NAVAL POSTGRADUATE SCHOOL
Monterey, California

L)

=

~=

—

o=
N=
g=

| =

THESIS PTIC QUALITY [}SPACTED &
MEBUILDER: g
AN OBJECT-ORIENTED LESSON AUTHORING -
SYSTEM FOR PROCEDURAL SKILLS
by
Lrb\ Q\l Thomas P, Galvin
September 1994
M=
85________5 Thesis Advisor: Neil C. Rowe
Sp—

N :__"'-:f—_; Approved for public release; distribution is unlimited.
M=

| =

3=

94 10 ¢4 032

EE —————————

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

un for this collection of information i d to

ining the data needed, and completing and

ge 1 hour per
Necion of inf

Davis Highway, Suite 1204, Arington, VA 222024302, and to the Office
1. AGENCY USE ONLY (Laave Blank) . REPORT DATE

3.
Master's Thesis

luding the trne reviewing instructions. ssarching existing data sources

9 9 9 vts regarding this burdat: =stimate or any other aspect of this
coliection of information, including suggestions for teducing this burden to Washingion Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
of Management and Budget, Paperwork Reduction Project (0704-0188), W hing'an, DC 20503,

WED

September 1994
4. TITLE AND SUBTITLE

MEBUILDER: An Object-Oriented Lesson Authoring System for
Procedural Skills (U)

A A
8. FUNDING NUMBERS

5. AUTHOR®S)
Galvin, Thomas Patrick

M
7. PERFORMING ORGANIZATION N‘"Eis) AND ADDRESS(ES)
Naval Postgraduate Schoo

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

M’
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

e
1. SUPPLEMENTARY NOTES) .) ”
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

. 0 S
125, DISTAIBUTION / AVAILABILITY STATEMENT o
Approved for public release; distribution is uniimited.

T
12b, DISTRIBUTION CODE

13. ABSTRACT (Maxinum 200 words) , , .
y military applications for intelligent-tutoring systems focus on the

heip a novice write coraputerized lessons,
MEBuilder is a prototype
MEBuildct combines automated object, task, and lesson modeling tools with a

to develop simulation-based procedural trainers on nearly any subject. Teachers create reusable obj

training of procedural skills, However, while

there have been many successful research efforts into developing tutoring systems for specific applications, the question of
developing general-purpose ones is still open. Specifically unsolved is how a lesson

-authoring system, a program written to

can be made both general purpose and easy to use.
lesson-authoring system which employs an object

-oriented approech to solving this problem.
library management system to allow teachers
ects which have a fixed and

well-defined behavior. Then by using the power of means-ends analysis,

MEBuilder helps the teacher build entire tasks with

these objects in just one step. With these tasks, teachers use MEBuilder's workbook structure 1o crza'2 a lesson containing
several exercises. At each siep, MEBuilder’s automatic error and consistency checking reduces time spent on testing and

debugging. MEBuilder’s library manager ensures object an
structures, and interfaces. It also presents experimental resu

d task reusability. This thesis explains MEBuilder's design, data
Its which support MEBuilder’s methods as being more efficient

and authoring systems using traditional computer-aided instruction (CAI) techniques.

14, SUBJECT TERMS N o L
artificial intelligence, intelligent computer-aided instruction, intelligent

tutoring systems, lesson authoring system, object-oriented design

48, NUMBER OF PAGES

228
W

7%, SECURITY CLASSFICATION |
OF THIS PAGE

Unclassified

1 [+

" OF REPORT
Unclassified

N3N 7540-01-280-5500

S 7%, SECURITY CLASSICATON |

OF ABSTRACT
Unclassified

e ———tt T —————_——
[20. LIMITATION OF ABSTRACT

UL

Standard Form 298 {(Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

MEBUILDER:
AN OBJECT-ORIENTED LESSON AUTHORING)
SYSTEM FOR PROCEDURAL SKILLS

by
Thomas P. Galvin

Captain, United States Army
B.S., Carnegie-Mellor University, 1985

Accesion For

NTIS CRAGI g
Svbmitted in partial fulfiliment of the DTIC 7TAB
, : requirements for the degree of jjt?sat:}?c(?iilcned U
MASTER OF SCIENCE IN COMPUTER SCIENCH By
Distribu l-
feom the istribution |
Availability Codes
NAVAL POSTGRADUATE SCHOOL , Avail and|or
Dist Special
September 1994
Author: 4 o

Thomas P. Galvin
<
Approved By: Mﬁ @Wa

Neil C. Rowe, Thesis Advisor

Tk 2L

A

Timothy J: Sgimez, Seconf_Readcr

Ted Lewis, Chairman,
Dopartment of Computer Science

iid

.

v,

V1

TABLE OF CONTENTS

INTRODUCTION ..cicersemisnnmmnsinnasssnssmmnissmissionsmassisssiossen satsssismsssssmssanssessassssssstassssssssssssssssanss
A. THE DESIRE FOR HANDS-ON STYLE TRAINING BY COMPUTER
B. OBJECT-ORIENTED MODELING AS AN ANSWER TO THE NEEDccconciiiiansen

C. MEBUILDER -- AN OBJECT-ORIENTED LESSON AUTHORING SYSTEMcccees 3

D. CONTENTS OF THIS THESIS

SURVEY OF RELATED WORK IN LESSON AUTHORING

A. ELEMENTS OF A GOOD LESSON-AUTHORING SYSTEM
B. TYPES OF LESSON-AUTHORING SYSTEMS

C. OTHER ISSUES REGARDING LESSON-AUTHORING
D. METUTOK -- A MEANS-ENDS BASED INTELLIGENT TUTORING SYSTEM

TUTORING-SYSTEM VIRTUAL WORLDS AND OBJECT-MODELING TECHNIQUES
OBJECT-MODELING TECHNIQUES
USE OF OBJECT-MODELING TECHNIQUES IN METUTOR LESSONScccensmsens
OTHER BENEFITS TO USING OBJECT MODELING
PITFALLS TO USING OBJECT-MODELING TECHNIQUES
TOOLS NEEDED TO ADD OBJECT MODELING TO AN AUTHORING SYSTEM
SUMMARY

amoOw>

AN INTRODUCTION TO THE MEBUILDER SYSTEM
MEBUILDER'S TOP-LEVEL DESIGN AND PHILOSOPHYccccoviinmiiniinnnsciosionrassaie
MEBUILDER MAIN MODULE -- "MEBuilder"
MEBUILDER'S L'BRARY MODULE -- "MEBUIIALIB"cocvnminincimmissionssonsnsssnsanencens
MEBUILDER'S CLASS DEFINITION MODULE -- "MEBUIldCLS"coocvenvessesarinerens
MEBUILDER'S TASK DEFINITION MODULE -- "MEBuildTSK"ccoovnirnirncnniccnenn
MEBUILDER'S LESSON DEFINITION MODULE -- "MEBUIldLES"cocovveimincnns
MEBUILDER'S LESSON COMPILER -- "MEBuildCMP"

anmouow>

TRANSLATING AN MEBUILDER LESSON TO AN METUTOR LESSON ...

A, HIGH-LEVEL DESCRIPTION OF THE DESIGN CHANGES IN METUTORcccoeenee
B. CONCEPT OF THE TRANSLATION PROCESScocvvcnuninnnsnssmssssmmsstssmssnsssmassosasss
C. GENERATION OF THE RECOMMENDED CLAUSES

D. GENERATION OF THE PRECONDITION CLAUSES

E. GENERATION OF THE POSTCONDITION CLAUSES

F. GENERATION OF THE RANDCHANGE CLAUSES

EXPERIMENTAL RESULTS

A. PARTICIPATION IN THE EXPERIMENT

B. SCOPE AND CONDUCT OF THE EXPERIMENT ...

C. RESULTS OF THE EXPERIMENT

D. INTERPRETATION OF THE RESULTS

E. CONCLUSIONS

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. SUMMARY OF CONTRIBUTIONScccconsummmmeunisnissssensanssssassonssmsssssssosessessaneass

B. WEAKNESSES OF MEBUILDER Cesiesasestsh e b bR RS s sS bRt SRR BR O sRAb S8 b b
C. FUTURE RESEARCH DIRECTIONS FOR MEBUILDER AND METUTORccoureeneeens

18

39

APPENDIX A, MEBUILDER SOURCE FILE
TAB 1. MEBUILDER MAIN MODULE
TAB 2. MEBUILDER CLASS MODULE (MEBuildCLS)
TAB 3. MEBUILDER TASK MODULE (MEBuildTSK)
TAB 4. MEBUILDER LESSON MODULE (MEBuildLES)....
TAB 5. MEBUILDER LESSON COMPILER (MEBuildCMP)
TAB 6. MEBUILDER LIBRARY MANAGER (MEBuildLIB)
TAB 7. METUTOR VERSION 29 SOURCE

APPENDIX B. MEBUILDER USER'S MANUAL

APPENDIX C. SAMPLE SCRIPT RUN WITH MEBUILDER

APPENDIX D. SAMPLE DATA FILES
TAB 1. LIBRARY DIRECTORY FILE
TAB 2. OBJECT DEFINITION FILE FOR PILOT .
TAB 3. OBJECT DEFINITION FILE FOR AIRCRAFT
TAB 4. TASK DEFINITION FILE FOR PREP_AIRCRAFT
TAB 5. LESSON DEFINITION FILE FOR PILOT_TRAINING
TAB 6. METUTOR READY FILE FOR PILOT TRAINING

APPENDIX E. SCRIPT RUN OF METUTOR ON AN MEBUILDER FILE

APPENDIX F. EXPERIMENT CONDUCTED USING MEBUILDER
TAB 1. GENERAL INSTRUCTIONS FOR THE EXPERIMENT ..
TAB 2. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE ONE
TAB 3. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE TWO

TAB 4. SAMPLE RUN OF THE DATA COLLECTION PROGRAM
TAB §. INITIAL DATA FILES FOR SUITE ONE
TAB 6. INITIAL DATA FILES FOR SUITE TWO
TAB 7. RAW EXPERIMENTAL DATA COLLECTED
TAB 8. SELECTED COMMENTS FROM THE PARTICIPANTS

LIST OF REFERENCES

BIBLIOGRAPHY

INITIAL DISTRIBUTION LIST

ABSTRACT

Many military applications for intelligent-tutoring systems focus on the training of
procedural skills. However, while there have been many successful research efforts into
developing tutoring systems for specific applications, the question of developing general-
purpose ones is still open. Specifically unsolved is how a lesson-authoring system, a
program written to help a novice write computerized lessons, can be made both general

purpose and easy to use.

MEBuilder is a prototype lesson-authoring system which employs an object-oriented
approach to solving this problem. MEBuilder combines automated object, task, and lesson
modeling tools with a library management system to allow teachers to develop simulation-
based procedural trainers on nearly any subject. Teachers create reusable objects which
have a fixed and well-defined behavior. Then by using the power of means-ends analysis,
MEBuilder helps the teacher build entire tasks with these objects in just one step. With
these tasks, teachers use MEBuilder's workbopk structure to create a icsson containing
several exercises. At each step, MEBuilder’s automatic error and consistency checking
reduces time spent on testing and debugging. MEBuilder’s library manager ensures object
and task reusability. This thesis explains MEBuilder’s design, data structures, and
interfaces. It alsc presents experimental results which support MEBuilder’s methods as
being more efficient and authoring systems using traditional computer-aided instruction
(CAI) techniques.

viii

1. INTRODUCTION

The standard classroom environment contains two primary roles: teachers and
students. However, the teachers' role is multidimensional. Teachers must present lessons
to the students, monitor their performance, and develop the lesson material. Research
efforts into Intelligent Tutoring Systems (ITSs) have produced various computer-based
models for these three teacher roles. However, many find the third role, that of developing
the lesson material, to be the most difficult challenge for ITS developers.

Developing lesson material is a specific application for an authoring system. Authoring
systems are programs that produce other programs in either a programming language or a
scripting language for use by another computer program. In addition, authoring systems
hide the details of the target language from the user, so the user does not need to know how
to program a computer to use it (Heift, 1994, p. 263). There does not yet exist a truly
general-purpose authoring system for an ITS. However, there have been several successful
research efforts in widening the scope of authoring systems.

This thesis presents MEBuilder, a prototype lesson-authoring system for procedural
skills. MEBuilder authors lessons for METutor, an ITS shell written at the Naval
Postgraduate School which tutors procedural tasks in virtual-world simulations.

A. THE DESIRE FOR HANDS-ON STYLE TRAINING BY COMPUTER

Military applications emphasize learning by doing (TRADOC, 1991). However, due
to a lack of available resources, military training is often conducted in & traditional
classroom setting. With respect to procedural skills, classroom instruction is an inadequate
substitute for leamning by doing. Computer-based simulations provide a better substitute.
Simulations provide a reasonable hands-on training environment while not requiring many
resources {Psotka, 1987, p. 5). In addition, computsr simulators are flexible enough for use
in many applications.

Additionally, computers can combine simulations with intelligent-tutoring techniques
to provide automated trainers for students. These trainers have many benefits for students.
Students can learn at their own pace with minimal direct supervision of a teacher. Trainers
give feedback to the students, so the students are freer to make mistakes without risking
damage to actual equipment. Simulation environments generally provide "discovery-rich"
tools that let students explore the environment unimpeded (Barr, 1982, p. 291), which help
make the simulation believable and fosters greater learning.

Unfortunately, these trainers tend not to help the teacher who must prepare the lesson.
Simulations are difficult to build and test, but this difficulty is alleviated through tools such
as authoring systems. For this application, an authoring system should allow objects in one
simulation to be reusable in other simulations. The system should be flexible to allow a
teacher to make adjustments easily, but also to check any adjustments to ensure consistency
with the rest of the simulation. Finally, the system must save time for the teacher. In order
for the authoring system to be effective, it should be bhased on a modeling technique that
works well in simulations and that teachers can readily understand. One technique that

appears promising is object-oriented modeling.

B. OBJECT-ORIENTED MODELING AS AN ANSWER TO THE NEED

This thesis employs object-oriented modeling because it provides all the benefits listed
above easily and efficiently. Object-oriented modeling is a way of constructing entities in
a virtual world so each entity maintains its individual behavior, and interrelations between
entities are strictly controlled. An example of using objects in an intelligent-tutoring
system application is presented in the aircraft preparation problem given in Appendices C
through E. The pilot and the aircraft are the two main objects in the lesson, and the lesson
describes specific rules on how the pilot's actions affect the aircraft.

Object-oriented modeling has four beneficial characteristics -- identity, classification,
polymorphism, and inheritance (Rumbaugh, 1991, p. 2). ldentity means that the data is

partitioned into discrete, distinguishable objects. Objects in a virtual world for a flashlight

repair problem might include the flashlight, its bulb, and its batteries. Each of these objects
would exhibit behavior, and then the three objects share behavior as a whole. Classification

means that similar objects can be grouped together. Polymorphism means that the same
operation may behave differently on different objects. Inheritance is a means of
establishing a hierarchical relationship among objects, such as the relationship between the
abstract object "vehicle" and its refined objects "wheeled vehicle" and "tracked vehicle".

By using identity and classification, objects can easily mode! the behavior of their real-
world counterparts, thus providing the basis for computerized domain knowledge.
Polymorphism and inheritance help reduce the size of the data by minimizing repetition --
all the information common to vehicles is present once in the vehicle description, and
refined objects only contain the refinements. Finally, using all four to their greatest
advantage, one can easily create a wide variety of situations based on modifying one or
more objects in a scenario or introducing more objects. Thus it appears that an object-
oriented modeling approach would serve well as a basis for a lesson building tool, and with
such a model building an accurate representation with a virtual world scenario would be
simple and efficient.

C. MEBUILDER -- AN OBJECT-ORIENTED LESSON AUTHORING SYSTEM

MEBuilder is a simple-to-use but powerful lesson-authoring system built using
Quintus Prolog. Based on means-ends analysis, MEBuilder was specifically designed to
address the needs of virtual-world construction while providing direct access to the existing
METutor ITS platform to test and validate lesson material. The primary features of
MEBAuilder include object-oriented modeling, task modeling, and lesson modeling. It is
important to note that METutor is not object-oriented, so these modsls are new to this
platform.

MEBuilder's object-oriented modeling will allow a teacher to construct a simple
representation of the make-up and behavior of any object the student must manipulate. In
addition, the modeling system allows the teacher to create virtual characters whom the
student must interact with. Its task modeling allows the teacher to build the specification

for a task that a student must perform and test the object models to ensure that the task is

both feasible and correct. Finally, the lesson model provides the framework by which a

teacher may specify a multitude of scenarios and levels of difficuity so a student may learn

the basics first and then learn advanced concepts.

D. CONTENTS OF THIS THESIS

1. ChapterIl -- Survey of Related Work in Lesson Authoring
This chapter will present other efforts in the field of Intelligent Tutoring Systems
and lesson authoring. It will discuss the factors that good lesson-authoring systems must

have, and explain why good general-purpose authoring systems are so difficult to build.

2. Chapter III -- Tutoring System Virtual Worlds and Object Modeling
Techniques
This chapter will present object modeling as a solution to some of the problems
present in Chapter II. 1t will describe the benefits and pitfalls of object modeling. Finally,
it will describe those features that a lesson-authoring system must have to effectively

employ object modeling.

3. Chapter IV -- An Introduction to the MEBuilder System
This chapter will present the design and philosophy of the prototype MEBuilder
system, emphasizing the specific criteria of lesson-authoring systems that MEBuilder
satisfies. The chapter will discuss in abstract terms how MEBuilder represents objects,
employs inheritance and other object-oriented design techniques, how it models tasks, and
how it constructs a lesson scenario. It will also describe the teacher's interface and how it
makes the job easier for the teacher. Finally, it will describe MEBuilder's library

management features whicu help track all the lesson material produced.

4, Chapter V - Translating an MEBuilder Lesson to an METutor Lesson
This chapter will discuss the relationship between MEBuilder and the
underlying tutoring system, METutor, Version 29. In particular, it will present the data
structures of an METutor lesson and describe the algorithms MEBuilder's compiler uses for

generating them.

5. Chapter VI -- Experimental Results
This chapter will catalog an experiment conducted to test the capabilities of the
MEBAuilder system. The experiment involved a class of students in artificial intelligence

charged to author a given lesson in MEBuilder and a traditional CAl-style system.

6. Chapter VII .. Conclusions and Future Research Directions
This chapter will summarize all of the above, and will describe those areas in
which MEBuilder is presently inadequate. It will also present "hooks" into the MEBuilder

system left so that integrating some of these advancements will be easier.

7. Appendices
Appendix A contains the header comments to the source code of the MEBuilder
system. The entire source is not given because it is several hundred pages long. The
complete source is available in a separate technical report. Appendix B contains the text
of the User's Manual for MEBuilder, minus the appendices. Appendix C contains excerpts

~ of un MEBuilder session. Appendix D contains example data files produced from the

MEBuilder session conducted in Appendix C. Appendix E contains excerpts of an

METutor session running the compiled lesson in Appendix D. Appendix F contains the
details of the conducted experiment -- including the task given to the students, the raw data
collected from the experiment, selected comments from the students, and selected material
produced.

II. SURVEY OF RELATED WORK IN LESSON AUTHORING

Many successful research efforts in Intelligent Tutoring Systems provide lesson-
authoring features of varying degrees. This is because many researchers recognize that

. Intelligent Tutoring Systems (ITSs) with a fixed knowledge base and courses of instruction

'_outdatc themselves too quickly and cannot handle any special needs of the individual

teacher or student. However, there are many differing opinions over what makes a good
authoring system. This chapter will present some of the commonly agreed-upon traits. It
will then discuss related research efforts and what authoring services they provide. Finally,

this chapter will inroduce MEBuilder and describe the authoring features it will provide.

A. ELEMENTS OF A GOOD LESSON-AUTHCRING SYSTEM

From an architectural point of view, authoring systems have four major components
(Elson-Cook, 1994) -- components that construct the domain model, the instructional
strategy, the student model, and the communication model. Conversely, the ITS consists
three primary components -- the expertise module, the student module, and the tutoring
module (Barr, 1982, pp. 229-234). The goal of the authoring system is to provide each of
the ITS components with domain-dependent information -- and typically the instructional
strategy and expertise module interrelate, as do the communication mode! and the tutoring
module.

The list of properties of good authoring systems is still openly debated, and new
applications scem to be producing newer requirements or desires. However, there are
recurrent themes in the literature that are consistent with the interrelations among ITS
components and authoring system components.

First, the system must contain "theory-rich", not "theory-neutral”, tools. (Guralnik,
1994, pp. 235-236) Theory-neutral tools are those that place the burden of creating the

learning environment on the teacher. They tend to accent the lesson interface with the

student without providing tools for assisting the teacher in creating consistent instructional

.strategies. Theory-rich tools have an understanding of the ITS shell to which the system is
authoring. This way, they provide means to help the teacher formulate strategies and insure
their completeness and consistency.

Second, the authoring system must provide ways for the teacher to encode domain-
dependent error feedback to the students. If it was solely left to the ITS platform to model
some basic student errors such as misapplication of operations without any domain
influence, the chances for a proper diagnosis of an error is slim (Heift, 1994, pp. 263-264).
However, at some point, the platform must be able to provide information to the student in
words that fit the context of the application. This information, called “evaluative
feedback” essential, in order for the student to learn the material being taught rather than
simply learning how to solve a computer-based riddle. (Heift, 1994, p. 263} This
evaluative feedback is an example of how domain ‘model information is passed
parametrically to the instructional model. The best authoring systems make this
information flow as transparent as possible,

Third, the authoring system must present a high-level interface. Most teachers will not
know how to program. Clearly, the wrong approach is to force teachers to learn to program,
and that a better approach is to have the system provide high-level tools that do the
programming automatically, (Jones, 1994, p. 300). However, the system cannot be made
so simple that the domain of potential lessons it would author is limited (Feifer, 1994,
p.198). What the system must do, then, is provide many powerful features in a manner that
do not overwhelm the teacher nor limit his/her options.

Finally, for the purposes of serving procedural tasks, the authoring systern should be
flexible for use in multiple domains. This does not imply that an authoring system buil for
a specific domain is bad. It certainly is possible that some domain-specific authoring
systems could be developed that still provide enough flexibility to be used in other
domains. However, if the ITS is purely domain-specific, then for its authoring system must

be a completely separate entity that can be usec with another I1TS.

B. TYPES OF LESSON-AUTHORING SYSTEMS

1. Domain-Specific Authoring Systems

There have been hundreds of successful ITS applications that provide single
domain instruction to a student. TL se applications cover subjects ranging from operating
kraft boilers (Woolf, 1987, p. 413), tutoring radar mechanics (Tenney, 1987, p. 59),
understanding and writing Chinese characters (Ki, 1994, p. 323), and reading and writing
skills (Carlson and Crevoisier, 1994, p. 111). All of the above systems plus many others
have the domain knowledge built into the system, so teachers cannot use these ITSs for
teaching other subjects.

Moreover, some of these ITS platforms do not provide authoring capabilities.
~ Also, for those that do provide authoring, the authoring system is embedded in the ITS and

cannot be used for other domains. Therefore, thesc systems fail in the fourth criteria.

2. Systems Built Using General-purpose Hypermedia Platforms

General-purpose hypermedia platforms provide excellent environments for
teachers to build powerful tutoring applications (Moreland, 1994, p. 748). Several such
platforms are commercially available. However, tutoring systems created from these
platforms can fall short because the platform does not have built-in tools for producing a
true Jearning environment (Guralnik, 1994, pp. 235).

It falls upon the teacher to create this environment within the context of the
platform, which is difficult at best for several reasons. First, such platforms have no
knowledge or concept of pedagogical objectives. The teacher must try to create them and
hope the platform can convey those objectives within its hypermedia web. Second, they
force the teacher to take a well-defined task and map it to sequences of user-interface
objects. In effect, the teacher must become a programmer. (Guralnik, 1994, p. 236)

Therefore, these systems fail the first criteria we wish to meet.

3. Domain-independent Programmed Tutoring Systems
The ventures into domain-independency began with the development of ITS's
that required the teacher to write the lesson in a programming or scripting language. The
ITS effectively becomes an interpreter of the teacher’s program. Examples include the
PIXIE system (Sleeman, 1987, pp. 247-248), which required the teacher to write rules in
LISP. PIXIE's authoring system consisted of the text editor used to write the program.
Although both emphasize domain independence, such an approach fails the third criteria

for evaluation.

C. OTHER ISSUES REGARDING LESSON-AUTHORING

A major concern among lesson-authoring systems is time. By one estimate, it takes an
average of 100 man-hours to produce one hour of instruction. This time is the combination
of implementing the domain, student, and tutoring models -- it does not even include
domain research since it assumes the author is already familiar with the domain. (Murray,
1994) Several other projects emphasized that authoring iiiiie per hour of instruction is a
concern (Gescei, 1994, p. 15; Jones, 1994, p. 299). Any successful lesson-authoring
system must find ways to cut into this implementation time.

Another concern is that any hands-on style training must be believable. Simulations

are not a perfect representation of reality since storage space limitations will always force

“authors to leave out key details, Doing so runs the risk of making the simulation appear

canned, which will reduce the effectiveness of the lesson (Feifer, 1994, p. 198).
Unfortunately, this is a difficult statistic to measure and is equally a reflection in the
choreographic abilities of the author as it is a function of the tools. However, poorly
designed tools can hinder the author. The authoring system should allow teachers to

visualize the task being built so they can properly evaluate it and make it more realistic.

D. METUTOR -- A MEANS-ENDS BASED INTELLIGENT TUTORING
SYSTEM

The first decision for building an authoring system is to find an ITS shell that either
does not have one or has an inadequate one. The best ITS shell is one designed for use as
a general-purpose ITS capable of handling a wide range of lesson domains. The advantage
is that the target representation of the domain material is known in advance. Thus, the
lesson-authoring system behaves as both an interface and a translation routine between the
lesson as the teacher sees it and the lesson as the ITS sees it. For these reasons, METutor
was selected as the ITS shell for an authoring system.

METutor is a pure means-ends based tutoring system developed at the Naval
Postgraduate School by Neil C. Rowe (Rowe, 1993, pp. 317-323). METutor is a general-
purpose tutoring shell like PIXIE, except that its data representation resembles more of a
database than a programming language. Lesson definitions are very simple, and by using
the power of means-ends analysis the simplicity still provides a robust platform.

First, METutor only required the teacher to describe the lesson using a minimum of
seven rredicates (the four standard means-ends predicates -- recommended, precondition,
addpostcondition, and deletepostcondition -- a random-event template called randchange,
and the start_state and goal). METutor also provides seven additional interface-based
predicates that allow a teacher to build the lesson in a graphic interface system.

Second, METutor uses Prolog facts rather than LISP notation in describing the rules.
Although LISP has a simpler syntax, Prolog facts are easier to read. For example, LISP
uses parentheses as the universal grouping symbol for program statements, data lists, etc.
Projog uses parentheses for grouping fact arguments, and square brackets for grouping data
lists.

However, METutor lessons are still built as text files that behave like interpreted
programs. The teacher usesa text editor to write the lesson, which is loaded with METutor
into a Prolog session. Because the means-ends space can be very complex, some logical

errors can be difficult to detect, and teacher can become easily bogged down by simple

11

programming errors. Yet, even if every individual operation is properly specified in
METutor, there is no guarantee that METutor will derive the solution that the teacher
intended and there is no guarantee that every solution the teacher intended will work in
METutor.

Based on the criteria established for good authoring systems and the above description

of METutor, the authoring system must provide several specific capabilities to be cffective.

First, it must establish explicit entities that have well-defined and consisient behaviors.

Second, it must encapsulate procedural behavior with sequences that teachers understand,
that the system would translate into a set of means-ends rules. Third, it must provide
facilities for re-using repeated information so that the teacher can save time. To accomplish
this, the authoring system requires an appropriate modeling technique -- and the one chosen
for METutor's authoring system is called object modeling. Object modeling is presented

in the next chapter.

IIl. TUTORING-SYSTEM VIRTUAL WORLDS AND OBJECT-
MODELING TECHNIQUES

Most of the sample lessons studied using the platform described in the previous chapter
plus others (Woolf, et al. 1987) present a virtual world to the student. These virtual worlds
contain objects and actors that have both independent and interdependent behaviors, and
the student's goal is to satisfy a set of objectives for each object in the virtual world.
Normally, virtual-world designers use object-modeling techniques (Rumbaugh, 1991, pp.
57-91), some of which are described below.

A. OBJECT-MODELING TECHNIQUES

1. Generalization

Generalization is the relationship between an object and one or more refined

versions of it. In artificial-intelligence terms, generalization is similar to the standard is_a
or a_kind_of relationship between objects. Virtual-world modeling makes extensive use of
- generalization in order to take advantage of the similarities among similar objects. For
example, if all cars have four wheels then one could use that information to save time when

describing various types of cars.

2. Aggregation
Aggregation is equivalent to the part_of relationship. An aggregate object is
treated as a unit, even though it consists of many lesser objects. Further, aggregate objects
‘behave according to a part-whole relationship where the condition of a part of the object
affects the whole. Apggregation also describes the possesses or has_a relationship.
Implementation-wise, there is little difference. But conceptually, has_a implies more of a
temporary ownership. Part_of tends to imply a permanent ownership, and the dysfunction

or lack of the part renders the whole ineffective.

3. Metedata

Metadata is data that describes other data. Among the uses of metadata are:
instantiation, relating a class of objects to a particular instance of that class; summary
information, which describes a set of information about an object using a single fact; and

null information, which describes whether or not the information is known, applicable, etc.

4. Events and States

Events are things that happen at some time. For example, Flight 45 departs from
Hartford or the user has clicked the right mouse button are events. Some events preceded
oother event while other events might be completely unrelated -- for example, Flight 45 must
depart Hartford before it can arrive in Pittsburgh but neither of these events are relevant to
 the user clicking the right mouse button.

The state of an object i< a set of values that the object holds that affects it overall
behavior. States specify the response to input events, For example, if an airplane's engine
is unserviceable then the response to an event of fly this plane to Pittsburgh will be negative

-- whereas a completely operational plane will perform the task.

B. USE OF OBJECT-MODELING TECHNIQUES IN METUTOR LESSONS

METutor makes extensive use of events and states, but not generalization and
aggregation. METutor presents the state of the virtual world to the student at each turn, and
each operation the student selects coustitutes an event. In addition, METutor provides for
the definition of random events that are triggered either by the start of the lesson or by a
student's action. After the student applies his chosen event, METutor updates the current
state, applies all random events, and shows the student the new state.

However, one shortfall in METutor's modeling of states is that there is no precise
relationship among mutually exclusive members of a state. For example, flashlight's may
cither be on or off. Naturally, any event that causes the flashlight to become on must delete
the previous fact that the flashlight is off. Unfortunately, there is no direct way to specify

that “‘on” and “off” are opposite states in METutor. This means that a teacher may forget

14

to specify the "delete off" parameter in this event and METutor will likely not detect the
error.

Because METutor uses a simple Prolog-fact structure for the state, its lessons have a
limited sense of the objects contained in the virtual world. Prolog facts use symbols as
arguments to predicates, and teachers assume that predicates with like arguments constitute
a combined state of an object. However, there is no direct way to model aggregation other
than employing a programming convention that aggregate objects refer to its components
via the i)ossessive. In other words, let's assume that a teacher writes as a component to an
METutor fact, disassemble(the,flashlight's,top). METutor does not recognize that
flashlight is an aggregate object nor does it understand that the top is part of that aggregate.
‘The flashlight's top is simply another argument set. The drawback is that the teacher must

directly specify and manage these component relationships, a difficult task to do error-free.

Similarly, METutor has no means of recogrizing that two objects are instantiations of

the same object type. For example, a teacher is writing a firefighting problem where the
fire team leader has two subordinate teams at his disposal, called red team and blue team.
Both the red tecam and bluc tcam objects are identical instances of a class of firefighting
teams. However, in METutor, there is no facility to describe both objects using a common
set of events and states. Instead, the teacher must repeat all the rules for both teams and
directly include mutually exclusion clausss to prevent the two teams from performing the
same action. The potential for errors is great. Teachers could very easily fail to specify all
the rules when preparing the copy for the second team, or accidentally insert blue instead
or red somewhere in that second set. Additionally, in a larger system with more than two
like objects -- such as a system administrator lesson where a system has hundreds of users
--{ is process is both tedious and unnecessary.

Finally, METutor lessons don't have a built in state diagram, so there is no direct
temporal relationship of states visible to the teacher. This means that if the teacher is not

careful, he could produce a lesson that has unintended solutions. An example of this was

a case where a student wrote a lesson for a fifteen-step procedure that had a possible

solution of no actions!.

C. OTHER BENEFITS TO USING OBJECT MODELING

1. Object Re-Use and Customization

A well-defined set of objects could serve as the basis for an entire set of virtual-
world based lessons. For example, most naval firefighting equipment is similar among the
various classes of ships. Firefighting teams are also similar in make-up and behavior. So
by defining the make-up and behavior of a general class of firefighting teams and
equipment, a teacher could develop a series of lessons in firefighting among a large variety
of ships without having to repeat information. Since virtual-world descriptions can becomne
quite large and complex, this is a definite time-saver. Reusable objects also provide the
teacher with the comfort of consistent behavior, so the teacher can confidently use the
object in any lesson and count on its behavior.

Also, subtle differences in the make or model of two objects could be sufficient
to desire to customize the model. For example, the Army's AN/GRC-142 Radioteletype
System has seven different models -- GRC-142 through GRC-142F, However, the
differences among models are not subtle -- some are wholesale component changes, and
some Army units had special versions of one of the models as a result of a component's
experimental fielding. Teachers in these units will appreciate an ability to customize

objects for local use.

2. Encapsulation

Encapsulation, or information hiding, protects objects from unintended change.

It will allow a teacher to substitute objects in a lesson while preserving the behavior of the

1. This actually occurred during tests on the first prototypical authoring system for METutor. A
student who apparently misunderstood the meaning of states coded identical start and goal states of
the lesson. Even though the lesson as written worked properly, the quickest solution was to do
nothing.

16

other objects in the scenario. For example, a posed problem for a ship refueling problem
might involve a cruiser. Then a second problem might involve a battleship. The different

ships have independent behaviors, but their relation to the fueling ships does not change.
D. PITFALLS TO USING OBJF.CT-MODELING TECHNIQUES

1. Generalization is Not Equivalent to Subclassing

Object-modeling is not an easy task, and even in the well-defined realm of
programming languages there still exists heavy debate regarding what constitutes a valid
class and object hierarchy (Lalonde and Pugh, 1991, pp. 57-62). The concepts of
generalization and subclasses are not equivalent, meaning that an a_kind_of relationship
between two object types does not necessarily constitute a proper class hierarchy. Lalonde
defines subclassing as "an implementation mechanism for sharing code and
representation,” whereas generalization is a "....specialization relationship, i.e. it describes
one kind of object as a special case of another." Figure 1 describes a relationship among
data structures that clearly shows the difference among the two. Although binary trees are
clearly a special type of directed graph, the most efficient data structure to implement the
binary tree is a node with two son pointers. Directed graphs, meanwhile, are best
implemented using an adjacency matrix. Since such relationships are not always clear to
computer specialists, the potential to confuse a relative novice such as a teacher is hign.

This problem arises in modeling objects in virtual worlds. For example, an
electric-powered car, such as a golf cart, is a_kind_of car. Clearly one cannot derive the

behavior of a golf cart from car because the two havc completely different engines. A

teacher desiring to build a golf cart object must survey the existing subclass hierarchy to

insert properly entities such as golf cart. Unfortunately, there is very little any object-
oriented environment can do to detect and correct errors. It is incumbent on the teacher to

recognize and use the best hierarchy possible.

2. Increased Complexity for Simple Lessons
Lessons that are very simple -- those with few objects and a small number of
events or states -- should remain simple to write,. Adding object-modeling inherently
increases the complexity by requiring the teacher to define the model. Therefore, defining

the model for simple objects must not serve as a deterrent for the teacher.

Generalization Subclassing
Graph 'LMamx Graph Matrix
. Adj Ad;
pigraph G e s
Tree Binary]
i Tree Digraph
?l‘lrne? + -- Indicates inheritance by generalization (Rumbaugh. 1991)

Figure 1: An Example of Differences in
Generalization and Subclassing Hierarchies

E. TOOLS NEEDED TO ADD OBJECT MODELING TO AN AUTHORING
SYSTEM

Clearly, in order for an authoring system to reap the benefits of object modeling
without becoming an excessive burden for the teacher, it requires specific object-building
tools. These tools must serve the purposes of providing a simple framework for defining
the generalization hierarchy; for defining aggregations, events, and states; for specifying

inter-object relationships; and for providing immediate error-checking to the teacher. In

18

addition, the tools should guarantee to the teacher that the lesson is complete and accurate
before use by a student. But most importantly, these tools must abstract the teacher from
the low-level representation of the objects and speak to the teacher in a language that he

can easily understand.

1. Object-Modeling Interface Concept -- the Adventure Game Model

Many modern-day three-dimensional adventure games present a virtual-world to
the game player as if fhc virtual-world were a stage and the student is acting in a role
(Example: Sierra, 1993). This conceptual model is extremely easy for a teacher to
understand, yet still provides an adequate framework for building all the other tools
necessary to construct the virtual world. Therefore, one good way to assist the teacher is
describing things in stage terminology -- a cast, a set of props, and settings.

The cast is an easy model to demonstrate how the tools can provide yet hide
generalization and aggregation to the teacher. Typically, a cast member plays a role, which
is a subclass of a character. This role generally exhibits a specific set of behaviors -- actions
that he must perform to respond to external stimuli. Roles can be generalized and can
maintain or possess props -- plumbers and electricians are a_kind_of handyman, for
example, and handymen possess tool kits. Once a teacher defines a particular role, he
instantiates it by inserting it into a particular virtual world. In addition, the teacher could
specify that the student is to play a particular role and perform some task in the scene.

Similarly, stage terminology will help simplify the process of defining props and settings

for the teacher.

2. Object-Modeling Tools

The above parégraph describes how a platform can make generalization and

aggregation easier to model. Events and states also have properties that an object-modeling

platform could exploit to save time for the teacher.

a. Mutual Exclusion of States

Most potential states that an object can attain are mutually exclusive of
other states. Previously, this thesis presented an example of how a flashlight could not be
both on and off -- it must be one or the other. Similarly, a fire is either raging or out; a street
light is either green, amber, or red; and the chloride level of the water in a ship's boiler can
have precisely one value in the range of 0.0 to 1.5 parts per million. Especially regarding
qualitative values, the tools use these teacher-defined mutually exclusions and ensure all

operations involving the object maintain this property.

b. Summarizing Object States

A car's engine could contribute hundreds of items to the state. In many
applications, not all of these items are relevant or interesting to the student. For example,
if the fuel injection system is working, the student probably only needs to know that it is
working -- not the ten or twenty different state members that make up the fact that it is
working. Providing tools to describe summaries of large groups of data will not only
provide greater expressive power to the lesson but simplify the lesson building process for

the teacher.

¢. Modeling Unknown Information

A very common property among diagnostic lessons is that the student does
not know all the information that is true in a state. However, any lesson could have a need
to model what a student knows or should know. There are several specific properties which
make knowledge easy to model and thus easy for tools to implement. Moore developed a
full first-order logic theory concerning modeling what a student knows and what actions a
student takes based on what he knows. In his theory, Moore describes things known and
unknown as additional members of the state influencing the end result of the theorem being
proven (Davis, 1990, pp. 390-391).

Many props are consistent regarding what an actor would know or not

know about the object. For example, a student would not know that the batteries inside a

20

flashlight are dead just by looking at the flashlight. Instead, the student would need to
engage in a series of steps to investigate the dysfunction of the flashlight and thereby soon
discover the problem with the batteries. The status of the batteries is something that would
normally not be known by a student, so the object model of a flashlight could contain an
additional flag marking the battery status as hidden.

d. Modeling Objectives

In order for a teacher to build the lesson, the teacher must be able to
describe what the objectives of the lesson are so the ITS platform raay identify when the
lesson is over and identify points where the student is failing to make progress.
VAdditionally, the teacher must ide :tify objectives for ail the other actors in the scene so that

their behavior is consistent and, to a degree, predictable.

e. Modeling Operations and Sequences of Operations (Tasks)

To provide a useful method of describing the actions a student may take,
teachers must combine a student's potential objectives with a description of atomic
operations that cause the change of state of an object. Together, the platform should help
the teacher describe all possible sequences of atomic operations, or tasks, that achieve
those objectives.

Atomic operations, operations that a teacher decides he cannot or will not
break down into subactions, consist of several components. First, operations have a direct
object -- the specific object being manipulated. Second, operations have a list of indirect
objects -- those other objects required for performing the operation. Third, operations have
an intended effect -- the specific change of state that the direct object will attain as a result.
Finally, operations have preconditions -- the required states that all direct object and
indirect objects must be in to apply the operation. With these atomic operations, the tool
has enough information to make a partial assessment of what actions are necessary to

achieve a given objective from a given staring state.

21

F. SUMMARY

This chapter has presented a brief study of authoring systems for ITS platforms and

described how object-modeling technigues could enhance their functionality. In addition,

this chapter discussed several object-modeling issues and described how an authoring
system could use object modeling to help teachers build lessons. The next chapter will
describe MEBuilder, a prototype authoring system for METutor, which employs object-
- modeling techniques.

IV. ANINTRODUCTION TO THE MEBUILDER SYSTEM

MEBuilder is a lesson-authoring system written entirely in Quintus Prolog, taking
advantage of several Quintus Prolog library modules. It presently uses only text for input

and output, but its design lends itself for use in a menu-driven windowing environment.

A; MEBUILDER'S TOP-LEVEL DESIGN AND PHILOSOPHY

MEBuilder consists of one main program module and five primary submodules.
Appendix A contains the header comments for these modules. Its overall design parallels
that of the Ada Programming Support Environment (DoD, 1983). Not only does
MEBuilder provide the editing capability for building lesson material, but also provides
library services that cross-checks the lesson material for consistency. Figure 2 is a diagram
- showing the relationships among MEBuilder's primary modules, its primary data stores,

and the external tutoring system.

1. MEBuilder Lesson Material -- The Three-Layered Design

The three modules across the middle of Figure 2 indicate the three modules

: 'cor'responding to MEBuilder's three-layered lesson design -- the three layers being classes,

tasks, and lessons. The purpose of this design is to maximize code re-use and reduce
authoring time. The intent is that the final version of MEBuilder would come with whole

libraries of classes and tasks, and the focus of the teacher falls solely on the lesson layer.

a. The Cluass Layer

The class layer is where the basic object descriptions lie. It corresponds to
the class data structures in an object-oriented programming language. The class layer
manages the primitive attributcs and values for all MEBuilder objects. Classes are abstract

entities that are instantiated during lesson construction.

e Command Flow [~ SR S
= o= w== P Data Flow Library Directory

Intelligent-Tutord
Syste:;‘le Shell "¢

Figure 2: MEBuilder’s Architecture

b. The Task Layer

The task layer is where the primitive sequences of operations lie. It
corresponds to methods in an object-oriented programming language. A task is an
encapsulation of a single initial condition, a single goal, and a method to achieve the goal
without external stimuli. The method consists of the defined primitives from the class

layer. Tasks are also abstract entities.

c. The Lesson Layer

The lesson layer is a workbook with a collection of concrete problems for

the student to solve. The lesson consists of named instances of classes and relevant tasks

to perform, and each problem provides a particular initial setting and objectives for the
student to achieve. Well defined classes and tasks make this very simple to accomplish.
The lesson layer also provides access to the underlying METutor system.

This access allows quicker testing and debugging of the lesson material.

2. MEBuilder's Bottom-Up Approach to Authoring

MEBAuilder uses the three-layered design to enforce a bottom-up approach to
lesson design. Thus, the user must design the objects first, followed by the tasks, and
finally the lesson itself. Appendix B contains the main text of the MEBuilder User’s
Manual detailing the process. Appendix C contains an annotated script run demonstrating
MEBuilder’s main commands.

The bottom-up approach has several advantages. First, MEBuilder performs
consistency checks at each step to ensure that changes in a lower layer do not adversely

impact data in a higher layer. Second, MEBuilder can use the lower-level information in

' order to save typing. For example, when building a task, MEBuilder provides the user with

menus containing all the appropriate information from the class layer. The user then only
selects from menu items rather than having to type the information -- which he would still
have to insert into the class definitions later. Third, MEBuilder can use means-ends
analysis to assist the teacher in building tasks and lessons. This is not possible without a
compl~¢ ot of class definitions,
nere are also disadvantages to the bottom-up approach. First, it is difficult for
the teacher to visualize the lesson as he builds it. Clearly, if the teacher has a complete
library of obje :s and tasks, he will spend less time in the lower two layers and minimize
this effect. Rut the worst case scenario will likely be the norm.
Second, the bottom-up approach is vulnerable to modular interface problems.
Tasks that individually work might not combine well in a lesson. For example, two task
definitions when combined into the same lesson may cancel each other's effects or become

mutually exclusive. MEBuilder currently only has limited capabilities for detecting

potential interface problems. Therefore, users must exercise caution when building
complex scenarios. Also, all tasks defined for a lesson should be designed as disjointly as

possible -- meaning the one operation should only appear in one task.

B. MEBUILDER MAIN MODULE -- "MEBuilder"

The main module performs several key functions. It provides MEBuilder's command
loops, its help facility, its autosave facility, and compilation data for Quintus Prolog.

MEBuilder has four command loops -- main, task, lesson, and problem. The main
command loop is self-explanatory. The other three are special loops invoked from main
which have specific functionality. The relationships among the loops and MEBuilder's

three layers is diagramed in Figure 3.

Main Leop f——DANERSS oy,

Object Layer

invok Manages
invokes ! Task Loop f—Troricipy Tusk Layer

invokes ! Lesson Loop _'M!‘.‘le_s.ﬂ

| invokes Lesson Layer

Problem Loop p——2l28ESy

Figure 3: Relationships of Command Loops
to MEBuilder’s Three-Layer Lesson Design

MEBuilder provides a very simple help system, future versions may include a more
context-sensitive facility. The user may enter the help system from any of the four loops

and query for information on any command or on various topics.

26

MEBuilder's autosave facility is a protection mechanism for the teacher. After each
tenth command, the entirc MEBuilder database is save to an autosave file, called
“autosave.meb". The purpose of the autosave is to allow the user a chance to recover to a
previous program state if for some reason MEBuilder aborts without warning. A special
"restore" command exists in the main loop which restores the saved environment.
Currently, the autosave facility parameters are fixed -- the user cannot set the number of
turns nor change the name of the target autosave file.

MEBuilder is designed to be run as a stand-alone system. The main module contains
all the data necessary for the Quintus Prolog compiler to create a separate executable file
from MEBuilder.

C. MEBUILDER'S LIBRARY MODULE -- "MEBuildLIB"

MEBuildLIB's purpose is to save time for the teacher by untying his hands of file
management. In MEBuilder, each class, task, lesson, and compiled lesson gets its own file.
This makes it easier for the teacher to access them at will. However, there is a clear and
defined dependency among the above entities. For example, a class is dependent on its
parent class, and if that class is in the database without its parent then the inherited
information is not available. Hence, when a teacher requests that a particular entity be
loaded, all other entities that the entity depends on are also automatically loaded. Entity

dependencies are defined as follows:

« A class is dependent on its parent.

» Aclass is dependent on the class of each of its components.
o A task is dependent on each class it is built from.

¢ A lesson is dependent on each class and task it is built from.

~ To accomplish this, MEBuildLIB creates and manages a special library subdirectory
in the user's working directory. This subdirectory holds all the files for the various objects

and holds one special directory-information file maintained during the session. The

27

information file is a Prolog fact file containing entries for each entity -- the entity name,
type, file when stored, date of last save, and dependencies.

The date of last save is also important. MEBuildLIB attempts to catch potential errors
by checking these dates. If a class has been updated after a task that uses it was last saved,
the cnange to the class might have induced an error in the task. As arule, changes in a class
invalidate all tasks and !essons that use it (compiled lessons based on the task are still OK).

D. MEBUILDER'S CLASS DEFINITION MODULE .- "MEBuildCLS"
MEBuildCLS is a simple data structure manager which serves two important

functions. Its primary and most visible function is to build class definitions. Its second

function is to provide the other modules with the class information they need in order to

perform their functions. Itis in this module that all object modeling takes place.
1. The Class Data Structure

a. class_def{<class>, <parent class>)
Currently, MEBuilder only handles single inheritance, and the intent is for
the inheritance to model the a_kind_of relationship only. MEBuilder recognizes two global
classes of which all classes must descend from -- prop and character. The significance of

prop versus character is critical for tasks. There is one class_def field per class.

b. component(<class>, <component class>, <component name>, <tense>)

Component multifacts encompass both the a_part_of relationship among
props and the has_a relationship among characters. There is no restriction in MEBuilder
regarding what class can serve as a component of what class except that the user must
adhere to part-kind inheritance and circular inheritance is not allowed. The component
name primarily helps distinguish among like components of the same class -- such as
unique names for the four wheels of a car. If there is only one component of a given type,
the name should equal the class. The tense argument helps METutor print out the correct

verb forms for the components whose name does not follow the "ends in s" rule.
p

28

¢. property_set(<class>, <property set name>, <domain>, <hideable>)

Property_set multifacts describe the various attributes and values that the
class can take on. Collectively, the active values of the property sets constitute the object's
total state. The members of the domain are mutually exclusive. For example, a streetlight
might have two property sets -- "color” with domain "red", "amber", and "green"; and
“persistence" with domain "flashing" and "not flashing". Therefore, a light's state could be
red and not flashing, or it could be amber and flashing. Currently, domains are limited to
being one of a list of qualitative values. Future implementations may include the ability to
specify ranges of numbers.

In addition, a property set may be declared as having a possibly unknown
or hidden value. For example, a flashlight battery's charge level might not be known be
direct inspection -- instead a test meter would be needed. The hideable argument allows
MEBAuilder to create an extra property set which contains the values "<set> is known" and
“"<set> is unknown". This information is available for use during task construction and
lesson construction. In addition, if a property set is declared as hideable, the teacher may

define operations whose purpose is to make the value of the set known to the student.

d. reiation(<class>, <relation name>, <definition>)
Relations, or "summary facts" allow the teacher to describe a substate of the
object in a single term. A good example of this is with & flashlight. If the flashlight's case

is closed, top is assembled, batteries are working, and bulb is working; then the flashlight

is working. When METutor prints out the state, the four members of the definition will be
replaced with the single phrase "flashlight is working."
e. operation(<class>, <indirect objects>, <operation name>, <intended
effect>, <preconditions>, <side effects>).
Operation facts represent the primitive operations that can be performed on

an object. By "primitive", this refers to an action that requires one turn in METutor to

complete. The irdirect object list is a list of all other objects to be present for this operation

29

to be available. The indirect object can have multiples, including another <class>. The
operation's name is an imperative sentence -- a verb phrase followed by a direct object
followed by a sequence of prepositional phrases if needed. The direct object must either
the <class> or a valid component name of <class>.

The final three arguments describe the behavious resulting from this
operation. The intended effect is the one change of state that is the primary reason why the
student would perform this action. For example, the student would choose "disassemble
the flashlight's case" for the intended effect of "flashlight's case is open". There may be
other changes of state among the class or the indirect objects. These are called side effects.
The precondition list is a list that describes what state the <class> and <indirect objects>

must be in before the operation may be used.

J. daemon(<class>, <daemon name>, <triggering condition>,
<advancement criterion>, <advancement form>, <activation message>)

Daemon facts are changes of state that occur as a result of internal, not
external stimuli. Usually, they correspond to a sequence or series of state changes which
might culminate in some (possibly disastrous) event at the end. No operation is performed
to effect the changes induced here, instead the change occurs whenever the triggering
condition is true for the object. The activation message is given to the student whenever
the triggering condition becomes true. The advancement form describes how often the
change in state occurs, either as a probability of change or as the number of turns between
changes.

There are three types of daemons. The progressive daemon causes an
object to take on the first value of some property set, and advances until the last is reached
or the triggering condition is removed. A example of this is the hunger of a person. At the
beginning, the person may be full -- but later he progresses through peckish, hungry,
starving, and finally dysfunctional or dead. The looping daemon loops through a property

set. The streetlight is a perfect example -- it loops among green, amber, then red, then back

to green. The updating daemon invokes an operation. Currently, these are not
implemented -- but thev are intended for use in updating readings on a meter or other

continuous functions.

2. Information Cached to the Other Modules

MEBuildCLS does not send the class' raw data to the other modules for
processing. Rather, MEBuildCLS will receive a list of instantiations from the other

modules and will return instantiated facts. For example, a lesson has a "John Smith" who

is apilot. The pilot object has a property set of "pilot is cleared for takeoff" and "pilot is
not cleared for takeoff”. MEBuildCLS will provide an instantiated set of "John Smith is
cleared for takeoff," etc.

MEBuildCLS only sends property set data and operation data to the task module
MEBuildTSK and the lesson module MEBuildLES. However, all class information is
instanti~ted and sent to the lesson compiler MEBuildCMP.

E. MEBUILDER'S TASK DEFINITION MODULE .. "MEBuildTSK"

MEBuildTSK is by far the largest and most complex module in the system. It serves
the purpose of developing procedures made up of the primitive operations of its member
classes. However, its underlying purpose is simply to establish relationships among the
primitive operations within specific contexts that the operations themselves do not convey.

The name "task" could be misleading. When the teacher builds a task, he describes the
entire task in terms of a known starting point and a known goal. The task that is produced
is the full task. However, during an METutor lesson it is often that the student may find
himself in a situation that puts him in the middle of the task. Here, using the power of
means-ends analysis, the student can still complete the task as built.

The key to successfully building a task is providing all possible solutions to the
student. MEBuildTSK uses means-ends analysis to help find alternate solutions and

solutions where the student may select a different order of operations that will still achieve

the goal. However, it is far better to keep the individual task as small as possible in order
to ensure consistency when put together with other tasks in a lesson.

The task's data structure is made up of several components -- basic data components,
the procedure graph, and the guaranteed state structure. Not all elements of the data
structure reside in secondary storage -- some as cached by MEBuildTSK or from other
modules during the session and disappear upon completion of the session. Temporary

facts, however, are autosaved.

1. The Task's Basic Data Components

The following is in addition to the temporary information cached from
MEBuildCLS.

a. task(<task name>, <actor>, <other objects>)

The task fact indicates those objects involved. All tasks require an actor,
which is an object descended from the character class. The other objects may be of any

class.

b. inival conditions(<object>, <state>) and objectives(<object>, <state’>)
These are self-explanatory in nature, however the respective states are not
absolute. The state contains one entry for each property set, but the entry may be a "don't
care" value. "Don't cares” help avoid the inclusion of unnecessary operations in the task

and provide greater flexibility for the student.

2. The Task's Procedure Graph
Although many tasks are described &s a linear sequence of steps, few tasks are
truly linear (Sacerdoti, 1990, pp. 162). Many have multiple solutions based on the fact that
some operations can be done in different orders. Rules such as the preconditions embedded
in the objects' operations help define which operations mst precede others. However,
those preconditions effectively describe the behaviour of the object in a vacuum. In the

context of a particular task with a specific goal to achieve, new rules are required.

32

Therefore, a structure is needed that describes the temporal relationships among the objects
in the task.

MEBuilder's procedure graph is based on Sacerdoti's Procedure Net (Sacerdoti,
1990, pp. 163-168) and Homem de Mello’s and Sanderson’s assembly state graph (Homem
de Mello, 1991, pp. 229-231). The procedure graph is built based on a first attempt
solution to the problem posed by the initial conditions and the objectives. MEBuildTSK
then assﬁmes that its solution is the only solution. The facilities provided by MEBuildTSK
then allow the teacher to identify alternate solutions, during which MEBuildTSK checks to

ensure they are indeed valid solutions.

a. Procedure Graph Structure -- stages and actions

A procedure graph is an extended directed graph where the node is called
a stage and the transition is called an action. A sample procedure graph is in Figure 4.
Actions contain the operation to be performed and the additional preconditions and side
effects involved.

Stages are conceptually more complex, as they enforce the following rules
regarding the graph structure. First, the graph has one start state and one done state
corresponding to the initial conditions and objectives being true. Second, a stage which has
one transition out indicates that there is precisely one solution to achieving the next stage.
Third, a stage which has more than one transition out indicates multiple solv ‘i~ns in two
forms -- called and-splits and or-splits. An and-split indicates that the transitions out of the
stage correspond to subprocedures that can be done in parallel. This means that order
among the actions is unimportant so long as actions within a subprocedure are done in
order. An or-split indicates multiple subprocedures that achieve the subgoal, and the
student only must perform one of the subprocedures. Fourth, all splits have a
corresponding join stage (shown in Figure 4 as the shaded stage marked with a*J”) .

Split-join pairs are strictly nested. Therefore, all splits are joined by the

time the done stage is reached. Join stages always have a single null, or lambda, transition

33

out. The extra join stage is required because a split stage, such as Q1 in Figure 4, can only
have one split. On the other hand, Q5 could close multiple splits. This could only be
accomplished through the use of a sequence of nested joins, cach connected by a lambda

transition.

Initial Conditions = flashlight’s case is closed, top is closed, batteries are dead, bulb is broken
Objectives = flashlight's case is closed, top is closed, batteries are working, bulb is working

Figure 4: Example Procedure Graph

Procedure graphs may also have unordered actions. These are actions
which are required to be performed at some point in the task, but have a very loose temporal
relationship with the other actions in the graph. For example, a given device may need to
be tested before use during a task. However, one might not care when or where the device
is tested, so long as the preconditions for the testing are met and the testing is done before
it is used. These are similar to an and-split in concept, however they bypass the strict

nesting,

b. Options for Manipulating Procedure Graphs

As stated carlier, MEBuildTSK starts with a single solution and assumes it
is the only solution -- so the student must follow the one solution in order. There are many
ways'in which a teacher can provide, or reduce, the number of solutions available. The
fundamental concept MEBuildTSK uses is dependency of the primirive operations. An
ooperation X is dependent on another operation Y if and only if X's preconditions are not
disjoint with Y's postconditions. After the teacher performs any of the below,
MEBUuildTSK invokes means-ends analysis to test the resulting procedure graph.

A teacher may request MEBuildTSK to look for subprocedures that can be
parallelized. These are found by examining adjacent actions and seeing if the second is
dependent on the first. If such a pair is found, then MEBuildTSK looks for the nearest
operation of which both are dependent, then follows the dependencies to identify two or
more possible subprocedures. This process produces and-splits in the procedure graph. A
teacher may also combine subprocedures iogether. '

| A teacher may ask MEBuildTSK to declare an action unordered or ordered.
If it is declared unordered, it is marked as such when the user asks to see the procedure
structure. If an action is declared ordered, it is placed directly in front of the action that
.. depends on it

A teacher may move individual actions around within the bounds of the
dependency relationship. He may reverse two actions, move an action intoa subprocedure,
or move it out of a subprocedure.

Finally, a teacher may also modify the preconditions and side effects of an
individual action. This action may lead to MEBuildTSK recalculating the solution for a
task or the subprocedure the action is in. If the graph no longer represents a valid solution,
MEBuildTSK will scrap the graph and start over.

KH)

. 3. The Task's Guaranteed State Structure

The guaranteed state database parallels the procedure graph and provides
information to the teacher about what state corresponds to the completion of some given
step at any point in time, It also helps identify particular contexts in which an operation
“will behave difierently than as primitively defined. The latter point is especially true when
a primirive operation is specified more than once in a given task or is used in multiple tasks
within the same lesson. For the teacher, this structure is uséful primarily for information
purposes. He may request to see the anticipated state after a given action is completed.

. The guaranteed state is a single state for all objects in the task. There is one entry
for all property sets among the objects. However, each entry is either a single property
which is absolutely true, or is a fist of properties in the set which may be true baséd on
probabilities or or-splits.

F. MEBUILDER'S LESSON DEFINITION MODULE -- "MEBuildLES"
- MEBUuildLES, by contrast, is the smallest module. MEBuilder lessons are merely
- collections of individual problems which the studeﬁt can try. Every lesson must have at
least one problem, othcfwise the lesson is meaningless. MEBuildLES's purpose is to
provide command interfaces to the lesson data structure and to provide access to the lesson
: corhpile,r in MEBuildCMP and the underlying METutor system. |
~ The lesson definition module provides both the lesson loop and the problem loop, as

shown in Figure 3. Each manipulate different portions of the MEBuilder lesson.

1. | The MEBuilder Lesson Data Structure

MEBuilder lessons have a very simple data structure. The lesson fact contains

the names of the cast members by name and type (character class), the props by name and

type, and the tasks involved in the lesson. The lesson_intro fact contains text that appsars
to the student when the lesson is begun.

2. The MEBuilder Problem Data Structure

MEBuilder problems are numbered in order starting at one, and each problem
has its own of the following data items. The prohlem fact contains the name of the problem
and those cast members and props that are to be left out in the problem. The problem_intro
serves the same purpose as the lesson_intro. Each problem has initial_setting and
objectives facts for each cast member and prop, which correspond very closely to the task's
initial_condition and objectives facts.

Finally, though not implemented, hooks have been placed in MEBuildLES
where a teacher will be allowed to override some of the probabilities and side effects among
the various tasks. These oversides will allow a teacher to increase the level of difficulty of
some problems by increasing the probabilities of some bad effects, or make a problem

- - easier by eliminating the possibility of those bad effects,

G. MEBUILDER'S LESSON COMPILER -- "MEBuildCMP"

The compiler takes a lesson which its associated tasks and objects and produces an

METutor-ready lesscn. The compiler only works for METutor versions 29 and beyond.

The compiler only provides a single command to the user -- that of "compile lesson" in the

~ lesson loop. The overall compilation process is simple. First, final integrity checks are
. performed on the entire class hierarchy for all classes used, followed by the tasks, aud
finally the lesson itself. Then, each METutor fact is individually constructzd. Some
METutor facts are required to be cached in a particular order, so sorting routines are
invoked as needed. The specific content of the METutor database and how they are derived

from compilation is given in the next chapter.

V. TRANSLATING AN MEBUILDER LESSON TO AN METUTOR
LESSON

MEBuilder and METutor shared an evolution over the course of this project. As
features for one were added, so too was the ability of the other to use it. This chapter will
présent METutor version 29, emphasizing the key data structures and philosophy changes
from METutor version 27, the last active version before this project. It will then present
. the methodology behind how MEEuildCMP takes lesson material in object-oriented form
and produces an METutor-usable lesson for the student.

Appendix D contains Satnple data files produced from MEBuilder sessions. Tab 1 is a
samplé library-directory file showing the library entries for the pilot lesson constructued in
Appendix C. Tabs 2 through 5 of Appendix D contain sample MEBuilder object, task, and
lesson files. Tab 6 is the lesson file translated to METutor form. Appendix E contains an

o excerpt of an METutor session running this lesson.

A. HIGH-LEVEL DESCRIPTION OF THE DESIGN CHANGES IN METUTOR

1. . Workbook Structure Based on MEBuilder's Lesson Structure

METutor's original interface was a simple one-level interface, and METutor
lessons were built with only one problem. When the student began METutor, it presented
the single problem imr:eu:ately and exited once the student completed the problem. In the
new METutor, the student runs a main command loop which affords him options. When
 the student selects a problem to do, then a second loop is engaged which runs the problem.

A student can exit back to the main loop at any time and retry a problem if he so desires.
In order to ensure backward compatability with lessons written before the
workbook format, METut~r inspe-*. ‘vaded lesson files for structure. If the lesson file does

not contain a workhoox structuz¢, then one is buiit for it.

._%" ,‘

2. - Agents -- Based on MEBuilder Characters

An agent in METutor is a direct manifestation of the character object in
MEBuilder. The goals of the tasks involving character objects become a "resting state” for
the corresponding agent. Each agent operates using his own set of means-ends rules based
on those same tasks. Then as the student takes his turn, all the other characters in the
problem take their turn via this agent structure. The student always goes first in a given
turn, and the agents follow in arbitrary order.

3. METutor's Macro-Expansion Language
The most visible change to METutor lessons is that they are no longer a set of
immediately usable Prolog facts. Rather, they are most macros. It is in the use of macros
that MEBuilder's object-oriented philosophies manifest themselves. The introduction of
the macro form was based on lessons which had multiple objects of the same type and
potentially rules in METutor which changes from problem to problem. The macro form

that all METutor rules use follows this form:
<rule-name>_t(<agent>, <quentified vars>, <macro argl>, ..., <macro argn>)

The macro-indicating entry "_t" is stripped off and the quantified variables are
replaced with concrete ones based on the cast and props in the problem. For example, let's
say that a problem has two flashlights and that the recommended rule dictates that to
achieve "flashlight is on" one must "turn on the flashlight”. Then, the macro form could be
described as follows. The quantified vars would be “for each flashlight x". The first macro
arg, corresponding to the target state, would be "x is on" and the second macro arg would
ve "turn on the x". If we named the two flashlight's in the problem "red flashlight" and
"silver flashlight", then the macro expansion would insert those two names for the "x" in

the above phrases.

40

The agent argument can also be an agent domain. For example, if there are five

agents all of the same type, then the object type name fills the agent argument. Macro

~ -expansion would then produce five sets of rules -- one for each agent.

If there is only one of a given object, then the appropriate macro arguments are
:pre-expanded in MEBuilder's compilation process. This is because macro expansion only
gains speed and space when there are multiples in the object domain. Nothing is gained in
expansion for singular instances. Therefore, the actual use of macro expansion in the

average lesson is likely to be small.

4. Backward Compatability of Lesson Material

In order to allow backward compatability, METutor version 29 wraps a general
workbook shell around the lesson database. Also, the facts are converted to macro language
format. This backward compatability is only good for lessons written for the text-based
versions of METutor versions 1 though 27. Lesson material for MEGraph versions 1

through 27 will still work, however the graphics facts are ignored.

B. CONCEPT OF THE TRANSLATION PROCESS

Much of the translation process is simply copying data from the MEBu:1der lesson
layer to the METutor file. Examples of this include the intrcductory text for the lesson and
| the problems, cast and prop lists, initial settings, goals, and identification of singular and
plural nouns. However, the means-ends rules -- consisting of the recommended,
precondition, addpostcondition, and deletepostcondition facts along with the random event
mechanism called randchange -- are more complex. All five of these are generated based
on the usage of the primitive operations in the tasks loaded in the lesson. Some of these
rules must also be sorted so that the higher priority operations are accessed first. Some of
these rules are alsc agent-specific, meaning that they apply only to certain characters in the
lesson.
The translation process goes as follows. First, an integrity check is performed on all
object, task, and lesson definitions. Second, the workbook data (the basic lesson and

problem inforraation) is cached, which includes the problem start states and goals. Third,
the means-ends facts and randchanges are constructed. Finally, the singular, plural, and
special message facts are placed at the end. Facts that are agent-specific are cached
* alphabetically by agent. The next several sections describe the process used to generate the

means-ends facts and the randchanges.

~ C. GENERATION OF THE RECOMMENDED CLAUSES

The recommended clause in means-ends takes a member of the goal that is not true in
the current state and "recommends” an operator to achieve the goal. This is the exact
purpose that the intended effect provides the objects' primitive operations. Therefore, the
recommended clause is a converse map from an intended effect to its primitive operation.

Recommended clauses, however, are among those that must be sorted. This is
because METutor's means-ends algorithm gives higher priority to the recommended
clauses at the top of the Prolog database. This is how, given two or more goal members not

true in the current state, METutor determines which operation is the best given the current

situation. MEBuildCMP uses a partial ordering scheme to determine the order based on

the following rules:

s The clause recommending operator X precedes operator Y if X precedes Y in a
mskl

If operators X or Y are used more than once in a task, then the ordering is based
on the first occurrence of the operator in the task.

If operators X and Y are applied in reverse order among multiple tasks, then the
ordering is arbitrary and will be based on the other operators in the lesson.

Operators not used in any task go to the bottom of the database.

D. GEMERATION OF THE PRECONDITION CLAUSES
The precondition clauses are more complicated than the recommended clauses
because the primitive operation can have preconditions specified from four difference

sources. These sources are referred to by type, producing Type 1 preconditions through

Type IV. If an operation is not used in any task in the lesson, then only Type 1 and Type II
preconditions apply. If an operation is used in the lesson, then all four preconditions apply.

e A Typel precondition is an explicit precondition described in the primitive
operation.

A Type Il precondition is an implicit precondition of the primitive operation. Itis
the "opposite” state of the intended effect. This is a precondition because
otherwise the operation would have no effect.

A Type Il precondition is an explicit precondition provided in the task definition.
Rarely will any operation have Type Ill preconditions.

A Type IV precondition is an implicit precondition based on the ordering of
actions a task. The intended effect of the previous action becomes a precondition
of the operation. Often the Type Il and Type IV preconditions will be the same.

In addition, preconditions may be subject to context. This only applies if one
operation is used more than once within the same task. The context helps determine which
application of the operation corresponds to which precondition clause. The context is
determined by taking the guaranteed state in which each occurrence of the operation exists
and comparing them. Those items in the siate that are guaranteed to differ become the
context. A null context argument means that the clause applies to all applications of the
operation.

Precondition clauses are also sorted items. The sorting is based on the desire to access
the most restrictive precondition clause first. Restrictiveness in this sense is defined as the
number of elements in the context argument. Longer contexts are placed first. Null

contexts are placed last.

E. GENERATION OF THE POSTCONDITION CLAUSES £

The addpostcondition and deletepostcondition information come from two sources
-- the objects' primitive operations (Type I) and the task operations (Type II). The
postconditions from the primitive operations consist of the intended ffect plus the side
effects. The postconditions from the task are the definite side effects only. Probabilistic
side effects are treated differently because their effect is not guaranteed. Once the

postconditions have been collected, they make up the addpostcondition information and the
opposite of each addpostcondition member makes up the deletepostcondition.

Because operations may be used more than once in a task and therefore may carry
different side effects, these clauses also have context arguments. However, the context
argument is only non-emtpy for those operations with task-defined side effects. In addition,
if the task-defined side effects are identical for all uses of the primitive operation, then the
postconditions are merged together with a null context.

Postcondition clauses are sorted in the same manner as precondition clauses. The

ionger context arguments go to the top of the database and are accessed first,

F. GENERATION OF THE RANDCHANGE CLAUSES

The randchange or random-event clauses come in many different forms. For this

reason, randchanges are also given Type designations.

* A Typelrandom-cvent is based on ur<ertainty among members of the initial
setting. The teacher specified these in terms of percentages when listing responses
to the "condition is probabilistic" sequence of questions.

A Type Il random-event is based on the probabilistic side effects given in the task.
These random-events are operation-triggered.

A Type Ill random-event is based on object daemons. Type Illa use probabilities.
Type I1Ib use counts to advance. Type JIIb random-events might sound less
random then their probabilistic counterpart. However, since these daemon-based
events are condition triggered, the advancing event is not guaranteed to occur.
Hence, MEBuilder treats them like a random event.

Randchange facts consist of the following information, and are agent-independent.
The first item is the triggering action -- for Type 1 it is init, for Type I it is the operation
name, for Type III, it is any_op to represent "any operation”. The second is the context.
which is calculated the same way as with precondition clauses. Context arguments are only
non-null in a Type Il randchange. The next two arguments are the postconditions -- delete
and add. The fifth argument is the probability of occurrence or the countdown to

occurrence, discussed further below. Finally, the sixth argument is the message which is
printed to the user when the random-event occurs. The message for a Type 1 is blank.

Type b randchanges, based on a countdown to next occurrence, introduce
information to the state which is hidden from the user. METutor will maintain a special
statc member which contains the randchange’s postconditions, message, and countdown
value. The student is not informed that the countdown is active. After each student turn,
METutor will decrement the counter. Once the countdown reaches zero, the postconditions
are activated and message passed to the student. Countdowns are the first random-event
handled after the student's action.

45

46

V1. EXPERIMENTAL RESULTS

During the Summer Quarter of Academic Yzar 1994, an experiment was conducted to
demonstrate that MEBuilder's method of lesson authoring was more robust and less time
consuming than authoring a lesson in a tracditional Computer-Aided Instruction (CAI) form.

Appendix F contains all the information disseminated and gathered during the experiment.

A. PARTICIPATION IN THE EXPERIMENT

The experiment included six students, hereafter referred to as the "participants” taking
the Advanced Artificial Intelligence class at the Naval Postgraduate School. All six have
taken an introductory artificial intelligence class during the spring quarter. The students
had never used METutor before. As part of the advaiced course content, the participants
received some basic instruction about CAI methods and introductions to intelligent tutoring
systems.

The participants are American military officers. None had ever authored a lesson for
an intelligent-tutoring system. All have experience as military trainers, but most have little
or no teaching background. Therefore, the experiment will not target how well MEBuilder
works in an actual educational setting. Rather, it will focus on MEBuilder's ability to
outperform CAl in terms of simple lesson construction -- does the task of building a lesson

take less time, is it more complete, and does it produce fewer errors?

B. SCOPE AND CONDUCT OF THE EXPERIMENT

1. The Participarts and Their Reguirements
Tab 1 of Appendix F contains the detailed instructions given to the students. The
participants were divided into two groups, but each participant was to work individually.
The first group of four participants was tasked to write a lesson for a scuba diver preparing
to dive for lobster (see Tab 2, Appendix F). The second group of two participarts was to

41

write a lesson for replacing a gasket in a car engine's water pump (Tab 3, Appendix F). The

reason for the imbalance is because two participants had to withdraw from the experiment

and there was insufficient time to realign the groups. The two tasks were selected and
modified such that:

« Both tasks required 14-15 steps, so the amount of work is similar among the two
groups.
Both tasks have 36 possible solutions.

Both tasks were originally written for METutor versions 21-27 and are ideal tasks
for a CAl-based tutoring system.

The participants were provided with access to MEBuilder and METutor, along
with CAIBuilder and CAITutor -- a lésson authoring system built with CAI methods and a
CAl-based tutoring system. CAIBuilder is written on top of CAITutor in the same manner
as the MEBuilder system in order to duplicate the authoring-to-shell environment. Finally,
 the participants were given access to automated measurement tools which helped collect
some of the required data. Tab 4 of Appendix F describes how the participants were to use
the automated tools.

In order to provide as fair a comparison as possible between the two methods,
several restrictions had to be placed on use of MEBuilder -- specifically those features
which the CAI method clearly has no equivalent. For example, the lesson was to be written
using one and only one task. This is because CAIBuilder does not have a mechanism of
combining tasks into a single task. Second, the students were only to build one problem in
the lesson workbook frame as part of the experiment. CAI has no equivalent to MEBuilder's
workbook frame. The features of MEBuilder not tested in this experiment will be tested in
future. Third, the order of use between the CAI method and MEBuilder was mixed -- four
students used.the CAI method first, two used MEBuilder first. Again, the imbalance was
due to the withdrawals.

Finally, therc was a six-hour ceiling on the experiment. Any participant reaching
six hours was to stop and tumn in the partial results. This was due to time constraints on the
availability of the participants. In order to help meet the time constraint and still adequately

Ll

test the task-manipuiation processes of both methods, the students were provided with
partial solutions. These partial solutions, given in Tabs 5 and 6 of Appendix F, contained

a task structure of one complete solution with no options.

2. The Data to be Collected

~ The information the students were required to gather included time spent using
cach method, number of operations using each method, and some statistical measurements
on the resulting data structures. They also had to answer some questions regarding how
their time was spent using the CAl and MEBuilder methods. Even though soine of these
measurements arc numeric, they were not intended to be interpreted as significant raw data.
Instead, as described below, these measurements were to be interpreted subjectively as a
means of identifying trends. With the exception of time, all the precise measurements were

done through automated means, as described in the following sections.

a. Time Measurements

There Were two measurements requested -- the amount of time spent un the
CAlBuilder and MEBuilder programs, and a subjective breakdown of how the time was
spent. The time is to be given in hours, and is not intended to be a precise measurement.
Rather, it is a subjective measurement to see if one method was significantly quicker than
the other. The two tasks were written in such a way that if done properly the students
should spend roughly an equivalent amount of time on each solution. The students were
specifically instructed not to include down time due to program bugs.

For the second part, the students had to rank the amount of time spent in the
following four processes: familiarizing with the program, designing the data, entering the
data, and testing and using the data. These were given for CAIBuilder and MEBuilder as
a whole, and then asked separately for the class, task, and lesson layers within MEBuilder.
Familiarization encompassed reading the user's manuals and running the samples given

inside. Designing the data meant organizing the data on paper prior to running the

authoring system. Entering the data encompassed time spent using the adding commands

49

to get the data into the system. Testing the data encompassed checking, debugging, and
modifying the data once it was in the system.

The expected trends were that CAIBuilder users would identify entering
aid testing as two most time-consuming processes. MEBuilder users, on the other hand,
would identify familiarization and design at all layers with the possible exception of
- entering at the object layer. These would indicate that MEBuilder has a steeper learning
| curve. However, if the time spent on MEBuilder was less, then that means the productivity
" using MEBuilder is significantly greater.

b. Operations Measurements

CAIBuilder and MEBuilder were embedded with a counting mechanism in
order to determine how many commands were used in each system and the percentage of
commands aborted. An aborted command is a command that failed or a command whose
subsequent queries were explicitly aborted by a participant. In addition, MEBuilder's
commands were broken down by layer. These help support the time measurements above
by identifying interface problems as a possible factor. If a command is confusing or a
participant doesn't understand what the queries mean, he will tend to abort the command.
. On the other hand, if a particular layer was identified as time consuming in the entering and
testing processes and it had few abbrted commands, that would signal that the layer's

- interface is inefficient.

¢. Examining the Data Structures
Examining the resulting data structures would provide indicators about the
probable correctness of the resulting tasks and how robust the iask is. Since the operator
names were not strictly standardized, an automated examination of the content of the
structures is not feasible. However, the number of acyclic paths to the solution can be
measured efficiently. If the participant's tasks are in accordance with the lesson

specifications given, his lessons will have 36 solutions. Because CAI methodology puts the

50

burden on the participant to construct the paths, it was anticipated that the CAI solution
counts would vary more than the MEBuilder solution counts.

“Robustness” is in term of the number of nodes and transitions needed in
the respective data structures. Since MEBuilder relies on METutor for coaching rules,
MEBuilder users do not have to add information about student errors into the task. If the
student fails to follow the correct sequence, then METutor will handle the error. This
means that the number of nodes and transitions needed by MEBuilder are minimal -- a
maximum of one transition and one node per operation.

However, CAIBuilder users raust add explicit srror states and transitions.
For each tramsition alor g a soluticn path, the iesson should provide two or three wrong
answers to afford the student a choice. In addition, each wrong answer transition requires
a path back to the solutioﬁ. A non-robust method would have only a single error state and
single transition back to the start. A good method would have a single error state per error
transition. So a fully robust CAIBuilder solution should have roughly three times the nodes
and six times the transitions that the MEBuilder solution might have. Combined with the
time and operation measurements, this would help describe how much better MEBuilder

could do with a much more complicated task.

3. The Deliverables

In addition to the above data, the participants were required to provide a short
write-up of their work. The write-up was to include comments and opinions regarding the
experiment and the MEBuilder program. Attached to the write-up is the resulting data files
produced by the two authoring systems, along with script files showing the lesson being
used in the corresponding tutoring shells. The evaluation of the experiment focused on the
write-up, specifically if it included comments about the interface and problems
encountered not adequately identified elsewhere.

51

- C. RESULTS OF THE EXPERIMENT

Appendix F contains the raw data generated by the data collection programs on all six
participants. The data collection program outputs are in Tab 7 and selected comments from
the participants are in Tab 8.

1. Time Measurements

The participants took roughly the same amount of time to do the task on either
system, with the CAI system requiring slightly more time. The minimum time spent on
CAlBuilder was one hour (by one participant), the maximum was three hours (by three
participants), and the average was 2.5 hours. For MEBuilder, the minimum was one hour
(by two participants), the maximum was three hours (by one participant), and the average
was 2.0 hours. Four of the six required less time to complete the requirements in
MEBuilder. Only one required more time with MEBuilder, and the sixth spent an equal
amount of time with each system. In both systems, familiarization with the program and
entering the data were cited as the most time consuming processes, although MEDuilder

showed a greater distribution of time usage than CAIBuilder.

2, Operations Measurements

‘The participants required from 68 to 164 commands to complete the task in
CAlBuilder, with, an average of 123. With MEBuilder, however, the range was only 11 to
45 with an average of 26. In terms of completed commands (total commands minus
aborted commands), CAIBuilder users required an average of 121 while MEBuilder users
averaged 15. The minimum number of commands needed to complete the requirement in
CAlBuilder was 30, so CAIBuilder users completed four times the necessary commands.
With MEBuilder, the minimum number of commands needed was ten, so the participants
performed 1.5 times the necessary commands in MEBuilder.

Participants aborted MEBuilder commands nine times more often than
CAlBuilder commands. In CAlIBuilder, two participants completed the requirements
without having to abort any commands. The highest percentage of aborted commands in

52

.CAIBuilder was 6.5% and the averag: was just above 2%. In MEBuilder, however, only
one participant performed no aborts and two participants had to abort more than 50% of
thier commands. The average rate for the participancs was 18%.

It ié important to note that the data-collection program failed with one participant

and the MEBuilder command usage was lost. The participant stated that his command

usage was not significantly different from the norm.

3. Resuiting Data Structure Measurements

The data structures produced all MEBuilder sessions were identical to the
solutions produced by the author. The CAIBuilder solutions, however, differed. All
participanss stopped at the point where the CAI task was complete, without adding error
conditions or states. The four diver-problem participants did achieve the author’s solution
of 23 nodes and 32 transitions. However, those doing the cooling-system problem did not

match the author’s resulting data structure nor did they achieve 36 solutions to the task.

4. Comments from the Participants

The positive comments focused on one primary theme. Both systems were
deemed simple enough to use once one gets accustomed to them. Neither system was so
difficult to use that they felt unable to complete the task. In addition, once the participants
became accustomed to MEBuilder they found MEBuilder quicker and more flexible.

The vast majority of the negative comments collected centered on two major
themes. The most common concerned the user interface. Both CAIBuilder and MEBuilder
use a somewhat crude command-line interface that wasn't friendly and had errors. Most
participants agreed that the help facility was weak. Comments specifically directed at
MEBuilder was that the sequence of steps in the “‘create lesson” command were confusing.

The second theme was that once a particular part of the requirements were
complete, it was not readily apparant what to do next. For example, once a participant

finished with a task, some did not understand that the next step was to construct the lesson,

" D. INTERPRETATION OF THE RESULTS

The results show that using MEBuilder’s task-manipulation method produced
- consistent and correct results more quickly than the CAI method. Despite the fact that none
of the participants added student-error transitions to the task, they still required more time
to complefe the task manipulation than with MEBuilder. In addition, CAIBuilder users
~ performed significantly more commands than required due to navigation and editing. This
is a clear indication that MEBuilder’s method is more efficient.

Further, had the students been required to work with a more complex problem the
results wouid more heavily favor MEBuilder, To illustrate, consider the original lessons
from which the tasks used in the experiment were derived. The original cooling-system
problem (McDowell, 1993) was 18 steps long but had 720 solutions, nct counting the
unordered actions. The original scuba-diver problem (Seem, 1992), not counting
unordered actions, had 22 steps and 36 solutions.

The CAI data struciure for the original cooling-system problem would have required
1080 transitions to model the solutions alone. Since the CAI method works via one
transition per command, the rate of command usage would likely have changed little.
Therefore, by extrapolating the time and command usage, CAIBuilder users would require
20 hours to build the extended task. One could not expect a teacher to do so and produce
an error-free lesson. On the other hand, because MEBuilder allows single commands to
perform significant modifications to a structure, users could create the 720 solution in
minutes with only a few commands.

With its two unordered actions, the number of solutions to the cooliig-system problem
increases to 69,192. MEBuilder only requires one command to declare an unordered
action, so only two commands are needed to achicve this increased complexity. Clearly,
CAlBuilder users would not be reasonablc capable of producing an equivalent lesson. The
original scuba-diver problem had three unordered actions and 4,320 solutions.

E. CONCLUSIONS

This' experiment proves MEBuilder’s concept that an authoring system using
intelligent rules can produce lesson material much more efficiently than traditional CAl. In
addition, the resulting MEBuilder lesson requires far less code space and can be modified
significantly faster than with a traditional CAI method.

This experiment also shows that for MEBuilder to be effective, the user interface is
extremely important. Such an interface should assist a teacher in entering commands to the
terminal through the use of menus and structured dialogs. It should also provide a means
of helping the teacher understand the authoring process, and provide a good help facility
for the teacher to fall back on.

The experiment also showed that more work is needed in the lesson-definition system.
The interface needs to make the overall process more intuitive. An appropriate follow-on
experiment would have the participants given a set of tasks and by required to construct
different types of lessons. The lessons would contain problems that range in difficulty from
beginner-level to expert-level. The levels of difficulty could be achieved by breaking the

task into components or adding random hazards to the problem.

55

56

VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A, SUMMARY OF CONTRIBUTIONS

MEBuilder's object-oriented design and teacher-assistance tools show great promise in
the construction of a general-purpose lesson authoring system. Its library-management
features help organize lesson information and hide the low-level file structure from the
teacher. Its object-modelling techniques help ensure consistency and reduce errors when
‘building tasks. Its task-modelling techniques help build complex yet robust procedures in
a manner of minutes. Its workbook-style lesson framework help a teacher construct a
multitude of exercises to serve a wide variety of purposes -- from increasing levels of
difficulty to presenting different subtasks.

The experimental results supports MEBuilder's concept and design as having
remendous potential. It showed that MEBuilder could be a more effective and efficient
authoring system than onec based on traditional CAl methods. Further, MEBuilder
produces lessons with a higher degree of assurance and a lower risk of error. Also, because
of MEBuilder, METutor has evolved to handle a greater range of problems. These
problems include those involving other characters, multiples of like props, and multiple

exercises in a lesson.

B. WEAKNESSES OF MEBUILDER
MEBAuilder is not without problems, especially given that it is a project in its genesis.
There are several arcas which require significant adjustments and improvements before this

program can be considered releasable.

1. Is Object-Modeling Too Complex For Teachers?
MEBuilder is heavily reliant on object-oriented modeling techniques, which

may be beyond the comprehension of many computer-illiterate educators. Currently, the

57

object-definition module is very unhelpful in its presentation. A teacher might not
understand what it means to inherit property sets or operations. Part-kind inheritance is an
extremely difficult concept even for most students of artificial intelligence. MEBuilder
requires additional features that help visualize the object as it is being defined, and help the
teacher understand the implications of modifying object inheritance. In addition, future
experiments should be conducted using professional educators outside the realm of

computer science. Military trainers would be a good example.

2. Lack of Pre-Defined Object Library

In order for MEBuilder to be effective, it must come with an extensive library of
pre-defined objects and tasks. Otherwise, a great number of lessons will consist of objects
that are only good for that lesson or whose behaviour has been limited to meet the needs of
only one lesson. In addition, the object layer is where the greatest amount of time is spent,
and the desire is for the teacher to devote energy mostly at the lesson layer. Object re-use
is a major selling point in object-oriented modeling, and only with an extensive and
accurate library of objects can this benefit be realized.

3. MEBuilder and METutor Do Not Employ the Same Domain of Features
~ There are featres built into METutor which MEBuilder presently does not
gccess. This includes a wider domain for summary-fact definitions, multiple goals, and
other quantifier expressions within the macro languange templates. The converse is also
true. The macro language does not perfectly handle class inheritance of objects, so a
problem written for a prop of seme object might not work exactly right for objects of a
derived class. A lot more work is required to ensure that the features of MEBuilder and

METutor are brought to a perfect one-to-one correspondence.

4. Emphasis Needed on the Interface

The initial focus on MEBuilder has been on its architecture, algorithms, and data
structures. However, as shown in the experiment, MEBuilder requires a strong user-

58

interface in order to be effective. The user-interface needs to provide easier command
access, simple and understandable representations of all MEBuilder entities, and a
thorough and context-sensitive help facility. A graphical interface using menus and

windows would b ideal.

C. FUTURE RESEARCH DIRECTIONS FOR MEBUILDER AND METUTOR

1. Coaching Capabilities

The scope of both programs only extends to the conduct of exercises and some
basic tutoring rules based on means-ends algorithms. In order to help make the resulting
Jesson more believable to the student, both programs require means of specifying and
implementing domain-specific coaching rules. These are rules which can evaluate a full
sequence of student actions and help find possible cognitive errors that a means-ends based

error will not detect.

2. Including Ancillary Domains in MEBuilder

) Some entities cannot be modeled adequately as a property set, but can be
moueiled using summary information. An example of this is an audit file for an operations
systers, which contains a list of the operations performed by users in a computer center
si;nnlaﬁon. The entries of an audit file constitute the file's state, however one certainly
cannot efficiently model these entries beforehand in a property set nor use the raw data in
means-ends analysis. Summary information based on audit file, on the other hand, can be
used in means-ends.

An audit file is an example of an ancillary domain. The term "ancillary" is
appropriate because it supplements the state with raw data. The extension of MEBuilder
(and therefore METutor) to cover ancillary domains must handle three areas -- the
definition of the ancillary domain and the associated summary facts, the definition of
operations that impact the ancillary domain, and the relationship of the ancillary domain in
_the task and lesson structure. Other important but less critical issues include the display of

59

ancillary data. The qualitative state methodology of METutor lends itself to a simple

output interface. Ancillary domains would require a more complex interface.

3. Incduding Quantitative Domains and A* Search Techniques in MEBuilder
MEBuilder is still limited to qualitative problems that only view the state as a list

of objects’ current propertics. Many applications have quantitative values involved, such
as reading on a boiler or an operation such as "turn dial to X". The current object layer in
MEBuilder can be extended to handle different domains, including quantitative ones, along
with associated operations.

In addition, the means-ends algorithm in METutor uses the ordering of facts in
the database to break ties among sets of operations that can be performed at a given step.
The ordering of facts may be inappropriate or incorrect given some contexts. in addition,
this method only helps answer the question of what to do, but not how much to do it. In
oider to adequately apply quantitative operations in a given problem, the means-ends
algorithms in both programs require supplementation with a quantitative search method..
A* is suggested here because it is the most general purposs sexrch method avaiiable and it
is built to address the specific issue of solving a procedural task in the least costly manner

(whether in terms of time, resources, etc.). A* as a basis for an intelligent tutoring system
has been explored separately (Galvin, 1994, p. 725). ' ‘

4. Use of MEBuilder in a Major Application

Cuirently, MEfuilder has only been tested in the context of simple applications.
The next set of tests involving MEBuilder must demonstrate its ability to handle complex
simulations with many different agents. An example of such an application might be a
tutoring system for a system administrator leaming computer security. In such an
application, legitimate users and intruders would serve as agents in a simulated
environment and the student would be charged with maintaining the system. Such an
application would teke full advantage of MEBuilder's object-oriented modeling and would

-be sufficiently complex to test MEBuilder's simulation capabilities. It would also help

. uncover bugs that simpler applications do not produce.

- 5. Using MEBuilder with Other Intelligent Tutoring Systems

. Currently, METutor is the ,oﬂly intelligent-tutoring system with which
. MEBuilder will work. In addition, MEBuilder uses many of the same algorithms as
g METutor during automated task generation. This allows MEBuilder to guarantee that its
' lééson wﬂl work in METutor. However, MEBuilder’s value would be greatly increased if
it could gencrate. lessons for other est‘ablished intelligent-tutoring systems, such as PIXIE
(Sleeman, 1987, p. 239). To accomplish this, MEBuilder requires user-selectable Lesson

Compilers, one for each supported intelligent-tutoring system. -

61

62

APPENDIX A. MEBULLDER soukcx«: FILES

_ ~ This appendlx only contains the head-r comments for the pnmary MEBui: dcr source
i T ﬁles and the primary METutor version 29 source file This is for practical consideratinns

7 glvcn that the source is nearly 400 pages long and contams more than pi.c 'negabyte of text.

- -~Only those source files directly relevant to MERBuilder’s pnmary funcuonr, are

o mcluded Files not 1’ncluded are the help system source files, s..vesal Prolog utzuty files

- wntten by the author, and tine supplemental data collection module used for the experiment.
Also, the author has dcleted segments of the header comments from the bcl ov files which
descnbe future upgrade xeqmrements '

Tab 1. 'mebuﬂd pl -- MEBuilder’ sMam Module o
Tab2.. ‘mebuild_class_definition.pl -- MEBuildCLS mcdule sonce
" 'Tab3. = mebuild_task_definition.pl -- MEBuildTSK modulc sou.ce
Tab4. = mebuild_lesson_definition.pl -- MEBuildLES mod-ile source
. "Tab5. - mnebuild_lesson_compiler.pl -- MEBuildCMF inodule source
Lo Tab6. - mebuild_library.pl -- MEBuildLIB module sovrce
~v - - Tab7. .metutor29_shell.p! -- METutor version 29 source

TAB 1. MEBUILDER MAIN MODULE

IQ..Q‘IC...'.'.la....."!l'ltttti..I..t.'.ﬁ..!-t.t'.tQQ'....'i'...!'tl'.l'n."'t.t/

/* Neans-HSnds Lesson Pullding Progzram -- Versiom 1 (MEBUILDER) =/
/* CPT Thomas 2. Galvim, U.8. Army, Naval Postgraduate School, Meonterey CA 53940 */

I."."i""'..'i..'...€ﬁ"..QC..I..'t..'C..'l.l'tllI.t"'."'.Qt.tt......l..t"'./

/* KEBUILDER Main Interface -- Varsion 1 ./
/* */
/* To run MEBuilder, Jcad *this* module and query: ~/
" ./
" t- build. ./
/* ./
Al J#OTE: To run MESuilder with ths currenmt Prolog database intact, guery: */
VA : v
ad s~ build without_initializing. */
IAd ./
/* - Tho latter is designed for use as a recovery tool should MEBuilder perforw */
/* & less~than-graceful oxit Auring ezecution. s/
/. */
/* The main interface module provides the cosmand loop and accese t6 the */

/* subordinate interface modules. It also manages the autosave file -+ which is */
/* a local file dump ¢f all dyvmamically created modules - and the help facility */
/* -~ which is a simple svb-ccmmand locp providing scmewhat uontext ssnsitive -/
/* belp to the user. Access functions ¢o the subordinate data structures are */

/%provided througk the following facts: LY
A 1Y
/* legal_command (<ccommands, <predicates>). */
l‘ '/

FAd <command> is the input retrisved from text_io’s get_prompted _input. The */
/* predicate is a rero-argument predicatc which performs the analagous commend, */
/* legal_command 13 a miltifile fact, but is *not* dynamic. */

I".G‘.'.'...'....I'ﬁ.tl'.."'..‘l‘..u...‘ﬁﬂ.'..llI.-..I'!it'..i".'.'ﬁ"...O‘.‘.’,

TAB 2. MEBUILDER CLASS MODULE (MEBuildCLS)

l..!.'CQ'.ti.""..'..t.'."'.Q..'..l..'..tt..tt'..""'tttt.'....Q..Q'.i..t'itttn/

Y Ad

Means-Ends lLesson Building Program -- Versicm 1 (MEBUILDER)

*/

" . 4% CPT Thomas P. Galvin, U.S. Army, Naval Postgraduate School, MNontersy CA 93940 */

,"'J..Qﬁ'.'..."'.ll.l.'l.'.tt.t.QQ.Qui.'.....t..".'.'t..".tl.....'..'.OQ..Q."/

,.
rAd
YA
il

MEBUILDER Class Defimnition Module -~ Version 1.01

Version Niastory

3.0 == Pirst release. concsftrates on component, property sst, and
operation definitions. The relations and dasmons are defined and
included but their effects are far from guazranteed to work in a
ccapiled lesson.

1.01 -- Comments are updated and stubs placed for commands or predicates
neaded for use in future. The property_display_data and the
operation_display_data sections, which were not used in the
conpiler, are stubbed out. (These should be £ixzed before I go).

Inportant Compilation Mote:
During the Quintus Prolog linking process, the following two predicates are
- agnounced as unknown. This is caused by compiling and linking the program
" 4a the Prolog, not the Prowindows enviromnment:
useriprowindows/0
user:dravw_property picture/0
userithd/n {for any N -- used to identify code stubs)
If and when the mebuild_class_definition graphics file is parmanently in-
otalled into MEBuilder, these messsges will go away.

[2N I N B NN B B B BN BN B BN N I B NN I JNE DN NN JNE JNE BN BNE BNE NN N ZNN INE BEE JNE JNE JNE BN JEE JNK BN I)

NEBuilder's Class Jefinition data structure

L B B B K B I B B BN B N AR A B R B BN RN BN NN N NE NN NN BN AN NN IR BN B B NN R BE B AN B

A clase is defined as the composite of the following facts with the same
<alase> argument as the first argument.

class_def (<cclass>, <list of parent classes>).
NOTR on <parent classes>. The standard parent classes of prop and
character are ussd to ipdicate the specific type of cbject it is and
what cspabilities it bhas. Character cbjects have the additional cap-
abilities of being the primary actor of a task, and can be instantiated
as the student's role in a lesson. Currently only single inheritance
is supported by MEBuilder, bhowever the inheritance facilities provide
for expansiocn into mulciple inheritance.

componant (<slans>, <tomponent class Dame>, <CONPONSNt name>, <tense>).
MOYE ca ccmponents: Tense is given as singular, plural, or dafault and
is used to override the “ends i1 s" rule when determining plural souns
in the stapdard English-language cutput,

property._set (<alass>, <property sat name>, <domainy>, <hideadble>).
where <hidexble> i1:= hideable | not_hideadble
<hideable> corresponds to the ereation of hideable facts in the METutor
lesson. A propsrty set that is hideadle automatically generates holes
tor the cpecification of cperators thut hapdle hideakle facts.
NOTE on preporty.sets: Past implomentations of MEBuilder used the same
sctructure for meshois of a property set as for the kBTutor facts used
a means-ends search space. Thir version used only the prefix, which
is intended to eliminate the wasteful operand rxeplacansnt.

65

*/
*/
*/
o/
*/

*/

*/
*/

*/

/* property_display. data(<class>, <property>,<graphics data>). ./

/* For version 1.01, all interfacing with property display_dsta has been */

/* deleted and stubbed ocut. The mebuild _class_definition graphiocs file */

/* contains the capability for spscifying a graphic for the propexty. The */

WA <graphics data> would contain only those things that are generically */

* true, such as the graphic bitmap file and the dimensicms. All other */

FAd details, such as the color, location, click zrange, etc. are part of the */

FAd individual lesson definition (refer to lesson definition file. */

/* */

/* relation(<class>, <chbject>, <property>, <definition set of properties>). */

/" A Telation is a meta-property which is true 4f the <definition set of */

/* properties is met. <cbject> is either <class> or a valid component, */

* and comprises the state argument to <property>. <property> is a symbol */

/" and <definition set> is of the form atomic -- correspopding to a */

el property of the class, or of the form <property> (<component>) for those */

/% properties held for the component. ./

’* */

1* dasmon (<class>, <dasmon Dame>,<triggering conditions>,<advancement cond>, */

1* <advance type>, <msssage template>). */

I* where <triggering conditions»> are conditions that causse the daemon to */

/* vwake up” or “stay awake”. The dasmon is checked at each turn whan the */

” <triggering conditions> are trus. When a daemon is activated, it is ./

/* doctrinally set to the first membar of the iterating property set, *)

K A altbough in means-ends space it can in theory start at any place. ./

E /* <advancement cond> are special conditions that indicate that the daemon */

o : /* will wake up -~ either prob(«<probability>) or count{<integer>) where *)

/" integer corresponds to the number of turns. The <advance type> cor- */

/* esponds to ons of two things -- either advance({<property set of class>) */

A ‘which indicates that the daemon will always advance to the next «)

L /* property in the sst, loop(<property set of class>) which the same as ./

D : A advance axcept that the chject's value can revert t> the f£irst value, ®/

: ’ A or update(<cperaticn>) whers <operation> is a defined cpexation of the */

FAd class which takes *no* indirect objects. (This is probably an unneseded */

A zastriction which could be cured in future. ' */

/* The message tenmplate is used when the daemon becomes active., Rlsae, s/

/* the messages used to describe the daemcn's advancement fall in line */

/* with the property set mambars and the «operaticn>'s apply text. ./

/" ' ./

PAd oparation(<class>, <cdbject list>, <verb>, <direct obj.>, <trail phrase>, */

’* " <precondition list>, <intended effect>, <side effec: list>). \7i

FAd NOTR: The 4-tupls (<object list> <verbs> <direct obj.> «trail phrase>) */

1* is considered as a whole to be the i{dentifying name of an ap. ./

/* operation models specifically one type of method -- the atomic method. ¢/

/* operation facts desoribe an atomic operation -- cne that takes ons */

lAd agent-turn tc perform and cannot be broken down further. operations ./

,* ars not character independent ~- they can be overloaded by specifying */

/" the highest level character class as an object. If no character class */

,* is speacified, then there is an isplicit assumption that all character */

,"* classes can perform the oparationm. ' e/

rAd <alass> is considered the direct cbject's class. <object list> is & .y

VA conplate list of cbjects that are reguired to be pressnt in order to */

/* porform the operation. MNote that class can bhe repsated -- msaning that */

1" an operation must take two or move distinct cbjscts of the same class. */

i* Thare will exist a means to specify forall in operations however such */

lAd capability is pot yet present. "y

1* The <verb> is a verb phrase. <direct cbj.> is sither <class> or a *)

l* valid ocmponent of <class>. «trail phrase> can be any combination of */

" words, however any subseguance of words which match a member of */

) /* <cbject list> will be functored with obj() in order to do inheritance */

- /" on the name of the operation. <precopdition list> matohes one-for-list */
. /° with respact to [cclass>|<cbject list>]. <iutended effact> is a single */ ’

66

property which will becoms true upon application of this operation and
must be a detined property of <dirsct obj.»>.

operation_display_data(<class>, <opsratiom>, <display data>).
Yox version 1.0, all operation_display_data items have been deleted or
stubbed cut. The only useful thing for <display data> would be the
ganeric or default text string used to gensrate an apply_text in a
lesson. <display data> oould be sxpandsd to include animation data
for showing an operation occurring. This is not used as a Sth arxg to
ths opsration fact because the hierarchy uf display items does not
necessarily follow that of the precodditions and postconditions.

Classes ares modeled using Quintus Prolog dynamically-cvreated xodules, so
the facts for a class C is Ciclass_Adef (C,PCL) - Cicomponent (C,CC,CN) - ato.
This allows this module to take advantage of the module featurs in text_io's
prolog_outfile predicate.

Classes are not directly accessed by ocutside modules. cache_class_facts
is used to take all the class information and cache it into data retrievable
by the lesson database.

LR L B N I B B BN N B B BN B N K BN K EE K 2N B BN K B R R I N K T NI B B N

Commands providsd by this module (including those not vet implemented)
Documsntation on these commands can be found in the user's manual.

L 2K L 2NN DN IO 2NN BN YN BN NN BN NN BN BN 25 BN BN EE R BN T K BN I B JEE JNE BEE NN NN TN SENE JNE NN IR JNE N N J

OBJRCT DRFINITZON COMMANDS: LOOPS:
crecte ocbject [named <cbiect>) Main
rexove chbiect [named <cbject>] Main
vestore object [named <object>) Main
view chjsct [named <chject>) All
modify parent object [of <object>] Main
check object (named <object>) All

COMPOMRNT MANAGEMENT COMMANDS:
create componsnt (named <component>) [for <object>] Main
remove component [named <components>] {from <cbjects) Main
view component [named <component>] [of <cbject>) All
aodify component [(pamed <component>) [of <object>] Main

PROPERTY SET NMANAGEMRNT COMMANDS:
create property sat [named <property set:] [for <cbject>) Main
TemOvVs property set [pamed <property sec>] [from <object>) Main
view property set [named <property set>} [of <cbiects) All
modlify property set [named <property set>] [of <objects>] Main
set property dispilay data ([(for <property>) ([nf <cbjects) tain

SUMMARY FACY MAMAGEMENT COMMANDS:
create summary fact [for <objacts]
remove summary fact (from <object>]
view summary fact [of <object>)
modify oummaxy fact [of <cbjects)

OPRRATION MANAGEMENT COMMAMDS:
ereate operation [(for <object>]
remove operation [fr:a <cbjects)
viev opexation [of <ecbject>)
mdity cperatiom [of <object>)
set operation display data {of <acbjact>]

create background change [named <daemon>] [for <objuot>) Hain s/

/* Temovas background change ([named <daemon>] (from <object>) Main */
/* view background changs (named <dasmon>]) [of <objects) Al */
/* modify background change [named <dasmon>) [of <cbject>} Main */
[] *
;.'.....l"."...'.QG.'Q.Q....'QI."'."..;
/* Bxported Predicates. All predicates intended for external use are prefixed */
/* with *mebuildcrs_* */
,Q..'.'.I'Q..'Q..t'....'t-Q'....Q"'.tﬁtﬁt’
/,* */
/* APPLICATION FPREDXCATES (All exported to mebuild main): ./
/% 2ebuilaCLS_setup. */
/* ~~ Initializes all the dcmains, commands, and templetes for the main */
VA) mebuild application ccmmand loop. ./
/* BebulldCLs_include_view_commands { +koop) */
/" == Providas Loop witl ths cluss definition view commaads so use in ./
. . " the task definition and lesson definition loops. %
3 /" mebuildCLs _class_database_initialize. */
y /”* Initislises the class_definition database, */
/* »abuildcLs_class_database_shutdown. e/
B Clears all class_definition facts from the Prolog database and erases */
/* all dynamically-created modules. Used by MEBuild's quit command. "/
/" mabuildCLS append_sutosave. ./
/* Appends all class definition data in samory to the autcsave tils. ./
A o : *
/% CLASS DEFINITION MANMNGEMEMT: . */
/1* (COMMAMD INVOKED) a
/* mabuildCLs, _defing _class(+Clars). */
A Provides user access £t defining a new class. */
A 2eDuilaCLE_remove class(+2last). : */
B AR Marke a class as “deleted” (rafer to library module).)) */
J* . mebuildCLS_xestore_clava(+Class). */
IAd Restores a removed class in memory (1.e. unéscletes it). >/
A 2abaildCLS,_viex _class(+Clags). vy
/* Pretty-prinis the class definition to ths scresn. Only provider a by- */
A pame iisting of the class members. ¥Yor more deitiled information a~ */
B A beut. a particular data item, refer to the corzonpond&u view somsand */
/* below. LY
T L 1* SLLATLE_moaily classi+Clacs). *y
- * Allcws the user tu changs the parsnt class link.) LY
el FAd {COMMAND IMVORED AKD EXPORTED TO OTHER MODULES) *)
i o 1* ®abuildCLS_test_class_integrity(+Class). *y
- . /* Allews the user to test the integrity of the clase to ensure tho class */
|- A /* . detinition ic copsistent. The test includes checking whethor or mot: */
B . A e« 2il refersnced components, properties. and cperaticns in the */
N - ' re . ars still well-dsfined. Y,
: I == That chengsas to the well-fetined members of the Glauss does nat */
\ S T 4) causs other membars of the class to becoms centradictory. vy
- Thd The seqartics of the particular tests are gives iz the predicates in v/
- . [Ad each segment named <gbject>_violates_integrity. *)
o A (EXPORTED 1O UTRRR MODULES) ' "y
N i A mabulldcLs_cache_task_tfacts(+Targetiodule,+List of Instance/Class pairs) %y
1* Produces cached vursions of the class definition for use in the task %/
/* wodules. Ounly the property sets and the operations are cached for *)
" use in task definitions. "y
A mebuildCLs_cache_lesson_facts (+Targetdodula, +List of Instance/Class pailrs) */
/* Producss cached versicns of the class definition during compilaticn. L7}
1* mebuildcLs_export_classes (+List of Class/File pairs) .y »
/" Sends out the class definitions in memory to the files 1isted, . ¢
T »ebuildCLE_derived_class_of (+Clats, ?Descendant) .y
/,* Tasts for darived nlass relatiocnships or provides a derived class. L7

68

ebulldCLS _is_a_prop_class(+Class)
2abuilacLs_is_a_character_class(+Class)
specific instances of mabulildCLS_derived_class_of for the generic
vprop” and "character” objacts.

COMPOMENT DEFINITICN MANAGENTENT:

(COMMAND INVOKRED)

mabuildCLS, _define _componant (+Cemponent, +Class) .
Provides user accesr to the component definition facility. The
Component Bust be unique to Class. The user will be prompted sepax-
ately for a Compooent Class with which the Compoment will be an in-
stance of, and it will establish a part_of inheritance relationship.
Circulax part_of inharitance is not allowed and ComponentName must be
unigque.

MmebuildCLE_remove_compopent (+Component, +Class) .
Undefines the component from ths class. The component must be a
dsfined cosponent of the class, not an iphexited onme.

MmbUilaCLS_view_compodent (+Component, +Class) .
DPisplays the ontire component definition in pretty-printed form ~-
inciuding the source of the component definition (whether defined in
the object, inherited from a parent cbjact, or imherited from a
compotent object.

meduildCLs_modify ccsponent (+Component, +Class).
Allows the user to modify any of the attributes associated with the
coppenent definition -- type, nams, or tense. The component must be
a defined camponent of the class, not an inherited cne.

(EXPORTED TO OTARR MODULES)

mabuildCLs_get_singular_componsnt (+Class,-SingularComponent) .

sabuildcLs_get plural_component (+Class,-PluralComponent).
Retrieves a component definition of the Class which overrides the
tense dafault (singular and plural, respectively).

PROPERTY SET DEFINITION MARAGEMENT:

(COMMAND IMVOKRED)

2eluildCLE_define property_set {+PropesrtysBet,+Class).
ProviGes usar access to the property set definition facilicy. The
Property Set name must be unique to the class. The user will be
queried for a list of property sat members (currently only lists of
symbols are allowable), and if the =.t is hideable (meaning that the
set represents a fact in the world which could ke unknown,
The members of List of Proparties must be unigue for a class, to
include class hierarchical links, unless the Property set is redefin-
ing an ipherited property set. Object hierarchical links 4o not
reguize this restriction.

mebuildCLg_remove_property_set (+Propertyset,+Class).
Undefines tho property set and undsfines all of the mamber property
data. It does mot automatically undefine all of the ocperators and
ralations, etc¢. (that is extremely complex and it is basically left
for the teachsr to mapage using the integrity checker). The property
set must be a defined member of the cbject, not an izherited copa.

weduildCLs_view_property_sat (+PropertySet, +Class).
Prints cut a dstailed definition of the proparty set, including where
it is dafined fyom (either in the cbject itself, inherited from a
pareat or ancestor, or inharited from a component).

mabuildCcLs_modify_ property_sst (+Propartyset,+Class) .
Allows the user to modify the propsrty set, either ita name, mambers,
or its hideability dsclaration. The Pioperty sat given must be a
defined property set of the cobject, not an inhexized one.

(RXPORTED TO OTHER MODULES)

2abuilaCLs_get_hideable_property_set (+Class,-ProcpertysSet, ~Domain) .
Locates and Teturns a hideable property set for the cospilaer.

69

mebulldCLS_adjacent_properties(+Class,+PropertysSet, loopino_locp,
TPropartyl, tProperty2) .
For property sets intended to be interpreted as a seguence of states,
this function serves as a successor and predecessor fumction which is
oapable of returning all pairs if the last two are unbound. This
function is strictly non-transitive. The loop marker ia the thizd
argument indicates that the first mamber of the set 1s considured the
successor of the last.
print_current_property(+0bject, +Fact,-Output) .
Takes the chject and fact and assembles a list of words Qutput which
with print_noun can be cutputted. print_current_property is intended
for use with print_list as a template.
assemble_properties (+Object, +PropertyDomaln, -AssenbledProperties).
xassenble_properties (+Object, +PropertyDomain, -AssenbledProperties) .
yassemble_properties (+0bjuct, +PropertyDomain, ~-AsseabledProperties).
assemble_property(+0bject, +Property, ~AssembledProperty) .
xassenble_property(+0bject, +Property, ~AssanbledProperty).
yassemble_property(+0bject ., +Froparty, ~AssenbledProperty) .
These are used to put together and disassezble proparties to and from
their cbjsct and basic property components. Their difiersnces are as
follows:
plain = only for cbjects with their defined properties.
x " = for assembling objects with their defined or componsnt
propecties
Y = for assembling texplates of properties (especially for the
lesson compiler)
opposite_of (+0bject, +Property, +Opposite) .
negation_of (+Object, +Property, +Nagation) .
list_opposite_of (+Object, +Properties, +Opposites).
1ist_negation_of (+Object, +Properties, +Negations) .

' Opposites and pegaticns are two concepts that are similar. Por a sat
of one or two mambers, they are the sama. For three:, howaver, the
asgation of a property X is simply not(X). The opposits of property X
in domain omeof([X,¥1,....¥n]l) is Y1, them Y3, ..., ¥Yn.

The list versions return bagofs all possible answers and retwims it in
a single-level list.

build _ordinal_dual_arglist (+Objects,-PairsofInstance/Objests;.
Ordinal dual arglists are used to specify an abstract set of instances
for use in class definitions and tasks. It takes a list of cbjeacts
and attaches ordinal names to repsated instances of tba objects.
Bx, la.,b.,c.a,b,a)] becomes [a,b,c,[(sscond,a),al), [second,k], (taird,a))

PROPERTY DISPLAY DATA MANAGEMENT:
(COMMAND INVOKED)
mabuilldCLa_set_property_display_data(+Property, +«Ciasa).
Invckes the property display data managsment subconmpmand locp. This is
aostly stubbed out, but does contein hocks to access thu graphics
aodule.

RELATION DEFINITION MAMAGEMNEN::

(COMMAMD INVOKED)

mebuildcLs_define_relatiocan(+Class).
Provides user Access to the relation definition facility. The nane of
the relation must be unigque to the class. The user will bs gueried
for the name of the relation (or “suumary fact“) and then be given a
1ist of cholces foxr the detinition (which is a listing of all the
defined and inherited properties of the 2lass.

2uilaCLS_remove_relation(+Class).
Undetines a relation. The user is given a menu of relations to choosse
from, which will ocply include defined mambers of the acbject -- not
inherited onaes.

L e FAd MabuilacLs_view_relation(+Class). .

P ’* Prints out a full definition of a relaticn (“"sussary fact®) to the ./

o ™ tetminal. The user doss not specify the summary fact on the command %/

FA line 3ince parsing a summury fact name is 4ifficult. Rather, the usexr */

1" will be given a menu of all summary facts to select. */

" nebuildCLs modify relation(+Class). */

FAd Allows ths usser to change the name or defipition of the summary fact. */

A The summary to be edited will be Jelected from a menu in responss to */

T the "modify summary fact" command -- it will not he a menu cheoice. *)

FA This operation is restrictad to defined members of the ohjact, not */

/* inherited ones. .

IAd (EXPORTED T0O OTHER MODUL3S) */

/* mabuilicrs get_partial_relation_dsfinition((<Name,+Class), -Def) */

FAd Extensivh of mebuildcLs define_reslation for task-level summary facts. */

FAd mabulldcLs get_summary_Cact (+Class, -SummaryPact,-Definition) */

PAd Extracts an cbject-based summary definition. ./

A Y

/* OPERATION DEFINITION NANAGRWENT: ./

FAd (COMMAND IWVOKED) */

* mabuildCLs_ define_ocperation(+Class). */

PAd Provides user access to the opuration definition facility. The ame */

VA of the operation must k.1 unique to the class. The user will be */

" gueried for the following information: */

,"* Nasw -- The operation nume must be of the form <prefixs «direct */

/* okjsct> <trxaill phrase>. The direct cbjact must be the class name */

7* or a valid component nams of the chbject. */

A Associated Objects -- Bffectively an argument list for the */

/,* ocperation (think of them as the direct and indirect objects). */

1* Precorditions -- Provide the preconditions £or all objects in the */

rAd operation. i */

1" Intended Effect -- Tha single intended purpose for perfarming the */

Al cparation. It is a property of the dizect cbject. ./

/* 8ide Rffact -- The other changes to ths cbjocts in the opexatioa. */

/l* This liet must be a strictly determinate list (no porsibilities */

,* ar probabilicies allowed here. ./

1* mebuildacLs_ramove_operation{+Class). *;

FAd Undefines an cperation. The user is given & wenu of upsrations to */

,* undefine. You may only remove defined operaticas of the objeut, aot */

" inherited ones from parents or components. */

/* mabuildcLs_view_operation(+Claes). ./

A Prints out the full details of the cperatiocn definition. It includes */

/" all the information specified about in mebmildcLs_define_cperation, ./

A plus information about whether this oparation is Aefined ir the Class, */

1* was inherited from a parsnt or ancestor, or tas inberited from a »/

/* component of the object. The operation is chosen from a twau provided */

A through this command -- Dot by s ccemand-line entry. </

/" aebuildCLe_modify operation(:Class). LY

A Al Modifies the operaticn detinition. The operation is chosen from a ./

A wmenu invoked by the command -- not given op the cosmand line, and ocaly */

/" allows the modification of defined cperations, not inbherited ones. .y

FA The mndify operation command allows for the change in OMLY the T4

] FAd intendsd effects, preconditions, and side effects. You CANNOT repane, */

o /" nor respecify the indirect cobjects. These are temporarxy changes dus */

VAl the extrems ccaplexity involved, plus the fact that it would be easler ¢/

A for thess two if you use the “remcve cperation" cosmand and then starxt */

FA over with the "create operation” ccamand. *

A *

L) /7* ONRRATION DISPLAY DATA MAMAGENEWT: */

N A MebuildCLe set _oparation_display_data(+Property, +Class). *y ,

" Invokes the ocperaticn display data management subcommand loop. This %/ 1

/e is mostly stubbed cut, but does contain books to azosss the graphice %/

n S

acdule,

DARMON DEFINITION MAMAGEMENT:
(COMMAND IMVOKED)
mebuildcLs _define dasmon (+Dasmon, +Class).
Provides user access to the dasmon definition facility. The user will
be Queried for the following information:
Triggering Condition ~-- What will cause the daexon to becoms activa.
Activation Type -- Whether or not the dwemon will advance on or loop
on & property set, or its activation is basad on applying an
operation.
Mvancenent Criterion =- Whether the daemcn will advance based on
aumbars of turns or a probability.
Activation Message
nebuildcts_remove_daemon (+Daemon, +Class) .
Undefines a dasmon. Must ha a defined daemon, not an inherited one.
mabuilldcLs_view_darmon (+Daemon, +Class) .
Prints out all of the relevant detailed information about the daamon,
including whether iz is defined within the Class, inherited from a */
parent class, or inherited from a component. L7}
mabul ldCLS_modify_daemon(+Dasmon, +Class). ./
Allows the user to modify some of the attributes of the daemon. The */
dasmon. must be an defined daemon, not an inherited dasmon from either */
the parent or component hierarchy. *y
(EXPORTED TO OTHER MODULES) ./
mebuildCLs_get_background_fact (+Class, -Trigger,-Pxrob, -Type, -MNsg) ./
Retrieves information about a background fact of the Class. .y
./

/t'..'.tl‘ttt..t'.‘.-'t.".tﬁl.t"....'.i!l'l.'..tt.it""tt‘.QQ"Q...'I.Q...'.I..,

I".Qlit.tt..".'......tt.-.....QQ‘Q'QQ'.....ltt..'.l..."'
/* Means-Ends Lesson Bullding Program -- Version 1

TAB 3. MEBUILDER TASK MODULE (MEBuildTSK)

(MERUILDER)

staneensnddhtsbtatbodane)

*/

/% CPT Thomas P. Galvin, U.S. Army, Maval Postgraduate School, Monterey CA 93940 */

,...'.'..‘..'.‘........O.‘..............'.I".‘I..'."'.l..-itlt.".....'.i....l..l

/* MEBUILDER Task Definitiom Module -- Versioam 1.0}

I.
,.
I'
/.
’.

I.
,.
’.
l.
"
,.
’.
I'
,Q
/t
,'
,Q
I‘
,.
I.

I.
l'
YA

I' ® 0 A 8 8 R B R e R ETE SRR R T AT E R ® e o & & AR G2 N REE RN

,.
Ii
,.
,.
/.
I.
,.
1*
FAd
,Q
f Ad
,.
,'

This module manages the task data structures and assists the user in buil-

ding comsistent task defipitions. Curremtly, the task structure uses a
simple procedural net, covared in the latter stages of this £ile.

Version History

1.0 ~= friginal version releassd to the students for the experiment.

1.01 -- Comments are updated and stubs placed for commands or predicates

needed in future.

Important Notes about the Curreant Version:
+7hs task definition module countains several submocdules, each of which

could (should) be broken out into a separate file.

At present, howaver,

the ccmmunications among the submodules is too tightly woven to make &

clean break.

The submodules would he:
=~ The MEBuilder interface portion

-- The procedure graph (or procedural net) managar
== The guarantesd state (or situation) manager

+The task definitien module also makes too libezal a use of utility pred-

icates from the class definition module. (There are scme ten predicates
that ars "wxported" in mebuildCL8 that do act begin with mebuildcLs_).
+Although a considerable amount of work has beea devoied to modularising
MERuilder, the fact remains that the intramodular structurs of this

module leaves a bit to be desired.

The procedure grapgh, guaranteed

state, and other submodules nsed to better conform to the specified ox

iotendsd interfaces.

" e E A SRR R AR TR R RS RS R ER RSN 'S AR IR BE I N BN BE B BN N B

NERuilder's task fundamentals

A task establishes a temporal relationship ameng operstions when the opsr-

ations are applied towards a spacific goal.
dentify relationships hetween und among cbjacts that the basic vperacions

themselves don't cover.

Presentation of a task te the user:

This allows the teacher to i-

currsntly, a task is given as a sequarnce ci operations or sets of sub-

procedures.
of the operatica.

Bach operation is given a step nuxber which is puinted in front
This step number is used to identify steps when being

manipulted sbout the task (rather than having the “sacher type the sntire

operation nsme -« which could bs anbigucus anyhow since an operation sould be

used mo¥e than oacs.)
(1) turn the Xey
{2] eopeo the door
{3) all of the fellowing:
{3a) subprocedure:
{3al] take the nonsy
{3a2} »w
{3b] subprocedure:
[3b1) out the power
{3bd)

ecut the phors line

73

*/
*/
*/
*/
*/
*/
*/
*/

” {4] ovade the police
/* Tis indicatss that the postoondition of step 1 will become the precosdition
/* ot stap 3. In addition, 3 mmet preceds both 3Jal and 3b1, and both 3a2 amd
/* mst precede (. W\th respect to the sshprocedures, Jal smst preceds
A « bat there is 2o direst relaticmelip established hetweea 2al and any atep
1* »
1* “.. Lthe one task are: [l.l.id.m.m.m;‘l. At M| ol
/* csmmet epoeify "3a* ex “3b" a9 stcp mmmbers. sor will the subproceduse mesh-
/° anisms zecogmise “Ja® and “3»" ay sabprocudared 49 ©f yet. Tiis is a currest
/° limitation that should be an casy wacugh £ix.
l‘
Genrderod Acsions:
1* I vacticee® action is ocne that vel be dome at amy time so lamg as ite
/1° pseconfiitions ere met. Usordered asticns are placed ia frout of the actiom
shux depende o it and theay are marked with a etar:
i4] d&o semmthing
{$] * do this ot any time as lomg as it is betoze (6)
i€] d&o thie after (4] and after ($)

"

/° MEBuilder's task datimition dats atructure
,.O...I'......'..l"....'...l.....l'...'.
,'

1* A task ie defincd as the composite of the following faots partiticoed with-
/° in the same @ynsuicelly declared modkle.

,O

7* JABIC TABR JACTS:

I.

/° saskictonk pale>, <AStef Clase>, <as3vsisted proge and charastexes).

VA The «<task "ame> saould be ia the form of a vesh phrese similar to ma
Al epetation, o0 that it cal be construstad as an opazatioca ia lesssas ia
1* whieh the slasees are instantisted but the tssk is ast. <actoxr clese>
A ved ¢clsse of the stasfeaxd ‘churaster’ clese.
1* indepeadent cay wse ‘shazectes’ as e

g <anecu. puops and charesters> ase the othex reguired itess
’” te available.

,” <ass. progu apd ebar.> is & liet
A of paize cssvespoading tr (<lesel tasik preg meme>, <slacuer). The
’” <iosal task prep Dame> is the sume a0 <siase> waless the task hus
,” sese thas can #f the savw <class», is vhish esse the subseguent

" itemd are sugatated with munaTeis starting with ame.

l‘

/° Asicial_ocsediticas! ttask rojest>, <initial coaditionss).

1* deiectiven l<task abjest ., <ohiescivess).

1° aiataine 2hs imitir)l cenditions and the sbievtives of cash abjest. T
” <tash abjest+ o e leovnlly deslared task instanse aese and <iaitial
/,* senditions: and esidestives> are lists of prepestivs:

fAd Tiere is presise.iy we eatsy fog cash pruperty ee: dofined for the elass

74

'Ad an coapoReats and oo extres eatiy for each hidsable property set.

” . <imitial coaditioms> se list of <property>

” <objectivasy ws list of <ocbjective»

," <shjectiver as <praperty> | immmterial(<property sets)

’0

/¢ SASR PROCEDUNE MNT PACTS:

’.

1* stage(<stage mamm>, <outgoing split type>, <spiit joimimg sr.ge>,

A <incoming rplit typer», <incoming actiom list>, <split stack:).

A Defines the mode for o task's procedaral pet. The following axe the
,* particulars for the argumaats:

A I0tAge DLEN> us gtart | €300 [<(-stage> | <J-stage>

” <Q-stage> we gQenumberx>

1" <J-stage> == joia<sumber>

1* O stages ave for scticsa ocut. Joiu stages are for occll-octiag and
A 4isambigeiatiag the joiaiag of soticas together.

A <ovtgoing split typersa no-actioms | liasar | or-split | aad-split

I Ad <oplit joining stagersa <Q-stage>

1~ <invoning eplit typerss lissar | joimimg

Al <iscoming actioce list> ss <iscomiag actiom)*®

1* <inconing active» s <stage pame> <svtiom index> <Iplit index>

FAd <action iadex, ss <actioa sasber> | lambda

FAd <oplit index> ss <cpatural>

" <oplit index> will always be 1 for and-split aad lisear stages.
A <split index> will ba 1 or greatsy for oc-split legs.

” <aplit stack> ss <oplit stack estzy>*

1* <oplit steck amtry> sa <split stage> andior <eplit iadex>

” The steck of opea wplits oL A givea stage.

A The procedure mat defimes the existemce of amd-splits and cr-splics.
1 Aa er-oplit masis that thaze exzists mosy than one solution to a webtask
1" and the student oaly has to ccuplets cas of the subtaske. An amd-split
1* asaks THat thars axists mmulitipls subtasks that the stwiast mmst perfern
/,* all of. Theeeo subtasks may bs doas ia paraullel, 90 the student cem do
FAd any of the acticms ia the subtasks in any oxdsz oo loag as axder ie
o maistaised emoag the subtasks (sc givea subtasks (e,b,c) amd (4.e.2),
F&d a studeat ray 80 [a,b.c.d,0.£], {(4d.,0.£.8,9,v), [a,4,b,0,e.2], @t0.)

,.

1* actisal(dindiex §>, <cpezakor>, <otep-wise prescaditica list>,

1 <dtacministis side affect list>, pushabilistic side elitect liet>,
1” <now meesages) .

/,° asticas reprecdal & tryansitioca in the proocedazal net (and the met

(A menipulatisn voutines refar to astions as “tramsitiem”). The operstor
FAd is eurvently stored in sached foxm, but this will chamge as task

r” ingtantiations Zfor the lesesm vill reguirve sa isstmatistable form.

l.

1" guareatesd_state(cstager, <list of guaremtend prepectiss:).

” Saewa a8 “AeGeRsary. pestesntitisss” in previeus versists of MEBuilder.
Fod The 14st of poaraatesl prupectios someist of o 1ist of either a single
" piepesty o & list of multiple peeportise frem the same propecty sek.
1" e liet of muitiple prepestices ls hased an cashed pwepesty sets.

” gusTettesd_stages 4r¢ resulsulated at cash zhamge is the prosefurel

” sraph.

'.

° o sssesisted prege and charactens will bs refesed to by the wee of goasm
/° e the yrinted nams of the cloes whan meressazy to aveid msdiguity. 80 ¢

.

/* mation ahout the depepdencies on the lesson, i.¢. which clisses ars required
/* is ovdar to build the lesscs -- these aTe hased solely on the prop facts.
'.

/* Tasks are aot directly accesssd by ocutsids modules bav are instantiated by
/* lessons. :

,.

7* OTHER TAIR PACTS:

VA -)

/° zelatism(<realatics mame>, <ocbject list>, <defisitioms).

1* These are very similar to that of the elass definitiocn ezcept that these
TAd telations 4o mot describe the stite of am abject kwt rathar a state of
,* the task. The compilaiion process will have to be arranged so that the
[Ad <yelation aame> cea ia fast take an cbjact 2ans and cashe it. Nowever,
VA for now the relatica aas~ will be estaklished as is.)

’.
I.C‘.....t'nl...'....-."..".....Q.Q..'O
7* Commande provided by this module (iacludiag those ot yet implemsated)

/® Documantatics ca these Semmands can be fouad in the wser's mammal.

LR B BN B B BN BN B BE BN BN BN BN NN BN BN BN B BN NN NE BN BN BE BN BN BN B BN I K B R N BN B A

Wote an legead: <step> is the imdax of an cperatioa within the task as shown
By the view task command (which see):

TS COBMDS EXPORTED TO OTHER LOOPS:
create task [(named <tasks)
woek oa task (named <task>)
semove task [(named <task>)
restose task (named <task>»)
cask {aamed <taskr)
tuation [(ia <task>) [after <step»)
tial cenditions [ia <tasks] ([for <cbject>)
view objestives [ia <task»] (foxr <chject>)

i
i

TRIE LANIPULATION COMGAMNDS :
wvigard ea | off (Uadosumsated commands)
WOTR:s Sets/Beleaces the debugflag bit for msens-eads
oshask task

b
Hi

conditisons {(foxr <chjest»])

gttt
il

<step>] (with <stepe)
]
frith <steg)

Tl
i
i
it
Hj
ERRRRRRRNTRNRERLET £} EEEERRRES

;
|
i

,........C.".......I.Q...........'lt..'.

1° Papentad Predicstiss. All predisates isteaded fog extecnmal wse ave {ined
/* with "mabulllBeX "
’Cl.'.................l..l..'...a.-.'.'..
I.

7° MAIN ADUALICATION LOOF -- APPLICATION PREDICAYES:

H

76

- mebullaTER_setud.)
= Yajtializes all the dcaaias. commands, and templates for the main
‘sabuild application cumxand loop.
msbullarex_incleude view commands (+Loop) .
=~ Provides Loop with the task definition view commands for use in
. the lesson loop.
nebulldTaR_task defisiticn _lsnitialine.
~= Imgtinlives the tesk _definiticn database.
medxeilATEE _task defiunition_shutdown.
- Cloazs all task_definitiocn facts from the Prolog database and srases
all dyasmicaliy-created modules. OUsed ¥y MEBuild's quit command.
mabuild?EX_sppead_sutosave.
-+ Appends all task defiaitice data ia mesory to the sutosave file.

COBIAMD INVOKED FREDICATRS FOR MAIN APPLICATION LOOP:
mebuila?sx_define_task(+Task).
== Provides user aucess for c¢reatiag a sew task. Invokes the task
building applicaticn loop om the aswly crsated task.
2ebuild?SK_remove_task(+Pusk) .
~= Marks a task as “deleted" (refer to library module).
mabuilaTeR_restore_task(+Task) .
== Restores a ramoved task iv memory (4i.s. undsletes it)
aebuilarek_vork_om_task(+Pask).
-- Loads ia (if mot loaded) and invokes the task duilding spplicatica
loop on an existing task.

COMMAND-INVORRED PAEDICATES FRUN TASK LOOP THAT ARS ALSO EXPORYED:
aebul l4T8K_test_task_iastsgrity(+Task). .
~- Basures that the task is consisteat with the class definitions (it
should be OK sc loag as no class was updated after tha task was last
saved to disk.
2ebuile?sX _view_initisl cocaditiocmes (+Tesk, +Object).
~- Liste the Ohject's initial copditioms a8 vurreatly specitied.
2ebuilATOR_view_chiestives (+Task, +ject) .
-= Lists the Chjsct's cbjectives as curzeatly specified.
aebulild?K_view_task(e+Task) .
~= Priate a listing of the surreat sclutiag to the problem.
sabuildSeR_view_situation(+Bask, +8tep) .
-- Prinke a listiang of what the situation should 1ook like after doing
step mmber Step.

NON-COMMND DIVOKED EXFPORTED PREDICAYES:
»ebuillPeR_get_relatica(+Task, -Relatics, -Classlist,. -Definition}

«= Roturas a sumaaty defined in the task.

aehulildtR_cathe_lesscn_tasts (sLesseniiodcle, ¢Lessanlhiests, +Tasks)

~~ prapazes and cashes all task-releoveat dets to the levscn compilex.

sbullOR_saposted_teset_task(+Task)

== Yood by nabuililes to initinlise a task wpoe amtesiag the “wegk o
lesaen" coumand.

nebuli VR _sseigament._of chjects (+Iustanse/Clase Paire,sPask, -Mp)

-~ Salee & liet of instemses and classes, wnd the list of ebjects Te-
gaired feor a givea task and zeturis & agping of a tha task-based
exdinslisned instanse nate (ehjeet, (cessnd ebjest],ates.) te the
lesess's ceasuets instanse name based oa the cest and prop lists.

bl lAfeR_fivet_task_that_sapleye_shieet (+Rasks, +Class, -Task)
asbutllovsK lasc_task thet_eupleys_shiest (+Tashs, +Classe, -Task)

= 7oturme th: Task asag Teshks thax £its the predisete hame.

wsbeZldB0E_get_ilaitial _cendisisns _of_iastence (+Pask, ¢Zastanse, «Clase, -1C)
== Dotvioves the iaitial ewmditions of the +«Clase ehjest ia +Pesk and
Anssamtistes the faitial ssaditisns list to esatais the csnerets
IRStARes RaES.

*/

’.

l"...‘.'.."'I.'...Q...-‘C.'.‘Q.l'.'....-....G...'........0'...l""..'..'."."t/

WD ILTER_got. cbjsctiven_of_instunce (+Task, +Instance, +Class, -0BJ)
.=~ Retrioves the chjsutives of tls +Class objest in +Tusk and
instratiater the cljestives 1ist to contain the comcrets Inatance.
mabaildTsE emgleys_ohjeot (+Puak, +Class)
-- Predicate that snuceeds if apy nbject of type Clase is used in Task.

' mabulla?sK_get_state_of_instance(+Task, +Instance, +Class, +8tage, ~State).

- ~=-REfestively returas the instactiated garanteed state for the
Tistanss of type dlese im Task at stage.

aﬁum,hu _ohenges_ia_instance (+Task, sInstance, +Class, +8tege,

=fState).

-= Rotusns m oombipation of sll the last changos ox the significant
changes madc in the aamed Instance of Class pricr to samed Ftage in
the Task. Used to help deternine immaterial or waispertant goal
.."‘..u‘ '

mebuild¥?eX_sxport task{+Task, +File).
~= Send out the task Sefiniticn in mamory to the file.

*/

TAB 4. MEBUILDER LESSON MODULE (MEBuildLES)

/l..-.'."'.'....l.l'.'t..i.".'.'...'.'.'QQ...Q'..Q..Q.......t."'.'!i".'."'v../

/* Neaps-Ends lLessom Building Program =- Versiom 1 (MEBUILDER)
/* CPF? Thomas P. Galvin, U.8. Army, Maval Portgraduate School, Nonteray CA 93940 */

’.Q..‘t'..".....'Il"......'t".....t.tt:.%.Q.C.l'.."!....li.........'..'...'..tI

/* MERUILDER Lesson Definition Module -- Version 1.01

I.
’.
’.
"
’.
/'
Y Ad
,'
/0
I'
/'
,.
l'
I.
I.
’.
"
’.
FAd
’.
,.
1%
YA
¥ Al
,.
’.
l.
’Q
l.
VA
’.
FAd
I.
,.
’.
YA
A
,'
YAl
1%
'.
F A
"
"
’.
rAl
'.
fAd
F A
I.
1*
’O

This mofule Asfines what a lesson is as a structured instantiation of tasks
objects to profuce a concrete lesson emtity runnable in the means-ends tu-
toring shell. It also provides & quick and effective msans of building be-
gianar level through advanced level problems in the space.

Lesscas oonsist of one or more problems, which contain different scenarios
and provide different parameters to some of the probabilistic avents in the
instantiated tasks. 7he imtent is that the problems should be ordered in in-
creasing level of difficulty or im accordance with an accepted curricular or-

dexiag.

Version Nistory:

1.0
1.01

== Veraion released for use in the experimsnt of Summer Quarter 4.
-« Voreion 1.0 fully documesnted.

4 % 0 ¢ ¢ 0 8 0 ¢ B O b A RN d R NS R RS RS S S S S e REE RSN R TS

MEduilder's lesson fundamentals

L B IR B I B B B B B N BN B BN B BE K BN NE BN BN BE BN NE K BN BE BN BN B EE B BN BN B NN BN BN

A lesson is a workbook of exercises for the studant tc perform. The exer-
aises should be uwsed to present different problems to studant, in general
they should be iacressing iam '\ifficulty and/or complexity. Examples of the
diffexent types of probleme that would be suggested are given below. These
typss could certaialy >« combined ia a given workbook.

t 9

».

Increasing Complaxity

Preb 1 = basic task with all megative pitfalls (i.e. all pzob. side
sffects tursed off)

Probs 2-a = came task with the aegative pitfells given increasing
1likelilood andl/or adversarial agasts working faster.

Walk, Crawl, Dua

Preb 1 « £iret chumk of task

ok 3 - (a-1) = paxt chmaks of task

Preb a = whole task (compreheasive fashice)

Differeat Byuipmamt

Prob 1 = task ca a basic prop (i.e. car)

Pzche 3-a = Sask on Wmore (pecific types of prop (i.e¢. domestic cars,
teveign cars, etc. which might have particular needs or
considexatiocns)

pitfereat Moles

Probe 1-a = If a givea task has a teem menbers cosperatiag together,
then for sach preblem give the stwfeat a differemt role to
play. Rither preb. 1 or 2 should be the guy in chazge.

Ditferent Tasks

Pzoke 1-8 = If the librery conteins n differemt tasks isvolving the
seme astor eclass and same sets of pueps and all » tasks ia-
volve & ganeral subject matter, them have the student @0 the
A tasks, ee At & time. (Bx. for a meshanic and & sarx
engine, e osuld have the studant replece "he water pump
gasket is preblem 1, £ix a fuwel injectex ia peeblem 2, ...)

durisg eomstxustion of the tasks. the tsasher talks iz terms of abetract
/* abjosts (sax, sharastes, stao.). In a lesecn, the teasher aow talks ia terms

9

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*!
*/

/* of conorste cbhjects (propar nouns -» Jim, Jim's cax, etc.). Lassons contain
/* a "cast* and a set of “propa®, and setting up the lesscn is done in terms of
/* naming a “satting" or a "scens” and having the student perform & "role" in
/* the scens. The task could be viewed as a script, indicating how the actozrs
/* bahave under different stimmli.

The lesson itself has an introductery text along with the cast and prop
ifsting. Bach problem consists of an introductory text, along with the des-~
oxiptions of the particular scene and goal, along with options that allow for
diffareat bshaviocurs among problems,

The iantent of the MEBuilder system in to have the teacher spend the major-
ity of the time here, at ths highest level of the MRBuiider hierarchy -- do-
ing chorecgraphic aid situational things zather than digging in the weeds of
the task and cbject layers. The library management systam is there so a huge
Twusable cbjact library could be created of both objects and tasks. 80 the
lasson interfacs nesds to be the most robust.

Yid
/l
/‘
I.
F A
1"
,.
1"
"\—‘
Y Ad
Y Ad
rAl
rAl
I'
Al
I.
Vid
Y ad
YAl
"
rAd

¢ 6 % %R

MEBuilder's

® ¢ P S O RE R R ER RS TR E R TR RS ST DN RN RS

lesson definition data structure
" % & 0 & @ & & & & % O 0 & ¢ @ 0 B F A C S C G AN RS S

A lesson is defined as the ccmposite of the following facts partitioned
within the same dynamically declared module. When a lesson is cexpilad into
msans-ends form, this data structure will help keep repatition to a minimum.

The associated class definition information is copied in to assist, bowever
the tasks are not copied into the dynamic module. Their information is kept
siangly instantiated iz its own module.

BASIC LESSOM FACTE:

lessan(<lessch DANS>», <CAst>, <prope>, <taske>).
The <lesvon mame> is strictly unique to the envircoment. The cast must
be nomn-empty. The list of tasks are a subset of all those which could be
{nstartisted from the <cast> and <props>. The <cast> and <props> are
2-tuples of (<instance name> <class aame>) or morxe appropriately. (<role
aame/prop aams> <clase>). Throughout this moduls, cast mexbers will be
retarred by their rols, and props by their prop name.

dessou_iatzo(<text>).
Glchal iatroduction foi" the lesscm.

problen(<aumber>, <aane>, <utudant's TOler, <Cast>, <Props>).
The problem fact providne the basic iaformatioa for the problem. The
cast apdl prop ArguNaats allow the teacher to specify that a cast member

45 a darived class of that given ia the lessom level. dGemerally,

the cast sambexs and prop lists match that of the lassoa.

WORR: Curroatly there is a0 hook ia place fex problem opticas. The
sida_sffent override balow is sezt of a hook but it's mot wsed. They
oould be pluced a8 a sinth sTymmsat hete o thay oould be iaplemsated as
segazate fasts (ia fact, t)e cast and props oculd be treated in overzide
fashion as well).

faicial_setting (<aaber>, <iaitial somditios list>].
Analegons to the iaitial ceaditisns of sech task, ezoegt that the iaitial

estting

1s & csmposite of all the iaitial oceaditions of each pxop.

chjestives (cambez>, <oust maWNr>, cobjestive listy).
Salike the iaitial settiang, the abjestives axe hecken cut by east member

sinee
will be

cash sast msuber will et indepeadently based on the scena. These

wsed te derive the agent facte in the mstuter lessca. Also aote

*/

- A that the cbjectives per cast member ara fixed for all preblems in the */
f : - A lesscn: This i»s the global “resting state” for the cast member. */

A */
/* problem_intro(<numbar>, <texts>). ./
* Iatroductory text for the problem. .
A */
/7* side_sffect_override (<numbers, <op>, <coDtext>, <CHARGE> . <Prob>) . .y
TAd NOT IMPLENENTED. This was the first swag at a problem option concept. ./
/,* It say be sutficient for the event-specific probabilities, but it is ./
Al prebably batter to bave a more global optiocms comstruct, */
L 4 *
';'.i..QQ.C..."..t.tt!.'....ll'.'.t'...t't;
/* Commands provided by this module (including those not yet implamanted) */
/* Documentation on these commands can be found in the user's manual. w/
I..t'tt.l.t.'.t'.tt'-.t.tttitﬂttl...lhitt\'l/
/,* */
/* LRESON COMMAND RXPORTRD TO OTHER LOOPS: LOOPS: */
/* create lesscn [named <lesson>] Main */
/* work on lesson (named <lesson>]} nodn */
/* Temove lesson (pamed <lesson>) Maln .7
/* xeators lesson [pamad <lesson>) Main */
/* chack lesson [pamed <lesson>) All */
/* view lesson [named <lessons) Al) */
/* ocemplle lesson [namad <lesson>) All */
/* ron lesson (named <lessonm»} A1l */
A */
/* The Lesson loop is invoked through the create lesson and work on lesson cmds. */
/* LEBSSOM MANIPULATION COMMAMDS: LOOPS: ~/
/* wisaxd on | off (Undocumented commands) Lesson */
F A JWOTR: Sets/Releasss the dsbugflag bit for msans-ends */
/* check leason Lesson %/
/* view lesson Lessen %/
/* compile lesscn Lesgon v/
/* zun lesson Lessan %/
/* edit lessom intro lesson ¢/
/* wview lessca imtre Lesson */
/* create problea [(aamed <problemr) Lesson v/
/* wogk om problem (mumber <problem no>) Lesscn v/
/* work om problem [mamed <problem>] teasse %/
/* oxdar problems lssson */
/* rxemove pxoblem [nwmber <problem ao>) Lessom */
/* remove problem (named <problem>») Lesason v/
/* check probhlem (swmber <pxoblem a0») Lasson %/
/* check problem [samad <pxoblem:») Lesscn %/
/* wview problem [mumber <problea no>] Lasson %/
/* view problea [aamed <problem>) Legsca %/
" */
/* Tha Problem lLocp is imvoked via the create problem and work om problem omds */
/* PRONLEN MANIPULATION COMMANDS: woors: v/
/¢ wvisard om | off (Undocumented ccamands) Problem */
1" WOTE: Sets/Meleases the debugtflag bit for means-eads L7}
/* cheosk preblem Problem ¢/
1* view peeblea Problem ¢/
/1* odit preblem imtzo Problem */
/* view peeble: iatye Froblem v/
1* oset scens [feT <cast member oF props) Problem */
/* view sesas (for <cast masher ox prop>) Pxohlam */
1* ot goal {(fer <cast member er pruop>) Pxchlem ¢/
/* wview goal [fox <cast member or preps) froklem ¢/
/* set epticas Problem ¢/
1* s/
81

1* "YTEEEEEEEEENE I 2 3 B N R N BN S (R 20 B SR B B A7)

FAd
I.
IQ
I.
,.
1*
VA
I-
FA
/*
l.
A
1*
IC
1%
I*
/‘
,.
I'
/%
’t
I.
Al
/t
FAd
IQ
I.
Ii
,‘
IQ
l.
I'
,'
I*
,.
Il
o
ll
’.
re
,.
,‘
1*
’.

Exported Fredicates. All predicates intended for external use are prefixed
with "mebuildLES_* except for those from the lesscn compiler “meabulldCnp_"

FOFSrYPE N R E R R I B B B B N B R N N B B R N A *t & & & 2 & & @

MAIN APPLICATION LOOP -- APPLICATION PARDICATES:
ebulldLEs_setup.
e= Ipitializes all the domains, commands, and templates for the main
sebuild application command loop.
aebulldLEs_lesson_definition_initialise.
== Initializes the lesson_detinition databases.
mebulldLES_lesson_definition_shutdown.
-= Clears all lesson_definiticn facts from the Prolog database, erasing
all dynamically-created mottules. Used by MEBUild's quic command.
mebuildLRS_append _autcosave.
-= Appends all lesscn definition data in memory to the autosave file.

COMMAMD~-IMVOKRD PREDICATES FOR NAIN APPLICATION LOOP:
mabuildlLes_define_lesscn(+Lesson).
= Provides user access for crestitg a nev task. Invokes the task
building application loop on the newly created task.
mebuildLES_remcve_lesson(+Lesson) .
-= Marks a lesson as “"deleted* (refer to library module).
mebuildLES_restore_lesson(+Lesson).
—- Restores a remcved lesson in memory (i.e. undeletes it)
mabuildLES_work_on_lessch(+Lesscn) .
-- Loads in (if pot loaded) and invokes the lesscn building application
locp or. an existing lesson.

w-mrmmmmmmmrmmmma
mabuildLES_check_lesssca(+Lesson).
-~ Performs integrity checks om all cast members, props, tuske and
problems to emsure that the lesscn could be run successfully.
mebuildles_view_lesson(+Lesscan).
-« Prints out a table of all the primary lessca data.
mabuildoNy_ccupile_lesson(+Lesson) .
-- Compiles the lesscn in METutor-readable form and saves to a pl tile
on disk.
sebulildLis_xua lessom(+Lesscn) .
-- Invokes the METutor shell ia order to rus & lesson.

NOM-COMMAMD INVOKED EXPORTED PREDICATES:
mebuildLBs_sxport_lesson(+Lessca,+File).
-- Send out the lessom definition in memory to the file.

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

,'..".'..Q.I"'.'.'...........'."-..'...'.......'.'....'......"...."'..Q....IQ’

TAR S. MEBUILDER LESSON COMPILER (MEBuildCMP)

,I..l.."....‘...t......Q..Qi."i.ii'..Q.'.......‘Q'....l."'..l.'.'...tt'.'.....'/

fAd

Msans-Ends Lesson Building Program -~ Versicn 1 (MRBUILDER)

b

/® CIY Thomas P. Galvin, U.5. Army, Maval Postgraduate School, Monterey CA 93840 */

’QQ"."Q...Q.."..'...Q.....QQ..'.'......i...‘."'.".'I...'.'I'.'..C'.‘tt"l.'.!/

,.
I.
1"
’.
I.
I'
I.
I.

MEBUILDER Lesson Compiler -- Version 1.01

The MEBuilder lesson ccmpiler takes an NEBuilder-constructed lesson and
creates an means-ands conversion of it into an analogous database paxtitien.
The Aatabase partition is named the same as the lesson itself sxcept that it
contains the added ending *_me". When a lesscn is run, the partition sent
to the metutor_shell is the _me partitiom.

NOTE: MNeed to sxtyact all lesson caching stuff out of the mebuild _class
datinitinn and get it in here in order to achieve some degree of consistency.

Version Ristory:
1.0 -« Version released for use in the Summer Qtr $54 experiment.
1.0 «= Pully commented

L K B BN N I TR TR JNR NN BER BNL JNR BN BNE TN BN NNE IR NN NNL BN JNR BNE DK BN BN BN JNR IO TN BN BN BNR BNE BN BN BN BN

Description of the Compilation Process

L B BN BN B B B O I B B I I B NN B N NN B N B R N BN NN BN NN N N N N B I B R

“Compilation" is probably a less accurate dascription of what happens here
than "tranrlation™. Basically, the lesson representation coastructed in
MEBuilder fora is translated into a form that METUtOTX can use. That is, the
procsdural nst and class definitions are converted into a segquence of recom-
maded, precondition, addpostceondition, and deletepostcondition clauses --
along with all the other clauses that METuUtor uses as support -- such as the
randchangs, singular, plural, etc.

The lesson compiler will then attespt to solve the problem in as many ways
as feasible im oxder to datect any mismatching of the instantiated tasks.
The algoritia for doing this is described below.

The following is tha segueace of actioms that the lessca compilexr does:

(1) Clasas istegrity. (Performed by mebuild_class_defiaitiom)
(a) Definicion Imtegrity. All property definitioms, cpexators,

compoPMts, eto. must be ccmpletely and consisteatly defined.
Cheacks lor exrors vhich may cocur vhea an cperator is defined and
then the property set it is defined om is deleted. Pailuxe is
fatal and ccmpilation stope.
Definition Completensss. All properties axe testad to easure they
have aa associated ocperatioa (however, of course, some prupertiss
will mot have cperators which make them cocour). Pailure oaly
produces waraisgs and ecmpilation ocatisues.

(3) %Yask Integrity. (Perfosmed by mebuild_task definitice)

(a) Prossdure Graph Integrity. %ha procedure net must be cleosed with
Teapest te the “"start” and “"domns" stagen. Bsaking that theie must
bé RO stages with 20 cutgoing actioms uak all mmst Teach “domae*.
All erzor recovery Ppeecedures mmst reach “retura®. Aay severed
portions of the provedure graph must be ccapletely severed and
will caly prodkes u varaing message. All othar procedure ast
integrity viclatices azxe featal aad cempilatioa steps.

Astion Integrity. The various actioms in ths ast are them tested
to insuze that all operators. propestiss, oto. ars datined by the

LX)

*/

{e)

(a)

class definition. PFailure is fatal and compilation stops.

Split Integrity. AND-splits must have legs which are mutually
sxcluaive in activicy (bowever, Type III preconditions are still Ok
for foroing a partial ordering of AND-split actions). OR-split
initial actions must all act on the same property set and have an
entry preconditiocn which is an unused nember of the property set.
Failure is fatal and compilaticn stops.

Semantic Integrity. The guaranteed_state st "done" must contain
the objectives without possibility of other statas.

(3) Lesson Integrity. (Performed by mebuild_lesson definicion)

(a)
(b)

{e)

Object Integrity. Insures that the cast, props, and tasks are
consistent as declared for the lesson.

Objective Integrity. Imsures that the objectives listed exist for
the cast and prop meabers.

Problem Integrity. Insures that the initial settings and the over-
rides for each problem are well-defined and consistent.

(4) Translaticn. (pertormed hexs)
The specific algorithas for the translaticn of the means-snds facts are
described in the translation section of this file.

{$) Lesson Testing. (pexrformed here)
The individual tasks are tested for ssmantic and traversal integrity.
Not sure yet what it will mean to traverse a full forest of procedure
graphs.

*® ® & ® ® 8 TR NG E R TR R RN SRR R RN RS RS R R R RN NS W

MEBuilder's Compiled Lesson data structure

® 0 6% S AR R R E S AR RN RN L e E R E RN YRR RN RS

The compilation data structure fc': MEBullder-based lessons use a templated
form of the msans-ends search space -- i.e. it uses macros. Juture implem-
entations of MEBuilder might £ind i: bettesr not to use macros -- but the
adventage of usiug macros is that large volumes of lesson matsrial can be
stored in less space. YThe disadvaatage is that macra axpansion is 4done at
™A time which is slower.

Some of these MACTOS, forturataly. tan be directly detexmined from the
cless detiniticn module -- requiriny a0 additicmal translation for affect.
These are the hideable_facts, summary_faocts, singular, and plural dasignators
for components, the dasmoa-based ramichange facts, and the clasp-defined
display data informaticn for properties and ocperaticas. (WCTR: Curreatly,
act all thase will work properly simce, for sxugple, summary facts are single
ocbject. items at this writiag and are mot included for tasks acd lessons.
Summary facts axe also recursive by design but aoct implemanted as such yet.
These are shortfalls heing worked ca at this memamt.

The following are the compiled lessca facts for this versiocn. The macro
expansion done at ruatime produces imstantiated facts which 40 mot comtais
the added “_t" eading. These without a *_t" eading are aot macro sxpanded.

™Hhe template fezme are cae of two types und are based omn class dcmaine:
+Tamplate 11w <class>’
+QuantifisdTecplate 1ta (scme(<clase>),forall{cclansy)\®
e saubers of the template axe referensed in the hody of the a0 as
argiR) or parg(X) for the cdject's name and posssasive forme (if followed
My the ssupoasnt 3ans {0 prepartiss and cparations ca sssgpenssts) .
Masve-based argumants for Deepertics, operatioas, ste. will be listed
o wt‘ w‘“: ete.

For satas vhua thare is exzactly sne elemedt in the domaian foz all

“

./
.
*!
*/
*/
*/
"/
*/
*/

*/
*/

*/
*/
*/
*!
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
./
&/
./
*/
~/

*/

probleame in the lesson, the lesson compiler will pexform partial 0y
BaGYo expansion (still preserve the “_t" macro form dut reduce the */

BACYO~aYgQUBANLS to expand). */
1* WOTE: MNeed to explore the agent fact to ses if it really is needed uow. ®/
" */
A lesson(<name>) . ./
A lesscn_istre(<texts). Y,
Al Coplied from the lesson definition. ./
o */
" goal_t(<quantified template>, <macro property list>). ./
VA Sarves es the single goal list. If any template elemsnts aze Quaanti- */
/* f£ield axistertially, then multiple goal facts will be expanded and ./
Al satisfying any one will be sufficient for achieving the goal. ./
" Theze is only ome goal. t per lessen. ~/
A Y,
1* problem(<problem number>, <problen rame>, <student xole>). ./
IA Partial tacts copied from the lesson definition. */
/* */
A probles_dumain(<prcblem numbers>, <class>, <instancess>). ./
FA Ussd to supply the pames of the cbjests of like type in the arg(X) and */
VAl arg(X) facts. It is an expanded copy of the reduced cast and Te- */
/* dused prc; - arguments in the lesscon's problem fact. */
A */
1% problem_intre (<problem number>, <text»>). ./
FAl Also copied from the lesson definition. v/
A */
" start_state_t (<problem#>, <quantified texplate>, <macro proparty list:). */
/¢ Start_state_t is a macro which currently will always have a aull tem- %/
/* plate n0d a fully expanded <macro property lists. ./
] */
Al singulaz_t(<tenmplate>, <macre objecty). */
1* plural_t(<template>, <macro ohjects). *)
" For conponenc ‘s, <template> will be a single class entry. Full cast */
i* members and props who use singular and plural facts will use a aull */
1* template and a fully expanded name in the macro chject argument. */
Al NOTE: These nacros axe fully class defined and are produced by the */
i mebuild_class_definition modula. */
. FA L] i
I recommended_t (<role>, <tamplater, <macro property lists, */
/1t <BacTo oparations). .
" preccndition _t (<role>, <tsmplate>, <macro operations>, <macro context>, */
1* <«<ecro precondition list>). */
’* addposteondition_t (crole>, <tamplate>, <macro coperation», <macro comtexzts>, */
A <macro addpostoondition list»). */
I dsletepostcondition t (<xole>, <template>, <macro cperatiom>, */
1* <maore deletepostcondition list>). ./
/1" The templated forms of the means-edds facts. The <role> argument is %/
" optiomal, hut would be produced whenevar the rule applies to a cast */
/* member othsr than the student's role. */
A */
A zeandobange_t (<templater, <macro applications>, <masre comtext>, .y
Y Ad <macro deslete list>, <«macro add list>, <macrc comat/pxobs, */
1" <BascIO message’). */
1* Desoribes random events that occour -- or those eveats that occur in- %/
1" depeaidcat of a usex's action. <macro application> includes ixnit, */
1* corzesponding to random changes at ths start of the problem ox any o
1* sanplated wperation. <magro COunt/prob> corresponds te tho use of LY
" counters ox probabilities to indicate astivation of the randchange. ~/
r (Caxzeatly it is caly amavzo prob» which is a raw probability value. ¢/
FAJ OOURt RACTOS aYe ot yot implemsated.) <macro dalete> and <macro add> */
”* are BAayo property liasts and mecro message is a message template foxr */

85

warning output to the student.

hideable_facts_t{<quantified template>, <BACIO Proparty set name>,
<IAOYO Property set mshbarss).
Mlows the METutor shell to identify what informatiocn is to be with-
beld from the user when the unknown(<expanded propsrty set mame>) fact
is true in the current state.
MOTE: These macros are fully class defined and are produced by the
mebuild_class_detinition module.

sunmary_fact_t (<templater, <macro summary fact>, <macro dstinitioms).
Provides the relation definitions for the lesson.

apply_text_t (<template>, <macro opsraticny, <BACIO CODLARE>, <BASTS meg>).
Provide messages that will override the default apply text information
generated by the METuUtor shell.

IMPORTANT MOTE: The origisal inteant was that the templates would be mini-
mized in oxrder to take advantage of things like single-cbject domains.
This concept was abandoned beacause there were sigaificant prodblems in
METUtOT 's macro axpansion process when the single-chbject domains happened
to be the student's role and the fact would up with a null tezplate. The
Tresult was that soms facts wers not being placed in first person form,
hence causing unsolvable problems. Therefors; *all® nouns axe listed in
MAOCXC as types and no streanlining of texplates is dome.

[I NN R BN JEE JNE SN JNK N BNK BN BN NN BN BN JNN NN BN DN BN NN R NN BN BN BN IR BN BN IR NE EE BN B NN B B

Bxported Predicates. All predicates intanded for external use are prefixed
with "msbuildowp_"

L 2 INE TEN ZER TR JEE TN JNE TR N NN JEK BEE NN NN BN BN BN DR NN DN R NN BNE BN R BN BN BN NN BN DN NN BN JNE BN B BN 1

APPLICATION PREDICATERS:
nebulldCNP_setup.
~- Initializes all the domains, commands, and templates FOr the main
mebuild application command loop. (should only be templatas).
nebulldoMP_compilexr_initialise. {(Main App Init Routine)
~= Initializes the compiled _lesson databasa.
nebuildCMP_ compiler_shutdown. (Main App Done Routine)
~= Clears all compiled definition facts from the Prolog databaue and
arases all dynamically created modules. Used by MEBuild's quit.
mebuildcuP _append_sutosave. (Main App Loop Routine)
-= Appends all compiled lessods in memory to the autosave file.

COMPILED LEBSON MANAGEMENT :
webuilacur_cowpile_lesson(+Lessod) .
w= Top-level losson compiling fumction. Succesds if compilation pex-
forms to completion with Compileddod cuataining the complled form.
If failed, compile_lesscon will fail and the data in the unreturned
Compilediiod is undefined.
»eduildOMP_save_complled_lesscn{elsason, +File) .
== fhips the Compiled form of Lasson into the file Fila. PFile is then */
a fully METutor-runasble lesscn.

’-.li.'.'..'ll"...t'...‘....l.......t.........‘.lQ..'...l.l“.l.‘.."'l.t'.'l"..l

) TAB 6. MEBUILDER LIBRARY MANAGER (MEBuildLIB)

,Q.ﬁ.t.'Q.Q'......l'.....‘.'.......l..Q......I.l'.'.."lI..'l.t..i“'ﬂ‘lll.‘t..../

/t Means~Ends Lessen Building Program ~-- Version 1 {MEBUILDER) */

/* C*? Thomas P. Galvin, U.S. Army, Naval Postgraduate School, Nontarxey CA 93540 %/
't...'.‘....i..'...ﬁl..l.'.'.‘t.t...‘..Q‘i.tlt‘.ill....".‘!t..ltt.i"i.ti!i.‘ittt,

/* MEBUILDER Library Macagement Nodule =- Version 1.02 (mebuildLIB) ./
A .
/* Version Updates */
/* 1,0 <= Fundamental add, load, and save coperxations built. */
/* 1,01 <« Compiled file management added and gqueries for unsaved changed */
A added. . */
/* 1.02 <= Mded procedural stuks for delete and undelete commands, a purge */
" library command, and the link management commands (add link, */
* Temove link, plus others). The purpose of the stubs is to allow */
" easier inclusion of these commands in future. */
" Code has besed thoroughly commented to describe decisions made and */
1" Tequirements for future implementatiocn. *!
- -
;. LEE BB IR B N 20 B 2E BN BN BN BN BN IR BN I T I I BN R N Y Y RN RN O JEK BN SN BEE K BN JEE K N NEE N .;
{° MEBuilder's Library data structure *!
Ii L B B B B B B B B I BEE B R BN JEK BEE BN NN BN NN BN BN JNE NN NN BN BN BN TN BNE TN IR BNC NN BN BN B I B Q/
’* */
1 The local libraxy is stored in ./1ib fxom the teacher's working directory ¢/
/* The diractory contains a special file called “mebuild,lib* which stored the */
/* library information. The local library is prolog_file_type marked with /
/* mebulld_local library_ definition_file. The following is the library data */
) /% structure: */
| 1" */
- A 1ibrary_class_sntry(+Class, +FileName, +DateTime-Staxd, +ClassDepandencies). */
’ FAd 1ibrary_task_antry (+Tosk, +FileName, +DateTine-Stamp, +ClassDepsndenciss). ./
/" 1ibrazy _lesson_sntiy{-lesson,+FileName, +DateTime~Stanp, +ClasshDependancies, */
" +TaskDeperndencies) . */
FAd == FileNama is stored as an absclute f£ile name, to prevent prcblens L
’* when running MEBuilder from other directories. If PileNama is the ¥/
PAd keyword "none'. tiap this cbject has been crsated during the curient ¢/
A session only. ./
s -= DateTima-Ste o rTovides the system time that the class was last *)
" updated using Quintus Pcolog's date library. This helps idmtity *
" whan other classes or lessous Laed to e checkel tu shsure che s/
1" versioning 4ata is OK. 7Ths kuyword ‘m s" is same as £or Piledlane. v/
" == Depepdencies are lists of classes that any entry drpends on. Thess */
IAl othar entries, if not updatsd in the current databsse, will bhe «7
Al called in automatically. */
1" libzary_link (+Librarydame, +RemoteLibrarydlractory) e/
A == Allows a teacher to access another local library, as long as it's o/
A file protectica is read. Classas imporcid from linked libraries v
1" will be read-omly. ./
/* == Libraries will Mave a library name tag that will be used by the .
I iaterface rather than tha directory name. s/
A Y,
FAd clasa_in_datahase (+Clase,clean|dizty, +MewClassDep) - ./
,"* task_im_database(+¥ask,clesanidirty, +MewClassDey) . */
" lesson_iun_database (+Lesscn, clean|dirty, +WewClassDep, +MewTaskDep) . *y
" ocanpllatine_in_databass (+Lessca,currsat |not_curreat) . */ :
" -~ Jodicates the item has been modified and bhas the given asv depen- oy)
* deacy liste. Compilation status is either curreat or act_current. ¢/ B
,* */
" for the purposes of usiag the module reservation system in utility (which ¢/
/* is new for this version -- the tematt aame is always class(<class name>), ./ "

87

task(<task name>), lesson(<lesson pame>), or complesson(<lesson names).

® & ® kR SRR E R R R R SRR R T RN E R T ET R R AT RS R RSN RN

Commands provided by this module (including those not yet implementaed)

Documentation on thess commands can be found in the usar's manual.
L O 2NN 2N BEE N JNE JNN NN NN JE BNN NN JNE BNE JNE BN JNE BNE BN NN BEN JNE JNE NN BN BER JEE BN JEE JEE JNE JNE BNE BEN BN JEE NN N

LIMRARY MAMAGENENT COMMANDS: LOOPS:
create libraxry Main
view library All
view remcte library [named <library>) All
1ink library (named <library>] Main
unlink library [named <library>] Main
purgs library Main

CLASS ENTRY MANAGEMENT COMMAMDS:
load object [named <class>) Nain
save object [named <class>] Main

TASK ENTRY MANAGENENT COMMANDS:
load task [(named <task>) Main
save task Task
save task (named <task>) Main

LESSON ENTRY NANAGEMENT COMMANDS:
load lesson [named <lesson>] Maino
save lesscan Lesson
save lesson [pamed <lesson>] . Main
save compiled lesson Lesson
save conpiled lesson [named <lesson>] Main

L R 2 D N DL 2NN BN BN BNE TEE DN 2N R K NN BN JNL DN INK TN TN JNE JNE JE BEE JNE JNK 2NN BN IR BN JNE BNE BN IR B BN BN J

Exported Predicates. All predicates intanded for external use are prefixed

with “mebuildLIB_*

L B L BN BN BN BN BNN JNL JNE NN JNE BNE BNE BN BEE JNE BN JNE JNE DN BEE JEE BN BN NN JEE NN NN BN JNE BN NN BN NN BN BNE BN]

APPLICATION PREDICATES:
mebuildLIB_satup.
-- Initializes all the dcmains, cocumands, and templates for the main
mebuild application / class building loop
mebulldLIB_include_task_commands (+LoopName, +TaskNane)
~« Makes aveilable those cosmands which are to be allowsd in the task
building command loop
mebulldLIB_include_lesson_ocommands (+LoopName, +LesscaName)
«- Makes available those commands which are to be allowed in the lesson
building command loop
mebulldLIB_library_initialise. {Main App Init Predicate)
=~ Initialires the library database to be ampty. Calls shutdown, and
then loads in the system and local library files.
mebulldLIB_library_shutdown. (Main App Done Predicate)
== Cleans the library information from the Prolog database. Acts upon
any dirty items in the library interactively.
aeiilALIB_append_autosave (+autosaverFile)
(Main App Loop Predicate)
== Appends all library-based data items into the autosave file.

LIBRARY MAMAGRMENT (ALL CONMAND-INVOKED) :
mebuildLIB_creats_libra:y.
==~ Creates a new library directory in the current working directory and
initializes the mabuild.lidb gile.
mebulldLYs _view_library.

-- Prints ocut a listing of the local library to the user.
BabuilaLID_view_remote_library(+RemoteLibrary).

~-= Prints out the listing of the given remote library.
mebuildLIB_lizk_library(+RemcteLibrary)

== Would add RemoteLibrary to the link list.
mebuildLIB_unlink_ library(+Remctelibrary)

-= Would xemove Remotelibrary from the link list.

LIBRARY CLASS ENTRY MANAGEMENT:
(COMMAND INVOKRD) :
mabuildLIB_load_class(+Class)
-= Imports a class definition file from the library, including all
clesses in the dspendencies list.
mebuildLIB_save_class (+Class)
== Save the class to disk and updatas the library file.
{EXPORTED 7O CLASS DRFINITION NMODULE AND/ON USED HERR) :
mebulildLIB_is_a_locally_defined_class(+Class)
== Succesds if ClassName exists as a class in the local library.
mebuildLIB_create_library_class_sntry(+Class)
== Creates an entry for Class in the library.
mebuildl.IB_delete_library_class_entry(+Class)
-= Marks a class as deleted.
mebuildLIB_undelete_library_class_sntry(+Class)
=~ Unmarks a deleatad class.
mabuildLIB_purge_library _class_entry(+Class)
-~ Permanently removed the class f£rom the library.
mebuildLIB_check_load_class(+Class)
~=- Imports a class definition orly if it isn't already loaded.
mebuildLYB_get_loaded_classes(-Classes)
-~ Returns a list of all classes currently loaded in memory.
mebuilldLIB_check_save_class(+Class)
-=- Saves a class definition only if it is modified in memory.
mebuildLIB_view_library_class_entry{+Class)
-~ Pratty prints the class' entry regarding its f£ile location, date
time stanp of last save, and its dependency informatiom.
mebuildLIB mark_library class{+Class)
=-- Sets the dirty flag on the class' entry sc that initialize and
shutdown can snsure the user bas a chance to save charnges.
mabuildLIB_set_library_class_dependency(+Class, +NewDapendent)
mebuildLIB_remove_library_class_dependency(+Class, +0ldDependent)
~- Sets and ramoves & class from the dependency list of another class.

LIBRARY TASK ENTRY MAMAGEMENT:

{COMMAND INVOKED) :
mebuildLIB_load_task(+Task)

-- Imports a task definitiocn file from the libraxy, including all

classes and tasks in the dependencies list.

meabuildLIB_save_task(+Task)

=~ Save tha task to disk and updates the library file.
(FXPORTED TO CLASS DEFINITION MODULE AND/OR UJED HERRE):
mabulldLIBD_is_a_lczally defined _task(+Task)

-~ Succeads is TaskName axists as a task in the local library.
mebuildLIB_create_library_task_entry(+Task)

== Creates an sntry for Task in the library.
mebulldLIB_delete_library_ task_sntry(+Task)

-- Narks a task as deleted.
meuildLI® undelete_library_task_satry(+Task)

-=- Unmarks a deleted task.
mebulldLIB_purge_library_task_entry(+Task)

== Permanently removed the task from the library.
mabuildLIB_check_load_task(+Task)

" -= Imports a task definition only if it isn‘'t already loaded. */

FAd sebuildLls_get_loaded_tasks(-Tasks) */
Tl == Returas a list of all tasks currently loaded in memory. ./
T sabulldLIB_check_save_task(+Task) */
IA ==~ Bxports a task definition only if it has been m~dified. ./
l* mabulldLIB_guery_save_working task(+Task) */
’* == Xf the task is “"dirty", then it queries the user if it is to be ./
FA saved to disk before proceeding. */
7* mebulldLIs view_library_task_satry(+Task) ./
/* == Pretty priants library task information regarding its file location, */
1* ivs data time stamp, and its dependency information. */
/" weluildLIB_mark library _task(+Task) */
/* == Sets the dirty flag on the task's entxry so that initialisze */
/" and shutdown can ensure the user has a chance to save changes. ~/
/1* mebulldLIB_task_is_ocutdated(+Task) */
[Ad == Performs a date check on all dopendent satities to ensure that the */
/* task is based on tks wmost up to date information. 1If a task or */
/* class has been updated since the last save of the task, then the */
/* task is considexod untrustworthy. */
IAd mabuildLIB _set_library_task_dependency (+Task, +NewDependent) */
IAd BebuildLIB_remove_library_task_dependency(+Task,+0ldDespendent) "
FAd ~=- Sets and removes a class or task from the dependency list of the */
IAd task. */
/" */
/* LIBRARY LESSON BNTRY MANAGEMENT: ./
IAd (COMMAND INVOKED): ./
/* mebuildLIB_load_lesson(+Lesson) */
/* -- Imports a lesson definition file from the library, including all "/
/* classes and tasks in the dependencies list. ./
FAd aebuildLIB_save_lesson(+Lesson) */
/* -~ Save the lesson to disk and updates the library file. */
/* (EXPORTRD TO CLASS DRFINITION NODULE AND/OR USED HERE): */
/* nabullaLIR_is_a_locally_defined lesson(+Lesson) */
IAd -- fu de is L cnName axists as a lesson in the local library. */
/* mebuildLIn_create_library_lesson_entry(+Lesson) */
FAd ~= Creates an entry for Lesson in the library. */
/* nabuildLIs_delete_library_lesson_entry(+Lesson) * .,,'-'
A -= Marks a lesscn as deleted. */ -
m” mebuildLIB_undelate_library_lesson_entry{+Lesson) */
1* -~ Unmazks a deleted lesson. */
1* nebulldLIB purge_library_lesson_entry(+Lesson) */
FA -~ Permanently removad the lesson from the library. ./
IAd nabulldLis_check_lcad_lesson(+lasson) .
" =~ Imports a lesson definition cnly if it isn't already loaded. */ \
" webunildLIB_get_loaded lessons (-Lessons) */
/* -« Returns a list of all lessons currently lcaded in memory. */
TA mabuildLIB_query_save_working_lesson(+Lasson) »/
FAd == If the lesson is "dirty", then it quaries the ussr 1if it is tc be */
,* saved to disk befors proceeding. ~/
’* mabuildLIB_view_library_lesson_sntry(+Lesscn) ./
fAd -~ Pretty prints library lesson information regarding ite file location,*/
‘ ’* its data time stamp, and its dependency information. *y
I Ad mabuildLIB_mark_library_lesson(+lLesson) ./
’* «« fSets the dirty flag on the lesson's santry so that initialise */ .
Ad and shutdown can ensure the user has a chance to save changss. */
/* mabulldLIB_mark_ comgllation(+lLesson) */
/* == Sets the noncurrent flag on the lssson's compllution entry so that */
/* MEBuildexr will know that the lesscnh must be recempiled before ./
. " executing certain lesscn-related commands. */
A webuildLIB_mark _successful_compllation(+Lesson) */
/" ~- Informs the library that Lesson has successfully compiled and the */

90

"
,.
I.
/i
,.
It
1"
I‘
I.
FAd
,Q
I.
FAd
’.
,Q
/*
]*
/Q

current compilation resides in mewory.
mebuildLIB, lesson _is_outdated(+Lesson)

-=- Performs a date check on all dependent entitiss to ensure that the
lesson is based on the most uk to date information. If a task or
class has been updatsd since the last save of the lesson, then the
lesscn is considered untrustworthy.

mebuildLIB_comprilation_is_curreat (+Lesson)

-~ Parforms a Query on whetlder the compllation is curreat.
»ebulldLIB_set_library_lesson_dependency(+Lesson,class|task, +NewDapendent)
»ebuildLIB_remove_library_lesson_dependency(+Lesson,class|task,

+0ldDependent)

=~ Sets and removes a class or task from the dependency list of the
lesson.

mebuildLIB _get_compilation_file_name(+Lesson,-FileNams)

== Returns the standard f£ile name for the compiled Lesson.
mabuildLIB_get_coapiled_lessons (-CompiledLessons)

== Returns all locadsd lessons whose compilations are current.

*/
*/
*/
*/
./
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/ﬁ..t.....'.‘..‘..'.....0......‘Q'...'..i..'.....i..ﬁ....’..f........".'.'....".l

TAB 7. METUTOR VERSION 29 SOURCE

,-‘...i.t.l......I.QQ....it'....."l.l....'..'t.'.tt..t‘...'l't...l.'.....l-/

FA)
,.
,Q

Means-Ends Tutoring Platform -- Versica 29 (MRTUTOR)
original and versions 1 through 37 written by Professor Roxe
Version 28 and 29 (MEBuilder interface version) -- by Tom Galvin

*/
*/
./

,'.'..........'.'.'..t"QQIC..G.Q...I..."I."'t..Qi.i'i.....'.l...Q...."..,

,i
,.
F A
IO
’.
F A
’Q
’i
1"
lQ
/'
1*
/*
/'
"
VA
l.
I.
A4
IQ
/"
A
1%
1*
*
l*
"
"
l.
1*
7%
,.
Y Ad
/v
/.
I*
,.

METutor program provides problem-independent code for performing
means-ends tutoring: tutoring for learning of seguences modelable by
means-ends analysis. This version for Quintus Prolog 3.0 and works
with graphics interfaces.

Version 39 takes the following facts produced by NEBuilder complled
jessons and runs the lesson. NOTE: *All* the below facts are compiled
using dynamic modules =-- so the module name must be used to access all
the balow facts except for those in the NMETutor envircmment.

The comcept of the student's role atill bas to be programmed in, as
the presant example simply handles the case where the student subsumes
the null agent argument. Minor f£ix to bring it in line with the rest
the NEBuilder system.

METutor version 29 uses a werkbook-like structure vhers the student
enters the lesson and the lesscn contains various problems or exercises
which he needs tc do. cCurrsntly, version 29 only provides navigaticnal
frameworks in which a student can simply run any problem at will and no
data about completion or non-completion of the problems are retained.
Among the items neesded in future are:

-« Student progress management. Pinish problem 1 before going on,

for sxample.

== Course of instruction modsling. Finish the lesson -- or master

the material -- and link into a new lesson.

== Student modeling. Beginners vs. Bxperts

N EEEEEEEEEENE N 2 2 3 B B B I N IR N B B N B N

METutor's Basic Lesson Data Structure
' EEEREEREZIEES I I BB EE B BN B EE BN I S B N L B S B S J a & & @ b @

METutor lessonr coutain several problems which are based on iden-
tical sets of basic means-ends facts. In order to save database space,
the lesson is stored primarily in macro form wherever possible. The
lecson is then macro-expanded into a problem module hased on the spec-
ific domains associated with the problem. The lesscn compiler module
has a full description of the macrc cobdensed version of the means-ends
database.

These are the facts that are not condensed -~ thersfore not macro
sxzpanded Auring problem initialization.

lesson (<name>) .
8imply s tag name for the lesscn used during the welcoms section.

lassaon_intxo(<text>).
Prolog fact buffer which contains lessca introductory text for the
student.

problen(<number>, <dame>,<student xoler).
Provides a tag name for the problem.

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
“/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
./
*f
./
*/
./
*/
*/
¢/
*/
./
*/
*/
./
*/
*/
*/
*/
*/
*/
*/
*/

problen_intro(<aumbar>, <text>).
Prolog fact buffer which cortains problem introductory text for the
student.

problem_domein (<numbers, <domain>, <ranges) .
Used to spauify the particular alements of a domain for a partic-
ular prehlenm.

® % % @ k0 e SRR RSN N ETREE R NS W N F R AR SRR R

METutor's Macro Expanded Problem Data Structure

L B N N I JNE IR BN BN NN NN JEE BNR NN SEE JNE R B B B N N BN B N N BN 2N N BN BN I N NN

The following are the facts that are macro-expanded into the prob-
lem module for use in the actual METutor session. The <agent> argument
is “student" for those facts that are related to the student's procass.

The macro form and the sxpanded forms ars given for each.

PROBLEN-SPRCIFIC NETUTON FACTS:

Nacro: start_state_t (<problem numbers>, <template>,<macro start>).
Bxpand: start_stats(<start state>).
Provides the specific problem's initial coaditions.

Hacro: goal_t (<problem numbers>, <agent>,ctemplate>,<macro goal>).

Expand: goal({c<agent>,<goal>).

Macro: goal_t (<problem numbex>, <template>,<macro goal>).

Rxpand: goal(<goal>).
Lists of properties which correspond to the starting conditions
objectives provided vie NEBuild for when the student or agent's
task is conpleted.

Macro: glubal_t (<problem number>,<texplate>,<macro goal>).

EBxpand: end_of problem(<goal>).
This defines when tho simulation ends. It is not regquirsd, and if
it is omitted, then the problem ends when the student's goal has
been zeached., If an explicit global_t fact exists, then even if
the student's goal is completed, the aimulation will continue. The
actual end is achieved when both the global_t condition and the
student's goal conditions are achieved.

FROBLEM NON-SPECIFIC MRANS-ENDS PACTS:

Macrot recompended_t (<role>,<template>, <macro differences>,
<DACIO operator>).
Expand: recommended(<agent>,<difference>,<operator>).
Gives an operator recommeded to a achieve a particular set of
facts different from the curresnt state; conditionlist are facts
that must be present in the curreat state.

Macrot precendition _t (<role>,<templater,<BACrO OPATALOT>,

<RAcYrn Go''iext>,<macro pracondition>).

Expand: precondition(<agent>,<operator>,<contaxts,<preconditions).
Gives facts required by operxator in order to be used. The <context
list describes unique conditions under which varicus preconditions
may hold.

Macrot addpostcondition_t (<xole>,<tamplate>, <mACTS Operator>,
<MACGYO context>,<macro add list>).
Rxpand: addpostcoondition(<agent>,<operator>, <context>,<add list>).
Gives facts added by the applicatiocn of the cperator. <context>
bas same meaning as for preconditica.

Maoros deleteposteondition _t (<xole>, <tamplates, <mMacIo operatory,
<BACIO cohtaxt>,<macro deleta listy).
Bxpand: delstepostcondition(<agent:,<operator>,<context>,
«delete list>).
Gives facts deleted and added by the application of the coperation.
<goutext list has the same meaning as for precondition.

TUTOR SUPPORTIMG FACTS.

Nacro: singular_t (<template>,<macro objsct>).

Macre: plural_t (<template>, <macro cbjects).

Expand: singular{<object>).

Bxpand: plural{<ocbject>).
Used to override the defaults concerning the conjugation of the
verdb *"to be" for thuse cbjects whose nama dossn't follow standard
pluraligacion.

Macro: randchange_t (<template>, (<matTYo Oparator 8pec>),
<MACTO coitext>, <macro delete>, <macro add>,
<probability of ocourrence>,«<macro text>).
Exzpand: randchange((<oparator spec>),<context>,<delets>,<add>,
<probability of occurrences>,<text>).
Defines random avents that are triggered by <operator> under the
conditions defined in <context:>, or are a random initial conditien
of the problem as defined by “init". «probability of cccurrence>
1s a value from 0.0 to 1.0 which descrilhes the chances of the
svent taking place given that the context is met. <dalets facts»
and <add facts> are similar to that of the postcondition prucess.
<Eessage to student> is only printed in the event occcura. The
<conteaty, <delete facts>, xnd <add facts> may be empty.
<macro operator speac> is ons of <BACro cperator>, aay. op, init,
or init(<problem number»>). <operator spec> is ons of operator,

any_op., or init. “init" and "init(problem number)" rafer to xan-
dom start state information. “any op" refar to sandom changes
that occur regardless of the cperator used (the discrimipating
factor thus is the context).

LEBSON DISPLAY FACTB (TEXT INTERPACE):
NOTE: 8ee graphicsflag below. These facts are used when graphicsflag
is pot set.

Macro: apply_text_t (<template>,<mACIO CHPOXAtor>,<mAcro ocontext>,
<BACIO text>).
Expand: apply_text (<operator>,<context>,ctaxt>).
The <text> is printed to the usser whenever the given <ocperator> is
applied under the caontext of <comtext list>. These are directly
aligned with the addpostccndition facts.

NOTRS OM TEMPLATES:
The <template> can contain elemsnts of any of the following forms:
<domain> -~ which expands to one slemsnt of a domain.
some (<domain>) -- same as <domain>.
forall{<domain>) -- expands to all members of the domain.
The “some* and "forall® quantifiers are somewbat misleading ia that
they really mean “any" and “all“.

LRSSON DISPLAY FACTS (GRAPHICS INTERFACE):
Currently the graphics interface is not usable since megraph is set

94

gor lessons cempilad ia module user -- pot in a dynamically
compiled module.

graphiostlag.
Activates NERTutor's graphical interface.

socolortlag.
operates black/white on a color terminal.

bmap (<fact>, <conditions>, <picture-filename>, <x-coordinates,
<y-coordinates, <width>, <height>, [<colors>}).
It graphicsflag set, gives thr nams of a £ile holding a bitwmap
portraying the given fact when the conditions bold; coordinates are
upper left coraer of place whers bitmap is put; wideh and height
are the sise of the bitmap. Bitmaps are opticnmal ior a fact, and
thers can be multiple bitmaps all displayed for the same fact.

text (<fact>, <conditlons»>, <text-string>, <xz-coordimats>,
<y-coordinate>).
If graphicsflag set, and context applies, writes that text at that
place on the screen

MRETUTOR CACHRD FACTS:
These facte are cached by lesson.

top_goal{<cgoal>).
Same as the goal fact. Cached per lesson.

top_sclution(<list of cperators>).
This is a list of cperators which METutor has dstermined is
most direct solution. Cached per lesson,

current_state(<state>).
List of properties which indicate the present situation.

last_state{<state>).
The previous valve of current_state/l.

op_list (cglobal list of opexatorss).
This is a list of all the operators available ir ths lesaca.

solution{<agent>, <state>, <goal>, <oplist>, <goal state>).
This is a cached solution to a subproblem ¢f tha iesson. Used to
save time in the calculation of futurs solutions.

unsolvable (cagent>, <state», <goals).
Indicates that <goal> cannot be reached from <state> by <agent>,
Used to save time against computing known unsolvable problens.

session_num(<n>).
This is the nth run that the student hus started. (Counter which
is maintuined in the Prolog Utilities code.

eTTOX_DUM(<D>) .
The student has committed n-1 errors during the nth sessiocn. (Also
a counter which is maintained in the Prolog Utilities code.

student_error(<session numbexr>, <exror mumber>, <student opsrators,
<tutor chosedh operators>, <state>, <goals>).
Stores the information about the nth error in the mth session. The
<state> and <goal> are the current_state and the lesson cbjectives,

95

F A4
FA
FA
(Al
FAl
/1
A
f A
1*
il
i
FA
%
FA
VA
VA4
VA
1*
FA
'.
FAd
rA
1%
,'
1"
1t
"
’.
"
’.

while <student cperator> indicatas the student's chaice of operator
and <tutor chosen Oparator> was the preferred chnice by MRTutor.

METUTOR RNVIRONMENT FACTS:

debugtlag.
If asserted, debugging imnfo is priamted during means-ends analysis

studeatflag.
If asserted, 4ces pot print imfo oa possible teacher errors. This
tlag should he set when the student is running the program. (The
£lag is set sutomatically when MEmuilder ie running.

stop_tima(<times).
Busy wait iadicator. Tells the student "I am thimking..." during
sxtended periods of caloulation.

L N 2NN BN BN BN BN BNE JON BN DN DN BN BNE B L BN BN BN I BE NN NN BN R BN BN BE R BN BE BN BRI

Bxported predicates

& & & AR SR RN R RN RN R R R YRR RN SRR RN R

un_lesscn/run_lesson (<Lasson>) .
Runs the lasson loaded into the dynamic module <lesson moduls>.
'user’ is assuned if che argumant is left off. (RINT: NRVER use
‘user'. Always uss a dynamic wodule ip order to prevent problems
regarding dynamic assertioms and abolishmants.)
For the graphice iaterface, you xust have the lesson in the user
wodule in Prolog And NUST use the non-argument run_Jlesson. (Thias
will be corrected eventually.)

*
*/
*/
*/
*/
¢/
.
!
./
./
*/
*/
*/
./
./
*/
*/
*/
*/
*/
*/
.
*/
*/
*
*
*/
*/
*/
*/

/.Q.'t‘tli't‘..".Q.Qﬁli‘Ii..".t."'..ﬁt.'...l.l..l."..llt(I..l"'ltll‘i‘./

APPENDIX B. MEBUILDER USER’S MANUAL

The manual, minus appendices, enclosed here is the same one provided to the students
in the experiment discussed in Chapter VI. The following are the sections of the manual:

Tab1l. Introduction

Tab2. MEBuilder's Interface and Environment
Tab3. Library Facilities

Tab4. Step One -- Designing an Object
TabS. Step Two -- Designing a Task

Tab6. Step Three -- Designing a Lesson

TAB 1. INTRODUCTION

1. Geoeml.

& About the Manuai. This user's manual is the first draft for the MEBuilder lesson authoring
system for METutor, specifically written for lab experimental purposes. It currently provides only a basic
introduction to MEBuilder data structures and a reference guide for commands for the version dated 31
August 1994, Comments and suggestions are welcome.

b. File;. MEBuilder is a lesson authoring system written for METutor versions 29 and beyond.
1. is released in executable form and is available in the file ~galvint/mebulld/MEBuilder. You are free o
copy the file into your own directory to use (it is about 1.6MB large). Please do not run MEBuilder in the
galvint directory. You must run it in from your directory otherwise MEBuilder will not be able to write 1o
the library file. Similarly, METutor is available from ~galvint/mebuild/METutor.

2. Spacial Features of MERuilder.

a. Library. In the directory you are using, MEBuilder will set up a local library directory in Jib.
In this directory will be all the data files of the lesson material you will produce. The directory will
contain a special file, called mebuild.lib whick cortains data on all the files in the directory. Please do not
use J1ib for any purpose other than MEBuilder sessions,

b. METutor Interface. METutor is directly accessible from within MEBuilder using the run
lesson command. This allows vou to test a completed lesson without having to run a separate METutor
session.

c. Object-Oriented Structures. MEBuilder uses an object-oriented system which allows you to re-

use objects you create for use in multiple lessons. MEBuilder employs both generalization and
aggregation principles along with past-kind inheritance. Single inheritance is the only type permitted,
however.

3. Tbres-Lavered Lesson Design.

When designing a lesson, you will do so in three steps. MEBuilder lesson material is constructed
using a "bottom-uj." approach -- meaning that you will start at the lowest level and end with tne overall
lesson. This bottom-up approach will be replaced in future versions with a more top-down approach.

a. Design the objects. Objects are the props and characters that the student will manipulate in the
lesson. The student wil describe the basic properties of the object and its behaviour.

b. Desizn the tasks. A task is a sequence of operations that take the student from some given
condition to a specific goal.

c. Design the overall lesson. A lesson is a workbook of exeicises. In each exercise, you will
describe a scenario for the student and the goals that the student must achieve based on the tasks.
Exercises may increase in scape or difficulty.

4. Lavout of this Manual.

The manual is broken into five main sections -- one for the MEBuilder user interface, one for the
library and one for each of the above lesson design steps. Each section contains a reference listing of the
available commands along with some examples of the commands in use. For additional help, you may use
the Aelp command in MEBuilder. Appendix 1 contains a complete command reference. Appendix 2
contains a documented script run which takes you through all the fundamental steps for constructing a
simple preflight tutor.

TAB 2. MEBUILDER'S INTERFACE AND ENVIRONMENT

1. Commana Linc Format.

MEBuilder is presently a pure character-based interface, which means that all inputs are from the
keyboard and at present there is little support for graphics. The commands are one or two words long, and
many have parameters which must be supplied.

In the appendix, you will note that the commands are listed in bold italics and arguments are
listed in brackets. These are arguments which MEBuilder must have in order to process the command,
however you have the choice of supplying them on the command line or specifying them when MEBuilder
responds with a query. For example, the load object command takes a single parameter, that of named
<object>. You may invoke the command in the following ways:

MEBUILD>load object named my object
-or-

MEBUILD>load object

Load which object?my object

Imporant Note: At any time while a command is invoked and you are being asked a question,
you can retumn to the prompt by typing abort.

2. MEBuilder’s Command Loop Hicarchy.

MEBuilder's user interface is divided into four main loops. Upor executing MEBuilder, you
enter the Main Loop. Certain commands access the other loops. In order to pop out of a given loop, you
use the quit command. Using quit from the Main Loop exits MEBuilder.

8. Main Loop. The Main Loop represents the highest level interface command loop provided
by MEBuilder. It provides access o MEBuilder's library functions and access to MEBuilder's object
definition commands. The library functions include loading and saving commands for objects, tasks and
lessons. The object definition commands include those that create and manipulate the object data structure.

The Main Loop prompt is MEBUILD>.

b. Task Loop. 'The task loop provides all of the commands to the user for defining and
manipulating tasks. The i.-sk loop also imports various view commands froin the main loop for classes and
the library so the
user may query information about them. The task loop is invoked with one and only one task. This means
that if you wish to work on a different task, you must exit the task loop using the guit command and
reinvoke the loop with the desired task.

The task loop's prompt is [TASK:task name]> where the task being worked on is in
plece of task name. The task loop is accessed via the create task and work on task commands.

¢. Lesson Loop. The lesson loop provides all of the commands to the user for defining and
manipulating lessons. The lesson loop also impons various view commands from the main loop for
classes and the lihrary so the user may query information about them. The lesson loop also contains the
commands to access I METutor.

The lesson loop is invoked with one and only one lesson. This means that if you wish to
work on a different lesson, you must exit the lesson loop using the guif command and reinvoke the loop
with the desired lesson,

The lesson loop’s prompt is [LESSON:lesson name]> where the lesson being worked
on is in place of lesson name. This loop is accessed by the create lesson and work on lesson commands.

d. Problem Loop. The problem loop provides all of the commands to the user for defining and
manipulating problems within a lesson. The problem loop also imports various view commands from the
lesson loop for classes and the library so the user may query information about them.

The problem loop is invoked with one and only one problem. This means that if you
wish to work on a different problem, you must exit the problem loop nsing the guif command and reinvoke
the loop with the desired problem. ’

The problem loop’s prompt is [PROB:lesson name:problem number]> where the lesson
being worked on is in place of lesson name and the index number of the problem is in place of problem
number. The loop is accessed by the work on problem command from within the Lesson Loop only.

3. Special Environment Features of MEBuilder.

a. Autosave Capability. MEBuilder comes with a built-in active autosave system which helps to
preserve the session in case of ungraceful exit from MEBuilder, The autosave file (located in the working
directory and called autosave.meb) is a pure database dump of all work being done with the Quintus
Prolog dynamic modules preserved.

The autosave process occurs every tenth command in the Main Loop, Task Loop, Lesson
Loop, or Problem Loop. If a complex session is taking place, this process can be quite slow -- hopefully
future implementations will provide ways of speeding it up.

The autosave frequency and the destination autosave name can be set using the set
autosave count and set autosave data commands. The view autosave data command will allow you to
view the current autosave settings.

To restore an active session to the point of the last autosave, use the restore autosave file
coinmand.

b. Help Facility. At any time in the four main loops, you may invoked the help facility by
selecting the Aelp command. While in the help facility, you request information by providing the name of
the command or topic you want at the MEBUILD HELP> prompt. You can get a list of help entries by
typing help inside the Help facility. The quit command will return you to where you entered from.

101

TAB 3. LIBRARY FACILITIES

1. Introduclion.

MEBuilder provides a basic library facility which helps track all the items created during
MEBuilder sessions -- objects, tasks, lessons, and metutor-ready files. Items are tracked by date last saved
and dependencies. Item dependencies indicate those items that must be in the database in order to use the
item (example -- a task's dependencies are the objects involved in the task). The tracking of dependencies
is used to auto-load everything needed in one stepand to ensure that changes in one item don't damage all
other items that depend on it.

The library is stored in Jlib of the working directory andit contains a directory listing file
(mebuild.lib) plus one filefor each item (objest files have extension .cls, tasks .tsklessons .les, and
METutor files .met). The listing file containsone entry per item indicating the name, file, etc. In future
implementations, the listing file will also indicatelinks to other MEBuilder libraries. This will allow
objects in other directories to be read-accessed by items in the local library.

2. Library Manipulation and Vicwing Commands.

There are three things you can do with libraries -- create (or recreate) one, view the eniries in one, or link
in a new library, The options with these commands are currently very limited and will be upgraded in
future,

8. Clearing or resetting the library -- the create library command. Currently, MEBuilder only
recognizes 'Jlib' as the library directory so running this command clears the library data file and start; tye
directory anew. Be careful when using this command -- be sure that an MEBuilder library does no: exist
(it will query to continue if one does).

b. Viewing the Contents of the library -- the view library command. This command will provide
a by name listing of all the objects in the library -- which have been loaded and which have been
modified. The list is alphabetized in order by objects, tasks, and lessons. (NOTE: Unfortunately the list is
not run through more so it will likely scroll the screen. For non-xterm environments this might cause a
problem. This feature is slated for future improvement).

¢. Linking together and accessing remote library information -- the link library command. This
command is not yet implemented. This command will allow you to access objects and tasks in multiple
libraries. The key difference is that remote information is read-only, no library item can be mutually
dependent, and a local definition of some library item takes precedence over items of the same name in the
remote library.

d. Cleaning out deleted information from the library -- the purge library command. This

command removes all entries from the library that have been marked for deletion by the remove object,
remove task, and remove lesson commands. (This command is not yet implemented.)

3. Load and Save Commands.

Information about these commands are available in the reference section at the back of this
manual and are discussed in detail in the other chapters of this text.

a. Discussed in Section C (Objects) -- load object and save object

102

b. Discussed in Section D (Tasks) -- load task, and save task

¢. Discussed in Section E (Lessons) -- load lesson, save lesson, and save compiled lesson

TAR 4. STEP ONE -- DESIGNING AN OBJECT

1. What is an Object?

An object is MEBuilder’s representation for any entity that will exist in a lesson -- be it a prop or a
character. The purpose of an object is t0 encompass the make-up and behaviour of these entities so they
may be used in more than one lesson and the make-up and behaviour is guaranteed to be consistent,

Objects are abstract. When you develop a flashlight object, for example, you are defining
behaviour true of all flashlights. This way, if you declare a lesson to have two flashlights -- a black and a
silver -- the behaviour is consistent between the two.

Objects are represented as the collection of data relating to one ntity. These are;

-- Parent Object. Information about what type of object it is.

-- Components. Information about what other objects comprise this object.

-- Property Sets. Infonnation about what states the object can be in and which states are
mutually exclusive

--Operations. Information about what operations can be periormed on the object and
what behavior is exhibited when done so

--Summaries. Ways of summarizing a collection of states of an object in one term

-- Background Changes.
Information about behavior that an object may exhibit without an
external stimulus

The three items above that are required for any object to be used in MEBuilder are the parent
object, property sets, and operations. These three should be identified in order.

2. The Obiect Hierarchy -- Defining the Parent Obiect.

IMPORTANT NOTE: Before you declare a new object, ensure that its parent (defined below) is
defined first and loaded into the current MEBuilder session.

Parent objects are used for specifying an object in which a new object shares data and behavior.
The parent object is therefore a more general form of the new object. The opposite of parent object is
child object.

For example, one may have a prop type named "car”. One can then create "sedan” and "sports
car” as new objects based on “car”. "Car" becomes the parent object of “sedan” and "sports car" -- and the
latter two inherit all the object definition data that exists in car. By "inheriting data”, we mezn that if a car
has four wheels as components, then by the parent object relationship sedan automatically has the four
wheels without you having to repeat that information when building a sedan.

Parent objects can be chained, meaning that if a "four-door sedan” was created, it inherits all

information from car and sedan. Chained objects produce what we refer to as "ancestor/descendant"
relationships. "Ancestor/descendant” can be used in lieu of "parent/child" as well.

104

Sedan can change some information in car also. For erample, if cars have an engine, perhaps a
sedan has a particular type of engine. So the engine component can be overwritten by sedan. Then "four-
door sedan” inherits the sedan information first, not the car information.

In MEBuilder, every object is a descendant of either "prop" or "character". The parent object is
specified upon creation of the object, and can be changed (This is strongly discouraged as it will disrupt
the behaviour of any task or lesson that uses it). Objects can only have one parent.

The parent object is specified when the object is created using the create object command.
MEBuilder will provide a list of all the objects currently loaded in the session plus the standard ones
"prop” and "character”. In order to change the parent object, you can use the modify parent object
command.

3. Declaring Components.

After the object has been declared, the next thing you should do is declare any components it may
have,

Component, in MEBuilder terms, is the way of describing both "a part of" and "has a"
relationships between objects. For example, walking robots have x number of legs so each leg is "a part
of" a walking robot. Or, a fire teain member might have equipment that he would use in a firefighting
problem. Therefore, the team member "has” equipment. With reference to characters, component
relationships can probably be better described as "possessive” relationships and the component is the
character’s possession. The word possession is only used here for illustrative purposes -- component is
used for both meanings.

MEBuilder allows you to identify component relationships between objects. Components are
manipulated via the create component, remove component, and modify component commands. Apart
from specifying the owning object and the component object type, you will need to specify:

- A component name, For objects which have one of some type of component (cars have one
engine, for ex.) you should use the object name as the component name. But, if the object has multiples of
some component (cars have four wheels) then the component name must be unique ("left front wheel”,
“right front wheel", ..)

-- The tense of the component -- singular or plural. This ensures that the user output is correct in
terms of matching verbs in natural language. MEBuilder will query the tense in the form of a question as
to whether or not the name follows the “ends in s" rule. In other words, if it does not end in s it will
assume it is singular and will query whether its assumption is correct,

The view component command will show the entire definition of the component, including its
inheritance source (whether derived, inherited by parent object, or inherited by component).

4. Declaxing Property Sets.

Property sets are used to describe states that an object may be in and the relationships
(specifically mutual exclusion) among these states. A property set is defined as a set of properties that an
object can only have one of at a given time. Examples of property sets:

-- A machine can be "on" or "off™,

-- A streetlight can be "red", "green”, or "yellow".

105

-- A student can be "present” or "not present”.

Property sets always have a least two elements. A sei that has one specified element "X" has an
implicit element "not X". Property sets are described with the following information, and are manipulate.
via the create property set, remove property set, and modify property set commands.

-- The object being described.

-- A name which describes the set. The above threc exaniples could be described in order as
"switch position”, "color”, and "presence”. IMPORTANT: Tl name must be one that can be used in
natural language output because phrases such as "object's color is unknnown" may be shown to the student.

-- The members of the set (also called the domain of the set). Currently, only qualitative menibers
are allowed. Quantitative members might be added at a later time.

-- Whether or not the state of an object is readily visible or is something that must be
discovered. Examples include the "charge level” of a battery -- one doesn't know the charge level just by
looking at it, one must perform an action to find out. This wanslates into information that a student is told
he/she might not know when running the lesson.

Members of property set must be unique to the object. For example, the word "blue” cannoi be
used to describe both "color” and "mnod”. You canmot begin the name of a property with the word not.
Not is a reserved word. If you have a property set which has an x and not x relationship, you must specify
only the x.

The view object command will only show the name of the member property sets. To get the
complete detailed definition of the set, use the view property set command. The output will also contain
the inheritance source (whether derived, inherited by parent object, or inherited by component).

The following are suggestions for the naming of property set members. Although it seems
puerile, the best way to name the property set members is to use the closest adjective form of the operation
used. For example, a door object can be opened or closed. The operations would be "open door” and
"close door”. Similarly, a device that one can install or remove should be “installed” or "removed". Even
though it sounds repetitve, it is easily for the student to grasp the direct relationship between his actions
and the result.

S. Declaging Operations.

Ensure that you are declared all of your property sets first before entering this step,

Operations are the primitive methods by which the student or an agent can manipulate one or
more objects, Tasks and lessons consist of sequences of these primitives. The intent of the operation is to
encapsulate an event that takes precisely one tum to complete. In tasks and lessons, operations defined at
the object level are called primitive operations. :

Operations are described with several data items and are managed via the create operation,
remove operation, and modify operation commands.

-- The direct object. The direct object is the thing that is the focus of the operation -- the primary
item being manipulated. Can be either a whole object or a component of an object.

-- The indirect objects. These are objects which must be present in order to do this operation,

-- The operation name. Must contain direct object, but may coi:tain any or all the indirect objects.

-- The intended effect. The primary or desired change of state in the direct object.

-- The preconditions. These are the conditions in which the direct object and indirect objects
must be in for this action to be allowed.

«- The side effects. These are changes of state that any of the objects alsu realize different from
the intended effect. These side effects *always* happen.

An example is "tighten the nut with the wrench” for the object nut, Nut is the direct object and
wrench is an indirect object. However, let's say that bolt is also an indirect object that is unspecified in the
operation name. The intended effect would likely be that the “nut is tightened™. The preconditions would
be that the "nut is on the bolt" and "wrench is serviceable", The side effects might be that the "bolt is not
free".

It is important to note that the operation is defined only in instances where all the objects are
used. Therefore, if a given task only uses nuts and bolts but not wrenches, the above operation cannot be
used. - :

The following are the rules for operation names. The examples above show the pattern for
operation nzmes. The operations follow the convention of a verb phrase. followed by a direct object,
trailed by a set of prepositional phrases containing the indirect objects. The verb phrase and the direct
object are required clements of the operation name. However, there is one special case 10 be aware of. If
the object is a character, and the direct object is the character object itself (ot a possession of the
character), then you should use the special form "have <characte> <operation name>". What this will
do is signal MEBuiider to swrip off the "have" phrase when compiling any lesson with it. This way, the
operation name comectly identifies the direct object and the end result operation is used by the student or
agent in first person.

The view object command will only show a listing of operations by name for an object. To view
the entire definition of the object, to include inheritance source, use the view operation command.

6. Declaring Summary Facts.

Summary facts are useful for complex objects in which you desire to help streamline the output.
A summary fact is a single-phrase description of a collection of properties about one or more objects. It is
primarily an interface tool which is used to "summarize" the state for the user,

Summary facts currently can only be defined for objects, however, they will soon also be
definable for tasks and lessons. They consist of the following data and are accessible via the create
summary fact, remove summary fact, and modify summary fact commands:

-~ The object.

-- The name of the summary, which is constructed similar to a property set member: objeci s
<summary descriptor>

-- The definition of the summary, which is a list of non-contradicting properties about the object.

An example of a summary fact for flashlight is "flashlight is working”, defined as "flashlight™s
chassis is assembled”, "flashlight’s top is assembled”, "flashlight’s batteries are working", "flashlight"s
bulb is working”. So with this summary fact, should all four defining members be true, then the four are
not printed out to the student. Instead, just the summary “flashlight is working" is printed.

Summary facts are currently not available when using tasks - either as defined among a set of
objects or as a shortcut in building task definitions. This is an item for future implementation. The only
time summary facts are used is in the METutor lesson itself.

107

The view object command will only list the object’s summary facts by name. To get the complete
definition of a summary fact, use the view summary fact command. The command will also show the
inheritance source of the summary (whether defined or inherited from parent or component).

7. Reclaring Background Changes.

Background changes model changes of state not caused by an ¢xternal stimulus. That is to say
that the object or objects change state on their own, due tu the object being in some given condition
(though not necessarily). An example of this is that whenever a streetlight is on, then if the streetlight is
green then 10 tums
later it will tum yellow and 10 turns after that it will turn red.

There are several general models of background changes:

-- Progression. The object changes from state to state within a property set until the last is reached
(which would normally imply some other event is to take place). An example of this is a ship with a hole
in the hull that progresses through "no water", "some water”, "lots of water”, "full" at which point the ship
sinks. Currently progression is forward only.

-- Loop. The object goes back to the beginning. The streetlight loops through "red”, "green",
"yellow". The loop can only go in one direction, it cannot be reversed at present.

-- Update. The object performs an operation. (Not yet implemented).

Background changes can be very complex, and there are many different options which are
available for building them. They consist of the following pieces of data, and are manipulated using the
create background change, remove background change, and modify background change commands.

-- A triggering condition list. The object would be subject to background changes while all of the
conditions in the triggering condition list are true. If the list is empty, then the object will always be
subject to the change.

-- The property set corresponding to the state changes.

-- Advancement method. How often or what probability will the next change occur.

The view object command will only display the name of the background changes in a listing. To
get a complete definition of a background change, use the view dackground change comman?, which will
also print the inheriteance source of the background change (derived or inherited by ancestor or
component).

8. Library Management with Objects.

You may save your object at any time using the save o8ject command. The load object command
will load the object into the session, along with the entire parent and componcnt class hierarchies. This
last note is important since you may note that several objects are loaded in that you did not request loaded.
This feature ensures that all inherited object definition data is available at all times while the object is
being accessed. '

You may also delete and restore objects from the library. The remove object command will mark
an object for deletion, while the restore object unmarks it. Upon exit from MEBuilder, all objects
removed from the library will be permanently purged. /mportant: Once an object has been purged, all
other objects, tasks, and lessons that use the object are invalid and must be reconstructed. Be sure you
know what you are doing.

108

(NOTE: These two commands are not yet implemented.)

Finally, to see if the object has a valid definition (that the modification or removal of data did not
leave »ny undefined remnants, use the check oMject command.

e

TAB 8. STEP TWO -- DESIGNING A TASK

1. Whatisa Task?

A task is the fundamental building block of a lesson. It describes a single hehaviour of a
character (called an "actor”) with respect to a defined starting point and a defined goal. This behaviour is
described in terms of a "sequence” of primitive operations,

The task does several things. First, it establishes relationships among the primitive operations
which the operations themselves do not cover. Second, it allows the teacher to identify and build altzrnate
solutions to the problem to be sventually given to the student. Finally, it cross-checks the teacher's intent
with the object
definitions to guaranteed correctness and consistency.

The task is made up of the following:

-- An actor. This is the one individual with primary responsibility for performing the task. The
actor must be a character class.

-- A list of other objects required for the task. Some tasks may involve multiples of the same
object. DO NOT treat components of an object as a separate object!

-- The initial conditions that each object is in at the beginning and the objectives that define when
the task is complete.

Important point about tasks. Tasks are built in terms of a known start and a known finish.
However, the task is designed so that the student can react to a state which is in the middle of the task ora
state which is outside the bounds of the task. In each case, the task provides the underlying rules describing
which operations can be applied and which cannot. Therefore, there is no restriction at the lesson level
which prevents a lesson scenario from presented a situation that does not directly conform to the initial
conditions of any task,

2. Pronertics of Tasks -- Steps and Step Dependency.

Tasks are described as a sequence of steps and each siep consists of a task operation. The
difference between a task operation and a primitive operation is that the task operation gains additional
preconditions based on the sequence of steps in the task. So task operctions are task-specific, whereas
primitive operations are more gencral. Steps are identified by number, listed in front of the operation in
brackets -- such as [3]. For commands that use <step> as an srgument, it is the number in brackets that is
required (this requires less typing than the entire operation name).

Tasks are not strictly linear, however. Some tasks can be performed in several different
sequences of operations, usually because there are operations in the task that are completely unrelated. In
this case, a single step may contain several “subprocedures”:

{2) open the widget
{3} all of the following:
[3a) subprocedure:
{3allyank the widget's red wire
[3a2)yank the widget's yellow wire
[3b] subprocedure:
[3bl)}seal the room

110

{3b2)deploy the Domd squad
{d]) yank the widget's blue wire

This implies that step [2] comes first, and that [3a1] must precede {3a2]. But it does not imply
any special ordering between [3al] or [3b1) other than both must be done before (4. So the following are
valid solutions -- 2-3a1-3b1-3a2-3b2-4, 2-3b1-3a1-3a2-3b24, etc.

There is an important principle that governs when steps can be moved around the procedure and
where, and this is called step dependency. A task operation X is dependent on another task operation Y if
and only if the intended effect or any side effect of the primitive operation Y is a precondition of the
primitive operation X. What this means is that no matter how the teacher decides tc describe the task, X
cannot precede Y. Therefore, there will be limits to the options given to the teacher when moving task
operations about the task. To see which operations are dependent on others, you may do the view step
dependencies command.

During construction of the task, the ordering of sieps adds more dependencies. Step [X+1] is
always dependent on step {X], and similarly substep [XQg] is dcpendent on [XQf] for some subprocedure
Q in step X. If step [X] is a divided step (meaning that is contains subprocedures), then step [X+1] is
dependent on *all* of the last steps in each subprocedure of [X].

When you manipulate the task to change the ordering of steps etc., the options given are based on
the primitive operation dependencies. Step dependency car be changed, the primitive operation
dependencies cannot. In order to modify the latter, you must modify the object definitions appropriately.

To create a new task, use the create task command. This command will take you through a series
of steps which will initialize the task into hopefully a solvable form,

a. Naming the Objects Involved. You will be asked for the actor in the task. The actor must be a
character object (the generic character object is sufficient, and will probably be the one most commonly
used). Then you will supply the object types for all the remaining objects. You are allowed to repeat
objects. If you repeat objects. the second object of the same type will be objectl. The third will be object2.

b. Senting the Initial Conditions. Initial conditions describe the initial states of the objects within
a given task. These initial states are established in order to ensure that every property set associated with
an object has a value assigned. After the task is defined. you may use the set initial conditions command
to change them, and the view initial conditions command to view them. Notes about initial conditions:

(i) You can only choose one member of the property set to be in the initial condition...
You should choose the property set that satisfies the most general case of the task, It should not be
necessary to create separate tasks based on an initial condition set with a variable member.

(i) If a property set is declared hideable, then its value bzing known and/or unknown is
considered a separate property set and must be set.

c. Setting the Objectives. Objectives define for some prop or character the point the goal of the
task or lesson.After the task is initialized, the set objectives and view objectives commands are availabla,
There are some subtle differences in the context of which prop or character:

111

(i) In the case of the prop, the objectives define what state the prop is in when the task or
lesson is completed.

(ii) In the case of the character which is not the student’s role, the objectives define the
state that the character is always trying to achieve. It is best described as the state where he has no work to
do.

(iii) In the case of the character which *is* the student"s role, the objeciives define the
state which signals the end of the lesson (or task).

Like the initial conditions, obiectives are defined for each object in the task or lesson. The state
for each
object should ordy list those properties absolutely necessary, you must explicitly identify those properties
that are “don’t-cares” -- MEDBuilder uses the ierm "<property set> is immaterial.” Tn order to prevent the
unnecessary or unplanned exclusion of some solutions to the problem, make maximura (but well-planned)
use of the "don't-care” case.

d. MEBuilder Determines the Initial Solution. MEBuilder will try to find *a* solution to the
problem. Once it does, it will construct an initial procedure based on the premise: that the solution it found
it tire only solution, The steps will be numbered {1] to [n]. The solution is »ased solely on the primitive
operations, and it may not even be correct according to what you intended! You should accept the solution
(forcing it to find a second solution could take quite a long time) and use the commands in the next section
to manipulate it to the procedure you really want.

There are several ways that you can manipulate the task once the first solution is established. It is
important to note that all of these commands are restricted under the rules of dependency described earlier
in this section,

a. Declaring Subprocedures. The find splits command will locate sets of operations that appear
unrelated and could be made into subprocedures. The inverse of this is the combine step command. The
combine step command does the inverse -- it takes two subprocedures (actually, the first step of each of
two subprocedures) and combines them together into one sequence of actions.

b. Swapping Steps. Two adjacent steps may be in the incorrect order. As long as step
dependency permits, you may use the swap step command to reverse them,

c. Moving A Single Step Around the Task. Sometimes the find splits command cormrectly
identifies subprocedures except that one or two of the operations should be included or excluded. The
move step command remedies these problems, In addition, this command allows naming the step as a
single-action subprocedure, and you can create a set of permutable actions with this single-action
subprocedure. For example if [4] and (5] are independent, then doing a move siep number 5 will allow
you to merge [4] and [5] into [4al] and (4b1). This can be extended to add the one-action subprocedure to
an already existing set of perrntable actions.

d. Declare Unordered Actions. The move step is also used for this purpose. Steps may be
declared unordered (and they will appear with an asterisk 1o the terminal). This same command can also
be used to reorder the operation. Unordered actions are those which do not follow the strict ordering of the
task except that they must precede the next step. For example, if step {6} is unordered it may be done at

any time (assuming its preconditions are met), but it must be done before step [7]. These greatly add to the
flexibility of the lesson.

S. Yiewing and Special Commands.

The reset task command is useful if you decide you wish to start over. MEBuilder will restore
the initial singie solution, clearing all subprocedure information.

The view gask prints out the task in its present form. This is useful if you wish to get the current
step arrangement.

The view situation command prints out the state that is true after a given operation has been
performed. This is useful for uncovering reasons why a particular solution was declared valid when you
feel it should not have been.

The modify step command allows you to add additional preconditions, sids effects, and messages
to the task. Once these are specified. the task is recalculated based on the changes. This is an especially
important command if you wish to introduce probabilities into the problem (such as there is a 15% chance
of a fire rekindling after you have extinguished it).

6. Library Managsment of Tasks.

The load task. save task, remove task, restore task, and check task commands are analogous to
their object counterparts. The Joad task command will merely load the task into the session, it will not
automatically invoke the Task Loop. check task will first perform a check object on all objects in the task.

In addition. in order to edit a task. you may use thc work on fask command to enter the Task
Loop. This command will ensure the task is loaded first, and load it if necessary.

TAB 6. STEP THREE -- DESIGNING THE LESSON

1. Whatisalesson?

An MEBuilder lesson is effectively a workbook filled with individual problems, similar to an
exercise section at the back of a chapter in a textbook. The problems should be designed to meet any or ail
of the following needs:

-- Cover different pieces of a topic, perhaps culminating with a problem that covers the whole
thing.

-~ Starting at an easy level and progressing to harder tevels.

-- Demonstrating k:owledge of lesson material in multiple scenarios (such as with different
equipment or with different personnel available).

The workbook. iramework contains the main information necessary for MEBuilder to build an
METutor iesson. These are:

-- A comprehensive cast of character roles and props with the associated tasks to be used.
-~ An introguction text for the lesson itself.
-~ A listing of problems. |

2. Whatis aProblem?

A problem is a specific exercise. The student will do the probiems when he runs the lesson. A
problem contains a scene which is the scene presented to the student, and contains a goal which is what the
student must achieve. A problem is ccastructed very similarly 0 a task in that a concrete cast and list of
props is given. The problem also contains information about the role the student will play (if there is more
than one character in the problem). Most lessons will have the student play the same role in all rablems,
however some might desire the student to play different roles.

3. Building 3 New Lesson.

Impor:ant: Before constructing a new lesson, you must have loaded into MEBuilder all of the
objects and tasks you intend to include.

In order to make a new lesson, you may use the create lesson command from Main Loop prompt
to make a new lesson. The command will take you through the process of identifying proper names for the
cast and props along with identifying their types. This is the cast and props that will be present in all
exercises.

MEBuilder will then identify the loaded tasks that comrespond to the given set of objects. You
may choose all of them or omit those not needed for the lesson, However, every object you specified must
be includable in a task. In other words, if you specified an extinguisher object but omit the only loaded
task that uses an extinguisher, then you must reconsider the assignment of objects and tasks. Qrdering of
1asks is important! The order you specify determines the defaults for the scene and the goal in cases when
an object is to be employed in one or more task, The default scene for any object is the initial conditions
of the first task that uses it. The defaul: goal for any object is the objectives of the last task that uses it.
These defaults will be relayed to you each time you declare a new problem.

114

Once the lineup is satisfactory, you will be in the Lesson Loop, the first thing you should do in
create an introduction text for the lesson. This should be a general text which describes the overall goals
of the lesson. Each problem will liave its own introductory text. The edit lesson intro and view lesson
intro commands are available, NOTE: The edit lesson intro command uses emacs -- and at present this
cannot be set.

4. Defining a New Problem.

Problems are defined by the create problem command. This command will initiate a sequence of
steps where you will specify the student's role and any cast members or props who are not to be included
in this particular problem. Each problem is assigned a problem number, which is one more than the
number of problems in the lesson. You also provide MEBuilder with a unique problem name, which is
primarily used to help you identify the problem. In most commands in the Lesson Loop, you may identify
a problem either by its number or its name.

The scene and the goal will default to the initial conditions and objectives of the tasks you
specified according to the rules described above, MEBuilder will print out a list of those items as they are
entered. Once the process is complete, you will be in the Problem Loop. Entering qui¢ will pop you into
the Lesson Loop.

After a problem has been created, you may modify the problem definition with the sef scene and
set goal commands. The view scene and view goal commands are analogous. The difference with the
scene vice the initial conditions of a task, however, is that you may identify probabilities. This means that
some state member in the scene is uncertain. You will be-asked to identify those probabilities for each
state member -- and those will become a random event in the compiled lesson.

You may edit and view the introductory text for the problem using the edif problem intro and
view problem intro commands. These are exactly analogous to their lesson intro counterparts. As with the
edit lesson infro command, emacs is the only editor accessible through MEBuilder.

In order to return to a problem from the Lesson Loop, you may work on problem, specifying the
problem’s name or number.

5. Serting Problern Options (NOT YET IMPLEMENTED).

Options is a method of taking some of the parameters of a problem and adjusting them
(overriding the original definition fium the task) in order to change the difficu’ty of the problem.

None of the following have been fully implemented yet, however, these are the options planned:

-- Side effect blocking. All probabilistic side effects as defined in the task definitions are
nullified. The intent is to provide a very simple problem with no surprises for the student (good for earlier
problems).

-- Probability ovemrides. Overrides the percentage of some given side effect in a task definition.
Intent is to perhaps increase the likelihood of something going wrong.

-- Background effect overrides. Overrides the percentages or count values in the background
changes listed for some of the objects.

115

-« Character speed. Characters other than the student can takes action quicker. For example, a
setting of 2 for the adversary of the student means that the adversary gets two moves per student’s one
move,

As they are implemented, entrics for the associated commands will be added to the help system.
Currently, the planned command is simply sef options.

6. Reordering and Deleting the Problems in the Lesson.

You are allowed to ranumber the problems using the arder problems command. This is provided
since create problem only adds problems to the end.

In addition, probleias may be deleted using the remove problem command.

MEBuilder is a lesson authoring system that was built on top of METutor version 29, an
Intelligent Tutoring System (ITS) shell. MEBuilder makes use of several METutor facilities while helping
you build lessons.

Creating an METutor lesson from MEBuilder data is dene through a "compilation” process,
accessible via the compile lesson command, This command will performs checks on all the objects, tasks,
and problems in the lesson and then translate the entire database into METutor form. The compiled lesson
can be saved as an METutor runnable file using the save compiled lesson command.

You can invoke an METutor session on a lesson you have compiled by using the run lesson
command in the Lesson Loop. You do not have to explicitly call compile lesson, the run lesson command
will do it automatically. Quitting from METutor will return you to the Lesson Loop.

8. Library Management of Lessons.

The load lesson, save lesson, remove lesson, restore lesson, and check lesson commands are
available and mirror their object and task counterparts. In addition, the work on lesson command enters
the Lesson Loop on a particular lesson. As with the task version, work on lesson will load the lesson first
if it hasn't already been loaded into the session.

APPENDIX C. SAMPLE SCRIPT RUN WITH MEBUILDER

The following script run with inserted comments is the same sample script run given
to the students in the experiment described in Chapter V1. The problem requires a pilot to
execute the steps necessary to prepare a plane for takeoff. It is of similar complexity and
size as those lessons used in the experiment. The script is divided as follows:

Tab 1.
Tab 2.
Tab 3.
Tab 4.

The Requirements and Design Phase
Building the Objects

Building the Task

Building the Lesson

TAB1. THE REQUIREMENTS AND DESIGN PHASE

This appendix will present a sample session using MEBuilder to build a lesson from the ground
up. That is, a requirement will be presented and discussed. We will then go through the process of
identifying the objects and members of the objects, constructing associated tasks, and finally building a
lesson workbook. We will then demonstrate the lesson compilation process and the METutor interface.

1. Thel Pilos Traini

The student is a pilot who is leaming how to fly. His first lesson is in the process of prepping the
aircraft for takeoff and for the basic communications with the air traffic control tower. At the start of the
problem, all of the devices in the aircraft are turned off and the aircraft has not been preflight inspected.

This is a very simplistic description of the procedure and the objects involved in order to keep the
scope of the problem reasonable for this appendix. There is a huffer present at the terminal to help start
the engine. The aircraft has several subdevices associated with it. The aircraft has brakes, throttles, an
engine, trim, nose wheel steering ("NWS"), external power hookups, and an auxiliary power unit ("APU "}
with its associated bleed air and generator. The brakes, trim, and NWS are unchecked. The aircraft has
not been preflight inspected. External power is available but is off. The engine and APU (along with its
associated components) are all off. The pilot has not had his flight plan cleared with tower, nor is he
cleared for taxi nor takeoff. There is a wind sock at the end of the runway to inform the pilot of the wind
speed and direction at takeoff. At the end of the task, the student should be airbome.

The sequence of steps is as follows:

(a) The pilot must do the following in order: inspect the aircraft, engage the external

power, =ngage the huffer, start the engines, start the APU, and then engage the APU's generator and bleed
air, The plane is own operating on its own.

(b) The pilot requests flight clearance while he is checking the NWS and brakes.

(c) He then disengages the huffer and the external power, requests taxi clearance and
taxis to the runway.

(d) At the edge of the runway, he requests takeoff clearance while he is checking the
wind sock and adjusting the trim on his aircraft.

{e) Once his takeoff clearance is granted, he pushes the throttles to max and flies the
airplane!

2. Design the Obi 1 the Map the § .

For the purposes of this sample, we will only concem ourselves with the fundamental building
blocks of objects -- components, property sets, and operations. We will not include summary facts and
background changes nor will we employ an object hierarchy other than identifying props and characters.
There are two steps to this process -- first identifying the makeup of the objects, then defining the behavior.

a. Map the Scenario

Generally speaking, most applications will not come in a nice tidy procedural listing
such as that given above. The best thing to do for any application is start by identifying the specific

118

sequences of events thut must occur and list then in order step (a) through (z). Grouping set sequences
together such as (a) above is ideal. Devote a step to sequences of events where order is vnimportant, such
as (d) -- but be sure to identify what ordering is allowed and what is not. For example, in (d) checking the
wind sock must come before adjusting the aircraft's trim. So the following are legal: clearance-wind sock-
trim, wind sock-clearance-trim, and wind sock-trim-clearance.

b. Identify and Design the Objects and Component Relationships

There are several objects listed in the above scenario. However, as we identify these
objects we must also identify those objects which are components of other objects or are possessions of
characters. The following is the breakdown of objects in this task:

(1) the aircraft -- a prop, with the following components:
(a) auxiliary power unit -- with the foliowing components:
(i) generator
(ii) bleed air
(b) brakes
(c) engine
(d) external power hookup
(¢) nose wheel steering
(f) throttles
(g) trim
(2) the pilot - a character
(3) the huffer -- a prop
(4) the wind sock -- a prop

(We are not going to model the air traffic control tower as a scparate object for this
example.)

c. ldentify the Behaviour -- the Properties and the Operations

The property sets and the operations go hand-in-hand. For each property described in
the task, we might want to consider an operation that achieves it. The key for successfully doing this is to
keep it simple. Do not include attributes that are redundant or unnecessary.

We will start with the piloi. The pilot is the one doing all the work, however most of the
work is in changing the state of the aircraft, not the pilot. Three are three things the pilot does that clearly
changes his own state -- requesting the three clearances. We say this because clearance to taxi, etc., is
requested by and granted to the pilot, not the aircraft. Because the pilot is a character, the operations will
begin with the key phrase "have pilot", which will be chopped off during the lesson so the student will
view things first hand.

There are several ways to model the pilot's state. We could either model the three
clearances as three different property sets or model all thre: as a single property set with a fourth member -
- pilot is uncleared. Generally speaking the former method is preferable since the fact that a pilot is
cleared for taxi and departure could be used in several contexts. Only in cases where all values a strictly
mutually exclusive should they be combined.

When designing the objects, the best way to do it is to set up a table mapping properties
to operations and operations to other data. Group possible property sets together and label them. The
following is a good example:

Property Opeiation to Achieve it

flight clearance:

pilot is cleared to depart have pilot request flight clearance
pilot is not cleared to depart <none>

taxi clearance:

pilot is cleared to taxi have pilot request taxi clearance
pilot is not cleared to taxi <none>

takeoff clearance:

pilot is cleared to take off have pilot request takeoff clearance
pilot is not cleared to take off <none>

Precondition

Now, let's examine the task description and see what other information we can gather.
For designing the operations, we must identify the preconditions. Using the scenario mapping, this is
easy. For example, in order to request the flight clearance, the APU bleed air on the aircraft must be on.
MEBuilder automatically assumes that the pilot is not cleared to depart so it is not necessary to include that

precondition,

Property Operation to Achieve it

flight clearance:

pilot is cleared to depart have pilot request flight clearance
pilot is not cleared to depart <none>

taxi clearance:

pilot is cleared to taxi have pilot request taxi clearance
pilot is not cleared to taxi <none>

takeoff clearance:

pilot is cleared to take off have pilot request takeoff clearance
pilot is not cleared to take off <none>

Precondition

aircraft's bleed air must be on

aircraft's external power is off

airca aft must be on the runway

In similar fashion, here are some the aircraft's properties and operations (We will not include all

of them in the interest of space).

Property Operation to Achieve it
location:

aircraft is at the terminal <none>

aircraft is on the runway taxi the aircraft

aircraft is airborne fly the aircraft

NWS check status;

aircraft's NWS is checked check the aircraft's NWS
aircraft's NWS is not checked <none>

Other Information

pilot must be cleared to taxi

aircraft’s throttles must be maxed

aircraft's bleed air must be on

Once you have built these tables for all the objects, you are ready to start the MEBuilder session.

120

TAB 2. BUILD THE OBJECTS

The best way to approach constructing the objects is to do the following in order:

- Create all the objects
-- Connect all the components
-- Define all the property sets
-- Define all the operations

We will now begin an MEBuilder session. Notice that MEBuilder automatically creates a Library
directory for us (assuming this is our first session);

seript started on Tue Jul 26 10:33:14 1994

.alias: Mo such file or diractory.

> =galvint/mebuild/MEBuilder

P Y L L L L D T e L cosensmnes o -

| Means-Ends Virtual World and Lesson Builder -- MNEBuilder |

| CPT Thomas P. Galvin, U8 Army, MNaval Postgraduate School |
D Y L L L L L L T T ermmarme—cencaan L Y T T T 'Y

Type “"help" for ansistance 1

* —————— P T L LT LYY LY LY L LY YRy ¥ - - w LT T T X T 1 --—*

MEBuildezr local library not found....creating...

“®Builder local library loaded.

ARBUILD>

a. Creating the Objects. Now we will use the create object command to create all the objects
(this includes all of the objects that will become components of aircraft). The following is a portion of the
script.

MERUILD> crvate ocbjsct named pilot

The f>llowing ars the available parent classes.
[1] prop

[23 character

> » one of the rbove> 2

B "pilot" is now defined.

M. D> create object named huffexr

The 1lowing are the available parsnt classes.
i1} prop

[2] character

I3} pilot

Choose - @ of the abdove> 1

Class *.. ffexr" is aow defiued.

MEBUILD> create object named wind sock

The i . .. wing are the available parent classes.
1) prop

(2} charactesx

13) pilot

{4) huffer

Choose one of the abovae> 1

Class “wind scck" is now defined.

MEBUILD> czerts cbject namsd aircratt

The following are the availabls parent classes.
1] prop

[t} character

{3] pilet

[4] buffer

5] wind secck

Chooss cne of the above> 1

Class “aircraft" is now dsfined.

MEBUILD> orsate cbject named airxcraft APU
Tha following are the available pareat classes.
fi] prop

[2] ocharacter

{3} pllet

(4] Dutfer

23] wind sock

(6] alrcratt

Choose one ©of the above> 1

Class “aircratt APU" is now defined.
‘MERUILD>

Note that all of the created objects become options for parent objects. In the same manner, the
aircraft APU generator, aircraft APU bleed air, aircraft brakes, aircraft engine, aircraft external power,
aircraft NWS, aircraft throttles, and aircraft trim objects are all created. Other commands useful here
include view object and change parent object.

b. Defining Components. We will demonstrate the process of combining a component object
together. This is with the create comporent command. We will only show the construction of the aircraft
APU with its generator and bleed air. As specified in the command referonce, you do not have to provide
the “named"” and the “for" arguments on the command line — MEBuilkder will prompt those automatically.
However, MEBuilder will always provide a menu for the component's type.

MEBUILD> creats componsnt named geperatoxr for aircratt APU
Choose cthe class of the new component from one of:

1) pilot

12) huffer

[3) wind sock

{4) aircratt

{5) ailrcraft APU gensrator

[6) aireraft APU blesd aix

[&A] aizeratt brakass

£)] aireraft engine

{91 ajrcraft external power

[10]) aircraft Xws

[11] airorafc throttles

{12] aircratt trim

Choose ope of the above> 5

I assums “generator" is a singular name.Correct? [Yes/No] yes
Component “generator" defined for class "aircraft Arue,
MEBUILD> create component named blead air for ailrcraft APV
Choose the class of the new coemponent from one of:

[1] pilet

£l huffexr

(3! wind sock

(4] airecratt

£ 3] airoratt APU gsperator

{6) aircraft APU bieed airx

{7} airoraft brakes

(8) aircraft engine

{91 alrcraft oxternal power

[10] aircraft Nws

{11) aircraft throttles

(12) ajircraft trim

Choose one of the abave> §

I assume "bleed air" is & singular name.Correct? (Yes/do) yes
Componant "blesd air" defined for class "alrcreft APU“,

122

MEROILD>

In similar fashion, the seven components of aircraft are attached. Once this is done, it would be
wise 10 save all the objects. NOTE: saving the aircrafl automatically causes all component objects to be
saved also. You can check this using the view library command. As a check. here is what the view object
command will produce on aircraft when this step is completed,

MEBUILD> view cbject named aircraft
Class “aireratt® is clean
Depeandencies: aircratt trim, aircraft throttles, airoratt NwS,

aircratt ezternal power, alircraft engine, alrcratt
brakes, airzcoraft APV, and prop

Clasa “aircoraft* is a prop class with supexclass(es) “prop".

Class “aircratt" has no derived classes.

Conponents of class “aircrafi:

{1} “APU" of class "aircraft APUM

[+ “brakes" of class “aircraft brakes"

(3) “sngine" of class “aircraft engine®

8 “sxternal power" of clasa “aircraft exterzal power"

(3] “NWS" of class “aircraft Nws“

{61 “throttles" of class "alrcraft throttles"

7 “trim" of class “aircraft trim*

i8] “APU's generator" of class “aircraft APU generator®

19} “APU's bleed air* of class “alrcraft APU bleed aix"

Property Bets of Class “aircraft':

<none>

Summary Faccs of class “aircragt™:

<none>

Property Display Data of Class “airxrorafe":

<none>

Operatiocns of Class “"aircraft":

<none>

Operation Display Text of Class “"aircraft':

<none>

Background Changes of Class “"aircraft!:

<none>

MERBUILD>

Other useful commands relating to components are remove component, view component, and
modify componen:. Refer to the command reference,

¢. Defining the Zroperty Sets. The next step is to put in the first column of our pruperty-
operation table. The reason why we raust enter all the properties first is because we cannot define an
operation that involves a pilot and an aircraft unless the properties of both are defined. Therefore, it is
good practice to ensure coiaplete of the property sets before working on operations.

We will show the process for a one of the pilot's sets, then show a couple for the
aircraft. The create property set command is used here. First the flight clearance for the pilot. NOTE:
Notice that the "not" member is not given. Seis that have only one listed member automatically have a not
second member. Do not give the "not" version!

MEBUILD> create property set named flight clearance for pilot

TYPe “exit® to loave.

Wew Property: pilot is -- cleared to depart

New Proparty: pilot is -- exit

Doos this set correspond te informatioca that could be hidden Srom the
student? Ansvar yes or no.

123

»> BD
Fxoparty set “flight clearance” defined for class “pilot*,
MEBUILD>

Also note -- this exampls does not demonstrate hidden propesty sets. This is an advanced feature
which will be demonstrated in a separate exampie in future.

Now, a demonstration of aircraft's location:

NERUILD> creats property set named location for airerate
Type “exit" to leave.

Mew Proparty: airoraft is at the terminal

New Property: aizcraft is on the runway

New Property: aircraft is airhorne

New Property: alroratt is exic

Doss this set correspomd to information that could be hidden froa the
student? Anawer yes or 2o.

*»> DO

Property set “location" defined for class “airersft".
MEBUILD>

Now we will demonstrate the building of the NWS check status. Note first that the NWS check
status is not a property set of the aircraft but of the component object! Properties describing components
are always identified with their component object type. "Location" desctibes the whole aircraft, which is
why it is a set of the aircraft.

MERUILD> create property set for aircraft NWs

Plaase name the new proparty set> check status

Type “exit" tc leave.

Rew Property: aircraft NWS is -- unchecked

New Property: alrcraft NWS is -- checked

New Property: alrcraft WMS is -- scit

Maw Property: aircraft MWS is -~- exit

Does this set correspond to information that could boe hidden from the
studsnt? AdSwer Yes or nc.

>> o

Proparty sat “check status" defined for class “alreraft Xws".

Oops! we mistyped "exit" and wound up with an extra property set member, To fix this, we will
demonstrate the mndify property set loop. Most of the modify commands in the object layer follow this
type of a format. The definition of the object's property set is given and you select the specific attribute to
change,

WESUILD> modify property set namad check status of aircraft NMs
Type “hslp* for help. Type the labsl to change.
aawe ~-- check status

domaln -- unchecked, checked, anA escit

hide e« pot_hicdeable

MNODIFY PROPERNTY SET> domain

Type “exit" to leave.

Mew Property: alrcraft NWS ie -- unchecked

Wew Property: aircraf. NWS is -- checked

New Property: airoratt Wws is -- exit

Type “help* £or help. Type the labal to changs.
name -~ check status

domain -- unchecked and chacked

hide -- not_hideable

MODIFY DROPERYTY SET> quit

Save chasges to property set? yes
Proparty set modification completed.
MEBOILD>

In siilar fashion we have defined the following peoperty sets for all the objects:

Pilot: Flight Clearance "cleared to depart” and "not cleared to depart”
Tazi Clearance “cleared to taxi® and "not cleared to taxi"
Takeoff Clearance "cleared to takeoff™ and "not cleared to takeoff™

Huffer: Presence "present” and "not prasent”
Engagement “engaged"” and "disengaged"”

Wind Sock: Check Status “checked” and "not checked"”

Aircraft: Location “at the terminal”, "on the runway", and "airborne”

Aircraft: Preflight Completion "preflight inspected” and "not preflight inspected”

Aircraft APU: Switch Pasition "off” and "on"

APU Bleed Air: Switch Position "off" and "on"

APU Generator: Switch Position "off" and "on"

Aircraft NWS: Check Status "unchecked" and "checked"

Aircraft Brakes: Check Status "uncliecked” and "checked"

Aircraft Engine: Running Status "off” and ' running"

A, External Pwr: Usage "availablc", "used", and "bypassed"

A. External Pwr: Switch Position "off™ and "on"

Aircraft Thrott.: Pasition “off", "idle", and "max"

Aircraft Trim: Check Status "unchecked" and "checked"

Other useful conumands for property sets are remove property set and view proper:y set.

d. Defining the Operation;;. Now we will define the operations using the same table through the
use of the create operation command. The process is very simple, but there are several steps invoived.
Here is the sequence of questions askad:

-- Name all the objects invol ved.

-- Provide the primary purpose, or "intended effect” of the operation. The intended effect is the
property to the left of the operation name.

-- Provide the preconditions. These are given in the third column.

-- Provide th- side effects. None of the operations have side effects. Side effects are other
changes that occur that aren't the primary purpose of the operation,

For the first demonstration. we will do the one operation for the wind sock. The
operation "check wind sock" will be used to achieve "wind sock is checked". Looking at the task, the
- precondition for this operation is that the "aircraft is on the ranway".

One important note. Notice that the pilot object is identified as a necessary ubject even
though there are no preconditions or side effects involving pilot. In general, if a specific character type
(not the generic "character”) is the ons who will perform a given operation, then that character should
always be included in the other objects list. ‘This is t0 insure that the "check wind scck” operation
involving a pilot is not confused with a "check wind sock" operction involving an air traffic contol
operator, for example.

125

First, identifying the objects and the operation name. Remember that the operation must
follow this syntax -- <verb phrase> <object name or component name as direct object> <rest>. Since
wind sock has no components, oaly "wind sock" may be used as the direct object.

MEBUIILD> oreats operation for wind sock
You sust aow specify other cbjects needed to perform the operationm.
You may repeat obhject types -- which implies a distinet ohject of same typs.
IMNFORTANT: DO NOT IMCLUDE COMPOMENTS OF “wind sock"®
UNLESS IT IS A COMPLETRLY SRPARATR ORJRCT.
1] pilox
{a) airoratt
3] airoratt trim
[4) airoraft throttles
{S1 alrzoraft wws
{3} alrczaft external power
17] airoraft engine
I8} airoraft brakes
191 aireraft APV
{10] aircratt APU bhleed air
{11] aireraft APU ganerator
[12] wind sock
{13) huffer
i Choose ohe O more Of the above or “none"> 1 2
’ Mame the operation: check wiad sock

~next the intended effect.....

The following are the allowable intended effects:
{1] wind scok is checked

(2] wind sock is not checked

Choose one of the above» 1

«.then the preconditions. You identify these one object at a time...

“"ha following are the allowable preconditions for *pilot”
{1] pilot is cleared to depart

121 pilot is not cleared to depaxt

{31 pilot is cleared for taxi

A {4) pillot is not clearsd for taxi

! [S] pilct is cleared for tukeoft

[€]1 ©pilot is zot eleared for takeoff

Choose ¢ne uF more of the abuve or “nole'> nons
T™he following are the allowable precorditions for “aircraft"
{1) airoraft ie¢ preflight inspacted

[2) airexaft is not preflight inspected

{31 airoratt is at the terminal

{4} aireraft is omn the runway

{5) aircraft is airborme

161 airczaft's APV is off

{71 aircraft's APU is o2

[8] aizcraft's APU's generator is oft

{91 airczaft'e APU's gendesrator is on

{10) aircraft's APU's blaed air is off

{11] aircraft's APU's Bleed air is on

{12) aircreft's brakes is unchecked

113] aircraft's brakes is checked

i [{14] aireratt's engine is off

[1S]1 aircraft's sngine is running

{16] aircraft's external powex is available

126

(171 aliroraft's external powar is used
(18] aixcraft's axtexnal pewsr is bypassed
{19) airoraft's axtsrnal power is off
{20] aircraft's external power L& on
{21] esdrcocaft'a WS is unchacked
(22] airczatt's WS is checked
{23) airexatt's throttlea is off
i {24) airexaft's throttles is idle
' f38) airzzaft's throttles is full
| t26) aircxaft's trin is uachenked
‘ {27) asircoratt's trim is clhecked
Choose one or more of the above or “nons'> 4

«Similarly the side effects. (There are no side effects possible for "wind sock”
since

there is only cne property set for it, and a set cannot have members as both an
intended

cffect and as a side effect. Therefore, "wind sock” is skipped.)

The fulliowing are the allowable side effects for “pilet®
Ii] pilot ie cleared te depart

{23) pilot is nmot cleared to depart

13} pilot is clearsd for taxi

[C}] pilot is not cleared for taxi

[£ 3] pliot is cleared for takeoft

Y J] pllot ia not cleared for takeoff

Choose one or more of the above or “none'> none
The following are the allowable side sifects for “aircraft®
1} aircraft is pratligit inspected

{2} aircraft is pot preflight luspacted

[3! aireraft is at the termizal

[4} airoraft is airborane

s8] airaraft's APU in off

18) airoraft's APU is on

17} aircraft's APU's generator is offt

8] aireraft's APU's genexator is on

19} aircraft's APU's bhleed air is oft

[10] adrcrafi's AFU's bleed air is on

111) alizorasfi's brakes is unchecked

f33) aizcrafc's brakes is checked

{13) airecraft's engine is ofe

{14] alreratt's engine 3s yumning

{15] aizcraft's exteraal power is available
[1€6] uircrafr's sxternal power is used

[17) aircraft's axternal power is bypassed
{18] airoraf:'s external power is off

[{19] aircoraft's sxternsl power is on

[20] aizoraft's WWS is unchecked

1221 airxorafc's WS is checked

{22]) eircraft's throttles is off

{23) aircraft's throttles is idle

124) aizoraft's throttles is full

{285] aircraft's trim is unchecked

{a€] airersit'e trim is checked

Choose ons or moTte of tha above Or “none“> nhone
Operation has bheen alded to claws “wind sock®.
MEBUILD>

127

...you will note that creating an operation is a very wordy process -- but because of the

use of
menus, there is little chance for error and litile typing involved.
The second example is with the pilot. Because pilot is a character object, you will get a
special
' message which describes the special syntax if the pilot is the direct ubject. We will only
show

the execution of the command up to the naming of the operation.

MRBUILD> create operation for pliot

You must now specify other okjeots nesded to perform the cperation.
You may repeat object types -- which implies a distinct cbject of same typs.
IMPORTANT: DO NOT INCLUDE COMPONENTS OF “pllot"

UNLESS IT IS A COMPLETELY SEPARATE OBJECT.

(1) pilot

{3} alrczafe

{3} aircraft trim

[4} aircratt throttles

[s) zircraft Nws

[6} aircraft exteraal powex

7] aircratt eagine

18] aireraft brakes

(9] aircraft APU

[{10] aizcratt APU bleed air

[11] aircralt APU genmrator

{12) bhuffer

[13) wind sock

Choose one or more £ the above or “none"> 2

This is u character object. If iteelf is the diract cbject, you must
use the form "have <object> <operation>" whers <cperations> is not null.
Nume the operation: have pilot reguest flight clearance

The following 2re the allowable intonded effects:

00 s€lCou.

The final example involves the specification of a component direct object. This will be
potentially very confusing because the gencral rule for where to place an operation is diffzrent than where
to place a property set in a composite object. Operation go to the component only if the operation
absolutely dees not impact the whole object. For masy of the aircraft operations, however, many of the
operations changing one component have preconditions involving other components. Therefore, the below
cxample for the "cngage external power” operation is defined for the aircraft, not the aircraft external
power. “external power”, however, is a legal direct object because it is a component of aircraft.

MEBUILD> create operation tor airxcraft

You must now spezify other objects needed to psrform the operation.
You may regeat object types -~ which implies a Aistinct chject of same type.
INPORTANT: DO NOT INCLUDR COMPOMENTS ¥ "aircraft”

UNLBSS IT IS A COMPLETELY SEPARATE OBJERCT.

1) airoratt trim

[2} aizcraft turottles

(31 wircratt wws

[4) airozuft external power

{51 aircraft engine

[6! airciaf: brakes

(71 airoraft APV

(¥ airoraft APU bleed air

128

[§)] aizeraft APU gensrator

[10] pilet

{11} wind sock

{32] bhutfer

{13] alzcxaft

Chooss one or more of the above or “acne"> 10
Mame the operation: angage axztermal power
The following are the allowable intended effects:
11 alreraft's external powsr is available
[#3] aircraft's sxterral power is ussd

3] aizrcraft's axternal power is bypassed
{4) sircraft's extezrnal power is off

{5} aizrcraft's sxternsl power is on
Choose one of the above> S

The following are the allowable preconditions for “aircrait®
1) aizcraft is preflight inspected

(2] aircratt is not preflight inspected
13} aircraft is at the Cerminpal

{4} alxcraft is on the runway

{51 alircraft is aictborne

()] ajreraft's APU is off

{71 alrcratt's APU is on

[)] aircraft's APU's generator is off

19] airoraft's AFU's generxator is on

[10] edrcraft's APU's bleed air is off

[11] asiroxatt's APU's blead air is on

[12) aircraft's brakes is unchecked

[13]) @aircraft's brakes is checked

[{14] aircraft's engine ias oft

[{15) afrcraft's engine is running

{16] alirexratt's sxternal power is available
{17) aircraft's sxtexaal power is used

{18) zircratt's external powar is bypassed
{151 aircraft's 3ws is unchecked

120] aizcragt's NWS is checked

[{21] aircraft's throttles is off

[33] aircraft's throttles is idle

[23) airvcraft's throttles is full

[{24] aircratt's trim is unchesked

{25) alrcraft's trim is chacked

Choose cne or more of the above or “pone"> 1
The following are the allowable preconditions for “pllot*
[1] pilot is cleared to depart

f2] pilot is Dot clearsd to depart

{31 pilot is cleared fo:r taxi

[4] pilot is not cleared for taxi

(8] pilot is cleared for takeoft

(6] pilot is nmot cleared for takeoft
Choose one or mors of the above or “aonc“> none
The foliowing are the allowable side affects for “"alreraft®
{1) aireratt is mot preflight inspected
(2] aireratt i at the torminal

(3] esirozaft is on the runwey

4] airecraft is airhorne

{5] alzcrutt's APU iu off

{6) aircraft's APU is on

71 airoraft's APU's genegator is off

{8} aixcraft's APU's generator is on

(€21 alzrcraft's APU's bieed air is off

{10) aircratt's APU's bleed air is on

{11] aircraft's brakes is unchacked

{12) aircratt's brakes is checked

{13) aizcraft's engine is off

[1A). airczatt's engine is running
- [15] airoraft's external powar is available
{16} airoraft's external power is used

{17) aircraft's external powsr is bypassed
18] aircxaft's NWE is unchecked

{19]) aircratt's NWS is checksd

{20] aircratt's throttles is off

{21) aircratt’'s throttles is idle

{22] airxcxaft's throttles is full

(23] alxozatt's trim is unchecked

{24) eaircratt's trim is checked

Choose one o more of the above or “none“> none
The following are the allowabls side effects for “pilot"
[1) pilot is cleared to dspart

[2] pilot is not clearsd to depart

[3) pilot is cleared for taxi

{4) pilot is not cleared for taxi

{S] pilot is cleared for takeoff

[6] pilot is mot cleared for takeoff

Choose one or more of the above or "none'"> none
Operation has been added to class "“aircraft”.
MERUILD>

Other useful commands for manipulating operations are remove operation, view
operation, and modify operation.

¢. Review the Obijects. Once the objects have been saved, it would be wise to review the objects
before going into the task definition phase using the view object command. This will also help show you
what work has been done in preparation for the task definition phase.

MEBUILD> view object named pilot
Class “pilot* is clean
Dependencies: character
Class “pilot® is a character class with superclass{es) "character'.
Class “pilot* has no derived classes.
Conponents of class "pilot"i
<none>
Property Sets of Class "pilot":
t1) £light clearance
[2) takeoff clearance
13} taxi clearance
sSuxmary Facts of class "pilot™:
<none>
Property Display Data of Class “"pilot":
<Done>
Oparations of Class "pilot":
{1} Dhave pilot xeguest f£light clearance
{a) have pilot request taxi clearance
(¢)] have pilot regquast takeoff clearance
Opeavation Display Text of Class “"pilot':
<nene>
Background Changes of Class "pillot":
<none>
KEBRUILD> view objact namad huffer
Class “huffexr" is clean
Depetdencies: prop
Class "huffer’ is a prop class with superclass(es) “prop".

130

Class *"huffer” bas no derived classes.

Componsats of class “"huffex”:

<none>

Property Bets of Class “huffer':

1] engagement

(2] presence

Summary Pacts of class “"huffer':

<none>

Property Display Data of Class "huffer":

<Done>

Operations of Class “"huffer“:

{11 engage huffar

[3) disengage bhuffer

operation Display Text of Class “"hutfexr':

<Done>

Background Changes ¢f Class “"huffer":

enone>

MEBUILD> view cbjsct named aircraf:

Class “aircraft® is clean

Dependsncies: aircratt trim, aircraft throttles, alrcraft NWS,

aircratt external power, aircraft ongine, alrcraft
brakes. aircraft APU, and prop

Class "aircraft" is a prop class with superclass(es) “prep".

Class "aircrait” has no derived classes.

Coxponents of class “ailrcraft":

f1) "APUY of class "airoraft APU*

(3] “brakes” of class “aircraft brakes"

£3) vangine” of class "aircraft engine"

{4) vaxternal power" of class "aircraft external power"

{8} “NWS" of class "airoraft NWs"

(£} “throttles" of class “"aircratt throttlas"

[7) “trim® of class "aircratt trim"

1€)) "APU‘s generatoxr" of class “aircxaft APU generator"

9] “APU's bleed air" of class "alrcraft APU hleed air"

Property Sets of Class "aircraft®:

£1) location

{2) APU's bleed air's switch position

[3] APU's generator's switch position

[4] APU’'s switch position

[S] MWS's check status

({3} brakes' check status

£73 engive's running status

(€} axternal power's switch powition

{9} external power's usage

(101 preflight coempletion

{11] throttles' position

{12) trim's check status

Summsary Facts of class “aircraft':

<pone>

Property Display Data of Class “aircraft",

<none>

Operations of Class "aircraft':

f1] oheck ¥WA

{2) check brakes

(3] adjust trim

{4} shut off APU

18] taxi aircratt

{s) max throttles

{7} £ly the sirerats

{8) start APU

(8] comduct preflight inspection on aircraft

131

[10) engage externmal power
{111 start engine
[12] disengage externmal power
S [{13]) engage APU's generator
e -{14] engage APU's bleed air
R Opezation Display Text of Class "aircraft":
<none:
Background Changes of Class “aircraft":
<none>
MEBUILD> viuw chject named wind sock
Class “wind sock” is zlean
Dependencies: prop
Class "wind sovk" is a prop class with superclassies) “prop".
Class *wind sock" has no derived classes.
Coxponents of class “wind sock":
<none>
Propexty Sets of Class “wind sock“:
1] check status
Summary Facts of class "“wind sock":
<ROBe>
Property Display Data of Class "wind sock":
<DONne>
Operations of Class “wind sock":
1] check wind sock
Operation Display Text of Class “wind sock":
<Doune>
Background Changes of Class "wind sock":
<none>
HMEMOILD>

132

TAB 3. BUILD THE TASK

Building the objects is actually the most difficult part of the process. Once a good set of objects
is built, buikling the task takes no more than a couple of steps. The process basically goes as follows:

_ = Naming the task and telling MEBuilder all the objects in the task.
-- Telling MEBuilder what the state each object is in at the beginning of the task and

state constitutes the completion of the task.
-- MEBuilder generates one solution to the task and saves it as the only solution.
- You tell MEBuilder what other solutions are allowed. At each step, MEBuilder will

that your other solutions in fact work,

The first three are all accomplished when you perform the create task command. Here is how
this command works:

. MEBUILD> create tesk named prep aircraft

For the primary actor, chooss from one of the following:
Ii] character

12] pilet

Chooss one of ‘he aboeve>

You will first note that the create task command will ask for an actor, which must be a character
type. You can use the generic "character” or specify a specific character type that must be in the task. The
only options are those loaded in the session -- so ensure you have loaded all your objects in the session

“first. We will select "pilot".

Choose one of the above> 2

List all of the other objects that are required for this task. If
thers must be more than onie, then repeat that item. Ensure you
choose the most general cbject available.

{1] pilet :

(2] huffer

{31 aircratt

[41 aixcraft trim

{5] airoraft throttles

[6]1 airoratt Nws

7 aircraft sxtexrnal power

()] aircratt engine

%) airocraft brakes

[10] airoratt APV

{11] airoraft APU bleed air

{12) aircraft APU generator

{131 wind scck

Select one or more of the above or “meme”>> 2 3 13
Task “prep airoraft" is now defined.

Now working on task "prep aircraft®.

types “guit® to return to MEBUILD prompt.

For the follow-on part, we have identified that we need a huffer, wind sock, and an aircraft. Note
that naming all the components of aircraft are unnecessary. If an aircraft and an aircraft engine are listed,
then that constitutes a full aircraft and a separate engine.

Also, if needed, you could have specified a second pilot or multiples of any other object. If
multiples of an object are specified, then they are referred to in the task as object, objectl, object2, etc. (In
the future, this will be changed to "second object”, "third object”, etc.).

Now, we will go through the process of identifying the initial conditions and the objectives of
each object in the task. When you do a create task command, the default initial conditions are the first
member of cach property set. For sets of one member, constituting the X, not X case -- the not X is the
default. For the objectives, the default is the last member of each property set and the X case holds for
single member set.

For the pilot, the defaults are OK

The following are the curreat initial conditiomns for "pilet".
Indicate which ones you want changed:

1] pilot is not cleared to dapart

{2) pilot is pot cleared for taxi

[3] pilot is not cleared for takeoff

Chooss one or more of tha above or “aone'> none
The following are the current objsctives “pilet",
Indicate which properties you want changed,

1) pilot is clesarsd to depart

{2] pilot is cleared for taxi

{31 pilot is cleared for takeoff

Choose ope or more of the above or “none> none

...but for the huffer, we must make a couple changes. The default says that the huffer is not
present, which is not true. What we do is identify the first property as needing to be changed. We select
the correct property and then continue on.

The following are the current initial conditions for “huffer".
Indicate which ones you want changed:

{1) huffer is not present

¢} huffer is disengaged

Choose cpe or more of the above or “"none"> 1
Choose the appropriate new initial condition:
{11 huffer is not present

f2] Lhuffer is present

Choose one of the above> 2

Indicate which ones you want chenged:

f1] huffer is present

[2] huffer is disengaged

Choose one or mere of the above or “mone'> nons

Now, for the objectives we will change one of the properties also. The huffer, according to task,
is disengaged when the task is finished. Well, let's say that we really don't care what condition the huffer
is in s0 we will declare it as a don't care. The "is immalerial” option is the one we want.

The following are the currant objectives *huffer".
Indicate which propertias you want changed.

{11 bhuffer is present

12) huffer is engaged

Choose one or morxre of the above ox “none> 2
Choose tLe appropriate new objective:

{11 haffer is disengaged

13} huffer is sngaged

i3] huffer's engagemant is immaterial

Choose one of the abova> 3

‘Indicate which properties you want cvhanged.

(1] Dbuffer ie presant

[2) bhuffer's sngagement is immaterial

Choose obe or more of the above or “nons'> none

Don't cares in the objectives are not printed to the student -- so the only thing that the student will
see is that the huffer must be present when the task is complete. The following is the best rule for deciding
don't cares -- an item should be a don't care if it meets the following criteria:

-- The property set value is not critical in defining the desired end result.
-- 'The property set value will only serve to confuse the student if it is listed (the
objectives
should be a minimal set).
-- The property set value is something that might change after the student has finished
with it,
(For example, a similar task might be set up such that an agent might move the huffer
to
another aircraft after the student is through with i),

The initial conditions of the aircraft are the default -- no changes needed (not preflight inspected,
at the terminal, APU and its components are off, brakes unchecked, engine off, external power available
and off, NWS checked, throitles off, and trim unchecked). We will now skip ahead to the point where the
objectives of the aircraft are specified,

Indicate which properties you want changed.

{1} aircraft is preflight inspected

{2) aircratc is aizborne

{31 aizcratt's APU's switch position is immaterial

4] airoratt's LhPU's generator's switch position is immaterial
11 airoraft's APU's bleed alr'e switch positiocn is immaterial
(6} aixcraft's brakes are checked
"171 aircraft's engine is runaing

18] aircraft's external power's usage is immaterial

[9] aizcraft's external powsr's sxitch position is immaterial
{10) aixcratt's WWE is checked

{11) aircraft's t' -tles are full

{12) alrxcratt'sc zin is checked

Choose one or more of the above Or "none"> nome

Numbers 3,4,5.8, and 9 are reasonable choices to omit from the objectives because the pilots main
task is to check everything and g2t the plane in the air. The APU and external power don't tell the student
anything directly perhaps. One could argue that #11 could be omitted as well. It all depends on what you
want the student to see and which items are absolutely critical in defining the final objective (such as #2).

We will also skip the wind sock (IC=not checked, OBJ=checked). Once the four objects are
completely done, we then enter t~ *hird step -- where MEBuilder attempts to find a solution. Here is the
one it found:

Please wait....I am trying to solve the problem...

The following is my first attempt at solving the task.
f11 copduct preflight inepaction om aircraft

tal ehgaga aircraft's external Dowar

[3) engage huffer

[41 start aircraft's engic.

{51 start aircraft's APV

16] engage aircraft's APU's generator
{7} angage aircraft's APU's bleed air
[8] have pilot reguast flight cleaxance
(9] disengage huffer

{10] disangage aircraft's sxteraal power
[11] cbheck airczatt's NWR

{121 ocheck aircraft's brakes

[13] have pilot reguest taxi clearance
134] caxi airerait

{18] have pilot Teguest takeoff clearance
[1€) ocheck wind sock

117] adjurt aircraft's trim

{18) shut off aircratt's ARV

{19) max aircraft's throttles

{20] £1ly the aircratt

Agtion successfully added to the task.
Acticn successfully added to the task.
Action successfully added to the task.
Action successfully added to the task.
Acticn successfully added to the task.
Action successfully added to the task.
Action successfully added to the task.
Actica successfully added to the task.
Acticn successfully added to the task.
Acticn successfully added to the task.
Acticn successfully added to the task.
Action successfully added to the task.
Action successfully added to tie task.
Action successfully added to the task.
Action successfully added to ths task.
Action succesrfully added to the task.
Action fully added to the task.
Actioca successfully added to the task.
Actien successfully added to the task.
Action successfully added to the task.

What the "action successfully...." message means is that the task data structure is now set such
that the above 20-step procedure is the only solution. We know, however, that this is not the case.

IMPORTANT: Troubleshooting the task if there is no solution found or the solution is wrong. Currently,
MEBuilder has a very limited capability to identify specific reasons why a solution cannot be found.
Remedies are underway. In the meantime, here are several steps to take if MEBuilder does identify such a

problem.

1. Using the set initial conditions or set objectives commands, reduce the scope of the task to 2
specific segment (say, step (a) in the original task description). Locate the segment in which MEBuilder
cannot £ind a solution and then check the operations in that segment.

2. Using the set objectives command, remove some of the don't care conditions and name a hard
value as an objective, Sometimes a don't care will make the objective unachievable.

The next thing that happens is that the prompt has changed to the following:

{TAMK:prep airszaftl]>

This indicates that you are now in thie Task l.oop. There are different commands available here.
In general, you can still use many of the view commands available from the Main Loop to query about
objects and some of the attribute items. However, you cannot manipulate the object definitions -- while
you are in the Task Loop all objects, other tasks, etc. are frozen.

Now, the first thing we wil! do is use the find splits command. This command looks through the
task and decides if and which operators could be done in different orders. Currently, with the one solution,
the task dictates that the request for flight clearance must precede the disengaging of the huffer -- which
we know not to be the case. This command will identify this and propose a possible change:

[TASK:prep airoraft]> £ind splits
The following appeaxr unrelated and could be parallel:
fequence:
{1) bhave pilot request flight clearance
Sequence:
{11 dissngage huffer
{21 disengage aircraft's extsrnal power
{31 check airxeratt's ¥WwWs
[4] checok aixcraft's brakes
Nake them Darallel sequences? yss
The following is the procedure as pressntly defined,
1] conduct preflight inspection on airecratt
{2} angage aircraft's external power
3] sngage huffer
4] start aircraft's engine
(81 start airoraft's APU
{6} shgage aircratt's APU's generator
{71 sngage alrsreft's APU's bleed air
el all of theJse:
{8a) subprocedure:
{8al) disengage huffer
{8a2) disengage alzcraft's external power
{8a3]) check alrcxaft's Nws
{8a4] check aircraft's brakes
sk subprocedurae:
{h1] have pllst request £light clearance
9 bave pilot request taxi clearance
1101 taxi aireratt
t31] 2ave pilot reguest takeoff clsarance
{12) cheek wind sock
{13} adjust aircraft's trim
{14) shut off aircraft's ARV
{1S] max aircraft's throttles
[16) £1y the alrcratt

Now look at the task construction. The steps have been renumbered such that step 8 now consists
of a "split" -- two sequences of actions that must be compiewed before continuing on. So step 8al can be
done anywhere among the steps in 8b so long as it follows 7 and precedes 8.

Another is found.

The following appear unxelated and could be parallsl:
Sequence!

1) have pilot reguest takeoff clearancs

Seguancse

f1) check wind sock

{2] adjust aixcraft's trim

Make them parullel seguences? yes

™he following is the procedurs as presently defined.
1) copduct prefilight inspection on aircrafe
12) sngage aircraft's extarzal power
13) engage hutfer
t4l start aircraft's sngine
1{}] start airoxatt's APD
16} engage aircraft's APU's generator
7} engage aircraft's APU's bleed air
[e) all of thase:
{8a) subprocedure:
(0ai} disengage huffer
(6a2] disengage sixcraft's external power
{0a3] ocheck airoratt's wws
{8ad] cheok airczatt's brakes
tab] subprocedure:
{8b1l) Dhave pilot request flight clearance
(¢ 3] bave pilot request tazxi clearaxce
{101} taxi aircratt
[11) all of thasae:
{ila) subprocedure:
111al) check wind sock
[11a2] adjust aircraft's trim
[1lb] seubprocedure:
filbl] Dlhave pilot request takeoff clearaucw
-113) shut off aircratt's APU
[13) max aireraft's throttles
f14] £ly the aircratt
Thers are no possible parallal actions ramaiming.
[TASKR:prep aireraft]>

At this point, if you study the task construction you will notice that it conforms to ihe original
task specification -- meaning we are done! Two steps and that was it.

However, we all know that some task constructions are not quite this convenient. Therefore, we
will demonstrate some of the other commoun options. The first item to note is that most of these commands
us¢ the step number as the argument. In order to keep up to date on step numbers -- use the view fask
command.

We will first demonstrate the move step cominand. This command is especially useful if you
need to move a single step into or out of subprocedures, or declared it as an unordered action. Let's say that
the “disengage huffer” operation really needed to precede the request for flight clearance -- we can move
that step out of the subprocedure and establish it at step 8 -- the split becomes step 9:

[TASK:prep alroraft]> move step number Sal

Hexe is what you say do:

f1] Leave it alcae

f2a) Move it ocut of subprocedure to im fromt of it.

[3] Declare it dcable *anytime*® before "disengage aircraft's external
powex*

Chocse cne of the above> 2

Action successfully moved.

[TASRK:prep aircraft]l> view task

The following is the procedure as presently defined.

{1} conduct preflight inspection on aircraft

(¢} engage aircraft's sxternal power

{31 engage bhuffer

14) start aircratt's engine

18) start aircraft's APU

[€) engags aircraft's APU's gamerator
M engegs airoraft's AFU's bleed air
({ }] disengage huffer
t9) all of thess:
t9a] subprocedure:
(%al) disengage airoratt's external power
{9a2] check airoraft's WWs
(9ad) chack aireratt's hrakes
bl subprooedure:
{h1) have pilot reguest flight clearance
[10] Dhave pilot reguest taxli clearance
[11] taxi aircratt
[12] all of thase:
t124] subprocedure:
{12el) check wind sock
{12a2) adjust aircraft's trim
[13k] subprocedure:
{12b1) Ddave pilot request takeoff clearance
{13) shut off aircratt's APV
{14] ®max airoraft's throttles
{15] fly the alrcraft
AUTOSAVING. . .plaase wait...Done
[ZASK:prep aircratt]s>

The move step command is invertible as well -- a second application of this command will allow
you to put step 8 back where it was. Sumlarly. if you use the third given option to make the step

unordered yon G use move step to make it ordmd asmn WMM&

Let's say that we decide that we really didn't want the split in step 9 afier all. The combine step
command combines the subprocedures together. The arguments must be the first step in the two
subprocedures to be combined.

{TASK:prep aircratt)> combine step number Sal with 9b1
Combination of subprocedvrss successful.
[TASK:prep alircratil> view task
The following is the procedure as presently defined.
{1l conduct preflight inspectica on alrcraft
12] dgage alroratt's axternal power
3] engage hutfer
[4] start airxcraft's ergine
[5) start aireratt's APU
(6] engage aircraft's APU's generator
m shgege aircraft's APU's bleed air
[£)] dissngaye hutfer
91 disengage aircraft's extexaal powexr
[{10) check aircraft's Nws
f11) aheek aiveratt's brakes
{12) Dbave pilct reguest £light clearance
{121 bhave pilot zequest taxi clearance
{14) taxi aircratft
18] all of these:
[15a] subproosdure:
{15a1] cheok wiud sock
{1S#2] adjust aircraft's trim
(15b) subprocedure:
{15b1] huve pilot reguest takeoff clearance
{16} shut off aircrafi's APU

{17] max airoraft's throttles
[18] £1ly the airoratt

You will notice now thet the request for flight clearancs is now step 12. Let's say that we wanted
it in step 11 ahead of "check aircraft's brakes". The swap step command will allow you to swap adjacent
steps X and Y Y docs pot have 1o follow X due to X and Y's operation definition. For example, we
cannot do 18 before 17, so doing swap step sumber 17 with 18 will be disullowed. However, reviewing
the operation definitions for 11 and 12 we find that we can swap them.

{TASR:1prep aircraft]s swap step nuaber 11 with 12
Conbinatica of subprocedures successful.
- (TArRiprep airoraft)s> view task
he following i3 the proceduxe as presently defined.
1) conduct preflight iunspecticn cn aircratt
{2) engage airxcraft's extexnal power
3] sngsge hutfer
ta] start aireraft's sngine
5] start aircraft's APMY
16} sngage aircraft's AMU's generator
¢2] engage aircratt's APU's bleed air
[8] Aaisengage huffer
[§-))] disengage aircraft's exterpal power
{10) chack aircraft's Wws
{11} bhave pllot request tlight clearancs
{132] check aircrats's brakes
[13] Dave pilot raguest taxi clearanve
[14] tvaxi airecrate
[1s] all of these:
[1%a) eubprocedure:
{15a1] chack wind sock
{15a2) adjust airoraft's tyim
[15b] subprocedurs:
{18b1) have piiot request takeoff clearance
1163 shut off aircraft's APV
{17] wmax aircraft's throttles
1as) £ly the aircrate

There are other useful commands such as medify step which allows you to add preconditions and
side effects (especially probabilistic ones) and messages that are valid only within the context of this task,
The command reference guide will be of more assistance.

TAB 4. BUILD THE LESSON

Now that the task is complete, we are ready to build the lesson. The lesson is set up as a
workbook, & series of problems relating to the same theme. In this section we will demonstrate how one
can sct up three problems, where problems one and two relate to the two halves of the task and problem
three is considered a comprehensive test.

‘The create lesson command behaves in a similar manner as creass task in that a series of steps are
accomplished:

-- Naming the lessor and identifying the cast and props
-~ Naming the tasks to be used in the lesson

During the task construction phase, you were referring to the objects by type name. Now you are
going to ideatify objects and give them proper names -~ which will be used in referring to the lesson. For
many simple applications, you will not need to identify any fancy names tor the objects, A simple
convention is to nse "you" for the role of the student and “the <object>" for all the objects. But sometimes
spicing up the affair can make thc problem more fun -- like calling the aircraft "Bouncing Betty” a la
World War 11,

‘The important thing about the create lesson command is that you must specify the entire cast and
.t props. As you create probiems for the lesson, you will name objects and cast members not included in the
* problem (This is like naming the entire cast for a film and then leaving out some members in cach scene).

Here is a script run of the create lesson command:

MERUIlLD> crasats lesson named pilot tralning I

Cheoore all of the props and characters for the lesscn. If any
are amitted in any of the problems, you will specify thoss in
the problem. Clwices for commands are:

add new X -« add a member of chject typs #X
Temove item X -- remove X from the current list
clear -~ wipes out the list and start over
Qguic ~= agoept the list and continue
abort == abort defining the lesson

These cre currently in the lasson:

<none>

These arms your cholces for adding to the lesson:
111 character

12]) wind sock

I3) airczatt

(4] aircxatt trim

[€] alrcraft throttles

6] aizoxatt Wws

(¥ 2 ajroraft exteraal power

{8) airoratt engine

{9 ajireratt brakes

{10) airoraft APV

{11] aizoxatt APU Dbleed air

{12] aircrart APU gepsrator

{33)] huffex

4] pliet

CAST/PRURS>> add Dew 14

Give a name for the paw pilot> captain jack

I assune “captain jack" ie a singular name. Corract? (Yes/No] yes
These are currently in the lesson:

141

R

11} Cheracter: “captain jack" of "pilot"
Thece ave your choices for adding to the lesson:
{1} charactor

(2] wina& sack

{31 aivorafe

1LY aircrafs trim

(8] airsraft throttles

{6] aircratt wws

{73 alroraft external power

18} aircraft engine

[¢] airoratt brakes

{10] aircratt APU

{11) aircraft APU bleed air

[12] ailrcraft APU gensraZor

[13]) huffer

{14] pilc:

CAST/PROFS>> add new 3

Give & nams Ioxr the new aircraft> the aircratt
I assume “the aircreft" is a singular name. <Jorrect? [Yes/No) yas
These are currently in the lessen:

t1) Character: “captailn jack" of “pilet®

2] Prop: "the aircraft" of “aircraft“

Thess are your choices tor addiag to the lesson:
{1} character

{2} wind sock

{3] asircraft

(4} aircxaft trim

|43 alzcraft throtiles

[61] aircraft NWS .

17} aircratt external power

{8} aircraft sngine

9 sircraft brakes

{10) aircxraft APU

{11) eircraft APU bleed air

{12] aircraft APU generator

[13))huffer

f14] pilot

CAST/PROPS>> add new 13

Give a name for the new huffexr> the huffer

etc. as we add the other items (a huffer and a wind sock), we get:

These are curreantly in the lesson:

[1] Charactar: “captain jack" of “pilot"
[2? Prop: “the aircratt" of "aircrafe®
{3} Prop: “the huffer" of "huffer"

[73] Prop: “the wind aock" of "wind sock"
These are your choices for adding to the lesson:
(1] character

{2} wind sock

(3} aircraft

{4] aircraft trim

s} airoraft throttles

{8) aircraft NW8

71 aircraft external power

{8) aircraft engine

(€3] aircraft brakes

[10) aircraft APU

{11) aircratt APU bleed air

{12) aircraft APU generstor

142

{131 huffer
({14} pilloet
CAST/PROPS>> quit

: Now, upon reaching this point you will be asked to supply the tasks to be used in tlie lesson.
Only those tasks which have been loaded and whose required objects are a subset of the cast and props
listed above will be included. In this cxercise, oniy the "prep aircrafi” task applies, so we show it.

When listing the tezks, specify the tasks according in the most
likely order that the student would app.y them. This will
establish the default scens and cbjectives for the problems.
The following loaded tasks ars availadie:

1] prep airzcraft

Chooss one or more of the above> 1

lesson “pilet training I" is now defined.

Work on lesson now? Yes

Now working on lesson "pilot trxalaning 1.

TYpe "quit" to return to MEBUILD proi-pt.

[LRsSON:pilot training Ii>

Important: Every object must have a task associated with it! No object may be idle!

Now, note that the prompt has changed again. Just as before with the tasks, the create lesson
command brings you into the Lesson Loop. Once you are here, the things to do are the following:

- Set up the introductory text using the edit lesson intro command.
-~ Set up the problems.
~- Compile and run the lesson to test it out

We will skip the edit lesson ingo command and show you the intro we put in using view lesson
intro.

{LtsBOM:piiot training Il> view losson iatro
The follewing is the incroduction text for this lesson:

L T O . T T T R e L)

PILOT TRAINING: LESSON 1

This lesson is the first lesson in flying an aircraft. Aftar this
lesson you will be familiar with the process of starting the plane and
caking off. Tha specific sxills taught in this lesson arve:

(a) Conducting all preflipght checks and inspections
(b) Basic communications with the towex

Thers is one prublem in the lesson, a coxprshensive test of the
skills described above. Good luck.

Now, we are ready to create problem. This command is set up similarly to the task definition,
first you verify the objects, then st the scene and goal. The difference with the create problem command
is that the scene and goal default to the task's initial conditions and objectives. If an object was involved
with more than one task, then the default are set asseming that the tasks listed were givan in the order of
application,

You will be asked to verify the cast and props for the problem. You cannot remove any cast
member -- you only option is to change a cast member 10 a new type. The new type m. * be a derived
object type of the one given. Therefore, if you select [1] below, then there must be a derived object of
pilot loaded into the MEBuilder session. If no such types are loaded in, then you cannot change it.

We are going to do the comprehensive test first because it is actually the easier problem to create,
Later on we will show you how o re-order a set of problems.

fLRSSOM:pilot training I)> create problem
Mane the new problem> Comprshensive Test
The student will play the role of "captian jack".
You say modify the type of any of the chjects by selecting its
dndex below. The new type must be a derived cbject of the current
type and must already be loaded into the session.
The current sat of cbhbjects are:
{1) Character: “captain jack" of "pilot"
12} Prop: “the aircraft®” of “airxcraft"
{3) Prop: “the huffer" of "huffer"
(4] Prop: “the wind sock" of "wind sock"
{s) Accept this list and continue
Choose one or more of the above or "none"> §
The current initial setting for “you" is
based on the initial conditions of task "prep alrcraft"
The current objectives for "you* is
based on the chjectives of task '“prep aircraft"
The current initial setting for "the aircraft® is
based on the initial conditions of task “prep aircraft”
The current objectives for "the aircraft" is
based on the cbjectives of task "prep aircraft"
The current initial setting for "the huffer" is
based on the initial conditions of task “prep aircraft"
The current cbjesctives for "the huffezr" is
based on the cbjectives of task "prep aircraft"
The current initicl setting for "the wind sock" is
based on the initial conditions of task “prep aircraft®
The current objectives for "the wind sock" is
based on the cbjectives of task "prep alrcraft"
tow working on problem “Comprshensive Test".
Type "quit" to return to Lesson Building prompt.
{PROB:pilot training I:i1l1)>

The prompt has now changed again. We are in the Problem Loop. In this loop, we can adjust the
initial scene and objectives, or view them, using the set scene, view scene, set goal, and view goal
commands, We can also edit problem intro and view problem intro for the problem's introductory text.
The view problem command is also useful here.

{PROBipilot training I:l)> view preblem

Problem i1l of lesson "pilot training I
Mame ©f Problems>> “Comprehensive Test®

Description of Problem:

Mow that you have successfully completed the various phases <f the
process, let's put the whole thing together from the start. Good
luak!

[PROB:pllot tralning I:l]>

Because we are making a comprehensive test, the task and problem are basically the same. So for
this problem we are done. The quif command will return you to the Lesson Loop.

{PROBi1pilot training I:1]> quit
[LESSOM:pilet training I)>

(Presently, there are a lot of enhancements for the Problem Loop that are planned but not yet
implemented -- some of the enhancements will include overriding or blocking random events, changing
some of the irequencies of some events, etc. etc. These are in the works.)

Next we will create the other two problems. We will have the first problem be for the First Half
of the task, defined as the point where we are looking to leave the terminal (which is after the
subprocedures in step 8). We will create the problem as before, but now we will invoke the set gsa!
command for each object and tell it the exact point in the task where we want to end.

[LEasON:pilot training I]l> create problem pamed Pirst Half
The student will play the role of “captain Jack".
You may modify thc type of any of the cbjects by selecting its
index below. The new type xmust be a derived object of the current
type and must already be loaded into the session.
Type "none" for no changes.
The curreant set of objects are:
il] Character: “captain jack" of “pilet"
[2) Prop: "B-10" of “"aircraft"
[3) Prop: "the huffer" of "huffer"
4] Prop: "the wiad sock" of "wind sock"
[5]1 . Accept the list and continue
Choose one of the above> 5
This new problem is pumber 2.
tscecess®ECoscunracransen
{PROB:pilot training I:2)> set goal for captain jack
This is the current scenarxioc for the chject:
{1} captain jack's flight clearance is immaterial
{2] captain jack's taxi ciearance is immaterial
£33 captaia jack is cleared for takeoff
Your options are:
step -=- Set the cbjectives of tha cbject to that of a given step
in a task.
modify -- Make adjustments to the current objectives of the cohject
start over -- Undo all changes in this command
help =-- Primts out this message
quit ~- qgqueries to save changes and exits
S8BT GOAL>

You are now in a special loop for the set goal command (set scenc has a similar loop). The
option you will normally provide is the step option, demonstrated below:

SET GOAL> step

The Zollowing are your cheices:

1) Leave it alone

(¢)] As it looks after step 1 of task prep aircraft
13} it looks after step 2 of task prep aircraft

As
[4) As it looks after step 3 of task prep aircrafe
{s) As it locks after sted 4 of task prep aircraft
{6} As it looks atter step 5 of task prep aircraft
{71 As it looks after step 6 of task prep aircraft

145

[8i As it looks after step 7 of task prep aircraft

[9) As it locks after the subprocedures in 8 of task prep aircraft
[10] As it locks after step 9 of task prep aircraft

f11] As it looks after step 10 of task prep aircraft

{123] As it lcoks after the subprocedures in 11 of task prep aircraft
{13] As it lovks after step 12 of tusk prep aircraf:

{1d] As it looks after step 13 of task prep aircraft

18] As it looks after sted 14 of task prep aircraft

{1€) As it looks at the beginning of task prep aircraft

Choose cne of the above> §

The current objectives for the object is:

{1] captain jack is cleared to depart

[3) captain jack's taxi clearance is immaterial
3] captain jack's takeoff clearance is immaterial
3BT GOAL> quit

Notice what the objectives look like. Everything is treated as immaterial except for the last
change to the object made in the task. This means that the only objective that will be shown to the student
is that the student must be cleared to depart. If you want something else to be shown to the student, then
you can select the modify option to make adjustments -- but be very careful when doing so otherwise you
may make the problem unsolvable.

After adjusting the pilot, we perform the same adjustments to the other three objects. The B-10
aircraft is demonstrated:

{PROB:pilot training I:12)» set goal for B-10
- This is the current scenarioc for the cbjsct:

1] B-10's preflight completion is immaterial

{2] 3-10 is airborne

I3} 3-10's APU's switch position is immaterial

4] B-10's APU's generator's switch position is immaterial

8] B-10's APU's bleed air's switch position is immaterial

{6} B3-10's brakes’' check status are immaterial

{71 B-10's engine's running status are immaterial

[{)] B-10's external power's usage is immaterial

{9} B3-10's axternal powsr's switch position is immaterial

f10] B»-10's ¥WWS's check status are immaterial

[11] B-10's throttles' position is immaterial

{12)] B-10's trim's check status are immaterial

Your options are: ‘
step ~-- Set the cbjectives of the object to that of a given step

in a task.

modity -- Make adjustments to the current objectives of the cbject
start over -- Undo all changes in this command
help -~ Frints out this message
quit -- queries to save changes and exits

S8BT GOAL> step

The following ars your choices:

[11] Leave it alcne

{2l as it looks after step 1 of task prep aircraft
) 131 As it locks after step 2 of task prep aircraft
\ {4) As it lcoks after step 3 of task prep aircraft
N [5] As it looks after step 4 of task prep aircraft
[6] As it loocks after step 5 of task prep aircraft
[7] As it locks after step 6 of task prep aircraft
[8]1 Aes it looks after step 7 of task prep aircraft
[9] As it looks aftar the subprocadures in 8 of task pisp aircraft e
[10] Az it looks after step § of task prep aireraft ;
f31] As it looks after step 10 of task prep aircraft N

146 ;

{121 As it locks after the subprocedures in 11 of task prep aircraft
{13) As it looks after stap 12 of task prep aircrafe

{141 As it locks aftar step 13 of task prep aircraft

{15) As it looks aftar step 14 of task prep airecraft

1161 As it looks at the begimning of task prep aircraft
Choose one of tha above> §

The current objectives for the object is:

f11 B-10's preflight ccupletion is immaterial

[2) R-10's leoation is immaterial

{3] B-10's APU's switch position is izmaterial

[4] 3-10's APU's generator's switch position is immaterial
[5] B-10's APU's blerd air's switch position is immaterial
[€] B-30's brakes are checked

{71 3-10's engine‘'s running status are Lmmaterial

{8] 13-10's sxtornmal power's usage is immaterial

[9] N»-10's external power is off

{10] B»-10's NW8 is checked

[{11) $-10's throttles' position is immaterial

[12] B»-10's trim's chkack status are immaterial

SRT GOAL> Quit

Save changes to cbjectives? yes

Objective modification completed.

Objectives set for "B-10"

Important: Tt is not necessary but strongly recommended that the same step be selected for all
objects if possible. Failing 10 do so could have udverse consequences (there is presently no way to do this
automatically).

We will skip the rest of the creation of problem 2 and all of problem 3. Problem 3 is identical in
concept except that the set sceme command is used to put the initial scenario for all objects to the end of
step 8 in the task which the goals are left alone. Below are the intros for these problems.

{PROB:pilot training I:2]> view problem intro
The following is the introduction text for this lesson:

Terminal Preflight Operations

First, we will train you on the procedure for handling the
aircraft when you first arrive. Your job is to start with an
aircraft with everything turned off and take it through the
initial segquence of checks and gain clearance to depart the
terminal. Good luck, Captain!

[PROBipilot training X:2]l> quit

{LBS30N:pilot training I]> work on problem number 3
Mow working on problem “Second Half"

{PROB1pilot training I:3]> view problem intro

The following is the introduction text for this lesson:

Taxi and Takeoff Procedures

In this problem, your plane is now ready to leave the terminal
and tover has granted you permisaion to depart. Your job 1is to
taxi the airoraft to the runway, perform the last set of checks,
and fly your B-10 aircraft. Don't forget to communicate with the
tower. Good luck, Captain!

{PROBipilot training I:3)> quit
Here is how our lesson looks with the visw lessorn command.

[1RasON:pilot training I1> view lesson
Lesson “pllot training I":

Cast:

eaptain Jack. s . . . pllot
PropE:

B-10: ¢ o 4 ¢ v . e v e 4 s e s e 4 s o+ alircraft
the huffexr. . . . ¢« ¢ ¢ « ¢ o « s +« « « huffer
the wind 860k . . + ¢« + ¢« ¢« 4 s + +» « o wWind sock
Problem Set:

[£9] Comprehensive Teat
{121 First Ralt

13) Second Ealf
[LRSSON:pilot training I]>

“Obviously, the problems are not in the correct order. We now wish to order them correctly, The
order problems command is used for this purpose.

[LESSOM:pilot training I)> order problems

Choose the reordering of the problems. Your input must be an exact
permutation of the numbers of the left of each entry.

1] Comprehunsive Test .

[+ rirst Half

[3} Second Half

Name the new order> or 2 3 1

{LESsOM:pilot txaining I)>

‘You can perform another view lesson to see the reordering.

Now, once we have completed the problems, we are ready to compile lesson. This command will
assemble an METutor-ready file which, in the next section, will be demonstrated. The sequence of events
of this command are -- check the integrity of all the objects, tasks, and the lesson - then produce the
METutor database. The integrity checks can be performed ahead of time using the check object, check
task, and check lesson commands. Here is how it looks (note -- on a SPARCS1ation10, this took about 10
seconds to do).

[LEssOM:pilot training T)> compile lesson

Checking integrity of cbject "wind sook"....OK.

Checking integrity of ocbjsct "aircrafte....OK.

Checking integrity of object “alrcraft trim“....OK.
Checking integrity of object “aircraft throttles"....OK.
Checking integrity of cbjiect "airxcratt NWs",...OK.

Checking integrity of cdbject "aireraft extsrnal power®....OK.
Checking integrity of object “alircraft engine“....oK.
Checking integrity of cbject “aircraft brakes". ..OK.
Cheoking integrity of cbject "alroraft APU*....OK.

Checking imtegrity of object “aircraft APU bleed aizr"....OK.
checking integrity of chject “airoratt APU generateoxr"....OK.
Checking integrity of cbject "huffer"....OK.

Checking imtegrity of object "pilot"....OK.

Checking imtegrity of task “prep aircraft”...OoX.

TZanslating “recommendsd _t" FactsOK
Translating “precondition_t" PactsCK
franslating "delctepostcondition t" PactsOK

Translating “addpostconditiop_t" Facts0K

148

Translaiing “randchange_t" Pacts0K
- Transleting “singular_t“ Facts0K
Translating “"plural_t" FactsO0K
Translating “apply_text_t" Facts0K
Translating “deletw_text_t" Pacts0K
‘Pranslating “add_text_t“ PFacts0K
Compilation successful and marked current.
" (LESSON:pilot training Il»

To save an METutor compiled file -- use the save compiled lesson command. The compiled file
will be the name of the lesson with underscores attached with an .met extension (pilot_training_Lmet).
The METutee will be in the gurrent working directory, not the library directory!!!!!

The remainder of this appendix shows the beginnings of an METutor session run from within
MEBuilder using the run lessor command. All we are doing here is showing that the lesson corapiled
properly and that the workbook structure translated correctly. See the next section for a detailed execution
of the lesson.

{LESSOM:pilot training I)> run lesson

rnccar e en. T T T T e pun *

Means-Ends Tutoring System -- Version 29 (MBTutor)

by FProfessor Rows and CP1 Galvin, MNaval PG School

e —— —e—esae cemsmensmnreea—— +

Welcoms. The name of this lesson is “"pilet traiming I*.

Walcome to Pllot Training, Part I Takeoff

The purpose of this lesson is to acquaint you with the
basic procedures in taking off -- including pretlight checks,
tower communications, and takeoff procedures.

There are two major segments of the process -- those
procedures that must be done at the terminal and those that
are done during tax. and takeoff. The first two problems
will train you on the twe parts; the third will bring it all
together for you for a comprshensive tast.

Good Luck, Captain!

Theze ars 3 problems in the lesson.

You may “list" ths problems, “view" a summary of a problem,
or “4o" a preblem. '"help" is also available.

METutor> do list

The following ars the available problems in the lesson:
[1] Pirst Halt

t2l Second Half

{3] Comprehensive Test

METutor> do problem 1

Loading and checking the problam.....please wait,...Done.
PROBLEM #1

Tarminal Preflight Operations

First, we will train you on the procedur's for landling the

149

airczaft wheh you first arrive. Your job is to start with an
aircraft with everything turned off and take it through the
initial segquence of checks and gain clearance to depart the
terainal. Good luck, Captain!

She following are your ohjectives:

you must be aleared to depart, B»-10's brakes must be checked, 3-10's
axternal power must be off, B-10's NWS must be checked, and the
hutfsr must be disengaged

The following is the curreat situation:

3-10 is at the tarminal, the huffer is disengaged, B-10's APU is off,
B-10's engine is off, BR-10's throttles are off, the huffer is
present, R-10's WS is unchecked, B»-10's brakes are unchecked,
B-10's trim is unchecked, B-10's external power is available, B3-10°‘s
APU's generator is off, B3-10'a axternal power is off, and B-10's
APU's bleed air is off

What do you want to do? quic

METutor> do problem 2 ‘

Loading and checking the problem.....please wait....Done.
PROBLEM #2

Taxi and Takeoff Procedures

In this problem, your plane is now ready to leave the terminal
and towaer bas granted you permission to depart. Your job is to
taxi the aircraft to the runway, psrform the last set of checks,
and fly your B-10 aircraft. Don't forget to comsmmunicate with the
tower. Good luck, Captain!

The following are your cbjectives:
you must be cleared for takecoff, B-10 must be airborne, the huffer must be
disengaged, and the wind sock must be checked

The following is the current situation:

B-10 is at the terminal, you are cleared to depart, B-10 is
preflight inspected, 3-10's WS is checked; B-10's brakes are
checked, the huffer is disengaged, B-10's throttles ars off, B-10's
AU is on, the huffer is present, B-10's engine is running, RB-10's
trim is unchecked, B3-10's extexnal power is available, B-10's
external power is off, B-10's APU's generator is on, and B-10's
APU's bleed air is on :

What 4o you want to 40?7 quit

NETVtOT> A0 problem 3

Loading and checking the problem.....pleass wait....Done.
PROUBLEN #3

Comprabensive Test

Mow that you Yave completed both phases ¢f the process,
let's put the whole ching together. Good luckl

The following are your cbjectives:
you must be clearsd for takeoff, P-10 must be airborne, the huffer must be
disengaged, and the wind scck must be checked

The following is tha curremt situation:

150

B-10 is at the terminal, the huffer is disengaged, B-10's APU is off,
3-10's engine is off, 3-10's throttles are off, the huffer is
present, B-10's WS is unchecked, B-10's brakes are unchecked,
3-10's trim is unchecked, B-10's external powar is available, B-10'‘s
AU'as gansrator is off, NB-10's external power is off, and B-10's
APU's bleed air is off

What do you wamt to dAo? guit
METUtOZ> quit

Returned to MERBuilder...
{LEssOM:pilot trainimg I)>

TAB 5. RUNNING THE LESSON IN METUTOR

The following is a sample run of the lesson in METutor. This sample run demonstrates several ¢f
the commands and features of METutor. The METutor session is best run from the original working

directory.

Key item to notice — remember the "have pilot request <x> clearance™ operations? Notice that
because the student is serving in the role of the pilot that the "have pilot” portion is chopped off and that all
references to the pilot are in second person form in order to put the student more into the scemario.

» ~galvint/mebuild/METutor
Wame the lesson file> pilot_training I.met

- b 3

Means-Ruds Tutoring System -- Versien 29 (METRtOr) |

+
|
Y L LI T T T T s e mreE,——— - [repupp P Iy +
|

by Professor Rowe and CPT Galvin, Naval PG Bchool |

ey - T P L L T T 2= 1Y

Welcome. The name of this lessun is “"pillot training I*.

Welcome to Pilot Training, Paxt I Takeoff

The purpose of this lesscn is to acquaiat you with the
basic procedures in taking off =-- including preflight checks,
tower compmunicaticns, and takeoff procedures.

There are two EAJor oegments ©f the process -- those
procedures that must e dons at the terminal and thoss that
are done during taxi and takeoff. The first two problems
will train you on the two parts; the third will briang it all
together for you for a comprehensive test.

Good Luck, Captain!

Thers arce 3 problems in tihs lesson.

YTou may “list" the problems, "view" a summary of a problem,
or “do" a problem. “help® is also available.

MBTutor> do probleam 1

Loading and checking the problem.....please wait....Dona.
PROBLEM #1

Terninal Preflight Operatiocns

First, we will txain you on the procedure for handling the
airoraft wban you first arrive. Your job im to start with an
aizrcraft with everything turned off and take it through the
initial sequence of checks and gain clearance to depart the
terainal. Qood lueck, Captain!

The following are your objectivas:

you mast be cleared to depart, B-10's brakes must he checked, B-10's
external power must be off, B-10's MWS must be checked, and the
huffer must bea disengaged

The following is the curreat situation:
B-10 4is at the terminal, the huffar is disengaged, NB~10's APU is off,

152

3-10's engine is off, B»-10's throttles are off, the huffer is
piasent, B=)'s NS .is unchecked, B-10's brakes are unchecksd,
B-10's trim is unchecked, BR-10's external powsr is available, P-10's
APU's generator is off, 2-10's external power is off, and B-10's
APU's bleed air is oft

What do you want to 40! help
Tou mAY enter &: Operator or one of thess spescisl commands:
help -~ print this text
quit ~= returm to MRTutor main level
vi:w state -~ pretty primts thc current state
viev objsotives -- pretty prints your cbjectives
QUCCY OPEXator <operator>
-~ prints all information about an cperator.
query cbject <object>
== prints operators available on am objsct.
quezy fact <chject>
~- prin%s all information about a fact oxr cbjective.
The following are the opsrators available in this lesson:
(1] adjust B-10's trim
{2) check B-~10's NWS
{3) check 3-10's brakes
4] chetk the wind sock
{51 conduar preflight inspaction on 3-10
{€] disengage B-10's sxternal power
[¥2] disengage the hutfey
{8} engage 3-10's APU's bleed aizr
9] sngags 3-10's APU's generator
{10] engage B-10's external power
- {31) engage the hutfer
{12) £ly the »-10
[{13] max BR-10's thvottles
[14] xeguest flight clearance
[15] reguest takeoff clearance
[16] xeguest taxi clearance
{17] shut off B-10's APU
[{18) staxt B-10's APU
{19] staxt 3-10's engine
[30) taxi B-10

- L TP Y L L T —mE— . ———— -

What do you want to do? conduct preflight inspection on B-10
You chose to conduat preflight inspection on B-10.

OK.
1] 3-10 is now pretlight inspacted

What do you want to 4o? sngage B-10's sxternal power
You chose to sngage B-10's external power.

OK.
f1) B3-10's extarnal power is bow on

What 40 you want to 30T engage the buffer
You chose to engage the huffer.

oK.
111 the huffer is ao>w engaged

What 4o you want to 40! reguest takeoff clearancs
You chose to request takeoff clearance.

That action reguires that:
{1] you mst be clearsd for taxi
fa] 3-10 must ba on the runvay

Yhat 40 you want to do? taxi 3-10
You chose to taxi »-10.

That action requires that:
fi] you must bs cleared for taxi

What 45 you want to 4o? request taxi clearance
Tou choss to request taxl clearance.

That action reguires that:
- 11) you must be clesred to depart
2] B3=10's hrakes muat be checked

What do you want to det view objectives

The following are your cbjectives:

you must be cleared to depart, E-10's brakes must be checked, B-10's
aXteznal power must be off, B-10's NWS must be checked, and the
huffer must bs disengaged

¥hat do you want to do? guery fact B-10's external power is on

The followiig operators are recommended for achieving this fact:
(1] engage B-10's external power

that do you want to 40! query cbject the huffer

The following can be performed on "the huffer",
** Operator = “engage the huffer": .
The operator is intended to achievs “thes huffer would be engaged *.

** Opexrator = “disengage the huffer*:
The cperator i intended to achieve “"the huffer would be disengaged *“.

What 40 you want to do? query cpearation check the wind sack

Sorry, that is not a valid cosmand. Prleass try again.

What 40 you want to do? guery operater check the wind ¢ sockk

" The following is tzue about *"check the wind sock“:

*e The operator is recommended for achiaving “the wiad sock is checked *

** The operatcr is recommended for achieving "Zhe wind sonk is checked "

*¢ The precondition for the operator is "E-10 amust be cu the runway and the
wind sock must nhot bs checked ",

*¢ The postccnditicn for the cperatoxr is "" while "the wind sock would be
checked ",

*¢ The postoondition for the cparator is ** while “the wind sock would be
checked ™.

The poctoondition for the operator is “" while “the wind sock would be

checked ™.

s+ The postoondition for the opsrator is *" whils “the wind sock would be
checked ™.

What 4o you want to dor quit

MTutor> Quit

>

APPENDIX D. SAMPLE DATA FILES

This appendix contains examples of data files produced by MEBuilder during the
session scripted in Appendix C. Then following are the files included in this Appendix:

Tab 1. mebuild.lib -- The library directory file produced by MEBuildLIB

Tao 2. pilot.cls -- The definition file for the "pilot" cbject.

Tab 3. aircraft.cls -- The definition file for the "aircraft" object.

Tab 4. prep_aircraft.tsk -- The definition file foi the "prep aircraft” task.

Tab 5. pilot_training l.les -- The definiticn file for the "pilot training I" lesson.

Tab 6. pilot_training_I.met -- The compiled METutor file. Appendix E contains

excerpts of a script run of this file in METutor.

TAB 1. LIBRARY DIRECTORY FILF

’."......Q..‘..".ﬂ‘..........l.'..ﬁ.............".'Q‘...'..'l

/* MEBuilder Library Flle =- Dirsctory of Classes and Lessons */
/l""liﬁ..l.'.."l0'.tl.i..'.it.t'i"iiiii..i..it...t!'.'.i'l./

1= dynamic typs_of_prolog_file/l.

1= multifile type_of_prolog_file/l.

i1~ dynamic library_ciass_entry/4, library_task_ent:y/4,
library_lesson_entry/5, library_link/1i.

s- mmltitile 1library_class_santry/4, library_task_entxy/4,
library_lesson_entry/5, library_link/1.

type_of prolog_tile(!'MEBuilder Library Directory Pile').

/* library_class_entry/4 */
library_class_entry([aircraft,trim), './lib/aircratt_trim.cls’,
date(94,6,26,10,56,135),
(propl).
library_class_entry([aircratt,cthrottles), './lib/aircraft_throttle
.cle', ’
date(94,6,26,10,56,3%),
{progl).
library _class_entry({laircragt, 'NW3'), ‘./lib/aircraft_NWs.cls',
dlt.(’l.‘.?‘.lo. 56.35) ’
[propl) .
1library_class_ontxy([aircrait,external,power),'./1ib/aizcratt_ext
Inal_power.scls',
date (94,6,26,10,56,35%),
tpropl) .
library_class_sntry((aizrcratt,engine),'./lib/aircraft_sngine.cls'
date(94,6,26,10,56,38),
(propl) .
1ibrary_claza_entry((aircratt,brakes),'./lib/aircraft_brakes.cls'
date(94,6,26,10,56,35),
(propl) .
library_ class_sutry([aircratt, 'AFU‘,bleed, air), './1ib/aircratt_AP
bleed_gir.cls',
date(94,6,26,10,56,238),
[propl).
1library class_satry([aircraft, 'APU' ,,genarator], './1ib/aircratt_A¥Y
Senarator.cls’',
date(94,6,26,10,56.35),
lprorl).
1ibrazy_class entry(pilot, './1ib/pilot.cle’,
date(P4,€,26,11,6,34),
[chazacter]).
1ibrary_oclass_satyy([vind,sock!, ' ./1ib/wind _sock.cls',
dl\t.(!‘.‘dh 11.6.38).
(propl).
librazy_class_satry(buffer,‘'./lib/huifev.cle’,
date(94.6.26,11.9.7),
prepl) .

156

library_class_sntry((aircrate, 'APU‘], './1ib/aivcratt _APU.cls',
htl(ﬁl,5,35.13.5‘,32) I
[{aircraft, 'APU’ ,blesd, airx],
{aircratt, 'APU' ,gensrator],
propl).
library_class_entry(aircraft,'./Llib/aircratt.cls’,
date(94,6,26,15,16,54).,
{{airecratt, txim],
{airczatt,throttles),
(aixcratt, 'NWS'],
{aircratt, external,power].
[a_roratt,sngine},
[aircrate,brakes],
[airczalt, 'APU’]),
propl).

/¢ library task_entry/4 */
library_task_entry([prep,aircrattl],'./lih/prep_sircratt.tsk',
date{94,6,27,10,48,4),
{wind, sock],
aircrate,
{aircragt,trim],
{aircratt,throttles),
laircrate, 'Nws'],
[aircraft,external,pover],
{aizcraft,engine),
{aixcraft,brakes],
{aircragt, 'APU'],
{aizcratt, 'APU' ,bleed, air),
{aircxaft, 'APU',generatorx],
huffer,
pilot)).

/* library_lesson_sentry/S */
library_lesson_sentry([pilot,training, 'I'],'./lib/pilot_training_I.les',
date(94,6,27,11,55,58),
l[wind,lovkl.
huffer,
aircraft,
pilot],
[(prep,airerattl)).

/* library_link/1 */

TAB 2. OBJECT DEFINITION FILE FOR PILOT

’..'........'.'."..."."."..........‘..’.I’...l...i..."..../

/* NEBuilder Class Definition File ./

,l...'t.'....'Q...'t'.ﬁ'....Q'.t.t...'.ttntt.tttt..t.'..lt..'.'/

1- dynamic type_ of_prolog_file/l.
1- multifile type_of_prolog_file/l1.

1= dynamic class_def/2, component/4, property_set/4,
property_display_data/4, relation/d, daemon/é,
cperation/8, operation_display. data/4.

s- multifile class_def/2, cosponent/4, preperty_set/d,
property_display_data/é4, relation/4, dasmon/6,
operation/s, operation_display_data/4.

type_of_prolog_£ile('MEBuilder Library Class Definition File’).

/% olass_def/2 */
class_dof (pilot, [characterx]).

/* component/4 */

/* property_set/4 */

property_sat (pilot, [£light, clearancel],
oneof (['cleared to despart']),
not_hideable) .

property_sat (pilot, [taxi,clsarance],
oneof (['cleared for taxi'}),
not_hideable) .

proparty _sst (pilot, [takeotf,clearance],
oneof (['cleared for takeoff']),
pot_hideable).

propexty_display _data/4 */

/* relation/4 */

/* dasmon/6 */

/* operation/8 v/
opsration(pilot, [aircraft],
bave,pilot, [requast, £1ight, clearance],
i,
[on('APU''s’,blaed,air)]]),
‘cleared to depart’,
.

1.
operation(pilot, {aircraft],
bave,pilot, [request,taxi,clearance],
{[‘cleared to depart'],
[checked (brakes)]],
‘cleared for taxi',
.
mnn.
operation(pilot, [aireratt],
have,pilot, (request, takeoff,clearance],
[['cleared for taxi'],
[‘ona the runway']],
‘cleared for takqoff',
.
an.

/* operation_d4isplay_data/4 */

TAB 3. OBJECT DEFINITION FILE FCR AIRCRAFT

/...i'ﬁI.itiit'.lt‘l....'.'l'.'.Cl.'-....'l.'ﬂ'.ll!'.."ll"'t',

/" M¥Builder Class Detinition File "/

I"".ttt."...'.".tt.."'.tt..'t‘i.'..t'ittl'a.'t.t.'..'...../

1~ dynamic type_of_prolog _tile/l.
1= mltifile type_of_prolog_file/l.

1= dyaamic class_4def/3, component/4, property_set/4,
property_display_data/4, relation/4, dasmen/6,
operation/8, operation_display_data/4.

1= multifile class_def/2, component/4, propercy_set/d,
property_display_data/4, relation/4, daemon/é,
operation/$, operation_display_data/4.

type_of_proloy_file('MEBuilder Library Class Definiticn Pile').

/* class_def/2 */
class_def (aircratt, (propl).

/* component/4 */

component (aireratt, [aixcraft, ‘APU']}, 'APU",
default).

component (aircraft, [aircraft,brakes],brakes,
default).

component (aireraft, [aircraft,engine], sngine,
default).

component (aircraft, [aircrafi,external,power], [external,powerl,
default).

component (aircraft, [aircraft, ‘WNs'], 'RW8',
default).

component (aircraft, {aircrafc,throttles),throttles,
default).

component (aircratt, [aixcratt,trim], trim,
default) .

/* property_set/4d */
property_set (aircraft, [preflight,completion],
onaof (['preflight inspected']),
not_hideable).
. property_set (aircraft, location,
oneof ([‘'at the tarminal’, ‘on the runway',airbozmel),
not_hideable).

/* property_display_dacta/4 */

/* relation/d */

/* daemon/6 */

/* cperation/8 */
opezation(aizeratt, [pilot, hutfer],
check, '¥W8*, [),
{[of£f (external,power)],
i,
checked('MWS'),
i,
. I,
iy,
operation(airerafe, {pilet],
check,brakes, [],
[(checked('WNS')],
11,
checked (brakes),
[,
nyn.
operation(aircraft, [pilet, [wind, sockl],
.ﬂj\l'tc txrim, {1,
I,
{1,
f{checked]l),
. checked (txim),
' [,
{i,
1.
operation(aircratt, [pilet],
[lhut.o!!] . ‘APU', l] ’
[(checked(trim)],
['clearsd for takeoff']],
2l off('APU'),
- .
1.
operation(aircraft, [pilot],
taxi,airecrate, (],
I,
['cleared for taxi']l],
‘on the runway’,
i,
1.
cpsration(aireratt, [pilot],
max,throttles, [],
[[ofL('APU*)],
['cleared for takeoff']],
full(tbrottles),
.
[(1n.
operation(aircraft, [pilet],
{£1y,the} ,aircratt, {1,
i [full (throttles)],
(1.,
airborne,
[f.
0nn.
% cpsxration(aircratt, [pilot],
start, ‘AP0', [],
{('preflight inspected',zunning(engine)],
i,
on('APU'),
40P

151

(0.
operatiocn(airorafe, [pilot],
{conduct,pretlight, inspection,on),aixcratt, {1,
{{'at the terminal‘],
1.,
‘praflight inspected',
.,
nn.
operation(mircraft, [pilot]),
sngags, [external,powar],],
[{‘preflight inspected'l,
a1,
on{external,powsr),
(44 1
.
operation(aircxatt, [huffer,pilot],
start,engine, (],
[{'Dreflight inspected‘'],
(engaged],
.
running (engine),
Ia,
{1,
in.
operation(aircratt, [(huffer,pilot],
: disengage, {external,power], (],
n.
[disengaged],
[11,
off (external,power),
.
{1,
[11}.

/* opsration_display_data/d */

162

TAB 4. TASK DEFINITION FILE FOR PREP_AIRCRAFT

’l..-Ottttl'l"t'i..t".!'i...".'...QQQQQ'Q.

/" MEPuildar Task Definition Pi
I...‘l'...'.i...Ii-..‘t.'...'..'.....Ci......
1= dynamic type_of_prolog_£ile/l.
1- multifile type_of_prolog_£ile/l.

= dynamic task/3, initial_conditions/2,
action/6, uncrdered _action/1,

t= pultifile task/3, initial_conditions/2,
action/6, unordered_action/2,

..‘Q.'.'.'........,

le */

..'t.'..'.‘.......,

cbjectives/2, stage/6,
relation/3.

chjectives/2, stage/s§,
relation/3.

type_of_prolog_file('MEBuilder Library Task Definition Pile’).

/* task/d */
task([pzep, aireratt], [pilot.pilot),
[[huffer,hutfer],
[airoratt, aizeratt],
{ (wind, sock], [wind,sock]])) .

/* initial_conditicns/3 */
initial_conditions(pilot,
{not ('cleared to depart'(pilot)),
got (‘cleared for taxi'(pilet)).
ot { ‘elearsd for takeoff'(pilot))]).
initial_conditions(huffer,
{present (bufter),
daisengaged(hutter))).
initial_conditions (aircratt,
[oot (‘preflight inspected' (alxcraft)),
‘at the terminal’ (aircrate),
off (‘alireratt''s', 'APD'),
off(‘alrcratt''s', 'APU' 'a’ ,gensrator),
off('aircratt''s', 'APU"' ‘s’ bleed,air),
uuchecked(‘aircraft''s',brakes),
off(‘alircratt''s',engine),
available('aircraft''s',extarnal,power) .
off(‘aircratt' 's' ,external,pover),
unchecked('aircraft'‘'s', 'NWS'),
off('aireraft’‘s',throttles),
unchecked (‘aizroratt'‘s',trim)]).
initial conditions ([wind,sock],
[not (checked (wind, sozk))}1).

/* objectives/3 */
abjectives (pilot,

[‘cleared to depart'(pilet),
‘cleared for taxi'(pilot),
‘cleared for takeoff' (pilot)]).

objectives(huffer,

[present (hufter),

inpaterial (thuffer''s',engagement)]).
objectives (airoratt,
{'preflight inspected' (aircraft),
aizborne (airoxatt),
Lwmaterial(‘aizcraft''s', ‘APU’ 's’,ewitch,position),
immaterial (‘aircraft''s', ‘APU‘‘s’, 'genexator’ ‘s’ ,switch,position),
immaterial (‘airoraft’''s’, ‘APU’ ‘s’ ,bleed, ‘alr’ ‘s’ ,switch,position),
chacked('aireratt''s’,brakes),
running (‘alrexaft' ‘s, engine),
ismateriel ('aizeraft''s',external, 'powsr' ‘s’ ,usags),
immaterial (‘aireraft' ‘s’ ,extexnal, ‘power' ‘s’ ewitch,position),
checked ('aircratt''s’','NWS'),
full{'aizcraft''s’',throttles),
checked ('aircrattt‘s’,trim)]).
cbjectives ({wind, sock],
[checked (wind,sock)])).

1% stage/6 */

stage(start, linear,nons, linear,
.,
.

stage(ql,linear,none, linear,
[{staxt,101,1]],
.

stage (g2, linear,nons, linear,
{tqg1,102,1]),
1.

stage (@3, Linsar,none, linsar,
{{qa.,103,1]),
.

stage (g4, linear,none, linear,
((g3,104,1]1]),
.

stage (g5, linear,none,linear,
{[g4.205,1])],
(1.

stage(qé,linear,none, linear,
[lg5,1068,1]1),
{1n.

stage(ql7,linear,nons, joining,
{[Joinl,lanbda,1]],
1.

stage (g1, linenr, none, linear,
[(QI’; 113,1)),
2.

stage(qld, and-split,qis, linear,
1.

stage(qi€, linsay,none, linear,
[lqld,116,1)),
[lgid,and,113).

stage (join2, linear,none, joiring,
[1q16,117,1), [q14,115,1)],
({qld,and.1)]).

stage (g15, 1inear,none, joining,
{{joind, lanmdda,1]]),
1.

stuge(gll,linear,nene, linear,
l IQIS.III,II ’ [
.

164

stage(ql9,linear,none, linear,
(lq18,119,1)),
m.
stage (dons, no~actions,none, linesr,
{ [119.120. 1),
1.
stage(joinl,linear,none, joining,
[[ao:’-o., 1), [1110 112,1)1.,
{(g20,an4,1])).
stage(qgll,linear,none, linear,
[tg10,111,1]),
{lq30,and,1]]).
stage(qQ20,and-aplit,ql7, linear,
{[g6,107,1]1,
m.
stage(qll, linear,none,linear,
[[qﬂl. 110,111,
[(q30,and,1])).
stage(Qal,linear,none,linear,
tlqa0,109,1)),
{iq20,and,1])).

/* action/6 */
action (101, conduct (preflight, inspection,on,airecrate),
1.
{1,
{1,
m.
action(102,engage(‘aizrcratt''s’',external,povwer),
{1,
1.
{1,
.
action(103, engage (huffer),
11,
{1,
.
.
action(104,staxt (‘aircratt' 's', engine),
{1,
1.
{1,
m.
action(105,start(‘aircraft''s', ‘APU'),
.
0.
[,
m.
action (106, angage('aizcratt''s’', 'APU' 's’,generator),
{1,
[,
1.
[n. ’
action(107,engage('aircratt'‘s','APU' 's',bleed, air),
.
0.
(1.
.
action(108,have (pilot,xequest, £1ight,clearance),
1,

(.
1.
‘]).
action(109,diseangage (huffer),
.
f),
1.,
).
action(110,disengage(‘aircratt’ 's', axternal,powar),
.
i1,
1,
m.
action(1ll,check('aixcratt'‘s', 'NW8'),
.
),
1,
.
aztion(112,check('aixcratt' 's’',brakes),
19)
.,
.
.
action(313,bave(pllot,request,taxi,clearance),
.
{1,
0.
.
action(11l4,taxi (aircrate),
.
{1,
.
.
action(115,hava(pilot,iequest,takectf,clearance),
.
(31}
.
1.
action(116,check{wind, sock),
1.
(.
{1,
me.
action(1.7,adjust(‘aircratt’''s’,trim),
{1,
.
.
1.
action(118,shut (off, 'aircraft''s’, 'APN'),
{1,
{1,
{1,
t1}.
actiou (119, max(‘aireratt''s',throttles),
.,
(¢
.
£,
action(120,£fly(the,aircrate),
(1.
11,

166

1.
m.

/* unordexed_aation/2 */

.\ » /% Telation/d %/

167

TAB 5. LESSON DEFINITION FILE FOR PILOT_TRAINING

l...‘.'..l............."........C.'.'I.‘.-I‘l'-‘I'..!‘I..I.l"l

1" MENuilder Lesson Definition File ./

l'Q.‘.'.....t..‘.....‘...‘..Q.."..‘..i".t.'.t."‘t"l......../

1= dynanic type_of_prolog_file/i.
- maleifile type_of_prolog file/sil.

1~ dynamic lesson/4, lesson_intro/l. problem/5, preblam_introe/2,
initial _setting/3, objectives/3, side_effect_override/s.

1~ multifila lesson/¢, lesson_intro/l, problem/5, problem_intro/3,
initial_setting/3, objectives/3, side_effect_override/s.

type_of _prolog. file('MEBuilder Likrary Lessca Definition File').

/* lesson/4 */
lesscn([pilot,training, ‘1),
{{(captain, jack,pilot,default]],
[(’D-10',aixcorai®,defavlt),
{{the, huffer!,hutter . default],
[[thw,wind,sock], [wind, sock) ,defaulcl}],
{lprep,airczatt])).

/* lessen_intro/l */

Jesson_intre('Welcome .o Pilot Trainming, Part I Takeoff!') .,
leascn_intro('').

lessen_dutro('').

lesson_aintro(* The purposs of this lesson is tc acguaint you with the').
lesson_intro('basic procedures in taking off -- including preflight checks,').
lesson_1intro| 'tower conmunications, and takeof? procedures.').
lesson_imtro(*'').

lesson_intro(* There ure two major segments of the proceas -- those ').
lessca_intro(‘procedures that must he donme at the termizal and those that').
lesson_intro('are 4cne during taxi and takeeff. The first two problems').
lsesson_intro('will train you oa the two parts; the third will briag it all').
lesson_laotro('togethes for you for a comprehensive test.').

lesson_intro(''),

lesson_intro(' Good Luck, Captainm!').

/* problem/5 */
prohlen(i, ['Second', 'RalL'], [captain, jack]),
[{[captain, Jack) . pilot,default])),
{['3-10"',aizcratt,default],
{(the,huffer],butfer,default],
[[the,wind, sock], (wind, sock) ,default]]).
problem(3, [Comprebensive', 'Test '], (captain, jack]),
[[{captain, jack].pilot,defaultl],
[I'B=10',aireraft,default],
[I{the,hutfer) , hutfar.datault),
[[(the,wind, sock]), [wind,sock] ,defaultl))).
problem(l, ['First’, 'Bale'], [captain, jack],
[I(captain, jack],pilot,defaultl]),
[:'8-10',airoraft,default],

168

[(tha,huffer) ,hutfer,default],
{{the,wind,sock], {wind, sock],default}l).

/* probles _intro/2 ¢/

problem intro(2, 'Taxi and Takeoff Procedures').

prablem_intro(2,'').

problem _introla, ' In this problem, your plane is now ready to lsave the terminmal').
problem intro(3, ‘and tower has granted you permission to depart. Your job is to').
problem_intro(2, ‘taxi the airczatt to the runway, perform the last set of checks, *').
problem_intro(l, 'and iy your 3-10 aircraft. Don''t forget to communicate with the').
problem_intro(2, ‘tower. Good luck, Captaint').

problem_intro(2,'').

problem_intro(l, 'Conprehensive Test').

problem_intzre(d, ‘).

problam_incro(3, ' Now that you have completed both phases of the process, '}.
problem_intre(3, 'let''s put the whole thing together. Gocd luck!').

problea_intro(l, ‘Terminal Preflight Operaticas').

problam_intro(l,'').

problem_iatre(l, ! Pirst, we will train you on thu procedurs for handling the'}.
pioblem_intrc(l, '‘aizcraft when you f£iret arrive. Your job is to start with an').
problem_intro(l, ‘aircraft with everything turned off and take it through the').
problem _intxo(l, 'initial sequence of checks and gain clearance to depart the').
problem_intro(l, ‘terminal. Good luck, Captain!').

problem_intro(l,'').

/* inicial_setting/3 */
initial_setting(l, [captain, jack],

[‘cleared to dapart’ (captain,jack),
not(‘cleared for taxi' (captain,jack)),
not (‘clearsd for takeoff'{captain,ijack))]).

initial_setting(2, '»-10°,

{checked('B-10"''s',brakes),
Oof£('P-10"''s"',eaxternal,povwer),
checked('D-10''s", 'NW8*},

‘preflight inspected'('®»-10'),

‘at the Lerminal'('m-10'),

on('B-10''s", ‘APU'),

on('8-10'‘s', 'APU"' ‘s’ ,genexzator),

on('3-~10''s"', ‘APU' 's’',bleed,air),

running!'B-10''s',engine),

avallable('3-10'"'s', extexnal,power),

off('B-10'‘s',throttles),

uachecked('R-10''s',txim)]).
initial_sotting(2, (the,hutfer),

[disengaged(the, hutfer),
present (the,hutfer)]).

iaicial_setting(2, (the,wind, sock],

[not (checked (the,wind, sock)) 1) .

injitial_setting(3, (captain,jack],

[not (‘cleared to depart' (captain, jack)).
not (‘cleared for taxi'(captain,jack)),
not { ‘aleared for takeoff' (cuptain,jack))]).

initial _setting(d,'»-10',

[aot (‘preaflight inspected'('B-10')),
‘at the terminal'('n-10'),
off('B=10"''s"', ‘APU'),
of£(:3-10''s', ‘APU' 'n' ,Qensrator),
ofZ£('B-10''s"', 'APU"' ‘s’ ,bDleed,air),
unchecked('3-10''s',brakes),

of2('3=-10"''2',magine},
available('D-10"''a‘’,cxternal,pover),
off('B-10''s*,axternal,power),
uncheoked('B-20"''s", 'WNS"'),
ofL('D-20"'"'s"',tlzattles),
uancheoked({'5-10'-s',txim)])).
dinitial_setting(3, (the,uifez]},
{pressat (tha, mufier),
disengaged (tha,but Zar))) .
m‘m_.“tm"l (the,wind, sock],
{mot (chocked (the,wind,sock))).
Sndcinl_setting (1, [captain. jack),
(ot ('cleaxed to depart’ (captain,jack)).
2ot (‘clsared for taxi®(captain,jack)),
aot (‘clsared for takeoff' (captainm,jack))]).
dnitial_settiag(l, '®-10°,
[mot (‘preflight ivcpectad’('D-10')),
‘gt the terminal'('s-10'),
off ('D-10"''s’, 'ANU"),
off(*B~-10"''¢"', ‘AU '8 ', QeaaTatOT),
e22(°8-10"‘s*, ‘APU' ‘s’ ,Dlesd, aix),
unchecked('B-10' "9’ ,brakes),
ofL('8-10''s’ ,engize),
available('S-10'‘s‘,axtsrnal,power),
off£('B-10' ‘s’ ,exteznal,power),
unchecked('B-10'‘e",'UWNS*),
oté('m-10''s’,throttles),
unchecked('B-10''s',cxin))).
initial _setting(l, (the, huffer],
{preseat {the,hutfer),
diseagaged (the,kufter)]).
inicial _setting(l, (the,wind, sock),
{not (checked (the,wind,sock))]} .

/¢ abiestives/d */
ehvjeutives (3, [captain, jacki,
{4iamatazial (captainm, ‘Jack' ‘s, £1ight ,clearance),
imwmterial (cuptain, ‘jack' ‘¢, taxti, ocleurance),
‘cloazed for cakeoff' (captain,jack)l}}.
¢ jectives (2, ‘B-10",
{ssatarinl ('B-10''2’,prefiight conplation),
airborae('®»-10'],
jamatorial (‘3-10'‘s’', ‘APU"* ‘9, owitch, ool don?,
lamateriai('9-10''s', ‘A2 ‘s, ‘gacarator' ‘e’ ,switch,position) -
Samatexrial ('B-10'‘a3*, ATV’ ‘s’ Plued, ‘aix‘ ‘n’,suitch,position),
Asmaterial ('B-10''s’, ‘brakss ' ' ' .chevk,status},
dmasterial('B-310''s*, ‘suginn' ‘s, Tunking ,status),
Samatezial (‘B-10'‘e’,exteracl, ‘povwer’ 's’ ,uscge),
immaterisl('D-10''a‘, extexnal, ‘povar’ ‘s’ ,switch,preicion),
immaterial ('9-~19''c", ‘M8 ‘s’ ,chack,stavus; ,
immaterial('D-10''s"’, ‘throttlies’ '’ ,ponicion),
Asmaterial ('B-10°''a*, ‘tTim ‘s ", check, statua))) .
abjectivesild, [the, huttes],
{izmatazisl (the, ‘Nitler' 'r. ,pressace},
disengagedithe , ufter)’).
abjvotives (2, (the,wvisd,s0 &),
[checked{the,wind,s0ck}).
{Axmaterial (oaptain, ‘fack' ‘s, £1ight . clesxcnce),
issraterial (captain, ' ack' ‘s’ ,taxi,cle Tance),

e
q
]

‘clsared for takeoff' (captain,jack)]).
objectives (3, '5-10",
{inmatezial ('B-10''s' ,preflight,conpletion),
airborne('B-10'),
immaterial (‘3-10°‘'s*, 'APU' 's',switch,position),

{ismacerial (‘B-10°''s’, ‘AP0’ ‘s’ ‘generator' ‘s’ ,switch,position),
immaterial ('3-10''s’, 'APU' 's* bleed, ‘air' ‘s’ ,ewitch,position),
iamatexrial ('B-10''s"*, ‘brakes’ '’ ,check, status),
{immaterial(‘B-10''s’', 'engine’ ‘s ', sunning, status),
immaterial ('B3-10''s’,axternal, 'power’' 's’',usage),
immaterial('3-10''s’',externcl, ‘power'‘'s’,switch,position),
ismaterial('B-10''s’', 'NWS ' ‘s’ ,chack,status),
ismaterial('®-10''s’, ‘throttles' ' ', position),
immaterial('3-10''s’, 'trim' 's’,check,status)]).

objectives (3, {the,huffer],
: (immaterial{the, ‘huffer''s',precence),
*. disengaged(the, huffer)]).
! “,.“1'“ (3' [m.'u. sock],
{checked(the,wind,sock)])).
objectiven (1, [captain, Jack],
{‘cleared to depart’ (captain,jack),
irmaterial (captain, 'jack’' 's’,taxi,clearancs),
ismaterial (captain, 'jack' 's', takectt,clearance)]).
objsctives(l, 'B~-10",
fimmaterial (*B-10'‘s’',pretlight, complation).,
immatexial('®-10'’'s‘',location),
immacerial (‘B-10'‘e’', ‘APU’ ‘s’ ,switch,position),
I immaterial ('B-20''s’', 'APU' 's', ‘genarator' ‘s’ ,swvitch,position),
immatexial (‘D-10'‘s’', ‘APU' ‘s’ ,bleed, ‘air' ‘s’ ,switch,.position),
Shecked(*'B~-10"''s’ ,brakes),
ismsteriel ('B9-10''s’, ‘angine ' 's’ , running,status), N
immaterial ('B-10''s’ ,external, 'power' ‘s’ ,usage),
off('B-10''s',cxturnal,power),
chacked('BD-10'‘'s", 'WNS"'),
. immavaxiul (*3-10'‘'s’, ‘throttles’ ' ', positicn),
-y, immatarial('B-10''s’, ‘txim’' 's ', chock,scatus)]).
: objectives(l, (the , mifez],
{immateriald (the, ‘Mutfax' ‘s’ ,presence),
disenyyaged(the.butier)}).
abjectives(l, (the,winld, sock],
{immtariel(the,wind, ‘sosk' ‘e, chack, status))).

/* aide_sffesct_ override/S "/

171

TAB 6. METUTOR READY FILE FOR PILOT TRAINING

,."l."Q'....'...OH".Qt'0Q...'l‘...".Q".l...'.l......'.t'.tl

/* Meane-Ends Lesscn Definition Pile -- Runnable im METuUtOr */

l...".....'....'.......".....Q.Ql.l...'....I'.'.......'..."'/

1= dynamic type_of_proloy_file/1.
1=~ multifile type_of prolog_file/l.

1~ dynamic lesson/l, lesson_intro/l, problem/3., problem_intro/2,
problen _domain/l, start_state_t/3, goal_t/3, recommsnded t/d,
precoadition_t/5, deletepostccadition _t/S,
addpostoondition_t/$, randchange_t/7, siagular_t/3,
plural_t/2, apply_text_t/4, dslete_text_t/4, add text_t/4.

1- multifile lesvon/l, lesscn_intro/l, problem/3, problem_intro/2,
problen _domain/3d, start_state _t/3, goal_t/3, recommended_ t/4,
precondition_t/S, deletepostcomdition _t/S,
addpostcondition_t/S, randchange_t/7, singulax_t/2,
plural_t/2, apply_text_t/4d, delate_text_t/4, add text_t/4.

typa _of_prolog_file('NMETutor Lesson Pile’').

/¢ lessom/l */
lessce((pilot,training, ‘1')).

/* lessos_imtro/i */

lozscn_intro('Welooms to Pilot Traiming, Paxt I Takeoff').
lessca_iatro(’').

lessom_intro('*).

lesseoa_iatro(’ The purpose of this lesson is to soguaimt you with the').
lesson_intro('basic procedures in taking off -- including preflight checks.').
lesson_intro('tower communications, and takeoff procedures.‘').
lssson_intro('*).

leseon_intrn(* Thers are two major segmeats of the process -- those ‘).
lessca_iatro(‘procedures that must be dome at the terxinal «nd those that').
lesson_intreo(‘axe done during teki aad takeoff. The fixet two problems').
lesson_jatro('will traim you on the two parts; the third will briag it all‘').
lesscu_iatzo(’'together for you for a ccmpzrsheasive test.').

lessot_introl*‘).

lessca_iatro(’ Qood lmck, Captaimt').

/* problea/3 */

problem(l, ('Pizet‘, ‘Balf’]), [captaia, jack]).
preblamil, (‘Secoad’, 'Malf ‘], (captaia,jack]).
pechlen(l, ['Compzehensive’, "Test '], (captain, jack]).

/* problem_inkra/d */

problen_intzo(l, 'Pexrnins]l Prellight Oparatioms').

problenm_iatro(l,*’).

problem _istro(l,* FPizst, we will (rain you on the procedurs for handliag the').
problem_istro(l, ‘aircratt whes you £irst arrive. Your job is to start with am').
problem_istro(l, ‘airorsft with everything turmed off aad take it through the').

172

problen_intro(l, 'initial sequence of checks and gain clearance to dapart the').
problem_intro(l, 'terainal. Good luck, Captaini').

problem_iarro(l,'').

problem_intro(2, 'Taxi and Takeoff Procedures').

problem_intro(2,'').

probles_intzro(2,* In this prchlem, your plane is now ready to leave the terminal‘).
problem_intro(3, 'and tower has granted you psrmission to dapart. Your job is to!').
problem _intro(2, 'taxi the aircratt to the runway, psrform the last set of checks, ').
problem_intro(l, ‘and fly your B-10 aircraft. Don'‘c forget to compunicate with the').
problem_intro(2, 'tower. Good luck, Captain!').

problem_iztro(2,'').

problem_intzo(3, 'Comprehensive Test'),

problem_iatra(3, '),

problem_intra(d,* Now that you have completed both phases of the process, ').
problem_intro{3, 'let’''s put the whole thing together. Good lucki'),

/* probles_Adomain/3 */
prablem_domain(l,pilot,
{ [captain.: Jack)]l).
problem_domain (i, airecratt,
['B-10']).
problem_domain(l,hufter,
{[tha,bhuffax}]).
problem_domain(l, iwind, sock],
({the,wind, sock]]) .
problem _dcmein(2,pilot,
{(eaptain, jack])).
problem_domain(2,aircratt,
1'B-10'1).
problem_domain (3, buffer,
[{the,buttar]]).
problem_domain(2. [vind, sock],
i(th‘.".ﬂ. lockl 1).
problem _domain(3d,pilot,
{lcaptain, jack])).
proeblem_domain(3,airorate,
i*'®»-10'1).
problem_domain (3, hufferx,
(i{the,bufter])).
problem_domcin(3d, (vind, sock]),
[{the,wind, so00k])]) .

/* staztc_state_t/3 */

stazt_state_t (1,
),
[(‘at the terminal'(‘B-10'),
off{:P-10"''s"','AFY'),
off('B-10''s', ‘APU’ ‘s’ ,gemaxator),
0“(’.“0' 's','ANU' ‘s’ ,bleed,air),
unchecked(’'B-10''s’ ,brakes),
of2('3-10"'s’ ,angine),
available('D-10*‘s’,externsal ,pover),
off({'D-10°"'s',extezmal ,povwe.),
unchecked('9-10''s", ‘-,
of£('D-10*'s',throttles),
wEchooked('8-10*'s‘,cxim),
yreseat (the, mffer),
disengaged(the.kuffax)])).

staxt_setate_t(2,

.

{‘cleared to depart' (you).,
checked('B~10''s’ ,brakes),
of£({'3-10'"'s', external,pover),
checzed('B-10''s','¥W8'),
'preflight inspected'('B-10'),

‘at the terminal'('B-10'),
oﬂ('l-lo‘ n.|' nm')'
ou('B=10''s', 'APU' 's’ ,gensrator),
on('D-10''s', ‘APU' 's! ,bleed,alr),
running('®3-10°''s',sngine),
available('B-10''s’',external,pover),
of£('®-10*'s',throttlss).,
unchecked('B-10*‘s’,trim),
disengaged (the,huffer),
preseant (the, huffer)]).
stazrt_state_t(3,

(1,

{(‘at the texrminal'('B-10'),
of£(*'P-10""'s"', ‘APU'},
of2('B=10"'"'s"', 'APU' '8’ ,generator),
2L ('9-10""'s', 'APU' '8’ ,bleed,alir),
unchecked('B-10''s"',brakes),
off('B-10''s’',engine),
available('3-10''s‘, external,povwer),
of£('B-10"''s', axternal, ,povwer),
anchecked('d-10''s',‘'NNS"'),
off£('P-10*'s',throttles),
unchecked('B-10'"'s',trim),
present (the,buffer),
disengaged(the,buffer)]!}.

/* goal_t/3 */
goal _t (1,
1,
[‘cleared to deparxt’(you),
checkad('B-10''s’' ,brakes),
off('B-10'"'s"',external,power),
W('l-lﬂ".‘, 'm')p
disangaged(the, butfer))).
m_‘(:l
.
{‘cleaxed for takeoff'(you),
aizborne(‘'3-10'),
diseagaged(the, Muffer),
checked(tha,wiad,sock)]) .
goal_t(3,
{1,
{'clecred for takeoft'®(you),
aizboras(°*B-10'),
diveagaged (the,lfer),
cheslied/the,wind sock)]}).

/* reccamended_t/4& */
recoameaded_t ([captain, jack].,
{aliroratt,
pllot),
[*preglight imspected‘targl(ll)].

conduct (preflight, inspection omn, axgll))).

174

reccmmended_t ([captain, jack],
{aircoraft,
pilOtl ’
[on(pazg(l) ,axternal,pover)),
engage (paxg(l) ,external,power)) .
recosmended_t ([captain, jack],
(hutter,
airerate),
[engaged(arg(1))],
engage (axg(l))).
reccamended_t ([captain,jack],
(aizerate,
huffer,
pllot],
{running(pazg (1) ,engine)],
start (parg(l),engine)).
recommended :([captain, jack],
[wircraft,
pllet],
{oniparg(i), 'APU")),
scart (parg(l), ‘APU*)).
rscommended_t ({captuin, jack],
[aircrafel,
[on(paxg(1), 'APU' 's ¢, ganerator)),

engaje (parg(l), ‘APU' 's‘ .generator)).

recommeuded ¢ ({captain,jack],
[uvivczate],
[on(puxg(l), '‘APU' ‘s',bleed,air)],

engage (parg (1), ‘APU''s’ blwad,air)).

seccmmended_t ([captain, jack],
[hutfex,
aircratt),
{disengaged(azg{l))],
disengrge(arg(l))).
recoumended _t ! (captain, jack]),
{aizeratlt,
butfer,
{cfg(purg(l) ,external,power)),
4isengage (parg (1) , sxteznal ,power)).
recoimanded t ({captain, Jack]l.
{airerate,
D£MI
hutfer],
{chucked(paxg (1), ‘WM3*) |,
ohsck(parg(l), 'Wws'}).
recommsnded_t ([captain,Jack;,
(we »
ﬂ‘l”] ’
[cuscked (parp(l) ,brakes)],
oheuk (parg (1) ,brakes)).
reoccaganded_t (lcaptaln, jack],
tptlot,
aixerate),
{‘eloared to depart’(arg(l)}),
requast (£light,clearance)).
secammendsd_t { [captain, Jack],
tpilet,
alxvwatt],
{‘cloared for taxi'laxg(l))],
Togadt: (%axi,alearance)) .

175

recommadded ¢t ([captain, Juck],
[airecratt,
pilet},
['on the runway' (axg(li))],
taxi(axg(l))).
recommended _t ({captain, jack],
[pilot,
aircrate),
('cleazed for takeoff' (arg(l))),
request (takeoff,cleaxrancs)).
reconmanded_t { [captain, jack],
{ [uind. sock],
pilot,
aircratel,
{checked(azg(l))]),
check(2rg(l))).
recommended_t ([captain, Jack],
{aizcratt,
pilet,
{wind,sock]]}.
[checked (parg(l),tzim)],
adjust (parg(l),trim)).
recommended_t { [captain, jack),
(aizcrate,
Pthﬁ] .
{ott (parg(l), aru')]),
shut (off,parg(l), 'APu‘)).
recommanded_t ({captain, jack],
(aircratt,
pilot],
{full(pazg(l),throttles)),
sax(parg(l),throttles)).
recommended _t ({captain, jack],
[aircraft,
pilot],
{airborne (axg(l))],
£ly(the,axgtl))!.
Tecommended_t ([captain, jack]),
laizorxatt],
{off (parg (1), 'APU' ‘s‘,gensrator)],
disengage (parg(l), ‘APU' 's',generator)).
recommended_t ([captain, jack]),
{aizoratt]),
{off (parg(l), 'APU’ 's’',bleed,air)].,
disengage (parg(l), 'APU' ‘s’ ,bleed,air)).
Tecommended_t ([captaln, jack],
{alrezatt],
{off (parg(l) ,engine)],
shut (off,paxrg(1) ,engine)) .
Teccmmanded_t ([captain, jack),
[{aircratt],
loff (parg(l) ,throttles],
cut (pazg(l),throttles)).
secommandied_t ([oaptain, jack],
lmtl »
{chacked(parg(l).txim)],
chack (parg(l),tzim)).

/* preconditioca_t/S */
preconditioca_t ([captain, jack],

176

{(wind, sock],
pilot,
airorate]},
check(axg(l)),
14
[‘omn the rTunway' (axrg(3))]}).
precondition_t ([eaptain, juck],
[huftex,
airoratt),
disengage{arg(l)),
(¢
[on(parg(2), 'APU''s',bleed,air),
angaged(azgl{l)),
prasent (azg(l))]).
precondition_t ([captain, jack),
{huffer,
aircrafel,
engage (axg(l)),
.,
[on(parg(2) ,external,pover),
disengaged{arg{l)),
present (axg(l)).
‘preflight inspected' (arg(2))).
precondition_t ([captain, jackl,
{airerate,
plilet],
taxi(arg(l)),
.
{‘cleared for taxi'(arg(2)),
oot ('on the runway' (arg(l)))l).
precondition_t ((captain, jack],
{aizozatt,
pilot,
{wind, sockl]),
adjuet (paxg(l) ,txim),
{1,
{checked(axg(3)),
unchecked (paxg(l) ,tzim)]).
precondition_t([captain, jack),
{aizerate,
pilot,
hutfer:,
check(pazg(l), 'WN8'),
11,
[off (parg(l) ,external,pover),
uachecked (parg(l),‘'Wws')]).
precondicioa_t (lcaptain, jackl,
[aixoratt,
plilet),
check(parg(l) ,brakes),
{1,
{chacked(parg(l), 'WN8'),
uachecked(paxg (1) ,brakes)]).
preccadition_*t ([captain,jack],
tm“el]
check (parg(l;,trim},
.
(uachecked(pazg(l),txim))).
preconditica_t (lcaptain, jack),
{airerate),
out (parg (1) ,throttles),

(1.
[not (off (parg(l) ,throttles))]).
precondition_t([captein, jack],
(aixcratt,
pilotl,
fly(the,axg(l}),
{1,
[full (paxg(l),throttles),
oot (airborne (axg(l)))1).
precondition_t{(captain, Jack],
taizorate,
pilet),
max(pavg(l) ,throtclen),
t1.
{off (paxg(l), 'APU'),
not (full (parg(l) .throttles)),
'gleared for takeoff'(argi(2))]).
precondition_t(lcaptain,jackl,
Ipilot,
airczaft),
reguest (£1ight,clearance),
{1,
{on(parg(2), 'APU* ‘s’ ,bleed,air)l).
precondition_t([captain,jack),
{pilot,
aireraft],
request (takeoff,clearance),
1.
[‘on the runway' (arg(l)),
‘cleared for taxi'(axg{l))l).
precondition _t ((captain, jack),
[pilot,
aircraft),
request (taxi,clearancs),
3
[‘cleazed to depart'(arg(l)),
chacked (parg(2) .brakes)}).
precondition_t([captain, jack),
{airxoratt,
pilet),
start (pazg(l), ‘Aruv'),
.
{running (paxg (1) ,engine) .
off(parg(l), 'APU'),
ipreflight inspected’ (arg(l)))).
precondition_t((captain, jaek],
{airoratt,
atfer,
plict]),
staxt (paxg(l) ,sagise).,
1.
{engaged(ax3z(2)),
oft (paxg (1) angiae),
'prefliight imspected'(axg(l))]).
precendition_t ([captain, Jack].
[aireoxatt),
diseagage (parg (1), 'APU’ ‘n’,ganarator) .
.
{oa(pazg(l). 'APY’),
oa({parg(l), 'APU' ‘s’ ,genszator)]).
preccaditios_t ({captain, Jack],

178

{aizczatt,
hugfer,
pllet),

disengage (paxg(l),external,power),

t1.

[disengaged(axg(l)),
can(parg(l) ,external,power)l).

precondition_t([captain,jack),

{airezatt],

engage(parg(l), ‘APU' ‘s',genexator),

.

lon(paxg(l), ‘aru’),
off (parg(l), 'APU' 's',genserator)])).

pracopdition_t([captain, jack],

[aizcratt,
pilot),

sngage (parg(l) ,external,power),

1,

('preflight inspected’ (arg(l)),
off (parg(l) ,extexnal,.power))).

precondition _t([captain, jack),
faizcraft,
pilot},

shut (off,paxg(l), ‘APT'),

1,

{checked(parg(l),trim),
‘cleared for takeoff'(argi(l)),
on(paxg(l), ‘APU*')]).

precondition_t([captain,jack],

{aizecrate],

shut (off,paxg (1) ,engine),

0.

{(running (parg (1) ;eagine))).

preconditicn_t((captain, jack),

[aizoratt,

P‘lﬂt! .

conduct (preflight, inspection,.on,axg(l}),

.

(‘at the termimal'{arg(l))])).
precondition_t ([captain,jack],

[airoraft],

diseagage(paxg(l), ‘APU' ‘s’ ,bleed, air),

1.

{on(pazg(l), ‘APU' 's',genserator),
omn(pazg(l), 'aAPU' 's',bleed,air))).

precoaditica_t ([captain, Jack],

{aireratt),

eagage(parg (1), ‘AP0’ 's' ,blead,air),
3

(omn{pazgil), ‘APU" ‘s ,gemerator),
off (paxg(1), 'APU' ‘s’ ,bleed, aix)]).

/* dsletepostoomdition_t/8 ¢/
deletepostcaomdicion_t ({captain, jack),
{{wiad, scek),
pilot,
aireratt),
chack(arg(l)),
{1,
.

179

daletepostocndition t{([eaptain, jack],
fhutfer,
aizcraft],
disengage(axrg(l)),
1.
[engagad(azg(1))]).
deletapostcondition_t ((captain, jack],
Ih\l!‘.:v
aircraft),
engage (arg(l)),
3.
(disengaged(azg(l))]).
deletspostcondition_t ([eaptain, jack],
[aizoratt,
pilotl,
taxi(axg(l)),
.,
[*at the terminal'(arg(l)),
airborne(arg(l))]).
deleteposteondition t ([~aptaln, Jack),
[aizoxatt,
P‘-lﬂ‘]
{wind.sock]]),
adjust (parg(l),trim),
.
[unchacked (parg(l),trim)]).
deletepontecndition_t({captain, jack],
laixorate,
pilot,
huffer],
check(paxg(l), 'Wws*),
1.
{unchecked(parg (1}, ‘MM8')]).
deletepostoondition_t | [captain, jack),
{airorate,
pilot),
check (parg (1) ,brakes),
.
{unchecked(parg (1) . brakes))).
deletepostoondition_t ([captain, jack],
(aixcratt),
Mn (paxg(l),tzim),
(uncheaked(pazg(l),trim)]).
deletapostoondition _t ([captain, jack],
lmﬂtl .
out (parg (1) ,throttles),
.
{idle(pary(l),throttles).,
full (parg(l),throttles);).
daletepostoondition_t ([captaia, Jack),
faizoratt,
pilet],
fly(tha,azg(l)).,
(1.
[‘at the terminal’{arg(l)),
‘ol the remway’ (axg(l)))).
daletepostecadition_t ((captain, jack]),
{airoratt,
pilek],
max (pazg(l) ,throttles),

180

3.
lotf (parg{l),throtiies),
idle(parg(l),throttles)]).
daleteposteondition t ((captain, jack),
ipilet,
airervate],
roquest (£1ight,clearance},
t1.
.
dsletepostcondition t ([captain, jack],
{pilot,
airerattl,
Tequest (takeoff,clearance)
t1.
th.
delstepostoonditior c¢(icaptain,jack],
{pilet,
airezate],
Toquest (taxi,clearance),
1.
[1}.
delstepostoondition t((captain, jack),
lairexatt,
pilot]),
start (paxg(l), 'APU'),
il
lofg (paxg(l), 'aru‘)]).
deletepostconditica_t ({captalin, jack),
fairorate,
hutfer,
pllot],
start (paxrg(l),engine),
tl,
foff (paxg (1) ,engine)).
deletapostocndition _t { [captain, jack),
{ajroxate),
dissagage (parg(l), '‘APVU’ 's ' ,generator),
{1,
{on(parg(l),'APU* 's',genszator;)).
deletepostoondicion_t ((captain, jack).
fairaxate,
hutfex,
pllot],
Alseagage (Pazg(l) ,cxteraal ,powss) ,
{1.
[on(parg (1) ,external,pover)]).
deletepostooadition t | {captain,jackj,
[airorxatt]),
ctgage(pary (i), 'AFY* 's' ,QeOsTALOT) .
1,
{off (paxrg(l), "ATD' ‘s ' ,geaezetor)]) .
doletepoatoondition_t { {captain, Jack],
[airaratt,
»ilot].
eugege(paxyil) .exteznsl,pover),
{1.
{off (pazgil) ,enteynal,power)l).
dnletepostoondition_t i [caphain, jack),
IM‘.
pilet),
shmt (ofL . paxg(l;, ‘A¥C"),

181

t).

(en{paxrg(l), 'APU*')})).
deletepsstoocndition_t { [captain, Jack],

{airczatt],

shut (of£,parg(l) ,engine),

31

[running (pazg(l) ,engine))).
deletepostoondition_t ([captain,jack),

[aircrate,

pllot],

eenduct (preflight, inspection,on,axg(l)),

[1.

t.
deletepostocndition_t(lcaptain, jack],

[aixorage],

disengage (parg(l), 'APU' ‘s’ ,bleed, alr),

.

ton(paxg{l), '‘AP0''s ! ,bleed,air)]}).
deieatepostcondition_t((captain,jack],

[aizerate], .

engage (parg(l), 'APU’ ‘a‘,bleed, airx),

€.

[otf (pazg(1), 'APU' 's' ,bleed, aiz)]).

/1* addpostcondition_t/5 */
addpostcondition_t([vaptain, jack),
{ (wind, scck],
pllet,
airazate),
check(azg(l)),
13,
[¢hecked(azg(l))]).
addpostoondition t({captain, jack),
[amtterx,
alroratt).
disengage (axg(l)).
tl,
[aisenx, agediazgil)))).
addpostoondition t([captain, jack],
tmt“o
ajrcraft),
sagage {axgil)),
.
(engaged(azg(l))]).
sddposteondition_t ((Gaptaln, jack),
faizozaft,
piler),
caxd(azg(l)),
£,
{‘oma tha ramvay' (axg(l))]).
addpostooadition_t ((oaptain, jack]),
laizcratt,
pdlet,
{wind, a0k}],
adjust (paxg(l) ,trim),
.
tehocked (Paxg (1) .txim)); .
sddpectecadition_t! {captain, jack]),
{atirexatt,
pilot,

hutfer),
chack (paxg{(l), ‘Wws'),
{1,
{checked (pazg(l), NWS')1).
addpostcondition_t ([captain, jack],
ld“:“t;
pilot),
check (paxrg(l) ,bcakes),
1,
{checked(pazy{l) ,brakes)]).
addpostcondition_t ({captain, jaek].
[aizcratt],
chack(perg(l),trim),
.
{cheacked (paxg(l),txim))).
addposteondition t ({captain,jack].
{aircratel,
eut (parg(l) .throttlea),
[1.
toff (pazg{l),throttles)])).
addpostcondicion ¢t ([captain, jack],
{alseorete,
pilet],
fly(ths,arg(l)),
11,
{aizborane(axgil))]).
addposteondition t({captaln,jack].
{airaoratt,
pliot],
nax(pazg(l) ,throttles),
{1,
{2ull(parg(i),throttles)l).
addpostoondition_t (lcaptain, jack],
t’ilﬂt ’
airorate]l,
request (flight, clearauce),
.
['clsared to depart’ (argll))]).
sddpostcandition_t ([captain,jask],
(pliot,
alxerate].,
request (takeoft,clearance),
.,
{'‘cleared for takeoff'(argll}))]).
addpostcondition t ([oaptain, jack),
{pilot,
airoratc),
request (taxi, cleaxance) .
.
{'‘cleared fox taxi'(azgi(l)})).
addpostoonditioca_t ([captals, jack],
(eigeoxatt,
pilot),
start (paxg(l). 'APU'),
t1.
ton(paxg(l),'APU')]).
adipostecndition_t ({captain, jack),
{aireratt,
mfter,
pilot).
stazt(parg.. ,engire),

183

(1,

[running (parg(l) ,engine))).
addpostoondition_t ([captain, jack],

{aircratel,

disengage(perg(l), 'APU’' 's’',generator),

{1,

[off (paxg(l), 'APU' ‘s’ ,ganeratoer)]).
addpostceondition_t({captain,jack),

{aircraft,

buffer,

pilot],

disengage(parg(l),external,power),

£,

[off (Parg(l) ,external,power)}).
addpostconditicn_t ([captain,jack],

[aircratt],

sngage (paxg(l), ‘APU' ‘s',generator),

.

{on(paxg(l), 'APU' 's’' ,generzrator)}}.
addpostcondition_t ({captain,jack),

{aircraft,

pl.lot]p

engage (parg(l) ,external,power),

{1,

{on(parg({l),external,power)l).
addpostcondition t({captain,jack],

[aireraft,

pilet],

shut (of£,paxrg(l), 'APO*),

(1,

[otf (paxg{l), 'APU')]).
addpostcondition_t ([captaln,jack],

[airexraft],

shut (of€,paxryg (1) ,engine),

[,

[off (paxrg(1l) ,engine))).
addpostcondition_t ((captain, jack),

[aircratt,

pilot],

conduct (preflight,inspesction,on,arg(l)),

{1,

{'preflight inspected' (arg(l))l).
addpostcondition_t ([captain, jack],

[aircratt],

disengagse (parg(l), 'APU' 's',bleed, air),

(1,

[oft (paxg(1l), ‘APU'‘'s',bleed,air))).
addpostcoondition_t ([captain, jack],

(aixecxatt],

engage (parg(l),'APU' ‘s’ ,blesd,air),

{1,

(on({paxg(l),'APD' ‘s’ ,blesd, air)]).

/* zandchange_t/7 */

/* singular_t/2 ¢/

/* plural_t/2 */

184

/* app
1y.
X
ext_t/4
-
/

APPENDIX E. SCRIPT RUN OF}‘?HI\JlEETUTOR ON AN MEBUILDER

This appendix shows METutor being run on the lesson produced in Appendix C and

provided in Appendix D, called “pilot training I”.

Script started on Wed Jul 27 14:11:36 1994
.alias: No such file or directory.

> ~galvint/mebuild/NETutor

Name the lesson file> pilot_training I

+ ------------------------ - - L X T X T Y TN X Y L Y <+

Means-Ends Tutoring System -- Version 219 {(NETutor) |

+----------—-——-t --------- L L YRR TN Ty Y D ey e P D e e en R e -

| by Professor Rowe and CPT Galvin, Naval PG School |

PR L L L L L e R P L e L] —rmeceRnsTamacasn - em - - - +*

Welcome. The name of this lesson is “pilot training Iv.
PILOT TRAINING: LESSON 1

This lesson is the first lesson in flying an aircraft. After this
lesson you will be familiar with the process of starting the plane and
taking off. The specific skills taught in this lesson are:

(a) Conducting all preflight checks and inspections
{(b) Basic communications with the tower

There is one problem in the lesson, a comprehensive test of ths
skill. Good luck.

There ars 3 problems in the lesson.

You may "list" the problams, "view" a summary of a problem,
or *do" a pzoblem. “"help" is also available.

METutor> help

The following commands are available at this level:
help ~- print this text
quit -=- guit METuUtor
list == lists all the problems available.
Jearn == <not yet implemented -- this is a hook
for future use in administering lessons.>

187

view [problem <number>]
~~ prints a Qescription of the problem.
do [problem <number>]
== run a problem.
If the optional argument is not supplied, METutor will ask
for it. A different command set is avallable while running
a problam.
METutor> view problem 3
The name of the problem is "Comprehensive Test".

Dascxiption:

Now that you have successfully completed the various phases
procoss, let's put the whole thing together from the start.
luck!

METutor> do problem 3

loading and checking the problem.....please wait....Done.

The following is tha current situation:

Now that you have saccessfully completed the various phases of the
process, let's put the whole thing togsther from the start. Good
luck!

The following are your objectives:
you must bs cleared to depart, you must be cleared for taxi, you must
be

cleared for takeoff, B-10 must be preflight inspected, the
alrcraft must be sirborne, B-10‘'s brakes must be checked, the
aircraft's engine must be running, B-10's NWS must be

checked, B-10's throttles must be full, B2B-10's trim

must be checked, the huffer must be present, and the wind sock
must be checked

The following is the current situation:

B-10 is at the terminal, the huffer is disengaged, the huffer is
present, B-10's APU is off, B-10's engine iz off,
8-10's throttles are off, B-10's NWS is unchacked,
B-10's brakes are unchecked, B-10's trim is
unchecked, B-10's axternal power is available, B-10's
APU's genarator is off, B-10's externmal power is off, and
B-10's APU's bleed air is off

What do you want to do? help

You may enter an operator or one of these special commands:
help : -~ print this text
Qquit -= return to METutor main level
view state -= pretty prints the current stats

188

viav objectives ~- pretty prints your objectives
query operator <operator>
-=- prints all information about an operator.
Query object <object>
=« prints operators available on an object.
query fact <object>
-- prints all information about a fact or objeastive.
The following ars the operators available in this lesson:
{1} adjust B~10's txim
2] check B-10's NWS
13) check B-10's brakes
[4] check the wind sock
{5] conduct preflight inspection on B-10
16} disengage B-10's external power
17} disengage the huffer
[e) engage B-~10's APU's bleed alr
191 engage B-10's APU's generator
[10] engage B-10's external power
{11] engage tha huffex
[12) £fly the B-10
{13] max B-10's throttles
[14] <raguest flight clearance
[15] Zegquest takeoff clearance
{16] reguest taxi clearance
[17) shut off B-10's APU
i8] start B-10's APU
{i9] start B-10's sngine
[20] taxi B-10
What do you want to do? view operator start B-10's APU
Sorry, that is not a valid command. Please try again.
What do you want to 4do? Query opesrator start B-10's APU
The following is true about "start B-10's APU":
** The operator is recommended for achieving "B-10's APU is on "
¢+ The precondition for tha opearator is "B-10's engine must be
running, B-10's APU must be off, and B-10 must be
praflight inspectad *.
** The postcondition for the operator is "B-10's APU is no longexr off
" while "B~10's APU would be on *.
What do you want to do? guery fact B-10's external powsr is on

The following operators are recommended for achleving this fact:
[1) engage B-10's external power

What do you want to do? query object B-10

The following can be psrformed on "B-10".
** QOperator = "conduct preflight inspection on B-10":
The operator is intended to ackieve "B-10 would be
preflight inspected ".

189

** Operator = “taxi B-10%:
The operatoxr is intended to achieve "B-10 would be on the runway ".

** gperator = “fly the B-10":
The operator is intended to achieve "B-10 would bs airborme *“.

What 4o you want to &o? conduct preflight inspaction on B-10
You chose to conduct preflight inspection on B-10.

oK.
f1) B-10 is now preflight inspected

What do you want to do? start B-10's APU
You chose to start B-10's APU.

Have you confused "B-10's engine is running " with “R-10's
engine is ofi "?

That action requires that:

[1) B-10's engine must be rumning

What do you want to do? start B-10's engine
You chose to start B-10‘'s engine.

Have you confused “the huffer is engaged ." with "the huffer is
disengaged "?

That action requires that:

[$ 9] the huffer must bes sngaged

¥What do you want to do? engage the huffar
You chose to engage the huffer.

Have you confused "B-10's external power is on " with "B-10's
external power is avallable "2

That action requires that:

1} B-10's external power must be on

What 4o you want to do? engage B-10's extexrnal power
You chose to engage B-10's external power.

OK.
[1) B-10's external power is now on

What do you want to do? engaga the huffer
You chose to engage the huffer.

ox *
{1} the huffer is now engagad

¥What do you want to do0? start B-10's engine
You chose to start B-10's engine.

ox L]
1) 3-10's engine is now running

What do you want to do? request flight clearance
You chose to request flight clearance.

Have you confused “B-10's APU's bleed air is on * with "B=10's APU's
bleed air is off "?

That action reguires that:

{1} B-10's APU's bleed air aust be on

What do you want to do? query fact B-10's APU's bleed air is on

The following operators ars recommenced for achieving this fact:
[1) engage B-10's APU's bleed air

¥hat do you want to d2? engage B-10'a APU's bleed air
You chose to engage B-10's APU's bleed air.

Have you confused "B-10's APU's generatoer is on " with "B-10's APU's
generator is off "?

That action requires that:

f1) B-10's APU's generator must be on

What do you want to do? quit
METutor> quit

> exit

> exit

script done on Wed Jul 27 14:15:26 1594

APPENDIX F. EXPERIMENT CONDUCTED USING MEBUILDER

This Appendix contains the raw information produced and gathered in the process of conducting the
validity experiments during the Summer Quarter of 1994, This experiment is discussed in thorough detail in
Chapter V. The following lists the information in this Appendix.

Tab 1. General Instructions for the Experiment

Tab 2. Suite One: The Scuba Diving Prgblem

Tab 3. Suite Two: The Cooling System Problem

Tab 4. Sample Run of the Data Collection Program

Tab 5. Initial Data Files for the Scuba Diving Problem
Tab 6. Initial Data Files for the Cooling System Problem
Tab 7. Data Collected

Tab 8, Selected Comments from Participants

TAB 1. GENERAL INSTRUCTIONS FOR THE EXPERIMENT

ASSIGNMENT

You will be required 1o construct & lesson in a simple procedural task using two different tools. One
tool is based on the principles of Computer-Aided Instruction (CAI), the other using a intelligent lesson
authoring system (MEBuilder).

PURPOSE OF THE EXPERIMENT

‘The purpose of the experiment is o gather evidence conceming how well MEBuilder helps teachers
wriw lessons versus older methods. This evidence will be interpreted based on raw data produced from the
following:

a. Amount of time required to produce the lesson material in each platform. This will be measured in
terms of raw time and number of steps required.

b. The completeness of each lesson -- whether or not MEBuilder hindered the writing process to the
point that the desired lesson could not be written satisfactorily.

¢. The robustness of each lesson -- whether or not the resulting lesson affords the student the maximum
or correct numbers of choices at any point while running the lesson.

CONDUCT OF THE EXPERIMENT
The experiment will be conducted as follows:

2. Qiientation. This document will be presented and classroom instruction given on the differences
between CAI and ICAI wechniques, This will be followed by a detailed block of instruction on the use of two
tools -- CAlBuilder and MEBuilder -- introduced later in the text.

b. Conduct. A setamount of time will be allowed for students to build the lesson material and to gather
the necessary data as requested below. Handed out separately is the specific subject matter the student will
be required to author a lesson on.

You will be given a library with half-completed solutions in ii. The files includs a CAl-solution where
there is exactly one path to the goal and no options given to the student, and an MEBuilder-solution where
there is exactly ore path to the goal and no options given to the student. Your job is to make both lessons
robust ir: order to conform more closely to the task descriptions given,

NOTE: This experiment is intended to require no more than six hours of application running time. This
time includes familiarization with the two systems. If you are having serious problems performing the
requirements under six hours, contact galvint by email as soon as possible for assistance.

. Debriefing. A forum will be held for students to provide specific general comments about the
experiment. In addition, the experimentor will provide additional data relating the students' experiences with
the expected of optimistic results.

TOOLS AND DOCUMENTATION PROVIDED

a. General Information. Each student will have a copy of this document plus a copy of the specific
subject matter for his lessons. You must establish a single subdirectory for this project, and you must run all
the below listed programs from within this subdirectory. You are free to copy the executables into your own
directory (it totals to about 3.6MB).

b. CAITutor and CAIBuilder tools. Each student will have a copy of the user's manual for the CAITutor
and CAlBuilder systems. The programs are available in executable form in ~galvint/caliutor and are called
CAITutor and CAlBuilder, respectively.

¢. METutor and MEBuilder. Likewise, the student's will have a copy of the user's manual for METutor
and MEBuilder systems. The programs are available in executable form in ~gatvint/mebulld and are called
METutor and MEBuilder, respectively,

d. Statistical Gathering Programs. The student's will have access to get_data which is a simple five-
step program that retricves statistical information from the student's directory, queries some time information
of the student, and then prints a standard data report for analysis. get_data is located in the ~galvint/
mebuild directory.

e. User's Manuals. User's Manuals for CAIBuilder and MEBuilder will be available in binders in the
Al 1ab (they may be available individually). The user's manuals contain a description of the programs,
complete command references, and sample sessions using a lesson with a scope similar to that of the assigned
lesson.

f. Library. Ir the ~galvint/samplelib/ directory is all of the preliminary dsta you will need. It contains
the skeletal lessons for both the CAl solution (*.cai) and the MEBuilder solution. You are to do the following:

(1) Copy the directory into an lib subdirectory. 1t must be named lib, so if you are ~student and
you intend to work in the ~student/cs4310 directery, then you must put this library in the ~student/cs4310/
1ib subdirectory and you must run MEBuilder from ~student/cs4310,

(2) Move the appropriate .cai file into the library's parent directory (in the above example, it
would be ~student/cs4310.

Note: Included in the library are the sample lessons built under the demonstration portions of
the two manuals (prep_gircraft.cai and piloi_training_I.les, respectively) and pilot_training_[.me¢ is also
available for running in METutor).

DELIVERABLE"

The required deliverables are a summary of your work with the two systems including comments about
the interface, brief script runs of the lessons being run in CAITutor and METutor (no need to show a complete
un, just enough to show some of the changes you made) and the output of the get_data program. The
summary should not exceed two pages in length,

NOTES CONCERNING THE USE OF MEBUILDER

In order to ensure that the statistical measurements are accurate, your use of MEBuilder must conform
tc the following rules:

a. The MEBuilder lesson will contain precisely one problem.

b. The MEBuilder lesson will be based on precisely one task, which encompasses the entire procedure
being taught,

You are free to experime~t with the MEBuilder lesson structure once the deliverable statistical
information has been gathered.

TAB 2. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE ONE

Lesson One. The Scuba-Diving Problem

The student is a scuba diver who plans to dive for lobster from an anchored boat, The lesson focuses
on the ability of the student to self-equip and descend to the sea floor to get the lobster.

At the start of the problem, the student will be inside a boat wearing no scuba gear. At the end of the
problem, the student should be located on the sea floor with the lobster in his possession.

Description of the Procedure

For those of you who actually scuba dive, you will note that this is a subset of the actual procedure used
and the ordering of steps is more restrictive than in a real situation. The scope has been reduced in order to
make the size of the problem manageable.

The student has the following gear present -- a knife, an air regulator, an air tank, a weightbelt, fins, and
amask. Also present is the diver's buddy. You do not specifically have 1o model the buddy, boat, or the
lobster (ways to do this are given below), The task is as follows:

(1) The diver must in order install then test the regulator, and mounts it on the air tank,

(2) The diver dons the knife and the weightbelt and dons the air tank. These three stepe can be
done in any order.

(3) The student then dons the fins and mask, and checks his buddy's tank. These three steps can
be done in any order.

(4) The student then in order valsalvos to clear his sinuses, enters the water, sets the tank to
negative buoyancy by releasing some air, then descends to the sea floor and bags the lobster.

Hirts and Helpyul Information

For MEBuilder, provided are the objects "diver”, "knife", "air regulator”, "air tank", "weightbelt",
“fins", and "mask"; along with the task "prepare diver”, The lesson is not provided, you will build it. The
CAl lesson is in prepare_diver.cai,

In CAlBuildei, the smtes in the lesson are nurabered in order start, 1, ... , done. When following
Appendix B of the CAIBuiider manual, pages 4 and most of S are already done. Your requirements begin at
the bot:cm of page 5.

In MEBnilder, you are starting at the point where the initial solution is completed, bottom of page 54.
Do the work un task named prepare diver command to reach this point.

TAB 3. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE TWO

Lesson Two. The Cooling System Problem

You are presenting the student with a car with a leaky gasket in the water pump. His job is to complete
the task of removing the water pump, replacing the gasket, and restoring the car to service.

The start state is that all parts of the engine are in their normal configuration —- that is to say the radiator
is filled with fluid, the hoses are attachiud, the belts are in place, eic., etc. You want the student to have
restored the engine's condition with the exception of the new gasket being in place.

Description of the Procedure

For those of you who actually work on cars, you will note that this is a subset of the actual procedure
used and the ordering of steps is more restrictive than in a real situation. The scope has been reduced in order
to make the size of the problem manageable.

The student is only going to be concerned with the following items on the car -- the engine fan, the
radiator, the radiator’s hoses, the belts, and the water pump. You do not specifically have to model the car.
The task is as follows:

(1) The mechanic must do the following two tasks in either order:
(a) Unbolt, then remove the fan
(b) Drain the radiator, then remove the hoses

(2) The mechanic must then do the following in sequence -- remove the belts, unbolt the pump, :emove
it, replace the gasket, install the pump. then bolt it in place, andreinstall the bels.

(3) The mechanic must then do the inverse of Step (1) above. In either order:
() Install the fan, then bolt it in place
(b) Install the hoses, then fill the radiator
Hints and Helpful Information

For MEBuilder, provided are the objects "fan", “radiator", "hoses", "water pump"; along with the task
“replace gasket”. The lesson is not provided, you will build it. The CAl lesson is in replace_gasket.cai,

In CAlBuilder, the states in the lesson are numbered in order start, 1, ... , done. When following
Appendix B of the CAlBuilder manual, pages 4 and most of 5 are already done. Your requirements begin at
the bottom of page 5.

In MEBuilder, you are starting at the point where the initial solution is completed, bottom of page 54.
Do the work on task named replace gasket cominanrd to reach this point.

197

TAB 4. SAMPLE RUN OF THE DATA COLLECTION PROGRAM

In order to use the get_data program, you must be in the directory that contains the special file user.cfg.
The task created from MEBuilder must be in the "lib" subdirectory. The resulting text file will appear in the
mebuild.rpt file in the working directory. The following is a get_data session with user inputs highlighted.

gemini:/users/workl/galvint/sanmple>> ~galvint/mebuild/get_data

| MERBUILDER Experiment Data Retrieval and Interpretation |

| Program -- Experiment of SQ 94 |
L L e memercscccescasm————a cnmrmcny

Nama the CAI file> flashlight_ repair.cal

I found 3 solutions to the task.

The solution has 14 nodes and 16 transitions.

Give the TASK NAME -~ not the file name

Name the MEBuilder task> flashlight repair

I found 2 solutions to the task.

The solution has 8 nodes and 7 transitions.

You will now be asked a series of questions regarding the amount of
time you spent using MEBuilder and CAIBuilder and how that time was
spent. When you entire "guit", a report file named "mebuild.rpt*
will be produced. This report should be submitted with the rest
of the experimental deliverables.

DO NOT include time lost due to CAYBuilder or MEBuilder program bugs.

Please give integer values for the following. Include time spent
reading through the materials, practicing, editing, testing, stc.
How many hours 4diid you spend on the CAI task? 12
How many hours did you spend on the MEB task? 10

You will now provide a rating list of the areas within the building

process that you spent time on.

Please express your answer as a *permutation* of the following letters:

£ a Y t

«++the order must be of most time spent to least time spent

fafamiliarization. Reading the user's manual, and running practice
sessions in an attempt to get accustomed to the process.

d=designing. Time spent designing the objects on paper.

swsntering. Time spent entering the lesscn data

twtesting. Time spent testing and "debugging®” the end result.

Again, please answer as a permutation of [f,d,e,t] in order from
most time spent to least time spent.

How d4id you spend your time using CAIBuilder> e d t £

How 4id you spend your time using MEBuilder > t ¢ 4 f

For MEBuilder, provide your response the same way, but only for the

named subportion of the process:

Building objects in MEBuilder >
>

td
Building the task in MEBullder £

e f
tde

198

Building the lesson in MEBuilder> t ¢ 4 £
The report has been printed. Thank you for your participation.

The following is the sample mebuild.rpt produced from the session.

gemini: /users/vworkl/galvint /sample>> more mebulld.rpt
MEBuilder Experiment Repoxt
Summer Quarter 954

1. Command Usage Comparisor
MEB
Number of Commands Performed: 95
Runber of Commands Aborted: 11
Paxrcentage of Aborted Tommands: 11.57%

2. Time Usage and Effectiveness

CAX MEB
Total time (in hours): 12 10

Most Time-Consuming Process: entering testing

4nd Most Time-Consuming Process: designing enterivg
ird Most Time-Consuming Process: testing designing
Least Time-Consuming Proceszs: familiar familiar

For the components of the MEBuilder process:

OBJECTS TASKS LESSONS
Most Time-Consuming: sntexing testing testing
2nd Nost Time-Consuming: familiar designing entering
3rd Most Time-Consuning: testing entering designing
Least Time-Consuming: designing faniliar familiar

3. Lesson Material Produced

Rumber of Solutions in Lesson:
Number of Nodes:
Kumber of Transitions:

gemini: /users/workl/galvint/sample>>

MEB
2
8
7

TAB S. INITIAL DATA FILES FOR SUITE ONE

This tab contains the CAlBuilder lesson and the MEBuilder task given 10 the students for suite one of
the experiment. The MEBuilder object files are not included since the students will not modify them as part
of the experiment.

The CAlBuilder files consist of cai_node(<node>) fucts which declare the valid nodes, and
cai_step(<source node>, <operation>, <message>, <destination node>) which declare the valid transitions.
As with MEBuilder, the star1 and done nodes are reserved for the beginning and completion of the task. The
convention used for CAIBuilder is to name the nodes the same as the MEBuilder steps in the task.

ORIGINAL CAIBUILDER SOLUTION

te dynamic type_of_prolog_f£ile/1l.

s~ puleifile type_of_prolog_tile/l.
1~ dynamic cai_intro/l, cal_step/4, cal_node/l.

1- multifile cai_intro/i, cai_step/d, cai_node/l.

type_of_prolog_file('CAIBuild Lesson Definition FPile').

/* cai_intro/i %/

cal_intro(" You ars a scuba diver who plans to dive for lobster from an').
cai_intro('anchored boat. This lesson will focus on your ability to self-t).
cai_intro('egquip and descend to the save floor to get ths lobster.').
cai_intro('').

cai_intro(!’ At the beginning, you will be in the boat wearing no scuba').
cai_intro('gear. The gear present includes a knife, a regulator, an air').
cai_intro('tank, a weightbelt, Zins, and a mask. You also bave a diving').
cai_intro(‘'buddy present.').

cai_intro('').

cai_intro(' The lesson will end cnce you have reached the sea floor and').
cal_intro('bagged the lobster. Good luck!').

/* oal_step/4 */

cal_step(start, [install, the,regulator],
[‘The',rsgulator,is,now,installed],
2).

cal_step(2, (turn,on,the,air),
{'The',aix,is,now,turned,onl,
3.,

cai_step(3, [test,the, Tegulator],
['The',regulacor, is,working, £ine],
4).

cai_step(4, {don,the, knife],
['You',are,now,wvearing,the, knife],
5),

cai_step(5, {don,the,weightbelt],
['You',are,now,wearing, the,weighthelt],
6).

cal_step(6, [don,the,aix, tank],

{'You',ars,now,weaxring,the,air, tank),
7.
ocai_step(7, [don,the, £ine],
{'You',are,nov,wsaring,the,tins],
8).
cal_step(s, [don,the,mask],
{'You',are,now, wearing,the,mask],
9).
cai_step(9, [check,your, 'buddy' 's',tank],
['Your', '‘buddy'‘s’',tank,appears,to,bs, '0K'], o
10). ’
cai_step(ll, [releass,air],
{*Your',cank,is,now,negatively,buoyant],
12).
cai_step (10, [valsalve),
['You',have,cleared,your,sinuses),
'10A') .
cai_step('10A*, [enter,the,water],
{‘You',are,now,in,the,water],
11).
cai_step (12, [descerd),)
['You',are,now,on,the,sea,floor],
13).
cai_step (13, [bag,the,lobster),
{'You',have,captured, a,nice,big, juicy, lobster]},
doze) .

) /* cai_node/l */

' cal_node(start).
cai_node(done) .
cali_nocde(2).
cal_node(3).
cai _node(d).
cai_node(5).
cai_node(6).
cal_nods (7).
cai_node(8).
cai_node(9).
cai_node(10).
cail_node(1l).
cai_node(12).
cai_node('10A').
cal_node(13).

ORIGINAL MEBUILDER TASK

/i...."....tl't...t....Q.'Il'.'I.ﬂ'.t'tt...lltl*t.'.l.l'ii...',

TAd NEBuilder Task Definition Pile */
,-.....I.l....l..ii.'..t.!tl.i'."Q.QQCCt.t.itttt.l‘t'.i"'tt.i,
1- dynamic type_of_prolog_file/l.
1= multifile type_of_proleg _£ile/l.

1- Qynamic task/3, initial_conditions/32, objectives,/2, stage/§,

201

action/€, upordered action/2, relation/3.
1= multifile task/3, initial_conditiona/2, cbjectivas/2, stage/é,
action/é, unordered_action/2, relation/3.

type _of _prolog, file('MEBuilder Library Task Definition Pile').

/% task/3 */
task(([prepare,diver], (diver,divar],
{llcbster,lobater]]).

/* initial_conditions/i */
initial_conditions{diver,
[not (*buddy checked® (diver)),
ot (cleared(diver)),
'in the boat' (diver),
dotfed('divexr''s',weighthelt),
£fed('divex''s’ ,kanife),
. 220d('divar’'‘s',mask),
doffed{'diver'‘'s’',Lins),
removed('diver' ‘s’',regulator),
not {tested('diver' 's’,regulater)),
off('diver''s’',air,tank),
doffed('diver''a’,air, tank),
‘positively buoyant'('diver'‘s',air,tank)}).
ipitial_conditicas(lobster,
{fxeae (lobster)]) .

/* objectives/2 */
objectives(divar,
{'buddy checked' (diver),
cleared(diver),
‘on the sea floor'(diver),
donned(‘divar'‘s’',wsightbelt),
donned('diver'‘s’',knife),
donned('diver*'s',mask),
donned(‘diver'‘s',fins),
installed('diver''a',regulatoerx),
tested('diver' ‘s’ ,regulator).,
on{‘'diver'‘s',air,tank),
donned{ 'diver''s',alir, tazck),
'‘negatively buoyant' (‘'diver''s’,air,tazrz)]).
objectives (lobstez,
{captured(lobster)]).

/* stage/6 */
stage(start, linear,none,linear,
0.
.
stage(gl,linearx,none,linear,
[[-:att. 101, 11] [
.
stage(qd,linear,none, linear,
{Iq1,102,1)1,
.
stage(q3,linsar,none, linear,

tiq2,103,1)],
t1).
stage (4, linear,none, linear,
({q3,104,1)),
.
stage{q5,linsar,none,linear,
{(qgs,108,1)),
.
stage (g€, linear,ncne, linear,
([‘s'lo"lll'
.
stage(q?7,linear,ncne, linear,
[lq‘.lo".lll ’
.
stage(qgs, linear,none, linear,
[Ig7,108,1)],
.
stage{q9,linearx,none,linear,
{lg8,209,111,
.
stage (ql0, linear,none, linear,
tig®,120,111,
th.
stage(qll, linear,none, linear,
((q10,111,1]),
.
stage(qll, linear,none, linear,
tlql1,112,1)],
.
stage (ql3, linear,none, linear,
{lqiz,113,11],
.
stage (dons,no-actions,ncoe, linear,
({q13,114,11),
.

/* action/6 */
action(101,install('diver''s',regulator),
n,
Q,
Q.
m.
action(102,test ('diver''s', ragulator),
0.
{,
.,
.
actien(103,turn(on, 'diver''s',air,tank),
131
11,
0,
.
action(104,dca(‘diver' 's',weightbelt),
(1,
[,
{1,
.
action(105,d0on({'diver' ‘s’ kaite),
f1,
{1,

1.
1.
action(106,40n('divex''s’',air,tank),
1.
1
.
th.
action(107,don{‘diver''s*,Lius),
1.,
.
1
).
action(108,don('diver' ‘s’ ,mask),
0.
{1,
.
1.
action(109,have (diver,check,buddy).,
(1.
{1,
€1,
.
action(110,bave (diver,valsalvo),
ti.
{1,
[1,
m.
action(1ll,have (diver, snter,the,water),
[,
L.
11,
.
action(1132,release{air,from, 'diver' ‘s’ ,air,tank),
.,
1.
.,
.
action(113,have(diver,descend),
{1,
.
.
tm.
action(1id,bag(lcbstar),
1,
1,
(1.
.

/* unoxrdexed_actiocn/2 */

/* Telation/d */

TAB 6. INITIAL DATA FILES FOR SUITE TWO

This @b contains the CAlBuilder lesson and the MEBuilder task given to the students for suite two of
the experiment. The MEBuilder object files are not included since the students will not modify them as part
R of the experiment.

Tha CAlBuilder files consist of cai_mode(<node>) facts which declare the valid nodes, and
cai_step(<source node>, <operation>, <message>, <destination node>) which declare the valid transitions.
As with MEBuilder, the srars and done nodes are reserved for the beginning and completion of the task, The
convention used for CAIBuilder is (o name the nodes the same as the MEBuilder steps in the task.

ORIGINAL CAIBUILDER LESSON

t= dynanic type_of_prolog_tile/l.
1= multifile type_of_prolog_tile/l.
t~ dynamic cal_intro/l, cai_astep/d, cai_mnode/1.

1= multifile cal_intro/i, cai_step/d, cai_node/l.
type_of_proleg_file('CAIBUild Lesson Definition Pile').

/* cal_intro/l */

.. cai_intro(’ Before you is a car with a leaky gasket in the water pusp.').
cai_intro('Your job is to rxeplace the gasket and restore the car to its').
cal_intro('working conditicn.').
cal_iatro('').
cal _intro(’ The car presently has its fan, belts; and hoses installed.').
cal_intzro('The radiator is full, and the water pump is in place.').
cai_intro('').
cal_intro(! Good luck.').

/% cal_step/d */
cal_step(start, [unbelt,the, fan],
[‘The',fan,is,now,fxee],
0 a).
cal_step(2, (zemove,the, fan),
- {'The', fan, is,now, removed, fxom, the, caz),
3).
cai_step (3, {drain, the, radiater],
{'The',xradiator, is,now, £Tee,0f,1igquid],
4).
cai_stepld, (xremove,the,hoses]),
{'The' ,hoses, have,besn removed, from, the, radiator],
5).
cai_step!(S, [remove,the,belts],
('Tha',belts,have,baed, remcved],
€).
cal_step(6, [unbolt, the,water,punpl.,
['The',watsr,pump, is,now, fTee]),

205

n.

eal_step(?, [remove, the, vater,pusp) ,
{'The ' ,water,pusp, is,now, removed, from, the, car},
8).

cud_step(8, {replaca,the,gasket]),
['The' ,new,gaskat,has,now,been, installed),
9).

cai_step(d, [install,the,water,puspl,
['The',water,pusp, is,now,reinstalled),
10).

aai_step(10, (bolt,the,vater,punp) .
['The' ,water,pump.is,now, secured] ,
11).

aal_step(ll, (install,the,belts],
{'The’' ,belts,are,now, inatalled),
12).

cal_step(il, [install,the, fan],
['The',fan,is,00w,in,place],
13) .

cai_step(ll, [(bolt,the, fan],
{‘The',fan,is,now,bolted, in,place]),
14).

cal_step{ld, {install,the,hoses],
['The',hoses,ars,now, installed],
18).

cai_step (15, (£11]1,the,xadiater),
['The',xadiator,is,now, 'iilled. '),
done) .

/* cai_node/) */
cal_nodse (staxt).
cal_pode (done) .
cal_nvode(d).
cai_node(d).
oai_pode(d).
cai_node(S).
cal_node(S).
cai_node(7).
oal_noda(8).
cai_node(9).
cal_node(10).
cai_node(ll).
cal_node(12).
cai_node(13).
cal_node{ld).
cali_node(15).

ORIGINAL MEBUILDER TASK

l"...'.“.‘..'.'."'..".Ql.'."l...'..'Q"'..t".tt...'..-.Q./

A MEBuilder Task Definition Pile */

I'.."'..Q..ii'."..d.‘.i.........'..'.Q'l..'.ﬁl"..""lt'...tl

1= Qynamic cype_of_prolog_£file/l.

1~ mltitile type_of prolog _file/l.

1= dynanioc task/3. inicial_conditions/2, objnctives/2, stage/6,
action/€, unordered action/2; relation/).

1= aultitile task/d, initiai_conditions/2, objectives/i, stage/€,
action/6, unordered_actiorn/a, relation/).

type. of_prolog_tile('MEBuilder Library Tesk Definitica Pile').

/* cask/d */
task([replace,gasket], (character,character),
(1 loax,angine], (car,engine]))).

/* initial_conditions/2 */
initial _conditions(character,
m.
dnltial_conditicns{ [cax,engine).
[installed{car, ‘engine ' 's’',belts),
installed(car, ‘engine’' 'a’' ,hoses),
worni{car, 'engine' 'a',gasket),
installed{car, ‘engine’' ‘s’ ,water,punp),
bolted(car, 'engine' 'a',vater,pusp) ,
f£illed(car, ‘engine ' 's',radiator),
installed(car, 'mh" ‘st, :n) .
bolted(oar, 'engine''s',tan)}).

/* ebjectives/2 */
cbjectives (character,

1.

objectives ((var,angine],

{installed{car, 'sngine''s’',belts),
installed(car, 'sngine'‘a’',hoses),
sexrviceable(car, 'engine’ ‘s’ ,gasket).,
installed{car, ‘engine''s ', water,pump),
bolted(car, ‘engine' ‘s’ ,watexr,punp),
£illed{car, ‘engine' 'a',radiator),
installed(car,'engine''n',fan),
bolted(car, ‘engine''s',fan)}).

1* stage/€ */
stage{start, linear,none, linesar,
1,
.
stageiql,linear,none, linear,
{{etaxt,201,12}],
{1.
astage (g2, linear,none, Jinear,
f(q2,202,1]3,
m.
ltm(q!.llm“.lﬂl‘.liﬂu.
flg2,203,1)2,
l’) L]
stage (gé, linear,mone, linear,
‘ lq3. lﬂ‘p’-‘l [
.
stage (g5, linear,none, linear,
{lqe,205,1)],

.

stage (g6, linear,none ., linear,
t(q8,206,1]),
.

stage (q7, linear,noas, linear,
(g€, 107,2)]),
.

stage (ql, linear.none, linear,
{(q7,108,1)),
.

stage (@9, linear.none, lineas,
I lq‘o 10.0 1) J .
.

stage(gl0,linear,none, linear,
{(g9,320,1]),
.

stage(qil, lineax,none, linear,
[l{gi0,111,1)},
t1.

stage (qild,; linear,none, linear,
11q11,113,1}).,
.

stage(qly, linear,none, 1inear,
[(q22,113,1]),
.

stage (ql4, linear,none, linear,
flq13,114,1)),
th.

stage (done,no-acticns,none, linear,
T(q14,215,1)]),
.

7* action/€ */
action(101,unbolt (car, ‘engine'‘s',tan),
0.
{1,
n.
.
acticn(102,remove(car, 'engine''s',fan),
.
1.
.
.
action(103,drain(car, 'sngine’ 's',radiator),
3,
(1.
(.
.
action(104,remove (car, ‘engine’ 's',hoses),
.
f1.
i1,
.
action(105,yemove (car, 'engine ' 's' ,;balrs),
f1-
1.
{1,
.
action(106,unbolt (car, 'engine ' 's' , vater, punp),
.,

14)
.
m.
uuetn(m‘l.m(eu, 'engine ' ‘o', water,pump),
1,
.
0.
).
wction(108,replace (cax, ‘engine’ 's’,gasket),
(1.
).
{1,
.
.e:ien(lb!.tanttxl(an:.°oa¢lno"-'.vutc:.’n-p).
.
11,
1.
.
action(110,b0lt (car, ‘engine' 's" Jwater,pump) ,
t1.
).
0.
).
actian (111, install(car, ‘engine’ 's',belts),
1),
Q.
1.
L.
action{112,install(car, 'engine''s', fan),
1.
£,
0.
.
action(i113,bolc(car, 'engine' 's', fan),
.,
1,
(3]
m.
action(114,install{car, ‘engine ' ‘s’ ,hoses),
t1.
1.
t1,
mn.
actien(118,£ill(car, ‘engine' 's',radiator),
t1.
n.
L.
m.

/* unordexred_asction/2a */

/* ralation/3 */

g oy
e

TAB 7. RAW EXPERIMENTAL DATA COLLECTED

For the row headers marked in irglics, the following is the legend:
« D =Time spent designing the task {prior to running the authoring system)
« E = Time spent entering the necessary commands into the authoring system.
» F=Time spent familiarizing (reading the manuals and running the sample cases).
+ T =Time spent testing and debvgging the lesson in the ITS.

Table 1: Raw Data Collected from the Data Collection Program

Raw Data Per Subject 1 2 3 4 5 6

(D)iver Problem or (E)ngine Problem E D D E D D

1 (C)AIBuilder first or (M)EBuilder first C C C M M C

Time Spent Using CAlIBuilder (hours) 2 3 3 2 1 3

Time Spent Using MEBuilder 3 2 2 1 1 2

Most Time-Consuming Process (CAI/MEB) E/E DE FF F/F EF F/F

@ 2nd Most Time-Consuming Process (CAIIMEB) DF| ED| TT| EE| FE| EE
. 3rd Most Time-Consuming Process (CAIIMEB) F/D FF| EE| DD] DD| DD
3 414 Must Time-Consuming Process (CAI/MEB) T/T T/T| DD T/T T/T T/T
Number of CAl Commands Performed 78 140 164 151 117 68
. Number of CAI Commands Aborted il o] 3] 2 ol o
{ Percentage of Aborted Commands 13} 642 182 133 0.0 0.0

Number of MEB Commands Performed 29 25 20 1 45 | unk*

Number of MEB Commands Aborted 9 8 1 0 6| unk*

] Percentage of Aborted Commands 3103 | 320 50 00| 133} unk*
" Number of Solutions (actual = 36; 2] 36| 36 a| 36| 36
Number Nodes/Transitions in CAI Solution 26/33 | 2332 | 23/32 | 23/38 | 23/32 | 23/32

Number Nodes/Transitions in MEB Solution 16/15 | 14/13 | 14/13 | 16/15 | 14/13 | 14/13

* . The data collection program failed for this participant’'s MEBuilder usage. The participant stated
that his usage was somewhat on par with his peers.

The minimal number of CAI nodes and transitions were: for the diver problem, 23 nodes and 32

transitions; for the engine problem, 24 nodes and 31 wansitions. All participants achiecved the minimal
MEBuilder data structure.

“ 210

TAB 8. SELECTED COMMENTS FROM THE PARTICIPANTS

The vast majority of the comments were interface-related, mostly having to do with specific program
_glitches, the cumbersomeness of the command-line interface, or complaints about the help system (which was
not fully updated in time for the experiment), A common theme among the interface comments was the call
for a graphic-user interface.

The comments selected below were those which specifically addressed the focus of the experiment -- the
respective learming curves and flexibility of the two methods.

From Participant #3;

“CAI: Initial I found the concept, manual, and help very confusing, but once I broke the code it went
smoothly. MEB: [MEBuilder] was just as confusing if not more so than CAl. 1 was not sure what was being
provided and what I needed to create. Once I broke the code though, it saved a lot of time as compared to
CAlL”

From Participant #4

“...Both are frustrating to learn (especially when you aren’t too motivated). But once you get going,
neither are too bad...Once | understood what to do, MEB was quick; however, I wonder if it would have been
as easy if the post & pre conditions, etc. weren’t already done...A menu-based application would be easier for
the average computer-phobic to use.”

From Participant #6

“..My general comments are that both systems scem fairly straight forward to use. Actually,
MEBuilder seemed much more complicated and I don’t know the system well enough to make a fair judgment
of what this additional complication got me. Not actually building the objects...left me wondering what was
going on....and what I did seemed trivial once I got a clue as o what I was...doing.”

S

212

LIST OF REFERENCES

Barr, A. and Feigenbaum, E.A., The Handbook of Artificial Intelligence, Volume 2, pp.
229-234, 291, William Kaufmann, Inc., 1982.

Carlson, P.A., and Crevoisier, M.L., R-WISE: A Computerized Environment for
Tutoring Critical Literacy, World Conference on Educational Multimedia and
Hypermedia, pp. 111-116, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994,

Davis, E., Representations of Commonsense Knowledge, pp. 390-391, Morgan
Kaufmann Publishers, Inc, 1990.

Elson-Cook, M., Presentation as a panelist for Authoring for ITS: From minimalist
approach to ITS Shells, conducted at the World Conference on Educational Multimedia
and Hypermedia, Vancouver, BC, 1994.

Feifer, R. and Allender, L., It's Not How Multi the Media, It's How the Media is Used,
World Conference on Educational Multimedia and Hypermedia, pp. 197-202,
Association for the Advancement of Computing in Education, Vancouver, BC, 1994.

Galvin, T.P., and Rowe, N.C., Using the A* Search Space to Develop a General-Purpose
Intelligent Tutoring Shell, World Conference on Educational Multimedia and
Hypermedia, pp. 725, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994,

Gescei, J. and Frasson, C., SAFARI: an Environment for Creating Tutoring Systems in
Industrial Training, World Conference on Educational Multimedia and Hypermedia, pp.
15-20, Association for the Advancement of Computing in Education, Vancouver, BC,
1994,

Guralnik, D., and Kass, A., An Authoring System for Creating Computer-based Role-
Performance Trainers, World Conference on Educational Multimedia and Hypermedia,
pp. 235-240, Association for the Advancement of Computing in Education, Vancouver,
BC, 1994, ,

Heift, T., and McFetridge, P., The Intelligent Workbook, World Conference on
Educational Multimedia and Hypermedia, pp. 263-268, Association for the
Advancement of Computing in Education, Vancouver, BC, 1994,

Homem de Mello, L.S. and Sanderson, A.C., A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences, IEEE Transactions on Robotics and
Automation, Volume 7, Issue 2, pp. 228-240, IEEE Computer Society, Spring Field,
MD, 1991.

Jones, M.K.,, Gibbons, A.S., and Vamner, D.C., A Re-Usable Algorithm for Teaching
Procedural Skills, World Conference on Educational Multimedia and Hypermedia, pp.

299-304, Association for the Advancement of Computing in Education, Vancouver, BC,
1994,

Ki, W., and others, A Knowledge-Based Multimedia System to Support the Teaching and
Learning of Chinese Characters, World Conference on Educational Multimedia and
Hypermedia, pp. 323-328, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994,

Lalonde, W, and Pugh, J., Subclassing # Subtyping # Is-a, Journal for Object-Oriented
Programming, pp. 57-62, January, 1991.

McDowell, Perry, Homework Assignment for CS-4310: Advanced Artificial
Imtelligence, Winter Quarter, Naval Postgraduate School, 1993.

Moreland, R., On-Line Tutorials Even YOU Can Create! Computer-Based Multimedia
Training Slide Shows, World Conference on Educational Muitimedia and Hypermedia,
p. 748, Association for the Advancement of Computing in Education, Vancouver, BC,
1994,

Murray, T., Presentation as a panelist for Authoring for ITS: From minimalist approach
to ITS Shells, conducted at the World Conference on Educational Multimedia and
Hypermedia, Vancouver, BC, 1994.

Naval Postgraduate School Report NPSCS-93-009, Instructions for Use of the METutor
Means-Ends Tutoring System, by N.C. Rowe, pp. 1-7, July, 1993,

Psotka, J., Massey, L.D., and Mutter, S.A., Intelligent Tutoring Systems: Lessons
Learned, p. 5, Lawrence Erlbaum Associates, 1987.

Rowe, N.C., and Suwono, F., Aiding Teachers in Constructing Virtual-Reality Tutors,
Fourth Annual Conference on Artificial Intelligence, Simulation, and Planning in High
Autonomy Systems, pp. 317-323, Tuscon, AZ, 1993,

Rumbaugh, J., and others, Object-Oriented Modeling and Design, pp. 2,57-91, Prentice
Hall, 1991.

Sacerdoti, E.D., The Non-Lirear Nature of Plans, in Readings in Planning, Allen, J.,
Hendler, J., and Tate, A, eds., pp. 162-170, Morgan Kaufmann Publishers, Inc., 1990.

Seem, Dennis, Homework Assignment for CS-4310: Advanced Artificial Intelligence,
Winter Quarter, Naval Postgraduate Schocl, 1992.

Sierra On-Line, Inc., Leisure Suit Larry 6: Shape Up or Slip Out, MS-DOS Version 1.0,
1993,

Sleeman, D., PIXIE: A Shell for Developing Intelligent Tutoring Systems, in n Artificial
Intelligence in Education, Volume 1, pp. 239-265, Ablex Publishing, 1987.

Tenney, Y.J., and Kurland, L.C., The Development of Troubleshooting Expertise in
Radar Mechanics, in Intelligent Tutoring Systems: Lessons Leamed, Massey, L.D,,
Mutter, S.A., and Psotka, J., eds., pp. 59-84, Lawrence Erlbaum Associated Press, 1987.

U.S. Army Training and Doctrine Command (TRADQC), FM 25-101, p. 21, Fort
Leavenworth, 1991,

Woolf, B. and others, Teaching a Complex Industrial Process, in Attificial Intelligence
in Education, Volume 1, pp. 413-427, Ablex Publishing, 1987.

215

216

BIBLIOGRAPHY

Allen, J., Hendler, J., and Tate, A., Readings in Planning, Morgan Kaufman Publishers,
San Mateo, CA, 1990,

Association for the Advancement of Computing in Education, Proceedings of the World
Conference on Educational Multimedia and Hypermedia, Vancouver, BC, 1994,

Barr, A,, and Feigenbaum, E.A., The Handbook of Artificial Intelligence: Volume 2,
HeurisTech Press, Stanford, CA, 1982.

Davis, E., Representations of Commonsense Knowledge, Morgan Kaufmann Publishers,
San Mateo, CA, 1990.

McGraw, K.L., and Harbison-Briggs, K., Knowledge Acquisition: Principles and
Guidelires, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Michalski, R.S., Carbonnell, J.G., and Mitchell, T.M., Machine Learning: An Artificial
intelligence Approach, Tioga Publishing Company, Palo Alto, CA, 1983.

Psotka, J., Massey, L.D., and Mutter, S.A., Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

Rumbaugh, J., and others, Object-Oriented Modeling and Design, Prentice Hall,
Englewood Cliffs, NJ, 1991.

£*so wn, D., and Brown, J.S., Intelligent Tutoring Systems, Academic Press, 1982.

217

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52
Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Morterey, California 93943

Prufessor Neil C. Rowe, Code CS/RP
Computer Science Department

Naval Postgiaduate School
Monterey, California 93943

Professor Timothy M. Shimeall, Code CS/SM
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Professor Man-Tak Shing, Code CS/SH
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

Lieutenant Commander John Daley, Code CS/DA
Computer Science Department

Naval Postgraduate School

Monterey, California 93943

