5 822 |
A‘ﬁ\\ \w\\m\\n\m\\m\\\\ C ﬁs’;’,,fhi”, G’ﬁa |

Californa % 1 §

‘PMoct: A Policy management tool for OCT
‘based Design Systems for Multiple Domains

John Granacki and Tauseef Kazi

ISI/RR-93-387
October, 1993

it \\\ neQ

1rUKMATION

SCIENCES
INSTITUTE

UNIVERSITY OF SOUTHERN CALIFORNIA INFORMATION SCIENCES INSTITUTE
4676 Admiralty Way Marina del Rey, CA 90292

ISI Research Report
ISI/RR-93-387
October, 1993

PMoct: A Policy management tool for OCT
based Design Systems for Multiple Domains
John Granacki and Tauseef Kazi

ISI/RR-93-387
October, 1993

7

Accesio: Fdr L e
i

== g
NTIS (3% g ’ 3‘
DTIC 3 .:p,e Eapitin
e O J
I\L]]USI'I ,,___........D-..——' NO !) 1 1gq4
e b mé

—— -

By . R G

let |b U l

University of Southern California
/:\Vx ab [ly uOdeS

"7 Avan . dfor ‘ Information Science Institute
Dist wp-Cial
4676 Admiralty Way, Marina del Rey, CA 90292

-’

Unclassified/Unlimited

PMoct: A Policy management tool for (0T hased Design Systems for Multiple Ixmains

Public burden for thvis collection of information v setimeted m"mrpu Including tha Yime for Instructions, searching exiting detc
sources, and the dets nevded, ond Lotectioh of ivtormetion, Send comments Whis burdon setisnated o any
B L e T L e e ey
‘Washington, OC 20603
1. AGENCY USE ONLY (Leave biank) 2 REPORT DATE 3. REPORT TVPE ARD DATES COVERED
6-13-94 Rescarch Report
4. VITLE AND SUBTITLE] FUNDING NUMBERS
PMoct: A Policy management tool for OCT-based Design Systems for Mul- | J-FBI-91-282
tiple Domains.
"%, AUTHOR(S) -
John Granacki
Tauscef kazi
“PLRF ORMING ORGANZATION) AMD SSES) & PERFORMING ORGAMZATON
. REPORT NUMBER
USC INIFORMATION SCIENCES INSTTTUTE
4676 ADMIRALTY WAY
MARINA DH. REY, CA 90292-6695
9§ SPONSORINGWMONITORING AGENCY HAME 5(3) AND ADDRESS(ES) 10. . JMNSCRINGAIONITORING
AGENCY REPORT NUMBER
1. SUPPLEMENTARY NOTES
12A. DISTRIBUTIONAVAILABILITY $ TATEMENT 126. DISTRIBUTION CODE

UNCLASSIFIED/UNLIMITED

13. ABSTRACT (Maximum 200 words)

Specifying and maintaining the semantics of data used by CAD/CAE tools is often accomplished through written
documentation. This documentation is used by the tool developers and is not usually computer processable which
makes sharing of tools and libraries very difficult and cumbersome. In the OCT data management system developed
at U.C. Berkeley, the semantics are referred to as the policy. In this paper, we describe a set of tools that has been
developed to allow the user to specify and store the semantics (or policy) itself in the database, and ensure that new
instances that are added to the database will be semantically consistent.

14. SUBJECT TERMS

15. NUMBER QF PAGES
CAD Framework 6
CAD Databases
16. PRICE CODE

17. SECURITY CLASSHICTION 8. SECURITY CLASSIFICATION 1fm 20. LIMITATION OF ABSTRACT |

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
RN TSIS T 16500 nderd Form 08 (Rev. 330)
Prescribed by ANSI Std. Z39-18

208-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) Is used in anncuncing and cataloging reoprts. It is important
that this information be consistent with the rest of the report, particularly the cover and titie page.
instructions for filling in each block of the form follow. It is irgortant to stay within the lines to meet

optical scanning requirements,

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date
inzluding day, month,a nd year, if available (e.g. 1
jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered.
State whether report is interim, final, etc. If

applicable, enter inclusive report dates (e.g. 10
Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from
the part of the report that provides tha most
meaningful and complets information. When a
report is prepared In more than one volume,
repeat the primary title, add volume number, and
includs subtitie for the specific volume. On
classified documents enter the titlo classification
in parentheses.

Block 5. Funding Numbers, To include contract
and grant numbers; may include program
element numbers(s), project number(s), task
number(s), and work unit rumber(s). Use the
following labels:

C -Contract PR - Project

G -Grant TA - Task

PE - Program WU - Work Unit
Element Accession Na.

Block 6. Author(s). Name(s) of person(s)
responsible for writing the report, performing
the research, or credited with the content of the
report. If editor or compiier, this should follow
the name(s).

Block 7. Performing Organization Name(s) and
Address(es). Self-explanatory.

Block 8. Performing Organization Report
Number, Enter the unique alphanumeric report

number(s) assigned by the organization
parforming the repor.

Block 9. Sponsoring/Monitoring Agency Names(s)
and Address{es). Self-explanatory

Block 10. Sponsoring/Monitoring Agency
Report Numbaer. (If known)

Block 11. Enter
information not included elsewhere such as:
Prepared in cooperation with...; Trans. of ...; To be
published in... When a report is revised, include

a statement whether the new report supersedes
or supplements the older report.

Block 12a. Distribution/Avallabllity Statement.
Denotes public availability or limitations. Cite any

availability to the public. Enter additional
limitations or special markings Iin all capitals (e.g.
NOFORN, REL, ITAR).

DOD - See DoDD 5230.24, “Distribution
Statements on Technical
Documents.”

DOE - See authorities.

NASA - Soe Handbook NHB 2200.2.

NTIS -Leave blank,

Block 12b. Distribution Code.

oon
OOE

- Leave blank.

- Enter DOE distribution categories
from the Standard Distribution for
Unclassified Sclentific and Technical
Reports.

NASA - Leave blank.

NTIS -Lleave blank.

Block 13. Abstract. Include a brief (Maximum
200 words) factual summary of the most
significant information contained in the report.

Block 14. Sybject Terms, Keywords or phrases
identifying major subjects in the report.

Block 15. Number of Pages. Enter the total
number of pages.

Block 16. Price Code. Enter appropriate price
code (NTIS only).

Blocks 17.-19. Security Classifications. Self-
explanatory, Enter U.S. Security Classification in

accordance with U.S. Security Regulations (i.e.,
UNCLASSIFIED). If form contins classified
information, stamp classification on the top and
bottom of the page.

Block 20. Limitation of Abstract. This block must

be completed to assign a limitation to the
abstract. Enter either UL (unlimited) or SAR (same
as report). An entry in this block is necessary if
the abstract is to be limited. If blank, the abstract
is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

PMoct: A Policy Management Tool for OCT-

based
Design Systems for Multiple Domains”

John Granacki and Tauseef Kazi
USC/Information Sciences Institute
4674 Admiralty Way
Marina del Rey, CA 90292

Abstract

Specifying and maintaining the semantics of data used
by CAD/CAE tools is uften accomplished through writ-
ten documentation. This documentation is used by the
tool developers and is not usually computer process-
able which makes sharing of 1o0ls and libraries very
difficult and cumbersome. In the OCT data manage-
ment system developed at U.C. Berkeley. the semantics
are referred 1o as the policy. In this paper, we describe
a set of tools that has been developed to allow the user
to specify and store the semantics (or policy) itself in
the database, and ensure that new instances that are
added to the database will be semantically consistent.

1. Introduction and Motivation

OCT is a data manager for VLSI/CAD applications
[11.12] for storing information about various aspects of
electronic design. OCT was designed to be as flexible
as possible so that tool developers could use this to
develop new tools, and accommodate different design
methodologies and design flows. Often within a suite
of tools like Lager (3], the developers have some con-
sistent policies across tools; however, there is no
“super policy” that a tool developer or user can con-

* This work was funded by the Advanced Research
Projects Agency under Contract number: J-FBI-91-282.

sult. This is because the policy is hard-coded in the
associated design management tool, in this case,
DMoct (3], {4]. It is even more difficult to use tools
and libraries that are not developed as part of the same
suite of tools. To use tools from different suites
requires translators 1o be developed and used to map
the data from one policy to another. For example, using
Lager policy and the octtools policy requires the
siv2sym and sym2siv translators to allow designs pro-
duced using DMoct to use the TimberWolf tools[S].
This proliferation of policies does not foster the devel-
opment of sharable libraries, primarily because DMoct
would have to be modified or extended for new library
policies such as for PCBs (printed circuit boards) or
MCMs (mult-chip modules).

We are developing a system for board-level synthesis
{6] and chose to use OCT to develop a sharable library
of components[7). We also had as our goal to be com-
patible with the system design tools and libraries that
are part of the SIERA System developed at U.C. Ber-
keley. After developing a policy for board-level com-
ponents in our library, we attempted 0 use the SDL
(Structure Description Language) that is used to
describe library cells and define the parameterized
netlist. The SDL for an LMS555 is shown in Figure 3.
DMoct uses the SDL to create the SMV (Structure
Master View), that is, the OCT view that stures the
parameterized netlist. Part of the SMV for the LM555
is shown in Figure 2.

We found that DMoct had to be modified to allow the

PMoct: A Policy Management Tool for OCT-based Design Systems for Multiple Domains 2

s LMSSS Timer

(parent-cell LMS55S5 (PackageClass PCB)
(SIVMASTER 1.MS55))

(parameters(PARTNAME “LMS55")
(PARTTYPE “ANALOG™))

(net Q ((parent (term Q (PINNUMBER '3)
(TERMTYPE SIGNAL) (DIRECTION QUTPUT)))))

(net R ((pareat (tcem R (PINNUMBER *4)
(TERMTYPE SIGNAL) (DIRECTION INPUD))

(et TR ((parent (term TR (PINNUMBER *2)
(TERMTYPE SIGNAL) (DIRECTION INPUT)))))

(oet CV ((parent (term CV (PINNUMBER *5)
(TERMTY PE SIGNAL) (DIRECTION INPUT)))))

(net THR ((parent (teem THR (PINNUMBER *6)
(TERMTYPE SIGNAL) (DIRECTION INPUT)))))

(net DIS ((pareot (teem DIS (PINNUMBER *7)
(TERMTYPE SIGNAL) (DIRECTION OUTPUT)))))

(aet VOC ((pareat {term VCC (PINNUMBER ‘8)
(TERMTYPE SUPPLY)))))

(aet GND ((parest (term GND (PINNUMBER ‘1)
(TERMTYPE GROUND))))

(ead-adl)

Figure 1. SDL for LM55§

Figure 3. Generic PART Cell with Template

View and Domains View

Figure 2. SMV for LM55§

Figure 4. Template View of the PART Cell

PMoct: A Policy Management Tool for OCT-based Design Systems for Multiple Domains

description of the components for our board-level
library. In fact, the Structure Description Language also
had to be extended to handle some of the features
required for representing components. Also, we were
forced to use certain defaults consistent with the Lager
policy --- these defaults were not necessary for any of
our tools but their absence would not allow DMoct to
successfully construct the SMV. For example, Lager
policy requires a layout-generator be specified, our
policy for a PCB does not require a layout-gencrator.
Finally, the current Lager policy did not support some
other OCT features that we required to make our com-
ponents compatible with components in SIERA with-
out storing redurdant information. Redundant
information not only requires more physical storage
but it also contributes to maintenance difficulties. A
change in the library policy would require that all
occurtences of the redundant information be located
and modified.

This motivated us to introduce the notion of a template
and develop PMoct. a policy management tool. We cre-
ated the template view, ihis view aliows the user (0
specify the policy for a shareable library or a tool or
suite of tools in OCT. The template view is used by
PMoct o cr-aie library entrics, as well as design
instances. that is. the SMVs. All SMVs created from a
template will be semantically consistent and will have
the correct default propertics and values as well as a
consistent sct of uscr specified values. If policy
changes are necessary, only the information in the tem-
plate view needs to be modified and PMoct will ensure
that the policy changes are transparent to DMoct and
uther tools and across other libraries.

We give a brief review of OCT in Section 2. Section 3
describes the basic concepts incorporated in PMoct,
Section § describes the use of PMoct in defining and
storing the policy. In Section 6, an example of how
PMoct cnforces semantic consistency is presented.
Finally, in Section 7. the benefits of PMoct are enumer-
ated.

2. Overview of OCT

In OCT, the basic data clement is a cell. A cell may
have differen views: for example, a component cell
may have a physical vicw, a simulation view, a sym-
bolic view, ctc. Each view may contain one or more

facets, which is the fundamental unit in QCT that is
editable and exists as a physical file, while a cell and its
views are directories.

The two most prevalent facets are the contents facet
and the interface facet. The contents facet holds the
actual data for the view and the interface facet gives the
information that is accessible or necessary to other
views.

A facet consists of a collection of objects which are
related by atrachments to one another. This enables the
formation of a hierarchy of objects and a network of
objects. For exampie, a net object may have a number
of term objects attached to it. Similarly a box object
may be attached to a term object and so on.

Since OCT docs not have built in policies for the arti-
facts used in electronic design, it is up to the tool devel-
oper to give meaning to the data stored in OCT and
hence implement and enforce the policy for a particular
tool. We have created PMoct 1o assist the user in speci-
fying and maintaining these policies.

3. PMoct: Basic Concepts

PMoct not only helps in maintaining a unified policy
for a particular aspect of the design, but is also a single
100l which can be used to handle the policies for differ-
ent design methodologies and design flows. In addition
to maintaining and creating policies, PMoct has the fol-
lowing capabilitics that are not found in DMoct and
SDhL.:

s PMoct reduces data redundancy by allowing a single
instance of an object to be referenced by any number
of other objects. This makes it unnecessary to find
all the occurrences of an object when maintaining
the library.

= PMoct has loop constructs to cnable creation of mul-
tiple structures of the same type.

* PMoct is capable of getting values of objects from
the: user. It has constructs to specify default and user
overrideable values in the template..

« PMoct has a mechanism to specify sets of allowable
values for attributes.

PMoct: A Policy Management Tool for OCT-hased Design Systems for Multiple Domains 4

4. PMoct: The Template

The template is an OCT cell having a name corre-
sponding to the design artifact that it specifies. An
example of the PART Template (cell) is shown in Fig-
ure 3. It has two views: the template viev: that contains
a contents facet with the specification of the policy and
the domains view which contains multiple facets each
of which contains a set of aliowable vaiues for a partic-
ular OCT property. For example the PARTTYPE
shown in Figure 2 is a property from the SIERA policy
and may only take one of the following values: DIGI-
TAL, ANALOG, RESISTOR, CAPACITOR and CON-
NECTOR. These are specified in the templaie by
including a “PARTTYPE” facet under the domains
view and putting all the valid part types in that facet.

5. Creating the Policy Using PMoct

As described in Section 3, the policy is defined as a
contents facet under the template view as shown in Fig-
ure 4. The template cell may be created manually by
the user using tools like attache or by running PMoct
on a text seript written by the user in TDL (Template

BAG:FORMAL PARAMETERS {
PRP:PartName {BAG:#VAL._INVALID)
PRP:PariType (BAG:AVAL _INVALID)
!

PRP:-FDITSTYLE, phiysical

PRP:Technology. pch0

PRP:Cell Ulass, Module

PRP:VIEWTY PE. physi.al

PRP:Package Class, PCB

PRP:mructure_master{ BAG:#VAL._INVALID)

PRP:SIV_master{BAG:#VAL_INVALID)

BAGASET{PRP:COUNT,"1"
PRP:Repeat_Promgpt, Enter Pin™ }

BAG:#REPEAT {
NET:x{BAG:#VAL_INVALID

PRP:#STORE,Pia$(COUNT) (

TRM:x { BAG:#VAL _INVALID
PRP:TennType {BAG:AVAL_INVALID)
PRP:Pinnumber {BAGAVAL_INVALID}
PRP:Direcion {BAG:#VAL_INVALID

]
PRP:AGET,Pin$(COUNT) }

Figure 5. TDL for the PART Template

Description Language). PMoct takes the TDL descrip-
tion as shown in Figure S and creates the template cell.
Once the template cell is created, PMoct may then be
used to create SMVs adhering to the policy defined in
the template contents facet.

The template contains three kinds of objects: OCT
objects, command objects and sequence objects. OCT
objects are those which will actually exist in the final
SMYV cither exactly as they appear in the template or
with some of their values changed. Command objects
are used to specify to PMoct how the OCT objects are
to be processed. The command objects exist only in the
template view and will not appear in the final SMV.
Sequence objects are required to maintain an explicit
sequence when processing the template because OCT
does not guarantee any order for the retrieval of objects
from a facet.

All objects in the template which are prefixed by a “#"
symbol are command objects. These are read and acted
upon by PMoct as they are encountered. The following
subsections give a brief description of some of the
commands objccts.

When PMoct is run on the template, it processes all the
objects atiached to the sequence object with the value
“1" first and then continues in integral order, that s,
“2", “3", The sequence object *“1” must be specified
even for a single object and the numbering must be
contiguous, This is done based on the order of state-
mets in the TDL description and does not have to be
explicitly declared.

5.1 Attaching an Object to Other Objects:
#STORE and #GET

Existing design management tools such as DMoct do
not provide a mechanism to arbitrarily attach an object
to more than one other object. Attachments are implic-
itly hard-coded in DMoct, for example, in Figure 2
every terminal is attached to the facet as well as to the
corresponding net. However. this cannct be specified
explicitly in the SDL description shown in Figure 3
from which the SMV of Figure 2 was created.

By contrast, in PMocl. when an object must be attached
to two or more objects, the object is cached by using
the #STORE command. Then for every attachment, a

PMoct: A Policy Management Tool for OCT-based Design Sysiems for Multiple Domains s

(s -

#GET command is used which simply gets the saved
object and attaches it to the object specified. There Is
no restriction on how many other objects an object may
b= attached to.

5.2 Controlling Defaults and User Provided
Values: #VAL_INVALID, #VAL_OVERRIDE,
#ALLOWABLE_VALUES

All OCT objects that have the #VAL_INVALID com-
mand attached get their values from the user. For exam-
ple, the property “PARTNAME" doe< not have a
default value; therefore, a #VAL_INVALID is attached
to the PARTNAME in the template as shown in Figure
4. When PMoct encounter this command it prompts the
user for a value.

If there is no #VAL_INVALID command attached to
an object, the value(s) associated with the object are
used as the default value(s) and the object gets created
with its value(s) being the same as the value(s) in the
template. An example of this is the object labeled
“Prop: Technology” in Figure 4 will get the value
“pCbO,"

If a #VAL_OVERRIDE command is attached to an
object that does not have a #VAL_INVALID command
attached to it, than the value it contains is taken as the
default and the user is prompted to either accept the
default value or enter a new one.

The #ALLOWABLE_VALUES command is used to
restrict the value of an OCT property object to a
domain specified in the domains view (as described in
Section 4). This command object has a value associated
with it. That value contains the name of the facet under
the domains view which contains the set of allowable
values. When PMoct encounters this command it will
present a list of “allowable values” that can be selected
by the user to complete the specification. This is a criti-
cal feature to ensure consistency across policies.

5.3 Creating Multiple Copies of a Set of
Objects: #REPEAT

By nsing the #REPEAT command in PMoct a set of
objects can be replicated multiple times. The set of
objects to be replicated is simply attached to the
#REPEAT command. When PMoct encounters the

#REPEAT command, the user may create as many
coples of the set of objects as required. This amounts to
a significant reduction in the information that is speci-
fied and stored in the tcmplate. An example, of using
this command is the algorithmic generation of pin
numbers.

6. PMoct: An Example

When a policy is defined using PMoct, a level above
the SMY is introduced. This level defined by the
PMoct template formalizes the semuntics of the data in
terms of the domain. For example, our component
library policy has an object REF-DES-PREFIX that
comes from an enumerated set of values determined by
IEEE Std. 315-1975. These values are associated with
a REF-DES-CLASS object that is present in each com-
ponent, The values in REF-DES LASS must match
the values used to determine the REF-DES-PREFIX.
For example an INTEGRATED_CIRCUIT_PACK-
AGE is assigned a “U” as a prefix and a CAPACITOR
is assigned a “C”. If the user does not use the same tet-
minology, for example, if IC is used instead of the
INTEGRATED_CIRCUIT_PACKAGE, then our phys-
ical design tools will not be able to find the comrect pre-
fix and would therefore report an error. However, if
PMoct is used to instantiate a component SMV in the
library, the user will be prompted to select the value
from those defined for the REF-DES-CLASS Domain
View. This ensures that only valid REF-DES-CLASS
values will be associated with the REF-DES-CLASS
object for a component. It also localizes the data used
to detcrmine the REF-DES-PREFIX with a REF-DES-
CLASS and new classes can be created or new stan-
dards introduced in a single place. Curreatly, tools like
oct2rinf (a translator for producing Racal Redac Inter-
mediate Form data from a SIERA OCT database) hard-
code this information in the program. When we tried to
produce a similar tool for another design system, we
had to duplicate the code that assigned the REF-DES-
PREFIX and therefore proliferated this information. If
changes or additions had to be made, they would now
have to be carried out in several places.

Since PMoct can guarantee that values uscd to create
an SMV from a template are consistent with a set of
“allowable values” ---- these “allowable values™ define
the semantics for the values in a particular domain.

PMoct: A Policy Management Tool for OCT-based Design Systems for Multiple Domains

7. Conclusions

The principal advantages of storing the semantics (pol-
icy) in the database using PMoct too! described in this
paper are:

» A single version of PMoct can be used to manage
data and design flow across different domains of
electronic design (for example, integrated circuits,
printed circuit boards and multichip modules).

PMoct makes it possible to quickly develop and
integrate new tools into cxisting frameworks and
more importantly to share tools and librarics that
exist in different OCT-based design frameworks
without the need for translators.

Design instances created by tools other than PMoct
can be checked for semantic consistency.

Translation to and from non OCT-based systems can
now be based on the information in the templates
and translators can be specified and generated auto-
matically.

The policy is easily modifiable and changes can be
propagated automatically throughout the library.

Although PMoct was developed using OCT for the
underlying data management system, the ideas could
be implemented in other CAD systems and with other
database management systems.

Also PMoct would facilitate creating a CFl (CAD
Framework Initiative) compliant interface to the com-
ponent library and make sharing library data among
other CFI compliant CAD systems trivial.

References

(1] David S. Harrison, Peter Moore, Rick L. Spick-
elmier, A. R. Newton, “Data Placement and
Graphics Editing in the Berkeley Design Envi-
ronment,” The proceedings of the IEEE Inter-
national Conference on Computer -Aided
Design, pp. 24-217, Nov,1986.

Rick Spickelmier and Brian C. Richards, “The
OCT data manager,” in Anatomy of a Silicon
Compiler, Robert W, Brodersen. eds., pp. 11-24,
1992.

C. Bernard Shung, et al, “An Integrated CAD
System for Algorithmic-Specific IC Design,”

IEEE Transactions on Computer-Aided
Design, vol. 10, no. 4, pp. 447-463, April, 1991.

Brian C. Richards, “Design Manageinent,” in
Anatomy of a Silicon Compiler, Robert W.
Brodersen. eds., pp. 46-56, 1992.

Carl Sechen, Kai-Win Leg, Bill Swartz, Mindy
Lee and Dahe Chen, “The TimberWolf Stan-
dard Cell Placement and Global Routing Pro-
gram,” User’s Guide for Version 4.2¢, Yale
University, October, 1987.

John J. Granacki, “Research in Information Sci-
ence and Technology: Systems Assembly Core
Research,” Final Technical Report, USC/Infor-
mation Sciences Institute, November, 1992,

John J. Granacki, Zia Igbal and Tauseef Kazi,
“A Component Library Management System
and Browser,” I1SI Techmcal Report, USC/
Information Sciences Institute, April 1993..

PMoct: A Policy Management Tool for OCT-based Design Systems for Multiple Domains

