
NAVAL POSTGRADUATE SCHOOL
Monterey, California

00 ,

7- 'MýR R zD•

94-32943

oSA THESIS -IC'0', ,, .,, : a

OBJECT-ORIENTED
METHODOLOGY FOR

MARINE CORPS SOFTWARE DEVELOPMENT

by

Robert F. Padilla, Jr.

September, 1994

Thesis Advisor: C. Thomas Wu

Approved for public release: distribution is unlimited.

" III I - - " I I ml -~~~~~~~~~~'-11I I . .". .. .I I . _ _ - i a

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of informatiorn is estimated to average I hour per response, including the lime for reviewing
instruction. searching existing data sa)urces, gathering and maintaining the data needed. and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any othcr aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services. Directorate for Information Operations and Reports. 1215 Jeffers.on
Davis Highway. Suite 1204, Arlington. VA 22202-4302, and to the Officc of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503

1. AGENCY USE ONLY (Leave bla.'ik) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Septemnber 1994 Master's Thesis

4.'TITLE AND) SUBTITLE: OBJECTF-ORIENTED METI-ODOLOGY FOR MARINE 5. FUNDING NUMBERS
CORPIS SOFIWAR h DEVELOPMENT (U)

6AUThIOR(S) Robert F. Padilla, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Montrey_(CA 93943-5000 _________________

). SPO0NSORING/MO)NITR:NGi AGENCY NAME(S) AND AD)DRESS(E:S) 10. SPONSORING/MVoNIToRIN(;

I AG EN cY i A oRPOrT NU1)MB FR

I i SIJPPLE-MLN'IARY NOTES The views iexprcsscd in thi.s thesis are those of th~e author and do not reflect the official Policy or
position of the Department of I)elcnsc or the U.S. Gno~crnmeni

12;1 I)IS'FRIIIIYIION'.AVAILABILITY' S'TA'rlMlN'l Approved for public release: 12b. DISTRIBUTION CODE
isiribution unlimited A

13 ABS'5IRACl (maximum 200 1%widsj. I his tle,,i% aitseiS three kiLI~stioiis Vhat is obiect-oriented development methodologp and
\% i\ is ii good lor the Marine Corps' flo", is oble,:i-oriented ineieodolng% dtflerent front what die Marine Corps is doing ttNO' What
should the Marine Corps do and when should the. do it'

10 e\1pluie theCsC issues tlits thesis designed a tv-pical Maruie Corp., application (a COmpan, Personnel Systein (COPS)) usaig
both S~stciis D~evelopmenit Mcthodolog\ (.9I)M) and Ohiect. Modeling I echnique 1.OM1I I Iliese methodologtes are cotmpared in
ternis of ease or tnaintenian~e. understwndability. extenditbihi- Itt.thertittce. and database integratton
It tS g0sxl for thie Marine Corlp,; because it helps dc\vclopeis. and customers express abstract concepts clearl,. OMT and SDM

difl~r in their apptoach to S\steII eigautizattou OMT around real-wkorld objects, w\hile SDM ar'ound tiinctionalit% The Marine
Corps, shouild inunffediatl.\ chaitge its paradiguit fromn SDM to OMT S DM's Funicti onalI Requ irements Defin itiuii, GeneralI Des ign
Specification, and Detailed Desigi, ";pecification "il have to be replaced mith OMT's Analysis, Systemn Destgn, and Object Design
repeCtivel)

14 SUJBJECT TERMS Obtject-Ormerncd Methodology. Systemi Development Methodology (SDM), 15. NUMBER OF PAGES
Obýject Modeling Technique (ON11) 64

________________ ________________________________16 PRICE CODE

17. SECURITY 18. SECURITY 19 SECUJRITY 20. LIMITATION 01:-
.LASS1 1C ATI 0N 0 1: CLASSIFICATION OF THIS CLASSI FICATION OF ABSTRACr'

REP1OR*I PAGE ABSTRAC-T UL

Unclassi lied-- Unclassified Unclassified

NSN 7540-01-280-51100 Standard Form 298 (Rev. 2-89)
Prescribed by. ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Object-Oriented Methodology for Marine Corps Software Development
by

Robert F. Padilla, Jr.
Captain, United States Marine Corps,

B.S.B.A., Ohio State University, 1987
M.B.A., United States international University, 1992

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
S':ptembcr 1994

Author:
Robert F. Padilla, Jr.

Approved by: ____

C. Thý/'s Wu, Thesis Adviso~r

Lou Stevens, Second Reader

Ted Lewis, Chairman
Department of Computer Science

;i _i-

ABSTRACT

This thesis answers three questions: What is object-oriented development methodology

and why is it good for the Marine Corps? How is object-oriented methodology different

from what the Marine Corps is doing now? What should the Marine Corps do and when

should they do it?

To explore these issues, this thesis designed a typical Marine Corps application (a

COmpany Personnel System (COPS)) using both Systems Development Methodology

(SDM) and Object Modeling Technique (OMT). These methodologics are compared in

terms of case of maintenance, understandability, extendibility, inheritance, and oatabase

integration.

It is good for the Marine Corps because it helps developers and customers express

abstract concepts clearly. OMT and SDM differ in their approach to system

organization: OMT around real-wor!d objects, while SDM around functionality. The

Marine Coips should immediately change its paradigm from SDM to OMT. SDM's

"Functional Requirements Definition. General Design Specification, and Detailed Design

Specification will have to be replaced with OMTs Analysis, System Design, and Object

Design respectively.Atc; Fo

N I- T 'I"
P, I iG

,: x

Ly

TABLE OF CONTENTS

I. T IN T R O D U C T IO NI

A . B A C K G R O U N D 2....................... 2

B. USE OF CURRENT METHODOLOGY 2

C . M E T H O D O L O G Y 4

D ORGANIZATION OF THESIS 5............................5

I1. CURRENT MARINE CORPS SOFTWARE DEVELOPMENT STANDARDS

AND PROCEDURES 6.................... 6

A. SYSTEM DEVELOPMENT METHODOLOGY 6

1 Background 6

2 Phases 7

3 Documentation Requirements 8

a Functional Requirements Defintion 9

b. General Design Specification 10

c Detailed Design Specification 10

4 Structured Analysis and Design 11

III OBJECT-ORIENTED SOFTWARE DESIGN 12

A CHARACTERISTICS OF AN OBJECT-ORIENTED APPROACH 12

1 Identity .2

2 Classification. 13

3. Polymorphism 3

4 Inheritance .. 1.. 3

5 Abstraction 14

6 Encapsulation 14

B OBJECT MODELING TECHNIQUE 14

I Analysis Phase.. 15

a Object Model 16

b Dynamic Model 17

c Functional Model 18

ZV

t-

2 System Design 19

3. Object Design 19

C. OMT AND OTHER OBJECT-ORIENTED APPROACHES.. 21

IV. APPLICABILITY OF OBJECT-ORIENTED METHODOLOGY TO MARINE

CORPS APPLICA rIONS 23

A APPLICATION BACKGROUND. 23

B COPS DESIGN USING SDM 24

1 Requirements Statement 24

a General 24

b Current System 24

c Required Capabilities 24

2 Functional Requirements Definition 5

a General 25

b Structured Specification 25

(I) Functional Requirements 25

(2) Non-functional Requirements 20

(3) Context Diagramr 2(

3 Geiveral Design Specification 20

a Geveral 26

b DFD of COPS System)7

c Data Dictionary for COPS 27

d Entity-Relationship Diagram fbr COPS 30

4 Detailed Design Specification for COPS 30

a General 30

b Structural Specification 31

(1) DFD of Compute PFT Scores Module 31

(2) Module Specification 31

C COPS DESIGN USING OMT 34

1 Analysis Phase 35

a Object Model for COPS 35

(1) D ata D ictionary for Object M odel 36

b . D y n am ic M o d e l 3 7

(1) Event Flow D iagram for C O PS 37

(2) State D iagram for C O P S .. 38

c. Functional M odel 39

2 System Design 39

3. Object Design 40

V. COMPARISON BETWEEN SDM AND OMT METHODOLOGIES. 42

A GENERAL OBSERVATIONS 42

I Organization . 42

2 Extendability 43

3. Understandability 45

4. Inheritance 46

5 Database Integration 47

6 Maintenance 47

B CHOOSING BETWEEN SDNI AND O\I1 49

VI CONCLUSIONS AND RECOMMENDAI IONS C1

A CONCLUSIONS 51

B RECOMiMENDATIONS 54

LIST OF REFERENCES 56

INITIAL DISTRIBUTION LIST 57

1v

I. INTRODUCTION

The United States Marine Corps is currently evaluating object-oriented methodology

for several future software development projects because complex software developed

using that methodology appears to be faster to develop and easier to maintain. This

thesis will explore the required changes in current procedures and standards in the area of

software engineering techniques and will provide Marine Corps officials with an

objective look at changes in software engineering procedures that are inherent in a

paradigm shift.

A. BACKGROUND

The advantages of object-oriented methodolog. have been widely discussed in the

technical press and there appears to be a widespread move in that direction for commercial

applications and software development To understand the impact of this new

methodology on Marine Corps software development pro,-7sses requires an assessment of

object-oriented capabilities, limitations, and constraints Additionally, it requires an

understanding of what changes must be made to current Marine Corps software

development methodologies

The Marine Corps uses two sets of standards to guide the development of software.

one standard is for unique "tactical" systems, the other standard is for "non-tactical"

systems This thesis will explore only the software development methodologies for

non-tactical systems. These methodologies are similar to those used by private industry,

with slight modifications specific to military use. In addition, this thesis will explore only

software deve!opment for PC's and network servers. The development methodology for

Marine Corps mainframes is the same What differs is the level of detail required by the

standards and procedures. The Marine Corps defines three categories of systems, small,

medium, and large. These categories are defined by the amount of money spent on system

development and implementation. Small systems are limited to less than $1 million,

medium systems run between $1 million to $5 million, and large systems cost over $5

million The larger the system, the larger the documentation requirements Systems

developed for PC's and network servers tend to fall into the category of small systems. By

limiting the scope to small systems, this thesis will be aule to focus on the details of

development methodology, instead of getting caught up in unnecessary documentation

requirements Furthermore, this thesis looks at the use of object-oriented software

methodology as it applies to a proposed or existing Marin.e Corps application. The intent

is to show the generic changes that are required and provide Marine Corps officials with

the general idea behind, and impact of, object-oriented methodologies

B. USE OF CURRENT METHODOLOGY

Currently, the Marine Corps uses a design methodology based on traditional

structured analysis and design principles (these will be defined in Chapter II). However,

based on practical experience, it can be said that these standards and prozedures are not

always adhered to by system developers Due to time constraints and other factors, most

2

.- I

-- I m n.) .. U

small systems are not designed properly, that is, following the standards and procedures

It seems that once a requirement has been defined, the programmers start coding the

system, without taking the initial time up front to properly design and document the

proposed system. A fundamental shift in attitude towards proper system development

must be embraced by Marine Corps system developers. Once this has been accomplished,

the next step is to adopt a methodology that organizes a system around real-world objects,

instead of around procedures. The object-oriented approach to systems analysis and

design is presented in this thesis.

In order to define what the object-oriented approach to systems analysis and design is,

and what the impact of such an approach is, the following list of questions will be

addressed and answered in this thesis The questions have been broken down into three

categories

A What is it and why is it good for the Marine Corps"

* What is object-oriented software design"
* What are the benefits of systems developed with object-oriented methodologies"

B How is it different than what we are doing"

* What are the current methodologies used for software development".

* What changes are required to current development methodologies in order to develop

software based on object-oriented methodologies"

C. What should we do and when should we do it?

* When is an object-oriented approach beneficial?
) i oe -oriented methodology applicable to Marine Corps non-tactical software"* is 0oo'ect-ornenteu 111Cludo v yt

development activities)

Categories A and B serve as background subjects, while category C will show the

benefits and applicability of a object-oriented approach to Marine Corps applications

3

C. METHODOLOGY

In order to provide for background, as well as applicability, this thesis will follow a

number of certain steps. This thesis will report the results of a five step process, defined

below.

Step one: Understand Current Procedures. This step will explore current Marine

Corps software development procedures and standards. This will be done in order to

gain an understanding of the requirements that drive current software development. This

is essential in order to show where changes must be made it object-oriented

methodologies are to be adopted.

Step two: Understand Object-Oriented Procedures. This step will explore

object-oriented methodologies. specifically in the area of software engineering. This is

essential in order to compare and contrast current methodologies with object-oricnted

methodologies. The Object Modeling Technique (OMT) will be used as the

object-oriented methodology.

Step three: Identify Elements of Applicability. This step will determine if (and

when) ob.ict-oricntcd methodologies arc applicable to Marine Corps non-tactical

software development. This will focus on a proposed or existing system.

Step four: Compare the Methodologies. This step wil! compare and contrast the two

methodologies. The strengths and limitations of each will be addressed. Focus will he

given to the area of "where changes are to be made" if object-oriented methodologies are

to be applied and practiced.

4

Step five: Conclusions and Recommendations. Finally, conclusions and

recommendations will be made about the use of object-oriented procedures and

techniques for Marine Corps software development activities.

D. ORGANIZATION OF THESIS

This thesis is organized as follows. The next chapter, Current Marine Corps

Software Development Standards and Procedures, describes current Marine Corps

standards and procedures with respect c; system development and analysis.

The .hird chapter, Object-Oriented Software Design, defines an object-oriented

approach to system analysis and design. Specifically, the Object Modeling Technique

(OMT) is presented.

The fourth chapter, Applicability of Object-Oriented Methodology to Marine Corps

Soitware Development, will look a, an existing or proposed system (developed using

current methodologies), and develop a portion of that system using OMT.

The fifth chapter, Comparison Between Current and Object-Oriented Methodologies,

will compare and contrast the two methodologies.

The sixth chapter, Conclusions and Recommendations, will make specific

recommendations to the Marine Corps about object-oriented methodoligies.

.11 _

11. CURRENT MARINE CORPS SOFTWARE DEVELOPMENT

STANDARDS AND PROCEDURES

Current Marine Corps standards and procedures are based on the Department of

Defense (DOD) and Department of the Navy's (DON) "Life Cycle Management" (LCM).

"LCM is a process of administering an information system (IS) over its entire life with

emphasis on strengthening early " •cisions which influence IS costs and utility" [Ref. 1].

The Marine Corps has used the LCM as a guideline for it's own version of the LCM.

Within this version lies the methodology that governs all current Marine Corps software

development activities; the System Development Methodology (SDM).

A. SYSTEM DEVELOPMENT METHODOLOGY

1. Background

The SDM is the formal specification for building a system. It defines the activities

necessary to build a system, the interface between those activities, and control of the

products created as a result of those activities [Ref. 2:p. 1-3]. The intenf of the SDM is

to provide a methodology based on existing government publications, but enhanced to

accommodate the technologies and constraints specific to the development of new

systems. SDM follows the guidelines set forth in Marine Corps Order P5231.1, "Life

Cycle Management for Information Systems Projects (LCM-!S)," which provides overall

policy on system development [Ref. 2:p. 1-4].

6

The SDM is based on a traditional software development activity, known as the

software life-cycle. This life-cycle approach involves the following activities:

requirements analysis, system specification, system design, detailed design, coding,

integration, operation and maintenance. The activities that pertain to software

engineering aspects within the SDM will be defined later.

2. Phases

The phases of the SDM are similar to those of the LCM, but with a couple of

differences. There is an additional division within the Definition and Design phase and

the System Development phase. These sub-divisions arc necessary in order to

incorporate the traditional formal structured design approach to software development.

Figure 1. "System Development Phass." shows a comparison of the DOD/DON LCM

with the Marine Corps SDM.

7

DOD & DON LCM

mi.sion Aaal/ Concepl Definition and System Deployment

Proect Init Dcvclopment Design Development
� m-.-'=~ iand

Definition Des ign Developmet ad Test Eval.

j 1 ntegration Operations

MARINE CORPS SDM

Mismion Anal/ Concept Definition and Syrte, Deployment

Project [nit. Dcvelopment Design Development
' " ' 'and

General Detailed Development

Codc and]est Eval. Operations
Def. Des Design Integration

Figure 1 System Development Phases

The major emphasis in the SDM is placed on the actual development activities,

which occur in the Concept Development through System Development Phases. This is

where the majority of the software design and development work is done.

3. Documentation Requirements

The SDM requires that several documents be prepared and delivered to

management. These documents are due at several different stages throughout the SDM

process. This thesis will only address those documents that are pertinent to the software

development process; namely the 'Functional Requirements Definition" (FRD), "General

Design Specification" (GDS), and the "Detailed Design Specification" (DDS). These

documents are required in the Definition and Design phase of the SDM. Figure 2,

"Deliverables of SDM", displays the document deliverables of the SDM.

!_8

Mis.ion Concept Defini•ien and Design Deployment

Ahalysis Development General Design Detail D ign Devlopmen

hinctional
-L cnRequirtemeni•i l id U .ers Manual

D-lUonomic k ninaon and Design Computer

Analysis General Design Optraionas
Specification Specifiation,, Manual

Figure; 2 Deliverables of SDM

There are more documents required under the LCM, but these documents do not

pertain to the software engineering aspects of development. The documents that pertain

to software engineering aspects will be described below.

a. Functional Requirements Definition

This standard provides the guidelines to produce a Functional Requirements

Dcfinition . The definition developed will detail the user's requiremcnts for new.

changed, or enhanced applications necessary to meet the system's objectives [Ref. 2:p.

2-10]. When completed, the functional requirements definition will be provided to

project management for review and approval.

The FRD is the equivalent to the traditional life-cycle "System Specification"

phase. It involves eliciting from a customer the behavioral characteristics and properties

of the software system that is to be developed. They must be specified in an accurate,

complete, unambiguous and non-contradictory way [Ref. 3]. The purpose of the system

specification is to determine a customer's needs in sufficient detail to plan the

construction of a software system meeting those needs [Ref. 4]. The end product of this

activity will be a software specification document, which includes functional

9

requirements. A functional requirement is a statement of what a software system is to

do; the functions it is to perform.

b. General Design Specification

This standard provides the guidelines to produce General Design Specifications.

The specifications developed will detail the system environment for new, changed, or

enhanced applications necessary to meet the system's objectives [Ref. 2:p. 2-10]. When

completed, the GDS will be provided to management for approval.

The GDS is the equivalent to the traditional life cycle "System Design " phase.

It involves defining the architecture o" a system which satisfies the customer

requirements expressed in the specification (Ref. 3:p. 41. This is the process of design.

This design process partitions the software into functionally related groupings, known as

modules. These modules will consist of constants, variables, types and program units

(functions and procedures) which provide resources to carry out a series of related tasks

IRef. 3:p. 4]. The result of the system design phase is a system architecture which

defines the relationships between individual program units in a proposed system. The

next step in the process is to develop a detailed design.

c. Detailed Design Specification

This standard provides the guidelines to produce a Detailed Design Specification.

Basically, it develops the technical solution to the customers needs [Ref. 2:p. 2-91. When

completed, the DDS will be provided to management for approval.

10

The DDS is the equivalent of the traditional life-cycle "Detailed Design" phasc.

It is the process of transforming a system design into a form in which it can be given to a

programmer and implemented. It involves filling in the details of the system design

[Ref. 3:p. 5].

4. Structured Analysis and Design

The phases contained in the SDM are based on phases in the traditional software

life-cycle process. Since the life-cycle process is based on structured analysis/design

principles, the SDM follows these principles as well. The document deliverables of the

SDM can be tied dir•ectly to the structured analysis/design approach to software

dcvclopmcnL, as displayed in Figure 3, "Structured Systems Development Activities."

Structured Methods

Structured

"Structured Analysis Design

Functional General Detailed
Requirements Design Design

Definition

SDM Phases

Figure 3 Structured Systems Development Activities

The next chapter in this thesis will address the Object-oriented approach to

software development.

1,

11. OBJECT-ORIENTED SOFTWARE DESIGN

The intent of this chapter is to present the reader with an overview of object-oriented

software analysis and design techniques Object-oriented design is a new way of thinking

about problems using models organized around real-world concepts. The fundamental

construct is the obiect, which combines both data structure and behavior in a single entity

[Ref. 51 This chapter will address the "most common" characteristics required by an

obj, ct-oriented approach Once this has been done, a specific object-oriented software

design methodology, Object Modeling Technique (OMT), will be presented and discussed

A. CHARACTERISTICS OF AN OBJECT-ORIENTED APPROACH

There is some dispute about what exactly characterizes an object-oriented approach

Generally speaking, however, there are four widely accepted characteristics identity,

classificaticn, polymorphism, and inheritance (Ref 5p I] In addition to these four, there

are two additional characteristics that need to be mentioned, abstraction and

encapsulation

1. Identity

Identity means that data are organized into discrete, distinguishable entities called

objects Each object has its own inherent identity Two objects are distinct even if all

their attribute values are identical.

12

In the real world an object simply exists, but within the context of a programming

language, each object has a unique handle by which it can be referenced [Ref 5 p. 2]

Object references are uniform and independent of the contents of the objects, permitting

mixed coilections of objects to be created.

2. Classification

Classification means that objects with the same attributes (data structures) and

operations (behavior) are grouped into a single class. A class is an abstraction that

describes properties important to an application Any choice of classes is arbitrary and is

application specific [Ref 5.p. 2]

3. Polymorphism

Polymorphism means that the same operation may behave differently on different

classes [Ref. 5:p. 2]. What this means is that the result of the operation (method) will vary

between classes. A specific implementation of an operation by a certain class is called a

method The user of an operation need not be aware of how many methods exist to

implement a given operation New classes can be added without changing existing code,

provided methods are provided for each applicable operation on the new classes [Ref 5:p

3].

4. Inheritance

Inheritance is the sharing of attributes and methods among classes based on a

hierarchical relationship [Ref 5:p 3] This is known as the inheritance mechanism, with

which a new class may be declared as an extension or restriction of a previously defined

13

class [Ref 6] This leads us to the notion of superclass and subclass Each subclass

inherits all of the properties of its superclass and adds its own unique properties

The ability to factor out commun properties of classes into a common superclass,

and to inherit the properties from the superclass, greatly reduce repetition within design

and program code [Ref 5 p 3]

5. Abstraction

Abstraction consists of focusing on the essential, inherent aspects of an entity and

ignoring those aspects that are not important [Ref 5 p 16]. In system development, this

means focusing on what an object is and does, before deciding on how it should be

implemented By using abstraction, the designer maintains more flexibility by avoiding

premature commitments to implementation details Proper use of abstraction allows for

the same model to be used for analysis, high-level design. program structure, etc

6. Encapsulation

Encapsulation, also known as information hiding, consists of separating the external

aspects of an object from the internal implementation details of the object [Ref 5.p. 7).

Encapsulation prevents a program from beccming so interdependent that a small change in

one area will cause massive changes throughout

B. OBJECT MODELING TECHNIQUE

A methodology for software design is usually presented as a series of steps, with

specific techniques and notations associated with each step. The OMT methodology

14

support. the entire software life cycle. The complete software life cycle spans from initial

problem formlation, through analysis, design , implementation, and testing This thesis

will focus on OMT as it applies to analysis and design.

The OMT methodology consists of several phases These phases are Analysis, System

Design, and Ooject Design

1. Analysis Phase

Ana'ysis is concerned with devising a precise, accurate, linderstandable, and correct

model of the real world The purpose of object-oriented analysis is to model the real

world system so that it can be easily understood [Ref 5 p 148] It clarifies the

requirements, provides a basis for agreement between the software requester and the

software developei, and becomes the framework for later design and implementation

Analysis begins with a problem statement This is generated by clients and

developers The real world system described by the problem statement is abstracted into a

model This model addresses three aspects of objects static structure, sequencing of

interactions, and data transformations Static structures are displayed in the Object

Model, sequencing of operations in the Dynamic Model, and data transformations in the

Functional model Figure 4 displays an overview of the Analysis process [Ref 5p 149)

15

Statement

User Interviews

Domain Knowledge: ~ Build

R eal-W orld E xperience O j" M od -
S- Object Mode±li

Dynamic Model
Functional Model

System Design

Figure 4 Overview of Analysis Process

Analysis is not a mechanical process Large models are built ap iteratively Firt a

subset of the model is constructed, then modified, until the complete rroblern is

understood The object, dynamic. and functional models will be describei next.

a. Object Model

The object mooel describes #he static st,;cture of objects in a system. . Their

identity, relationship to other objects, attributes, and operations arc described IRKf. 5:p.

16

-- l-

17]. The object model is the most important of the three models. Building a system

around objc, ts rather than functionality is emphasized. The goal in constructing an

object model is to capture those concepts from the real-world that are important to an

application. The object model is represented graphically with object diagrams containing

object classes. These classes are arranged into hierarchies sharing common structure and

behavior and are associated with other classes. The steps necessary to build an Object

Model are as follows [Ref. 5:p. 152]:
* Identify object classes.

* Prepare a data dictionary.
* Identify associations between objects.
* Identify attributes of objects and links.
* Organize and simplify object classes using inheritance.
* Verify that access paths exist for likely queries.
* Iterate and refine the model.

*Group classcs into modules.

b. Dynamic Model

The dynamic model describes those aspects of a system concerned with time and

the sequcnce of operations, such as events that mark changes, sequences of events, states

that define the context for events, and the organization of events and states [Ref. 5 :p. 18].

This model is important for interactive systems. The model captures control, that aspect

of a system that describes the sequences of operations that occur, regardless of what the

operations do, what they operate on, or how they are implemented.

The dynamic model is graphically represented with state diagrams. Each state

diagram shows the state and event sequences permitted for one clhss of objects. The

steps necessary to construct a dynamic model are as follows [Ref. 5:p. 261]:

" Prepare scenarios of typical interaction sequences.

17

"* Identify events between objects and prepare an event trace for each scenario.
"* Prepare an event flow diagram for the system.
"• Develop a state diagram for each class that has important dynamic behavior.
"* Chcck for consistency and completeness of events shared among state diagrams.

c. Functional Model

The functional model describes those aspecu, of a system that are concerned with

value transformations. These include functions, mappings, constraints, and functional

dependencies. The model captures what a system does without regard for how or when it

is done.

The model is represented with data flow diagrams, which shows dependencies

between values and the computation of output values from input values and functions.

The processes on a data flow diagram correspond to activities or actions in the state

diagrams of the classes. The flows on a data flow diagram correspond to objects or

attribute values in an object diagram. The steps necessary to construce a functional

model arc as follows [Ref. 5 :p. 261]:
"" Identify input and output values,
" Use data flow diagrams as needed to show functional dependencies.
"* Describe what each function does.
"* Identif\. constraints.
" Specify optimization criteria.

The analysis model should include information that is meaningful from a

real-world perspective and should present the external view of the system. Additionally,

it should define the true requirements for a system. Once a problem has been analyzed,

the solution must be designed.

18

2. System Design

System design is the high level strategy for solving the problem and building the

system. It involves making decisions about the crganization of the system into

subsystcms, the allocation of subsystems to hardware and software components, and

major conceptual and policy decisions that form the framework for detailed design [Ref.

5:p. 198]. The overall structure and style of the system are decided.

The following steps are recommended for system design [Ref. 5 :p. 199]:
* Organize the system into subsystems.
* Identify concurrency inherent in the problem.
* Allocate subsystems to processors and tasks.
* Choose an approach for management of data stores.
"* Handle access to global resources.
* Choose the implementation of control in software.
" Handle boundary conditions.
" Set trade-off priorities.

The final form of the high-level structure of the system (determined during this

phase) is called the system architecture. System architecture's can consist of many

frameworks. These include functional transformations (such as batch processing or

continuous transformations), time-dependent systems (such as interactive interface or

real-time systems), and database systems. Most application systems are usually a

combination of several forms.

3. Object Design

The analysis phase determines what the implementation must do. The system

design phase determines the plan of attack. The object design phase determines the full

definitions of the classes and associations used in the implementation, as well as the

19

interfaces and algorithms of the methods used to implement operations [Ref. 5:p. 227).

Object design is analogous to the preliminary design phase of the traditional software

development life cycle.

During object design the designer carries out the strategy chosen during system

design and pulls out the details. There is a shift in emphasis from application domain

concepts toward computer concepts. The operations identified during analysis must be

expressed as algorithms, with complex operations decomposed into simpler operations.

The classes, attributes, and associations from analysis must be implemented as specific

data structures [Ref. 5:p. 2271. New object classes may have to be introduced in order to

store intermediate results during program execution.

The following steps are recommended for object design [Ref. 5:p. 228]:

* Combine the three models to obtain operations on classes.
"* Design algorithms to implement operations.
* Optimize access paths to data.
* Implement control for external interactions.
* Adjust class structure to increase inheritance.
* Design associations.
* Determine object representations.
* Package classes and associations into modules.

It is imperative that all design decisions be documented when and where they are

made. This documentation is often the best way of transmitting the design to others and

recording it for reference later.

S~20

C. GMT AND OTHER OBJECT-ORIENTED APPROACHES

OMT is not the only object-oriented approach to software design that exists. The

OMT methodology builds on earlier object-oriented work. Some of this earlier work was

performed by several recognized leaders in the object-oriented software design field, to

include Booch, Meyer, Shlaer and Mellor, and Coad and Yourdon. A brief overview of

their respective works will be given.

Booch describes the rudiments of object-oriented software development He explains

that object-oriented development is fundamentally different from traditional functional

approaches to design [Ref. 7]. In later work, he extends Ada oriented work to the entire

object-oriented design area. His methodology includes a variety of models that address

the object, dynamic, and functional aspects of a software system [Ref. 8]. He places less

emphasis on analysis and more on design.

Meyer does not present a methodology per se. however, he does provide many good

tips on object-oriented design. Hc does not deal with conceptual modeling or analysis

[Ref. 5].

Shlacr and Mellor describe a complete methodology for object-oriented analysis and

design. They also break analysis down into three phases: static modeling of objects,

dynamic modeling of states and events, and functional modeling [Ref. 9]. They caution

that their methodology is an approach to analysis, and that final design might be

different.

W 21

Coad and Yourdon's approach is similar to !hot of OMT's, with less emphasis or,

design Ref'. 10'.

In the next chapter, OMT concepts and techniques will be applied to a specific

Marine Corps software system.

I2

IV. APPLICABILITY OF OBJECT-ORIENTED METHODOLOGY

TO MARINE CORPS APPLICATIONS

in this chapter, a typical Marine Corps application (a Personnel Management System

at the Company level) will be designed using both the current me-th~odology and the

proposed OMT model. This will demonstrate that OMT is applicable to Marine Corps

non-tactical software design projects.

A. APPLICATION BACK(GROUND

The application to oe developed is not an existing system, but one that closely

resembles several existing 7C base-d applications tlbroughout the Marine Corps. The

application Is a personnel managemcnt systo:m, to be t.-wd by 3dministrative pcrsonncl at

thic Company level. For lack oi a better name. let's call it COPS (COmpany Personnel

System).

COPS will maintain all pertinent -.ni'orna-iavn on Cc~mpany pers~onnel, It will perform

report generatio~n, computte promotion anO ph,-lcal l'Lness te.st score~s, compile duty

rosters, and allow for updates, deletions, and a'.iditions to the sysý;zrn.

COPS will bz designed b,-IOW using current Marine Cor-ps Mcthodoiogy.

B. COPS DESIGN USING SDM

This design will address only those aspects that pertain to software development.

Specifically, it will address the Requirements Statement, Functional Requirements

Definition, General Design Specification, and Detailed Design Specification.

1. Requirements Sta.ement

a. General

Initial Problem Statement:

The purpose of the personnel management system is to help Commanding

Officers/administratlive personnel at 'the company level manage pertinent information onl

2ll personnel within thefr command. This will include report generation, updates,

additions. deletions, retricwz! of information, and computation of scores.

b. Current System

Currently, ro automa~ed personnel .;ystemn exists at the company level. All data

is maintained manually.

c. Required Capabilities

The new system should have the capabilities to perform the following tasks:
* update of information.
* addition 01 ',,-rsonnel to system.
* deletion of personnel Ifrom system.
* generate and compile necessary reports.

*generate ne~c.ssaiy rosters.
*retrieve all necessary intorm~.tion on company personnel.

compute promotion scores.
*compute Ph~ysical Fitness Tr~st (PFT) scores.

24

Thc system will not interact with other systems. It should be a Local Area

NetwOrk (server) based system. it should be a mu!ti-user system. There is a iequicrnent

for the system to be backed up at least weekly.

2. Functional Requirements Definition

a. General

The COmpany Personnel System (COPS) is a multi-user, Local Area Network

based application, designed to support Commanding Officers/administrative personnel in

the management of information on all personnel in the command. This application is

intended for use at the Company level. It should be applicable to most Company's

throughout the Marinc Corps.

b. Structural Specification

"(1) Functional Requirements. The COPS sysiem will perform the following

functions:

* Provide a roster of all company personnel. The system should allow for rosters to he

printed alphabetically, by platoon, by Military Occupational Specialty (MOS), by rank,
or by any combination of the above.

* Provide for the computation of promotion (cutting) scores for all enlisted personnel
within the company.

"• Provide reports of promotion scores.
"* Provide for the computati.on of PFT scores for all company personnel. This includes

a report by numerical score, as well as by class.
"* Provide means to update all fields within the system.
" Provide means to delete personnel from the system.

"* Provide means to add personnel to the system.
"• Provide means to add/delete fields to the system.
" Determine and print cut duty lists (OOD, SDNCO, DNCO, etc.).
" Keep track of Comp,.ny training.
"* Kecp track of required personal training requirements.

25

(2) Non-functional Requirements.
"* The system must be a multi-user system.
"* The application will reside on a LAN server.

"The response to a command/request should be no longer than 3 seconds.
* The system should he designed in accordance with DOD/Marine Corps standards,
* The system should be completed within 12 weeks.

(3) Context Diagram. The overall system is represented by the Context Diagram

in Figure 5, below.

•• ~~Coiruandingolc,

report. score, infrmatnion reqwist

re~port. scurc. uipdate. info requsesi

report. wore, infoMIALion requcsi

Figure 5 COPS Context Diagram

3. General Design Specification

a. Geueral

The objcctive of the ODS is to provide a high-level view of the major functions

within the COPS system. AdditioTnally, ;t will describe the major interfaces between

those functions. This will be accomplished via a Data Flow Diagrams (DFD), a Data

Dictionary, and an Entity-Relationship Diagram (ERD).

26

b. DED of COPS System

Figure 6 displays the DFD for the COPS system:

Fig reo6idFD iforeqet COPSce

c. ~ ~ ~ if DquestsoarfoCP

appy t th D Cswempasthe ERO (tofolotes DaDctonary)

* ddes sret S-corey + storee Scozip

promo 1127

"* age = i(int-num)]2

"* ASVAB = IKint-num)]3
"ArNmed Services Vocational Aptitude Battery, Test Scre

"* birth datc = yr + ma + day
"* city = {legal-char}
"* college = [(int-num)12

**number of college courses taken"*
" company = [A4BIC[HQSVC]

"* CRT =IJYIN
"*combat readiness training, is it completed?"

"* daily_irmg_ýsch = ilegal-charl
**daily training schedule"

"* dependents = [(int-num)]l
number of dep svc member has

"* DNCO= DNCO
Duty, NCO

"* DrugA AI= YIN I
drug and alcohol training, i,; it nceded?

"* Duty Roster = **duty roster store"*
"* duty qual tar = [mess dutyIDNCOISDNCOIOODI
"* EST= Ipdsslfail]

* *Essential Subjects Test results*
"* eye -color {legal-char)
"* first-name i legal-charl
"* GCT =J(int-num)]31

"*Armed Services l.Q. Test*
"* hair color ={legal-Char}
"* height =*unit%: inches, range: 46-84*
"* int-num = 11(O-int'last)]

"* last duty datc = YT + MO + da\
last time svc member stood duty

"* last-name- = k; galI-char)
"* legal-char = [A-ZIa-zlO.9J'I-I 1]
"* MCI = [(int-num)[2

"~number of correspondence courses completed by svc member**
"* mess-duty = Mess Duty

duty in the mess hall
"* MI = f{legal-charl

mniddle init
"* MOS = I(int-num)]4

"* Military Occupational Specialty"*
"* name = last name + first-name + MI
"* OOD =OO0D

28

"*Officer of the Day"*
"* p~mark = [expjssjrnm]

**pistol marksmanship class"*
"* p__score =f(int-num)13

**pistol score"*
"* PFT Scores =**I)JT scores store*"'
"* PFT -class =[Istl2ndl3rdlfaill

"* PFT wcore =[(int-num)]3

"* phonejium = legal-char}
"* pistol trng =[YIN]

"**pistol training, is it completed?"~
"* PLT = [1st12ndI3rdlwpnsj

**platoon* *
"* promo score =[(int-num)]4

**prom otion/cu tIing, Score*
"* Promotion Scores = promotion scores store"
"* pull ups = [(int-num)]2

num of pull-UPS
"* pull up score = [(int-nurn)]3
* r-mark = [expisslinmm

**rifle marksmanship" 1

* Yrscore = E(int-rjum)13
rifle score

* rank =[PvtlLCpllCpllSgtISSgtIGySgtIMSgtillstSgtIMGySgtlSgtMakiI2ndLtjlstLtI
CaptIMajiLtColICol]

* rel-pref= iegal-char)
"religious preference of svc memt-er* *

* rifle ctrng= YjNN
** ifle trair~ing, is it completed?"*

*run-scrc = (int-nurn)13
*rntime = *unit: minwies, seconds :range 0-6O*

'time (,n run portion of PFT**
* SDNCO =SDNCO

* *Stat Duty NCO (E-6 and abov,ý)**
*sex = MjF]

* sit -UPS = [(ini-num)]2
* sit_on_s'core = t(int-nun.))3
* SSN ={(int-num)3 - (hit-numn)2 -(int~num)4)

"*Social Security Numbher"*
* Training Req = "traminin requiremnents store"~
* weekly.trngjch ={legal-char}

**weekly training schedule for comipany"*
* weight =*units:pounds;, range: 1-4OO*

29

d. Entity-Relationship Dia gram for COPS

The following ERD is used to display the stored layout of the COPS system at a

high level of abstraction. For the sake of clarity, the attributes of each entity have been

omitted from ihe diagram. Figure 7 displays the ERD.

4. ~~~~_ O Deaie DsgnS ecfcain o C P

a. General

Tehetveotheas st rvd sfiin ealo ech modlp efndi

th RF' s htths oues=cnh oe ya ProgrmoincrAdioalDDsa

:.0ro

Score

well as modulc specifications will bc designed and developed in this phase of the DDS.

For thc purp-)se of this thesis, only one module of the COPS system will be designed in

detail.

b. Structural SpecifIcation

(1) DED of Compute PFT Scores Module. The "Compute PFT scores" module

of the COPS system will be broke~n down into detail. Figure 8 is a DED of the module.

requesi for PFT scores
ia the Lcrnpuficd 2

Sco res run scorch ompkici

P1r1n Scoz"

32-

define the control logic for system execution. MS for the "Compute PFT Scores" module

will be described below.

Compute PFT Scores: Figure 6: Module 2

Do While there are more Marines in the Company
,set PFT data fields (age, ssn, runtime, situps, pullups, hang time, sex)

Compute Run Scores: Figure 8: Module 2.1

_Do While there are more Marine run time values
Do Case

Cas seye = inm"
,,sc mal .:_chart table

if run time.seconds >= 01 and <= 09 then round seconds value up to 10
else if run time.seconds >= 11 and <= 19 then round seconds value

up to 20
else if run time.seconds >= 21 and <= 29 then round seconds value up to

30
,.Ise if r:n time.seconds >=31 and <= 39 then round seconds value up to

4f)
eL.;c if run time.seconds >=41 and <= 49 then round seconds value up

r~s•: i 'runtrme.seconds >='51 and <= 59 then round seconds value
ut,) (;0

end if
Deternine run score based on comparison between runtime and
male chart value

Wrt".e run score to "Compute PFT Score" module
• Zse sex - T.

use female chart table
if run tirne.seconds >z 01 and <= 09 then .ound seconds value up to 10

else if run time.sex.onds >- 11 and <= 19 then round seconds value up to
20

else if run 0i ne.se, onds :, - 21 and <.- 29 then iound seconds value up to
30

else if ruij tirre.stcorids = 31 and <= 39 then rfunu seconds value up to
40

else if runtirn•2,seconds >= 41 and <= 49 then round seconds value up to
50

else if run time seconds :-,= 51 and <= 59 then round seconds value up to
00'

32

al- ..

end if
Determine run score based on comparison between run time and

female.chart value
Write run score to "Compute PFT Scores" module

Case Otherwise display "No entry value for "sex" field of Marine, try again"
End Case

End Do

Compute Puli Up Scores: Figure 8: Module 2.2

Do While there are more pull _up/hang time values
Do Case

Case sex = "m"
get pull ups and Multiply hy 5 and assign value to pullupscore

Write pull up score to "Compute PFT Scores" module
Case sex = 'T
use female chart table
get hang time value
if hang time <= 40 then hang score is assigned hang time value
else determine hangscore based on comparison between hangtime and
female chart value
end if

Write hang_score to "Compute PFT Scores" module
End Case

End Do

Compute Sit Up Scorcs: Figure 8: Module 2.3

Do While there are more situp values
get situps value
Do Case
Case sex = "m"

use male-chart table
if situps <= 60 then situpscore is assigned situp value
else determine sit up score based on comparison between situps and
male chart table
end iT

Write si,._up_.score to "Compute PFT Scores" module
Case sex = "'

use female-chart table

33

Determine sit up score based on comparison between situps and
female chart table
Write situpjscore to "Compute PFT Scores" module

End Case
End Do

Compuce PFT Scores: Figure 8: Module 2.4

Do While there are more PFT Scores
if age >= 17 or <= 26 then use junior marine scoring table
else if age >= 27 or <= 39 then use midlevelmarinescoring table
else age >= 40 then use senior marine-scoring table
end if

Do Case
Case sex = "m"

Add run score + pullupscore 4 situpscore to get P-I" score
Determine PFT Class based on comparison between PFT- score and
junior!mid level/seniormarine_scoring table
Write PFT-score and PF1'class to -FF Scores data store

Case sex = ' I
Add run score + hang score + sit_upscore to get PFT score
Determine PFT Class based on comparison between PET score and
junior,mid level, senior marine scoring table
Write PFF1 score and PET-'lass to PFT Scores data store

End Case
End Do

End Do --Main Loop

C. COPS DESIGN USING OMT

COPS will be utilized to display the three kinds of models under OMT; the Object,

Dynamic, and Functional Models. These three models were described in detail in

Chapter III. The problem statement and functional requirements for COPS (described in

section B) remain the same.

34

" ° • 7 - - -: • - " - + i _ -- ? ,, S? + -._-~ i- . . . I

1. Analysis Phase

a. Object Modelfor COPS

Figure 9 displays the COPS object model. For clarity, the attributes have been

omitted from the diagram.

/ 35

I C om m anding O f cr T haiis g o j c de i e th c m an ng o tC rorpa ny o pa

* Company Th is ir o fjc d afinestetpe peofcornw oany Unth pdaS tem.

36uet

has

* Company administration Personnel - This object defines the personnel authorized to

access the COPS system. It contains names, ssn's, passwords, and ranks.
* Deletions - This class irheritr all the methods and attributes of its parncrt object,

Updates/Requests. This object allows for marines, attributes, trainisig rqmts, etc. to be
deleted from the system.

* Duty Roster - This object inherits all the methods and attributes from its peareatt object
Reports. It contains information on the diffcrent types of duty, as well as personnel.
"' Marine - This object contains all the information foi all marines in the company.
"* Misc. Reports - This object inherits all the methods and attribuics from its parent

object Reports. It allows for ad-hoc reports to be created based on requirements.
* PFT Scores - This class inherits all the methods and attributes of its parent object,

Marine. This object contains pft scores for all marines in the COPS system. It is used by
other objects as we!l.
* Promotion Scores - This class inherits all the methods and attributes of its parent

object, Marine. This object contains promotion scores for all marines in the COPS
system. It is used by other objects as well.

Reports - This object contains the reports formats. It also allows the user to selec:
which reports he/she wants to generate.

b. Dynamic Model

The dynamic model is very important loi interactive systems. The COPS system

can b,- described as a data repository system, or a database system, that is not highly

interactive with the user. Therefore, the dynamic model will be limited in its detail.

Figure 10 displays the Event Flow Diagram (EFD) for the COPS system.

(1) Event Flow Diagram for COPS. The EFD summarizes events between

classes, without regard for sequenc'.

37

S._._

Commandi igurequs for Enlrerti.ty Flow DAgrmifrnO.

(2)Stae Diga for intS. Aeý ec "ustat dfaor fo ac bec lssihenx

step in he proces. The sateediara captuords dlla mahe evnsateoctn rcie n
sends. For the purpose o nthis th daeis, onyre oq ctcls 'F Soeswllb

desined Figre diplay th stte dagrm ireus paTssworcsd

3aclreus8cmlt

provies reultI

Figure 11 State Diagram for PFT Secores m

"c. Functional Model

'The fusctional model shows how values arc computed. how they depend on

which other values and the functions that relate to them. DFD's are useful ibr showing

functinMal dependencies. A DFD is designed fcor th entire system, followed by a DFD

:• ~ ~for each ohbject class, Figure 6 from the GDS can he used here in the OMT model, since----

it describes the top-level functionality ofl the COPS system. There is no need to display it

S~her, since it already has been done. Additionally. Figure 8 from the GDS can be dsed to

display the fu.sctionality of the "PFT Scores" object. c2. System Design

In the system design phase of OMT, the overall structure and style of the system

uarctei dedd. The first step in the process is to break the system into subsystems. Each

fc Fonr9inT

her sic-tarayhs endn.Adtoaly iue8fo heGScnb sdt

dipa hefillalt fte PTSoes bet2.Sytm esg
In th ytmdsg hs fO T h vealsrcueadsyeotesse

ar deidd Th fis ste in th prcs istIra h ytm nosby .Ec

subsystem encompasses aspects of the system that share some common property, in our

case similar functionality. The subsysiems for the COPS system are as follows:

*Users - this subsystem includes the objects Commanding Officer and Compieny
Admnin. Personnel.

* Marine Data - this subsystem includes the objects Marine, PFT Scores, and
Promotion Scores.

*Updates and Reports - this subsystem includes the objects Updatcs/Req'uestv, Rcports,
Duty Roster, and Misc. Reports.

The next step in the process is to determine an approach for managemenrt ofid.t~a

stores. It comeis down to whether or not the systrn requires whe use of a cdmabase, and if

so, what type to use. In our case, COPS is a data intensile system, trius requiring the use

of a database.

The overall system architecture is dtletrmincd ncxt, VWhat we are trying to do in this

step is mnatch application behavior wit.h architeciurid framework. N our Case, the COPS

system can be classif'ied as a transaction/database management systemn. thus iequiring, a

transaction management system architeCture. The marin func~tion of this systern is to

store, acce!;s, and perforin computations on inlormat ion,

3. Ob,',ect Design

During object design ihc designcr carries out the strategy chosen during syst-rn

design Zild pulls out the details. During this phasc;, thc actual algorithms for each

operation are designed. The operations are determined by combining thle three models (,f

OMT's analysis phase. in our case, the 'Compute PET Scov.-s" operation h?.s becii

determined. The algorithm for this operati-ou has already bc-en dtfincd in the DDS, and

wil! not he reproduced here.

40)

In the next chapter, a comparison between the SDM and OMI methodologies will

he perfionned.

"d4

V. COMPARISON BETWEEN SDM AND OMT

METHODOLOGIES

The purpose of this chapter is to clearly identify the major differences and similarities

between SDM and OMT. It is important to remember that SDM is based on the

traditional structured analysis/structured design approach to software development and

design.

A. GENERAL OBSERVATIONS

SDM and OMT, although different in their approach to software development and

design, have much in common. Both models use similar constructs and support the three

orthogonal views of a system. The diffrerce between SDM and OMT is primarily a

mattet of style and emphasis. In the SDM approach, the functional model dominates.

followed by the dynamic model, and then the object model. In contrast. OMT regards

the olbjcct model as most important. followed by the dynamic model, and finally the

functional model. Several areas will be addressed in the comparison between SDM and

OMT.

1. Organization

SDM organizes a system around procedures, while OMT organizes a system

around real-world objects, or conceptual objects that exist in the user's view of the world.

42

Most changes in system rquirements periain to function rather than to objects, so change

can be disastrous to procedure-based design. By contrast, changes in function are

readily accommodated ir an obiect-oriented design by adding or changing operations,

while leaving the basic object structure unchanged.

An example tha: displays how SDM organizes around procedures can be found in

Figure 6 (DFD for COPS). The DFD is done at the beginning of the design process, and

it breaks down the syslern into separate "modules" or "procedures." By contrast, OMT
begins the design process with the Object Model (Fhown in Figure 9). This model

organizes the system around objects.

2. Extendibility

An SDM design has a clearly defined system boundary, across which the software

prow'cdures must cormmunicatc with the real world IRef. 5:p. 2681. The overall structure

ol an SDM design is derived from the svsiem boundary, sO it can be difficult to extend all

SDM design to a new boundary. By contrast, it is much easier to extend an

object-oriented design to a new boundary. This is done by merely adding objects and

relationships near the boundary to represent objects that existed previously only in the

outside world. OMT is more resilient to requirement changes and therefore more

extensible.

The system boundary for SDM can be found in Figure 5. The COPS system must

interact with three entities, Commanding Officer, Platoons, and Administration

Personnel. These entities are displayed in Figure 5 because they have to interact with

43

COPS. If we wanted to add an entity, it would be very difficult. First, we would have to

create this entity from scratch (specific code for the entity). Second, we would have to

define ils functionality and somehow incorporate this into existing logic and

functionality.

The system boundary for OMT can be found in Figure 10. There are four objects

displayed, Commanding Officer, Administration Personnel, Updates/Requests, and

Marine. Each of these objects exist in the COPS system. As with SDM, they must also

interact inside COPS, however, in contrast to SDM. they arc actually objects defined in

the system.

Let's say there are requirement chauges in the COPS system. Specifically, the user

wants to change the way some information is represented in the system: he wants to add

several attributes to "Marine," Additionally, the user wants to add another operation to

COPS; compute rifle range scores from raw data. With these additional changes, the

following will have to happen in the system designed using SDM..:

* In order to add the attributes, the "Marine" entity in the database being used with
COPS will have to be modified. These changes could force changes elsewhere in the
system, sort of a rippling effect.

* From a dcsigncrs view, a "Compute Rifle Range Scores" module will have to be
added to the DFD in Figure 6. This module will have to be inserted at the proper
location, since SDM design is based on functionality.
* Specific program code will have to be developed in order to be able to compute the

rifle range scores, and then pass the results on to the necessary operations.

In contrast, the lollowing limited changes will have to happen in the system

designed using OMT:
* The required attributes will be added to the "Marine" object, as well as the additional

operations.

44

i !

"* A child object "Rifle Range Scores" will be created under its parent "Marine."

"* Program code will have to be added to perform the required operation.

3. Understandability

In OMT, the direct analogy between objects in the design and obj,;cts in the

problem domain results in systems that are easier to understand. This Understandability

makes the design more intuitive and simplifies traceabi!ity between system requircments

and program code. It also makes the design more coherert to persons who are not z part

of the original design team.

Tht Object Model (Figure 9) disulays the objects to be used in the COPS system.

The Object Model was developed over several iterations. During each iteration, objects

were scrutinized for redundancy and relevancy. Once a correct Object Model is defined,

the oh.iccts contained within are used throughout the design and implementation.

Functions arc performed on these objects, while th,: object itself is not altered or

changed.

In contras', SDM defines the functions to be performed in the system (Figure 6)

and then delines how the data is to be organized in the database (Figure 7). The

designers of the DFD and ERD may use different names in their respective diagrams to

refer to the same set of data or functions. This can lead to confusion among the

developers. In OMT, :.h: system is designed around objects, and once the objects arc

designed and named, they arc used consistently throughout implementation.

45
I-_

4. Inheritance

In 3DM, the system is designed around its functionality, which usually means that

most program code is %pecific and not 'asily used elsewhere. By contrast, systems

designed using OMT use objeýcts as the basis for thir organization, This allows for the

basic oLjL,, to be reused over and over again. This also allows for objects Lo be easily

desiened for the system. This ease ofdesign increases reusability of components and

objects from one project to the next.

Figure 9 displays the Object Model for COPS. The "Marine" object is considered a

parent object while "PFF Scores" and "Promotion Scores" are considered its children.

What this means is that all functions (methods) and attributes contained in "Marine" are

automatically inherited by its childre-n, thus saving time and effort with respect to

program code.

What should be emphasized hetre is that inheritance can be used very cffcctively in

Marini' Corps applications because ol" its hierarchical nature in data organization. The

most i:nportant (or common) data is mn-intained within the parent object, and data that is

specific to an object is maintained within that child object. For example, the single most

important attribute (Social Security Number) is maintained in the "Marine" object. The

children of this object ("PFT Scores" and "Promotion Scores") inherit this attribute from

their parent, while maintaining attributes that are specific to their operations. The most

important data resides at the top, thus allowing for data to be maintained in a hierarchical

nature.

46

S. Database Integration

A system designed around functionaity is inherently awkward at dealing with

databases because it is difficult to merge programming code organized about functions

with a database organized about data. This is not always the case, but it is generally

"accepted that merging the two requires time and patience. By contrast, an

object-oriented approach does a better job at integrating databases with program code.

This can be attributed to the use of one uniform paradigm, the object. The object can

model both database and programming structure. For instance. il'a database were

designed f'i COPS (COPS designed with OMT), the Entity Relationship Diagram (used

for database design) would have the same entities as objects defined in the Object Model

(Figure 9). In OMT, the objects defined in Figure 9 will be used throughout design and

implmentation. By contrast. SDM uses DFD's to display functionality (Figure 6) while

using an ERD (Figure 7) to define database design. The two may or may not use thc

same names for both diagrams. This can lead to confusion, as well as to problems with

database integration.

6. Maintenance

What does the term "maintenance" mean with respect to software? Thc term

addresses two activities: modifications and debugging. Modifications can be defined as

changes in the external world (of the user) that require changes to the computer system.

Additionally, modifications can be defined as debugging efforts; removing errors that

should never have been there in the first place.

47

Systems developed with OMT tend to be easier to modify (change) because they are

organized around objects instead of functionality. If the designer wants to make changes

lo functionality, all he has to do is concentrate on code that pertains to functionality,

while leaving code that pertains to objects alone. If the designer wants to change an

object, all he has to do is go to that object and make changes, ignoring code that pertains

to functionality.

By contrast, changes to systems developed with SDM tend to be more complex,

time consuming, and costly because any changes to program code can effect many other

functions within the system.

Lv,'s assume that the system has been developed and is fully functional. Let's

further assume that the user wants to add some lunctionality to the system. Specifically.

they want the system to compute Essential Sublects Test (EST) scores for all enlisted

Marines in the Company. In OMT, an object wvould be created called "EST Scores" that

would be a child object of the parent object "Marine." It would inherit all existing

methods and attributes from "Marine", thus saving time and effort. The specific

functions to be performed on the object would have to be defined and coded.

In SDM, another module would have to he created for this process. The designer

would bc starting from scratch, and would have to concern himself with fitting this iew

module into a system designed around functionality, where sight changes in one area

cOuld have dramatic effects in others.

48

. .. , _______,________..___________-______

Debugging efforts are never easy, whcther the system was developed using SDM or

OMT. What comes into play here i.5 the amount of experience and knowledge possessed

by programming personnel.

B. CHOOSING BETWEEN SDM AND OMT

This section will graphically display when it is advantageous to use SDM or OMT

ior system development. Figure 12 displays a table which serves as a ouick reference.

The table references small, medium, and large applications. Small applications (for the

purpose of this thesis) are defined as applications which have less than or equal to 3000

lines efI codc. Medium sized applications are defined as having greater than 3000 and

less than or equal to 20,000 lines of code. Large applications have greater than 20,000

lines of code.

49

Small Application Medium ,pphcaton Large Application

case of cxmcndabilito SDM Olvrr OMvr"

..asc of SDM SDM
understandability OMT OMT

easc of inhentance OMT OmT
(use)

case of DataBase SPDM SDM
integration OMT OMT

case of namntcnancc SDM SDM SDM
OMT OMT OvW.,

"Figure 12 Compari.on ol SDM and OMT Methodologies

The next chapter will address the conc!usiorrs and make specific recommendlations

Pbout the required changes to the status quo id OMNT is to bc incorporated as a software

devcl•opmcnt methodology for Marine Corps applications

5U

VI. CONCLUSIONS AND RE,,COMMENDATIONS

Object-Oriented Methodologies, such as OMT, car. be used by the Marine Corps for

'is ".non-tactical" software development projects in the near future. The current

methodology, SDM, is still valid and should be used where applicable. As a matter of

tact, OMT utilizes certain portions of the traditional software design methodology.

A. CONCLUSIONS

This thesis addressed three basic questions: (1) What is Object-Oriented software

design and why is it good for the Marine Corps. (2) How is it different than what we are

doing, and (3) What should we do and when should we do it?

Question one was addressed in Chapter III. A specific Object-oriented methodology

(OMT) was described. Object-oriented software development was defined as a new way

o" thinking about software based on ahstractions that exist in the real world, The essence

of this development is the identification and orgarization of application-domain

concepts, rather then their final representation in a programming language,

.object-oriented or no'. The greatest benefit of an object-oriented approach is that it helps

specifiers, developers, and customers express abstract concepts clearly and communicate

them to each other. It can serve as a medium for spccification, analysis, documentation,

and interfacing, as well as for programming.

51

I

Object-oriented software development is good for the Marine Corps because it

possesses many benefits. First, the data are organized into discrete, distinguishable

entities called objects, each possessing its own "identity." Second, objects with the same

attributes and functions are grouped together into a single class. This is known as

"classification," a form of abstraction. Third, it allows for the same operation to be

called by many different classes where this operation may behave differently in each

class. This is known as "polymorphism." Fourth, it allows for the sharing of attributes

and functions among classes based on a hierarchical relationship. This concept is known

ts "inheritance," Fifth. it allows for "encapsulation," also knowr, as information hiding.

This consists of separating .he external aspects of an object from the internal

implementation details.

In order to address question two, the design methodology currently used by the

Marine Corps (SUM) was defined in Chapter 11. SDM is based on DOD and DON

standards and procedures known as "L.ife Cyc!e Management." SDM is based on

traditional softwaic development activities commonly known as the software life-cycle.

The lifc-cycle approach involves the following activities: requirements analysis,

functional requirements definition, general design specification, detailed design

specification, operation, and maintenance.

In order to show how OMT and SDM differ, a hypothetical system (COPS, which is

based on several existing systems) was developed and designed in Chapter IV. In order

to point out where the methodologies differ, a comparison and contrast was performed

52

n_ __

between the two in Chapter V. The b,,sic difference between the two is primarily a

matter of sty!e and emphasis. In SDM, the functional model dominates, followed by the

dynamic model. and finally the object model, OMT regards the object model as most

important, followed by the dynamic model, and finally the functional model.

Additionally, there were six categories compared between the two: organization,

extendibility, understandability, inheritance, database integration, and maintenance.

SDM organizes a system around functionality, while OMT organizes a systemr

around real-world objects, or conceptual objects that exist in the user's view of the world.

it system requirements change, these changes will be easier to incorporate into a system

designed with OMT than with one designed with SDM.

OMT is more resilient to requirement changes and therefore more extensible. In

order to extend a system designed with OMT the designer merely adds objects. With

SDM, the overall structure must be changed in order to extend the system.

With respect to understandability, OMT utilizes a direct analogy between objects in

the design and objects in the problem domain. This makes it casier to understand and

follow throughout. By contrast, SDM defines functions to be performed and then defines

how the data is to be organized.

With respect to inheritance, OMT allows for an object to be used ever and over

again, thus allo-wing for extensive use of inheritance. In contrast, a system designed with

SDM is designed around functionality, which means that mest program code is specific

and not easily used (inherited) elsewhere.

53

OMT allows for easier integration between program code and databases because of1

its use of one uniform paradigm, the object. SDM organizes program code around

functionality, while databases are organized around data. This makes it more difficult to

integrate the two.

There are two components of maintenance: modifications and debugging. Systems

designed with OMT tend to be easier to modify, while systems designed with SDM tend

to be complex, time consuming, and costly. This is due to the manner in which the

systems are organized. Debugging is never easy. no matter which approach is taken.

Question three will be addressed in the next section.

B. RECOMMENDATIONS

This section will address question thicc: What should the Marine Corps do and when

should they do it? The Marine Corps should not (and cannot) discard SDM. SDM is a

requirement for software development projects. What can be done is modification to the

comntLnts and documentation requirements of SDM. Specifically, the Functional

Requirements Definition. General Design Specification, and Detailed Design

Specification sections will have to be changed. These sections will have to be replaced

by OMTs Analysis, System Design. and Object Design phases respectively. The

documentation requirements would shift from the status quo to those outlined and

required by OMT's three phases mentioned above.

54

In order to determine when the Marine Corps should incorporate OMT into SDM, it

must first be evaluated if OMT is applicable to Marine Corps initiatives. In Chapter IV,

a system (COPS) was d.eveloped using both methodologies. It would not be valid to say

that OMT is applicable to all Marine Corps software projects, however, it can safely be

said that OMT would be applicable to most personnel management, logistical, inventory

control, and database systems designed for "non-tactical" use. This can be said since

object-oriented development is fundamentally a new way of thinking and not a

programming technique. Therefore, it is not restricted to its use with only

objc,.,t-oriented languages (C++, SmallTalk, etc.). Even as a programming tool, it can

have various targets., including conventional programming languages and databases as

well as object-oriented languages I Re1. 5:p. 5 1.

When should the Marine Corps fully adopt OMT? The Marine Corps should start

the process immediately. They should familiarize their software engineers with OMT by

allowing them to receive forinal training, and then have them design several systems

using OMT. Once feedback is received .ibout OMT's applicability and potential benefits,

then a timeline should bc developed for full implementation ol OMT into the life-cycle

process.

S~55

LIST OF REFERENCES

III U.S. Marine Corps, Computer Sciences School DOB 0702, Introduction to the
Life Cycle and System Development Methodology for Information Systems
Projects, June 1986.

12] U.S. Marine Corps, Information Resources Management (IRM) 5231-01, System
Development Methodology Overview, 16 June 1987.

13] Ince, D., Software Engineering: The Decade of Change, p. 2, Peter Peregrinus
Ltd., 1986.

[4) Berzins, V. A., and Luqi, Software Engineering with Abstractions, n. 8.
Addison-Wesley Publishing C)mpany, 1991,

15] Rumbaugh, James., and others, Object-Oriented Modeling and Design, p. 4.
Prentice-Hall, Inc., 1991.

[6] Meyer, Bertiand., Object .Oriented Sojfware Construction, p. 62, Prentice-Hall
International Ltd., 1988.

1.7] Booch, Grady., "Object-Oriented Development," IEEE 7ransactions on Software
Engineering. 12, pp. 211 -221, 2 February 1986.

181 Bonch, Grady., Object-Oriented Design, p. 57, Benjamin/Cummings, 1991.

191 Mellor, Stephen J., and Shlacr. Sally., Ot)jhct-Orwnted Systems Analysis.:
Modeling the World in Data, p. 37, Yourdon Press, 1988.

110] Yourdon, Edward., Modern StrucwuredAnalysis, p. 32, Prentice-Hall, Inc., 1989.

56

INITIAL DISTRIBUTION LIS11

1.Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Training and Education
MCODC, Code C46
1019 Elliot Road
Quantico, Virginia 22134-5027

4. Commandant ol the Mlarine Corps
Code MISB
Headquarters, U.S, Marine Corps
Washington, D.C. 20380-0001

5. Computer Techno~ogy, Code 32
Naval Postgraduate School
Monterey, California 93943-500A2

6. C. Thomas Wu, Codc 32
Department of Computer Science
Naval Postgraduate School
Monierey, California 93943-5002

7. Capt. Robert F. Padilla, Jr.
22 iu~son Lane
Siafford, Virginia 22554

57

