AD-A285 726

PROJECT PROGRESS REPORT IV
For The Project Of

LOCALLY CONNECTED ADAPTIVE GABOR FILTER
FOR REAL-TIME MOTION CCMPENSATION

For the Period from July 20th of 1994

to Octlober 19th of 1994

94-33153 §

(T RS

DTIC
ELECTE
OCT 2 61994

F

—‘1

-,
r -
A

This Report Is Submitted to ONR

October 19th, 1994

Principal Investigator: Professor Hua Li

Computer Science Department, College of Engineering

Texas Tech University, Lubbock, TX 79409

Telephone: (806) 742-3513, E-mail: xdhua@ttacsl.ttu.edu

Administrative Point of Contact
Kathleen Harris, Ph.D., Director of
The Office of Research Services
Texas Tech University
Lubbock, Tx 79409
Phone: (806) 742-3884

|

941 0 25 1'1'6 B oo o

PROJECT PROGRESS REPORT IV
For The Project Of

LOCALI'Y CONNECTED ADAPTIVE GABOR FILTER
FOR REAL-TIME MOTION COMPENSATION

For the Period from July 20th of 1994

to October 19th of 1994 ,, .
t fccesion For

NTIS CRA&!
DTIC TAB
Unannosnced
Justification

Distiibuticn |

This Report Is Submitted to CNR Avzilability Costes

Avail end/or
Special

October 19th, 1994

Principal Investigator: Professor Hua Li
Computer Science Department, College of Engineering
Texas Tech University, Lubbock, TX 79409
Telephone: (806) 742-3513, E-mail: xdhua@ttacsl.ttu.edu

Administrative Point of Contact
Kathleen Harris, Ph.D., Director of
The Office of Research Services
Texas Tech University
Lubbock, Tx 79409
Phone: (806) 742-3884

1

Table of Contents

1. The Report

2. The Preliminary Design of the Analog VLSI Convolution Unit

3. The User Manual for the Software Package

The Progress Report

This report is the forth quartly report for the project of “locally connected adaptive

. Gabor filter for real-time motion compensation,” with grant number N00014-94-1-0077,

: which has been in the process since October 20th of 1993 and has been conducted

v under the supervision of the principal investigator, Professor Hua Li of Texas Tech
University.

As at the end of the first year of this three-year project, we have been making progress
towards the goals of this research as planned in the project proposal, 1(b) on page 21.
In particular, we have been accomplished the following work as itemized below:

1. We have conducted extensive research work on the design and simulation of
electronic analog circuits as basic building blocks for the VLSI implementation.
This phase of the work is a little bit ahead of the schedule {about 1 month) than
we originally planned in the proposal. This hardware design phase concurrent
with the algorithm analysis and verification provided coherent work and ensured
the quality of the analog VLSI desigr. The work in VLSI implementation at this
stage includes

(a) Design one of the most essential building blocks, a video frequency opAmp.
With extensive SPICE simulations using the device model provided from
MOSIS actual fabrication run, we have completed the design. The
characteristics of the OpAmp to be used to build two-dimensional
convolution unit is given in a research memo and was included in the 2nd
quart report as Appendix II.

(b) Design analog multiplier, which is to be used for building two-dimensional
analog convolution unit. Extensive SPICE simulation was performed. The
preliminary simulation data lcoks very positive and the circuit layout design
has been completed.

(c) Post-layout SPICE simulation is under way to check the actual VLSI
implementation. The experimental result now is under analysis and will be
documented and reported accordingly. Some results have been documented
and given in Appendix I of this report.

2. In order to benchmark the VLSI chips, a hardware prototype board is under
design and construction. This board will be used to compare the performance of
digital approach vs. analog approach, analog approach based on the standard

3

off-the shelf components vs. analog customer-design VLSI approach. The board
is now operating and it is under calibration. The board is designed with a 486
machine as a host. The prototype demonstration is prepared for ONR.

A software package has been developed to implement the Gabor motion detection
algorithm. This software consists of utility functions, algorithm modules, and test
pattern generators for the experiments and verification of the spatial and temporal
selectivity. A software program manual now has been produced. Fully tested,
documented programs are provided together with the manual.

This software package consists of the following programs:

1. Programs for algorithm implementation, which include:

(a) Real Gabor kernel with user-selectable kernel size, spatial frequency, and
orientation frequency;

(b) Imaginary Gabor kernel with user-selectable kernel size, spatial frequency,
and orientation frequency;

(c) Derivatives (with respect to x and y) of the real Gabor kernel with

user-selectable kernel size, spatial frequency, and orientation frequency;

(d) Derivatives (with respect to x and y) of the imaginary Gabor kernei with
user-selectable kernel size, spatial frequency, and orientation frequency;

(¢) Image convolution program with user-selectable kernels;

(f) Least square estimation algorithia for solving an over-determined linear
system, which is needed at the last phase for optical flow computation.

2. Utility programs which consist of

(a) A set of programs to creat test image patterns based on virtual reality
technique. These programs allow user to define the observer's position
(camera position), the fixation direction of the camera, and the orientation
of the projection plane (virtual film.) They can be utilized by the user to
define objects in three-dimensional world-coordinated space.

A program to creat animated images. This program will produce each
individual frame of images, and generate an animated image sequence.
These two programs will be particularly needed to test and verify the
optical flow computation based on the created known motion of the objects
and the observer.

(c) A short program (in MATLAB format) to creat postscript files. This will
produce the hardcopy of images, and computation result.

Based on the theoretical analysis, the: optical flow was computed for several artificially
generated test patterns. These test patterns are designed to test the concept of spatial
and orientation selectivity. The patterns were generated by using virtual reality
technique based on three-dimensional computer graphics. As described in the second
quartly report, they include stationary observer whiie object is moving, and staiionary
object while observer is moving, as well as both observer and object moving in a
known fashion. In order to further test the computation, we have modified the
resolution and color depth of each pixel to make them all 120-by-100 in resolution and
8-bit color per pixel. A set of floppy disks are now prepared for the demonstration
purpose. This set of floppy disks are now included in thie report to ONR. Includeg in
this set of disks are image sequences generated under known conditions as benchmark
for the future testing of VLSI implementation, in particular, they include the following:

1. An observer (camera) is stationary, but the viewing object (a sphere with radius
equal to 25 units) is moving along y-axis 5 units per frame.

2. The observer is moving along y-axis 5 units per frame while the viewing object is
stationary.

3. Both the observer and the viewing object are moving 5 units along y-axis and
z-axis respectively.

As briefly summaried here, we have been making progress as planned. In the next

phase, the second year of the project, we will produce the fabricated analog VLSI chips
for testing and evaluation.

The End.

ANALOG CONVOLUTION UNIT FOR
REAL TIME IMAGE PROCESSING

Laszlo Moldovan and Hua Li
Department of Computer Science
College of Engineering, Texas Tech University
Lubbock, TX 79409
E-mail: xdhua@ttacsl.ttu.edu

Abstract— The design of an analog convolution unit for
real time image processing is presented in this paper with
the emphasis on the design of the basic building black:
CMOS four quadrant multiplier. This CMOS multiplier
operates with +5V and has single ended voltage inputs
making it oasy to use for real time image processing.
This basic building block is used to build a 5x5 array of
conwolution unit. The MAGIC layout of this circuit,
rondy for double poly CMOS analog fabrication is also
presented.

L. INTRODUCTION

The design of an analog convolution unit. for real time
image processing is given in this memo. The unit. con-
sists of several different. kind basic building blocks in-
cuding an analog multiplicr. An analog multiplicr can
he easily built in bipelar techinology and they have been
succoasfully uned for years |1). The problem when try-
ing to build an analog multiplicr using CMOS devices is
that the output curront of the source-coupled differen-
tial pair (M5 and M6 in Figure 1) depends nonlinearly
on the bias current sinked by M7 and the input. voltage.
Therefore. the lincar range of the input voltages is very
limited and very hard to compensate. Given the noed
of using CMOS techinology over bipolar technology. we
have designed the hasic building block and the unit by
using active attenuator techinique. This design provides
much bhetter linear operating range of the CMOS four
quadrant multiplicr.

I1. PRINCIPLE OF OPERATION OF
ANALOG MULTIPLIER

The complete circuit of the multiplicr is shown in Fig-
urc 1. The corce of this circuit. consists of the CMOS
version of the standard Gilbert cell presented in [1). As
ahove mentioned, the problem of this circuit is the re-
duced voltage input. swing range. In order to avercome
this problem. the input voltages arc connectedl to the
Gilbert. coll through active attenuators. The out.put. sig-
nal of the circuit in a differential cureent. which can be
casily converted to a differential voltage with two load
resistors connected to Vdd. The Gilbert cell and the
artive attenuatorr arc deseribed ar follows,

III. GILBERT CELL

Devices M1, M2, M3, M4, Mo, MG and the current
sink M7 form a CMOS version of the Gilbert cell. All

‘ransistors opcrate in the saturation region and the
transconductance paramcters of M1..M4 and M5, M6
arc matched and equal to Ky and K3 respectively. There-
forc, the ideal squarc-law cquation can be applied. The
output. currents of this circuit arc I, and Ip;. given hy:

Iy = —(ln + ch) (1)

Iz = —(Lna + Lua) (2)

Thus, the output differential current, Jog = loa — o) is
given by:

loa = V2K, V][v sy {1 oY Va1 ——’-21“]
(3)

where Vg = Vs = V). If torms LS ‘:’ and & :"
arc much smaller than 1. it follows that Iy depenids

Lincarly ou V] and ie given by:

Toa > V2K(VI - V1a)V2 (4)

Also, [z, and Iy can he shown to he in the following
rcationship with Vo3 = Vosy = V)

(5)

Y~ (Vi - VImlY,

Substituting (5) into (4). we have the output differ-
ential current:

Ioa = /2K, K; LAA (6)

which is the diaracteristic of an analog multiplier.

But this cquation war obhitained under the assumption

that V; and V] arc kept. very small which may not be

satisficd. To sulve this problem, these two voltages were
collected at the outputs of active attenuntors.

IV. ACTIVE ATTENUATOR

The active attenuatore (one for the VX input. another
for the VY input) were huilt. with transistors M8, M9
and roapectively M11. M12. In order to couple the at-
tenuators with the two inputa, a voltage shift was oh-
tainc:dl with the source followers M10. M18 and M13,
M19. A voltage (VX or VY) applicd to these attenua-
tors plus shifters will he reduced by a factor of 10, as

resulted from PSPICE simulations. Tn other words, the
circuit will reduce thie slope of a lincarly varying voltage
between -1V and 41V from 1 to Q1.

V. MULTIPLIER UNIT

With the attenuators attached. the transfer character-
istic of the multiplier unit is described by the cquation:

Im' = Iol — I,,z v \/ 2[\’1 I\;"legw (7)

where m is the attenuation factor of the active attenua-
tors (10.9). So far the output was a diffcrential current.
If we want to convert it into a differential voltage, we
nced to connect two matched load resistors between the
outputs of the Gilbert ccll and Vdd. Thus the output
voltage is given hy:

Vo = Rila ~ [V2K KR m2VeV, 18)

In order to he able to calibrate the cireuit for different.
fabrication parancters (which cannot he known pre-
ciscly in advanee) and to compensate for the offset. volt.-
age. the attenuators are biased externally on the gates
of M14 and M15. Ax loads, Ri.: and RL2 were chosen
to be 1KQ. The sizer of the traw Ltors are given in the
following table:

TABLE 1
Device rizes for multiplicr unit

rize W ZL=£nn [pm

MI [80/4 | M9 | 2/8

M2 [80/4 [M10] 2/3
M3 | 80/4 | Mil] 2/3
MA 2/8
M5 2/3
MG 1672
M7 16/2
M5

V1. EXPERIMENTAL RESULTS

Firnt. the circuit. was tested using PSPTICE. The transfer
characteristios for i -1V to 1V de sweep on VX and VY
inputs arc shown in Figures 2 and 3. The PSPICE file of
the circuit ix contained in APPENDIX A, A Bode plot
in Figure 4 shiows that the circuit hax a -3dB bandwideh
of 24.4 MHz. Following the preliminary simulations, the
layout. of this circnit. was designed using MAGIC and
then its cirrnit was extracted for PSPICE simulation
to verify the layout dexign. The PSPICE simulations
far the extracted cirenit pave the transfer charncteris-
tick as shown in Figures 3 and 6 and the Dode plot
in Figure 7. The MAGIC layout of a single multiplier
cell can be seen in Figure 8. The -3 dR bandwidth in
this case is 19 MUz, Nonlinearity tests were performed
on the analog multiplier for both inpnts, First, a £1V
ramp signal was inprit on VY, VX was iad~ suceesively
1V and -1V and the outpnt voltage was multiplicd with

2

a constant [actor to make Vout/VY=1. Then VY was
subtracted from Vout and the result represented the
absoluic nonlincarity error. From this value, the rela-
tive nonlinearity crror was calculated. The two test arc
illustrated in Figures 9 and 10 and the values of the
relative crrors are 4.345% and respectively 3.61%. Sim-
ilarly, the same signals were applicd to the other inputs
and the same operations were performed. For this cases
we have the situations shown in Figurcs 11 and 12 and
the valucs of the rolative nonlinearity crrors arc 4.438%
and respectively 5.12%. In order to find the total har-
monic distorsions (THD) of this circuit. a 1MHz sinu-
soidal signal was applied to one of the inputs and the
other input was made 1V. The frequency spectrum of
the output voltage is shown in Figure 13 and the THD
due to the second and third harmonics was caleulated
to be less then 2%. Using the standard 40 pin analog
frame provided by MOSIS, a 5x5 convolution unit. and
a ringle multiplicr cell were combined into a single mi-
crochip. The 5x5 convolution unit. will be tested for a
Laplacian of Gaussian (LOG) kernel. The kernel values
were generat.od using the LOG formula:

202 _ I? — yz _al_g?
.._2_"7__0"7!" (9)

The values for the kernel were calculated for =1 and
arc shown next:

,40(;(1'. y) =

-0.0549 -0.1231 -0.1303 -0.1231 -0.0549
-0.1231 0.0000 03033 0.009%0 -0.1231
-0.1353 0.3033 1.0000 0.3033 -0.1353
-0.1231 0.0000 03033 0.0000 -0.1231
-0.0649 -0.1231 -0.1353 -0.1231 -4.0549

A simple voltage divider circuit {Figure 14) to im-
plement. this LOG kerncl wan incorporated in tie mi-
crochip and connected to the V5 inputs, were 1 <4< 5
and 1 € j < 5. The SPICE file of the voltage divider
can be found in Appenddix B. All the X;; inputs were
conneeted to the analog input pads. The load resistors
were not. put in cach individual ecll. Instead. the cor-
rerponding (fol,; s Jo2;. 1 < 1 < 25) differential cur-
reit. outputs were connected together Lo provide with
the s of them, Thus, the convolution unit. performs
alro the summation of the products of the 25 multiplicr
cells using KCL. The result. of the convohttion can he
accessed on Tol and To2 ping and is a differential current.
. which can he casily converted to a differential voltage
using three resistors. Thig result. is, therefore, a voltage
which ix proportional to T3,):,’:1 XY,

REFERENCES

[1] 8.-C. Quin and R. L. Geiger. "A £5V CMOS ana-
lop, nultiplier™, TEEE J. Solid-State Circuits, vol. SC-
92. Nu. G. pp. 1143-1146. Dec. 1987.

[2] H.-J. Song and C.-K. Kim, * An MOS four-quadrant.
analog multiplicr using simple two-input squaring cir-
cuits with source followers™, IEEE J. Solid-State Cir.
cuits, vol. 25, pp. 841-848, No. 3, Junc 1990.

[3] J. 8. Pcna-Finol and J. A. Condlly, "A MOS four-
quadrant, analog multiplicr using the quartor-squarc toch-
nique®, JEEE J. Solid-State Circuits, vol. SC-22, No.
6. pp. 1064-1073, Dcc. 1987.

AN mk @ mno L w
(48,
SO A SONN

e 0T

£IN SOMd < ’Te T8 | SONd
_]
1IN SN DY

(cA)Igxvyax+ CAVODOXKY AX+ oavoD

o'tz :aaniezadwag LG:G£:00 ©6/ZT/0T :uni dwrl/3ied
»JZAMS D4 XA ¥ HOd WATIAILINW FHI 30 DILSTHALOVMVHD NAISNVMLx ﬂ A

(CA)IOXYAXx+0AVOOXYAX+CAVODO

G itz :@iniexadway gp:6Z:00 P6/ZT/0T :unx dwTL/23eg
»dTAMS Od AA ¥V ¥0d ¥3ITJILIOW FHL SO0 JILSIMALOUVEVHO HIAISNVUL+«

KAouanbaxg

ZHM0'T

ZHWY* $Z =HLAIMANVE 9P€-

0tz :oanjexadway, 62:6¥:00 ©6/2T/0T :unx awri/a3eq
LITTATILION ¥0d 1074 FA09.

(CA)IoxvyaAx+0avVoOXYaAX+0AVOD

raxnjezadwag 20:L6:00 $6/21/01 :una SWTL/S3ed
«JIIMS 00 A4 ¥ ¥Od JIISIYALOWHVHD MAISNVYL YIITJILTOW TILOVHLIXE~>

X
(OCA)IOXYAX+0AVODXYAX+0AVOD
0T S0 0 S 0- 0° 1~
R LR T S R s B T b R T +¥YN0°" 1~
X '
] 1
)]
: i
9 aanbrg,

§Z:00:T0 ¥6/Z1/01 :una awtl/a3eq

0Lz :9anzexsdwel
«dTIMS O XA ¥ H0d DIISTHALOVHVHD HIAISNWEL YIITAILTOAW JILOVEIXIx

Aousnbaag
((ET)A/(CPA)I)EA O

ZHO'T

ZHW 6T=HIQIMONVE €PE-

v
|
1
'
|
1
t
-
1
1
1
1
1
1
|
1
'
1
1
1
|
1
|
1
4
'
L

0°Lz :@xniezaduag €G:€0:10 ¥P6/ZT/01 :una swri/93ed

»HIITIILION JILOIIXT FBL J0 I071d IA0E«

AT=XA

" @ivd ZHX0SZ AT-/+ ¥ ST XA
"$SPE'P SI WOWME ALTHVANITNON

0’z :eanjeaadwal 8€:9G:TT PB6/ST/0T :uni awrl/S3ed

HATTAIIION DOTYNY JO0 HOWMHE ALINMYINITNON«

(EDA -S»°2L9x(S’E)Av (ED Ao S¥ 2LIx(S'E)AD
sno°z

AT-=XA

dNV ZHX omN. ATl-/+ ¥ SI >>

AT9° €=HOMME ALTNVANITINON

AC°T

0° L2z ‘e1nlexadwag 8€:90:TT $6/ST/01 :unI awri/a3eq
SNITTAILION SOTUNY JO SHOWE ALIYVINITNON«

(0T)A ~6S TTLx{G’€)Av (0T)A o S TIL«(S’E)AD
s0

AO° T~
11 sanbra/

AT=XA
&AVd ZHY 062 AT-/+ ¥ SI XA

$8€8 "V SI WOWYE ALIYVANITINON

R R i T R,

v
1
)
[l
1
1
'
1
1
1
1
]
L}
[
]
t
L
v
!
1
1
1
¢
[l
1
'
|
1
1
1
'
'
)
]
]

0.z :einjeradway 16:62: 1T $6/ST/0T :unI SwTl/a3ed

SUIATTIILTINN DOTYNY JO SHOWYT ALINVINITNON~

sng°L

Z1 sanbra

>

o

-
!

>

n

o
1

T CALS=AA
dHVS ZHN0SZ Al-/+ ¥V SI XA
A21°S SI WOMYE ALIYVANITINON

e i i I L

>
©
=

/

0°(z :eInjvasdwa 16:6Z:IT ¥6/S1/0T :uni awrl/a3ed

LMATITIILINN DOTYNVY J0 SYOWNA ALIYVANIINON«

Kousnbeal
(s’¢lac

ZBKOT THHB ZHW9 ZHRY ZHHZ ZHQ
~ e b - e Tt A /In“"ll.l |||||| ﬂ’&>°
“ :
: . . g1 @eanbra H
: ;
. '
‘ .)
4]
. L}
-))) . .) .) . .)) .)) . . L AWS 0
: sZ=UHL :
. |
H 1
s))))) X)) A0 T
1 1
; . . '
”] . !
1 }
: ,
” ° ”
| s ——— e mm——- e rceacmr e —————— e e e e o e — e e mmmmmmmmm e e memmmmem e ——— - L AmG T

0°Lz :aanjeaadwey pOILY:ITT $6/6T1/0T :unI BWTL/33%9Q

SHATTITILION DOTYNY 30 ROMLIOEJS AONENOIYI«

N eann
Vg

Slien Ly

GNL vt

b-Lien Ly

TTU LIs LAB
OCT 1884

GNL Ve

Liet L4

GNL V1

-Lren L

RV

1ol cell

| mbtchn |

loett v

Stenv-Liwn

Amob J X22

APPENDIX A

*ANALOG MULTIPLIER WITH ASYMMETRIC INPUTS
.OPTION NOECHO NOMOD

*DEFINITION OF MODELS

*N43B SPICE LEVEL 2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.600000 TOX=4.2600E-08 XJ=0.200000U TPG=1
VTO=0.8109 DELTA=6.7500E+00 LD=9.2070E-08 KP=4.8109E-05
U0=593.5 UEXP=1.4990E-01 UCRIT=8.1140E+04 RSH=2 4540E+01l
GAMMA=(0.4512 NSUB=4,0300E+15 NFS=1.98E+11 VMAX=6.2580E+04
LAMBDA=2.6210E-02 CGDO=1,1195E-10 CGSO=]1,1195E-1i0
CGBO=4.7024E-10 CJ=1.0922E-04 MJ=0.8608 CJSW=2.4755E~10
MJISW=0.035834 PB=0.800000
Weff = Wdrawn — Delta W
The suggested Delta | W is -7.8340E-07
.MODEL P PMOS LEVEL=2 PHI=0.600000 TOX=4.2600E-08 XJ=0.200000U TPG=-1
VTO=-1.0600 DELTA=9,0900E+00 LD=1.7890E~Q7 KP=2,2267E-05
UO=274.7 UEXP=3.4430E-01 UCRIT=6.9200E+04 RSH=5.9420E+01
GAMMA=0.3746 NSUB=2.7770E+15 NFS=3.23E+11 VMAX=9,9990E+05
LAMBDA=5 ,3990E-02 CGDO=2,1752E-10 CGSO=2.1752E-10
CGB0=3.9953E~10 CJ=3.1585E-04 MJ=0.5914 CJSW=3.2974E-10
MJSW=0.315516 PB=0.700000
Weff = Wdrawn - Delta W
* The suggested Delta W is -3.4000E-07

I 2R R R R N Y 22 YIRS SRS R SRS 2 A

s v 4+ + + + + +

s 4+ 4+ 4+

| ST

*GILBERT CELL
L
Ml 3 2 1 4 N W=80U L=4U
M2 5 17 1 4 N W=80U L=4U
M3 3 17 6 4 N W=80U L=4U
M4 5 2 6 4 N W=80U L=4U
M5 1 18 7 4 N W=80U L=4U
M6 6 8 7 4 N W=80U L=4U
M7 7 19 4 4 N W=80U L=4U

*

*ATTENUATOR 1
*
M8 11 10
M9 4 10
MO0 91
M4 2 1

9 9 P W=2U L=3U
1 9 P W=2U L=8U
2 4 N W=2U L=3U
4 4 N W=16U L=2U

1
6

*

*ATTENUATOR 2
*
M1l 12 13 9 9 P W=2U L=3U
M12 4 13 12 9 P W=2U L=8U
MI3 9 12 8 4 N W=2U L=3U
M15 8 16 4 4 N W=16U L=2U

RL1 3 9 1K
RL2 5 9 1K
RL 3 5 10MEG

[EERERE RS AR SRR S S RARAS R RS R RS RS RS S]

vdd 9 0 Sv
Vss 4 0 -5V
Vbias 16 0 {VB}

vV1i7 17 0 OV
vVis 18 0 oV

V19 19 0 OV

*VX 10 0 {X}

VX 10 0 SIN(O0 1 1MEG)

*VX 10 0 AC 1V

*VX 10 0 PWL(0US {-X} 2US {X} 4US {-X} 6US {X) 8US {-X) 10US (X})

*VX 10 0 PWL(ONS UV 200NS OV 200.001NS 1V 600NS 1V 600.001NS OV 1US 0V)
VY 13 0 (Y}

*VY 13 0 SIN(O 1 1MEG)
*WY 13 0 AC 1V

*VY 13 0 PWL(ONS {-Y} 2US (Y} 4US {-Y} 6US {Y} 8US {-Y} 10US ({Y})

.PARAM X=1V
.PARAM Y=1V
.PARAM VB=-3.915

* STEP PARAM Y -1 1 .1
*.DC PARAM Y -1 1 .1
.TRAN/OP .01PS 1US

* ,AC DEC 100 1 1E8

* WATCH DC

.OP

* ,PROBE V(14) V(18)
.END

APPENDIX B

voltage dividers for kernel coefficients
.OPTION NOECHO NOMOD
*DEFINITION OF MODELS

*N43B SPICE LEVEL 2 PARAMETERS

.MODEL N NMOS LEVEL=2 PHI=0.600000 TOX=4.2600E-08 XJ=0.200000U TPG=1
VT0=0.8109 DELTA=6.7500E+00 LD=9.2070E-08 KP=4.8109E-05

U0=593.5 UEXP=1.4990E~-01 UCRIT=8.1140E+04 RSH=2.4540E+01
GAMMA=0.4512 NSUB=4,0300E+15 NFS=1,98E+l11 VMAX=6.2580E+04
LAMBDA=2,6210E-02 CGDO=1.1195E-10 CGSO=1,1195E-10

CGBO=4.7024E-10 CJ=1.0922E-04 MJ=0.8608 CJSW=2.4755E-10
MJSW=0.035834 PB=0.800000

Weff = Wdrawn - Delta W

The suggested Delta W is -7.8340E-07

.MODEL P PMOS LEVEL=2 PHI=0.600000 TOX=4.2600E~08 XJ=0.200000U TPG=-1
VTO=-1.0600 DELTA=9.0900E+00 LD=1.7890E-07 KP=2.:2267E~05
U0=274.7 UEXP=3.4430E-01 UCRIT=6.9200E+04 RSH=5.9420E+01
GAMMA=0.3746 NSUB=2.7770E+15 NFS=3.23E+11 VMAX=9.9990E+05
LAMBDA=5.3990E-02 CGD0=2.1752E-10 CGS0O=2.1752E-10
CGB0=3,9953E-10 CJ=3.1585E-04 MJ=0.5914 CJSW=3.2974E~-10
MJSW=0.315516 PB=0.700000

Weff = Wdrawn - Delta W

The suggested Delta W is ~3.4000E-07

I 22 ZXEA XA LR RS RS SAR RS XSRS aiRs e AR SR X2 Xas Rt X 2R

* A+ 4+ + + + +

* * 4+ + + + + +

*

*KERNEL

*

*for 1V

M16 14 22 4 4 N W=10U L=2U
M17 15 15 14 4 N W=2U L=6U
M18 9 9 15 4 N W=3U L=2U

*for 0.3033V

M19 20 22 4 4 N W=38U L=2U0
M20 21 21 20 4 N W=6U L=2U
M21 9 9 21 4 N W=2U L=2U
*for -0.055V

M22 23 22 4 4 N W=8U L=20
M23 24 24 2. 4 N W=7U0 L=2U
M24 9 9 24 4 N W=2U L=3U
*for -0.123V

M25 25 22 4 4 N W=7U L=2U
M26 26 26 25 4 N W=2U L=6U
M27 9 9 26 4 N W=2U L=4U
*for —-0.1353V

M28 27 22 4 4 N W=7U L=2U
M29 28 28 27 4 N W=2U L=4U
M30 9 9 28 4 N wW=2U L=4U

Y 2 R SRR X EE S R R R R R R X R R R R R R RS R R RSS2SR AR R EE

vDb 9 0 5V
VSS 4 0 -5V

Vbias 22 0 {VB)

.PARAM VB=-3,5V

*.STEP PARAM VB -3.6 -3.4 .01
*.DC PARAM VB -4 -3 .1

-TRAN 1PS 2NS

* .PROBE

.OP

.END

USER GUIDE: MOTION

DETECTION ALGORITHM

BASED ON GABOR -
FUNCTIONS

USER GUIDE: MOTION

DETECTION
ALGORITHM BASED ON

GABOR FUNCTIONS

Professor Hua Harry Li

Computer Science Department
College of Engineering
Texas Tech University

Lubbock, Texas, USA

CONTENTS

PREFACE

1

INTRODUCTION

1 DBrief Overview
2 Prcparing Program for Exccution

GENERATING 2D TEST PATTERN IMAGES

1 Creating Cosinc Wave Image Patterns
2 Creating Bar Stripe Images

MOTION DETECTION BASED ON GABOR
FUNCTIONS

Creating Gabor Kernels
Computing Convolution of Gabor Kerncls
Motion Detection On 2D Test Pattern Images

Motion Dctection On 2D Images With Multiple Kernels
Least Square Estimation

THREE-DIMENSIONAL MOTION DETECTION

Virtual Reality Technique for Creating 3D Test Patterns

Creating Image Sequence With Botli Obscrver And Object
Motion

3D Motion Detection

SOFTWARE LISTS

‘ BarImagc.c
CosImage.c
CosConv.c
CreatGahor.c
BufferInit.c
BufferInit.c
GabhorMotion.c
Leastsq.c
bmll.h

1
2
3
4
]
6
7
8
9

PREFACE

This softwarc manual describes the algorithms that have been developed for
the demonstration project on motion detection and motion compensation using
biologically inspired Gabor transforms. The objectives of the project arc to (1)
develop an algorithm suitable for real time analog VLSI (Very Large Scale
Integrated Electronics Circuits) implementation and (2) fabricate the design
through MOSIS. The algorithms developed and tested in this package will be
uscd as hench marks to objectively evaluate the performance of the VLSI chips,
and the prototype board. This package is a part of the result of the rescarch
project supported by ONRR.

This package includes three categorics of programs: (1) The programs that are
uscd to gencrate test pattern images. (2) The programs that are devcloped to
comput.c optical flows hy using Gabor functions, or Gabor Transforms. And (3;
the programs that are uscd to generate sequence of images by using virtual re-
ality and threc-dimensional computer graphics techniques. During the process
of preparing this package, we have extensively tested each program. Most of
the programs in this package were written in ANSI C to ensure the portability
across diffcrent hardware platforms. For the programs to generate 3D virtual
reality studio environment, we have used the program language developed by
Watkins !, which is a C-type language. Although most of the programs were
developed for SUN SPARC Station, they can also be complied for 486 personal
computer with some minor modifications. The usc of these programs for ONIR
is free, but we, the authors of these programs and manual, make no warranty of
any kind, expressed or implied, with regard Lo the programs or the documen-
tation. Therefore, the authors shall not be liable in any event for incidental
or conscquential damages in connection with, or arising out of, the furnishing,
performance, or usc of these programs. All brand names, trademarks, are the
property of their respective holders,

Several rescarch assistants at Texas Techh University are responsible for de-
veloping, implementing, and tosting of Lhic programs. The prosent version of

1* C.D. Watkina, S.B. Cay, and M. Finlay, Photorealism and Ray Tracing in C, M&T
DBooks, New York, NY 10011, 1992,

iv

the manual was proof read and tested at Li's Laboratory, Computer Science
Dcepartment, College of Engincering, Texas Tech University by the principal
investigator of the project. Inquiry and questions regarding the source code,
the algorithms should be directed to the principal investigator.

Principal Investigator: Hua Harry Li. Ph.D.
Computer Science Department

Colige of Ergincering

Lubbock, Texas 79409

Phonc: (806) 742-3513

Fax: (806) 742-3519

E-mail: hua@es.ttu.cdu

1

INTRODUCTION

ABSTRACT

A brief summary of the programs and their functionalities included in this manual
are given in this chapter. Namely, three major categoriea of programs are described.
These categories are: (1) the programs for generating test pattern images as hench
marks, (2) the programs for computing optical flow hased on Gabor functions, or Ga-
hor transforms, and (3) the programs hased on virtual reality technique for generating
3D camera models and creating user-defined and user-controlled image patterns.

1 BRIEF OVERVIEW

This package includes three categorics of programs:

1. The programs that arc uscd to generate test pattern images. The images
arc characterized with uscr-defined oricntation and spatial frequence.

2. Thc programs that arc developed to compute optical flows by using Ga-
bor functions, or Gabor Transforms. In this category, there arc utility
programs for solving a sct of lincar algebraic systom by using least square
cstimation (LSE) techiniques, and programs for uscr selectable, user mod-
ifiable Gabaor kerndls,

3. The programs that arc used to generate sequence of images by using virtual
rcality and three-dimensional computer graphics techniques. Users are
given the control of sclecting the optical characteristics of a virtual camera

5

6 CHAPTER 1

to generate well-controlled cuncra motion, as cgo motion. This then is

uscd to precisdy characterize the amount of sdlf motion in comparison to
object motion.

In this documentation, we use the term “two-dimensional motion™ to describe
the image pattern generated directly by shifting image plane, which docs not
invelve the sclection of camera modd, the calculation of perspective projoction.
Wiiile the term “three-dimensional motion™ referres to as the image patterns
generated by using virtual reality techinique. Namely, the technique defines
camcra characteristics and creats realistic looking perspective projection im-
ages. The two-dimensional motion patterns are majorly used to calibrate the
orientation sclectivity and spatial frequency sclectivivy of the Gabor kerncls.

2 PREPARING PROGRAM FOR
EXECUTION

The compiled and linked executables of the programs are provided on a floppy
disk (MSDOS readable format} with this manual. These executables are pre-
parcd under the following conditions:

1. The operating system: SunOS 4.1.2.

2. The cc compiler.

3. The hardwarc platform: SUN SPARC 1 workstation.

If you have the complicd and linked executables, in order to run these programs
all you have to do is to type the program name and hit return. If you only

have the source code and you nced to compile and link them, then follow the
instructions given helow:

cc -0 output-filename inpulfile.c -lm

which will creat the exceutable.

2

GENERATING 2D TEST PATTERN
IMAGES

ABSTRACT

Two different types of test patiern images, 2D test patterns, and 3D test patterns,
have heen utilized for testing the motion detection algorithm as explained in Secion
1.2. The 2D test patterns are grey level sine, cosine, or strip har images. These
test patterns are used to calibrate, test and demonstrate the orientation and spatial
frequency selectivity of Gahor kernels.

1 CREATING COSINE WAVE IMAGE
PATTERNS

DECRIPTION: crcat a 2-D cosinc wave image.

USAGE: CosImg(int row, int column, float omega, float oricnt, float speed,
float time)

int row: row of image in pixcls.

int column : column of image in pixcls,

float omega: spatial frequency of image in eycles per pixel.
float oricnt: orientation of image in degree.

float speed: the variable to define the phase shift.

float time: the variable for defining the phase shift.

REMARKS:

CHAPTER 2

Coslmg generates a 2-D cosine wave image with user sclected resolu-
tion (row-by-column) and uscr defined spatial frequency and orienta-
tion of the cosinc pattern.

MATHEMATICAL FORMULATION:

I(2.y) = cos(2 * pi + omega » (z * cos(theta) + y » sin(theta) — speed » time)).

where variable omega defines a spatial frequency in terms of cycles per pixel,
variablc theta defincs an orientation of the test pattern. The variable speed de-
fines the phasc shift of the image pattern which can be interpreted as a starting
time instance when the test pattern image was created. Dy chioosing different
phase shift, wicr can creat a scquence of images arranged in the order of amall-
ost. phase shift to the biggest phase shift to represent a sequence of moving
cosine patterns. The variable time, together with the variable speed creats the
desired phase shift.

EXAMPLE:

#include<stdlibd>
#include<stdio.h>

int main()
{

char =filename="output.dat”;

int row=31, column=31;

float spatial_frequency=.1, orientation=30;
float speed = 1, time = 0.4;

CosImg(row, column, spatial_frequency, crientation, speed, time);
return 0;

}

By chenging the different phase shift value, the sine wave function can be
created using the same program.

N

Fgore 1A raine wave imigge (64 by 64 resolotion: with omega
cqual too i and thetacqual o495 depree

2 CREATING BAR STRIPE IMAGES

DESCRIPTION: venerine a2 1 i stripe inaee,

USAGE: Biwlmeiin row. it cali, Hoat omeea. Hoar oriepe, clae? Iilena.mc)
introw: row of irnaee i pixels,

nteoliann s colimn of e in pixels,
floatom

spattal reaneney of e i eyeles pep el
Hoatorient: orertation of tnee in degre,

char®ilenamme: she vanne of ot dile,

REMARKS:

Chonod e ahition

S e e gty

10 ('HAPTER 2

MATHMATICAL FORMULATION:

Iey) = { 255 i cos2m{wwz + ywy) > 0.0

0 otherwise

Figure 2. A bar atrip image with omega equal to 0.05 and theta
eaqual to 0 degrae,

| EXAMPLE:

#include<stdlib>
#include<stdio.h>

int main()

{

char *filename="output.dat";
int row=31, column=31;
float spatial_frequency=.1, orientation=30;

BarImg(row, column, spatial frequency, orientation, filename) ;
return C:

}

3

MOTION DETECTION BASED ON
GABOR FUNCTIONS

ABSTRACT

This chapter gives the programs that implement motion detection algorithm hased
on Gabor functions. Gahor functions are very special kind of functions which mimics
orientation selective, spatial frequency selective characteristics of human early vision
system. Included here are the functions for creating Galior kernels, the utility func-
tions for cow.puting convolution of real and complex Gabor kernels, the functions for
solving a eet of linear algebraic system based on least square estimation (LES), and
the function for computing motion vectors, as well as the utility functions for ploting
optical flow pattern.

1 CREATING GABOR KERNELS

DECRIPTION: Creat 2-D Gabor kerncls and the derivatives {(with respect
to x and with respect to y) of Gabor kernels.

USAGE:
void CreateGabor(emega, theta, type, size, tempt, tempx, tempy)

float omcga: modulated spatial frequency (wo) (cycles per pixel).
float theta: orientation of the kernel (degree).

int type: kernel type: 1 for real kernel, 0 for imaginary kernel.
int size: the desired kernel size.

float** tempt: pointer of a block to Gabor kernel,

11

CHAPTER 3

float** tempx: pointer of a block to the degivative (with respect to
x) of the Gabor kernel.
float** tempy: pointer of a block to the derivative (with respect to
¥) of the Gabor kernel.

REMARKS:

CreatcGabor() creats Gabor kernel and its derivative kernels (the
derivative with respect to x or y.) The modulated spatial froquency.
oricntation, and size of the kerncls are determined by the user selected
omcga, theta, and size. The result of the created kernel is stored in
three blocks dynamically allocated in the memory.

MATHEMATICAL FORMULATION:

I
Go(z.y) = ¢~ cosm(wez + wyy),
wPay?
Gi(z,y) = =1 sin2n(wez + wyy).
the derivatives of Gabor real and imaginary parts arc

234y?
-at%-'- = -21rc'+(;z; €08 2 (we T + wyy) + we 8in 27 (WeT + wyy)),

3ag?
OOGy" = —ch“'ﬁ"(”ﬂ; €08 2m(we® + wyY) + wy 8in 20(wez + wyy)).

%6
Oz

‘2 2
= —2ne¢” o7 (—5; 8in 27 (W + wyy) + wy cos 2x{wez + wyy)),

. 2 2
%E;-‘ = —ch""-i"'(—% Bin 2m(we & + wyy) + wy cos 2m(wex + wyy)).

where w, and wy are modulated spatial frequency components in sptial fro-
quency domain,

EXAMPLE:

#includec<stdlib>
#include<stdio.h>
#include<math.h>

MOTION DETECTION BASED ON GABOR FUNCTIONS 13

int main()
{
- static float **kern_t, **kern_x, **kern_y;
float spatial_freq = .1, orientation = 0; -

int filter_type = 0;
int row, col, kernsize, index;
FILE *outt, *outx, *outy;

/* calculate kernel size and index #*/

kernsize = (int)ceil(1.0/(spatial_freq));
if(fabs({float)kernsize/2.0-ceil((float)kernsize/2.0))<=0.01)
kernsize++;

index=(int) (((float)kernsize-1.0)/2.0);

/* allocate memory for kernels =/

kern_t =(float **) malloc(kernsize#*sizeof (float#*));
kern_x =(float **) malloc(kernsizexsizeof (float#*));
kern_y =(float #x) malloc(kernsize*sizeof(float*));
for (i=0; i< kermsize; i++) {

kern_t[i] = (float *)malloc(kernsize*sizeof(float)+1);
xern_x[i] = (float *)malloc(kernsizex*sizeof(float)+1);
kern_y[i]l = (float *)malloc(kernsize*sizeof(float)+1);
}

/* generate Gabor type kernels */
CreateGabor(spatial_freq, oriemtation, filter_type, index, kern_t, kern_x, kern_y);

if((outt = fopen("gabor_t.dat", "w")) == NULL) exit(1);
if((outx = fopen("gabor_x.dat", "w")) == NULL) exit(1);
if((outy = fopen(“"gabor_y.dat", "w")) == NULL) exit(1);
for(i=0; i< kernsize; i++) {
for (j=0; j< kernsize; j++) {
fprintf(outx, "%f\t", kern_t([i](i]);
fprintf (outx, "%f\t", kern_t[il1(jl);
fprintf (outx, "%f\t", kern_t([il[jl1);
}
fprintf (outx, "\n");
fprintf (outx, "\n");
fprintf(outx, "\n");
}

fclose(outt);

CHAPTER 3

fclose(outx);
fclose (outy);
return 0;

}

2 COMPUTING CONVOLUTION OF
GABOR KERNELS

2.1 Image Buffer Initialization

DECRIPTION: initializc a buffer for convolution.
USAGE: void BufferInit(index, kernsize, column, buffer, fp)

int index: index of Gabor type kernel.

int kernsize: Gabor kernel size

int column: column of the given image.

unsigned char** buffer: pointer of the block storing image.
FILE* fp: pointer of an image file.

REMARKS:

BufferInit() initializes a buffer for convolution. The use of a buffer
accomplishcs the convolution of a given image one row at a time. The
size of the buffer can be determined by the product of the number
of rows of a given kerncl and the number of columns of the given
image. The top half spacc of the buffer is initialized to be filled with
the first row of the given image for the consideration of convolution
with image boundary and another half of the buffer was filled with
the image data. The image data should be 8-bit per pixel in binary
format. The buffer is a static unsigned char double pointer type.

EXAMPLE:

#include<stdlib.h>
#include<stdio.h>

MOTION DETECTION BASED ON GABOR FUNCTIONS 15

#include<malloc.h>

int main()

{

static unsigned char #*imagebuffer;
int image_row=50, image_col=50;

_ int kernel_index=7, kernel_size = 15;
int i, j;

FILE =xin;

/* allocate memory for image buffer »/

imagebuffer =(unsigned char **) malloc(image_rov¢sizeof(unsigned char*));
for (i=0; i< image_col; i++) {

imagebuffer[i] = (unsigned char *)malloc(image_col*sizeof(unsigned char));
}

/* open image file in READ_ONLY and BINARY mode »/
if((in = fopen("image.dat", "rb")) == NULL) exit(1);

/* initialize image buffer =/
BufferInit(kernel_index, kernmel_size, image_col, imagebuffer, imn);

for(i = 0; i < kernel_size; i++)
for (j =0; j < image.col; j ++)
printf("Image Data [%d]([%d) = %d\n", i, j, imagebuffer({i]([jl);

return 0;

3

2.2 Image Buffer Shifter

DECRIPTION: update the content of the image buffer by shifting up onc
row. This shift will result row 1 of the buffer being discarded, row 2 moved to
row 1, row 3 moved to row 2, ctc., and a new image row moved to the last row
of the buffer. The shift is performed every time tue convolution of one row is
finishexd.

USAGE:
void BufferShifter(kerndndex, kernosize, row.img, colimg, rowldoop, buffer. fp)

16 CHAPTER 3

int kerndindex: index of Gabor kernel.

int kernsize: Gabor kernel size.

int row.img: row of image.

int colimg: column of image.

int row.loop: actual row number in convolution double loop.
unsighed char** buffer: pointer of a block storing image.
FILE* fp: pointer of the image file.

REMARKS:

BufferShifter() shifts data of cach row in image buffer up to next row
and updates data of last row in image buffer after cach convolution
opceration. The rowloop is the actual row number in convolution
doublc loop in order to consider the lower boundary in the convolution
opcration. The image format should be 8-bit per pixel in binary, and
the image buffer could be static unsigned char double pointer type. |

EXAMPLE:

#include<stdlib.h>
#include<stdio.h>
#° iude<malloc.h>

int main()

{

static unsigned char *+imagebuffer;
int image_row=50, image_col=60;

int kernel_ipdex=7, kernel_size = 15;

int 1, j;
FILE *in;
/* alle: . memory for image buffer =/
--agebv: . =(unsigned char **) malloc(image_row*sizecf(unsigned char*));

for (i=0; i< image_col; i++) {

imagebuffer[i] = (unsigned char *)malloc(image_col*sizeof(unsigned char));
}

/* cpen in: - file in READ_ONLY and BINARY mode */
if((in = ..r.a("image.dat", "rb")) == NULL) exit(1);

MOTION DETECTION BASED ON GABOR FUNCTIONS 17

/% initialize image buffer */
BufferInit(kernel_index, kernel_size, image_col, imagebuffer, in);
/% display data in image buffer before shifting */
for(i = 0; i < kernel_size; i++)
for (j =0; j < image_col; j ++)
printf(“Image Data [4d][%dl = %d\n", i, j, imagebuffer[i]l[j]);
/* shift 1 row of data in image buffer */
BufferShifter (kernel_index, kernel_size, image_row, image_col, 10, imagebuffer, in);

/* display data in image buffer after shifting =/
for(i = 0; i < kernel_size; i++)
for (j =0; j < image_col; j ++)
printf("Image Data [Xd][%d] = %d\n", i, j, imagebuffer{il[jl);
free(imagebuffer);
return 0;

}

2.3 Image Convolution

DECRIPTION: pcrform 2D convolution.

USAGE:
float. ConvolutionUnit(kernindex, coldimage, coldoop, imagebuf, kern_buf)

int kern.dndex: index of Gabor type kernel.

int col.image: column of image.

int colldoop: actual column number in convolution doublc loop.
unsigned char** image_buf: pointer of a block storing image.
unsigned char** kern.buf: pointer of a block storing kerncl.

REMARKS:

ConvoiutionUnit() performs 2D convolution with image data from im-
age buffer and kernel data from kernel buffer. The column boundary
in image planc has been taken care of in this module, while the row
boundary in image planc has heen taken carc of by BufferShifter().

CHAPTER 3

The col.loop is the actual column number in convolution double loop.
After convolution opcration, the image buffer is updated by Buffer-
Shifter() so that next convolution operation will be performed accord-
ingly with the input of right sct of image data. The image format is
8-bit per pixel in binary, and the image buffer is static unsignod char
double pointer type.

EXAMPLE:

#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include<malloc.h>

int main()

{

static unsigned char **imagebuffer;
static float w*kern_t, **kern_x, **kern_y;
float spatial _freq = .1, orientation = 0;
int filter_type = O;

int row, col, kernasize, index;

int image_row=50, image_col=50;

float image;

FILE #*in, *out;

/* calculate kernel size and index */

kernsize = (int)ceil(1.0/(spatial_freq));

if (fabas((float)kernsize,2.0-ceil((float)karnsize/2.0))<=0,01)
kernaize++;

index=(int) (((float)kernsize-1.0)/2.0);

/* allocate memory for kernels #/

kern_t =(float *+) malloc(kernsize*sizeof(floats));
kern_x =(float **) malloc(kernsize*sizeof(floate));
kern_y =(float **) malloc(kernsizessizeof (floats));

for (i=0; i< kernsize; i++) {

kern_t[i] = (float *)malloc(kernsize+sizeof{float)+l);
kern_x[il (float ¢)malloc(kernsigessizeof(float)+1);
kern_y[i]l = (float *)malloc(kernsizexsizeof(float)+1);

MOTION DETECTION BASED ON GABOR FUNCTIONS 19

}

/* ullocate memory for image buffer */
imagebuffer =(unsigned char **) malloc(kernsize*sizeof (unsigned chars));
for (i=0; i< image_col; i++) {
imagebuffer[i] = (unsigned char *)malloc(image_col*sizeof (unsigned char));
}

/* geunurate Gabor type kernels */
CreateGabor(spatial _freq, orientation, filter_type, index, kern_t, kern_x, kern.y);

/* open image file in READ_ONLY and BINARY mode */
if((in = fopen("image.dat", "rb")) == NULL) exit(1);
if((out = fopen("conv.dat", "w")) == NULL) exit(1);

/* initialize image buffer =/
BufferInit(kernel_index, kernel_size, image_col, imagebuffer, in);

/% do convolution =/
for(row = 0; row < image_row; row ++) {
for (col = 0; col < image_col; col ++) {
image = ConvolutionUnit(index, image_col, col, imagebuffer, kerxn_t);
fprintf (out, “%£\t", image);
/* shift data in image buffer =/
BufferShifter(index, kernsize, image_xow, image_col, row, imagebuffer, in);
}
fprintf (out, "\n");
}

free(kern_t);
free(kern_x);
free(kern_y);
free(imagebuffer) ;
return 0;

}

20 CHAPTER 3

3 MOTION DETECTION ON 2D TEST
PATTERN IMAGES

This section describes & motion deiection with onc orientation and spatial fre-
quency tuned Gabor frnction. Unlike the algorithm to be deseribed in the next
soction, this motion detection is majorly used as testing purposc for the know
sinc or cosine wave image patterns, which can be tuned to only onc orientation
and spatial frequency.

DESCRIPTION: motion detection on a cosin wave moving imagces.

USAGE: GaborCos

input:

(1) Modulated Spatial frequency (weo) of the Kernd (Cycles per pixal)
(2) Length of the kernel in sigma value (length = 1/(sigma*omega))
(3) Kernel Oricntation

(4) Thresold for Motion Detection (to climinate extreme high value
of motion (u,v) from the hamogencous image region where derivative
features arc poorly defined

(5) Kernel Phase (0: Gabor Real Part; 90: Gabor Imaginary Part)
(6) Dcrivative of Image File: file name of the derivative (finite differ-
cnce) of the image frame 3 minus frame 1

(7) Image File: file name of the 2nd image frame

output:

(1) u.dat motion speed along X axis

(2) v.dat mation speed along Y axis

(3) tl.dat: gabor response to derivative of moving image ()
(4) x1.dat: gradicnt gabor responsc to moving image (€2,)
(5) yl.dat: gradicnt gabor response to moving image (Q)

The kernal size and image size are defined in #deofine macros.

REMARKS:

This program cxtracts an motion vector by Gradicut Gabor Modcl. A
sct of three consccutive image frames is needed for extracting motion
information. The first frame and the third frame are used to form

MOTION DETECTION BASED ON GABOR FUNCTIONS 21

image derivative by finite difference techinique, then the difference is

convolved with the Gabor kernel to produce ;. The second frame
. is convolved with derivatives of Gabor (in x and in y direction) to ‘
4 produce Q, and Q. The user has to first define the orientation and

spatial frequency of the cosine test pattern. The sclection of the length

of the Gabor kernel has to be made with the consideration to the

oricntation and spatial frequency sclectivity. As a general guideline,

the user is advised to use the following formula to cstimate the length

valuc:

Length = %

where T is the sigma of the test pattern.

Another point for the uscr to realize is that thresholding is performed
on the processed image data, Qq, 2y, and Q, to deal with very small
value at certain pixel location. With this thresiolding the calculated
optical flow vectors at these locations will be frec of cxrroncous results
duc to the naturc of the carly vision computing (most of them are
mathematically characterized as sll-posed problems).

MATHMATICAL FORMULATION:
0 = Quu + Qv
where ; is the convolution of Gabor kernel with derivative of image, 2, is the

convolution of x gradient Gabor kernel with moving image, 2, is the convolu-
tion of y gradicnt Gabor kerncl with moving image.

EMAMPLE: CosConv

Modulated Spatial frequency In Kernol(Cycles/pixal): 0.1

Length: 4.0

Kernel Oricatation(degree): 30.0

Thresold of Motion Detection: 100.0

Kernel Phase(degree): 90.0

Derivative of Image File: devi.img

Moving Image File: moveimg *

22 CHAPTER 3

4 MOTION DETECTION ON 2D IMAGES
WITH MULTIPLE KERNELS

For any realistic motion dctection, different spatial frequency and oricntation
foaturces should all be considered. This requires the usce of more than onc spatial
frequency and oricentation tuncd Gabor kernels. This scction describies how this
multiple-kernel process can be accomplished.

DECRIPTION: Motion Detection on Moving Imngos.
#include "leastst.c"
USAGE: GahorMotion

input:

(1) Modulatesd spatial frequency (wy) of the kernel (cycles per pixel)
(2) Starting oricntation of the kernel (degree)

(3) Rotating angles cach time (degree)

(4) Numbecr of rotations, or the numher of different oricoted Gabor
kerncls

(5) Thresold of motion detection (a recommendated value is greater
than 50)

(6) Kernel phase (0: Gabor Real Part; 90: Gabor Imaginary Part)
(7) Derivative of Image File: file name of derivative (finite difference)
of the average of image frame 3 minus frame 1 (8) Moving Image File:
filc name of image frame 2

. output:
(1) u.dat motion speed along X axis
(2) v.dat motion speed along Y axis

The kernd size and image size arc defined in #define macros.

REMARKS:

o

This program cxtracts an optical fiow from 3 consccutive image frames
by Gradient. Gabor Medel. When selecting different length of kernel,

MOTION DETECTION BASED ON GABOR FUNCTIONS 23

the consideration has to be given in the connection to the preprocess-
ing of bandpass filtering or lowpass fltering operation. We suggest
the use of Gaussian kernel for lowpass filtering or LoG (Laplacian of
Gaussian) kernel for bandpass filtering before the use of Gabor kernels
for motion detection. As one general guideline, the same sigma value
of the Gabor kernel can be used for the Gaussian kernel, and the sane
sigma of the Gabor kernel can be used for the LoG kernel.

MATHEMARTCAL FORMULATION:

§¢+Q',u+§f,,v=0

where Q¢ = [0}, 03, Q4" Q. = (01, 92.... Q47 Q, = [0}. 2. .. Q4"

QF is the convolution of Gahor kernel with derivative of image,
QF is the convolution of x gradient Gabor kerndl with moving image, and
Q"; is the convolution of y gradient Gabor kernel with moving image.

EXAMPLE: GaborMotion

Modulated Spatial frequency In Kernel(Cyecles/pixel): 0.1
Stating Oricntation of Kernel(degree): 0.0

Rotating Angles Each Time(degree): 30.0

Number of Retations: 4

Thresold of Motion Detection: 100.0

Kernel Phasc(degree): 0.0

Derivative of Image File: devi.img

Moving Image File: move.img

5 LEAST SQUARE ESTIMATION
DESCRIPTION: Least-Square-Estimation

USAGE: solve2(int row, int column, float thresold)
or solved(int row, int column, float thresold)

int row: the row of imagc;
int column: the column of the image;
float thresold: thic thresold of motion deteetion.

CHAPTER 3

REMARKS:

This program performs a least-square-cstimation to minimize the a-
ror of optical flow computation, The technique will allow the better
handling of th~ ill-posed problem, optical low computation. As it is
well known, many carly vision problems arc ill-posed in naturc. To be
able to deal w:thi this, a least square estimation has been developed for
optical flow computation with a sct of 2 diffcrent orientation Gahor
kernels or a set of 4 different orientation Gabor kerncls respectively.

MATHMETICAL FORMULATION:

- - - 2
E(u,v) = |Q¢ + Qeu 4+ Qv

EXAMPLE: solve2(60, 60, 200.0)

38D Motion Detection

The cosine pattern was moved .2 pixels at 30.5 degree orientation
2oF el » el P i V"l L V7V Vol
A AT
Rl Pl P P
P P P P
el Pl P A i el
Sl ol ol i P P P Pl A el
Pl P A iV ol
Pl i Pl P P i ol
Pl P b ol
A
P D P P P P
AT
AP
P l l al laliet
A
AT
AT S
AP
S A
Y P P el

0]) d 1 1
0 5 10 15 20

X Axis
Average value of the computed move: 1.97; Imaginary Gabor kernel

Figure 3. Motion datection result for cosine wave images, throe
framens were generated with orientation 30.5 degree and spatial frequency 0.025.
The motion detection waa performed by Gabor kemnel with orientation and
spatial frequency equal to 30.5 degree and 0.025 respactively.

4

THREE-DIMENSIONAL MOTION
DETECTION

ABSTRACT

1 VIRTUAL REALITY TECHNIQUE FOR
CREATING 3D TEST PATTERNS

To be able to test the motion detection algorithim realstically with better con-
trol of the testing condition, we have developed the technique based on the
concept of virtual reality to creat virtual camera model. We have been using
the tool developad by Watkins 1. A C-type language was uscd to creas the
uscr desired testing conditions which include the user sclection of the following
features:

s A world-coordinate system where cvery objects arc defined and are refer-
cnced to, and a viewcr-coordinate system vhich is obscrver-centered coor-
dinate system, as well as the relative position between the two.

m A camera model with the choice of oricntation (puinting direction) of the
camera, the optical characteristics of the lens.

s Lighting condition with user control of the placement and the number of
point light. sources.

® 3D object construction using primitive building blocks, and the choice of
different reflection models, such as diffused reflection, specular reflection,
and ambient light.

1s C.D. Watkins, S.B. Coy, and M. Finlay, Photorealism and liay Traring in C, M&T
Books, New York, NY 10011, 1992.

26

THREE-DIMENSIONAL MOTION DETECTION

Given in the fAoppy disk number 2, in dircctory MOVIE, onc of the image
scquence generated by this technique, ONR1.FLI, can be displayed as a movic
on 486/50MHz machinc with SuperVGA monitor. To display this scquence.
first. load the Aoppy disk into a floppy disk driver, then go to this drive and
go to dircctory MOVIE, then type PLAY ONR1.FLI to exccute the display of
the mavie. Please be aware of the software copyright. issuc, the program in this
floppy disk should not be copyed, or used for any other purposc. To obtain
a copy of this utility program, pleasc contact the publisher indicated by the
program.

With this virtual rcality technique, the uscer can creat well-controlled motion
images with the cxact known camera sctup and the relative position hetween
thic obscrver and the moving objects. This is a very powerful way of testing
and verifying the algorithm devcloped for motion computation and motion
compcensation.

2 CREATING IMAGE SEQUENCE WITH
BOTH OBSERVER AND OBJECT
MOTION

Using the technique described in the previous section, the user can creat image
scquence with both obscerver and object motion. This section describes onc
cxample.

DESCRIPTION: gencrate squence of moving images including

(1) sphere moves along Z asix with step 2 units;
(2) obsecrver moves along Y axis with step 2 units;
(3) combination of (1) and (2).

The program, BM11.B, for creating 3D virtual environment and the image
scquence is given the last chapter of this manual.

('HAPTER 4

3 3D MOTION DETECTION

Using the program GARBOMOTION. three dimensional motion can be com-
puted, The program is the integration of several program modules deseribed in
Chapter 3. A sonree code of the program is given in Chapier 5. The program
was documeaented. With the understanding of tlie programs in Chapter 3, the
usc of this program shall not. posc new challenge.

Enlarged portion without showing the x-y-2
coordinate (movie file is included in the
floppy disk and can be played on 486/50Mhz
machine or above with SVGA)

Fizsove 40 A franme of a sequence of images with bosh hsorver and
spheve ictiomn. Thee tiotiom paranweters and the camera setup, were described
in the sonres o listine, BAI11.13

SOFTWARE LISTS

Y Direction (Observer Moves 5§ Units Along Y Axis)

—— e e
R e e = -
——— . S
—— e = e e = . -
- S T T, S e S s B = -
R O Ay Sy e
N e e e e
L e R L N N
L A N e
e e e e e e e
Sy B, S S, Sy By Sy Ty Ty Sy g S
D e L e e e e e e e B T S
S T S Wy Sy S, S e e Ty s Sy Ty, e S

- ——
- - e
T -

- o= o
-
- o o
e e s v v o o -
S S Sy -—<(o—---
—— - e o - - o - - oo e o - -
et . -~ e e P e B
G N o S G ST g G - = - A
- P ot B > o - ———— - -

-emem on Gt A

— — —— — — —— _— S T, G T W

———— ———— ——— s S S

c
o
8 o
=
N

- - - — o
o o o ot -t -
o o o - o ———
W G g et G S S ot et P gt ko
O e o e e o T o -

- o o o —— —

s B A T
- o -y
- e
——— -

- o G > - ——
- o an wt - o - ————
o wn - —— Y= e ™ -
o o - - T o= e S O n o —
v T e = = = - o -
o o - T O = o o -

- - - -
- —— —p o —— G — —— . -
—— v - ——— - — o - -
U e v o one e S o ——
- - - e S o T S e = P Gn e = - ma

-—— e e gy -—— -

— o — -

1

-20 -10 0 10 20
Kernel 31x31, 4 Orientations, 35 Degrees Apart, Phase 0

Figure 5. Motion detection reanlt for a aphere image with 4 kernels
45 degree apart.

3

SOFTWARE LISTS

ABSTRACT

This chapter gives the source code listing of all the programs describied in this manual.
A MS-DOS fioopy disk is also provided.

1

~
*

£ # £ B B X % £ % B * X

BARIMAGE.C

Copyright (c) Dr. Hua Li’s Lab 1994. All Rights reserved.

Purpose: To generate an oriented bar stripe image pattern for verifing
the concept of spatial frequency and orientationm bandwidth
selectivities.

Image Format: binary image from 0 to 265. The size is ROW x COLUMN;

Name: Barlmage.c.

Compilation: (g)cc -o outputfilename BarImage.c -1m

Side Effect: No.

Input: Spatial frequency, Orientation, and size of image

Output: bar image file.

Coded by: Xiaohui Meng.

Executed Machine: Sun Workstation

Last Change: Feb. 24, 1994

*/

#include<string.h>

30

SOFTWARE LISTS 31

#include<stdio.h>
#include<math.h>

BarImg(int row, int column, float omega, float oriemt, char* filename)
{

FILE *file;

int i, j, image;

float pi=3.1416, Spatial Freq.X, Spatial_Freq.Y, Orientation, value;

Spatial Freq.X
Spatial_Freq.Y

= omega * cos(orient * pi / 180.0);
= omega * sin(orient * pi / 180.0);
if((file=fopen(filename,"wb"))==NULL) {

printf(" Can’t open output file for writing");
exit(-1);

}

/*
The bar wave image formulation:
value = 255 if cos(2#*pi*(x*wx + y*uy)) > 0.0
0 othervise
vhere wx is the spatial fregquency compoment in u
vy is the spatial frequency component in v
then the value of image is mapped to 0-255

®* % % % » B

4

for (i =0; i < row; i++) {
for (j = 0; j < column; j++) {
it(coas(2.0*pi*(i*Spatial Fregq X + j*Spatial_Freq.Y)) > 0.0)

image = 255;
else
image = 0;
fprintf(f£ile,"%d\t",inage);
}
fprintf(file,"\n");
)}
fclose(file);

}

CHAPTER 5

| L)

COSIMAGE.C

-~
*

Copyright (¢) Dr. Hua Li’s Lab 1994. All Rights Reserved.

Purpose: To generate a oriented cosin moving image and image derivative.
This pattern is used to test the coordinate system rotation
and image flow.

Name : CosImage.c.

Compilation: ¢c -o outfilename Coslmage.c -lm

Output files: (1) orig.img --- original image.

(2) move.img --- moved image.
(3) devi.img --- derivative of image.

Coded by: Xiaohui Meng.

Last Change: Feb. 23 1994

& % % % % B # # % A »

L]
~

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

CosImg(int row, int column, float omega, float orient, float speed, float time)
{

FILE *infilel,*infile2,*infile3;

float valuel,value2,value3d;

float vx,vy,pi=3.1416;

int 1,j;

Image Pattern Generator
The formula of cosin image is:
I(x,y)= cos(2*pi*omega*(x*cos(theta)+y*sin(theta)~speedstine)).
vhere omega is the spatial frequency
theta is the oriemtation

the product of time and speed defineas the phase offset along theta
direction.

vx=cos(theta*pi/180.0);
vy=sin(theta*pi/180.0);

if((infilei=fopen("orig.img","wb"))==NULL) exit(-1);

SOFTWARE LISTS

if((infile2=fopen("devi.img","wb"))==NULL) exit(-1);
if((infile3=fopen("move.img","wb"))==NULL) exit(-1);

for (i =-(row-1)/2; i<(row-1)/2+1; i++)
{
for (j=-(colummn-1)/2;3j<(column-1)/2+1;j++)
{
valuel =(int)255.0%(cos(2.0*piromegas(vx*(float)i+vy*(£float)j-spesd+time))+1)/2.0;
value2 =(int)255.0«(cos(2.0*picomegar(vx+*(float)i+vy*(float)j-speed+(time+1)))+1)/2.0;
value3d =(int)255.0%(cos(2.0*pircmegas (vx*(float)i+vy*(float) j-speeds(time+2)))+1)/2.0;
fprintf (infilel,"%d\t",valuel);
fprintf (infile2,"%d\t", (value3-valuei)/2.0);
fprintf(infile3,"Xd\t",value2);
}
fprintf(infilei,™\n");
fprintf(infile2,"\n");
fprintf(intile3,"\n");
}
fclose(infilel);
fclose (infile2);
fclose (infile3);

3 COSCONV.C

/*

Copyright ¢ Dr. Hua Li’s Lab 1994. All Rights reaerved.
Purpose: To calculate the image flow from moving oriented cosin images.
Kernel : Gabor real part kermel and imape size ROWSIZE x COLUMNSIZE.
Image Format: Binary File
Name : CosConv.c.
Compilation: cc -o outputfilename CosConv.c -lm
Side Effect: Limited by maximum array size
Iaput: (1) Kernel Modulation Spatial frequency
(2) length (length = 1/(sigmar*omega))
(3) Kernel Orientaticn
(4) Thresold of Motion Detection

* B % 4 B ® % ¥ & 5 B

34 CHAPTER 5

(5) Kernel Phase (0: Gabor Real Part; 90: Gabor Imaginary Part)
(6) devi.img: file name of derivative of moving image
(7) move.img: file name of moving image
Output: (1) u.dat motion speed along X axis
(2) v.dat wmotion speed along Y axis
(3) ti.dat: gabor response to derivative of moving image
(4) x1.dat: gradient gabor response to moving image
(5) yi.dat: gradient gabor response to moving image
Executed Machine: Sun Sparc Station
Coded by: Xiaochui Meng.
Last Change: May. 25 1994

% % % B % % R % B2 2 ®

#*
~

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

#define KERNELSIZE &1 /* reserved kernel size */
#define ROWSIZE 81 /* rou size of image */
#define COLUMNSIZE 81 /% column Bize of image »/

void main()
{

float rpartt(KERNELSIZE] [KERNELSIZE] ,rpartx[KERNELSIZE] [KERNELSIZE] ;
float rparty[KERNELSIZE] [KERNELSIZE], -

bufferi [KERNELSIZE] [COLUMNSIZE] ,buffer2 [KERNELSIZE] [COLUMNSIZE] ;
FILE *infilel,*infile2;

FILE =»outi,*out2,*out3,*out4,*outs;

int row,cel,rowl,coll,row2,c0l12,i,j,index,number, ,kexnsize;

float vx,vy,omega,theta,pi=3.1416,sigma,orient,length,thresold;
float image,imagel,image2,image3,phase,u,v,uref,vref;

char devi_name[20], move_name[20];

printf("\n Input Spatial Frequency(Cycles/pixel):");
scanf ("%£",&komega) ;

printf("\n Input length :");

scanf ("%£" ,&length);

printf("\n Input Oriemtation :");

acanf ("%f",&theta);

SOFTWARE LISTS

printf("\n Input thresold :");

scanf ("%f" ,kthresold);

print£("\n Input Phase shifting(degrees):");
scanf ("%f" ,kphase) ;

printf("\n Input Derivative Image File:");
scanf ("%s", devi_name);

printf("\n Input Moving Image File:");
scanf("%s", move_name);

sigma = 1.0/(length*omega);

kXernsize = (int)ceil(1.0/(omega));

if (fabs ((float)kernsize/2.0-ceil((float)kernsize/2.0))<=0.01)
kernsize++;

print£("KernSize=jd\n" ,kernsize);

index=(int) ({(float)kernsize~-1.0)/2.0);

if((infilei=fopen(devi_name,"r"))==NULL) exit(-1);
if((infile2=fopen(move_name,"r"))==NULL) exit(-1);

vx=omega*cos(thetaspi/180);
vy=cmega*sin(theta*pi/180);
for (i=-index;i<index+i;i++) {
for (j=-index;j<index+i;j++) {
image=exp(-(float) (iei+j*])/(sigma*sigma));
imagei=cos(2.0%pi*(vx*(float)i+vys(float)j)+phasespi/180.0)+image;
image2=ain(2.0*pi*(vx*(float)i+vys(float)]j)+phase*pi/180.0)*image;
rpartt[i+index] [j+index]=imagel;
rpartx[i+index] [j+index]=-image2*vx*2.0*pi-imagei*(float)i*2.0/(sigmarsigma) ;
rparty[i+index] [{+index]=-image2*vy*2.0vpi-imagel#(£loat) j*2.0/(sigmasasigma);

convolution - -/

if((outi=fopen("t1i.dat","v"))==NULL) exit(0);
if((out2=fopen("xi.dat","w"))==NULL) exit(0);
if((out3=fopen("yi.dat","w"))==NULL) exit(0);
if((out4=fopen("u.dat","v"))==NULL) exit(0);

CHAPTER 5

if ((out5=fopen("v.dat", "w"))==NULL) exit(0);

for (row=index;rov<kernsize;rov++) /¢ Initialize the buffer =/
{
for (col=0;col<COLUMNSIZE;col++)
{
facar t(infilet,"%£", dbufferi[rovw] [coll);
fscant(infile2,")", &buffer2[rovl [col]);
bufferl [row-index] [col)=bufferi[index] [col];
buffer2[row-index] [coll=buffer2{index] [col];
}
}

for(i=0;i<ROWSIZE;i++) /* do the convolution */
{
for (j=0; j<COLUMNSIZE; j++)
{
image1=0.0;
image2=0.0;
image3=0.0;

for (rowi=-index;rowi<index+i;rowi++) /¢ convolution unit */

h
for (coli=-index;coli<index+1;coll++)

coll=j+coll;

~ 1£(c012<¢0) co0l2=0;
1f(col2>COLUMNSIZE-1) ¢012=COLUMNSIZE-1;
image1+=bufferi[rowi+index] [col2]srpartt[index+rowi] (index+coll];
image2+=buffer2[rowl+index] {col2]*rpartx[index+xowl] [index+cell];
image3+=buffer2[xrowl+index] [col2]*rpartylindex+rowl] [index+calll;

}
/*

* do motion speed calculation

*/

if(fabs(image2) > thresold)

u = cos(pirtheta/180.0)*cos(pirtheta/180.0)*imagel/image?2;
¢les u = 0.0;

SOFTWARE LISTS

if(fabs(image3) > thresold)

v = sin(pi*theta/180.0)*sin(pi*theta/180.0)*imagel/image3;
else v = 0.0;

if(uref =0.0) u = 0.0;
else u = uref*{vrefsvref/(uref+uref+vrefsvref));
if(vref = 0.0) v = 0.0;
else v = vref*(urersuref/(uref*uref+vrefsvref)); */
fprintf (outl,"%f\t",imagel) ;
fprintf (out2,"%f\t",imnage2) ;
fprintf (out3,"%f\t",image3);
fprintf(out4,"%f\t",u);
fprintf (outs,"%f\t",v);

} /+ for loop for j */

fprintf (outi,"\n");

fprintf (out2,"\n");

fprintf (out3,"\n");
fprintf (out4,"\n");
fprintf (outs,"\n");

for (col=0;col<COLUMNSIZE;col++) /% shifter =/

{
for (row=0;row<kernsize-1i;rov++)

{

bufferi[row] [coil=bufferi[row+1] [col];

buffer2[row] [coll=buffer2(row+i] [coll;

}

if (i<ROWSIZE-index-1)

{
fscani(iniilei,“%f",&bufteri[kernsize-l][col]);
fscanf (infile2,"Yf",kbuffer2[karnsize-1] [col]);
}

}
}
fclose{outl);
fclose(out2);
fclose{out3);
fclose(outd);
fclose(outs);
fclose(infilel);
{fclose(infile2);

CHAPTER 5

4 CREATGABOR.C

/*
* Copy right @ Dr. Li’s Laab 1994. All Rights reserved.
* Purpose: To generate Gabor kernel.
* Format: float point
* Name: CreateGabor.c

*/

void CreatGabor(omega, theta, type,size, tempt, tempx, tempy)
float omega, theta;

int type, size;

float *stempt, *¢tempx, **tempy;

{

float omega_x, omega.y, sigma;

float phase = 0.0; /* Gabor real part as default =/
float image, imagel, image2;

float pi = 3.141593;

int i, j;

omega_x = omega*cos(theta*pi/180);

cmega_y = omega*sin(theta*pi/180);
if(type == 1) phase = 90.0;

else phase = 0.0;

sigma= 1.0/(4.0*omega);

for (i=size;i>=-size;i--)
{
for (j=size;j>=-size;j--)
{
image=exp(-(float) (i*i+j*j)/(sigmassigma));
imagei=cos(2.0+pi«(omega_x*(float)i+tomega y*(float)j)+phase*pi/180.0)+image;
image2=8in(2.0%pi* (omega_x*(float)it+omega_y*(float)j)+phasespi/180.0)*image;

SOFTWARE LISTS

tempt [size-i] [size-j]=image1;
tempx[size~i] (size-j]=-image2somega_x+2, 0spi-imagei*(float)i*2.0/(sigma*signa);
tempy[size-i] [size-jl=-image2+omega_y+*2.0+pi-imagei*(float) j*2.0/(sigmassigna);
}
}

5 BUFFERINIT.C

~
»

Copy Right @ Dr. Li’s Lib. All Rights Reserved

Purpose: initialize the image buffer to take care of the
image boundary condition for convolution.

Module Name: BufferImit.c

Requiraed: file vas opened in "RB" mode.

Image Format: 8-bit/pixel binary format.

Coded by: Xiaochui Meng

Last Change: O0Oct. 1994.

*
*
*
»
]
*
*
*

»
~

void BufferInit(index, kernsize, column, buffer, fp)
int index, kernmsize, column;

unsigned char **buffer;

FILE *fp;

{

int row;

for(rov = 0; rovw < kernsize; row++) {
if(row < index) {
fread(buffer[row] ,sizeof (unsigned char), column, fp);
rewind (£p);
}

else
fread(buffer[row], sizeof(unsigned char), column, fp);

40 CHAPTER 5

6 BUFFERSHIFTER.C

/*
* Copy Right @ Dr. Li’s Lib. All Rights Reserved
* Purpose: shift data in image buffer for convolution.
* Module Name: BufferShifter.c
* Required: file was opened in "RB" mode.
+ Image Format: 8-bit/pixel binary format.
* Coded by: Xiachui Meng
* Last Change: Oct. 1994.

*/

void BufferShifter(kern_index, kern_size, row_img, col_img, row_loop, buffer, fp)
int kern_index, kern_size;

int row_img, col_img, row_loop;

unsigned char **buffer;

FILE *fp;

{

int row, col;

for(col = 0; col < col_img; col++)
for(row = 0; row < kern_size-1; row++)
butfer [row] [col] = buffer[row+1] [col];

if(row_loop < rov_img - kern_index -1)
fread(buffer[kern_size -1],sizecf(unsigned char), col_img, fp);

SOFTWARE LISTS

7 CONVOLUTIONUNIT.C

Copy Right €@ Dr. Li’a Lib. All Rights Reserved.
Purpose: convolve image with kermel.
Module Name: ConvolutionUnit.c
Required: file was opened in "RB" mode.
Inage Format: 8-bit/pixel binary format.
Coded by: Xiaohui Meng
Last Change: Oct. 1994.

*/

float ConvolutionUnit(kern_index, col_image, col_loop, image_buf, kern_but)
int kern_index, col_image, col_loop;

unsigned char **image_buf, *+*kern_buf;

{

int rowi, coll, col2;

float conv_data= 0.0;

for (rovi = -kern_index; rowl < kern_index + 1; rowl++) {

for (coll = -kern_index; coll < kern_index + 1; coli++) {
¢0l2 = col_loop + coll;
1£(c012 < 0) col2 = 0; /*judge boundary in column of image buffer s/
if(col2 > col_image - 1) co0l2 = col_image - 1;
conv_data += (float)image_buf[rovi+kern_index] [col2] *
kern_buf [(kern_index+rowi] [kern_index+coll];

}

}

return conv_data;

}

8 GABORMOTION.C

/%
. Copyright @ Dr. Hua Li’s Lab 1994. A1l Rights reserved.

CHAPTER 5

Purpose: To calculate the image flow from moving images.
Kernel : Gabor type kernel(real or imaginary part).
Image Format: Binary imsge with ROWSIZE x COLUMNSIZE.
Name : Gabor.c.
Required: Leastsq.c.
Compilation: ¢c -0 filename Gabor.c -lm
Side Effect: Limited by maximum array size.
Input: (1) Kernel Modulation Spatial frequency
(2) Starting orientation of kermel
(3) Rotating angle each time
(4) Numbers of rotating
(5) Threshold
(6) Phase in kernel. 0: real part; 90: imaginary part.
(7) Derivatevi Image File: file name of derivative of moving image
(8) Moving Image File: file name of moving image
(1) u.dat motion speed along X axis
(2) v.dat motion speed aleng Y axis
(3) t1.dat: gabor response to derivative of moving image
(4) xi1.dat: gradient gzhor response to moving image
(5) yl.dat: gradient gabor response to moving image
Executed Machine: Sun Sparc Station
Coded by: Xiachui Meng.
Last Change: Mar.18 1994

&
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-
*

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <wath.h>
#include "Leastsq.c"

#define KERHWELSIZE /* reserved kernel size */
#define ROWSIZE /% Tov size of image *»/
#define COLUMNSIZE /* column size of image */

void main()
{

float rpartt[KERNEL3IZE] [KERNELSIZE] ,xrpartx[KERNELSIZE] [KERNELSIZE] ;
float rparty[KERNELSIZE] [KERNELSIZE],

buffer1 [KERNELSIZE] (COLUMNSIZE] ,buffer2[KERNELSIZE] [COLUMNSIZE] ;

SOFTWARE LISTS

FILE #*infilei,*infile2,#infile3;
FILE =*outl,*out2,*cut3;
- int row,col,rovi,coll,row2,col2,i,j,index,number ,kexnsize;
float vx,vy,omega,theta,pi=3.1416926535,sigma,angle_staxt, angle_tune,orient_num;
float threasold;
float image,imagel,image2,image3,phase;
char buffer_a[15];
char buffer_b[18];
char buffer_c[15];
char buffer_d[i5];
char *stringl=".dat";
char *string2="t\0";
char #string3="x\0";
char *string4="y\0";
char devi_name[20], move_name[20];

print£("\n Input Spatial Frequency(Cycles/pixel}:");
scanf ("%f" ,komega) ;
print£("\n Input Initial Angles(degreses):");
scanf ("%£" ,kangle_start);
print£("\n Input Tuning Angles(degrees):");
scanf ("%f" ,kangle_tune);
print£("\n Input Orientation Numbers :");
scanf ("%f" ,korient_num);
printf("\n Input Threshhold :");
gcanf ("%f£",kthresold) ;
printf("\n Input Phase shifting(degrees):");
. scanf ("%f" ,kphase) ;
print£("\n Input Derivative Image File:");
scanf ("%s", devi_name);
. print£("\n Input Moving Image File:");
scanf ("%s", move_name);

nunber=0; /% number of orientations =/
sigma= 1.0/(8.0vomega); /* set length = 4.0 +/
kernsize = (int)ceil(1.0/(cmega));
if (fabs((float)kernsize/2.0-ceil{(float)kernsize/2.0))<=0.01)
kernsize++;
print?("KernSize=Yd\n" ,kernsize) ;
index=(int) (((float)kernsize-1.0)/2.0);

44 CHAPTER b

if((infilei=fopen(devi_name,"r"))==NULL) exit(-1);
if((infile2=fopen(move_name,"r"))==NULL) exit(-1);

for(theta=angle_start;thetu<=angle_start+(orient_numi.0)*angle_tune+1.0;
theta+=angle_tune) {
anumber+=1;
sprintf (buffer_d,"%d" ,nunber);
strcpy(buffer_a,string2);
strcpy(buffer_b,string3);
strcpy(buffer_c,stringd);
strcat (buffer_a,buffer_d);
strcat (buffer_b,buffer_d);
strcat (buffer_c ,buffer_d);
strcat(buffer_a,stringi);
strcat (butfer_b,stringl);
strcat(buffer_c,stringl);

e Gabor Type Kernal Generator ----------
infile3=fopen("kern.dat","w");

vx=cmega*cos(theta*pi/180) ;
vy=cmega*sin(theta*pi/180);
for (i=index;i>=-index;i--)
{
for (j=index;j>=-index;j--)
{

image=exp (- (float) (isi+j*j)/(sigmarsigne));

imagei=cos (2.0*pis* (vx+(£loat) i+vy«(float) j)+phase*pi/180.0)*image;

image2=8in(2.0%pi* (vx*(float)i+vy*(float)j)+phase*pi/180.0)*image;

rpartt [index-i] [index-j]=imagel;

rpartx[index-i] [index-j]=-image2+vx«2.0*pi-image1»(f1loat)ix2.0/(sigma*sigma);

rparty[index-i] [index-j)=-image24vy+2 O*pi-imageis (£loat) j*2.0/(sigmassigma) ;
fprintf (infile3,"%f\t",imagel);

}

vprintf(infile3,"\n");
}

SOFTWARE LISTS

convolution ~--
i#((outi=fopen(buffer_a,"v"))==NULL) exit(0);
if((out2=fopen(buffer_b,"v"))==NULL) exit(0);
it ((out3=fopen(buffer_c,"w"))==NULL) exit(0);

for (row=index;row<kernsize;row++) /* Initialize the buffer =/
{
for (col=0;col<COLUMNSIZE;col++)
{
facant{(infilel,"%£" ,kbufferi[row] [col]);
facan? (infile2,"%f" ,dbuffer2 [row] [col]));
bufferi[rov-index] [col]=bufferi[index] [col];
butter2[rov-index] [coll=buffer2[index] [col];

}
}

for (i=0; 1<ROWSIZE;i++) /% do the convolution */
{
for (j=0;J<COLUMNSIZE; j++)
{
image1=0.0;
image2=0.0;
image3=0.0;
for (rowi=-index;rovi<index+i;rowi++) { /* convelution unit »/
for (coll=-index;coli<index+i;coli++)
c0l2=j+coll;
i2(c012<0) col2=0;
i£(c012>COLUMNSIZE~1) ¢012=COLUMNSIZE-1;
imagei+=bufferi[rovi+index] [col2] *rpartt [index+rovi] [index+coll];
image2+=buffer2(rovi+index] [col2) *rpartx[index+rovi] [index+coll];
inmgcs+=buffer2[rov1+index][col?]trparty[indox+rov1][indcx+coli];

}
fprintf (outl,"¥£\t", imagel);
fprintf (out2,"¥#\t",image2);
#printf (out3,"{£\t",image3);
} /» for loop for j */

fprintf (outi,"\n");
fprintf (out2,"\n");

CHAPTER 5

fprintf(out8,"\n");

for (col=0;col<COLUMNSIZE;col++) /* shifter ¢/
{
for (row=0;row<kernsize-1;row++)
{
bufferi[row] [col]=bufferirow+1]l[col];
buffer2[row] [col]=buffer2[row+i] [col];
}
it (i<ROWSIZE-index-1)
{
facanf (infilel,"%f" ,kbufferikernsize-1] [c0l]);
facanf (infile2, "%f" ,tbuffer2[kernsize-1] [coll);
}
}
}
revind(infilel);
reuwind(infile2);
fclose(outl);
fclose(out2);
fclose(outl);
}

fclose(infilel);
fclose(infile2);

if (orient_num == 2.0) solve2(ROWSIZE,COLUMNSIZE,thresold);
else
salved (ROWSIZE,COLUMNSIZE, thresold);

9 LEASTSQ.C

/*
* This program is to minimize the motion errox by using

SOFTWARE LISTS

least-square-estimation. Two functions are included:

(1) solve4(): function for rotating 4 orientations of Gabor type function
(2) solve2(): function for rotatiag 2 oxientations of Gabor type function.
required: ddd.dat, the difference of first frame and second frame of images

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>

solve4 (ROW,COLUMN, thresold)

int ROW,COLUMN;

fleat thresold;

{

int i,j,k,index;
float yt[5],yx[61,yyl5];
float u,v,ball;
float numi,num2,num3,num4,nums;
FILE »fti,+££2,%ft3,+ft4, *£t5;
FILE *fxi,*fx2,*fx3,»fx4, =£x5;
FILE »fy],»fy2,«fy8,*fy4, «fy5;
FILE #outl,*out2,*out3,*out4;

if((fxi=fopen("xi.dat","r"))==NULL) exit(0);
if ((£x2=fopen("x2.dat","r"))==NULL) exit(0);
if ((£x3~fopen("x3.dat","r"))==NULL) exit(0);
iZ ((fx4=fopen("x4.dat","r"))==NULL) exit(0);

if{(fyi=fopen("y!.dat","r"))==NULL) exit(0);
if ((fy2=fopen("y2.dat","r"))==NULL) exit(0);
if((fy3=fopen("y3.dat","r"))==NULL) exit(0);
if((fy4=fopen("y4.dat","x"))==NULL) exit(0);

if((fei=fopen("ti.dat","x"))==NULL) exit(0);
if((ft2=fopen("t2.dat","r"})==NULL) exit(0);
if((£t3=fopen("t3.dat","r"))==NULL) exit(0);

CHAPTER 5

if ((ft4=fopen("t4.dat","r"))==NULL) exit(0);

if((out3=fopen("ddd.img","r"))==NULL) exit(0);
if((outi=fopen("u.dat","w"))==NULL) exit(0);
if ((cut2=fopen("v.dat","w"))==NULL) exit(0);
index=0;

for (i=0; 1<ROW;i++)
{
for(3j=0; j<COLUMN; j++)

{
fscanf (fx1,"%f" ,&yx(0]1);
fscanf (£x2,"%E" ,kyx{1]);
facanf (£x3,"%f" ,&yx[2]);
fscanf (fx4,"%f" . &yx[3]);

fscanf (£y1,"%t" ,&yy[0]);
fscant (£y2," %" ,kyy(1]1);
facanf (£y3,"%f" ,kyy[2]);
fscant (£y4,"%f" ,&yy[3]);

facanf (£t1,"%f" &yt [0]);
facanf (££2," %", &yt [1]);
facant (££3, %", &yt [2]);
fscanf (£t4,"%f", 2yt [3]);

facanf(out3,"%£" ,kball);

numi=0.0;

num2=0.0;

num3=0.0;
numé=0.0;
num6=0.0;

if(ball == 0.0) { /* determine if motion occurs */
fprintf (outi,"%£\t",0.0);
fprintf (out2,"%f\t",0.0);
}
else {
for (k=0;k<4;k++) /¢ /10.0 for reducing out of range */
{
numi+=yx k] /50.0*yx[k]/50.0;

SOFTWARE LISTS

num2+=yy[k)/50.0*yy[k] /50.0;
num3+=yy [k]/50.0*yx[k]/50.0;
numd+=yt [x] /50.0*yx[x]/50.0;
nums+=yt [k]/50.0+yy[k]/560.0;
}

if (fabs (numi*num2-num3*num3)<= thresold)
{

puts(" data overflow ");

u=0.0;

v=0.0;

index+=1;

printf("\n row=id, columm=%d\a",i,j);

}

else

{

/* Coordinate System would be Consistent with MATLAB Coordinate System */
e=- (num2*num4-num3*nums)/ (nuni *num2-num3*num3) ;
u==-(numl*nums-nun3*num4)/ (aumi *num2-num3*num3) ;

}
fprintf(outi,"%£\t" ,u);
fprintf(out2,"%E\t",v);

} /% ball == 0 */
}
fprintf (outi,"\n");
fprintf(out2,"\n");

}

printf (" \ntatol dataflow number is %d\n",index);
remove("tl.dat");
remove("t2.dat");
remove("t3.dat");
remove("t4.dat");
remove("xi.dat");
remove("x2.dat");
remove("x3.dat");
remove("x4.dat");
remove("yl.dat");
remove("y2.dat");
remove("y3.dat");
remove("y4.dat");

CHAPTER 5

s80lve2(ROW,COLUMN, thresold)
int ROW,COLUMN;
float thresold;
{
int i,j,k,index;
fleat ytl[2],yx[2],yyl2];
float numl,num2,num3,num4,numb,u,v,ball;
FILE *ft1,*£¢2;
FILE *fxi,*fx2;
FILE *fy1,*fy2;
FILE *outl,*out2,*out3;

if((fxi=fopen("x1.dat","z"))==NULL) exit(0);
it ((£x2=fopen("x2.dat","r"))==NULL) exit(0);

it ((fyl=fopen("yi.dat","r"))==NULL) exit(0);
it ((ty2=fopen("y2.dat","xr"))==NULL) exit(0);

it((ft1=fopen("ti.dat","r"))==NULL) exit(0);
if((£t2=fopen("t2.dat","r"))==NULL) exit(0);
if((out3=topen("ddd.img","r"))==NULL) oxit(0);

if((outi=topen("u.dat","y"))==NULL) axit (0);
if ((out2=fopen("v.dat","u"))==NULL) exit(0);

index=0;

for(i=0;i<ROW;i++)
{
fexr (§=0; § <COLUMN; j++)
{

fscanf (fx1,"¥1",&kyx[0]);
fscanf (£x2,"%f",eyx[1]);

facanf (£31,"%£" ,&kyy[0));
facant (£y2," %" ,kyy[1]);

SCFTWARE LISTS

facanf (ft1,"%f",&yt[0]);
fgcanf (£t2,"%E" &yt [1]);
fscanf (out3,"%f",&ball);

numi=0.0;
num2=0.0;
num3=0.0;
num4=0.0;
num5=0.0;

if(ball == 0.0) { /* determine if motion occurs */
fprintf (outi,"%f\t",0.0);
fprintf (out2,"%£\t",0.0);
}

else {

for (k=0;k<2;k++) /* /10.0 for reducing out of range */

{
numi+=yx[k] /60.0+yx [k} /50.0;
num2+=yy [k] /60.0+yy[k] /50.0;
num3+=yy [k} /5C.0*yx (k] /50.0;
numd+=yt [k] /60.0%yx[k}/50.0;
numb+=yt {k]/50.0+*yy[k]/50.0;
}

if (fabs(numi*num2-num3*num3) <=thresold)
{

puts(" data overflow ");

u=0.0;

v=0.0;

index+=1;

printf("\n row=%d, column=%d\n",i,3);
}

else

{

/* Coordinate System Transform for U and V Otherwise U and V change each others/
v=- (num2+aum4-num3*numb) / (numi *num2-num3+nunl) ;
u=- (numl *num5-num3+*num4) / (numi*num2-num3snum3} ;

}
fprintf (outt,"4f\t",u);
fprintf(out2, "%f\t",v);
} /% ball == 0 %/
}

52 CHAPTER 5§

fprintf (outi,"\n");
fprintf (out2,"\n");

¥

printf(" \ntatol dataflow number is }d\n",index);
remove("ti.dat");
remove("t2.dat");
remove("xi.dat");
remove("x2.dat");
remove("yl.dat");
remove("y2.dat");

}

10 BM11.B

studio {

from -30 225 120 //set up position of the camera here and next line
at ~10 10 10

wp 001

angle 27.1

res 120 100

aspect 1.2

antialias adaptive

background (0 0 1)

ambient .8 .8 .8

}

/* light source definitionw/

light { type point falloff i position 60 120 80 color 25 25 25 }

/* objects defination=*/
// for red x-axis //
surface { diff (.3 .3 .3) shine 20 .5 .5 .5}

cone { apex 0 0 O base 25 0 O apex_radius 1 base_radius 1 }
cone { apex 25 0 0 base 27 0 O apex_radius 1 base_radius 5 }
cone { apex 27 0 0 base 35 0 O apex_radius 5 base_rzdius 0 }

SOFTWARE LISTS 53

sphere { center 35 5 0 radius 1 }
sphere { center 42 § 0 radius 1 }
sphere { center 35 5 10 radius 1 }
sphere { center 42 5 10 radius 1 }
cone { apex 35 § 0 apex_radius 1
base 42 5 10 base_radius 1 }

cone { apex 35 5 10 apex_radius 1
base 42 5 0 base_radius 1 }

//for green y-axis //

surface { diff (0 1 0) shine 20 .5 .5 .5}

cone { apex O 0 O base 0 25 0 apex_radius i base_radius 1 }
cone { apex 0 25 0 base O 27 0 apex_radius 1 base_radius 5 }
cone { apex 0 27 0 base 0 35 0 apex_radius 5 base_radius O }

sphere { center 5 36 10 radius 1 }

sphere { center 12 35 10 radius 1 }

sphere { center 8.5 35 0 radius 1 }

cone { apex 8.5 35 5 base 5 35 10 apex_radius i base_radius 1 }
cone { apex 8.5 35 5 base 12 35 10 apex_radius 1 base_radius 1 }
cone { apex 8.5 35 5 base 8.5 35 0 apex_radius i bass radius {1 }

// for blue z-axis //
surface { diff (0 0 i) shine 20 .6 .b .5}

cone { apex 0 0 0 base 0 O 25 apex_radius 1 base_radius 1 }
cone { apex 0 0 25 base 0 0 27 apex_radius i base_radius § }
cone { apex 0 0 27 base 0 0 35 apex_radius 5 base_radius 0 }

sphere { center -5 -5 25 radius 1 }

sphere { center -12 -5 26 radius 1 }

sphere { center -5 -5 36 radius 1 }

sphere { center -12 -5 35 radius 1 }

cone { apex -12 -5 35 base -5 -5 25 apex_radius 1 base_radius 1 }
cone { apex -5 -5 35 base -12 -5 35 apex_radius 1 base_radius 1 }
cone { apex -5 -5 25 base -12 -5 26 apex_radius 1 bese_radius 1 }

/* Sphere ¢/
surf {

54 CHAPTER 5

diff (.8 .1 .1)
spec .8 .1 .1
shine 30

}

sphere { center 10 60 10 radius 10} // set up position of sphere here

/* The end */

