

DEFINITIONS

IDA publishes the following documents to report the results of its work.

Reports

Reports are the most anthonizative and most carefully considered products IDA publishes. They normally embody results of major projects which (a) have a direct bearing on decisions affecting major programs, (b) address issues of significant concern to the Executive Branch, the Congress and/or the public, or (c) address issues that have significant economic implications. (DA Reports are reviewed by outside panels of experts to ensure their high quality and relevance to the problems studied, and they are released by the President of DA.

Group Reports

Group Reports record the findings and results of IDA established working groups and panels composed of senior individuals addressing major issues which otherwise would be the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals responsible for the project and others as solected by IDA in ensure their high quality and relevance to the problems studied, and are released by the President of IDA.

Papers

Pepers, also authoritative and carefully considered products of IDA, address studies that are narrower in scope than these covered in Reports. IDA Papers are reviewed to ensure that they meet the high standards capeabed of refereed papers in professional journals or formal Agency reports.

Documents

IDA Cocuments are used for the convenience of the sponsors or the analysts (a) to record substantive work done in quick reaction studies, (b) to record the proceedings of conferences and meetings, (c) to make available preliminary and tentative results of analyses, (d) to record data developed in the course of an investigation, or (e) to forward information that is essentially unanalyzed and unevaluated. The review of IDA Documents is suited to their content and intended use.

The work reported in this document was conducted under contract DASW01 94 C 8054 for the Department of Defense. The publication of this IDA document does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the efficial position of that Agency.

IDA DOCUMENT D-1519 (Revised)

EXECUTIVE REPORT SPACE SYSTEMS TECHNOLOGY WORKING GROUP

TECHNOLOGY WORKING GROUP CO-CHAIRPERSONS

Dr. Raymond V. Wick USAF, Phillips Laboratory

Major General USAF (Ret.) Gerald K. Hendricks Institute for Defense Analyses

TECHNICAL ADVISOR

L. Kirk Lewis Institute for Defense Analyses

Norman D. Jorstad Director, Technology Identification and Analyses Center Institute for Defense Analyses

Acces	ion For			
DTIC Ui ani	CRA&I TAB nounced cation	K		
By Distrib	oution /			
Availability Codes				
Dist	Avail an Spec	nd / or ;ial		
A-1				

September 1994

Approved for public release; distribution unlimited.

INSTITUTE FOR DEFENSE ANALYSES Contract DASW01 94 C 0054

Task T-C2-1236.1

PREFACE

This publication documents work done for the Principal Deputy Assistant Secretary of Defense for Dual-Use Technology Policy and International Programs. In addition to providing a basis for policy and priority decisions regarding technology support, cooperative agreements and export controls, the results of this analysis will be incorporated into the Militarily Critical Technologies List (MCTL) and Foreign Technology Assessments (FTAs).

FOREWORD

In October 1992, the Director of Multinational Programs, Undersecretary of Defense for Acquisition and Technology, tasked the Institute for Defense Analyses (IDA) to assess space technologies. The objective of this assessment was to identify those technologies that are space unique, militarily critical, and dual-use to provide the basis for policy and priority decisions regarding technology support, cooperative agreements, and export controls. To accomplish these tasks, IDA organized a Space Systems Technology Working Group (SSTWG) with Dr. Raymond V. Wick, Chief Scientist for the Space and Missiles Technology Directorate of the Air Force Phillips Laboratory, and Major General Gerry Hendricks (USAF, Retired) from IDA as co-chairpersons. Twelve subgroups of government, industry, and academia representatives were formed to address the major space system technology areas. The Principal Deputy Assistant Secretary of Defense (Dual-Use Technology Policy and International Programs) was the DoD sponsor for this SSTWG effort.

Each of the space technology subgroups was asked to identify and describe the militarily critical space technologies (using Service mission deficiencies as a major input), explain their military significance, identify the key quantitative parameters involved, estimate their dual-use potential, assess their foreign availability, and recommend appropriate actions. For critical military parameters, the objective was to define more completely the threshold specifications in order to free from control those technologies that were not militarily critical. Also, because of the importance of the economic and the military and scientific aspects of space technology, the SSTWG subgroups were asked to discuss the economic security implications of the critical military and dual-use technologies. The results of these individual subgroup efforts and the subpanel membership lists are published in the "Technical Report," IDA Document D-1521. In addition, the "Scripted Briefing," IDA Document D-1520, can be used as a supplement to this document.

This Executive Report summarizes the findings and conclusions of the subgroups. It contains a Summary with conclusions and recommendations of the SSTWG, an Introduction (Section I), and a discussion of each space technology area (Section II). Section III has three sets of tables. The first set (Table III-1) summarizes all identified critical and unique space technologies. The second set (Tables III-2 through III-13) lists the critical technologies and their critical parameters in each of the 12 functional areas. The third set (Tables III-14 through III-23) lists 10 of the 12 technologies and includes the values of parameters that have been achieved in laboratory and the corresponding production capabilities to date for each technology.

The conclusions and recommendations of this SSTWG study verify several of the recommendations by the Vice President's Space Policy Advisory Board, particularly those recommending strong support of space research and development (R&D), the improvement of the U.S. launch capability, and the removal of impediments to the economic growth of U.S. space activity.

This report supports Secretary Widnall's assertion that: "Space systems signal America's stature as a world power and aerospace nation. Control of space and access to it are fundamental to economic and military security. Ask the 20 foreign countries who will have space capabilities by the year 2000: a presence in space implies influence, power and security" (Sheila E Widnall, Secretary of the Air Force, September 1993).

CONTENTS

SUM	MARY	S-1
I.	INTRODUCTION	I-1
ÌI.	CRITICAL SPACE TECHNOLOGIES	II-1
	A. Space Systems Integration	II-1
	B. Launch Vehicles	II-2
	C. Structures	II-3
	D. Propulsion	II-5
	E. Power and Thermal Management	II-6
	F. Communications	II-8
	G. Electronics and Computers	II-10
	H. Astronautics (Guidance, Navigation, and Control)	II-11
	I. Sensors and Surveillance	II-13
	J. Optics	II-15
	K. Vulnerability and Survivability	II-17
	L. Qualification and Testing	
Ш.	TECHNOLOGY SUMMARIES	
	A. Technology Matrix Summary	
	B. Military Critical Space Technologies	
	C. Technology Capabilities	
IV.	SPACE SYSTEMS TECHNOLOGY WORKING GROUP (SSTWC	G)IV-1
Gloss	uy	GL-1

TABLES

III-1.	SSTWG Critical Space Technology Summary	III-1
III-2.	Militarily Critical Space Technologies: Space Systems Integration	III-5
III-3.	Militarily Critical Space Technologies: Launch Vehicles	III-6
III-4.	Militarily Critical Space Technologies: Structures	III-7
Ш-5.	Militarily Critical Space Technologies: Propulsion	Ш-9
III-6.	Militarily Critical Space Technologies: Power and Thermal Management I	III-11
III-7.	Militarily Critical Space Technologies: Communications I	II-13
III-8.	Militarily Critical Space Technologies: Electronics and Computers I	II-14
III-9.	Militarily Critical Space Technologies: Astronautics I	II-16
III-10.	Militarily Critical Space Technologies: Sensors and Surveillance I	II-17
III-11 .	Militarily Critical Space Technologies: Optics I	II-18
III-12.	Militarily Critical Space Technologies: Vulnerability and Survivability I	II-19
III-13.	Militarily Critical Space Technologies: Qualification and Testing I	II-20
III-14.	Technology Capabilities: Launch Vehicles I	II-22
III-15.	Technology Capabilities: Structures I	II-23
III-16.	Technology Capabilities: Propulsion I	II-25
III-17.	Technology Capabilities: Power and Thermal Management I	II-27
III-18.	Technology Capabilities: Communications	
III-19.	Technology Capabilities: Electronics and Computers I	
III-20.	Technology Capabilities: Astronautics	
ПІ-21.	Technology Capabilities: Optics	
III-22.	Technology Capabilities: Vulnerability and Survivability	
III-23.	Technology Capabilities: Qualification and Testing	
LLI-4J.	A COMPANY CAPADIMUES. QUANTICATION AND A COMPANY	11-22

SUMMARY

A. BACKGROUND

The Space Systems Technology Working Group (SSTWG) study was formed as a result of two major concerns. The first was an industry concern about the export restrictions on militarily critical technologies, with the resulting negative effect on global space commercial business opportunities. The second was a recognition within the Department of Defense (DoD) and industry that the primary planning documents used to prioritize spending and to restrict foreign trade treated space technology in a cursory fashion rather than as a focused priority technology area. This study complements recent Joint Directors of Laboratory technology studies, directed towards fostering attention on critical military and military space technologies.

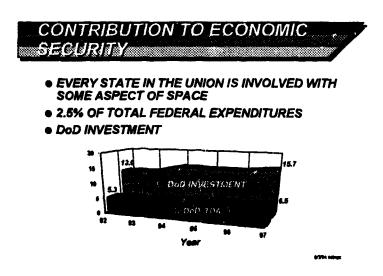
Examples of this casual treatment of space technology include the Militarily Critical Technology List (MCTL) space technology coverage, which gives fractional and varying levels of technical detail to space technology items scattered throughout the 15 established technology sections, and the DoD Key Technology Plan, in which spaceunique technologies are scattered throughout the 11 recognized categories but space technology is not recognized as a distinct entity or category. This format makes it difficult to locate specific space technology items and to identify the unique performance parameters that determine if they are truly critical space technologies that should be given priority support. As a result, numerous space-related technologies are not addressed in the key DoD plans.

The United States has recognized the importance of space and space technology to its national and economic security since the beginning of the space era. Consequently, we have played a dominant world role in developing and using space technology. The importance of our military and commercial space assets and their capabilities, in peacetime and in combat, was demonstrated vividly during the buildup and conduct of the Gulf War. With the decline in available defense resources, the United States has an added impetus to identify critical military space technologies. Fully supporting all aspects of national planning for the development of these technologies will contribute significantly to our continued military and commercial leadership in space.

U.S. space leadership in the 1960s, 1970s, and 1980s enhanced our economic strength and strengthened our technological and military capabilities. Recent global changes, including the fall of the Soviet Union and the emergence of new economic centers and alliances, place greater pressure on U.S. space leadership. More countries are competing for space leadership, and they are acquiring the needed technologies. If the United States does not aggressively pursue the goal of remaining the dominant space power, other countries will seize the opportunity. France is becoming the leader in low-cost, highly reliable commercial launchers, and Russia and China are working diligently to establish a commercial space industry. An awareness of these challenges within the Congress and recognition by other national leaders is crucial to build the foundation for the resource support necessary for continued U.S. leadership in space.

1

If the United States is to maintain its military space leadership role, the DoD must ensure that military space science and technology requirements are adequately identified and specifically defined and documented so that critical space development programs receive the required resource support.


B. ECONOMIC IMPACT

Although the military threat to national survival—a characteristic of the bipolar Cold War years—is greatly reduced, the military threat of regional conflict is, and will remain, high. A more important and immediate menace to the United States is the economic threat posed to the present U.S. aerospace industry. The U.S. share of the global aerospace market has dwindled significantly in recent years. This market shrinkage has had a direct impact on the U.S. space industry as a whole, a fact emphasized in the recently completed *Space Industry Study* chaired by the Vice President of the United States.

In addition, the European and Pacific Rim countries are mounting statesponsored efforts to become leaders in the global aerospace market, particularly where there appears to be a commercial payoff (i.e., space communications and launch services). Substantial investments have been made to support research, development, test, and evaluation (RDT&E) facilities and to educate scientists and engineers. Business leverage alliances and partnerships are growing between governments, industry, and their educational institutions. If this trend continues, the United States could be relegated to second place (or worse) in many categories of the

world aerospace market early in the 21st century.

The space contribution to our national economy is considerable. Every state in the union has research, development, or manufacturing activities related to current and projected space efforts. Space expenditures currently amount to more than

2.5 percent of the Federal Budget (about \$35 billion) and represent 15 percent of the DoD investment account through 1997. The \$5 billion commercial space export business in 1991 was the equivalent of exporting about 500,000 automobiles. This export business could increase significantly if the United States maintains its competitive edge in the development of new cost reducing technologies with advanced systems capabilities.

The question is as follows: How can the United States best exploit its space technologies and maximize the contribution of these technologies to military and economic security? The United States' long-term investment in the military capability necessary to defend the itself must be protected. Pressures from U.S. industry for expansion into commercial space markets around the world will continue, and limiting the access of space technologies to these foreign markets must be weighed carefully. Today, U.S. space industry access to the global market is often being restrained through limitations on the foreign sale of dual-use technologies. For the space-critical technologies at risk, the challenge for the U.S. government is to achieve a reasonable and prudent balance between national security requirements, military interests, and economic interests. To be successful, government and industry must communicate and coordinate.

One approach to managing dual-use technologies is to emphasize selling products or allowing the use of the technology products rather than selling the development and production technologies themselves. A good example of this approach is land satellite (LANDSAT) imaging. Images, not the optical systems that produce these images, are sold commercially. Another approach is to develop more cooperative research agreements between government and industry to pursue reduced-cost launcher and payload technologies and more international cooperative agreements with other friendly countries.

C. DISCUSSION

The ability to manage space technologies and capabilities is critical to overall U.S. space leadership, especially in the management of dual-use space technologies. Greater use, both commercially and militarily, will lower the unit cost to all users. For the militarily critical space technologies, their security value versus commercial access to them and the resultant effect on our global competitive position will require continual evaluation. A continuing dialog about U.S. long-term objectives is required to provide the basis for identifying and restricting those few militarily critical space technologies that should not be exported because of national security reasons. With the emphasis on broadening the global commercial opportunities for all technologies, including space, DoD will need sound and very specific rationales for the technologies judged to be militarily critical.

As the United States transitions from policies that governed past export controls, it must recognize the need for changes and make the needed adjustments. Today, some noncritical technologies, such as all "space-qualified" cryocoolers, are controlled. Under the new export control regime, noncritical technologies must be reevaluated to determine whether controls are necessary. The past definitions were too general and covered categories of technologies rather than specific technology elements, items, or systems. However, we have identified three technologies that are not controlled but are critical and should be controlled. When such technologies are identified, the United States must effect prompt changes in export controls. In the first case, the penalty for not acting is the loss of commercial sales and their attending economic impacts. In the second case, the potential loss of a militarily critical technology that adversely affects U.S. national security is a real possibility.

The ability to properly define critical technologies, to adequately assess their priority in relation to U.S. security requirements, and to effectively communicate this information to DoD and Congressional leadership provides the best assurance that funding for these critical space technologies will be forthcoming. Without adequate visibility

S-4

and understanding of space technologies' military and economic contributions, the needed support to bring these technologies to full maturity will erode.

D. TRENDS

A relatively flat trend in U.S. defense space budgets is forecast over the next few years. In total, the U.S. commercial space market is expected to continue to grow, albeit slowly. The greatest growth areas are expected to be communications and

ground surveillance systems. Forty new communication satellites are scheduled for launch in the next 5 years. These launches are projected to result in a nominal 4 percent growth per year in new space-based C/Ku-band transponders.

On the negative side, U.S. commercial launch capability is not as cost effective as that of our foreign competition. As a result, we are now launching fewer commercial satellites than the French. In the 1991–1992 period, France launched 12 satellites, and the United States launched 4 satellites. This situation, if unchanged, will have serious long-term implications for the U.S. space program.

The public space euphoria of the early 1980s, with talk of long duration space missions and future colonization, has subsided. Recent congressional actions suggest that space, as a priority, has taken a back seat to the demands for budget balancing and increased funding for social concerns. Highlighting and emphasizing to the public and Congress the value and importance of today's space technologies should have a positive direct effect and provide the best opportunity to maintain U.S. space dominance.

E. TECHNOLOGY INVESTMENT

Technology investment has the potential payoff of maintaining U.S. technological performance leadership and a leveraged position in the world economic arena. Countries and companies that have large research and development (R&D) investments appear to do weil. With new technologies, the challenge is obtaining the needed investment up-front to realize the desired long-term benefits.

The French Ariane is an example of a technology investment strategy that has paid dividends. By investing in launch operations with modernized and automated checkout and launch, Ariane can launch a *comparable* Atlas Centaur or heavy-lift Titan IV with a 100-person ground crew in about 10 days. In comparison, the United States needs 300 people and 55 days to launch an Atlas Centaur and 1,000 people and 90 days to launch a heavy-lift Titan IV. Through this quick, low-cost launch service, the French are capturing most of the world's commercial satellite launch business.

The United States has the enabling technologies to lead in low-cost launch systems. However, we lack national priority, investment strategy, and resource support to systematically develop these technologies for the next-generation propulsion systems and launch vehicles.

Given this, the crucial questions are as follows: How can the United States best exploit space technologies and maximize the contributions of these technologies toward our military and economic security goals and objectives? How can the United States provide cost-effective technological advances to overcome other countries' leads in specific areas of space capabilities?

During this study, the technology subgroups made judgments about the adequacy of current critical technology support. These judgments, though outside the charter and objective of the SSTWG, were included because of their potential utility for the offices and agencies responsible for developing these technologies.

F. RESULTS

This study identified and described the key quantitative parameters of militarily critical space technologies and categorized the dual-use potential and military significance of these technologies to provide a basis for policy and support priority decisions.

Of primary concern to DoD is the overall category of technologies that are "militarily critical." These technologies are defined as those that are essential to accomplishing a military mission or objective—especially in overcoming a military mission area deficiency—or are new enabling technologies that have potential for significant increase in a military capability. They represent the key to maintaining military space capability leadership.

"Space-unique" technologies are those that support only the space mission. This important category of military critical technologies is identified in this study but, at this time, is not specifically recognized in key DoD documents. These technologies are not automatically being nurtured by other nonspace mission thrusts. Visibility to senior DoD and Congressional officials is key to future development of these technologies.

Also identified are "dual-use" militarily critical technologies that have the potential for military and commercial applications, with payoff for both. By being more precise and improving the definitization of parameters that describe these dual-use technologies, the United States can release formerly controlled technology for commercial export to strengthen its space industry and, at the same time, protect those technologies that support security requirements.

Having categorized these technologies, part of the study charter was to examine the implications of export control and "dual-use." Some commercial dual-use technologies do not contribute to militarily significant technology since their operating parameters or functions are significantly different. A case in point is the electronic components of some military communication satellites that must operate in a more hazardous radiation environment than the equivalent commercial satellites.

Since visibility and support are fundamental to furthering the R&D of these spaceunique militarily critical technologies, the SSTWG investigated the prospect of entering into partnerships through Cooperative Research and Development Agreements (CRDAs) with industry and Memorandums of Understanding (MOUs) with specific allied nations to more effectively develop the technologies. Section III lists specific recommendations for each technology.

G. CONCLUSIONS

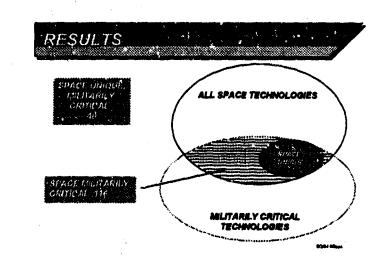
The SSTWG study concluded:

1. All Services need an integrated space mission area "road map" to provide a firm basis for space technology planning and prioritization. Space technologies are not adequately recognized as an individual category in the MCTL and in key DoD planning and funding documents.

- 2. Modifications to the development process techniques of systems engineering and integration (SE&I) as applied to space systems (defining, developing, manufacturing, integrating, testing, launching, and on-orbit operations) have significant potential for greater efficiencies, cost saving, assured access to space, and continued U.S. space leadership.
- 3. Forty technologies of the 116 militarily critical space technologies, have been identified and categorized as critical space unique and should

be recognized

documentation.


appropriate

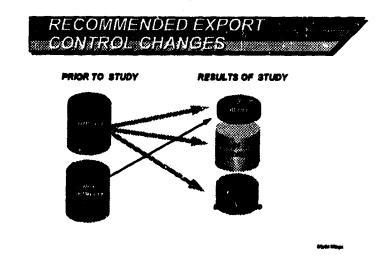
such

as

the

DoD

Of these, 37 are


in

dual-use. These dual-use technologies require more precise and explicit parameters to ensure that only critical items are controlled and those outside the explicit parameters are made available to the open commercial market.

Thirty-six technology areas that have high payoff potential and are candidates for additional investment have been identified.

Sixty-one

technologies were recommended for a in their change export control status: 27 of these were recommended for decontrol: 31 were recommended for less stringent control; and 3 not currently controlled were recommended for control.

Sixty-three technologies have been identified as candidates for partnerships through CRDAs and specific international agreements (MOUs).

- 4. **Payload modules, buses, and interfaces must be standardized** to improve technology insertion and provide improved interoperability and savings within the military and commercial space community.
- 5. Selling the products of space technology or on-orbit capabilities rather than selling the specific technology has the significant potential of protecting the U.S. job and production base and the associated development and production technologies. This practice has already begun with the Global Positioning System (GPS) services and high-resolution space imagery products (\$400 million in 1993 and a potential \$2 billion in 2000).

These space technology areas are treated in more detail in the "Technical Report," IDA Document D-1521. Summary tables of each technology area are included in Section III of this document.

H. RECOMMENDATIONS

Based on these conclusions, the SSTWG makes the following recommendations:

- 1. Space systems technologies should be included as a separate, unique section in all future versions of the MCTL.
- 2. Key DoD planning and resource documents (such as the Defense Science and Technology Strategy and the DoD Key Technology Plan) should treat space technology as a separate, unique area.

Specifically, DoD should create an integrated space mission area road map to provide a firm basis for space technology prioritization and development.

- 3. An existing advisory board, such as the Defense Science Board (DSB), should identify SE&I practices that have been successful in other key industries and that can be applied to space programs.
- 4. The United States should include unique critical space systems technologies in the new international export control regime and incorporate recommended changes.
- 5. Where beneficial, the United States should pursue both domestic and international partnerships through CRDAs and MOUs for identified space system technologies to bring these technologies into production sooner and at lower unit cost.
- 6. DoD should take the initiative for the government and industry in defining interface standards and should encourage standardization for launch vehicle payloads, payload interfaces, and modular space components.

7. The United States should emphasize selling complete space systems or using the products of space technology rather than selling the development and production technologies themselves. This practice would improve the U.S. job outlook and protect the critical technologies involved.

Implementing these recommendations will provide impetus and rationale for ensuring that unique space-critical technologies are adequately recognized and that the necessary investment is made *now* to ensure that the United States continues its leadership in military space capabilities into the 21st century.

I. REVIEW PANEL

The following page lists the members of the SSTWG Review Panel.

SSTWG REVIEW PANEL

Both the SSTWG Scripted Briefing and the Executive Report have been revised to reflect the comments and recommendations of the senior review panel.

As suggested by the panel during the 16 Feb 94 meeting, the signatures below indicate that the panel members have reviewed this SSTWG Study Executive Report and believe the conclusions and recommendations of the Study are sound and will assist in assuring that critical space technologies are recognized and properly supported and that this will help the United States maintain its military capability leadership.

Brig Gen Roger G. DeKok

Director of Plans for Air Force Space Command

Tamer Lt Gen Lincoln D. Faurer (USAF Ret) Aerospace Consultant

mm Dr Robert Hermann

Senior Vice Pres Science & Technology - United Technologies Corp.

nin

Lt/Gen Donald L. Cromer (USAF Ret.) President Hughes Space & Communications Co.

Mai/Gen (Dr.) Donald L. Lamberson (USAF Ret) Aerospate Consultant h

Dr. Charles W. Cook (Senior AF Civ Ret) IDA Consultant - Ex AF Dep Asst Sec for Space Plans & Policy

Kett Benedict

Dr. Rett Benedict (Col USAF Ret) Vice Pres & General Manager of Albuquerque Office of W.J. Schafer Assoc Inc.

V Hammen hMAT Lt Gen Robert D. Hammond (USA Ret)

Aerospace Consultant

Dr. Willy Z. Sadeh

03/28/94

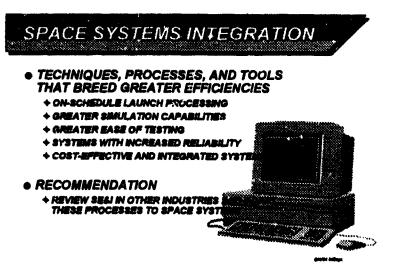
Professor of Space Engineering & Director Center for Engineering Infrastructure & Sciences in Space (CEISS) Colorado State Univ.

K.-/ RADM (Dr.) Willem C. Miller (USN Ret) Special Asst to the Provost - West Virginia University

I. INTRODUCTION

Space is a unique environment that provides unparalleled military operational advantages and economic opportunities.

The importance of space and space technology to provide global reach and global power is captured in the statement by Air Force Secretary Widnall: "Control of space and access to it are fundamental to economic and military security." To the military commander, space provides the advantages of viewing areas of interest, knowing the weather, being able to navigate and accurately locate areas of concern, and the ability to execute command and control of operational forces anywhere to support national security goals and objectives.


To withstand the space environment, components must operate in conditions of extreme thermal cycling and are exposed to radiation. Reliability requirements are measured not in days but in years. This environment requires unique space technology parameters. The bottom line is that the unfriendly environment of space and its impact on space systems, be it out-gassing, high-energy particle bombardment, radiation damage, atomic oxygen reactions, or the long-life requirements of space components, is a significant technological challenge.

Many of the space-unique technologies have both military and commercial uses. The few that are judged militarily critical will provide the United States with the capability to maintain its military leadership role in space for years to come. These technologies should be recognized and given special attention. Section II discusses the specific technologies that are identified as "space critical." Section III gives additional information about each of these technologies.

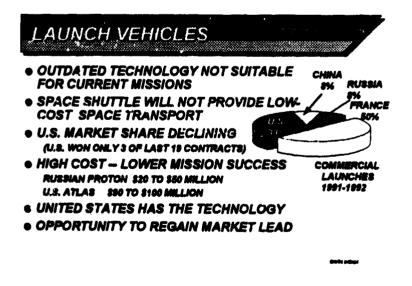
II. CRITICAL SPACE TECHNOLOGIES

A. SPACE SYSTEMS INTEGRATION

SE&I technology involves the of **defining**, process developing, manufacturing, integrating. and testing a cohesive system of ground, launch, and space segments from and design concept on-orbit operation through disposal. For space systems, this process is very lengthy, costly, and, for many of the processes, inefficient. Improvement in the SE&I "process" has the potential for large payoffs in developing and using critical space technologies.

Significant improvements in SE&I will play an important role in maintaining the ability of the United States to be competitive in the world market.

One of the recommendations is that an existing advisory board, such as the DSB, review and study of the latest worldwide SE&I concepts and processes available, particularly in the automotive and electronics industries. The results of this review should recommend a way to develop optimum SE&I processes, techniques, tools, simulations, and models to support space technology development and production. Improvements in the efficiency of space systems' SE&I processes are essential if the United States is to retain world space system leadership and reduce costly, extended development as, for example, has been the case in the MILSTAR program.


In the future, it is envisioned that technology development and funding will follow one or more of five broad concepts: (1) cost-shared research and development; (2) cooperative partnerships between government and industry; (3) support of commercial research and development (R&D) by the DoD laboratories; (4) focus on dual-use technologies development; and (5) an expanded Science and Technology Reliance program.

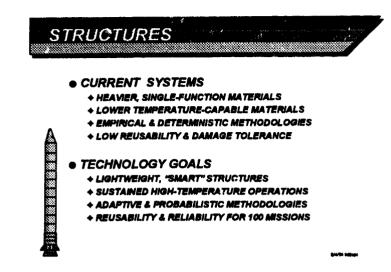
Examples of process and technology items that have dual-use application are improved radiation hardness compliance capability; fault tolerance; autonomous operations via artificial intelligence (AI); space debris identification for cataloguing; launch vehicle processing; electromagnetic compatibility (EMC) and lightning protection; standardized interfaces; a system design and synthesis process integrated with a system requirements analysis process; systems engineering processes, including automated tools and metrics; and integrated weapons systems management. One of the most important emerging space technologies is self-testability, with a built-in-self-test (BIST) capability designed for all components and at system levels, including an autonomous and robotic system design, to permit easy ground operational monitoring. Advanced autonomous systems designs include BIST and self maintenance and high-reliability features.

Section III of this document identifies critical processes and technologies that should be improved, those that could be used in joint program ventures, and some that should be funded by the government to improve U.S. competitiveness and market position in the international arena

B. LAUNCH VEHICLES

The Delta, Atlas, and Titan expendable boosters have been the backbone of our space lift capability and will continue in this role into the 21st century. However, these launch vehicles were designed more than 30 years ago and their technology is now outdated and expensive to operate. Although the space shuttle was envisioned the workhorse that would provide low-cost space transportation, this goal has not been and will not be realized.

With the fall of the Iron Curtain, Russia has joined the competition for providing a low-cost, highly reliable launch capability along with France, Japan, China, and Brazil. Overall, the U.S. market share of space luunches has decreased significantly since the 1980s. The impact of this trend is highlighted by the fact that the United States has won only 3 of the last 19 space launch contract opportunities. France provided 50 percent of all worldwide commercial launches in the 1991–1992 time frame. This situation has occurred because of a French investment strategy that has made their space launching more cost effective and efficient.


To compare competitive costs for U.S. launch services, launching a satellite with the Atlas system costs \$90 to \$100 million. Launching a comparable load with an Russian Proton missile costs only \$20 to \$50 million. The flight reliability of these systems is difficult to verify.

The United States has the intrinsic capability to advance technology and regain the world space market lead. Space-critical technologies should be nurtured, and, in some cases, protected as space-critical technology items to ensure U.S. military and economic leadership (see Section III). Continued work in critical technologies, such as fault-tolerant avionics, automated launch control systems, and electromechanical and hydraulic systems, has the potential to reduce costs and increase launch system reliability.

To reduce the time and cost of vehicle payload integration and launch and to remain competitive in the world market, the U.S. government and industry must standardize interfaces for the launch vehicle to the payload bus and employ new advanced technology-based launch vehicles in order to reduce the infrastructure and personnel requirements which are the most significant factors. These technologies have significant payoff in modernized, near-term expendable systems and in the more challenging reusable and single-stage-to-orbit systems of the future.

C. STRUCTURES

The United States continues to lead the world in the development and production of aluminum-lithium (Al-Li) alloys and composite structures such as graphite-reinforced thermosets and thermoplastics and metal matrix materials. However, Europe and Asia are now challenging this U.S. lead. Applying this technology to satellites and launch vehicles can provide weight savings of up to 60 percent, with significant (greater than a factor of two) reductions in cost and fabrication time. Using lightweight, high strength-to-weight ratio materials that are dimensionally stable and have minimal out-gassing properties will be required to meet future

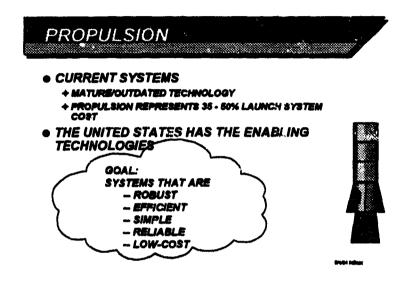
space structure needs where weight reduction is a driving issue.

Continued work in structural control and system monitoring technologies will provide critical data for new models and simulations, resulting in improvements to all launch vehicle technologies.

Structural control technology is being developed to achieve higher pointing precision and finer control. This will allow the United States to more accurately track targets and provide better stable vibration-free platforms for space sensors and laser cross-link communications.

Space systems health monitoring technology is being developed for use in separating space packages and for maintaining space systems once they are in orbit. This technology includes advanced methodologies for determining and sensing the actual structural parameters that define the response of the system, analytical models that accurately use the parameters to predict response, sensing systems to measure structural response, and control systems that could include neural networks to respond to system changes.

Most space structures technologies are considered dual-use, for which export controls are not recommended. Instead, space structures technologies lend themselves more to cooperative programs where the costs and benefits of new developments can be shared and where both military and commercial benefits will accrue.


The main area of concern for militarily critical space structures technology is the **manufacturing and process techniques** for advanced materials with embedded sensors

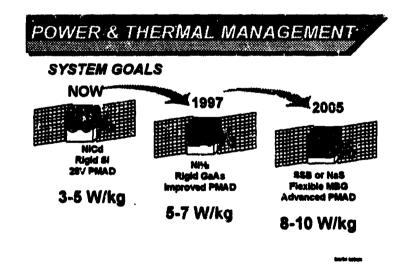
that can detect and control vibration to less than 10 nanoradians angular pointing accuracy. These manufacturing and process techniques should be controlled.

The critical space structures technologies requiring additional funding include smart structure controls, advanced low-weight-to-stiffness alloy and composite development, and structured system health monitoring.

D. PROPULSION

The space systems described in Launch Vehicles are based on old, expensive intercontinental ballistic missile These (ICBM) technology. propulsion systems have moderate-to-high reliability but also have high operating costs. They are 35 to 50 percent of the total missile system costs and contribute greatly to pricing the United States out of the world launch market.

The United States has the enabling technologies to lead in low-cost propulsion systems. However, we lack national priority and resource support to develop these technologies for the next-generation propulsion systems and launch vehicles. In addition, the availability of modified ICBM boosters and the existing infrastructure have contributed to this situation. The goal of these enabling technologies is to provide robust, efficient, simple, highly reliable, low-cost propulsion systems that meet critical military launch requirements and also allow the United States to compete in the commercial launch market.


Emerging critical propulsion technologies are grouped in three basic categories: chemical (which includes liquid, solid and hybrid systems), low-thrust electrical, and nuclear thermal. Electric propulsion can provide efficient station-keeping and maneuvering capabilities. Each of these technologies has considerable potential, and R&D must be continued. Future rocket and missile systems will use all of these propulsion technologies in one form or another. Low-cost solids and low-pressure, high-tolerance liquid propellant systems or hybrids are the leading candidates to meet our currently projected first stage propulsion needs. Nuclear thermal propulsion appears to be very attractive for highenergy upper stage propulsion and for co-generated electrical output systems; however, it must overcome additional environmental challenges to reach its full space potential.

Most propulsion technologies are dual-use and have direct commercial applications. Propulsion technologies needing export control are those that apply to ballistic missile proliferation. To offset these controls, the United States should be prepared to sell the launch or on-orbit service provided by this new technology. The sale of these services will not only improve the U.S. position in the world launch market but will reduce the desire of other nations to develop their own capability or seek services elsewhere.

Dual-use propulsion technologies that need additional resource support to reach maturity include high-energy density propulsion materials, improved propellant bonding, and advanced cryo-cooling and storage.

E. POWER AND THERMAL MANAGEMENT

Power and thermal management are key technologies for effective use of the space environment. Taken together, the Environmental Protection System (EPS) constitutes 10 to 30 percent of spacecraft weight. New power and thermal management technologies must be supported if the United States is to maintain its competitive position in the world market.

Future space applications, both commercial and military, will require high power (greater than a kilowatt), long duration operation (greater than 3 years). and controlled operating temperatures for spacecraft hardware. These demanding requirements lead to a preference for passive systems that operate maintenance free, provide

II-6

heat rejection by radiation, require low mass and volume, and are capable of reliable autonomous operation. Power generation, other than photovoltaic, requires thermal management at high temperatures while sensors, electronics, and crew support require thermal management at moderate-to-cryogenic temperatures.

Solar cells mounted on the surface of the spacecraft or deployed on solar arrays are highly reliable and account for the majority of power generation systems flying today. Today's state-of-the-art cells include lower cost silicon (Si), which is 13 percent efficient, and more radiation-resistant gallium arsenide (GaAs) with efficiencies of up to 19 percent. Advanced cells, including thin-film, poly-crystalline (or amorphous) silicon, and multi-band-gap (MBG) cells, are being developed to lower cost, increase efficiency, and provide higher radiation resistance. The United States currently leads in most solar cell developments.

Dynamic conversion of solar energy offers the potential for high efficiency and reduced drag in orbit. Solar energy, focused into a heat receiver, heats a working fluid. The working fluid drives a heat engine, using either a Brayton, Rankine, or Stirling thermodynamic cycle. This engine, in turn, drives an alternator that converts the heat into electrical energy. The system-specific power (W/kg) of solar dynamic conversion is currently not competitive with photovoltaic systems, as is shown later in Section III. Continued work is needed in these technologies to achieve high efficiency and reduced-weight power conversion systems.

Nuclear power systems have high power densities, operate independently from orbit position (eclipse, distance to the Sun), and have potentially long operating life and growth potential. Two nuclear candidates are nuclear fission reactors and radioisotope systems.

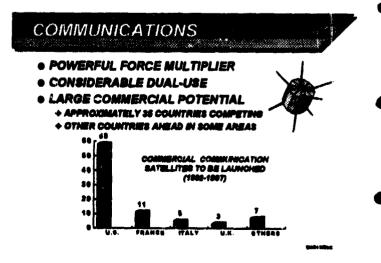
Nuclear fission reactor technology has high theoretical promise for space applications but requires significant continued development. Long, unattended operations with high reliability and autonomous control are required, and operating temperatures are high. Compact designs will require effective shielding and radiationhardened sensors.

Radioisotope systems, up to a few hundred watts, have operated reliably in space for decades on a total of 23 U.S. space missions.

Batteries for power storage typically comprise 10 percent of the total spacecraft dry weight. Nickel-cadmium (NiCd) and nickel-hydrogen (NiH₂ or NiMH₂) batteries are

state of the art. New developments include sodium-sulfur (NaS) and solid-state polymer (SSP) batteries. The Japanese have taken the lead in SSP batteries because of anticipated commercial applications. The graphic on the previous page describes the future power and thermal management system technology goals.

Thermal management is critical to spacecraft design and includes the development of microchannel heat exchangers, cryogenic refrigerators (cryocoole...) and heat pipes that have an effective thermal conductivity several hundred times that of the best metals and have no moving parts. In space, because of the rejection of heat only by radiation, the development of carbon-carbon (C-C) radiators and lightweight heat transfer technologies is very important and requires further R&D.


Most space power and thermal management technologies are dual-use. Technologies that make the power system (and the spacecraft) more survivable against man-made hazards are likely to be unique for military systems. Some long duration commercial spacecraft may require hardening against pellets, ultraviolet (UV) radiation, and natural space radiation.

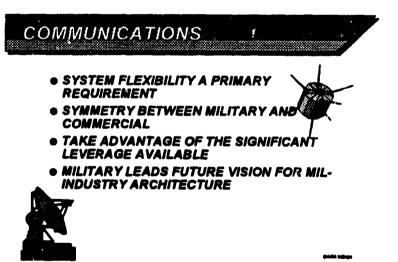
Most power and thermal control system technologies are produced and marketed internationally for both commercial and military applications. To be economically viable, technologies being developed in military programs may require an unrestricted market or government-subsidized production to provide the stimulus for advanced commercial development of these new technologies. This was the case in the early development of communication satellites.

Dual-use technologies that need additional support to reach maturity include high-specific-power photo-voltaic cells, high-energy density batteries (recyclable over 1000 times), and high-efficiency cryocoolers.

F. COMMUNICATIONS

Space communication is a powerful force multiplier and is critical to modern military operations. With the boom in telecommunication products and services, telecommunication applications continue to be on the forefront of military advances and are mandatory to maintaining

II-8


a superior force. Correspondingly, the dependence on space communications has steadily increased.

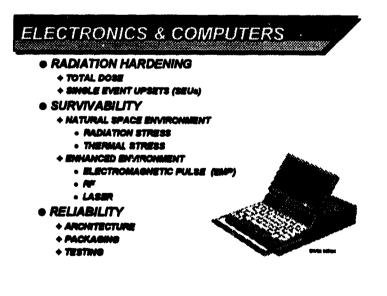
Some military needs are unique; however, most space communications technologies are dual-use. Approximately 35 countries have space programs, and the predominant emphasis is in communications. A significant number of these countries are trying to become a leading developer in the space communications industry. The United States is the dominant country in space communications; however, several countries and multinational alliances are competing technologically with U.S. industry in many areas of space communications.

Unique space-critical technologies need additional support in the following subsystems: adaptive nulling, integrated phased array and large multibeam antenna systems, solid-state amplifiers, and gigabit (Gb) rate receivers.

System flexibility and accessibility are very important. Even with the increased capacity of fiber optic communications, space communications will still be needed to fill the communication gaps of land-based systems. Satellites have this flexibility in all regions of the world.

Space communications is still overwhelmingly a government sector The vast majority of the activity. world's investment in space communications (more than 60 percent) comes from government funding. As the communications industry SDace matures, this percentage could change. but space investments currently seem to lie outside the financial planning horizons of most companies. The U.S. commercial sector has depended to a

great extent on the government and military work to support their R&D. With the reduction in government support for military satellites, companies have experienced a corresponding reduction in R&D investments for potential commercial satellite technologies.


The U.S. military will continue to be a dominant user and developer of communication satellites. In this position, the U.S. Government can use this leverage to assist the U.S. commercial sector in technology advancement and significant manufacturing improvements. For example, standardized modular designs provide flexibility while achieving considerable development improvements.

If the U.S. Government took the lead in standardizing a future modular architecture for all communication satellites, this action would allow the potential for cost sharing and a U.S. competitive advantage. A modular architecture derived from the military to assist industry in technology advancement and provide commonalty could reduce engineering and development costs in many sectors of the space industry. Accomplishing this goal will require a partnership to further the capabilities of the military and industry. This partnership has the potential to provide the improvements in the civilian economic competitiveness in communications that are needed to maintain our global position in space communications developments. It also could be an important element in capturing the expanding third world market and is of great interest in Iridiumtype direct satellite communications systems, where literally hundreds of satellites are involved.

G. ELECTRONICS AND COMPUTERS

Most space electronic and computer components perform the same function as that of their nonspace counterparts. However, space electronics and computer components must be highly reliable and radiation hardened. The graphic depicts the critical elements of space electronic and computer technologies.

Radiation hardening of electronic components and their

design for survival against electromagnetic pulse (EMP), strong radio frequency or (RF) waves, lasers, and the natural space environment-when combined with high reliability

and low power, volume, weight, and cost—present a severe challenge for space electronics and computer technology.

Reliability is a very critical requirement for space electronics and involves a number of important technologies, including the overall architecture of adaptive and redundant system design, packaging technologies, and testing technologies.

Important ongoing technology developments that must be supported are hardened digital processors, packaging of monolithic wafers and hybrid wafer scale integration (multichip modules), and three-dimensional (3D) packaging. Faulttolerant computing, optical processing, and opto-electronic integrated circuits are also important space technologies. Radiation hardened micro-electronic-mechanical systems (MEMSs), which are a class of sensors that respond to physical stimulus and transmit electrical impulses for interpretation, measurement, or operation by a control system, are vital to advanced space systems.

Virtually all electronics and computer technologies used in space have a groundbased or a civilian space-based counterpart and are, therefore, dual-use. However, two military areas, strategic radiation hardening (nuclear weapons environment) and extraordinary survival technologies (space weapons environment), have no groundbased or civilian space-based counterparts. These technologies should be protected from unrestricted export.

Dual-use technologies that need additional support to reach maturity include improved radiation hardening; lightweight, high-efficiency electronics; (3D) packaging; fault-tolerant, high-speed computer hardware; and very high reliability electronics and computers for flights of 10 years or longer in duration.

H. ASTRONAUTICS (GUIDANCE, NAVIGATION, AND CONTROL)

Ballistic missile accuracy depends on inertial space platform navigation and guidance system technology. Military satellite sensors and laser communication crosslinks (which must have high data rates with a low probability of intercept) require precision astro-nautics. Third World

ASTRONAUTICS

PLATFORM POSITIONING & STABILIZATION
 + OPE INTEGRATION
 • ENHANCED OPE PERFORMANCE SOFTWARE
 + RING LASER/FIGER OPTICS GYROS
 • ENHANCED GYRO PERFORMANCE SOFTWARE
 ORBITAL MECHANICS
 + LOW ATMOSPHERIC DRAG MODELING
 OUAL-USE

FOR EGIH SPACE

П-11

countries want this technology and as many as 15 countries already have operational ballistic missiles.

Recent technology developments (GPS, fiber optic gyros, and software algorithms) make simpler, less expensive, and highly accurate guidance components available to many countries. The gyroscopes, accelerometers, and accompanying technologies required for the stabilization and navigation of the satellite while on orbit are approximately the same technologies used to launch the satellite (or a ballistic missile) into orbit. Also, this same basic astronautic technology is used for civilian applications such as commercial aircraft and ship stabilization and navigation and for peaceful space applications such as weather and communication satellites.

The dual-use capability characteristic of astronautic technology elements, items, and systems presents a serious problem for participants in today's global space market. Many times, countries purchase technology for legitimate purposes, but some countries (as demonstrated by pre-Gulf War Iraq) retro-engineer, copy, or directly divert technologies that are considered to be tightly controlled.

A critical example of dual-use technology is the readily available GPS. The GPS was developed to provide military land, sea, and air forces with their precise location on the earth and in low aerospace. The use of GPS in civilian applications is increasing.

The GPS can be used to enhance satellite guidance and attitude performance. Unfortunately, the GPS has potentially dangerous applications such as an inexpensive ballistic missile guidance system. Although DoD has incorporated a "war mode" into the GPS that decreases the accuracy of the system, several techniques (through software and hardware) allow a large portion of this inaccuracy to be removed. More than 300 versions of GPS receivers are sold throughout the world. A similar system is Russia's Global Navigation Satellite System (GLONASS). Although GPS is now fully operational, the Russians have not completed the necessary orbital portion of their system. However, receivers are being built to receive signals from both systems to resolve ambiguity and loss of signal that may occur with either system.

Dual-use technologies such as advanced gyroscopes, accelerometers, and accompanying technologies need cooperative agreements with industry to achieve the required improvements.

Control of the militarily critical elements of astronautic technology is difficult. The current MCTL includes but does not adequately define many of these technologies. One

approach to controlling this predominately dual-use technology is to emphasize the sale or use of our technology products in complete vehicles or on-orbit capabilities where value added by the United States has been maximized and reverse engineering is difficult.

I. SENSORS AND SURVEILLANCE

Existing controls have allowed the United States to maintain a lead in space sensors. Emerging technologies provide the potential to maintain this lead. However, new technologies such as optical memory devices, programmable chips, highresolution vidicon tubes (where competition is strong, particularly from the Japanese), and focal plane arrays (from Japan and France) are challenging our ability to maintain

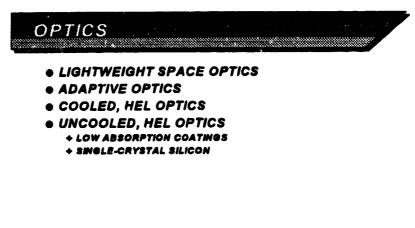
this space sensor technology lead. An expected large market exists for high-resolution vidicons for high-definition television (HDTV).

These new technology challenges, combined with reverse engineering and cannibalization of existing systems, compel the United States to support the emerging technologies and to control existing critical technologies. Long wave infrared (LWIR) sensors that provide high signal-to-noise (S/N) ratios with very low noise background at cryogenic temperatures must be developed to image cold objects against a very cold background. These LWIR sensors are required to detect and identify debris and space objects.

Current electro-optic and infrared (IR) sensors allow the United States to examine activity at any point on or near the earth. The electronic readout capability of the newer sensors gives the satellite an essentially indefinite life on station as compared to earlier systems that used film and were limited by the magazine size. In cases where scattered sunlight or thermal radiation is not adequate to form images of sufficient detail and clarity, laser illumination can be used. These capabilities are central to the U.S. early warning capability for missile launches and locating nuclear detonations and are also a major component of tactical and strategic data collection.

Some critical astronautic technologies are as follows:

- High-resolution, space-qualified charged coupled device (CCD) arrays and large (8192 element or greater) linear detector arrays that allow electronic readout of image data from the ultraviolet to near infrared (1.2 microns) spectral region. A detector with a resolution element spacing of µ 3 m would allow a resolution equivalent to a good, fast high-resolution film such as Kodak Tri-X. This is the technology of choice for imaging space cameras in satellites and for ground- or aircraft-based devices for space object identification.
- Space-qualified, IR sensors, which are the key element in sensor systems, such as the Deep Space Probe (DSP), that monitor missile launches. A major concern is whether the sensing element and the cryogenics to support it will function reliably in space with unattended operation for 5 to 10 years.
- IR detector arrays, often called focal plane arrays (FPAs), including one dimensional (1D), two dimensional (2D), or three dimensional (3D) arrays enable imaging analogous to the vidicons in the visible spectrum. While a vidicon responds to light wavelengths generated as scattered sunlight or manmade radiation, the IR array responds to the heat radiation emitted by the sunlight or by other hot or warm objects. The reduced spatial resolution (because of the long wavelength) is offset by the improved contrast to the background for heat engines, the ability to "see" at night, and an improved ability to penetrate cloud cover.
- Active sensors, including radar and ladar, which provide decisive improvements in support to theater forces. Day/night adverse weather theater surveillance by radar will improve command, control, communications, and identification (C³I) on the battlefield. Ladar can improve weather information and imagery. Dual-use potentials are more limited for active sensors.


Space-qualified, high S/N arrays (greater than 50,000 elements) for long IR wavelengths may need to be controlled because of their strategic importance. However, since most military space sensor and surveillance technology is dual-use, the same IR detectors may have many terrestrial applications. Currently, both "space-" and "nonspace-qualified" IR detectors are embargoed because of Army terrestrial requirements.

A dual-use example of astronautic technology is the Hubble Space Telescope, which is a reconnaissance camera looking up rather than down. Now that spherical aberration is corrected, Hubble could function as an "embargoed sensor" for some militarily critical applications and as a classic universe exploring telescope. The United States should continue the present sensor and surveillance export control limits, with constant upgrade and review, to attempt to allow the maximum latitude for the development of scientific and earth resource space-based sensors (as well as ground- and space-based astronomy) consistent with protection of critical defense technologies.

One approach, mentioned earlier, to controlling this predominantly dual-use technology is to emphasize selling the products of our technology in complete vehicles or on-orbit capabilities where value added by the United States has been maximized and reverse engineering is difficult.

J. OPTICS

Optical components and their related technologies are very important to the U.S. military and commercial space capabilities and the space industry. Optics are critical elements of surveillance and reconnaissance satellites. They set the limits of possible target detection, identification, and resolution.

Optical components are also critical elements in projected space-based High-Energy Laser (HEL) systems. If these optics do not have the proper figure (shape) and finish (polish) and cannot survive operational power levels, the laser system cannot perform as required. Low-power, relatively large optical elements are required for space power, relay, and communication systems.

Another critical optics area is the projected manufacture of optical elements or materials in space. This includes manufacturing membrane or lightweight optics (that are either too large or fragile to be launched from earth) and processing optical materials in space.

Four areas comprise the critical space optics technologies process:

- 1. Design of the optical systems and components
- 2. Production methods for highly accurate, lightweight optical components
- 3. Specialized exotic materials used for the optics
- 4. Precision meteorology associated with the fabricating and certifying space optics.

Space optics also can be classified as cooled or uncooled. Cooled optics are most commonly used in exclusively military HEL applications. Uncooled optics fall into two basic categories. The first category is low-absorption coatings for mirrors used for surveillance, reconnaissance, acquisition, pointing, and tracking and those used for communication applications. Most of these optics require high-reflectivity coatings or partially transmissive or selective wavelength coatings. Many of the optics in this category are dual-use. The second category is the advanced transmissive component typified by single-crystal silicon optics.

The combination of a substrate that is transmissive at the application wavelength and a very low absorption coating allows the use of uncooled optics for HEL application. This relatively new technology represents a breakthrough in optical component development for HEL systems (specifically, space-based HEL applications) because it substitutes very expensive, complex, heavy components with lightweight, inexpensive components.

Optics in the second category of uncooled optics are currently used exclusively in military applications and must be protected for both space and terrestrial applications. In addition, the development and production technology for large phased array deployment and control are space unique and critical for HEL military application.

Most optics have dual-use. Nearly all optical systems in space can be used for both military and commercial applications. For example, surveillance satellites are used for military observation and for mapping natural resources, evaluating environmental effects, and conducting astronomical studies. Space communications and the manufacture of optics and optical materials are also areas of potential dual-use. Reconnaissance and directed energy weapon (e.g., space-based laser) applications are uniquely military.

Optical technology has seen more progress in the past 30 years than during any other comparable time period. Laser technology and modern computers have radically expanded the number of applications for optical components and have revolutionized the measurement and fabrication of optics. This revolution in optics has occurred for defense-related components and systems and for commercial products and applications.

The United States, Japan, and most Western European countries have welldeveloped capabilities in optics per se but less capability in dedicated advanced space optical systems and components. The United States must balance the need for allowing industry to compete in the expanding optical components and technologies world market and for protecting military interests.

The primary technology requiring additional support and development is the radiation and atomic oxygen hardening of optics and their coatings.

K. VULNERABILITY AND SURVIVABILITY

Survivability of space systems covers the technologies associated with protecting or hardening these systems as they perform designated missions in natural or man-made hostile environments.

The vulnerability of space systems is reduced by making the systems hard to find, hard to hit, and hard to kill.

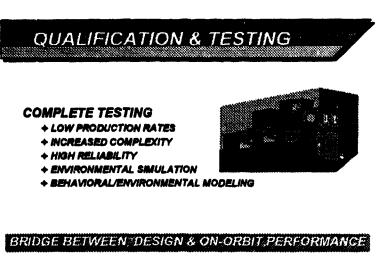
Technologies that suppress and

VULENERABILITY & SURVIVABILITY • REDUCE VULNERABILITY BY BEING HARD TO • FIND • HIT • KIL • PROTECT AGAINST MAN-MADE HAZARDS • MICROWAVE • LASER • NUCLEAR RADIATION • ELECTROMAGNETIC (EMP & RF) • DEBRIS • SUPPORTING EFFORTS • SPACE GSJECT IDENTIFICATION • ENVIRONMENTAL & EFFECTS SMULLATION

control signatures; techniques for deception, proliferation, and reconstitution; and use of off-orbit spares are important to enhanced system protection for the "hard-to-find" cases. Technologies such as autonomy, maneuverability, attack warning, and use of decoys are important for the "hard-to-hit" cases. Technologies such as hardening to nuclear, laser, RF, kinetic energy weapon, and debris environments are important for the "hard-to-kill" cases. The mission-critical space system components that are important to radiation harden include sensors, processors, communications components, attitude control systems, power systems, structures, and propulsion systems. The importance of protecting space systems against natural and man-made hostile environments must not be minimized. Developing and placing a space system in orbit and repairing or maintaining this system in orbit—if this is possible—are very costly. In the past, equipment designs have included protection features that resulted in a militaryunique system.

Dual-use technologies are being encouraged, if not demanded, because of the need for economic leverage. Consequently, the United States must evaluate the controlled technologies and processes very carefully to meet military system needs without limiting the ability to take advantage of the lower cost commercial technology being developed.

Many of the military and government hardening protection technologies appropriate for the natural environments must be considered for commercial applications. Commercial and military systems must survive in many of the same natural environments, and many times the military depends on commercial systems (e.g., space communications). Therefore, these dual-use technologies should be shared, where practical, to enhance the survivability and reduce the costs of military and commercial systems.


Identifying the critical vulnerability and survivability technologies is the result of an orderly process (see the "Technical Report," IDA Document D-1521) that relates specific space system characteristics, missions, and capabilities to the known threat environments, damage mechanisms, and protecting designs and technologies.

Technologies that are militarily unique relate to the hostile man-made space environment, which includes nuclear radiation, electromagnetic susceptibility, EMP, high-power RF, microwave effects, laser effects, space debris, signature and signature control, and space object identification. Some of these survivability technologies are common to both military and commercial space systems.

Two identified military critical technologies that *must be protected* are filters that limit high power RF energy while passing the wavelengths of the sensor signal and processes and algorithms that identify foreign spacecraft by using their signatures.

L. QUALIFICATION AND TESTING

Space qualification and testing is the bridge between designing and manufacturing a system to meet a specific mission profile and the verification and assurance before launch that the system will function properly. Qualification and testing technologies include advanced measuremetrology techniques, ment or environmental facilities and test simulation, system design response and environmental prediction models, data collection and analysis systems, and test engineering tools and practices.

The United States leads in sophisticated space qualification and testing capabilities, but not in cost-effective, automated testing and launch processing, which the French currently are using with the Ariane V.

The basis of a space system test program is the natural and induced environment to which the system will be subjected during manufacturing, assembly, shipping, pre-launch, launch, ascent, and on-orbit operation. Test levels are based on worst case predicted levels with minimum stress levels adequate to detect and screen infant mortality failures. Hardware testing is conducted throughout the entire manufacturing process starting with the raw materials and piece parts through the total system level. A typical DoD satellite system may require 1 to 2 years of system level testing.

The natural space environment includes system exposure to vacuums, magnetic fields, trapped radiation, solar particles, cosmic rays, atomic oxygen, upper atmospheric drag, micrometeoroids, thermal radiation, and zero gravity. Induced space system environments include effects caused by ground processing, transportation, handling, storage, launch injection, debris, and weapons system radiation.

Space system test programs, regardless of the customer (military, National Aeronautics and Space Administration (NASA), or commercial), are designed to ensure

low-risk, high reliability end items. Low-quantity production rates and unique designs minimize opportunities to take advantage of volume production and test practices. Technology development that facilitates the reliable testing of systems, reduces system life cycle costs, and expedites the turn-around time and delivery schedules of space systems will provide a competitive advantage in what is clearly a growing and global market.

The increasing complexity of microelectronics devices and the trend toward smaller, more complex satellites presents technology challenges in the test area related to time, cost, test capacity/capability, and metrology. Needed improvements include more effective means of measuring, controlling, and verifying manufacturing operations; improved nondestructive test methods and sensor techniques; sophisticated, high-quality software engineering tools; and the development of new or improved metrology and dosimetry capabilities.

Application of photonics and fiber optics is rapidly increasing, and this raises numerous reliability and radiation hardness issues related to testing and space application. Realistically and/or cost effectively testing under on-orbit environmental conditions and system applications is difficult or impossible with large space structures. This reality is forcing increased use and reliance on dynamic modeling and prediction techniques. Finally, test engineering and application of design and test philosophies targeted at automated test and checkout, built-in test (BIT), and increased application of knowledge-based, expert systems for data acquisition and analysis will be key in achieving cost objectives while maintaining or improving reliability.

Except for the military weapons threat, technologies related to space qualification and testing will have dual-use application for most space systems. As indicated earlier, the entire space community is driven by economic factors to build more reliable systems in less time and at reduced costs. Development and application of critical qualification and testing technologies will play a major role in accomplishing DoD, NASA, and commercial program cost, performance, and schedule objectives.

A related problem is that methodologies must be developed to produce ai.1 identify parts and materials in large quantities, with assured high reliability. The current specification system does not allow quality criteria to be used; therefore, parts and materials that meet existing specification requirements may not have the required reliability for space missions. The current practice for space equipment is to identify and control the

II-20

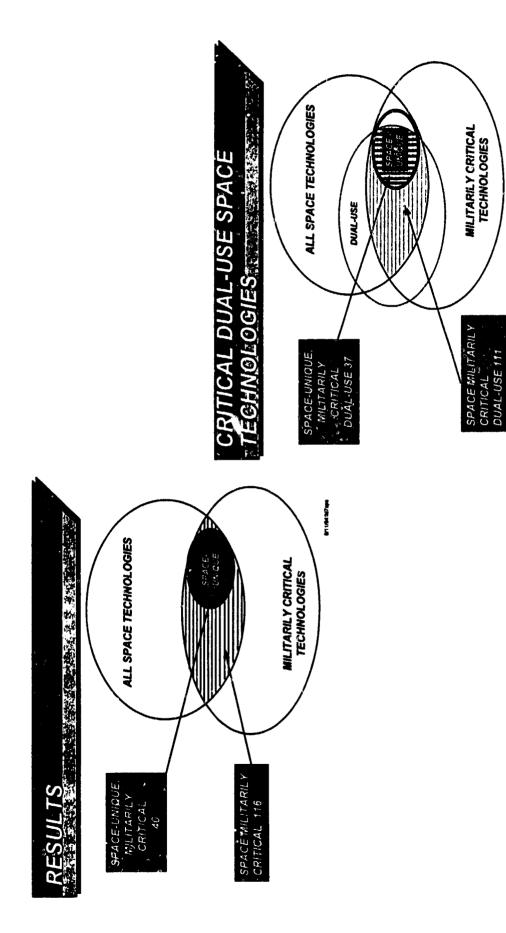
parts and materials at least to the manufacturing lot numbers. If assured-reliability parts and materials were developed and made available as standard items, considerable inprocess space vehicle testing costs could be eliminated without reducing mission success probability.

0

III. TECHNOLOGY SUMMARIES

1 1

> recommended changes in export controls, and potential for CRDAs and International MOUs along with a series of comparative The following section contains graphical presentations of the space-critical technologies with detailed physical parameters, tables. The purpose of these tables is to give the reader an appreciation of the status of the identified space-critical technologies.


A. TECHNOLOGY MATRIX SUMMARY

In this section, Table III-1 summarizes the number of space technologies recommended for decontrol, control, or liberalization.

Submuca		See.				ł		Toric:	$\left[\right]$	\$ 5			Quilit
	Totals	<u>sii</u>	Leunch Vehicles	Stro	And India	Eļ¥	rice form		Anto		Optics	i pie	
Mittantly Space Critical Space Critical Unique	116 40	a +		×8.4	2 9	12 7	~0		+-	• •	N-	• N	~~~
Cuel-Une -Space-Critical -Space-Critical Unique	111 37	. .	53	× ×	88	12 7	~0	5 B	*-	*0	- C	9 N	~~
Export Control Spars - Chical Spars - Chical - Decontrolled - Addud - Addud - Addud	5 6 9 5	000	000 (-6- (N-0 (000	NQ 0	640		040	000	0-0	~00
- Added	<u>4</u> 6 -		000						000	0-0	0-0	0-0	-00
Needing Investment	8	3	2	S	•	7	٥	6	0	-	٢	0	2
Proposed -CRDA -MOU	88	40	2 -	3	4 69	r- ¢9	0 1	69 KG		0-		60	N0

Table III-1. SSTWG Critical Space Technology Summary

Ш-1

. . .

0

III-2

SHITM MUTUR

RESULTS OF STUDY Results of Study VOR TO STUDY Electronic OVRCULED Electronic	CON	COMN NTRO	IENI LCI	DED EX IANGE	PORT	
ADDEED ADDEED ADDEED		RE	SULTS C	IF STUDY		•
DECONTROLLED ADDED ADDED ADDED	RIOR TO STU				Ring Lasers	
ZZ BERARZED 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					Hber Optic Gyros	
ZZ ADDED ADDED					Accelerometers Adaptive Antennom	
ADDED ADDED	-1			. 27	Integrated Phased Ar	rav Antennas
ADDE D ADDE D ADDE D ADDE D				CONTROLLEU	Multi-Beam Antennas	
ADDED 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Antenna Side Lobe C	ontrol Reflectors
ADDED					Antenna Side Lobe C	ontrol Phased Arrays
ADDED			M		Space-Solid State Am	plifiers
ADDED CONTRACTOR					High-Data Rate Sprec	ad Spectrum Receivers
ADDED				19	Rad Hard Archival Do	ata Storage Systems
ADDE DO CONTRACTOR				BERALIZED	Pad Hard Electronics/	computers
ADDE D.					Kad Hard Nonvolatie	: Memory
ADDE D.		7			kad Hara Packaging	
ADDED 3	·×				Rad Hard Optical-Do	main Data Processing
ADDE D					Kaa Hara Upto-elect	ronic Integrated Circuits
ADDED	NOT				Hectric Propulsion Sys	iems
	CONTROLLED			A OMEN'	Reusable LO2/LH2 Upt	per Stages
				AUUCO	Reusable LO ₂ /LH ₂ Boc	oster
	1 			1	Reusable LO ₂ /RP-1 Bo	boster
					Expendable Hybrids	
					Thermal Vacuum Simu	Jation
					"Smart" Materials with	n Memory
\					Algorithms to Model C	Control Structure Interactions
			`		Algorithms for Probab	oilistic Structural Analysis & Desi
	Damage - Tolerant Organi	ic Composite Prim	arv Structures		Mission Expert System	S
	Radiation-Resistant Insul	ators			Standard Interfaces &	k Interconnections

III-3

B. MILITARILY CRITICAL SPACE TECHNOLOGIES

In this section, Tables III-2 through III-13 provide detailed information regarding all 116 militarily critical space technologies, including their critical physical parameters. The charts also indicate dual-use applicability and export control recommendations and suggest international partners for cooperative research.

III-4

	ILE MINIMIN ANTICON OPACE LECTRICIONES				space systems witegrauon	rauon	
		Space-	E E	Export	Proposed	Proposed	ReD Funding
Technology	Military Parameters	(V or N)	(V or N)	(Y or N)	(V or N)	(Y or N)	NDQ1
Spece Debris Cataloguing	Detect a 1-cm object at an altitude of 540 nm	٨	۲	z	۲	Russia, France, Japan, UK, China	Q
Payload Integration	See Table III-3						
Mission Operations							
Standardžzation of Ground Control	Standard graphical user interfaces for all common operations < 1 hr retraining	~	>	Z	>	Franca, Rusaia, Japan	
Satellite Autonomy	Unattended operations for 30 days	>	>	z	>	France, Russia, Japan	
On-Board Data Processing	100:1 reduction in data stream	z	~	z	>	France, Russia, Japan	
Expert Systems	> Class 2 anomalies	z	>	zĝ	7	France, Russia, Japan	
Standerd							
interfaces and interconnections (Mechanical and Electrical)	3 standards or less	z	>	zĝ	≻	Russia, France, China	
Buser	3 standards or less	z	7	Z	7	Russia, France	-
Interfaces for Buses	Standard interface modular box with common connectors	z	٢	z	۲	Russia, France	-
High-Fidelity, Zero-Gravity Simulation	6 degrees of freedom < 0.1 percent simulation error for > 30 sec	7	۲	z	٨	z	-
Large Chamber Size	>6m×4m×20m						

Table II-2. Militarily Critical Space Technologies: Space Systems Integration

1

(D) Dropped from control

I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding

Ш-5

Technology	Military Parameters	Space- Unique (Y or N)	Duat- Use Y or N	Export Control (Y or N)	Proposed CRDAs (Y or N)	Proposed Intri MOUs (Y or N)	R&D Funding (I, W/O, or AD:3")
Launch Operations Automated Launch Processing: Model-based expert system for reactive control, fauit datection, and processing	Launch-on-need within < 30 days	*	*	Z	ŕ	٨	-
Aerothermodynamics Boundary Layer Transition Air Breathing Proputsion Design	Prediction model of Mach, altitude and thrust for > Mach 8	*	Z	٢	*	Z	-
Computational Fluid Dynamics (CFD) Software Development	50 percent reduction software personnel 1750 Mil_STD processor compatible	۲	٨	Z	z	z	DOV
Propulsion-see Launch section in Propulsion Table	Propulsion Table						
Structures ese Structures section in Structures Table	in Structures Table						

Table III-3. Militarliy Critical Space Technologies: Launch Vehicles

 I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding (D) Dropped from control

III-6

Table III-4. Militarily Critical Space Technologies: Structures

0

9

		Space-		Export	Proposed	Proposed	R&D Funding
Technology	Military Parameters	N N N	N S S	No No No	N N N		
Long-term, Zero-g Cryogenic Storage and Acquisition Systems	High durability to meet criteria for 100 flights before major overhaul	٢	۲	≻€	>	Russia	-
Space Environmental-Resistant Coatings	Reais*-nce to degradation by atomic oxyge: UV, and cosmic radiation for 30 years space station lifetime; Operate > 7 yrs (see specific data in Vulnerability table)	7	٨	≻€	>	Russia	-
Multi-Use Panels for Satellites	Weight reduction of > 30 percent over equivalent metallic systems	7	>	z	z	z	_
A-Li Materiala	Machinability/weldability w/15 per- cant higher specific strength over Al 2219	z	>	≻€	z	z	-
Advanced C-C Composites	Lightweight panels, smooth surfaces, and nonintrusive, reusable fasteners	z	7	≻€	7	z	-
Titanium Matrix Composite Meterials, Organic Composites	Retained strength at 1500 °F continuous operating temperature	z	۲	≻€	z	z	_
Ceramic Matrix Composite Maturiale	Retained strength at 2300 °F continuous operating temperature	z	۲	≻€	z	z	-
High-Temperature Organic Composities	800 °F sustained operating temperature	z	٢	≻€	۲	z	_
Room-Temperature Curing Organic Composites	Curing at 100 °F with specific strength of autoclaved G-Ep/G-Pi	z	٢	≻ €	z	z	-
"Smart' Matarials With Memory	Ability to change shape within 10 ms	z	٢	z (g)	z	z	-
Adaptive Control Systems for Precision Lightweight and Flexible Structures	Distributed control systems: fuzzy logic self-organized controllers	z	7	Z	Z	Russia	-
Neer Net-Shape Forming of Metallic Structures	Significant reduction in current aero- space manufacturing with up to 50 percent less scrap	z	۲	≻ ()	٢	Germany	-
Damage-Tolerant Organic Composite Primary Structures	Noncatastrophic failure after impacts-no major delaminations	z	٢	× (N)	٢	Z	-
(D) Drapped from control(N) Needs to be added to controls		rate Fundin critical thre	g; W/O = V shold thus	Mithout Furz freeing up	<u>ڈیج</u> : ADO = A technologies b	 I = Inadequate Funding; W/O = Without Funding; ADO = Adequate Funding (+) Increased critical threshold thus freeing up technologies beion: this parameter 	ter

П-Л

Table III-4. Militarily Critical Space Technologies: Structures (Continued)

		Space-	Duat	Export	Proposed	Proposed	R&D Funding
Technology	Military Parameters	Crique (X or N)	S S S S S S S	Control (Y or N)	CRDAs Y or N	Inti MOUs (Y or N)	(I. W/O, or ADQ*)
Complex Geometry Organic Composites	33 percent weight reduction over equivalent metallic structures with less complex manufacturing processes	z	>	≻€	>	Russia	
Agorithms to Model Control- Structure Interactions for Flexible Structures	Complex vibrational models: nonlinear dynamics models	z	>	zê	z	Russia	-
Agonithms for Probabilistic Structural Analysia and Design	Reliability prediction and control to reduce weight and cost	z	>	zô	z	7.	-
Launch Structures Thermal Protection System (TPS) Carbon-Carbon (C-C)	Oxidation-resistant > 100 flights < 1.6 Ib/ft ² 3000 °F max. continuous operating temp.	z	>	≻€	>	Germany, France	-
Reusable, Cryogenic Main Propellant Tank and Composite Feed Lines	High durability to meet criteria for 100 flights before major overhaul	>	~	≻€	≻	z	
TPS Radiant Shield	Oxidation-resistant >100 flights < 1 lb/ft ² , 350–1000 °C	z	>	≻€	~	Russia	
TPS Refractory Blanks	Oxidation-resistant >100 fights < 1 lb/n ² , < 600 °C	z	>	: >	>	>	
High-Temperature Seels	High durability to meet criteria for 100 flights before major overhaul 3000 °F continuous operating temp.	z	~	>	>	Russia	_
Lightweight Metalfic Structure	15 percent < weight of Al 2219 with similar properties with 100 percent strength and stiffness of Al 2219	z	>	>	>	Russia	•
Titanium Metal Matrix Composite Structures	Strength and stiffness retained at 1500 °F.	z	>	z	z	z	_
Ceramic Matrix Composite	Strength and stiffness retained at 2400 °F	z	7	z	Z	z	_
Room-Temperature Curing Organic Composites	Curing < 100 °F with specific strength of autoclaved Gr-Ep/Gr-Pi	z	>	z	z	z	-
(D) Dropped from control	peberi - i -	late Fundin	N-0/M :E	fithout Func	ing; ADQ = Ád	I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding	
(N) Needs to be added to controls		critical thre	shold thus	freeing up	lechnologies b	(+) Increased critical threshold thus freeing up technologies below this parameter	ter

8-Ш

clein. å Withartiv Critical Grace Taylor Table NLS.

Ű

	inter in a minimum driver abare languages:	- anado			ropulsion		
		Space-	Det .	Export	Proposed	Proposed	R&D Funding
Technology	Miktary Parameters	N N N	N or N	とと	N S S S S S S S S S S S S S S S S S S S		
Electic Propulaion Systems	Low power 1.5 to 10 kWe High power > 10 kWe	>	>	zê	z	Italy, Russia, Germany	-
Liquid Rocket Propulsion Systems	l(t) > 1.1 MN F(vac) > 220 kN	z	۲	≻€	z	Russia	-
Cryogenic Propellant Storage and Rehigeration	Loss rats < 30 percent/yr Temperature < 100 K	z	٢	>	z	z	-
High-Preseure Turbopumpe	Exit pressure > 17.5 MPa	z	۲	7	z	z	-
High-Pressure Thrust Chambers	P(c) > 10.6 MPa	N	٢	۲	Z	z	
Micro-Orifice Injectors for Small Engines	Orifice < 0.30 mm F(vac) < 18 kN	z	۲	۲	z	Z	
One-Place C-C Thrust Chambers	Density > 1.4 gm/cc Tensile strength > 28.4 MPa	z	۲	۲	z	France	
Pulsed Liquid Rocket Engines	F/W > 100:1 Response Time < 0.030 sec	z	۲	7	z	z	
Solid Rocket Propulation Systems	l(t) > 1.1 MN F(vac) > 220 kN [sp (vac)] > 2.4 kN/kg Stage mass fraction > 88 percent Prop solids loading > 86 percent	z	٢	>	Z	z	
Propellant Bonding Systems	Bond strength > Propellant strength	N	٢	٢	N	Gernany	_
Composite Motor Cases	Diameter > 0.61 m PV/W > 2.54 E+6 cm	z	٢	۲	Z	z	-
Thrust Vector Control Systems	Total angular velocity > ± 5 degrees Angular velocity > 20 deg/sec Angular accel. > 40 deg/sec ²	z	٢	٨	Z	z	5
Nozzles	Thrust > 45 kN Max. erosion rate < 0.075 km/sec	Z	٢	٢	N	France	ł
High-Energy Propellant Ingredients	l[sp(vac)] > 2.4 kNAg	z	٢	۲	Z	z	_
Hybrid Rocket Propulsion Systems	{recal} > 1.1 MN F(vac) > 220 kN	z	٢	۲	٢	Japan	J
(D) Dropped from control	peberi = 1 -	uate Fundin	g: W/O = V	Athout Func	áng; ADQ = A	I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding	

6-Ш

(+) Increased critical threshold thus freeing up technologies below this parameter

(N) Needs to be added to controls

Table III-5. Militarily Critical Space Technologies: Propulsion (Continued)

				-	,	•	
		Space-	Dual	Export	Proposed	Proposed	R&D Funding
Technology	Military Parameters	nuon S or S	ر م کا ک	Control 2 or N	CRDAs (X or N)	Nut MOUs X or N	(I, W/O, or ADC*)
Nuclear Propulsion Systems	F/W >20:1 Mean cutlet temp. > 2800 K Start-up time to 1800 K < 60 sec	z	7	>	z	Z	O/M
Launch Vehicle Propulsion							
Reusable LO ₂ /LH ₂ Propulsion	50 reuses without refurbishment 0.9995 reliability ((sp) > 450 250 ktb thrust	>	>	zQ	>	Russia	-
Tripropellante	50 reuses without refurbishment 0.9995 reliability ((sp) > 450 250 ktb thrust	>	>	zĝ	z	Russia	
Expendable - LO2/LH2 Upper Stages	< 2 times current system cost 550 ± klb s.l. thrust 450 sec f[sp(vac)]	>	>	zô	~	Russia	-
- LO ₂ /LH ₂ Booster	< 2 times current system cost 550 kib s.l. thrust 380 sec i[sp(vac)]	>	~	zô	~	Russia	-
- LO ₂ /RP-1 Booster	< 2 times current system cost 300 klb a.l. thrust 275 sec [[sp(vac)]]	~	<u>≻</u>	zĝ	>	Russia, China	
- Hybrids	Price equal to monolithic solids > 400 kto thrust 275 sec [[sp(vac)]	Z	>	zĝ	>	Z	_
(D) Dropped from control	* = *	ate Funding	N = 0/M :E	fithout Func	ling; ADQ = Ad	I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding	

(N) Needs to be added to controls

(+) Increased critical threshold thus freeing up technologies below this parameter

III-10

Technology	Military Parameters	Space Unique Y or N)	Cuat Use X or N	Control Control Y or N	Froposed CRDAs (Y or N)	Proposed Intl MOUs X or N	R&D Funding (I, W/O, or ADO')
Solar-Photovoltair:	Production technology: Specific power > 300 W/m ² Beginning of life (BOL) at 28 °C at cell level	>	٠.٨	<u>≻</u> £		Z	-
Solar—Dynamic	Production technology: System-specific power > 25 W/kg	>	•••	>	>	Russia	
Materials	All refractory heat engine components at temperatures > 1250 K	>	۰۰۸	>	>	Russia	-
Software	All analysis of all transient heat engine cycle performance	>	•••	>	*	Russia	_
Nuclear Radioisotope							
	Plutonium 238 > 1 gram Neptunium 237 > 1 gram	Z	٠.,	>	Z	Russia	-
Nucieer Fission							
Materials	High-purity refractory metals at > 1250 K	z	7	≻3	z	Russia	_
	High-terrp. thermoelectric materials > 1000 K Highly erriched uranium > 20 percent U-235						
Components	Radiation-resistant slectrical insulators > 1.0 E+18 mut	Z	>	Ê	z	z	
(D) Dropped from control		(+) Incre	ased critic	# threshold	thus freeing u	Ip technologies be	(+) Increased critical threshold thus freeing up technologies below this parameter

Table III-6. Militarily Critical Space Technologies: Power and Thermal Management

·

(N) Needs to be added to controls

·· With relaxed specifications

* ! = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding 1 m/1 = neutron velocity time

Ш-11

Table III-6. Milit	Militarily Critical Space Technologies:		wer and	Power and Thermal	Managem	Management (Continued)	6
		Space- Unique	Pra Pra Pra Pra Pra Pra Pra Pra Pra Pra	Export	Proposed CRDAs	Proposed Int'l MOU le	R&D Funding
Technology	Military Parameters	(V or N)	(X or N)	Sar	So N		
Long-life Crycgenic Cociers	Terro: Efficiency (NV/M) [†]	λ	·.	>	>	ž	-
	(1) 120-180 K < 10 (2) 60-80 K < 75 (3) 30-40 K < 200			£			
	Unattended life: 7 years						
	Cooling loads: (1) 120-180 K - 1n W						
							A
Spacecraft Thermal Control							
Liquid Matal Hast-Pipes	> 600 K	z	•••	z	z	Russia	
Advanced Radiators (Composite) < 30 kg/kW	< 30 kg/kW	>	۲	z	7	France	· _
High-Power Density Electronics Cooling	> 1000 W/cm ²	z	ž	z	~	Z	_
Energy Storage-Batteries	Components with an energy density	>	>	z	>	Canada	-
	 100 W-hr/kg > 1000 cycles 75 W-hr/kg > 25,000 cycles > 250 W-hr/kg (primary battery)				<u></u>		
(D) Dropped from control	upebeni = 1 ·	ate Funding	; W/O = W	fthout Fund	ing; ADQ = Ac	I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding	
(N) Needs to be added to controls		critical three	shold thus (freeing up t	echnologies b	(+) Increased critical threshold thus freeing up technologies below this parameter	er
* Watts input power per Watt of cooling		od specifica	tions	•	ı		

Ż ė Militariy Critical Table II-6.

Ш-12

Table III-7. Lilitarily Critical Space Technologies: Communications

		Space	Dal	Export	Proposed	Proposed	R&D Funding	
Technology	Military Parameters		So N So N	Control	CRDAs ≥ NS	Inti MOUs 2 22 N	(I. W/O, or ADO!	
Artennas		Ì					1 2000	
Adaptive	Null depth > 25 db, adeptation time < 10 maec	z	7	zĝ	z	۰.۲	ADQ	
-Integrated Phased Array	Number of radiating elements > 1000	z	~) z ĝ	z	•••	ADQ	
	Spetial resolution single beam < 0.5 degrees	z	7) z (z	۰.۲	ADQ	
Side Labe Contral				5			-	
- Reflectors	Side lobe > 35 db at aspact angles > 5 degrees	Z	~	zĝ	z	•••	ADQ	
- Phased Arreys	Side tobe > 50 db below the mean peak	2	~) z ĝ	2	•••	ADQ	
Spece Solid-State Anplifiers	250 MHz > 25 W 8 GHz > 2 W 20 GHz > 3 W 60 GHz > 1/4 W 10 yr, 30-percent efficiency	z	>	zô	z		ADO	
Receiver High Dete Rate Spreed Spectrum	>1 Gb per second	z	>	zĝ	z	•••	ADO	
(D) Dropped from export control	•	iate Fundin	N=0/N :8	finout Func	ing; ADQ = Ad	I = Inadequate Funding; W/O = Mithout Funding; ADQ = Adequate Funding		

.. MILSATCOM program currently has international study looking at joint development of MOUs for communications satellities with Canada, UK, and France. þ -6

III-13

Table II-8. Militarily Critical Space Technologies: Electronics and Computers

. .

		Space- Unique		Control	Proposed CRDAs	Proposed Int! MOUs	H&U FUNDING (I, W/O, or
Technology	Mikitary Parameters	(Y or N)	(X or IV)	ζ or N	Σ δ Σ	(X or N)	ADQ')
Architecture							,
Digital Signal Processors	Rad hard > 1 Mrad Throughput > 1 MOPs Reprogrammable	>	;	≻€	z	Z	
	Rad hard > 1 Mrad and Throughput > 1 MOPs	*	*	z	z	Z	-
Rad Hard Electronics Technology							
-Archival Data Storage Systems	Rad hard > 1 Mrad Capacity > 10 GB Continuous operation > 10 years	>	*	zê	>	France, Japan	
Electronica/Computera	Red hard > 1 Mrad Low-cost product line	≻	>	zê	>	France	
Cryogenic Electronics	Rad hard > 500 krad	>	z	≻£	7	Z	
Field Programmable Devices	Red hard > 500 kred Density > 5 k gates	>	···	≻£	*	France, Japan	O/M
Norwolatije Mentary	Red hard > 1 Mred Retention > 10 years Endurance > 1.0 E+12 cycles	≻	>-	zQ	~	France	-
Packaging	Rad hard > 10 Mrad Hermetic seal Density Improvement > 10 X	z	\$	zĝ	≻	France, Japan, Germany, Ukraine	
Neural Networks	Rad hard > 1 Mrad 2-3000 connections	z	>	>	>	Finland	
-Dielectrically laciated Materials (SCI)	Film thickness < 0.3 µm Uniformity > 95 percent Cost < \$20/wafer Defects < 10/cm ²	z	*	Z	>	France	-
(D) Dropped from export control	•	kuate Fund	ing; W/O =	Without Fu	inding; ADQ = .	i = inadequate Funding; W/O = Without Funding; ADO = Adequate Funding	

Ł

(+) Increased critical threshold thus freeing up technologies below this parameter for export
 The dual-use requirements are less than the military requirements.

°.,

III-14

	HALLERY CONCERTS PARCE LECTIONOGIES: EXECUTINES AND COMPUTERS (CONTINUED)				computers	(continued)	
Technology	Military Parameters	Space- Unique (Y or N)	Yor N	Export Control (Y or N)	Proposed CRDAs (Y or N)	Proposed Int'l MOUs (Y or N)	R&D Funding (1, W/O, ar ADCr)
Computer Technology							
Software	Fault-toierar/ On-orbit reprogrammability	z	÷	z	۶	Z	_
Optical Domain Data Processing	Red hard > 500 krad	>	;	zô	~	Z	-
Opto-Electronic Integrated Circuits	Red hard > 500 krad	۲	۲	zô	z	France	1
	· · · · · · · · · · · · · · · · · · ·		N (11)	Charle Fire	- VUV	an the Forder	

Continued Takin M.A.

¢

(D) Dropped from export control • 1=

I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding

(+) Increased critical threshold thus freeing up technologies below this parameter for export

•• The dual-use requirements are less than the military requirements.

ð

		Space-	-Jang-	Export	Proposed	Proposed	R&D Funding
Technology	Military Parameters	え	S S S S S S S S S S S S S S S S S S S	Nor Nor Nor Nor Nor Nor Nor Nor Nor Nor	S S S S S S S S S S S S S S S S S S S		
Ring Lasar	Bias < 0.003 degree drift rate/hr Random waik 0.0015 degree/hr Scale factor < 5 ppm Colored noise < 0.003 degree/hr Misalignment 1.5 arc sec	z	≻	zĝ	z	z	QV
Fiber Cptic Gyro	Riss < 0.1 degree chift rate/hr Plandom walk 0.08 degree/\hr Scale factor < 100 ppm Colored noise < 0.035 degree/hr Miseligr:ment 20 arc sec	z	۶	zô	z	z	QY
Accelerometers	Biass < 25 µg White noise < 10 µg/\hz Scale factor < 120 ppm Cotored noise < 15 µg Misalignment 0.2 arc sec	2	۲	zÔ	Z	z	Q
GPS-Aided Navigation	Subsystem Rel > 0.9999 YB > 50 gs SEU Resilient Latch-up free Position error: X = 0.3, Y = 0.3, Z = 0.3 m at 3 gs for 3 axis	>	*	>	>	¥	Øq₹
(D) Dronoed from export control	-	late Fundin	a: W/O = V	fithout Fear	ána: ADO – Ac	I = Inadecuate Funding: W/O = Without Funding: ADO = Adecuate Funding	

?

Table III-9. Militarliy Critical Space Technologies: Astronautics

(D) Dropped from export control

I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding

Ш-16

	a se minure autom abave reactionates.						
Technolugy	Mätary Parametors	Spect- Unique (Y or N)	Y or N	Control Control Control	Proposed CRDAs X or N	Proposed Infl MOUs (Y or N)	R&D Funding (I, W/O, or ADO?)
Diode Laser Beacons	> 10 W	۲	z	≻€	z	France	-
Diode Laser Optical Communications	Deta rate > î Göreec	z	Y	≻€	z	France	
High-Resolution Charged Coupled Arrays	Spetial resolution: Pitch of < 25 μm, > 1.0 E+3 pixel elements	z	٢	≻ €	z	France	QQ
IR Detector Array Swaor	1 or more space-qualified elements	z	۲	≻ €	z	France	l (for far IA)
SAR Space-Based	< 3 m resolution at > 200 km	z	٢	⊁€	z	Canada, France, Pusaia	9 .*
Pettern Recognition Rader Agorithms	All ultra wideband single expansion mode puise (SEMP) measurement algorithms	z	¥	۲	z	¥	u
	0						

Table II-10. Militarly Critical Space Technologies: Sensors and Surveiliance

10

ţ,

7

 I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding (D) Dropped from export control
 1 = Inadequate Funding; W/O = With(
 (+) Increased critical threshold thus freeing up technologies below this parameter for export

0

Table III-11. Militarliy Critical Space Technologies: Optics

					c prove		
		Space-	Dual-	Export	Proposed	Proposed	R&D Funding
Technology	Military Parameters	(V or N)	S or N	No No	(Y or N)		(1, W/C, or ADQ [*])
Directed Energy Optics	< 1.0 E-3 absorption > 1.0 E+4 W/cm ² incident radiation	z	z	≻€	z	۲	
Lightweight Space Quarified Optics	< 20 percent bulk weight 30 kg/m ² areal d-nsity Total weight > 10 kg > 1 m aperture	*	>	≻€	>	*	-
Passively and Actively Cooled Optics	> 1.0 E+4 W/cm ² Incident radiation for 30 sec	z	¥	≻€	>	۲	_
Adaptive Optics	> 10 cm acarture > 100 Hz bandwith < 1/2 Å flatness for > 100 Hz band- width À = 0.5 µm	z	۲	≻€	>	>	~
Silicon Optice	Single crystal substrate w/optical coating < 200 ppm absorption total (substrate and coating) > 25 cm aperture < 200 ppm optical scatter	Z	2	≻€	Z	z	
Optical Coatings	Scatter < 3.0 E-3 and absorption < 1.0 E-3 (for surface > 30-cm diameter)	z	۲	≻€	7	>	
Segmented Optics	>1 m aperture equivalent	z	٢	۲	۲	z	-
(D) Dropped from export control	•	late Fundin	g; W/O = V	fithout Fund	áng; ADQ = Ad	I = Inadequate Funcing; W/O = Without Funcing; ADQ = Adequate Funcing	

.

(+) Increased critical threshold thus freeing up technologies below this parameter for export

, *****

Ш-18

						A second A	
Technology	Miitary Parameters	Space- Unique (Y or N)		Control Control Control	Proposed CRUAs CRUAs CRUAs	Proposed inti MOUs (Y or N)	R&D Funding (I, W/O, or ADO7)
Nuclear/Natural Radiation Hardening	Total dose > 5.0 E+5 rada(S) Doee rate > 5.0 E+8 rads(S)/sec SEU < 1.0 E-7 encur/bit/day Newton fuence > 1.0 E+10 n/cm ²	z	>	>	z	z	V D
Electromegnetic Pulse	Field strength > 30 kV/m	z	۲	>	z	z	ğ
High-Power RF Filters for Seneor Optics	 > 40 db attenuation of RF energy and > 96 percent transmission of sensor frequency 	٨	>	≻€	z	z	QQV
Signature Identification for Space Objects	Codes and algorithms with range of frequency from vacuum UV (0.11 µ) through LWIR (25 µ)	7	7	>	z	z	VD0
Laser Effects	Energy density > 1.0 E-3 joule/cm ² with dwell times > 1 µsec	z	۲	>	z	z	Ş
C Proved from and house							

Table III-12. Militarily Critical Space Technologies: Vulnerability and Survivability

 I = Inadequate Funding; W/O = Without Funding; ADQ = Adequate Funding (U) Dropped from export control

(+) Increased critical threshold thus freeing up technologies below this parameter for export

61-Ш

R&D Funding (I. W/O, or ADO") . I = Inadequate Funding; W/O = Without Funding; ADO = Adequate Funding Proposed Intl MOUs (Y or N) Z z Proposed CRDAs X or N > > Control Control zÔ z S or N ≻ ≻ Space-Unique (X or N) > ≻ 100 nm to 400 nm (1 sun equivalent) Size 0.1 mm-1.0 mm Flux 1.0 E-2 to 1.0 E+21 hits/hr/m² Velocity ~ 10 km/sec Military Parameters • Energy 500 eV Flux 1.0 E+12/cm²/MeV Energy 1 MeV Flux 1.0 E+7/cm²/MeV Energy 5 eV Flux 1.0 E+14/cm² 1.0 E-8 Tor - 320 to + 250 °C -130 to 100 °C 1.0 E-5 Torr (D) Dropped from export control Space Environmental Simulator Thermal Vacuum Simulation Technology --Hypervelocity Debris --Atomic Oxygen -UV Redeton --Temperature --Electrons -- Protons

Table III-13. Militarily Critical Space Technologies: Qualification and Testing

III-20

Ø

C. TECHNOLOGY CAPABILITIES

Ô

¥.

In this section, Tables III-14 through III-23 provide a summary of the status of critical space technologies. Columns show the current capabilities of the technology when produced in the laboratory and when produced by industry-both for comnercial and military applications.

Ш-21

Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Launch Operations			
Automated Launch Processing: Model-based expert system	Launch-on-need within < 30 days	Launch-on-need 7 days (laboratory demo portions)	Launch-on-need 24-60 days
for reactive control, fault detection, and proceesing			
Aerothermodynamics	Prediction model cf Mach	Experimental nonvalidated CFD codes Nove Empirical data only	Norse-Empirical data only
-Boundary Layer Transition	Altitude and thrust for > Mach 8		
Air Breathing Propulsion Design			
Computational Fluid Dynamics (CFD)	50 percent reduction software	50 percent raduction software	Working toward 50 percent reduction
Software Development	personnel	personnel	software personnet
	1750 MIL-STD processor compatible	1750 MIL-STD processor compatible	1/50 MIL-SIU processor comparione
Propulsion-see Launch section in Propulsion table	opulsion table		
Structures - see Structures section in Structures table	Structures table		

Table III-14. Technology Capabilities: Launch Vehicles

. .

1

.

Ш-22

1

•

Q

Table III-15. Technology Capabilities: Structures

•

6

. i. i . i. i.

.

		received capacities: Structures	
Technology	Máiltary Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Long-term, Zero-g Cryogenic Storage and Acquisition Systems	High durability to meet criteria for 100 flights before major overhauf	Proof-of-concept test article built but never tested	None
Space: Environmental-Resistant Costings	Resistance to degradation by atomic oxygen, UV and cosmic radiation for 30 years space station lifetime; Cperate > 7 yrs (see specific data on Vutnerability table)	30-yr accelerated exposure to singular flux with no synergistic effects	Long-Duration Exposure Facility (LDEF) satellite with 5-yr 9-month lifetime
Multi-Use Panels for Satellites	Weight reduction of > 30 percent over equivalent metallic systems	Small parts built and tested	None
Ai-Li Materiats	Machinability/weldability w/15 percent higher specific strength over Al 2219	10 percent higher specific strength over AI 2219 with fatigue problems	None
Advanced C-C Composites	Lightweight panels, smooth surfaces and nonintrisive, reusable fasteners	Subscale panels built and testod	None
Titanium Mutrix Composite Materials, Organic Composites	Retained strength at 1500 °F continuous operating temperature	Retained strength at 1200 °F continuous operating temperature without oxidizing	Nona
Cerarric Matrix Composite Materials	Retained strength ±1 2300 °F continuous operating temperature	Retained strength at 2000–2300 °F continuous operating temperature	Retained strength at 2000 °F continuous operating temperature
High-Temperature Organic Composites	800 °F sustained operching temperature	700 °F sustained operating temperature	650 °F sustained operating temperature
Room-Temperature Curing Organic Composites	Curing at 100 °F with specific strength of autoclaved Gr-Ep/Gr-Pi	Curing at 100 °F with 10–20 percent less strength than that of autoclaved G4-Ep/G4-Pi	None
"Smart" Materials With Memory	Ability to change shape within 10 me	Release mechanisms tested in lab	None
Adartive Control Systems for Precision Lightweight and Flexible Structures	Distributed control systems: fuzzy logic self-organized controllers	Fuzzy controller on small beam	None
Near Net-Stape Forming of Metallic Structures	Significant reduction in current aero- space manufacturing with up to 50 percent less scrap	Order-of-magnitude reductions in NC-CAD/CAM pert layups	Reductions in scrap of up to 50 percent demonstrated for sheat metal parts
Lemage-Tolerart Organic Composite Primary Structures	Noncatastrophic failure after impacts No major delaminations	Damage-tolerant woven composite under development, only small test coupons	None

à

III-23

Tank not flight tested. Shuttle orbiter Reduction of 15 percent weight with > 100 flights < 1 lb/lt², 350–1000°C Flown to 2300 °F max. temperature same complexity of manufacturing Strength and stiffness retained at Replacement/refurbishment after > 100 tights < 1 tb/t2, < 600 °C Limited applications in industry Limited applications in industry 100-flight reuse not tested; = 2.5 lb/ft² | Limited applications in inclustry Production Capabilities 2000 °F continuous operating has reusable, noncomposite Current Industry cryogenic feed lines each flight (Shuttle) Oxidation-resistant Oxidation-resistant temperature None **Por** 10 percent < weight of AI 2219 but with 100 percent strength and stiffness of Reduction of < 30 percent weight with same complexity of manufacturing fasteners; 3000 °F max. temperature Curing < 100 °F with 10 to 20 percent Tested to 3000 °F max. temperature > 100 flights < 1 lb/ft², 350–1000°C 15 percent < weight of AI 2219 with Strength and stiffness retained at Strength and stiffness retained at Same as militarily critical Available with some development areal density) with coatings and < 2300 °F, continuous operating Subscale, nonflight weight test articles built with limited tests $> 100 \text{ flights} < 1 \text{ lb/lt}^2$, < 600 °C Laboratory Cupabilities 1500 °F continuous operating temperature without oxidizing less specific strength than 100-flight reuse not tested Same as militarily critical autoclaved Gr-Ed/Gr-iPi Curent Demonstrated in lab Oxidation-resistant Oxidation-resistant fatigue problems accomplished temperature **Ai 2219** Curing < 100 °F with specific strength of autoclaved Gr-Ep/Gr-Pi 3000 °F continuous operating temp. > 100 flights < 1 lb/ft², 350-1000 °C 3000 °F max. continuous operating 15 percent < weight of AI 22/9 with similar properties with 100 percent equivalent metallic structures with Reliability prediction and control in Strength and stiffness retained at 1500 °F Strength and stiffness retained at 2400 °F High durability to meet criteria for 100 flights before major overhaut High durability to meet criteria for 100 flights before major overhoul. strength and stiffness of A 2219 33 percent weight reduction over order to reduce weight and cost > 100 flights < 1 lb/fr², < 600 °C</p> **Military Parameters** less complex manufacturing Complex vibrational models: nonlinear dynamics models > 100 flights < 1.6 lb/t² **Oxidation Resistant** Oxidation resistant Oxidation-resistant **DFOCesses** temp. Agarithms to Model Control-Structure Interactions for Flexible Structures Agorithms for Probabilistic Structural --Rcom-Temperature Curing Organic --Thermal Protection System (TPS) -- Titerixium Metal Matrix Composite Propetant Taxis and Composite --Lightweight friedallic Structure **Ausable, Cryogenic Mein** --Certainic Matrix Composite Complex Geometry Organic --Hgi-Temperature Seals -- TPS Refractory Blanks Technology Cerbon-Cerbon (C-C) -- TPS Radiant Shield Analysis and Design Leunch Structures Composites Feed Lines Structures Composites

Table III-15. Technology Capabilities: Structures (Continued)

111-24

	radie III-10. rechnology Capabilities:	Capabilities: Propulsion	
Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Electic Propulsion Systems	Low powar 1.5 to 10 kWe	Low power 1.5 to 10 kWe	Lott power 1.5 to 10 kWe
	High power > 10 kWe	High power > 10 kWe	High power > 10 kWe
Liquid Rocket Propulsion Systems	1(1) > 1.1 MN	l(t) > 3200 MRN	l(total) up to 3200 MN
	F(vac) > 220 kN	F(vac) up to 6.9 MN	F(vac) up to 6.9 MN
Cryogenic Propellant Storage and	Loss rate < 30 percent/yr	Less rate ⇒ 2-10 percent/yr	Loss rate = 2-10 percent/yr
Refrigeration	Temperature < 100 K	Temperature < 100 K	Temperature < 100 K
i High-Pressure Turbopumpe	Exit pressure > 17.5 MPa	Exit pressure up to 21.2 MPa	Exit pressure up to 21.2 MPa
High-Pressure Thrust Chambers	P(c) > 10.6 MPa	P(c) up to 2-20 MPa	P(c) up to 20.0 MPa
Micro-Orifice Injectors for Small	Orifice < 0.30 mm	Orifice sizes down to 0.15 mm	Orifice sizes down to 0.15 mm
Engines	F(vac) < 18 kN	F(vac) = 5 N to 18 kN	F(vac) = 5 N to 18 kN
One-Piece C-C Thrust Chambers	Density > 1.4 gm/cc	Density = 1.4-1.9 grucc	Density = 1.4–1.9 gm/cc
	Tensile strength > 28.4 MPa	Tensile Strength 50 MPa+	Tensile strength 50 MPa+
Putsed Liquid Rocket Engines	F/W > 100:1	F/W = 1000:1	F/W = 1000:1
	Response time < 0.030 sec	Response time = 0.005 sec	Response time = 0.005 sec
Solid Rocket Propulsion Systems	I(1) > 1.1 MN F(vac) > 220 kN I(sp (vac)] > 2.4 kN/kg Stage mass fraction > 88 percent Prop solids loading > 86 percent	l(total) = 2636 MN l[s(vac)] = 3.2 kN/ky F(vac) = 23 MN Mass fraction = 88–93 percent Solid loading = 86–92 percent	l(total) = 2636 MN [s(vac)] = 3.2 kNkg F(vac) = 23 MN Mass fraction = 88–93 percent Solid !oading = 86–92 percent
Propellant Bonding Systems	Bond strength > Propellant strength	Bond strength > Propellant strength	Bond strength > Propellant strength
Composite Motor Cases	Diameter > 0.61 m	Ciameter < 4 m	Diameter < 4 m
	PV/W > 2.54 E+6 cm	PV/W 5.0 E+6 cm	PV/N 4.0 E+6 cm
Thrust Vector Control Systems	Total angular velocity > ± 5 degrees	Total anguiar velocity = 2–15 degrees	Total angular velocity = 2–15 degrees
	Angular velocity > 20 deg/sec	Angular velocity = < 40 degreec	Angular velocity < 40 deg/sec
	Angular accel. > 40 deg/sec ²	Angular accel. = < 50 degreec ²	Angular accel. = 50 deg/sec ²
riozzies	Thrust > 45 kN	Thrust = up to 23 E.46 N	Thrust = up to 23 E+6 N
	Max. erosion rate < 0.075 km/sec	Erosion rates = 0.0 to 0.15 mm/sec	Erosion rates = 0.0 to 0.15 mm/sec
High-Energy Propellant ingredients	l[sp(vac)] > 2.4 kN/kg	[[sp(vac)] = 2.5-3.2 kN/kg	l[sp(vac)] = 2.5-3.2 kN/kg
Hybrid Rocket Propulsion Systems	1(totai) > 1.1 MN	Up to 18.4 MRV	Up to 18.4 MN
	F(vac) > 220 kN	Up to 1.1 MN	Up to 1.1 MN

Table III-16. Technology Capabilities: Propulsion

6

III-25

ц, с

	I GUIE IILIO. I ECINOIOGY CEPEDUILIES:	olines: Propulsion (Continued)	d)
Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Nuclear Propulation Systems	F/W >20:1 Mean cutlet temp. > 2800 K Start-up time to 1800 K < 60 sec	F/W goal of 40:1 Temp goal of 3000 K Time goal of 1-10 sec	F/W goal of 4.0:1* Temp goal of 2000 K* 5-10 minutes*
Launch Vehide Propulaion Reusable LO2/LH2 Propulaion	50 reuses without refurbishment 0.9935 reliability ((sp) > 450 250 kb thrust	RL10A-5, muttiple restart 16.5 kb thrust 360 sec I(sp) (s.l.) 445 sec [[sp(vac)]	((sp) > 470 vac, 4 reuse SSME w/refurbishment 375 klb thrust (s.l.); 470 klb thrust (s.l.); 455 klb thrust (vac)
Tripropellante	50 reuses without refurbishment 0.9995 reliability ((sp) > 450 250 ktb thrust	RD-701 (Russia) Capability 400 klb thrust (s.l.) 410 sec I(sp) (s.l.)	RD-701 (FSU) capability 400 klb thrust (S.I.) 410 sec I(sp) (s.I.)
Expendable - LO2/1H2 Upper Stages	< 2 times current system cost	Advanced Technology Low-Cost Engine	RL-10C P&W
÷	50 ± klb s.i. thrust I(ap) 450 (vac)	400 ktb thrust vac D57 (Russia) 90 ktb thrust 450 sac I [sp(Vac)]	35 ktb thrust 463 sec [[sp(vac)] D57 (Russia) 90 ktb thrust 450 sec[[sp(vac)]
	k(ap) 380 (vac)	410 sec [[sp(vac)] 0.307 sec [[sp(vac)] STE(NLS) 650 klb thrust 428.5 sec [[sp(vac)] STE 130 640 klb thrust 456 sec [[sp(vac)]	TRW Pinte Engine 733 kb thrust 393 sec I[sp(vac)]
- LO ₂ /LH ₂ Booster	< 2 times current system cost 550 kb s.l. thrust 380 sec [[sp(vac)]]	Approximately \$60 million 350 kib s.l. thrust 450 sec [[sp(vac)]	Approximately \$60 million 350 ktb s.l. thrust 450 sec [[sp(vac)]
- LO ₂ /RP-1 Booster	< 2 times current system cost 300 ktb s.l. thrust 275 sec [[sp(vac)]]	RD 170 (Russia) 1.8 Mlb thrust 337 sec [[sp(vac)]]	MA-5B 337 klb thrust 334 sec [[sp(vac)]
- Hybride	Price equal to monolithic solids > 400 ktb thrust 275 sec \${sp(vac)}	25-40 ktb thrust (s.l.) < 270 sec [[sp(vac)]	25-40 kib thrust (s.l.) < 270 sec [[sp(vac)]
Typical of nuclear engine for model	ucted vehicle smolication (NERVA) Technology	block	

· 10

Table III-16. Technology Capabilities: Propulsion (Continued)

Typical of nuclear angine for rocket vehicle application (NERVA) Technology

Ш-26

۲

Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production Canadrilities
Soler - Photovoltaic	Production technology: Specific power > 300 Wim ² BOL at 28 °C at cell level	Production technology: Specific power > 325 W/m ² BOL at 28 °C at cell level	Production tachnology: Specific power > 240 W/m² BOL at 28 °C at cell level
SolarDynamic	Production technology: System-specific power > 25 W/kg	Production technology: System-specific power @ 15 W/kg	Production technology: None
	All refractory heat engine components / all temperatures > 1250 K	Il refractory heat engine components at temperatures > 1250 K	All rafractory heat engine components at temperatures > 1250 K
-Sokaare	Cepeble of analysis of all transient heat engine cycle performance	Capable of analysis of all transient heat engine cycle performance	Capable of analysis of all transient heat encine cycle performance
Nuclear Radioisotope Materiate	Plutonium 236 > 1 gram Nachrium 237 > 1 gram	Putonium 238 > 1 gram Nachinium 237 - 1 crem	Plutonium 238 > 1 gram
Nuclear Flasion			Line of 1 < / C7 minimized
-Meteriete	High-purity refractory metals at > 1250 K	High-purity refractory metals at 2,250 K	High-purity refractory metals at
	High-temp thermoelectric materials	High-temp thermoelectric materials	High-temp thermoelectric materials
	Highly arriched uranium > 20 percent U-235	Highly enriched uranium > 20 percent U-235	Highly enriched uranium > 20 percent U-235
Components	Radiation-resistant electrical insulations > 1.0 E+18 m/*	Radiation-resistant electrical insulators > 1.0 E+18 m/	Radiation-resistant electrical insulators > 1.0 E+18 m/

Table III-17. Technology Capabilities: Power and Thermal Management

mil = neutron velocity time

III-27

	1	Capabilities: P(recrinology Capabilities: Power and Thermal Management (Continued)	(Continued)
Technology	Military	Military Parameters	Current Leboratory Capabilities	Current Industry Production Capabilities
Long-fite Cryogenic Coolers	Temp:	Efficiency (W/M)*		
	(1) 120–180 K	< 10	(1) 1W @ 150 K 12 W/W, <1 N rms life TBD	(1) None
	(2) 60- 8 0 K	< 75	(2) 2W @ 60 K 50 W/W. <1 N mms file TBD	(2) 800 mW @ 90 K 75 W/W, > 1 14 mms
	(3) 30-40 K	< 200	(3) 1 W @ 35 K 200 W/W, < 1 N mms	(3) None
	(4) 9-11 K	< 750	(4) No lab results	(4) None
	Vibratiun: < 0.02 N rms	N rms		
	Unattended life: 7 years	7 years		
	Cooling loads:			
	(1) 120-180 K	< 10W		
	(3) 30-40 K (4) 9-11 K	<1 W < 0.5 W		
Spececraft Thermal Control				
Liquid Metal Heat-Pipes	> 600 K		> 600 K	> 600 K
Advanced Radiators (Composite)	< 30 kg/kW < 7 m²/kW		< 30 kg/W < 7 m²/kW	< 30 kg/kW < 7 m ² /kW
High-Power Density Electronics Cooling	> 1000 W/cm ²		< 500 W/cm ²	< 100 W/cm ²
Energy Storage-Batteries	Components with	an energy density	Components with an energy density	Components with an energy density
	01. 100 W-hr/kg > 1000 cycles 75 W-hr/kg > 25,000 cycles > 250 W-hr/kg (orimary battery)	0 100 W-hr/hg > 1000 cycles 75 W-hr/hg > 25,000 cycles > 250 W-hr/hg (orimary battery)	01. 60 W-hr/kg > 1000 cycles 40 W-hr/kg > 25,000 cycles > 200 W-hr/kg (orimary batterv)	or: 60 W-hr/kg > 1000 cycles 40 W-hr/kg > 25,000 cycles > 150 W-hr/kg (nrimery battery)

(hennike Ś 2 e Te 7 Ê Table M-17. Technology Capabilities: Power

Watts input power per watt of cooling

Ш-28

۲

Table II-18. Technology Capabilities: Communications

	I BDHE III-18. I ECHNOLOGY C	Lable III-18. Technology Capabilities: Communications	
Technology	Military Parameters	Current Labo: atory Capabilitics	Current Industry Production Cenabilities
Arternas			
Adaptive	Null depth > 25 db, adaptation time < 10 masc	Same as militarity critical	Same as militarily critical
	fitumber of radicting elements		
Multi-Beam Antennas	Spetial reactition single beam < 0.5 degrees		
Side Lobe Control		_	
- Reflactors	Side lobe > 35 db at aspect angles > 5 degress	Same as militarily critical	Same as militarily critical
- Phased Arrays	Side lobe > 50 cb below the mean peak		
Space Solid-State Amplifiers	250 MHz > 25 W 8 GHz > 2 W 20 GHz > 3 W 60 GHz > 14 W 10 yr, 30 percent efficiency	Same as militarily critical	Same as militarity critical
Receiver -High Data Rate Spread Spectrum	> 1 Gb per second	Same as militarily critical	Same as militarily critical

111-29

Technology Military Parameters Architecture Military Parameters -Digital Signal Processors Rad hard > 1 Mrad -Digital Signal Processors Rad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Rad hard > 1 Mrad -High Speed Data Buses Pad hard > 1 Mrad -High Speed Data Buses Rad hard > 1 Mrad -Archival Data Storage Systems Rad hard > 1 Mrad -Cryogenic Electronics Rad hard > 500 krad -Electronics/Computers Rad hard > 500 krad -Cryogenic Electronics Rad hard > 1 Mrad -Field Programmatike No -Field Programmatike Rad hard > 1 Mrad -Nonvolatile Merrory Rad hard > 1 Mrad -Packaging Rad hard > 1 Mrad -Packaging Rad hard > 1 Mrad <t< th=""><th>Laboratory Capabilities Rad hard < 1 krad Throughput > 1 GFLOPs Hard-wired Rad hard < 1 krad Throughput > 1 GFLOPs Rad hard > 250 krad Capacity = 1 GB ears Rad hard > 1 Mrad Ded hard > 1 Mrad</th><th>Current Industry Production Capabilities Fad hard > 1 Mrad Not programmable Hard-wirad Rad hard > 1 Mrad Not programmable Tape drives (not random access) > 1 Mrad Rad !hard > 1 Mrad</th></t<>	Laboratory Capabilities Rad hard < 1 krad Throughput > 1 GFLOPs Hard-wired Rad hard < 1 krad Throughput > 1 GFLOPs Rad hard > 250 krad Capacity = 1 GB ears Rad hard > 1 Mrad Ded hard > 1 Mrad	Current Industry Production Capabilities Fad hard > 1 Mrad Not programmable Hard-wirad Rad hard > 1 Mrad Not programmable Tape drives (not random access) > 1 Mrad Rad !hard > 1 Mrad
mail Processors Rad hard > 1 Mrad mail Processors Rad hard > 1 Mrad Throughput > 1 MOPs Reprogrammable Reprogrammable Red hard > 1 Mrad Reconcist Tachnology Red hard > 1 Mrad Rest Computers Storage Systems Red hard > 1 Mrad Computers Red hard > 1 Mrad Red hard > 1 Mrad Low-cost product fine Red hard > 1 Mrad Red hard > 500 krad Red hard > 1 Mrad Red hard > 10 years Red hard > 1 Mrad Red hard > 10 years Red hard > 1 Mrad Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years		Fad hard > 1 Mrad Read hard > 1 Mrad Not programmable Read hard > 1 Mrad Not programmable Not programmable > 1 Mrad Read hard > 1 Mrad
Red hard > 1 Mead Throughput > 1 McPs Reprogrammable Pad hard > 1 Med Throughput > 1 McPs Pad hard > 1 Med Capacity > 10 GB Continuous operatiun > 10 years Red hard > 1 Med Low-cost product fine Red hard > 500 krad Pad hard > 500 krad Pensity > 5 k gates Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Red hard > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad		Fad hard > 1 Mrad Not programmable Hard-winad Rad hard > 1 Mrad Not programmable Not programmable > 1 Mrad > 1 Mrad Rad !hard > 1 Mrad
Throughout > 1 MOPs Reprogrammable Reprogrammable Read hard > 1 Mrad Throughput > 1 MOPs Read hard > 1 Mrad Capacity > 10 GB Continuous operatiun > 10 yeans Read hard > 500 krad Read hard > 500 krad Read hard > 500 krad Density > 5 k gates Read hard > 1.0 E+12 cycles Read hard > 1.0 E+12 cycles Read hard > 1.0 E+12 cycles		Not programmable Hard-wired Rad hard > 1 Mrad Not programmable > 1 Mrad > 1 Mrad Rad !+ard > 1 Mrad
Pad hards > 1 Mrad Pad hards > 1 Mrad Throughput > 1 MOPs Red hards > 1 Mrad Continuous operation > 10 years Red hard > 10 GB Continuous operation > 10 years Red hard > 500 krad Pad hard > 500 krad Density > 5 k gates Red hards > 1.0 years Endurance > 1.0 years Endurance > 1.0 E+12 cycles Red hards > 10 Mrad Red hards > 10 Mrad		Hard-wired Rad hard > 1 Mrad Not programmable Tape drives (not random accessa) > 1 Mrad Rad fiard > 1 Mrad
Pad hards > 1 Mrad Throughput > 1 MOPs Red hard > 1 Mrad Capacity > 10 GB Continuous operatiun > 10 years Red hard > 1 Mrad Low-cost product line Red hard > 500 krad Red hard > 500 krad Density > 5 k gates Red hard > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad Red hard > 10 Mrad Red hard > 10 Mrad		Rad hard > 1 Mrad Not programmable Tape drives (not random accessa) > 1 Mrad Rad fiard > 1 Mrad
Red hard > 1 Meed Red hard > 1 Meed Capecity > 10 GB Continuous operatiun > 10 years Red hard > 1 Meed Low-cost product line Red hard > 500 krad Red hard > 500 krad Persity > 5 k gates Red hard > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mead Red hard > 10 Mead Red hard > 10 Mead		Not programmable Tape drives (not random access) > 1 Mrad Rad hard > 1 Mrad
Red hard > 1 Mrad Capacity > 10 GB Continuous operatiun > 10 years Red hard > 1 Mrad Low-cost product line Red hard > 500 krad Red hard > 500 krad Density > 5 k gates Red hard > 1.0 years Endurance > 1.0 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad		Tape drives (not random access) > 1 Mrad Rad hard > 1 Mrad
Ca Systems Red hard > 1 Miad Capacity > 10 GB Continuous operatiun > 10 years Red hard > 1 Miad Low-cost product line Red hard > 500 krad Devices Red hard > 500 krad Devices Red hard > 5 k gates Red hard > 1 Miad Relention > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Miad	······	Tape drives (not random access) > 1 Mrad Rad hard > 1 Mrad
Capacity > 10 GB Continuous operatiun > 10 years Rad hard > 1 Mrad Low-cost product line Red hard > 500 krad Devices Rad hard > 5 k gates Rad hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Rad hard > 10 Mrad		> 1 Mrad Rad fiard > 1 Mrad
Continuous operation > 10 years Red hard > 1 Mred Low-cost product line Red hard > 500 krad Pad hard > 500 krad Devices Red hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad		Rad hard > 1 Mrad
Red hard > 1 Mrad Low-cost product line Red hard > 500 krad Devices Red hard > 500 krad Devices Red hard > 5 k gates Red hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad	Red hard > 1 Mrad	Rad hard > 1 Mrad
Ca Red hard > 500 krad Red hard > 500 krad Devices Red hard > 500 krad Devices Red hard > 1 Mrad Red hard > 1 0 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad Harretto _ 500	Bed head 2 100 head	
Ca Red hard > 500 krad Devices Red hard > 500 krad Density > 5 k gates Rad hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad	Dard heard - IAN trad	
Devices Red hard > 500 krad Density > 5 k gates Red hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Rad hard > 10 Mrad Harmetic = 10 Mrad		No rad hard capability
Density > 5 k gates Rad hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Rad hard > 10 Mrad Harmeto And	No rad hard capability	No rad hard canability
Red hard > 1 Mrad Retention > 10 years Endurance > 1.0 E+12 cycles Red hard > 10 Mrad Harmeto - and		
Retention > 10 years Endurance > 1.0 E+12 cycles Rad hard > 10 Mrad	Rad hard > 1 Mrad	Rad hard > 1 Mrad
Endurance > 1.0 E+12 cycles Rad hard > 10 Mrad		Retention > 5 vears
Red hard > 10 Mrad	•	Endurance > 1.0 E+5 cycles
-		Rad hard > 10 Mrad
		Hermetic seat
Uensity improvement > 10 X	Density improvement > 10 X	Density improvement > 3 X
Neural Networks Rad hard > 1 Mrad No	Nore	None
	Film thickness < 0.3	
Uniformity > 95 percent	there are a second and the second and the second and the second area area area area area area area are	
Defects < 10/cm ²	Defects < $1.0 \text{ E+}3/\text{cm}^2$	Defects < 1.0 E+5/cm ²

Table III-19. Technology Capabilities: Electronics and Computers

Ш-30

4

	2
(Continued)	
Computers	
Electronics and C	
Capabilities:	
Technology	10.00
Table iil-19.	

Technology	Máitery Paraineters	Current Laboratory Caputolities	Current Industry Production Capabilities
Computer Technology			
Software	Fault-todarant	Fault-tolerant	Fault-tols/ant
	Con-orbit reprogrammability	Ground reprogrammability	Ground reprogrammability
Optical Domain Data Processing	Rad hard > 500 krad	Rad hard > 100 krad	None produced
Opto-Electronic Integrated Circuits Red	Red hard > 500 kred	Rad hard > 100 krad	None produced

		Capabilities: Asti offaults	
Technology	Militar/ Parametera	Current Laboratory Capabilities	Current Industry Production Capacitities
Ring Laser	Bias < 0.003 degree drift rate/hr Random walk 0.0015 degree/ihr Scale factor < 5 ppm Colored noise < 0.003 degree/hr Misaäignment 1.5 arc sec	Bias < 0.01 degree drift rate/hr Ranctom walk 0.08 degree/hr Scale factor < 100 ppm Cclored noise < 0.035 degree/hr Misalignment 20arc sec	Bias < 0.003 degree drift rate/hr Rand xm watk 0.0015 dagree/hr Scale factor < 5 ppm Colored noise < 0.003 degree/hr Miseligmment 1.5 arc se:
Fiber Optic Gyro	Bias < 0.1 degree chift rate/hr Random walk 0.08 degree/\hr Scale factor < 100 ppm Colored noiso < 0.035 degree/hr Misslignment 20 arc sec	Bias < 0.1 degree drift rate/hr Random walk 0.08 degree/hr Scale factor < 100 ppm Colored noise < 0.035 degree/hr Misalignment 20 arc sec	Biat: < 0.1 degree drift rate/hr Random walk 0.08 degree/hr Scale iactor < 100 pp:n Colored noise < 0.035 degree/hr Misalignment 20 arc se.:
Accelerometers	Bies < 25 µg White noise < 10 µg/h/z Scale factor < 120 ppm Colored noise < 15 µg Misalignment 0.2 arc sec	Bias < 5 µg White noise < 2 µg/Vhz Scale factor < 25 ppm Colored noise < 3 µg Misalignment 0.5 arc sec	Bias < 25 µg White noise < 10 µg/Vhz Scale factor < 120 ppm Cobred noise < 15 µg Misalignment 0.2 arc sec
GPS-Aided Navigation	Subsystem rel > 0.9999 Vib > 50 gs SEU resilient Latch-up free Position error: X = 0.3, Y = 0.3, Z = 0.3 m at 3 gs for 3 axis	Demonstrated to position error of X = 0.3, Y = 0.3, Z = 0.3 m at 3 gs for 3 axis	Position arror better than X = 0.3, Y = 0.3, Z = 0.3 m at 3 gs for 3 axis

Table III-20. Technology Capabilities: Astronautics

Ш-32

ø

	Table III-21. Technolog	Technology Capabilities: Optics	
Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production: Capabilities
Directed Energy Optics	< 1.0 E-3 absorption	< 200 ppm (2.0 E 4) absorptance at 2.7 um	< 200 ppm (2.0 E-4) absorptance — Alnha I asar // anne Anerhika Nerror
	> 1.0 E+4 W/cm ² incident radiation	Incident radiation power density achievable is beyond that of military parameters and is classified	Program (ALI/LAMP) at 2.7 µm
Lightweight Space Qualified Optica	< 20 percent bulk weight 30 kg/m ² areal density Total weight > 10 kg > 1 m aperture	< 20 percent bulk weight	Hubble 2.3 m aperture Approx. 30 percent bulk weight
Passively and Actively Cooled Optics	 > 1.0 E+4 W/cm² Incident radiation for 30 sec 	> 1.0 E+4 W/cm ² Incident radiation for 30 sec	> 1.0 E+4 W/cm ² Incident radiation for 30 sec
Adaptive Optics	 > 10 cm aperture > 100 Hz bandwidth < 1/2 Å flatness for > 100 Hz band- width Å= 0.5 µm 	 > 20 cm aperture achievable > 500 Hz bandwidth achievable < 1/2 Å flatness for > 100 Hz band width À = 0.5 µm 	 > 20 cm aperture achievable > 500 Hz bandwidth achievable < 1/2 \lambda flatness fur > 100 Hz band width \lambda = 0.5 µm
Silicon Optica	Single crystal substrate w/optical coating < 200 ppm absorption total (substrate and coating) > 25 cm aperture < 200 ppm optical scatter	(Absorption measurement not complete but typically > 200 ppm) > 45 cm aperture	Absorption not measured (only on witness samples) > 45 cm aperture
Optical Coattings	Scatter < 3.0 E3 and absorption < 1.0 E3 (for surface > 30-cm diameter)	Si optics < 100 ppm scatter and < 100 ppm absorptance at 2.7 µm (dependent upon wavelength, substrate, and size of optic)	Si optics < 100 ppm scatter and < 100 ppm absorptance ai 2.7 µm (dependent upon wavelength, substrate, and size of optic)
Segmented Optics	> 1 m aperture equivalent	Large Aperture Mirror Program (LAMP) 4 m aperture	Large Aperture Mirror Program (LAMP) 4 m aperture

Table III-21. Technology Capabilities: Optics

4

1

•

111-33

Table III-22. Technology Capabilities: Vulnerability and Survivability

Teximology	Mäiktary Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Nuclear/Natural Radiation Hardaning	Total does > 5.0 E+5 rads(Si) Dose rate > 5.0 E+8 rads(Si)/sec SEU < 1.0 E-7 errors/bi/dary Newton fluence > 1.0 E+10 n/cm ²	Total dose > 1.0 E+8 rads(S) Dose rate > 1.0 E+10 rads(S)/sec SEU < 1.0 E-9 errors/bit/day Newton fluence > 1.0 E+13 r/cm ²	Total dose > 1.0 E+6 rade(S) Dose rate > 1.0 E+9 rads(S)/sec SEU < 1.0 E-8 errors/bit/day Newton fluence > 1.0 E+12 n/cm ²
Electromagnetic Pulse	Field strength > 30 kV/m	Finid strength > 60 kV/m	Field strength > 50 kV/m
High-Power RF Filters for Sensor Optics	 > 40 db attenuation of RF energy and > 96 percent transmission of sensor frequency 	 > 40 db atteruation of RF energy and > 96 percent transmission of sensor frequency 	 > 40 db attenuation of RF energy and > 96 percent transmission of sensor frequency
Signature Intentification for Space Objects	Codes and algorithms with range of frequency from vacuum UV (0.11 µ) through LWIR (25 µ)	Codes and algorithms with range of fraquency from vacuum UV (0.11 µ) through LWIR (25 µ)	eron
Laser Effects	Energy density > 1.0 E-3 joule/cm ² with dwell times > 1 µsec	Energy density > 1.0 E-3 joule/cm ² with dv:eit times > 1 µsec	Energy density > 1.0 E-3 joule/cm ² with dwell times > 1 usec
-			

Ш-34

Table III-23. Technology Capabilities: Qualification and Testing

			•
Technology	Military Parameters	Current Laboratory Capabilities	Current Industry Production Capabilities
Thermel Vacuum Simulation	1.0 E-8 Torr - 320 to + 250 °C	Parameters are achievable in volumes Parameters are achievable in volumes up to 250 ft ³ (down to -150 °C) up to 1000 ft ³ (down to -150 °C and 1.0 E-7 Ton)	Parameters are achievable in volumes up to 1000 ft ³ (down to -150 °C and 1.0 E-7 Ton)
Space Environmental Simulation	1.0 E-5 Torr	Parameters currently achievable one	Parameters currently achievable one
Atomic Orygen	Energy 5 eV Flux 1.0 E+14/cm ²	to four at a time only (not all six parameters simultaneously)	to four at a time only (not all six perameters simultaneously)
Electrons	Energy 500 eV Flux 1.0 E+12/cm²/MeV		
Protone	Energy 1 MeV Fux 1.0 E+7/cm²/MeV		
UV Radiation	100 nm to 400 nm (1 sun equivalent)		
Temperature	-130 to 100 °C		
Hypervelocity Debris	Size 0.1 mm-1.0 mm Flux 1.0 E-2 to 1.6 E+21 nite/te/m ² Velocity ~ 10 km/sec		

111-35

IV. SPACE SYSTEMS TECHNOLOGY WORKING GROUP (SSTWG)

This section lists the people involved with the SSTWG.

7 .

4

IV-1

.

. **ì**,

SSTWG

Dr. Raymond Wick (Co-Chairperson) Chief Scientist for Space and Missile Technology Phillips Laboratory

Dr. Archibald MacMillan Aerospace Technical Advisor The Aerospace Corporation Gerald K. Hendricks (Co-Chairperson) (MajGen, USAF Ret.) Institute for Defense Analyses

L Kirk Lewis - Technical Advisor (COL, USA, Ret.) Institute for Defense Analyses

Norman Jorstad Director, Technology Identification and Analysis Center (TIAC) Institute for Defense Analyses

SSTWG SUBGROUP CHAIRPERSONS

Space Systems Engineering and Integration

Col. Warren Riles Director of Systems Integration HQ, SMC/SDE

Space Structures Technologies

Dr. Rodney Galloway Group Chief for Structural Research Phillips Laboratory

Mark G. Benton (Co-Chairperson) Project Manager Rockwell International Space Systems Division

Space Power and Thermal Management

W. Ralph James Acting Dept. Division Chief Space Power and Thermal Mgmt. Phillips Laboratory

Robert Vacek (Co-Chairperson) Chief, Space Thermal Mgmt. Branch Phillips Laboratory

Launch Vehicle Technologies

Kenneth Hampster. Director, Vehicle Launch Technology Office Phillips Laboratory

Space Propulsion Technologies

Wilbur (Buss) Wells Manager, Ballistic Missiles and Space Systems Support OLAC PL/KSS (AF Rocket Lab.)

Space Communications Technologies

Gregory Edlund Director, Communications Systems The Aerospace Corporation

Space Electronics and Computer Technologies

Jerry Heffner Proliferation Staff Officer National Aerospace Intelligence Center

Capt. Robert D. Pugh (Co-Chairperson) Chief, Microelectronics and Photonics Research Branch

Space Sensors and Surveillance Technologies

John McMahon Chief Scientist, Optical Sciences Division Naval Research Laboratory

Space Vulnerability and Survivability Technologies

Alfred Sharp Division Chief for Advanced Weapons Survivability Phillips Laboratory

Astronautic (Guidance, Navigation, and Control) Technologies

Christopher Simi Electro-Optics Engineering Army Night Vision Laboratory CECOM

Space Optics Technologies

Theresa McCarth-Brow Group Chief for Large Optics Research Phillips Laboratory

Space Qualification and Testing Technologies

David Davis Chief, Component Engineering Division USAF/SMC/SDFP

GLOSSARY

1D	one dimensional
2D	two dimensional
3D	three dimensional
AI	artificial intelligence
Ai-Li	əluminum-lithium
BIST	built-in self test
BIT	built-in test
BOL	beginning of life
C-C	carbon-carbon
CAD	computer-aided design
САМ	computer-aided manufacturing
œ	cubic centimeter
CCD	charged coupled device
CRDA	Cooperative Research and Development Agreement
CFD	Computational Fluid Dynamics
db	decibel
DnD	Department of Defense
DSB	Defense Science Board
DSP	Deep Space Probe
EMC	electromagnetic capability
EMP	electromagnetic pulse
EPS	Environmental Protection System
FPA	focal plane array
GaAS	gallium arsenide
Gb	gigabit
GB	gigabyte
GHz	gigahertz
GLONASS	Global Navigation Satellite System
gm	gram
GPS	Global Positioning System

6

GL-1

HDTV	high-definition television
HEL	high-energy laser
Hz	hertz
ICBM	intercontinental ballistic missile
IR	infrared
kg	kilogram
kN	kilo-newton
kW	kilowatt
ladar	laser detecting and ranging
LAMP	Large Aperture Mirror Program
LANDSAT	land satellite
LDEF	Long-Duration Exposure Facility
LWIR	long wave infrared
MCTL	Militarily Critical Technologies List
MEMS	Micro-Electronic-Mechanical System
MGB	multi-band gap
MHz	megahertz
MILSATCOM	military satellite communications
mm	millimeter
MN	mega-newton
MOU	Memorandum of Understanding
MPa	megapascals
N	ncwton
NaS	sodium-sulfur
NASA	National Aeronautics and Space Administration
NERVA	nuclear engine for rocket vehicle application
NiCd	nickel-cadium
NiH ₂ or NiMH ₂	nickel-hydrogen
nvt	neutron velocity time
ppm	parts per million
PV/W	pressure-volume/weight
R&D	research and development
radar	radio detecting and ranging
RDT&E	research, development, test, and evaluation

RF	radio frequency
rms	root mean square
S/N	signal-to-noise
SE&I	Systems Engineering and Integration
sec	second
SEMP	single expansion mode pulse
Si	silicon
SSP	solid-state polymer
SSTWG	Space Systems Technology Working Group
TBD	to be determined
TIAC	Technology and Identification Analyses Center
UV	ultraviolet
W	watt
W/W	watts input power per watt of cooling

•••••••••	CUMENTATION		Form Approved OMB No. 0704-0188
I say a such and a second such as a first such as the second second second second second second second second s			ting excent data sources, gathering and maintaining the data formation, including suggestens for reducing this burden, a ind to the Office of Management and Budget, Paperwork Red
(0704-0140) Westington DC 20503	2. REPORT DATE	3. REPORT TYPE AND	
	September 1994	FinalSeptembe	er 1993-June 1994
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Executive Report Space Sy	stems Technology Worki	ng Group	C - DASW01-94-C-0054
s. AUTHOR(S) Dr. Raymond V. Wick, Majo Hendricks, Mr. L. Kirk Lewis		erald K.	_ T - T-C2-1236.1
7. PERFORMING ORGANIZATION NAM			8. PERFORMING ORGANIZATION REPORT NUMBER
Institute for Defense Analys	e s		(DA Desument D 1510
1801 N. Beauregard St. Alexandria, VA 22311-1772)		(DA Document D-1519 (Revised)
AIDAAIIVIIA, VA LEVI I°1//2	-		
. SPONSORING/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING
Office of the Principal Deput Dual-Use Technology Policy The Pentagon, Room 2B32 Washington, DC 20301-308	y and International Progra 9	Defense ams	AGENCY REPORT NUMBER
Approved for public release			12b. DISTRIBUTION CODE
Approved for public release 3. ABSTRACT (Maximum 180 words) The speed with which a prop	e; distribution unlimited. mising military critical tech by the effort and support this attention requires kr	rt focused on that tec lowing at what perfor	hilable for military use is hnology. Determining which mance level or technical
Approved for public release 3. ASSTRACT (Maximum 160 words) The speed with which a pro- determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and clual-use and those that and memorandum of unders government, industry, and a	e; distribution unlimited. mising military critical tech by the effort and support this attention requires kn ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conce	It focused on that tech nowing at what perform The Space System T chnologies that are m r cooperative agreem r countries. This Exe arned with space tech	ailable for military use is hnology. Determining which mance level or technical 'echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides mologies the purpose,
Approved for public release 3. ASSTRACT (Maximum 160 words) The speed with which a pro- determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and clual-use and those that and memorandum of unders government, industry, and a	e; distribution unlimited. mising military critical tech by the effort and support this attention requires kn ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conce	It focused on that tech nowing at what perform The Space System T chnologies that are m r cooperative agreem r countries. This Exe arned with space tech	ailable for military use is hnology. Determining which mance level or technical 'echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides
Approved for public release 3. ABSTRACT (Maximum 160 words) The speed with which a provider determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and dual-use and those that and memorandum of unders government, industry, and ar methodology, and results of and their parameters.	e; distribution unlimited. mising military critical tech by the effort and suppor this attention requires kr ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conce the SSTWG study. It inc	It focused on that tech lowing at what perform The Space System T chnologies that are no r cooperative agreem r countries. This Exe erned with space tech ludes tables that iden	ailable for military use is hnology. Determining which mance level or technical echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides mologies the purpose, etify critical space technologies
Approved for public release 3. ABSTRACT (Maximum 100 words) The speed with which a pron- determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and dual-use and those that and memorandum of unders government, industry, and ar- methodology, and results of and their parameters.	a; distribution unlimited. mising military critical tech by the effort and support this attention requires kn ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conco the SSTWG study. It inc &D Agreement (CRDA), out (MOU), militarily critical	t focused on that techowing at what perform The Space System T chnologies that are n r cooperative agreem r countries. This Exe erned with space tech ludes tables that iden	ailable for military use is hnology. Determining which mance level or technical 'echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides mologies the purpose,
Approved for public release 3. ABSTRACT (Maximum 160 words) The speed with which a pron determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and dual-use and those that and memorandum of unders government, industry, and a methodology, and results of and their parameters. 4. SUBJECT TERMS capabilities, Cooperative Re Memorandum of Agreement space-unique technologies 7. SECURITY CLASSIFICATION 18. 18. 18.	a; distribution unlimited. mising military critical tech by the effort and support this attention requires kn ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conce the SSTWG study. It inc &D Agreement (CRDA), o at (MOU), militarily critical	t focused on that techowing at what perform The Space System T chnologies that are n r cooperative agreem r countries. This Exe erned with space tech ludes tables that iden	ailable for military use is hnology. Determining which mance level or technical echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides mologies the purpose, etify critical space technologies
Approved for public release 3. ABSTRACT (Maximum 160 words) The speed with which a pro- determined to a great extent space technologies deserve parameter the technology be (SSTWG) identified and para and dual-use and those that and memorandum of unders government, industry, and a methodology, and results of and their parameters. 4. SUBJECT TERMS capabilities, Cooperative Re Memorandum of Agreement space-unique technologies 7. SECURITY CLASSIFICATION 18. 1	a; distribution unlimited. mising military critical tech by the effort and support this attention requires kn ecomes militarily critical. ametrized those space te should be considered for tanding (MOU) with othe cademic personnel conce the SSTWG study. It inc &D Agreement (CRDA), o at (MOU), militarily critical	At focused on that technowing at what perform The Space System T chnologies that are no r cooperative agreem r countries. This Exe erned with space tech sludes tables that ider	Allable for military use is hnology. Determining which mance level or technical 'echnology Working Group hilitarily critical, space unique, ents with industry and academi cutive Report provides mologies the purpose, etify critical space technologies (15. NUMBER OF PAGES 85 16. PRICE CODE (ATION) 20. LIMITATION OF ABSTRAC