NAVAL POSTGRADUATE SCHOOL
Monterey, California

94-3 43
TR \\\\\\\\\\\\\\ W rHESIS I

OBJECT-ORIENTED -
METHODOLOGY FOR
MARINE CORPS SOFTWARE DEVELOPMENT

by
Robert F. Padilla, Jr.
Septernber, 1994

Thesis Advisor: C. Thomas Wu

Approved for public release: distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time {or reviewing
instruction. scarching existing data suurces, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden. to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budgel, Paperwork Reduction Project
(0704-0188) Washington DC 20503

S 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVEREL:
o Scpiember 1994 Master's Thesis
4. TITLE AND SUBTITLE: OBJECT-ORIENTED METHODOLOGY FOR MARINE 5. FUNDING NUMEBERS

. CORPS SOFIWARE DEVELOPMENT (U)
ol 6 AUTHOR(S) Robert F. Padilla, Jr
& 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
; o Naval Postgraduate School REPORT NUMBER
£ o Monterey CA 93943-5000
R 9. SPONSORING/MONITORING AGENCY NAMFE(S) AND ADDRESS(LS) 10. SPONSORING/MONITORING
PR AGENCY REPORT NUMBER

iy

11 SUPPLEMENTARY NOTES "The views expressed in ihis thesis are those of the author and do not reflect the official policy or
position of the Department of Delense or the U.S. Government

120 DISTRIBUTION:AVAILABILITY STATEMENT Approved for public release: 12b. DISTRIBUTION CODE
distribution unhinted A

13 ABSTRACT tmaximum 200 wordsy. s thesis answers three questions What is object-onented development methodology and
Why st good Tor the Marnine Corps? How is objent-oniented methodology different from what the Manne Corps 1s domng now? What
should the Marine Corps do and when should they do

o explore these issues. tins thests designed a typreal Manne Comps application (e COmpany Personncl Svstem (COPS)) using
both Sysiems Development Methodology (SDM) and Object Medeling Techmque :OMT) These methodologies are compared 1
terms of ease ol maintenanse. understandability. extendibihity . inhentance. and database integration

It1s good for the Marme Corps because 1t helps developers and customers express abstract concepts clearly. OMT and SDM
differ in their approach to system ergamzation OMT around real-world cbjects, while SDM around functionahity The Marine

g Corps should inunediately change 11s paradigin from SDM 10 OMT SDM's Functional Requirements Definition, General Design
5 Speafication, and Detailed Desigr Speafication wall have to be replaced with OMT's Analysis, System Design, and Object Design
& respectively
14 SUBJECT TERMS Object-Onenied Methodology. Sysiem Development Methodology (SDM), 15. NUMBER OF PAGES
Object Modeling Techmique (OMT) 6d
16 PRICE CODE —
17. SECURITY 18. SECURITY 19 SECURITY 20. LIMITATION OF
L CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION QF ABSTRACT
: REPOR PAGE ABESTRACT UL
. _Unclassitied Unclassified Unclassified L

NSN 7540-01-282-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

Object-Oriented Methodology for Marine Corps Sofiware Development
by

Robert F. Padilla, Jr.
Captain, United States Marine Corps
B.S.B.A., Ohio State University, 1987
M.B.A,, Uniicd States international University, 1992

: Submitied in partial fulfiliment
“ of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
| NAVAL POSTGRADUATE SCHOOL
v Seplember 1994
: (,./"‘- = o
. Author: "B 5 N P
i Robert F. Padilla, Jr.)

4§ Approved by: m

C. Thamas Wu, Thesis Advisor

O/C,rz y g/‘/‘-(/m/'z

Lou Stevens, Second Reader

oo

Ted Lewis, Chairman
- Department of Computer Science

ABSTRACT

This thesis answers three questions: What is object-oriented development methodology
and why is it good {or the Marine Corps? How is object-oriented methodology different
from what the Marine Corps is doing now? What shouid the Marine Corps do and when
should they do i1?

To explore these issucs, this thesis designed a typical Marine Corps application (a
COmpuany Personnel System (COPS)) using both Systems Development Methodology
(SDM) and Object Modeling Technique (OMT). Thesc methodologies are compared in
terms of case of maintenance, understandability, exiendibility, inheritance, and database
inlegration.

It is good for the Marine Corps becausce it helps developers and cusiomers express
abstraci concepts clearly. OMT and SDM ditler in their approach w system
organization: OMT around real-world objects, while SDM around functionality. The
Manine Corps should immediately change its paradigm from SDM 1o OMT. SDM's
Functional Requirements Definition. General Design Specification, and Detailed Design
Specification will have to be replaced with OMT's Analysis, System Design, and Object

Accesion for

NTIS (e *’: |
l,‘“(_: g | .

U o !
Jll:il' . !

Ly

Design respectively. Auceaion for]

TABLE OF CONTENTS

I. INTRODUCTION.... R T U U
A, BACKGROUND ... e e 2
B. USE OF CURRENT METHODOLOGY 2
C. METHODOLOGY oo o 4
D ORGANIZATION OF THESIS . L PR 5

II. CURRENT MARINE CORPS SOFTWARE DEVELOPMENT STANDARDS
AND PROCEDURES.......... RO 6
A. SYSTEM DEVELOPMENT METHODOLOGY 6

1 Background. 6
2 Phases .. 7
3 Documentation Requirements 8
a Functional Requirements Defimition 9
b. General Design Specification 10
¢ Detailed Design Specification 10
4 Structured Analysis and Design 11

11} OBJECT-ORIENTED SOFTWARE DESIGN , 12

A CHARACTERISTICS OF AN OBJECT-ORIENTED APPROACH 12
1 Idemity 12

2 Classification : 13

3. Polymorphism - 13

4 Inheritance 13

5 Abstraction B 14

6 Encapsulation - 14

B OBJECT MODELING TECHNIQUE _ _ 14
). Analysis Phase . . . o 18

a Object Model : _ 16

b Dynamic Model . 17

¢ Functional Model . 18

2. System Design .. . S : S 19

3. Object Design.. B - o 19

C. OMT AND OTHER OBJECT-ORIENTED APPROACHES 2]
IV. APPLICABILITY OF OBJECT-ORIENTED MEZTHODOLOGY TO MARINE

CORPS APPLICATIONS : .23

A APPLICATION BACKGROUND 23

B COPS DESIGN USING SDM : 24

1 Requirements Statement , S 24

a General : 24

b Current System 24

¢ Required Capabilities 24

2 Functional Requirements Definition 25

a General 28

b Structured Specification 28

(1) Functional Requirements 28

(2) Non-functional Requirements 20

(3) Context Diagram 20

3 Gereral Design Specification 20

a Gereral 20

b DFD of COPS Svstem 27

¢ Data Dictionary for COPS 27

d Entity-Relationship Diagram for COPS 30

4 Detatled Design Specification for COPS 30

a General 30

b Structural Specification 3]

(1) DFD of Compute PFT Scores Module 31

(2) Module Specification 31

C COPS DESIGN USING CMT 34

1 Analysis Phase 38

a Object Model for COPS 38

2

3

(1) Data Dictionary for Object Model ..

b. Dynamic Model................ S RO
(1) Event Flow Diagram for COPS VRTINS
(2) State Diagram for COPS.

¢. Functional Model _ L

System Destgn.. ...

Object Design.

.36

37
37
38
39

. 39

V. COMPARISON BETWEEN SDM AND OMT METHODOLOGIES. ..
A GENERAL OBSERVATIONS

]

2
3.
4

",

6

Organization
Extendability

Understandability

. Inheritance

Database Integration

Maintenance

B CHOOSING BETWEEN SDM AND OMT
VI CONCLUSIONS AND RECOMMENDATIONS
A CONCLUSIONS
B RECOMMENDATIONS
LIST OF REFERENCES
INITIAL DISTRIBUTION LIST

40
42

.42

43
45
46
47
47
49

51

54

56
S7

I. INTRODUCTION

The United States Marine Corps is currently evaluating object-oriented methodology
fur several {uture software development projects because complex software developed
using that methodology appears to be faster to develop and easicr to maintain. This
thesis will explore the required changes in current procedures and standards in the area of
software engineering techniques and wili provide Marine Corps officials with an
objective look at cnanges in software engincering procedures that are inherent in a

paradigm shift.

A. BACKGROUND

The advantages of object-oriented methodology have been widely discussed in the
technical press and there appears to be a widespread move in that direction for commercial
applications and software development To understand the impact of this new
methodology on Marine Corps sofiware development prorasses requires an assessment of
object-oriented capabilities, limitations, and constraints Additionally, it requires an
understanding of what changes must be made to current Marine Corps software
developmeni methodologics

The Marine Corps uses two sets of standards (o guide the development of software.

one standard is for unique "tactical" systems, the other standard is for "non-tactical”

systems This thesis will explore only the software development methodologies for

non-tactical systems. These methodologies are similar to those used by private industry,
with slight modifications specific to military use. In addition, this thesis will explore only
software development for PC's and network servers. The development methodology for
Marine Corps mainframes is the same What differs is the level of detail required by the
standards and procedures. The Marine Corps defines three categories of systems; small,
medium, and large. These categories are defined by the amount of money spent on system
development and implementation. Small systems are limited to less than $1 million,
medium systems run between $1 million to $5 million. and large systems cost over $5
million. The larger the system, the larger the documentation requirements Systems
developed for PC's and network servers tend to fall into the category of small systems. By
limiting the scope to small systems, this thesis will be avle to focus on the details of
development methodology. instead of getting caught up in unnecessary documentation
requirements. Furthermore, this thesis looks at the use of object-oriented software
methodology as it applies to a proposed or existing Marinz Corps application. The intent
is to show the generic changes that are required and provide Marine Corps officials with

the general idea behind, and impact of, object-oriented methodologies

B. USE OF CURRENT METHODOLOGY

Currently, the Marine Corps uses a design methodology based on traditional
structured analysis and design principles (these will be defined in Chapter 1I). However,

based on practical experience, it can be said that these standards and prozedures are not

always adhered to by system developers Due to time constraints and other factors, most

small systems are not designed properly, that is, following the standards and procedures

It seems that once a requirement has been defined, the programmers start coding the
system, without taking the initial time up front to properly design and document the
proposed system. A fundamental shift in attitude towards proper system development
mus: be embraced by Marine Corps system developers. Once this has been accomplished,
the next step is to adopt a methodology that organizes a system around real-world objects,

instead of around procedures. The object-oriented approach to systems analysis and

design is presented in this thesis.
; In order to define what the object-oriented approach to systems analysis and design is,
and what the impact of such an approach is, the following list of questions will be

addressed and answered in this thesis The questions have been broken down into three

Y categories

3 A What is it and why is it good for the Marine Corps”

! * What is object-oriented software design” -
* What are the benefits of systems developed with object-oriented methodologies” S
B How is it different than what we are doing”

‘ * What are the current methodologies used for software development”.

8 * What changes are required to current development methodologies in order to develop

software based on object-oriented methodologies?
C. What should we do and when should we do it?

A * When is an object-oriented approach beneficial?
% * Is objeci-oriented methodology applicable to Marinc Corps non-tactical software
! development activities”

Categories A and B serve as background subjects, while category C will show the

benefits and applicability of a object-oriented approach to Marine Corps applications

C. METHODOLOGY

in order to provide for background, as well as applicability, this thesis will follow a
number of certain steps. This thesis will report the results of a five step process, defined
below.

Step one: Understand Current Procedures. This step will explore current Marine
Corps software development procedures and standards. This will be done in order to
gain an undersianding of the requirements that drive current software development. This
1s essential in order 1o show where changes must be made it object-oriented
methodologies are to be adopted.

Step two: Understand Object-Oriented Procedures. This step will explore
object-oriented methodologices, specifically in the arca of software engineering. This is
essential inorder to compare and contrast current methodologies with object-oriented
methodologies. The Object Modeling Technigue (OMT) will be used as the
object-oriented methodology.

Step three: Identify Elements of Applicability. This step will determine if (and
when) object-oriented methodologies are apphcable to Manine Corps non-tactical
software development. This will focus on a proposed or existing system,

Step four: Compare the Methodologies. This step will compare and contrast the two
methodologies. The strengths and limitations of each will be addressed. Focus will be
given 1o the area of "wherc changes are to be made” if object-oriented methodologies are

10 be applicd and practiced.

Sicp five: Conclusions and Recommendations. Finally, conclusions and
rccommendations will be made about the use of object-orienied procedures and

techniques for Marine Corps software development activities.

D. ORGANIZATION OF THESIS

This thesis is organized as follows. The next chapter, Current Marine Corps
Software Development Standards and FProcedures, describes current Marine Corps
standards and procedures with respect (6 sysiemn development and analysis.

The ihird chapter, Object-Oriented Software Design, defines an object-oriented
approach to system analysis and design. Specifically, the Object Modcling Technigue
(OMT) is presenicd.

The fourth chapter, Applicability of Object-Oriented Methodology to Marine Corps
Soitware Development, will look at an existing or proposed system (developed using
current methodologies), and develop a portion of that system using OMT.

The fifth chapter, Comparison Between Current and Object-Oricnted Methodnlogies,
will compare and contrast the two methodologies.

The sixth chapter, Conclusions and Recommendations, will make specific

recommendations Lo the Marine Corps about object-oriented methodologies.

II. CURRENT MARINE CORPS SOFTWARE DEVELOPMENT
STANDARDS AND PROCEDURES

Current Marine Corps stanaards and procedures are based on the Department of
Dciense (DOD) and Department of the Navy's (DON) "Life Cycle Management” (LCM).
"LCM is a process of administering an informaiion system (IS) over its entire life with
emphasis on strengthening early - :cisions which influence IS costs and utility" [Ref. 1}.
The Marine Corps has used the LCM as a guidelinz for it's own version of the LCM.
Within this version lies the methodology that governs all current Marine Corps software

development activities; the System Developraent Methodology (SDM).

A. SYSTEM DEVELOPMENT METHODOLOGY
1. Background

The SDM is the {formal specification for building a system. It defines the activities
necessary to build a system, the interface between those activities, and control of the
products created as a result of those activities [Ref. 2:p. 1-3]. The intent of the SDM is
to provide a methodology based on existing government publications, but enhanced to
accommodate the technologies and constraints specific to the development of new
systems. SDM follows the guidelines sct {urth in Marine Corps Order P5231.1, "Life
Cycle Management for Information Systems Projects (LCM-1S)," which provides overall

policy on system development [Ref. 2:p. 1-4].

The SDM is based on a traditional software development activity, known as the
software life-cycle. This life-cycle approach involves the following activities:
requirements analysis, sysiem specification, system design, detailed design, coding,
integration, operation and maintenance. The activities that pertain to software
engineering aspects within the SDM will be defined later.

2. Phases
The phases of the SDM are similar to those of the LCM, but with a couple of
diffcrences. There is an additional division within the Definition and Design phase and
the System Development phase. These sub-divisions are necessary in order (o
incorporate the traditional formal structured design approach to software development.

Figurc 1, "System Development Phases.” shows a comparison of the DOD/DON LCM

with the Marine Corps SDM.

/DOD & DON LCM

Musion Anal/ | Coneepl Definition and System
Deplovment
Prosect Init Development Design Development
and
Definition | Design Developmet and | Test Eval.
Integration Operations
MARINE CORPS SDM
Mission Anal/} Concept Definition and System
Deployment
Project Init. Development Design Development
and
General Detailed Developnient] e
Codd and st ¢ Eval. Operations
Def. | Des. Design Integrauion pe

Figurc 1 System Development Phases

The major ecmphasis in the SDM is placed on the actual development activities,
which occur in the Concept Development through System Development Phases. This is
where the majority of the software design and development work is done.

3. Documentation Requirements

The SDM requires that several documents be prepared and delivered to
management. These documents are due at several different stages throughout the SDM
process. This thesis will only address those documents that are pertinent to the software
development process; namely the "Functional Requirements Definition” (FRD), "General
Design Specification™ (GDS), and the "Detailed Design Specification” (DIDS). These
documents are required in the Definition and Design phase of the SDM. Figure 2,

"Deliverables of SDM", displays the document deliverables of the SDM.

CETRE . e L T

Mission Cencept Definiticn and Design Deployment
) : Development ond
Analysis Devetopment | General Design Detail Design Operati
R8s, I .
Functional
Requirements Dewiled Users Manual
Lconomic Definiti d .
mm?)n an Design Computer
Apalysis General Design Operat
. ¢1alons
Specification Specilication Manual

Figure 2 Deliverables of SDM

There are more documents required under the LCM, but these documents do not
pertain to the software engineering aspects of development. The documents that pertain
to software engineering aspects will be described below.

a. Functional Requirements Definition
This standard provides the guidelines to produce a Functional Requirements
Definition . The definitinn developed will detail the user's requirements for new.
changed, or enhanced applicaiions necessary 1o meet the system's objectives |Ref. 2:p.
2-10]). When completed, the functional requirements definition will be provided to
project management for review and approval.

The FRD is the equivalent to the traditional life-cycle "System Specification”
phase. It involves cliciting from a customer the behavioral characteristics and properties
of the software system that is to be developed. They must be specified in an accurate,
complete, unambiguous and non-contradictory way [Ref. 3]. The purpose of the system
specification is (o determine a customer's needs in sufficient detail to plan the

construction of a software system meeiing those needs [Ref. 4], The end product of this

activity will be a software specification document, which includes functional

requirements. A functional requirement is a statement of what a software system is 10
do; the functions it is to perform.
b. General Design Specification
This standard provides the guidelines to produce General Design Specifications.
The specifications developed will detail the system environment for new, changed, or
enhanced applications neccssary to meet the sysiem's objectives [Rel. 2:p. 2-10). When
completed, the GDS will be provided to management for approval.
The GDS is the equivalent to the traditional life ¢ycle "System Design * phasc.
It involves defining the architecture of a system which satisfies the customer
requirements expressed in the specification [Ref. 3:p. 4]. This is the process of design.
This design process partitions the software into functionally related groupings, known as
modules. These modules will consist of constants, variables, types and program units
(functions and procedures) which provide resources to carry out a series of related tasks
[Ref. 3:p. 4], The resuls of the system design phase is a system architecture which
defines the relationships between individ.ual program units in a proposed system. The
next step in the process is to develop a detailed design.
¢. Detailed Design Specification
This standard provides the guidelines to produce a Detailed Design Specification.
Basically. it develops the technical solution to the customers needs [Ref. 2:p. 2-9). When

completed, the DDS will be provided to management for approval.

The DDS is the equivalent of the traditional life<ycie "Detailed Design” phasc.
It is the process of transforming a system design into a form in which it can be given to a
programmer and implemented. It involves filling in the details of the system design
[Ref. 3:p. S].

4. Structured Analysis and Design
The phases contained in the SDM are based on phases in the traditional software

life-cycle process. Since the life-cycle process is based on structured analysis/design
vrinciples, the SDM follows these principles as well. The document deliverables of the
SDM can be tied directly to the structured analysis/design approach 1o software

development, as displayed in Figure 3, "Structured Systems Development Activities."

-

Structured Methods

Structured
Structured Analysis Design
Functional General Detailed
Requirements Design Design
Definition

SDM Phases

Figure 3 Structured Sysiems Development Activities
The next chapter in this thesis will address the Object-oriented approach to

software development.

I1l. OBJECT-ORIENTED SOFTWARE DESIGN

The intent of this chapter is to present the reader with an overview of object-oriented
software analysis and design techniques Object-oriented design is a new way of thinking
about probiems using models organized around real-world concepts. The fundamental
construct is the object, which combines both data structure and behavior in a single entity
[Ref. 5] This chapter will address the "most common” characteristics required by an
obj. ct-oriented approach Once this has been done, a specific object-oriented software

design methodology, Object Modeling Technique (OMT), will be presented and discussed

A. CHARACTERISTICS OF AN OBJECT-ORIENTED APPROACH

There is some dispute about what exactly characterizes an object-oriented appreach
Generally speaking, however, there are four widely accepted characteristics identity,
classificaticn, polymorphism, and inheritance (Ref 5'p 1] Inaddition to these four, there
are two additional characteristics that need to be mentioned; abstraction and
encapsulation

1. ldentity

Identity means that daia are organized into discrete, distinguishable entities called

objects. Each object has its own inherent identity Two objects are distinct even if all

their attribute values are identical.

In the real world an object simply exists, but within the context of a programming
language, each object has a unique handle by which it can be referenced [Ref 5 p. 2]
Object references are uniform and independent of the contents of the objects, permitting
mixed coilections of objects to be created

2. Classification

Classification means that objects with the same attributes (data structures) and
operations (behavior) are grouped into a single class. A class is an abstraction that
describes properties important to an application Any choice of classes is arbitrary and is
application specific [Ref. 5.p. 2]

3. Polymorphism

Polymorphism means that the same operation may behave differently on different
classes [Ref. 5:p. 2]. What this means is that the result of the operation (method) will vary
between classes. A specific implementation of an operation by a certain class is called a
method The user of an operation need not be aware of how many methods exist to
implement a given operation New classes can be added without changing existing code,
provided methods are provided for each applicable operation on the new classes [Ref 5:p
3)

4. Inheritance
Inheritance is the sharing of attributes and methods among classes based on a
hierarchical relationship [Ref. 5:p. 3]. This is known as the inheritance mechanism, with

which a new class may be declared as an extension or restriction of a previously defined

class [Ref 6] This leads us to the notion of superclass and subciass Each subclass
inherits all of the properties of its superciass and adds its own unique properties
The ability to factor out commun properties of classes irnto a common superclass,
and 1o inherit the properties from the superciass, greatly reduce repetition within design
and program code [Ref 5 p 3)
S. Abstraction
Ahstraction consists of focusing on the essential, inherent aspects of an entity and
ignoring those aspects that are not important [Ref S p 16]. In system development, this
means focusing on what an object is arnd does. before deciding on how it should be
implemented By using abstraction, the designer maintains more flexibility by avoiding
premature commitments to implementation details Proper use of abstraction allows for
the same model to be used for analysis. high-level design. program structure, etc
6. Encapsulation
Encapsulation. also known as information hiding, consists of separating the external
aspects of an object from the internal implementation details of the object [Ref § p. 7).
Encapsulation prevents a prcgram from beccming so interdependent that a smail change in

one area will cause massive changes throughout

B. OBJECT MODELING TECHNIQUE

A methodology for software design is usually presented as a series of steps, with

specific techniques and notations associated with each step. The OMT methodology

supports the entire software life cycle. The complete software life cycle spans from initial
problem formulation, through analysis, design , implementation, and testing. This thesis
will focus on OMT as it applies to analysis and design.
The OMT methodology consists of several phases These phases are Analysis, System
Design, and Ooject Design
1. Analysis Phase
Analysis is concerned with devising a precise, accurate, understandable, and correct
modei of the real world The purpose of object-oriented analysis is to model the real
world system so that it can be easily understood [Ref 5 p 148] It clarifies the
requirements, provides a basis for agreement between the software requester and the
software developer, and becomes the framework for later design and implementation
Analysis begins with a problem statement This is generated by clients and
developers The real world system described by the problem statement is abstracted into a
model This model addresses three aspects of objects static structure, sequencing of
interactions, and data transformations Static structures are displayed in the Object

Model, sequencing of operations in the Dynamic Model, and data transformations in the

Functional model Figure 4 displays an overview of the Analysis process [Ref S'p 149)

Users .
Generate Analysis
R tS
Developers| cques
Managers Problem
Statement

User Interviews

Build
Models

Domain Knowledge —————

Real-World Experience —
Object Modzl

Dynamic Model
Functional Model

-

-

&« System Design A

Figurs 4 Overview of Analysis Process

Analysis is not a mechanical process Large models are built up iteratively First a
subset of the model is constructed. then modified. until the complete rroblem is

understood. The object, dynamic. and functional models will be described next.

a. Object Model

The object moael descnbes the static st.ncture of vbjects in a system. Their

identity, reiationship to other objects, attributes, and operations are described [Ref. S:p.

17}, The object modei is the most important of the three models. Building a sysiem
around objccts rather than functionality is emphasized. The goal in constructing an
object maodel is to capture those concepts from the real-world that are important to an
application. The object model is represented graphically with object diagrams containing
object classes. Thesc classes are arranged into hicrarchies sharing common structure anid
behavior and are associated with other classes. The steps necessary 1o build an Object

Model are as follows [Ref. S:p. 152}:

* ldentify object classes.

* Prcpare a data dictionary.

Identify associations between objects.

* Identify attributes of objects and links.

* Organize and simplify object classes using inheritance.
Verify that access paths exist for likely queries.

* lerate and refine the model.

* Group c¢lasses inlo modules.

b. Dynamic Model

L]

The dynamic model describes those aspects of a system concecrned with time and
the scquence of operations, such as events that mark changes, sequences of events, states
that define the context for events, and the organization of events and states [Ref. 5:p. 18]
This modcl is important for interactive systems. The model captures control, that aspect
of a system that describes the sequences of operations that occur, regardless of what the
operations do, what they operate on, or how they are implemented.

The dynamic model is graphically represented with state diagrams. Each state
diagram shows the state and event sequences perniitted for one class of objects. The

steps necessary to construct a dynamic model! are as follows [Ref. 5:p. 261]:

* Prepare scenarios of typical interaction sequences.

17

*

Identify events between objects and piepare an event trace for each scznario.
Prepare an event {low diagram for the system.

Develop a state diagram for each class that has important dynamic behavior.
Check for consistency and completeness of events shared among state diagrams.

¢. Functional Model

®

-

The functional model describes thosc aspects of a system that are concerned with
valuc transformations. These include functions, mappings, constraints, and functional
dependencies. The model captures what a system does without regard for how or when it
is done.

The model is represented with data flow diagrams, which shows dependencies
hetween values and the computation of output values from input values and functions.
The processes on a data flow diagram correspond (o activities or actions in the state
diagrams of the classes. The flows on a data flow diagram correspond to objects or
attribute values in an object diagram. The steps necessary (o construci a functional

model are as follows [Ref. 5:p. 261):

* Identify input and oulput values.

Usc data flow diagrams as nceded 10 show functional dependencies.
Desceribe what cach function does.

Identily constraints.

Specily optimization criteria,

*

*

The analysis model should include information thal is meaningful from a
real-world perspective and should present the external view of the system. Additionally,

it should definc the true requirements for a system. Once a problem: has been analyzed,

the solution must be designed.

gt
't

2. System Design
System design is the high level strategy for solving the problem and building the
system. It involves making decisions about the crganization of the system into
subsystems, the allocation of subsystems to hardware and software components, and
major conceptual and policy decisions that form the framework for detailed design [Ref.
5:p. 198]. The overall structure and style of the system are decided.

The following steps are recommended for system design [Ref. 5:p. 199):

* Organize the system into subsystems.

Identify concurrency inherent in the problem.
Allocate subsystems o processors and tasks.
Choose an approach for management of data stores.
Handlc access to global resources.

Choose the implementation of control in software.
Handle boundary conditions.

Sct trade-off prioritics.

L

*

£ * %= * =

The final form of the high-level structure of the system (determined during this
phasc) is called the system architecture. System architecture's can consist of many
frameworks. These include functional transtormations (such as balch processing or
continuous transformations), time-dependent systems (such as interactive interface or
rcal-time systems), and database sysiems. Most application systerns are usually a
combination of several forms.

3. Object Design

The analysis phase detcrmines what the implementation must do. The system

design phase determines the plan of attack. The object design phase determines the {ull

definitions of the classes and associations used in the implementation, as well as the

19

interfaces and algorithms of the methods used to implement operations [Ref. 5:p. 227].
Object design is analogous to the preliminary design phase of the traditional software
development life cycle.

During object design the designer carries out the strategy chosen during system
design and pulls out the details. There is a shift in emphasis from application domain
concepts toward computer concepts. The operations identified during analysis must be
cxpressed as algorithms, with complex operations decomposed into simpler operations.
The classes, attributes, and associations from analysis must be implemented as specific
data structures [Ref. 5:p. 227]. New object classes may have to be introduced in order to
store intermediate results during program execution.

The following steps are recommended {or object design [Ref. 5:p. 228]):

Combine the threc models to obtain operations on classcs.
Design algorithms to implement operations.

Optimize access paths to data.

Implement control for external interactions.

Adjust class structurc o increase inheritance.

Dcsign associations.

Determine object representations.

Package classes and associations into modules.

F % %X x %

* * =

Itis imperative ihat all design decisions be documented when and where they are

made. This documentation is often the best way of transmitting the design to others and

recording it for reference later.

C. GMT AND OTHER OBJECT-ORIENTED APPROACHES

OMT is not the only object-oriented approach to softwarc design that exists. The
CMT methodology builds on earlier object-oriented work. Some of this earlier work was
performed by several recognized Icaders in the object-oriented software design field, to
include Booch, Meyer, Shlaer and Mcllor, and Coad and Yourdon. A brief overview of
their respective works will be given.

Booch describes the rudiments of object-oriented software development He explains
that object-oriented development is fundamentally different from traditional functional
approaches 10 design [Ref. 7). In later work, he extends Ada oriented work 1o the entire
object-oriented design area. His meihodology includes a varicty of models that address
the object, dynamic, and functional aspects of a software systems [Rel. 8). He places less
emphasis on analysis and more on design.

Mever does not present a methodology per se. however, he does provide many good
lips on object-oriented design. He does not deal with conceptual modeling or analysis
[Ref. §).

Shlacr and Mellor describe a complete methodology for object-oriented analysis and
design. They also break analysis down into three phases: static modeling of objects,
dynamic modeling of states and events, and functional modeling [Ref. 9]. They caution

that their methodology is an approach Lo analysis, and that {inal design might be

different.

Coad and Yourdon's approach is similar to that of OMT's, with less emphasis on

design [Ref. 10].

In the next chapter, OMT concepts and techniques will be applied to a specific

Marinc Corps software system.

e

-

T e o

IV. APPLICABILITY OF OBJECT-ORIENTED METHODOLOGY

B TO MARINE CORPS APPLICATIONS

in this chapter, a typical Marinc Corps application (a Personnel Management System

‘:'f: at the Company ievel) will be designed using both the current methodology and the
proposed OMT model. This will demonstratec that OMT is appiicable to Marine Corps

non-tactical software design projects,

A. APPLICATION BACKGROUND

The applicaton o be developed is not an existing system, but one that closely

BN s

resembles several existing C based applications throughout the Marine Corps. The
application is a personnel management system, 10 be vsed by administrative personnel at
the Company level. For lack of a beter name, let's cail it COPS (COmpany Personnel
Sysiem).

COPS will maintain all pertinent inforpiat-on or Company personnel. It will perform

report generation, compuie promotion and phy<ical fitness iest scores, compile duty

rosters, and allow for updates, deletions, and auditions (o the sysiem.

COPS will be designed beiow using current Marine Corps Methodotogy. 2

B.

COPS DESIGN USING SDM

This design will address only those aspects that pertain (o software development.

Specifically, it will address the Requircments Statement, Functional Requirements

Definition, General Design Specification, and Detailed Design Specification.

I. Requirements Sta.ement
a. General
Initial Problem Statemeit:

The purposc of the personnel management system is 10 help Commanding

Officers/administrative personnel at the company level manage pertinent information on

all

personnel within their command. This will include report generation, updates,

additions. deletions, retrieve! of information, and computation of scores.

b. Current System

Curreatly, ro automa‘ed personnel system cxists at the company level. All data

is maimained manually.

*

* x

¢. Required Capabiliries

The new system should have the capabilities to perform the following tasks:

update of informaticn.

addition of »ersonnel o system.

deletion of personnel {rom system.

generate and compile nccessary reports.

generale necessary rosters,

retricve all necessary inormelion on company personnel.
compute promotion scores.

co:npute Paysical Fitness Test (PFT) scores.

The system will not interact with other systems. It should be a Local Area

Network (server) based system. It should be a mulii-user system. There is 2 1equirement

for the system 1o be backed up at least weekly.

2. Functionsal Requirements Definition

a. General

The COmpany Personnel System (COPS) is a multi-user, Local Area Network

based application, designed to support Commanding Cfficers/administrative personnel in

thc management of information on ali personnel in the command. This application is

intended for usc at the Company level. It should be applicable to most Company's

throughout the Marine Corps.

b. Structural Specification

(1) Functional Requirements. The COPS sysiem will perform the following

functions:

* Provide a roster of all company personnel. The system sheuld allow {or rosters to be
printed alphabetically, by platoon, by Military Occupational Specialty (MGS), by rank,
or by any combination of the above.

* Provide {or the compuiation of promotion (cutting) scores for all enlisted personnel
within the cornpany.

* Provide reports of promotion scores.

* Provide for the computation of PFT scores {or ali company personnel. This includes
a report by numerical score, as weli as by class.

* Provide means to update all fields within the system.

Provide means to delete personnel from the system.

Provide means to add personnel to the system.

Provide means to add/delete fields to the system.

Determine and print cut duty lists {OOD, SDNCO, DNCO, eic.).

Keep track of Company training.

Kecp track of requirzd personal training requirements.

& & & % & =

(2) Non-functional Requirements.

The system must be a multi-user system.

The application will reside on a LAN server.

The response 1o a command/request should be no longer than 3 seconds.

The system should he designed in accordance with DOD/Marine Corps standards.
The system should be completed within 12 weeks.

£ % ® & =

(3) Context Diagram. The overall system is represented by ihe Context Diagram

in Figure 5, below.

/

-

Cosnmanding

Officer
response

report. score, information request

report. score. update. info request

report, score, information request

Adnministration
Personnel Fespunse response \\

Platoons

Figure 5 COPS Context Diagram
3. General Design Specification
a. General
The objective of the GDS is to provide a high-level view of the major functions
within the COPS system. Additionally, it will describe the major interfaces between
those functions. This will be accomplished via a Data Flow Diagrams (DFD), a Data

Dictionary, and an Entity-Relationship Diagram (ERD).

b. DFD of COPS System

-~

Figure 6 displays the DFD for the COPS system:

Platoons
provide info. requests

promo mnfo

Promo. Scores

Personal Data

provide info.
reguents,

vodates

promo, s¢ares

Generate
Training |
Regs.

results

rostet info

Duty Rosters o
. training info

duty rosters

Company
Admin, <
Personnel

training reqgs Training Reqs.

Figure 6 DFD for COPS

¢. Data Dictionary fo - COPS
The following data m=zkes up the Data Dictionary for COPS, The elements

apply to the DFD as well as the ERD (to follow the Data Dictionary).

* address = strect + City + state + zip

* age = [(int-num))2
* ASVAB = [(int-num))3

Armed Services Vocational Aptitude Battery Test Scorc

* birth_datc = yr + mo + day
* city = {legal-char}
* college = [(int-num))2

® £ % = * & &

* =

number of college courses taken
company = [A|B|CIHQSVC]
CRT = |Y|N]
combat readiness training, is it completed?
daily_trng_sch = {legal-char}
daily training schedule
dependents = [(int-num)]1
number of dep svc member has
DNCO = DNCO
Duty NCO
Drug_Al = |Y|N]
drug and alcohol training, is it nceded?
Duty Roster = **duly roster store**
duty_qual_for = [mess_duty|DNCO|SDNCO|OOD)]
EST = [passlfail] '
**Essential Subjects Test results™*
eye_color = {legal-char}
{irst_name = {legal-char}
GCT = [(int-num)]3
**Armed Services 1.Q. Test*™
hair_color = {legal-char}
height = *units: inches, range: 46-84*
inl-num = {(0-int'last)]
last_duty_daic = yr + mo + day
las! time sve member stood duty
last_name = {!2gal-char}
legal-char = [A-Z[a-z[0-9[[-| |]
MCI = [(int-num)|2
number of correspondence courses completed by sve member
mess_duty = Mess Duty
duty in the mess hall
MI = {legal-char}
middle init
MOS = [(int-num)}4
Military Occupational Specialty

* name = last_namec + first_name + MI
* OOD=00D

*® % = *

&+

*

*®

*

QOfficer of the Day

p_mark = [exp|ss|mm]

pistol marksmanship class
p_score = [(int-num)]3

pistol score
PFT Scores = **PFT scores storc*”
PFT_class = [1st|2nd|3rd|fail)
PFT_score = [(int-num)}3
phone_num = {legal-char}
pistol_trng = [Y|N]

pistol training, is it completed?
PLT = [1st|2nd|3rd|wpns]
platoon
promo_score = [(int-num)}4
promotion/cutting scorc
Promotion Scores = **promotion scores store**
pull_ups = [(int-num)]2
“*num of pull-ups**

pull_up_score = [(int-num)]3
r_mark = [explss|nm)

rifle marksmanship
¥_score = [(int-num))3

rifle score

* rank = |Pvi|LCpl|Cpl|Sg!|SSgt|GySgMSgt|1stSgMGySgt|SgtMaj|2ndLt|1stLi|

[

»

£ £ = 2

*

Capt|MajjLtCol|Col]
rel_prel = {legal-char}
v*religious preference of sve member**
rifle_trng = [Y|N]
rifle training, is it completed?
run_score = [(int-num))3
run_time = *unit: minwes, seconds :range : 0-A0*
timc on run portion of PFT
SDNCO = SDNCO
Stai{ Duty NCC (E-6 and above)
sex = [M|F]
sit_ups = [(ini-num)]2
sit_up_score = [(int-num.))3
SSN = {(int-num)3 - (lut-num)2 - (int_num)4}
Social Security Number
Trainirg Req = **traminy requirements store**
weekly trng_sch = {legal-char}
weekly training schedule for company
weight = *units:pounds; range: 1-400*

d. Entity-Relationship Diagram for COPS
The following ERD is used to display the stored layout of the COPS system at a
high level of abstraction. For the sake of clarity, the attributes of each entity have been

omitted from ihe diagram. Figure 7 displays the ERD.

Attached Plat.on
o

s(aM. Dm'\ . 1
N 1 Roster X
- COnsiply
of

Marine

has @ Compuny

N

Training o l

‘ Regs j Promotion
i Score

FPFT

Score @

[agure 7 ERD for COPS

4. Detailed Design Specification for COPS
a. General
The objective of the DDS is to provide sufficient detail of each module defined in

the DFD's so that these modules can be coded by a programmer. Additional DFD's as

30

weli as module specifications will be designed and developed in this phase of the DDS.
For the purpase of this thesis, only one module of the COPS system will be designed in
detail.
b. Structural Specification
(1) DFD of Compute PFT Scores Module. The "Compute PFT scores" module

of the COFS system will be broken down into detail. Figure 8 is a DFD of the module.

(

-

request for PFT scores

1o be computed
~3{ Gt Data

data input

run seares complete

puil-up scores

pull-up scores

vomplete

S1t-up scores

PFT Scores

A
- X pftscares complete

Figure 8 DFD 1or "Conupute PFT Scores" Module

(2) Module Specifications. Moduic Speiiications (MS) is a statement of the

rules governing the transformation of input dats into vutput data. Module Specifications

31

define the control logic for system execution. MS for the "Compute PFT Scores” module

will be described below.

Compute PFT Scores: Figure 6: Module 2

Do While there arc more Marines in the Company
»et PFT data fields (age, ssn, run_time, sit_ups, pull_ups, hang_time, sex)

Compuie Run Scores: Figure 8 Module 2.1

Lo While there are more Marine run_time values
Do Case
Case sex = "m"
r's¢ mal:_chart table
if run_time.seconds >= 01 and <= 09 then round seconds value up to 10
eise if run_time.seconds >= 11 and <= 19 then round seconds value

up {0 20
clse if run_time.seconds >= 21 and <= 29 then round seconds value up to
30
clse if riin_time.seconds >=31 and <= 39 then round seconds value up to
41
cise il run_time.seconds >=41 and <= 49 then round seconds value up
10 50

else i tun_time.seconds >=51 and <= 59 then round seconds value
up 0 GO
end of
Derer.nine run_score bascd on comparison between run_iime and
malc_chart value
Wri‘e run score to "Compute PFT Gcore” module
.ase sex = "f”
use female _chart (ablc
if run _time.seconds >= Gl and <= 09 then .uund seconds value up to 10
else if run_time.seconds >= 11 and <= 19 then round seconds value up to
20
else if run_tinese onds >~ 21 and <= 29 then sound seconds value up 1o
30
else if run_time.seconds »= 31 and <= 39 then round seconds value up to
40
clsc if run_tirn:2.5econds >= 41 and <= 49 then round seconds value up to
50
else if run_time.seconds >= 51 and <= 59 then round seconds value up 10
oe

AR et e St B sttt

end if

Determine run_score based on comparison between run_time and
female_chart value

Write run_score to "Compute PFT Scores" module

Case Otherwise display "No entry value for "sex" field of Marine, try again”
End Cuse

End Do

Compute Puli Up Scores: Figure 8: Module 2.2

Do While there are more pull _up/hang_time values
Do Case

Case sex = "m"

get pull_ups and Multiply by 5 and assign value 1o pull_up_score

Write pull_up_score to "Compute PFT Scores” module
Case sex = "{"

usc female_chart able
get hang_time valuc

if hang_timc <= 40 then hang_score is assigned hang_time value
clse determine hang_score based on comparison between hang_time and
female_chart value
end if
Write hang_score to "Compute PFT Scores” module
End Case

End Do

Compute Sit Up Scores: Figure 8: Module 2.3

Do While there are more sit_up valucs
get sit_ups value
Do Case
Case sex = "m"
use malc_chart table
if sit_ups <= 60 then sit_up_score is assigned sit_up value

else determine sit_up_score based on comparison between sit_ups and
male_chart table

end if

Write sit_up_score to "Compute PFT Scores” module
Case sex = "{"

use female_chart table

Determine sit_up_score hased on comparison between sit_ups and
femalc_chart table
Write sit_up_score to "Compute PFT Scores” module
End Case
Erd Do

Compuie PFT Scores: Figure 8: Module 2.4

Do While there are more PFT Scores
if age >= 17 or <= 26 then use junior_marine_scoring table
else if age >= 27 or <= 39 then use mid_level_marine_scoring table
else age >= 40 then use scnior_marine_scoring tahle
erd if
Do Case
Case sex = "'m"
Add run_score + pull_up_score + sit_up_score to get PFT_score
Determine PFT_Class based on comparison between PFT_score and
junior/ mid_level/ senior_marine_scoring tabie
Write PFT_scorc and PFT_class 1o PFT Scores data store
Casesex = "f"
Add run_score + hang_score + sit_up_score to get PFT_scorc
Determine PFT_Class bascd on comparison between PFT_score and
junior,mid_level, senior_marine_scoring table
Write PFT_scorc and PFT_class to PFT Scores data store
End Case
End Do
End Do --Main Loop

C. COPS DESIGN USING OMT
COPS will be utilized to display the three kinds of models under OMT; the Object,
Dynamic, and Functional Models. These three models were described in detail in

Chapter III. The problem statement and functional requirements for COPS (descrived in

section B) remain the same.

i. Analysis Phase
a. Object Mode! for COPS

Figure 9 displays the COPS object model. For clariiy, the attributes have been

omitted from the diagram.

delermines work for -l
Commanding Training Company
Officer Rgqmts. Admin Pers

commanded by \ has perforined by ’

. —-
Company consists of Marine performed on Updates/
¢ Requests
]
has
PFT Promoiion
Scores Scores
L—m

7

Reports

!

| Duty Misc.

@m‘_ Reports
— —

Figure 9 COPS Object Model

(1) Data Dictionary for Object Model. The data dictionary describes each

object class defined within the object maodel.

* Commanding Officer - This object defines the commanding officer for wne company.
* Company - This object defines the type of company ‘n the COPS system.

36

* Company administration Personnel - This object defines the personnel authorized to
actess the COPS system. It containg names, ssn's, passwords, and ranks.

* Deletions - This class irnheritc all the methods and attributes of its parent object,
Updates/Requests. This object allows for marines, attributes, training rqmts, etc. to be
deleted from the system.

* Duty Roster - This object inherits all the methods and attributes from its parent object
Reports. It contains information on the different types of duty, as wel! as personncl.

* Marine - This object contains all the information for ali marines in the compary.

* Misc. Reports - This object inherits all the methods and aitribuies from its parent
object Reports. It allows for ad-hoc reports to be created based on requirements.

* PFT Scores - This class innerits all the methods and attributes of its parent object,
Marine. This object contains pft scores for all marines in the COPS system. It is used by
other objects as well.

* Promotion Scores - This class inherits all the methods and attributes of its parent
object, Marine. This object contains promotion scores for all marincs in the COPS
system. It is used by other objects as well.

* Reports - This object contains the reports formats. [t also allows the user to select
which reports he/she wants to generale.

b. Dynamic Model
The dynamic model is very important {o interactive systems. The COPS system
can be deseribed as a data repository system, or a database system, that is not highly
intcractive with the user. Therefore, the dynamic model will be limited in its detail.
Figure 10 displays the Event Flow Diagram (EFD) for the COPS system.
(1) Event Flow Diagram for COFS. The EFD summarizes events between

classes, without regard tor sequence.

uest for info. reports. etc .
e e 5! Admin,

Personne!

Commanding
Officer

provide results

request for info
enter password
enter updates, requests

requesi for info, reponu, etc
display mam screen
request password
request complete

provides results

provide resuls
provide resulls of ranssctions

requests failed
requests successful

Updates/ <

Marine (object)

! Requcsts >
Process requests

Figure 10 Entity Flow Diagram for COPS
(2) Statc Diagram for COPS. A statc diagram for each object class 15 the next
step in the process. The state diagram captures all the events the object recejves and
sends. For the purpose of this thesis, only the object class "PFT Scores™ will be

designed. Figure 11 displays the stawe diagram for "PFT Scores.”

38

el necessary data from

"Personz) Daa” objem/@

failure/invalid data

select "Compute
PF¢ Scoras"

Main Screen
| do- display m screen

do: compute PFT
Cores

BUCCERE/SCOres
comouted

Cancel \

do cancel message

Figurce 11 Swate Diagram for "PFT Scares”

¢. Functional Model

The fuinctional model shows how values are computed, how they depend on
which other values and the functions that relate to them. DFD's are useful for showing
functional dependencies. A DFD is designed for the entire svstem, followed by a DFD
for cach object class, Figurc 6 from the GDS can be used here in the OMT model, since
itdescribes the op-level functionality of the COPS system. There is no need to display it
her, since it already has been done. Additionally, Figure 8 from the GDS can be used 10
display the fuactionality of the "PFT Scores” abject.

2. System Design

In the sysiem design phase of OMT, the overall structure and style of the sysiem

arc decided. The firststep in the process 1s to break the system into subsystems. Each

subsystem encompasses aspects of the system that share some common property, in our

casc similar functionality. The subsysiems tor the COPS system are as follows:

* Users - this subsystem includes the objects Commanding Officer and Company
Admin. Personnel.

* Marine Data - this subsystem includes the objects Marine, PFT Scores, and
Promotion Scores.

* Updates and Reports - this subsystem includes the objects Updates/Reguests, Renorts,
Duty Roster, and Misc. Reports.

The next step in the process is to determine an approach for management of daia
stores. It comes down to whether or not the system requires the use of a database, and if
s0, what type to use. In our case, COPS is a data intensive sysiem, (nus requiring the use
of a databasc.

The overall system architecture is determined next. What we are trying to do in this
step is match application behavior with architectural framework. In our case, the COI'S
system can be ciassified as a transaction/database managemein system, thus requiring a
transaction managemen! system architecture. The main tunction of tiis system is to
store, access, end perfonn computations on information,

3. Object Design
During object design the designer carries out the strategy <hosen during systern
design and pulls out the derails. During this phasce, the actual algoriihms for each
operation are designed. The operations are determined by combining the three models ¢f

OMT's analysis phase. In our case, the "Compuie PFT Scores” operation hes been

determined. The algorithm for this operation has already been defined in the DDS. and

wil! not he reproduced here.

In the next chapter, a comparison between the SDM and OMT methodologies wil;

be perfonned.

V. COMPARISON BETWEEN SDM AND OMT

METHODOLOGIES

The purpose of this chapter is to clearly identity the major differences and similaritics
between SDM and OMT. It is important to remember that SDM is based on the
traditional structured analysis/structured design approach to software development and

design.

A. GENERAL OBSERVATIONS

SDM and OMT, although different in their approach to software development and
design, have much in common. Both modeis use similar constructs and support the three
orthogonal views of a system. The difference between SDM and OMT is primarily a
matter of style and emphasis. In the SDM approach, the functional model dominates,
followed by the dynamic model, and then the object maodel. In contrast, OMT regards
the object model as most important, followed by the dynamic model, and finally the
functional model. Several areas will be addressed in the comparison between SDM and
OMT.

1. Organization
SDM ()rganizc's a system arcund procedurcs, while OMT organizes a system

around real-world objects, or conceptual objects that exist in the user's view of the world.

Most changes in system requirements persain 1o function rather than (o obiects, so change
can be disastrous 1o procedure-based design . By contrast, charges in function are
readily accommodated ir an obiect-oriented design by adding or changing operations,
whilc leaving the basic object structure unchanged.

An cxample thai displays how EDM organizes around procedures can be found in
Figure 6 (DFD for COPS). The DFD is done at the beginning of the design process, and
it breaks down the sysiem into separate "modules” or "procedures." By contrast, OMT
begins the design process with the Object Model (shown in Figure 9). This model
organizes the system around objects.

2. Extendibility

An SDM design has a clearly defined svstem boundary, across which the software
procedures must communicale with the real world [Ref. S:p. 268]. The overall structure
ol an SDM design is derived from the sysiem boundary, so it can be difficult to extend an
SDM design to a new boundary. By contrast, it is much casier to extend an
object-oriented design to a new boundary. This is done by merely adding objects and
relationships near the boundary 1o represent objects that existed previously only in the
cutside world. OMT is more resilient to requirement changes and theretfore more
extensible.

The system boundary for SDM can be found in Figure 5. The COPS system must
intcract with three entities, Commanding Officer, Platoons, and Administration

Personnel. These entities are displayed in Figure 5 because they have to interact with

COPS. If we wanted to add an entity, it would be very difficuit. First, we would have 10
create this entity from scratch (specific code for the entity). Second, we would have to
define its functionality and somehow incorporate this inio existing logic and
functionality.

The system boundary for OMT can be found in Figure 10. There are four objects
displayed, Commanding Officer, Administration Personnel, Updates/Requests, and
Marine. Each of these objects exist in the COPS system. As with SDM, they must also
interact inside COPS, however, in contrast to SDM. they are actually objects defined in
the system.

Let's say there are requirement changes in the COPS system. Specifically, the user
wants o change the way some information is represented in the system: he wants to add
several attributes to "Marine.” Additonally. the user wants 1o add another operation to
COPS:; compute rifle range scores {rom raw data. With these additional changes, the

following will have 1o happen in the system designed using SDM:

* In order to add the atributes, the "Marine” entity in the database being used with
COPS will have to be modified. These changes could force changes elsewhere in the
system, sort of a rippling effect.

* From a designers view, a "Compule Rifle Range Scores" module will have 1o be
added to the DFD in Figure 6. This module will have 1o be inserted at the proper
location, since SDM design is based on functionality.

* Specific program code will have 10 be developed in order to be able to compuie the
rific range scores, and then pass the results on to the necessary operations.

In contrast, the tollowing liraited changes will have to happen in the system

designed using CMT:

* The required attributes will be added 1o the "Marine” object, as well as the additional
operations.

* A child object "Rifle Range Scores” will be created under its parent "Marine.”
* Program code will have to be added to perform the required operation.

3. Understandability

In OMT, the direct analogy between objects in the design and objccts in the
problem domain results in systems that are casier to understand. This understandability
makes the design more intuitive and simplifics traceability hetween system requirements
and program code. It also makes the design more coherent to persons who are not @ part
of the original design team.

The Object Model (Figure 9) dis slays the objects to be used in the COPS system.
The Object Model was developed over several iterations. During each iteration, objects
were serutinized for redundancy and relevancey. Once a correct Object Maodel is defined,
the objacts contained within are used throughout the design and implemcentation.
Functions are performed on these objects, while the object itseli’ is not altered or
changed.

In contrast, SDM defines the functions to be performed in the sysiem (Figure 6)
and then delines how the data is 10 be organized in the database (Figure 7). The
designers of the DFD and ERD may use different names in their respective diagrams o
reler to the same sct of data or functions. This can lead to confusion among the
developers. In OMT, the system is designed around objects, and once the objects arc

designed and named, they are used consistently throughout implementation.

4. Inheritance

in SDM, the system is designed around its {unctionality, which usually means that
most program code is specific and no« “asily used elsewhere. By contrast, systems
designed using OMT use objucts as the basis for their organization. This allows for the
basic olji to be reused over and over again. This also allows for objects w be easily
designed for the system. This case of design increases reusability of components and
objects from one project to the next.

Figure 9 displays the Object Model for COPS. The "Marine" object is considered a
parent object while "PFT Scores” and "Promotion Scores™ are considered its children.
What this means is that all {unctions (methods) and atiributes contained in "Marine” arce
automatically inherited by its childian, thus saving time and effort with respect to
program code,

What should be emphasized here is that inheritance can be used very effectively in
Marine Corps applications becausc ol its hicrarchical nature in data organization. The
most important (or common) data is maintained within the parent object, and data that is
spectfic to an object is maintained within that child object. For example, the single most
important aitribute (Social Security Number) is maintained in the "Marine" otject. The
children of this object ("PFT Scores” and "Promotion Scores") inherit this attribute {rom
their parent, while maintaining aitributes that are specific to their operations. The most
important data resides at the top, thus allowing for data to be maintained in a hierarchical

nature.

P 5. Database Integration

L A system designed around functionaiity is inherently awkward at desling with
databases becausc it is difficult to merge programming code organized about functions
with a database organized about data. This is not always the case, but it is generally
accepted that merging the two requires time and patience. By contrast, an
object-oriented approach does a betier job al integrating databases with program code.
This can be attributed 1o the use of one uniform paradigm, the object. The object can

':' madel both database and programming structure. For instance, il a database were
designed for COPS (COPS designed with OMT), the Entity Relationship Diagram (used

for database design) would have the same entities as objects defined in the Object Model

(Figure 9). In OMT, the objects defined in Figure 9 will be used throughout design and
implementation. By contrast, SDM uses DFD's 1o display functionality (Figure 6) while
, using an ERD (Figure 7) (0 define database design. The two may or may not usc the
same names for both diagrams. This can lead 1o confusion, as well as 1o problems with
databasc integration.
6. Maintenance

What does the term "maintenance” mean with respect (o software? The term
addresses two activities: inodifications and debugging. Modifications can be defined as
changes in the external world (of the user) that require changes to the computer sysiem.
Additionally, modifications can be defined as deougging efforts; removing errors that

should never have been there in the first place.

Systems developed with OMT tend 1o be easier to modify (change) because they are
organized around objects instead of functionality. If the designer wants to make changes
10 functionality, all he has to do 1s concentrate on code that pertains to functionality.
while lecaving code that pertains 10 objects alone. If the designer wants to change an
object, all he has to do is go to that object and make changes, ignoring code that pertains
10 functionality.

By contrast, changes to systems developed with SDM tend to be more complex,
time consuming, and costly because any changes t¢ program code can effect many other
functions within the system.

Let's assume that the sysiem has been developed and is fully functional. Let's
further assume that the user wanls (o add some functionality to the system. Specifically.
they want the system to compute Essential Subjects Test (EST) scores for all enlisted
Marines in the Company. In OMT, an object would be created called "EST Scores” that
would be a child object of the parent object "Manme." It would inherit all existing
methods and attribules from “"Marine”, thus saving time and etfort. The specific
functions to be performed on the object would have o be defined and coded.

In SDM, another module would have to be created for this process. The designer
would be starting from scratch, and would have to concern himself with fitting this new
module into a system designed around {unctionality, where slight changes in one area

could have dramatic effects in others.

Dcbugging efforts are never easy, whether the system was developed using SDM or
OMT. What comes into play here is the amount of experience and kaowledge possessed

by programming personnel.

B. CHOOSING BETWEEN §DM AND OMT

This section will graphically display when it is advantageous to use SDM or OMT
for system development. Figure 12 displays a table which serves as a auick reference.
The table references small, mediura, and large applications. Small applications (for the
purposc of this thesis) are defined as applications which have less than or cqual to 3000
lines of code. Medium sized applicatons are defined as having greater than 3000 and

less than or equal 1o 20,000 lines of code. Large applications have greater than 20,000

lines of code.

/

Small Application

Medium ~pplication

Large Applicauon
case of extendabilit SDM
N ility OMT OMT OMT
rasc of SbM SDM
understandability OoMT OMT OMT
easc of inheritance OMT
(use) OMT OMT
ease of DataBasc M SDM OMT
inlegrauon OMT oMT
ease of maintenance sDM SDM SDM

Figure 12 Comparison of SDM and OMT Methodologies

50

The next chapter will address the conclusions and make specific recommendations
zbout the required changes to the status quo if OMT is 10 be incorporated as a software

development methodology for Marine Corps applications

VI, CONCLUSIONS AND RECOMMENDATIONS

Object-Oriented Methodologies, such as OMT, can be used by the Marine Corps for
its "non-tactical” software development projects in the near future. The current
methodology, SDM, is stil] valid and should be used where applicable. As a matter of

tact, OCMT utilizes certain poriions of the traditional software design methodology.

A. CONCLUSIONS

This thesis addressed three basic questions: (1) What is Object-Oriented software
design and why is it good for the Marine Corps, (2) How is it different than what we are
doing, and (3) What should we do and when should we do it?

Question one was addressed in Chapter 1L A specific Object-oriented methodology
(OMT) was described, Object-oriented software development was defined as a new way
of thinking about software based on abstractions that exist in the real world. The essence
of this development is the identification and orgarization of application-domain
concepts, rather than their final representation in a programming language,
object-oriented or not. The greatest benefit of an obiect-oriented approach is that it helps
specificrs, developers, and customers express ahstract coneepts clearly and communicate
them to each other. It can serve as a medium for specification, analysis, documentation,

and interfacing, as well as for programming.

51

Object-oriented software development is good for the Marine Corps because it
possesses many benefits. First, the data are organized into discrete, distinguishable

entities called objects, each possessing its own "identity." Second, objects with the same
attributes and functions are grouped together into a single class. This is known as
“classification," a form of abstraction. Third, it allows for the same operation 1o be
called by many different classes where this operation may behave differently in each
class. This is known as "polymorphism.” Fourth, it allows tor the sharing of attributes
and lunctions among classes based on a hicrarchical relationship. This concept is known

"

as "inheritance.” Fifth, it allows for "encapsulauon,” also knowrn as information hiding,.
This consists of separating the external aspeets ol an object from the internal
implementation details.

In order 1o address question two, the design methodology currently used by the
Marine Corps (SDM) was defined in Chapter 1. SDM is based on DOD and DON
standards and procedures known as "Life Cycle Management.” SDM is based on
traditional soltware development activities commonly known as the software life-cycle.
The life-cycle approach involves the {ollowing activilies: requiremerits analysis,

iunctional requirements definition, general design specification, detailed design

specification, operation, and mainienance.
In oraer to show how OMT and SDM ditfer, a hypothetical system (COPS, which is
based on several existing svstems) was developed and designed in Chapter IV. In order

to point out where the methodologies differ, a comparison and contrast was performed

between the two in Chapter V. The basic difference between the two is primarily a

matier of siyle and emphasis. In SDM, the functional model dominates, followed by the

dynamic model. and finally the object model. OMT regards the object model as most
important, {ollowed by the dynamic model, and finally the {functional model,
Additionally, there were six categories compared between the two: organization,

extendibility, understandability, inheritance, database integration, and maintenance.

SDM organizes a system around functionality, while OMT organizes & system
around real-world objects, or conceptual objects that exist in the user's view of the world,

i system requirements change, these changes will be easier to incorporate into a system

designed with OIMT than with one designed with SDM.

OMT is more resilient to requirement changes and therefore more extensible. In
order to extend a system designed with OMT the designer merely adds objects. With
SDM, the overall structure must be changed in order 1o extend the system,

With respecet 1o understandability, OMT utilizes a direct analogy between objects in
the design and objects in the problem domain. This makes it casier to understand and
[oilow throughout. By contrast, SDM defines functions to be performed and then detfines
how the data is to be organized.

With respect to inheritance, OMT allows for an object to be used cver and over
again, thus allowing for extensive use of inheritance, In contrast, a sysiem designed with
SDM is designed around functionality, which means that mest program code is specific

and not easily used (inherited) elsewhere.

OMT allows for easier integration between program code and databasces because of
its usc of one uniform paradigm, the object. SDM orpanizes program code around
functionality, while databases are organized around data. This makes it more difficult to
integrate the two.

There are t(wo componcents of mainienance: modifications and debugging. Systems
designed with OMT tend to be easier to modify, while sysiems designed with SDM tend
to be complex, time consuming, and costly. This is due to the manner in which the
systems are organized. Debugging is never easy. no ratter which approach is taken,

Question three will be addressed in the next section.

B. RECOMMENDATIONS

This section will address question three: What should the Marine Corps do and when
should they do 1t? The Marine Corps should not (and cannot) discard SDM. SDM is a
requirement for software development projects. What can be done is modification o the
contents and documentation requirements ol SCM. Specitically, the Funciional
Reguirements Detinition, General Design Specification, and Detailed Design
Specitication scctions will have 1o be changed. These sections will have to be replaced
by OMT's Analysis, System Des‘gn. and Object Design phases respectively. The
docurnentation requirements would shift {rom the status quo to those outlined and

required by OMT's three phases mentioned above.

In order to determine when the Marine Corps should incorporate OMT into SDM, it
must first be evaluated if OMT is applicable (o Marine Corps initiatives. In Chapter IV,
a system (COPS) was dz2veloped using both methodologics. It would not be valid 1o say
that OMT is applicable to all Marine Corps software projects, however, it can safely be
said that OMT would be applicable to most personnel management, logistical, inventory
control, and database systems designed for "non-tactical” use. This can be said since
object-oriented development is fundamentally a new way of thinking and not a
programming technique. Therefore, it s not restricied 1o its use with only
object-oriented languages (C++, SmallTalk, ete.). Even as @ programming tool, it can
have various targets, including conventional programming languages and dalabases as
well as object-oriented languages |Rel. S:p. 5]

When should the Marine Corps {ully adopt OMT? The Marine Corps should start
the process immediately, They should familiarize their software engineers with OMT by
allowing them to receive formal training, and then have them design several systems
using OMT. Once feedback is received about OMT's applicability and potential benelits,
then a timeline should be developed Tor [ull implementation of OMT into the life-cyele

Process.

wn
N

NP Wt L,y w

[

12)

13]

[4])

[5]

17)

[8]

9]

(10]

LIST OF REFERENCES
U.S. Marine Corps, Computer Sciences School DOB 0702, Introduction to the
Life Cycle and System Development Methodology for Information Systems
Projects, June 1986.

U.S. Marine Corps, Information Resources Management (IRM) 5231-01, System
Development Methodology Overview, 16 June 1987.

Ince, D., Sofiware Engineering: The Decade of Change, p. 2, Peter Peregrinus
Lid., 1986.

Berzins, V. A, and Luqi, Software Engineering with Abstractions, n. 8,
Addison-Wesley Publishing Company, 1991,

Rumbaugh, James., and others, Object-Oriented Modeling and Design, p. 4.
Prentice-Hall, Inc., 1991,

Meyer, Bertrand., Object-Orienied Scfiware Construction, p. 62, Prentice-Hall
International Ltd., 1988.

Booch, Grady., "Object-Oriented Development,” IEEE Transactions on Software
Engineering. 12, pp. 211-221, 2 February 1986,

Booch, Grady., Object-Oriented Design, p. 57, Benjamin/Cummings, 1991,

Mcllor, Stephen J., and Shlacr, Sally., Object-Oriented Systems Analysis:
Modeling the World in Data, p. 37, Yourdon Press, 1988,

Yourdon, Edward., Modern Structured Analysts, p. 32, Prentice-Hall, Inc., 1989,

INITIAL DISTRIBUTIOK LIST

1. Delense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Training and Education i
MCCTDC, Code C46
1019 Elliot Road
Quantico, Virginia 22134-5027

4, Commandant of the Marine Corps]
Code MISB
Headquarters, U.S, Marine Corps
Washington, D.C. 20380-0001

5. Computer Technology, Code 32 1
Naval Postgraduate School
Monterey, California 93943-5002

6. C. Thomas Wu, Codc 32 1
Department of Computer Science
Naval Postgradualte School
Monierey, California 93943-5002

7. Capt. Robert F. Padilla, Jr.]
22 Jason Lane
Stafford, Virginia 22554

