiii erm unlessY [Ile exsact salut ii n ohbtatied.
as Conjugate Gradient Squared (CGS), Bi('injugate (iradi- This leads it, an tinptiant propeit\ at GMIRES in that thle alga-
eat Stabilized Bfi-CGSTAB I." and the G;eneralized Minimum rtthnt eatl break do'.n n tly after the exact souliit is iibtaiiied
Residual Method t GN1RESt"' are alien used. One ot the mtost Anotther related property is that a l si1 '.1%t[1 atl V X N iiia-
widely used and most reliable procedures is GMIRES which is irix equation, the esact solution '.'ill he obtained iii at mist
briet]s described below. N steps.

The toundatton of GN1RES is the projection at the residual Cr- The disaidvantages at the GMRES ailgorithm ire that laee
rot-, due to an approximate solution. onto an tirthonormal basis mienmiry requiremenits ire required tar the Arnioldt IkeLtdUre
tar the Kry lay subspace which is of smaller dimension than because each seettir itiis be storcd Ill Order to arthi 2u'nalu,'e
the original proiblem. Amoldi's method.' which is essentially each tiew %ecitir a it respect to all tile re'. as '.ectiirs osli
a Gram-Schmidt proc~edure. is used ito generate an iirihonormal a moidified (;rtm-Sciiidt process, This alsoin icre,se lie
basis tar the Krylov subspace of dimension A detined as ciimputattioatil tine as niire sctors ,ire accouttUlated I Ii I

circumvent these problemts the priicedtire is List.lls, restairted-

Kk - F- titi AF.. - . A"~ -i. t 2.4.68) hr tUsi ng at fixed tlumaber at' %ccii r% to, oi i aipjtroii itit

solution which is theni tisd as r iiti tal qtucss traint '..hi thle

where r, is the residual itt the initial guessY t r, = Ax, priicess can be repeated

and E~ = r 'lrVThe resulting vctlors are oittoni'rtal and rhe GM.\RES priiceduire is usually .ipli't it 1,i ' recotidt-
sai isy the relationitund's tttit qutiissc i

AV1. = V. -H f12.4.69 1M AM: M -x. =- M, i210



wherc Mi and M_, are called the left and right preconditin- 0 00 0
ers respectively. The role of the precondi(tone rs is it) obtain 0 0 0

a more favorable distribution of elgen~alucs (harlt ile original 0 0 0
system in order to obtain faster convergence so that suitahle 0 0 0
accuracy can be obtained while reducing the dimiension of the 0 0 0
Krylov subspace. In practice. the success of using GIVIRES de- 0 0 0
pends very strongly on the effectiseness oftthe preconditioners. 0 00

0 00 0
The GNMRES procedure. Lis origilly developed and as de- 0 0 0
scribed above, is for solsting a linear system ot equations. 0 0 0
Wigton et il.

2 have extended this algorithmi or iccelerit- 0 00
ing the convergence ot nonlinear equations such as the Euler 0 00
equations with good success. This procedure i, described in
section 2.5.5. Figure 2.4.6 Form 01 Matrik for Cells in Fig 2A 5

A iarity of relaksa wn ,heine _, ke contiructed it) w li:,
the solution of Eq. k2 4761 is obtatined through a cl~uene

Extensions to Unstructured Grids of tieraitions in which art approximratioin of Awv is initnuail%
retined,

With unstructured grids, no regular a pro ordering oI the

grinds exists such that the matrix equation can he tactotred ex- 'latitehedrajoo hwhcns

plicitly as at produict of' simpler mnatices. is in the ..\DI all- written as a linear comibintationiti three titirices repre sen tri

gorithms. Hence, the gener.1 approach is ito solve the ma- thdignl ucioa.adupraoalemic

trix equation with a direct method~ or iteratively with re-
laxation nmethods. "' Consider as, the starting point the liii- i"= D + (MI" t [NJ' 24.8

eari/ed single-step backw ard-Euler time di tterertcirig scheme.
Eq. (2-4.45). written ats Vhe siniplest Iiteratisve ,:c me lot obt alinin g %i oluit ~in to

the linear sYstem of equations is a Jacobi ispe mnethord

= F ' t2.4.7(0 iii which all the nift.diagoial terits itt AJ ' A ime.
[Al" I-\ R1(2.7) M}" IA- F [NJ". J Aw F ), ie taken to the right-hanid side

,,I Eq. (2.470) and are esaluatted usingl the values iot { Aw F
from the previous sitbiteration lev el i. This scheme calt be

%&here represented as

[Al" = 14- ---- 2.4 .77, PD"A } a"-N J w

R 'OP" j O"Aw] _1 1 79

The solution of Eq. (2.4.70, can, in pri nci ple, be ohi ai ed where f 0]' denotes the iii -diagal_11 te11 nt' the mat. Iv [fie
by a direct inversion itt [Al". Tis technique, while quite dsdatg i ~ ioesheiei i. esqeieo
successful in two dimensions, is currently not s'erv feasible Jcb trtosfa ovresiesttsrwyltodrt
for practical calculations in three dimensions. aceeae h ovrgenea(iis-edlpieueunb

employed in which valuesl of Aw are used ott the ritihi-hand
Instead. tirsi-order-aecur-ate upwind approximtations on the left side of Eq. ,2.4.791 as soon as, thes are available. An exatmple
hand side oft Eq. (2.4.76) can be utiltzed in order to reduce of" this scheme, corresponding to a sequential solution of thle
both the bandwidth of the equatitins and thereby the required equattion,, from the first to the last elettent. cant be %&rrinerta
storage. as discussed ltreviiiusl . The resulting scheme c:in
retain the desirable property of stabilit ' for large tine steps. for [Dj (Axv I I - AR M" _w [NJ ' - % I w
either tirst or second order spatial differencing o1 the residual, a JJ
if the linear system is solved to it sufficiently low tolerance. i24. (Iu

where the latest values itt IAv associated Aitlt the subdi-

Now consider a sample conligUratitin oif triangles in which .tgonal terms arc imitediately ijc use ergh ad ieo

the cells are randomly ordered. shownt in Fig. 2A45. The teieaineuto.Asih ndlcto otl bn l

corresponding form oif :the matrix (A]" is shown in Fig. 2.4.6 goithm in which the latest si aIes oif J Aw associated w.ith

where a circle represents the nonzemo entries, the sliperdiagonal are used. corrcsponding itit asequential siu-
tiotti:om the last tithe tirst elemtent. results in a %ery similar
scheme "hich is given by

9 3 ]J F [FR.)" - IMj'{A1wF' - [NI' {Aw}'
2 9 10 (2.4 S I

A syi'umetrie Gauss-Seidel type proceedure is oibtainied bs all-
5 1 6ternatinur the use of" Eq. 12.4 SOii wsith Eq. (2.4. 1 )

Nite that the algoirithms given iive~ ny Eqs. (2.4 th iand
Figure 2.4.5 Sample Cell Configuration. (2 4.81 i can both be impleimented by sweeping sequcnliall%
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through e.ach mtesh cell and simpls, using the latest values tit 00 0
IAw) for all ine off-diagonal terms which have hecitaUketn 000

it) the right hand side. This can e represented as 000

IDIIAwF- =OJft-- "Awj- 2 4S2) 0 00 0

000 0
suhiteration level 1+l hor the cells which hare hei prcr 0 000 A:

ously updated and it level I for the cells which renmatin to, 0 0 0
he updated. The distinction between algorithmts 1 24 80) attd 0 00 0
2.4.X It comnesiabout fromt the sequential solution tot the equa- 000

tions tn opposite directions i trrward aitd hackward. respectI 0 00
tirels t through the elemietts.L0 0

'There are two disadvantage,, of the schette a, descrthed abose Figure 2.4.8 Form of Matrtx tot Cells tn Fig 2.4.1
The first disadvanitagie is that the process t, ttot NeciOrr/ahle,

stnce the solution ilt each elemtenh must he obraitted htore ['he Jacobhi. (;aU's SCtdel, And ss iirttetri (;aUIts-SetI
proeediing to the necst mle I he second disadvaitage of this schemes described abore have all been used tri li actice h - tr-
scheme is. that the degree itt implicitness is set hy, the orderi itius researchers. Appikcations'" tot a ctrcular arc tn a chanitet
oit the elemrents. This can he Illustrated hv nottng that although ttdtcated that the s nintictrtc (jau-Seidel scheime exhibited
the off-dtagmnal terms mnaN he updated and lititmediatelx utsed the fastest cinrergence title oft these three schemte, [1he v tit-
on the right-hand stde. the sOl ItlOD ot the next unkniown tiax netri c Gauss- Setiel algorithm oft Bati na." appl~ied It) t rantsoi c
or may tot depend tn pres tously determitned quantities. For tlow os C r at rtoikI. e iith~nced the grotupintg Ofi the UIItKiOVis. i

examtple, as can he seen from Fig. 2-4.5, rs hen soiir tiftir alontg tile diagonal h'. stirtnitiglett a-corditig to the x ti r-
unkinown numbher 2 using E4 i2.4.StP. the updated alue itt ditite directiotn 'riAits Otf ltine-relasatiiin schemecs can he
the solution at elettetit I is not used so the siilutionit ii itir eiiistructed b% Orderting the elements into eirritips it ippri70\1i

2 rernalis a Jaciibi Icp maie s coiiiIiicar el,'tinei i nd then upldatting I,, elcetents hs
giroutp, Nite that iii the particular case ahose coirepoiditig

Note that tior structured giids in which the cells ire ordered to the rise oit tirst-rirder tipri id itripltitn ditterencitri. the re-
in i natural manner iceg.. left to right and top to hottoin t. lixitioti I applied it stiltc the linear \, tcin tit euluato ,it iaid
tlic latest itnforttation will he used intmediately tuir calcit at Ii t sacneute n atcrlrsscpto itc ii edh
tifi the next Unknown. Thlis is hecause the ordering iif tlte mtatintatined. such as ss ittintric (;ju.ss-Secel;c. Iliurree -I lie *
cells produces a handed nmatrix with temis groupled alontg reatoniaplddrctsttheiilnetitpcieqiiir
the diagonal. Trhe tict that the latest as ailahle data is not vv here the residual equation is ev aluated it cer rstierattiotn ttent
tiecessarIlV used fur updating itnfotrmtatioin in untstruictutred grids the stahilits it the schemte is coupled ito the dis"c II/ atil tOf
is stnctly due ito the rantdomn ordering oft the cells. hunt the ittiplicit oiperator and the spaial discretiiatioe itI

Ali improvemntin he obhtainted hx si inpl renuttiterintg thle tha caaVnNuantblt'v -t~,iti:lta

cells in such a way ats to group termts along, the Iigoa f secontd -order spatial di (ferenci rig it the resiu l i rquires air

the mtatrix In this manner, the soilutioin ilt each point will atrniit(tusSdescmentnerireitlstb
tend iii ensure that prer tousl'. updated iniformtation fruin the
surrioundint cells is utsed as soion ats it is availahle. An ex- A tiutiherini itt the cells sr hich has itros d AiCelul til sector

anmple of this is shotwn in Fig. 2.4.1 where the samte sample ptrucessing comtnputers is sho'%n it ii Fig, 2 ).[ie orderinge is

set ittcells used in Fig. 214.i is simtply renunthered frtm bitt- obate ygitpn el i htiitiells ill I gi \cit

toim tit top and left ito right. The resului ttg fosrmn if the matrix. grotup share a cotmnt ede [lie resitn~ mt iuatin louitit

shown itt Fit,. 24.8. sho ws thai the grouping aloing the di- [oir 1A) is gisen itt Fig. 2.4,10,. NiIce that fur the current

agottal is greatly ittiprNscr. Tie orderingi of the cells, in this example. onix tvo gntuips are !turned. the tirst groupl Cunitists

wax results, tn at faster convergence of the linear s) stem than I of !he cells ittitibred 1 -6.and the sccond grou It ci utaitis cells

randiom ordering if cells. Fo r general tttstnte:tured-grtd endt 7-12. Itt practice. t irr gtro ups aire getterilk tlx ticr cut lor tvv

ficieni miatrices. the bandwidth reduectiotn algotrithtms discussed dimriensiuonal calcitlat uns anid Itire prittps hit three ditnierrsiinl

previously, are effective In clrtstering uitknown,, alittg the i- calculation,.

agonal . Again.- it shotuld he tioted that several variationis itt

this scheme can he 'shiatned hxv using variouis coimhinatiitns of
Eqs. 12.4.80)l and (2.4.911. An inmortant disadvantage of this
scheme, however, is that it still suffers from the fact that the
cotntrihution of the tiff-diagonal terms to the right-hand side oft
Eq. (2.4.821 is; not vectori/ahle.

____ 2 8 5

4 8 12

23 1 7 3 6.

1 5 9
Figure 2.4.9 Sample Cells.

Figure 2.4.7 Sample Cells.
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Ai example of the effectiveness of local time stepping is

2.5 CONVERGENCE A , R ATION Nhown in Fig 2.5.1, where an explicit method is used to com-
pute the flow around an NA('A (X0t12 airfoil at a Mach number

The acceleration of the convergence rate of" numerical compu- of 1).8 and an angle of attack of 1.25'. The effect of local time 0
tations is very important when conducting grid convergence stepping is dramatic. By using local time stepping. the resid-

studies to verify the accuracy of numerical solutions. An in- ual is reduced l1) orders of magnitude in approximately 31(XX)

tegral part of this process is the uniform retinement of the iterations: without local time stepping. little progress towards

grid in each direction until little or no variation in the solu- convergence i, achieved The effect is even mooe dramatic on

lion is observed with increased grid size. Unfortunately. with- the lift coefticient, where, with local time stepping. the tinal

out convergence acceleration, the convergence rate of iterative lift value is obtained in about 5(X) iterations. The solution ob-

methods severely degrades as the grid spacing is decreased tamed without local time stepping has failed to reach a steady

through the grid refinement process. To mitigite the penalties tate after 31X) iterations. This technique is very simple and

associated with the use of tine grids, several methods of con- easily implemented and offers a clear advantage toward accel-

sergence acceleration hae been introduced and are discussed eration of the solution to a steady state.

below. These methods are especially important in three di-
mensions, where an eight-fold increase in the number of grid 2.5.2 Residual Smoothing
points occurs when the points are doubled in all three coor- 0
dinate directions. To accelerate the consergenc c 

of explicit algoriihis. one
methodology that has been extremely effectise is residual
smoothing.' For this method, the steady-state residual calcu-

2.5.1 Local Time Stepping lated at each step is moditied in such a way that the support
of I' , is enhanced, which increases the impliciness

One of the simplest and most commonly used methods of' i. In practice, this technique has been par-
convergence acceleration is the use of local time stepping.'. - for central-differencing schemes when used
When a steady-state solution is of interest, a spatially varying in ct a. i with iutistage tine steppingaihough recent
step sitze can be used for each cell independent of the other improve is for upwind discreti/ations have been reported.'
cell.s. The time step is generally based on a combination of For this reason. th general procedure is outlined below tar a
the flow variables in each cell as well as the cell site. four-stage Runge-Kulta type of algorithm, applied to a one-

Perhaps the most commonly used method of local time step- dimensional model probletm with central differencitg. The ef-

ping is to base the time step in each cell on a local CFL feet of residual smooilt ..g on the stability is examined through •

number. Examples of this can be found in many references, the application of a h. analysis.

as can be seen in the citations of the code summaries in chapter Consider the model probler diven by

3. in which the time step in each cell is determined by

ii + it, + 2A.r
<  

.... -
- .

At,, = ( -LAt, [A = , (2.5.1)

A four-stage Runge-Kutta type method is giv-rt )%
where At., i is the time step required for a CFI of
unity and may be determined with a variety of delinitions for =.

multidimensional problems. One form that is commonly used I - All'tI
is given by """ = "I"" - A

- t
R (2f.

2 " .i = . - .'At I'T'

Iv. nl + ,,),/. A 2.5.2) = ,,,

where the integral is evaluated over the surface of each control where R, = is,ui " +A.' ,,. a' denotes the discretized

olume. steady-state residual formed from data at stage level i. Note

Residual Lift
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Figure 2.5.1 Effect of local time stepping on convergence rate.
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that in the present form this scheme is one in which the the value of' A is increased to 3. then the scheme becomes
dissipative term is evaluated at each stage. It is possible (and unstable near = r/2. as shown in Fig. 2.5.3.
more economical) to use schemes in which the dissipation is
only evaluated periodically, for example on the first and third 1.5 . •

stages.' However, for illustrative purposes. the dissipation
will be evaluated on each stage.

To determine the stability of the current .cheme, a Fourier
mode is substituted for t: Ig

, = , (2.5.5) 0.5

The Fourier symbol for .ttR'
1 

is now written as 0.0

0 1 2 3 4

= -U'', Z 12.5.6)

Figure 2.5.3 Amplification factor for standard
where four-stage scheme; \ = 3.0. (it = 1/4,

Z in + 4p ( I (s ) (2.5.7) = 1/3, o- 1/2, and p = 1/32.

To obtain a stable algonthm for higher values of \. the support
and A = .t/A.r is the Courant number. Substitution of Eqs. of the scheme may be increased by replacing the residuals
(2.5.5). (2.5.6). and (2.5.7) into Eq. (2.5.4) yields an equation (-. . R, . ., -,-.) at each point with an average of the 0
for the amplification factor residuals on either side:

1,=d1,-. + (-2,)R,+ J?,, = (1 +,,,)M, (2.5.9)
1= + Z +, 1Z" +,._,,1:1Z' i, 3.,,Z

'  (2.5.8)

With this modification to the residual, the Fourier symbol Z

which indicates the extent to which errors decrease (or grow) is now given by *
from one iteration to the next. Stability of the scheme requires
that I. I < I for all Z. Z = -Alisiu + 4/,e( - 'os)2[1 - 2,(1 - cos)J

(2.5.10 )

By cycling through values of I) < I <-r. with Eq. (2.5.7) With the addition of the second factor, the value of \ may

used in Eq. (2.5.8), the amplification factor can be obtained be increased. An example is shown in Fig. 2.5.4 for the

for a fixed value of A and a dissipation coefficient i
t
. Figure four-stage scheme described above, but A = 3 is used where

2.5.2 shows the amplification factor as a function of with a the residual is replaced by the averaging procedure in Eq. 0
"standard" set of coefficients given by a t = 1/4, a 2 = 1/3, (2.5.9) with c = 1/4. As shown in the figure. the scheme is

-, = 1/2, and p = 1/32. As shown in the figure. the now stabilized for .\ = 3,, whereas it was previously unstable.
Experimentation has shown that for r = 1/4 an increase of
approximately 50 perecit in the value of A can be obtained.

1.0 1 0

0.8

0.9

IgI 0.6 -1IgI
0.4 

0.8

0.2 0.7 I

0 1 2 4 0 1 2 3 4

Figure 2.5.2 Amplification factor for standard Figure 2.5.4 Amplification factor for standard four-stage
four-stage scheme; A = 2.8, , = 1/4, scheme with explicit residual smoothing; A = 3.0,

0, = 1/3, o1 = 1/2, and I, = 1/32. = 1/4, a = 1/4, a 2 = 1/3, n:, = 1/2, and it = 1/32.

A disadvantage of the above procedure can be illustrated for
algorithm with these parameters is indeed stable. If. however, f = 1/4. For this value of (. if the residuals exhibit an



odd-even type of behavior, the value of - computed with Another technique for implementing residual smoothing in
Eq. )(..9) will be zero, so that no update of the dependent multidimensions is to solve the system of equations with a
variables at each grid point would occur regardless of the value point Jacobi or Gauss-Seidel type of procedure. This tech-
of R. at that point. To overcome this difficulty and to allow nique has been predominantly used for unstructured grid algo- 0
arbitrary values of t, an average residual may be calculated rithms in which a spatial factorization is not easily achieved; 0
from an implicit relation given by however, the implementation of residual smiothing into struc-

tured grid codes has also been achieved in this manner -ind

- i + (1 + 2, ), + #R, = (1 - M,, )R, = R, has yielded advantageous convergence properties over the fac-

(2.5.11) tored form.'
In this manner, the support of the scheme can be made to ex-
tend over the entire grid thus relaxing the time step limitation. As previously mentioned. the technique of irmplicit residual

The Fourier symbol of the resulting scheme is given by smoothing has been ex,.nded to include upwind discretiza-
tions for the implicit smoothing operator.4" For the one-

-A fm sin , + 4j(1 - coto, 5 dimensional model problem, the previously central-differenced
Z = [1 + 2(1 - (2.5.12) smoothing operator given by Eq, 125.11) is replaced by an

upwind operator

The denominator is greater than I for all values of > 0 and -

reduces the magnitude of Z so that larger time steps can be R, + I+ )(2.5.15)

taken. Reference 5 shows that in the absence of dissipation. With this modification, a significant increase in the allowable
stability is maintained for any value of.\ if t is chosen so that CFL number is achieved over the central-difterence formula-

tion without destroying desirable smoothing properties of the

> - (25.13) high-frequency error components While the implementation
- 4 of this technique is not straightforward for multidimensional

problems because of omnidirectional wave propagation, re-

where V is the limit for the original scheme without residual stilts in Refs. 4. 7. and 8 for two-dimensional Euler computa-

averaging. tions indicate significant improvements over residual smooth-
ing with pure central differencing.

The success of this technique is demonstrated in Fig. 2.5.5.
where the value of A" is assumed to be 2.8. which is the 2.5.3 Vector Sequence Extrapolation
stability limit of the standard four-stage scheme without added
dissipation 1/' = I)). For example, to achieve stability for *
A = 7, Eq. (2.5.13) indicates that a value of ( of 11 is Sequence Acceleration
appropriate. As shown in the figure, the amplifcation factor
remains below unity for all values of I) < T. Vector-sequence extrapolation is a well-known technique for

accelerating the convergence rate of sequences. An example
*.U of this is the well-known Aitken-,-2 method, in which a new

sequence is derived from the original sequence, which hope-
fully converges much faster than the original one." Although 0

0.8 many variants of this technique and many related algorithms
exist, concentration below focuses on one particular method,

1I 0.6 commonly referred to as Wynn's c algorithm. First, a brief
discussion of the essential ingredients of vector-sequence ex-
trapolation methods is presented, followed by the extension of

0.4 these algorithms to the Euler equations as well as examples.

For the Aitken-," method, the sequence is derived by assuming
0.2 that the original members of the sequence s,, can be adequately

0 1 2 3 4 described as

= + ,1 (2.5.16)

Figure 2.5.5 Amplification factor for standard four-stage where ., is the limiting valu,; of the sequence and and p are •
scheme with implicit residual smoothing; A = 7, constants. By evaluating Eq. (2.5.16) at ., n + 1. and ? + 2,

1= l, = 1/4, ri2 1/3, o- = 1/2, and It = 1/32. the limiting value of the sequence may he obtained from the
solution of the set of simultaneous equations for s, 5. and p. If

To implement Eq. (2.5.11) for multidimensional problems, two the original sequence is accurately described by Eq. 12.5.16),
prominent methodologies can be used. For structured grids then the exact answer will e obtained. If. on the other hand,
in two dimensions, an approximate factorization procedure is F.q. (2.5.16) does not provide a precise description of s,,, then
often used. in which the implicit operator is spatially split into application of the procedure will be only approximate. but nay
a product of two more easily invertible ones. '  still provide a better estimate for , than is currently available.

This estimate for the value of s is given by
(1 - ',., - ,,A,,,)R, (1 - 4',r)) I - tb',,,)lR, = ,

(2.5.14) .'"' - <
This equation is solved in two steps: both steps involve the "" =, (2.5.17)
solution of a tridiagonal system of equations. + 2 ' 

.,,-•

0 0t
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where the superscnpt (0) is used to denote terms in the original In Ref. I1, Wynn describes an algorithm for com)uting

sequence. This new sequence may now be used to define the higher order extrapolations that is more efficient than the
another sequence given by process described abosc. In this method, a table of values is

constructed from the original sequence with the relationship

M' " ' (2.5.181

which may supply a further improvement !o the limiting value
of the sequence. This procedure can be applied repeatedly. where the valtl% oft ' -- aassCiiucd to he arranged in a
increasing the accuracy each time over the previous estimate. format shown in Fig. 2.5.7.

An example of this procedure, borrowed from Ref. 9, is given
below. The original sequence is taken to be the first nine
terms in the series given by ,

k2.5.19) 
I,

which is the Taylor series expansion for In ( 1 + .r) evaluated

at .x = 1.

In the .urrent exai..p1,:, the .uLion obtained to - ven-digil
accuracy (In (2) = (.6931472) at the end of the extrapolation '_

proceiure with only the tirst nine partial sums. Note that
to obtain similar accuracy from simply summing the series

directly would require approximately 10 million terms.' The
acceleration procedure is clearly very useful in this case.

A shortcoming of the above technique lie, in the underlying as-
sumption that the sequence behaves similarly to that described
by Eq. (2.5.16). For this reason, the above extrapolation pro- •

cedure is most effective on geometric series and becomes less
effective as the series deviates from this behavior. To over- Figure 2.5.7 Format for c algorithm.
come this shortcoming. Shanks"' derived other extrapolations
based on the assumption that the sequence may be described

in the more general form The initial conditions are taken to he

= , + ';, + "'" + '' (2.5.20) o. 1. 2
(2.5.22)

which is referred to as the .V' h order Shank's transformation. 5,,.. if= I). 1...
Equation (2.5.20) is evaluated for five values of P) resulting
in a set of equations that can be used to solve for s in where s,,, represents the terms of the original sequence. Note
much the same manner as to obtain Eq. (2.5.17). A!though that the odd numbered columns do not represent actual ap-
this higher order transformation may provide a more accurate proximations to the terms in the sequence, but are intermediate

representation of a general sequence, the implementation in calculations necessary for the calculation of the even columns 0
this manner can e inefficient for higher order transforms. ,',,, -. 1 .... ).

.. ... . ' ) . ,.

1.0 0.7 0.6932773 0.6931489 1.6931472

2 01.5 0.6904762 11.6931058 11.6931467 0

3 0.8333333 0.6944444 0.6931633 0.6931474

4 0.5833333 0.6924242 0)6931399

5 0. 7833333 1.6935897 0.6931508

6 0.6166667 0.6928571

7 0.7595238 0.6933473

8 0.6345238

9 0.7456349

Figure 2.5.6 Illustration of Aitken- 2 method. 0
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In this procedure, each vaiue of ,. shown in Fig. 2.5.8 is
calculated froms Eq. (2.5.21).

In Figs. 2.5.9 and 2 '.10, examples are presented from Rel.
12 in which the above procedure is applied to the computation

of a NACA 0012 airfoil at transonic conditions. For the
.... .,,,) computation, the explicit multigrid. multistage time-stepping
, scheme of Jameson is used. and only five terms are included

,+, in the initial sequence.

4
Figure 2.5.8 Module used for the computation of t 1.-V

2-

In P f. 12. a relation is given that allows the computation
of the even columns without direct computation of the xid

columns. This relationship is given by -2
.0

g =- + . C (-() * (2.5.23) Il:

(S - C) + (.V - C) - i.

where

(2.5.24) 
-10

-12 I I
Note that 0 is zero for the first column and unity for subsequent 0 100 200 300 400 500

colunns the continuous use of 0 = -1 corresponds to repeated Iterations

first-order transformations. Although not shown, the use of Figure 2.5.9 Effect of vector-sequence
the ( algorithm as described abovs. to the series given in Eq. acceleration applied after 250 time steps for
(2.5.19) yields results comparable to those shown in Fig. 2.5.6. NACA 0012 airfoil; .1, = WS, and = 1,25'.

As previously mentioned. the effectiveness of the acceleration
technique is strongly dependent on the assumption that the se-
quence behaves in the manner given by Eq. (2.5.20). Because 4

only .X terms are included. only eigenvectors associated with 2
the first N' dominant eigenvectors of the iteration scheme may
he effectively eliminated. Therefore, an algorithm must be 0
used that acts as a preconditioner, so that most of the cigen-
values of the iteration scheme are forced to be approximately 3 -2

equal. In this way. the number of terms contained in the orig- 8 -
inal sequence may be kept as low as possible.

0

Application for the Euler Equations .8_

To apply the above technique to systems of equations such -10-

as those that arise in Euler solvers, the r algorithm has been
generalized for systems by Hafez in Ref. 12. In this reference. -12 II 4 0

0 100 200 300 400 500
a form similar to that in Eq. (2.5.23) is given by IterationS

,+ - (I - H (2 -. Figure 2.5.10 Effect of vector-sequence acceleration
, , - _ _ - (2.5.25)applied after 100, 200, and 300 time steps

for NACA 0012 airfoil; .1- = 0.8 and ,k = 1.250 .

where

Shown in Fig. 2.5.9 is the convergence history obtained by
r/1( __, ______ 2 9 (2.5.26) using the ( algorithm after 250 time steps. As seen. the

Lf . residual drops dramatically at this point, which indicates the
effectiveness of the acceleration procedure. Note. however.

- ithat at the point the acceleration is applied, the residual has
II Hbeen reduced by about 6 orders of magnitude. which should

. 3 _ (ell 2.5.27) he more than sufficient for obtaining global quantities such as

., = " - (I lift and drag. An attempt to apply the procedure earlier in
II the iteration history is shown in Fig. 2.5.10. As seen, the

and the inverse of a vector is defined by effectiveness of the current algorithm, when applied after 1(1)
iterations, is minimal. After 2Q) iterations, however, a sudden

-= (2.5.28) drop in the residual is observed, and a further drop is seen at
300 iterations, where the algorithm is applied once again.
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Although the c algorithm can be very effective at achieving be solved iteratively with Newton iteration. This approach,
dramatic reductions in the residuals, systematic knowledge of however, may b prohibhivel expensive it the number of un-
when to apply the algorithm and how often is not clear. In knowns is large which typicaly occurs in multidimensional
the results shown above, for example. although the accelera- problems. Many other iterative schemes have. therelore. been
lion is impressive, at the point the method is applied and is devised that require significantly lewer operations. Alter a few
effective, global quantities such as lift and drag are likely to iterations, however, these methods gencrallN exhibit a slow
be fully converged. Further research is required to gain more convergence rate, which reduces the residuals by a %cry small
knowledge in this area. Furthermore, the implementation of amount each tiic.' The reason for the slow asniptotic con-
this technique of convergence acceleration requires storage of vergence rate is the inadequate damnping of the Irw-frequeic)
twice the number of terms included in the initial sequence; erriors
for the exampvnle gien ahove in which tive terms in the initial
sequence are used, the solution wouid need to be stored 1) The multigrid method efticientily damps the low,-frequency

times. For very large problems this requirement could become errors -v usn, a sequence ol gilds (;..(; 6. (,v. here

prohibitive. (\ denotes the finest grid, rim which successis el. coarser
grids (;.. , e. . .- ! , i ire cr-itcd. lIi a siicturcd-grrd
full-coarsening algi~th.,e coarser grids are 1'onisrucLed h

2.5.4 Nultigrid Acceleration deleting every other grid line in each coordinatle directiin. In

practice, and partieulirly for unstructured grids. the coarser
Introduction to Multigrid grids need not be constructed ais a subset of the finest grid,

li.e.. they can he created indepcndently of the linest ,-rid). In

One of the most successful and widely used methodJs of con- this context, the high-frequency error components oni I viscni

vergence acceleration is multigrid. The greatest benefit of this grid are those that cannot be resolscd tin the next coarser mesh

method is that the convergence rate (i.e., the spectral radius because of the increased grid spacing. It' an iteraltse method

that measures the ratio of errors at successive time steps) re- is chosen that quickly damips the high-frequency errors on a

mains constant, independent of the mesh spacing. In this way. given grid, then after a few iterations. the remaining errors •
solutions can be obtained in d(V) operations (i.e., the compu- will be those associated with the smoother, low-frequency

tational cost saries linearly with the total number of grid points error compotents. Because these components appear as higher

A' ). Without convergence acceleration, the computational cost frequencies on coarser meshes, a sequence of coarser grids can

is considerably higher because of the penalty associated with he effectively used to accelerate the convergence rate on the

a deterioration of the convergence rate as the mesh spacing finest grid. 'Therefore, the how-frequency errors on the line

decreases. Although most of the existing theory on multigrid grid that are usually, responsible 'or slow% consergence can he

methods pertains specifically to elliptic equations. a number of efficiently damped un the coarser gnds. These computations
references (for example, 3. 13, 14. 15. and 16) have shown that are relatively inexpensive so the total oserhead of the method

the multigrid method can greatly accelerate the convergence is not excessisely high. For example, the work required to

rate of numerical schemes used to solve the Euler equations. solve the equations on all the grids iu relation io that required
to solve on just the linest grid can he estimatel by

A brief description of the elements of multigrid is given I I I I
below. The method is first described for the solution of a I + - + - + - + . (2.5.31u
general nonlinear equation. The implementation of the full- for two dimensions and

approximation scheme uFASt for the Euler equations is then I I I
discussed. 1+ + -+ + " (2.5.32)

6s 1 r12 + 7
for three-dimensional calculations. Note that the abose esti-

Description of Muigrid mates are for structured grids from which coarser grids are
formed by removing ever' other mesh line in all directions.

The multigrid method most widely used for accelerating the Also, these estimates only account for the number of unknowns
convergence of iterative methods to solve the Euler equations on the various grids and do not consider the extra residual corm-
is the full-approximation scheme (FAS) that appears in many putations necessary to compute the relative truncation error.
references and is summarized below First, consider
the solution of a general nonlinear system (rf equations To use the coarser grids an equation must be obtained on the

line mesh th:tt can be accurately represented by the coarser

L f () = S (2.5.29) mesh. Neither the solution nor the high-Irequency error coin-
ponents on the line grid can generally be resolsed on a coarser

where L is a general nonlinear operator, Q is the solution grid. The high-frequcncy errors. horwever, can be sufliciently

vector of unknowns, and S represents a forcing function, damped on a fine grid by using iterative schemes speciti-
cally designed to damp high-frequency errors in the solution.

Equation (2.5.29) is solved numerically by dividing the domain so that the remaining errors will be composed of' only lowk-
into discrete cells that yield a system of equations to be solved frequency components that can be adequately represented on
simultaneously at each point as coarser meshes. Because only the low-frequency errors may 0

be represented well on coarser meshes. it is necessary to obtain

L(Q\) = S (2.5.31) an equation (in the line mesh in terms of the errors.

To solve iterativ, Eq. (2.5.30) is solved approximately elt
where Qv is the exact solution to the discretized system and

each step asL v is the discrete analog of the operator L. If initial condi-

tions are close enough to the final solution. Eq. 12.5.30) could L \(q) . v + v (12.5.33) •



where qpv is the most current approximation to Qs and Rv exactly, by approximating by several iteations. or h introduc-
is the residual ti'at will be zero only when q'v = Qv' Hence. ing more coiirse-gnd levels, On all coarse grids. one or more
the exact discrete solution is obtained. Equation 2.5.33 is FAS cycles (smoothing followed by coarse-grid correction) are
subtracted from Eq, (2.5.30) to yield an equation on the tinest completed. In this manner, each of the coarse meshes is used
grid in terms of the residual: to obtain a correction for the solution on the next finest mesh.

Because only the equations for smooth error components may
L(QN.) - L'qi'.) = -- Rv (.5.34) he represented well on coarser grids. only the corrections tand

not the full A)lution) must he passed from a coarse grid to the
next finest grid.'"

With the assumption that the high-frequency errors have been By using Eq. 12.5.33), note that Eq. 2.5.35) can be recast as
previously smoothed, the tine-grid residual Eq. (2.5.34) can O
be adequately approximated on a coarser mesh as L-i = S\ + r, = (25,41

L v-, (,,)= i, (l'-',II .) (2.5.35) where
\ -= "42.5.41)

where I '- i and i.v -' are restriction operators for transferring
both the dependent variables and the residual from the tine gnd -, L, (IV '\ ) - I: l\ .) (2.5.42)
to the coarse grid, respectively. Here, IV. 1\" serves as an
initial approximation to the solution on the coarse mesh: Q v, - i Here. ,-- is the relative truncation error ior defect correc-
is the exact solution of the :,,are-grid problem and is the sum tion I between the grids, so that the solution on the coarse grid
of the initial approximation and a correction.'o Because the is driven by the tine grid. and the defect correction accounts
full solution is computed and stored on each grid level las for the difference in the truncation error between the coarse
opposed to only the corrections, which is all that is required and tine grids." The analogous equation for grid (;, . is
for a linear equation). this process is referred to as the FAS. given by 0

On a sufficiently coarse grid. Eq. (2.5.35) can he solved L 2 . 2 V + -\ 25.43)
exactly with a variety of numerical techniques to obtain Q V
from which the coarse-grid correction can be formed as

N = I 7S= S\ 1 42.5.441
1\- i I.~ 'A." (2.5.36) and • *

This can then be transferred to the fine grid and used as a IV 2 v '
correction to q,\. which is replaced by its previous Value plus -vr '- L V- (i' 7"l ') - \ " V
the prolongated correction (2.5.45)

Note that the relative truncation error on the X - 2 grid is

,',, - , + I \ - (2.5.37) the sum of the relative truncation error between grids V and
.Y - 1, as well as Y - I and X -'2. Thus, the equations

This process yields a simple FAS two-level algorithm where solved on the coarser meshes (Eqs. (2.5.4) and (2.5.43)). bor
the operations on the coarse grid (Eqs. 2.5.35)-(2.5.37) used example. appear exactly as the original equation. except that a
to update the fine-grid solution are termed the coarse-grid forcing function appears on the coarser meshes. The result is
correction. Normally, the exact solution of Eq. (2.5.35) that the coarse meshes :an he updated with the same scheme
can be expensive to obtain. Also, because the correction that is used on the tine mesh. with only a slight modification
on the coarse grid serves only as an approximation to the to the right-hand side.
fine-grid correction, the exact solution of Eq. (2.5.35) is 0
not required. Therefore, instead of sol. ing Eq. (2.5.35) Algorithm for Euler Equations
to completion, several iterations can be carried out to get
a reasonable approximation of Q v- . For an approximate For the steady Euler equations that are written in generalized
solution 1'-, of Eq. (2.5.35), a corresponding coarse-grid coordinates, Eq. (2.5.30) can he written as
residual Rv- can be defined from

S'(-R ,;) + Lv.- (Ii q N = F + ,, + H t (25.46) •

(2.5.38) In the multigrid solution process, a forcing function arises ( n
whose solution differs from the solution of Eq. (2.5.35) the coarse grids from restricting the residual equation on a tine
only by the residual term RN,., which will be zero when mesh to the coarser mesh. The resulting equation. to be solved

',- i_, = Qv- . If the errors are smooth, then subtraction of on any mesh G,. can be written as
Eq. (2.5.38) from Eq. (2.5.35) yields an equation that can
be well represented on a still coarser mesh G\._a. If this L,(Q,) =, (2.5.47)
equation is written on G;- _, then

where r, is equal to 0 on the finest mesh and is the relative
LV-,,(Qv-a) = F 'f(-R.v-i) + Lv-,-2 (1V- I ) truncation error on each of the coarser grids. The solution

(2.5.39) of Eq. (2.5.47) is generally updated by introducing a time
where Eq. (2.5.38) is used to determine RN -. The solution derivative of the dependent variables to the left-hand side so
may be obtained in one of three ways: by solving Eq. (2.5.39) that the solution can be advanced in time with methods such
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4s Runge-Kutta. appluaximatc factorization. or relaxition mneth- which is dpicted in F'g 2.5 11. AMother .sCting strategy tit

Wds previously described. For implicit methods, the resulting interest, which -. show ii in Fig. 2 5,12. is termed a W-cscle
scheme, wnttefl on mesh Gis given by aind results when iwo [AS ayle re used tin cach olt the

coarser mteshes. Results will Ise shown in the tiexi %ectiiin tiir
N~~ AtL, q - --..!tR. 2.5.4h) both tvpes of c~cle, Phe corrciiiin, on coarse meshes ire0

prolinetied to the nex i nest miesh with tilhnear inter-iolation
wtgrr A* is the implicit operaitor iii the considered scheme arid and not additionial iteration steps between nieshes. When a
Loj ( ogi the right-hand side result,. from the lineariuition tit W-csclc is used. howes er. note that in iteration is tarried out

L(Q. ) ronm the baclward Euler time integration. Note. as at the beginning ot cachi lAS cle~ correvibon iti smnooih the
mentioned ,reiiously. that esen on the coarse meshes, where high Irequencies

-is nonieros. Eq. (2 5.48) intnains ibe same fi'rm as the
equation on toe tine mesh. 

...

Several strategines exist for deciding when to switch fromt otie

grid level to another; these generally fall under the categories 1
of' tixed- or adaptive-cycle algorithms. [he strategv most k--.F.c),,

commonly used is a tixe d-c,,clc strategy. in which ec.h' global 0.F~ 0,"

cycle consists ot a set number ol1 FAS cycles on eacth oif the
coarser grids. Recall that one FAS cycle on any grid consists s

of a stmoothing step, toiluied hN a coarse-goid correction A Figure 2 5 11 Multigrid V-cycle.
predeterinined number ot iterations ire performed on each grid
level to smototh the errors

The consersed variables are transferred to successivtely coarser
grids each time by the nile QQK

1 ~ ~ 4"U11"1 01 0 0

\?here 1:I is a olume-eightd restriction operator that 0, 0 0, 0

transfers values on the line grid ito the coarser grid atnd is 0 1 0
defined bs Figure 2.5.12 Multigrid W-cycle. *

V2 1-. 5510) TIr further cl irik the imultigrid pricedure. the iiseraill process
N Isummnari/ed as follows lor iii etenplary case, \%here three

,rid levels are used in aV-cycle
The suttimations are taken over all the tine-grid cells that
imake tip the coarse-grid cell. Restriction of' the depenident 1. Start oti the timNst grid and smiooth the errors by completing
%armahles in this manner conserves the total mass, mnomentum. tine iterationi itt Eq. t2 5481 with 1),

and energy of the line grid on the coarser grids.. In general, the
relative tiuincation error is calctulated on the coarse grid as 2. Calculate the residual on the tine grid Irom Eq.2...

where L :('\ )is given on the right-hand side of E-q. (2.5 40)

F -L, (I j) i ~R (1.5-51) and Sv t

wher 1 i th3. Restrict the dependent variables ito the tirst coarse grid
whr ste restriction operator for the residual, generally -,'% y sn E.( 54t

detined asb 
sn q 254)

B 25521 4. Restrict the residual from the tinuest grid it) G% with

-= II .5.52) Eq. (2.5.521 and calculate the relative truncation erriir with
Eq. (2.5.51),

where, aigain. the sumnmation is over the cells on the line grid
that make up the coarse-grid cell. By summing the residuals. 5. Calculate the right-haind side of Eq. 12.5.48) and update
the surface integral of the fluxes that cross the cell boundaries the solution (in mesh G v - . rrhis sntoofhs, the er's oin this
on the coarse grid is the same as wotuld occur by integrating grid so that a coarser grid can he introiduced.)

around the tine-grid cells that make up the coarse grid. Several
time steps can be- conducted with an iterative scheme to get an 6. Calculate the residual (in this mesh with Eq. (2.5.39). Note

approximatiiin to the steady solution (in G, - i. with the right- that this can he written as

hand side modified toi include the relative truncation error. If
only one cliarse grid is used to correct the finest grid, the result L\.F v \ F -, F (1.531,

is the simple FAS twio-level cycle. On the other hand, if more0
grid levels are introduced %oi that one or more FAS cycles Because Tc.Fhas been previiiusly calculated, the residual is
can he recursively carried out (in each subsequent coarse-grid easily calculated by siply calculating L % ~I trrin the
level ito hetter approximate Q,'. F. then a multilevel algorithm most current values iif the dependent sariables oin the mesh
results and then subtracting -% F

When only one FAS cycle is carried olut for each of the coarser 7. Restrict the dependent variables (in I~ to 2; by
grids, the resulting global cycling strategy is termed a V-cycle. using Eq. (2.5.491.
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8. Restrict tht residual frorn V 12 5 531'to the A\ - grid Examnples of Multigrid Applications

9.~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~A ('klt-tergt-adsdeunp)4 ~ ~ i eaifle oi the appflicatioin of itultierid for fhe fLufer

9nd Calculate te riht-lhan sid tit -4 .54 adu at eqUAl~ ion is*howni belC for a thRce-diiiieiisioil rlat tllit
thie solution on this muesh Because this I-, the oarsest mesh flii'A coifiufaitn Oser the ONERA M6 wAing ( Comipansuirb
used tin INf present examnple. three ofrufiliims Of FL 25N ire miade 'Auhi exper imenta.l data it aI lRe~ olds iurnitit 1f 7
are used to get alt Approimationi toi Q\ Iuring each xtep. inillio.:' silhch correspounds to cik'mun for wshich %sciiu,
fhe- right-;iatid side is updatfed ti use the ino st current valuies ef fect,, are relafi ciy mitl IThe wsing ci nst sts of sv itiirical
ofi the dependetf ajrables it) L. % Notfe that aiLrfoil set ins usifli a Ilaifoirtii 'A at ill aliong the leading
'Aill nor :tlhlngC edge. ati aspect raio O ; Xi14 and .i taper rati tof it S46. Ai

144 (ilcuulate the correction oii this miesh ti gisc soulutioni us obtained onl u C(III mesh. wshich hais af C t
y~pe t

miesh toipoilogy aroiund the airfoiil profile and fin It typ Pc mesh
inl ihe 'panss ise direct iii

[lie elfecitseness of iiiuliiurid ac.. letat hut is decioniist rated fot
a c(1iiitufauii A tfranisoic coniditiions 'A ut a1 Mach numiber utl

41S4 and fi angule of ,attack of .3.444. figuresV 2 5 .; and 2.5,14
I I Ilas lie cotico ion hi (he text finest itesh wuith (Iiriner hvto the defc iof using iitwirid on the residlual and lift-0

inieriilat in an updae he olutiti toiou:ceficient hitoiries Ior a iiiesh 'Awith oter 2 41.(X pinits. A,
piestiotisl itiitiiined. fihe nitesh is a 19; 01,33 (AiI incli

4. I ' - - ~ thai has 49) points along hie airtOil and 'Aake I444 iiof ssliich are
iiii(lie airf-oilb I ; points aipproxtinatelv nitrnal to the airfoil.

aInd ;4 I J.it Iin the spaii'% Ise di reefiii 1 17 tit \% hich are on
me f-AS i lie us t,-, plariiirti I-our lfts calculationi. aii iplicit. uipws id

Note that steps S thiouigh I44 make LlOe t.WI i diffletcitu nethuid Is uIsed for smohitfing the errors. u ith

go"Fl A\ . In \% llch step, 6 tom I I conistituite a ciiarw-grid AuVcsi atid four grid levels iite line mud1C three cojjrscr
cires.tiuum -\f fhis poitiiif i a k -cscle usas etopliu'ed. aiiit her grids). thle itultiutrid method ix %ers ellecfite in acceleratinut
f-As ctcl: (steps S To If I Is cuuld be repeated it) update 1% ciinsecrice iif hiot h the residual aind hf( ci ie ficients The
futrher. mesidlual is reduced ti mtachine ,erii tin 44(g4 cscles. 'A hereas

he xi ugle -grid imethoid hais redutcd the resudu al onl hei A een
12 Calculaite the corrctlion unf the N -I mesh 'is I aind 2 Oirders iif mtagnituide. Thei benefit iif mnUltigrit! is *

especial4N proinounced in the lIft -coefficient histiory 'Ahere the
I % 125S 56)i lilt-coefficient \aluo is obtained t)i wuit hit 0.1 percent oif its

firral %alue in 44 cycles. This is af draiatic iitpriisetiet over

I c Pa,,, i-u orrettion to file finesf mesh and update the fhe sngle-grid result. vvute requited mitre fhant 41)4 cycle, fii

soiluitiion toi g~ie ciinverge to the sante lCu mOt accuracy for the lilt coefficienit.

S I. 1 12.5.57 l

I~~~~~~~~~ ~~~~ -tt -iuutitgieainu thE .44 i Mull igrid
4 Perloi ir Im ~ hi ieainwt F.t..8 f - - - - Single grid

simoiith the errior,. 0.7

ca -2

Smoothinig A4lgorithms 4

%Maim alguirithis can be- used to smooith the htg!--frequency -6

errors. Hoth eltlictt anid implicit algorithms have been used0

wsith success. Foir inultiurid to succeed, the high-frequency -
erriors must be- effectively dlamped. The effectiveness of af -10
scheite can be estimated by determiniing the smnoothing factor1
of the algoithm with at KUurier anals. The smoothing fac- -12
for is definted as the ma-. mum cigens alue ul tlie algorithm fur 0 200 400 600 800
frequencies greater than 7-.2 and less than 3,T/2. These fre- Cycles
qitencies represent those on a fine grid that are tiot resolvable
tin a coarser grid. Figure 2.5.13 Effect of multigrid on residual history for

ONERA M6 wing with M,- fl Us-I and 3.1W.
Examples of explicit algorithms that have bieen used success-
fully include the pioneering wsork done by Jameson:'
in which a multistage Runge-Ktttta scheme was used along
with iimplicif residual smooithing. In addition, the coeffi-
cients of the Runge-Kutta algorithm have been chosen so that
the damtping of the high- frequency errors is enhanced. Vani-
otis researchers who hase used implicit algorithms including
Anderson.t Mutlder.'' Youin.i and Spekreijse.$
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.35

.30 - p , = PJ+ (2.5.64)
IIp, ,-1

C 25 where b, is the projection of .(w": p.) in the direction of
.20 P-':
.15 b,, =R(w :P)*P., (2.5.65)
.15

.10
0 200 400 600 800 In practice, the above process is actually applied to a "precon-

Cycles ditioned" equation that has the same solution as the original
problem. hut has a more favorable distribution of eigenvalues.

Figure 2.5.14 Effect of multigrid on lift history for For the problem R(w) = 0. most computer codes generate
ONERA M6 wing with ..,, = 0.,s4 and o = 3.06'. an improved approximation to the current estimate of the so-

lution as
The multigrid procedure has also been implemented into
multiblock versions of several codes to handle complex w Mi(w) (2.5.66)geometries. ":'' =

'
q' In addition, several examples of the

gemeres 2 """" n dito, evrl xmpeso te where M represents some methodology such as line relax-application of multigrid to reduce the computational times re-
quired for time-accurate calculations can be found in Refs. ation, approximate factorization. or Runge-Kutta time step-

32. 33. 34, and 35. ping. Coiivergence is achieved when w"'" = w". Therefore,
the solution of Eq. (2.5.58) can be replaced by the equation

2.5.5 GMRES R'(w) = w - M(w) (2.5,67)

The generalized minimal residual (GMRES) v algorithm for for which GMRES is much more effective. Note, however,
solving a nonsymmetric linear sytem of equations has been that every evaluation of R'(w) involves an evaluation of M.
extended to nonlinear problems and applied to Euler calcula-
tions by Wigton et al." In this implementation, the equation An example of results with GMRES to accelerate the conver-

considered for solution is written as gence of an existing flow solver for a transonic calculation
is shown in Fig. 2.5.15. Here. GMRES is applied to a two-

R(w) = ) (2.5.58l dimensional central-differenced implicit Euler code denoted as
ARC2D.' As seen in the figure. the use of GMRES can re- •

where, for the Euler equations. R(w) = 0 represents the sult in a significant increase in the convergence rate. After 4()
steady-state residual. The differential of R(w) = 1) in a function calls (where one function call is one evaluation of Eq.
general direction p is denoted by Rt(w: p) and is given by (2.5.67)). the residual is reduced about 4 orders of magnitude

t(w: p) =lir R(w + 7,p) - R(w) (2.5.59) over that without GMRES.

100 ARC2D

Analogous to the procedure for linear systems, the GM RES 10 O R, ,.

algmithm first obtains k orthonormal search directions Avrg -a
p,. p ... pi and then updates the solution as residual 10

GMRES. ARM2

w . + a1)11) (2.5.60) 10-10.

where the i, are chosen to minimize 10-) 100 200 300 400 500

Function calls

= Riw + a, J Figure 2.5.15 Convergence acceleration with GMRES.
/=l 2 (2.5.61)fw" +-,2 (2.w5 ) 2.5.6 Preconditioning

ZR(w") + Zsijw": P,
Recent work has been undertaken to accelerate the conver-
gence rate of iterative schemes by essentially multiplying the
time derivative by a matrix that allows faster convergence. but

The orthogonal search directions are determined by a Gram- does not alter the steady state. The motivation for this is easily
Schmidt process: seen by examining the one-dimensional Euler equations

= fR(w " )  
(2.5.62) - + OF t 2.5.68)

For j = 1.2..... k - 1, After this equation is linearized and a similarity transformation

is used. this equation can be recast into the form

p., = R(wl:p,) - bp, (12.5.631 ')q + r = 0 (25.69)
t 5.1,2



where A is a diagonal matrx whose entries are the eigenvalues The simplicity of the matrix in Fq. (2.5.72) is attributable to

of the flux Jacobian the fact that the one-dimensional Euler equatons are easily
diagonalited. The complexity of devising a preconditioner

I) I)arises in multidimensions because the equations cannot be
A 0 +i (( (2.5.70) simultaneously diagonalized (with the exception of supersonic

tII i - i 0flow). However, recent work at preconditioning the equations

in multidimensions has been undertaken with some success.
The equations given by Eq. (2.5.69) are now uncoupled, so W.40.4 142 4

that each equation can be approximated separately. For ex-
ample. simple explicit time diftcrencing can be used in con- In the work in Ref. 42, the preconditioning matrix is devised
junction with first-order spatial accuracy, where each equation by lirst transforming the conservative dependent variables to
is differenced according to the sign of the eigenvalue. The those that yield a symmetric form for the linearized equations.
allowable time step for stability depends on the size of the The equations are then rotated into a coordinate system that
maximum eigenvalue as well as on the grid spacing through is aligned with the flow direction; the resulting equations are
the CFL number (defined as the product of !lie convective given by
speed and the time step divided by the grid spacing). If a CFL
is maintained less than unity for the simple explicit scheme 0U ;). + -l) 0 (."

considered, then the numerical characteristics completely en- at+ - B- -r=t (2.5.73)
close the physical ones. If all equations are advanced in time where
with the same -I,~t then the CFL number for the equation whose 1 ) 0l
convective speed (eigenvalue) is smallest may not be advanced A 0 i t.5 .I
nei,'ly as fast as the stability criteria allows. For example, for 1) 0 ( 2.5.74)

= ).5 and a = 1. the limiting condition corresponds to the 0I) t 1,

largest eigenvalue. which is a + a = t .5. This corresponds t , Il
to determining the time step by the speed of an acoustic wave f 10 f)2
that is moving to the right with a speed u +a. Note, however. fl t I1 ) 0
that choosing the time ,tep based on this eigenvalue means 0 0

that the first equation (associated with the cigenvalue ,\1 i)

is advanced at a time step somewhat lower than the stability
criteria requires. For the conditions chosen above, this restric- ,. (2.5.76)tion is not too prohibitive. However, for a low-speed flow, dv (..6

the wide disparity in the size of the eigenvalues can lead to /1, - ,, 0

slow convergence unless a time step is used separately for each and q i 4-os P + i sin 09 is the magnitude of the velocity in
equation, based on the individual eigenvalues. the streamwise direction.

The basic premise ot preconditioning is to advancc each equa- Considering the case of supersonic flow lirst and multiplying
tion with an optimum time step for each. For the one- the residual terms in Eq. (2.5.73) by (equal to -
dimensional case, this can be easily achieved by mulihplying for supersonic flow) yields
the right-hand side of Eq. (2.5.68) by a matrix, so that when
the equation is diagonalized. all eigenvalues are equal: _ O( -.. 770- \0, + A'B (2.5.77)

at - , 011.dw pF
-t i).i Because the flow is assumed io be supersonic, this equation can

be simultaneously diagonalized with a transformation 4/V =
Note that the preconditioning matrix does not change the T-'iU to yield

steady state. Also notc that P should be a positive definite
matrix. Otherwise. the nature of the flow could be changed. - - (2.5.78
as it would if P = -I. which would correspond to marching - + A
backward in time. For the one-dimensional case, this matrix
is given by Here. A is the diagonal matrix of the eigenvalues of A B.

and T. T-' are diagonalizing matrices. As discussed in Ref.

P = A-' = T( ')T-' (2.5.72) 42, the wave speeds in the streamwise direction have been
,A/ . equalized. Unfortunately. the disparity in the acoustic wave

are the right and left igenvectors tof the speed in the direction normal to the streamlines is amplified;
where T and T -the ratio of the acoustic wave speeds to the convective wave
matrix A = oF/dw and 1/A is a diagonal matrix whose speed is If/7 - 1.

entries are the inverse of the eigenvalues of A.

To make the acoustic and convective waves speeds equal, the
In the above example the criteria used in determining the ratio v/.1 - 

lI/ is used to scale the acoustic waves h% 0
optimum time step for each equation is based solely on taking multiplying the right-hand side of Eq. (2.5.78) by the matrix
the largest allowable time step for each equation. Other X. which is defined as
criteria can he used. such as selection of a time step to
provide maximum damping of certain frequencies for use in [r 0I )
a multigrid algorithm. Also note that if all the cigenvalues X = ) I (2.5.79)

are of comparable size. such as for hypersonic flow. then no 0 ) 1

significant benefit would be expected. 0 0 )

mlid m mmu lmmm m~~mIml m Wl ml mdm m* , 0
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where r =A - 1/t1. After converting back to symmetry To devise flux formulas for computing the steady-state resid-

variables, the preconditioned system of equations in stream- ual, the artilicial viscosity must be modified for certain tormu-
lined coordinates, which is valid for supersonic flow. is given lations. In particular, for Roe's approximate Riemann solver. 

"

by Refs. 42 and 43 show that the dissipation matrix must be mod-

(O . OU. itied in order to maintain the full benelits of preconditioning.
- P A-+ B- t 5.80) bth in stability and in accuracy.

where An example from Ret. 42 is shown in Fig. 2.5.16, in which

the preconditioning discussed above is applied to obtain the
- 5.M ( )1 flow field around a NACA (X)12 airfoil at a low Mach number

P = TXT'A = [ I + 0 (0.05). The numerical scheme used for this calculation is[ I) 10 T Ian explicit two-stage Runge-Kutta scheme, which uses Roe's
I I) 0) Ij approximate Riernann solver for discretiuation of the re,-idual.

(2.5.81) The preconditioning dramatically decreases the number of

-- ,- 1. and r V _1iteration, required to obtain a fully converged solution.

Difficulties arise for subsonic flow because the equations are no
longer able to be simultaneously diagonalized. By assuming 1 0

that the preconditioning matrix has a structure similar to Eq. -10

(2.5.81), a preconditioning matrix can be obtained by requiring

the convective waves be unchanged and that the acoustic - " 0.without preconditioning
waves travel at the flow velocity in the limit of zero Mach -5 0

number. The final preconditioning matrix in the stream-aligned Loq(res)
coordinate system in symmetry variables is identical to Eq. -7 0

(2.5.81) except for subsonic flow: 90 with preconditionnq

= =/1 - .
2  .11 < 1 (2.5.82) -110

-130
0 429 857 12S& 1714 2143 2571 '100

Iterations
Recall that the preconditioning matrix given by Eq. (2.5.81) is
for the stream-aligned coordinate system and symmetry van- Figure 2.5.16 Convergence history with and •

ables: this matrix must be transformed back into the variables without matrix preconditioning from Ret. 42.
that will be solved numerically. For example, if the dependent
variables are the conservative variables, the final precondition-

ing matrix, which simply multiplies the steady-stale residual. 2.5.7 Enthalpy Damping
is given by

The last method to he discussed for accelerating the conver-
iw )q ;U p,U - O- (2.5.83) gence of numerical schemes to solve the Euler equations re-

Oct [U [00 [U Oct Ow quires a modilication of the governing equations that does not

alter the steady-state solution. For a steady-state solution. be-
where Ow/iq is the Jacobian matrix for transforming from cause the total enthalpy is constant. a term proportional to the
primitive to conservative variables. 0q/OU transforms the difference H - H, may be used as a forcing function to ac-

symmetry variables to primitive ones, and OU/0 relates the celerate convergence. This technique has been introduced in
symmetry variables in the stream-aligned coordinate system to Ref. 45 and is referred to as enthalpy damping. •

those in a Cartesian system:

A source term is simply added so that the governing equations

It I Itare given by
Ow = . t t) I)

q,' I) /, t) (25.4 J',±2+ '' ' +UII + 'OPiH- t I .) =h1

•.:(i,- .+ ,2) o,, jo L ,,______'
2.542.5.87)

= I II(I 1 2.5.85) = + ,,, + -, pi -H,

;)qI 0 +) +
/"1 0 0 )where a typical value of o is 0.25. Because H is equal to

[1 I 0 Ill Hs at convergence the steady-state solution is not altered.

OU 0 )os H- in tt Note that this technique is only applicable for flows with a 0
; t-'U = ) ,.in0 t I0 (2.5.86) constant total enthalpy and. therefore, may not be used for

S ) II 0 1 some simulations where propulsion effects are accounted for
through specificaiion of variations in total enthalpy.
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2.6 SPECIAL METHODS We define the matrix A,, as a linear combination of the Jaco-
bian matrices A, B. C formed with the components of i

This section is devoted to several variants in the solution of an arbitrary unit vector: 0
the Euler equations. These non conventional methods are:

An = n,A + n,B + n,.C (2.6.3i 1
1 Space-marching techniques for supersonic steady flow

problems. and to introduce a local orihonorial basis made of fi and of
two other unit vectors t and in1 so that a cartesian derivative

2) Shock-fitting techniques in which a shock wave is con- is expressed (locally) in terms of derivatives in the new% basis:
sidered as a true discontinuity of the flow field represented
either as an internal curve or surface in the computational a
mesh (floating shock tracking) or more often as a boundary . . (16.4
of the computational domain (how-shock fitting). k 1, + + -

3) Inverse and design techniques which can he interpreted as Due to the hyperbolicity of the Euler system of equations, the
the fitting of a vortex sheet (or a stream-surface in the steady matrix A, has real cigenvalues X, and a set of linearly in-
case). This surface may be considered either as an interface dependent left cigenvectors M,.
between two flow fields both computed by solution of the
Euler equations or, more generally, as the external boundary To get the required characteristic form of the equations (also
of one flow domain on which a pressure condition is called the compatibility relations), we form the linear combi-
prescribed (for a free-surface flow like an isobaric jet or for nations of Eq.(2.6.2) obtained by multiplication with each
design purpose). eigenvector:

These methods are valuable alternatives to the use of the r w ')w
time-dependent, shock-capturing and direct (in the sense of m, r(- + A, ) = 0 . i=1....5 (2.6.5)
fixed-boundary) solution of the Euler equations. ax

Indeed, the classical unsteady approach, described in the giving through the use of EqsA2.6.3-4):
above subsections of this chapter, can be applied to special 0
problems such as the steady-state solution of fully supersonic ,T w + )w)
flows comprising or not internal and bow shocks or such as a t +
the design of a wall boundary to be iteratively modified by
numerical optimization. However, in these special circon- where R involves only derivatives of w in the plane i,.
stances, it may be interesting to benefit from large savings in
computing time (space-marching or inverse design methods) Assuming that these derivatives are known, Eqs.(2.6.6) can
and from a noticeable increase in accuracy (shock-fitting be interpreted as transport equations for a plane wave moving
techniques). with velocity X,it. * 0

The discussion on the relative merits of standard and special The expression for the eigenvectors rn, is more complicated
methods is made more difficult by the uninterrupted progress than for the eigenvectors I, attached to the use of the primi-
of researchers finding new techniques which succeed in tive variables q = ( p . V . p ), as described in section 1.4.
filling the gap between two opposite strategies. This is the With the slightly modified notations of Eqs.(2.6.6). we bave
case for example of the space-marching technique where the here:
old method with the marching solution of the steady Euler
equations (which in general requires a standard method for T , ,q T
setting upstream conditions at a blunt nose) can be replaced I t ( an X )+ IS 0  (2.6.7)
efficiently by pseudo space-marching techniques using a
modified unsteady Euler code (see below in subsection 2.6.1). An important difference with Section 1.4 is that we have to
This is also the case when combining shock-capturing for consider a boundary moving with the velocity di. The nor-
internal shocks and shock-fitting for the bow shock. Another mal relative velocity of the fluid on I is:
example is given with the shock-fitting technique being even-
tually replaced by shock-capturing in association with mesh-
fitting and adaption of either algebraic or variational type. V' ( - tii ) - = ,, (2.6.8) 0
Lastly. inverse techniques can be devised which make use of
slightly modified direct solvers with a good efficiency (see The discussion for the number of numerical boundary condi-
below subsection 2.6.3). tions to use rests on the sign of ( X, - Ux ) and on the value

In the following, we give some details on the special tech- of the normal relative Mach number on ":
niques mentioned above but it is remarkable that there are
many common features and affinities between them and prob- M,, = v, / a (2.6.9)
ably the more clear reason for that is their use of quasi-linear
or characteristic forms of the Euler equations. Discretization of characteristic relations

Therefore. after the presentation made in Chapter I, we begin Concerning the discretization of the characteristic relations
by a complement to the description of some characteristic given by Eqs.(2.6.6-7). it is convenient, like for the internal
forms of the Euler equations in order to describe the numeri- node discretization. to separate the spatial discretization from
cal treatment of the boundary conditions for shock-fitting and the time discretization. In fact, it is preferable to have a rath-
inverse design techniques. er similar treatment for internal and boundary nodes, even

though space derivatives in outgoing wave characteristic rela-
Starting from the conservation law form: tions are necessarily one-sided and in general one order less •

accurate than for interior schemes.
odw aF aG dH
-w +  + dF 0 (2.6,1) A practical matching technique based on characteristic rela-

a + tions i which is of special interest for the fitting of discon-
tinuities and quite easy to implement at least for explicit time

the quasilinear form (given in Eq.(1.4.2)) is: stepping schemes, is described below for the case of cell-
vertex or node-centered discretization schemes.aw aw a~w aw 0

a-+ A a- + B - + C -z = 0 (2.6.2) Two steps a- considered. First a provisional value w* is

Y •



101

computed on " at time (n + 1) hom a complete discretized capturing of internal shock waves, were developed based on
Euler system on 0 and T" without taking into account any the conservation law form of the Euler equations. They are
boundary condition. For simplicity, we restrict the presenta- generally written in cylindrical coordinates adequate for com-
tion to a boundary treatmert whith is only of first order ac- putation of flow% past slender bodies which we choose here
curacy in time so that w" can be .wrtten: as a typical application of these techniques 0

w* w' - At M) " &1 (2.0,10) With u, v. w as components of v in _, r. 0 coordinates, the
w = w

n  At ISFJ / &tj )" (2.6.10) equations write:

where 8F. &I, is a discrete apploximation of F, ax on
E (obtained using only the discrete values of w" in i' and on + + Q + it =0 12.6.13i
E ). d:a , )r+

The second step rests on the use of the characteristic relations I = p p + Pu2 , u pu P t
of type (2.6.6) which are written in discretized form on E:

=( pI, pul . p+pv. pvw
(m, T" ( w" * -w =0 i = IL.5 (2.6.11) 1 - ( P t (2+6.14)

where we have used Eq.(2.6.10). r

However. due to the comt.,c-'te expression of m,, it is con- R -I ( pv .Plot pt 1- - w 2 2pv )r
venient to replace these -haracteristic relations by those based r
on the non--onservative variables. After having deduced The steady character of the flow permits the replacement ot
p'. v" , p* directly from ' . the system corresponding to the conservation law for total energy by the Bernoulli equa-
Eq.12.6.7) is he following: lion:

a) v ;17- p .a, p )=O 2Y. + I u+I+ )=H,

b , 0 -I p 2

The shock layer is bounded by the given body ,,urface.
,) X - v, 1(" -t, )=0 (2.6.12) r = b(Oz). and by the bow shock wave r = c(O , :1 whichis an unknown surface to be determined.

?4 V's, + (I "+ I - P + (pa -) = 0 This flow domain (between two plane sections .0-< 
< 

"1

e) X' - a ( -- (PC, ) ( v ,) = 0 can be mapped into a computational region 5 -Z ! 51.
(X. Y) E [0. 112 with:

The characteristic relations for which (O, - u 0 have to
be used whereas tht e correponding to X, - itI < 0 should be X =X(z .r .0)
replaced by physical boundary conditions from the outside of
U Y =Y(: *r .0)

These equations will be used below for shock-fitting and in- Z = Zverse methods. where X. Y are curvilinear grid coordinates stretched in 0
2.6.1 Space-marching techniques each Z plane according to the flow features.

The governing equations Eqs.(2.6.13) when transformed in
Steady supersonic flows have been studied numerically for a this computational space become:
long time with a strong impetus given to the development of
finite difference methods at the beginning of the 70's (after aU +P + Q
early studies based on the method of characteristics) by the a-z ax ay
lirst three-dimensional computations of flow fields past the
Space Shuttle2 . with: U =U/J

The governing Euler equations for the steady supersonic P = (XU. + X,P + X9Q) / J
flows are hyperbolic with the flow direction as a time-like
direction. Thus the numerical solution can be obtained by Q = (y:. U + Yr P+ YQ) / J
marching by plane in this direction (say the z-direction). For
solving such a three-dimensional steady supersonic flow R = Rt J ; 1 = X. Yo - X8 Y, 0
problem, it is natural to use a numerical method quite similar
to those concerning the solution of a two-dimensional un- The system of Eqs.(2.6.15) is hyperbolic in Z and it can be
steady flow problem with time-dependent boundaries (either discretized in a same manner as an unsteady two-dimensional
known or to be partly computed as a free-boundary). There- problem. A very common approach has been a discretization
fore, a space-marching method can afford a considerable by finite differences and a solution with MacCormack explicit
reduction in computer storage and in computer time in corn- scheme78• 9 '. Another more recent possibility is a discretiza-
parison with the unsteady approach in three dimensions. tion by finite volume techniques with a Godunov methodtt or

with other upwind schemes. Solution with an explicit scheme 0Finite difference methods were first devised in non proceed by starting from a known solution at plane Z and
conservative form with rimitive variables p. v, p 3 or with eesmyuta f n solution at plane Z nd
characteristic with computing a new solution in plane Z + AZ with boundary

conditions' 2'13 taking into account the evolution of the body
shape and the change in the shock wave position by satisfy-

P = In (p) , S = y In (T) - C-l) P ing the Rankine-Hugoniot relations (see next Subsection).
For those methods, not only the bow shock but also internal One problem related to the use of the conservation law form
shocks have to be fitted, is that the unknowns (conservative fluxes in the Z-direction) 0

need to be "decoded" into the physical variables
By contrast, other finite difference methods2 .7.8 .9, mainly with p. u. v, w. p in order to evaluate the transverse fluxes and
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the source temis. For a perfect gas, this decoding reduces to Space-marching procedures by local iteration
a simple root finding problem. Starting from:

To avoid this coupling, several authors have proposed a
U, =u U, =p + pu2 U = Put . U4 = plat, .."unified approach" based on unsteady Euler equations with a

p + "u. 1plane by plane strategy and local or global iterations accord- •

we get: ing to the fully supersonic or mixed character of the flow.

SAlthough some investigations about this idea %ere led in the
S
= 
U2- Ulu 

= 
uU, / ,= 4 U O 70's with the conventional Mac(ormnack schene, the full

P development of this technique found its actual start in the
and by substitution in Bernoulli equation we obtain a second middle of the 8 in relation with upwind discretization
degree equation for u: and relaxation methods for implicit time-stepping 2

0:
t

These now well-established techniques have revealed to be
('f~l)U4 " 

- 2yUU a + (-Ifl t2U H - (I - /1A ) 0 both efficient for obtaining numerical solutions over realistic
configurations and verv easy to implement in a 3-D code.

Only the largest root is meaningful. giving: They provide the possiblity of building the three-dimensional
mesh system before the flow calculation, which can be of in-

+ - terest for a better control of the grid stretching or adaption.
.i--d , , _ - 4I UfH+ - 'U - Besides that, the further development which consists in tak-

ing into account a discretizaiion of viscous terms to be added 0
technique is to the Euler code is rather straightiforward: this development

leads to a PNS-like approximation. We will locus our atten-
the step size limitation in the Z-direction associated with an tion hereafter on these "pseudo space-marching" techniques
explicit scheme. based on the unsteady Euler equations.

A CFL condition links AZ to the space step size in the Space-marching techniques making use of the unsteady Euler
cross-flow plane, typically: equations have mainly been developed using the finite-

volume TVD discretitation. They are based on either expli- 0
AZ - AX o( M t cit or implicit time differencing, and suppose a "plane by

plane" organization of the computation.
with a is the maximum of local eigenvalues of a matrix M
of the form C -1 A with the notations of Eq.(2.6.2). This Explicit Approach
limitation in the step size for marching in space is not too
severe in zones where the body section has fast variations but The simplest approach is based on an explicit upwind scheme
it can be considered as too costly when the flow is very as described in Ref. 19. The space-marching procedure simply *
smooth in the Z-direction like in the case of nearly conical amounts to run out, until convergence, the 3-D time-
flows. dependent explicit scheme plane after plane, with the

upstream conservative variables in the plane k-I fixed at their
The use of implicit stepping for space-marching schemes Is previously computed value, and with the downstream values
not in general use for solving the steady Euler equations in the plane k+l extrapolated from the upstream and current
'Ahen the bow shock is fitted. Indeed, there is a limited in- values.
terest in using an implicit scheme for interior points if an ex-
plicit treatment of the bow shock positioning yet restricts the Basically, in the notations of Eq. 2.6.2) with cartesian coordi-
maximum step size in the marching direction, nates, the explicit algorithm can be written as:

Fully implicit treatment of both the interior point calculation W!"
and the bow-shock adjustment was shown to be very efficient w,.__,-w,.k 2
on a one-dimensional flow in a variable area duct with an At +
internal shock wave which was computed for a steady solu-
tion via a time asymptotic approach .Such a method could + (Hk+lr2)l - (H, -14 = 0 1 = 0. 1. ./m,, (2.6.16)
clearly be used for a supersonic conical axisymmetric flow. -
Extension to one more space dimension should be directly where w is the solution vector of the conserved quantities, 0
applicable to the solution of conical flows for example past F. G. H are the numerical fluxes at the sides of the control
conical wings at angle of attack, but should not be so much volume (i j,k ) including metric terms, and k is the marching
necessary for non conical bodies where accuracy in the Z direction. Clearly. Eqs.(2.6.16) represent an iterative process
direction cannot be obtained with too large values of AZ. which, if converged, provides a discretized solution of the

steady Euler equations. Since the F and G flux evaluation1
If the bow shock is captured and the wall boundary condition sted El equaton Sic the F and p fu todependsexiityonw.heoldeiaepitite
is treated implicitly, an implicit scheme for space marching is de xicit o
very efficient and it appears even more useful for the solution (H n of (Hl,) .In order to get conservation. the flux

of Parabolized Navier-Stokes (PNS) equations due to the (H,-,2)1 has to be computed with the same formula as the
severe CFL restriction on the AZ with an explicit scheme and one used for (f11 _l,,) at the previous k-I plane calculation
the very small grid spacing needed at the wall. (a denotes here a frozen upstream quantity).

In the case of a blunt body, a supersonic space-marching We assume that a flux vector splitting (FVS) scheme is used
code must be completed by an other one capable of comput- for the numerical flux evaluation:
ing the subsonic flow region between the detached shock
wave and the body nose, thus providing the necessary initial ( H. 2) = H(w +1 2 )' + H( R+1 2, (2.6.17)
solution of the space-marching procedure.

with w' and wR the left and right values for the ij.k+112
Moreover, realistic high speed flight vehicle configurations cell face. Actually, the second term remains at zero for a ful-
often give rise to subsonic pockets inside the shock layer. ly supersonic flow. Therefore, we can get:
The conventional space-marching method then fails for such
flows and it can be necessary to combine a space-marching a) a first order scheme with
technique for supersonic parts and an unsteady Euler solver
for subsonic parts with delicate problems of different grid ( WI2)
systems to be coupled.

u * ,* 1 l i I ll~l I I i ll / II / I i Ii "" .. .. . -0 -- 0
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b) a second order scheme with representing a shock wave as a boundary of the computation-
al domain or eventually as an interface between two such

W1., )I =W
. , + M_ I -domains. They are used when the presence and the general

shape of a shock is a priori known as a key feature of the

Initialization for WO flow solution. This can be the case in a divergent choked
in n f , k follows easily either simply with nozzle and even in a transonic or supersonic external flow

A w;_1 or from ahigher order extrapolation, past an airfoil, however the most frequent use of shock-fitting
corresponds to the fitting of a bow-shock in front of the nose

In contrast with a pure space-marching scheme, the stability of a vehicle or of a projectile in supersonic flight. Another
of the process depends not only on 2Z5 but also trotn Atk  interest of sach techniques, when no other shock is prcsem
which remains limited by a CFL condition for a small AX, inside the computational domain, is the possibility of choos-
but permits an increased AZj. ing a convenient non-conservative set of equations I iii place

of the conservative formulation needed for shock-capturing).
This local iteration with an explicit time-stepping permits However, this possibility has been mainly used in two dimen-
significant gains in efficiency with respect to a global itera- sions.
tion and improvements in accuracy, robustness and program-
ming simplicity with respect to a classical pure space- We describe here a general methodology to treat the fitting of
marching scheme. such a shock wave surface Y.

Let .I be the upstream domain, with unit normal i, pointing
Implicit Approach downstream with l - '#I the normal velocity of the shock.

For Ill, E is a supersonic outflow boundary I(Mr' > 1)
This appruacht ' ' 

5.117 1 rests on a planar Gauss-Seidel relaxa- Ft
lion scheme combined with an approximate factorization in whereas for Q (the downstream domain. with normal n
the plane Z,. It can be derived from: pointing outwards of il). it is a subsonic inflow boundary

( - I < M,' < 0 ). Therefore, on the upstream side of Y_ all
w/Jw the flow quantities either are computed irom the full set of

+ iF,, - F,-.2) + ( 2 - (;-I ,)/* the discretized Euler equations q, , = q i or they are given
At, ) + by the freestream supersonic flow conditions in the general

case of bow-shock-fitting.
+H l42. - ,, .. i -0 (2.6.18)

On the downstream side of Y_ only Eq.(2.6.12-d) must be
Using a "delta" formulation, an implicitation of only the first used:
order terms and a linearization of the Jacobians. Eq.(2.6.18)
leads to the following matrix system to be solved: P -p* I + (pa) ( ,, - 1,) =0 (2.6.21)

+l/At, Aw,,, +-A, (69 + D, Aw + Bomitting the superscript in+l (on p and V',.
r /A, Aw, ,1k + DAw,, +8,Aw,,,I (2E.6.19wih u

+ A, Aw, 4. + DAw,, + BAw,J,. = RHS,,k The supplementary conditions are the Rankine-Hugoniot
jump relations (Eq.(1.3.5 ) with u, = u .n:

where RHS represents the explicit part of the scheme and
o) 1P( vn, - uZ) pt ( t, -uz)I= Q

Aw = - - Wl.

bh p +Qi', =p+Q 1 ,,
The pseudo space-marching approximation leads to:

c) • l (2.6.22)
Aw .,., _-I = 0 and Aw,. .k + 1 = Aw,.,.k .

d) i=. 1 fl
which amounts, in Eq.(2.6.19). to cancel the term At and to

add the term Bi to the diagonal Dk. In order to get a sym- c) p v, +Q E p v,, + Q El
metric formulation in the case of subsonic pockets, the term
B, is cancelled according to Ref. I. where the superscript (n+]) has been omitted on all vai-

ables.
Thc overall implicit approximate factorization procedure can
be summed up, in matrix formulation, as: These jump relations together with Eq.(2.6.21) appear as a

_ I _ system of 6 equations for the 6 unknowns p, F, p, u. This
(I + D~k-i M, I (I + Dk 1 M ) Aw = DfI RHS (2.6.20) non-linear system is solved tly an iterative method based on

successive approximations of ul (thus of Q ) starting with the
shere M, M) represent the matrix terms along the crossflow known value u2". For a given Q, the values of p and v.,
directions, and are determined from Eq.(2,6.21) and Eq.(2.6.22 b). Tangen- 0

tial velocity components are given by Eq.(2.6.22 c.d). Then
), = ItAt5 + D, Eq.(2.6.22 e) is solved for p (after expressing E in terms of

the non-conservative variables) and a new value uy is deter-
Realistic configurations require the use of multi-domain tech- mined from Eq.(2.6.22 a) leading to a new iterative step.
niques. For relatively simple configurations the multi-domain
gridding can be restricted to the marching (supersonic) direc- In the case of fitting a bow-shock upstream of a body, the
tionl'9. The general multi-domain gridding associated with computational domain Q can be meshed with a body-fitted
the implicit approach opens the door to the computation of grid moving like a concertina between the bow shock and the S
complex supersonic flows such as a vortical structure at the body with all nodes sliding along fixed lines roughly normal
leeward of an hypersonic delta wing2 2 or vehicle to the body and the shock. This family of normal lines has to
configurations such as a realistic fighter configuration or the be generated in a preprocessing step by any method giving a
Space Shuttle Orbitert5 . regular body-conforming mesh system between the vehicle

and an outer surface which must be far enough from the
body to be upstream of the how shock. The normal family

2.6.2 Shock-fitting techniques of grid lines is replaced by smooth curves obtained by piece-
wise polynomial interpolation with an explicit parametriza- 0

Shock-fitting techniques are founded on the choice of tion.
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The trace of the shock on each of these curves provides a criterion to be minimized opens many possibilities based ei-
definition of the boundary moving at each time step at a ther on physical or mathematical principles In numerical op-
velocity calculated according to the method indicated above. timization techniques for optimum design the direct solver is

most olten used as a "black box" and the qualities that a
A straightforward implementation of the interlaced grid mo- good design requires for such a soler are: short time
tion and solution evolution is given below, response, low sensitivity to its numerical discretizaiion 0

parameters and high sensitivity to the aerodynamic design
For a steady flow. calculation of the solution until conver- parameters.
gence consists, at each time step At. in successively execut-
ing the three following stages: Therefore numerical optimization is not yet frequently used

with Euler direct solvers. Indeed, for the design of a transon-
i) The flow solution at time t''+ is obtained from values at ic transport wing, it is often said that full-potential equations
time t" by applying the basic numerical scheme in a fixed with a simple quasi three-dimensional integral boundary layer
mesh M" which coincides with the moving mesh at time r". correction is adequate for solving this problem 26 . Hlowever,

for the case of purely supersonic flows,. Euler solvers can be
i) The new boundary is determined by using the normal, used with benefit has shown in Section 4.8 where design ap-
velocity of the shock calculated as indicated above. Then in- plications by Schon 7 and by Rieger25 are presented. It is
terior nodes are defined giving the mesh M" "t at time t'

n l .  quite clear that with the progress of Euler codes as analysis
tools, their usefulness will be increasing for design problems

iii) The flow quantities at time i "'m on the mesh M" are pro- treated by numerical optimization.
jected onto the mesh M-1 using a first order Taylor expan-
sion- The second category of free-boundary problems results from

the specification of a flow quantity on the unknown boun-
0(:I Vf = 0(1', AM" ) 4 At VV(I"', M" ).ii (2.6.23) dary. We shall concentrate the present discussion on this kind

of problem and its discretization.
where * is any flow variable and where ui denotes the mesh
point velocity which is tangent to the given mesh lines We consider the problem of a fluid flow in a domain Q with

Due to the independence between the stages ii)-iii) and the a boundary F which comprises a slip-line or slip-surface 1.
e not a priori known and which ut he found as a part (if the•

stage i), this process is easy to implement in an existing cote solution process. This oundary surface is considered as a
written with an explicit scheme for a fixed grid,.ouinpoes hsbudaysraei osdrdamaterial surface. In other words, if a fluid particle is on the

r t e free surface it forever remains on it. Let assume that Z canOther techniques have been used for the bow-shock fitting be reprsne yasnl-au ucnn
problem and in particular the coordinate transformation presented by a single-value function:
method which consists in using the mapping of the moving 2.6.24
physical domain to the fixed computational domain and x 264

working directly on the transformed equations in these fixed Then the above assumptions mean that there is a kinematical 0 0
coordinates and on the non-linear boundary conditions on the boundary condition
image of the shock boundary to iterate towards a steady solu- b hilding on
tion. = +t g + I ) = 1 (2.6.251

A 1-aid discussion of the relative merits for different pos- dr at at o v -

sibilities of mixing the use of an explicit or an implicit The other condition is a pressure condition:
scheme for interior nodes with the weak or strong coupling
between flow solution and shock tracking can be found in 0
Ref. 14. p = it( X y , t) on Y (2.6.26)

The simplest case is It = constant for a free-surface flow like
2.6.3 Inverse design and free-surface flows in the hydrodynamic ship wave problem studied in Ref. 29 or

for an engine jet with external flow at rest 3.31
Free surface flows, shock-fitting methods, inverse and design
problems all belong to the same mathematical class of free- The case it = f(x Y') can correspond to an inverse design
boundary problems as opposed to the more usual fixed- problem where a pressure distribution isprescribed on a partboundary problems. Y" of a body limiting the flow domain 3 ,.36

For all those flow problems, a part of the boundary limiting As in the previous Subsection on shock-fitting, there are two
the domain occupied by the fluid is a priori unknown and has main possibilities for treating the moving mesh problem with
to be found during the solution process. curvilinear body-fitted grids:

By comparison with a fixed-boundary problem, it is clear that 1) Working in the physical moving domain Q with three
the relaxation of the parameters defining the position of the stages at each time step towards a steady state solutior.3 1 .
flow domain boundary yields a larger class of solutions
among which the selection of a particular one may result ei- 2) Working in the computational domain after a transforma-
ther from the optimization of some criterion or from the tion of coordinates from x. v. - to 4, T1. and solving the
prescription of a supplementary boundary data (in principle transformed flow equations and free-surface conditions in al-
the pressure) in order to get uniqueness. ternate stages at each time step 2).

The first case corresponds to optimum design problems, It is also possible to replace the alternate stages of solving
whereas the second is usually named an inverse problem. A the flow equations with a given provisional boundary shape
detailed classification of the various methods for solving and then of updating the position of the boundary, by a
these problems can be found in Ref. 23 whereas several of simultaneous solution in a strong coupling between these two
them are described in Refs. 24 and 25. stages but at the cost of a more complex solution method.

This is the case for the Newton solution of the mixed inverse
Optimum design problems are generally solved by coupling a method of Drela and Giles 32
"direct solver" (a solver with a given fixed boundary), a
boundary shape and grid updating algorithm and a numerical The most important points are in any case the choice of the
optimization code allowing to progressively modify the boun- boundary conditions and of the updating method for the posi-
dary shape until an optimum is reached. The definition of the tion of the material surface Y.

* 0
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Coming back to Eq.(2.6.121. we are in the situation where the 113, 1971.
relative fluid velocity is zero (v. = uy) and only the charac-
teristic relations corresponding to X5 = v, - a has to be re- 13 ABBEIT, MJ, "Boundary Condition ('alculation Pro-
piaced by the pressure boundary condition Eq.2.6.26, in- cedures for Insiscid Supersonic Flow fields". Pro, AIAA 'FD

dependently of the subsonic or supersonic character of the Conerei(e. Pali Sprinss. ('a. pp. 153-172, 1973
flow in the tangential direction in U, along E.

14. BELL, J.B., SHUBIN. G.R. and SOLOMON, J.M., "Ful-

At each time step, the flow solution can he solved with these ly Implicit Shock Tracking". Jounal of Computational Phy-

boundary conditions c ;, then from the relation b).c) and d) sics, 48. pp. 223-245. 1982
in Eq.(2.6.12) and from the known value of p". the fluid
velocity is obtained at time n +1. Thus a new value of u,; is 15. CHAKRAVARTHY, SR. and SZEMA. K.Y "An Euler

available which can be used with Eq.(2.6.251 to get a new Solver for Three-Diiensional Supersonic Flows with Subson-

position of Y at time n +. ic Pockets,' AIAA Paper 85-1703. Cincinnati, July 1985.

This system of equations for the unknown free surface is 16. WALTERS. R.W. and DWOYER, D.L.. "An Efficient

discretized in a straightforward manner but must include a Strategy Based on Upind/Relaxation Schemes lor the Euler

dissipation term at least in the flow direction (or an upwind- Equations". AIAA Paper 85-1529, July 1985.
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Chapter 3 *

Survey of Major Individual Euler Codes and their Capabilities

The increasing imf.rawnce of computational aerodynamic meth- However. as the strength of the codes continue to increase with
ods, based on the Euler equations, in industrial design work is respect to their ability to treat geometrically complex flow
evident from the widespread development activities in all major problems, structured multiblock mesh generation appears to be
aerospace industries, the costly bottleneck in the Euler flow-simulation business.

In the following sections an attempt is made to gather all pub- In the face of high investments in sufficient cost-efficient grid
licly available information on relevant Euler codes currently in generation systems, strong efforts in the development of
industrial use in the NATO countries. Other countries, with the unstructured-grid approaches have been supported to circum-
exception of Sweden and Switzerland, have not been considered vent a possible deadlock between industrial task requirements
and were not in the scope of this publication. Although a great and costs. An early view of emerging problems have led to the
deal of time was invested in accumulating this information we systematic development of finite-element methods for fluid
realize that other codes may exist in industrial sectors and re- flow problems at INRIA in France. However, it seems now that
search establishments that we are not aware of. Nevertheless, unstructured approaches, based on finite-volume schemes, are 0
we believe that most of the codes are represented, which en- likely to achieve a similar success and acceptance in industry
ables us to call this collection an Euler-code compendium. :. ihe structured multiblock approaches have both now and in

the past. In this context it may be of some interest that past and
In addition to a short overview of the capabilities of the individ- future trends in numerical techniques are discussed in recent
ual codes, the essential characterisitics are also compiled in ta- overviews.

3

bles. Related references are pointed out and a person serving as
point of contact (POC) for questions is listed for each code. We The inviscid methods in industrial use today have reached a
have tried to keep the list as concise as possible. The presenta- sufficient maturity and can be applied with confidence. There- 0 0
lion is focused on general purpose codes with respect to their fore, in Chapter 4 we have provided a limited but representa-
capability in treating 3-D complex problems in a regime that tive selection of simulation results that spans a fairly wide field
ranges from subsonic to supersonic flow. Based on recent pro- of practical applications.
jects in the United States and Europe, many codes also have the
capability to handle hypersonic flow problems and can address Highly accurate 2-D datum solutions past airfoils (section 4. 1)
gas states in chemical and thermodynamical equilibrium and and 3-D computational results of flows around wings (section
in non equilibrium. 4.2) are presented as well as the capability of the Euler equa-

tions to capture vortical flows (section 4.3). The challenging
The following codes focus mainly on external aerodynamics, aim of the 80's to treat complete air-vehicle configurations
but some of them are also applicable for internal flow, espe- (section 4.4) has been achieved by some of the codes described
cially on turbomachinery flow problems. Although the basic subsequently. Euler simulations address also many relevant is-
theory for treating numerically inviscid flow problems is out- sues to propeller and propulsion flow problems as outlined in
lined in previous chapters it has to be pointed out that a thor- section 4.5 and are t,; importance for design support of space
ough treatment of the specific aspects of turbomachinery flow transportation systems that operate at hypersonic speeds (see-
simulation can be found in the publication of another AGARD tion 4.6). Applications for 3-D unsteady flows are emerging
working group under the editorial ,iupervision of Prof. Ch. (section 4.7) as well as early attempts at integrating Euler solv-
Hirsch, VUB-Brussels. ers into optimization procedures to improve the design for rele-

vant design parameters (section. 4.8).
A high percentage of codes are based on structured multiblock
grid approaches that rely on a conservative finite-volume dis- It has to be pointed out that all results presented have been
cretization technique, a numerical approximation scheme being gained by the methods and codes described subsequently. De-
outlined in the late 70's. The success of the methodology in the spite the fact that the results obtained so far are impressive, in-
aerospace industry can be attributed to the fact that a discretiza- dustrial needs and pressure to reduce costs will push develop-
tion and time integration scheme was made available early ments of those methodologies that no longer require the 0
which proved to be robust, simple and accurate enough to be permanent interaction of CFD experts and, therefore, can be
accepted in industrial environments. Therefore, the landmark operated directly by the !,sign team. Evidence that support this
paper of Jameson, Schmidt and Turkel' stood as initial baseline conclusion can already be seen in the code compilation.
for many first efforts in the field of inviscid flow simulation by
solution of the Euler equations. In the meantime the concepts
for numerically approximating the convective terms in the gov- 1. JAMESON A., SCHMIDT, W. and TURKEL, E. "Numeri-
erning equations have been improved and refined and have cal Solutions for the Euler Equations by Finite Volume Meth-
been implemented in many advanced general-purpose codes. ods Using Runge-Kutta Time Stepping Schemes", AIAA Paper 0

81-1259, June 1981.
Essential to the success of numerical field methods for solution 2. "CFD - Part 1, An Assessment of Critical Technologies,"
of the steady-state inviscid flow equations is the invention of Aerospace America, pp. 16-61, January 1992.
the so-called multigrid technique as one of the most effective
and cost-efficient convergence acceleration methods known to- 3. JAMESON A. "Numerical Wind Tunnel - Vision or Real-
day. The improvements in performance of computer hardware ity," AAA-Paper 93-3201, 1993.
over the last 20 years together with such algorithmic quantum
steps, has enabled the introduction of Euler methods into rou- 0
tine industrial design and optimization cycles.



3.1 CODES FROM NORTH AMERICA The spatial differencing methods of the codes can be roughly
equally divided into central or upwind-biased discretization.
The dissipation of the central difference schemes is universallypatterned after the second- and fourth-difference operators in-
troduced by Jameson, Schmidt, and Turkel. This discretization
is used in the FLO-57/FLO-67/AIRPLANE series of codes de-

This section tabulates computer codes that are being used to veloped by Jameson, which are widely used in the aircraft in-
solve the Euler equations in the United States and Canada. The dustry and form the basis of many of the codes listed, such as
codes are developed and are available through university, gov- the TEAM and TLNS3D codes. The dissipation model most
ernment, and industrial organizations. The maj.rity of the algo- frequently used is a scalar (spectral radius scaling) type with
rithm developments have occurred at government research coefficient similar to those introduced originally. The coeffi-
laboratories and through government-sponsored university re- cients have been modified in some codes to improve the shock-
search; the resulting codes, often general-purpose algorithms, capturing performance at hypersonic speeds (TLNS3D), and
are in the public domain and are widely disseminated. The several code- ha,. te option of using dissipative operators de-
codes developed by industry are often tailored to a specific signed on the basis of maintaining total-variation-diminishing
need and are usually proprietary software. A general discussion (TVD) features for improving the capture of strong shocks
of the distinguishing capabilities of the codes are discussed be- (TEAM, MDTSL3D). The matrix dissipation technique is used
low. in codes that also serve as Navier-Stokes solvers, such as in

TLNS3D, in order to improve the resolution of the viscous lay-
Discretiza(ion Technique ers.
In their basic discretization, the mijority of the codes use the
finite-volume technique or the closely related Galerkin finite- The upwind-biased discretizations generally use the MUSCL
element method; the rest are finite-difference discretizations. approach of Van Leer. A coordinate-by-coordinate decomposi-
Approximately half of the codes solve for the flow variables as tion of the hyperbolic equations is used in all of the codes
cell-centered quantities, as opposed to cell-vertex or node- listed. The locally I-D Riemann problem solved at the interface
centered variables. For codes designed for unsteady flow simu- is generally accomplished with the flux-vector splittings of
lations, the cell-centered finite-volume approach is most com- either Van Leer or Steger-Warming, or the flux-difference
monly used. splitting of Roe. The ZEUS code solves the full, locally I-D

Riemann problem at the interface. The flux-difference-splitting
Grids approach is preferred for codes that also serve as viscous solv- •
In terms of grids, the recent trend has been toward the develop- ers because the resolution of the boundary layers is improved.
ment of unstructured grid methods; for 2-D Euler applications,
these methods are sufficiently developed that to be the method The use of shock-capturing schemes is nearly universal. Only
of choice, largely because of the generality and simplicity of one floating-shock-fitting code (GAUSS2D), which uses the
the grid generation. For 3-D Euler applications, the nonconservative split-coefficient method as the basic discreti-
unstructured-grid codes are demonstrated to be competitive zation, is listed for 2-D airfoil flows. The SCRAM code is also
with the structured-grid methods. The adaptive-grid method is a nonconservative discretizaioa that uses Riemann variables,
incorporated in several of these codes (NS72, FUN2D, LaRC- but uses a shock-fitting technique for the bow shock wave. * *
1, WL/Leggo) to increase the efficiency of the unstructured- Several other space-marching codes (SWINT, ZEUS) us,,
grid codes considerably. The adaptive-grid codes generally use shock-fitting of the bow shock wave to improve the resolution.
tetrahedral cells in three-dimensions, although the WL/Leggo
code adapts through the continual refinement of hexahedral A hybrid discretization is used in several codes (MIM3D, F3D,
cells. The LaRC-I code incorporates both temporal and spatial LeRC-I) that combines central differencing in two directions
adaption capabilities for the time-accurate simulation of 3-D with upwind differencing in a single direction. The hybrid dif-
flows. ferencing of MIM3D is designed to facilitate space-marching

solutions by using an upwind disCretiration and an explicit 0
The structured-grid methods have been under development and space-marching schemes in the supersonic streamwise direc-
in use longer than the unstructured-grid methods for aerody- tion: in the crossflow direction, a central-differencing discreti-
namic applications and are highly evolved However, the gen- zation with a Runge-Kutta explicit scheme with convergence
eration of a multiblock structured-grid generally requires con- acceleration is used. In the F3D and LeRC-1 codes, the upwind
siderably more man hours than the computer time required to differencing is Aone in a single generalired-coordinate direc-
generate the solution to either the Euler or Navier-Stokes equa- tion in order to lacilitate the introduction of two-factor implicit
tions on the resulting grid. The majority of tie codes listed are, schemes.
in fact, multiblock structured-grid codes. The multiblock 0
structured-grid codes are also those that form the basis for most Nearly all of the codes listed are implicit schemes, if one ad-
general-purpose codes for solving the Euler or Navier-Stokes mits that the Runge-Kutta explicit schemes with residual
equations. The patched grid method is used in several general- smooting are actually implicit schemes, because the solution to
purpose codes (CFL3DE, F3D. UTRC-I) to simplify the task a system of algebraic equations is required to advance the solu-
of grid generation for complex configurations and is used in tion in time. The Runge-Kutta scheme introduced by Jameson,
several of the space-marching solvers (EMTAC-MZ, Schmidt, and Turkel with residual smoothing and enthalpy
CFL3DE). The overset-grid method is less frequently available damping is used widely in the central-difference codes listed.
and is included in only two of the codes listed. The monoblock Other implicit codes use an approximation to the direct solu- •
structured-grid codes are generally special-purpose codes, such tion of the linear system arising from backward-time discretiza-
as the shock-fitting GAUSS2D code or the finite-rate chemisty tion; the approximations arise fror' spatial factorizations
SPARK3D code. (CFL3D, USA, ARC3D, PARC3D. NASTD, FDL3DI), eigen-

value factorizations (EAGLE, CENS3D), or hybrid factoriza-
Space/Time Discrelizajion tion relaxations (F3D, CFL3DE, EMTAC/EMTAC-MZ.
The majority of the codes use the method-of-lines technique to LeRC-I). Several codes listed use the diagonalization method
decouple the spatial discretization from the temporal discretiza- of Pulliam and Chaussee to reduce the block inversions ,o sca-
tion. The advantage to this approach is that the steady state is lar inversions for tOe triW :gonal or pentadiagonal equatkns as- 0
independent of the time step. The coupled space/time discreti- sociated with the approxiltate factorizations kAF). In oply two
ration methods are predictor-corrector MacCormack schemes. codes (ISES and FEMSAP2D) are direct solver used and both
The SPARK3D code is a predictor-corrector scheme with are limited to 2-D flows.
second-order-accurate temporal differencing , d second- or
fouuih-order-accurate spatial accuracy. It is the only code listed Convergence Accelerration
with a spatial accuracy greater than second order. The temporal All of the codes use local time stepping to accelerate conver-
accuracy of the codes listed is no greater thaii second order. gence to steady state. The multigrid technique is incorporated
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in many of the central-difference Runge-Kutta codes (FLO-57, in the applications section that follows. The inclusion of vis-
FLO-67, TLNS3D, MIM3D), patterned after the methodology cous effects is generally accomplished through incorporation of
of Jameson which uses the full approximation scheme (FAS). the Navier-Stokes terms. The resulting discretization uses the
The residual smoothing, enthalpy damping, and Runge-Kutta methodology of the baseline Euler solver to treat the convec-
coefficients have been designed such that convergence has tive and pressure terms; the viscous shear and heat transfer
been demonstrated in O(N) operators for both inviscid and vis- terms are treated with central differences. A number of these S
cous flows. This basic approach is also used in the general-purpose codes are listed. As exceptions, the ISES code
unstructured-grid code (NS72) developed by Mavriplis and in uses an integral boundary-layer model and can accommodate
the FUN2D scheme. The multigrid scheme is also incorporated mildly separated flows through coupling of the integral equa-
in the Lax-Wendroff UTRC-l code, the MGFD code from tions with the direct Euler solution method. The UTRC-I code
Canada, and the implicit approximately factored CFL3D code, uses a surface shear stress model to approximate viscous ef-
all of which are multiblock structured-grid codes. fects. Several codes that have evolved from space-marching

Euler algorithms also can serve as parabolized Navier-Stokes
Several of the codes (LaRC-I, CFL3D, EAGLE, FDL3DI, solvers (LaRC-2, CFL3DE): two codes (USA, GASP) are suf- S
AutoFEM) offer the option of local subiterations to improve ficiently general to allow time-dependent solutions to both the
the initial approximations to the linear systems that arise from Euler and Navier-Stokes equations and supersonic space-
single-step factorizations or relaxations. This feature is gener- marching solutions to the Euler and parabolized Navier-Stokes
ally used for codes that are used to solve unsteady flows. For equations. The codes SPARK3D, USA, GASP, SCRAM, and
codes that incorporate finite-rate chemistry models, the source MDNS3D have generalized equations of state and/or finite-rate
terms that arise are treated implicitly to accelerate convergence chemistry capabilities that were developed for applications to
and to overcome restrictive time-step limitations, high Mach-number flows.

Special Features The majority of the codes are designed to recover steady-state
The special features of the codes indicate u,,que or extensive solutions to the Euler equations. The ability to simulate un-
application areas, flow models, boundary conditions. and/or so- steady flows, including dynamic forced-oscillation and aero-
lution algorithms. Many of the special features are highlighted elastic coupling motions, are available in the codes F3D,

CFL3D, LaRC-l, EAGLE and AutoFEM.

3.1.2 Presentation of Individual Codes

COMPANY / INSTITUTION: NASA Ames Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES -

3- multiblock-structured central differencing, local time stepping Euler/Navier-Stokes 33
ARC3-D finte-difference implicit three-factor AF solver

scheme with diagonal or
block inversions

3-0. multiblock-structured. hybrid: central local time stepping Euler/Na,'er-Stokes 34
finite-drfference patched and overset differencing in crossflow solver

F3g grids direction and flux-vector
splitting in streamwise

i direction. implicit
i two-factor AF scheme3-0. mufiblock-structured central differencing with local time stepping Euler/Navwer-Stokes 35

finite-difference ] flux limited dissipation, solverCENS3D implieid two-factor
LU-SGS (symmet

auss-Seidel) scheme _

COMPANY / INSTITUTION: Grumman Corporate Research Center
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. multiblock-structured hyid: upwind-differenc- local time stepping, conical coordinate 7
finite-volume. ing and implicit scheme residual smoothing, system, supersonic
cel-vetex in streamwise direction; multigrid flow, fighter aircraft

1IM30 central differencing. and design applications 2
Runge-Kutta explicit
scheme in crossflow
directions

COMPANY / INSTITUTION: Princeton University _

CODE DSCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

I3-. unstructured, central differencing. local time stepping, 30.
AIRPLANE I finite-element. tetrahedrons Runge-Kutta explicit residual smoothing, 31 3

celf-vertex scheme enthalpy damping
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COMPANY / INSTITUTION: Princeton University _ _

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES -

3-D. mutiblock-structured central differencing, local time stepping, Euler/Navier-Stokes 8
FLO-67 finite-volume. Runge-Kutta explicit residual smoothing, solver

cell-vertex scheme enthalpy damping.
I multigrid

3-0, mulitilock-structured central differencing, local time stepping, Euler/Navier-Stokes 45.

FLO-57 finite-volume, Runge-Kutta explicit residual smoothing, solver 46
cell-centered scheme enthalpy damping,

multigrid

COMPANY / INSTITUTION: Lockheed Aeronautical Systems Company
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, muftiblock-structured central differencing local time stepping, Euler/Naver-Stokes 12.
finite-volume, patched grids scheme or upwind residual smoothing, solver, turbine 13,

TEAM cell-vertex symmetric TVD scheme, enthalpy damping applications 14 4
Runge-Kutta explicit
scheme

COMPANY / INSTITUTION: NASA Langley Research Center

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

3-D, unstructured, upwind biased local time stepping, advancing-front grid 18
USM3D finite-volume, tetrahedrons (flux-difference-splitting) residual smoothing generation

cell-centered differencing, Runge-Kutla
explicit scheme

3-0. muttiblock-structured upwind-biased local time stepping, Euler/Navier-Stokes 19.
finite-volume, patched and/or (flux-vector- or multigrid solver, aeroelastic 20

CFL3O cell-centered overset grids flux-difference-splitting) applications
differencing, three-factor * *
AF scheme with diagonal
or block inversions

3-0. unstructured, central differencing, local time stepping, 17
NS'2 finite-element, tetrahedrons. Runge-Kutta explicit residual smoothing.

cell-vertex spatially adaptive scheme multigrid

2-D. monoblock-structure upwind (split coefficient local time stepping floating shock 21GAUSS2D finite-difference method), implicit fitting, porosity

(diagonal) AF boundary conditions 0
3-1, monoblock Predictor-corrector: local time stepping. Euler/Navier-Stokes 24,
finite-difference structured second-/fourth-order implicit source terms solver, finite-rate 52

SPARK30 spatial differencing. chemistry.extensive
second-order temporal applications to
differencing combustors/nozzles

3-0, multiblock-structured central differencing with local time stepping, Euler/Navier-Stokes 26
TLNS3D finite-volume, scalar or matrix residual smoothing, solver. aeroelastic 27

cell-centered dissipation. Runge-Kutta enthalpy damping, coupling
explicit scheme multigrid applications

3-D, unstructured, upwind-biased local time stepping, aeroelastic coupling 22,
finite-volume, tetrahedrons, (flux-vector- or residual smoothing, applications 23,

(LaRC-1) cell-centered spatially and flux-difference-splitting) enthalpy damping, 47
temporally adaptive differencing. Runge-Kutta subiterations

explicit scheme or implicit
Gauss-Seidel schemes

finite-difference monoblock-structured upwind local time stepping supersonic Euler or 25
(LaRC-2) (flux-difference-splitting) parabolized Navier-

differencing, explicit Stokes solver.
space marching axisymmetric option

2-0. unstructured, upwind-biased local time stepping, Euler/Navier-Stokes 44.
finite-volume, triangles, spatially (flux-vector- or muhtigrid solver 53

FUN2D cell-vertex adaptive flux-difference-splitting)
differencing. implicit
red-black Gauss-Seidel
schemes

* 0



COMPANY / INS1TflTION: McDonellUI Aircraft Company
CODE DiscRET. GRIDS SPACEJTME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-Dl, mutlck-structured upwind-biased local time stepping Euler/Navier-Stolces 150

NASTD) finite-volume. (xiifreneltng. sle
cell-centered three-factlor AF scheme
3-D. monoblock-strudtured upwind differencing with local time stepping predominantly 16
finite-difilerence Riemann variables, supersonic space-

SCRAM explicit scheme marching scheme,
fitted bow shock.
real-gas equation of
state

3-Dl, multiblock-structured centrall-differencing with local time stepping, Euler/Navier-Stokes 1 6
MDTSL3D finite-volume. scalar or TVD dissipation. residuai smoothing solver

cell-centered Runge-Kutta explicit
scheme

3-D. mulliblock-structured central-diftfencing with local time stepping Euler/Navier-Stokes 2
finite-volume, scalar or TVO dissipation, solver, finite-rate

MORS3 cell-centered Runge-Kutta explicit chemistry,
scheme extensive plume

_______ ____________applications

3-D, unstructured, central-differencing with local time stepping Euler/Navier -Stokes 3
finite-element, tetrahedrons scalar or flux-corrected- solver

MDFENS cell-vertex- transport dissipation,
based Galerkin Ftunge-Kutta or

Lax-Wendroff explicit
scheme

COMPANY IINSTITUTION: Mississippi State University_______ _____

CODE 1DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

3-Dl. muftiblock-structured upwind-biased local time stepping. Euler/Navier-Stokes 28.* *
finite-volume. (flux-vector- or discrete solver, unsteady 29

AGE cell-centered flux-difference-splitting) Newton-relaxation and aeroelastic 7
differencing. two-factor applications,
LU implicit scheme propeller models.

turbine applications __

COMPANY I NSTITUTION-: Rockwell International
CODE DISCREr. GRIDS SPACEITIME 1CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-1). multiblock-structuredl upwind-biased (flux- 1local time stepping Euler/parabolized 4
finite-volume, difference-spliting) INavier-Stolres/
cell-centered differencing. three-factor Navier-Stokes

USA AF implicit scheme with solver
dtagonal or block
inversions or explicit

________ ________ Funge-Kutta scheme
3-1), montoblock-structured upwind-biased (flux- local time stepping predominantly 5 8
finite-volume, difference-spliting) supersonic Euler

EMTAC cell-centered diftferncing. two-factor space-marching
AF implicit scheme solver, finite rate

______ ______ __________chemistry

3-D, multiblock-structured upwind-biased (flux- local time stepping predominantly 6
finite-volume, patched grids difference-splitting) supersonic Euler

EMTAC-UZ cell-centered ditferencing, two-factor space-marching
AF implicit scheme solver, finite rate

_______ _______ _____________________ __________chemistry

COMPANY I INSTITUTION: United Technologies Research Center
CODE DISCRET. GRIDS SPACETIME CONVERGENCE SPECIAL REF.PO

TECHNIQUE DISCRET. ACCELERATION FEATURES O

3-D. muftiblock-structured central-differencing, local time stepping. surface shear stress 9. I

(UTRC-1) finite-volume, patched grids Lax-Wendroff explicit mufigrid viscous model. 10. 9
cell-vertex scheme extensive appl. to 11t____________________~~turine &___________ cascades___________
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COMPANY / INSTTUTIN* Virginla Polytechnic Institute end State, University _ _ _ _

CODE DISCRET. GRIDS SPACETME CONVERGENCE SPECIAL 1REF. POIC
TECHNIQUE DISCRET. ACCELERATION FEATURES 0

3-0. multiblock-structwed upwind-biased~ local time stepping, Eulerlparabolized 36.
fingte-volume, (flux-vector- or implicit source terms Navier-Stokes 37
cell-centered flux-difference-splitting) solver, finite-rate

GASP differencing, Chem istry()
exploictmplicit relaxation
scheme with black or

__________diagonal inversions 10

3-0. multiblock-structured upwind-biased local time stepping Euler/parabolized 43
finite-volume, patched grids (flux-vector- or Naviei-Stokes

CFL3DE cellcentered flux-difference-splitting) solver
diftfencing. hybrid
implicit relaxation

CODE 1DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D mutibockstrctredcenraldiferecig. oca tie seppng aeroelastic and 32

finmuftbloc-struture hybrid explicitimplicit timeff
3-0. :sche 9 loa applications

COMPANY / INSTITUTION: Massachusetts Institute of Technology_ _ _ _ _0

CODE DISCRET. GRIDS SPACETIME CONVERGENCE ] SPECIAL TREF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES {

2-D. multiblock-structured central-differencing, local time stepping Icoupled intc-giai 138.
ISS finite-volume direct-solver implicit boundary-layer 139 12

scheme jschemedesign* *
COMPANY /INSTITUTION: Naval Surface Warfare Center

CODE DISCRET. GRIDS SPA(.ETME CONVERGENCE SPECIAL REF. POC
TECHNIQUE I DISCRET. ACCELERATION FEATURES

1 3-D, muttiblock-struclured explicit MacCormack local time stepping space-marching 40.SWINT finite-volume predictor-corrector cylindrical coord.. 41
scheme appl. to thin fins,0

fitted bow shock 13
3-r muftiblock-struclured second-order Godunov local time stepping space-marching 40.

ZEUS fiite-volume predictor-corrector titted bow shock 42
scheme

COMPANY IINSTITUTION: WrIght-Patterson Air Force Base
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. monoblock-structured central-differencing, local time stepping. Euler/Navier-Stokes 48.

FDL3DI finite-difference implicit three-factor AF subiterations solver 49
with diagonal or block
inversions

3-D. monoblock-structured upwind-biased local time stepping EulerlNavier-Stokes 50
finite-volume, differencing (flux-vector- sle
cell-centered or flux-difference-

FDL3DEI splitting), Runge-Kulta 14
explicit scheme or
implicit-line Gauss-Seidel
scheme

3-D. unstructured, upwind (Roe, Haflen. local time stepping Euler/Navier-Stokes, 510
WLLA-ggo finite-volume, hexahedrons, Yee TVD), Runge-Kutta solver

____adaptive capability explicit scheme
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COMPANY I ITlUflON: Ecole Palytohnlqu. CERCA - Canada_____
CODE DISCRET. GRIDS SPACE/TUME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0, unstructured, upwind flux-difefence local time stepping moving boundaries, 54

MC3 finite-volume, movig. adaipie splitin. explicit: time evolvn topology. 1
cell-centered marching electric arc

inter action

COMPANY / INSTITUTION: University of Toronto, Inaste for AerosPac Stud..11 CNNda
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
2-D. multiblock-structured central-diflerencing, local time stepping Euler/Navier-Stolies 55

u m finite-difference implicit two-factor AF sovr16
scheme with diagonal
inversions

COMPANY) INSTITUTION: The University of British Coumbia -Canada_____0
CD IC El GISSAEM CONVERGENCE SPECIAL 'R EF 1 POC
COCHEIQU DISCRET.GISSAETM ACCELERATION FEATURES -I

finite-volume, multiblock-structured power-law discretization, mulligrid Euler/Navier-Stokes 1

MGFD cell-centered implicit scheme solve

COMPANY/I INSTITUTION: CANADAIR -Canada
CODE IDISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. monoblock central-differencing, local time stepping. boundary-layer 8

FLOE7W93 finite-volume, structured (C-H) Runge-Kutta, explicit residual smoothing, coupling
cell-vertex scheme enthalpy damping, FLO67WBV

_____________multirid

3-0. muttiblock-structured central-differencing local time stepping, 8 180 0
MBTEC finite-volume. (H-H), wing-body Runge-Kutta. explicit residual smoothing,

cell-vertex scheme enthalpy damping,
_______ __________________ ______________muhtigrid ______

COMPANY/I INSTITUTION: DE HAVILLAND - Canada
CODE DISCRET. GRIDS SPACE/ITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES0
3-0. structured central-differencing. local time stepping, 45.
finite-volume, Runge-Kutta, explicit residual smoothing, 46 18

MGAERO cell-centered scheme enthalpy damping,
_______ ________ __________ _____________multigrid ______

COMPANY/INSTTUTION: Concordia University - Canada
CODE DISCRET. GRIDS SPACETIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
2-1), monoblock steady equations, marching in artificial EulerlNavier-Stokes

FEMSAP20 Galerkin unstructured. Newton linearization and viscosity solver. 19
finite-element bilinear elements direct solver axisymmetric coord.

_________ __________ ______________________________ ________________option

COMPANY / INSTITUTION: Carleton University - Canada
CODE DISCRET. GRIDS J SPACETIME CONVERGENCE SPECIAL REF. POC

TECHNIGUE ___ ___IDISCRET. ACCELERATION FEATURES

AutoFEM fiite-element 8- or 15-node brick operator splitting conjugate gradient option, hierchicel 20
elements, solver elements
tetrahedra or

_________ __________ jtriangular elemens
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3.1.3 Points of Contact Point of Cotact (POC) No. 6:

Code(s): NASTD, SCRAM, MDTSL3D, MDNS3D,
MDFENS

M..1 of Contact MOO0 No. |: Name: D. Halt

Code(s): ARC3DD F3D, CENS3 ept.: Aerodynamics and Flight Controls 0
Name: .D D S3Tel.: (314) 232-0519
Name: T, Pulliam Mailing Address: McDonnell Aircraft Company
Dept.: Fluid Dynamics Division Mail Code 1I 111041
Tel.: (415)604-6417 P.O. Box 516
Mailing Address: NASA Ames Research Center St. Louis, MO 63166

MS 202A-2 Tel.-Company: (314) 232-0519
Moffett Field, CA 94035-1000 Fax-Company: (314) 777-1328

Tel.-Company: (415)604-6417 References: 1-3, 15, 16 0
Fax-Company: (415) 604-1095
References: 33 - 35

Point of Contact PO) No. 2: Point oflCotact (P ) No. 7:

Code(s): EAGLE
Code(s): MIM3D Name: D. M. Belk
Name: F. Marconi Dept.: WL/MNAA
Dept.: Aero Science Directorate Tel.: (904) 882-3124
Tel.: (516) 575-2228 Mailing Address: Eglin AFB, FL 35342-5434
Mailing Address: Grumman Corporate Research Center TeL-Company: (904) 882-3124

MS k08-35 Fax-Company: (904) 8P2-2584
Eihpage, NY 11714 References: 28,29

Tel.-Company: '4 16) 5"5-2228
Fax-Company: ,516) 575-7716
References: Point of Cotact (PO) No. 8:

Point of Contact iP NCode(s): USA, EMTAC, EMTAC-MZo o No.3: Name: S. Chakravarthy
Dept. Computational Aerosciences

Code(s): AIRPLANE, FLO-67, FLO-57 Tel.: (805) 373-4435
Name: A. Jameson Mailing Address: Rockwell International Science Center
Dept.: Department of Mechanical and P. 0. Box 1085

Aerospace Engineering Thousand Oaks, CA 91358 0 *
Tel.: (609) 258-5138 Tel.-Company: (805) 373-4435
Mailing Address: Princeton University Fax-Company: (805) 373-4775

Princeton, NJ 08544 References: 4-6
Tel.-Company: (609) 258-5138
Fax-Company: (609) 258-1939
References: 8, 30, 31, 45, 46 Point of Contact (P00 No. 9:

4: Code(s): UTRC-I 0
Point of Contact "C) No. Name: T. Barber

Code(s): TAM Dept.: Physical & Mathematical ModelingNames: P.AM RComputational Science
Name: P. Raj Tel.: (203) 727-7619
Dept.: Aerodynamics Department Mailing Address: United Technologies Research Center
Tel.: (404) 494-3801 East Hartford, CT 06108Mailing Address: Lockheed Aeronautical Systems Company Tel.-Company: (203) 727-7619

D/73-07, Z/0685, B/L-10 Fax-Company: (203) 727-7656 0
Marietta, GA 30063-0685 References: 9- 11

Tel.-Company: (404) 494-3801
Fax-Company: (404) 494-3055
References: 12- 14 Point of Contact (PO-- No. 10:

Code(s): GASP, CFD3DEPoint of Contact (POC) No. 5: Name: R. Walters

Code(s): USM3D, CLF3D, N572, GAUSS2D, Dept.: Department of Aerospace and Ocean 0Engineering
SPARK3D, TLNS3D, LaRC-I, Tel.: (703) 231-6748

Name: LaRC.2, FUN2 Mailing Address: Virginia Polytechnic Institut, and State
Name: J~. L. Thomas UiestDept.: Computational Aerodynamics Branch University

Tel.: (804) 864-2146 Tel.-Company: (703) V31-6748
Mailing Address: NASA Langley Research Center Fax-Company: (703) 231-9632

Mail Stop 128 References: 36,37,43
Hampton, VA 23681

Tel.-Company: (804) 864-2146
Fax-Company: (804) 864-8816
References: 17 - 27, 44, 47, 52, 53
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.Nlt o Comtact (POC) N. 11: Poist of Costct (POC) No. 16:

Code(s): LeRC-I Code(s): UTMB2D
Name: D. R. Reddy Name: D.W. Zingg
Dep.: Computational Fluid Dynamics Branch Dept.: Institute of Aerospace Studies
Tel.: (216) 433-8133 Tel.: (416) 667-7709
Mailing Address: NASA Lewis Research Center Mailing Address: University of Toronto

Mail Stop 5-11 4925 Dufferin Street
21000 Brookpark Road Downsview, Ontario
Cleveland, OH 44135 CANADA M3H 5T6

Tel.-Company: (216) 433-8133 Tel.-Company: (416) 667-7709
Fax-Company: (216) 433-8000 Fax-Company: (416) 667-7799
References: 32 References: 55

Point of Contact (PO0 No. 12: Point of Contact (!OC) No. 17:

Code(s): ISES Code(s): MGFD
Name: M. Drela Name: M. Salcudean
Dept.: Aeronautics and Astronautics Dept.: Dept. of Mechanical Engineering
Tel.: (617) 253-0067 Tel.: (604) 822-2781
Mailing Address: MIT Technology Licensing Office Mailing Address: The University of British Columbia

(Heather Mapstone) 2324 Main Mall
MIT E32-300 Vancouver, British Columbia
Cambridge, MA 02139 CANADA \V6T 1 Z4

Tel.-Company: (617) 253-6966 Tel.-Company: (604) 822-2781
Fax-Company: (617) 253-6790 Fax-Company: (604) 822-2403
References: 38, 39 References:

Point of Contact (PO) No. 13-: Point of Qontact (POC) No. 18:

Code(s): SWINT, ZEUS Code(s): FLO67WB, MBTEC, MGAERO
Name: A. B. Wardlaw, Jr. Name: F. Fortin
Dept.: Information and System Sciences Branch Dept.: High Speed Aerodynamics Laboratory
Tel.: Tel.: (613) 998-9201
Mailing Address: Naval Surface Warfare Center Mailing Address: The National Research Council Canada * 0

Code B44 Institute for Aerospace Research
10901 New Hampshire Avenue CANADA KIA 0R6
Silver Spring, MD 20903 Tel.-Company: (613) 998-9201

Tel.-Company: (301) 394-2265 Fax-Company: (613) 998-1281
Fax-Company: (301) 394-3923 References: 8, 45, 46
References: 40- 42

Point of Contact (POC) No. 19:Point of Contact {POC) No. 14:

Code(s): FEMSAP2D
Code(s): FDL3DI, FDL3DEI, WL/Leggo Name: W.G. Habashi
Name: W. P. Webster Dept.: Dept. of Mechanical Engineering
Dept.: Computational Fluid Dynamics Division Tel.: (514) 848-3165
Tel.: (513) 255-2551 Mailing Address: Concordia University CFD Lab
Mailing Address: WLJFIMC 1455 De Maisonneuve W.

Bldg. 450 Montreal, Quebec
2645 5th St., Ste. 7 CANADA H3G IM8
Wright-Patterson AFB, OH 45433-7913 Tel.-Company: (514) 848-3165

Tel.-Company: (513) 255-2551 Fax-Company: (514) 848-8601
Fax-Company: (513) 476-4210 References:
References: 48-51

Point of Contact (P00 No. 15:
Point of Contact (POC) No. 20:

Code(s): MC3
Name: R. Camarero Code(s): AutoFEM
Dept.: Centre de Recherche en Calcul Appliqui Name: J.A. Goldak
Tel.: (514) 369-5200 Dept.: Dept. of Mechanical & Aerospace
Mailing Address: CERCA Engineering

5160, Boulvard Decarie Tel.: (613) 788-5688
Bureau 400 Mailing Address: Carleton University
Montreal, QC 1125 Colonel By Drive
CANADA H3X 2H9 Ottawa, Ontario

Tel.-Company: (514) 369-5200 CANADA KIS5B6
Fax-Company: (514) 369-3880 Tel.-Company: (613) 788-5688
References: 54 Fax-Company: (613) 788-8958

References:
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312 CODES FROM FRANCE, BELGIUM, ITALY A Lax-Wendroff-Ni scheme was the basis of the development
of a multiblock structured grid code, the AEROLOG code at

GREECE AND TURKEY MATRA DEFENSE 4"5 . This code with acceleration by multi-
grid and implicit residual smoothing is used for steady or un-

3.2.1 OVERVIEW steady flows past missiles.

The Euler code EUGENIE developed at DASSAULT AVIA-
Among the 3-D Euler codes used in industry for complex con- TION is the result of joint research studies37" 6 with INRIA on
figurations, a majority of them is of the multiblock structured unstructured grid methods and upwind schemes in a finite-
grid type and practically all codes are derived from a finite- volume node centered formulation. Multigrid and implicit ap-
volume discretization. These codes, developed either directly proach are combined in order to improve convergence. Mesh
by industrial companies or by research institutes, are generally adaption either by displacement or refinement and hypersonic
implemented together with an independent grid generation sys- capabilities are available. It is worth to mention here the strong
tem. impetus given through Europe to the research on hypersonic

flow solvers through the Hermes programme and the wokshops
It is noted that in France and in Belgium upwind schemes have on hypersonic flows for reentry problems held at IN-
been largely favoured for many years and that, for the case of RIA.'

space centered differencing, classical variants of the Lax Wen-
droff scheme (SESAME, AEROLOG) or a more original one Two research centers have been concerned in Belgium with the
(WAVES) have been preferred over the Runge-Kutta central development of CFD codes, namely the von Karman Institute
schemes of Jameson et al (e.g. Ref. 3.0,1). By contrast Jameson (VKI) and the Free University of Brussels (VUB).
schemes are favoured in the 3-D codes used by industry in It-
aly. Many 2-D research codes were developed at VKI both for un-

structured 1-54 and structured" grids with a 3-D Euler code
However, the tendency for most of multi-application codes has M3D55 57 containing several options in particular with different
been to progressively incorporate variants which are added to upwind and various time stepping schemes. A noteworthy ac-
existing capabilities in order to provide the users with a larger tivity at VKI is the development of genuinely multidimensional
choice according to their needs. Indeed, the different objectives upwind schemes 3 . 4

of robustness, accuracy or low computer costs can strongly in-
fluence the choice of the options available in a general code for The EURANUS '5 code developed at VUB in cooperation
various applications, with FFA for ESA appears as a general software system capa-

ble of solving both Euler and Reynolds-Averaged Navier-
Another common tendency is the extension of Euler codes to Stokes equations. This structured multiblock code includes
Navier-Stokt'e solvers by including viscous terms and turbu- both upwind TVD and central Jameson schemes with the FAS
:ence models. multigrid method. Special care has been paid to the data man-

agement in order to give flexibility in the choice of the coin-
After these general statements we will survey the various codes puter used. • *
developed to solve the Euler equations by different companies
or research laboratories. In Italy, industrial codes are developed by ALENIA in the To-

rino and Naples centers. In ALENIA Defence Aircraft Divi-
In France at ONERA (French National Aerospace Research sion, the UES3D 59"62 code is based on a generalization of a cen-
Institute) several different Euler codes have been worked out. tral differencing scheme of Jameson type for unstructured
The SESAME code is a multidomain '2 solver with or without grids, using a node-centered finite-volume approach. Explicit
overlapping of blocks based on a Lax-Wendroff-Ni finite- Runge Kutta time stepping is used with convergence accelera-
volume method of cell vertex type with a multigrid accelera- tion by local time stepping, residual averaging and enthalpy 0
tion technique.,3,4 It has been recently completed with a Runge- damping. Grid generation is done with the unstructured mesh
Kutta time stepping scheme in a cell-centered discretization generator M3DU giving the code the capability to calculate a
making the multiblock boundary treatment easier. Both internal complete aircraft. Another 3-D code is in use at ALENIA DAD
(turbomachinery3-6) and external (transport aircraft7) flows can which is of multiblock structured type. This code (MES3D 62"63)
be computed with this code which has a closely related Navier- contains a cell-centered scheme with central differencing and it
Stokes extension (CANARI). The WAVES code is more spe- is built with the same options as those described above for
cific and it is founded on the implicit Lerat scheme which has UES3D.
the unique feature of beinr a centered scheme without any
added artificial viscosity.9 '- Its domain of application has been A code in use at ALENIA GAT is ENSOLV which has been
mainly helicopter rotor flows.8 Its fusion with the SESAME developed in cooperation with NLR. This code is described in
code has been recently achieved. section 3.4 and offers features rather similar to those mentioned

for MES3D.
Two other codes have reached a level of industrial use, both in
the class of upwind methods. Firstly, the FLU3C code was de- CIRA has also a 3-D Euler code ETF3D, a monoblock struc-
veloped in close cooperation with the Missiles Division of tured grid solver with Jameson type scheme, dedicated to the
AEROSPATIALE- specially for supersonic applications."2-

26 calculation of transonic wing flows. The 2-D multiblock ver- 0
Mainly developed at ONERA and much more general with its sion of this code has been coupled with an integral boundary
multiblock capability and its large number of options (various layer method in direct or inverse mode 6 s5 . Several other 2-D
numerical fluxes in a MUSCL approach, different multizone solvers have been developed upon upwind schemes with the
techniques, implicit time stepping, Navier-Stokes extensions) Borelli/Pandolfi Rieman-solver in a finite-volume cell-centered
and its efficiency particularly for supersonic and hypersonic formulation. These research codes are aimed at solving super-
flows (space-marching, real gas effects), the FLU3M code 3 "21  sonic or hypersonic flows with real gas effects. 6&7

has a structure which allows both complex applications and the
implementation of new modules at the research or development In the same line of studies for hypersonic problems it is worth 0
level. Other Euler codes can be quoted which are developed at mentioning the research codes developed at the University of
ONERA in the Structures Department for aeroelasticity Roma. These 2-D Euler codes are based on upwind schemes of
(EF3D 27-2 ) and in the Propulsion Department. 9W 0  different types, a generalization of the Moretti scheme with ap-

plication to reactive flows7 " a hybrid of non-conservative
AEROSPATIALE uses Euler codes provided by ONERA and conservative schemes73'76 and a Godunov-type scheme in
(FLU3C, SESAME, FLU3M) but has also made some develop- predictor-corrector formulation. 7

7

ment of codes such as CELGR3D in the Space and Defence
Division. This solver is of unstructured type with hexahedra In Greece at the National Technical University of Athens 0
and upwind schemes and finds its domain of application in su- (NTUA) several Euler codes have been developed aiming on
personic or hypersonic flows.
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external as well as internal (turbomachinery applications) aero- regions different governing equations are solved is also noted
dynamic flow problems. The code is also able to operate in time-accurate mode. The im-

plicit operator is inverted by an unfactored method using
The 2-D single-block, structured finite-difference EU2D 78s u  

Gauss-Seidel relaxation for solution.
code is mainly used for investigations of unsteady, internal and
external flow problems in the range from the subsonic to super- A 2-D and 3-D multiblock finite-difference code ATHENA
sonic reime. The code is based on a central discretization essentially based on Jameson's central-differenced operator for
scheme including an artificial dissipation operator providing convective terms including the blended second and fourth dif-
the necessary upwind bias. Both, time and space discretization ference dissipation operator is applied mainly for turbomachin-
are of 2nd order accuracy. An alternating direction implicit ery flows. For time integration an explicit fractional step or an
(ADI) procedure is used for time integration. The code has a implicit ADI method may be used. The code has also a Navier-
moving mesh capability to treat appropriate unsteady problems. Stokes capability.

As a further development the 2-D multiblock finite-volume •
code NSWIND"' 8 is mentioned. The code has various discre- In Turkey a 3-D, cell-vertex, finite-volume code, called
tization options like a modified upwind flux vector splitting as ER3D, is developed at the ROKETSAN company, which is
well as the flux difference splitting method including the based on a hexahedral elementary control volume and an un-
Godunov-type Riemann-solver approach of Eberle (see also structured data structure to enhance flexibility. Time stepping
Ref. 3.3,22-31). By a multi-level mesh sequencing and multi- is based on second order accurate Lax-Wendroff scheme. Ap-
grid technique convergence is accelerated to steady state. A plications are covering the subsonic to supersonic flow regime.
composite zonal solution technique, in which for various flow

3.2.2 Presentation of Individual Codes 0

COMPANY / INSTITUTION: ONERA - France
CODE DISCRET. GRIDS SPACETIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblock-structured, space-centered with local time stepping, Navier-Stokes 1-7
finite-volume. patched or either Lax-Wendroff-Ni or multigrid (Ni-method) or extension: CANARI * *

SESAME cell-vertex or overlapping blocks Runge-Kutta time implicit residual code
cell-centered stepping scheme smoothing (Lerat)

3-0, monoblock-structured space-centered with local time stepping no addition of 8-12
finite-volume. Lax-Wendroff-type (Lerat artificial viscosity

WAVES cell-centered extension), implicit stage
with ADI factorization

3-D. multiblock-structured upwind explicit/implicit local time stepping Euler/Navier-Stokes 13-21 0
finite-volume, overlapping MUSCL schemes (van solver, space
node centered subdomains Leer, Roe, Osher, marching capability.

FLU3M or cell-centered (Chimera technique) Approximate Riemann equilibrium real gas,
solvers), block implicit two species gas
ADI factorization scheme

COMPANY / INSTITUTION: ONERA & Aerospatiale. - France _

CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC
TCHNIQUE DISCRET. ACCELERATION FEATURES

3-1). monoblock. second order upwind local time stepping space marching 22-26
fini'e-volume, structured explicit MUSCL scheme capability for

FLU3C node -ntered with van Leer flux vector supersonic flows, I
splitting industrial application:

missiles, launchers, 0
etc.

COMPANY I INSTITUTION: Aerospatlale - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES

3-0, unstructured MUSCL scheme with local time stepping equiibrium real gas 32-33 •
finite-volume. hexahedra Sanders-Prendergast option

CEL3GR cell-centered flux splitting scheme or
Osher Riemann solver. 2
time stepping by two step
Runge-Kutta or linearized
implicit Jacobi relaxation
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COMPANY I INSTITflIO#: Maom Defne- Franc.e_____
CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES_-
3-0. multiblock-strudtured Lax-Wendroff one step multigrid (Ni-methodl, steady or time 34-35
finitevolumne. explicit scheme. steady implicit residual accurate mode.

AEROLOG cell-vertex or time accurate mode smoothing (Lerat) inertijal or non-3

inerial frame of
reference, two

____ _ _ ____ __ ____ _ _ ____ ___ _ __ ___ ___Specie capability

COMPANY if INSTITUTION: Dassault Aviation - France
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL F. POC0

TECHNIQUE IDISCRET. ACCELERATION FEATURES
3-0. Galerkin unstructured upwind MUSCL multigrid reactive flow p36-47
formulation. muttielemerit, mesh extension, simulation option,

EUGENIE flnife-oume, refinement and generalized implicitly edge based data noe4nee ehdfrain lnaie se tutr

I____ _____ capability I Riemann-slver_______ __

COMPANY / INSTITUTION: VriI. Universitalt Brussel - Belgium
CODE DISCRET. GRIDS SPACETIME CONVERGENCE SPECIAL -REF.' Poc

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. muftiblock-structured Roe upwind TV0, Yee local time stepping, Euler/Navier-Stokes 48-50
finite-volume, symmetric TVD or central multigrid (FAS), solver,
cell-centered Jameson scheme with implicit residual node coincidence at

blended second and smoothing for block interfaces
fourth difference Runge-Kutta 5

EURANUS dissipation operator.
explicit Runge-Kutta and
SOR / SLOR implicit
relaxation time stepping

COMPANY /INSTITUTION: VKI (Von Korman InatIhtt for Fluid Dynamics) - Belgium
CODE DISCRET. GRIDS SPACE/IME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. monoblock-structured Roe flux difference local time stepping, shock capturing, 55-57
finite-volume. splitting, van Leer flux explicit and implicit subsonic to
cell-centered vector splitting upwind residual smoothing hypersonic (cold)

and MUSCL TVD flow 60
M30 scheme, explicit Euler

forward, explicit Runge-
Kutta anid implicit Euler
backward relaxation time

______ ______ _________stepping scheme

COMPANY IINSTITUTION: Malnia Aeronautics, DAD - Italy
CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. unstructured, local central Jameson scheme local time stepping. 59-62
finite-volume, mesh refinement with blended second and residual smoothing,

UES3O node-centered fourth difference enthaly damping
dissipation, explicit
Runge-Kufta time
stepplng scheme 7

3-D. muftiblock-structured central Jameson scheme local time stepplng, 62-63
finite-volume, with blended second and residual smoothing.

MES3D celf-centered fourth difference enthaly damping
dissipation, explicit
Runge-Kutta time

________________________stepplng scheme

-------- --
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COMPANY / MIIIS TI ON: Alenl Awaonautlca GAT.- Itay_______
CODE DISCRET. GRIDS SPACEfTIIIE CONVERGENCE SPECIAL REF. -POC-1

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. mullilock-structured central Jameson scheme local time stepping, Eulet/Navier-Stokee in -0

finite-volume,' block-to-blocki mesh with blended second and implici residual solve(. sect
cal-centered refinement and fourth diffeec averaging. enithalpy part of CFD system 134 8

ENSOLV adaptation disSipatin. eplicit damping, multigrid - full ENFLOW .21-41
mulistage Runge-Kutta & semi-coarsening (see section 3 4)

time stepping scheme

COMPANY IINSTITUTION: C.LR.A. - Italy _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CODE DISCRET. GRIDS 1 SPACEfMME CONVERGENCE SPECIAL REF. POC'
TECHNIQUE DISCRET. ACC ELERATION FEATURES

3-D, monoblock-strucltedl central Jameson scheme FAS multigrid 64-65
finite-volume, with blended second and

ETF30 cell-centered fourth difference 91
dissipation, explicit I
Runge-Kutta time

_______ ________ ___________stepping scheme ______ _

COMPANY IINSTITUTION: National Techicall University of Athen (NTUA) - GREECE
CODE DISCRET. GRIDS SPACETIME CONVERGENCE SPEC1AL REF. POTECHNIQUE DISCRET. ACCELERATION FEATURES

2-1). axisymm.. single block- second order central time accurate code. 78-80
finite-difference structured discretization, artificial moving mesh

EU.2D dissipation scheme., capability
approximate factorization
procedure. ADI, second
order time accuracy

2-D, axisymm., multiblock-structured, upwind flux vector (FVS) local time stepping, time accurate 181 -85
finite-volume, block-by-block grid splitting and flux multi-level procedure, option. zonal I
cell-centered refinement, difference splitting (FDS) multigrid methods capability. 0

NSW1ND discretization, Eberle's real gas option
Riemann-sofver. second [ 10
order MUSCL scheme,.
implicit unfactored
Gauss-Seidel relaxation

2-0. 3-1), and multiblock-structured central Jameson scheme local time stepping Euler/Navier-Stokes 86
quasi 3-D, with blended second and solver..

ATHENA finite-difference fourth difference quasi 2-D
dissipation, explicit streamtube turbo-
fractional step and machinery option
implicit ADl time

__________integration scheme

3.2.3 Points of Contact

Point of Contact IPOC) No. 1: Point of Contact (POC) No. 2:

Code(s): SESAME, WAVES, FLU3M, FLUXC Code(s): CEL3IGR
Name: J.P. Veuillot Name: F. Dubois
Dept.: Aerodynamics Department Dept.: Applied Mathematics Department
Tel.: (+33) 146 73 4268 Tel.: (+33) 134 9228 57
Mailing Address: ONERA Mailing Address: AEROSPATIALE Espace et Defense

BP 72 BP 2
F-92322 Ch~tillon Cedex F-78133 Les Mureaux Cedex
France France

Tel.-Company: (+33) 1 46 73 40 40 Tel.-Company: (+33) 1 34 92 12 34
Fax-Company: (+33) 1 46 73 41 41 Fax-Company: (+33) 1 34 92 39 15
References. 1 -26 References: 32 -33
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Point of C2mAct (EM) Not.3- P01111 of Cstact TOO0 No. 8:

Code(s): AEROLOG Code(s): ESOLVB
Name: M. Bredf Name: P.L.Vitagliant,
Dept.: Aerodynamics Department Dept.: G.AT.
Tel.: (+33) 1 34 8837 47 Tel.: (+39) 081 845 3459
Maiing Address. MATRA DEFENSE Mailing Address: ALENIA

37 Avenue Louis Breguet Viale dell'Aeronautica
F-78146 Vetizy Cedex 1-80038 Pomgiiano d'Arco (NA)
France Tel.-Company: (+39) 081 845 3459

Tel.-Company: (.33) 1 34 88 3000 Fax-Company. (+39) 081 845 2142
Fax-Company: (+33) 1 34 65 12 15 References. (see sect. 3.4, ref. 21 - 41)
References: 34,35

P.4.1 of Costact (POOI No. 4: Point oft( ontact (P00) No. 9:

Code(s): EUGENIE Code(s): FTF3D
Name: B. Stoufflet Name: P. de Matteis
Dept.: Aerodynamics Department Dept.: Aerodynamics
Tel.: (+33) 1 47 11 34 22 Tel.: (+39) 823 623311
Mailing Address: DASSAULT AVIATION Mailing Address: C.I.R.A.

78 Quai Marcel Dassault Via Maiorise
F-92214 Saint Cloud 1-81043 Capua
France Tel.-Company: (+39) 823 623111

Tel.-Company: (+33) 1 47 It 40 00 Fax-Company: +.39) 823 622060
Fax -Company: (+33) 1 47 11 4901 References: 64, 65
References: 36 -47

POWn Of Contact (P0Q No. 5: Point of Contact (P00 No. 10:

Coe()7 -UANSCode(s): EU2D3, NSWIND, ATHENA
Code:s LaUrU Name: S. Tsangaris

Name C. acorDept.: Aerodynamic L.aboratory
Dept.: Computational Fluid Dynamics Group el:(+30) 1-77-13060
Tel:g (+32)26412379esiei Busel(VB Mailing Address: National University of Athens (NTUA)

Mailng Adres: VijeUnivrsieit rusel (UB)P.O. Box 64070* 0
Pleinlaan 2 157 10 Zografou
B- 1050 Brussel Greece
i3elgium Tl-opn:(3)17-36

Tel.-Company: (+32) 2 641 23 91 Tel-Company: (+30) 1-77-064 r17-48
Fax-Company: (+32)? ' ,, 41 28 80 References: 78 -86
References: 48 -50

Point of Contact (POCI No. 6:0

Code(s): M313 3.24 References
Name: H. Deconinck I IINH n EILT .. Mtoe suo
Dept.: Computational Fluid Dynamics Group int1i. aie pourD . cacVUILL d'.ouemnt Mtranssiudo-
Tel.: (+32) 2 358 19 01 ext 237 intonAie pulctonr. 98- andcu d uEmngsh transltions,

Maiin Adres:Von Karman Inst. for Fluid Dynamics (VKI) -NR ulcto t 98- n nls rnlto
Maiin Adres:72 Chaussee de Waterloo "Pseudo-Unsteady Methods for the Computation of Transonic

B-1640 Rhode - St - Genese Flows," ESA TT 56 1.
Belgium 2. CAMBIER, L, DUSSON, V. and VEUILLOT, i.P., "Mul-

Tel.-Company: (+32) 2 358 19 01 tidomain Methods for Solution of the Euler Equations. Appli-
Fax-Company: (+32) 2 358 28 85 cations with Overlapping Subdomains," La Recherche Aero-
References: 55 -57 spatiale, Vol. 1985-3, pp. 181-188 (French and English

editions).
3. COUAILLIER, V., "Solution of the Ewier Equations: Ex-Point of Contact (FOCI No. 7: plicit Scheme Acceleration by a Mtiltigrid Method," Second
European Conference on Multigrid Methods, GAMM Cologne,

Code(s): MES3D), UES3D) Oct. 1985, GMD-Studien Nr. 110 and TP ONERA Nr. 1985-
Name. M. Borsi 129.
Del.: Defen) A1rcraf Div1io 4. COUAJLL[ER, V. and PEYRET, R., "Theoretical and Nu-
Telin (+3ress AEII1 11 merical Study of the Ni's Multigrid Method," La Recherche

Corso Marche 41 Aerospatiale, Nr. 1985-5, (French and English editions).
1-10146 Torino 5. VUILLOT, A.M., "A Multi-Domain 3D Euler Solver for

Tel.-Company: (+39)11 718 1789 Flows in Turbomachines," Proceedings of the 9th ISABE Sym-
Fax-Company: (+39)11 718 1078 posium, Athens, Sept. 1989.
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33 CODES FROM GERMANY AND tries. The treatment of complex geometries is faclitated by an

SWITZERLAND advanced multiblock technique allowing a neral seginenta-
tion of block faces leading to a high flexibility concerning the
application, the connection and the built-up of any types grid 0

3.3.1 Overview block topologies. Explicit and implicit integration schemes are
available based on the same cell-centered spatial discretization

In the following the essential Euler codes from Germany and assuring identical steady state results.

Switzerland are presented. Most codes being developed in in- Explicit integration is performed by a linear multistage Runge-
dustry follow a structured approach whereby either a flexible Kuna-type time-stepping scheme. Convergence acceleration is
moanoblock or a general mutiblock strategy is applied to ac- provided by several techniques like local time-stepping, im-
complish the treatment of complex geometries including full plicit residual averaging, enthapy forcing and a FAS multiguid
configurations of aircraft, missile and space vehicles. To scheme, offering V- and W-cycle options.
achieve a reasonable level of productivity with respect to flow
computations most industries have interfaced their codes to a Implicit steady state solutions are also enabled by an approxi-
dedicated grid generation system providing all necessary mate Newton-method operating on the steady state equations.
block-interface informations for the solver. Another observa- The corresponding relaxation method is called the LU-SSOR
tion which can be made is the fact that almost all general pur- %cheme which can be used together with the multigrid option to
pose Euler-codes can also be used for viscous simulation by enhance convergence.
solving the Navier-Stokes equations.

From early 3-D flow simulations past wings and wing/body
Research and development of new approaches concerning dis- combinations 9 the code was also applied to inviscid flow
cretization schemes and solution techniques take place mainly problems around inetl' 1 and propfan - configurations as well
at universities and research establishments. From there a broad as vortical flows vast delta wings.13

-16 Moreover IKARUS was
variety of codes are reported which mostly are limited in their successfully applied for great number of flow problems ranging
ability to treat geometrically complex problems or physical from in the low subsonic (incompressible) up to the hypersonic
models, flow range17 

which includes also simulations based on the
equilibrium real gas assumption" 1 9

To characterize the major individual Euler-codes from industry e

and research institutions by their underlying basic schemes and The flow solver IKARUS is logically complemented by an in-
the intended range of applications corresponding short descrip- teractive grid generator called DOGRID which allows a fast
tions are provided below. The presentation is ordered accord- and easy generation of complex blockstructured meshes. 3

'
ing to the institutions where codes were developed.

EgUFLEX. INFL.EX ROTFLEX:
MELINA: Essentially based on the work of Eberle at DASA Military Air-
At the DASA Airbus Division company essentially the codes craft Division (formerly MBB/UF) a 3-D Euler code, called * *
developed at the DLR-Institute for Design Aerodynamics in EUFLEX, is continuously developed since 1984. In the mean-
Braunschweig are used and implemented as the code baseline, time the code has achieved a high level of theoretical sophisti-

cation. For these reasons the code is applied with great success
However further development and refinement for production in practical aerodynamic project work as a general purpose de-
purposes takes place within the company. sign tool not only in the military aircraft division but also at the

corresponding missile, helicopter and propulsion divisions of
The finite-,'vlume cell-vertex code MELINA is the result of DASA.
these efforts. Foe code is multiblock-structured and is applied
mostly to transonic problems for transport aircraft design." 3  EUFLEX is based on a monobock, finite-volume method for
MELINA is based on an explicit 5-stage Runge-Kutta time solving the integral form of the conservation laws for inviscid
stepping scheme and a cell-centered discretization combined flow. A "Godunov-type" differencing approach is followed,
with the blended artificial dissipation operator as proposed by enforcing the efficient solution of the Riemann problem at each
Jameson et al.4 Convergence acceleration is provided by a full cell face for definition of interface states.
approximation (FAS) multigrid method whereas increased spa-
tial accuracy can be achieved by a block-oriented local grid re- Because of the very special approach some essential aspects of
finement capability. Recently the code was extended to a the method are described in more detail. The basic theory 

2
-1-

Navier-Stokes solver. starts the development by considering the Riemann problem in
the non-conservative, differential form of the Euler equations

Apart from routine tasks as the flow simulation around wings resulting in an exact, iteration-free solution to the Riemann
and wing/body configurations emphasis is on support for lami- problem. However the basic approach has the disadvantage that
nar wing design, integration of propulsion systems and flap into the corresponding solution of the primitive solution vector
track fairing design. at the interface also entropy values from right or left states en-

ter. In practical computations this fact lead to non-negligible
Grid generation is tailored to design oriented tasks and is pro- entropy errors. To overcome that problem an successful at-
vided by the INGRID system, an in-house development, tempt is made to find a solution of the Riemann-problem in

terms of the conservative variables. In the development of the
so-called "homogeneous" Riemann-solver properties and as-

IKARUS: sumptions of acoustic wave theory are exploited. Essentially
At the DASA Regional Turboprop Division, which is formed the isentropic transport of entropy along streamlines is used to
by the Dornier Luftfahrt company, the general purpose code define appropriate interface pressure values. Using the homo-
IKARUS is in continuous development since 1984. The code geneous property of the Euler fluxes :hen allows the transfor-
development was initiated from and based essentially on the mation to the corresponding Riemann solution in terms of con- 5
work of Jameson and Schmidt. " The 3-D version of that basic servative variables.
approach was Jameson's FLO-57 from which an early mul-
tiblock version was derived by Jameson and Leicher forming Into the relations defining the conservative variables at the in-
the basis for Dornier's IKARUS code. terface as a solution of a locally one-dimensional Riemann-

problem, values for the conservative variables associated with
The structured multiblock code IKARUS is based on a cell- the individual eigenvalues have to be determined. This is per-
centered, finite-volume discretization for solving the steady formed by a third order interpolation between left and right
and unsteady, compressible 3-D Euler and Navier-Stokes equa- states. A symmetric weighted average of corresponding eigen- •
tions in integral form, thus providing numerical solutions to in- values between left and right states are taken. By that the
viscid and viscous flow problems in almost arbitrary geome-
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scheme is kept fully differentiable, preventing any glitches in to the outer computational region (shock fitting approach)
the solution whenever eigenvalues are changing sign. This whereas shock waves embedded inside the shock layer are cap-
process is called the "characteristic flux averaging" scheme. tured. The code is able to deal with perfect and equilibrium gas
Higher order accuracy is achieved by the MUSCL-approach in conditions.

38 
An upwind discretization approach is used relying 0

concert with an improved van Albada-flux limiter. Correspond- on sign-splitting of the associated flux Jacobians. Some efforts
ing non-o6cillatorv extrapolation formulas are given and tested are made to accomplish the eigenvalue decomposition with an
up to fifth order.. appropriate set of eigenvectors. Originally space integrationwas performed with an explicit Runge-Kutta scheme. For sta- (4)
In the original version of the code time integration to steady bility reasons each space integration step is now considered as
state was performed by an explicit scheme supported by the lo- the steady state solution of a time-dependent problem. Some
cal time stepping technique. Acceptable convergence rates, emphasis is put on the formulation of the wall boundary condi-
however, could only be realized with point relaxation tion, which is carried out in the frame of characteristic comn-
schemes.3

4 
Some problems are reported concerning possible patibility relations. Results are presented for supersonic flows

singular implicit block operator matrices for high aspect-ratio past a cone at incidence as well as for a delta wing and a ge-
cells 5 As a remedy a local transformation to non-conservative neric configuration of a hypersonic space transportation sys-

des is proposed, which avoids this ill-conditioning pob- tem.
3 9 4

The DAINV-SPLIT
'
- code is based on a finite-difference

,heme outlined so far was applied to a number of real life method for solving the time-dependent and quasi-conservative
-xses. with the simulation of the inviscid flow around a form of the 2-D and 3-D Euler equations. A diagonalisation of

,x~inplete fikhter aircraft as an exceptional highlight at the time the tiux Jacobians is performed to allow the proper implemen-
published.- A special effort was made to increase code robust- tation of a second order upwind scheme according to the sign
ness for hypersonic applications.-.273iJ This was due to the ob- of the associated eigenvalues."

4 3 
An explicit multi-stage

servation that the method produced pre-shock spikes during the Runge-Kutta time integration scheme is used in concert with
shock movement process for very strong shocks resulting in local time stepping to achieve steady state solutions. Solid wall
possible negative pressures. This is overcome by a generalized boundary conditions are based on characteristic compatibility
flux formulation in which the Riemann-flux vectors and the relations. The code has the capability for shock and shear layer
Beam/Warming split flux vectors are combined such, that at fitting and can treat flows under perfect, equilibrium as well as
strong shocks the Riemann-fluxes are switched off smoothly non-equilibrium gas conditions. First applications of the
and the more stable Beam/Warming fluxes are activated. The method are reported to nozzle flow problems" and flow simu-
success of the proposed approach is demonstrated by results of lations past the forebody as well as complete configurations of
intake

8 
and nozzle - flow computations. A comprehensive a reeentry vehicle under equilibrium real gas conditions.

45'4 6

description of the overall a proach is given in the textbook of
Eberle, Hirschel and Rizzi: The DAINV-SPLIT code is also extended to account for non-

equilibrium chemistry.
4
7.4 Chemical non-equilibrium condi-

The treatment of complex configurations is enabled by a tions add to the conservation equations for inviscid flow addi-
monoblock technique in which for each cell the desired bound- tional equations accounting for the mass conservation of the re- •
ary conditions are specified. Also available is multiblock ver- acting gas species. For low pressures, representative for reentry
sion of the EUFLEX-code. A Navier-Stokes version. derived situations, the specfic enthalpy of the various species can be
from the EUFLEX-code is developed as NSFLEX32. considered as only depending on temperature, whereas the

mixture of reacting gases is assumed to behave according to
Code development was also extended to the time-accurate Dalton's law. So formally the non-equilibrium code option has
treatment of unsteady flow problems. These efforts led to the been developed along similar concepts already proved for ideal
unsteady version, called INFLEX. 3-D applications were made or equilibrium real gas applications. The well-known Park's 5
to oscillating, but rigid wings in pitching motion. 32 "34 

For time species/I 7-reactions model without ionization is used and inte- •
integration an implicit unfactored relaxation scheme is em- grated by an explicit multistage time-stepping scheme. How-
ployed, which allows a dramatic shortening of computation ever, if in the chemistry model the various reaction time scales
time as compared to the explicit scheme. Careful studies are are smaller by orders of magnitude compared to the character-
conducted concerning the effect of different convergence crite- istic time scales of the locally frozen mixture then the chemis-
ria controlling the iteration process during one time step on the try is determining locally the time step size for the whole sys-
solution. 4  

tem of equations. In this situation the code switches to a
point-implicit 2.cheme for time integration of the source term

At the EUROCOPTER Deutschland company, a joint company appearing in the species mass conservation equations. 0
of AEROSPATIALE and DASA in the helicopter business EU-
FLEX is modified and adjusted to rotorcraft problems.353

" The Interestingly DAINV-SPLIT has an option to operate also with
resulting ROTFLEX code includes an unsteady and time- an enthalpy correction technique improving the convergence
accurate computation capability.6 rate to steady state as well as code robustness in transient solu-

tions stages. This is due to the fact that a constant freestream
total enthalpy is enforced in the whole flowfield. An additional

DAINV-SPACF. DAINV-SPLIT, DAVIS-VOL: option is called "pseudo space marching". By that acronym the
In the DASA Space Infrastructures Division the corresponding possibility is understood to march over the flowfield in stream- 0
aerodynamic department is working for more than a decade on wise direction with a stack of several grid planes. This tech-
inviscid flow problems essentially related to supersonic exter- nique provides a steady state solution for a specific grid plane
nal and nozzle type lows. In recent years strong emphasis is on in the middle of the stack. Assuming supersonic flow and a
hypersonic reentry and cruise problems. Hypersonic flow prob- proper implementation of a pure upwind scheme the final
lems are emerging from the European and national projects fo- steady state flowfield solution should be identical to a global
cussing on the reentry vehicle HERMES and the two-stage solution approach where at each time step a sweep over the
space transportation system SANGER. Continuous efforts have whole solution domain has to be carried out. Results are pre-
led to the development of a series of Euler codes, called sented for non-equilibrium flows past a cylinder and a sphere 0
DAINV-SPACE, DAINV-SPLIT and DAVIS-VOL, which which are compared to available experimental data.
will be characterized subsequently.

For shock fitting a general formulation of the Rankine-
DAINV-SPACE 37'4e 

is being developed since many years and Hugoniot relations was developed valid for ideal, equilibrium
belongs to the class of supersonic space-marching codes. The and nonequilibrium real gas in a co-moving coordinte system.-
numerical approach, originally based on a central-difference A procedure is outlined to reduce the general shock relations
scheme, has been developed to a split-matrix finite difference resulting in an efficient numerical scheme. Results are pre-
method solving the quasiconservative and steady-state form of sented for the flow past a complete HERMES configuration 0
the inviscid conservation laws. The outer shock wave is fitted under non-equilibrium conditions at Mach 25.0
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DAVIS-VOLO is a numerical method for solution of the 2-D sequently by introduction of a mesh embedding technique al-
and 3-D strong conservative form of the integral conservation lowing the change of mesh density by a factor of 2 for portions
laws. The approach follows the finite-volume time stepping of a mesh block. Corresponding improvement of the method
concept The numerical fluxes are evaluated according to a concerning efficiency in terms of computer time for specified
symmetric TVD scheme essentially proposed by Yee with the accuracy was demonstrated by Radespiel 5 for a transport air-
definition of the eigenvector matrices at the cell faces accord- craft wing/body combination.
ing to Roe. An implicit point or line Gauss-Seidel relaxation
scheme is adopted for time integration. In the associated im- A cell-vertex variant of the CATS-code. called CFVCATS,
plicit operator the fluxes are approximated to first-order acLu- was introduced by Rossow5 and Rossow et al." CEVCATS
racy using the Roe-averaged, sign-splitted flux Jacobians. has been developed further to a general purpose fluid simula-

tion package for the whole speed range, also handling viscous
To accelerate convergence to steady state the local time step- flows as a Navier-Stokes solver. Application examples are
ping technique is applied together with a so-called "switch-off" found in Kroll et a.8 where a variety of aerospace configura-
scheme, which controls the iteration process such that only tions are analyzed operating in the transonic as well as super-
those cells are updated where a change of the solution vector sonic flow regime. Transport aircraft type wing/body as well as
beyond some prescribed criteria can be anticipated. As an op- generic canard-delta wing configurations were treated success-
tion for supersonic flow problems the DAVIS-VOL code is fully in subsonic and transonic flow, whereas a generic fighter
also able to operate in the "pseudo-marching" mode (described type forebody, a waverider type delta wing and an early con-
previously), leading to a considerable gain in computational ef- figuration of the European HERMES reentry vehicle were
ficiency for approppriate problems. This is demonstrated for studied at supersonic flow conditions.
the flow past a HERMES forebody under ideal and equilibrium
real gas, assumptions. Using the pseudo-marching technique a A FAS multigrid technique for acceleration of convergence to
gain of a factor 10 is claimed compared to the global solution steady state is implemented into CEVCATS based on the work
approach. Applications are also presented for the 3-D interact- of Radespiel and Swanson59. A discussion on experiences with
ing flow of a two-fin model configuration. multigrid techniques applied to high supersonic flow fields

(Ma<10) can be found in Kroll et al. A method for proper im-
The natural extension of the scheme is also presented to handle plementation of the baseline multigrid techniques in the multi-
viscous flow problems by solution of the Navier-Stokes equa- block framework of CEVCATS is discussed by Atkins.6 1

tions. °

In recent years CEVCATS has found widespread application in
aerodynamic design problems. The work of Schone et al.6

MrU-EULER: reflect this effort whereas CEVCATS and an implementation
In the DASA Jet Engine Division (MTU Munich) quasi 3-D of the symmetric TVD discretization scheme of Yee is com-
(in St blade-to-blade and S2 hub-to-tip planes) as well as full pared6 with respect of accuracy and shock resolution issues for
3-D Euler codes are under development since 1985. a flow around blunted biconic at Mach 6. A comparison of two

Euler codes, namely CEVCATS and FLU3C, is presented in
The quasi 3-D approach as described by Happel et al.5 is based SchOne et al.6-FLU3C is developed at ONERA and is based on
on the 2-D approximation of the conservation laws along a flux-vector splitting technique according to van Leer. Exten-
stream surfaces taking into account the streamwise mean radius sive and detailed comparisons have been made for supersonic
of curvature of the surface as well as the stream tube thickness. flow computations around a vertical tail alternate reentry vehi-
For flow simulation past rotor blades the conservation laws are cle configuration to the baseline HERMES concept.
formulated in a rotating frame of reference The numerical
scheme is based on a finite-volume cell-vertex discretization Another topic of continuous research are transport aircraft de-
in which the convective fluxes are approximated to first order sign problems. Due to increasing importance of optimal air-
in space. An explicit first order time-stepping scheme is used to frame integration of present and future high bypass ratio jet en-
integrate the unsteady equations to steady state. Convergence gines systematic experimental and theoretical studies were
acceleration is provided by a local time-stepping and by a mul- conducted to investigate the position as well as the influence of
tigrid technique. A so-called "damping surface technique" is thrusted and unthrusted jet engine oeration on aerodynamic
applied to provide a post-correction of the results to enhance wing characteristics. Hoheisel et al. used a turbo-powered
the spatial accuracy. The method is applied to transonic flow simulator for low speed experiments at Mach 0.17 for basic in-
problems past turbine stator and rotor blades as well as to com- vestigations. A corresponding theoretical study taking into ac-
pressor cascades. count a future ultra high bypass jet engine with considerable

higher nacelle diameter as compared to existing engines was
A full 3-D code extension is presented by Happel and Stu- analyzed by Rossow"5. The inviscid simulation of an isolated
berts5' aiming on flow simulations past complete blade rows. thrusted high-bypass jet engine was considered by Rudnik.w6
Interesting comparisions between experimental data and results Whereas in such inviscid simulations the influence of py-
from 3-D Euler and Navier-Stokes computations in the cascade Ion/nacelle combinations on aerodynamic wing performance
rig of an inlet guide vane of a low pressure turbine are reported du,; to pure displacement effects can be studied quite success-
by Niehuis et al. - fully, interference effects due to viscous jet stream mixing

processes are neglected. An integrated attempt )f several com-
putational tools including CEVCATS for possible design of a

CATS. CEVCATS: laminar flow nacelle is reported by Radespiel et al.6

In the German Aerospace Research Establishment (DLR) sys-
tematic development work on Euler codes as tools for aerody- Research on inviscid flow analysis for slender wings by Euler
namic design is performed mainly at the DLR-institute for De- methods is a major topic since 1986. Kumar and Dasw studied
sign Aerodynamics in Braunschweig. subsonic and transonic flow around a cropped delta wing con-

figuration defined for purpose of Euler code validation as part
Euler code development has started there in 1983/84 and was a of the US/European vortex flow experiment project. The CATS
major focus point for theoretical work over the years. The basic code was applied to investigate sharp and round leading edges
apt'oach was the finite-volume concept outlined by Jameson et up to high angles of attack producing vortex flow breakdown.
al. which led to a 3-D, block-structured, cell-centered and Extensions of that work to a coupled canard/delta configuration
central-diffetced code, called CATS, described by Radespiel using CEVCATS is presented subsequently by Scherr and
and Kroll. Convergence acceleration of the baseline Das. 9 In an attempt to clarify the role of dissipation in Euler
Runge-Kutta-type linear multistage time-stepping scheme for solutions of different codes for vortical flows over delta wings
steady state problems is achieved by local time-stepping, en- Longo 7 made systematic comparisons concerning the effect of
thalpy damping and implicit residual averaging techniques. mesh density and level of artificial dissipation in the CATS/
Flexibility of the blockstructured code has been increased sub- CEVCATS codes, respectively the level of truncation errors in

the EUFLEX code on global and local data. Detailed compari-
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sions between experimental and theoretical results for close- EPFL-Ecole Polvtechnigue Federal de Lausanne:
coupled canard-wing and double-delta wing are presented by At the EPFL-Institut des Machines Hydrauliques et de
Longo and Dns t . It was demonstrated that primary vortices Mechanique des Fluides in Lausanne cooperative efforts to-
shed from leading edges are captured quite well. However gether with CERFACS (France) are made towards the develop-
cross-sectional total pressure surveys show distinct quantitative ment of a 3-D general purpose multiblock finite-volume Euler
differences between simulation and experiments which may be code

2 
including equilibrium and non-equilibrium real gas ca-

attributed to viscous effects and missing resolution of vortex pability.83
2

8 The cell-centered discretization approach is based
sheets. on Jameson's aritificial dissipation operator' and for time inte-

gration an explicit linear multistage time-stepping scheme is
Thorough discussions on the most suitable numerical formula- applied. Another direction of Euler-code application concerns
tions related to rotating frame of reference for flow simulations incompressible flow simulation problems in water turbines. 

'
&W

past propellers and hovering rotors can be found in Kroll.
7
2 The

corresponding rotorcraft version of the CATS code was applied Institut fur Strahlantriebe und Turboarbeitsmaschinen. RWTH-
to steady state problems around two-blade propellers.7 Aachen:

At the RWTH-lnstitut fur Strahlantriebe und Turboarbeits-
An optimum design method where the CEVCATS code was maschinen efforts are made for development of a general par-
coupled to an optimization algorithm has been developed by pose finite-volume code aimin at steady and unsteady turbo-
Schone.7

4 
The method was applied to the design of conical and machinery flow applications. 

'
91 Besides structured also

general 3-D wings at supersonic speeds. unstructured codes are under development.
92

Recent efforts at DLR are related to the enhancement of spatial Institut fur Aero- und Gasdynamik. Universitat Stuttgart:
accuracy by the use of high resolution schemes"' and grid re- At the Institut fur Aero- und Gasdynamik main efforts are di-
finement strategies." Systematic work is underway concerning rected to development of a finite-volume Euler code aiming at
the improvement of the various algorithmic elements of the rotorcraft flow applications.

93 9 
Basis for development is the

multigrid technique.' EUFLEX code from the DASA Military Aircraft Division.

Beside development efforts directed to the CEVCATS code Institut fOr Raumfahrtsysteme. Universitat Stuttgart:
some egorts aiming on unstructured methods have to be men- At the Institut fur Raumfahrtsysteme main efforts are directed
tioned. to development of a 3-D finite-volume Euler code aiming at 0

turbomachinery flow applications.w9

Euler-Codes from Researcb Institutions and Universities Institute for Computer Applications, Universitat Stuttgart:
At the Institute for Computer Applications serious efforts are

DLR-Institute for Theoretical Fluid Mechanics: underway for development of a general purpose finite-element
At the DLR-Institute for Theoretical Fluid Mechanics in Got- Euler/Navier-Stokes code includin equilibrium and non-
tingen no continuous efforts are made for development of a equilibrium real gas capabilities.9 Focus point are reentry
general purpose Euler-code. However basic work on high reso- flow applications related to the European reentry vehicle pro- 0
lution discretization schemes by Muller et al.!* and correspond- ject HERMES.
ing applications to hypersonic waverider problems

l 
are re-

ported.

0

3.3.2 Presentation of Individual Codes

COMPANY / INSTITUTION: DASA - Airbus Division I Bremen. Germany 0

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

3-D. multiblock-structured, central differencing, local time stepping, Euler/Navier-Stokes 1-3
finite-volume. blockwise mesh Jameson's second and implicit residual solver,
cell-vertex refinement fourth difference smoothing, enthalpy actuator b.c.,

MEUINA dissipation operator, damping, multigrid shock capturing
explicit Runge-Kutta
scheme

COMPANY / INSTITUTION: DASA - Regloprop Division / Dornler Luttfahrt / Frieddchshafen - Germany

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

3-D, multiblock-structured, central differencing, local time stepping, Euler/Navier-Stokes 7-21
finite-volume, blockwise mesh Jameson's blended implicit residual solver.
cell-centered refinement, arbitrary second and fourth smoothing, enthalpy actuator b.c.,

IKARUS block face difference dissipation damping, multigrid shock capturing, 2
segmentation operator. Runge-Kutta equilibrium real gas

explicit or LU-SSOR option
implicit scheme

0,.

I[ ... . .... .. _. .. ... *,0



COMPANY I STITUTION: DA - Miltary Aircraft Division Otlobnw- GermnM
CODE DISCRIET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC'

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. monoblock-strudtured upwind (combined SteWe local tim stepping Navier-Stokes 22-31
finii-volume, flux vector and Godunov version: NSFLEX*

EUFLEX cam-centered -type) difeencing. point shock capturing, I
Gauss-Sede implicit equilibrium real gas )
scheme option

3-D. monobiock-structured upwind (combined Stge time accurate 323
tinte-volume, flux vector and Godunovi versin of EUFLEX

INLX cell-centered -typ) difteerncing, point
INL(Gauss-Sesdel implict

schieme. 1st order Euler
backward time opetator _________________

COMPANY IINSTITUTION: EUROCOPTER Deutschland / Ottobrunn - Germany _ _ _ _ _[ C E DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC
I ____ TCHNIQUE DISCRET. -~ACCELERATION FEATURES

3-0. monoblocli-Strucued upwind (combined Steger local time stepping, rotorcraft version of 35,360
finite-volume, flux vector and Godunov EUFLEX

ROTFLEX cell-centered -type) differencing, point also time-accurate 4
_______ -___-Gauss-Seidel implici version availableI ~~scheme__ _ _ _ _ _ _ _

COMPANY IINSTITUTION: DASA - Spae Infratrucures / Ottobrunn - Germany- -

CODE DISCRET. GRIDS I SPACE/rTME CONVERGENCE SPECIAL REF. POC
TECHNIQUE I DISCRET. ACCELERATION FEATURES
20 & 3-0, single block, upwind flux vector space marching 37-40

finite-difference structured splitting scheme, method, shock
OAINV- Runge-Kutta explicit fitting, equilibrium
SPACE space/time integration gas option

scheme
2-D & 3-D. multiblock-structured upwind (ftux-vector local time stepping shock fitting, 41-480
finite-difference splitting) diffeceiiiing, quasi-conservative

OAINV- Aunge-Kutta explicit time Euler formulation.
SPLIT stepping scheme / point perfect gas,5

Gauss-Seidel implicit for equilibrium and
species source terms non-equilibrium real

_________ _______________gas option

2-0 & 3-D. muftiblock-structured central (symmetric TVO) local time stepping Euler/Navier-Stokes 49
finite-volume, differencing, implicit Euler solver.

DAVIS-VOL cell-centtered backward time stepping, equilibrium real gas
symmetric Gauss-Seidel option
relaxation

COMPANY / INSTrTUTION: DASA - Jet Engine Division (MTU - Munich) - Germany _____

CODE DISCRET. GRIDS SPACETME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

2-D & 3-0. muftiblock-structured central differencing with local time stepping, shock capturing, 50-52
finite-volume, second difference muffigrid ps-orcinof 6

MTU-EULER cell-vertex dissipation operator. results by 'damping
explicit first-order Euler srface" procedure
time stepping scheme

COMPANY IINSTITUTON: DLR - InsttUte for Design Aerodynamnice / Brunswick - Germany
CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, multiblack-structured, central differencing. local time stepping, shock capturing 53-55
finite-volume, blockwise mesh Jameson's blended implicit residual
cell-centered refinement second and fourth smoothing. enthalpy

CATS difference dissipation damping. mutigrid 7
operator, explicit
Runge-Kutta time

________ _________ ____________stepping scheme _________ _______e
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COMPANY I 3ISTFIT DLR - hndbAs for Design Aerodynonics / &wswlck - Gerny
CODE DISCRET. IRDS SPACEITUME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0. multitocc-structured. central (Jameso's local time s"eiping. Euler/Naveeg-Slkes 56-75
fkiite-volume. bloclrete mesh blended second and implicit residual solver,
cell-veutex refiwment fourth difference smroothing, enthalpy actuator bc..

CEYCATS dissipation operator, damping. mufigrid shock capturing, 7 %(4)yMimetnic TV0 scheme) equelibonum real gas
and upwind differencmng. general contfig.
explicit Runge-Kutta time capability

_____ _____ _______steppin scheme I__II_1___

COMPANY IINSTITUTION: DLR - Institute for Theoretical Rld Mechanics / Gftlngs -Geran
CODE DISCRET. GRIDS SPACErME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-13. single block, upwind (Marten-Yes) local time stepping shock capturing 80,81

MSEl"finite-difference structured TND scerne. 3-factor AF
implicit Beem-Warming

_ _ _ _ ~scheme_____

COMPANY / INSTITUTION: EPFL - Institute / Lausanne - Swkzerlan
CODE DISCRET. GRIDS SPACEITIME CONVERGENCC SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D. multiblock-structured central differencing. local time stepping, shock capturing. 82-88
finite-volume. Jameson's blended residual averaging equilbrium and0
cell-centered second and fourth non-equilibrium real 9

(EPFL-Euli') difference dissipation gas option
operator, explicit
Runge-Kutta time

____ ______ _________stepping scheme

3.3-3 Points of Contact

Point of Contact (POC) No. 1: Point or Contact (POC) No. 3:

Code(s): MELINA Code(s): EUFLEX, INFLEX
Name: S. Rill Name: A. Eberle
Dept.; EF1O Dept.: LME2I11
Tel.: (+49) 421-538-4499 Tel.: (+49) 89-607-24912
Mailing Address: Deutsche Aerospace Airbus GmbH Mailing Address: Deutsche Aerospace AG

D-28183 Bremen Military Aircraft Division
Germany D-8 1663 Munchen

Tel.-Company: (+49) 421-538-01 Germany
Fax-Company: (+49) 421-538-3320 Tel.-Company: (+49) 89-607-0
References: 1, 2 Fax-Company: (+49) 89-607-26481

References: 22 -34

Point of Contact (POC) No. 2:PonofC tat(O)N.4
Code(s): IKARUS
Name: H. Rieger / S. Leicher Code(s): ROTFLEX
Dept.: LREV3 Name: H. Stahl-Cucinelli
Tel.: (+49) 7545-84203 /-84819 Dept.: D/EE41
Mailing Address: Dornier Luftfahrt GmbH Tel.: (+49) 89-607-23681

D-88039 Friedrichshafen Mailing Address: Eurocopter Deutschland GmbH
Germany D-81663 Muinchen

Tel.-Company: (+49) 7545.80 Germany
Fax-Company: (+49) 7545-84411 Tel.-Company: (+49) 89-607-0
References: 7 -21 Fax-Company: (+49) 89-607-26888

References: 35, 36
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Paine Cessact I= No.5: Switzerland
Company: (+21) 693-1111

Code(s): DAINV-SPACE, DAINV-SPLIT, Fax-Company: (+21) 693-3646 or -2525
DAVIS-VOL References: 82-88

Name: C. Weiland
Det.: RIT73

(+49) 89-607-28473 Point of Contact (POC) No. 10:
Mailing ddress: Deutsche Aerospace AG

Space Infrastructures Code(s): RWTH-EULER
D-81663 Mianchen Name: H.E. Gallus
Germany Dept.:

Tel.-Company: (+49) 89-607-0 Tel.: (+49) 241 80-5500
Fax-Company: (+49) 89-607-26481 Mailing Address: Rheinisch-Westfilische
References: 37 -49 Technische Hochschule Aachen (RWTH)

Institut fur
Strahlantriebe und Turbomaschinen

Point of Contact (POCI No. 6: Templergraben 55
D-52062 Aachen

Code(s): MTU-EULER Germany
Name: H.-W. Happel Tel.-Company: (+49) 241 80-5504
Dept.: EWTS Fax-Company: (+49) 241 8888-229
Tel.: (+49) 89-1489-2535 References: 89 - 92
Mailing Address: MTU Motoren- und Turbinen-Union

Munchen GmbH
D-80991 Muinchen Point of Contact (POC) No. 11:
Germany

Tel.-Company: (+49) 89-14 89-0 Code(s): IAGS-EULER
Fax-Company: (+49) 89-150 2621 Name: S. Wagner
References: 50- 52 Dept.:

Tel.: (+49) 711-685-3580
Mailing Address: Universitat Stuttgart

Point of Contact (POe) No. 7: Institut fur Aero- und Gasdynamik
Pfaffenwaldring 21

Code(s): CATS, CEVCATS D-70569 Stuttgart
Name: N. Kroll / R. Radespiel Germany
Dept.: Numerische Aerodynamik Tel.-Company: (+49) 711-685-1
Tel.: (+49) 531-295-2440 / -2488 Fax-Company: (+49) 711-685-3438 or -3500 * *
Mailing Address: Deutsche Forschungsanstalt fur References: 93 - 95

Luft- und Raumfahrt e.V. (DLR)
Institut fur Entwurfsaerodynamik
Lilienthalplatz 7 Point of Contact (POC) No. 12:
D-38108 Braunschweig
Germany Code(s): IRS-EULER

Tel.-Company: (+49) 531-295-0 Name: H.-H. Fruhauf
Fax-Company: (+49) 531-295-2320 Dept.:
References: 53 - 75 Tel.: (+49) 711 685-2382

Mailing Address: Universitat Stuttgart
Institut fur Raumfahrtsysteme

Point of Contact (PE No. 8: Pfaffenwaldiing 31
D-70569 Stuttgart

Code(s): ITS-EULER Germany
Name: W. Kordulla Tel.-Company: (+49) 711-685-1
Dept.: Fax-Company: (+49) 711-685-3596 or -3500
Tel.: (+49) 551 709-2274 or -2275 References: 96 -97
Mailing Address: Deutsche Forschungsanstalt fWr

Luft- und Raumfahrt e.V. (DLR)
Inst. fiir Theoretische Str6mungsmechanik Point of Contact (POC) No. 13:.
SM-SM
Bunsenstrale 10 Code(s): ICA-EULER
D-37073 G6ttingen Name: J. Argyris
Germany Dept.: 0

Tel.-Company: (+49) 551 709-1 Tel.: (+49) 711-685-3594
Fax-Company: (+49) 551 709-2446 Mailing Address: Universitit Stuttgart
References: 80, 81 Institut fir Computer-Anwendungen

Pfaffenwaldring 27
D-70569 Stuttgart

Point of Contact (P0C) No. 9: Germany
Tel.-Company: (+49) 71 1-685-1

Code(s): EPFL-EULER Fax-Company: (+49) 71 1-685-3669 or -3500 •
Name: C. Bergmann References: 98, 99
Dept.:
Tel.: (+21) 693-3503 or -3504
Mailing Address: Swiss Federal Institue of Technology
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3.4 CODES FROM GREAT BRITAIN, the grid and flow are executed through a menu driven MOTIF

THE NETHERLANDS and SCANDINAVIA user inwerfae. The code also has a vtisous capability with op-
tions of a Baldwin-Lomax and k-t turbulence models and grid
adaptation on any grid type can be im.plemented using point re-
finement, point derefinement, rcnieshing, source adaptation

3.4A Overview and point movement. It is primarily used in the research envi-
ronment.

The majority of solution techniques routinely used to solve the
Euler equations are based upon the Lax-Wendroff (structured In The Netherlands, at the National Aerospace Laboratory
grids), Taylor-Galerkin (unstructured grids), and Jameson ex- NLR, the software system ENFLOW for the calculation of
plicitly added artificial dissipation with Runge-Kutta time step- Euler flows around complex aerodynamic configurations is
ping methods (structured and unstructured grids). Structured available The system may also be used for the calculation of
grids are primarily used but recently there appears to be grow- Navier-Stokes flows. In particular, ENFLOW i, applied for the
ing interest within industry for the use of unstructured grids computational analysis of the aerodynamics o, tlows around •
with their inherent advantages for adaptation techniques and transport aircrafts, including the aerodynamic effects ol prok cl-
flexibility for complex geometries. lers andor jet-engines. Based on early technical concept-.

the system was implemented in cooperation with FOKKER 1
Major uses of the mu!!iblock grid and flow procedure for com- The Netherlands. ALENIA and CIRA, both ot Rtalv parti*i
plex three-dimensional geometries include the National Aero- pated in the development of an early version or the sstcm
space Laboratory (NLR), The Netherlands, with the code ENFLOW as a CFD usr environment is operational on a di-
ESOLVB. British Aerospace (BAt - Commercial Aircraft) with versity of hardware and available in various release.,, tor indus-
the code EJ83, SAAB, Sweden, with the code MULTEUL and try and research institutions.
CFD norway, Norway, with the code ThreeFlow. For the solu-
tion techniques it is interesting to note that they all use the clas- To treat the aerodynamic flow simulation task efficiently with
sic Jameson' 2 procedure with the main features of cell- the ENFLOW system a decomposition into five subtaks has
centered central differencing, explicit local time stepping, been accomplished. By such a design it became possible to iso-
added artificial dissipation with combipitions of second and late critical topics like geometry manipulation and grid genera-
fo-ish order differences. tior ro,n the other CFD work. -12 95

In the United Kingdom, the British Aerospace code EJA3 3 has The five subtasks are the geometric surface modelling and ap- •
multigrid convergence acceleration and a viscous capability propriate modification of aerodynamic iftacvs, theldecompo-
with options for viscous simulation with a coupled boundary sition of the flow domain into subdoman, or blocks 2427 by
layer based upon 2D strip theory or full 3D boundary layer the- the .Aftware ENDOMO, the multiblock mesh genera-
ory. In addition to their multiblock code, British Aerospace tion ...... , the flow calculation with the flow 'olver EN-
have developed a suite of codes using the Jameson solution SOLV ' . and finally the graphical interactive data
technique for particular applications. The code EJ61, which is analysis and fow visualization.") The various code elements
applicable to two-dimension.. -:ofoils has a full adaptation within the system are interfaced by standarized file formats.
capability with both point refinement and node movement,
EJS0 and FJ53 are specifically used for intakes and forebody The multiblock grids which are accepted by the flow solver
geometries, EJ63 and EJ65 for wing/body configurations. The ENSOLV should have the following characteristic.. - ' "

latter two codes, in common with the multiblock code EJ83, Blocks are patched to each otht, without gaps or overlaps.
have a viscous coupled capability. Block-faces are allowed to be sub-structured or segmented,

which gives additional flexibility concerning the handling of
The Defence Research Agency (DRA), Farnborough, UK have complex boundary conditions. fhe code ENSOLV has also the
developed several different codes for the solution of the Euler capability for a block-by-block grid adaptation using point re-
equations. The technique used to simulate the flows over iso- finement.
lated wings is based on the work of N i4 and enhanced by Hall s

and relies upon the Lax-Wendroff method with a multigrid ca- ENSOLV is based on a cell-centered finite-volume discretiza-
pability. Their onrteady capability uses an implicit Beam and tion using explicit second and fourth difference dissipation op-
Warming6 scheme with central differencing approximations erators for treatment of convective terms according to Jame-
and an artificial dissipation approach. son' 2. Integration to steady state is performed by various

multi-stage Runge-Kutta schemes. Convergence speed is es-
Oxford University, UK have developed Euler solvers for both sentially accelerated by a multigrid procedure offering full or
two and three-dimensional geometries which utilise a two pa- semi-coarsening options. As much as 14 different kinds of so-
rameter Lax-Wendroff time stepping with node based multigrid called external boundary conditions are accepted, including in-
and Jameson artifi,..l viscosity terms. The solvers are appli- let, outlet and propeller boundary conditions, the latter being
cable to single block grids, in particular, C-H grids for isolated modelled as actuator disk. Second order accuracy is maintained
wings. also across discontinuous block interfaces by special block-

coupling routines.
In isolation within the survey, Swansea University and Compu-
tational Dynamics Research, Swansea, UK have developed the The ENFLOW system has been applied successfully to a mani-
codes BRITE3D, FLITE3D, TG and HYBRID each of which is fold of inviscid flow problems. Reported are simulations past
based upon unstructured triangular and tetrahedral grids. °t10- transport aircrafts"' including propeller slipstream effects 'and past delta wings.?' 3 

'  
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The code BRITE3D and FLITE are both based upon the Jame-

son method' 9 2t' and have a face and side based data structure NLR is developing also an unstructured flow solver, called
implementation, respectively. BRITE3D contains a tetrahedral D2EUL". It is based on a finite-volume cell vertex discreisa-
grid generator based upon the Delaunay triangulation1 - t 2 and tion with flux difference upwinding 2 and second order accu-
the FUTE3D has an advancing front fenerator. The FLITE3D racy extension according to the MUSCL scheme.43 Grid gen-
solver also has a multigrid capability' . Both have grid adapta- eration based on triangles is automated and requires minimal
tion capabilities based upon the methods of grid remeshing, user interaction. The code is highly vectorized and is planned
point refinement and the use of sources. The code TG is based to be extended to a 3D capability.
upon the Taylor-Galerkin formulation on unstructured
grids. -. All the codes BRITE3D, FLITE3D and TG are appli- The Aerospace Faculty of Delft University of Technology, The
cable to a wide range of aerodynamic configurations. The code Netherlands, has developed an Eutler solver for three-
HYBRID'8 has a cell-centered Runge-Kutta time stepping al- dimensional geometries,45 which is an extension of a 2D
gorithm which is applicable to unstructured, structured and hy- solver*i from CWI, The Netherlands. This code s uses several
brid grids. These grids can be automatically generated and both
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upwind-biased discretization techniques (van Leer, Osher and and is automatically generated plane-by-plane with an alge-
Roe) and an unfactored relaxation method within a multigrid braic interpolation procedure at each section, as needed. There-
solution procedure. The solver is applicable to single block fore, the code GEMINI is applied for inviscid and viscous flow
structured grids. simulations past general missiles and aircraft configurations

with emphasis on aerodynamic flows around wings, rudders,
In Sweden, AAB relies essentially on their multiblock code inlets and diverters.
MULTEUL' for the treatment of general three-dimensional
complex configurations. The code is able to handle general In Norway a key institution in the field of flow simulation is
flow simulations past complete missile, aircraft and aerospace the company "CFD norway as". The company has developed a
vehicles. As indicated by the name, the MULTEUL code has complete package consisting of grid generators, flow solvers
built in a multigrid convergence acceleration technique. Mesh and visualization tools for the treatment of 2-D and 3-D flows
generation is based on a commercial system, called ICEM- in complex geometries that are based on a structured mul-
MULCAD. It should be noted that MULTEUL has also a vis- tiblock approach.
cous option enabling Navier-Stokes simulations.

The grid generation package uses algebraic and elliptic-type as
In addition to MULTEUL a general space-marching code, well as combined techniques for generating blockstructured
called GEMINI'1 is in productive use at SAAB for treatment of grids.49 The flow solversw are based on a cell-centered finite-
supersonic flow problems. According to a specific time/space volume discretization using the switched second and fourth or-
integration technique the code circumvents the integration step der dissipation operators according to Jameson' for approxi-
size restrictions posed by stability reasons. Essentially the un- mating the convective terms. Time integration is performed
known steady state at the new space position is determined by with a linear 3-stage Runge-Kutta scheme. The flow solvers in-
solution of a time-dependent problem. Which means that the dude also options for solving either the thin-layer or the full
originally hyperbolic problem in space is converted to a prob- Navier-Stokes equations with several zero-equation and two-
lem being hyperbolic in time. This approach leads to improved equation eddy viscosity turbulence models. Options for operat-
algorithmic stability and makes the extension to parabolized ing the code in a rotating frame of reference as well as with
Navier-Stokes solver straightforward. The grid is structured real gas assumptions are available.

3.4.2 Presentation of Individual Codes

COMPANY / INSTITUTION: BRmSH AEROSPACE (BAe) - Commercial Aircraft Division / United Kingdom

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES • 0

2-D. structured central differencing. local time stepping coupling to 20 b.I. 3
finite-volume Jameson.type andfourth

EJdifference dissipationEJ61operator, expliit

multistage Runge-Kutta
scheme

EJSO 3D, central differencing, local time stepping E5550.563 pure 3
EJ53 finite-volume Jameson-type and fourth Euler. E563,E565 1 0difference dissipation viscous coupling to
EJ63 operator, explicit 2D strip theory and
EJ65 multistage Runge-Kutta full 3-D bI.

scheme
3-D, mutiblock-structured central differencing, local time stepping viscous coupling to 3
finite-volume Jameson-type and fourth 2D strip theory and

EJ83 difference dissipation full 3-D bI.
operator, explicit
multistage Runge-Kutta 0
scheme

COMPANY / INSTITUTION:: DEFENSE RESEARCH AGENCY (DRA) / Famborough - United Kingdom

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

2-D, single grid, Riemann solver, explicit local time stepping
ROE/UTrON finite-volume structured. O-type multistage Runge-Kutta

scheme

HALL- 3-0. single grid, explicit Lax-Wendroff local time stepping, isolated wing 4,5
SALMOND- finite-volume, structured, C-H type scheme multigrid applications

cell-vertex
3-D, single grid, explicit Lax-Wendroff local time stepping. b.c of jet orifice 4. 5

E14JET finite-volume structured scheme mutigrid
cell-vertex cartesian box 2 0
2-D/3-D structured central differencing, airfoils (2-0) and 6
finite-volume. Jameson-type second wing (3-0)

UNSTEADY cell-centered and fourth difference applications
EULER dissipation operator,

implicit Beam-Warming
scheme

2-0. muftiblock-structured explicit Lax-Wendroff local time stepping 4, 5ECUMB2D finite-volume, scheme multigrd
cell-vertex

*..
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COMPANY / INSTITUTION: OXFORD UNIVERSITY / Oxford - United Kigfdom_ _ _ _ _

CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES -

2-0. sinle block, central diferencing, lical lime stepping, Eule/Navier-Stokes 7. 8
finite-volume. 0/C-type Jameson-type second multigrid solver

CYFLOW2 cell-vertex and fourth difference
dissipaion oerator,

3-0, snle block, central differenaing, local time stepping. Euler/Navier-Stoies 9 3
finite-volume, H/-yeJamesntp se d multigrid solverTHREE cell-vertex and forhdlfernc

FLOW dissipation oerator.

scheme

COMPANY / INSTITUJTION: SWANSEA UNIVERSITY / Swansea - United Kingdomn
CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-D, unstructured, central differencing, local time stepping Euler/Navier-Stokes 10,
finite-volume, adaptation with Jameson-type second solver 11.

SRT3) cell-vertex mesh refinement and fourth difference 12
and remeshing dissipation operator.

multistage Runge-Kutta
scheme

-343-D, unstructured, Taylor-Galerkin local time stepping unsteady 2-0 13
finite-element adaptation with tinite-element formulation version available 14

TG mesh refinement
and remeshing

3-0 untrcured with central differencing, local lime stepping, edge based dat 1-1FUTE3D findt-lmn msrefinement explicit, multistage multigrid structure
neshing Runge-Kulta.

COMPANY! INSTITUTION: NATIONAL AEROSPACE LABORATORY (NLR) / Amsterdam, - The Netherlands.
CODE DISCRET. GRIDS SPACEITIME CONVERGENCE T SPECIAL REF. fPOCI

TECHNIQUE DISCRET. ACCELERATION L FEATURES[0 0
3-D. multiblock-structured central differencing. local time stepping, TEuler/Navier-Stoires 21-41
finite-volume, block-to-block mesh Jameson-type second implicit residual Isolver,

ENSOLV cell-centered refinement and and fourth difference averaging, enthalpy part of CFD system
adaptation dissipation operator, damping, muftigrid - full ENFLOW,

explicit multistage & semi-coarsening propeller and jet
Runge-Kutta scheme Ipropulsion options 5

2-D, unstructured Dick-upwind flux local 'line stepping 42-44
OEL cell-vertex MUSCL extrapolation forI

2nld order accuracy,
explicit multistage

_____________________Runge-tKutta scheme ________ ______

COMPANY/INSTITTUTION: SAAB - SCANIA A.S. / Unk~plng - Sweden
CODE DISCRET. GRIDS SPACEITIME CONVERGENCE SPECIAL REF. POC

TECHNIQUE DISCRET. ACCELERATION FEATURES
3-0, multiblock-structured central differencing, local time stepping, Euler/Navier-Stokes 47
finite-volume, Jameson-type second explicit and implicit solver

MULTEUL cell-centered and fourth difference residual averaging,
dissipation operator, multigrid
multistage Runge-Kutta
schme 6

3-0. structured, space/time marching local time stepping, Euler/Parabolized 48
finite-volume, automatic grid scheme, time interation eigenvalue extrapolation Navier-Stokes
cell-centered generation plane by by explicit Runge-Ktt technique solver.

GEMINI plane type scheme. space general missile
discretization by Roe flux and aircraft
difference splitting configurations
upwind scheme

COMPANY /INSTITUTION: CFD norway as / Trondheim - Norway _____

CODE DISCRET. GRIDS SPACE/TIME CONVERGENCE SPECIAL RE. O
TECHNIQUE DISCRET. ACCELERATION FEATURES

2-D. multiblock-structured central differencing. flocal time stepping Euler/Navier-Stokes 49
finkevolue, Jaesontypesecond soveTwoFlow fie-volumed and fourth differen~ce 7

dissipation operator,
explicit 3-stage

_______________ __________Runge-Kutta scheme
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COMPANY / INSTIT1ONk CFD norway as / Trondheim - Norway _ _ _ _

CODE DISCRET. GRIDS SPACEITIUE CONVERGENCE SPECIAL REF. POC
TECHNIQUE DISCRET. ACCELERATION FEATURES

3-0, multibloclr-sructured central dift~eflcifl. local time stepping Euier/Navwe-Stokes 48
finite-volume.Jamecon-type seonid tm

ThreeFlow o~etrdand fourth differeonce rotating frame of 7
disipation operator. reference option 6exrplicit 3-stage

________ ___________Runge-Kutta scheme C

3.4.3 Points of Contact

Point of Contact (PIC) No. 1: Point of Contact (P00) No. 5

Code(s): E.151, E.150, FJS3, EJ163, EJ65, EJ83 Code(s): ENSOLV, D2EUL
Name: A. Pagano Name: 1.W. Boerstoel, B. Oskam
Dept.: Aerodynamics Dept.: Theoretical Aerodynamics Department
Tel.: (+44) 272-693831 Tel.: (+31) 20-511 3357
Mailing Address: Biish Aerospace Lid. (BAe) Mailing Address: National Aerospace Laboratory NLR

Airbus Division P.O. Box 90502
P.O. Box 77 1006 BM Amsterdam
Bristol B3S99 7AR The Netherlands
United Kingdom Tel.-Company: (+31) 20-511 3113

Tel.-Company: (+44) 272-693831 Fax-Company: (+31) 20-511 3210
Fax-Company: (+44) 272-362828 References: 21 -44
References: 3

Point of Contact (rOC) No. 2: Point of Contact (P00) No. 6:

Code(s): ROM/ITTON, HAWUSALMOND, Code(s): MULTEUL, GEMINI
EMJET SERIES, UNSTEADY EULER, Name: B. Arlinger
ECUMB2D3 Dept.: Aerodynamics

Name: B. Williams Tel.: (+46)1318-25830
Dept.: Aerodynamics Mailing Address: SAAB SCANIA A.B.
Tel.: (+44) 252-392576 Saab Aircraft Division
Mailing Address: Defence Research Agency (DRA) Military Aircraft Sector

Aerodynamics Department 581 88 Linkoping
Farnborough Sweden
Hants, GU14 6TD Tel.-Company: (+46) 1318-0000
United Kingdom Fax-Company: (+46) 1318-1802

Tel.-Company: (+44) 252-24461 References: 47, 48
Fax-Company: (+44) 252-375890
References: 4 -6

Point of' Contact (POC) No. 7:

Point of Contact (POC) No. 3: Code(s): TwoFlow, ThreeFlow
Coe~): CVFLW2 TRE FOWName: N. Kubberud
Codes): VFLO 2, TREE LOWDept.:

Name: K.W. Morton Tel.: (+47) 73-54-0340
Tel.: (+4 6-785Mailing Address: CFD norway as

Tel. (+4) 85-27885Teknostallen
Mailing Address. Oxford University Computing Laboratory Professor Brochsgt. 6

11 Keble Road N-7030 Trondheim
Oxford, OXI 30D Norway
United Kingdom Tel.-Company: (+47) 73-54-0340

Tel.-Company: - Fax-Company: (+47) 73-94-3861
Fax-Company: (+44) 865-273839 References: 49, 50
References: 7 -9

Point of Contact (P00 No. 4:

Code(s): BRITE3D3, TG, FLITE3D), HYBRID 3.4.4 References

Naet: 0.rHayanic 1. JAMESON A., SCHMIDT, W. and TURKEL, E. "Numeri-
Dep.: Aerodynamics62 cal Solutions for the Euler Equations by Finite Volume Meth-

Mailing Address: Computational Dynamics Research ods Using Runge-Kutta Time Stepping Schemes," AIAA Paper
Innovation Centre 81-1259, June 1981.
University College of Swansea 2. JAMESON A. and BAKER T. J. "Multigrid Solution of the
Singleton Park Euler Equations for Aircraft Configurations," AIAA Paper 84-
Swansea, SA2 8PP 0093, 1984.
United Kingdom 3. DOE R. H., PAGANO A. and BROWN T. W. "The Devel-

Tel.-Company: (+44) 792-295625 opment of Practical Euler Methods for Aerodynamic Design."0
Fax-Company: (+44) 792-295613 Proc. 15th Conference of the International Council of the Aero-
References: 10- 18 nautical Sciences, London, Sept. 7-12, 1986, ICAS-86-1.42.
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Chapter 4

Applications

4.1 AIRFOILS scheme.2 Standard V-type multigrid cycles were applied. The
upwind implicit residual smoothing method (UIRS) is corn-

The Euler equations have been extensively applied to and pared to the widely used central implicit residual smoothing
correlated for the flow over two-dimensional airfoils. The (CIRS) method. The CPU times were measured on a sin- 0
early method developments centered on oscillation-free shock- gle processor CRAY Y-MP. The CIRS method performed best
capturing schemes, either through incorporation of adaptive with a (3.2)-scheme (3 stages. 2 diq'sipation evaluations), The
dissipation coefficients or upwind discretizations. The recent UIRS method performed best with a (3.3)-scheme. The UIRS
trend has been towards the incorporation of general-geometry scheme took more iterations, but the total time to converge 5
adaptive-grid schemes for the treatment of complex configura- orders of magnitude was approximately 35 seconds for either
tions, such as the multielement airfoil solutions shown below, of the schemes with residual smoothing. Further extensions of 0
These adaptive-grid methods have gained popularity due to the residual smoothing concepts are presented by Zhu et al.
their potential to provide highly accurate solutions with rela-
tively few grid points. This gain in popularity owes in large
part to the difficulty in modeling complex three-dimensional 4.1.2 Datum Solutions
geometries with globally refined "structured" grids. Several
typical solutions over the NACA 0012 airfoil are shown be- In 1985 the AGARD Working Group 07 completed the work
low, as well as several reference (datum) solutions which serve on the evaluation of numerical results obtained for specified *
as well-defined test cases for the evaluation of schemes. The test cases by inviscid flow field methods. The aim of the effort
computational challenge posed by Pulliam in numerical so- was to compile the state-of-the-art capabilities for computing
lutions to the Euler equations for the subcritical flow over a two- and three-dimensional numerical solutions of the Euler
smooth body is also discussed. Finally, an example of the use equations for airfoils and wings. Solutions from many re-
of Euler equations to scale the results obtained in a gas with searchers of well-known institutions and companies were sub-
nonideal behavior to that of air is reviewed. mitted and subsequently compared with respect to various cri-

teria concerning local and global flow field properties. An
evaluation strategy was developed to determine the "best" nu-

4.1.1 NACA 0012 Airfoil merical solution(s) for each test c.se. Judgments of quality
were on the basis of comparisons with known solutions and

The flow around a NACA 0012 airfoil at A,[- = 0.8 and n numerical sensitivities, including grid density, far-field bound-
= 1.25 deg is shown in Fig. 4.1.1 using an extension of the ary location, and entropy error variations. Datum solutions
1985 implicit scheme of MacCormack developed at Deutsche which can be used as high-quality reference solutions for the
Airbus (DA).' The pressures indicate an upper surface shock comparison of methods are presented in Ref. 4. Two transonic S
and a weaker lower surface shock. Results include second- cases from that study are shown in Figs. 4.1.3-4.1.6. Recent
and third-order-accurate flux vector splitting formulations to- adaptive-grid computations for a third test case from that study
gether with a second-order treatment of the surface boundary are shown in Fig. 4.1.7; these more recent computations re-
condition. The results demonstrate the sensitivity to discretiza- solve the large spread in the originally contributed results.
(ion and boundary conditions, the first-order results reveal
strongly disturbed isoMachlines near the surface of the model
over several layers of finite volumes associated with exces- NLR 7301: M, = 0.721, c = -0.194 deg 0
sive total pressure losses generated in the region of strong ac-
celeration near the leading edge. The pressure distribution is As a remarkable example of the solution accuracy which
most influenced by the truncation error of the scheme, whereas could be obtained at that time, the Mach number contours
the entropy error is most influenced by the boundary condi- from the numerical results of Schmidt/Jameon 4 for their two-
tion treatment. Third-order accurate spatial discretization and dimensional computation around the NLR 7301 airfoil sec-
second-order surface boundary condition lead to the entropy tion at "shock-free" design conditions arc presented in Fig.
variation to be expected, with small losses except for the jump 4.1.3. Euler computations around the NLR 7301 profile with 0
at the upper shock. A small rise of total pressure loss in the the specified flow conditions pose a special difficulty as an
field occurs at the transition from subsonic to supersonic flow "exact" hodograph solution by Boerstoel and Huizing5 exists
and is commonly observed in flux vector splitting results, which indicates the development of a supercritical shockless

flow. Many contributors were unable to compute a shockless
The flow field and convergence history for the inviscid super- flow and, therefore, failed to predict accurate global forces
sonic flow past a NACA 0012 airfoil (A[, = 3, a = 7 deg) and moments. The shock-free solution is an isolated design
is shown in Fig. 4.1.2. All computations were carried out point, and slight variations in geometry or angle of attack will S
using the same explicit multistage second-order upwind TVD cause a single or double shock to appear on the airfoil. The
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shock-free solution was generated from a hodograph solution of the shock positions. The outer boundary distance and nu-
which. unfortunately, is not without some diSCretiLation er- merical properties (such as artificial viscosity, truncation error.
ror, as pamcularly evidenced in the pressure variation near the or convergc,.ce) were important influencing factors.
occurrence of the first sonic point. The airfoil itself is only
defined discretely at a large number of points. It is difficult to The results of Salas/South and Schmidt/Jameson were selected 0
retain the shock-free feature as the grid is refined." There is as the best two contributing solutions' The coefticients from
some question whether this is due to: slight errors in the hodo- these two datum solutions are shown in Table 4 1 2 and indi-
graph solution, or the extrapolated inlinite-gnd solution being cate close agreement. Both solutions are plotted in Fig. 4.1.6

computed on a geometry which is inconsistent with a shock- as surface pressure and total pressure loss distobutions. The
free case because of limitations in the geometry specification. latter solution shows extremely small total pressure vanations
The accuracy of the solution is probably best judged by mon- over almost all the upper and lower side, with the exception
itoring for convergence of the global forces and moments as of some minor excursions at the shock positions. The errors
the grid is refined uniformly with well-posed boundary condi- in both methods are small enough that either can serve as nu-
tions and by checking for inconsistencies in the solution, such merical reference solutions.
as entropy losses upstream of shocks.

Two numerical solutions, namely those by Rizzi and Surce Mesh (' , (
SchmidtlJameson. were considered as numerical reference so- 0
lutions according to their high quality.4 In Fig. 4.1.5. the -

surface distributions of pressure and total pressure loss of Salas 192x39 0.3472 0.557 -. 167/South 0-type
Schmidt/Jameson are depicted together with the curves ac-
cording to the "exact" hodograph solution (E). The overall Jameson 320x64 0,3584 0,0580 -. 1228
agreement is very good except at the leading edge. where a /Schmidt O-type
disagreement is noticed in the representation of the suction I
peak. This defect seems to be systematic in nature and can
be found in all numerical solutions presented to the working Table 4.1.2 Aerodynamic coefficients for NACA
group. Also, minor deviations from the hodograph solution 0012 test case; .1, = 0.85 and , = 1 deg.

are evident on the upper and lower surfaces wherever stronger
pressure gradient changes occur. Considering the total pressure
loses, all values are well below I percent. With the exception NACA 0012: M-, = 0.95, , = 0 deg
of the suction peak region and the area around the midchord *
lower side, very small or almost zero values underline the This test case, originally considered by the AGARD working
high numerical standard achieved. group. 4 is characterized by an oblique shock structure emanat-

ing from the trailing edge. with a weak normal shock in the
wake as shown in Fig. 4.1.7. The contributed computations

Source Mesh CI. C0r It showed wide variations in the predicted location of the sonic
point on the downstream chord-line extension, from 1.4 to 3.1

Rizzi 160x32 0.597 0.0002 -0.130 chords downstream from the trailing edge. associated with the 0
0-type large cell sizes downstream of the airfoil.

Jameson 322x66 0.594 0.0005 -0.132 The normal shock is relatively weak with a Mach number
/Schmidt 0-type of less than 1.1 ahead of the shock. An analysis indicates

that the location of the downstream normal shock wave is

Exact 0.594 0,0005 -0.130 very sensitive to the resolution of the expansion waves in the
supersonic zone above the airfoil, since that sets the oblique

I - I shock angle at the trailing edge. 7 The normal shock loation

Table 4.1.1 Aerodynamic is quite sensitive to small errors because the lengtO rhe

coefficients for NLR 7301 test case. oblique shock emanating from the trailing edge to ck
triple point is about five chord lengths.

The forces and moments from the two datum solutions are
compared to the exact solution in Table 4.1.1; the variations The correct location of the normal shock downstream of the
are very small. A full discussion of the variations between trailing edge has been determined through a grid convergence
eighteen solutions for global forces and moments are summa- study 7 performed using a structured-grid cdx e. The grids
rized in Ref. 4. including useful information regarding solution utilized include 65 x 25. 129 x 49. 257 x 97. and 2049 x 765
features, such as mesh extent and grid topology and density. 0-type grids. The effect of grid density on the location of the

normal shock is shown in Fig. 4.1.7. where the shock location
is measured downstream of the trailing edge. The infinite-grid

NACA 0012: M., = 0.85, t, = 1 deg normal-shock location obtained in this manner is about 3.35 S
coiuis troni the La,;,Ig edge. Corresponding mesh-refinement

Fig. 4.1.4 shows the Mach number distribution from the datum results using the GAUSS2D method of Hartwichm are also
solution of SchmidtlJameson.4 An analysis of all seven con- shown and indicate a similar shock location of approximately
tributions concerning global forces and moments is provided 3.32.
in Ref. 4: there was a relatively high scatter of 16 percent in
lift and 36 percent in moment coefficient. The reasons for that The ability of adaptive methods to obtain accurate results
behavior are attributed to the uncertainty in the determination is examined using two different Euler solvers in Ref. 7. 0
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The two solvers corresponded to upwind-biased methods: a slat, maiu c j. and flap at a subsonic condition (M.. =
fully unstructured-grid method using triangular cells and a 0.20, . b lu adicate excellent correlation with a potential
semiunstructured-grid method using quadrilateral cells. The flow method !nis particular case was chosen in order to
adapted grids from these two methods are shown in Fig. 4.1-7. make a comparison of Euler computations with a Potential
The adaptive grids demonstrate that the shock features can be flow result. Other adaptive-gnd computations for a similar S
resolved well at large distances from the airfoil since small case are given by Dimier and Rontheiner' 4

cell sizes can be maintained all along the shock waves. The 11 1)
accuracy, however, is determined more by the resolution of the 414 6:1 Ellipse
smooth portions of the flow than by the resolution of the more
prevalent flow features, such as discontinuities. The results Numerical solutions of the Euler equations obtained for sub-
presented used an adaption criteria which led to consistent sonic airfoils with sharp trailing edges have laithfully repro- S
results in normal-shock position as the number of points is duced the expected solutions obtained tor viscous flow, namel)
increased. The adaption criteria used repaired inconsistencies smooth flow at the trailing edge. Euler solutions have, ith
in several commonly used methods of adaption. grid refinement, returned those of potential theory with a Kutta

condition imposed at the trailing edge. For a smooth trailing

4.1.3 Multielement Airfoils edge, Pulliam"
' has presented a currently unresolved problem:

the inviscid suberitical flow over a :I ellipse section. The

The capability to compute flows over complex geometries is potential flow solution is unique up to the specification of the

extremely important to the aerodynamic designer. As alterna- circulation or, equivalently, the rear stagnation point on the

tives to block -structured grid methods, the unstructured grid surface. Assuming irrotational initial and boundary conditions.

methods have greatly expanded the capabilities in that direc- the inviscid solution should remain irotational. Howe-,er, the
discrete Euler solutions obtained by Pullianm with a central-

tion using both Euler and Navier-Stokes equation sets. These
difference linite difference solution and by several others with

methods are natural as a framework for the accommodation of diffrent formulations return an arbitrarily large value of liftarbitrary geometries and the incorporation of adaptive mesh- for any combination of grid and/or angle of attack which is
ing techniques. nonsymmetric. The resulting solutions, however, agree closely

Results from the computations of ,avnplis and Jameson"" with potential flow solutions with a circulation imposed equal

for a two-clement airfoil (slat and main airfoil) are shown in to that obtained in the discrete Euler solutions, as shown in Fig.

Fig. 4.1.8. The method uses triangular and adaptive grids. 4.1.110. The Euler solutions are sensitive to solution parameters

and the results shown were some of the lirst which demon- such as grid refinement and stretching. boundary conditions.

strated the power of the unstructured grid method in aero- dissipation coefficients, convergence level. etc. However. no 0 0
dynamic applications. A node-based central-difference finite- consistent explanation of the discrepancy obtained with the dif-

volume scheme is used, which has been shown to be equiva- ferent discrete Euler solution could be found. Winterstein and
lent to a Galerkin finite-element method, with a lumped-mass- Hafez'6 show the numerical interplay of the dissipation forms
matrix term." " Several of the computational grids which ar and the boundary conditions for blunt bodies. For viscous al-

used in the solution process are shown in the top half of Fig. gorithms which use Euler formulations as a building block for
4.1.8; the grids shown are the finest adapted mesh and three of the convective and pressure terms, the issue is not considered

the coarser grids used in the mesh equencing and multignid to he relevant as the viscous separation at the trailing edge 0
acceleration processes. The grids hase- been g~merated inde- serves to set the lift coeflficient.
pendently of each other, thus decoup!ing the grid generation
process from the multigrid acceleration scheme. Finer grids 4.1.5 Heavy-Gas Airfoil Computations
can be obtained by global refinements or by adapting previ-
ous coarser grids; the grids communicate through an efficient The capability to conduct three-dimensional wind-tunnel tests
tree-search algorithm. The lower half of the figure shows the at full-scale Reynolds number has long been an important aero-
pressures on the slat/airfoil and the convergence rate of the dynamic need. Full-scale tunnels are only available at low
algorithm using single and multiple grids. The pressures have speeds because of size and power constraints: high Reynolds
been compared elsewhere" to experimental and potential re- number ground-based testing is generally achieved through
suits for unadapted meshes at slightly different conditions with combinations of high pressure, cryogenic temperatures, or al-
generally goxd results. The convergence rate shown is com- temate test gases. The cryogenic temperature approach enables
parable to that attained in structured-grid multigrid codes and Mach number to be varied independently of Reynolds num-
substantially improved over that attainable with only a single her, but testing is expensive and complex. Hleavy gases. such
grid; comparisons (not shown) of the unadapted and adapted as sulfur hexafluoride (SF,), are an attractive alternative to
grid solutions indicate that higher accuracy can be obtained air because of the increased Reynolds number available due
with fewer points in the latter approach. to lower viscosity and increased density, for fixed length and

velocity. In addition, power consumption and model loads
The flow over a three-element NLR 422 airfoil computed with are less than that for air at a constant Mach number. Un-
an unstructured finite-volume, vertex-centered code'2 is shown fortunately. most heavy gases behave as nonidcal gases, and •
in Fig. 4.1.9. A second-order-accurate upwind flux-difference- the results obtained have to be correlated with those tor air.
splitting algorithm t is solved to steady state using an explicit since the ultimate objective is the performance of the tested
Runge-Kutta scheme. The far-field and near-field views of the configuration in a high-Reynolds number air flow.
grid indicate a gradual enlargement of the grid away from the
surface. The grids are generated in an automatic way, driven The difficulty introduced by the nonideal gas behavior is shown
by overall user-defined parameters, like maximum allowable in Fig. 4.1.11; the pressure distribution over a NACA 0012
grid spacing and curvature. The pressure distributions over the airfoil at A.- = 0.8 and i= 1.25 deg is shown for air and for 0
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a heavy gas, SF6. at various pressures. I The air results would 7. WARREN. G. P.. ANDERSON. W. K.. THOMAS. J. L.
be the samc independent of the pressure since air behaves as an and KRIST. S. L., "Grid Convergence for Adaptive Methods."
ideal gas. The pressure distributions shown are quite different AIAA 91-1592-CP. June 1991, pp. 729-741,
because of the nonideai behavior of the SF6. As the pressure 0
is increased, the upper surface shock moves forward relative 8. HARTWICH. P. M.. "Split Coelicient Matrix (SCM)
to air and the lower surface shock disappears. A numencal Method with Floating Shock Fitting for Transonic Airfoils."
scaling procedure was developed 7 based on the use of the Lecture Notes in Physics. Vol. 371. Springer-Verlag. New
Euler equations and the transonic small disturbance equations. York. 1990. pp. 394-399.

Using the transonic scaling procedure in which an equivalent
gamma is determined based on both temperature and pressure, 9 MAVRIPLIS. D. and JAMESON. A.. "'Multigrid Solution
the pressure distributions are shown in Fig. 4. 1.11 for air and
for SF6 at various combinations of pressure and temperature. of the Euler Equations on Unstructured and Adaptive Meshes,"

Note the Mach number for the SF,, calculations is different ICASE Rept. 87-53, July 1987: also NASA Contractor Report
178346.

from that in air in order to match the transonic similarity

parameter. The procedure closely correlates inviscid results in
SF6 to those in air. The viscous scaling between air and SF, 10. MAVRIPLIS, D.. "Solution of the Two-Dimensional Euler

introduces additional complications, especially at transonic Equations on Unstructured Triangular Meshes," Ph.D. Thesis.

speeds; the inviscid scaling procedure used above leads to Princeton University. 1987.

different shock locations in viscous flow at high Reynolds
numbers. Further details and references to earlier works in II. JAMESON. A.. BAKER. T. J. and WEATHERILL. N.
this area are given in Ref 17. P., "Calculation of Inviscid Transonic Flow Over a Complete

Aircraft," AIAA 86-4)103. Jan. 1986.
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Figure 4.1.1 Sensitivity of Euler results to algorithm dissipation and boundary condition for
NACA 0012 airfoil; M,,o - 0.8, . 1.25 deg.
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Figure 4.1.2 Mach contours and convergence history for the supersonic flow past a NACA
0012 airfoil; M,, = 3, . 7 deg.
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[so-Mach lines of solution n0 9.2
(AM - 0.05, curve parameter - loom),

Figure 4.1.3 Mach contours for NLR 7301 datum solution; All,, - 0721, a=-0. 194 deg.
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Sequence ot four adaptively generated meshes

Mesh 3. 790 nodes Mesh 4: 1631 nodes

Mesh 5: 3107 nodes Mesh 6: 4697 nodes
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~-0 Single grid C ,

Multigrid 0.0 ..

-10.01.0

0 200 400 600 800
Work~ units

Figure 4.1.8 Adaptively-refined grids, computed pressures, and convergence rate for
unstructured-grid computations of a two-element airfoil (main airfoil and slat); If_ = 0.7,

=2.8 deg.
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Figure 4.1.11 Effect of non-ideal gas behavior on the pressure distribution for a NACA 0012
airfoil; Af. = 0.8, a = 1.25 deg.

0'



155

4.2 WINGS a deajled study was made under the auspices of the Euro-
pean GARTEUR Action Group AGO5 regarding the predic-

Applications are shown below of Euler codes applied to at- tion capabilities of a number of different codes for the flow
tached flows over wing components. These types of computa- over a simple wing.4 The wing selected was the DFVLR F4
tions can be done routinely with modern computers and algo- wing, shown in Fig. 4.2.3 at two conditions: one subsonic
rithms. Without the modeling of viscous terms, the solutions (.1_ = 0.30, (1 = 0.84 deg) and one transonic (.11 = 0.75,
to (he Eiler equations generally overestimate the experimcn- o, = 0.84 deg). Ten methods were applied, which included ()

tal lift and, at transonic speeds, produce shock locations which nonconservative and conservative potential methods and three
are generally too far aft of high Reynolds number experimental Euler methods. Studies were made and reported of conver-
data. Calculations for the ONERA M6 wing are shown be- gence characteristics, grid refinement, and grid extent. A few
cause it is a widely used test case for the comparison of Euler selected results from the study are shown.
codes, using both structured and unstructured grids. The other
three examples are comparisons of the capabilities of differ- For the subsonic case, the global lift and drag predictions in-
ent codes for a transport-type wing and two lower aspect-ratio crease from nonconservative potential to conservative potential
fighter-type wings. The examples include comparisons be- to Euler; somewhat surprisingly, the variations also decrease in
tween different Euler methods and with irrotational methods, the same manner, although some of this effect may be because
such as nonconservative and conservative potential methods, the three Euler solvers were closely related central-difterence

schemes. The largest discrepancies occurred outboard on the
wing. principally due to different modelings of the wing tip.

4.2.1 ONERA M6 Wing The pressure distributions from all of the contributions at a
semispan location of 0.821 are shown and indicate "essentially

The ONERA M6 wing at transonic conditions (O.f- = 0.84 the same pressure distribution in a fairly narrow hand," thus
and , = 3.06 deg) has been used extensively as a test case lending high confidence to their validity in predicting pressure
for the verification of Euler methods. The results shown variations due to configurations changes.
in Fig. 4.2.1 are typical of those that are attainable with 0
linite-volume codes, in this case an upwind-biased implicit The global lift and drag coefficients for the transonic case.

scheme' using the flux-vector splitting of Van Leer. At these however, indicate substantially larger differences than for the

conditions, the predicted shock is slightly aft of the measured subsonic case. The nonconservative potential codes predicted

experimental data, obtained at a Reynolds number of 11.7 the shock position too far forward in relation to conservative

million.2 The pressures are shown for a 97x17x17 C-O mesh potential or Euler codes, attributed to the lack of mass conser-

and a 193x33x33 C-O mesh; the differences between the two vation in the former class of schemes. The predictions from

structured meshes are limited to the regions of the upper the latter two classes arc shown at the semispan location of ' O

surface shocks. The surface pressures are shown at the right 0.821 and indicate that the variations in lift coefficients are

of the figure for a C-O mesh and a C-H mesh; the resolution largely attributed to variations in shock position. Additional

of the C-O mesh at the tip is considerably better and leads to a computations for this case includes the embedded grid compu-

greatly improved resolution of the pressures in the tip region. tations of Radespiel' and the grid refinement computations of
Leicher.6 As pointed out in the reference. 4 the results indicate

In Fig. 4.2.2. the grid and Mach contours from the unstructured only a "snapshot" of capability existing in 1986: advances in
cell-vertex method of Mavriplis' is shown. The grid is adapted computational capability have occurred since that time which
to the shock patterns on the wing and plane of symmetry. For have allowed greater confidence for engineering computations
the nonadaptive case, the lift coefficient on meshes of 9,428 of transonic flows with the Euler equations.
cells. 53,961 cells, and 357.900 cells was 0.2713, 0.2872, and
0.2923. With adaption, the lift coefficient was 0.2901 with
173.412 cells, close to that of the finest mesh with better 4.2.3 RAE Wing-Fuselage
resolution in the shock and leading-edge regions. The lull 0
multigrid method is used to accelerate convergence of the Accurate prediction of transonic and supersonic wave drag is

scheme, with an order of magnitude benefit in efficiency. critical in fighter aircraft design optimization. The flows are
complex and highly nonlinear; the Euler equations, although

The results of Mavriplis demonstrated that complex ge- neglecting viscosity, with consequent errors in shock position
ometries cou!d he solved on unstructured grids with sim- and strength, can be used to predict overall configuration ef-
ilar multignd performance to that attained with structured fects including rotational flows due to shock curvature or free
grids. The computer resources for the scheme were some- vortices. Three different Euler solvers were compared for tran- •

what higher (approximately 100 words/vertex and 75-100 sonic flow field computations on a wing-luselagc configura-
microseconds/multigrid-cycle/vertex on the CRAY-YMP com- tion by Agrawal et al. 7 The three schemes compared were the
puter) compared with the structured-grid codes (40 words/cell explicit central-difference FLO67 code, the implicit upwind-
and 30 microseconds/multigrid-cycle/cell on the CRAY- biased code CFL3D, and a nonconservative upwind code ET2.
YMP computer). The additional resources required by the The three codes were compared on two configurations and

unstructured-grid scheme are offset by the ease in which the were evaluated with respect to accuracy and convergence. A
grid can be adapted to the local featu-es :,4 interest, sample calculation is shown in Fig. 4.2.4 for the transonic flow

over an RAE wing-fuselage geometry at 31, = 1.9 and ,o =
I deg. The results predicted by the three methods are similar.

4.2.2 DFVLR F4 Wing except for differences in coarse-grid regions and near shocks.
The upwind finite-volume code predicted shock waves with

In order to increase the understanding of the prediction accu- the best resolution and was least sensitive to grid refinement.
racy for the flow around general aerodynamic configurations, The best convergence was obtained with the central-difference

i ,..d I I l i l i l i I - , , _ -: -, . . .
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FLO67 code using local time stepping and full mulugnd ac- 4.2.5 References
celeration. The latter code was particularly robust in this range
of application; its predictions generally suffice for flows near 1. ANDERSON. W. K.. THOMAS, J. L. and WHITFIELD,
design conditions where shock/boundary-layer interaction ef- D. L. ''hree-Dimensional Multigrid Algorithms for the Flux-
fects are small. Split Euler Equations," NASA TP-2829, Nov. 1988. O

2. SCHMITT, V., and CHARPIN, F., "Pressure Distribu-
tions on the ONERA-M6-Wing at Transonic Mach Numbers,"
AGARD AR-138, May 1979, pp. BI-I-BI-44.

4.2.4 F5 Wing 3. MAVRIPLIS. D.. "Three-Dimensional Unstructured Multi-

grid for the Unstructured Grid Euler Equations," AIAA O

As part of a code validation study,8 a number of transonic 91-1549--CP, June 1991. pp. 239-247.
computations were made using the implicit upwind Euler 4 CARR, M. P., Accuracy Study of Transonic Flow For
code CFL3D and the transonic small-disturbance code CAP- Three-Dimensional Wings." AGARD CP 347. Vol. 1. Paper
TSD for both steady and unsteady applications. The small- No. 18, 1988.
disturbance code incorporated both entropy and vorticity cor-
rections. thereby extending its applicability into regimes where 5. RADESPIEL. R.. "Efficient Solution of Three-Dimensional 0
shock strength normally precludes its use. The purpose of the Euler Equations Using Embedded Grids," Proc. of 15th ICAS
evaluation was to determine the accuracy and applicability of Congress, Paper No. 86-I.3.3., London, UK. September 1986.
the methods by performing detailed studies to assess the influ-
ence of several parameters in the numerical modeling of the 6. LEICHER, S., "Transonic Wing Study of the DLR-F4
solution. The F-5 wing was used as a test case; it has a panel Wing." AGARD CP-412. Paper No. 14. 1986.
aspect ratio of 1.58, a leading-edge sweep angle of 31.9 deg,
and a taper ratio of 0.28. The calculations are compared with 7. AGRAWAL, S.. LOWRIE, R. B. ana CREASMAN. S. F..
the experimental pressure data from Tijdentan et al.9 Unsteady "An Evaluation of Euler Solvers for Transonic Computations
comparisons are shown in a subsequent section. on Wing-Fuselage Configurations," AIAA 90-3015. August.

1990.
Three-dimensional steady flow computations at AI- = 0.95
and n = 0.0 deg are shown in Fig. 4.2.5. Comparisons between 8. ANDERSON. W. K. and BATINA, J. L.. "Accurate Solu-

the Euler and potential flow pressures shown indicate excellent tions. Parameter Studies. and Comparisons for the Euler and

correlation for all three span stations. Along the upper surface Potential Equations." Paper No. 15. AGARD CP-437, Vol. I,

of the wing, there is a mild shock wave that is predicted by May 1989.

both the Euler and potential codes, although it is not evident 9 TIJDEMAN. H.. VAN NUNEN. J. W. G.. KRAAN. A. N..
in the experimental data. Euler computations were made using PERSOON, A. S., POESTKOKE. R., ROOS. R., SCHIPPERS.
three grids with approximately (1) 1.000.000 :(2) 250,000; and P.and SIEBERT C. M., " 'Transonic Wind Tunnel Tests on an
(3) 140,000 grid points. The F est grid and the medium grid Oscillating Wing with E.xteral Stores," AFFD!.-TR-78-194
resulted in essentially identical results. Dec. 1978. W
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(b) Surface pressure contours.
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4.3 VORTICAL FLOWS patterns with angle of attack is simular to that found at subsonic
speeds. For supersonic normal Mach numbers, the flow tran-

Vortical flows play an important role in the high-angle-of- sitions with increasing angle of attack from attached flow with
attack aerodynamic performance of aerodynamic configura- an inboard crossflow shock to separated vortical flow with an O
tions, especially contemporary military aircraft. The growth, inboard crossflow shock located above the vortex.
interaction, and decay of these vortices are highly nonlinear
with angle of attack and are difficult to predict accurately with For supersonic flows, the reduction in computational work as-
numerical methods. Current design practices rely extensively sociated with the conical equations has been used to advan-
on experimental test programs. tage in computations for vortical flows over conical bodies

and wings, both for Euler and Navier-Stokes equations. With
For thin lifting surfaces, the Euler equations can model the an adaptive conical-flow solver, Powell et al."'" has studied O
principal features of the interactions, in that primary separa- extensively the total pressure losses in vortical flows simu-
tions arising from sharp leading edges can be predicted; suf- lated by the Euler equations over sharp leading edges. An
ficient artificial viscosity is introduced to faithfully model the example is shown in Fig. 4.3.2 for the flow over a 75-deg
effects of the true viscosity, Secondary separation arising from swept delta wing at a Mach number of 1 95 and 10 deg an-
boundary-layer separations, as well as from primary separation gle of attack. The pitot pressures computed with an adaptive.
arising from round leading edges, is common in practice and central difference solver for the conical Euler equations are
must be modeled by incorporation of boundary-layer effects compared to the experimental results of Monnerie and Werle:' 0
in the Euler model or by considering the Reynolds-averaged at a Reynolds number of 0.95 million, based on root chord.
Navier-Stokes equations. The solutions from the Euler equa- The flow field induced by the primary vortex is very similar
lions can be regarded as limit solutions of the viscous equations between the Euler calculation and experiment. The secondary
at high Reynolds numbers, in which boundary-layer interac- separation underneath the primary %ortex leads to a secondary
lions are small. These solutions, accounting for the principal vortex which is not modeled in the Euler equations; a cross-
interactions, can be especially useful for configuration effects, flow shock, rather than a secondary separation, is predicted
For bodies, the primary vortices are shed from flow separations under the primary vortex.

on smooth surfaces; thus, some form of viscous modeling (ei-
ther a boundary-layer or prescribed-separation model) must be McMillin et al." have made extensive comparisons with both
incorporated for the Euler equations to be of use. Euler. laminar, and turbulent flow models for parametrc vari-

ations in wing sweep. angle of attack, and Mach number. A
comparison of pressure between Euler. laminar Nasier-Stokes,

4.3.1 Delta Wings and experiment is shown in Fig. 4.3.3 for sweeps of 75. 67.5. * *
and 60 deg over a range of angles of attack. The predominant

The flows over simple delta and double-delta wings have features of the experiment are captured by the Euler calcu-
been studied extensively, both experimentally and computa- lations. especially as the angle of attack is increased. Based
tionally. The overall physical structure of the subsonic flow- on these and other parametric computations. McMillin et al."
field over a low aspect ratio delta wing at angle of attack is produced the envelope of conditions, shown in Fig. 4.3.4,
well understood. 1 4 The characteristics of the flow field are where Navier-Stokes and Euler solutions give similar results
dominated by the two counterrotating primary vortices which for the primary vortex flow structure. The envelope corre- 0
form over the wing because of se:paration along the leading sponds to regions where the flow is either clearly separated
edges. The flow reattaches close to the leeward symmetry at the leading edge (through a subsonic leading-edge condi-
plane of the wing; as the flow proceeds outboard, it expe- tion or a high angle of attack) or regions where the flow is
riences an adverse pressure gradient, leading to a secondary clearly attached (through a supersonic leading-edge condition
separation-induced vortex. The secondary vortex can in turn at low angle of attack). At intermediate angles of attack for
lead to a tertiary vortex underneath and inboard of the sec- supersonic Mach numbers, both measured normal to the lead-
ondary vortex. The influence of turbulence is to delay the ing edge, the vortical/separated flow structures lie close to the O
econdary separation to a more outboard position and gener- surface and shows a marked sensitivity to the viscous model.
ally to eliminate any tertiary separation. In fact, as the Mach number was increased, the laminar flow

computations tended to agree best with the nominally turbu-
At supersonic speeds, the now classical work of Stanbrook and lent experiments of Miller and Wood. believed to be associated
Squire' revealed that the boundary between attached and sepa- with an incomplete transition to turbulent flow at the model
rated flow patterns could be classified readily in terms of Mach trailing edge for the higher Mach numbers. In all cases, the 0
number and angle of attack, both measured normal to the lead- Euler computations were incapable of predicting any of the
ing edge, Their original experimental work was extended fur- secondary flow features such as secondary vortices or separa-
ther in a number of experimental studies"" to identify regions tion induced by a shock.
associated with shock-induced separations, separation bubbles,
and crossflow shocks. McMillin et al.9 performed a system-
atic computational investigation of the parametric experiments 4.3.2 Delta Wing in Yaw
of Miller and Wood.' including computations with both Eu- i
ler and Navier-Stokes algorithms. The flow classification of The adaptive method of Powell et al."' 11 has been applied to a
Miller and Wood was refined near the boundary between at- series of delta wings tested parametrically by Miller and Wood.
tached and separated flows based on a reexamination of the including effects of flap deflection and yaw. The general trends
experimental data in the light of the additional insight obtained of the experiments are well predicted. An example is shown
with the computational methodology; the resulting classifica- in Fig. 4.3.5 for the flow over a 75-deg swept delta wing
tion is shown in Fig. 4.3.1. For Mach numbers normal to the in sideslip (M. (w=.7, =12 deg, 3=8 deg). The refinement
leading edge less than I, the variation of the separated flow possible with the adaptive mesh in the region of the leading 0
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edges is evident. The grid corresponds to an equivalent mesh computation and experiment. The computations are asymmct-
of 256 x 128. The pressures show an asymmetrical flow ric with respect to the vortex core. attrbuted to the inability
pattern, corresponding to a stronger shallower vortex on the of any of the computations to model the increased levels of
port side relative to a weaker more circular vortex on the turbulence associated with the burst vortex region, as shown 0
starboard side. The pressures agree well with experiment. by LDV data, The progression of vortex breakdown position 0
although both vortices are predicted too far outboard and the with angle of attack for both Euler and Navier-Stokes compu-
suction levels are overpredicted. tations was shown to be consistent with the expenmental data. ("b"

The turbulent flow calculations showed breakdown upstream
4.3.3 Doub ]k-elt Wing of both laminar and Euler computations and, in general, at
4 uWangles of attack where breakdown approached the apex of the

Longo and Das'3 numerically investigated the vortical flow wing, either viscous calculation showed significantly improved

past a double-delta wing at moderate angles of attack. For this agreement with expenmentally observed breakdown locations.

study, the DLR multiblock Euler solver CEVCATS was used. HitzeliS- presents extensive studies of the vortex breakdowns
The selected configuration is a thin flat plate double-delta wing computed with the Euler equations for a swept delta wing.

with sweep angles of 80 deg and 60 deg for the strake and the
wing, respectively. A body-fitted mesh with an 0-0 topology 4.3.5 IEPG Vortex Flow
is used to discretize the physical domain. It contains 56 cells
in the chordwise direction. 112 cells in the spanwise direction. Computation/Experiment 0
and 48 cells in the normal direction. Solutions are evaluated To assess the capabilities of computational methods for sam-
for the subsonic case M = 0.n30 at a = 7 and II degs by ulating the flow around a typical military aircraft planform,
correlatinga collaborative program among four nations tUnited King-

The numerical results in Fig. 4.3.6 indicate that at ,k = 7 deg dom. Germany, Italy. and the Netherlands) was started in 1987
(sequence of left side figures), two vortices are formed on each under the auspices of the Independent European Programme
side of the wing which originate from the wing apex and from Group (IEPG). ' The isolated sharp-edged cropped delta wing 0
the wing leading-edge kink. Downstream of the leading-edge planform shown in Fig. 4.3.8 was modeled through compu-
kink, the strength of the inner vortex decreases because it is tations with the Euler and Navier-Stokes equations and com-
no longer fed with vorticity. On the other hand. the whole pared to results of an experiment conducted by Elsenaar and
vorticity shed from the rear part of the leading edge is fed Hoeijimakers.5' The section of the wing is an NACA 64A005

into the outer vortex. Thus, its strength increases downstream. section which is blended into a hi-convex section ahead of the
The two vortices with the same sense of rotation tend to move maximum thickness location. The case selected was a tran- •
around each other. Since the outer vortex is stronger, the sonic flow case (.1_=0.85. (t=10 deg) corresponding to a full-
tendency leads to an outward and downward movement of the span leading-edge vortex flow with weak shocks only. Vortex
inner vortex. At (i = I I deg (sequence of right side figures), breakdown over the wing occurs experimentally at angles of
the two vortices merge over the wing. Due to the influence attack greater than 20-22 degs.
of the outer vortex, the weaker inner vortex moves outwards TI-c IEPG effort is actually a follow-on to an earlier Intemoa-
and joins to the outer vortex. At the wing trailing edge, only V
a single vortex can he identified. The Euler solution predicts tinas ond F rim on Eule Coe Validtntthe general changes of the vortices structure in good agreement which was conducted from 1983-1987 with the express intent
with the experimental data. Dicrepancies hetween computed of obtaining and comparing detailed experimental data, espe-
and measured location of the merging vortices are due to the cially at transonic speeds, for a 65-deg swept cropped delta
neglect of secondary vortices on the numerical solution, wing with existing computational methods. The participatingorganizations included the FAA. NLR, AFWAL, DLR, MBB,

DORNIER, and the technical universities at Delft and Braun-
4.3.4 Vortex Breakdown schweig. The experimental and computational data base form 0

this rather successful program is summarized in Ref. 21 and
For delta wings, the maximum lift generally occurs at an- the entire program is reviewed in Ref. 22. The planform
gles of attack above that corresponding to the onset of vortex chosen for the IEPG effort was similar to that in the earlier
breakdown at the trailing edge of the wing; with increasing effort; the experimental data base was enlarged. especially in
sweep, the maximum lift becomes coincident with the occur- the transonic range. and computations included both Navier-
rence of vortex breakdown at the trailing edge. Vortex break- Stokes and Euler solvers.
down computations have been made by Agrawal et al.' 5 using
Euler and both laminar and turbulent Navier-Stokes equations Euler solutions were obtained using a single hxy-fitted grid of
for a 70-deg swept delta wing. Strearmwise vorticity contours approximately 300.000 points with seven different Euler codes.
in the pre- and post-breakdown regions of the wing at (k=30 The dissipation coefficients were reduced as much as possible
deg are shown in Fig. 4.3.7. The experimental data obtained within the constraint of obtaining a converged solution. The
using Laser Doppler Velocimetry (LDV) is compared to Euler results indicated that the pressure distributions were predicted
and laminar, turbulent, and embedded laminar Navier-Stokes reasonable closely for all of the methods; the differences
computations. The predicted contour levels in the primary vor- were most noticeable in the apex. leading-edge, and trailing-
tex are similar, although peak levels are much higher in the edge areas. There were significant differences between the
experiment, which can be attributed to the diffusion associated various total pressure predictions attributed to the magnitude
with the numerical truncation of the scheme. Secondary vortex of the truncation errors on a single. fixed grid. However.
structures are evident in the viscous computations and expert- the correlations of the Euler solutions with experimental data
ment. as expected. The vorticity levels in the post-burst posi- show much larger differences because of the neglect of the
tion are much smaller, in relation to pre-burst levels, for both boundary-layer-induced secondary separation effects in the
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Euler method. The lift coefficient differences between the incompressible, small disturbance flow and ideled the vorli-
predictions was 5 percent; the average Euler-predicted lift cal flow over a circular cone as either a concentrated line vor-
values were 12 percent larger than in the experiment. tex or a vortex sheet. With prescribed symmemc separation

points, two fa lies of solutions were found at angles of attack
The surface pressure contours and lateral pressures at two lon- beyond twice the cone half-angle: a symmetric solution and 0
gitudinal stations are shown in Fig. 4.3.8 Only two of the a pair of mirror-image asymmetric solutions. The side force
seven Euler solutions, which are representative. are compared vanauons from the asymmetric solutions were in reasonable
to results from a experiment and with the Reynolds-averaged agreement with experimental results, thus providing evidence
(turbulent) Navier-Stokes computation of DLR-Gottingen on a that the origin of the asymmir- is in% iscid in nature. Also.

grid of about 2 million cells. The Euler results show the single with asymmetric separation points prescnt:d frori expelinient.
suction peak corresponding to a primary separation from the two stable families of asymmetries were found. one with a
leading edge. The secondary separation at xlc,,, of 0.6 and 0.8 small side lorce and a slight asymmetry and the other with 0
occurs experimentally at 81 and 83 percent semispan. respc- a large side force and a pronounced as.mmetry. The larger
tively; the Navier-Stokes calculations predict secondary sep- asymmetry family produced side force values which were on
aration at 78 percent at the same longitudinal locations. The the order of the side force % alues measured experintallv.
secondary separation induces a secondary suction peak out-
board of the primary and is noticeably stronger in the compu- Marconi solved the Euler equations at supersonic speeds us-
tation than experiment. The results of the Reynolds-averaged ing the conical equations and a prescnbed-separaion model.
Navier-Stokes method demonstrate an improved correlation of thus removing the small disturbance limitation of Fiddes. [he
theory and experiment, results obtained were in substantial agreement with the previ-

ous findings of Fiddes. in that a pair of mirror-image as.ti-

4.3.6 Wing Canard metric solutioNis were found at angles of attack greater than
twice the cone half-angle. The results lor a 7-deg half-angle

The Euler equations, in accounting for the primary leading- cone at .11,= 1.6 are shown in Fig. 4.3.10. The streamlines

edge vortices, can be used to determine the principal inter- and surface pressures at alpha=23 deg indicate the asyrnimtcf- 0
actions between components, including the interaction of free ric flow pattern; one vortex is located closer to the bsdy and

vortices with lifting surfaces.
2i.-a An example of the correla- farther from the plane of symmetry than the oiter. The on-

lion with the finite-volume Euler TEAM code and experiment set of asymmetry is shown versus angle of attack bor 7-deg

for a wing canard at transonic conditions (.1-,=0.9, o=4 deg) and 5-deg cones. The 5-deg cone computations were made

is shown in Fig. 4.3.9. The wing pressures are shown with and with symmetrical separations prescribed at 120 and 150 de-

without the canard surface. The influence of the canard is to grees: the prescribed separation location of 150 deg shows

decrease the wing leading edge pressures. The pressure com- better agreement with the experiments. Beyotd the point of

putations agree well with the experimental values, except in asymmetry. complete agreement would not be expected since

the immediate vicinity of the wing upper surface trailing edge, viscous effects would aisymmetrically change the separation

attributed to a local shock/boundary-layer interaction, The in- locations from those prescribed. In contrast to the findings of

crement in pressures from canard off to canard on is predicted Fiddes. Marconi found that in the range where asymmetries

more closely than the wing pressures, as is generally expected. occurred, the symmetric solutions (obtained with symntry

Scherr and Das2
' draw similar conclusions from Euler com- imposed) were unstable and always cviolved to asymmetric 0

putations of a slender canard-delta configuration at high angle solutions. Thus, the Euler computations have yielded valuable

of attack. More demonstrations of the capabilities of Euler insights into the nature of the asymmetric flows: further stud-

methods in free vortex simulations can be found in Ref. 24. ies. including Navier-Stokes computations, are summarized in
Ref. 30.

4.3.7 Asymmetric Cone Flows

The flow over a cone at high angle of attack is dominated 4.3.8 References 0
by the vortices which arise over the leeward side of the body
from boundary-layer crossflow separations. These vortices ex- I. HUMMEL. D.. "On the Vortex Formation Over a Slender
ert considerable influence on the local pressure distributions Wing at Large Angles of Incidence." AGARD CP-247. Paper
and can interact with other components downstream. Exten- 15. Feb. 1983.
sive experimental investigations have revealed that for sub-
sonic crossflow conditions, the flow field remains symmetric 2. KJELGAARD, S. 0.. SELLERS. W. L.. III and WESTON.
until the value of angle of attack exceeds approximately 2-3 R. P., "The Flowlield Over a 75 Degree Swept Delta Wing
times that of the nose half-angle. 26 The flow then is charac- a 20.5 Degrees Angle of Attack." AIAA 86-1775-CP, June
terized by a markedly asymmetric pattern of vortices, giving 1986.
rise to large side forces and lateral instabilities. Since these
vortices arise from viscous separations over a smooth surface. 3. CARCAILLET. R.. MANIE. F.. PAGAN. D. and

computational studies require direct account of viscosity (i.e.. SOLIGNAC. 1. L., "Leading Edge Vortex Flow Over a 75
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4.4 AIR-VEHICLE CONFIGURATIONS integration. Two different calculations are compared with each
other and with wind tunnel measurements: a body/wing con-

The representative capabilities of Euter solvers to predict the figuration and a body/wing/pylon/nacelle configuration of a
inviscid flow over general air-vehicle configurations are de- modem transport aircraft. 0
scribed below. The configurations able to be treated are geo- 0
metrically complex, including representations of wings, bod- Plate 4.1 shows the general arrangement of the configuration
ies, pylons, nacelles. flap-track fairings, flaps, elevons. em- with pylon and nacelle. The distribution of the pressure coef-
pennage. etc. The examples shown use both structured- and ficient is projected onto the surface. The spanwise stations, at
unstructured-grid methods, which are tailored to the appli- which experimental pressure data near the pylon were avail-
cation areas of interest. The use of Euler methods to treat able, are depicted in Fig. 4.4.1 together with the surface grid
engine-airframe integration studies is widespread, as shown on the lower wing side. Comparisons of the computed pres-
for the subsonic transport examples. The capabilities of Eu- sure distributions for the configuration with and without pylon S
Ier solvers for fighter-type configurations are demonstrated in and nacelle and the corresponding experimental data show a
several applications. An example from the advanced tacti- good correspondence in all cases, considering that the code is
cal tighter (ATF) development illustrates an application of an inviscid. The flow at the leading edge is modelled with high
Euler solver to an aircraft design which proved useful in com- accuracy, which is a consequence of the correct angle of at-
plementing wind-tunnel experiments and uncovering some de- tack in the Euler calculation. The wing was decambered to
ficiencies early in the design cycle. An example application of account for boundary layer effects. thus, there was no need to
the sonic boom signature for a supersonic transport aircraft is modify the experimental angle of attack for the inviscid flow
shown: the Euler equations are necessary to supplement linear calculation. The residual discrepancies between experiment
theory methods as the Mach numbers approach 3. A com- and simulation occur in the region behind the shock, at the
plete cruise missile simulation with a counterrotating propfan lower wing side. and at the trailing edge. The problems at
propulsion system is shown; time-accurate simulations were the shock (shock/boundary-layer interaction) and the trailing
used to determine model loads before construction of a large- edge are a consequence of lacking boundary layer thickness
scale powered test model. Application to the prediction of modeling in the code. Some difference% at the lower wing S
store carriage flow fields are shown with both structured- and side mainly result from flap track fairngs that were mounted
unstructured-grid methods. For reentry configurations, the ap- on the wing in the experiment and were not modelled in the
plication of multiblock structured-grid Euler solvers to the simulation.
prediction of flap loads for a Hermes reentry configuration is
shown, as well as computations for the U.S. Space Shuttle In order to find out whether the engine installation effects are
configuration. predicted accurately with the Euler code MELINA, the pres-

sure distribution of the engine mounted configuration and the * 0
4.4.1 Subsonic Transport Aircraft clean wing case were subtracted from each othcr (Fig. 4.4.1).

fit was expected that due to the subtraction thc uncertainties.
Structured-Grid Applications inherent in both the method (simplified viscous effects) and

the experiment could be eliminated and that the effect of the
Several examples which demonstrate the capabilities of Eu- flap track fairings which were not present in the numerical
ler solvers to calculate transonic flows over jet transport air- simulation could be filtered out. Positive and negative Cp ,1-
craft are shown below. At Deutsche Airbus GmbH (DA),' the ues correspond to deceleration and acceleration of lhe flow
multiblock multigrid Euler integration algorithm MELINA, to- due to the engine installation, respectively. There i an ex-
gether with the INteractive GRID generation system INGRID cellent correlation between the interference effects of theory
and the Practical Interactive Solution Analysis system PISA for and experiment,
post processing, forms the tool package for three-dimt-nsional
inviscid compressible flow analysis. Problems of complex ge- In view of the development of ultra-high bypass (IJHB) en-
ometry (body/wing/pylon/engine) and of jet or nacelle flow gines. the aerodynamic interference between airframe and en- 0
can e solved. The Euler code MELINA is a Jameson-type, gine becomes more and more important. Figure 4.4.2 shows
explicit, multiblock, multigrid, cell-vertex code and is contin- the capability of Euler solvers to simulate the flow field
uously upgraded and adapted for the applications which are of around the DLR-ALVAST wing-body combination2 with dif-
interest to the transport aircraft designers at DA. ferent wing-mounted engines. The CFM-56 engine represents

the conventional engine and the UHB engine corresponds to
With the interactive algebraic grid generator INGRID, several the DLR-CRUF simulator.' The geometry of the wing-bo dy
tasks can be tackled. It serves as a geometry definition and combination represents a typical modern wide-body transport
manipulating system to create the configuration to be evaluated aircraft of Airbus type. The flow field computations for the
from given input data. At any stage of the construction, user- different configurations have been performed by the use of the
defined curves describing the geometry can be graphically dis- DLR Euler-code CEVCATS. This code is written in a block-
played for error checking and judgment of the configuration. structured form using a multigrid acceleration technique and
In a second step. the surface is covered with a surface grid allows an arbitrary application of boundary conditions on the
with full user control of the node distribution. Then a global block faces. 4

multiblock mesh can he generated for a wing-body configura-
tion. In order to add further components like pylon, engine, The first step in the multiblock approach for complex con-
tail etc., local blocks are then cut out of the global mesh and figurations is to decide on a global grid topology, In case
reconfigured corresponding to the components. of a wing-body-engine-pylon (whep) configuration, an H-type

structure in the streamwise direction is used; an 0-type struc-
The CFD system described above is used alongside other ap- ture is used in the spanwise direction for the wing-body grid
plications to analyze the problems arising with engine/airframe and in the circumferential direction for the engine (Fig. 4.4.2).
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A thre-dimensional view of the field grids for the different well as the covenngs of the flap-deployment mechanisms at
engine types is also shown. Both field grids consist of II four semi-span positiori on the wing. The engine is mud-
computational blocks with a total of approximately 600,000 eled as an actuator disk: inflow and outflow conditions are
mesh cells, specified at upstream and downstream cross-sectional stations.

The pressure contours over the configuration are shown at a S
Transonic pressure distributions (M = 0.75 and i = 0.84 transonic cruise condition ., = 0.801 and o = 2.738 deg
deg) at different spanwise sections for both engine types are the longitudinal pressure vanations at a circumferential posi-
compared to those of the wing-body configuration. The pres- tion located 22 deg outboard from the centerline of the na-
ence of the engine results in a forward movement of the shock celle shows excellent agreement with expenmental data. On
and influences the complete upper surface of the wing. On the wing. the Euler computations at the semispan location of
the lower side of the wing, the influence is more local and 0.293 indicate an upper surface shock located further aft than
the closer position and the larger geometry of the UHB en- the experimental results, as expected because of boundary-
gine causes a stronger interference. Due to the movement -f layer interaction effects On the subcntical lower surface, tis

the shock caused by the propulsion system. lift is considerably chordwis vanations due to the presence of the pylon-nacelle
decreased, as shown in the lift versus semispan comparisons, and the streamwise flap-track fairings are substantial and are
In case of the UHB engine, an additional loss of lift occurs in well predicted by the iniscid method.
the region around the engine location.

A similar capability is shown in Plate 4.2 for a Dassault Avi-
Computational time for a single flow calculation is about half ation transport configuration' 4

.1 with fuselage-mounted na-
an hour on a CRAY-YMP. Comparisons between calculated celles and vertical and horizontal control surfaces. The Mach
and measured pressure distributions demonstrate the capabil- contours are shown at a transonic condition"5 (.%I- = 0.85.
ity of the CEVCATS code to predict essential interference ef- (, = 3.0 deg). The surface tiangulation shown is the result
fects due to the propulsion system. '- The capabilities shown of two successive refinements and has 40.000 nodes. The
above are typical of the geometric complexities which can he numerical formulation uses upwind approximations based on
analyzed with multiblock structured-grid codes.7 

Ii Osher's approximate Riemann solver and MUSCL interpola- 0
tion. The time advancement is implicit and is combined with

Unstructured-Grid Applications adaptive mesh refinement and unnested mulfigrid acceleration
techniques. The solutions were obtained after a three-order-

The unstructured-grid methods have also been applied to of-magnitude reduction in the steady-state residual equations,
complex transport configurations. as shown below for a corresponding to 300 iterations at a Courant number of 2).
generic McDonnell Douglas Corporation (MDC) Tri-Jet

configuration. ' Generally, in this latter approach, considerably
fewer manpower resources are expended to generate the field 4.4.2 Supersonic Transport Aircraft
grids. The surface triangulation and the pressure contours of
the under-wing engine at transonic conditions of Af- = 0.825 Recently, new initiatives towards the design of a follow-on
and ri = I.O deg are shown in Fig. 4.4.3. The conditions corre- to the Concorde supersonic transport have begun. Studies
spond to unforced flow through the engine-cowl components. have focused in the area of configuration design for sonic
The grid and solutions were computed with the AIRPLANE boom minimization in order to mitigate the noise associated
program developed by Jameson and Baker.' 2 The surface defi- with the sonic boom and determine the feasibility of overland
nition required two days; the flow field mesh contains 384,914 supersonic flight. The sonic boom signature for two supersonic
nodes and over 2 million tetrahedra. The grid is determined by transport configurations was studied by Siclari and Darden.'
triangulating a series of graded-refinement Cartesian meshes; A central-difference finite volume method in the cross-flow
the flow solver advances in time using Runge-Kutta time step- planes and an implicit upwind finite difference technique in
ping in combination with a central-differenced residual with the marching direction was used to solve the three-dimensional

explicitly added dissipation terms. unsteady Euler equations. 0

The pressure distributions on the wing at 24 and 32 percent Computer codes used in the design and analysis of low boom
semispan show good agreement with experimental measure- configurations have traditionally been based on Whitham's
ments. The pressure peaks and general behavior are predicted modified linear theory analysis, '7 which was extended to apply
well with a slight discrepancy near the shock on the wing to lifting bodies by Walkden."' Studies have demonstrated
upper surface. The capability to study component interfer- that the traditional modified linear theory methods become
ence is also shown through wing pressures with and without inaccurate as the free stream Mach number approaches 3. Ai 0
the under-wing engine. On the lower wing, the retardation higher Mach numbers, stronger shocks are generated and the
effect ahead of the pylon and the acceleration over the aft assumption of isentropic flow becomes invalid. Thus, Euler
end closely matches the experimental trend. In addition, the and Navier-Stokes methods applicable to the area of sonic
changes in pressures due to the nacelle and pylon compare boom prediction and minimization at Mach numbers above 2.7
well. In this case, less than one man-minute of editing was are needed. These near-field prediction methods can provide
required to remove the engine assembly from the configura- detailed flow field information for guidance in component
tion; the resulting field-grid generation required 18 minutes on integration or provide flow field input for nonlinear or modified
a single-processor CRAY-YMP supercomputer. linear theory extrapolation methods.

The transonic flow over a transport configuration computed Two low boom aircraft concepts,1' designed for low sonic
with an unstructured-grid Euler method 3 is shown in Figs. boom at Mach 2 and Mach 3. which were designed, built, and
4.4.4-4.4.5. The unstructured surface-grid modeling is de- testeu at NASA. are schematically shown in Fig. 4.4.6. The

tailed and includes the wing-body-pylon-nacelle geometry as Mach 2 configuration has a flat platypus nose and the Mach
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3 concept has a needle nose. Both have highly swept leading time stepping integration schenic or a point-implic relaxation
edges inboard with cranked lower sweep outnoard wings for scheme; the latter shenme is implemented as a point Jacobi
improved low-speed performance. Both concepts were studied extrapolation procedure.
without engine nacelles, the corresponding wind-tunnel data
were also available for comparison. The aircraft model studied was based on design studies for the

early MBB-ACA tighter conducted in 1985. The COmpUtdtioins
Approximately 850.000 points were used to compute the flow were carned out on a CRAY-XMP/2 computer using a mesh
.n the vicinity of each aircraft, and approximately 1. 1 million with a total of 520,000 grid points for modelling the complete
points were used to compote the flow to 15 body lengths configuration.
downstream of the aircraft. The computational surface model
and computed aft pressure contours at .NI = 3.0 and o = Plate 4.3 shows the pressure distribution on the aircraft for

1.97 deg for the Mach 3 low boom configuration are shown the following flow conditions: .11 = 85. i= T5 deg.

in Fig. 4.4.6. The cranked wing generates a strong shock as i = 5 deg. To enable a realistic simulation, mass flow

indicated by the isobars. The computed isobars in a plane at through engine intakes and nozles was allowed based on the

the end of the sting show a strong shock in the leeward region, tollowing parameters: p,.1p-,n= I. l ./f tn,.k M K. =
attributed to the coalescence of the wing trailing-edge shock 0.75. The windward side (due to ,aw) is the left side of the

and sting attachment shock. On the windward side, a strong aircraft. Shocks can be detected at the canard and the wing

shock occurs due to the wing crank; the circular isobars just trailing edges. Plate 4.4 shows tcmperature contours over the

to the right and left to the sting are vortices generated by the aircraft and in the region downstream of the engine exhaust at

wing tips expansions. transonic conditions. A good estimate of the accuracy achieved
with the Euler solver applied to a complete airplane can be

The computed pressure signatures are compared to recent obtained by checking the total pressure distribution. Although
wind tunnel model data for both the Mach 2 and Mach 3 not shown here, the windward surfaces of the contiguratton
configurations. Both models were 1/300 scale or about 12 do not exhibit total pressure variations except at part of the
inches in length. The wind tunnel model data were converted fuselage underside; the errors in this region were traced to a 0
to full scale in feet to compare to the computations. The triangular interpolation between input points which was too
wind tunnel data were taken at two different distances below disparate.
the aircraft for each configuration. For both configurations,
gxod correlation with the data is shown for both distances for F-18 Aircraft
the forward half of the signature. At hf = 0)5. the Mach 2
data show a series of shocks and expansions in the last half A demonstration of the complete %ehicle modeling capabilii•
of the signature. The computation shows a single shock and available with unstructured-grid tnethods'" is shown in Fig.
expansion. At h/( = 1.0, slightly better correlation is achieved. 4.4.7. The surface geometry of a complete F- 18 tighter con-
The data stills show a series of shocks and expansions with figuration is described by 37 surface components and 87 line
a very large, final, expansion twice that of the computation. components. The surface mesh extends into the engine inlet

Virtually the same type of correlation is shown for the Mach 3 and :xhaust and the half-domain discrettzatton consisted of
configuration. Further studies' indicate that it is necessary to nearly 500,0)0 tetrahedral elements and 1(X.(XX) nodal points
consider three-dimensional effects in the design of low boom The inlet conditions took the form of a specified .Mach num-
concepts, since the Mach 2 concept showed sonic booms along her of 0.4 and the exit conditions specified a jet pressure ratio
the side of the ground footprint with magnitudes as much as of 3. The pressure d.,tribution at a transonic Mach number
40 percent greater than those directly along the flight path axis. of 0.9 and 3 deg angle of attack is shown. The results shown

were obtained in 199022 and were initial demonstrations of the
power of the unstructured-grid methods for aerodynamic appli-

4.4.3 Fighter Aircraft Configurations cations; the entire time from surface geometry demonstration
to flow solution was less than two weeks.

In 1986. Eberle and Misegades a ) presented some of the first
inviscid solutions of a complete fighter aircraft using a high- Advanced Fighter Configuration
resolution Euler code. The underlying numerical method uses
a Godunov-type averaging procedure based on the eigenvalue Another example of the unstructured-grid Euler capability

analysis of the Euler equations; the fluxes are evaluated at for complex configurations is the application to an advanced
the finite volume faces, thus generating separate constant sets lighter configuration developed by Alenia Aerona'ica. shown
of flow variables on either side. The procedure is third-order in Fig. 4.4.8. The results are from a validation study to assess
accurate on equidistant meshes (in one dimension) and locally the capability of Euler methods, with emphasis on the transont
monntonicity preserving, which seems to avoid the drawbacks regime, for a new generation oflighter aircraft." The grid va,

of global TVD schemes. -  generated using the advancing-front grid generation of Peraire
et al.24 . which allows highly anisotropic meshes (i.e.. meshes

The grid generation for complex configurations like a fighter where the elements can be stretched along arbitrarily-oriented
aircraft is performed from solutions of linear biharmonic equa- directions) and is tightly coupled to an existing CAD system.
tions in which only one parameter is necessary to be pre- The geometric modeling is detailed. includes the inlet, exhaust.
scribed. H-type grids are used in a monoblock approach where control surfaces. flaptrack fairings, store pylons. and tip pods.
specific coordinate planes are made coincident with certain The definition of the surface consists of 154 CAD surfaces and
surface elements of the configuration at t and. With this pro- the construction of the surface mesh required one week. The
cedure, dummy grid points are generaed inside the configu- generation of the volume mesh was done overnight using an
rations which have to be blanked out. The resulting code can engineering workstation. The grid consisted of 141.339 nodes
he run for steady state solutions by using either an explicit and 763,566 tetrahedrons.

.. . .. .. . .. . ......... .. .. .. . .. ... .. .. .. . .. li *
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The prssure contours at a transonic speed in slight yaw of computed and neasured surface pressures at two stations
(,tl.. = 0.80. o = 4.0 deg, I = 2 deg) were computed with on the wing for one condition lone close to mid-span and the
the UES3D code, which is an explicit node-centered finite- other close to the tip) are also shown. In examining these cor-

volume-based central-difference spatial discretizanon. The relations, caution must be exercised because: (I) the computed
flux balance is done by a summation over the faces of the solutions, being insiscid, do not account for viscous eftectsm
tetrahedrons in the volume, with each face being by two tetra- aid 12) even minor geometrc ditterences between the compu-
hedrons. The engine simulation imposed a given mass-flow tational and wind-tunnel models can produce relatively large (4)
rate. The scheme requires 45 microseconds per grid point per changes at transonic Mach numbers. For the ?resent case, no
iteration on a CRAY-YMP-2E single-processor computer and special effort was made to minimize any surface profile mis-

70 words of storage per node. Solutions can be obtained in match between the computational and wind-tunnel models due
an hour of CPU time. A modification of the geometry and to time and resource constraints. The data were not collected
the corresponding flow field can be obtained in less than a for TEAM validation but to meet the project needs. The pre-
day, indicating the numerical strategy can be used profitably dicted loads were more consistent with high Reynolds number
in the industrial environment. \hIhough not shown here, com- limit solutions (since boundary-layer effects are not modeled).
parisons of the computations wih detailed pressure measure- although vortical flows from sharp leading edges are predicted.
ments made during wind-tunnel tests have been reported and The Reynolds number for the wind-tunnel test was typically
have shown good accordance.- an order of magnitude less than its value in flight: thus, dif-

ferences between wind-tunnel and flight pressures would be
Advanced Tactical Fighter (ATF) Aircraft expected in regions when the flow exhibits shock-induced sep-

aration. The Euler analyses proved quite useful as one of the
Application of the multiblock structured-grid TEAM code to tools to provide information regarding configuration moditi-
the complete advanced tactical fighter prototype configuration cations during the evolution of the design. A summary of
(for which surface pressure contours at transonic speeds are the CFD usage in the F-22 development program has been
shown in Plate 4.5) began in earnest in 1988.2' 2' This aircraft compiled by Bangert et al,;2 the complete airloads prediction.

features multiple lifting surfaces, twin tails, and an integrated including control surface variations over a range of Mach num-
airframe/propulsion system. Based on the capabilities of the hers, angles of attack, and sideslip was done using the TEAM
code at the time and the schedule constraints of the project. Euler code and consumed 4.5 months of dedicated supercom-
only an inviscid Euler analysis of this complex configuration puter usage, corresponding to IN()O CPU hours.
was considered feasible in orde ito have an impact on the
design. Solutions were obtained for several transonic and su-
personic Mach numbers and angles of attack for hoth flow- 4.4.4 Missile Configurations * *
through and powered nacelles under symmetrical and asvm-
metrical flight conditions. Ptowered conditions were simulated

by prescribing mass-flow ratio values at the nacelle face. The Cruise Missile
TEAM code2' was used in a truly predictive mode for a new
design. The computational solutions were obtained before the The solution depicted in Plates 4.6 and 4.7 is a single time

wind-tunnel pressure-model data were available. No attempt frame (snapshot) of the unsteady pressure field around a prop-

could, therefore, he made to adjust the grid or the code to im- fan cruise missile. The geometry is esentially a complete

prove correlations with data. Many valuable lessons learned cruise missile (as modeled in the wind tunnel) with a coun-

from this exercise are sdmmarized in Refs. 26-27. terrotating propfan propulsion system operating at cruise con-
ditions of NI.. = 0.7 and four degrees angle-of-attack. Re-

Generating a grid on this configuration was a tedious and very searchers at Mississippi State University were contracted to

time-consuming task. A few hundred man-hours and several simulate the unsteady flow field of several potential design
weeks were expended to constru :t a 43-zone H-H type grid concepts prior to the wind tunnel testing to help estimate the
with about 1.5 million grid points for half the configuration. material strength of the wind tunnel model to maintain struc- 0
Such slow turnaround was a major impediment in evaluating tural integrity. The project, a formal cooperative effort be-
the impact of numerous geometric changes on aerodynamic tween the U.S. Department of Defence (Navy and Air Force)
lef.,rinan,:. TEAM>s inability to a~curatcly predict absolute and the NASA Ames and NASA Lewis Research Centers, is

drag levels was another disappointing aspect for the project sponsored by the Cruise Missile Project in Washington, D.C.
personnel. On the other hand, detailed surface pressures pre- Its purpose is to help determine the applicability of propfan
dicted by the code proved valuable in estimating airloads for propulsion for stand-off weapons using advanced unsteady
the structural analysis of the vehicle as well as for the ther- aerodynamic codes2

K is and a large-scale power-model wind
modynamic analysis. Until data from a wind-tunnel pressure- tunnel test.
model test became available, ibis capability was particularly
helpful in expediting structural analysis using more realistic A complete animation of this configuration (with the blades

transonic and supersonic flow data than could be obtained us- moving) can be formed from a collection of flow-field snap-

ing potential flow methods alone. TEAM's application to the shots (a total of ninety-six for this particular configuration). All

ATF configuration was quite helpful to its developers also since ninety-six solutions were used to predict the unsteady forces
it uncovered early in the design cycle some deficiencies which and moments on all the appendages (wings, (ins, and blades)

have since been rectified, prior to the wind tunnel test. There was concern about the
placement of the fins, so a fins-forward (of the propfan) config-

In Fig. 4.4.9, TEAM Euler predictions of lift coefficient at a uration and a fins-aft configuration were analyzed using CFD
transonic Mach number and three angles of attack are corre- prior to the wind tunnel experiment. CFD simulations were
lated with the wind-tunnel data. (The vertical axis is deliber- not limited to iondeflected fins, as in this case, but included
ately left blank). Good agreement is clearly seen. Correlations cases involving fin deflections of five degrees. The analyses •

0 0
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gave an indication of the material strength necessary to with- in different flow solvers, but especially for Euler tELIFLEX,
stand the unsteady aerodynamic loading on the wind tunnel INFLEX) and for Navier-Stokes tNSFLEX) computations. A
model. The flow-field analysis required 4 million words of new technique based on smart-cell structures in rronoblocks
internal memory and 32 million words of solid-state storage recently led to two efficient applications:'
device (SSD) on a CRAY-XMP, consuming nearly eighteen
hours of CPU time to produce the solution shown. Presently. multiple overlapping monoblocks (MOM)

the CYD solutions and the data collected from the wind tunnel
(NASA Ames) are undergoing comparative scrutiny. dynamically overlapping grid (DOG)

ANS Missile MOM is an EUFLEX-type solver and is applied for steady
and rigid multiple body configurations. DOG is a combination

Applications of the Euler equations to an air-breathing missile between a INFLEX-type time accurate algorithm ith the SSP

project (ANS) studied by Aerospatiale and MBB is shown in code" for the adequate time accurate representation of flight

Plate 4 .8. " The configuration is powered by a ramjet propul- mechanically described motions and simultaneously occumng

sion with 4 circular air intakes and is a follow-on to the EXO- commanded control deflection

CET family of missiles. The surface grid is composed of about In the present stage, both codes f r. aible to handle two ovcr-
16.000 nodes for half of the configuration and uses a CAD lapping monoblock structures. The basic approach to describe
surface definition. The surface pressure coefficients shown the exchange of flow informations between both flow regions
correspond to a supersonic condition (- = 2.0, ,o= 4.0 deg, have been derived from descriptions of the Chimera method'4

i = 0 deg), with open air intakes operating in the supercnt- whereby the synchronization of time between the blocks is
ical regime. The computations were made with the FLU3C regulated similarly to the ESE technique." MOM and DOG
code, and are representative of the capability at Aerospatiale are highly suitable for store integration investigations. As seen
to calculate missile aerodynamics in an industrial environment, in Fig 4.4.12, two typical trajectory positions are shown for a
The methodology tightly couples the CAD surface genera- missile separating from an aircraft, which has not been fully S
tion and the mesh generation schemes and uses two numerical represented geometrically due to the supersonic flight condi-
procedures: a space-marching procedure for supersonic flows tions.
and a multizonal approach for transonic and subsonic flows.
Applications to several missiles, an Ariane 5 plus Navelle The accuracy of such predictions has already been success-
Hermes configuration, and a supersonic transport are shown fully demonstrated for subsonic and supersonic cases for a
elsewhere."' variety of complicated store geometries. A good correlation

between flight test (FT). wind tunnel (WT), and MOM results •
for a store-wing configuration has been obtained: isobars are

4.4.5 Store Configurations shown in Plate 4.9 for .1,, = 0.9 The correlated rolling

moments, well-known as most sensitive to misrepresentation,
A good understanding of the fluid mechanics associated with agree closely. as shown in Fig. 4.4.13. These results have been
carnage and release of stores from an aircraft is of primary im- achieved with only 60.000 cells in both monoblocks together.
portance to the aircraft designer. The flow field encountered
on stores in the presence of an airframe is usually complex be- The application of such an approach is very universal. The 0
cause of the many aerodynamic interactions which occur. Tra- present code, uniquely designed for store integration studies
ditionally, the designers have relied on extensive experimen- can be easily extended to other completely different problems.
tal wind-tunnel tests to estimate interfere||ce effects. Recent even such as to the flow around a complete helicopter in
progress in unstructured-grid methods is beginning to have an forward flight inclusive ground effects, for high speed vehicle
impact on that progress. For example, an extensive wing- flow with realistic ground/wall effects and other nontrivial
pylon-store computation is reported in Ref. 37. The method- boundaries.
ology consisted of an advancing-front grid generation scheme
closely coupled to an upwind, finite-volume scheme. System-
atic comparisons of the interference effects were made with 4.4.6 Reentry Configurations
experimental data '

s for the baseline (instore) position and two
other store positions at Mach numbers of 0.95 and 1.2. The HERMES
surface geometry is shown in Fig. 4.4.10 and the longitudi-
nal variations of pressures for three store positions at Al_ = Computations of Rieger et al." are shown for the HERMES
0.95 are compared with experiment in Fig. 4.4.11. There is 1.0 configuration in Plates 4.10 and 4.11 and in Fig. 4.4.14.
a substantial effect of the store position on the pressures and Because of the size and specific position of controls on the con-
the comparison with experiment is excellent at all three posi- figuration, the performance of the control system is strongly
tions. The comparisons presented in Fig. 4.4.11 are typical influenced by flow field effects through large gaps and slits be-
of the others presented in Ref 37. The demonstrated accuracy tween body flap, elevons, and winglet flaps. This is important
and the fast grid generation makes the approach attractive as insofar as the size of the controls are by far not small com-
a preliminary design/analysis tool. pared to the oveiall size of the vehicle. For purpose of iaviscid

flow field simulations, a mesh system was constructed by use
At MBB, monoblock structured-grid codes have been used of the interacti' mesh generation system DOGRID developed
since the early beginnings of field method applications. Now at Domier which consists of 7 mesh blocks and in the finest
they have reached a high level of maturity and universality, mesh i.ossesses some 1.5 million grid points. The various
Conligurations of very high complexity can be e!fficiently mod- mesh blocks are interconnected by use of segmentation tech-
elled: CAD-tools like CATIA and DOGRID-5.3 '9 are used as niques which allows the arbitrary connection of block faces
preprocessors. The resulting monoblock-strctures are used or parts thereof. Particle traces are shown in Plate 4. 10: Plate

0 0
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4.11 displays son flow features in form of Mach number dis- Fig. 4.4. 15 illustrates the multibody interaction problem of
tributions on the body surface. in the symmetry plane. anu in a the Shuttle orbiter in a mated configuration with the ET and
specific cross-section. The interesting point is the behavior ot SRBs. The cross-section grids at various constant x-locations
the flow jet coming up on the leeside wing through the gap be- are also given. The solutions are obtained at 1 , = I S and

twin clevon and winglet flap. Because of high velocities and k1= 0.0 deg. Fig. 4.4.15 shows the pressure contours trom x 0
low pressure level of the wing leeside flow, the gap jet with = 200 in tox = 1780 in.; five ztones are used in this region.
high pressure acts approximately like a rigid body. which pro- The SRB and Shuttle Orbiter are treated as a point, and the
duces an additional shock system that is indicated by the blue zero flux boundary condition is applied to thewe points. At x
spot (low Mach number) in the fuselage end section. In the = 220. the :onical solution of the FT is obtained, and the bow
body flap end section, the interaction between the expansions shock is formed.
around the trailing edges of the windward flow and the cross-
flow phenomena. including the gap shock system, evolves to The solutions are very smooth and continuous across the tonal
a highly complicated flow structure. The computations were boundaries despite a very unconventional three-siueu computa-

performed with the block-structured code supporting a regular tional grd. The expansion wave from the surface at x = 400 in.

data structure.
"  can be clearly seen in thi- figure. The apex ol the SRB starts at

x = 425 in. and produces an attached bow shock. This shock
Reference 45 describes the application of the DLR code CEV- expands and finally hits the ET surface, as can be seen at x =
CATS with central diseretization and the upwind scheme used 610 in. Notice that a very symmetric solution is generated by
by ONERA's code FLU3C in order to validate inviscid flow using this unsymmetric grid. The orbiter nose is at x 640 in.
calculations for reentry vehicles at supersonic conditions. The The detached shock and subsonic flow field behind the shock
coordinate mesh used for this study is displayed in Fig. 4.4.14. are calculated by using the relaxation method. The reflected
Pressure contours in Fig. 4.4.14 show that the flow fields pre- orbiter bow shock on the external surface is clearly eident
dicted by both codes are almost identical. The only difference at x = 810 in. At x = 1670 in., the embedded wing shcot is
in the results is a slightly better shock resoiution by the up- indicated which wr ps around the leading edge of the wing.
wind scheme. Detailed comparisons of computed global force, Another detached shock is formed furthe- downstream by the
and moments with wind-tunnel measurements indicate that lift. orbital maneuvering system (OMS) pod. Since the subsonic
drag, and pitching moment are in very good agreement. The pocket is big and the Mach number is almost zero near the root
differences for roll and yaw moments are somewhat larger4 '

" of the OMS pod. a total of 20 relaxation marching sweeps are
Nevertheless. the effect of Mach number and angle of attack on required to give a good converged result. The OMS pi and
;ateral and directional stability is well predicted. Other com- sertical tail shocks are clearly shown in this figure at x = 1780
p'!tations for HERMES-like configurations have been made by in. The relaxation method is used to co-ulate the suh,onic * *
Pfitzner "7 and Menne and Wieland45 a general survey of in- flow field and detached bow shock. The chordwist: pressure
dustrial applications to reentry and hypersonic configurations distributions on the upper surface of the wing at several span
is given by Rieger. Stock, and Wagner.- stations compare well with experimental data. including in the

region where OMS pod shock interacts with the wing surface.
Space Shuttle
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Figure 4.4.1 Euler simulation of transonic flow over a twin-jet transport aircraft.
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Surface triangulation of the MDC tni-jet configuration Pressure contours of the under-wing enigine

Comparison of computed pressures with test data Comparison of pressures with and
without engine assembly
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Figure 4.4.3 Unstructured-gnid applications to a McDonnell-Douglas Tni-Jet configuration at
transonic speeds; M, 0.825, o=1.0 deg.
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Figure 4.4.13 Comparison between Euler (MOM), flight-test (FT), and wind-tunnel test (WT) for
angles of attack and sideslip; Al~. =0.9.
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4.5 PROPULSION SIMULATIONS position and strength of the shock are well reproduced by the
numerical algorithm. Other computations are given by Stahl.4

Applications of the Euler equations to simulate propulsion flow

fields are shown below. The Euler equations have been used Complete Wake Model
extensively in propulsion simulations and propulsion-airframe 0
integration studies. These equations admit vonicity and, thus. In the model described above, only a small region around the
can be used to simulate the aerodynamic performance (ne- blade has to be discretized since a wake model is used to set (.l)
glecting boundary-layer effects) of rotating machinery such as the inflow conditions for the blade. Consequently, the flow
propellers, rotors, or turbines. Simulations of propeller, rotor, induced by the advancing blade is not the flow that impacts
cascade, and fan blade passage calculations are shown below, the following blade. This leads to large savi igs in computer
including simulations in which an approximate model is used time but the solution is dependent on the wake model used. To
to determine the inflow conditions to a local Euler solution remedy this deficiency, the physical domain can he extended
and several more detailed computations in which the entire so that the complete rotor disk is enclosed. This ensures that
flow is modeled. Because of the geometrical complexity of the following blades are exclusively exposed to an induced
the three-dimensional, generally unsteady flow fields, and the flow that is calculated by the pure Euler procedure itself.
difficultie% in resolving free wakes in the flow field, the com- The problem associated with this is a further increase in the
putational demands associated with the latter classes are high number of grid cells and, consequently, in the computational
such calculations are yet in their infancy. The modeling of expense. On the other hand, the main function of the cells 0
the propulsion system is often done using an actuator disk inside the expanded regions is only to provide the esseniial
model, admitting specified changes in total pressure, enthalpy, distance between the blade and the far field boundary. Since
and rotation, and an example for a twin tractor configuration the flow gradients that are expected in these regions are less
is shown; several other airframe-integration examples shown substantial than in the blade's vicinity and their influence on
previously also used actuator disk modeling. Euler computa- the blade is small, the discretization can he much coarser than
tions for nonrotating machinery, such as inlets, nozzles, and in the interior.
nacelles are comparatively much more evolved several de-
tailed computations are shown, including a nacelle analysis Using this approach, Kramer et al.' found that if the grid is
system which has been extended into the design stage (Sec- too small, especially in the radial and downward directions,
tion 4.8) and several higher Mach number applications. At the development of the rotor wake is obstructed significantly.
high Mach numbers, simulations of inlets and nozzles associ- To overcome this deficiency, the dimensions of the original
ated with high-speed aircraft must consider the Euler equations grid (twelve blade chords, which is twice the blade length, in
at a minimum since the potential equations are inadequate, the radial direction. and eight blade chords above and below * *

the rotor disk) were enlarged by a factor of 2-3 in the radial
and 3-4 in the normal direction. The original grid is actually

4.5.1 NACA Propeller used as an inner component of the extended grid, generated
separately by a simple analytical algorithm. An example for

Figure 4.5.1 shows results' 2 of a calculation for a NACA an 0-0 grid generated in this manner is given in Fig. 4.5.3.
propeller with NI., = 0.56. an advance ratio of .A = 0.73, and
a blade tip Mach number of Mtip = 0.96. Lines of constant An Euler calculation based on a free stream initial condition
pressure are plotted in four crossplanes perpendicular to the corresponds to the physical situation of a helicopter rotor start-
blade in the upper part of the figure. A shock can he seen in ing instantaneously from rest. The flow behavior associated
the outward planes for z/Z, > 0.7. where Z, denotes the radial with the beginning of rotation is very complex and character-
position of the blade tip. This shock is getting stronger and its ized by a long transient period before a steady state is reached.
position is getting closer to the trailing edge with increasing As lift develops, the starting vortex created by the rotor blades
radius z. This effect is clearly represented in the lower part of plays a dominant role. The formation and the further temporal
Fig. 4.5.1. which shows the lines of constant pressure on the evolution of the rotor wake within the starting phase is known 0
blade's upper surface. The comparison between calculated and from several experimental investigations.
measured pressure distributions along the chord for the same
case at four selected cross sections shows good agreement. The Figure 4.5.3 shows the results obtained in terms of the circula-
calculation produces a shock that is stronger and its position tion per unit area using an expanded 0-0 grid. The temporal
is more downstream than the experiment, which is attributed evolution of the wake within the starting phase is plotted at
to viscous effects. different iteration levels. The figures clearly show the move-

ment of the tip vortex, as well as that of the vortex arising
at the inner blade root. The reproduction of the inner vortex

4.5.2 Hovering Rotor and the highly three-dimensional interference between the in-

ner and the outer vortex is not possible unless the physical
Approximate Wake Model domain completely extends to the rotor axis. If the region of

small radii was not considered, as is often done in practice,
Figure 4.5.2 shows a comparison between computation' 2 and these effects would be ignored.
experiment' for a two-bladed rotor with untwisted rectangular
NACA 0012 blades in hover. The blade tip Mach number M,, The results of the Euler procedure show the typical phenomena
is 0,794 and the collective angle of attack 0 is 8 deg. The pres- of the starting process as in the experiments: initially, the
sure distributions along the chord at four different cross sec- vortex ring remains located near the tip, being continuously fed
tions are presented. These flow conditions produce a transonic with circulation. Likewise, its geometric extension continues
flow in the region of the blade tip. The agreement between to grow. After some time, the vortex begins to descend
computation and experiment is good in all four sections, The and new vortices arise. This is indicated by the isolines S

. , - ii H I I i i .. . . . . - . .. .I 0 .. .
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becoming more and more elongated. With the extended grid, which allows the representation of a discontinuity in the tan-
however, there is no impeding boundary and the movement gential velocity field for simulation of vorticity effects.
proceeds undisturbed. Some time later, one can see that the
isolines are directea inwards, which is a typical sign of the The numerical results are compared with experimental data
beginning contraction of the newly arising vortices. This in Fig. 4.5.4. The profiles of the compressor cascade were
process intensifies as the starting vortex ring retains its radial equipped with five pressure transducers on the pressure side
position. In the last frame, the starting vortex is approximately (DI-D5) and six pressure transducers on the suction side (SI-
15 blade chords beneath the rotor disk. At this distance, any S6). For these locations, experimental and numercal data in
influence on the blade has been lost, the form of the dynamic pressure distributions are plotted as a

function of time. The comparison with computed results shows
A quantitative proof of the agreement between calculation and very good agreement in amplitude and phase except for DI. •
experiment can only be performed for the time-asymptotic Unfortunately, the pressure transducer S I was out of order.
state because a steady code was used to calculate the transition The acceleration measured in the experiment shows a second,
phase and. tnerefore, time consistency does not exist. The higher frequency corresponding to the first torsional mode.
geometriL locations of the outer tip vortices for the steady case Therefore, all measured data exhibit a high oscillation. The
corresponding to a collective pitch of 5 deg and a tip Mach difference at point D1 is caused by the relatively coarse grid.
number of 0.815 is plotted into the isoline diagram of the final The good calibration between measurement and numerical
iteration state. These results are in a very good qualitative simulation with respect to phase shifts can be examined by 0
agreement with the experiments. The agreement between the the correspondence of acceleration data.
numerical and the experimental data is very good, except at
the very tip, where the tip release is overestimated. The Other Euler computations of the internal flow in cascades.
reason for this is not yet clear, since the discrepancy could turbines, and ducts are reported by Saxer et al., " Happel et
not be improved by using the expanded grid and was also al., " -' 2 Lecheler et al.,"' and Leicher 1

4

unaffected by any grid refinement, geometric tip modeling, or
other measures of that kind. 0

Figure 4.5.3 also shows the results obtained in terms of 4.5.4 Fan Stage Passage
the pressure distribution for the two-bladed model rotor of
Caradonna and Tung' for a tip Mach number of M,,p = (.815 A cooperative program between Mississippi State Univer-
and a collective pitch angle of -9 = 5 deg. The measured sity and the National Aeronautics and Space Administration
pressures agree closely with the predictions. (NASA) has been in place for 6 years to develop software

capable of the time-accurate analysis of complex rotating 0

machinery.' "' Recently, NASA's interest has shifted toward
4.5.3 Turbine and Compressor Cascades ducted rather than unducted advanced turboprop designs; con-
The reliability of modern axial-flow turbomachines is p - sequently the computational fluid dynamic (CFD) effort was
Therliablencetby fowind viabow rains They parti.e steered to extend the flow analysis software developed for
ularly influenced by flow-inducedvrtions. Tey ay be the time-accurate simulation of unducted geometries (prop
asetroughandself-ee blade irations tfans) by incorporating additional domain decomposition mech-

distortion, and self-exited blade vibrations.
anisms to enable the simulation of unsteady ducted prop-fan

Based on the explicit predictor/corrector MacCormack flows (i.e., combined external and internal flow)."1 This ef-

scheme." a numerical method has been established for two- fort uses computational techniques and experience gained in

dimensional computation of unsteady inviscid subsonic flow computing unsteady flows about complex geometries using

through oscillating compressor and turbine cascades by the Eu- dynamic multiblock grids (i.e.. relative-motion subdomains).
ler equations 7 

s  As a typical result for an unsteady oscillating Although initially intended for the numerical solution of ro-
blade application of the numerical method, the travelling wave tating machinery problems, the computational tools that were

mode (TWM) of a compressor cascade in bending motion is developed at Mississippi State essentially comprise a struc-

investigated and compared to corresponding measurements. In tured multiblock flow solver and have been used for the flow-
TWM. all blades vibrate at the same frequency and amplitude, field simulation of a complete aircraft configuration, such as
but a circumferential constant phase lag exists between each the prop-fan powered cruise missile shown in a previous sec-
blade and its neighbors. lion. The references cited present a detailed discussion of

the numerics of the flow solver which includes the equation
A computational mesh (51xl7 points) typical for such an formulation (finite volume), the numerical flux at cell faces
application is shown in Fig. 4.5.4. The geometry presented for this cell centered scheme (flux-difference split with Roe
corresponds to the standard configuration no. 4 as defined averaging), and the implicit solution algorithm (block LU ap-
for the 1986 workshop' on "Aeroelasticity in Turbomachines" proximate factorization with iterative refinement), along with
organized by the EPFL-Lausanne. In the numerical procedure. a discussion of the dynamic multiblock grid approach. includ-
the H-type mesh is smoothed at each time step by an elliptic ing techniques that have been developed for this particular
operator in order to improve convergence characteristics, type of problem involving rotating blocks. One configura- 0

tion presently undergoing investigation is a 1.15 pressure ratio
The location of the various numerical boundaries with special fan stage extensively tested by NASA." The 225x52x15 H
algorithmic treatments are depicted in Fig. 4.5.4. As indi- grid was used to model one-twelth of the geometry, one rotor
cated. the following boundary types have to be distinguished: passage, and three stator passages (benefitting from solution
inflow (BI) and outflow (B2), wall (B3. B4). slip (B5. B6). symmetry). The configuration operates at an advance ratio of
and periodical boundary in circumferential direction (B7. B8). 2.86 with a free stream Mach number of 0.75. The predicted
Downstream of the blade, a slip-line leaves the trailing edge surface pressure contours of the present Euler flow solver are 0

0 0
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shown in Plate 4. I. Other three-dimensional Euler computa- evaluation. Extensive computations are summarized in Ref.
tions for a propeller are given by Bocci et al.21 23 for more than fifty cases, representing cruise, off-design.

and take-off conditions, which hase produced similar levels of

4-5.5 Propeller Slipstream agreement with experimental data. 0

An example" indicating the use of Euler equations to model 4.5.7 Inlets
propeller-slipstream effects is shown in Fig. 4.5,5. The surface
grid for a high-wing transport aircraft configuration intended From the designer's point of view. an intake design delivers a
for subsonic flight is shown; two wing-mounted propellers specified mass flow with specified flow conditions at the engine
mounted in the tractor position provide thrust. The propeller is face. An optimal design would provide these flow conditions
modeled as an actuator disk in the computti-'n4 and generates with losses as low as possible. In particular, for hypersonic air- O
a slipstream having swirl and increased total picssure. The breathing vehicles, the specific intake design can be governed
calculations were done using a multiblock grid consisting of by the overall performance of the vehicle (i.e.. it may no longer
1.2 million cells and solved with an explicit central-difference be possible to select an intake that is optimized by itself).
discretization. A top view of the surface pressure contours
from two computations. with propellers off and propellers on, Therefore, flow simulation is an attractive tool to support
is shown at a Mach number of 0.3 and an incidence of two intake design by providing detailed information on the flow 0
degrees; the block boundaries of the surface blocks appear structure which is necessary for the shape optimization process
as lines in the figure. The pressure distribution on the wing of all configurational elements and which is normally not
and also on the horizontal tail surface is modified due to the provided by wind tunnel testing. Also, the scaling of wind
presence of the propeller. The total pressure contuurs in the tunnel data to realistic Mach and Reynolds numbers can he
vertical plane of symmetry of the nacelle indicate the total carried out by the help of flow simulation information, thereby
pressure is practically constant in the entire flow field except in lowering considerably uncertainty margins.
the region downstream of the actuator disk. The actuator disk 0
model allows the assessment of slipstream-induced effects on The application of Euler methods for intake design may he
the aerodynamic performance. stability, and control for general of high interest for all those cases where viscous effects are
aerodynamic configurations, without the expense of computing expected to he small. Another aspect-" 2 is the question as
the details of the rotating propeller flow. to whether the underlying inviscid approximation scheme of a

Navier-Stokes method is able to provide Euler solutions with
a minimum of numerical dissipation.

4.5.6 Tbrbofan Nacelle Analysis System a 0
Although the calculations of scramjet flows presented in Ref.

A three-dimensional turbofan nacelle design system based on 25 demonstrated quite clearly the capability of the EUFLEX
CFD has been in use at General Electric Aircraft Engines for code to cope with flow phenomena in hypersonic intakes, these
several years. 2

' The system was created to assist nacelle de- calculations also showed room for enhancements. This experi-
signers in the efficient assessment, modification, and improve- ence and insight led to further improvements of corresponding
ment of design concepts. The grid generation, flow solution, flux and limiter formulations. The benefits of these efforts
and post processing are highly integrated in the system and are demonstrated by calculations for realistic two-dimensional
tailored to the design applications of interest; the improved airbreathing engine (turbo or RAM) intakes. The type of grid
capabilities have reduced the design cycle time for the nacelle system used for corresponding computations is shown in Fig.
design process. While the code has the capability to model 4.5.7. The grid depicted is called the fine mesh and consists
viscous effects by including the Reynolds-averaged Navier- of 301 grid points in x-direction and 107 grid points in z-
Stokes terms, the Euler equations are generally solved in or- direction. There are 52 cells spanning the height of the intake
der to reduce the computational time. The engine is modeled duct. The length of the intake duct behind the throat is some- 0
as an actuator disk and the specification of the mass flow is what shorter for the tine grid than for the medium grid ( 161x65
equivalent to setting the lift coefficient for an external flow points) which was also considered. Some crude shock fitting
application, so that Euler computations would be expected to has been attempted by arranging the surface grid points such
be very accurate outside the areas where significant viscous that the point of the leading edge of the third ramp corresponds
separation occur. An example of the validation studies which to the point on the tip of the intake lip,
have been conducted for extensive applications at design and
off-design conditions is shown in Fig. 4.5.6; the schematic of The Mach number distribution for the Euler calculations on S
the nacelle geometry and the computational grid illustrate the the fine grid is shown in Fig. 4.5.7. This finer grid produces
multiblock structured-grid approach. The operating conditions sharper shocks in comparison to the coarser mesh; the third
for the computation corresponds to a typical cruise condition ramp shock for which the grid is adapted best is extremely thin
{ .1, = 0.82. MFR = 0.65. o = 0 deg). The parameter MFR in the fine grid solution. However, as a result of this "shock
is the ratio of the captured free stream tube area to the in- fitting" approach, the shock originating at the intake lip appears
let area and is representative of the engine mass flow ratio, to be thicker than expected. The distribution of the mass flow
The ideal Mach number is a commonly used design parame- deficit has been improved by the increase in grid points. From 0
ter and is computed using the local surface pressure and the the computation, it is evident that the external ramp shocks
free stream total pressure value. The longitudinal variation of merge outside the intake just below and behind the tip of the
the ideal Mach number indicates excellent agreement with the intake lip. On the outside of the intake lip, an expansion wave
experiment. The entire computational time for a case is 30 is generated which interacts with the slip stream behind the
minutes: 5 minutes for grid generation. 15 minutes for flow intersection point of the external ramp shocks and the shock
solution, and 10 minutes for post processing and initial design formed by coalescence of all these shocks. Additional air-
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4.6 HYPERSONIC FLOWS An example (shown in Fig. 4.6.2) uses an unstructured data
management scheme allowing flexible grid adaptation with lo-

Because of recent renewed interest in the development of cal refinement in one or two coordinate directions. Special-
hypersonic air-breathing aircraft, such as the National Aero- ized adaption criteria account for the expected phenomena in
Space Plane in the U.S., there has been active research and de- super- and hypersonic flows, for example, strong shocks and 0
velopment of Euler solvers for hypersonic flows. The emphasis slip lines. The Euler equations are solved using a second
has been principally in two areas: the design of oscillation-free order upwind discretization7 s according to Harten and Yee".
schemes capable of capturing strong shocks and the incorpora- The scheme is a finite volume method based on quadrilateral
tion of gas models more sophisticated than a perfect gas. Both meshes.
are central ingredients of an algorithm able to operate at high
Mach numbers reliably that could form the framework for a Fig. 4.6.2 presents a complex example which permits an
hypersonic, viscous algorithm. Several examples of the im- evaluation of the effectiveness of unidirectional cell division'
proved shock resolution available through either adaptation or This study uses a Mach 8.03 shock-shock interaction7 as a
improved dissipation models are shown below for the case of test case. This example is well suited for comparisons of
a plane shock intersecting a blunt body at hypersonic speeds, methods since the flow field complexity stems from the gas
corresponding to a shock-shock interaction problem. The by- dynamic interaction and not from some arbitrarily chosen
personic flow over a double ellipsoid body was computed ex- boundary. Additionally, the solution demands resolution of
tensively with different Euler solvers at the INRIA Workshop many different and disparate convective length scales and
on Hypersonic Flows for Reentry Problems; two examples are contains both sub- and supersonic regions.
shown: a perfect gas and a real gas computation. The proceed-
ings of the workshop provide a summary of the methodology Taking the origin at the center of the cylinder, the problem
which currently exists for applications to hypersonic flows. An is completely specified by a Mach 8.03 free stream containing
application of Euler solvers to the equilibrium and nonequilib- an impinging shock which follows a prescribed line (y--0.32 71
rium flow over a Hermes configuration is also shown, x + 0.41471). Figure 4.6.2 contains two discrete adapted-

grid solutions to this problem (each was converged with a
4.6.1 Blunt Cylinders constant global time step for 25.0 characteristic times). The

top solution did not make use of unidirectional cell division,
Algorithmic details and general capabilities for the simulation and the mesh shown contains 12869 nodes. The Mach contours
of inviscid hypersonic flows in chemical non-equilibrium con- displayed maintain an increment of 0.25 and the Mach I line
ditions are given by Pfitzner.2- The flow solver is based on is marked. The bottom solution used directional adaptation
a quasi-conservative split matrix method with upwind-biased at the finest level, and resulted in 8510 nodes. Inspection of
space discretization coupled to a Runge-Kutta time-stepping this case reveals that the bow shock, the slip lines that bound
scheme. The chemistry source terms are treated either explic- the supersonic jet. and the supersonic region near the upper
itly or (point) implicitly. The chemical kinetics are based on portion of the cylinder are adapted unidirectionally. Prior to
the 5-species 17-reaction model according to Park.4 For simu- the final division sequence, both meshes were identical and
lation of nonequilibrium reentry air flows at heights above 50 contained 5500 nodes.
km. explicit treatment of source terms was sufficient. Upwind Discretization Effects
Figure 4.6. I shows a comparison of fringe pattemns for inflowFigue 46.1shos acomarion o frngepatern fo inlow The effect of upwind disretization is shown for this same test
of partially dissociated nitrogen about a 2-inch diameter cylin- The ec F upwind isetioftion is shown i eder t te flloing lowconitins: h =6.1. = case in Fig. 4.6.3: a sketch of the flow field is also shown. The
der at the following flow conditions: 1 . - =.1)3. CEVCAT code was modified and extended for the calculation2910ePiz. e r n =r conducte u- =oug 5590iii/s = 0.073 1 . of super- and hypersonic flows, which are characterized byCorresponding experiments were conducted by Hornung. strong nonlinearities, like shocks, slip lines, and shock-shock
Whereas the shock position is reproduced well, the fringe pat- ineaci. Th eta .pta iceiaino h ovctens differ somewhat due to the one-temperature model used interactions. The central spatial discretization of the convec-

tive fluxes has been better adapted to the artificial dissipative
which does not allow for an appropriate delay of chemical re- operator."' In connection with a special boundary treatment
actions by thermal nonequilibrium in the vibrational degrees of the discretization at the walls, the robustness of the centralof freedom. ftedsrtzto ttewls h outeso h eta

method was significantly improved and solutions with strong
Figure 4.6.1 displays a comparison of temperature contours of shocks at high Mach Aiumhers and high angles of attack were
a flow about a 1/4 inch sphere in air at free stream conditions computed. For a better resolution of discontinuities. the up-
of: A.11- = 15.3. p-.. = 664 Pa, T, = 293 deg K. u- = wind TVD discretization according to Harten and Yee4 was 0
5280)m/s. The results illustrate the effects of ideal, equilib- implemented." Figure 4.6.3 shows the comparison between a
rium and chemical nonequilibrium real gas assumptions. Also central and an upwind weighted discretization. 2 In contrast to
shown (top right of Fig. 4.6. 1) is a comparison of the resulting the central scheme, the upwind scheme resolves shocks within
shock contours with the experiment of Lobb.5 The experimen- 2 grid cells and gives a good prediction of the complex flow
tal shock standoff distance is slightly larger than the calculated with shock-shock interaction. Further comparisons between
one due to thermal non-equilibrium effects, schemes are compared systematically by Kroll et al.12 for this

shock-shock interaction.

4.6.2 Shock-Shock Interactions
4.6.3 Double Ellipsoid

Adaption Effects Perfect Gas

The adaptive-grid method can be used to resolve multiple-
shock interactions computed with shock-capturing methods. The flow over a double ellipsoid shape (representative of the 0
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forward section of a hypersonic vehicle), computed with an outermost bow shock and a capturing approach for all other
adaptive unstructured-grid method. '" 4 is shown in Fig. 4.6.4. embedded shock waves.
The conditions correspond to Al-. = 8.15 and it = 30 deg-,
the case is one of the test conditions defined for the Workshop The configuration with deflected elevon flaps in different per-

on Hypersonic Flows for Re-Entry Problems' and has been spective views is shown in Fig. 4.6.6. The surface mesh 0
extensively computed by a number of different contributors, reveals a different mesh structure for the forebody and aft

The mesh and pressure contours are shown for the surface, fuselage region indicating a mesh refinement in the circumfer-

the longitudinal plane of symmetry, and a lateral plane at the ential direction to improve the flow resolution past the fuselage

end of the body for an initial solution and an adapted mesh in the region of the main wing and winglet sections. Because

solution. The how shock is positioned very close to the body the shock-hitting approach used mesh adaptation capabilities.

at this Mach number and is resolved much more sharply with the volume mesh is divided into two blocks (as displayed for

the adapted mesh, owing to the clustering of points near the the last mesh cross-section). The inner mesh block is fixed in

body and a thinning of points outside the how shock. The time whereas the outer boundary of the second mesh block can

cross flow shock is similarly much better resolved, be adjusted to the bow shock shape according to the Rankine-

Real Gas Hugoniot conditions.

Euler solutions are presented for equilibrium and chemical
At higher Mach numbers, the density distributions in the cross- nonequilibrium real gas conditions for the following flow con-
flow and in the symmetry plane are qualitatively very simi- ditions: ... = 25, o = 30 deg. I = 0 deg. Fig. 4.6.6
lar between real gas and perfect gas computations. However, shows corresponding Mach number distributions on the vehi-
there are some major differences within the Mach number dis- ic surface. Contour lines are clustered on the leeside wing
tribution, as shown in the computations by Dortmann" (Fig. and the upper fuselage, as well as in front of the canopy sec-
4.6.5). where the temperature distribution and the mole frac- tion. Whereas the canopy region is exposed to a recompression
tion distribution of molecular oxygen is given. The conditions shock due to the ramp effect of the forebody geometry. on the
correspond to .I1,- = 25 and o = 30 deg, corresponding to leeside of the wing a strong expansion around the round wing S
another of the conditions prescribed for the INRIA Workshop leading edge takes place. This expansion leads to a cross flow
on Hypersonic Flows for Re-Entry Problems.' On the wind- recompression shock near the wing/fuselage intersection. The
ward side, the complete oxygen dissociation takes place within same effect is responsible for the Mach contour clustering on
or shortly behind the bow shock. On the leeward side, the the upper fuselage near the symmetry plane. Although the
temperature jump across the bow shock is not as strong and same free-flight conditions are used in both computations, it is
the dissociation occurs within a small layer which emanates interesting to note that under the assumption of chemical non-
from the bow shock near the nose and follows a plane of con- equilibrium, the footprint of the leeside wing cross flow shock
stant temperature. T=2500 deg K. This relatively rapid change is changed dramatically and also affects the winglet sections.
within the gas mixture leads to a sudden change in the speed
of sound, which influences the Mach number. The same effect Whereas inviscid flow solutions show interesting gas dynamic
due to nitrogen dissociation can be observed on the windward effects one, viscous interaction effects can alter any conclu-
side following a plane of constant temperature with T=5000 sions drawn from inviscid flow results. However, for deter-
deg K. However, the dissociation is not complete since the mining the bandwidth of results for global forces and moments
temperature level is not high enough. and the identification of effects due to basic physical assump-

tions, Euler simulations arc quite valuable for direct design

4.6.4 Hermes support.
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Figure 4.6.4 Initial and adapted unstructured mesh and pressure contours for the hypersonic
flow over a double ellipsoid; M., = 8.15, ai = 30 deg.
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Isotherms (left, T=. 205.3K) and Iso-Mole Fraction of 02 (right) Symmetry plane
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Figure 4.6.5 Real gas effects on a double ellipsoid at hypersonic speeds; M. 25, a =30 deg.
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4.7 UNSTEADY FLOWS tions have been found. For TSD cak.-,.,ons, the grid re-
mains fixed for calculating both stead) and unsteady flows so

A general review of the current status of computational meth- that computations over complex configurations are relatively
ods for unsteady aerodynamics and acroclasticity is given by straightforward. Similar calculations with the Euler equations
Edwards and Malone in Ref. I. The demands imposed on the are complicated by the need for new grids at each time step. 0
computation of aeroelastic applications such as flutter bound- Also, since the solution of the three dimensional Euler equa-
my predictions are intensive, so much so that linear and po- tions involves five unknowns at each grid point, the computer
tential methods are used almost exclusively in the current air- time required for the Euler calculations is much higher than
craft design cycle. For example. Edwards and Malone' show that required by the solution of the TSD equation. For the
for transonic, low-i dynamic computations for a wing that a Euler code used in the present study, the computational rate
nearly two-orders-of-magnitude computer time penalty is ex- for three-dimensional calculations was approximately W im-
pected when advancing from the transonic small-disturbance croseconds/grid point/iteration; the TSD code required only
(TSD) potential equations to the Euler equations; Navier- 5 microseconds/grid point/iteration. Both the Euler and TSD
Stokes solutions require yet another order-of-magnitude in- calculations were done on a CRAY-2 supercomputer at the Na-
crease. Euler and Navier-Stokes methods are being steadily tional Aerodynamic Simulator facility located at NASA Ames
improved into tools usable to the aeroelastic designer, through Research Center.
the incorporation of more efficient and stable time-integration
algorithms and the advent of faster computers. Validation com- The INFLEX code2" ' was also applied to the problem of the 0
putations to assess the viability of using the Euler equations harmonically oscillating F-5 wing in pitching motion and com-
as opposed to the potential equations have been made; ex- pared to corresponding measurements. The EUFLEX method
amples of forced oscillation computations for the F-5 wing was extended as a time-accurate inviscid simulation method.
made with two different Euler solvers are shown below in Figs. called INFLEX. by Brenneis and Eberle. 2 The method is char-
4.7.1-4.7.2. A recent three-dimensional flutter calculation us- acterized by corresponding Godunov-type flux formulations
ing an unstructured-grid Euler method is also shown. Thc use known from the basic Eberle Euler method and a first-order
of spatial and temporal adaptive-grid schemes are expected accurate backward Euler-type time discretization. l'tme rite- 0
to have a significant payoff in this area, and one example is gration is performed by solving the unfactored implicit op-
shown below for two-dimensional flow. erator by a point Gauss-Seidel relaxation method using con-

sistent Jacobi flux matrices. The baseline implicit formula-
tion is secured against singularity effects during inversion of

4.7.1 Forced Oscillations the corresponding block-diagonal matrix by a suitable matrix-
conditioning procedure combined with local transformation of 0

F-5 Wing conservative to nonconservative variables.

Unsteady calculations have been performed for forced sinu- The F-5 wing planform, the surface mesh and the airfoil geom-
oidal pitching motion for the F-5 wing (sketched in Fig. 4.7.2) etry (modified NACA 65-A-004.8 section) is outlined in Fig.

pitching harmonically about a line perpendicular to the root 4.7.2. Because the experimental data revealed large acroclas-
midchord. The pitching motion is described by a = n,, + tic deformations during the pitching cycle, the assumption of
svcos (.at), whereas ois represents the mean value of angle a rigid body motion was dropped. and the measured aeroclas- 0
of attack and (it corresponds to the amplitude. The reduced tic mode shape (Ref. IV.2.9) was used to simulate the real
frequency k is defined as k = .c/(2U,). where c is based on body motion.
the mean aerodynamic chord length. The Euler computations
of Ref. IV.2.8 correspond to (it, = 0. deg. or, = 0. 109 deg and The calculation of the transonic test case (M = 0.95. k =
k = 0.274. Fig. 4.7.1 shows the real and imaginary compo- 0.132. o(, = 0.0 deg. (it = 0.523 deg) was performed on a
nents of the unsteady pressure distributions at the same three grid with 106x54x58 points and a CFL number equivalent
span stations as the steady results shown previously for Euler to 100 A.tcycle. The comparison between the computed •
and modified TSD solvers. On the upper surface, there is a mean surface pressure distribution and the experimental one
shock pulse in the calculated pressure distributions near 50-60 is favorable at all span stations (Fig. 4.7.2). The suction
percent chord, which is produced by the motion of the shock peak at the leading edge on the lower surface due to the
wave. The experimental data (Ref. IV.2.9) does not show a droop nose is reproduced exactly. Both shocks on lower
shock pulse in the pressures at the two inboard stations, com- and upper surfaces are overpredicied and shifted aft of the
mensurate with the absence of the shock at these stations in experimental positions, as expected from inviscid simulations.
the steady computations. On the lower surface, there are pus- Consequently, the peaks in the real and imaginary pans of the
itive and negative spikes in the real and imaginary pressure pressures are overpredicted and too far downstream. Except
distributions, respectively, which are much more pronounced for these small deviations, the results from computation and
in the outboard region of the wing. These spikes are produced measurement correlate very well.
by an embedded region of supersonic flow. In general, the
two sets of calculated pressures agree well, except near the
upper surface shock pulse and in the midchord region along LANN Wing 0
the lower surface. These differences may be attributed to the
sharper shock-capturing ability of the Euler code. Also, com- An application of the INFLEX code to a typical transport-
parisons with the experimental data are qualitatively good for aircraft type supercritical wing with an aspect ratio of 7.92
both the Euler and potential results. (known as the LANN wing4") is found in Ref. 6. The

wing was experimentally investigated at the NLR facilities
Generally favorable agreement between the Euler and TSD and performs harmonic rigid solid body pitching oscillations
calculations incorporating both entropy and vonicity correc- about the axis normal to the wing root section. The oscillation 0

0 0.
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is char'actenzed by the mean angle of attack ,.o = 0.6 deg, the transonic flutter dip with the bottom of the dip near sonic con-

amplitude aI = 0.25 deg, and a reduced frequency k = 0.132. ditions. The computed results agree well with the experimen-
tal data at AI -- 0.499 and 0.678 in flutter speed index ant)

Deails of the planform with the location of the six spanwise in frequency. Near the transonic flutter dip, the computations
sections for the pressure evaluations and details of the wing tip differ from experiment in flutter speed index, but agree reason- •

surface ,nesh are shown in Fig. 4.7.3. The supercritical root ably well in flutter frequency ratio. Robinson el al.' present
profile section and the wing tip section are also displayed. The Euler computations using a structured-grid code for this case.
pitching axis is located at 62.1 percent of the root chord from which agrees cl(,sely with that presented. Other results for a

the wing apex. The position of the wing inside the compu- supersonic transport conliguration are given elsewhere,
tational domain is sketched' the calculations were pserfo.med

on a H-type mesh with 80x38x46 grid points, where on the
wing 18 grid lines are place in the spanwise direction and 50 4.7.3 References 0
grid points are used to discretize r'i lower and upper side of
the profile section. i. EDWARDS, J. W. and MALONE, J. B., "Current Status

of Cumputational Methous for Transonic Unsteady Aerody-
The mean pressure distributions of individual wing sections namics and Aero lastic Applications," Computing Systems in
indicate that except for a slight overprediction on the upper Engineering. Vol. 3. No. 4. 1992. pp. 545-569.
surface behind the shock, the overall agreement of numerical
results to experimental data is quite good. The computation of 2. BRENNEIS A.. and EBERLE, A.. "Application of an Im- 0
further tests cases confirm this statement. However, at higher plicit Relaxation Method for Solving the Euler tquati ins for
Mach numbers, shock boundary-layer interaction effects are Tin.e-Accurate Unsteady Problems," Journal of Fluids Engi-
responsible for systematic deviatioi, of the shock positions neering, Vol. 112, 1990. pp. 510-520.
from experimental fiidings.

3. BRENNEIS. A.. "Berechnung Instationarer Zwei- und
Spatial and Temporal Adaption Dreidimensionaler Stromun ger um Tragflugel Mittels eines
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the cycle of oscillation are shown. rhe mesh adapts spatially "Unsteady TransoniL Pressure Measurements on a Semi-Span
and tempzrlly to the aerodynamic response to the oscilla- Wind Tunnel Model of a Transport-Type Supercritical Wing
tion; the comparison with expenments and oder established (LANN model)." AFWAL-TR.83-3039, Pan I and I1. 1984.
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can be obtained with a significant savings in computer time 6. SCHMATZ. M. A.. BRENNEIS A., and EBERLE, A.,

over standard global time-stepping schemes. "Verification of an Implicit Relaxation Method for Steady and
Unsteady Viscous and Inviscid Flow Problems," Papek 15 in

4.7.2 Flutter Predictions AGARD CP-437. Vol. 1. 1988

7. HOOKER, J. R.. BATINA, J. T. and WILLIAMS. M.
The flutter predictions from a time-marching aeroelastic H.. "Spatial and Temporal Adaptive Procedures for the Un-
procedure.

9 which couples an implicit, three-dimensional, up- steady Aerodynamic Analysis of Airfoils Using Unstructured
wind, unstructured-grid Euler code to the strucural equations Meshes." AIAA 92-2694. June 1992.

of motion, is shown in Fig. 4.7.5. The unstructured-grid for
the 45-deg sweptback wing was developed using an advancing- 8. RAUSCH, R. D.. BATINA. J. T. and YANG, H. T., "Spatial
front method. The mesh deforms during the calculation due Adaptation Procedures on Tetrahedral Meshes for Unsteady
to aerodynamic loading and is modeled as a spring network Aerodynamic Flow Calculations." AIAA 93-0670. Jan, 1993,
where each edge of the tetrahedra represents a spring with a

stiffness proportional to the edge length. As the surface mesh 9. RAUSCH. R. D.. BATINA. 1. T. and YANG. H. T.

moves, static equilibrium equations are solved to determine Y., "Three-Dimensioral Time-Marching Aeroelastic Analyses
the interior grid points. The implicit scheme is a Gauss-Seidel Using an Unstructured-Grid Euler Method." AIAA Journal,
scheme in which the re!axation is implemented by ordering Vol 31, No. 9, 1993. pp. 1626-1633.
the elements in a uownst-eain-to-upstream pattern. Large time
steps selected on the basis of temporal acuracy of the simu- 10. YATES. E. C., Jr.. LAND, N. S. and FOUGHNER, J. T.,

lation are possible Jr., "Measured and Calculated Subsonic and Transonic Flutter

Characteristics of a 450 Sweptback Wing Planform in Air and
The wing is an AGARD standard aeroelastic configuration in Freon-12 in the Langley Transonic Dyanamics Tunnel."
which was tested in the Transtn.c Dynamic Tunnel'" at NASA NASA TN D-1616, March 1963.

Langley Research Center. ,ne wing is modeled structurally
using the first four natural vibration modes. The experimental II. ROBINSON. B. A., BATINA, J. and YANG, H. T. Y..

flutter speed index and the nondimensional flutter frequency "Aeroelastic Analysis of Wings Using the Euler Equations with
as a func'ion of free-stream Mach number define a typical a Dynamic Mesh," AIAA 90-1032, April 1900.
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cz(r) =1.09', k~r =260 a(r) =2.340, k = 690 cz(r) =2.010,kr =1270 ct(x) =0.520, k'r1680

cz(r)=1 .25', kT=-2100 c(r)=- 2.41', kT=-2550 a(r)=- 2.00', kT =307'0 T) =.54',kT=-3470

a(T) = 1.090, kr = 260 a(T) = 2.34', kT = 69' a(T) = 2.010, kr = 1270 cz(T) = 0.520, kT 1680

ax(T) = 1.25', k'r=2100 a(T) =-2.41', kr =2550 a(r) = 2.00o, kT =3070 a(r) = -54' kT =3470

Figure 4.7.4 Instantaneous density contour lines obtained from the spatial and temporal adaption
procedure for the NACA 0012 airfoil pitching harmonically at .1., = 0.755, (1 0.016 deg, n

=2.51 deg, k = 0.0814
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4.8 DESIGN APPLICATIONS porous surface inducs sep ration bubble in the vicinity of
the upper surface shock and an oblique compression wave

Examples of design applications using the Euler equations are forms which decreases the strength of the terminating normal
shown below. A summary of aerodynamic design methods is shock. The drag rise is reduced when the resulting energy loss
given by Sloofl and Dulikravich.2 Much of the design process associated with the normal shock and the separated boundary
of aircraft is conducted using repeated analyses of candidate layer is less than that for the nonporous airfoil.
geometries constructed through the background knowledge and
experience of the designer. In such an approach, the turn- Hanwich' studied computationally the effect of shock vent-
around for analysis must he rapid and, until recently, the design ing for the NACA 0012 and a supercritical-type section. The
of aircraft components at transonic speeds was done almost ex- surface boundary conditions were modeled to induce a normal
clusively using potential methods coupled with boundary-layer velocity determined by the difference between the surface pres-
schemes, Euler methods were used to assess component inter- sure and the cavity pressure. In general, this velocity would be
ference problems and to address flows at higher Mach num- determined by viscosity and the porosity of the surface, but the
hers, where the potential equations are inadequate. With faster approximate boundary condition and the Euler equations were
turnaround of the Euler and Navier-Stokes solvers, these meth- used in lieu of viscous solutions because of the uncertainty
ods are being used more frequently.' The parametric approach associated with current turbulence models. The porosity level
is shown below for the design of a porous airfoil at tran- a was varied for both airfoil sections. A typical pressure dis-
sonic speeds. Of automated approaches. there are two general tribution for the porous and nonporous NACA 0012 section is
methods that are being used currently: ( I ) global optimization shown. The lift is increased, in some instances by 65 percent.
methods in which a number of trial shapes are examined to The lift and wave drag indicate that an order of magnitude
arrive at a minimum of an objective function and (2) inverse reduction in wave drag at constant lift has been attained for
Jesign procedures in which the local geometry is changed in overspeed conditions (low lift levels). The supercritical section
order to match a prescribed variation of the pressures. The op- results also demonstrated a reduced drag at constant lift. The
timization approach is shown for the design of conical wings extents of porous areas used are greater than those considered
and low-drag bodies; the inverse approach is shown for the previously: the results demonstrate a potential for designing a
design of a supercritical airfoil and an engine nacelle. transonic airfoil for reduced drag at multiple design points.

4.8.1 Airfoils 4.8.2 Engine Nacelles

A fast, efficient and user-friendly inverse design system for
Supercritical Airfoil three-dimensional nacelles is in use at General Electric." The Osystem allows the fan cowl designer to modify either all or

Drela4 developed a two-dimensional mixed inverse procedure a portion of the three-dimensional fan cowl. The designer

where the pressure is prescribed over a portion of the geometry. specifies the target pressure distribution on the crown, side.

denoted as a freewal) segment, and the geometry prescribed on spees the aees istribu tion o f
the other. The procedure is an extension of an analysis methodas in Fig. 4.8.3. A modiicaion f
thiother. he prcdure sr an etens f eqatn s mpeto the predictor/corrector design approach" enables the geometry
which uses a direct solver for the Euler equations coupled to to e altered based on the difference between the calculated

an integral boundary-layer method. An example of this ca- and target pressures. A number of example applications for the
pability is shown in Fig. 4.8.1, in which the wave drag is design of both axisymmetric and three-dimensional nacelles is
reduced for a transonic airfoil by weakening the shock wave
in the flowfield. A mixed inverse calculation was performed given in Ref. 8.
for the RAE 2822 Case 6 airfoil' with the freewall segment The design method" uses two design algorithms. one for sub-
encompassing nearly the entire suction surface. Starting with sonic flow and the other for supersonic flow. The supersonic
the analysis pressure distribution, a smoothed-out pressure dis- algorithm is blended with the subsonic algorithm to design re-
tribution was somewhat arbitrarily specified over the freewall gions of transonic flow. Both algorithms assume that AC , is
segment. proportional to the change in geometry. The subsonic algo-

The mixed inverse calculation was started from the analysis rithm is based on the assumption that changes in curvature are

solution, and required five additional Newton iterations to con- directly proportional to changes in pressure coefficient. The

verge to machine zero. The boundary layer coupling option tion of change in pressure coefficient is:

was retained for this calculation. The resulting pressure distri- •

bution from the inverse output differs slightly from the inverse
input because the geometry is constrained to be continuous at AC =.Cl ( 1 + C2 )

the freewall segment endpoints. Fig. 4.8. I shows the geome-
try comparison between the original and modified airfoils and where
the Mach number contours for the original and modified so- C is the curvature
lutions. The shock has indeed been eliminated, resulting in a
substantial drag reduction. C, is the pressure coefficient •

Porous Transonic Airfoil A = +1/-I for the upper/lower surface

In the early 1980's. a number of experimental and compu- B = input constant ranging from 0.0 to 0.5
tational studies were conducted to look at the advantages of
delaying the drag rise of airfoils by venting the shock through The change in curvature is converted to a change in r" through
a porous surface6 as shown schematically in Fig. 4.8.2. The a relation valid for small changes in the surface slope. 0

0 •
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problem becomes hyperbolic. By use of the balance of flux
Ar" = aCA(l + r 2) values across the surfaces of finite volumes, all flux values of

one finite volume layer normal to the stream direction can be
where r, r' and r" are the surface radius, slope, and curvature, deduced from the values of the preceding layers. This allows
respectively, the application of a Runge-Kuua integration method to the flux 0

values in downstream direction.
The supersonic algorithm is based on supersonic thin airfoil
theory. Based on relations between the pressure coefficients Although the present method can be used for more general
and surface slope the expression three-dimensional bodies, 4 here only bodies of revolution

are considered. These are of special interest because Miele'
Ar'= KACp presents some optimized shapes derived under special assump-

tions (linearized potential equation, slender body simplifica-
can be derived.9 Differentiating this expression gives the fol- tion). To convert the contour optimization into a parameter
lowing relationship between r" and ACp. optimization problem, the radius of the body of revolution is

r"=dAC) represented by the superposition of a constant and Legendre
Ar" = K~ d CE polynomials. The coefficient of this superposition are take as

dx design variables. Only the constant and the last Legendre co-
The value for the constant K is 0.05 and is used to under relax efficient are analytically determined in order to get a pointed
the changes in the geometry during each design iteration. nose and a desired base radius.

The required change in curvature is thus calculated at each To demonstrate the efficiency of the combined code, the fol-
point along the fan cowl. To ensure geometrical closure at the lowing optimization problem was examined:
downstream station, the procedure of Lin et al. ") is used. A
sine function is added to the target pressure with the maximum design objective: Find a closed and pointed body of revolution
modification at the center of the design region and zero at with minimum wave drag coefficients C0 (referred to actual •
the ends. The amplitude of the sine function is iteratively cross section area).
determined to close the geometry by modifying the target
pressure distribution, constraint: Least volume V/c3 >_ 0.005.

The results for the three-dimensional test case shown in Fig. design variables: The contour is approximated by superposi-
4.8.3 correspond to a design range starting at the nacelle tion of the first five Legendre polynomials. The first four coef- * *
leading ,Ige and ending 10 inches upstream of the nacelle inothfrsfveLgdeplymas.Teistouce-leadling ge andhendn Mah nhes pstreutionalof the n e ficients are used as design variables, while the fifth is adapted
trailing edge. The Mach number distributions along the crown, for the base radius zero.

side and keel cuts of the original naceile as well as the desired

target Mach number distribution are shown. The target Mach constant value: M = 3.0.
number distribution was achieved after 40 design iterations the
resulting modified geometry is shown on an enlarged verticalscalestart-up design: The starting contour is a parabola with the
scale, thickness 2 rm./c = 0.1 and the volume V/c = 0.00419, shown

in Fig. 4.8.5.

4.8.3 Supersonic Conical Wings

For this starting design the computational grid was selected
A procedure for the design of wings at supersonic speed based fine enough to give reasonable accuricy concerning the wave
on a numerical optimization technique' coupled with a solu- drag. The corresponding pressure ,tribution is shown on the
tion scheme for the Euler equations is given in Ref. 12. The left side. The integrated wave drag is C = 0.07289. In order
wings considered can be either conical or three-dimensional to save computation time, at the beginning the analysis code
delta wings with a straight leading edge. The surface is given was run with a coarser grid and later continued with the fine
by a set of Legendre polynomials. The coefficients of this set grid to find the best design. Increasing the body volume, which
are the design parameters in the optimization task: the object is too small at the beginning, leads to a growing wave drag.
function is the lift-to-drag ratio. Results of the optimization
are shown for conical wings at an onflow Mach number of In Fig. 4.8.5, the resulting optimum body is compared to the
M_ = 4.8. The convergence of the optimization process is Sears-Haack body which is the optimum under the assumption •
monitored as a function of the number of numerical LUD com- of a linearized potential equation and slender body simplifica-
putations and the number of design variables. The influence of tions. For M = 3.0 there are some differences. For M = 1.5
geometrical and aerodynamic parameters on the optimization the above mentioned assumptions are violated less and so the
result is examined in Fig. 4.8.4. An example for the design present method optimum is much nearer to the Sears-Haack
of a three-dimensional wing is given in Ref. 12. body.

4.8.4 Low-Drag Bodies As the Sears-Haack body has a vertical tangent and therefore
a small subsonic flow area at the leading and trailing edge,

The optimization code COPES12 was combined with an Euler it cannot be calculated by the present Euler space-marching
space-marching method by H. Rieger for the analysis of method. At M = 3.0 some modifications were possible to
two- and three-dimensional bodies in supersonic flow. The get the drag value nevertheless. It is considerably higher (3.6
fundamental equations to be solved are the conservation laws %) than for the best design found even with the restrictions
in integral form. By restriction to purely supersonic flows the implied in the superposition formula.

- ., i = i i " i : I II " . .. . . . . ... . .. . . . . ..... ...
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Plate 4.1 Pressure distribution on wing-body-pylon-nacelle configuration with flow-through na-0
celle.

Bottom view Tpve

Plate 4.2 lsomachlines of unstructured-grid computation of the Dassault Falcon
aircraft; M_ - 0.85, a - 3.0 dog.
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Ptate 4.3 Pressure distributions over a complete fighter configuration.

* .

Plate 4.4 Temperature contours over 3 fighter configuration with propulsion simulation.

.n

Plate 4.5 Surface pressure contours for an advanced tactical fighter configuration.
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Plate 4.9 Isobars for pylon-mounted store configuration; split-line 50% between store and wing .

0

Plate 4.10 Mach contours for HERMES
1.0 configuration with non-deflected - Particle traces

flaps. . *

Plate 4.11 Particle traces for HERMES
1.0 configuration.

1p

Plate 4.12 Surface pressure contours for Euler r
computation of fan stage passage.
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Concluding Remarks •

Our aim has been to give a survey of the state of the art of implicit residual smoothing).
Computational Aerodynamics Based on the Euler It is the editors impression that in several cases
Equations as of 1993. Numerical schemes, algorithms, grid improvements In solver efficiency should be possible.
generation, physical and numerical aspects, as well as a Further research into the possibilities of relatively
wide range of applications have been presented from novel techniques like GMRES and Preconditioning
different points of view. (Chapter 2) is also recommended.

It has been our intention that the AGARDograph would The chapter (4) on Applications illustrates that by now
provide a balanced picture covering fundamental, Euler methods are recognized and used in practice as
technical/numerical as well as engineering application engineering and research tools for the analysis and dt.ign
aspects. For this reason we have sought for (and found!) a of aerospace vehicles in the complete range of speeds from
team of authors with different backgrounds ranging from low subsonic to high supersonic and hypersonic. Although
Academia through Research Establishments to Industry. different groups of people in the NATO countries have
We think the authors did an excellent job in representing followed different strategies, schemes and algorithms, it
the points of view of each of these communities, seems that all of their methods can provide good results

for either specific or more general applications.
We believe that, as reflected in Chapter 1, the physics of
inviscid flow and the mathematics of the Euler equations The big limitation of Computational Aerodynamics Based
are reasonably well, but not yet fully, understood. Our on the Euler Equations is, ofcourse, in the absence of
knowledge on the existence, uniqueness and behaviour of modelling of viscous effects at finite Reynolds number.
the mathematical solutions of the Euler equations is not Euler methods are therefore being overtaken rapidly by
complete and the related question of how the Euler methods based on the Reynolds-averaged Navier-Stokes
equations model flows with separation, circulation and equations. This is illustrated by the fact that several of the
vortices is still subject of discussion. It is suggested that codes listed in Chapter 3 can be run in Euler as well as in
there is (still) room for considering such problems and Navier-Stokes mode. (It also leads to the suggestion that * 0
issues in the more general context of existence and the Fluid Dynamics Panel of AGARD should undertake the
uniqueness of (steady) solutions of the Navier-Stokes publication of an AGARDograph on Reynolds-averaged
equations in the limit of vanishing viscosity. It is also Navier-Stokes methods before the turn of the century!).
suggested that the choice and the role of the boundary It is important to note that proper functioning in Euler
conditions and their numerical implication are crucial in mode is a prerequisite for Navier-Stokes codes because of
this context. the dominance at high Reynolds numbers of the inviscid,

advective terms in the greater part of the flow field. Hence
With respect to numerical schemes and algorithms the the "Euler technology", subject of this AGARDograph, is
picture emerging from chapters 2 and 3 is the following: equally important for Navier-Stokes codes. It is, in spite of
- the great majority of codes is based on finite volume the current shift in emphasis from Euler to Navier-Stokes,

(cell-centered or cell-vertex) formulations also not to be expected that Euler c will vanish from
- the principle division between codes is between those the aerodynamicist's tool box in duc -se. The reason is

using (block-)structured grids and those with that the computational effort (an. probably also the
unstructured grids. The main trade-off factors are manpower) involved with Euler computations is 0
efficiency of grid generation and efficiency of flow significantly smaller than for Navier-Stokes. This makes
solver. Although unstructured (adaptive) grid methods Euler methods more attractive for preliminary design
seem to gain in importance, in particular for complex studies.
geometries and/or for complex flows, block-structured It is in the nature of this AGARD publication that no
grid methods are, as yet, the most common information is contained about work that has been done in

- most "production-type" codes for sub/transonic flows Russia or other non-NATO countries. We probably also
use central difference type space discretization. A missed significant work from people within the NATO 0
substantial fraction of codes, in particular those community that did not come to our notice. All of those,
intended for supersonic and hypersonic applications, please accept our apologies.
use some form of upwind discretization technique

- Explicit time stepping schemes of the Runge-Kutta type Finally, we would like to thank again all authors and
are characteristic for most codes, in particular those colleagues from Universities, Research Establishments, and
with central difference space discretization. However, Industries, who contributed and helped to put together this
implicit features in the form of residual smoothing, AGARDograph.
have been added In many cases. Other implicit schemes
are also represented. Joop Slooff,
Convergence acceleration in the form of local time Wolfgang Schmidt
stepping is a feature of all codes. Several if not mai., Editors,
production-type codes also use multi-grid (as well as Fluid Dynamics Panel
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