
AD-A285 726

PROJECT PROGRESS REPORT IV

For The Project Of

LOCALLY CONNECTED ADAPTIVE GABOR FILTER
FOR REAL-TIME MOTION COMPENSATION

For the Period from July 20th of 1994
to October 19th of 1994 D T C,

•ELr.CTE.-.

94-3 153F

This Report Is Submitted to ONR

This documn- - ,
IOt pubi -: -

" October 19th, 1994

* Principal Investigator: Professor Hua Li
Computer Science Department, College of Engineering

Texas Tech University, Lubbock, TX 79409
Telephone: (806) 742-3513, E-mail: xdhua@ttacsl.ttu.edu

Administrative Point of Contact
Kathleen Harris, Ph.D., Director of

The Office of Research Services
Texas Tech University

Lubbock, Tx 79409
Phone: (806) 742-3884

941025 16 13

PROJECT PROGRESS REPORT IV

For The Project Of
V

LOCALIY CONNECTED ADAPTIVE GABOR FILTER
FOR REAL-TIME MOTION COMPENSATION

For the Period from July 20th of 1994
to October 19th of 1994

SN11IS CRA&M
DFIC TAB
LU;;a no, ,ced E]

Justif icaion

This Report Is Submitted to ONR Av'ilabbity Co Ies

Avail aidlor
Dist Special

October 19th, 1994 LA-

Principal Investigator: Professor Hua Li
Computer Science Department, College of Engineering

Texas Tech University, Lubbock, TX 79409
Telephone: (806) 742-3513, E-mail: xdhua@ttacsl.ttu.edu

Administrative Point of Contact
Kathleen Harris, Ph.D., Director of

The Office of Research Services
Texas Tech University

Lubbock, Tx 79409
Phone: (806) 742-3884

III

Table of Contents

1. The Report

2. The Preliminary Design of the Analog VLSI Convolution Unit

3. The User Manual for the Software Package

2

The Progress Report

This report is the forth quartly report for the project of "locally connected adaptive
Gabor filter for real-time motion compensation," with grant ntLunber N00014-94-1-0077,
which has been in the process since October 20th of 1993 and has been conducted
under the supervision of the principal investigator, Professor Hua Li of Texas Tech
University.
As at the end of the first year of this three-year project, we have been making progress
towards the goals of this research as planned in the project proposal, 1(b) on page 21.
In particular, we have been accomplished the following work as itemized below:

1. We have conducted extensive research work on the design and simulation of
electronic analog circuits as basic building blocks for the VLSI implementation.
This phase of the work is a little bit ahead of the schedule (about 1 month) than
we originally planned in the proposal. This hardware design phase concurrent
with the algorithm analysis and verification provided coherent work and ensured
the quality of the analog VLSI design. The work in VLSI implementation at this
stage includes

(a) Design one of the most essential building blocks, a video frequency opAmp.
With extensive SPICE simulations using the device model provided from
MOSIS actual fabrication run, we have completed the design. The
characteristics of the OpAmp to be used to build two-dimensional
convolution unit is given in a research memo and was included in the 2nd
quart report as Appendix II.

(b) Design analog multiplier, which is to be used for building two-dimensional
analog convolution unit. Extensive SPICE simulation was performed. The
preliminary simulation data looks very positive and the circuit layout design
has been completed.

(c) Post-layout SPICE simulation is under way to check the actual VLSI
implementation. The experimental result now is under analysis and will be
documented and reported accordingly. Some results have been documented
and given in Appendix I of this report.

2. In order to benchmark the VLSI chips, a hardware prototype board is under
design and construction. This board will be used to compare the performance of
digital approach vs. analog approach, analog approach based on the standard

3

off-the shelf components vs. analog customer-design VLSI approach. The board
is now operating and it is under calibration. The board is designed with a 486
machine as a host. The prototype demonstration is prepared for ONR.

A software package has been developed to implement the Gabor motion detection
algorithm. This software consists of utility functions, algorithm modules, and test
pattern generators for the experiments and verification of the spatial and temporal
selectivity. A software program manual now has been produced. Fully tested,
documented programs are provided together with the manual.
This software package consists of the following programs:

1. Programs for algorithm implementation, which include:

(a) Real Gabor kernel with user-selectable kernel size, spatial frequency, and
orientation frequency;

(b) Imaginary Gabor kernel with user-selectable kernel size, spatial frequency,
and orientation frequency;

(c) Derivatives (with respect to x and y) of the real Gabor kernel with
user-selectable kernel size, spatial frequency, and orientation frequency;

(d) Derivatives (with respect to x and y) of the imaginary Gabor kernel with
user-selectable kernel size, spatial frequency, and orientation frequency;

(e) Image convolution program with user-selectable kernels;
(f) Least square estimation algorithm for solving an over-determined linear

system, which is needed at the last phase for optical flow computation.
2. Utility programs which consist of

(a) A set of programs to creat test image patterns based on virtual reality
technique. These programs allow user to define the observer's postion
(camera position), the fixation direction of the camera, and the orientation
of the projection plane (virtual film.) They can be utilized by the user to
define objects in three-dimensional world-coordinated space.

(b) A program to creat animated images. This program will p:oduce each
individual frame of images, and generate an animated image sequence.
These two programs will be particularly needed to test and verify the
optical flow computation based on the created known motion of the objects
and the observer.

4

(c) A short program (in MATLAB format) to creat postscript files. This will
produce the hardcopy of images, and computation result.

Based on the theoretical analysis, the, optical flow was computed for several artificially
generated test patterns. These test patterns are designed to test the concept of spatial
and orientation selectivity. The patterns were generated by using virtual reality
techmiqae based on three-dimensional computer graphics. As described in the second
quartly report, they include stationary observer white object is moving, and stationary
object while observer is moving, as well as both observer and object moving in a
known fashion. In order to further test the computation, we have modified the
resolution and color depth of each pixel to make them all 120-by-100 in resolution and
8-bit color per pixel. A set of floppy disks are now prepared for the demonstration
purpose. This set of floppy disks are now included in this report to ONR. Included in
this set of disks are image sequences generated under known conditionm as benchmark
for the future testing of VLSI implementation, in particular, they include the following:

1. An observer (camera) is stationary, but the viewing object (a sphere with radius
equal to 25 units) is moving along y-axis 5 units per frame.

2. The observer is moving along y-axis 5 units per frame while the viewing object is
stationary.

3. Both the observer and the viewing object are moving 5 units along y-axis and
z-axis respectively.

As briefly summaried here, we have been making progress as planned. In the next
phase, the second year of the project, we will produce the fabricated analog VLSI chips
for testing and evaluation.

The End.

5

ANALOG CONVOLUTION UNIT FOR
REAL TIME IMAGE PROCESSING

Laszlo Moldovan and Hua Li
Department of Computer Science

College of Engineering, Texas Tech University
Lubbock, TX 79409

E-mail: xdhua@ttacsl.ttu.edu

Abstree*- The design of an analog convolution unit for 'ransistors operate in the saturation region anti the
real time Image processing is presented in this paper with transconductancec parameters of M1..M4 anti M5. M6
the emphasis on the design of the basic building block-
CMOS four quadrant multiplier. This CMOS multiplier ar matcedit anti equald to KI anti K2 respectively. There-
operates with :i5V and has single ended voltage inputs fore., the ideal square-law equation can bie applied. The
making it very easy to use for reel time imuage procesingE. output currents of this circuit are I., andi 1.. given by:
This basik building block is used to build a Wx array ot
convolution unit. The MAGIC layout of this circuit,
ready for double poly CMOS analog fabrication is also lot = -(Lii + Iq4)()
presented.

at

1. INTRODUCTION 1.2= -(V4 + 1,) (2)

Thme design of An analog convolution tunt. for real time 'Iis tltC outpuit dIifferential current.. Id~ 1 .2 - 1., is
image processing is given in t~his memo. The tunit. con- gie IIY'
sist., of several different. kindl basic btfildhimg blocks in-
cliding an analog multiplier. Ani analog mutltiplier can KV V
bec easily built in bipolar technology and they hmave been I. = V2-K 1.Vr IV --,f -J-
suctcessfully uartl for yearus Ill. The problem When try- 2 t21,1
ing to build an analog multiplier tuning CMOS devices. is (3)

K V" 2/-'a
that Lthe output current of the source--coupledl differe-n- where V03 = V0 3 4 = V.. If terms antiZfd
t~ial pair (M5~ anti M6 in Figure 1) dependsli nonlinearly mre. mudi smaller thtan 1. it follows thatL 4j de-pends
on the bialk currerit sinkedl by M7 and thke input voltage. linearly oil V.' anti is given hyj
Therefore, thke linear range of the input volt ages is very
limitedi anid very hmardl to compensate. Giivn Lthe ned 4.d -- V2'T,(-1-a - VI.a)V'(4)
or using CMOS terlhnology ovrr bipolar teclmnollogy. we' Also. 1&. andi Ix can bic shown to bec in the following
haive designedl tike basic building blockt anti the unit fly r atinslip wIt V03 V0
usting active attenuator technique. This design provides al&I Wt S2 3
muchi better linear operating range of t~he CMOS four 1 ,-,-,Iquadlrant multiplier. X)

11. PRINCIPLE OF OPERATION OF Substituting (il) into (4). we have thme output differ-
ANALOG MULTIPLIER ential curre~nt:

Thec complete circuit of thme multiplier is shown in Fig- 1.1 V/2i--2Vs'V,, (6)
tire 1. Thme core of thin circuit consists or tike CMOS whichi is Ltie chiaracteristic of an analog multiplier.
version of tike standlardi Gilbert cell presentedl in 111. As But this equation wasl obitained under Lthe assunption
Above mentioned,. the prob~lem of this circuit is tike re- thant V., antiV, are kept. very small whidd ma~y not bec
dhinedl voltage inpuit swing range. In order to overcome satisfied. Tob solve thmis problem. these two voltages wer
this problem. the input voltages arc connccted t.0 Ltme Collectedt at Ltme outputs of active attenuator...
Gilbert-. cell t-lorotigl ac'tive att-emuirkt~ori. The otpul.lti sig-
nal of the circuit is a ulifferenm-ial ctirrviat. wlmicim can be IV. ACTIVE ATTENUATOR
eas~ily converted tona differemmt-ial voltage with two loadl
resist~ors connectedi to Vd.I Time Gilbert cell amtid Like The active attenuators (one for the VX input. another
active a*.tenmiaaors ar c dem-ribedA as follows, for Lthe VY inpust) were built with triinsistors MS. M9

and resipectively M11. M.12. lit order to couple the rA-
111. GILBERT CELL tentiamors witis the two inpuits, a voltage shtift, was obl-

taned with Ltme source followers MID. M18 andi M13.
D1evices MI. M2. M3. M-1. M3. MG anid time current MI9. A voltage (VX or VY) appliedl to these att~enuat-
sink M7 formu a CMOS ve-szitpt of thme Gilbert cell. All torn plus shifters will tie reuced by it facetor of 10. as

I

resulted from P'SPICE sinniatihons. itn other words5. tho a constant, factor t~o make Vout/VY=1. Thcn VY was
circuit. will re(liice the slope of A linearly varying voltage subtracted from Vout antil Cte result, represented the.
betweenr -1V and +I-V fromi 1 to 0.1. absolute nonlinearity error. Fr'om thint Value. tCne rela-

tive nonlinearit~y error was canlculatecd. The two test. are
V. MULTIPLIER UNIT illustrated in Figures 9 andi 10 and the valuies of the

relative errors are 4.345% anti respectively 3.61%. Sim-
With the attenuat~ors attached. the transfer character- ilarly, the same signals were applied to the other inputs
istic of the multiplier unit. is described by the equat~ion: andi the same operat~ions were performed. For th is casesC-

A:2_t~t2Vwe. have the situations shown in Figures 11 and 12 and
,.I =0 I r.-,2 ný v'/X2K 1,.V (7) the values of the relative nonlinearity errors are 4.438%

where m is the attenuation factor of thle Active attenua- andi respectively 5.12%. In order to0 find the t~otal bar-
tors (10.9). So far thle output. wag a differential current. monic (listorsions (THD) of t~his circuit., a 1MHz sinu-
If we want t~o conivert, it. into a differential voltage.. we `oidlal signal was applied to one of the inputs and the
needI t~o connect two matched loadl resistors between the other input was madec 1V. The frequency spect~rum of
output~s of Lthe Gilbert. cell and Vdld. Thtus Lt(e output. the output voltage. is shown in Figure 13 andl the THD

voltge i givn by tdte t~o Lite second and third harmonies wasu calculated
voltge s gvenby:to be less then 2%. Using the standard 40 pin ,malog

Y. P,4, L~ 4.1 h~l~~2V (8) frame providedl by MOSIS. a 5x5 r'onvoliution unit. andi
a single multiplier cell were comnbinedl into a single mub

In ordler to be ab~le to calibrate the circuit. for clifferent. crocitip. Thne 5x5 convolution unit, will he Cested for a
fabricat~ion paranicieter.A (which cannot. he known pre- Laplacian of Gaussiian (LOG) kernel. The kernel values
cisely in adivance) andi to voin pensat~e for Ltne offset. volt.- were generat-etl using the LOG formula:
age. the attenuators atre biasedt ext.ernally on I-ine gates
of M14 and M15. As loadls. BL. and B.L2 were chaosen 2a 2 _X 2 y2

t~o lie 1Kfl. Tine sizes, of the trair. ..tors arc given in tile 20~~ =c~ 9
following C~able: TIne, values for the kernel were calculated for a=1 andi

TABTLE T are shown next:
Device sizes for mutltiplier unit 0.0549 -0.1231 -0.1353 -0.1231 -0.0549

- irWL~ihn -0.1231 0.0000 0.3033 O.00(M -0.1231
M1 80/4 1M9 2 8 -0.1353 0.3033 1.0000 0.3033 -0.1353

M2 0/ MO 3-0.1231 0.0000 0.3033 0.0(X)D -0.1231
M3 0/4 Wil 2 -00549 -.01231 -0.1353 -0.1231 -J.0549

M6 804 MI- 16/2A simple Voltage dliivi(Tdrerrit. (Figuire 14) t~o im-
M7 0/4 MISplernent. this LOG~ kernel warn incorporatedl in the mi-

M8 2 3 crodiip andi connecteud to the Y., input.s. were 1 < i< 5
andi 1 < !5 5. The SPICE file of tine Voltage divider

V.EXPERIMENTAL RESULTS cani be found in Appendix 1B. All Lthe X., inputs were
VI. ~connectedl to thne analog input pails. Tine loadl rcesist~orsu

Firsat. Lthe circuit. was t~est-ed ussing PSPTCE. The transfer were lnot, pult in eacin individlual cell. Instead., th- cor-
elnarateristics; for it -lV t~o IV ti- sweep on VX an,, Vy responding (lot. and ln2j. 1 < i < 25) differential cur-

inputs ame shown in Figur-es 2 atid 3. Thne PSPICE file of renit. outputs were connectedl together t~o provide with
Lthe circuiit. is containedl in APPENDIX A. A Bode plot thne sium of them. Thus, Ltne convoluition iinit performs

in Figuire 4 sh~ows tiat, tins circuit. insm a -3dB imwtiwitkit also thle summatimon of Lthe products of Ctne 25 multiplier
or 2.1.4 MI-Jr. Following thne preliminary simulations, thne cells using KCL. Thne result. of tine convoltntion can lie
layout. of this circulit. Was 4lisigited itgMAI nt "eessesl (on lol andi Io2 pins1 andi is a slifferential current.

then ts crcift wasextrrtueingo MAGICE muaind . which cani be easily converlteil to A different~ial volt-age
L~ne itsom circi wasul extrcte theefre aC vimulatgo

to verify the. humssat. idesigin. The' PSPICE simunlations i'in h~itlrre resisos 2nsrsl i.lnrfre otg
mor tine extractedl hjr-etil. gave glie transfer cliaracteris- whnichn is proportional to Ei~ E'5: x* Y11
lies as shnown in Figur-es 5 andl 6 anti tIne Biode pilot.
in Figure 7. Thne MAGIC laymnunt. of a single multiplier REFERENCES
cell r'an Ite scen in Figitre S. Thne -3 dfl bantdwidth, in

hins t-ase is 19 Mhiz. Nouihians'aity tecst~s were performied [Il] S.-C. Quininad It. I.. Geikger. "A ±5IV CMIOSwan-
Oil the analog uiiiilt~iplier firhll. II-1 iinpiots. First., a ±IV log, unniltiplierC. IBEE~.1. Soiid-Stvats Crrauts. vol. SC-
rauup signal was iinp-it. onn VY. VX was iunaiIsuccesively 22. No. 6. pp. 11413-11416. Dec. 1987.
1 V uis I -IV and thl e oum. iit.11 villtage Wits 1111ltiplied with

2

[2] H.-J. Song and C.-K. Kim, "An MOS four-quwurant.
analog multiplier using simple two-input squaring cir-
cuits with source followera", IBEE . Solid.State Cir.
cuit., vol. 25, pp. 841-848, No. 3, June 1990.

13] J. S. Pena-Finol and J. A. Conelly, "A MOS four-
quadrant analog multiplier using the qurrter-square tech-
nique", IEEE J. Solid-State Circuits. vol. SC-22, No.
6. pp. 1064-1073. Dec.. 1987.

3

%n L-Re

..................

Ah.

..........

E-4

1.4

L)

L) h

8U

/X

t40
o 0

U0
- - --H- - -

* I4

o --- --- -- ---- - - .-.-- ~"

'U)

to

0

IIi.

$4..-... . . .'.. . .. H

I -----

M 'N

* I 0

0 •0

0*I I

* I
I -

* I
I . --

N

H

H $4

,-4 I ' I O0(

SI I I .I I

-, I 1- - 2:-

1.4

E0 N

-I I

13x

-0
>0>

oý

0 - - --- - - - - - -

41.

'In

E-4cn
W

014

E., LO

X x

4D 0

0~0

a

+

.144

14
0

0 .-4 0 0
0;C -

0 --- - - -- - - - - - - - -- - - - - - - - - - - --- - - - - - - - -

C*4

r4

0

0'

H I4

I I

cl IS

Aw It

.. E

...

. .U ..

- - - - - - - - - --- -- - - - - - - -~

$4

R4 :

(DD

H
S S

S In

oQi

N S

C4

OD E-4

ClS

ý-4

r14
00

P4) 13

SC;
4.

.

r-I)

4.).

0.
-"4

00
>

9) t

1040

iin

r1 4

* 4

NN
to

>0

C! 0 Ln

-~~ H 0 0

to

.. . .N

':3
.4 . .

S %S

S w
ita

-- -- - - - -- - - - - - - -- - - ------- - - - - - - - - - - - -
> >

.H LOC
S0t

E-4

C;4

-4 -- - - -- - - -

14b,

A.o

9-4

Hw

- 14

> > uC4
UC

A .(d.

w --

to II

1~x l

60 n-I ,nb9 9,

TT Li's L.I

1. ~OCT ISSH- "Sol

13n9 913

wbb X24

I bXI

.,bb VIQ

,NOd

.09

APPENDIX A

*ANALOG MULTIPLIER WITH ASYMMETRIC INPUTS

.OPTION NOECHO NOMO!)

*DEFINITION OF MODELS

*N43B SPICE LEVEL 2 PARAMETERS

.MODEL N NMOS LEVEL-2 PliI-0.600000 TOX-4.2600E-08 XJ-O.200000U TPG-1
+ VTO-0.8109 DELTA-6.7500E+00 LD".9.2070E-08 KP-4.81O9E-05
+ UO-593.5 UEXP-1.4990E-01 UCRIT-8.1140E+04 RSH-2.4540E+01
+t GAMMA-O.4512 NSLJB-4.0300E+15 XFS-1.98E+11 VM&X-6.2580E+04
+ LAMBDA-2.6210E-02 CGDO-1.1195E-10 CGSO-1.1195E-1O
+ CGBO=4 .7024E-10 CJ-1 .0922E-04 14J-0.8608 CJSN-2 .4755E-10
+ MJSW-0.035834 PBO0.800000
* Wet f - Wdrawn - DeltaW
* The suggested Delta_ V is -7.8340E-07
.MODEL P PHOS LEVEL-2 PHI-0.600000 TOX-4.2ý600E-08 XJ-0.200000U TPG--1
+ VTO--l.0600 DELTA- 9. 0900E+00 LD-1.7890E-07 KP-2.2267E-05
+ UO=274 .7 UEXP-3 .4430E-01 UCRIT-6. 9200E+04 RSH-5 .9420E+0l
+ GAMMA=O.3746 NSUB-2.7770E+15 NFS-3.23E+l1 VMAX-9.9990E-I05
+ LAMBDA-5. 3990E-02 CGDO-2 .1752E-l0 CC-SO-2 .1752E-l0
+ CGBO=3.9953E-1O CJ-3.158SE-04 MJ-0.5914 CJSW-3.2974E-10
+ MJSW=0.315516 PB-O.700000

* The suggested Delta_-W is -3.4000E-07

*GILBERT CELL
* ---------------------

M1 3 2 1 4 N W-80U L-4U
M42 5 17 1 4 N W-80U L-4U
143 3 17 6 4 N W=8OU L=4U
M44 5 2 6 4 N W-80U L-4U
M5 1 18 7 4 N W-80U L-4U
M6 6 8 7 4 N W-80U L-4U
M7 7 19 4 4 N W-80U L-4U

* ---------------------

*ATTENTJATOR 1
* ---------------------

me8 11 10 9 9 P W-2U L-3U
M49 4 10 11 9 P W=2U L-8U

* M109 112 4 NW-2U L-3U
M14 2 16 4 4 N W-16U L-2U

* ----------------------

*ATTENU T OAR 2
* ---------------------

M411 12 13 9 9 P W-2U L-3U
M412 4 13 12 9 P W-2U L-8U
1413 9 12 8 4 N W-2U L-3U
M415 8 16 4 4 N W-16U L-2U

RL1 3 9 1K
RL2 5 9 1K
RL 3 5 10MEG

Vdd 9 0 5v
Vss 4 0 -5V
Vbias 16 0 fVB1

V17 17 0 OV
\fls is 0 ov

V19 19 0 OV

*Yv7 10 0 {XI
VX 10 0 SIN(0 1iMEG)
*VX) 10 0 AC IV
*VX) 10 0 PWL(0US {-Xj 2US (XI 4US {-Xl 6US IX) BUS i-XI lOUS {)
*-7) 10 0 PWL(ONS O)V 200NS OV 200.O01NS IV 600NS IV 600..OO1NS 0V IUS QV)
VY 13 0 JY}
*IVY 13 0 SIN(0 1 1MEG)
*VY 13 0 AC IV
*VY 13 0 PWL(ONS {-Yl 2US {Y) 4US {-Y} 6US {Y) BUS J-Y) 1bUS IYI)

*PAR~AM X-1V
.PARAM Y-1V
.PARAM VB--3.915

*.STEP PARAM Y -1. 1 .1
*.CPRA - 1 .1
.TRAN/OP .01PS bUS
*.AC DEC 100 1 lEB
*.WATCH DC
.Op
*.PROBE V(14) V(18)
*END

APPENDIX B

voltage dividers for kernel coefficients

.OPTION NOECHO NOMOD

*DEFINITION OF MODELS

*N43B SPICE LEVEL 2 PARAMETERS

.MODEL N NMOS LEVEL-'2 PHI=0.600000 T0X-4.2600E-08 XJ-0.200000U TPG-1
+ VTO=0.B109 DELTA=6.7500E4-00 LD=9.2070E-08 KP'=4.8109E-05
+ uO=593.5 UEXP=1.4990E-01 UCRIT=8.1140E+04 RSH=2.4540E+0l
+ GAI4MA=0.4512 NSUB-4.0300E+15 NFS-1.98E+11 V14AX-6.25BOE+04

* + LAkSDA=2.6210E-02 CGDO=1.1195E-10 CGSO-1.1195E-10
+ CGBO-4.7024E--10 CJ-1.0922E-04 MJ=0.8608 CJSW=2.4755E-10
+ MJSW=0.035834 PB=0.800000
* Weff = Wdrawn - DeltaW
* The suggested Delta -W is -7.8340E-07
.MODEL P P1405 LEVEL=2 PHI=0.600000 TOX=4.2600E-08 XJ=O.200000U TPG=-1

"+ VTO=-1.0600 DELTA=~9.090OE+00 LD=1.7890E-O7 KP=2.L267E-05
"+ UO=274.7 TJEXP=3.4430E-01 tJCRIT=6.9200E+04 RSB=5.9420E+01
"+ GAMMA=0.3746 NSUB-2.7770E+15 NFS=3.23E+11 VMAX=9.9990E+05
"+ LAMBDA=5.3990E-02 CGDO=2.1752E-10 CGSO=2.1752E-10
"+ CGBO='3.9953E-1O CJ=3.1585E-04 MJ=0.5914 CJSW=3.2974E-1O
"+ MJSW=O.315516 PB=0.700000
"* Weff -Wdrawn - DeltaW
"* The suggested Delta W is -3.4000E--07

*KERN1EL
*---------------------

*for 1V

1416 14 22 4 4 N W=10U L-2U
1417 15 15 14 4 N W=2U L=6U
1418 9 9 15 4 N W=3U L=2U

*for 0.3033V

1419 20 22 4 4 N W-8U L-2U
1420 21 21 20 4 N IW=6U L=2U
M421 9 9 21 4 N W=2U L=2U

*for -0.055V

M422 2322 4 4 N W8UL-2U
M423 24 24 2j 4 N W=7t1 L-2t1
M424 9 9 24 4 N W=2U L-3U

*for -0.123V

M425 25 22 4 4 N W=7U L=2U
1426 26 26 25 4 N W=2U L=6U
M27 9 9 26 4 N W=2U L=4U

*far -0.1353V

M428 27 22 4 4 N W=7U Ls2U
M429 28 28 27 4 N W=2U L=4U
1430 9 9 28 4 N W=2U L=4U

VOD 9 0 5V
VSS 4 0 --5V

Vbias 22 0 JVB)

.PARAM VB--3.5V

*.STEP PARAM VE -3.6 -3.4 .01
*.DC PARAM VE -4 -3 .1
.TRAN 1PS 2NS
* .PROBE
.OP
.END

USER GUIDE: MOTION

DETECTION ALGORITHM

BASED ON GABOR

FUNCTIONS

USER GUIDE: MOTION
DETECTION

ALGORITHM BASED ON
GABOR FUNCTIONS

Professo Hua Harry L!
Computer Science Department

College of Engineering
Texas Tech University

Lubbock, Texas, USA

CONTENTS

PREFACE iii

1 INTRODUCTION

1 Brief Overview
2 Preparing Program for Execution 6

2 GENERATING 2D TEST PATTERN IMAGES

1 Creating Cosine Wave Image Patterns 7
2 Creating Bar Stripe Images 9

3 MOTION DETECTION BASED ON GABOR
FUNCTIONS

1 Creating Gabor Kernels 11
2 Computing Convolution of Gabor Kernels 14
3 Motion Detection On 2D Test Pattern Images 17
4 Motion Detection On 2D Images With Multiple Kernels 19
5 Least Square Estimation 21

4 THREE-DIMENSIONAL MOTION DETECTION

I Virtual Realcity Tchlnique for Creating 3D Test Patterns 23

2 Creating Image Sequence With Both Observer And Object
Motion 24

3 3D Motion Detection 25

Ii

5SOFTWARE LISTS

1 Barlmagc.c 27
2 Coslmagc.c 29
3 CosConv.e. 30
4 CreatGaborxc 35j
5 IBuffcrlnit.c 36
6 Bufferlnit.c 37
7 GaborMotionxc 38
8 Lcastsq.c 43
9 brnll.b 48

PREFACE

This software manual describes the algorithms that have been developed for
the demonstration project on motion (letection and motion compensation using
biologically inspired Gahor transforms. The objectives of the project. are to (1)
dcevclop an algorithim suitable for real time analog VLSI (Very Large Scale
Integrated Electronics Circuits) implementation and (2) fabricate the design
through MOSIS. The algorithms developed and tested in this package will be
used as bench marks to objectively evaluate the performance of the VLSI chips,
and the prototype board. This package is a part of the result of the research
project supported by ONRI

This package includes three categories of programs: (1) The programs that are
used to generate test pattern images. (2) The programs that are developed to
compute optical flows by using Gabor functions, or Gabor Transforms. And (31
the programs that are used to generate sequence of images by using virtual re-
ality and thlrce-dimensional computer graphics techniques. During the process
of preparing this package, we have extensively tcsted eadc program. Most of
the programs in this package were written in ANSI C to ensure the portability
across different hardware platforms. For the programs to generate 3D virtual
reality studio environment, we have used the program language. developed by
Watkins 1, which is a C-type language. Although most. of the programs were
developed for SUN SPARC Station, they can also le complied for 486 personal
computer with some minor modifications. The use of these programs for ONR
is free, but we, the authors of these programs and manual, make no warranty of
any kind, expressed or implied, with regard to the programs or the documen-
tation. Therefore, the authors shall not be liable in any event for incidental
or consequential (danmages in connection with, or arising out of, the furnishing,
performance, or use of these programs. All brand names, trademarks, are the
property of their respective holders.

Several research assistants at Texas Tech University are responsible for de-
veloping, implementing, and testing of Lhc programs. The present version of

1* C.D. Watkins, S.D. Coy, and M. Finlay. Phntorealtem and R/yj 71racng in C' M&T

Bookp, New York, NY 10011, 1992.

iii

iv

thc manual was proof reu! and tested at Li's Laboratory, Computer Science
Department, College of Engineering, Texas Ted University by the principal
investigator of thc project. Inquiry and questions regarding thc source codec
thc algorithms should be directed to the principal investigator.

Principal Investigator: Hua Harry Li, Ph.D.
Computer Scicnce Depart.wcnt
Collge of Ergineering
Lubbock, Texas 79409
Phone: (806) 742-3513
Fax: (806) 742-3519
E-mail: hualcs.ttu.edu

1
INTRODUCTION

ABSTRACT

A brief summary of the programs and their functionalities included in this manual
are given in this chapter. Namely, three major categories of programs are described.
These categories are: (1) the programs for generating test pattern images as bench
marks, (2) the programs for computing optical flow asedi on Galmr functions, or Ga-
lor transforms, and (3) the programs based on virtual reality tedcnique for generating
3D camera models and creating user-defined and user-controlled image patterns.

1 BRIEF OVERVIEW

This package includes three categories of programs:

1. The programs that are used to generate test pattern images. The images
are characterized with user-defined orientation and spatial frequence.

2. The programs that are developed to compute optical flows by using Ga-
bor functions, or Gabor Transforms. In this category, there are utility
programs for solving a set of lincar algebraic system by using least square
estimation (LSE) techniques. and programs for user selectable, user mod-

ifiable Gabor kernels.

3. The programs that are used to generate sequence of images by using virtual
reality and three-dimensional computer graphics techniques. Users are
given the control of sceect.ing the optical characteristics of a virtual camera

I1

..

6 CHAPTER 1

to generate well-controlld calencra motion. as ego motion. This thern is
used to precisely characterize the amount, of self motion in comparison to
object motion.

In this documentation, we use the term "two-dimensional mot.ion" to dlescribe
the image pattern generated directly by shifting image plane, which does not
involve. the selection of camera model, the calculation of perspective projection.
While the term "three-dimensional motion" referres to as the image patterns
generate(] by using virtual rcality technique. Namely, the tecinique defines
camera characteristics and creats realistic looking perspective projection im-
ages. The two-dimensional motion patterns are mt,\jorly used to calibrate the
orientation selectivity and spatial frequency selcctiviiy of the Gabor kernels.

2 PREPARING PROGRAM FOR
EXECUTION

The compiled and linked executables of the programs are provided on a floppy
disk (MSDOS readiable format.) with this manual. These executables are pre-
parel under the following conditions&

1. The operating system: SunOS 4.1.2.

2. The cc compiler.

3. The hardware platform: SUN SPARC 1 workstation.

If you have the complied and linked executables. in order to run these programs
all you have to do is to type the program name and hit return. If you only
have the source code anti you nareI to compile and link them, then follow the
instructions given below:

cc -o output.filename inpuffie.c -Im

which will creat the executable.

2
GENERATING 2D TEST PATTERN

IMAGES

ABSTRACT

Two different types of test pattern images, 3D test patterns, and 3D test patterns,
have leen utilized for testing the motion detection algoritlhm as explained in Seion
1.2. The 2D test patterns are grey level sine, cosine, or strip bar images. These
test patterns ame used to calibrate, test and demonstrate the orientation and spatial
frequency selectivity of Gabor kernels.

1 CREATING COSINE WAVE IMAGE
PATTERNS

DECRIPTION: croat a 2-D cosine wave image.

USAGE: Coelmg(int row, int column, float omega, float orient, float speed,
float time)

int row: row of image in pixels.
int column : column of image in pixels.
float omegm spatial frequency of image in cycles per pixel.
float orient: orientation of image in degree.
float speed: the variable to define the phase shift.
float time: the variable for defining the pliase shift.

REMARKS:

7

8 CHAPTER 2

Coslmg gcnerates a 2-D cosine wave imagc with user selected resolu-
tion (row-by-column) and user defined sp•tial frequency and orienta-
tion of the cosine pattern.

MATHEMATICAL FORMULATION:

I(m, y) =cos(2 * pi* otnqa * (z * cos (theta) + y * ain(theta) - speed * tiime)).

where variable omega defines a spatial frequency in terms of cycles per pixel,
variable theta delncs an orientation of the test pattern. The variable speed d.-
fine* the phase shift of the image pattern which can be interpreted as a starting
time instance when the test pattern image was created. By cioosing different
phase shift, ut;cr can crent a sequence of images arrangcd in the order of small-
eat phase shift to the biggest phase shift to represent a sequence of moving
cosine patterns. The variable time, toget.hcr with the variable speeI creats the
desired phase shift.

EXAMPLE:

#include<stdlib>
#include<stdio.h>

tnt maino

char *filename"output .dat";
int roy-31, columf=3i;
float spatial.frequencym. i, orientationw30;
-float speed = 1, time a 0.4;

CosImg(rov, column, spatial.frequency, orientation, speed, time);
return 0;
I

By cw.nging the different phase shift value, the sine wave function can be
created using the same program.

I A --sin. wav,' imq (61, Iw- (A r... lnasga

2 CREATING HAR, STRIPE IMAGES

USA CE: ;, Bo im ~ i * ,,I ii~c I I

RENIA REM:

10 (. 1 1APTER 2

MATI-MATICAL FORlMUJLATION:

rig~ir.s 2. A har sitrip uimage. with oIIeog& eviia t~o (1.05 aind tbeth

EXAMPLE:

Sinclude<stdlib>
#include<stdio .h>

irit main()

char *filenanme="output .dat";
int row=31, co].uimn3l;
float spatial-frequency=.1 , orientation=3O;

Barlzng(row, column, spaitial-frequency, orientation, filename);

return 0C

3
MOTION DETECTION BASED ON

GABOR FUNCTIONS

ABSTRACT

This chapter gives the programs that implement motion detection algoritun based
on Gabor functions. Gahor functions are very special kind of functions whidt mimics
orientation selective, spatial frequency selective characteristics of human early vision
system. Included here are the functions for creating Gabor kernels, the utility func-
tions for con.puting convolution of real ant complex Gabor kernels, the functions for
solving a set of linear algebraic system haed on least square estimation (LES), and
the function for computing motion vectors, as well as the utility functions for ploting
optical flow pattern.

1 CREATING GABOR KERNELS

DECRIPTION: Creat 2-D Gabor kernels and the derivatives (with respect
to x antd with respect to y) of Gabor kcrnels.

USAGE:
void CreatcCGabor(omega. thet. type. size. tcmpt, tempx, tempy)

float omega: modulated spatial frequency (wo) (cycles per pixel).

float thetn: orientation of the kernel (degree).
int type: kernel type: 1 for real kernel. 0 for imaginary kernel,
int size: tde desired kernel size.

float** tempt: pointer of a block to Gabor kernel.

11

12 CHAPTER 3

float** tempx: pointer of a block to the derivative (with respect to
x) of the Gabor kernel.
float"* tempy: pointer of a block to the derivative (with respect to
y) of the Gabor kernel.

REMARKS:

CreateGabor0 creats Gabor kerncl and its derivative kernels (the
derivativc with respect to x or y.) The modulated spatial frequency.
orientation, and size of the kernels zre determined by the user selected
omega, theta, and size. The result of the created kernel is stored in
three blocks dynamically allocated in the memory.

MATHEMATICAL FORMULATION:

G'(01 Y) 4;e,*-)eos2w(w.z + w,,y),

G1(x, y) = c(- '-*-)n2ir(w.x + wy).

the derivatives of Gabor real and imaginary parts are

o = -2,re- (72- cos 21r(wxz + wy•,) + w. sin 21r(w•x + wvy)),

= -21r-i"e" (-L. cos 21r(wx + wvy) + Wv sin 21r(w.x + wy)),
ay a2

OGi 2
= -21rC (- sint21r(w~z + w,,y) + w. cos21r(w.x + wpy))t

Ox a

- -2rcr (- L sin 2ir(w~x + w11y) + wz cos 21r(w.x + wvy)).
0-2

where w. and w, are modulated spatial frequency components in sptial fre-
quency domain,

EXAMPLE:

#inc1lude<stdlib>
#include<stdio .h>
#include <math.h>

MOTION DETECTION BASED ON GABOR FUNCTIONS 13

int main()

static float e*kern-t, e*kernx, **kern-y;
float spatial..freq = .1, orientation o ;
ant filter-.type = 0;
mnt row, col, kerusize, index;
FILE *outt, *outr, *outy;

/* calculate kernel size and index e
kernaize = (int)ceil(l .0/Cspatia1-freq));
if(faba((float)kernsize/2.0-ceil((float)kernsize/2.0))(=0.01)
kernsize++;
index=(int) ((Cf loat)kernsize-I.0)12.0);

/* allocate memory f or kernels */
kern-.t C(float *)malloc(kernsize*sizeof(float*));
kern-.x C(float *)malloc(kernsize*sizeof(float*));
kern..y C(float *)malloc(kernsize*sizeof(float*));
for U=0; i< kerusize; i++) {
kern~t~i] = (float *)malloc(kernsize*sizeof(-float)a+i);
kern-x~iJ = (float *)malloc~kernsizeeuizeoftfloat)+i);
kern-y~iJ = (float e)malloc(kernsizeesizeof(float)4.i);
I

/* generate Gabor type kernels *
CreateGabor Cspatialdfreq, oretto, filter-type, index, kern.S * kernix, kern..y);

ifC(outt = fopen("gabor-t.dat", "w")) ==NULL) ezit(i);
if((outx = fopenC"gabor-x..dat", "v")) ==NULL) exit(i);
if(Couty = fopen("gabor..y.dat", w))= NULL) *xit(i);

forCP=O; i< kerasize; i++) {
for (JO; J< kernsize; J++){

fprintf(outx, "%flt", kern-t~i) Ci);
fprintf(outx,"ft, kern-t[i) (3));
fprintf(outz,'/ft, kern..t~ilJ C);

fprintf~outx, 11\n'9;
fEprintf(outx, "W'\n;
tprintf~outx, 11\n");

I close (mitt);

14 CHAPTER 3

tclose(outx);
fclose(outy);
return 0;

2 COMPUTING CONVOLUTION OF

GABOR KERNELS

2.1 Image Buffer Initialization

DECRIPTION: initialize a buffer for convolution.
USAGE: void BufferInit(index, kernsize, column, buffcr, fp)

int indc: index of Gabor type kernel.
int kernsizc: Gabor kernel size
int column: column of the given image.
unsigned char" buffer: pointer of the block storing image.
FILE* fp: pointex of an image file.

REMARKS:

BufferInit() initializes a buffer for convolution. The use of a buffer
accomplishes the convolution of a given image one row at a time. The
size of the buffer can be determined by the product of the number
of rows of a given kernel and the number of columns of the given
image. The top half space of the buffer is initialized to be filled with
the first row of the given image for the consideration of convolution
with image boundary and another half of the buffer was filled with
the image data. The image data should be 8-bit per pixel in binary
format. The buffer is a static unsigned clar double pointer type.

EXAMPLE:

#include<stdlib.h>
#include<stdio .h>

MOTION DETECTION BASED ON GABOR FUNCTIONS 15

#include<ma~lloc .h>

izit main()

static unsigned char **imagebuffer;
int image-.rov=50, image-.co1=50;
int kernel-index=7. kernel-size = 15;
int i, J;
FILE *in;

/* allocate memory for image buffer *
imangebuffer =(unsigned char *)malloc(image-rov*sizeof(unsigned char*));
for U=0; i< image-col; i++){
imagebuffer[iJ = (unsigned char *)malloc(image..col*sizeof (unsi~gned char));

/* open image file in READ-.ONLY and BINARY mode *
if(Cin = f open ("image. dat ", "rb")) ==NULL) exit(i);

/* initialize image buffer */
Bufferluit(kernel-indez, kernel-size, image-col, imagebuff or, in);

for(i = 0; i < kernel..aize; i++
for Qi =0; j <image..col; j *

printf('Image Data EZdJ (%dJ M dnl, i, j, imagebuffer~iIJ (j);

return 0;

2.2 Image Buffer Shifter

DECR.IPTION.: updlate the contecnt of the image b~uffer by shifting up one
row. This shift will result row 1 of the buffer being discarded. row 2 moved to
row 1, row 3 movedl to row 2, etc., and a new image row moved to the last row
of thc buffer. The shift it. performed every time 6ei convolution of one row -' .
finishied.

USAGE:
voidl IufferSlzifter(kerninclcx, kern..size., row-img, col-mg, row-Joop., buffer.. fp)

16 CHAPTER 3

int kernjindex: index of Gabor kernel.

int kern.size: Gabor kernel size.
int row..img: row of image.
int col-img: column of image.
int row-loop: actual row number in convolution double loop.
unsigned char**)uffer: pointer of a block storing image.
FILE* fp: pointer of the image file.

REMARKS:

BufferShiftcr() shifts data of ecch row in image buffer up to next row
and updates data of last row in image buffer after each convolution
operation. The row-loop is the actual row number in convolution
double loop in order to consider the lower boundary in the convolution
operation. The image format should be 8-hit per pixel in binary, and
the image buffer could be static unsigned char double pointer type.

EXAMPLE:

#include<stdlib .h>
#include<stdio .h>
#U .iude<malloc.h>

int main()
{

static unsigned char **imagebuffer;
mnt image-rovfSO, image-col=5O;
int karneliindexfT, kernel-size = 15;
int i, j;
FILE *in;

/* allo," memory for image buffer */
•::Ageb , =(unsigned char **) malloc(image-rov*sizeof(unsigned char*));

for (iUO; i< image.col; i++) {
imagebuffer[i = (unsigned char *)malloc(image.col*sizeof(unsigned char));
}

/* open in. " file in READ-ONLY and BINARY mode */
if((in = ; r..a-,,("image.dat" , "rb")) == NULL) exit(l);

MOTION DETECTION BASED ON GABOR FUNCTIONS 17

/* initialize image buffer */
Buffertnit(kernel-index, kernel_size, image.col, imagebuffer, in);

/* display data in image buffer before shifting */
for(i = 0; 1 < kernel-size; i++)

for Qj =0; j < image.col; j ++)
printf("Image Data [%d] ['d] = %d\n", i, J, imagebuffer[i] [j));

/* shift 1 row of data in image buffer */
BufferShifter(kernel-index, kernel-size, imagerow, image-col, 10, imagebuffer, in);

/* display data in image buffer after shifting */
for(i = 0; i < kernel-size; i÷+)

for (Q =0; j < image.col; j ++)
printf("Image Data [Ed] [%dJ =d\n", i, J, imagebuffer[i] [j]);

free (imagebuffer);
return 0;

}

2.3 Image Convolution

DECRIPTION: perform 2D convolution.

USAGE:
float ConvolutionUnit(kern.index, eol-image, colloop, imagc.buf, kern.buf)

int kernindex: index of Gabor type kernel.
int colkimage: column of image.
int col-loop: actual column number in convolution double loop.
unsigned char** image..buf: pointer of a block storing image.
unsigned char** kern.buf: pointer of a block storing kernel.

REMARKS:

ConvoiutionUnit() performs 2D convolution with image data from im-
age buffer and kernel (lata from kernel buffer. The column boundary
in image plane has been taken care of in this module, while the row

boundary in image plane has been taken care of by BufferShifterO.

18 CHAPTER 3

The coloop is the actual column number in convolution double loop.
After convolution operation, the image buffer is updated by Buffer-
Shiftcr() so that. next convolution operation will be performed accord-
ingly with the input of right set of image data The image format is
8-bit per pixel in binary, and the image. buffex is static unsigned clar
double pointer type.

EXAMPLE:

#include<stdlib.h>
#include<stdio .h>

*include<math.h>
Sincludefmalloc .h>

int mainC(
{
static unsigned char **imagebuffer;
static float **kern-t, **kern.x. **kern-y;
float spatial.freq = .1, orientation = 0;

int filter-otype = 0;
int row, col, kernsize, index;

int image.roWv50, image.col=0;

float image;
FILE *in, *out;

/* calculate kernel size and index */
kernsize = (int)ceil(i.O/(spatial-freq));

if (fabs((float)kernaize/2.0-ceil((float)kornsize/2.0))<=0.01)
kernsize+4;
index=(int)(((float)kernsiz.-i.O)/2.0);

/* allocate memory for kernels */
kern-t =(float *.) malloc(kernsize*sizeof(float*));
kern-z =(float **) malloc(kernsize*sizeof(float*));

kern-y =(float **) malloc(kernsize*sizeof(float*));
for i=O; i< kernsize; i++) (

kern.t [i]= (float *)malloc(kernsize*sizeof (float)+0);
kern-x[i] = (float *)malloc(kernasize*sizeof (float)+1);

kern-y[i] = (float *)malloc(kernsize*sixeof (float)+0);

MOTION DETECTION BASED ON GABOR FUNCTIONS 19

/* allocate memory for image buffer *
imagebuffer m(unaigned char **) malloc(kernsizeoaizeof(unaigned char*));
for Ui0; i< image-.col; i++) (

imagebuffer~i3 (unsigned char *)malloc~image~col*t~izeaf (unsigned char));
I

/* genurato Gabor type kernels *
CreateGabor(spatial-.freq, orientation. filter-.type, index, kern..t, kern..x, kern..y);

/* open image file in READ-.ONLY and BINARY mods */
if((in = fopenC"image.dat", "rb")) ==NULL) exit(i);
ifC(out = fopenV'comv.dat", "v")) NULL) exit(i);

1* initialize image buffer */
Bufferlnit(kernel-indox, kernel-size, image..col, imagebuffer, in);

/* do convolution */
for(row = 0; row < imaage-.row; row ++){
for (Cal a 0; Cal < image-col; Cal ++
image = ConvolutionUnit(index, image-col, col, imagebuffer, kern..t);
fprintf (out, "%f\t', image);
/* shift data in image buffer *
Bufferghifter~index, kernsize, image-row, image-col, row, imagebuffer, in);

fprintf (out, "\a");

* ~free(kezn..t);
free(kern..x);
froe(kern-.y);
fra. Cimagebuffer);
return 0;

20 CHAPTER 3

3 MOTION DETECTION ON 2D TEST
PATTERN IMAGES

This sect~ioki describes a motion detection with one orientation and spatial fre-
quenc~y tuned Gabor f,,nction. Unlike the algorithm to be described in the next.
seetion, this motion detection is majorly used as testing purpose for tile know
sine or cosine wave image patterns.. whichk can he tuned to only one orientation
andl spatial frequency.

DESCR.IPTION: mot~ion de~tc~tijon on a cosin wave moving images.

USAGE: GaborCos

input:
(1) Modulated Spatial frequency (we) of the Kernel (Cycles per pixel)
(2) Length of tile kernel in sigma value (length = 1/(sigrna*omega))
(3) Kernel Orientation
(4) Thresold for Motion Detection (to eliminate extreme high value
of motion (u,v) from thle homogeneous image region where derivative
features are poorly (lefinedl
(5) Kernel Phase. (0: Gabor Real Part; 90: Gabor Imaginary Part)
(6) Derivative of Image File: file namne of thle derivative (finite differ-
ence) of thle image frame 3 minus frame 1
(7) Image File: file name of thle 2nd image. frame

output:
(1) u.dat motion speed along X axis
(2) v.dat motion speed along Y ayis
(3) tl.dat: gabor response. to dlerivative of moving image, (0tu)
(4) x1.dat: groadient. gabor response to moving image (fl)
(5) yl~dat.: groadient. gabor response. to moving image, (n.~)

The kernel size and image size ame decfined in #define macros.

REMARXS:

This program extracts an motion vector by Graienict Gab~or Mode~l. A
set of three consecutive image frames is neededl for extracting motion
information. The first frame and thle third framie are used to form

MOTION DETECTION BASED ON GABOR FUNCTIONS 21

image (derivative by finite difference techinique, then the difference is
convolved with the Gabor kernel to produce nt,. Tite second frame
is convolved with derivatives of Gabor (in x and in y direction) to
prodluce 0.~ and fly. The user has to first, define the orientation and
spat~ial frequmeny of the cosinec test. pattern. The selection of the length
of the Gabor kernel has to he madle with the consideration to the
orientation and spatial frequency selectivity. As a general guideline,
the user is advised to use thbe following formula to estimate the length
value:

where E is the sigma of the test pattern.

Another point. for the user to realize. is that, thrcshokling is performed
on the processed image data, fl., fly,, and flu, to deal with very small
value at certain pixel location. With this thressholding the calculated
optical flow vectors at these. locations will be free of erroneous results
dlue to the nature of the early vision computing (most of them are
mathematically characterized as iUl-posed problems).

MATHMATICAL FORMULATION:

fl= .u + nyut

where Qt~ is the convolution of Gabor kernel with derivative of image, fi. is the
convolution of x gradient. Gabor kernel with moving image, 0., is t~he coavolu.
tion of y gradlient. Gabor kernel with moving image.

EMAMPLE: CosConv

Modulated Spatial frequency In Kernel(Cycles/puxel): 0.1
Length: 4.0
Kernel Orientation(degree): 30.0
Thresold of Motion Detection: 100.0
Kernel Phase(degroo): 90.0
Derivative of Image File: (levi~img
Moving Image File: move.img

22 CHAPTER 3

4 MOTION DETECTION ON 2D IMAGES
WITH MULTIPLE KERNELS

For any realistic motion detection, different spatial frequency and orientation
features sh(ould all be considercd. This requires the us of more than one spatial
frequency and orientation tuned Gabor kernels. This section describes how this
multiple-kernel process can be accomplished.

DECRIPTION: Motion Detection on Moving Images.

*include "leastat•."

USAGE: GahorMotion

input:
(1) Modulated spatial frequency (w") of the kernel (cycles per pixel)
(2) Starting orientation of the kernel (degree)
(3) Rotating angles each time (degree)
(4) Nu'•ber of rotations, or the numhcr of diffexent oriented Gabor
kernels
(5) Thresold of motion detection (a recommendated value is greater
than 50)
(6) Kernel phase (0: Gahor •etel Part; 90: Gabor Imaginary Part)
(7) Derivative of Image File: file name of derivative (finite differencc)
of the average of image frame 3 minus frame 1 (8) Moving Image File:
file name of image frame 2

output:
(1) u.dat motion speed along X axis
(2) v.dat motion speed along Y axis

The kernel size and image size are. defined in #defne macros.

REMARKS:

This program extracts an optical flow from 3 consecutive image frames
by Gradient Gahor Model. When selecting different length of kernel,

MOTION DETECTION BASED ON GABOR FUNCTIONS 23

the consideration has to be given in the connection to the preprocess-
ing of llandpass filtering or lowpass filtering operation. We suggest.
the use of Gaussian kernel for lowpass filtering or LoG (Laplacian of
Gaussian) kernel for handpass filtering before the use of Gabor kernels
for motion dletection. As one general guideline, the same. sigma value
of thc Gabor kernel can be used for the Gaussian kernel., and t~he saxne
sigma of the Gabor kernel can be usedl for the LoG kernel.

MATHEMARTCAL FORMULATION:

at+f~ 5u =0

where 11t= [Q 12 Q] fl_ =-[11' nl2 f&T [-.f 2 ~
12 is the convolution of Gabor kernel with dlerivative of image.,
9;. is tihe convolution of x gradient. Gabor kernel with moving image, and

9'is the convolution of y gradlient, Gabor kernel with moving image.

EXAMPLE: Gah~orMotion

Modulated Spatial frequency In Kerrnel(Cycles/pixel): 0.1
Stating Orientation of Kernel(dogree): 0.0
Rtotating Angles Each Timc(degree): 30.0
Number of Rotations: 4
Tlhresold of Motion Detection: 100.0
Kernel Plaase(degree): 0.0
Derivative of Image File: devi.imng
Moving Image File: rnovedimg

5 LEAST SQUARE ESTIMATION

DESCRIPTION: Least-Square-Estimation

USAGE: solve2(int row, int column. float. thresold)
or solvc4(int row.. nt, column, float. thresold)

mnt row: the row of image;
int column: the column of the image;,
float tlaresold: the thresold of motion (detection.

24 CHAPTER 3

REMARKS:

This progran performs a lIast-squrc-. estimation to minimize the a:-
ror of optical 0-)w computation. The tednique will allow the better
handling of thn ill-posed probh.m, optical flow computation. As it is
well known., many early vision problems arc ill-posed in nature. To be
able to d(Ial Q t. this, a least square estimation has been developed for
optical flow computation with a set of 2 different orientation Gabor
kernels or a set of 4 different orientation Gabor kernels respectively.

MATHMETICAL FORMULATION:

E(u, v) = + ' +~VI2

EXAMPLE: solve2(60, 60. 200.0)

3D Motion Detection 25

The cosine pattern was moved .2 pixels at 30.5 degree orientation

0-1 IA11.- - I- 1- - 1 " 11-

0- 5-WII 1- -10 - "" 15- 201 'l
I-IW ,W 1X11I-s",."1ý"A" A1ý.1

Average value ofW the coute move: 1.97 "'Agnr Gabo kernel

IIIW -,W i,W o 3.W Motio detd1o -IWd for 1omn wave 1maes I'lthree11 1WI-

frames-11-,-, 'l -w'll 1e-0rae with orenato 30.5 de ,e and "1aia f "1r 10.021.
Th0e moti, .eeco was 1 pesot -1 by ý Ga 1r kerne I 'lh 1rintw I'lnd

spatial ~ ~ . ,rqwr I,,a "o 305dp-an,.2 eseWiey

4
THREE-DIMENSIONAL MOTION

DETECTION

ABSTRACT

1 VIRTUAL REALITY TECHNIQUE FOR
CREATING 3D TEST PATTERNS

To be able to test the motion detection algorithm realatically with bctter con-
trol of the testing condition, we have developed the tecdmique based on the
concept. of virtual reality to creat virtual camera model. We have been using
the tool dcvclopced by Watkins 1. A C-type language was used to croat tile
user desired testing conditions which include the user selection of the following
features:

N A world-coordinate system where every objects are defined and are refer-
enced to., and a viewer-coordinate system whidi is observer-centered coor-
dinate system, as well as the relative. position between the two.

* A camera modcl with the choice of orientation (pointing direction) of the
camera, the optical characteristies of the lens.

* Lighting condition with user control of the placement and the number of
point, light sources.

E 3D object construction using primitive building blocks, and the choice of
different reflection models, such as diffused refiection, specular reflection,
annd ambient light,

10 C.D. Watkins, S.B. Coy, anid M. Fnlay, PhotamreIm and Rhay Vnsing in C, M&T
Dookm, New York, NY 10011, 1992.

26

THREE-DIMENSIONAL MOTION DETECTION 27

Given in thi floppy disk number 2. in directory MOVIE, one of thc image
sequence generated by this technique, ONIR.FLI, can be displayed as a movie
on 486/50MHz machine with SuperVGA monitor. To display this sequence.
first load the floppy (lisk into a floppy disk driver. then go to this drive and
go to directory MOVIE., then type PLAY ONRI.FLI to execute the display of
the movie. Please be aware of the software copyright issue, the program in this
floppy disk should not be copyed, or used for any other purpose. To obtain
a copy of this utility program, plcasc contact the publisher indicated by the
program.

With this virtual reality tecdnique, t.he user can creat well-controllcel motion
images with the exact known camera setup and the relative position between
the observer and the moving objects. This is a very powerful way of testing
and verifying the algorithm d(eveopcd for motion computation and motion
compensation.

2 CREATING IMAGE SEQUENCE WITH
BOTH OBSERVER AND OBJECT
MOTION

Using the technique described in the previous section, the user can creat image
sequence with both observer and object motion. This section describes one
example.

DESCRIPTION: generate squence of moving images including

(1) sphere moves along Z asix with step 2 units;
(2) observer moves along Y axis with step 2 units;
(3) combination of (1) and (2).

The program.. BM113.: for creating 3D virtual environment and the image
sequence is given the last chapter of this manual.

!W M I M I I I

28 C'HAPTER 4

3 3D MOTION DETECTION

Using the prograni GAII13(MOTION. three dimensrionial iot~ion can he com-
putedI. Thc p-rngirai is dip integration of several programin miodiiih's describecd in
Chapter 3. A soi irce codc of the program is given in Chmiapi 'r 5. Thic program
waE. (3ocuncnlt.CAI. Wilithe tumtnderstamnding of the prograins ill Ch1apter 3, thle
use of thjis pm-grani shall not. pose. new chmallenge.

Enlarged portion without showinq the x-y-Z
coordinate (Movie file is included in the
floppy disk and can be played on 486/50MhZ
machine or above with SVGA)

Rphlor' ~ ~ i -i I - t.g Ai 6,.. itin .gi, 4 ilt i - o iii' e~ wii It 1 1,~ ., .1 hR~fbu
ii thu' *g II..I-- 111ý,G: gg -t ai~t '1 mi 1ft1

SOFTWARE LISTS 29

Y Direction (Observer Moves 5 Units Along Y Axis)
30

20

10-

.0 ---- I- ---- --- -0 =~=N.s ------------------

0-

-10-

-20- - z:= - -

-20 -10 0 10 20 30
Kernel 31 xl, 4 Orientations, 35 Degrees Apart, Phase 0

Fig•lre 5. Mntimr detection resllt fnr a aphere image with 4 kenw.lR
45 degr apart.

5
SOFTWARE LISTS

ABSTRACT

This diapter gives the source code listing of all the programs descri•ed in this manual.
A MS-DOS floopy disk is also provided.

1 BARIMAGE.C

* Copyright (c) Dr. Hu& Li's Lab 1994. All Rights reserved.
* Purpose: To generate an oriented bar stripe image pattern for verifing
* the concept of spatial frequency and orientation bandvidth
* selectivities.
* Image Format: binary image from 0 to 258. The sisx is ROW x COLUMN;
* Name: Barlmage.€.
* Compilation: (g)cc -o outputfilename Barlmage.c -1m
e Side Effect: No.
* Input: Spatial frequency, Orientation, and size of image
* Output: bar image file.
e Coded by: Xiaohui Kong,
* Executed Machine: Sun Workstation
* Last Change: Feb. 24, 1994

Oinclude<string.h>

30

SOFTWARE LISTS 31

#include<stdio .h>
#include<math.h>

BarImg(int row, int column, float omega, float orient, char* filename)

{
FILE *file ;

int i, j, image;
float pi=3.1416, Spatial.FreqX, SpatialFreqY, Orientation, value;

SpatialFreqX = omega * cos(orient * pi / 180.0);
SpatialFreqY = omega * sin(orient * pi / 180.0);

if ((file--fopen (filename,"vb"))==NULL) {
printf(C" Can't open output file for writing");
exit(-1);
}

1,
• The bar wave image formulation:

• value = 255 if cos(2*pi*(xevx + y*vy)) > 0.0
* 0 otherwise
* where vx is the spatial frequency component in u
* vy is the spatial frequency component in v
• then the value of image is mapped to 0-255

for C i = 0; i < row; i++) {
for C j - 0; j < column; J++) {

if(cos(2.0*pi*(i*Spatial_FreqX + j*Spatial.FreqY)) > 0.0)
image = 256;

else
image = 0;

fprintf (file, "%d\t", image) ;

fprintf (file, "\n");

fclose (file) ;
}

32 CHAPTER 5

2 COSIMAGE.C

* Copyright (W) Dr. Hua Li's Lab 1994. All Rights Reserved.
* Purpose: To generate a oriented cosin moving image and image derivative.
* This pattern is used to test the coordinate system rotation
* and image flow.
* Name : Coslmage.c.
* Compilation: cc -o outfilename Coslmage.c -im
* Output files: (1) orig.img --- original image.
* (2) move.img --- moved image.
* (3) devi.img --- derivative of image.
* Coded by: Xiaohui Meng.
* Last Change: Feb. 23 1994
#i

#include <stdio .h>
#include <stdlib .h>

#include Omath.h>

CosImg(int row, int column, float omega, float orient, float speed, float time)
{
FILE *infilel,*imfil.2,*infile3;
float value1 ,value2,value3;
float vx,vy,pi=3.I4i6;
int ij;

/* Image Pattern Generator
* The formula of cosin image is:
* I(x,y)= cos(2*pi*omega*(xscos(theta)+yesin(theta)-speed*time)).

w where omega is the spatial frequency
4 theta is the orientation
• the product of time and speed defines the phase offset along theta
* direction.
*/

vx=cos(theta*pi/180 .0);
vy=sin(theta*pi/I80. 0);

if ((infileil=fopen ("orig.ig i",e'vb")).==ULL) exit(-1) ;

SOFTWARE LISTS 33

itf(Cinf ile2=fopen("devi. iug". .'b"))==NULL) *xit(-I);
it ((inf il*3=fopea ("move. img", ,vb"))==NULL) exitC-I);

for (i =-.(row-I)/2; i<(row-I)/241; i++)

for CJ'=-Ccolumn-1)/2;j<(column-i)/2+i;j++)
I

valuel =(int)255 .Oe(cos(2.Oepieomega*(vz*(:float)i+vy*(float)j-speed*tinle))+1)/2.O;
value2 =(int)255 .0*(CcsCU.O*pi*omega*(Vz*Cfloat)i+vy*(float)j-apeed*(tims~i)))+J)/2.O;
value3 -(int)255 .O*tcos(2.O*pi*omega*(vx*(float)i+vy*(float)j-speed*Ctime42)))+i)/2.O;

fprintf (infilel, "Xd\t" ,value 1);
fprintf(infile2, "Xd\t", Cvalue3-valuei)/2.O);
fprintf(infile3. "Xd\t" ,vaJlue2);

fprintf(infilel ,"\n4');
fpriutf(infit1.2 "\n');

tclose(infilei).
fclose(inf ±1.2);
fcols. Cinfi±1.3);

3COSCONV.C

11 Copyright * Dr. Hua Lila Lab 1994. All Rights reserved.
* Purpose: To calculate the image flow from moviug oriented cosin images.
* Kernel : Gabor real part kernel and lmap'e size ROWSIZE x CULUKNSIZE.
* Image Format: Binary File

11 Name :CosConv.c.
11 Compilation: cc -a outputfilmname CosConv.c -lm

* Side Effect: Limited by maximum array size
I aput: (i) Kernel Modulation Spatial frequency

* C~2) length (length = M/(igwaomega))
* (3) Kernel Orientation
* (4) Thresold of Notion Detection

34 CHAPTER 5

* (5) Kernel Phase (0: Gabor Real Part; 90: Gabor Imaginary Part)
* (6) devi.img: file name of derivative of moving image
e (7) move.img: file name of moving image
* Output:(1) u.dat motion speed along X axis
* (2) v.dat motion speed along Y axis
* (3) tl.dat: gabor response to derivative of moving image
* (4) xi.dat: gradient gabor response to moving image
* (5) yl.dat: gradient gabor response to moving image
* Executed Machine: Sun Sparc Station
* Coded by: Xiaohui Meng.
* Last Change: May. 25 1994

*include <stdio.h>
#include <string .h>
#include <stdlib.h>
*include <math.h>

define KERNELSIZE 61 / reserved kernel size */
#define ROWSIZE 81 /* row size of image */
#define COLUMNSIZE 81 /* colum size of image */

void main()
f

float rpartt [KERNELSIZE] [KERNELSIZEJ ,rpartx[KERNELSIZEJ (KERNELSIZE];
float rparty[KERNELSIZE) [KERNELSIZE]. -
bufferl [KERNELSIZEJ [COLIJNNSIZE] ,buffer2 [KERNELSIZE] (COLUMNSIZE) ;
FILE *infile I,*infile2;
FILE *outl,*out2,*out3,*out4,*outs;
int rovcolrovl,coll ,row2,col2,i,j ,index,number,kernsize;
float vx,vy,omegatheta,pi=3.1416,sigma,orient,length,thresold;
float image,imagei,image2,image3,phase,u,v,uref,vref;
char devi.name [20), move.name [20);

printf("\n Input Spatial Frequency(Cycles/pixel):");
scanf ("Xf" ,&omega);
printf("\n Input length :") ;
scanf(1'f" ,&length);
printf(1\n Input Orientation :");
scanf ("%f",&theta);

SOFTWARE LISTS 35

printf('\n Input thresold M6k;
scanfC11%f11,&thresold);
printfC'\n Input Phase shifting(dagrees):");
scantC"11f ,&phaae);
Printf("\a Input Derivative Image File:");
scanfC"ls", devi-name);
pnintf("\A Input Moving Image File:");
scanfC1811, move-.name);

sigma = 1.0/(1engtheomega);
kernsize = (iat)ceil(I.0/(omega));
if(fabs((float)kernsiz./2.0-ceil((float)karnsize/2 .0))(in0.0i)
kernsize++;
printf("KernSize=%d\n" ,kernsize);
indexc(int) ((Cf loat)keruaize-i .0)/2.0);

if C(infilel1=fopen(devi..name,"r"l))==NULL) exitC-I);
if C(inlile2--fopen(move-.nam. ,"r"))==NULL) exitC-1);

-*-------Gabor type kernel generator------------------

vx=omega*coa (thetaepi/ 180);
vy-omega*sin(thetaepi/180);

for (i=-indez;i<index+i;i++){
for CJ=in-idex;j~index+l;j44){

image~exp(-(:(lost) (ioi~j J) / (aismasigma));
imagel~coa(2 .0*pi*(vxe(float)i+vy*(float)j).phaseepi/180.0)*image;
image2=uin(2 .0*pi*(vx*(float)i+vye(float)j).phaueepi/180.0)*iniage;
rpartt [i+indexJ [j +iadezJ iaagel;
rpartx (i~index]J j+iadezj =-iuage2*vx*2 .0*pi-image1* (float) i*2.0/ (sigmacaipma);
rparty [i+indez) [j +indexj =-image2*vy*2 . api-inmageis(float)J*2 .0/ (sig~massigaa);

/* ------------- convolution----------------------

if ((out 1-f open Cltl. dat"."v")1)==NtJL) exit(0);
if (out2=-fopenC"zi .dat" ,"ov"))==NULL) exit (0);
if(C out3afopenCIlyl.da', "v"))==NULL) oit (0);
if(Cout4-fopenCIlu.dat" ."ov"))==NULL) exit Ca);

36 CHAPTER 5

if((outgmtopen("lv.dat"'ltv"))=NULL) ei()

for Crovwrindex;rowckernsize;rov++) /c Initialize the butter .

for (col=O;col<CaLUMNSIZE; cal++)
{

facereýinfilel."Xf ",buffeori~rowj (coll))
facanf(inf ile2, "ti' ,&buff cr2 (row] Ecol));
buf f cr1 [row-index) (call -buffterl (index] (col);
buff cr2 (row-index) (colk~butfer2 (index) (ccl);

for(i0O;iCROWSIZE;i++) /e do the convolution *

for (J=O;jCCOLUWNSIZE;j++)

imagei-.O.;
image2O0.0;
image3Ct.O;

f or (rowl=-iudex;rohi<indez+i;rowi++) /. convolution unit C

for Ccolit-index; colicindexl ; coli.+)

co12=j+coli;
if col2<) cal2O0;
if Ccal2>COLUKNSIZE-1) col2=COLIJMNSIZE-i;
image 1+=bufferi (rovi+index) (col2J *rpartt (indextrowi] (indexscoll);
image2+=bufter2 (ravi+index) (cofl) erpartx~index~rcwl) (index~colU];
image3e=bufter2 (ravi+indexJ (col2J arpsrty~indez+raviJ (index+cal U;

*do motion speed calculation

if(fabs(image2) > thresald)
u n cos(pi~theta/i80.0)*cos(piethetallao .0)*imagei/irnage2;
thie u = 0.0;

SOFTWARE LISTS 37

if(f abs(imagea) > tbhresold
v =sin (pi*thet &/180. 0) *sin (pi*thet&/ 180. 0) *image I/image3;
else v = 0.0;

/e if(uref =0.0) u = 0.0;
else u = uref*Cv1.ef*vref/Curef*uref+vref*vref));
if~vref =0.0) v = 0.0;
else v =vref*Curef*uref/Curef*uref~vref*vref)); *
fprintf~outl ,Yf\t' .imagei);
fprintf~out2."%f\t",image2);
fprintf(out3,"%f\t" ,image3);
fprintf(out4,"Yf\t" ,u);
fprintf~out5,"%f\t,',v);

}/* for loop forj *

fprintf Couti ,"\n");
fprintf (out2,"\n'*);
fprintf (out3,'\ntt);

fprintf(out4,'Au211);
fprintf(out6,"\n");

for Ccol=0;col<COLUMNSIZE;col++) /* shifter *

for (rov= ;rov<kernsize-i ;rov++)

bufferi Erow] [coiL]=bufferl Erov+1J [col];
buffer2 [row) [col] =buff cr2 [row+iJ [cll);

if (MORWSIZE-index-1)

facanl~infilei ,"VYf',&bufferl [kernsize-1) [cal));
-facanf(iufile2,"Xf" ,&buffer2[kerrisize-i] [col));

fclose~outi);
fclose~out2);
fclose~out3);

fclose~cut4);
fclose(outs);
fclose~in~iei);
fc~lose~infile2);

38 CHAPTER 5

4 CREATGABOR.C

*Copy right 0 Dr. Li's Laab 1994. All Rights reserved.
*Purpose: To generate Gabor kernel.
SFormat: float point
*Name: CreateGabor.c

void Creatcabor(omega, theta, type,size, tempt, tempx, tempy)
float omega, theta;
ant type, size;
float **tempt, **tempx, **tempy;
f

float omega-.x, omaga..y, sigma;
float phase = 0.0; /* Gabor real part as default *
float image, imagel, image2;
float pi 3.M4593;
mnt i, j;

omega-x omega*cos(theta*pi/180);
omega-.y omega*sin(theta*pi/180);
if (type 1I phase = 90.0;
else phase 0.0;
sigma= i.0/(4.0*omega);

for (i=size;i>=-size;i--)

for (j~size;j>)-size;j--)

image~expC-(float) (iei+jej)/(sigmaesigma));
imagel~cos(2.0*pi.4(omega-.x*Cfloat)i+omega,.y*CIloat)j)+phaseepi/180 .0)*image;
image2=sin(2 .0*pi*Comega..x*Cfloat)i+omega-y*(float)j)+phaseepi/180.0)*image;

SOFTWARE LISTS 39

tempt [size-i) [size-j]=imagei;
tempx[size-i] [size-J]=-image2*omega.x*2.O*pi-imagei*(float)i*2.O/(sigma*sigma);
tempy[size-i] [size-j]=-image2*omega-y*2.Oepi-imagei*(.float)J*2.O/(sigma*sigma);

}

}

5 BUFFERINIT.C

* Copy Right 6 Dr. Li's Lib. All Rights Reserved
* Purpose: initialize the image buffer to take care of the
* image boundary condition for convolution.
* Module Name: Bufferlnit.c
* Required: file vas opened in "RB" mode.
* Image Formal: 8-bit/pixel binary format.
* Coded by: Xiaohui Meng
* Last Change: Oct. 1994.

void Bufferlnit(index, kernsize, column, buffer, fp)
int index, kernsize, colum;
unsigned char **buffer;

FILE *fp;
{

int roy;

for(row = 0; roy < kernsiza; roy++) {
if(roy < index) {

fread(buffer[row],sizeof(unsigned char), column, fp);
revind(fp);
}

else
fread(buffer[rov], sizeof(unsigned char), column, fp);

q I I I ~ ~~~~III III II III I

40 CHAPTER 5

6 BUFFERSHIFTER.C

* Copy Right 0 Dr. Li's Lib. All Rights Reserved
* Purpose: shift data in image buffer for convolution.
* Module Name: BufferShifter.c
* Required: file was opened in "RB" mode.
* Image Format: 8-bit/pixel binary format.
* Coded by: Xiaohui Meng
* Last Change: Oct. 1994.

void BufferShifter(kern.index, kern-size, row-img, col-img, row-loop, buffer, fp)
int kernindex, kern-size;
int row-ling, col-img, row-loop;
unsigned char **buffer;
FILE *fp;

int row, col;

for(col = 0; col < col.img; col++)
for(row = 0; row < kern-size-1; row++)

buffer[row] [col] = buffer[row+ ([col] ;

if(row-loop < row.img - kern-index -i)
fread(buffer[kern-size -1J ,sizeof(unsigned char), col.img, fp);

SOFTWARE LISTS 41

7 CONVOLUTIONUNIT.C

* Copy Right 4 Dr. Li's Lib. All Rights Reserved.
* Purpose: convolve image with kernel.
* Module Name: ConvolutionUnit.c
* Required: file was opened in "RB" mode.
* Image Format: 8-bit/pixel binary format.
* Coded by: Xiaohui Meng
* Last Change: Oct. 1994.

float ConvolutionUnit (kern-index, col.image, col-loop, image-but, kern-but)
int kern-index, col.image, col.loop;
unsigned char **image.buf, **kern.buf;
{

int rovl, col1, col2;
float conv-data: 0.0;
for (rovl = -kern-index; rov1 < kern-index + 1; rovl++) (

for (col1 = -kernindex; col1 < kern.index + 1; coll++) {
col2 = col.loop + co1i;
if(col2 < 0) col2 = 0; /*Judge boundary in column of image buffer */
if(col2 > col.image - 1) col2 = col-image - 1;
convydata += (float) mage-buif[rovlfkern.index] [(cl2] *

kern.buf [kern.index+rovl] [kernindex+coliJ;

return convydata;

8 GABORMOTION.C

* Copyright 4 Dr. Hua Li's Lab 1994. 111 Rights reserved.

42 CHAPTER 5

* Purpose: To calculate the image flow from moving images.
e Kernel : Gabor type kernel(real or imaginary part).
* Image Format: Binary image with ROWSIZE x COLUNNSIZE.
* Name : Gabor.c.
* Required: Leastsq.c.
* Compilation: cc -o filename Gabor.c -lm
* Side Effect: Limited by maximum array size.
* Input: (1) Kernel Modulation Spatial frequency
* (2) Starting orientation of kernel
* (3) Rotating angle each time
* (4) Numbers of rotating
* (5) Threshold
* (6) Phase in kernel. 0: real part; 90: imaginary part.
* (7) Derivatevi Image File: file name of derivative of moving image
* (8) Moving Image File: file name of moving image
* Output:(1) u.dat motion speed along I axis
* (2) v.dat motion speed along Y axis
* (3) ti.dat: gabor response to derivative of moving image
* (4) xi.dat: gradient gaYor response to moving image
* (5) yl.dat: gradient gabor response to moving image
* Executed Machine: Sun Sparc Station
* Coded by: Iiaohui Meng.
* Last Change: Mar.18 1994

*include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "Leastsq.c"

define KERNELSIZE S1 / reserved kernel size */
#define ROWSIZE 61 /* row size of image */
#define COLUMNSIZE 61 /* column size of image */

void main()

{

float rpartt [KERELSIZE] [KENELSIZE] ,rpartx[KERNELSIZE] [KERNELSIZE];
float rparty[KERUNLSIZE] EKENELSIZE],
bufferl EKERNELSIZE] LCOLUKNSIZE] ,buffer2 [KERNELSIZE] [COLUMNSIZE];

I~ M M M

SOFTWARE LISTS 43

MIE *infilel ,*infile2,*iufile3;
FILE ecuti ,*oit2,*outS;
imt rov,col,rovl,coli,rov2,co12,i,j ,indei,numbe.rkerasize;
float vx,vy,omega,theta,pi=3. i415926535,sigma,engle..3tart ,anglO..tuflO,orient-.num;
float thresold;
float image ,imageli ,mage2,image3,phase;

char bu~ffer.a [IS];
char buff er-.b [IS]
char buff er.c [15);
char buf f er-.d Ei5)
char *stringI=11.dat11;
char *string2u11t\0"1;
char *string3"1x\0"1;
char *string4=11y\01";
char devi..uame [20], move-.name [20);

printf("\u Input Spatial Frequency(Oycles/pixel):");
sacnf(Ilf" ,komega);
printf("\n Input Initial Anglez(degrees):");
scant (1%t" ,kangle..start) ,
printf("\n Input Tuning Angles~degrsee):11);
scanf("Xf"A.angle-.tune);
printf("\n Input Orientation Numbers :11);

scad C"%f11,&orieiit..nun);
printf("\n Input Threbhkold :11);
scanf(Ilf"Athresold);
Printf("\n Input Phase shifting(degreez):11);
acaufC"%f"Aphaae);
printf(1,\n Input Derivative Image File:");
scanf("%s", devi-name);
printf(11\u Input Koving Image File:");
scan (Ils", *ove-nafe);

number=0; /* number of orientations *

sigma= 1.0/C8.Ooomega); /* set length = 4.0 *
kernsize = (iut)ceil(i.0/(omega));
if(:fabs((float)kernsize/2 .O-ceil((float)kernsize/2.0))<O0.Oi)
kerns ize++;
printf("KernSize=%d\n" ,kernsize);
index=(int)(C(float)kernsize-1.0)/2.0);

44 CHAPTER 5

it((infile.i-topen~devi-name,"orl))=uNULL) zC-)

for (theta~angle-s.tart ;thetkicmangle.start+ (orientnual .0) *angle..tun.+i .0;

rnizber+=1;
sprintf (buffor..d, "%d" ,number);
strcpy(buffer-a,string2);
mitrcpy(buffer-b ~atring3);
strcpy(butor..c ,striug4);
strcat (buff er.-a buffer-.d);
strcat (buffer-b ,bufier-.d);
atrcatQhuffsr-c ,buffer..d);
strcat Cbuffor-.a,stringl);
strcat (buff er.b ,string1);
strcat (buffer-c~stringl);

/*----------- Gabor Type Kernal G~enerator-----------
infile3=-fopenC"kern.dat" ,"lv'9;

vzocm~ga*ooa(th~ta*pi/1S0);
vycomagaosin~theta*pi/I80);

for C(inidex;i>=-index;i--)

for (j=iudqz;J>=-iudei;j--)

iinagae=.pC- (float) (i*±-j*j)/(.igmaoaigma));
imagelicoa(2.0opi*CVI*(float)i+vy*(flomt)j)+phas.*pi/180.0)*imlage;
1haage2=sin(2.0*pi*Cvx*Cfloat)i~vy*(float)j)4phase*pi/iS0.0)*i.3fg6;
rpartt [indoz-iJ [inado-jlimagel;
rpartx [indem-iJ Cindex-j) I-image2*vz*2 . 0.pi-ima~ge1 *(float) 1*2. .0/ (sigma* aigaa);
rparty [index-i] (index-jJ -imiage2*vy*2 . *pi-imaga.501(float) j*2 .0/ (sigma*sigma);

fprintf~inf±1e3, "%f\t" ,image I);

ýLpin U ie3 1\"

SOFTWARE LISTS 45

/* ------------ convolution----------------------*
iW((out 1-fopen (buffer_&a, nwn))-NL) exit(O);
If((out2odopen (buff er..b, "v"))NUL) exit ();
if ((out3sf open (bufferc.c*"vs))==NILL) exit (0);

for (rovwindex;:ow<kernaize;row++) /* Iuit~iuiise the buffer .

for (coiO; co<CCOLUMNSIZE; col++)

fecaif~infilei, "Uf" ,bufferl (row] [call);
tscanf~infile2,"Xf" ,bbuffer2 (row (coil);
buff ar1 [raw-index) (coil =buafferl (index] (coil;
buff cr2 [row-index] [call =buff *r2 (index] [col;

for(i0O;i<R0WSIZE;i4+) /* do the convolution ~

for (J=0;J<COLIJMNSIZE.;J++)

imflgelUO.0;
imags2=O.0;
imaag3=0 .0;

for Crovlu-index;rovl~index*1;roli++) (C /* convolution unit *
for (col 1=-index; coli<index+ ; coll++) '

col2=j+coli;
if(col2<0) col2-0;
if (colM>OLUHNSIZE-1) col2=COLWANSIZE-i;
lunge 1+=bufferi (rovl+index] (col2J *rpartt (index~rawlJ (index+collJ;

image 24=buffer2 (rovl+index] (col2] erpartx (index+rovlJ (index+collJ;
iuage3+=buffer2 (rovl+indexl [col2) erparty (index+roviJ [index+colil];

fprintf~outi ."f\t" ,imagei);
:fprisnt~f(out2 "%f \t" 1,image2);
fpriatf (out3,'%f\t" ,iiag*3);
)/* for loop forj J

fprintf outM,\n");

46 CHAPTER5

fprintf (outS ,"\n");

for (col-O;col<CaLUHRSIzE;col.+) /* shifter C

for (row0-;rov~kernsize-1 ;rov++)

bufferi [row] [colJ =bu~ff erl [row+i) [col];
bu~ffer2 [row) [cl] bu~fler2 [row+1) tool];

it CiCOWSIZE-indez-1)

f scaud (inS ilel, ":f~ k&buffer2 [kernaize-1) [col]);

revind(infilel);
revind(intfile2);
f close (out1);
Iclose(out2);
fclose(oirts);

f close (inS ilel);
flobs. Winilo2);

-----Leaut Square Estimation ------ C

if (orient-~num -= 2.0) solve2(RaVSIZE,COLVNSIZE,thresold);
else

solve4CROWSIZE,COLUMNS!ZE~thresold);

9 LEASTSQ.C

*This program is to minimize the motion error by using

SOFTWARE LISTS 47

* least-square-utltmation. Two functions are included:
* (1) solve4O): function for rotating 4 orientations of Gabor type function
* (2) solve2O : function for rotatiag 2 orientations of Gabor type function.
* required: ddd. dat * the difference of first frame and second frame of images

*include <stdio .h>
*include (string .h>
#include <stdlib .h>
*include 4ýmath.h>

solve4(ROW,COLUNN, tkresold)
int RO,COLUKN;
float thresold;

mnt i,j~k,index;
float ytE5) ,yx[5] ,,yES];;
float u~v,ball;
float nul ,zum2,num3 ,num4,num5;
FILE *fti .*ft2 ,*ft3,*ft4,*ftS;
FILE *fxj *fx2e*fxS,Ofx4,*fx5;
FILE *fy1.,*fy2 ,*fy3,*fy4,*fy5;
FILE *outi ,*out2,*out3,*out4;

if(Cfxi-fopeu("xi.dat". 1r"))=NULL) exit(O);
if C(fx2=-fopen("x2. dat"l,"r")) -NUL) exit (0);
if ((fxS'-fopen(Hx3. dat", "r")) -NULL) exit(0);
il ((fx4-fopen("x4 .dat","1r")) -NUL) exit (0);

if % Cfyl--fopen("yt~at,"r")) NULL) exit(0);
if (fy2u-fopen("y2 .dat" "r"))=NULL) exit (0);
if (Cfy3-fopen("y3 .dat" 11r19))=NULL) exit (0);
if C Cfy4-fopen("y4 .dat", "r") - NULL) exit (0);

if ((Cft1-f open("t 1. .dat"s , "r") ==NULL) *xit(0);
if (Cft2--fopenC "t2dat" , "r"))-NILL) exit (0);
if (ft3S-fopen("t3 .dat" * "r"))=NULL) exit (0);

48 CHAPTER 5

it C (ft4-f open ("t4. .dt" *"r#))NULL) exit (0);

if((euta--fop~u("ddd.img" ."r"l))==NULL) exit(0);

for CP0; i<ROW; i++)

for(J=0; JCCLUN ; J++)

fscanf (fxi, "%f ",&Yx 03);
facauf (fx2, ITEI,kyx [ID;
fscanf Cfx3 * 'f"*&yx [2J.;
fscanI (fz4, "%f" ,&yx (3));

fsceaf (fyi "%1" ,&yy (0));
fscanf~fy2,"Xf",&yy[21));
faceaf (fY4 * 1%f *&YY (23)) ;

fsafs(fy4 "ft ,&yy (3D;O3

facaaf (ft2,"Xf",kyt (0));
fscenI(ft2,"If" ,&yt Ci];
fscanf(ft4,"Xf',&yt(3J);

fscamf(out3,"Xtf ,kball);

i1umi=0.0;
num22=0.0;

* uum M0.0;
num4O .0;
uumsWO.0;

if(ball == 0.0) /* determine if motion occurs
fprintf~outi,"Xf\t",0.0);

for (kuO;k<4;k++) /* /10.0 for reducing out of range *

numi+=Yx~kJ/50 .0eyx~k)/50.0;

SOFTWARE LISTS 49

rnam24=yy~kJ/50 .0*yy~kJ/50 .0;
nws4=Yyy~k]/50.0*yx[kJ /50.0;

num4*=yt [k3/50.0*yx[k3/60.0;
num5+Yt~k3/50.0*YY~k3/50.0;

if (fabs (numlenum2-nijm3.niam)<= throsold)

puts(" data overflow)

U=0 .0;
V=0.0;
index+1I;
printfC'\n rov-%d, col-uzk=d\n" .i,j);

elso

/* Coordinate System would be Consistent with M&TLkB Coordinate System *
6=- (n'um2*num4-aUM3*numS) / (nui*nUM2-aum3"num3);
u=- Cmml*num5-uum3*num4) / numl*num2-num3*num3);

fprintf (out I, "%f \t' ,u);
fprintf(out2,'Xf\t" ,v);

} * ball a- 0 *

fprintf (out 1,"\n");
fprintf(out2, "\n1'9;

printf(C" \ntatol dataflow number is XdAn",indez);
r~emove C1tI. dat");
remove C't2. dats) ;
remove C"t3.dat");
remove ("t4 .dat") ;
remove("x1.dat11);
removeC'1 x2.dat11);
remove("x3.dat11);
remove("x4.dat1);
remove("yl.dat'l);
removeC'Iy2.dat'");
remove("y3.dat");
remove C~y4.dat11);

50 CHAPTER 5

solve2 (ROW ,COLUKN ~thresold)
int ROW,COLUMN;
float thresold;

int i,j,k,indox;
float yt[23 ,yX[2J.yy[2];
float rnuirnium2,riua3,num4,rnam5,u,v,ball;
FILE *ftl.*ft2;
FILE *fxl,*fx2;
FILE *fyi,sfy2;
FILE *auti ,*out2,*out3;

if(Cfxl=-fopen(Nxi .dat" ,"r'))=NULL) exit(O);
if((fx2=-frpeu("x2.dat" ,"r"))mNULL) exit (0);

it (CfyI-fopen("yi .dmt" . r")) =NULL) exit(O);
if ((y2=ftopen("y2.t, "r"))=*aNULL) exit (0);

if(Cfti--fopen(Ilti-dat",fr"))umNULL) exit(0);
if(Cft2u-fopen(dt2.dat","r'l))u.NULL) exit(0);
if((out3=-fopen("lddd.img"."r"))u=NULL) exit (0);

if((outl--fopenC"u.datel".V"))=aNUL) exit (0);
W i(cout2u-fopenC("v -dath'.h"v19))-NULL) exit(0);

indezin0;

for (i ; i<ROW; J,+)

:fcr(J=O;J<COLUKN;J++)

f scanf Cfyl, "%f " ,yy [0));

f scaiif (fy2, "%f",y(1)

SOFTWARE LISTS 5

fscanf Cft2, "%f" ,kyt E1J);
fscan~f~cut3,'%f" ,&ball);

UUMl=0.0;
num2=0.0;
num3=0.0;
num4O0.0;
nUMSO0.0;

if(C ball = 0.0){ /* determine if motion occurs
fprintf(outl,"'f\t" ,0.0);
fprintf~out2,"Xf\t' .0.0);

else{
for (k=0;k<2;k++) /* /10.0 for reducing out of range *

nuji+=yx[kJ/50.0*yx[kJ/50.0;
num2+-yy[kJ/S0.0*yy[k]/60.0;
hum3+=yy~kj/G0.0*yx~kJ/50 .0;
num4+-yt [ki/50.0*yx~kJ/50.0:
num5+-yt (k]/60.0*yy~kJ/60.0;

ifCf abs (nui~alnulm2-num3enum3) <-thresold)

puts(,, data overflow")
U=0 .0;
V=0.0;
index+=l;
printf("\n row--%d, columa=%d\L" ,i,j);
I
else

/* Coordinate System Transform for U and V Otherwise U and V change each other*/
v=- Cnwnm2*uum4-num3*nmSa) / Cnumlenum2-mumaenum3);
u=- Cnmn*num5-nuu3*nua4) /(Cniml*num2-num3*num3);

fprintf (out 1, ")f\t" ,u);
fprintf (out2.1'%f\t' ,v);

}/* ball ==/

52 CHAPTER 5

fprlntf Cout i, "\n") ;

fprintf• out2, "\n");

printf(" \ntatol dataflov number is %d\n",index);
remove ("t i. dat");
remove("t2.dat");
remove ("xl.dat");
remove("x2.dat");
remove ("yl .dat");
remove("y2.dat");

10 BM11.B

studio {
from -30 225 120 //set up position of the camera here and next line
at -10 10 10
up 0 0 1
angle 27.1
res 120 100
aspect 1.2
antialias adaptive
background (0 0 1)
ambient .8 .8 .8
}
/e light source definition*/
light I type point falloff I position 60 120 80 color 25 25 25 }

/* objects defination*/

// for red x-axis //
surface { diff (.3 .3 .3) shine 20 .5 .5 .6 }

cone { apex 0 0 0 base 26 0 0 apex-radius i base-radius i }
cone { apex 26 0 0 base 27 0 0 apex-radius I base-radius 5 }
cone { apex 27 0 0 base 35 0 0 apex-radius 6 basera~dius 0 }

SOFTWARE LISTS 53

sphere center 35 5 0 radius I
sphere { center 42 5 0 radius I }
sphere { center 35 5 10 radius I }
sphere { center 42 5 10 radius I }

cone { apex 35 5 0 apex-radius I
base 42 5 10 base-radius I }
cone { apex 85 5 10 apex-radius I
base 42 5 0 base-radius 1 I
//for green y-axis //

surface (diff (0 1 0) shine 20 .5 .5 .5 1

cone { apex 0 0 0 base 0 25 0 apex-radius I base-radius I I
cone { apex 0 25 0 base 0 27 0 apex-radius I base-radius 5 }
cone { apex 0 27 0 base 0 35 0 apex-radius 5 base-radius 0)

sphere { center 5 35 A0 radius 1 }
sphere { center 12 35 10 radius 1

sphere { center 8.5 35 0 radius I I
cone { apex 8.5 35 5 base 5 35 10 apex-radius I base-radius 1 }
cone { apex 8.5 35 5 base 12 35 10 apex-radius I base-radius 1 I
cone { apex 8.5 35 5 base 8.5 35 0 apex-radius I bav%-radius i }

// for blue z-axis i/

surface { diff (0 0 0) shine 20 .5 .5 .5 1

cone { apex 0 0 0 base 0 0 25 apex-radius I base-radius 1 I
cone { apex 0 0 25 base 0 0 27 apex-radius 1 base-radius 5 1
cone { apex 0 0 27 base 0 0 35 apex-radius 5 basseradius 0 }

sphere { center -5 -5 25 radius I }
sphere { center -12 -5 25 radius 1 I
sphere { center -5 -5 35 radius I I
sphere { center -12 -5 35 radius 1 1
cone { apex -12 -5 35 base -5 -5 25 apex-radius I base-radius 1 I
cone f apex -5 -5 35 base -12 -5 35 apex-radius 1 bise-radius I I
cone { apex -5 -5 25 base -12 -5 25 apex-radius I base-radius I 1

/* Sphere e/
surf {

54 CHAPTER 5

diff (.8 .1 .1)

spec .8 .1 .1
shine 30
I

sphere (center 10 60 10 radius 10} // set up position of sphere here

/* The end */

