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Abstract

Rapid prototyping and tool reusability have pushed knowledge acquisition research to investi-
gate method-specific knowledge acquisition tools appropriate for predetermined problem-solving
methods. We believe that method-dependent knowledge acquisition is not the only approach. The
aim of our research is to develop powerful yet versatile machine learning mechanisms that can
be incorporated into general-purpose but practical knowledge acquisition io0ols. This paper shows
through examples the practical advantages of this approach. In particular. we illustrate how existing
knowledge can be used to facilitate knowledge acquisition through -.nalogy mechanisms within a
domain and across domains. Our sample knowledge acquisition uialogues with a domain expert
illustrate which parts of the process are addressed by the human and which parts arc automated
by the tool, in a synergistic cooperation for knowledge-base cxtension and refinement. The paper
also describes briefly the EXPECT problem-solving architecture that facilitates this approach to
knowledge acquisition.

Keywords: knowledge acquisition; knowledge-base refinement; learning by analogy; expla-
nation,



1 Introduction

The science of artificial intelligence started with and continues to build on general principles.
Newell and Simon’s pioneering work on understanding human problem solving shows us that the
same inechanisms come to play when trying to find solutions to problems that may seem very
different [Newell and Simon, 1972]. Gps implemented this principle and demonstrated that, given
domain-specific knowledge, a general-purpose reasoning engine can be used to solve problems
in that specific domain, and that the same engine can be used for different problem-solving
applications. Decades later, a constellation of expert systems was possible thanks to the expert
system shell version of GPS (e.g., |Buchanan and Shortliffe, 1984]). Inference is understood, said
common Al wisdom, the hard part is getting the knowledge right. General-purpose inference
mechanisms, general-purpose representation mechanisms (a similar argument can be shown with
Minsky’s frames for the ficld of knowledge representation) gave Al, like any other science, the
beauty of building on principles. Rescarchers turned then to the next issue in the automated
reasoning agenda: machine learning and the acquisition of knowledge. The work ranges from
learning heuristic knowledge [Minton, 1988; Knoblock, 1993] to acquiring fuctual knowledge
[Gil, 1992}. and shows us that complete automation of the learning or acquisition task in domains
of technical expertise is far from reach. Semi-automated general-purpose knowledge acquisition
(KA) tools [Davis. 1980] are not enough to achieve efficient prototyping. Generality does not
provide the tool with much basis to support the knowledge engincering process.

At the same time. we witnessed the surge of special-purpose mechanisms to support real-
world applications. General-purpose tools seemed incapable of performing well in applications
such as manufacturing or robot path planning [Lozano-Perez, 1987; Chang and Wysk, 1985}
The new common Al wisdom reflects that general-purpose is good. but may not be enough as
we currently understand it. The field of knowledge acquisition has rightly taken this lesson.
Genera'-purpose KA tools are augmented with application-indepuendent method-specitic inference
structures [Chandrasekaran. 1986: McDermott, 1988]. Forexample. SALT [ Marcus and McDermott,
198Y] provides support for proposc-and-revise tasks. PROTEGE [Musen, 1989] helps in acquiring
knowledge in temporal skeletal planning applicauons.  Although the resulting tools have less
generality, they allow the semi-automated production of fast prototypes in novel domains once
the appropriate inference mechanism is manually determined. The inference mechanisms provide
expectations about the role of each piece of knowledge that are powerful guidance in the knowledge
acquisition process.

However, this approach to building KA toois has limitations that arise from the need of niore
fiexibility than they provide in adapting thern to an application {Musen, 1992]. The problem-solving
structure of an application cannot always be defined in domain-independent terms. Furthzrmore,
these method-specific inference mechanisms may not address some of the particulars of an ap-
plication simply because they were designed with generality in mind.  Another problem with
the method-specific KA tools s that they raise the non-trivial issue of determining a library of
possible methods [Chandrasekaran, 1986; McDermott, 1988). The work involves handcrafting
this library of methods making sure to provide both wide coverage of tasks and well-understood
characterizations of the inference capabilities of cach method.

To address these limitations, some researchers [Klinker ef al., 1991; Pu=rta er al., 1992] are
developing hibraries of problem-solving methods that handle finer-grained inference structures than
the ones above. These approaches provide much more flexibility in building a knowledge-based



system but two major issues remain. One is the task of building method libraries. Another issue is
the accessibility of KA tools to domain experts. The users of these tools still need to be knowledge
engineers [Kitto, 1988].

The goal of the EXPECT project is to provide an environment for the development of knowledge-
based systems that aids in the acquisition, maintenance, and documentation of the knowledge about
a task. Our KA tool is independent of the inference structurs or problem-solving method of the
task. This paper concentrates on EXPECT as a tool for knowledge refinement and describes our
work on how to correct and extend an existing knowledge base. Our tool uses machine learning
techniques to support knowledge refinement independently of the inference structure of the task.
Our KA work focuses on the integration of machine learning methods in KA tools that can
automatically (or semi-automatically) come up with generalized versions of methods that express
domain-specific inference structures and support their reuse in new domains and new situations
through analogy. This paper shows our first results in this direction and illustrates through examples
the practical advantages of this approach. In particular, we show how EXPECT currently uses the
same general-purpose mechanism (analozy) to support knowledge refinement within a domain
and across domains. Tne system and the user work in synergy: unlike other machine learning
approaches, ou. system does not attempt to deduce all the information needed to form an analogy
by itself. Rather, it relies on input from the user to guide its analogical learning. On the other
hand, the user does not need to know a lot about the knowledge base or enter all the new nccessary
knowledge explicitly, but can rely on the tool to guide the knowledge acquisition process.

The issue of accessibility to domain experts has been central in the design of our architecture
[Nechesetal., 1985; Swartouteral., 1991; Swartout and Smoliar, 1987]). The explicit representation
of factual and problem-solving knowledge and the ability to produce flexible explanations in an
interactive dialogue provide the basis for building a KA tool that communicates with an expert
much in the way @ colleague in their field of expertise would. Our work ii; this area is not the main
focus of tiis paper, and it is discussed elsewhere [Paris and Gil, 1993; Moore and Paris, In press].

The examples throughout the paper are from a logistics transportation application that evalvates
proposed routings, taking into account restrictions on objects transported, destination points, and
vehicles used. Users are specialists in sea transportation planning. EXPECT is given knowledge
about ships, seaports, packages, berths. etc., as well as plans for transporting objects, Users arc
interested in estimating how long it takes to transport some numuer of objects from one location to
another with the resources available.

The paper runs as follows. We first describe briefly our problem-solving architecture and our
knowledge representation language. Then we illustrate how EXPECT makes use of analogy to
facilitate KA within a domain and across domains. Later, we describe our plans for future work
through an example scenario that uses the same analogy techniques augmented with generalization
to facilitate KA in a different domain. Our scenarios illustrate the user's involvement during
knowledge acquisition, as well as which parts of the process are automated by the tool.

2 The EXPECT Architecture

EXPECT builds upon previous work on the Explainable Expert System (EES) framework [Neches et
al., 1985; Swartout et al., 1991; Swartout and Smoliar, 1987], which allows for the construction of
expert systems that can provide good ¢ - ural language explanations of their behavior [Moore and



Knowledge Acquisition

expectation crror agenda
builder detection

Kuowledge Bases

Design History Fxecution
(refinement structure) Trace ]

Terminology
and

Deseriptive Dumain

Koowledge

User

interface
>

Explainer

Prublem-golving
knowledge
(plans)

4 Program
Writer

(compllicr)

Figure 1: A schematic representation of EXPECT. The design history and the knowledge base
components are used to form expectations for knowledge acquisition.

Paris, In press; Moore, 1989; Moore and Swartout, 1989; Moore and Swartout, 1991]). EXPECT's
architecture ts shown in Figure 1. In EXPECT, different kinds of knowledge are specified in distinct
knowledge bases in a high-level specification language. The specific actions that are to be executed
by the system to solve a specific problem are derived from these knowledge bases by the system,
and a record of the derivation is stored to provide the rationale for these actions. The knowledge
acquisition tool uses this rationale and the knowledge bases themselves to form expectations to
support the interaction with the user A natural language generation module produces justificatiens
and explanations of the systen.’s behavior to the user.

The knowledge bases capture what the system knows about the domain and how to solve
problems in that domain. They comprise:

e A domain descriptive knowledge base (or domain model), which stores definitions and facts
in the task domain. The domain model is writtein in LOOM [MacGregor, 1988; MacGregor,
1991], a knowledge representation formalism of the KL-ONE family. LOOM uses a descriptive
logic representation language, and includes a classifier for inference.

¢ A problem-solving knowledge base, which contains an organized collection of plans. A plan
in EXPECT is an abstract and generic description of how a goal can be achieved, instead of a



sequence of operators [Fikes and Nilsson, 1971]. The plan language allows for an expiicii
represcntation of intent (what is to be done to achieve a goal) and supports a wide range of
control structures to combine subgoals (c.g., conditionals, variable assignments, iteration).

As an example, consider Figures 2 and 3, which contain samples of these knowledge bases for
the logistics transportation domain. In that application, the domain model includes descriptions of
ports, seaports, and airports. The representation of a seaport is shown in Figure 2:
A seaport is a type of port, and it has attributes such as the ships available at the seaport, its
piers, its berhs, and the available storage areas.’

Figure 3 shows two very simple plans of the problem-solving knowledge base. The capability
describes the goals that the plan can achieve, the method represents the body of the plan, and
the result type indicates what is returned by the method. The first plan can be used to determine
whether a specific type of ship is supported (or “fits in”) a given seaport. This is done by testing
whether the length of the ship is less than the maximum vessel length allowed in that particular
seaport. The second plan finds the maximum ship length a seaport supports based on the length of
its berths.

Given a high-level goal, a Program Writer integrates these structured knowledge bases by
refinement and reformulation from that goal [Neches er al., 1985; Swartow er al., 1991] to produce
a system that will be capable of solving specific instances of that goal. The goal is matched against
the problern-solving knowledge base. The method of the plan found causes additional subgoals to
be posted, and the process is iterated. EXPECT’s matcher unifies goals and plans according to the
semantic representation ot the goal’s arguments. For example, a goal to find the distance between
two cities matches a plan to find the distance between two locations, since cities are locations. Type
constraints are also propagated through the method of plans. The Program Writer also reformulates
goals when no plan is found to match them.

The Program Writer records all its steps and decisions in an annotated design history. For
example, Figure 4 shows the most relevant parts of the design history for the general goal to
transport a set of objects to a location using a set of ships. The design history reflects both
the goal/subgoal expansion as well as some goal reformulations. For example, the subgoal
determine-whether-fits-in was reformulated into three goals, one for each type of
ship that the system knows of, as indicated in the domain model.

The design history tells the systemn whether a definition is used and where, what it is used for,
and how. The system understands that the type of a ship will require taking a different path in the
tree, because there are different procedures to determine if a ship fits in a seaport depending on what
type of ship itis. The same can be said about each plan: the design history records whether they are
used and where, for what goals, and with what arguments. In essence, it represents the functionality
of the knowledge that the domain model contains. It thus allows the system to reason about how
knowledge will be used. This is crucial as one cannot indiscriminately add new knowledge into
a system but rather needs to understand how that knowledge will be used. Otherwise, there is a
danger that the knowledge added be useless or incomplete to achieve the task for which the system
is desigaed. The design history also provides an important piece of information: what knowledge
is not used for problem solving. The system is aware of what plans are not being matched with
any goals and which parts of the domain model are not currently relevant for the task. These are
signs that the user needs to correct the system’s current knowledge to make all of it useful for the

"We use the pretix “1-™ 10 indicate names of relations.



, {defconcept seaport
:is (:and port
{:some r-ships ship)
(:some r-berths berth)
(:some r-piers number)
(:some r-covered-storage-area number)))

e

Figure 2: Definition of a seaport in the domain model.

(define-plan FIND-IF-SHIP-FITS-IN-SEAPORT
:capability (determine-whether-fits-in (OBJ (?s is (inst-of ship)))
(IN (?p is (inst-of seaport))))
:result-type boolean
. :method (less-than (r-ship-length ?s)
' } (compute-max-vessel-length-in-seaport ?p)))

(define-plan COMPUTE-MAX-VESSEL-LENGTH-IN-SEAPORT
:capability (compute-max-vessel-length-in-seaport
(OBJ (?s is (inst-of seaport))))
:result-type number
:method (let ((?berth-types (r-berth-type (r-berth-availability ?s))))
(max (r-berth-length ?berth-types}}))

Figure 3: Two plans from the transportation domain.

task at hand. The scenarios in the next sections illustrate in more detail how these features of the
architecture support knowledge acquisition.

Figure 5 shows EXPECT's user interface. The user can examine tine current contents of knowledge
bases by pulling menus and choosing to display the concept hierarchy or the design history. When
the user clicks on a concept, the system provides a description of what is currently known about
it. The user can also examine instances. When the user clicks on a node in the design history, the
system describes in detail both what goal is accomplished in a node and how (a reformulation, a
grammar construct, a plan). The user can also look up plans from the problem-solving knowledge
base. In short, the interface allows the user to inspect the knowledge currently available to the
svstem, which is the first step toward detecting errors that can be corrected through knowledge
acquisition.

When the user detects a knowledge fault through this inspection process, the interface offers

. several possibilities to change the contents of the knowledge bases, and at different levels of
detail. The user can change existing information about instances or add new instances (e.g., new
locations, new seaports). The user can also change any plan by manipulating its components




calculate-ume-to-transport-objects (rbjs.doc! loc2)

T T

calculate-total-cargo-weight (objs) calculate-time-to-uransport-cargo{ weight.loc | loc2)

find- Shlps -to- (ra\cl (locl.loc2)

calcalate-time-to-transport-in-ship (weight,ship,locl,loc2)

find-distance(locl,loc2 find- i
find-scaport- ol' location (locl) nd-distance(locl loc2) nd-speed(ship)

find-ships-available-on-seaport (port)
determine-whether-fits-in (port,ships)

| reformulation

determune-wether-fits-in (port, breakbulk) { deiermune- wether-fits-in (port, container)

l deternune-wether-fits-in (port.lash)

compute-max-vessel-length-1n-seaport (port)

Figure 4: Relevant portions of the design history praduced by the problem solver.

(adding, removing, or substituting substeps), or add new plans either created by the user or created
by the system by analogy with existing plans. Finally, the user can change portions of the design
history by manipulating its nodes. Adding or removing a step in a node causes the plan in that node
to be changed, as well as any plans that appear in the subtree originating at that node. If any new
subgoals cannot be matched with existing plans, the system creates new plans by analogy with the
plans in the original subtree. The next section shows an example of this behavior.

3 Transfer of Problem-Solving Knowledge Within a Domain

Figure 6 shows a scenario in which existing problem-solving knowledge is corrected. The user
is presenied with menus (instead of being allowed to type in free English), but we paraphrase
here the user’s intervention in English for clarity and indicate this with italics. EXPECT generates
language descriptions of plans of the type shown in this figure and carries out the modifications to
its knowledgc base as indicated by the user.

In this scenario, the system is given the problem of transporting a unit to the seaport of Cabra
(line [1]). The system solves the probiem and reaches the conclusion that it takes 3 days (line [2]).
The user is surprised that it could be done so fast in such a small seaport and asks why (line [3]).
The system explains its conclusion by retracing its reasoning (line [4]). Notice that, at this point,
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Figure 5: EXPECTs user interface.

only a summary of the whole reasoning is included in the explanation, thus providing o tugh-level
justification for the conclusion. The user can however “zoom-in™ on particular part of the problem
solving by asking further questions. This 1s illustrated in lines |5-0].

The justifications provided by the system allow the uscr to detect a potential crror: the use
disagrees with some of the information given by the system and provides conflicting information
(line [7]). Given this new information, EXPECT now rcasons about the destgn history to loeahze
the problem, and a dialogue to debug the system is initiated.

First, EXPECT finds the cxact piace in the design history that led to the conclusion questioned
by the user and explains that part of the reasoning (linc [8]). This allows the user to detect the
problem more preciscly. In this case, the user realizes that the plan to determine whether a ship fits
in a port is incorrect (or incomplete). The user thus provides the additional information, namelv
that the draft of a ship must also be taken into consideration (linc [9]) at a particulur node of the
design history. The system asks the user how to check the draft, and whether the analopy with
checking the length is appropriate. This is possible because the system already has a plan to check
the length, and it can use it to form an expectation for how to check the draft (line [10)). Upon
positive reaction (line [ 11]), EXPECT prepares the clements that can be the source of the analogy, and
prompts the user for their correspondents (line [12]). After the user's response (hine [ 13]), 1XPEC]
summarizes to the user the changes made to the knowledge base (linc {14]). Notice that since the




How long daes it take to transport that unit to Cabra with the ships available?

3 days
Why?
‘To transport unit X to a focation, first I calculated that the total weight of the

cargo is 300,000) tons, then | determined that I could use 3 container ships and
10 breakbulk, and distributed the cargo among the ships.

U. Why breakbulk ships?

U,

U

U

I uned the Cabru seapont, and determined that breakbulk ships fit in the Cabra
acaport.

o This is wrong. Cabra is too small for breakbulk ships.

I concluded that breakbulk ships fit in the Cabra seaport. To do this, I checked
thit the ship length is Jess than the tnaximum vessel length in that seaport. Is
this right? (Yes; No; Yes with constraints)

Yes, with constraints: you have to check both the length and the draft.

1 know how to check the length. Do I chezk the draft in a similar way? (Yes;
No; Yex with constraints)

Yes

What corresponds to (1) the ship length (2) less than (3) the maximum vessel
length in that scaport?

(1) shiprdraft (2) less than (3) maximum vessel draft in the seaport

Ok, 8o to determine what ship types fit in a seapont, I determine if the ship
length i~ lean than the maximum vessel length in that seaport, and then |
determime if the stup draft is less than the maximum vessel draft allowed in
the senport. Bath have to be true in order for a ship type to fit in a seaport.
Correet? (Yen or No)

Yes

(-]

~ Re-nulving the problem with the updated method for determining what ship

types 1it ain o senport. It takes 10 days to transport the unit to Cabra.

Figure 6: Example scenario: Modifying existing plans.

(1]

(2]
(31
4]

[5]
(6]

(71
(8]

(9]

(10]

(11]
(12]

(13]
(14]

(15)

(16]

resultn of both checks are boolean, the system also has a suggestion about how to combine them.
The plan in now corrected, After the problem has been fixed, EXPECT re-works the original goal
(hne [16)). Notice that since the system did not find a plan to compute the maximum vessel depth
on uoseapant, it created a new plan by anslogy with the plan that achieves the goal of computing
the muxhinm veasel length. The acquisition of this new plan is done autonomously by the system,
based on the user's suggested changes on how the problem was solved. This is possible because
the deaign hintory reflects the fuct that this plan is used in the part of the reasoning that the user
winhts to madify. 1f the new plan had any inconsistencies, EXPECT would notify the user. This can




U: To service a type of aircraft, first check if it fits in a hangar. Similar to how a {2]
ship fits in a seaport.
S: To determine what ship types fit in a seaport, I determine if the ship length is (3]

less than the maximum vessel length in that seaport, and then I determine if the
ship draft is Jess than the maximum vessel draft allowed in the seaport. Both
have to be true in order for a ship type to fit in a seaport. We want to describe a
way to determine if a type of aircraft fits in a hangar. What co.responds to (1)
the ship length (2) less than (3) the maximum vessel length in that seaport (4)
the ship draft (5) less than (6) the maximum vessel draft allowed in the seaport
(7) both have to be true?

U: (1) aircraft length (2) less than (3) hangar length (4) aircraft height (5) less (4]
than (6) hangar height (7) both have to be true.
S: Ok. So in order to check if a type of aircraft fits in the hangar, I determine if [5)

the aircraft length is less than the hangar length, and then I determine if the
aircraft height is less than the hangar height. Both have to be true in order for
an aircraft type to fit in the hangar. [Yes; No; Yes with constraints]

U: VYes, with constraints: you have to check length, height, and width. (6}

S: Ok. I know the length, width, and height of hangars. 1 know the length and (7]
height of an aircraft. What is the width of an aircraft?

U: Wing span? (31

S: Tunderstand. I know how to check the length and the height. Do I check the [9]
width in a similar way? (Yes; No; Yes with constraints)

U: Yes [10]

S: Ok. So in order to check if a type of aircraft fits in a hangar . .. [11]

Figure 7: Example scenario: Adding new plans.

be caused by incompletenesses in the mapping that the user gives the system to do the analogy. Itis
important to realize that had the system found an existing plan to solve the new goal, it would have
used this plan to expand the new subtree. EXPECT is acquiring new plans for its problem-solving
knowledge base, effectively learning at the knowledge level [Newell, 1982].

Figure 7 shows a different scenario where new plans are added to the knowledge base by the
user. Much like in the previous scenario, the user communicates to the systern the analogy of ships
and ports with aircrafts and hangars: what to retrieve (line [2]), what the correspondences are (line
[4]), and what the exceptions are (lines [6-10]). The system takes charge of the rest, including
updating the corresponding parts of the different knowledge sources.

4 Transfer of Problem-Solving Knowledge Across Domains

The analogies in the above scenarios involve plans within the same domain, but exactly the same
mechanism applies if the new plans are in a different domain. For example, the user can suggest




the similarities with checking if a package fits in a truck, or if any physical object fits in another.
Because the analogy is not worked out automatically and the user is in charge of guiding the KA
tool through all the stages (retrieval, mapping, and adaptation), the analogy can be as far fetched
as the user finds suitable. For example, onc can imagince using the plan to check if a ship fits
in a port to check if an event happens during another one by checking if the corresponding time
intervals fit within one another. Thus, the same general mechanism can be used throughout any
stage of knowledge acquisition and throughout any application domain at hand. Notice that this
requires that knowledge acquisition does not happen in a vacuum, and by that we mean that the
systern should have access to as many knowledge bases in different domains as possible. Some
efforts in very large knowledge bases already aim in this direction [Neches er al., 1991; Lenat and
Guha, 1989]. This is much as humans communicate and learn things from each other: by first
establishing backgrounds and then using constructs that the other person is accustomed to. For
example, doctors may not teach new things to biologists in the same way that they would explain
them to engineers, since they would have common ground concepts with the former to build upon.
Having knowledge bases shared by different knowiedge-based systems will some day provide this
common ground for our knowledge acquisition tools.

5 Next Step: Generalization of Problem-Solving Methods

Of course, acquiring knowledge by analogy has its limits. For example, a user who is entering
knowledge in a medical domain may not know in detail what problem-solving knowledge is
involved in our transportation domain. This is also common in humans: the more we know about
the other person’s areas of knowledge, the easier it is to explain things to them. Again, we can
turn to machine learning techniques for an answer. This section describes our plans for future
work regarding the use of generalization and induction techniques to extend the current analogical
reasoning in EXPECT.

Let us consider an example from our transportation domain. There is a plan to calculate the
throughput (takeoffs per day) that an airport can handle. To do that, the given throughput is adjusted
by a percentage factor determined by the presence of bad weather, and by how many docks are
available for unloading.2 There is also a different plan to calculate how many planes are available
for a transportation problem. To do so, the amount of planes assigned for the task is adjusted by a
percentage factor that takes into account the rate at which each type of plane tends to break down
and how much time it takes to repair it. Induction techniques, and in particular, generalization from
examples could be extended and applied in these cases to provide the system with the concept of
a plan to do adjustments of values, as shown in Figure 8. The following example illustrates how
these generalized plans could be used to cooperate with an expert during KA.

In summary, this scenario illustrates how EXPECT could use plan generalization and analogical
reasoning to guide knowledge acquisition. The knowledge about adjustments in the transportation
domain is used to acquire adjustments for drug therapy. We used two very different domains to
illustrate the potential of this approach, but the impact should be greater when the nature of the
domains is not so diverse.

Suppose that a medical expert is using EXPECT for administering drugs, in particular to advice
with digitalis therapy [Swartout, 1983]. The default dose of a drug has to be reduced if the patient

21f there are not enough unloading docks the planes would be idle waiting for a dock to become available.
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Figure 8: A hierarchy of plans for adjusting values.

has certain conditions (called sensitivitics to the drug). To treat a patient with digitalis, the normal
dose (1 pg/Kg) needs to be adjusted by a factor of 0.8 if the patient has a high level of serum
calcium and by a factor of 0.7 when serum potassium is low. If both sensitivities are present, the
default dose is adjusted by the product of both factors (0.8 + 0.7).

Suppose now that the system knows only about one sensitivity (low serum potassium), as well as
how to adjust the dose of digitalis if the patient has this condition. Figure 9 shows a scenario where
the user wants to add a new sensitivity: high serum calcium. The user enters whatever information
she is aware that the system needs about drug sensitivities in line [1]. EXPECT updates the domain
model accordingly. Now EXPECT examines the problem-solving knowledge to determine what
sensitivities are used for. This causes the question in line [2] of how to adjust the dose for this new
sensitivity.

The system knows to acquire an adjustment for this sensitivity based on how sensitivities are
used for problem solving. Because a general plan for doing adjustments is available, the system
knows that when more than one adjustment is present it needs a method to recombine the results
(line [6]). The system could justify the reason for the questions to the user (lines [7-8]), as well
as to produce examples that undo the generalization and facilitate a ground analogy to the user in
terms of airport takeoffs (line [10]).

This example illustrates how, through plan generalization, the system could further support
analogies across domains. The generalization hierarchy would provide the grounds for transferring
knowledge across different domains through its abstraction from domain-specific knowledge. The
type of language that we use in EXPECT’s plans combined with the LOOM knowledge representation
system would facilitate this, but in addition we plan to research on general-purpose machine
learning methods to induce these generalized nlans automatically or semi-automatically. In the
later case, a knowledge engineer would be involved, but we believe this is a much lighter burden
than other current KA environments would impose. Either way, these machine learning methods
could prove more useful for automating KA than a general KA tool for a particular generic method.

11




U: Add a new sensitivity for digitalis: high serum calcium. [...] (1

S$: Ok. What method should 1 use to adjust the dose for high serum calcium (2]
sensitivity | Take percentage; Do computation; Other)?

U. Take percentage [3]

S: Ok. Which percentage? 4]

u: 08 (51

S: Ok. Now I need to know how to combine the results of the adjustments. [6]
Choose one of [MIN;MAX; ADD;MULTIPLY;Other].

U: Why? 7

S: We are adjusting digitalis dose. To do an adjustment, I need to know: (1) {8]

value to be adjusted, (2) factors, (3) methods to adjust the value, and (4) how
to combine the results. In this case, (1) digitalis dose (2) drug sensitivities (3)
take percentage 0.8 for high serum calcium, take percentage 0.7 for low serum
potassium. Now I need to know (4) how to combine the results.

U: How to combine the results? [9]

S: For example, when I compute the takeoffs per day in an airport, I adjust the [10]

default value of takeoffs for the airport according to weather conditions and
to available unloading docks. To do an adjustment, I need to know: (1) value
to be adjusted, (2) factors, (3) methods to adjust the value, and (4) how to
combine the results. In this case, (1) takeoffs per day (2) weather, unloading
docks (3) take percentage, compute docks throughput (4) take minimum value.
In the digitalis dose adjustment, I need to know how to combine the results of
the adjustments. Choose one of [MIN;MAX;ADD;MULTIPLY;Other].

U: muliply [11]

S: Ok. High serum calcium is now a new sensitivity for digitalis. [12]

Figure 9: Hypothetical scenario: Adding new plans in a different domain.

6 Related Work

NEODISCIPLE [Tecuci, 1992] integrates several machine learning techniques in a knowledge acqui-
sition tool. NEODiSCIPLE takes a user-given answer to a problem and applies explanation-based
learning to build a plausible proof tree, abduction to complete the proof, and several other learning
techniques to generalize the proof. Its predecessor, DISCIPLE [Tecuci and Kodratoff, 1990], built an
analogy with an existing proof when the system lacked domain knowledge to build the proof for
a new input. Our approach automates different parts of the analogical process. The user suggests
the source of the analogies, the mapping, and any necessary adaptations. The tool provides the
supporting environment by navigating through the system’s reasoning and carrying out the user’s
corrections through analogical reasoning. EXPECT provides a framework for analogical reasoning
where the tooi takes responsibility for suggesting corrections and for making the adequate changes
in the knowledge base.

Other work on analugy uses the derivational traces of the problem solver to guide the system
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in solving a new problem [Veloso, 1992; Carbonell, 1986]. EXPECT uses the design history as a
source of analogies as well, and its problem solver will find plans to match any new goals that
arise as a result of the mapping. However, the crucial difference is that EXPECT will create new
problem-solving knowledge when no plan is found to achieve a goal. A new rule is created in our
first scenario to compute the maximum depth of a berth, without which the system could not have
solved the problem. In other words, EXPECT is learning at the knowledge level [Newell, 1982].

The Spark/Burn/FireFighter framework [Klinker e al.,, 1991] treats knowledge acquisition
as a programming effort, and aims to provide a set of mechanisms as basic blocks for building
knowledge-based systems. The goal is to design such mechanisms to be pboth usable (understand-
able by domain experts) and reusable (applicable to several tasks and domains). The PROTEGE-II
system [Puerta ef al., 1992] is also based on reusable mechanisms as building blocks for knowledge
acquisition, and addresses usability by integrating domain-dependent knowledge in the process of
putting these mechanisms together. EXPECT shares both goals, and the aim is to achieve them
without explicitly building such mechanisms. 1If at all, these mechanisms would be a by-product
of the tool’s inferaction with the user and its learning capabilities. Problem-solving knowledge in
EXPECT is usable because it is accessible to domain experts through explanations. Knowledge is
reused when the user proposes analogies with new situations, as well as through any generalizations
over existing cases.

Another general-purpose knowledge acquisition approach is that proposed by KADS | Wiclinga et
al., 1992), amethodology for building knowledge based systems, which, unlike EXPECT, emphasizes
the initial building of a system (as opposed to its refinement). KADS views knowledge acquisition
as a modelling activity and proposes a number of models that a knowledge engineer reeds to
build. Each model emphasizes a specific aspect of the system to construct and contains part of the
knowledge nzeded. KADS also separates the domain model from the control knowledge, which is
in turn divided into the inference model, the task model, and the strategic knowledge. These last
three models together indicate how knowledge from the domain model is to be used in problem
solving, and could thus theoretically be also used to guide refinement of a knowledge-based system
once an initial prototype has been built. This is not currently done, however. KADS's current aim
is to help the knowledge engineer faced with the task of building a new knowledge-based system
by providing an explicit set of building blocks (or models) that the knowledge engineer should be
concerned about, thus using a divide-and-conquer approach to the initial knowledge acquisition
task. Our aim in EXPECT is acomplementary one: it is to aid in refining and debugging « knowledge-
based system automatically once a prototype system exists. Because EXPECT derives code from the
specification automatically (i.e., the domain model and the plans), changes done at the specification
level are automatically reflected in the executable code. In contrast, until executable systems are
automatically derived from the models designed with the KADS methodology, guidance from the
models would only apply to refining the models themselves. The changes would then need to be
reflected in the code by hand.

7 Conclusion
We have shown our approach to building KA tools to achieve knowledge re-use based on general-

purpose machine learning methods. In particular, we showed how a learning by analogy mechanism
can be incorporated in a knowledge acquisition tool to facilitate the knowledge acquisition process.
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In our system, the current content of the knowledge base is used to create expectations dynarnically
for what knowledge is to be acquired. These expectations are based on the functionality of each
piece of knowledge in the overall system, and on analogies derived from the current knowledge
base. Importantly, the system and the user work in synergy: unlike other machine learning
approaches, our system does not attempt to deduce all the information needed to form the analogy
by itself. Rather, it relies on input from the user to guide its analogical learning. On the other hand,
the user does not need to know a lot about the knowledge base or to enter all the new necessary
information explicitly, but can rely on the tool to guide to process. We showed how this approach
can be employed to acquire information both within a domain and across domains.

We also outlined how other general learning mechanisms (such as generalization and induction
techniques) might be incorporated into our system. We hope to support with this work our claim
that powerful, versatile and yet practical knowledge acquisition tools can be built by coupling
general machine lcarning mechanisms with more traditional knowledge acquisition techniques.
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