
NAVAL POSTGRADUATE SCHOOL
Monterey, California

tOO

<7
\~RAV

THESIS pC QELL11Y •o9 oE .

AN OBJECT-ORIENTED LESSON AUTHORING An h, 0
SYSTEM FOR PROCEDURAL SKILLS A C1 1994

by 6
Thomas P. Galvin

Cv')'September 1994

LO Thesis Advisor: Neil C. Rowe

Approved for public release; distribution is unlimited.

94 10 2 032

REPORT DOCUMENTATION PAGEOMNo07418
Pulcreporting burden for tris cillection of informaiuton is estimated to average 1 hour per response, including the tine rerwwirg instructions. nssar,4ifl enesting data sources

gathrinug and marintaining the data needed, and comspletring and reviewing the collection of information. Senrd commnwnts regarding the burder ýslsrulte or any other aspect of this

colection of information, including suggestiona for reducuingtih ure n nto WashingtonHeadquarters Services, Deectorate for lntorrt'atmrr Operation$s and Reports, 1215 Jefferson

Danrie Highway, Sulte 1204. Arlington, VA '4M.30. and to the Ohio@e of Managemrent arid Budget, paperwork Reduction project (0704-188),WIhifl1,fl. DO 20503.

i.AGENCY USE ONLY(Lauvre Blank) .REP0RT DATE 1.;IOTTPA4-E O

4. TITLE AND SUBTITLE
5. FUNDING NUMBERS

MEBUILDER: An Object-Oriented Lesson Authoring System for

Procedural Skills (U)

6. AUTHOR(S)

Galvin, Thomas Patrick

7. PERFORMING OR-GANIZATION NAME(SB) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Naval Postgraduate School- REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

ý11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

128, DISTRIBUTION / AVAILABILITY STATEMENT I12b, DISTRIBUTION CODE

Approved for public release; distribution is unlimited.I

is. ABSTRACT (A.xtinum 200 wards,)
many military applications for intelligent- tutoring systems focus on the training of procedurol skills. However, while

there have been many successful research efforts into developing tutoring systems for specific applications, the question of

developing general-purpose ones is still open. Specifically unsolved is how a lesson-authoring system, a program written to

help a novice write computerized lessons, can be made both general purpose and easy to use.

MEBuilder is a prototype lesson-authoring system which employs an obiject-oriented appropch to solving this problem.

M&Buildci combines automated object, task, and lesson modeling tools with a librawy managemenit system to allow teachers

to develop simulation-based procedural trainers on nearly any subject. Teachers create reusable abjects which have a fixed and

well-defined behavior. Then by using the powet of means-ends analysis, MEBuilder helps the tecuher build entire tasks with

these objects in just one step. With these tasks, teachers use MEBuilder's workbook Ittructure to crwz- a lesson containing

several exercises. At each step, MEBuilder's automatic error and consistency checking reduces lime spent on testing and

debugging. MvEBuiilder's library manager ensures object aztd task reusability. This thesis explains ME~uilder's design, data

structures, and interfaces, It also presents experimental results which support MEBuilder's methods as being more efficient

and authoring systems using traditional computer-aided instruction (CAI) techniques.

14. SUBJECT TERMS
.5. NUMBER OF PAGE

artificial intelligence, intelligent computer-aided instruction, intelligent 228

tutoring systems, lesson authoring system, object-oriented design s ncIXJ

1. SECURITY CLASSIFICATION 81.SECURITY7 CLASSIFICATION -19.MSCURITY 1LSIIAI~"20. LIfMITATION OF ABSTRACT

OF REPORT OF THIS PAGE I OF ABSTRACT

Unclassified Unclassified U nclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i Presctribd by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

MEBUILDER:
AN OBJECT-ORIENTED LESSON AUTHORING

SYSTEM FOR PROCEDURAL SKILLS

by

Thomas P. G3alvin
Captain, United States Army

B.S., Carnegie-Mellor. University, 1985 ___________

Accesion For
NTIS CRA&l

Stibmitted in partial fulfillment of the DTIC TAB
reqirmens or hedegeeofUnannounced 0l
reuiem nt frth dgre fJustification....................

MASTER Of SCIENCE IN COMPUTER SCIENCEB

f. =theDistribution

Availability Codes
NAVAL POSTGRADUATE SCHOOL Avail and / or

Dist Special
September 1994

Author:

Thomas P. Galvi

Approved By: &

Neil C. Rowe, Thesis Advisor

Timo 'y im e ,S ro er

Ted Lewis, Chairman,
D,,partment of Computer Science

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1
A. THE DESIRE FOR HANDS-ON STYLE TRAINING BY COMPUTER 1
B. OBJECT-ORIENTED MODELING AS AN ANSWER TO THE NEED 2
C. MEBUILDER -- AN OBJECT-ORIENTED LESSON AUTHORING SYSTEM 3
D. CONTENTS OF THIS THESIS ... 4

II. SURVEY OF RELATED WORK IN LESSON AUTHORING ... 7
A. ELEMENTS OF A GOOD LESSON-AUTHORING SYSTEM 7
B. TYPES OF LESSON-AUTHORING SYSTEMS ... 9
C. OTHER ISSUES REGARDING LESSON-AUTHOPING ... 10
D. METUTOK -- A MEANS-ENDS BASED INTELLIGENT TUTORING SYSTEM 11

III. TUTORING-SYSTEM VIRTUAL WORLDS AND OBJECT-MODELING TECHNIQUES ... 13
A. OBJECT-MODELING 1ECHNIQUES .. 13
B. USE OF OBJECT-MODELING TECHNIQUES IN METUTOR LESSONS 14
C. OTHER BENEFITS TO USING OBJECT MODELING .. 16
D. PITFALLS TO USING OBJECT-MODELING TECHNIQUES 17
E. TOOLS NEEDED TO ADD OBJECT MODELING TO AN AUTHORING SYSTEM .18
F. SU M M ARY ... 22

IV. AN INTRODUCTION TO THE MEBUILDER SYSTEM .. 23
A. MEBUILDER'S TOP-LEVEL DESIGN AND PHILOSOPHY 23
B. MEBUILDER MAIN MODULE -- "MEBuilder.. ... 26
C. MEBUILDER'S LIBRARY MODULE -- "MEBuildLIB" 27
D. MEBUILDER'S CLASS DEFINITION MODULE -- "MEBuildCLS" 28
E. MEBUILDER'S TASK DEFINITION MODULE -- "MEBuildTSK" 31
F. MEBUILDER'S LESSON DEFINITION MODULE -- "MEBuildLES" 36
G. MEBUILDER'S LESSON COMPILER -- "MEBuildCMP". 37

V. TRANSLATING AN MEBUILDER LESSON TO AN METUTOR LESSON 39
A. HIGH-LEVEL DESCRIPTION OF THE DESIGN CHANGES IN METUTOR 39
B. CONCEPT OF THE TRANSLATION PROCESS .. 41
C. GENERATION OF THE RECOMMENDED CLAUSES ... 42
D. GENERATION OF THE PRECONDITION CLAUSES .. 42
E. GENERATION OF THE POSTCONDITION CLAUSES ... 43
F. GENERATION OF THE RANDCHANGE CLAUSES .. 44

VI. EXPERIMENTAL RESULTS .. 47
A. PARTICIPATION IN THE EXPERIMENT ... 47
B. SCOPE AND CONDUCT OF THE EXPERIMENT .. 47
C. RESULTS OF THE EXPERIMENT .. 52
D. INTERPRETATION OF THE RESULTS ... 54
E. CON CLUSION S .. 55

VII. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS .. 57
A. SUMMARY OF CONTRIBUTIONS ... 57
B. WEAKNESSES OF MEBUILDER .. 57
C. FUTURE RESEARCH DIRECTIONS FOR MEBUILDER AND METUTOR 59

v

APPENDIX A. MEBUILDER SOURCE FILE .. 63
TAB 1. MEBUILDER MAIN MODULE .. 64
TAB 2. MEBUILDER CLASS MODULE (MEBuildCLS) ... 65
TAB 3. MEBUILDER TASK MODULE (MEBuildTSK) .. 73
TAB 4. MEBUILDER LESSON MODULE (MEBuildLES) ... 79
TAB 5. MEBUILDER LESSON COMPILER (MEBuildCMP) ... 83
TAB 6. MEBUILDER LIBRARY MANAGER (MEBuildLIB) 87
TAB 7. METUTOR VERSION 29 SOURCE ... 92

APPENDIX B. MEBUILDER USER'S MANUAL .. 97

APPENDIX C. SAMPLE SCRIPT RUN WITH MEBUILDER .. 117

APPEN.DIX D. SAMPLE DATA FILES .. 155
TAB 1. LIBRARY DIRECTORY FILE .. 156
TAB 2. OBJECT DEFINITION FILE FOR PILOT .. 158
TAB 3. OBJECT DEFINITION FILE FOR AIRCRAFT ... 160
TAB 4. TASK DEFINITION FILE FOR PREP-AIRCRAFT .. 163
TAB 5. LESSON DEFINITION FILE FOR PILOTTRAINING 168
TAB 6. METUTOR READY FILE FOR PILOT TRAINING 172

APPENDIX E. SCRIPT RUN OF METUTOR ON AN MEBUILDER FILE 187

APPENDIX F. EXPERIMENT CONDUCTED USING MEBUILDER ... 193
TAB 1. GENERAL INSTRUCTIONS FOR THE EXPERIMENT .. 194
TAB 2. SUBJECT MATTER FOR THE EXPERIMENT SUITE ONE..196
TAB 3. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE TWO 197
TAB 4. SAMPLE RUN OF THE DATA COLLECTION PROGRAM 198
TAB 5. INITIAL DATA FILES FOR SUITE ONE .. 200
TAB 6. INITIAL DATA FILES FOR SUITE TWO ... 205
TAB 7. RAW EXPERIMENTAL DATA COLLECTED ... 210
TAB 8. SELECTED COMMENTS FROM THE PARTICIPANTS 211

LIST OF REFERENCES .. 213

BIBLIOGRAPHY ... 217

INITIAL DISTRIBUTION LIST ... 219

vi

ABSTRACT

Many military applications for intelligent-tutoring systems focus on the training of

procedural skills. However, while there have been many successful research efforts into

developing tutoring systems for specific applications, the question of developing general-

purpose ones is still open. Specifically unsolved is how a lesson-authoring system, a

program written to help a novice write computerized lessons, can be made both general

purpose and easy to use.

MEBuilder is a prototype lesson-authoring system which employs an object-oriented

approach to solving this problem. MEBuilder combines automated object, task, and lesson

modeling tools with a library management system to allow teachers to develop simulation-

based procedural trainers on nearly any subject. Teachers create reusable objects which

have a fixed and well-defined behavior. Then by using the power of means-ends analysis,

MEBuilder helps the teacher build entire tasks with these objects in just one step. With

these tasks, teachers use MEBuilder's workbook structure to create a lesson containing

several exercises. At each step, MEBuilder's automatic error and consistency checking

reduces time spent on testing and debugging. MEBuilder's library manager ensures object

and task reusability. This thesis explains MEBuildet's design, data structures, and

interfaces. It also presents experimental results which support MEBuilder's methods as

being more efficient and authoring systems using traditional computer-aided instruction

(CAI) techniques.

"vii

viii

I. INTRODUCTION

The standard classroom environment contains two primary roles: teachers and

students. However, the teachers' role is multidimensional. Teachers must present lessons

to the students, monitor their performance, and develop the lesson material. Research

efforts into Intelligent Tutoring Systems (ITSs) have produced various computer-based

models for these three teacher roles. However, many find the third role, that of developing

the lesson material, to be the most difficult challenge for ITS developers,

Developing lesson material is a specific application for an authoring system. Authoring

systems are programs that produce other programs in either a programming language or a

scripting language for use by another computer program. In addition, authoring systems

hide the details of the target language from the user, so the user does not need to know how

to program a computer to use it (Heift, 1994, p. 263). There does not yet exist a truly

gerneral-purpose authoring system for an ITS. However, there have been several successful

research efforts in widening the scope of authoring systems.

This thesis presents MEBuilder, a prototype lesson-authoring system for procedural

skills. MEBuilder authors lessons for METutor, an ITS shell written at the Naval

Postgraduate School which tutors procedural tasks in virtual-world simulations.

A. THE DESIRE FOR HANDS-ON STYLE TRAINING BY COMPUTER

Military applications emphasize learning by doing (TRADOC, 1991). However, due

to a lack of availab~le resources, military training is often conducted in a traditional

classroom setting. With respect to procedural skills, classroom instruction is an inadequate

substitute for learning by doing. Computer-based simulations provide a better substitute.

Simulations provide a reasonable hands-on training environment while not requiring many

resources (Psotka, 1987, p. 5). In addition, computer simulators are flexible enough for use

in many applications.

Additionally, computers can combine simulations with intelligent-tutoring techniques

to provide automated trainers for students. These trainers have many benefits tor students.

Students can learn at their own pace with minimal direct supervision of a teacher. Trainers

give feedback to the students, so the students are freer to make mistakes without risking

damage to actual equipment. Simulation environments generally provide "discovery-rich"

tools that let students explore the environment unimpeded (Banr, 1982, p. 29 1), which help

make the simulation believable and fosters greater learning.

Unfortunately, these trainers tend not to help the teacher who must prepare the lesson.

Simulations are difficult to build and test, but this difficulty is alleviated through tools such

as authoring systems. For this application, an authoring system should allow objects in one

simulation to be reusable in other simulations. The system should be flexible to allow a

teacher to make adjustments easily, but also to check any adjustments to ensure consistency

with the rest of the simulatiori. Finally, the system must save time for the teacher. In order

for the authoring system to be effective, it should be based on a modeling technique that

works well in simulations and that teachers can readily understand. One technique that

appears promising is object-oriented modeling.

B. OBJECT-ORIENTED MODELING AS AN ANSWER TO THE NEED

This thesis employs object-oriented modeling because it provides all the benefits listed

above easily and efficiently. Object-oriented modeling is a way of constructing entities in

a virtual world so each entity maintains its individual behavior, and interrelations between

entities are strictly controlled. An example of using objects in an intelligent-tutoring

system application is presented in the aircraft preparation problem given in Appendices C

through E. The pilot and the aircraft are the two main objects in the lesson, and the lesson

describes specific rules on how the pilot's actions affect the aircraft.

Object-oriented modeling has four beneficial characteristics -- identity, classification,

polymorphism, and inheritance (Rumbaugh, 1991, p. 2). Identity means that the data is

partitioned into discrete, distinguishable objects. Objects in a virtual world for a flashlight
repair problem might include the flashlight, its bulb, and its batteries. Each of these objects

would exhibit behavior, and then the three objects share behavior as a whole. Classification

2

means that similar objects can be grouped together. Polymorphism means that the same

operation may behave differently on different objects. Inheritance is a means of

establishing a hierarchical relationship among objects, such as the relationship between the

abstract obje:t "vehicle" and its refined objects "wheeled vehicle" and "tracked vehicle".

By using identity and classification, objects can easily model the behavior of their real-

world counterparts, thus providing the basis for computerized domain knowledge.

Polymorphism and inheritance help reduce the size of the data by minimizing repetition --

all the information common to vehicles is present once in the vehicle description, and

refined objects only contain the refinements, Finally, using all four to their greatest

advantage, one can easily create a wide variety of situations based on modifying one or

more objects in a scenario or introducing more objects. Thus it appears that an object-

oriented modeling approach would serve well as a basis for a lesson building tool, and with

such a model building an accurate representation with a virtual world scenario would be

simple and efficient.

C. MEBUILDER -- AN OBJECT-ORIENTED LESSON AUTHORING SYSTEM

MEBuilder is a simple-to-use but powerful lesson-authoring system built using

Quintus Prolog. Based on means-ends analysis, MEBuilder was specifically designed to

address the needs of virtual-world construction while providing direct access to the existing

METutor ITS platform to test and validate lesson material. The primary features of

MEBuilder include object-oriented modeling, task modeling, and lesson modeling. It is

important to note that METutor is not object-oriented, so these models are new to this

platform,

MEBuilder's object-oriented modeling will allow a teacher to construct a simple

representation of the make-up and behavior of any object the student must manipulate. In

addition, the modeling system allows the teacher to create virtual characters whom the

student must interact with. Its task modeling allows the teacher to build the specification

for a task that a'student must perform and test the object models to ensure that the task is

both feasible and correct. Finally, the lesson model provides the framework by which a

3

teacher may specify a multitude of scenarios and levels of difficulty so a student may learn

the basics first and then learn advanced concepts.

D. CONTENTS OF THIS THESIS

1. Chapter II .. Survey of Related Work in Lesson Authoring

This chapter will present other efforts in the field of Intelligent Tutoring Systems

and lesson authoring. It will discuss the factors that good lesson-authoring systems must

have, and explain why good general-purpose authoring systems are so difficult to build.

2. Chapter III -- Tutoring System Virtual Worlds and Object Modeling

Techniques

This chapter will present object modeling as a solution to some of the problems

present in Chapter II. It will describe the benefits and pitfalls of object modeling. Finally,

it will describe those features that a lesson-authoring system must have to effectively

employ object modeling.

3. Chapter IV -- An Introduction to the MEBuilder System

This chapter will present the design and philosophy of the prototype MEBuilder

system, emphasizing the specific criteria of lesson-authoring systems that MEBuilder

satisfies. The chapter will discuss in abstract terms how MEBuilder represents objects,

errmploys inheritance and other object-oriented design techniques, how it models tasks, and

how it constructs a lesson scenario. It will also describe the teacher's interface and how it

makes the job easier for the teacher. Finally, it will describe MEBuilder's library

management features whici, help track all the lesson material produced.

4. Chapter V .. Translating an MEBuilder Lesson to an METutor Lesson

This chapter will discuss the relationship between MEBuilder and the

underlying tutoring system, METutor, Version 29. In particular, it will present the data

structures of an METutor lesson and describe the algorithms MEBuilder's compiler uses for

generating them.

4

5. Chapter VI - Experimental Results

This chapter will catalog an experiment conducted to test the capabilities of the

MEBuilder system. The experiment involved a class of students in artificial intelligence

charged to author a given lesson in MEBuilder and a traditional CAI-style system.

6. Chapter VII .. Conclusions and Future Research Directions

This chapter will summarize all of the above, and will describe those areas in

which MEBuilder is presently inadequate. It will also present "hooks" into the MEBuilder

system left so that integrating some of these advancements will be easier.

7. Appendices

Appendix A contains the header comments to the source code of the MEBuilder

system. The entire source is not given because it is several hundred pages long. The

complete source is available in a separate technical report. Appendix B contains the text

of the User's Manual for MEBuilder, minus the appendices. Appendix C contains excerpts

of La MEBuilder session. Appendix D contains example data files produced from the

MEBuilder session conducted in Appendix C. Appendix E contains excerpts of an

METutor session running the compiled lesson in Appendix D. Appendix F contains the

details of the conducted experiment -- including the task given to the students, the raw data

collected from the experiment, selected comments from the students, and selected material

produced.

5

6

IL SURVEY OF RELATED WORK IN LESSON AUTHORING

Many successful research efforts in Intelligent Tutoring Systems provide lesson-

authoring features of varying degrees. This is because many researchers recognize that

Intelligent Tutoring Systems (ITSs) with a fixed knowledge base and courses of instruction

outdate themselves too quickly and cannot handle any special needs of the individual

teacher or student. However, there are many differing opinions over what makes a good

authoring system. This chapter will present some of the commonly agreed-upon traits. It

will then discuss related research efforts and what authoring services they provide. Finally,

this chapter will introduce MEBuilder and describe the authoring features it will provide.

A. ELEMENTS OF A GOOD LESSON-AUTHORING SYSTEM

From an architectural point of view, authoring systems have four major components

(Elson-Cook, 1994) -- components that construct the domain model, the instructional

strategy, the student model, and the communication model. Conversely, the ITS consists

three primary components -- the expertise module, the student module, and the tutoring

module (Barr, 1982, pp. 229-234). The goal of the authoring system is to provide each of

the ITS components with domain-dependent information -- and typically the instructional

strategy and expertise module interrelate, as do the communication model and the tutoring

module.

The list of properties of good authoring systems is still openly debated, and new

applications seem to be producing newer requirements or desires. However, there are

recurrent themes in the literature that are consistent with the interrelations among ITS

components and authoring system components.

First, the system must contain "theory-rich", not "theory-neutral", tools. (Guralnik,

1994, pp. 235-236) Theory-neutral tools are those that place the burden of creating the

learning environment on the teacher. They tend to accent the lesson interface with the

7

student without providing tools for assisting the teacher in creating consistent instructional

strategies. Theory-rich tools have an understanding of the ITS shell to which the system is

authoring. This way, they provide means to help the teacher formulate strategies and insure

their completeness and consistency.

Second, the authoring, system must provide ways for the teacher to encode domain-

dependent error feedback to the students. If it was solely left to the ITS platform to model

some basic student errors such as misapplication of operations without any domain

influence, the chances for a proper diagnosis of an error is slim (Heift, 1994, pp. 263-264).

However, at some point, the platform must be able to provide information to the student in

wo~rds that fit the context of the application. This information, called "evaluative

feedback" essential, in order for the student to learn the material being taught rather than

simply learning how to solve a computer-based riddle. (Heift, 1994, p. 263) This

evaluative feedback is an example of how domain model information is passed

parametrically to the instructional model. The best authoring systems make this

information flow as transparent as possible.

Third, the authoring system must present a high-level interface. Most teachers will not

know how to program. Clearly, the wrong approach is to force teachers to learn to program,

and that a better approach is to have the system provide high-level tools that do the

programming automatically. (Jones, 1994, p. 300). However, the system cannot be made

so simple that the domain of potential lessons it would author is limited (Feifer, 1994,

p.' 198). What the system must do, then, is provide many powerful features in a manner that

do not overwhelm the teacher nor limit his/her options.

Finally, for the purposes of serving procedural tasks, the authoring system should be

flexible for use in multiple domains. This does not imply that an authoring system built for

a specific domain is bad. It certainly is possible that some domain-specific authoring

systems could be developed that still provide enough flexibility to be used in other

domains. However, if the ITS is purely domain-specific, then for its authoring system must

be a completely separate entity that can be used with another ITS.

B. TYPES OF LESSON-AUTHORING SYSTEMS

1. Domain-Specific Authoring Systems

There have been hundreds of successful ITS applications that provide single

domain instruction to a student. T1 se applications cover subjects ranging from operating

kraft boilers (Woolf, 1987, p. 413), tutoring radar mechanics (Tenney, 1987, p. 59),

understanding and writing Chinese characters (Ki, 1994, p. 323), and reading and writing

skills (Carlson and Crevoisier, 1994, p. 11i). All of the above systems plus many others

have the domain knowledge built into the system, so teachers cannot use these ITSs for

teaching other subjects.

Moreover, some of these ITS platforms do not provide authoring capabilities.

Also, for those that do provide authoring, the authoring system is embedded in the ITS and

cannot be used for other domains. Therefore, these systems fail in the fourth criteria.

2. Systems Built Using General-purpose Hypermedia Platforms

General-purpose hypermedia platforms provide excellent environments for

teachers to build powerful tutoring applications (Moreland, 1994, p. 748). Several such

platforms are commercially available. However, tutoring systems created from these

platforms can fall short because the platform does not have built-in tools for producing a

true learning environment (Guralnik, 1994, pp. 235).

It falls upon the teacher to create this environment within the context of the

platform, which is difficult at best for several reasons. First, such platforms have no

knowledge or concept of pedagogical objectives. The teacher must try to create them and

hope the platform can convey those objectives within its hypermedia web. Second, they

force the teacher to take a well-defined task and map it to sequences of user-interface

objects. In effect, the teacher must become a programmer. (Guralnik, 1994, p. 236)

Therefore, these systems fail the first criteria we wish to meet.

9

3. Domain-independent Programmed Tutoring Systems

The ventures into domain-independency began with the development of ITS's

that required the teacher to write the lesson in a programming or scripting language. The

ITS effectively becomes an interpreter of the teacher's program. Examples include the

PIXIE system (Sleeman, 1987, pp. 247-248), which required the teacher to write rules in

LISP. PIXIE's authoring system consisted of the text editor used to write the program.

Although both emphasize domain independence, such an approach fails the third criteria

for evaluation.

C. OTHER ISSUES REGARDING LESSON-AUTHORING

A major concern among lesson-authoring systems is time. By one estimate, it takes an

average of 100 man-hours to produce one hour of instruction. This time is the combination

of implementing the domain, student, and tutoring models -- it does not even include

domain research since it assumes the author is already familiar with the domain. (Murray,

1994) Several other projects emphasized that authoring zwi;e per hour of instruction is a

concern (Gescei, 1994, p. 15; Jones, 1994, p. 299). Any successful lesson-authoring

system must find ways to cut into this implementation time.

Another concern is that any hands-on style training must be believable. Simulations

are not a perfect representation of reality since storage space limitations will always force

authors to leave out key details. Doing so runs the risk of making the simulation appear

canned, which will reduce the effectiveness of the lesson (Feifer, 1994, p. 198).

Unfortunately, this is a difficult statistic to measure and is equally a reflection in the

choreographic abilities of the author as it is a function of the tools. However, poorly

designed tools can hinder the author. The authoring system should allow teachers to

visualize the task being built so they can properly evaluate it and make it more realistic.

10

D. METUTOR - A MEANS-ENDS BASED INTELLIGENT TUTORING

SYSTEM

The first decision for building an authoring system is to find an ITS shell that either

does not have one or has an inadequate one. The best ITS shell is one designed for use as

a general-purpose ITS capable of handling a wide range of lesson domains. The advantage

is that the target representation of the domain material is known in advance. Thus, the

lesson-authoring system behaves as both an interface and a translation routine between the

lesson as the teacher sees it and the lesson as the ITS sees it. For these reasons, METutor

was selected as the ITS shell for an authoring system.

METutor is a pure means-ends based tutoring system developed at the Naval

Postgraduate School by Neil C. Rowe (Rowe, 1993, pp. 317-323). METutor is a general-

purpose tutoring shell like PIXIE, except that its data representation resembles more of a

database than a programming language. Lesson definitions are very simple, and by using

the power of means-ends analysis the simplicity still provides a robust platform.

First, METutor only required the teacher to describe the lesson using a minimum of

seven predicates (the four standard means-ends predicates -- recommended, precondition,

addpostcondition, and deletepostcondition -- a random-event template called randchange,

and the startstate and goal). METutor also provides seven additional interface-based

predicates that allow a teacher to build the lesson in a graphic interface system.

Second, METutor uses Prolog facts rather than LISP notation in describing the rules.

Although LISP has a simpler syntax, Prolog facts are easier to read. For example, LISP

uses parentheses as the universal grouping symbol for program statements, data lists, etc.

Prolog uses parentheses for grouping fact arguments, and square brackets for grouping data

lists.

However, METutor lessons are still built as text files that behave like interpreted

programs. The teacher uses a text editor to write the lesson, which is loaded with METutor

into a Prolog session. Because the means-ends space can be very complex, some logical

errors can be difficult to detect, and teacher can become easily bogged down by simple

11

programming errors. Yet, even if every individual operation is properly specified in

METutor, there is no guarantee that METutor will derive the solution that the teacher

intended and there is no guarantee that every solution the teacher intended will work in

METutor.

Based on the criteria established for good authoring systems and the above description

of METutor, the authoring system must provide several specific capabilities to be effective.

First, it must establish explicit entities that have well-defined and consistent behaviors.

Second, it must encapsulate procedural behavior with sequences that teachers understand,

that the system would translate into a set of means-ends rules. Third, it must provide

facilities for re-using repeated information so that the teacher can save time. To accomplish

this, the authoring system requires an appropriate modeling technique -- and the one chosen

for METutor's authoring system is called object modeling. Object modeling is presented

in the next chapter.

12

II. TUTORING-SYSTEM VIRTUAL WORLDS AND OBJECT-
MODELING TECHNIQUES

Most of the sample lessons studied using the platform described in the previous chapter

plus others (Woolf, et al. 1987) present a virtual world to the student. These virtual worlds

contain objects and actors that have both independent and interdependent behaviors, and

the student's goal is to satisfy a set of objectives for each object in the virtual world.

Normally, virtual-world designers use object-modeling techniques (Rumbaugh, 1991, pp.

57-91), some of which are described below.

A. OBJECT-MODELING TECHNIQUES

1. Generalization

Generalization is the relationship between an object and one or more refined

versions of it. In artificial-intelligence terms, generalization is similar to the standard is_a

or a_kindofrelationship between objects. Virtual-world modeling makes extensive use of

generalization in order to take advantage of the similarities among similar objects. For

example, if all cars have four wheels then one could use that information to save time when

describing various types of cars.

2. Aggregation

Aggregation is equivalent to the part of relationship. An aggregate object is

treated as a unit, even though it consists of many lesser objects. Further, aggregate objects

behave according to a part-whole relationship where the condition of a part of the object

affects the whole. Aggregation also describes the possesses or hasa relationship.

Implementation-wise, there is little difference. But conceptually, has.a implies more of a

temporary ownership. Part of tends to imply a permanent ownership, and the dysfunction

or lack of the part renders the whole ineffective.

13

3. Metedata

Metadata is data that describes other data. Among the uses of metadata are:

,nstantiation, relating a class of objects to a particular instance of that class; summary

information, which describes a set of information about an object using a single fact; and

null information, which describes whether or not the information is known, applicable, etc.

4. Events and States

Events are things that happen at some time. For example, Flight 45 departs from

Hartford or the user has clicked the right mouse button are events. Some events preceded

other event while other events might be completely unrelated -- for example, Flight 45 must

depart Hartford before it can arrive in Pittsburgh but neither of these events are relevant to

the user clicking the right mouse button.

The state of an object iV a set of values that the object holds that affects it overall

behavior. States specify the response to input events. For example, if an airplane's engine

is unserviceable then the response to an event offly this plane to Pittsburgh will be negative

-- whereas a completely operational plane will perform the task.

B. USE OF OBJECT-MODELING TECHNIQUES IN METUTOR LESSONS

METutor makes extensive use of events and states, but not generalization and

aggregation. METutor presents the state of the virtual world to the student at each turn, and

each operation the student selects co|,stitutes an event. In addition, METutor provides for

the definition of random events that are triggered either by the start of the lesson or by a

student's action. After the student applies his chosen event, METutor updates the current

state, applies all random events, and shows the student the new state.

However, one shortfall in METutor's modeling of states is that there is no precise

relationship among mutually exclusive members of a state. For example, flashlight's may

either be on or off. Naturally, any event that causes the flashlight to become on must delete

the previous fact that the flashlight is off. Unfortunately, there is no direct way to specify

that "on" and "off' are opposite states in METutor. This means that a teacher may forget

14

to specify the "delete off" parameter in this event and METutor will likely not detect the

error.

Because METutor uses a simple Prolog-fact structure for the state, its lessons have a

limited sense of the objects contained in the virtual world. Prolog facts use symbols as

arguments to predicates, and teachers assume that predicates with like arguments constitute

a combined state of an object. However, there is no direct way to model aggregation other

than employing a programming convention that aggregate objects refer to its components

via the possessive. In other words, let's assume that a teacher writes as a component to an

METutor fact, disassemble(the,flashlight's,top). METutor does not recognize that

flashlight is an aggregate object nor does it understand that the top is part of that aggregate.

'The flashlight's top is simply another argument set. The drawback is that the teacher must

directly specify and manage these component relationships, a difficult task to do error-free.

Similarly, METutor has no means of recognizing that two objects are instantiations of

the same object type. For example, a teacher is writing a firefighting problem where the

fire team leader has two subordinate teams at his disposal, called red team and blue team.

Both the red team and blue team objects are identical instances of a class of firefighting

teams. However, in METutor, there is no facility to describe both objects using a common

set of events and states. Instead, the teacher must repeat all the rules for both teams and

directly include mutually exclusion clauses to prevent the two teams from performing the

same action. The potential for errors is great. Teachers could very easily fail to specify all

the rules when preparing the copy for the second team, or accidentally insert blue instead

or red somewhere in that second set. Additionally, in a larger system with more than two

like objects -- such as a system administrator lesson where a system has hundreds of users

-- is process is both tedious and unnecessary.

Finally, METutor lessons don't have a built in state diagram, so there is no direct

temporal relationship of states visible to the teacher. This means that if the teacher is not

careful, he could produce a lesson that has unintended solutions. An example of this was

15

a case where a student wrote a lesson for a fifteen-step procedure that had a possible

solution of no actions1.

C. OTHER BENEFITS TO USING OBJECT MODELING

1. Object Re-Use and Customization

A well-defined set of objects could serve as the basis for an entire set of virtual-

world based lessons. For example, most naval firefighting equipment is similar among the

various classes of ships. Firefighting teams are also similar in make-up and behavior. So

by defining the make-up and behavior of a general class of firefighting teams and

equipment, a teacher could develop a series of lessons in firefighting among a large variety

of ships without having to repeat information. Since virtual-world descriptions can become

quite large and complex, this is a definite time-saver. Reusable objects also provide the

teacher with the comfort of consistent behavior, so the teacher can confidently use the

object in any lesson and count on its behavior.

Also, subtle differences in the make or model of two objects could be sufficient

to desire to customize the model. For example, the Army's AN/GRC-142 Radioteletype

System has seven different models -- GRC-142 through GRC-142F. However, the

differences among models are not subtle -- some are wholesale component changes, and

some Army units had special versions of one of the models as a result of a component's

experimental fielding. Teachers in these units will appreciate an ability to customize

objects for local ase.

2. Encapsulation

Encapsulation, or information hiding, protects objects from unintended change.

It will allow a teacher to substitute objects in a lesson while preserving the behavior of the

1. This actually occurred during tests on the first prototypical authoring system for METutor. A
student who apparently misunderstood the meaning of states coded identical start and goal states of
the lesson. Even though the lesson as written worked properly, the quickest solution was to do
nothing.

16

other objects in the scenario. For example, a posed problem for a ship refueling problem

might involve a cruiser. Then a second problem might involve a battleship. The different

ships have independent behaviors, but their relation to the fueling ships does not change.

D. PITFALLS TO USING OBJECT-MODELING TECHNIQUES

1. Generalization is Not Equivalent to Subllassing

Object-modeling is not an easy task, and even in the well-defined realm of

programming languages there still exists heavy debate regarding what constitutes a valid

class and object hierarchy (Lalonde and Pugh, 1991, pp. 57-62). The concepts of

generalization and subclasses are not equivalent, meaning that an akind~of relationship

between two object types does not necessarily constitute a proper class hierarchy. Lalonde

defines subclassing as "an implementation mechanism for sharing code and

representation," whereas generalization is a specialization relationship, i.e. it describes

one kind of object as a special case of another." Figure I describes a relationship among

data structures that clearly shows the difference among the two. Although binary trees are

clearly a special type of directed graph, the most efficient data structure to implement the

binary tree is a node with two son pointers. Directed graphs, meanwhile, are best

implemented using an adjacency matrix. Since such relationships are not always clear to

computer specialists, the potential to confuse a relative novice such as a teacher is high.

This problem arises in modeling objects in virtual worlds. For example, an

electric-powered car, such as a golf cart, is akind of car. Clearly one cannot derive the

behavior of a golf cart from car because the two have completely different engines. A

teacher desiring to build a golf cart object must survey the existing subclass hierarchy to

insert properly entities such as golf cart. Unfortunately, there is very little any object-

oriented environment can do to detect and correct errors. It is incumbent on the teacher to

recognize and use the best hierarchy possible.

17

2. Increased Complexity for Simple Lessons

Lessons that are very simple -- those with few objects and a small number of

events or states -- should remain simple to write. Adding object-modeling inherently

increases the complexity by requiring the teacher to define the model. Therefore, defining

the model for simple objects must not serve as a deterrent for the teacher.

Generalization Subclassing

Graph Matrx Graph MatnxI

Digraph dj=nY Tr-eedany

Tree BinaryDirpTree

Treel + - Indicates inheritance by generalization (Rumbaugh, 1991)

Figure 1: An Example of Differences in
Generalization and Subclassing Hierarchies

E. TOOLS NEEDED TO ADD OBJECT MODELING TO AN AUTHORING

SYSTEM

Clearly, in order for an authoring system to reap the benefits of object modeling

without becoming an excessive burden for the teacher, it requires specific object-building

tools. These tools must serve the purposes of providing a simple framework for defining

the generalization hierarchy; for defining aggregations, events, and states; for specifying

inter-object relationships; and for providing immediate error-checking to the teacher. In

18

addition, the tools should guarantee to the teacher that the lesson is complete and accurate

before use by a student. But most importantly, these tools must abstract the teacher from

the low-level representation of the objects and speak to the teacher in a language that he

can easily understand.

1. Object-Modeling Interface Concept -- the Adventure Game Model

Many moderi-day three-dimensional adventure games present a virtual-world to

the game player as if the virtual-world were a stage and the student is acting in a role

(Example: Sierra, 1993). This conceptual model is extremely easy for a teacher to

understand, yet still provides an adequate framework for building all the other tools

necessary to construct the virtual world. Therefore, one good way to assist the teacher is

describing things in stage terminology -- a cast, a set of props, and settings.

The cast is an easy model to demonstrate how the tools can provide yet hide

generalization and aggregation to the teacher. Typically, a cast member plays a role, which

is a subclass of a character. This role generally exhibits a specific set of behaviors -- actions

that he must perform to respond to external stimuli. Roles can be generalized and can

maintain or possess props -- plumbers and electricians are akind of handyman, for

example, and handymen possess tool kits. Once a teacher defines a particular role, he

instantiates it by inserting it into a particular virtual world. In addition, the teacher could

specify that the student is to play a particular role and perform some task in the scene.

Similarly, stage terminology will help simplify the process of defining props and settings

for the teacher.

2. Object-Modeling Tools

The above paragraph describes how a platform can make generalization and

aggregation easier to model. Events and states also have properties that an object-modeling

platform could exploit to save time for the teacher.

19

a. Mutual Exclusion of States

Most potential states that an object can attain are mutually exclusive of

other states. Previously, this thesis presented an example of how a flashlight could not be

both on and off-- it must be one or the other. Similarly, a fire is either raging or out; a street

light is either green, amber, or red; and the chloride level of the water in a ship's boiler can

have precisely one value in the range of 0.0 to 1.5 parts per million. Especially regarding

qualitative values, the tools use these teacher-defined mutually exclusions and ensure all

operations involving the object maintain this property.

b. Summarizing Object States

A car's engine could contribute hundreds of items to the state. In many

applications, not all of these items are relevant or interesting to the student. For example,

if the fuel injection system is working, the student probably only needs to know that it is

working -- not the ten or twenty different state members that make up the fact that it is

working. Providing tools to describe summaries of large groups of data will not only

provide greater expressive power to the lesson but simplify the lesson building process for

the teacher.

c. Modeling Unknown Information

A very common property among diagnostic lessons is that the student does

not know all the information that is true in a state. However, any lesson could have a need

to model what a student knows or should know. There are several specific properties which

make knowledge easy to model and thus easy for tools to implement. Moore developed a

full first-order logic theory concerning modeling what a student knows and what actions a

student takes based on what he knows. In his theory, Moore describes things known and

unknown as additional members of the state influencing the end result of the theorem being

proven (Davis, 1990, pp. 390-391).

Many props are consistent regarding what an actor would know or not

know about the object. For example, a student would not know that the batteries inside a

20

flashlight are dead just by looking at the flashlight. Instead, the student would need to

engage in a series of steps to investigate the dysfunction of the flashlight and thereby soon

discover the problem with the batteries. The status of the batteries is something that would

normally not be known by a student, so the object model of a flashlight could contain an

additional flag marking the battery status as hidden.

A Modeling Objectives

In order for a teacher to build the lesson, the teacher must be able to

describe what the objectives of the lesson are so the ITS platfor, uIay identify when tlhe

lesson is over and identify points where the student is failing to make progress.

Additionally, the teacher must ide itify objectives for all the other actors in the scene so that

their behavior is consistent and, to a degree, predictable.

e. Modeling Operations and Sequences of Operations (Tasks)

To provide a useful method of describing the actions a student may take,

teachers must combine a student's potential objectives with a description of atomic

operations that cause the change of state of an object. Together, the platform should help

the teacher describe all possible sequences of atomic operations, or tasks, that achieve

those objectives.

Atomic operations, operations that a teacher decides he cannot or will not

break down into subactions, consist of several components. First, operations have a direct

object -- the specific object being manipulated. Second, operations have a list of indirect

objects -- those other objects required for performing the operation. Third, operations have

an intended effect -- the specific change of state that the direct object will attain as a result.

Finally, operations have preconditions -- the required states that all direct object and

indirect objects must be in to apply the operation. With these atomic operations, the tool

has enough information to make a partial assessment of what actions are necessary to

achieve a given objective from a given staring state.

21

F. SUMMARY

This chapter has presented a brief study of authoring systems for ITS platforms and

described how objectmodeling techniques could enhance their functionality. In addition,

this chapter discussed several object-modeling issues and described how an authoring

system could use object modeling to help teachers build lessons. The next chapter will

describe MEBuilder, a prototype authoring system for METutor, which employs object-

modeling techniques.

22

IV. AN INTRODUCTION TO THE MEBUILDER SYSTEM

MEBuilder is a lesson-authoring system written entirely in Quintus Prolog, taking

advantage of several Quintus Prolog library modules. It presently uses only text for input

and output, but its design lends itself for use in a menu-driven windowing environment.

A. MEBUILDER'S TOP-LEVEL DESIGN AND PHILOSOPHY

MEBuilder consists of one main program module and five primary submodules.

Appendix A contains the header comments for these modules. Its overall design parallels

that of the Ada Programming Support Environment (DoD, 1983). Not only does

MEBuilder provide the editing capability for building lesson material, but also provides

library services that cross-checks the lesson material for consistency. Figure 2 is a diagram

showing the relationships among MEBuilder's primary modules, its primary data stores,

and the external tutoring system.

1. MEBuilder Lesson Material -- The Three-Layered Design

The three modules across the middle of Figure 2 indicate the three modules

corresponding to MEBuilder's three-layered lesson design -- the three layers being classes,

tasks, rid lessons. The purpose of this design is to maximize code re-use and reduce

authoring time. The intent is that the final version of MEBuilder would come with whole

libraries of classes and tasks, and the focus of the teacher falls solely on the lesson layer.

a. The Caus Layer

The class layer is where the basic object descriptions lie. It corresponds to

the class data structures in an object-oriented programming language. The class layer

manages the primitive attributws and values for all MEBuilder objects. Classes are abstract

entities that are instantiated during lesson construction.

23

- Command Flow
- --) Data Flow Library Directory

I ~Library Manager
" I I

Lesson De iition - akDe ldnito Object Definition

I
II
II

plier MEBuilder

Intelligent-Tutoring
System ShellI

Figure 2: MEBuilder's Architecture

b. The Task Layer

The task layer is where the primitive sequences of operations lie. It

corresponds to methods in an object-oriented programming language. A task is an

encapsulation of a single initial condition, a single goal, and a method to achieve the goal

without external stimuli. The method consists of the defined primitives from the class

layer. Tasks are also abstract entities.

c. The Lesson Layer

The lesson layer is a workbook with a collection of concrete problems for

the student to solve. The lesson consists of named instances of classes and relevant tasks

24

to perform, and each problem provides a particular initial setting and objectives for the

student to achieve. Well defined classes and tasks make this very simple to accomplish.

The lesson layer also provides access to the underlying METutor system.

This access allows quicker testing and debugging of the lesson material.

2. MEBuilder's Bottom-Up Approach to Authoring

MEBuilder uses the three-layered design to enforce a bottom-up approach to

lesson design. Thus, the user must design the objects first, followed by the tasks, and

finally the lesson itself. Appendix B contains the main text of the MEBuilder User's

Manual detailing the process. Appendix C contains an annotated script run demonstrating

MEBuilder's main commands.

The bottom-up approach has several advantages. First, MEBuilder performs

consistency checks at each step to ensure that changes in a lower layer do not adversely

impact data in a higher layer. Second, MEBuilder can use the lower-level information in

order to save typing. For example, when building a task, MEBuilder provides the user with

menus containing all the appropriate information from the class layer. The user then only

selects from menu items rather than having to type the information -- which he would still

have to insert into the class definitions later. Third, MEBuilder can use means-ends

analysis to assist the teacher in building tasks and lessons. This is not possible without a

compV i - ot of class definitions.

lere are also disadvantages to the bottom-up approach. First, it is difficult for

the teacher to visualize the lesson as he builds it. Clearly, if the teacher has a complete

library of obje is and tasks, he will spend less time in the lower two layers and minimize

this effect. I1iit the worst case scenario will likely be the norm.

Second, the bottom-up approach is vulnerable to modular interface problems.

Tasks that individually work might not combine well in a lesson. For example, two task

definitions when combined into the same lesson may cancel each other's effects or become

mutually exclusive. MEBuilder currently only has limited capabilities for detecting

25

potential interface problems. Therefore, users must exercise caution when building

complex scenarios. Also, all tasks defined for a lesson should be designed as disjointly as

possible -- meaning the one operation should only appear in one task.

B. MEBUILDER MAIN MODULE - "MEBuilder"

The main module performs several key functions. It provides MEBuilder's command

loops, its help facility, its autosave facility, and compilation data for Quintus Prolog.

MEBuilder has four command loops -- main, task, lesson, and problem. The main

command loop is self-explanatory. The other three are special loops invokkd from main

which have specific functionality. The relationships among the loops and MEBuilder's

three layers is diagramed in Figure 3.

"i LObject Layer

"Taok l oop L. OP Task Layer

invoke Lemso Loop I ina nwle s

invokes Lesson Layer

SIProblem Loop I manages

Figure 3: Relationships of Command Loops
to MEBuilder's Three-Layer Lesson Design

MEBuilder provides a very simple help system, future versions may include a more

context-sensitive facility. The user may enter the help system from any of the four loops

and query for information on any command or on various topics.

26

MEBuilder's autosave facility is a protection mechanism for the teacher. After each

tenth command, the entire MEBuilder database is save to an autosave file, called

"autosave.meb'. The purpose of the autosave is to allow the user a chance to recover to a

previous program state if for some reason MEBuilder aborts without warning. A special

"restore" command exists in the main loop which restores the saved environment.

Currently, the autosave facility parameters are fixed -- the user cannot set the number of

turns nor change the name of the target autosave file.

MEBuilder is designed to be run as a stand-alone system. The main module contains

all the data necessary for the Quintus Prolog compiler to create a separate executable file

from MEBuilder.

C. MEBUILDER'S LIBRARY MODULE -- "MEBuildLIB"

MEBuildLIB's purpose is to save time for the teacher by untying his hands of file

management. In MEBuilder, each class, task, lesson, and compiled lesson gets its own file.

This makes it easier for the teacher to access them at will. However, there is a clear and

defined dependency among the above entities. For example, a class is dependent on its

parent class, and if that class is in the database without its parent then the inherited

information is not available. Hence, when a teacher requests that a particular entity be

loaded, all other entities that the entity depends on are also automatically loaded. Entity

dependencies are defined as follows:

* A class is dependent on its parent.
0 A class is dependent on the class of each of its components.

• A task is dependent on each class it is built from.

* A lesson is dependent on each class and task it is built from.

To accomplish this, MEBuildLIB creates and manages a special library subdirectory

in the user's working directory. This subdirectory holds all the files for the various objects

and holds one special directory-information file maintained during the session. The

27

information file is a Prolog fact file containing entries for each entity -- the entity name,

type, file when stored, date of last save, and dependencies.

The date of last save is also important. MEBuildLIB attempts to catch potential errors

by checking these dates. If a class has been updated after a task that uses it was last saved,

the change to the class might have induced an error in the task. As a rule, changes in a class

invalidate all tasks and lessons that use it (compiled lessons based on the task are still OK).

D. MEBUILDERIS CLASS DEFINITION MODULE .. SMEBuildCLS"

MEBuildCLS is a simple data structure manager which serves two important

functions. Its primary and most visible function is to build class definitions. Its second

function is to provide the other modules with the class information they need in order to

perform their functions. It is in this module that all object modeling takes place.

1, The Class Data Structure

a. cass.dft•class>, <parent class>)

Currently, MEBuilder only handles single inheritance, and the intent is for

the inheritance to model the a kind ofrelationship only. MEBuilder recognizes two global

classes of which all classes must descend from -- prop and character. The significance of
prop versus character is critical for tasks. There is one class_deffield per class.

b. compenent(<class>, <component class>, <componert name>, <tense>)

Component multifacts encompass both the a partof relationship among

props and the has-a relationship among characters. There is no restriction in MEBuilder

regarding what class can serve as a component of what class except that the user must

adhere to part-kind inheritance and circular inheritance is not allowed. The component

name primarily helps distinguish among like components of the same class -- such as

unique names for the four wheels of a car. If there is only one component of a given type,

the name should equal the class. The tense argument helps METutor print out the correct

verb forms for the components whose name does not follow the "ends in s" rule.

28

c. pmpete*V_(<class>, <properuy set name>, <domain>, <hidtabte>)

Propertyjset multifacts describe the various attributes and values that the

class can take on. Collectively, the active values of the property sets constitute the object's

total state. The members of the domain are mutually exclusive. For example, a streetlight

might have two property sets -- "color" with domain "red", "amber", and "green"; and

"persistence" with domain "flashing" and "not flashing". Therefore, a light's state could be

red and not flashing, or it could be amber and flashing. Currently, domains are limited to

being one of a list of qualitative values. Future implementations may include the ability to

specify ranges of numbers.

In addition, a property set may be declared as having a possibly unknown

or hidden value. For example, a flashlight battery's charge level might not be known be

direct inspection -- instead a test meter would be needed. The hideable argument allows

MEBuilder to create an extra property set which contains the values "<set> is known" and

"<set> is unknown". This information is available for use during task construction and

lesson construction. In addition, if a property set is declared as hideable, the teacher may

define operations whose purpose is to make the value of the set known to the student.

d realaon(c1lass>, relation name>, <deftnWWon>)

Relations, or "summary facts" allow the teacher to describe a substate of the

object in a single term. A good example of this is with a flashlight. If the flashlight's case

is closed, top is assembled, batteries are working, and bulb is working; then the flashlight

is working. When METutor prints out the state, the four members of the definition will be

replaced with the single phrase "flashlight is working."

e. operation("<class>, <indiect objects>, <operation name>, <intended

effect>, <preconditions>, <side effects>).

Operation facts represent the primitive operations that can be performed on

an object. By "primitive", this refers to an action that requires one turn in METutor to

complete. The indirect object list is a list of all other objects to be present for this operation

29

to be available. The indirect object can have multiples, including another <class>. The

operation's name is an imperative sentence -- a verb phrase followed by a direct object

followed by a sequence of prepositional phrases if needed. The direct object must either

the <class> or a valid component name of <class>.

The final three arguments describe the behavious resulting from this

operation. The intended effect is the one change of state that is the primary reason why the

student would perform this action. For example, the student would choose "disassemble

the flashlight's case" for the intended effect of "flashlight's case is open". There may be

other changes of state among the class or the indirect objects. These are called side effects.

The precondition list is a list that describes what state the <class> and <indirect objects>

must be in before the operation may be used.

f. duamon(<claus>, <daemon name>, <trigering condiion>,--

<advancement crition>, <advancementform>, <activation message,')

Daemon facts are changes of state that occur as a result of internal, not

external stimuli. Usually, they correspond to a sequence or series of state changes which

might culminate in some (possibly disastrous) event at the end. No operation is performed

to effect the changes induced here, instead the change occurs whenever the triggering

condition is true for the object. The activation message is given to the student whenever

the triggering condition becomes true. The advancement form describes how often the

change in state occurs, either as a probability of change or as the number of turns between

changes.

There are three types of daemons. The progressive daemon causes an

object to take on the first value of some property set, and advances until the last is reached

or the triggering condition is removed. A example of this is the hunger of a person. At the

beginning, the person may be full -- but later he progresses through peckish, hungry,

starving, and finally dysfunctional or dead. The looping daemon loops through a property

set. The streetlight is a perfect example -- it loops among green, amber, then red, then back

30

to green. The updating daemon invokes an operation. Currently, these are not

implemented -- but they are intended for use in updating readings on a meter or other

continuous functions.

2. Information Cached to the Other Modules

MEBuildCLS does not send the class' raw data to the other modules for

processing. Rather, MEBuildCLS will receive a list of instantiations from the other

modules and will return instantiated facts. For example, a lesson has a "John Smith" who

is a pilot. The pilot object has a property set of "pilot is cleared for takeoff' and "pilot is

not cleared for takeoff". MEBuildCLS will provide an instantiated set of "John Smith is

cleared for takeoff," etc.

MEBuildCLS only sends property set data and operation data to the task module

MEBuildTSK and the lesson module MEBuildLES. However, all class information is

instantdrted and sent to the lesson compiler MEBuildCMP.

E. MEBUILDER'S TASK DEFINITION MODULE-. "MEBuiIdTSK"

MEBuildTSK is by far the largest and most complex module in the system. It serves

the purpose of developing procedures made up of the primitive operations of its member

classes. However, its underlying purpose is simply to establish relationships among the

primitive operations within specific contexts that the operations themselves do not convey.

The name "task" could be misleading. When the teacher builds a task, he describes the

entire task in terms of a known starting point and a known goal. The task that is produced

is the full task. However, during an METutor lesson it is often that the student may find

himself in a situation that puts him in the middle of the task. Here, using the power of

means-ends analysis, the student can still complete the task as built.

The key to successfully building a task is providing all possible solutions to the

student. MEBuildTSK uses means-ends analysis to help find alternate solutions and

solutions where the student may select a different order of operations that will still achieve

31

the goal. However, it is far better to keep the individual task as small as possible in order

to ensure consistency when put together with other tasks in a lesson.

The task's data structure is made up of several components -- basic data components,

the procedure graph, and the guaranteed state structure. Not all elements of the data

structure reside in secondary storage -- some as cached by MEBuildTSK or from other

modules during the session and disappear upon completion of the session. Temporary

facts, however, are autosaved.

1. The Task's Basic Data Components

The following is in addition to the temporary information cached from

MEBuildCLS.

a. task(<task name>, <actor>, <other objects>)

The task fact indicates those objects involved. All tasks require an actor,

which is an object descended from the character class. The other objects may be of any

class.

b. initial conditions(<object>, <state>) and objectives(<object>, <state>)

These are self-explanatory in nature, however the respective states are not

absolute. The state contains one entry for each property set, but the entry may be a "don't

care" value. "Don't cares" help avoid the inclusion of unnecessary operations in the task

and provide greater flexibility for the student.

2. The Task's Procedure Graph

Although many tasks are described as a linear sequence of steps, few tasks are

truly linear (Sacerdoti, 1990, pp. 162). Many have multiple solutions based on the fact ahat

some operations can be done in different orders. Rules such as the preconditions embedded

in the objects' operations help define which operations must precede others. However,

those preconditions effectively describe the behaviour of the object in a vacuum. In the

context of a particular task with a specific goal to achieve, new rules are required.

32

Therefore, a structure is needed that describes the temporal relationships among the objects

in the task.

MEBuilder's procedure graph is based on Sacerdoti's Procedure Net (Sacerdoti,

1990, pp. 163-168) and Homem de Mello's and Sanderson's assembly state graph (Homem

de Mello, 1991, pp. 229-231). The procedure graph is built based on a first attempt

solution to the problem posed by the initial conditions and the objectives. MEBuildTSK

then assumes that its solution is the only solution. The facilities provided by MEBuildTSK

then allow the teacher to identify alternate solutions, during which MEBuildTSK checks to

ensure they are indeed valid solutions.

a. Procedure Graph Structure -- stages and actions

A procedure graph is an extended directed graph where the node is called

a stage and the transition is called an action. A sample procedure graph is in Figure 4.

Actions contain the operation to be performed and the additional preconditions and side

effects involved.

Stages are conceptually more complex, as they enforce the following rules

regarding the graph structure. First, the graph has one start state and one done state

corresponding to the initial conditions and objectives being true. Second, a stage which has

one transition out indicates that there is precisely one solution to achieving the next stage.

Third, a stage which has more than one transition out indicates multiple solrb ';ns in two

forms -- called and-splits and or-splits. An and-split indicates that the transitions out of the

stage correspond to subprocedures that can be done in parallel. This means that order

among the actions is unimportant so long as actions within a subprocedure are done in

order. An or-split indicates multiple subprocedures that achieve the subgoal, and the

student only must perform one of the subprocedures. Fourth, all splits have a

corresponding join stage (shown in Figure 4 as the shaded stage marked with a "'7).

Split-join pairs are strictly nested. Therefore, all splits are joined by the

time the done stage is reached. Join stages always have a single null, or lambda, transition

33

out. The extra join stage is required because a split stage, such as QI in Figure 4, can only

have one split. On the other hand, Q5 could close multiple splits. This could only be

accomplished through the use of a sequence of nested joins, each connected by a lambda

transition.

Irdtial Conditions a flashiit's case is closed, top is closed, baferies are dead, bulb s broken

Objecdves a fihuaifbe's can is cloed top is clased. battes am working, bulb is wokdint

inspect baurie ,,As %mcchag bancnics

Q3 fi bl Q4

Figure 4: Example Procedure Graph

Procedure graphs may also have unordered actions. These are actions

which are required to be performed at some point in the task, but have a very loose temporal

relationship with the other actions in the graph. For example, a given device may need to

be tested before use during a task. However, one might not care when or where the device

is tested, so long as the preconditions for the testing are met and the testing is done before

it is used. These are similar to an and-split in concept, however they bypass the strict

nesting.

34

b. Options for Manipukating Procedure Graphs

As stated earlier, MEBuiIdTSK starts with a single solution and assumes it

is the only solution -- so the student must follow the one solution in order. There are many

ways in which a teacher can provide, or reduce, the number of solutions available. The

fundamental concept MEBuildTSK uses is dependency of the primirive operations. An

operation X is dependent on another operation Y if and only if X's preconditions are not

disjoint with Y's postconditions. After the teacher performs any of the below,

MEBuildTSK invokes means-ends analysis to test the resulting procedure graph.

A teacher may request MEBuildTSK to look for subprocedures that can be

parallelized. These are found by examining adjacent actions and seeing if the second is

dependent on the first. If such a pair is found, then MEBuildTSK looks for the nearest

operation of which both are dependent, then follows the dependencies to identify two or

more possible subprocedures. This process produces and-splits in the procedure graph. A

teacher may also combine subprocedures zogether.

A teacher may ask MEBuildTSK to declare an action unordered or ordered.

If it is declared unordered, it is marked as such when the user asks to see the procedure

structui'. If an action is declared ordered, it is placed directly in front of the action that

depends on it.

A teacher may move individual actions around within the bounds of the

dependency relationship. He may reverse two actions, move an action intoa subprocedure,

or move it out of a subprocedure.

Finally, a teacher may also modify the preconditions and side effects of an

individual action. This action may lead to MEBuildTSK recalculating the solution for a

task or the subprocedure the action is in. If the graph no longer represents a valid solution,

MEBuildTSK will scrap the graph and start over.

35

3

3. The Task's Guaranteed State Structure

The guaranteed state database parallels the procedure graph and provides

information to. the teacher about what state corresponds to the completion of some given

step at any point in time. It also helps identify particular contexts in which an operation

will behave differently than as primitively defined. The latter point is especially true when

a primirive operation is specified more than once in a given task or is used in multiple tasks

within the same lesson. For the teacher, this structure is useful primarily for information

purposes. He may request to see the anticipated state after a given action is completed.

The guaranteed state is a single state for all objects in the task. There is one entry

for all property sets among the objects. However, each entry is either a single property

which is absolutely true, or is a list of properties in the set which may be true based on

probabilities or or-splits.

F. MEBUILDER'S LESSON DEFINITION MODULE -- "MEBuildLES"

MEBuildLES, by contrast, is the smallest module. MEBuilder lessons are merely

collections of individual problems which the student can try. Every lesson must have at

least one problem, otherwise the lesson is meaningless. MEBuildLES's purpose is to

provide command interfaces to the lesson data structure and to provide access to the lesson

"compiler in MEBuildCMP and the underlying METutor system.

The lesson definition module provides both the lesson loop and the problem loop, as

shown in Figure 3. Each manipulate different portions of the MEBuilder lesson.

1. The MEBuilder Lesson Data Structure

-MEBuilder lessons have a very simple data structure. The lesson fact contains

the names of the cast members by name and type (character class), the props by name and

type, and the tasks involved in the lesson. The lesson.•rtro fact contains text that appears

to the student when the lesson is begun.

316
Iz

2. The MEBuilder Problem Data Structure

MEBuilder problems are numbered in order starting at one, and each problem

has its own of the following data items. The problem fact contains the name of the problem

and those cast members and props that are to be left out in the problem. The problemintro

serves the same purpose as the lesson_intro. Each problem has initial-setting and

objectives facts for each cast member and prop, which correspond very closely to the task's

initial condition and objectives facts.

Finally, though not implemented, hooks have been placed in MEBuildLES

where a teacher will be allowed to override some of the probabilities and side effects among

the various tasks. These ovet.ides will allow a teacher to increase the level of difficulty of

some problems by increasing the probabilities of some bad effects, or make a problem

easier by eliminating the possibility of those bad effects.

G. MEBUILDER'S LESSON COMPILER -- "MEBuildCMP"

The compiler takes a lesson which its associated tasks and objects and produce.i an

METutor-ready lesscn. The compiler only works for METutor versions 29 and beyond.

The compiler only provides a single command to the user -- that of "compile lesson" in the

lesson loop. The overall compilation process is simple. First, final integrity checks are

performed on the entire class hierarchy for all classes used, followed by the tasks, a~id

finally the lesson itself. Then, each METutor fact is individually constructd. Some

METutor facts are required to be cached in a particular order, so sorting routines are

invoked as needed. The specific content of the METutor database and how they are derived

from compilation is given in the next chapter.

37

ifr

38

ii',! ! I ' ' " "'

V. TRANSLATING AN MEBUILDER LESSON TO AN METUTOR
LESSON

MEBuilder and METutor shared an evolution over the course of this project. As

features for one were added, so too was the ability of the other to use it. This chapter will

present METutor version 29, emphasizing the key data structures and philosophy changes

from METutor version 27, the last active version before this project. It will then present

the methodology behind how MEBuildCMP takes lesson material in object-oriented form

and produces an METutor-usable lesson for the student.

Appendix D contains sample data f'les produced from MEBuilder sessions. Tab 1 is a

sample library-directory file showing the library entries for the pilot lesson constructued in

Appendix C. Tabs 2 through 5 of Appendix D contain sample MEBuilder object, task, and

lesson files. Tab 6 is the lesson file translated to METutor form. Appendix E contains an

excerpt of an METutor session running this lesson.

A. HIGH-LEVEL DESCRIPTION OF THE DESIGN CHANGES IN METUTOR

*1. Workbook Structure Based on ME~uilder's Lesson Structure

METutor's original interface was a simple one-level interface, and METutor

lessons were built with only one problem. When the student began METutor, it presented

the single problem imnteanAely and exited once the student completed the problem. In the

new METutor, the student runs a main command loop which affords him options. When

the student selects a problem to do, then a second loop is engaged which runs the problem.

A student can exit back to the main loop at any time and retry a problem if he so desires.

In order to ensure backward compatability with lessons written before the
S.... workbook format, METhtnw insp•.-" ~'aded lesson files for structure. If the lesson file does

not contain a workboox structusr, then one is built for it.

39

2. Agents - Based on MEBuilder Characters

An agent in METutor is a direct manifestation of the character object in

MEBuilder. The goals of the tasks involving character objects become a "resting state" for

the corresponding agent. Each agent operates using his own set of means-ends rules based

on those same tasks. Then as the student takes his turn, all the other characters in the

problem take their turn via this agent structure. The student always goes first in a given

turn, and the agents follow in arbitrary order.

3. METutor's Macro-Expansion Language

The most visible change to METutor lessons is that they are no longer a set of

immediately usable Prolog facts. Rather, they are most macros. It is in the use of macros

that MEBuilder's object-oriented philosophies manifest themselves. The introduction of

the macro form was based on lessons which had multiple objects of the same type and

potentially rules in METutor which changes from problem to problem. The macro form

that all METutor rules tse follows this form:

<rule-name> t(<agen., <qunti~fed vars>, <macro argi>, <rr, acro argn>)

The macro-indicating entry "J" is stripped off and the quantified variables are

replaced with concrete ones based on the cast and props in the problem. For example, let's

say that a problem has two flashlights and that the recommended rule dictates that to

achieve "flashlight is on" one must "turn on the flashlight". Then, the macro form could be

described as follows. The quantified vars would be "for each flashlight x". The first macro

ug, corresponding to the target state, would be "x is on" and the second macro arg would

1r. "turn on the x". If we named the two flashlight's in the problem "red flashlight" and

"silver flashlight", then the macro expansion would insert those two names for the "x" in

the above phrases.

40

The agent argument can also be an agent domain. For example, if there are five

agents all of the same type, then the object type name fills the agent argument. Macro

expansion would then produce five sets of rules -- one for each agent.

"If there is only one of a given object, then the appropriate macro arguments are

pre-expanded in MEBuilder's compilation process. This is because macro expansion only

gains speed and space when there are multiples in the object domain. Nothing is gained in

expansion for singular instances. T'herefore, the actual use of macro expansion in the

average lesson is likely to be small.

4. Backward Compatability of Lesson Material

In order to allow backward compatability, METutor version 29 wraps a general

workbook shell around the lesson database. Also, the facts are converted to macro language

format. This backward compatability is only good for lessons written for the text-based

versions of METutor versions 1 though 27. Lesson material for MEGraph versions 1

through 27 will still work, however the graphics facts are ignored.

B. CONCEPT OF THE TRANSLATION PROCESS

Much of the translation process is simply copying data from the MEBuilder l.sson

layer to the METutor file. Examples of this include the introductory text for the lesson and

the problems, cast and prop lists, initial settings, goals, and identification of singular and

plural nouns. However, the means-ends rules -- consisting of the recommended,

precondition, addpostcondition, and deletepostcondition facts along with the random event

mechanism called randchange -- are more complex. All five of these are generated based

on the usage of the primitive operations in the tasks loaded in the lesson. Some of these

rules must also be sorted so that the higher priority operations are accessed first. Some of

these rules are also agent-specific, meaning that they apply only to certain characters in the

lesson.

The translation process goes as follows. First, an integrity check is performed on all

object, task, and lesson definitions. Second, the workbook data (the basic lesson and

41

problem information) is cachea, which includes the problem start states and goals. Third,

the means-ends facts and randchauges are constructed. Finally, the singular, plural, and

special message facts are placed at the end. Facts that are agent-specific are cached

alphabetically by agent. The next several sections describe the process used to generate the

means-ends facts and the randchanges.

C. GENERATION OF THE RECOMMENDED CLAUSES

The recommended clause in means-ends takes a member of the goal that is not true in

the current state and "recommends" an operator to achieve the goal. This is the exact

purpose that the intended effect provides the objects' primitive operations. Therefore, the

recommended clause is a converse map from an intended effect to its primitive operation.

Recommended clauses, however, are among those that must be sorted. This is

because METutor's means-ends algorithm gives higher priority to the recommended

clauses at the top of the Prolog database. This is how, given two or more goal members not

true in the current state, METutor determines which operation is the best given the current

situation. MEBuildCMP uses a partial ordering scheme to determine the order based on

the following rules:

The clause recommending operator X precedes operator Y if X precedes Y in a
task.

* If operators X or Y are used more than once in a task, then the ordering is based
on the first occurrence of the operator in the task.

* If operators X and Y are applied in reverse order among multiple tasks, then the
ordering is arbitrary and will be based on the other operators in the lesson,

* Operators not lised in any task go to the bottom of the database.

D. GENWERATION OF THE PRECONDITION CLAUSES

The precondition clauses are more complicated than the recommended clauses

because the primitive operation can have preconditions specified from four difference

sources. These sources are referred to by type, producing Type I preconditions through

42

Type IV. If an operation is not used in any task in the lesson, then only Type I and Type 11

preconditions apply. If an operation is used in the lesson, then all four preconditions apply.

0 A Type I precondition is an explicit precondition described in the primitive
operation.

, A Type II precondition is an implicit precondition of the primitive operation. It is
the "opposite" state of the intended effect. This is a precondition because
otherwise the operation would have no effect.

, A Type III precondition is an explicit precondition provided in the task definition.
Rarely will any operation have Type III preconditions.

• A Type IV precondition is an implicit precondition based on the ordering of
actions a task. The intended effect of the previous action becomes a precondition
of the operation. Often the Type II and Type IV preconditions will be the same.

In addition, preconditions may be subject to context. This only applies if one

operation is used more than once within the same task. The context helps determine which

application of the operation corresponds to which precondition clause. The context is

determined by taking the guaranteed state in which each occurrence of the operation exists

and comparing them. Those items in the state that are guaranteed to differ become the

context. A null context argument means that the clause applies to all applications of the

operation.

Precondition clauses are also sorted items. The sorting is based on the desire to access

the most restrictive precondition clause first. Restrictiveness in this sense is defined as the

number of elements in the context argument. Longer contexts are placed first. Null

contexts are placed last.

E. GENERATION OF THE POSTCONDITION CLAUSES it

The addpostconditlon and deletepostcondition information come from two sources

-- the objects' primitive operations (Type I) and the task operations (Type II). The

postconditions from the primitive operations consist of the intended effect plv s tht" side

effects. The postconditions from the task are the definite side effects only. Probabilistic

side effects are treated differently because their effect is not guaranteed. Once the

43

postconditions have been collected, they make up the addpostcondition information and the

opposite of each addpostcondition member makes up the deletepostcondition.

Because operations may be used more than once in a task and therefore may carry

different side effects, these clauses also have context arguments. However, the context

argument is only non-emtpy for those operations with task-defined side effects. In addition,

if the task-defined side effects are identical for all uses of the primitive operation, then the

postconditions are merged together with a null context.

Postcondition clauses are sorted in the same manner as precondition clauses. The

Jonger context arguments go to the top of the database and are accessed first.

F. GENERATION OF THE RANDCHANGE CLAUSES

The randchmlge or random-event clauses come in many different forms. For this

reason, randchanges are also given Type designations.

0 A Type I random-event is based on upwetainty among members of the initial
setting. The teacher specified these in terms of percentages when listing responses
to the "condition is probabilistic" sequence of questions.

• A Typeli random-event is based on the probabilistic side effects given in the task.
These random-events are operation-triggered.

0 A Typel!l random-event is based on object daemons. Type lia use probabilities.
Type 11lb use counts to advance. Type I1ib random-events might sound less
random then their probabilistic counterpart. However, since these daemon-based
events are condition triggered, the advancing event is not guaranteed to occur.
HenceMEBuilder treats them like a random event.

Randcbanpe facts consist of the following information, and are agent-independent.

The first item is the triggering action -- for Type I it is lnit, for Type II it is the operation

name, for Type M, it is any.op to represent "any operation". The second is the context.

which is calculated the same way as with precondition clauses. Context arguments are only

non-null in a Type II randcbange. The next two arguments are the postconditions -- delete

and add. The fifth argument is the probability of occurrence or the countdown to

44

occurrence, discussed further below. Finally, the sixth argument is the message which is

printed to the user when the random-event occurs. The message for a Type I is blank.

Type Ihb randchanges, based on a countdown to next occurrence, introduce

information to the state which is hidden from the user. METutor will maintain a special

state member which contains the randchange's postconditions, message, and countdown

value. The student is not informed that the countdown is active. After each student turn,

METutor will decrement the counter. Once the countdown reaches zero, the postconditions

are activated and message passed to the student. Countdowns are the first random-event

handled after the student's action.

45

46

VI. EXPERIMENTAL RESULTS

During the Summer Quarter of Academic Y.ar 1994, an experiment was conducted to

demonstrate that MEBuilder's method of lesson authoring was more robust and less time

consuming than authoring a lesson in a traditional Computer-Aided Instruction (CAI) form.

Appendix F contains all the info,-mation disseminated and gathered during the experiment.

A. PARTICIPATION IN THE EXPERIMENT

The experiment included six students, hereafter referred to as the "participants" taking

the Advanced Artificial Intelligence class at the Naval Postgraduate School, All six have

taken an introductory artificial intelligence class during the spring quarter. The students

had never used MET utor before. As part of the advaced course content, the participants

received some basic instruction about CAI methods and introductions to intelligent tutoring

systems.

The participants are American military officers. None had ever authored a lesson for

an intelligent-tutoring system. All have experience as military trainers, but most have little

or no teaching background. Therefore, the experiment will not target how well MEBuilder

works in an actual educational setting. Rather, it will focus on MEBuilder's ability to

outperform CAI in terms of simple lesson construction -- does the task of building a lesson

take less time, is it more complete, :, id does it produce fewer errors?

B. SCOPE AND) CONDUCT OF THE EXPERIMENT

1. The Partlciparts and Their Requirenents

Tab I of Appendix F contains the detailed instructions given to the students. The

participants were divided into two groups, but each participant was to work individually.

The first group of four participants was tasked to write a lesson for a scuba diver preparing

to dive for lobster (see Tab 2, Appendix F). The second group of two participants was to

47

write a lesson for replacing a gasket in a car engine's water pump (Tab 3, Appendix F). The

reason for the imbalance is because two participants had to withdraw from the experiment

and there was insufficient time to realign the groups. The two tasks were selected and

modified such that:

a Both tasks required 14-15 steps, so the amount of work is similar among the two
groups.

* Both tasks have 36 possible solutions.
* Both tasks were originally written for METutor versions 21-27 and are ideal tasks

for a CAI-based tutoring system.

The participants were provided with access to MEBuilder and METutor, along

with CAIBuilder and CAITutor -- a lesson authoring system built with CAI methods and a

CAI-based tutoring system. CAIBuilder is written on top of CAITutor in the same manner

as the MEBuilder system in order to duplicate the authoring-to-shell environment. Finally,

the participants were given access to automated measurement tools which helped collect

some of the required data. Tab 4 of Appendix F describes how the participants were to use

the automated tools.

In order to provide as fair a comparison as possible between the two methods,

several restrictions had to be placed on use of MEBuilder -- specifically those features

which the CAI method clearly has no equivalent. For example, the lesson was to be written

using one and only one task. This is because CAIBuilder does not have a mechanism of

combining tasks into a single task. Second, the students were only to build one problem in

the lesson workbook frame as part of the experiment. CAI has no equivalent to MEBuilder's

workbook frame. The features of MEBuilder not tested in this experiment will be tested in

future. Third, the order of use between the CAI method and MEBuilder was mixed -- four

students used the CAI method first, two used MEBuilder first. Again, the imbalance was

due to the withdrawals.

Finally, there was a six-hour ceiling on the experiment. Any participant reaching

six hours was to stop and turn in the partial results. This was due to time constraints on the

availability of the participants. In order to help meet the time constraint and still adequately

48

test the task-manipuiation processes of both methods, the students were provided with

partial solutions. These partial solutions, given in Tabs 5 and 6 of Appendix F, contained

a task structure of one complete solution with no options.

2. The Data to be Collected

The information the students were required to gather included time spent using

each method, number of operations using each method, and some statistical measurements

on the resulting data structures. They also had to answer some questions regarding how

their time was spent using the CAI and MEBuilder methods. Even though some of these

measurements are numeric, they were not intended to be interpreted as significant raw data.

Instead, as described below, these measurements were to be interpreted subjectively as a

means of identifying trends. With the exception of time, all the precise measurements were

done through automated means, as described in the following sections.

a. Time Measurements

There were two measurements requested -- the amount of time spent on the

CAlBuilder and MEBuilder programs, and a subjective breakdown of how the time was

spent. The time is to be given in hours, and is not intended to be a precise measurement.

Rather, it is a subjective measurement to see if one method was significaxntly quicker than

the other. The two tasks were written in such a way that if done properly the students

should spend roughly an equivalent amount of time on each solution. The students were

specifically instructed not to include down time due to program bugs.

For the second part, the students had to rank the amount of time spent in the

following four processes: familiarizing with the program, designing the data, entering the

data, and testing and using the data. These were given for CAIBuilder and MEBuilder as

a whole, and then asked separately for the class, task, and lesson layers withhi MEBuilder.

Familiarization encompassed reading the user's manuals and running the samples given

inside. Designing the data meant organizing the data on paper prior to running the

authoring system. Entering the data encompassed time spent using the adding commands

49

to get the data into the system. Testing the data encompassed checking, debugging, and

modifying the data once it was in the system.

The expected trends were that CAIBuilder users would identify entering

,aid testing as two most time-consuming processes. MEBuilder users, on the other hand,

would identify familiarization and design at all layers with the possible exception of

entering at the object layer. These would indicate that MEBuilder has a steeper learning

curve. However, if the time spent on MEBuilder was less, then that means the productivity

using MEBuilder is significantly greater.

b. Operations Measurements

CAIBuilder and MEBuilder were embedded with a counting mechanism in

"order to determine how many commands were used in each system and the percentage of

commands aborted. An aborted command is a command that failed or a command whose

subsequent queries were explicitly aborted by a participant. In addition, MEBuilder's

commands were broken down by layer. These help support the time measurements above

by identifying interface problems as a possible factor. If a command is confusing or a

participant doesn't understand what the queries mean, he will tend to abort the command.

On the other hand, if a particular layer was identified as time consuming in the entering and

testing processes and it had few aborted commands, that would signal that the layer's

interface is inefficient.

c. Examining the Data Structures

Examining the resulting data structures would provide indicators about the

probable correctness of the resulting tasks and how robust the •ask is. Since the operator

names were not strictly standardized, an automated examination of the content of the

structures is not feasible. However, the number of acyclic paths to the solution can be

measured efficiently. If the participant's tasks are in accordance with the lesson

specifications given, his lessons will have 36 solutions. Because CAI methodology puts the

50

burden on the participant to construct the paths, it was anticipated that the CAI solution

counts would vary more than the MEBuilder solution counts.

"Robustness" is in term of the aumber of nodes and transitions needed in

the respective data structures. Since MEBuilder relies on METutor for coaching rules,

MEBuilder users do not have to add information about student errors into the task. If the

student fails to follow the correct sequence, then METutor will handle the error. This

means that the number of nodes and transitions needed by MEBuilder are minimal -- a

maximum of one transition and one node per operation.

However, CAIBuilder users must add explicit -rror states and transitions.

*. For eazh transition alorrg a soluticn path, the lesson sho-uld provide two or three wrong

answers to afford the student a choice. In addition, each wrong answer transition requires

a path back to the solution. A non-robust method would have only a single error state and

single transition back to the start. A good method would have a single error state per error

transition. So a fully robust CAIBuilder solution should have roughly three times the nodes

and six times the transitions that the MEBuilder solution might have. Combined with the

time and operation measurements, this would help describe how much better MEBuilder

could do with a much more complicated task.

3. The Deliverables

In addition to the above data, the participants were required to provide a short

write-up of their work. The write-up was to include comments and opinions regarding the

experiment and the MEBuilder program. Attached to the write-up is the resulting data files

produced by the two authoring systems, along with script files showing the lesson being

used in the corresponding tutoring shells. The evaluation of the experiment focused on the

write-up, specifically if it included comments about the interface and problems

encountered not adequately identified elsewhere.

51

C. RESULTS OF THE EXPERIMENT

Appeudix F contains the raw data generated by the data collection programs on all six

participants. The data collection program outputs are in Tab 7 and selected comments from

the participants are in Tab 8.

1. Time Measurements

The participants took roughly the same amount of time to do the task on either

system, with the CAI system requiring slightly more time. The minimum time spent on

CAIBuilder was one hour (by one participant), the maximum was three hours (by three

participants), and the average was 2.5 hours. For MEBuilder, the minimum was one hour

(by two participants), the maximum was three hours (by one participant), and the average

was 2.0 hours. Four of the six required less time to complete the requirements in

MEBuilder. Only one required more time with MEBuilder, and the sixth spent an equal

amount of time with each system. In both systems, familiarization with the program and

entering the data were cited as the most time consuming processes, although MEDuilder

showed a greater distribution of time usage than CAIBuilder.

"2. Operations Measurements

The participants required from 68 to 164 commands to complete the task in

CAIBuilder, witt. an average of 123. With MEBuilder, however, the range was only 11 to

45 with an average of 26. In terms of completed commands (total commands minus

aborted commands), CAIBuilder users required an average of 121 while MEBuilder users

averaged 15. The minimum number of commands needed to complete the requirement in

CAlBuilder was 30, so CAEBuilder users completed four times the necessary commands.

With MEBuilder, the minimum number of commands needed was ten, so the participants

performed 1.5 times the necessary commands in MEBuilder.

Participants aborted MEBuilder commands nine times more often than

CAIBuilder commands. In CAIBuilder, two participants completed the requirements

without having to abort any commands. The highest percentage of aborted commands in

52

CAIBuilder was 6.5% and the averag.- was just above 2%. In MEBuilder, however, only

one participant performed no aborts and two participants had to abort more than 30% of

thier commands. The average rate for the participants was 18%.

"It is important to note that the data-collection program failed with one participant

and the MEBuilder command usage was lost. The participant stated that his command

usage was not significantly different from the normi.

3. Resulting Data Structure Measurements

The data structures produced all MEBuilder sessions were identical to the

solutions produced by the author. The CAlBuilder solutions, however, differed. All

participants stopped at the point where the CAI task was complete, without adding error

conditions or states. The four diver-problem participants did achieve the author's solution

of 23 nodes and 32 transitions. However, those doing the cooling-system problem did not

match the author's resulting data structure nor did they achieve 36 solutions to the task.

4. Comments from the Participants

The positive comments focused on one primary theme. Both systems were

deemed simple enough to use once one gets accustomed to them. Neither system was so

difficult to use that they felt unable to complete the task. In addition, once the participants

became accustomed to MEBuilder they found MEBuilder quicker and more flexible.

The vast majority of the negative comments collected centered on two major

themes. The most common concerned the user interface. Both CAlBuilder and MEBuilder

use a somewhat crude command-line interface that wasn't friendly and had errors. Most

participants agreed that the help facility was weak. Comments specifically directed at

MEBuilder was that the sequence of steps in the "create lesson" command were confusing.

The second theme was that once a particular part of the requirements were

complete, it was not readily apparant what to do next. For example, once a participant

finished with a task, some did not understand that the next step was to construct the lesson.

53

D. INTERPRETATION OF THE RESULTS

The results show that using MEBuilder's task-manipulation method produced

consistent and correct results more quickly than the CAI method. Despite the fact that none

of the participants added student-error transitions to the task, they still required more time

to complete the task manipulation than with MEBuilder. In addition, CAlBuilder users

performed significantly more commands than required due to navigation and editing. This

is a clear indication that MEBuilder's method is more efficient.

Further, had the students been required to work with a more complex problem the

results would more heavily favor MEBuilder. To illustrate, consider the original lessons

from which the tasks used in the experiment were derived. The original cooling-system

problem (McDowell, 1993) was 18 steps long but had 720 solutions, not counting the

unordered actions. The original scuba-diver problem (Seem, 1992), not counting

unordered actions, had 22 steps and 36 solutions.

The CAI data structure for the original cooling-system problem would have required

1080 transitions to m~odel the solutions alone. Since the CAI method works via one

transition per command, the rate of cor-mand usage would likely have changed little.

Therefore, by extrapolating the time and conmmand usage, CAIBuilder users would require

20 hours to build the extended task. One could not expect a teacher to do so and produce

an error-free lesson. On the other hand, because MEBuilder allows single commands to

perform significant modifications to a structure, users could create the 720 solution in

minutes with only a few commands.

With its two unordered actions, the number of solutions to the cooli g-system problem

increases to 69,192. MEBuilder only requires one command to declare an unordered

action, so only two commands are needed to achieve this increased complexity. Clearly,

CAIBuilder users would not be reasonablt, capable of producing an equivalent lesson. The

original scuba-diver problem had three unordered actions and 4,320 solutions.

54

E. CONCLUSIONS

This experiment proves MEBuilder's concept that an authoring system using

intelligent rules can produce lesson material much more efficiently than traditional CAI. In

addition, the resulting MEBuilder lesson requires far less code space and can be modified

significantly faster than with a traditional CAI method.

This experiment also shows that for MEBuilder to be effective, the user interface is

extremely important. Such an interface should assist a teacher in entering commands to the

terminal through the use of menus and structured dialogs. It should also provide a means

of helping the teacher understand the authoring process, and provide a good help facility

for the teacher to fall back on.

The experiment also showed that more work is needed in the lesson-definition system.

The interface needs to make the overall process more intuitive. An appropriate follow-on

experiment would have the participants given a set of tasks and by required to construct

different types of lessons. The lessons would contain problems that range in difficulty from

beginner-level to expert-level. The levels of difficulty could be achieved by breaking the

task into components or adding random hazards to the problem.

55

56

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

A. SUMMARY OF CONTRIBUTIONS

MEBuilder's object-oriented design and teacher-assistance tools show great promise in

the construction of a general-purpose lesson authoring system. Its library-management

features help organize lesson information and hide the low-level file structure from the

teacher. Its object-modelling techniques help ensure consistency and reduce errors when

building tasks. Its task-modelling techniques help build complex yet robust procedures in

a manner of minutes. Its workbook-style lesson framework help a teacher construct a

multitude of exercises to serve a wide variety of purposes -- from increasing levels of

difficulty to presenting different subtasks.

The experimental results supports MEBuilder's concept and design as having

tremendous potential. It showed that MEBuilder could be a more effective and efficient

authoring system than one based on traditional CAI methods. Further, MEBuilder

produces lessons with a higher degree of assurance and a lower risk of error. Also, because

of MEBuilder, METutor has evolved to handle a greater range of problems. These

problems include those involving other characters, multiples of like props, and multiple

exercises in a lesson.

B. WEAKNESSES OF MEBUILDER

MEBuilder is not without problems, especially given that it is a project in its genesis.

There are several areas which require significant adjustments and improvements before this

program can be considered releasable.

1. Is Object-Modeling Too Complex For Teachers?

MEBuilder is heavily reliant on object-oriented modeling techniques, which

may be beyond the comprehension of many computer-illiterate educators. Currently, the

"57

object-definition module is very unhelpful in its presentation. A teacher might not

understand what it means to inherit property sets or operations. Part-kind inheritance is an

extremely difficult concept even for most students of artificial intelligence. MEBuilder

requires additional features that help visualize the object as it is being defined, and help the

teacher understand the implications of modifying object inheritance. In addition, future

experiments should be conducted using professional educators outside the realm of

computer science. Military trainers would be a good example.

2. Lack of Pie-Deflned Object Library

In order for MEBuilder to be effective, it must come with an extensive library of

pre-defined objects and tasks. Otherwise, a great number of lessons will consist of objects

that are only good for that lesson or whose behaviour has been limited to meet the needs of

only one lesson. In addition, the object layer is where the greatest amount of time is spent,

and the desire is for the teacher to devote energy mostly at the lesson layer. Object re-use

is a major selling point in object-oriented modeling, and only with an extensive and

accurate library of objects can this benefit be realized.

3. MEBuilder and METutor Do Not Employ the Same Domain of Features

There are features built into METutor which MEBuilder presently does not

access. This includes a wider domain for summary-fact definitions, multiple goals, and

other quantifier expressions within the macro languange templates. The converse is also

true. The macro language does not perfectly handle class inheritance of objects, so a

problem written for a prop of some object might not work exactly right for objects of a

derived class. A lot more work is required to ensure that the features of MEBuilder and

METutor are brought to a perfect one-to-one correspondence.

4. Emphasis Needed on the Interface

The initial focus on MEBuilder has been on its architecture, algorithms, and data

structures. However, as shown in the experiment, MEBuilder requires a strong user-

58

interface in order to be effective. The user-interface needs to provide easier command

access, simple and understandable representations of all MEBuilder entities, and a

thorough and context-sensitive help facility. A graphical interface using menus and

windows would be ideal.

C. FUTURE RESEARCH DIRECTIONS FOR MEBUILDER AND METUTOR

1 Coaching Capabilities

The scope of both programs only extends to the conduct of exercises and some

basic tutoring rules based on means-ends algorithms. In order to help make the resulting

lesson more believable to the student, both programs require means of specifying and

implementing domain-specific coaching rules. These are rules which can evaluate a full

sequence of student actions and help find possible cognitive errors that a means-ends based

error will not detect.

2. Including Ancillary Domains in MEBuilder

Some entities cannot be modeled adequately as a property set1 but can be

mouaeed using summary information. An example of this is an audit file for an operations

systOtr, which contains a list of the operations performed by users in a computer center

simulation. The entries of an audit file constitute the file's state, however one certainly

cannot efficiently model these entries beforehand in a property set nor use the raw data in

means-ends analysis. Summary information based on audit file, on the other hand, can be

used in means-ends.

An audit file is an example of an ancillwry domain. The term "ancillary" is

appropriate because it supplements the state with raw data. The extension of MEBuilder

(and therefore METutor) to cover ancillary domains must handle three areas -- the

defimition of the ancillary domain and the associated summary facts, the definition of

operations that impact the ancillary domain, and the relationship of the ancillary domain in

the task and lesson structure. Other important but less critical issues include the display of

59

ancillary data. The qualitative state methodology of METutor lends itself to a simple

output interface. Ancillary domains would require a more complex interface.

3. Including Quantitative Domains and A* Search Techniques In MEBuilder

MEBuilder is still limited to qualitative problems that only view the state as a list

of objects' current properties. Many applications have quantitative values involved, such

as reading on a boiler or an operation such as "turn dial to X'. The current object layer in

MEBuilder can be extended to handle different domains, including quantitative ones, along

with associated operations.

In addition, the means-ends algorithm in METutor uses the ordering of facts in

the database to break ties among sets of operations that can be performed at a given step.

The ordering of facts may be inappropriate or incorrect given some contexts. In addition,

this method only helps answer the question of what to do, but not how much to do it. In

oider to adequately apply quantitative operations in a given problem, the means-ends

algorithms in both progranis require supplementation with a quantitative search method._

A* is suggested here because it is the most general purpose search method avaiiable and it

is built to address the specific issue of solving a procedural task in the least costly manner

(whether in terms of time, resources, etc.). A* as a basis for an inte!ligent tutoring system

has been explored separately (Galbvhi, 1994, p. 725).

4. Use of MEBuilder in a Major Application

Cuwrently, MELuilder has only been tested in the context of simple applications.

The next set of tests involving MEBuilder must demonstrate its ability to handle wmplex

simulations with many different agents. An example of such an application might be a

tutoring system for a system administrator learning computer security. In such an

application, legitimate users and intruders would serve as agent- in a simulated

environment and the student would be charged with mnainriing the system. Such an

application would teke full advantage of MEB1uilder's object-oriented modeling and would

60

be sufficiently complex to test MEBuilder's simulation capabilities. It would also help

uncover bugs that simpler applications do not produce.

S. Using MEBuilder with Other Intelligent Tutoring Systems

Currently, METutor is the only intelligent-tutoring system with which

MEBuilder will work. In addition, MEBuilder uses many of the same algorithms as

METutor during automated task generation. This allows MEBuilder to guara. toe that its

lesson will work in METutor. However, MEBuilder's value would be greatly increased if

it could generate lessons for other established intelligent-tutoring systems, such as PIXIE

(Sleeman, 1987, p. 239). To accomplish this, MEBuildcr requires user-selectable Lesson

Compilers, one for each supported intelligent-tutoring system.

61

262

'" 62

APPENDIX A.:MEBUILDER SOURCE FILES

This appendix only contains the header comments foi. the r~riniary NMEBuf'der source

files and the primary METutor version 29 source file. This is for pra'ical consideratirrns

given that the source- is nearly 400 pages long and contains more than mezneg~ibyte of text.
-Only those source fil es directly relevant to ME~nilder's primw~ functiont are

included. files not included are the help system source files, s,-, eral P~rolog iiijaity. fil~es

written by the author, and the supplemental data collection module used fori the exptriment.

Also, the author has deleted segments of the header comments from the bel 3 f les which

'describe future upgrade requiremnents

Tab 1. mebuild.pl -- MEBuildar's Main Module
Tab 2., mebuild-class-definition.pl - MEBuildCLS mcdule sovrce

'Tab 3. mebuild..task..definition.pl -- MEBuildTSK mou c s e
Tab 4. me~,uild-lesson-definition.pl -- ME~uildLES module source
Tab 5. rxnebuildjesson-sornpiler.pl -- ME904~CMF' iodule source

* Tab 6. mebuild-library.pl -- MEBuldLIB module soi.~e
Tab 7. -metutor29..shell.pl.- METutor version 29 source

63

TAB 1. MEBUILDER MAIN MODULE

/. Neems-Raft Leasso Bull"" Programt -- Verose Is (33UZLDNR) 0

/0 CPT lboma•l . Galyvi, U.r. Ar, , Saval PostgadtOate school, Monterey CA 93940 0/

P M-IU Main Interface -- Version 1Itt

I' To run lmfuilder, load *this* module end qgeray */

/0 ,- build. 0
il/'1 0-/144,

•/0 T to run lNu•ilder with the current Prolog database intact, query: 0/

/0 a -baild~without-Atialiuing. 0

/0 the latter is doeigned for use am a recovery tool should KNUuilder Ferfe•1.
/* a less-than-graceful oeit during exoeution. 0/

* / .0/

/0 The main interface module provides the comeand loop and &aces* to the 0/

P0 subordinate interface modules. Zt also manages the autosave file which is '/
/* a local file dump of all d4antsally created modules -- and the help fac 1•ity
P* -- which is a sirple erb-cammand loo providing sceawhat aostezt sensit•ve
/P help to the user. Access funoi£ons to the subordinate data structures are '/
i'proviled through the following facts 0/

/ loealccimand (c<cmai4, <poedicat"). ./

-/cocmand is the input retrieved from testiLo's get.prcmte&.izout. The *1
P0 prediuato is a xevo-argument predicato whiok,. performs the analagous ccummA. '
/* legalomanm 9.A a m•ltifile fact, but Is *not* dynamic.

64,+.

TAB 2. MEBUIULDER CLASS MODULE (MEBuildCLS)

/0 Moans-Unss Lesson building Progran -- version I (3U3UILD3R) *
/CPT Thomas P. Galvin, U.S. AzqW, Naval Postgraduate school, Nentersy Ch 93940~

/* IN ZLDXR Class Definition Module -- Version 1.01 0

/* Version sistoa 0

/* 1.0 -- First release. Concentrates On comonent, property Not, and
/e *oteation definitions. The relations and daemones are defined and 0/

/0included but their effects are far fromi guaranteed to work in a
/0 aceipild lesson. 0

/0 1.01 Commute are updated and stabs placed for comad or predicates 0

/0 ~needed for use in future. The property-.display-.data and the '
operation....implmy...ate sections, which were not used in the 0

/0 ~congiler, are stubbed out.* (These should be fixed before I go). 0

/* Impsortant Comilation Notes 0

/0 During the Quintus Prolog linking process, the following two predicates are 0

/* aznounced as unknown. This is caused by comspiling and linking the program 0

/* in the, Prolog, not the Pzowindawosaevironments 0

usertprowindowts/0
/0user sdraw-iProperty..picturo/O 0

J* userstbd/u (for any K -- used to identify coda stubs) 0

/* I and when the msbui.1&.classdefsLniticn-fgrephics file is permanmently in- 0

/0 atalled into %U~wilder, these imessages will gS away. 0

/0 0

I' u0filder's Class leE inition data structure 0

/0 0

I& A class is defined as the compsite of the following facts with the same"0
P/01&402,s argument as the first arguiment. 0

/0 *Laos-dot (-colasm-, <list of parent classos)-). 0

WM cc0 o 4parent calasees. The standard parent classes of prop and 0

/0 character are ussd to indicate the specific type of object it is and /
/0 what capabilities it has. Character objects bAve the additional cap- '

abilities of being the primary actor of a task, and can be instantiated 0

/0 as the student 's role in a Lessan. Currently only single inheritance 0/

/0 is supported by MEguilder, however the inheritance facilities provide 0

/0 for expansion into multiple inheritance. 0

10 cc-onent(4celamss. -c~cpnent class mame-, -cacoasnot naint., <tezisoe). /
/M ami n op~onntat teinse 4,s given as singular, plural, or default and 0

/0 is used to ovexrride the "ends in xs rule when determining plural mau 0/

P in the standard UglSish-languago output. 0

/ >apcprtY..sot (4Alasx)1 4property set nAmm§2 4domai&J). 414hiaahle).
/0 where -chideableD. it= bideable I mat...ideable 0

/0 4hidsable" corresponds to the creation of hideable facts in the NTutor 0

I& 1ecuon. A property Net that is hideablo automatically generates holes 0

ta fr the apecification of operators that handle hideable facts. 0

MM cc1 o prcporty...ets. Ilast imualamentatichm of WUmilder used the saw 0/
/0 structure for meisbor of a prcprty set as for the NNtuta facts used 0

/0 a moans-end. search space. This versfon used only the pref ix. which 0

/0 is intended to eliminate the wasteful operand replacement. 0

65

1/,1 -gprty...diplay-data (-class;, pr~epety3., cgraphics data>).
FoPr version 1.01, all Interfacing with property..display-.data has been /
deleted and stubbed out.* The msbuild..claoss.Afinition..graphics file

/0 cotaims the capability for specifying a graphic for the property. no I/
/0 gapbios dat&3 would contain only those things that are generically 0

/0 true, such as the graphic bitmap file and the dimensions. All other
/* details, such a" the color, location, click range, eto. are part of the

/0 Individeaj loesso definition (refer to lesson definition file..
to 0

/0reletion(4oloss*, cobject*, 4praperty)-, 4definition set of properties~).).
to a rolation is a meta-rproerty which is true it the -cdefinition met of *

/0 prolperties is met. 4object~p is either cclaoo- or a valid component, 0

a0 nd comrises the state argument to -property3-. .cproperty)- Lu a symbol 4/
to and 4definition sets. is of the form atomic -- cor~responding to a
to property of the class, or of the form .4prcpertyx (ccowcmonet3) for those 0

/a properties held for the component.* 0/
to 0

to sinn=(-clas@3-,- damonn naew; ,-triggering conditionsx.,.-eadvancement cond>,,
to 4advaflco type3-, message tosplate)-j.
to where -ctriggering conditions* are conditions that cause the daemon to 0

to "wake up" or "stay awake". The daemn is chocked at each tuarn when the 0

to -ctriggering conditions* are true. When a dasman is activated, it is ~
to doctrinally set to the first member of the iterating property met,
/a although in means-ends space it can in theory start at any place. 0

/0 adeancesent, conal, are special conditions that indicate that the daemon 0

/0 will wake up -- either prcb(<prcbAbility*) or count(,cinteger,) where 0

/t integer corresponds to the number of turns. The -advance type)- cor-
/0 esponfis to one of two things -- either advance(<Vroporty set of class>)

/0 which indicates that the daemon will always advance to the next 0

/0 property in the mot, loop(-cproperty mot of alas"~) which the same &as 0
/* advance except that the object's value can revert t,. the first value, '

/0 or aapdate(.coperaticuip) where coperation2. is a defined operation of the 0

to class %&ich takes *o*o Indirect objects, (This is probably an man eedid0
/0 restriction which could be cured in future.

to The message template is used when the daemon becomes active. Xlese,
/0 the measages used to describe the daemon's advancement fall in line 0

/0 with the property set members and the 4cperation),l apply text. 0
to 0

to operation(4clasos,, .cobject list>, cverbo# -direct obj.3-, ctrail phrase>, 0

/0 pweaomndition list2., <intended effect., coide offec-t list~p-.'.
to NMO3 The 4-tuple C(cobject, list- cverb* cdireat obi..P ctrail phrase.)0/
to is considered as a whole to b" the Identifying name of an op. 0

/0 operation models specifically one type of method -- the atomic method. of
/0 operation facts describe an atomic operation -- one that takes one 0/

/0 agent-turn to perform and cannot be broken down further, operations 0
to are not character independent -- they can be overloaded by specifying 0

to the highest level character class as an object. it no character class 0/

/0 is specified, then there is an implicit assumption that all character 0

/0 classes can perform the operation. 0

to 4clasmv. is considered the direct object's class. cobject list,- is a 0

/0 complete list of objects that are required to be present in order to 0

/0 perform theR operation. Mote that class can be repeated -- meaning that 0

to as qoeration most take two or no,!* distinct objects of the @ame class. 0b/

/0 There will exist a wmsas to specify ferall in operations however such 0

/0 capability is not yet present. 0

T0 he -verb,- is a verb phrase. 4direat obj..-o Is either ýclamss or a& 0

/0 valid component of 4class;,. 4trail phrase. can be any combination of 0/

/0 words, however any subsequence of words which match a maber of
/0 object Uisti, will be functored with cbj () In order to do Inheritance 0

on the ansm of the operatioaa. -cpzeoomdition i~st.- matches one-for-list 0

/0 with respect to Etclass2.Ioblect list)-. 41citended eff~cot. Is a single 0

66

property which will become true upon qplicatiLon of this operation aend /
/* most be a dofined property of cdirect obj.. */.

/ oratios.di•play-data(calass>, 4operaticn,, 4display data:). */
Vxo version 1.01, al1 operatio._disp2ay_d.ata items have been deleted or *1

/0 cstubbed out. fte only useful thing for Adisplay data* would be the /
/* generic or default text string used to generate an anpplytezt in a

/0 lesson. 4display data3- could be expanded to include enimnation data '
0 •for showing an operation occurring. This is not used as a 9th arg to '/

the operation fact because the hierarohy %f display item does not '/
necessarily follow that of the preconditions end postcoanditions. '

/ C Classes a&o modeld using Quintus Prolog dynemically-ureated modules, so *I
/P the facts for a class c is Ctclaszoe.f(C,PCL) - somponent(C,CC,cc) - ete. *I
/0 this allows this modile to take advantage of the module feature in toxt_ios '
/* prolog.outfie 1predicato.e.
/0 Classes are not directly accoosed by outside modules. eacheclassJfacts 0/

/0 is used to take all the class information and cache It into data retrievaole 0/

/P by the lesson database. /
/0 */

/* Commad•L pzrvidsd by this module (including those not yet ixplecented) 0/

P Vocumentation on these commands can be found in the user]s manual.

/* 01

/0 01030! MWZuzTW COSSWIDS Loops I /

/0 create object (named cob4ect>] main 0/

"/ remove object [named cobject:) main 0/

0 •restore object (n•med cobjecta) Main /
/I view object (named <objeet] All 0/

S/ modify parent object [of <object.] main 0/

./ check object (named <objeot;) All All

/P COMPONOM MMAMO UMT CCMMS• B
'* creat comonent (named ccompo.ent> [ifor 4objectN) Main 0/

re mve omponent Inamed [ecouponont>) (from <object]) main 0

0 view component (named -cac onent)J (o[of objeote>l All
P0 modify component (named -coosonant2-) (of -objectz-1 main
'a

/0 PUOPUIY OT 53MWAN&GES COSNfUm)8
i0 create property set [named -cproperty set3) [(for cobject) main */

/0 romoiva property set Imamed cproperty ser3- (from cobject>) main 0

P view property set [named -property aet- (of 4Ccbject> All 0/

* mso6ify property set (named 4proporty setpb1 (of cobjeot] Ma:in /
/0 se1*t property display data (for cpzvperty3] [qf cobject*1 min 0/

/P 3MWRY FACT MANMONUY COSMNMSa
/0 create soumalzy fact [for -cobjeaai HMain

S remove Su•az• y fact (from 4object>) main

/" view summary fact (of <object>) All 0/
""0 modify tumazy fact (of cobjeots3 Main *1

/* OIEALION WAtUU! COMMMDB
/* create operation Igor Cobject>l Main *1

/0 remove operation [rca c•object*] Main */
0 view operation (of cobJoct:) All /

/ •modify operation lof <oebjeot) main in
/* set oeration display "ata tof Cobjects.] main 0

P0 "emno CMM' xiManmuum COS6S3MBI

67

P create bckground cangem Inamed -edasmon~3, Ifor 4bjvct~.I Main '
/a TaORO" background Change (named cdaemon*3 [from cobject>) Main

/0 view background ekng (named <edsa, on>] [of cobject:) Al
""",modify backgro..t change nafed cdaemon3] tof ,bo1ectI Main I

/0 .prted Predi.oates. All predicates intended for external use are prefixed 'I

I' with masbuil~dCea-
/0 0

/* ,PPLXCAYXO PMW1DTCAI3 (All exported to mebuild main) t a
S/0 abouildcL., setup. ,-
.. / -- Initializes all the ,, mains, Commands, and texple.tes for the Main */

/0 ~AsbuIld application command loop. 0
/* mebuildCx&i,•clude-View.coinnnds (+Loop) 0/

/0 -- lrovi•as Loop rit-i the clams deftnition view conial. so use in 0/

1 •the task definition and lesson definition loops. i
P/ mesbuildoLs.class.database-..Litia4se. 01

" /0* Znitialises the classdefinitino database .1
/P me 1.ildc...class,1-atebase.shutdnm. "

/0 0Clears all class..Aofi•.itio facts from the Prolog database and eraser0/
* all dnanically-,reatod modules. Used by ./ild's quit comand.

/0 buildcIA.eppen&..autopave. 0

/0. .IAppends all alass definition data in *a=ry to the autosavo file. "

/0.. I * p -gMi~ i "0*

/0 (C•M2 flWOKD)
/0 inbuldOLd.*..ldeU, lnoLclso (Claf,..z). 0/

/.. IProvides user access to" definiz. a new class. 0/

/'0 mabuildCL•,_jmov_.class (+,...as-). ./
" /!* :lMarks a class as deloted. (roefor to library module). 1/
I* mm.ildL..Arestore._claP (+Class). */
/. Restores a removed class in memoj (i.e. unaclotes it). "/

/0 nbmildC1a3..iew.-claffs t.eClass). 0

/0 Prtty-prini-s the clastA definition to tho &arsen. only provider a by- */
j'* name listing of the class malaers. V.'r more de'ai"4le inUarmation a- 0/

.,.. . bout a particular data item, rofor to the corr•ueLpnding view comand /
/* below. "/
/0 AsbQilWWP.CV.ifY...lass (tClaos).0
/* allows- the user tv change the parent class link. 0/

" /0 (=O M z1 VORD AmD UZPORPI P0 TOO MODDULU 0/

/* mAbuildclA_tostclass integrity (+Class).
Ilk Allow the user to test the integrity Of the class to ensure the class 0/

----. / doefiaLtion ic consistent. The test includes checking whethox or nota •I
/. 0 - -'."I referenced eopnoeats, pTopertios, and operatioze in the 0/

are still well-defined. 0/

/0 -- Wat cheagngo to the wo3 I-Setized mewers of the class does not 0

- /0 cause Other mSmb4bre of the class to beome contradictory. 0/

/0t* "he smomatics of the particular teats ire givau ir the predicates in 0/

/0 each segment seame 40bj*CtlVoltatosL.tegqrIty. 0/

/* (M3ORM go k AIMjO3) 0/

/0 mesnbUdl4COZ cach..otask.facts(.h2argetxofdlo, oist of ZMstincelClass pairs) 0/

0]Producer cached versions of the class definition for use in the task 0/

/0 sdnulee. Only the property sets and the operations are cached for 01

0 ause JA task sefinitions. 0/

e m~ebuil4.=A.d_oachelslsonLfaots (+Iarge•toutls, +List of Instance/Class pairs) '
/0 Prouceso cached versicns of the class definition during cpilatici. */
/* mob•sbuldI.ezwxport.claszss (+List of Class/tile pairs) e/

Be leide cut the clam• definitions In meomzy to the files listed. a/
/* umbuil•CiAderivd-4olass-of (+Class, ?Desoendaat) 0/

/0 Pests for derived ?lass relatlonships or provides a derived class. 0/

68

/*.... !, hiidCZ!..a.n pn , ass(,as ,

/ * I aauL~is...a~o acter._.lass (+Clao•) */

6 •ecific instances of ash idCL._.derive&.clss._of for the generic '1
*prop" and "character" objects.

"". (msh ld0LS-dinaamponent(.Ccooa)t ,+Class). '
Prvzides user ascess to the componant definition facility. The 'i
Component most be unique to Class. The user will be promted sepsi- '

/ 1ately for a Component Class with which the Component will be An m -in
/, stance of, end It will establish a partof inheritance relationship. /

S Circular part-of inheritance is not allowed end Comonentime mist be *1
Unique. *1

/6 mbuiL3dCLW..remowe..oagonenmt (gC~ompent, +Class a.
/6I* Undefis. the component from the class . The component mast be a

6 daefined component at the class, not an inherited one. 6

/" muildCL8.yiew...omonent (.Compcaet, 402am.). 6
'" " /6 l.Displays the eatire ompoent definition in pretty-printed torn -t o/
/.* incuding the source of the component definition (whether defined in /

the object, inherited from a parent object, or inherited from a
/" component object. 6/
I* mebuildCL8..odify_ .oponent(.C pmont,+clas.). 6/
/I Allows the user to nodify any of the attributes a&sociated with the */
• / omonent definition -- type, name, or tense. The component must be 0/

. * a defined component of the class, not an inherited one. *1
p c(MPOam TO CUM NODUMtS) "/

p nehuildCLS~get..plural..ocmponent(.Class,-PluralCceonsat). 6
.. Retrieves a component. definition t the Class which overrides the 6/

0 tense default (singular and plural, respectively). 0

l * *33~5~p73~~ 4~? /

/0 (OOMlM) 3fl]) *M
/6 mebuildCL3..defin-ve..pcerty-.set .+Propertyflet, .Class). 6

p"]Pz•PrL~os user access to the property set definition facility. The 6/

/ Property got name must be unique to the class. The user will be '1
/ queried fr a list of property set members (currently only lists of 6/

."/ synbol* are allowable), and if the I is hideable (meaning that the 6/

.•• ' /o set represents a fact In the world which could he unknown. 6

/6"The members of List of Properties most be unique for a class, to 6/

S include class hierarchical links, unless the Property set is reefin- 1
In g an inherited property not. Object hierarchical links do not 0

I* require this restriction. 6/

I* Iw1mhuildacLl.reowe..property.set (.+rIpertyset, +Class). 6/

/6 Undefines the property set and Undsfines all of the number property 6

/* data. It does not automatically undef4in all of the operators and 6/

S relations, etc. (that in extremely complex and it Is basically left 1
/" f or the teacher to nonage using the integrity checker). The property 6/

./6 set mast be a defined member of the object, not an inherited on. co
'-/6 IMnubuldC= JLS..vie..property...set (.÷PW•~rcperyit, e•1 la ss). 6/

/* Prints out a detailed definition of the property set, Including where 6/

i it Is defined fra (either In the object itself, Whrited from a
/*]xparent or ancestor, or inherited from a component). */
/6 ImebuiLUCLAmodi.ify...property.mat (+Provertyset, +Class) 6/

/ allms the user to modify the property set, either its name. members, 6/

16 or Its hideebility declaration. fTe Pzoperty set given must be a 6/
S 4defined property set of the object, not an inherited one.

/6 (=l:IXGtM To 0M NODL) 6/

/6 ebuldCI..get..hdeale~roprty-.set (eClase, -lbopertylet, -Domain). 6

S •Ltoast*@ and returns a hidoable property set f or the compiler. 6/

69

UsbusiailCJ.adJactnt-pvoparties (+Class, +Provertyget, loop I&o...loo,
?Propertyl, ?Propezty2).

P br property sets intended to be interpreted as a sequence of states, '
1" this function serves an a successor and predecessor function which in '

capable of returning all pairs if the last two are unbound. This
Pfunction is strictly non-transitive. The loop marker in ths third ~
Pargument Indicates that the first member of the set is comaidered the '
Psuccessor of tbhe last. 0

p rint...urrent...property(.ObJeot, *iact, -Output). 0

T akeo the object and fact and assembles a list of words Output which 0

Pwith priat...ouz can be outputted. print .current_..rcpsrty' Is intended 0

Pfor use with printjlist as a template. 0

P yassemible..properties (+Objecot. +iropertyDasain, -AaseibleDlrcpertiles). 0

P assembloj.property (+obj ect, +Property, -AssembledProperty). 0

P iassemble.property(+Objeot,.Prroerty, -Asuemblediroperty). 0

P yaosemble..prcperty(*Obj eat, +Property, -AssembledProperty). 0

PThese are used to put together and disassemble properties to and from '
ptheir object and basic property ecmponents. Their difilerences are asn'

/0 plain n only for Objects with their defined properties.
/0 z m for assembling objects with their defined or component '
P ~properties 0

/0y a for assembling temlates of properties (especially for the 0

P ~lesson compiler) 0

/0 pposita_..of(+Object,+P srerty, .opposito). 0

P list-..nga~tion-of (.Object,eproperties, +Megations).
pOpposites sad negations are two concepts that are similar. For a soft
/0 Of one or two members, they are the same. For three.+, however, the '
/0 negation Of a property x is Simply not (I). The apposite of property x */

in domain oueof(CXYl,. ..,Tn)) is Ti, then Y2, ... , Tn. 0

PThe list versions return bagof s all possible answers and retqxzs it in 0

/0a single-level list.
/0 buil&.ordinal.dual-axglist (+objects, -Pairsoflnstanco/Objecots.0

/0 Ordinal dual arglists are used to specify an abstratQt set of instances *i
/0 for use in class definitions mAd tasks. Xt takes a list of objects* 0

pand attaches ordinal &ames to repeated instances of the objects. 0

/0 N.Cjocaba becomes abcCe onaIad ond3,tidal /

P PUOPEAYT VZ5PL1hT DATA N3MGUUTu 0

/0 (COIAND ZUWOMl)
/0 mbuildCLssmet_..roperty..display..data (,lroparty, oCiasal. 0

/0 Invokes the property display data management subcoaemand loop. This is 0

/0 mostly stubbed out, but does contain hooks to access tkut graphics 0

10 module. 0

/0 RBLATTOS DNVMIN MGM NAMaGUV,
/a (CONK= ZynWOp)

/0 Provides User access to the relation definition facility. The name of 0

IC the relation mast be unique to the class. The use* will be queried 0

/0 for the amem of the relation (or "sauitery factO) and then be given a 0

10 list of choices for the Gelinition (which is a listing of all the
/0 defined and inherited ptoprties of the class.

/0 buildCLO.ree...relation (+oClass I 0

Vndef Lass a relation. The nsear is given a menu of relation* to choose ~
/0 from. which will only include defined members of the object -- not 0

/a inherited ones.

70

P0 rints ou.t a full definition of a relation ('Nusuar fact") to the '
/0 terminal. The user 40.6e nit Specify the summary fact on the command *I

lin 1 am n~ce parsing a summary fact name is difficuilt. Rather, the user
will be given a "No of all smmnary fact* to @elect. '

/* lleWS the User to change the nam Or definition Of the GUNNAZY fact.*0
/0 the summary to be edited will be aelected from a menu in resopnse to
/0 the "modify summary fact" command -- it will not be a imenu choice. 0

This operation Is restricto~d to defined members of the object, not 0

/0 laerited ones.*
/* (tRPMTED 2O OTEER HODMBE)
j* ebuildljCBet-..petiol-relation..definitio.(CoMame, oClaass, -Def) 0

UzteMasion of mebuildCzO-define..relation for task-level suimary facts./

Rxtracts en object-based summary definitien.

P0 OPEMZON DUZIIZVION UWAPAAMY
/W (C0UmED ZmVOU)
/0 mebuildCLS..defize....peration (+Class).

/0 Provides user access to the Operation definition facility. The %" 0/

I* of the operation most b_1 Unique to the class. The user will be
/0 queried for the following information, 0

P ~Memo -- T~he operation nowe must be of the form -cprefixý. <direct 0

cbJsctý- <trail yhraseý-. The direct object vaet be the class nameV
/0 ~or a valid component name of the object. 0

/0 Aseoociated objects -- Effectiv-ely an argument list for the 0

/' operation (think of them as the direct and indirect objects).
/0Preoccraitionis -- Provide the preconditions tor 211l objects in the *1

"oeration. 0

/0 ~Intended Iffect -- The single intended purpose for Verforming the /
/0 coperation. It is a property of the direct object-0

side 3ff act -- The other changet to the objacts in the operation. 0/
/0 ~this list Must be a strictly determinate list. (no poinsibilitios V
/0 ~or probabilities allowed here.

/0 mbuildcLS..remove..operation (+oClass) .
/0 Undef lace an operation. The user is given a menu of uperat~ons to
/0 ndefine. You may only remove defined operaticas of the objev:t, not
PInherited ones f xci parentop or ecomonents. 0

/0 Prints cut the full details of the operation definiticn. It iftelu.~so*
/0 all the information specified about in mabaildCLE-deflao-.operation, 0

/0 plus information ebout whether this operation is defined it the class, /1
/0 wae Inherited from a parent or ancestor, or vas Inherited from a

J0 component of the object. The operation is chosen from a ron'a provided *l
/0 tbrouf~h ihis coanow -- not by IL couamni-lingh entry.

/0 mebuildCL8..modify...oprationL(.class).0
/0 Ndif iee the o"eration definition. The operation is chosen fromt a ft/

lot menu invoked by the comand -- not givaL cm the cousend line, end onlaw
/0 llow. the moadification of defined opratic"., not inherited ones. *

w* he modify operation comand allows for the change in (OLT the
/0 Intended effects, preconditions, and side effects. Tou (¶AiUT reaven. 0

/0 nor respecify the indirect objects, these arm temporary changes due */
/0 the extreme acomplexity involved, plus the fact that it would be easier */

for these two if you use the oremove operation" command and then start 0

/e Over with the "create Operation" ommand. 0

I*0 PENLYIOU DZSPL&Y DATA ~MbAUUM s 0

/0 mebuildOLB~aet...perarioa..dimplay..Aata (eProperty, .01.55).
ZA VokeS the operation display Gata Smangment saibCOnand loop. WSi '

/0 is mostly stubbed out, but does contain hooks to a'!cess the graphicte

71

P .A.N. .•wZU..o -mmQUOM I
/' (COIAND ZWVOMM)

"--P# muild fin em a +Class).
Provides %nor access to the das=o definition facility. The user will

P .be queried for the follovwig informatiot
/ riggoring Condition -- What will cause the damon to become active. V
/0 Activation Type -- Whether or not the tiemuo will advance on or loop *

as k a property set, or its activation is based on applying an 0
P operation. •
l Advanement Criterion -- Whether the damon will advance based o
/ =mbers of turns or a probability.
/0 Activation Mesage
/0 msbuildCLp daem (+Does=, *Class). ./
/0 Pefines a daemon. Mst he a defined damon, not en Inherited one. '/
./ membuil:CLaBvwie_.am (+ .Daemon, +Cla.s). V
0 lPrints out all of the relevant detailed information about the daenon, '1

P including whether it is defined within the Cla•.s inherited from a */
/ parent clauss or Inherited from a coogonent. /
/ mbuIldCL8_podify¥_d. mon (*Da w, +Class).

/0 allows the user to modify some of the attri~butes of the daemon. The '
/a daemon mist be an defined daemo* , not an inherited daeman from either /

#0 the parent or cocponent hierarchy. 0/
/0 (UDORUD TO OTM MODULSS) /

S ImebuLildCL8._get.bckgrond-_ facl t (+Clams, -[rigger, -Prob, -mpe, -gag)

R etrieves Information about a backgrownd fact of the Class. 0/

70/

72

TABl 3. MEBUILDER TASK MODULE (MEBuiIITSK)

19 Heans-nads Lesson Building Programss Version 1 (WBUZLD3R)
/* CPT gbase p. Galvin, U-S. AzW, Naval Postgraduate 8chool, umontrey CA 93940 *1

/2 DDuzZLI Task Definition Module -- Version I.0-.01

P0 This module manages the task data structures and assists the user in buil-/

/* ding consistent task definitions. Currentl.y, the task structure uses a '

P simple procedural net, covsred in the letter stages of this file.

le version History 0

/0 1.0 -- original version released to the student* for the experiment. 0

/a 1.02.1 Comments are updated and stubs placed for coomiands or predintiats /

/0 ~needed in future. 0

/0 Imortant Notes sbout the Current Versions 0

+W eho task definition module contains several subsoodules, each of which 0

/0 could (should) be broken out into a separate file. At present, however, 0

/0 the coznsications mn the subodules is too tightly woven to make a /

/0 clean breek. The subnodules would bet
/0 -- The lNuilder interface portion 0

/0 -- The procedure graph (or procedural net) manager*
/0 -- The guaranteed state (or situation) manager 0

P0 +The task definition module also makes too liberal a use of utility pred-

/0 icates fromt the class definition module. (There are some ten predicates *1

/0 that are "inzportsd" in mebuildCLfl that do not begin with usbuildCLSlj.
/0 +Although a corns iderable amount of work has been devot~ed to modularising 0

/ B~uilder, the fact remains that the intramodular structure of this

/0 module leaves a bit to be desired. The procedure graoh. guarantdead

/0 state, and other submadules need to better confarmt to the specified or a/

/0 intended interfaces.

/0
0

/* XMsilder's task fundementals 0

/0
0

/0 A task establishes a temporal relationship -amoa operations when the oper- 0

/0 ations are Applied towards a specific goal. This allows the teacher to i- *I

/a dentify relationships between ited among obj ects that the hbasic %ra&,Ione

/0 themselves don't cover. 0

/0 Presentation of a task to the users 0

P0 Currently, a task is given as a sequeace, cf woerations or sets *f sub- 0

/0 procedures. Saah operation is given a stop number vhich is pzaintod in front '

/0 of the operation. This step number Is used to identify steps when being 0

/0 manipulted sbout the task (rather than having the teacher type the entire 0

/* operation anse *- which could be amibiguous anyhosw since an operation could be */

P0 used more than once.) 0

/0 (1) turn the key
/0 (23 cpea the door 0

P* (33 all of the follcminq: 0

/0 13a) subprocedure' 0

/0 (13&l] take the &aey 0

/0 (3b] subprocedarea
/0 1~32.13 cut the power 0

DW(SI) cut the phoes line a/

73

gal(6 OW40 the peilt's
P0 IU IMtiOste that the Wueteauitties so star a will beqm the preano~itiem *I
jo 4W stop 2. An eadtlems. I upc v -o" A both Sal adS IbID em both 3&2 amd
* Shi met pneeate 8. lam~ resnpect to thea 2 usftr- Sa 31mat DOORat A
0 3.2. boa tbete is se 41uest ,elatliamhip establlahui betwusiSa 3.1 i .4w st op/

10' Is tas We..
I* Ib steps in tbe Aak tank mxet K22313.,b.b34.M esest, ae Q/

10 eema @ ift 03& or 03bo as ft4* aue s. mr will the ft, - I - usah-
1* UNIONS 20805SU "3410 404 "3k" 80 SAtPROOMaU90 as Of VW. VU 18i ia Cuet * il
10 liitatlas that eb~wJ he sm easy emog fUs.

P* Is Imuefte astut Is su, that am be doeat O Use s. leas a. itsa el
/0 grecuep"Ziew e s et. 11 M , asetlea are phaseS In great .1 the astism i1
P~ t" &"A oIt ass thew we sechs with a ataro *1

P (1 4. dos thimu *1
/0 53 - 4. this at sa time . imp as it is betoe" (63 0/

i al do this attar (4) MA atear (53 6

I' @.n 0 o at"p Da euM
* Me stop accaugumot of a task C W ever~ e or veto the class-So Aetin /

P oPeratieme. Mos. U ft empecatim has a prageo~attis 4811maG at the cleass
P* level, the taskh usaiwrlati..s rutiuma wil not pumlt the aseer to 4. aeothimp 0/
P. that Woul violate the. Usten *stop depeaetr datin.. a partial affer `/
P as the primitive Operation which deaerib. these actioss that smet -rsi I1
10 Other .atiess. Per the mbv esuils. if -man" Is tabs." is a PesRO iitieM *i
/4 stc the chase-del ion opseatiom 0~ thif s kIstee adanbt. as 3a.1 If. *I
P' boetme. outlay the paa is not a prescueiism toot erneci the Phon line *1
10 at the OUas level tha US3 Is mot epanet as 3bi. Xrnupeades aftlsm ow *1
Is be shattf 3.4 ad -- so a am stap Oa ema as i ml MAbU umiS suc.eed bet *1
ts with 3.1 a" 3a2 It in3li fall. 0

Is ids MOAM ' taskt dofiaiticso d~satauztwe0

10 A task Is ".1 As as the .aresste at *be flelow&u" I aut* partitismsi with,- '1
P* As the sAs fmmaisa*&ll dealereS madae..

10 taPotkidrvs mmo. 4asu .1mwe. "sclas S~g ao"~ ea arautrpo). & 0f

/a Th etAdIL FWANO SOMMl he A& the feM 09 4 V4 puas similar to as a/
/a eperatute. s st~ It em bp mmatvacted as em x-erAtim in Sassausis Am le

~Ifk the 4thames areIs etantiated hut &be task isan&m. 'aste slasep *1
I' Is zieatzistei to he a deviveS case ad the OteebaS *uebarter, cldear. 0
10 (Whse too"e ukub We &satr Ineuh MW W" 'obameates * as %he 0/

19 eStag SAWN. 4*AG Iass&.pesm abeaftters. wue the other ~requte Itsem *1
is to he Instantiated far this task to be available. *

Muimw aster c exasa itoe list Pair sml qnm. meesmo "AOar isa 0List *1
ad af ptes aessrespena tc (*left& tee preep ama. -ceasV). me *I
-a tanl tash goep sAMW Is the eamsa teiauesa saes* the task be *1

pman thu em at the emw 40lassa. so whisk sao. the sueaquaft
/ Itsma we evonbado withi MOMMe staftift with on.

p.0

/0 1m~!~mfi Sm q ete PeNs~efta. 41aitiaL ecotlefo .
10 ,ihlert~vi leteghk dda, oabeacivesp I
p0 Iatlataino um laiti P1 oewiti mld tbe Obeetives 4 so & sweet - -a 0
'f 0 tash d~aet' 1 tIs %30 xeally laruS task asetamesae and qiaitial *1

p0 saiitimeba "A o416estivees am. lists of p9e Mortis*I
/0* ILMeS is wrekse4-e -we eut"y for sas Property sez. "it Ss" for the *&"as *1

74

P a"S comoet a"S as* inote& matt for seek hidsmahi pwspptty sot. o

/0 dait~ia OnaLLeamban UmLst 09 qwroiwenp
tobajectivemp as list of 4abjeartivos

P* stp(asatsae a , '4..tpl Solit tyS. a8put Joining' 0

I* cuevida Mtit tbV**. 4ibovelft &Mtiss lista-. 4091ft ateekO).
to "~fie"m the, no" fat*a teak a pwoeeozl nat, nhe following are the *

P Sat&LOSlrs for the alloomts.
-sot"" a~mS3 wo atet I &Jso I .4'-atweet I C.7-st"P3.

/0 -steeto wetma bo~
/ ~ -ga-spep., as Joto4a-CMb 0

/a Stm st w e.a for actions out. 4AAL satff" wre fte sell-ating .a" *1
P ~ ~ ~ ~ ~ w Simqe~a h oiai of butiaem tqpsthur.

/0 4.C3ftpowia oult tool-wo mw-.tiiaw I liamor I au-.gp.1t I sami-aplit, '
4aphtt joinive st"0eb- 40-stato 0

le -ciasmoize Split ty"p.-. limar I Soiloig0
/0 4cluas~ni action lisat3 .me 4soamin actia)' 6

-C ISabing aatise., on qatw ý3 'Cooatia 186"30 4Nput ino.m- *I
/0 'Caction iaiinu- on -ceation ~aurm I lambda
Is -Coplt Lbainat as qemtveual3
/a -twplit SJbSweb wll elungs be I fte u*-aplit and Ummomr Stages. S/

p tapilt ib~ga, Will he I ON, gstatW fto oN'iplit 2ft3.
/0 '01".t stask* as 4split sacek amtzyw% 0

/0469"t Stock esav an 'firlit stag.. sIatj 486"ti Sair].
USstack of aM *Flt a 4 A fives stewo.

p/ Th 0 "1 sa- -t &4sf So the agiatma.c 91 Ud-gaplit* ot-aqtplt.
is As at-091t, that thweof. seito o - ba am soaa,5 to a vubtas 0/

a" a I th otuan ly bas to 6015.to am of the, awmsbs. as and-split 0/
one" tuet there sxists Mitipis o~btask thef the tssu4 =mat patfou, IN/

pl all me~. ebs WWOWsh b e So i p.3.11.1. 0 thu Student am do o/
/0 am a the actions Is the soteksh I& aw ,s~ - long as O3Aw Is *1

/0 IBataioa manog the w~fee (soogiva sutambe ta.b.01 a" P9.6.21. 1
P a ItS .w4. *a [ab.e.d.o.fi. (4.6.90a.700030 1464.600091~. 49".) 61

1* eatr4dstatds i SUM ofsu tct.. Ust-~a. Lsusarea siftOfset liss.
I* quou N8464461).1

is Actiosm wvapnev a transition Is the prwe"R4al, not (und uhe set 9
/0 asentralati wu~iso wefate to Geats~ as ltamaLtimrn Us ap16atata 01
/0 IS 0689689 stiatei ia OSathe town. bat thug MWi ashMi So teak
/0s 2m~at M ust the sam, Will require as tetaah.1m. 0

to MoesS "abomey"1 P't w An v 4 --i Versin at leiaidst. 0/
me Lift ad aw~arant posartlatisemef iS at a list at eithrat *Simple 0/

/0, a'sw to or list me suitbi. peopautime tur tho seepsapty sot. el0
%IF* list me ao3Aplo provetiom i4 bareS on sombe umpitv Sats. 0

-- we avuasesiwted at soo toasI the 3seao e~i /

It t auseaatieft prop. an abraftst wil be wateredS to bW the we at g~0
/0 46am wthe a name 09 the eloas wbo Asmay to, mmii abgaity'. so L.

At ss Gouge awals fideblht 161" (Veabawe go tow, t3abis "VAN he 0

/0 do3eareds t~gask a~~.Sm 111SMAO. fambleb)) ad the took 0

I* sue tem is maint~ained toa oft mm 1s. go tNo Asserts. the teowas a/
/0 vfi2A oo&ost Oa. %eA* to wea St. Me 10ear answr will wasei.af Intows- 0

75

P0 intte ahout the GqpemnasLeo ea the 1....m, I~.e. wehis alisaus awe rsedazis4
P' iAse~ to besld the lesesom -- these are has" solely en the uPfco

/6taks awe at diesealw accssede bv cuteld. upsiks bar. are iltawtisated by 0

to Ise e SM.

I. rlat~vm(4velatim aiom., Cobjest "u't. Cdflaftiamv)
/0~ ws ae very aimilar to that of the O3*es flatitiems aiS~ that tbeise 01

/V volatimw &D st describe the *tat* of am Object bet gather a state of *I
p the task. -b e~iamphiem rimoee Will ba,. to be arrameed so that the 9/
I. 4relatiem gmes sea, Is fact tomase object samo mad eamb it. Uowever. '
/p fac th e rltIsa amme Will be estk1i*~w as is.
/6 6

o/6 ag WwwA. by this inomie (%bjf e -e Yet 5)plumu
/*memumlatiemase tbev som d cam be toma Is the saer *s ummaml. 6

/6 0

1" Oue sm laeata 4stapsi to the In~o of em qegatisa witbIsa the task as ea 0/

p bvn the vhiew task esammW (hick som), 0

p6 arem* task la06 4task3.3 Nola
to Work asts a* tashal iuk 6/

to wamove tuft Enmme& 4teeasoI iam"

/a *Wta atookie WEa etask3,] ast" sem10

/0 v, e objetia es e ltia m qt aek, [feea to (few *le t All

Jim wmrdr em I set (wa 4 esinatmted omol)lo a/

,1 NM fte/A*elmeas &be dmflow bit lot momo-ead al
/0, Obak task task a/

/*e yig task IA a/

/0 whin imteaf emdtss fgeb~e ak a/

/0 setu UAktiwl sm(ftlew ubatimobet$ took a/
/o oftr objetives (for embeftb3 took S/

is view oijstiAvs (fas 4obetqsJ tosk e/
/0 fiAe s.tep Otasols %k a/

/a WAMs aetsm [(eg 4storm.) 2160gs.)tk 6f
p6 u"~ step Slsaa. eek */
I* Sodl Duehube 49tow [with "stepO task of

to amwe now [mno stoag. Task S/

to gn meam y fast teak /
/0 vism so a lf.t tIN* 0

/0~ maratsw test week *I

to memeta 99"m. All preftates. Antes" edtr entegal we e sweeLmod *I

76

/. ' X~twitas* all t ho daas" Commaisaf, and temlates for the main '
/* smbu~ aglieatiom cvimrmA loop. 6

I'~ ~ ~~ LOW fti~ pWith the task deIlaition view cemands for use in /
/* the lasses leew.

I' -- Inittialimse the taek.Asflaitisa database. 0

P -Cleaz all ta~sh~dogiaities facts fmo the Prolog database and eaccess II
Pall d.Lamial'-careated, modules. **ed fry iUNtoIlds quit eemmed. i1

P, UmbuildWULogread.Autosawe.
P -- oads all task degialtica data In amemecy to the autosave file. *j

I' -- Powi'dss user aceses foc .mvtiae & new task. Invokes the task /
P ebullding amplicatiss loop am the soerly created task.*0

-- weks a tas as "deleted* (Telex to librasty =I*oel).0
Is mobuildUZ..restoge..task (*Task). '
/ft -- Mastoge. a zommve task Is mommty (i.e. undletes it)
/o nsbULMILdt.W..kLPsstosk (#Ysk). V

&DO Ie&sL (it not leaded) and Savoebs. the task baildiag epplicatisa
P ~low e an as eisting task.

P asboiltIK.test-tasklatmority (*Task).0
Pf -- Waures that the task is cossistemit with the class 4sf mitiSme (it *
/0 .o.ld be 09 as lowg as vs. slass was updated attev %he task mwa Last 0/

is saved to aisk.

-- Usto the objeat's Initial onmiitiemms as oureastly epseified. *1

P -- Lifts the asect's oblestives so semmm&Wu speciuisi. *1

I- * Peif a Uis""a ed the sonemit solutlem to the preblam.

Is -- Put a listift 09 ubs the sltuaties obold look Uko af ter 4101M

Is sowCOM ýs Wta Pomh sa

/* ~U.gt.ea iee(*Vak. -Selatles. -Clamss~st. -Dat laities)
/a -. htin a emommy deffted A& the task.
Is add. I- Iat eeedl.,eebet..-h)0
10 -- sapWas m meb *omul t~ask-WISGNG~ data to the 10Insea OeaPLIMa.

Is -- 4 D5 r m gMI to initialime a task wpm soteriglbs Um b om s *1

P -- o a lised Lof n. an slmes.. M he li st .1 sk".sts so- a/
1.* goive fag a Simus took ai wtum a sap&" 4d a the took-bamd *1
10 mgdmonmj ameme Mu mdebdt. ["so" Ajostj .et.) to the 4
Is leserns WMOMets InSSIMAD bOMA 00 tW east M rA 9 lists. 91
10 - - 1,204ClNSe.-Weak)

10 inom taw loo am" lube that Efit tho Ifteftese amms

/5 -- aetIMNga the in atia owwthams at the i*les. skoest in *feek a"
JOAmo ttfs the initUa smmtim ijt to ego""a WIN suoelts a/
/0tom - -* 0

77

-- Ulietryies th ohSewtLves of the #Class ob~e at As A..k and
P ~~Lastaatiat.,f the aboe~tive ls tt to .so"~ the **smoIte Imateawo. f

/* xwbQl~dYSw.a.W~...shcw at t.9.ank #Cass.)
/* -- I'edisa~t that emocoof 19 earn ohS.., of tpe, Class iu sa.d ia Task. *
I - z 4bi ..a~et...tat....14eeýAft .. (+Task. aUstance, +Class, +agae, -State). 4

P ~~-ugg3estive2aj Totugs= 41e Lastwaintted Vuaateated state for the @
P ~~2s6pams of typep N ~ie5 s leah at nate..

/' *ul~~s..u..ha~.aata.(+Usk, +Zauteee. +CUSSe, +Stage,
/. -State).

/. -- Netorse the esohbisetimof 01.1 the last obanpoo ew the siniiea aeat
/'amas~s NO&c A& the sao4 zutaet e 09 cuss. pwi to SIAM staqo In *i

the eask. Used to boel detnugia. LmteaSial or vainvagt~t Peel '

P -- Soad out the task oset ics,1a A& MOMMY to the MAl.

78

TAB 4. MEBUILDER LESSON MODULE (MEBujidLES)

/* W.ene-aws Woman building Irograa -- Vorsi.on I (MI~W2L03'I
/~Ci Thoase P. ealvia, U.C. AXWj, Naval Pouttgraftate school, Mouteray CA 93940 *1

P. NEBUILM Lesoon Definition Modulo -- version 1.01 0

P' Iis module Ge! lass what a lossom in as a sua tuede insantiation of tasks 0/
/ obleato to Vzodu.. a conceate leesson entity mumnble in the maws-ands t 0/

of towing shell. It aleo provides a quick and ofeoctive eman of building be- 0

P Sime" level through elvemuel level probleme in the $P&G...0
I* osmiese consist of mes or am*r problem, which contain differeent scenarios
P0 aud Provide dif!fewent parmisters to maom of the prababilistic event. in the '
P Instantiated tasks. "sok latent toe that the problems should be ordered in in- '
P croasing level of dif ficulty or In accordance with an accepted curricular or- O

/* denims.

P version Elstozy: 0

P 1.*0 -- Versucs releQAse for usee Ln the experiment of summer Quarter 94.*
P 1.01 -- Versuse 1.0 fully isaruented.

/* MbuIder.s lesson finiinatal. 0

P~ a Loasso is a wwrkbok of emotes. tee the student t~r perform, the Ozer- /
P at*". sbos he ased to present different problem to student, *In general /
/I they hobUld he Increasing In 1ilfficulty andlow oouglaaity. zamaple. of the 0/
P' diffweet types of problem that would be euggested are given below, these a/
P types could certiaily ba combined Is a gjyin wor0/k

x0 . Zaceofeaia Comglenity
/0 1za 1 a beeic task with all negative pitfall. (i.e. all parab. aide 0

/0 ef feet. tursed. off) 0

Pz a-& a iaem tsek with the negative pitfall. gives increasind a
/0 l4beuila*e4 saver Adversarial agest. working faster *

I* Vaeb 1 a first abok of teask
/0ro Uth (a-1) V seat dwaf of task 0

/0 Uta a u ole took (aimroessivow fashica) 0

/9 Prob I a teask soa besic prp (I.e.) ae
/0 Probe 3-a a teak en moe. Loesific types of prop (I.e. doestic arsa,0

/0 L~gaeneig Gars. etc. whiab might have particular ROeD" or 0

/0Proe 1-s a 33 a gives teak has a teen members sesperetiag together, *1
/0 thes for each Problen give the etutleat a differe role to 0/

P pla9g. Rithec vaeb. I or a should he the gny In charge. 0

90 * jiemeat VaskeO
le Vdrb I-a a If the lbawuy sentelas a Mgfen teake INvolving the 0

/0 ~~am ete W lee e" nd eam sets of frop. "An all a teeks is- 0

wa"ve & general subleet metter thean hve thin studemi do the 0
/0 & tanks. em at a time. (I.ft r a60 &nmehanlc I a21 4a 0W

/0 eqim. em am&"R have the 0 1 bapeisee %.he mwae Pum e

/0 ga~seket is peeklen 1. fig a ftol sweeter in rueb3.ef , ** 0

It DjUg e~tauatiea the teaksa the Seasbr taihe in teem at abstriact
10 ~abefe loew. ebanestair. eta.) - Lb a loear, the toesacr amtaks In team *I

79

/* af concrete object* (proper novns -~Jim. Aim's car, aet.).* Lessons contain 0

P' a "caSt" And a met of "props". a"d Dotting up the lesses to done in terms of *1
/* -amin a "setting- or a "sorn" and having the student perform a "role" in *1
/0 the weese. the task could be viewed as a script, Indicating how the actors
/0 bhcave U545 different atimain.1.
P0 fth lesson itself has en Introductory text along with the cast and prop /
P listing. Saab problem acomists of an introductory text, along with the do*- 0

/0 cuiptices of the partioular some sand goal, along with options that allow for 0

Pe different behaviours ammng problems.
P0 the intent of the NUMPild~er system is to bave the teacher spend the major- I/
/0 Ity of the time here, at the highest level of the Maildor hierarchy -- do- ,

/* Ing ohoreogrophia end situational things rather then digging in the weeds of
/0 the task and object layers. the library management system is there so a huge
P reusable object library could be created of both objects end tasks. ft the
/* lesson interface naeed to he the most robust.

to KNailder's lesson definition data structure

/* a losses In defined as the compoite of the following facts partitioned 0

P0 within the same dynamically declared moedls. When a lesson in compiled Into 0

P0 moms-ends form, this data structure will help keep rapetitios to a minimum
P0 fte associated class def inition Wnorimation Is cooied In to assist, however 0

P0 the tasks wre mot copied into the dynamic soadle. their information is kept 0

/* simgly Instantiated in its own module. 0

/0 leseslelss" e m*rn. 4SAst3. 4prcroeo. 4tasks"). 0

/0 2he ciescis mmm*3 is strictly unique to the envircomena. fte cast msat /
/0 be mam-emty. The list of tasks are a subset of all those which could be */
I* imstaxtiated train the .ccesta, end ,:pvpo3,. The ccast~ and 4irop@aý are 0

/0 2-tupmed of 441astamee mrnO 4class wmsme.) or nore qgrprIlAtely. I-Crole 0/

/ sam/epinup smrn- -olao@c.). throughout this module, cast nuckers will be 0

/e aneterred by their role. end props by their prop smes.

/& Olsbal, Introe t lea to the losses/

/0 qzvbl&&(4smmbr3- ta=3- -cwtot'is tmroles.. *oest:0. 4.cp4oPs~).
/0 the problem fact Vzovidne the basic isfommatics for the problemi. fte 0

/0 .ast WA prop aggrgsimt alle th trneae to eaif p that S O~t indb 0/
/0 as pawp Is a derived Class at that given in the leasson level. esmerally. e/
/0 WO eathmee dPacop note match that of the looesse.
/0 U~s Currently theve Is asebok In5 place fez puoblam options. the 0

/0sJ*.elet.ere balmo Is Mast of a bock but it's act uSem. ly 0/
Is eein3i be placed as a din"h mawmout boe cc they could be IgLowmated as 6/
/0 onewat feacts (An last. the Dost "Aad qrp Ocw.I be treated is Wanr e 0/

/5 fashiem as Wll).

it SAhegses to the imitiel..emdties at each tack, "Dowe that the Initial */
it settin is a ceaeoiteof .2.a the itaeitiamsof 0ase" prp. 0

/0 Gbstiwee(mbe . 'Coust eaft.erb, aeblecatie list$,). a/
/0 V2ahe the Initial settiag the oblectives are bMakes. Got ht' east mmer *I
/0 ia&" e is soft SmoswiUMllQ s~a ilegamt baed& cm the some Those *1
/0 wMl be ucdw ton &mAte the esut facts is the astutor losses. also noe 0/

/' that the objectives per cast member are I izod for all problems in the */
/0 lesson. Wei is the global wrestinag state" for the cast Member. 0

/0 Introductory text for the problem. '

/0 side..effoct...c~rrido (-aUMbew3ý, 'COP31, <ateZt>, -ccsge,. prcb-). 0/

NO 30 ILUUYZ. this warn the first swag at a problem option concept. 0

/0 It may be sufficient for the event-specific probabilities, but it is 0

/* probably better to have a more global optioms amostrhat.*0

P0 Commands provided by" this module (Incliuding those not yet implemented) 0

P~ Documentation an these commands can be found in the user's manuaal. 0

/P 1.335C CNUAW3 NIIOM'D TO On=3 Loops% LOOPS: 0

P0 create lesson £namsd -lossoa)'1 main 0

P0 work an lesson (named -lemson:-) hKin
P0 r~eft lesson (named AlessonD. Ka& 0/

/0 resftore lesson [named 4lessoaw.3 main 0

/0 cheek lesson (named -clessawo) All 0

P0 view lesson tuaemd -clossawn All '
P0 comile lesson (named 4lossonw.) All 0

/0 run lesson tuemed clesaom>) all 0

P0 The Lessen Loop is Lzvoks.4 through the create loosen and work on lesson ends. *
P0 LOSION I3UM3.hTZ CONUMbaS Loop /

P0 wisard on I off WUndccvnented commands) Lesson 0

I* VO3s Sets/Releaswe the dsbugf laq bit for means-eads 0

P0 abc lesson Lesson 0/

P0 view lesson Lesson 0/

P0 comile lesson Lesson 0/

P0 ren lesson Lessont 0/

P0 edit leosso intro Lesson */
P0 view lesson Intro Lesson /1
/I create problem Examd 4qrabla i Lassm 0/

/0 .ee ona problem twomer eproblem Mo*] Lessona e
/P moG probe a~ (4axmex Lessm It
I- g~w Problem 1esso 0/

/a remoe problem (Nuber 4MebleM nc03. Lesson /
/P remv problem tame qorablawi.I Lesson * /
/I * chek problem tvadbo 4qrbles a*;.)Lesson *0/
/06 chek problem Ern-i 4.ecbleam Leesso a/
/* view problef l(der 4mrablet &03.1 Loosen /1
/P view prbe tamd pobew Laosso 0/

/0 0/

*M problem Lagp Is Invoked via tUe evamte problem and work on problem am~ *I
/P P gin UMPU5TIN0 05 4ingI *Ig, 0

It wirnen on I Otf (Somemate6 commands) Problem 0

/0 ="I: gStsAwkleese thwe -~ I e I hait fog minms-em 0

/P abc padale Problem 0

/s vAew Yoeakum Problem, */
/0b 061% paoblem Iftw. problem 0/
to wisa problem Iatr. Problem 0

/' ou somm Norw coset madw ec peoga Iproblem 0

/0 view mans [for 4est siowo prow) pzbx */
fe sa on"~ liew -Com mae -c propm. problem 0/

/0 wvie goal Clew cast mamew or yvqp Problem i
P0 met Opton prbe 0

/0 231ported 3fwedicates. k Al predicates intended tar external us* are prefized 0

/I with aebuildIZU].l" except for those from the lesson omp:iler -msb]ildCM." */

it M A,11hPLICAYJON LOOP -- APPLC AIOM PUlDCAUSS 0/

it -- Zaitializes all the domains. ,ocnsndl, and templates for the main aI

it,' uebuild application command loop.
/ mbulld3.T•_looso...do .. t:io .onitialise. •/
,0 -- n4itialiLes the lesson.de•iLition database. '/

SmebLldZZlglesso o..efiin..Lonshutdowh /-

it -- Clears all lessonAefiniLtiac facts from t.,e Prolog database, erasing 0/

it all dynamically-created smofles. Used by uild's quit comand. '/
/0• msbuL ldLUrJ~qpemdrntt• i Ve. •0/

" /0 -- Appends all lesson definition data in memazy to the autosave file. */

it oi•Zmm Vo- P3IIDIXCMSB FOR M= AIN PZC.ATIOu LOOpN s/
./, m~uil4]d]ltI..defi n.e..lesson (4.Lesson). "/

.- - 1Provides user access f-or creating a now task. Invokes the task

I* bil�l4ing application loop on the nwly created task. 0/

/- mabuildLU4...szmove.._lessofo (+Lesmon). 0/

10 -- marks a lesson as "deleted" (r•eer to library moduloe). 0

/0 m]suildll.restolreo.lesson(4Leo- 0). •/
/0 -- iestores a reoed lesson in mmory (i.e. undeletes it) -/

it gmjildL=Ovlewo]€sL.eso(a+Lesoon).

/0 -- Loas in (if not loaded) and invokes the lesson building application */

/ loop oan existing lesson.*1

it CO -IM•U•- I iUKZDZ&YSl 1M LRUOM LO N t AM AlO 23 T/i

/0 mobail•LU..Ibcahck...lesona (+Losso•) •/
/0 -- ler�f�rms integrity checks a all cast mambers, prOps. tasks and a/

/ ~problems to ensure that the lesson could be run successfully. 0/

/0 amsaildaI..yiew..lessoe (.1, 5o0). • /

-" *. cariLt t a table of all the primary lesson data. /
/0 mbilmO•..CS•_ale.~lessoaS (,Le, sea). • /

/0 -- Copiles the leo•es, is Mltor-readable form and saves to a .pV file */
it ,an dis k. "

/0 fmsbuld~la1n5nlesam (.rLeson). 0 /

/* -- Rmvokes the Onater shell Ln order to run a leosso. 0/
/0/

/* nmabel *_.pzt._lessaa (.+e55OS, .Vrile). 0/

Bond c- ~ at the lessas defiaitiam Is a y to the file.

82

TAR 5. MIEBUILDER LESSON COMPILER (MEBuildCMP)

/* Meow-ED"s jAesmo Building Program -- Version I (SZDh
OPT 2Ihomas P. sI~vin, U.N. Aroy. Naval Postgraduate school, Moaterey Ca 93940 ~

1P IMULDSU Lesson OCapiler -- version 1.01

/0 the IU3ftilder lesson compiler takes an WMeildsr-ccastrucotd loosen end '
1* create& an me*ans-nd Conversion of It Late an analogous database partit ion. '
1* The.4satbase partitiout Is named the easeas the loosen itself except that it '
1* aoataina the added ending *_w". When a losson Is run, the partition sent '

Pto the metutor..shell is the _w partition.
v Ne3~Ued to extract all lesson caching stuff out of the msbuiLK...lass 0

/* definition end get It in here in order to achieve sow degree of consistency. '

/P Version Ristozy: '
/0 1.0 -- Version released for use in the ftser Qtr 94 experiment. 0

/0 1.01 F- ully comented 0

/0 0

/0Description of the Compilation Process 0

/0i "Compilaticam is probably a loes accurate description of what happens here 0

/0 than otreanslatiom". Basically, the leasse representation constructed in 0/

/* HIMider form is translated into a form that Xnftor can use. That is, the 0

/* procedural met and class definitions are converted Into a sequence of recas-
t* mended, precondition. addpostooaditics, and deloetpostocadition clauses -- 0

/* &lowg with all the other clauses that MXTutor uses as support -- such as the *
P' randohagES. Singular, plaural. etC. 0

0 the less&n compiler will then atteopt to solve the problem in as meay ways 0

P0 as leasible In order to detect any mismetching of the Instantiated task@. 0

/* the algorithm for 4.Iag this is described below. 0

/0 the following Is the sequsace of actioms that the lesson compiler doess 0

/'(1) class Integrity. (PeFort ed hy msb%1ULdelass.defintio&)
/5 (a) Vefinitica Istegrity. Jill property 4sf initicas operators, 0

@s a.5 etc. mast be completely sad consistently definied. '
Cebaks jer error Which mwa aocr wbo as operator is defimed and 5

/0 ~teas the propenty set it is defined em is deleted. Failure is 0

/0 fatal and comilation steps. 0

/a (b) Vefinitieon Coletemess. All properties are tested to ensure they a/
I0 he'e an associated operation (howsever. of ocrse. some properties 0/

1*Will hatve& operatQWs WkIdth Offe them occor). - ailure only 0

I* W~dee warmniag and sempilatuca sontines * 0

/* (2) Vmshk Ustegrity. (0reee 1u bv el.t~.Afmte)
/0 (a) Premodurs S Utegrity. IM Vzoedare net mot be closed with 0

/0 uespeat to the *start* matdemoe stge., msseing that thee inst 0

b0 e me stges with me satgoing actions L" all most womb "dome" 0/

All ervor ressiea pueosdaes most reach "refteso" *aw severed, 0/

/0partiame of the premodern @ al- most be ,omlete3I severed ead *I
/0WL wioenly VZeMWAM a Wanmag" seassp. All ether proosedee mot */

lategurity violations are fata out somp~atiom stage. 0

/0 (b) b~e newt.U varima action. In the ast are them tested 0/
/0 to imsame that all eperaters. properties, etco* are defined hi the *1

83

P ~class 4.1 Sntion. Failure is fatal and compilation stopa.
(c) split zntegrity. AND-splits maut have logo which are mutually '

/ ~ ecluive in activity (however, Type 2ZX preconditions are still. OK *
P ~for forcing a partial ordering of &ND-split actions). OR-split '
Pinitial actions must all act an the same property met and have am at
/0 0entry Ptesoditiou. WhIc" is cM unused aemboe of the property met. '
P boiute is fatal and compilation etapa.

(d) Memantia Integrity. The guaremteed.-atato at "done" must contain e/
Pthe objectives withoult possibility of other states. *1

P C3) Lesson Xntegrity. (Perf ormed by abi~esmAfntc)'
Ca a) Object Integrity. Insures that the cast, preov, and tasks are *1

P consistent as declared for the lesson.
W b Objective Integrity. Insures that the objectives listed euist for '

/a the cast and prop members.
I* (c) Problem Integrity. 2nourea that the initial netting*aend the waer- *1

1' r~ides for each problem are well-defined end consisatent. 0

P (4) Treanlation. (performed here) 0

/a The specific algorithms for the translation of the mean-ends facts are *1
P described in the translation section of this file. '

P (S) Lesson Testing. (performed here) 0

1' The individual tasks are tested for semantic and traversal integrity.
not sawe yet what it will mean to traverse a full forest of procedure 0

/a graphs.C

/0 0

P0 Wftilder- Compiled Lesson data structure 0

/0 The catilfttioa data structuro e" I c suilder-based lessons us* a teuplated 0

/6 fown of the mans-ends search space -- i.e. it uses macros. Future implea- a/
I* entaticus of iNuftildeor might fIn" il., better not to use macros -- but the
/0 advantage of ueizag mcroe Is that laerge volumes of lesson material can be 0

/0 store& In less space. *The disadvaatage is that macro expansion is dome at ~
/0 rim tins which Is slower. 0

/a Dome of those macros. fortmwately, ean be diveat~y determized fromt the 0

P0 cleass 4sf imitio moadlek -- requiring no edditiomal translation for effect. 0

/a These wre the hideseble fats. s"May-..fats. singulaw, end plural designators 0

/0 for eampaseMts. the domam-besed rcm~chasmg facts, end thet cleass-defined 0

P/00d14lW data Informtica for properties amd evevati'ma. - 0 1 1 Corrently. 0

It met all these will Wak properly since. for example. svmasty fasts are 81W1l% *1
/* ob~eot Itsma at UhS, writift and awe mat included for tasksed les Isons. *1
10 somay facts wee also recureive bV &e"Lon bet mot implemmated as sech yet. *I0
/0 Theo aWe shortfalls a hen I ucke on at this moment

/0 noe I oleisui ase the compiled less=n facts for this versolo. %a smavro
/0 empes"Lem ame at renima qrodeaees inetantiated taots Which do mat contain *I
/ 0 the added -tl euding. "Wse witbot a "_t" emngif are not Sacro expanded. .

it ft temlate fm awe can of tuwo %ya ýW are based in glass domain* 1 0

/0 *lwolte at a oasi a
/0 IAmtifieavnlate Ito sm~3as.frl~oas)

we mobes of the tomlate wet reforoind IS the heft of ths 'Mmeo am ./
I* ergtl) or yargl) ter the abjeut's asn end posaessives fosm. 0f1 oelemoed *1
/0 IV tWW swoons"t tfat areystlces -- e coptatio" a on e wewts). *
I* abv-ae eve~ats, fmr iseretioee qerzatiems. etc. Will be listed *I

it as t. UmereoraiWn. etc. 0/

EMS I Susa %bue s thet ie exactly me elmat in %%a domia icef all a/

1*problems Sn the lesson, the lesson acompiler will perftrn partial a/
macro expansion (still preserve the "...t macro forms but reduce the 'I

p macro-argmamnts to expand).
/a VO!U Need to explore the agent fact to see if it really Is needed IuOw.

/0 lees COn(Nems). 0

P laseakonLatre (.4tet>) 0

to Copied from the lessou dsf inition. '

to goa2_t ('queatLifid teoplate>. exacre, property list),). '
to serves as the single goal list. 2f #aw teoplate elements ale qaanti- /
It field esS..te~ntiahly, then multiple goal facts will be ezpwided and '
to satisfying say one will be sufficient for achieving the goal.
to There is only one goal..t per lesson. 0

to problaim(-eproblem sumbar3>. cprcbloa rame>p * catudent role>) *'

to Partial facts copied from 61he lesson def i~tica. '

p ptblm...~min~proleanumber3, -calasov., -dinsteacei>).
to Used to supply the mimes of the objeats of like type in the oxg(X) and/
Is &VO(W facts. It is en expended copy of the reduced cast and re- '

/0 dused prck .,arguments in the lessons I rroblem ffact.

/0 prcblem..intro(<problom number;., ctezt)-). 0

to Also copied from the lesson definition. '

/0 start...tkte..x Ctprcblem>., cguautifiod teoplate>-, 4macro property list>). 0

/0 tazt..state~t is a macro which currently will always have u null tau- '
to plate sand a fully expended -wacro property list>..0

p singuler..t (-te"plate>. cascro objectil). 0

/0 plurA2_t(-Cte~le.o -Cmacro object3.). 0

For 1?CqcnounZ.S, itemplatoi> will be a single class entry. Full cast *1
it members end props who use singular end plural facts will use a null */
/0 teo~late and a fully expanded mime in the nacre object argument. *1
/* NOTS Uhese mcros are fully class defined end are produced by the a/

/ * me~&build..classi.definition module. *

to reocnde~doA.t(role., ctomlat">. -macro property list>.,
-=Onr* operation>.). a

/0 ugeomditcn..t Crcl>. tesplatel. 4macra operation>1. 41aoro cnet, 0

/0 cmnkcro precondition list>.). 0

/0 aiostcondition..t(,Crole>,. 'Ctelate;-, -Cmacro operation)", -aware contexti., I/
P mýawro addpostoondition Ilst>.). 0

/e deletepostcomdition.t.t (.cro01.> ctsmplate.# ýcmacro opeationu,,/
/0 c~macro deletePoetcomiition list>) O0

UsTh teoplated forma of the mesas-esaf facts.* The crole> argument is 0

it optional. but would be produced whenever the rule applies to a cast */
to memer other then the stdenat's role.*0

,e re~hsme~tcce~lae> oe ehi1cationa, ýcmer contest>. 0

/0 maro delete list>. ýcmro add list3>. 4maecr cauzt/prob>ý,
/0 ~ 4mac messesO.)./

/0 Describes randanm eent ta t occur -- or those events that occur ia- 0

/0 eiawkt. of a uoser's action. mosom applicationa> Includes Suit.* 0

/0 esw'espniiagto roado shows" at the start of the iproblen or gam

/0 tplate4 operation. 4mae count/pnob, corresponds to the see of 0

0 ematere or Probabilities to Indicate activation at the remdaouege. 0

/0 (CarAeftly It Is only 4maro poob- h> u b is a raw probability value. 0/

0 est, maeres are act yet implem~ene.) 4asoo &*lete> and comacro add, */
w0ee oner. property lists and macro messes, is a message temlate for *I/

/3 warning output to the student. '

/' bideable...acts..tiqegmatif Led templatet-, mCaaoo property set nmemeo,
/3 iMace* property set nowbers3o).

All31an the 'futor *hell to Identify what Information is to be with- /
I' held from the moset when the Maaheewa(4eapamdd property met nomý) fact */

/0 Is trias In the current state. *1
/3~ fT3 !ess macros are fully class defined and are produced by the '

/3 mebuildcelamm.Aotinition module. '

/3 ou~y..faat..t te~patomacro summary I aet.., -ease" dot initIon3.). 0

/0 Provides the relation definitions f ow the lesson. 0

/0

/*apply-.tezt-.tk-template". 'maaro operation;., .4macto @OnatO3t, 4saaro mu3v). *
P3 rovide messages that will override the def ault apply text information '

/0 generated by the RMfutor shell. 0

/0 IaSCATM! UCti The original intent warn that the templates would be mini- 0

/' wised in order to take advantage of things lie s&Ingl-abject domains. *
is This concept was abandoned because there were signfticant problems in *

0* Nmlutor's macro ezpansion process when the c*.ngle-objeot domains happened 3

/0 to bo the student's role am the fact would up with a mull twolate. The 3

/0 result was that some facts wore not being placed in first person fora, 3

/~hence causing uansolvable problems. Theref ore, *all* nouns are listed In ~
/3 macro as types And no streamlining af templates Is done.

/* 0 Uported Predicates. All predicates intended for external use are prefixed 0/

/ * with umebuildoo-.. 0

/3 0

/* AMPaICATZON PARNDIC&TUZs
/0 msbuLidCW..setup. 0

/0 -- zatialives all the domains. commands, end templates F~ the main 0

/0 ~mebuild application command loop. (should only be templates). 0

/0 meuildW...o~pier~i~tiaiae.(Main Wgs mit Acutine) 3

/0 -- Zaitialisec the comile4L~esson database. 0

/0 buildcW..caapilew..sbut oa,, (main AMp Done foutine) 0

/3 -- Clears all compiled def inition facts grow the Prolog database, and 0

orases all dynamically created modules. Used by IU~ild's quit. 0/

/ mabuil4CUP-appen&..automave. (main App Loop Routine) 3
/0 -- Appends all comiled lessoms In memory to the autosave file.

/0 -- Top-level lesses ucupiliag function. "ucees" it comilation per- 3

/3 orm to ecmletion with Compiled~od containing the compiled fosa. 31

xf tailed. accpilelessam. will fail and the data In the vareturned S/
Copiledod is undefixod. */

/0 msui4 .. sae~~lo..osc(+Lessoa. +Pilo) . 0/

/0 -- ShIps the Compiled term of Lassos Into the file file. Vile is then 3/

/0a fully !Utem-rummabl. lesson. */

86

TAD 6. MEBUILDER LIBRARY MANAGER (MEBuildLID)

P' Ham-ns d besson uildina Program -- Version 1(ZD) "
/0 CPT Thomas P. Galvin, U.S. AhT, Maval Postgraduate School. Monterey CJ 93940 ./

Is IUZWUL Librazy anaggmet Module -- Version 1.02 (m)buildL a/

P4 Version Update
1' 1.0 F- undamental add. load, and save operations built.
P4 1.01 -- Ceiled file management added end queries for unsaved changed *1

Ia added.
P' 1.03 -- dded Procedural stubs for delete and undelete commands, a purge

librezy command, and the link management commends (add link, S/
/ * ramove link, plus others). the purpose of the stubs is to allow *I

J*easier Inclusion of these conmands in future. 4
S•Code has been thoroughl•y cimnmted to describe decisions made and *1

requirements for tuture implementation.

/"/

/11 W~bilder's Library data structure

.t4 The local library is stored in ./lib from the teacher's working directory 4
/t The directory contains a special file called Imebuild. lb" which storsoe the /
P* library information. The local library is prolog_fLle.type marked with 1
i* meul.lclirzdfntojl.The following is the library data
/ structureI

/4 .1Jbrazy.clasa..entrY (*.Class, tPilepFAn + Date~i1Ae-IteW1 * .lassDopeadencies). -"
I M libe task_.sntry (+Ta~sk, #Pi t.W~a.e ,DateTime-ftanp, .aClassDependencies). * C

/ C +VcsklDepenidencies).
/' -- ilesana ii stored as an absolute fLie mum., to prevent problems C

when ruanan& lMu•ildar trim other directories. f Flileaame is the &I
/4 keyword "none", thn this object has been created during the malent

/0 session anlyj*
e-- Daetime-Str I)rovides the syctem tim that the class was last */

updated using Quintus PColog I date library. This helps £Lintify *I

when other classes or lessou. need to 'as checked t) ensure &bh t/
/4 versioaing data is OK. 'His keyword "n.vm" .s same as for flsaLae "* I

/4 -- Dependencies are list* of classes thAt any entrv depends on. These *1
other entries, if not updated in the ourre•t datbs•we, will be t

/t acalled in automatically.

/4 librazy.A ink (*Libraryileme, AteembteLibraryD.Lrectory)
/4 -- Allows a teacher to access anotbhr local librazy, a long as it 's
/* file protection Is read. Classes 4rtiA from linked libraries '

/4 rwill be read-only. '/
/0 -- ZLibraries will have a library name tag that will be used by the a,
4 inLterface rather than the di•ectory nsam. 0

/0 claseTAdat abase (#Clase. olesIdiLrtyz +1VsOIMeDe). 4j

/4 taskjn..database (ftask. alems Idfrty. +VewClassDLV)d
I" Xlessawmidatebase (Aea•sca, clea* I dirty. +Nleewtaa•lshv . S/

o'amilatiomimdsOtabase (.Leesom. curreat Inot...orrent).
I" -- A1iuatee the Item hes bees modified and ha te gie m depn- fta

/sdeacy lists. Comilaties status Is either current or mt..current.

Par the puapose of using the module reservation system In utility which *1
I* is ne for this versio. -- the temant name is always class(colasu mama), a/

87

/0 task(4tauk name.), lesson (leson naam;), or cmiessoni(.lgslon >ame•).

/* ./*

* Commads provided by this module (including those not yet implemnted) /
P Documentation on the@e comands can be found in the user's mianual.

/P i3.IItY IUMIanUY CO b•oz LOOPBS
/0 create library main "/
/0 vi•w library All 0/

/0 view remote library (namad <library>) All 0/

/0 link library (named -libraryý] ain 0/
/0 unlink Ulbrary [named <iMrry'] Mn m/

/0 purge library main 0i

/P CLASS MIM'1T UNi9i4 Y COMIANDSg i/
/* load object (named -classm) main
/* save object [named .,:lass>] Main 0/

/* TAn UNTRY MMaUNG2UYT COIONDS: 0/

/0 load task (tamad ctask>) Man m/
/W save task Task 0/

/0 save task (named <task>] Main mi

/0 LUSBON 3MThY 19MAUNINUT COSYMM8S 0/
/0 load lesson (named <lesson]) Min mi
/e save lesson Lesson 0/
•o save lesson (named <lesson:,] main /

/f save compiled lesson Lesson t/
/ m save oMpiled lesson (named <lesson:, Main K/

/0 Eported Predicates. All predicates intended for external use are prefixed 0
/P with "mebuildLUB_" 0/

P0 APPLICATION P3P=JCgfl~ 0

/ • •mebuildLXB_.stup. 0/
JO -- n�itialiXe. all the mains, ocemends, and templates for the main 0/

/0 mebuild application / class building loop 0/

/0 mesbuildLIEinclude_.taskccind (eLoepVEae, +Taokame) 0/

/0 -- Makes available those acomands which are to be allowed in the task 0/

/* building command loop 0/

/* msbuildLt3_-include_lesson-omna4nd (+LoopName, +LesnQame6) 0/

/0 -- Makes available those commands which are to be allowed in the lesson 0/
/0 building mmiand loop 0/

/0 nmbuildLM4libraryinitialize. (Main App Init Predicate) /

/0 -- ZnUtialiv.os the library database to be empty. Call@ shutdown, and 0/
/0 then loads in the system and local library files. 0/

0 msbuildLE_.14brary_*shutdown. (main App Done Predicate) /
/* -- Cleans the library information from the Prolog database. Acts upon*/
/0 say dirty items in the library interactively. 0/

_/0 msbuildLIU._append-autosave(+itutonavetile) 0/

/0 (main App Loop Predicate)
/* -- p�pends all library-baset data items into the autosave file. 0/

/P MWA,1Y MMUAGOM (ALL COWS4iD-:IMVM D) i/
/0 onebuildLZzcreate._libra. j. 0/

/c - Creates a now library directory in the current working directory end */
/0 initialise. the mebuild.lib file. 0/

/0* =ebuil4Ldfl3_vvljbrsry.

88

-- Prints out a listing of the local library to the user. '
/0 mebildLD....view~remote..librazy C Remot.Library).

/0 -- Prints out the listing of the given reowte library. 0

/0 mebuildLIz~lirk~library (.ReMoteLibrary) 0

-- Would add ReowteLibrary to the link list. 0

/0 mbuildLz3..unlinkjlibrary(+Remtoteibrary) '
/0 -- Would remove RemoteLibrary from the link list. 0

/* LIBRA.RY CLASS ENTRY NAMAGAQU1Tea'

I,(COMMAND ZUVOURDb
"/ mbuildLZl..loa&..class (+Class) '
/0 -- Imports a class definition file from the library, including all 0

/0 ~classes in the dependencies liut. 0

/0 msbuildLZ3.save~class C.Class) 0

/0 -- Save the class to disk and updates the library file.
/0 (EXPORTED TO CLASS DEPZMZ!ZOUMNODULE AND/OR USED ZRZ)~ 0

/0 mebuildLXD..is.,.slocally.Aefined~class (+Claus) 0

/0 -- Succeeds if Class~ame ezists as a class in the local library. 0

/0 mbuildLflbcreate~library-clasu-entry(eClaus) 0

-- Creates an entry for Class in the library. 0

/0 mebuildLZ.XAdelete...ibrary..class...ntzy(eClass) 0

/0 -- Marks a class as deleted. 0

/0 mebuildiLXnundelete libratry class entry(Cclass) 0

/0 -- Unimarks a deleted clase. 0

/* mebuildLll..purge-library-class~entry C .Class) 0

/0 -- Permanently removed the class from the library. 0

/0 mebuildLzD..check~load~clausn(aClass) 0

/1 -- Imports a class definition only if it isn't already loaded. 0

/0 meukildL3h..get..loaded~clams sea-Clause.) 0

/0 -- Returns a list of all classes currently loaded in memory. 0

/ ebuildLlflcheckpsave...lakss CClass) 0

/0 -- Eaves a class definition only if it is modified in mery. 0

/ 0 nuildLza..viev..library...lass..entry C Class) 0

/0 -- Pretty prints the class' entry regarding its tile location, date 0

/0 ~time staimp of last save, end its dependency information. 0

/ mbuildLZb..marklibrary-claoss CClass) 0

/0 -- Sets the dirty flag on the class' entry so that initialize and 0

/0 ~shutdown can ensure the user has a chance to save changes. 0

/0 mebuildLll..set-l.ibrary-.class..dependency(C lass, eNewfependent) 0

/0 mebuildLzl..xeowve.librazy..class..dependency(Cclass, .OldDependent) *
/0 -- Sets and removes a class from the dependency list of another class. 0

/ 0 LIBRARY TASK ENTRY MANAGUIZNTta0

/0 mebuildLI2_l..la4task C Tack)
/0 -- imports a task definition file from the library, including all 0

/0 classes and tasks in the dependencies list. 0

/0 mbuil4Lu...av*_.task (+Task) 0

/0 -- Save the task to disk and updates the library file. 0

/0 (PIPORTED TO CLASS DEPZNITIOK MODULE AND/OR UJ HERR) a
/0 mebuildLl...is..a..lcvally..Aefined..task (+Task) 0

/0 -- Succeeds is Taskmame exisuts as a task in the local library. 0

/0 mbuildtxs..create..library~task~entry C Task) 0

/0 -- Creates an entry for Task in the library.
/0 mbu'.ldLZ3_delete..library..task..sntryC.Task)

/0 -- M9arks a task as deleted. 0

/0 mbuihdWz5..uxdelete..librazy..task-entry I cash) 0

/0 -- Unmiarks a deleted task. 0

/0 mebuildLlBu..pre..library..taak~entry C Tash) 0

/0 -- Permanently removed the task froms the library. 0

/ aebaildLXB..check-.loa&.task C(+Task)

89

/0 -- ZuMorts a task definition only if it isn't already loaded. 'I

I' wme3ild.Z3-gettloadeod.tasks (-Taskh)
/' -- Returns a list of all tasks currently loaded in menmry. *1
/ aebLIldL3._ahehoksavo_task (+Task) */

-- Uzxorts a task definition only if It has been n"4if 1ed. */
/0 enbuildLz~IqUerysave.workilr_ttask (+Task) */

-- If the task is "dirty", then it queries the user if it is to be '/
/0 saved to disk before proceeding. */
/* lmebilLLZS-view_.library_ttaskXentry(+Tab k) S/

/* -- lIPetty rrints library task information regarding its fi1le location, *
/0 ~Iis data tins ate, and its dependency information. 0/

I * •aebuildLZ_.arkllibrazytask (+Task) *I
/e -- oets the dirty flag on the task's entry so that initialize */
/0 and shutdown can enmsre the user has a chance to save changes. */
/0 mieqbuildLl._task.io_.outdated(.Task) 0/

/0 -- Performs a date check on all dependent entities to ensure that thu *i

/' task is based on the most up to date Information. If a task or
/0 c.lass has been updated sine. the last save of the task, then the */
/0 task is conaiderod untrustworthy. 'I
/ * msiuildLXIeet.l 2braryttask_dpendency (.Task, eUewDVepndent)
/0* mekldLXl.BreoavMlibrary-.task.dependoncy(+Task, ,OldDependent)
/* -- Bats and removes a class or task from the dependency list of the */
/0 task.

/* Ln33MTY 1.OBB 3UY3r NWA2UNMT: */

/~(COlMaib ZUVOR): 0/
/0 amebuaIldL11_loadlesson(+Lesuon) *1

/* -- Xaworts a lesson definition tile from the library, including all 'I
/c classes and tasks in the dependencies list. I/

/ 0 sbuildLT2_save lsson (+Lesson) 0/

/* -- Save the lesson to disk and updates the library file. */
/* (3•GXPORSD TO CLUBS D3•ZUZTZOr NODULE AND/OR u82D HU): 'I
/*0 meular4dL'Iis_..._locally,_de finLed..le s on C +Lee son) 0*/

/* -- Su�cceeds is Lesson~ame exists as a lesson in the local library. */
/ 0 meAb ildL],Bcreate_library_.lessonentry(+Losson) 0/

/0 -- CreCeates an entry for Lesson in the library. 0/
/* q•]buildLZ3.].deal ete.librar..laessco._ent ry (+L.es son) * /

I* -- NXarks a lesson as deleted. 0/

/ * mm]b•bulldMDundelatelJbraryyless8onantry(+xesson) * /

P -- Vammaks a deleted lesson. 0
/* nmbildLXmurge..._librarylesoo.entry(+Les son) 0/

/0 -- l~Permanently removd the lesson from the library. */

/0 mm il~dLZN...heck._.loadles son (Lesson) */
/* -- Ingorts a lesson definition only it it iLnt already loaded. 5/

/* moaeiLZL=_getloaded_.lessona (-Lessons) *

/ -- eturns a list of all lessons currently loaded in memory. /
p* 1sbuildLTl._quezy_.saveworkie lesso•n cas lson) /
/0 -- Xf the lesson is "dirty", then It queries the user If it is to be 0/

/* saved to disk before proceeding. */
/* ma usbuildZ.view..libraryies soaentzy(+Les soa) *1
/0 --]Pretty prints library lesson information regarding its file location, */
/ •its data time steam, eAn its dependency information. */
/* msbuildtlaZSmark_.library-_lesson (+Lesson) 0/

/0 -- lists the dirty flag on the lesson's entry so that initialize */
0 •and shutdowm can ensure the user has a ch•ace to save changes. *I

/0 mebulsbtldLZR-. -ci•platison(Lessos) */
/0 -- SetNs the noncurrent flag on the lesson's comilaation entry so that /
/* in4ailder will know that the lesson must be recompiled before 0/

/* executing certain lesson-related commands. /

/* motbuildL.._smark..suuceosful_.cepilat ion (+Lesson) 0/
/* -- Inforsm the library that "esson has successfully c•piled and the 0/

90

caurent ompilation resides in memory.
* -indebuildLD-los oze.iasoutdated(+. epson)

I. -- ertorms a date check on all dependent entities to ensure that the ,

lesion is based on the most ub to date information. it a task or 'I
/' alas* has been updated since the last save of the lesson, then the /
/" lesson is considered untrustworthy. 'I
/0 me)bbuildLZocnilation is_4.current (+Le.soo) 01

/' -- Performs a qu•ey on Whoethr the omilation i i current. 0

/* meildLTD. setlLbraty. lessondepesdency (+Lesson, class I task, .EewDependent) *1
I* ms~tiLld1.Z~remove..libraxy._leoson.Aep•endency (÷+,emssoa, class I t.ask, '/

/0 .01dDependent)
/0 -- lets and removes a class or task from the dependency list of the 01

/0 lesson, '1
/C inmbuildLZgoetccilati on. file-naze (.÷•Leon, -rileXame) 0/

/' -- Returns the standard file name for the coilod Lesson. */
/)mebuildLXDZgotet.aaoleAdlesoens (-CcileodLessons) SI

I' -- l~eturns all loaded lessons whose cmcilationu are current. 0/

91

TAB 7. METUTOR VERSION 29 SOURCE

/t Means-Ends Tutoring Platfot -- Version 39 (TI•UOR) I

/* Ori.ginal and versions 1 through 27 written by Professor Pamo

P' Version 23 end 23 (lUfuilder Interface version) -- by Tn Galvin 'I

f1 DUIrton program provides problea-independent code for performing /

Pi means-ends tutorLage tutoring for learning of sequences modelble by '/

P means-ends analytsis. this version for Quintus Prolog 3.0 and works 1.

P with graphics Interfaces. 1.
/it t/

/1 Version 29 takes the following facts produced by RSBuilder compiled i

j* lessons and rune the lessea. HOtE: *All* the below facts are eompiled •/

/1 using dynamic modules -- so the module name must be used to access all t/
/i the below facts except for those in the ltutor ervironment, */
/it Si

jt The concept of the student's role still has to be programed in, as 5/

Pi the present example simply handles the case where the student esubsumes /

it the null agent argument. Minor fix to bring it in line with the reost /

i the ifluilder system. ,/
i) Sit-_

Wi f tltor version 29 uses a workbook-like structure where the student f/

Pi enters the lesson and the lessen contains various problems or exercises *i

/* which he needs to do. Currently, version 29 only provides navigational t/

P frameworks in which a student can simply run any problem at will and no t/

/, data about completion or non-completion of the problems are retained. t/

i Among the Items needed in future aret
/i -- Student progress management. linish problem 1 befort going on, t/
/5 for example. i
* -- Course of instruction modeling. Finish the lesson -- or master */

P the material -- and link into a new lesson.
t -- lStudent modeling. Beginners vs. Experts

is S it itS t t) it S) t)1 t) 3 t it IC S1l St t It S• S)) Ct) t C t t it t i t C t) * Ct

P HSTutor's aasic Lesson Data Structure
fOi 1 t S) t) t S S t t) it it S t S C) C) t) S t it •t 1 t it S S t t J t) C it S St t

/, t

P1 atuLNtor lesson. contain several problems which are based on iden- S/

P t•lcal sets of basic means-eads facts. In order to save database space, Sf

/t the lesson is stored primarily in macro form wherever possible. The t/

Pt leasca is then macro-xpanded into a problem Module based on the spea- *1

/* ific domains associated with the problem. The lesson cupiler module tf

/I has a full description of the macro condensed version of the means-ends t f
/t databasoe. t

f* These or•e the facts that are not conden sd -- therefore not macro t/

P expanded during problem Initialisation. S/

* lessonknamaO.
/5 •Simply a tag ame for the lesson used during the welcome section. */

P lasscn.Intro(AtextO).
/* Prolog fact buffer which contains lessac introductory text for the i

/P student.

* o, u role).
P� Provides a tag name for the problem. i

it 59/

92

I' prcbles._..itro(.cnuaber~. tozt•). /-

/t prolog fact buffer which contain•- roblom introductory text for the a,

/' student.

/* problemL..domain(<umber2, dinain ,* range").
it Used to speuify the Particular elements of a domain for a partic- *1
it ular problem.

it METutor's Macro Rzpanded Problem Data Structure '

t* The following are the facts that are macro-expanded into the prob- 'I

/i lem module for use in the actual IMTutor session. The <agent) argument a,

/- is "student" for those facts that are related to the student's process. "m
it The macro foem and the expanded forms are given for each. a,

i0 PROLUM-IIPIUC1 amTTOR]PACTS: s

it Macro: etart_utate*_t(prcblem nvAbero,<teuplate",<mcro start:). a,

it htpmsd, staz•_state(-start state>). a/

j* •Provides the specific problem's initial Conditions, a/

M* Macros goal-t(<problem numbe*r><agent>,<texlate>,<maaro goal>). a,
/0 men~d: gioal(agent•,<geal>) • ,

/i macro: goal_t(4problom n•umero.-ftemplates,<maoro goal>). 0,

0 expand a goal (.ca04). a,

/0 LList of properties whi.vh correspond to the starting conditions and 0/

/0 objectives provided via. lpuild for when the student or agent's "

/0 task is coMleted. */

/i macros glubal-t(;problem nuvber>,<tenglate3.',<macro goal>). 0I
/ • imed ea&€..of..prclen(<g01a>), * /

. t]•his WeZines when the simulation ends. It is not required, and if '/
it it is emitted, then the problem ends when the student's goal has 0/

/0 been reached, If an explicit global_t fact exists, then even if a/

it the student's goal is completed, the simulation will continue. The 0/

/0 actual end is achieved when both the globalt conditLon ea the 0/
/i student's goal conditions are achieved. 0/

I *fl OSLXN HOW-BSPICZ]P MIANO-]IDS FACTS $,

/i Macro: rec eedt(<crlet,4template>,<macro difference:,/
/i <cscro operator-). ./
/i Expand: recomended(cagent>,<dLffeoren",coperator:). 0/

/ 4Gives en operator reccemeded to a achieve a particular met of 0/

/0 facts different from the current state; conditionlist are facts 0/

/0 that must be present in the Current state. 0/

it Macro: preconditionut(<role>,,telplate.,cmacro operato••, 0

/0 cmacrn c*"-.xt3, cmaro precondition>).)

/* expand: precoadition(cagent., <operatcr. tozt>#et , •preconditLon).). 0/

/i Gives facts required by operator in order to be used. The <context 0/

/ 8list describes unique conditions under which various preconditions */
* may hold. 0/

m0 Macros addpostoo•dttiont(crole.,<ctsMlats>,c azcro operator, 01

/* 4cmacr ocotezt:,ýmacro add list,).).

/i Expand: ad4postandition(<4gent•,operator>,€comtext>,.add list)..). 0/

/* Gives facts added by the application of the operator. <context> 01

/i has same meaning as for precondition. ,

93

p m-cacro coatext;-.4macro delete list>). '
/* ingpandt eeeotodto(aet. ceao~*4ot~~

P ~ ~ ~ Ieleto it)
G ives facts deleted and added by the application of the operation. ,

P oouteint list has the some maning as for precondition. '

/ * i.!R SUPPOP.TZO PACTS.*

P Macros singulax..t (4te~late", aVacr ocbj*Ct,). 0

/* Macros lr~ t~ae,(ar objectZ.).
10 Uspends si~ngular(cobject~). 0/

/* -=AnedI plura.albiect,.). C
UC sed to override the defaults conceraing the conjugation of the '

/C verb "to be" for those objects whose name doesn't follow standard /
/0 Pluralization. C

/0macro: randchange..t (cteoplate", (4macro operator spec~).)0
/ 0 ýCuacro contexts-, 4Macra delete>, cmacro addi. 0

cprobabil~ity of occurrence3-, (macro tezt:.). '
/0 Uxpend: randcbazooe(coparator spoc:-), consotezt-,deleto)-, add>, 0

/0 Qprobehility of occurrencos-,4teztO.).
/0 ofiaes random events that are triggered by (coperfttor), under the C

/a conditions defined In ccattoxt>., or are a random initial condition 0/

/C of the problem as defined by "imit'. .cprcbebility of occurrofnce*
P Is a value frcm 0.0 to 1.0 which describes the chances of the 0

/C event taking place given that the context Is not. -delete facts ~ *

a0 nd -cadd facts;P are similar to that of the postoondition process. *

4zeassage to studezt3. Is only printed in the event occurs. The 0
/0 cgcaztexuýt, 44elete facts.ý, and a&dd factsi- may be empty. 0

P macro operator specs, in one of mftcro opsrotor;-, sany~p, mnit, *
/0 or init (cprcblem number).). -operator epee> is one of operator, 0

a ny-a.p. or init. "init" and "init(probles number)" refer to ran- 0

jC do& start state information. "any..cp" refer to Zandcm Changes 0

/0 that occur regardless of the operator used (the discriminating 0

P factor thus Is the context). 0

/0 UMO! Sea graphicef3.ag below. These facts are used when gtaphicef lag
/0 is not set. 0

/0 Macro:s pl..tt. (elte, acpoerator.,-macro aontoxtD, 0

/0 -macre texts.). 0

/* Xxpand: aply-text(coperatot)-,coatezti-,ctezt3,).
/0 The ctezt>. Is printed to the user whenever the given -coperater). is 0

/0 applied under the context of 'cconteint lists.. These are directly 0

/0 aligned with the addpostcandition facts. 0

/0 RO nV/LT

" "a thetemplates. can contain elements of any of the following forma:l0
/0 4domainv. -- which expends to one element of a domain. 0

some (-Camain)..) -- some as Adomainý-. /
/0 orall(cdom&Ain-) -- etzpands to all members of the domain. 0

/0 The "some" and "forall" quantifiers are somewhat misleading in that 0

/0 they really mean "any" and "all".*0

/0Currently the graphics Interface is not usable sinces megraph is set *

94

0 2=for lessons cpiled in module user -- not in a dynsamically *-
* oiiled module.

is graphicef lag. 0

/a Activates Wfutor's graphical interface. *

/0 ooolorI lag.
/* Operates blck/white oan a color tezuinal.

/* bm^p(ftact3. <conditioans), piture-filenams•, •z-coordinate•, 0/

/0 ¥y-coordJinate., v4idthi, <height)-, k<olor>|). 0/

/0 Zfi graahislag set, gives the ume of ft file holding a bitmap 0/

i/0 portraying the given fact when the conditions holdl coordinates ae 0/
-/* Iupper left corner of place where btmmp Is putoa width sad height 0/

are the s ize of the bitmep. aitmap awe optional tor a fact, and /
=/0 there can be mnaltiple bitmap. all displayed for the same fact*. /

/ktsxt(-cfact3ý# fcod~oa text-str~aig., cx-aoord4-at*3-,,'
/0 <y-aoordinato•. •/
/0 If graphLoeslag mot, and context applies, writes that text at that */
/0]place on the screen 0/

/* WUYO•t OACUUUD FACYs 0/

/a These facts are cached by lesson. /
/ - -t

/0 Same as the goal tact. Cached per lesson.
I' 0

P0 top-solution(<l4Lit of operatore)0. 0/

/* This is a list of operators which RUutor has determined is the */
/0 mast direct solution. Cached per lesson. 0

/0 urrent-stte("etate2). 0/

/0 ,List of properties whih Indicate the preoaet situation.

/0 last.otate(<stat"e).
/0 The previous value of cuzernt-.state/i. 0/

S/* oaplist(•global list of operatorsi). *j
/- This is a list of all the operators available in ths lesson. */

/* solution (ýagent;-, 4*tatmý, igoal:, 4*plistý-, 49"1l state.).0
/0 YThis Is a cached solution to a subproblem of the lesson. gsed to 0/

0 osave tiJme in the calculation of future solutions. 0/

Sunsolvsblee(,agent), tatea ,-goaL-). 0/

/0 Xatdicates that <goal> cainnot be reached from -state*. by tagont;t. a/
,, Used to save time against comuting known unsolvable probleas. 0/

/0 0

/* This is the nth run that the student has started. (Counter which *I
'* is mait•tined in the Prolog Utilities code. 0/

/P ezor.am(4.n
/0 5foe student has oo=Ltted n-1 errors during the nth session. (Also M /
/ a counter which is maintained in the Prolog Utilities code. 0/

/* stud.nt.error(nolession, xi4be•> error nivmbe•2. catudent opsratorý, , /

/0 <tutor chosen operatorb, 4statea., cgoal.). 0/

s0 stores the Inftormation about the nth error in the rth session. The */
/* 4state2. and cgoal; are the current.state end the lesson objectives, 0/

95

it MUile -studext operatorw indioates the student's ahhoie of operator "I
to end ttutor chomse OpTatozr) was the preferred choice by K utor- */

tonvic * ~ mmrm *1/. d0/gIg.*

/0 :i asserted. debugging Into is printed during insane-ends analysis */

I/ zf asserted, does aot print ito oa onposible teamher errors. this 0

/a flag should be set when the student is rouning the program. (the 0/

/a flag i* set automatically when mu•ildeo is rnusing. 0/

it namy wait indicator. Tell* the student "I am thinking... during *1
to eateaded periods of aalculation. 0/

to Raported predicates 0

/0 uan..lesoc/Irun~lesson (•Lesson>}, * I
/* Ross the lesson loaded Into the dynamic module <lesson module, . /

/t user i* assumed if the argument is left off. (EnIT,)fin use a/
to user'. kiways sae a dynamic module in order to prevent problem
it regarding dynamic assertions and aboUishmets.) 0/

It oWa the greaphics Interface, you must have the lesson in the user 0
I* module In Prolog and MUST use the sna-argument run-lesson. (This e1
/a will be corrected eventually.) 0/

96

APPENDIX B. MEBUILDER USER'S MANUAL

The manual, minus appendices, enclosed here is the same one provided to the students
in the experiment discussed in Chapter VI. The following are the sections of the manual:

Tab 1. Introduction
Tab 2. MEBuilder's Interface and Environment
Tab 3. Library Facilities
Tab 4. Step One -- Designing an Object
Tab 5. Step Two -- Designing a Task
Tab 6. Step Three -- Designing a Lesson

97

TAB 1. INRODUCTION

aL About the Manuai. This user's manual Is the first draft for the ME~uildcr lesson authoring
system for METutor, qweifically written for lab experimental purposes. It currently provides only a basic
introdution to M~fu~dwe daua strucre and a reference guide for commands for the version dated 31
August 1994. Comments and suggestionts we welcome.

b. File;. bMEuikiler is a lesson authoring systemn written for METutor versions 29 and beyond.
L. is nklasd in executable form and is available in the rile -galvl.VmWebuild"EME~ldr. You are free to
copy the file into your own directory to use (it is about 1.06M large). Please do not run MED uilder in the
galyint directory. You nost run it in~frorn your directory otherwise MEBuilder will not be able to write to
the library fie. Similarly, METutor is available from -galvint/mebuildlhlETutor.

a. Library. In the directory you ame using, MEBuilder will set up a local lib-ary directory in A/lb.
In mnis directory will be all the data files; of the lesson material you will produce. 7%e directory will
contain a special rile, called mebul~d.1Ub which contains data on al the files in the directory. Please do not
use Alb for any purpose other than M~lluilder sesions.

b. METattor Interface. METutor is directly accessible from within hMluilder using the runt
lesso comnmand. This allows ;-'ou to test a completed lesson without having to run a separate METutor
session.

c. Object-Oriented Structures. tMEuilder uses an object-orientei system which allows you to re-
use objects you create for use in multiple lessons. NMFBuilder employs both generalization and
aggregation principlfes along with puit-kind inheritance. Single inheritance is the only type permitted,
however.

3. TneLae 1dI mo Dsin

When designing a lesson, you will do so in three steps. MEBuilder lesson material is constructed
using a "bottom-uý" approach -- meaning that you will start at the lowest level and end with tne overall
lesson. This bottom-up approach will be replaced in future versions with a more top-down approach.

a. Design the objects. Objects are the props and characters that the student will manipulate in the
lesson. The student will. describe the basic properties of the object and its behaviour.

b. Desijn the tasks. A task is a sequence of operations that take the student from some given
candition to a specific goal.

c. Design the overall lesson. A lesson is a workbook of exem'ises. In each exercise, you will
describe a 3icenario for the student and the goals ftat the student must achieve based on the tasks.
Exercises may incemase in scope or difficulty.

4. Layout of thil Manual.

98

The manual is broken into five main sections - one for the MEBuilder user interface, one for the
lbra-y and one for each of the above lesson design steps. Each section contains a reference listing of the
available commands along with some examples of the commands in use. For additional help. you may use
the help command in ME•uilder. Appendix 1 contains a complete command referenct. Appendix 2
contains a documented script run which takes you thruugh all the fundamental steps for constructing a
simple preflight tutor.

99

TAB 2. MEBUILDER'S INTERFACE AND ENVIRONMENT

1. Commann Line Egtma&

MEBuilder is presently a pure character-based interface, which means that all inputs are from the
keyboard and at present there is little support for graphics. The commands ame one or two words long, and
mazy have pvamenrs which must be supplied.

In the Wendix, you will note that the commands are listed in bold italics and arguments are
listed in brackets. These are arguments which MEBuilder must have in order to process the command,
however you have the choice of supplying them on the command line or specifying them when MEBuilder
respoids with a query. For example, the load object command takes a single parameter, that of named
'<object, You may invoke the command in the following ways:

MEBUILD>Imd object named my object
-or-

MEBUILD>Ioad object
Load which object?my object

Important Note: At any time while a command is invoked and you are being asked a question,

you can retuin to the prompt by typing abort.

2. MEBuilde•rs Command LooM Hierarchy.

MEBuildef's user interface is divided into four main loops. Upon executing MEBuilder, you
enter the Main Loop. Certain commands access the other loops. In order to pop out of a given loop, you
use the quit command. Using quit from the Main Loop exits MEBuilder.

a. Main Loop. The Main Loop represeiq the highest level interface command loop provided
by MEBuilder. It provides access to MEBuilder's library functions and access to MEBuilder's object
definition commands. The library functions include loading and saving commands for objects, tasks and
lessons. The object definition commands include those that create and manipulate the object data structure.

The Main Loop prompt is MEBUILD>.

b. Task Loop. The task loop provides all of the commands to the user for defining and
manipulating tasks. The ;A.k loop also imports various view commands frow the main loop for classes and
the library so the
user may query information about them. The task loop is invoked with one and only one task. This means
that if you wish to work on a different task, you must exit the task loop using the quit command and
reinvoke the loop with the desired task.

The task loop's prompt is [TASK:rask name]> where the task being worked on is in
plrce of task name. The task loop is accessed via the creat task and work on task commands.

c. Lesson Loop. The lesson loop provides all of the commands to the user for defining and
manipulating lessons. The lesson loop also imports various view commands from the main loop for
classes and the libra'y so the user may query information about them. The lesson loop also contains the
commands 'o access HF.Tutor.

100

The lesson loop is invoked with one and only one lesson. This means that if you wish to
work on a different lesson, you must exit the lesson loop using the quit command and reinvoke the loop
with the desired lesson.

Ihe lesson loop's prompt is [LESSON:lesson name)> where the lesson being worked
on is in place of lesson name. This loop is accessed by the create lesson and work on lesson commands.

d. Problem Loop. The problem loop provides all of the commands to the user for defining and
manipulating problems within a lesson. The problem loop also imports various view commands from the
lesson loop for classes and the library so the user may query information about them.

The problem loop is invoked with one and only one problem. This means that if you
wish to work on a different problem, you must exit the problem loop rsing the quit command and reinvoke
the loop with the desired problem.

The problem loop's prompt is (PROB:lesson name:problem number]> where the lesson
being worked on is in place of lesson name and the index number of the problem is in place of problem
number. The loop is accessed by the work on problem command from within the Lesson Loop only.

3. Special Environment Features of MElRuilder.

a. Autosave Capability. MEBuilder comes with a built-in active autosave system which helps to
preserve the session in case of ungraceful exit from MEBuilder. The autosave file (located in the working
directory and called autosave.meb) is a pure database dump of all work being done with the Quintus
Prolog dynamic modules preserved.

The autosave process occurs every tenth command in the Main Loop. Task Loop, Lesson
Loop, or Problem Loop. If a complex session is taking place, this process can be quite slow .- hopefully
future implementations will provide ways of speeding it up.

The autosave frequency and the destination autosave name can be set using the set
autosave count and set autosave data commands. The view autosave data command will allow you to
view the current autosave settings.

To restore an active session to the point of the last autosave. use the restore autosave fde
command.

b. Help Facility. At any time in the four main loops, you may invoked the help facility by
selecting the help command. While in the help facility, you request information by providing the name of
the command or topic you want at the MEBUILD HELP> prompt. You can get a list of help entries by
typing help inside the Help facility. The quit command will return you to where you entered from.

101

TAB 3. LIBRARY FACILITIES

MEBuilder provides a basic library facility which helps track all the items created during
MEBuilder sessions -- objects, tasks, lessons, and metutor-ready files. Items are tracked by date last saved
and dependencies. Item dependencies indicate those items that must be in the database in order to use the
item (example - a task's dependencies are the objects involved in the task). The tracking of dependencies
is used to auto-load everything needed in one stepand to ensure that changes in one item don't damage all
other items that depend on it.

The library is stored in ilib of the working directory andit contains a directory listing file
(mebulld.lib) plus one filefor each item (object files have extension .cls, tasks .tsklessons .les, and
vETutor files .met). The listing file containsone entry per item indicating the name. file, etc. In future

implementations, the listing file will also indicatelinks to other MEBuilder libraries. This will allow
objects in other directories to be read-accessed by items in the local library.

2. Library Maninulation and Viewing Commands.

There are three things you can do with libraries -- create (or recreate) one, view the entries in one. or link
in a new library. The options with these commands are currently very limited and will be upgraded in
future.

a. Clearing or resetting the library -- the create library command. Currently, MEBuilder only
recognizes './lib' as the library directory so running this command clears the library data file and startm tie
directory anew. Be careful when using this command -- be sure that an MEBuilder library does no exist
(it will query to continue if one does).

b. Viewing the Contents of the library -- the view library command. This command will provide
a by name listing of all the objects in the library -. which have been loaded and which have been
modified. The list is alphabetized in order by objects, tasks, and lessons. (NOTE: Unfortunately the list is
not run through more so it will likely scroll the screen. For non-xtern environments this might cause a
problem. This feature is slated for future improvement).

c. Linking together and accessing remote library information -- the link library command. This
command is not yet implemented. This command will allow you to access objects and tasks in multiple
libraries. The key difference is that remote information is read-only, no library item can be mutually
dependent, and a local definition of some library item takes precedence over items of the same name in the
remote library.

d. Cleaning out deleted Information from the library -- the purge library command. This
command removes all entries from the library that have been marked for deletion by the remove object,
remove task, and remove esson commands. (This command is not yet implemented.)

3. Lad and Save Commands.

Information about these commands are available in the reference section at the back of this
manual and are discussed in detail in the other chapters of this text.

a. Discussed in Section C (Objects) -- load object and save object

102

b. Discussed in Section D (Tasks) -- ld task, and save task

c. Discussed in Section E (Lessons) -- load lesson, save lesson, and save compiled lesson

103

TAB 4. STEP ONE -- DESIGNING AN OBJECT

1. WhatianQbjW?

An object is MEBuilders representation for any entity that will exist in a lesson .- be it a prop or a
character. The purpose of an object is to encompass the make-up and bebaviour of these entities so they
may be used in more than one lesson and the make-up and behaviour is guaranteed to be consistent.

Objects are abstract. When you develop a flashlight object, for example, you are defining
behaviour true of all flashlights. This way, if you declare a lesson to have two flashlights -- a black aad a
silver -- the behaviour is consistent between the two.

Objects are represented as the collection of data relating to one ntity. These are:

-- Parent Object. Information about what type of object it is.
-- Components. Information about what other objects comprise this object.
-- Property Sets. Information about what states the object can be in and which states are

mutually exclusive
-- Operations. Information about what operations can be performed on the object and

what behavior is exhibited when done so
-. Summaries. Ways of summarizing a collection of states of an object in one term

- Background Changes.
Information about behavior that an object may exhibit without an
external stimulus

The three items above that are required for any object to be used in MEBuilder are the parent
object, property sets, and operations. These three should be identified in order.

2. The Obiect Hierarchy -- Defining the Parent Obiect.

IMPORTANT NOTE: Before you declare a new object, ensure that its parent (defined below) is
defined first and loaded into the current MEBuilder session.

Parent objects are used for specifying an object in which a new object shares data and behavior.
The parent object is therefore a more general form of the new object. The opposite of parent object is
child object.

For example, one may have a prop type named "car". One can then create "sedan" and "sports
car" as new objects based on 'car". "Car" becomes the parent object of "sedan" and "sports car" -- and the
latter two inherit all the object definition data that exists in car. By "inheriting data", we meai that if a car
has four wheels as components, then by the parent object relationship sedan automatically has the four
wheels without you having to repeat that information when building a sedan.

Parent objects can be chained, meaning that if a "four-door sedan" was created, it inherits all
information from car and sedan. Chained objects produce what we refer to as "ancestor/descendant"
relationships. "Ancestor/descendant" can be used in lieu of "parent/child" as well.

104

Sedan can change some information in car also. For ex.ample, if cars have an engine, perhaps a
sedan has a particular type of engine. So the engine component can be overwritten by sedan. Then "four-
door sedan" inherits the sedan information first, not the car information.

In MEBuilder, every object is a descendant of either "prop" or "character". The parent object is
specified upon creation of the object, and can be changed (This is strongly discouraged as it will disrupt
the behaviour of any task or lesson that uses it). Objects can only have one parent.

The parent object is specified when the object is created using the create object command.
MEBuilder will provide a list of all the objects currently loaded in the session plus the standard ones
"prop" and "character". In order to change the parent object, you can use the modify parent object
command.

3. Declm'ny Comnonent.

After the object has been declared, the next thing you should do is declare any components it may
have.

Component, in MEBuilder terms, is the way of describing both "a part of" and "has a"
relationships between objects. For example, walking robots have x number of legs so each leg is "a part
or' a walking robot. Or. a fire team member might have equipment that he would use in a firefighting
problem. Therefore, the team member "has" equipment. With reference to characters, component
relationships can probably be better described as "possessive" relationships and the component is the
character's possession. The word possession is only used here for illustrative purposes -- component is
used for both meanings.

MEBuilder allows you to identify component relationships between objects. Components are
manipulated via the create component, remove component, and modify component commands. Apart
from specifying the owning object and the component object type, you will need to specify:

-- A component name. For objects which have one of some type of component (cars have one
engine, for ex.) you should use the object name as the component name. But, if the object has multiples of
some component (cars have four wheels) then the component name must be unique ('left front wheel",
"right front wheel", ..)

-- The tense of the component -- singular or plural. This ensures that the user output is correct in
terms of matching verbs in natural language. MEBuilder will query the tense in the form of a question as
to whether or not the name follows the "ends in s" rule. In other words, if it does not end in s it will
assume it is singular and will query whether its assumption is correct.

The view component command will show the entire definition of the component, including its
inheritance source (whether derived, inherited by parent object, or inherited by component).

4. De• lsrn•P =nertv Sets.

Property sets are used to describe states that an object may be in and the relationships
(specifically mutual exclusion) among these states. A property set is defined as a set of properties that an
object can only have one of at a given time. Examples of property sets:

- A machine can be "on" or "off'.
-A streetlight can be "red", "green", or "yellow".

105

-- A student can be "present" or "not present".

Property sets always have a least two elements. A set that has one specified element "X" has an
implicit element "not X". Property sets are described with the following information, and are manipulate•.A
via the cream property set, remove property set, and modly property set commands.

-- The object being described.
-- A name which describes the set. The above three exanmples could be described in order as

"switch position", "color", and "presence". IMPORTANT: TI'r name must be one that can be used in
natural language output because phrases such as "object's color is unknnown" may be shown to the student.

-- The members of the set (also called the domain of the set). Currently, only qualitative mermbers
are allowed. Quantitative members might be added at a later time.

- Whether or not the state of an object is readily visible or is something that must be
discovered. Examples include the "charge level" of a battery - one doesn't know the charge level just by
looking at it, one must perform an action to find out. This translates into information that a student is told
he/she might not know when running the lesson.

Members of property set must be unique to the object. For example, the word "blue" cannot be
used to describe both "color" and "mood". You cannot begin the name of a property with the word not.
Not is a reserved word. If you have a property set which has an x and not x relationship, you must specify
only the x.

The view object command will only show the name of the member property sets. To get the
complete detailed definition of the set, use the view property set command. The output will also contain
the inheritance source (whether derived, inherited by parent object, or inherited by component).

The following are suggestions for the naming of property set members. Although it seems
puerile, the best way to name the property set members is to use the closest adjective form of the operation
used. For example. a door object can be opened or closed. The operations would be "open door" and
"close door". Similarly, a device that one can install or remove should be "installed" or "removed". Even
though it sounds repetitve, it is easily for the student to grasp the direct relationship between his actions
and the result.

5. Declaring _Opraions.

Ensure that you are declared all of your property sets first before entering this step.

Operations are the primitive methods by which the student or an agent can manipulate one or
more objects. Tasks and lessons consist of sequences of these primitives. The intent of the operation is to
encapsulate an event that takes precisely one turn to complete. In taski and lessons, operations defined at
the object level are called primitive operations.

Operations am described with several data items and are managed via the creow operation,
remove operaton, and modWfy operation commands.

-- The direct object. The direct object is the thing that is the focus of the operation -- the primary
item being manipulated. Can be either a whole object or a component of an object.

-- The indirect objects. These are objects which must be present in order to do this operation.
-- The operation name. Must contain direct object, but may coetain any or all the indirect objects.
-. The intended effect. The primary or desired change of state in the direct object.

106

-- The preconditions. These are the conditions in which the direct object and indirect objects
must be in for this action to be allowed.

The side effects, These are changes of state that ainy of the objects also realize different from
the intended effect. These side effects *always* happen.

An example is "tighten the nut with the wrench" for the object nut. Nut is the direct object and
wrench is an indirect object However, let's say that bolt is also an indirect object that is unspecified in the
operation me. The intended effect would likely be that the "nut is tightened". The preconditions would
be that the "nut is on the bolt" and "wrench is serviceable". The side effects might be that the "bolt is not
free*.

It is important to note that the operation is defined only in instances where all the objects are
used. Therefore, if a given task only uses nuts and bolts but not wrenches, the above operation cannot be
used.

The following awe the riles for operation names. The examples above show the pattern for
operation nzmes. The operations follow the convention of a verb phrase. followed by a direct object,
trailed by a set of prepositional phrases containing the indirect objects. The verb phrase and the direct
object are required elements of the operation name. However, there is one specild case to be aware of. If
the object is a character, and the direct object is the character object itself (ioot a possession of the
character), then you should use the special form "have ,characte.' <operation name>". What this will
do is signal MEBuilder to strip off the "have" phrase, when compiling any lesson with it. This way, the
operation name correctly identifies the direct object and the end result operation is used by the student or
agent in first person.

The view object command will only show a listing of operations by name for an object. To view

the entire definition of the object, to include inheritance source, use the view operation command.

6. Declaring SumMa" Facts.

Summary facts are useful for complex objects in which you desire to help streamline the output.
A summary fact is a single-phrase description of a collection of properties about one or more objects. It is
primarily an interface tool which is used to "summarize" the state for the user.

Summary facts currently can only be defined for objects, however, they will soon also be
definable for tasks and lessons. They consist of the following data and are accessible via the create
summary fact, remove summary fact, and modify summary fact commands:

-.The object.
- The name of the summary, which is constructed similar to a property set member: object "s

<summary descriptor>
-- The definition of the summary, which is a list of non-contradicting properties about the object.

An example of a summary fact for flashlight is "flashlight is working", defined as "flashlight"s
chassis is assembled", "flashlight"s top is assembled", "flashlight's batteries are working", "flashlight"s
bulb is working". So with this summary fact, should all four defining members be true, then the four are
not printed out to the student. Instead, just the summary "flashlight is workdng" is printed.

Summary facts are currently not available when using tasks - either as defined among a set of
objects or as a shortcut in building task definitions. This is an item for future implementation. The only
time summary facts are used is in the METutor lesson itself.

107

The view object command will only list the object's summary facts by name. To get the complete
defiition of a summary fact, use the view summary fact command. The command will also show the
inheritance source of the summary (whether defined or inherited from parent or component).

7. kflan nund n.

Background changes model changes of state not caused by an external stimulus. That is to say
that the object or objects change state on their own, due to the object being in some given condition
(though not necessarily). An example of this is that whenever a streetlight is on, then if the streetlight is
green then 10 turns
later it will turn yellow and 10 turns after that it will turn red,

There are several general models of background changes:

- Progression. The object changes from state to state within a property set until the last is reached
(which would normally imply some other event is to take place). An example of this is a ship with a hole
in the hull that progresses through "no water", "some water", "lots of water", "full" at which point the ship
sinks. Currently progression is forward only.

-- Loop. The object goes back to the beginning. The streetlight loops through "red", "green",
"yellow". The loop can only go in one direction, it cannot be reversed at present.

-- Update. The object performs an operation. (Not yet implemented).

Background changes can be very complex, and there are many different options which are
available for building them. They consist of the following pieces of data, and are manipulated using the
create background change, remove background change. and modify, background change commands.

-- A triggering condition list. The object would be subject to background changes while all of the
conditions in the triggering condition list are true. If the list is empty, then the object will always be
subject to the change.

-- The property set corresponding to the state changes.
-- Advancement method. How often or what probability will the next change occur.

The view object command will only display the name of the background changes in a listing. To
get a complete definition of a background change, use the view background change command,, which will
also print the inheriteance source of the background change (derived or inherited by ancestor or
component).

8. LihryM Management with OMiects.

You may save your object at any time using the save oiject command. The lead object command
will load the object into the session, along with the entire parent and component class hierarchies. This
last note is important since you may note that several objects are loaded in that you did not request loaded.
This feature ensures that all inherited object definition data is available at all times while the object is
being accessed.

You may also delete and restore objects from the library. The remove object command will mark
an object for deletion, while the restore object unmarks it. Upon exit from MEBuilder, all objects
removed from the library will be permanently purged. Important: Once an object has been purged, all
other objects, tasks, and lessons that use the object are invalid and must be reconstructed. Be sure you
know what you are doing.

108

(NOT,d: These two commands am not yet implemented.)

Finally. to see if the object has a valid definition (that the modification or removal of data did not
leave Pny undefined remnants, use the check eobjct command.

109

TAB S. STEP TWO -- DESIGNING A TASK

1. 3ft isitTTas

A task is the fundamental building block of a lesson. It describes a single behaviour of a
character (called an "actor") with respect to a defined starting point and a defined goal. "Iis behaviour is
described in terms of a "sequence" of primitive operations.

The task does several things. First, it establishes relationships among the primitive operations
which the operations themselves do not cover. Second, it allows the teacher to identify and build alternate
solutions to the problem to be ovenwually given to the student. Finally, it cross-checks the teacher's intent
with the object
definitions to guaranteed conectness and consistency.

The task is made up of the following:

" An actor. This is tne one individual with primary responsibility for performing the task. The
actor must be a character class.

-- A list of other objects required for the task. Some tasks may involve multiples of the same
object. DO NOT treat components of an object as a separate object!

-. The initial conditions that each object is in at the beginning and the objectives that define when
the task is complete.

Important point about tasks. Tasks are built in terms of a known start and a known finish.
However, the task is designed so that the student can react to a state which is in the middle of the task or a
state which is outside the bounds of the task. In each case, the task provides the underlying rules describing
which operations can be applied and which cannot. Therefore, there is no restriction at the lesson level
which prevents a lesson scenario from presented a situation that does not directly conform to the initial
conditions of any task.

2. Pnerwnes of Tasks -. SteM and Stan Dependency.

Tasks are described as a sequence of steps and each step consists of a task operation. The
difference between a task operation and a primitive operation is that the task operation gains additional
preconditions based on the sequence of steps in the task. So task operctions ame task.specific, whereas
primitive operations are mome general. Steps are identified by number, listed in front of the operation -2n
brackets -- such as [3]. For commands that use <step> as an argument, it is the number in brackets that is
required (this requires less typing than the entire operation name).

Tasks are not stricdy linear, however. Some tasks can be performed in several different
sequences of operations, usually because there are operations in the task that are completely unrelated. In
this case, a single step may contain several "subprocedures":

(2) open the widget
(3) all of the followiLgt

D3al subprocedure:
[3alymnDk the widget's red wire
[3a]Fyank the widget's yellow wire

(3b] subprecedures
(3bhiseal the room

110

t3b2ldeplay the bcms squad
(41 yank the widget's blue wvie

This implies that atp [2 comes first, and that [3nl] must precede [3a2]. But it does not imply
any special ordering between [3a11 or (3bl] other than both must be done before (4]. So the tollowing are
valid solutions -- 2-3al-3bl-3a2.3b2-4, 2.3bl-3al-3a2-3b2-4, etc.

There is an Impomnt principle that governs when steps can be moved around the procedure and
where, and this is called step dependency. A task operation X is dependent on another task operation Y if
and only if the intended effect or any side effect of the primitive operation Y is a precondition of the
primitive operation X. What this means is that no matter how the teaches decides tc describe the task, X
cannot precede Y. Therefore, them will be limits to tho options given to the teacher when moving task
operations about the task. To see which operations am dependent on others, you may do the View step
&ppe~Aecks command.

During construction of the task, the ordering of steps adds more dependencies. Step [X+1] is
always dependent on step [X], and similarly substep [XQg] is dependent on (XQf] for some subprocedure
Q in step X. If step IX] is a divided step (meaning that is contains subprocedures), then step [X+l1 is
dependent on *al* of the last steps in each subprocedure of [XI.

When you manipulate the task to change the ordering of steps etc., the options given are based on
the primitive operation dependencies. Step dependency ca, be changed, the primitive operation
dependencies cannot. In order to modify the latter, you must modify the object definitions appropriately.

3. Starting a New Task -- Naming Obiects and Setting the Intitial Conditions and OUbctives.

To create a new task, use the create task command. This command will take you through a series
of steps which will initialize the task into hopefully a solvable form.

a. Naming the Objects Involved. You will be asked for the actor in the task. The actor must be a
character object (the generic character object is sufficient, and will probably be the one most commonly
used). Then you will supply the object types for all the remaining objects. You are allowed to repeat
objects. If you repeat objects, the second object of the same type will be objectl. The third will be object2.

b. Setting the Imtial Conditions. Initial conditions describe the initial states of the objects within
a given task. These initial states are established in order to ensure that every property set associated with
an object has a value assigned. After the task is defined, you may use the set inital condiwas command
to change them, and the vew inii cendbions command to view them. Notes about initial conditions:

(i) You can only choose one member of the property set to be in the initial condition:,.
You should choose the property set that satisfies the most general case of the task. It should not be
necessary to create separate tasks based on an initial condition set with a variable member.

(ii) If a property set is declared hideable, then its value being known andjor unknown ih
considered a separate property set and must be set.

c. Setting the Objectives. Objectives define for some prop or character the point the goal of the
task or lesson.After the task is initialized, the set ecjctives and view objectives commands are availabla.
There are some subtle differences in the context of which prop or character.

111

(I) In the case of the prop, the objectives define what state the prop is in when the task or
lesson is completed.

(Mi) In the case of the chancer which is not the student's role, the objectives define the
state that hechst ris always tzying to achieve. It is best described as the state where h(. has no work to
do.

(Hii) In the case of the character which *is* the students role, the objectives define the
state which signals the end of the lesson (or task).

Like the initial conditions, objectives are defined for each object in the task ,,r lesson. The state
for each
object should ordy list those properties absolutely necessary, you must explicitly identify those properties
that are "don't-cam"s -- MR~uilder uses fth term "<property set> is immaterial." !n order to prevent the
unneressary or unplanned exclusion of some solutions to the problem, make maximurm (but well-planned)
use of the "don't-care" case.

d. MEBuilder Determines the Initial Solution. MEBuilder will try to find *%* solution to the
problem. Once It does, it will construct an initial procedure based on the premise. that the solution it found
it tie only solition. The steps wid be numbered [1] to In]. The solution is based solely on the primitive
operations, and it may not even be correct according to what you intended! You should accept the solution
(forcing it to find a second solution could take quite a long time) and use the commands in the next section
to manipulate it to the procedure you really want.

4. Mnidifvino the Tnak -. Altnwimu for Multiple Solution,

There are several ways that you can manipulate the task once the first solution is established. It is
important to note that all of these commands are restricted under the rules of dependency described earlier
in this section.

a. Declaring Subprocedures. The find splits command will locate sets of operations that appear
unrelated and could be made into subprocedures. The inverse of this is the combine step command. The
combu s$e command does the inverse -- it takes two subprocedures (actually, the first step of each of
two subprocedures) and combines them together into one sequence of actions.

b. Swapping Steps. Two adjacent steps may be in the incorrect order. As long as step
dependency permits, you may use the swap stp command to reverse them.

c. Moving A Single Step Around the Task. Sometimes the fhd splfts command correctly
identifies subprocedures except that one or two of the operations should be included or excluded. The
moiv sup command remedies these problems. In addition, this commndw allows naming the step as a
single-action subprocedure, and you can create a set of permutable actions with this single-action
subprocedure. For example if [4] and [5] are independent, then doing a move sup namber s will allow
you to merge [4] and [5] into [4al] and [4b1). This can be extended to add the one-action subprocedure to
an already existing set of permutable actions.

d. Declare Unordered Actions. The mote step is also used for this purpose. Steps may be
declared unordered (and they will appear with an asterisk to the terminal). This same command can also
be used to reorder the operation. Unordered actions are those which do not follow the strict ordering of the
task except that they must precede the next step. For example, if step [61 is unordered it may be done at

112

any time (assuming its preiconditions am met), but it must be done before step [7]. Thesw grealy add to the

flexibility of the lesson.

S.Viwig a nLt .AI

The rett'skh command is useful if you decide you wish to start over. lEBuilder will restore
the initial single solution, clewring all subprocedure information.

The v•Ww kk prints out the task in its present form. This is useful if you wish to get the current
stop Mrangement.

The vkw tt•aden command prints out the state that is true after a given operation has boen
performed. This is useful for uncovering reasons why a particular solution was declared valid when you
feel it should not have been.

The modify step command allows you to add additional preconditions, side effects, and messages
to the task. Once these are specified, the task is recalculated based on the changes. This is an especially
important command if you wish to introduce probabilities into the problem (such &- thea is a 15% chance
of a fire rekindling after you have extinguished it).

6. Lih Marmfnf n I oIMk-.

The bad task, save Sink, remove task, restore Auk, and check task commands are analogous to
their object counterparts. The ad tak command will merely load the task into the session, it will not
automatically invoke the Task Loop. check task will first perform a check object on all objects in the task.

In addition, in order to edit a task. you may use theC work on lask command to enter the Task
Loop. This command will ensure the task is loaded first, and load it if necessary.

113

TAB 6. STEP THREE.. DESIGNING THE LESSON

L. Whn uat saesn?

An MEBuilder lesson is effectively a workbook filled with individual problems, similar to an
exercise section at the back of a chapter in a textbook. The problems should be designed to meet any or all
of the following needs:

- Cover different pieces of a topic, perhaps culminating with a problem that covers the whole
thing.

-- Starting at an easy level and progressing to harder levels.
-- Demonstrating lo-owledge of lesson material in multiple scenarios (such as with different

equipment or with different personnel available).

The workbook nramework contains the main information necessary for MEBuilder to build an
METutor lesson. These are:

A comprehensive cast of character roles and props with the associated tarks to be used.
-- An introduction text for the lesson itself.
-- A listing of problems.

2. What is &arobleim?

A problem is a specific exercise. The student will do the problems when he runs the lesson. A
problem contains a scene which is the scene presented to the student, and contains a goal which is what the
student must achieve. A problem is cc.istructed very similarly !o a task in that a concrete cast and list of
props is given. The problem also contains information about the role the student will play (if there is more
than one character iq the problem). Most lessons will have the student play the same role in all woblems.
however some might desire the student to play different roles.

3. Building a New Lesson.

)mpor'ant: Before constructing a new lesson, you must have loaded into MEBuilder all of the
objects and tasks you intend to include.

In order to make a new lesson, you may use the cream lesson command from Main Loop prompt
to make a new lesson. The command will take you through the process of identifying proper names for the
cast and props along with identifying their types. This is the cast and props that will be present in all
exercises.

MEBuilder will then identify the loaded tasks that correspond to the given set of objects. You
may choose all of them or omit those not needed for the lesson. However, every object you specified must
be includable in a task. In other words, if you specified an extinguisher object but omit the only loaded
task that uses an extinguisher, then you must reconsider the assignment of objects and tasks. Orderg of
lI The order you specify determines the defaults for the scene and the goal in cases when
an object is to be employed in one or more task. The default scene for any object is the initial conditions
of the first task that uses it. The default goal for any object is the objectives of the last task that uses it.
These defaults will be relayed to you each time you declare a new problem.

114

Once the lineup is satisfactory, you will be in the Lesson Loop, the first thing you should do in
create an introduction text for the lesson. This should be a general text which describes the overall goals
of the lesson. Each problem will 'nave its own introductory text. The edit lesson intro and view lesson
in&& commands are available. NOTE: The edit lesson in&o command uses emacs -- and at present this
cannot be set.

4. Defining a New Pmhlem.

Problems are defined by the create problem command. This command will initiate a sequence of
steps where you will specify the student's role and any cast members or props who are not to be included
in this particular problem. Each problem is assigned a problem number, which is one more than the
number of problems in the lesson. You also provide MEBuilder with a unique problem name, which is
primarily used to help you identify the problem. In most commands in the Lesson Loop, you may identify
a problem either by its number or its name.

The scene and the goal will default to the initial conditions and objectives of the tasks you
specified according to the rules described above. MEBuilder will print out a list of those items as they are
entered. Once the process is complete, you will be in the Problem Loop. Entering quit will pop you into
the Lesson Loop.

After a problem has been created, you may modify the problem definition with the set scene and
set goal commands. The view scene and view goal commands are analogous. The difference with the
scene vice the initial conditions of a task, however, is that you may identify probabilities. This means that
some state member in the scene is uncertain. You will be asked to identify those probabilities for each
state member -- and those will become a random event in the compiled lesson.

You may edit and view the introuctory text for the problem using the edit problem Intro and
view problem intro commands. These are exactly analogous to their lesson intro counterparts. As with the
edit lesson intro command, emacs is the only editor accessible through MEBuilder.

In order to return to a problem from the Lesson Loop, you may work on problem, specifying the
problem's name or number.

5. Seting Problem Ulgions (NOT YET TMLMENTED)

Options is a method of taking some of the parameters of a problem and adjusting them
(overriding the original definition hfm the task) in order to change the difficulty of the problem.

None of the following have been fully implemented yet, however, theve are the options planned:

-- Side effect blocking. All probabilistic side effects as defined in the task definitions are
nullified. The intent is to irovide a very simple problem with no surprises for the student (good for earlier
problems).

-- Probability overrides. Overrides the percentage of some given side effect in a task definition.
Intent is to perhaps increase the likelihood of something going wrong.

-- Background effect overrides. Overrides the percentages or count values in the background
changes listed for some of the objects.

115

- Character speed. Characters other than the student can takes action quicker. For example, a
setting of 2 for the adversary of the student means that the adversary gets two moves per student's one
move.

As they are implemented, entries for the associated commands will be added to the help system.
Currently, the planned command is simply set options.

6. Raeiwddng and Deleting the Problems in the Leson.

You are allowed to renumber the problems using the order problems command. This is provided
since creat problem only adds problems to the end.

In addition, problems may be deleted using the remove problem command.

7. Accessing METutor -- Compiling mad Running Lesons from MEl•uilder.

MEBuilder is a lesson authoring system that was built on top of MFTutor version 29, an
Intelligent Tutoring System (ITS) shell. MEBuilder makes use of several METutor facilities while helping
you build lessons.

Creating an METutor lesson from MEBuilder data is done through a "compilation" process,
accessible via the compile lesson command. This command will performs checks on all the objects, tasks,
and problems in the lesson and then translate the entire database into METutor form. The compiled lesson
can be saved as an METutor runnable file using the save compiled lesson command.

You can invoke an METutor session on a lesson you have compiled by using the run lesson
command in the Lesson Loop. You do not have to explicitly call compile lesson, the run lesson command
will do it automatically. Quitting from METutor will return you to the Lesson Loop.

8. LibrW Manaement of Lessons.

The load lesson, save lesson, remove lesson, restore lesson, and check lesson commands are
available and mirror their object and task counterparts. In addition, the work on lesson command enters
the Lesson Loop on a particular lesson. As with the task version, work on lesson will load the lesson first
if it hasn't already been loaded into the session.

116

APPENDIX C. SAMPLE SCRIPT RUN WITH MEBUILDER

The following script run with inserted comments is the same sample script run given
to the students in the experiment described in Chapter VI. The problem requires a pilot to
execute the steps necessary to prepare a plane for takeoff. It is of similar complexity and
size as those lessons used in the experiment. The script is divided as follows:

Tab 1. The Requirements and Design Phase
Tab 2. Building the Objects
Tab 3. Building the Task
Tab 4. Building the Lesson

117

TAB 1. THE REQUIREMENTS AND DESIGN PHASE

This appendix will present a sample session using MEBuilder to build a lesson from the ground
up. That is, a requirement will be presented and discussed. We will then go through the process of
identifying the objects and members of the objects, constructing associated tasks, and finally building a
lesson workbook. We will then demonstrate the lesson compilation process and the METutor interface.

1. The Lemon. Pilot Training

The student is a pilot who is learning how to fly. His first lesson is in the process of prepping the
aircraft for takeoff and for the basic communications with the air traffic control tower. At the start of the
problem, all of the devices in the aircraft are turned off and the aircraft has not been preflight inspected.

This is a very simplistic description of the procedure and the objects involved in order to keep the
scope of the problem reasonable for this appendix. There is a buffer present at the terminal to help start
the engine. The aircraft has several subdevices associated with iL The aircraft has brakes, throttles, an
engine, trim, nose wheel steering ("NWS"), external power hookups, and an auxiliary power unit ("APU }
with its associated bleed air and generator. The brakes, trim, and NWVS are unchecked. The aircraft has
not been preflight inspected. External power is available but is off. The engine and APU (along with its
associated components) are all off. The pilot has not had his flight plan cleared with tower, nor is he
cleared for taxi nor takeoff. There is a wind sock at the end of the runway to inform the pilot of the wind
speed and direction at takeoff. At the end of the task, the student should be airborne.

The sequence of steps is as follows:

(a) The pilot must do the following in order, inspect the aircraft, engage the external
power, -ngage the huffer, start the engines, start the APU, and then engage the APUs generator and bleed
air. The plane is own operating on its own.

(b) The pilot requests flight clearance while he is checking the NWS and brakes.

(c) He then disengages the huffer and the external power, requests taxi clearance and
taxis to the runway.

(d) At the edge of the runway, he requests takeoff clearance while he is checking the
wind sock and adjusting the trim on his aircraft.

(e) Once his takeoff clearance is granted, he pushes the throttles to max and flies the

airplane!

2. Desirn the Obiects and the Man the Scenario

For the purposes of this sample, we will only concern ourselves with the fundamental building
blocks of objects -, components, property, sets, and operations. We will not include summary facts and
background changes nor will we employ an object hierarchy other than identifying props and characters.
There are two steps to this process -. first identifying the makeup of the objects, then defining the behavior.

a. Pap the Scenario

Generally speaking, most applications will not come in a nice tidy procedural listing
such as that given above. The best thing to do for any application is start by identifying the specific

118

sequences of events that must occur and list then in order step (a) through (z). Grouping set sequences
together such as (a) abx)ve is ideal. Devote a step to sequences of events where order is unimportant, such
as (d) -- but be sure to identify what ordering is allowed and what is not. For example, in (d) checking the
wind sock must come before adjusting the aircraft's trim. So the following are legal: clearance-wind sock-
trim, wind sock-clearance-trim, and wind sock-trim-clearance.

b. Ident#.yand Design the Objects and Component Relationships

There are several objects listed in the above scenario. However, as we identify these
objects we must also identify those objects which are components of other objects or are possessions of
characters. The following is the breakdown of objects in this task:

(1) the aircraft -- a prop, with the following components:
(a) auxiliary power unit -- with the following components:

(i) generator
(ii) bleed air

(b) brakes
(c) engine
(d) external power hookup
(e) nose wheel steering
(M throttles
(g) trim

(2) the pilot - a character
(3) the huffer -- aprop
(4) the wind sock -- a prop

(We are not going to model the air traffic control tower as a separate object for this

example.)

c. Identify the Behaviour -- the Properties and the Operations

The property sets and the operations go hand-in-hand. For each property described in
the task, we might want to consider an operation that achieves it. The key for successfully doing this is to
keep it simple. Do not include attributes that are redundant or unnecessary.

We will start with the pilot. The pilot is the one doing all the work, however most of the
work is in changing the state of the aircraft, not the pilot. Three are three things the pilot does that clearly
changes his own state -- requesting the three clearances. We say this because clearance to taxi, etc., is
requested by and granted to die pilot, not the aircraft. Because the pilot is a character, the operations will
begin with the key phrase "have pilot", which will be chopped off during the lesson so the student will
view things first hand.

There are several ways to model the pilot's state. We could either model the three
clearances as three different property sets or model all three as a single property set with a fourth member -
- pilot is uncleared. Generally speaking the former method is preferable since the fact that a pilot is
cleared for taxi and departure could be used in several contexts. Only in cases where all values a strictly
mutually exclusive should they be combined.

When designing the objects, the best way to do it is to set up a table mapping properties
to operations and operations to other data. Group possible property sets together and label them. The
following is a good example:

119

"Property Opezation to Achieve it Precondition
flight clearance:
pilot is cleared to depa have pilot request flight clearance
pilot is not cleared to depat <none>

taxi clearwnce
pilot is cleared to taxi have pilot request taxi clearance
pilot is not cleared to taxi <none>

takeoff clearance:
pilot is cleared to take off have pilot request takeoff clearance
pilot is not cleared to take off <none>

Now, let's examine the task description and see what other information we can gather.
For designing the operations, we must identify the preconditions. Using the scenario mapping, this is
easy. For example, in order to request the flight clearance, the APU bleed air on the aircraft must be on.
MEBuilder automatically assumes that the pilot is not cleared to depart so it is not necessary to include that
precondition.

Property Operation to Achieve it Precondition
flight clearance:
pilot is cleared to depart have pilot request flight clearance aircraft's bleed air must be on
pilot is not cleared to depart <none>

taxi clearance:
pilot is cleared to taxi have pilot request taxi clearance aircraft's external power is off
pilot is not cleared to taxi <none>

takeoff clearance:
pilot is cleared to take off have pilot request takeoff clearance airci aft must be on the runway
pilot is not cleared to take off <none>

In similar fashion, here are some the aircraft's properties and operations (We will not include an
of them in the in:erest of space).

Property Operation to Achieve it Other Information
location:
airceft is at the terminal <none>
aircraft is on the rtmway taxi the aircraft pilot must be cleared to taxi
aircraft is airborne fly the aircraft aircraft's throttles must be maxed

NWS check status:
aircraft's NWS is checked check the aircraft's NWS aircraft's bleed air must be on
aircraft's NWS is not checked <none>

Once you have built these tables for all the objtcts, you are ready to start the MEBuilder session.

120

TAB 2. BUILD THE OBJECTS

The best way to approach constructing the objects is to do the following in order.

'Crew al "the objects
-- Connect all the components
-- Define all the property sets
-. Define all the operations

We will now begin an ME~uilder session. Notice that MEBuilder automatically creates a library
directory for us (asuming this is our first session):

script started on Tue Jul 26 10M3M1 1994
.alias: We such file at directory.

3. -galvist/amibuld/Iuauilder
4.---4

I Kemans-Rud Virtual World end Lesson builder -- UMuilder I
I CPT Thomas P. Galvin, Us AriW, Naval Postgraduate School I
---4
I Type "help" for a"'mistanc

4--4
Thilder local library hot found.. crating ...

Uuierlocal library loaded.

a. Creating the Obi=. Now we will use the create object command to create all the objects
(this includes all of the objects that will become components of aircraft). The following is a portion of the
script.

MMUzw> create object naimed pilot
The fTlouiza are the available parent classes.

-. prop
12] character
r-. i me hof the o atovon2

.irec"pilot" is no- defined.
IV- 10 create object naime ut ffer
11h. Ulowiu2 are the available parent classes.
il prop
(23 character

[3) pilot
Choose .*, of the above> I
class "tfer" is nm defined.
HIML.D.> create object naimed wind mock
The k. .- wing are the available parent classes.
Ill prop
123 character
131 pilot

Choose one of the above) I
Class "wind oak" is now defined.
IU5UIW, create object namd aircraft

"te following are the available parent classes.
Il.3 prop
(23 character
[3] pilot
[41 h':ter
:.5 mind mock

121

.k] caxtta

Choose one of the aboc'e, 1
Class *aircraft" Is now defined.

12 UZLD:w create objJeut named aitcraft AIC
The following are the available Parent classes.
1ll prop
123 character
(21 pilot
[41 huffer
1S) wind sock
(61 aircraft
coose me of the abov•e. 1
ClassL "Aircraft A£1" is' now defined.

Note that all of the created objects become options for parent objects. In the same manner, the
aircraft APU genemaor, aircraft APU bleed air, aircraft brakes, aircraft engine, aircraft external power,
aircraft NWS, aircraft throttles, and aircraft trim objects are all created. Other commands useful here
include view object and change pa-ent object.

b. Pefining Comnonpnts. We will demonstrate the process of combining a component object
together. This is with the create component command. We will only show the construction of the aircraft
APU with its generator and bleed air. As specified in the command reference. you do not have to provide
the "named" and the "for" arguments on the command line - MISvulder will prompt those automatically.
However. MEBuilder will always provide a menu for the component's type.

iMUZLD3. create c•ompent, named generator for aircraft 1PU
Choose the class of the new Component free 0n. of I

11 pilot
121 huffer
M33 wind sock
M41 aircraft

153 aircraft AM1 generator

16] aircraft APU bleed air
173 aircraft brakes
Iel aircraft engine
19] aircraft external power
1101 aircraft MSE

[111 Aircraft throttles
1121 aircraft trim
Choose ove of the above" S
Z assume "generator" Is a singular xameCorrectl tTyeamo3 yes
component "gonerator" defined for class ,aircraft A1U",
I5UZWD. create component named bleed air for aircraft A1U

choose the class of the new co=onent from one of%

-1- ptlot
121 buffer
(S3 vind sock

141 aircraft
S] aircraft £U1 generator

163 aircraft APV bleed air
(71 aircraft brakes
M. aircraft engine

(31 aircraft oxternal p*wer
[103 aircraft MNy
11i] aircraft throttles

1121 aircraft trim
Choose cme of the above), 6
I "sums "bleed air" is a sinular /smam.Correct? [tYes/no] 3es
Comnent "bleed air" defined for class "aircraft A£910.

122

In similar fashion, the seven components of aircraft ame attached. Once this is done, it would be
wise to save all the objects. NOTE: saving the aircraft automatically causes all component objects to be
saved also. You can check this using the view library command. As a check, here is what the view object
command will produce on aircraft when this step is completed.

muzw3 view object maad aircraft
class "aircraft" Is clean

Dependencoes: aircraft trim, aircraft throttles, aircraft MiV,
aircraft external power, airaraft engine, aircraft
brokes, aircraft APO, and prop

class "aircratt" Is a prop class with superclassl(es) "Prop".
Class "aircraft" has no derived classes.
Oc•oments of alass "aircraft"&
[M) "ApM, of class "aircraft APO"
133 "brakes" of class "aircraft brakes"
is) "enginte" of clams "aircraft engifne"
[41 "etaernal powera" of class "aircraft external p•mw"
is] "wWal" of class "aircraft wI"l
[61 "throttles." of class "aircraft throttles,
[71 "tria," of class "aircraft trial"
[S1 "APOu's generator• of class "aircraft APO generator'
I3 "APOI a bloed air', of clams 'aircraft Apo bleed air",
Property loet of Class "aircraft ':

lmary Facts of class "laircraft":

Inoae>

Po rty Display Data of Class "aircraft"o
-Mons).
Operations of Class "laircraft"a

Operation Display Tzet of class " raircraft"s

3ak.ckgrhund Cr prngas of Class "Aircraft":

=NULD3,

Other useful commands relating to components ae remove component, view component, and
modify ceiwpenew. Refer to the command reference.

C. Xecots. The next step is to put in the first column of our prsperty-
operation table. The reason why we must enter all the properties first is because we cannot define an
operation that involves a pilot and an aircraft unaess the properties of both are defined. Therefore, it is
good ptiictice to ensure comnplete of the property sets before working on operaions.

We will show the process for a one of the pilot's sets, thon show a couple for the
aircraft. The create property vet command is used here. First the flight clearane for the pilot NOTE:
Notice that the "not" member is not given. Sets that have only one listed member automatically have a not
second member. Do not give the "not" version!

innZW* create property met znend flight clearance for pilot
Twpe "exit" to leave.
ne* Prcpertye pilot is -- cleared to depart
HOW Property: pilot is exit
Does this set corresposid to informatiocr that conlil be hidden frnm the
stiAdent? Msvelr yes or no.

123

Property met Oflight eleasao*" defined for Class "pilot*.

Also note -- this example does not demonstrate hidden propeaty sets. This is an advanced feature
which will be demonstrated in a separate. example in future,

Now, a demonstration of aircrait's location:

2VZW=0D> create property Get named location tor aircraft
type "edit" to leave.
New Propertyy aircraft is -- at the terminal

new rperty: aircraft is -- e the runway
mw Prore4ty: aircraft is -- airborne

New Pzr•prtyt aircraft is -- salt
Doem thin set corzrempo to information that could be hidden from the
student? Answer yea or no.

30-no
Property set "location" deflned for class "aircraft".

Now we will demonstrate the building of the NWS check status. Note first that the NWS check
status is not a property set of the aircraft but of the comporent object! Properties describing components
are always identified with their component object type. "Location" describes the whole aircraft, which is
why it is a set of the aircraft.

MIZPZLD. create property sot for aircraft MIS
Plqase name the now property set) check status
2ye ,exit" tc leave.
new Propertyl aircraft Mwe is unchecked
now Property: aircraft o W8 is -- chocked
Mow Property& aircraft VMS is -- Oslt
New Propertyt aircraft WIK IS -- xilt

Does this set correspond to information that could ba hidden from the
student? Aaswer yes or no.

Sno
Property set Ocheck status" defined for class "ai.rcratt M811.

Oops! we mistyped "exit" and wound up with an extra property set member. To fix this, we will
demonstrate the dt•Y property set loop. Most of the modify commands in the object layer follow this
type of a format. The definition of the object's property set is given and you select the zpecific attribute to
chal€ge.

IRS0 LD modify property met named check status of aircraft WIS
Type "help" for help. Sype the labs) to change.
name - cheek status
domwal unchecked, chocked, end salt
hIde -- Dot-hLdeable
uoXFm PROPIMTMIT* do malia
Type "exit" to leave.
new lropertys aircraft MIS is unchecked
Sew Property: airaf• MWS I8 -- chocked
New Property: aircraft aM I -- exit
tIpe *help" for help. type the label to changs.
name -- check status
dmLn -- unchecked and cheocked
hide -- not._hideab1e

124

oDnIt MPSIRTZ XmV' q•ld
save "&.Vgon to Dpt3rty $e*ti yes
Mpoety set modf.ation co•leteO .

In s-nllar fashion we have defined the following property sets for all the objects:
Pilot: Flight Clea• ce "cleared to depart" and "not cleared to depart"

Tax•i Clearance "cleared to taxi" and "not cleared to taxi"
Takeoff Clearance "cleared to takeoff" and "not cleared to takeoff"

Huffer Presence 'present" and "not present"
Engagement "engaged" and "disengaged"

Wind Sock: Check Status "checked" and "not checked"
Aircraft: Location "at the terminal", "on the runway", and "airborne"
Aircraft: Preflight Completion "preflight inspected" and "not preflight inspected"
Aircraft APU: Switch Position "off" and "on"
APU Bleed Air: Switch Position "off" and "on"
APU Generator: Switch Position "off" and "on"
Aircraft NWS: Check Status "unchecked" and "checked"
Aircraft Brakes: Check Status "unchecked" and. "checked"
Aircraft Engine: Running Status "off" and' funning"
A. External Pwr: Usage "available", "used". and "bypassed"
A. External Pwr. Switch Position "off" and "on"
Aircraft Throt.: Position "off". "idle", and "max"
Aircraft Trim: Check Status "unchecked" and "checked"

Other useful commands for property sets are remove property set and view propeT'y set.

d. Defining the Onetl",1. Now we will define the operations using the same table through the
ise of the cream operation command. The process is vury simple, but there are several steps involved.
Here is the sequence of questions asked:

-- Name all the objects invol ied.
-- Provide the primary purpm-e. or "intended effect" of the operation. The intended effect is the

property to the left of the qperation name.
-. Provide the preconditions. These are given in the third column.
-- Provide th-. side effects. None of the operations have side effects. Side effects are other

changes that occur that aren't the primary purpose of the operation.

For the first demonstration, we will do the one operation for the wind sock. The
operation "check wind sock" will be used to achieve "wind sock is checked". Looking at the task, the
precondition for this operation is that the "aircraft is on the runway".

One important note. Notice that the pilot object is identified as a necessary object even
though there are no preconditions or side effects involving pilot. In general, if a specific character type
(not the generic "character") is the on, who will perform a given operation, then that character should
always be included in the other objet:ts list. This is to insure that the "check wind suck" operation
involving a pilot is not confused widt a "check wind sock" operation involving an air traffic control
operator, for example.

125

FMrst, idetifting the objects and the operaMion name, Remember that the operation must
Mow dtis syntax - <verb phrase> 'cobject name or component name as direct object> <rest,>. Since
wind srock has no componenM only "wind sock" may be used as the direct obiect.

9090 b 3rnate Vocation toee w•a soak
Tom mot ow ispecLiy other object* needed to perform the cperation.
lf mWy repast object types -- which im1ies a distinct objeot of &s&m typ.

M~n WNM, DOwn W LMCOMinOMMuS OF "wind soak"
gnu= IT in A CMWU LY IPUAAA oDIM .
[113 pilot
121 aircraft
133 aircraft trim
143 aiureaft throttles
153 airoraft WIN
16 aircraft external power
173 aircraft engine
181 aircraft brakes

133 aircraft APO
1101 aircraft A10 bleed air
1111 aircraft APO generator
1121 viwd soak
1131 hutfoer
Olmoose ame or awre of the above or *none';P 1 2
Hi the operatilon check wind sock

...next the intended effect.....

The following are the allowable Intended effectst
[1 w•nd sock is checked
1l2 wind sock Is mot checked
Choose ca of the above, 1

...then the preconditions. You identify these one object at a time...

"we following are the allowable pecond•jtions for "pilot"
[II pilot is cleared to depart
[13 pilot is not cleared to depart
131 pilot Is cleare for taxl
[43 pilot In nsot calear for teal
[51 pilot in cleare fow t*keoff
(63 pilot is tot cleazed to takeoff
CbMo6 ae on r ware of "ae bOwe or none' % none
fte following a" the allowable prea•ccodticm for "aircraft•
[13 aircraft is preflight i•mpeated
123 ailcraft Is not preflight Inspected
(33 aircraft lisat the terminal
(41 alrirtet is on the runway
IS3 airuraft is airborne
163 aircraft a APO is off
M7 aircraft s APO is an
to] aircraft's Apt's generator is off
913 aircraft's All's generator is on
403 aircraft.s AP'lS bleed air is off

1113 aircraftI APOIs blood air is on
t1.23 aircraft's brakes is unchecked
1133 aircraft's brakes Is checked
[143 aircraft's engine is oac
(151 aircraft's mngine is running
LIS3 aircre•f ' external oer io available

126

1[71 aircraftIa external VtoI is used
(163 aircraft,* elterli power is bypassed
l119 aircraft's external power is off
[g03 aircraft's external ower Is oL
Oil3 AirtAft's WS is unchecked
t223 aircrafts WSp is chocked
23 a•rcaft I 'a throttles Is off

U243 aircraft's throttles Is iue
[253 airoraft's throttles is full
[2i1 aircraft's trih is umche'*ec

W273 aircraft's trim is chocked
Choose ome or mOr of the above or Mnone" :. 4

...similarly the side effects. (There are no side effects possible for "wind sock"
since

there is only one property set for it, and a set cannot have members as both an
intended

effect and as a side effect Th.erefor, "wind sock" is skipped.)

The tllAowift are the allowable side effects fozr "pilot"
C1. pilot is cleared to .Aa•irt
123 pilot is net cleared to depart
013 pilot is cleared for taxi
(43 pilot is not cleared for taxi
[5] pilot is cleared for tlkeoft
[61 pilot is not cleared for tekeogg

Choose one or move of the above or "maoe-," none
The following are the allowable side *ifects for 'aircraft'
[I) aircraft is pref3.iqt inspected
(2) aircraft in vot preflight itiepacted
)I3 aircraft is at the terlmnal
4 aircraft is airborne
[S1 %ircraft's Apo i0 oft
M61 aircraft's APO is on
173 alrcraft's apu,' generator is off
161 Aircraft,' A, I+ generator is on
191 aircraft's APUis bleed air to off
1101 aircraft's U IPU'S bleed air is on
!111 aircraft's b~rakes to mnchecked
123l Aircraft's broke* is checked
III) aircraft's engine is off
1143 Aircraft's ongineo $s runIng
(153 aircraft's extewaml power is available
11(1 airc4raft's ext.Veral powe r is U9ed
117) wiveraft's external power is bypassed
(161 aircraft's external power is off
1191 aircrft'os external power ts on
1201 aircraft's no8 is unchecked
1211 aircraft's WlS is checked
(223 aircraft's throttles is of f
C2)) aircraft's throttles Is idle
(24 Aircraft's throttles is gull
t13 Aircraft's trim is unchecked
t263 aircraft's trim is checked
Choose One or nore of the abwo or "ne" • nOne
Operation han bean aied to claus "wind soak".

127

...you will note that creating an operation is a very wordy process -- but because of the
use of

menus, there is little chance for error and little typing involved.

The second example is with the pilot. Because pilot is a character object, you will get a
special

message which describes the special syntax if the pilot is the direct object. We will only
show

the execution of the command tipto the naming of the operation.

33UXLD*. create operation for pilo~t
You must now specify other objects needed to perform the operation.
You may repeat object types -- which inplies & distinct object of same type.
ZOkRTAHT DO NOT ZMCLtUDZ CONPOISWJ8 OF "pilot"
Um3138 ZT IN A COIG•IT•LY nUPARWT! o•IUCT.
(i) pilot
(23 aircraft
13) aircraft t4im
[4) aircraft throttles
[51 Aireraft NIS
(6[aircraft o-tearal power
173 aircraft engine
[13 aircraft brakes
[9] aircraft APU
1101 aircraft APU blood air
[111] aircraft ArU Vpenerator
112.2 huff er
113] wind sock
Choose ono or more ý..f the above or "none"> 2
This is a character object. Xf itself is the direct object, you must
use the form "have cobject:> <operation>,, whor6 .coperatiow. is not null.
Msrsm the operations have pilot r•quest flight clearance
The following ere the allowable Jutanded effects%

...etc....

The final example involves the spc~ification of a component direct object. This will be
potentially very confusing because the general rule for where to place an operation is difffrent than where
to place a property sat in a composite object. Operation go to the component only if the operation
absolutely dc-es not impact the whole object. For mxtiy of the aircraft operations, however, many of the
operations changing one component have preconditions involving other components. Therefore, the below
example for the "engage external power" operation is defined for the aircraft, not the aircraft external
power. "external power", however, is a legal direct object because it is a component of aircraft.

UVLD> create operation *or aircraft
Ybu mist now specify other objects needed to perform the operation.
You say roeeat object types -- which implies a distinct object of same type.
MPOATAM•T DO NOT INCLUDR CCiPOmNTS 'M "aircraft"

P31.38S IT I1 A COMPL22SLY nUPARAhT ObJECT.
M1) aircraft trim

[(2 eaiezzat turottles
(3) Aircraft MWO
[4] mirgraft external power
153 aircraft engine
[61 aircraft brakes
(71 aircraft APP
[$1 aircraft AP• bleed air

128

15. aircraft APU generator
(1 01 pilot
I-.1] wind sock
11.21 huf fer
1131 aircraft
Choose me or Mre of the above or "none"' 10
Name the ope.rations ngae external power
The following u re the allowable intended effectse

1I1 aircraft's external power is available
122 aircraft'Is external power is used
13] aircraft's external power is bypassed

[41 aircraft's external power is off
151 aircraft's external power in on
Choose one of the above. S

The following are the allowable preconditions for "laircrait",
[1] aircraft is preflight inspected
121 aircraft is not preflight inspected
131 aircraft is at the Zrmainal
141 aircraft is on the runway
151 aircraft is airborne,
16] aircraft's AUP is off
171 aircraft's APO is on

[81 aircraft's APOs generator is of f
191 aircraft's h .U.s generator is oi
1101 aircraft's APO's bleed air is off
1111 aircraft's APO's bleed air is on
[121 aircraft's brakes is unchecked
1133 aircraft's brakes is chcked
1141 aircraft's e"wine is off
115] ax.rcraft's engine is running

t161] arcraft's external power is available
IV71 aircraft's external power is used
1181 vircraft's external power is bypassed
1191 aircraft's PWO is unchecked
1201 aircraft's WMS is cheaked
1211 aircraft's throttles is off

1221 aircraft's throttles is idle
1231 aircraft's throttle* is full

1241 aircraft's trim is unchecked

[251 aircraft's trim is checked
Cboosl% oe or more of the above or "none", 1
The following are the allowable preconditions for "pilot"

(11 pilot is cleared to depart
121 pilot is not cleared to depart
131 pilot is cleared for taxi
L41 pilot it not cleared for taxi
[31 pilot is cleared for takeoff
[6] pilot is not cleared for takeoff
Choose one or more of the abcO•e or "none"; non*
ite following are the allowable side effects for ",alrcraft"
[I) aircraft is not preflight inspected

(2) aircraft is at the terminal
(31 aircraft is an the runway
143 aircraft is airborne
151 aircraft's APO iL off

162 aircraft's APO is on
172 aircraft's APO's geoneator is off
18) aircraft's APO's generator is on

191 aircraft's A"'Is bleed air is off
110] aircraft's APO's bleed air is on
[111 aircraft's brakes is unchecked

129

"" [2111 aircraft's brakes is checked
1[131 aircraft's engine is off
[14A aircraft's engine is running
[125 aircrafto' external power is available
(161 aircraft's external power is used
12.17 aircraft's external power is b! assed
118 aLircaeft * MRW is unchecked
1191 aircraft's UNU is checked
120] aircraft's throttles in off
1211 aircrafts'I throttles Is idle
[233 airocaft's throttle- is full

[331 aircraft's trim Is unchecked
[243 aircraft's trim is chocked
C;oose one o•- move of the above at "nsn*o"> ne
The following are the allowable side effects for "pilot"

[11 pilot is cleared to depart

[23 pilot to not cleared to depart
133 pilot is cleared for taxi
[41 pilot is not cleared for taei

[51 pilot is cleared for takeoff
[61 pilot is not cleared for takeoff
Chaos. oa" or mere of the above or "none"), none
"Operation has boon "adde to class "aircraft,,.

Other useful commands for manipulating operations are remove operation, view
opvrafion, and modify operatoio.

e. Revet ib acm. Once the objects have been saved, it would be wise to review the objects
before going into the task definition phase using the view object command. This will also help show you
what work has been done in preparation for the task definition phase.

MIIz.D: view object named pilot
class "pilot" Is clean

Dependencies s character
Class *pilot" is a character class vith superclass te) "character".
"Clams "pilot" has no derived classes.

Cocmonents of Clas "pilot"I,

property sets of Class "pilot"S
[1M flight clearance

121 takeoff clearance
13) taxi clearance
3iXAZY Facts of class "pilot"S

Property Display Data of Class "pilot',

Operations of Class "pilot"n
11) have pilot request flight clearance
231 have pilot request taxi clearance
[13 have pilot request takeoff clearance

Opea'atioa Display Text of Class "pilot"$

backgrouand Changes of Clams "Pilot" a

- 'UILD*. view object named huff a:
Class "huff er" is clean

Depeadencies a prop
Class "huf fez" is a prop Class with superclass1(as) "prop".

130

Class "buffer" has no derived classes.
Copoasnts of class "huffeor"$

Property Mets of Class "huffer'"s
M1] eagagement
121 presence
Sexy Facts of class "huffeor's

Property Display Data of Class "huff r"t
4nono>

Operations of class "huffer's
[1] engage buffer
121 disengage buf fer

Operatico Display Text of class "buffer"I
43M e0
lackgroand Cbangoe of Class "buffer":

33IZLD3- view object noared aircraft
Class "aircraft" is clean

Dependencies: aircraft trim, aircraft throttles, aircraft MPS,
aircraft external power, aircraft ongize, aircraft
brakes, aircraft APU, and prop

Class "aircraft. is a prop class with euporclass(es) "prop".

Class "aircraft" has no derived classes.
Component& of class *aircraft"s
[1] "APV" of class "aircraft APV"
(21 "brakes" of class "aircraft brakes"
(3) "gagine" of class "aircraft engine"
[41 "extersal power" of class "aircraft external tower"
tS] "YAS" of class "aircraft Wl8"
(61 "throttles" of class "aircraft throttles"
E71 "triam" of class "aircraft trim"

[81 "OPIU's generator" of class "airceaft APU generator"
(91 "APV's blood air" of class "aircraft APU bleed air"
Property gets of Class "aircraft"s
(I] location
[2) API's bleed air's switch position
[31 API 's generatorI's switch position
14) APO's switch position

151 UPS's check status
16] brakes' check status
V)3 eaginso's running status
to] external power's switch powition
191 external power's usage
(101 preflight completion
1111 throttles' position
(121 tria's check status
isamary Facts of class "aircraft"*

Property Display Data of class "aircraft"s

Operations of Class "aircraft":
[1 check UWO
12] check brakes
(31 adjust trim
[41 shut off APU
152 taxi aircraft
E63 ,-a- throttles
171 fly the aircraft
183 start AP9
(9) conduct preflight inspection on aircraft

131

• - • . . ,INS

(103 engage external pover
1113 Stant Manei
11.23 disenageg external pomer
"[13] engage £PU's generator
[143 onwage Avg's blood air
"operatiorn Display Text of Class "aircraft"s

.ackarownd Cbans of Class "aircraft":

NM XLDp vi• w objoet named wind sock
class *vind sock* Is clemn

Dependenoies I prop
Clas *wind sock" is a prop class with superclau(es) "prop".
Class "wind sook" has no derived classes.
Comipaents of class "wind sock",

Property Sets of CoIes "wind sook"#
(13 check statu•
-Sumary Facts of class "vwid sock":

Property Display Data of class "wind sock,":

Operations of clams "vied sck":t
W1] check wind sock

Operation Display Text of Class "wind sock"s
Cnoue),
Background Changes of Class "Wind ock":

132

TAB 3. BUILD THE TASK

Building the objects is actually the most difficult part of the process. Once a good set of objects
is built, building the task takes no more than a couple of steps. The process basically goes as follows:

- Naming the task and telling MEBuilder all the objects in the task.
-- Telling MEBuilder what the state each object is in at the beginning of the task and

what
state constitutes the completion of the task.

-- MEBuilder generates one solution to the task and saves it as the only solution.
- You tell MEBuilder what other solutions are allowed. At each step, MEBuilder will

ensure
that your other solutions in fact work.

The first three are all accomplished when you perform the create task command. Here is how
this command works:

N-.M•3 LD; create task named prep aircraft
For the primary actor, choose from one of the following;
I1] character
121 pilot
khooso one of Uhe above)

You will first note that the create task command will ask for an actor, which must be a character
type. You can use the generic "character" or specify a specific character type that must be in the task. The
only options are those loaded in the session -- so ensure you have loaded all your objects in the session
first. We will select "pilot".

"Choose one of the abovo. 2
List all of the other objects that are required for this task. Xf
there must be mire than one, then repeat that item. "nsure you
chooee the most general .object available.
(I] pilot
.21 huff er
"1"3 aircraft
[a] aircraft trim
_51 aircraft throttles
16] aircraft XWO
[71 aircraft external power
lei aircgraft engine
(3O aircraft brakes
1101 aircraft AM a
(11) aircraft 1Z'U bloed air
t12) aircraft APO generator
U3S1 wind sock
feleat cm. or more of the sbove or "none" 2 3 13
Task "prop aircraft" is doefined.

ov working on task "prop aircraft",
,ype "quit" to return to VU3IL prowt.

For the follow-on part, we have identified that we need a huffer, wind sock, and an aircraft. Note
that naming all the components of aircraft are unnecessary. If an aircraft and an aircraft engine are listed,
then that constitutes a full aircraft and a separate engine.

133

., ; __,
(• i-•.+/.!o•+ ,, ++• --

i.•.•/:• . •

: Also, if needed, you could have specified a second pilot or multiples of any other object. If
•.•., .• •..._:•:;:;•'• •!•i! .+ multiples of an object are specified, then they arc referred to in the task as object, object 1, object?., etc. (In

• •: the futaxc, this • be changed to "second object', "third object", etc.).

J' Now, we will 8o through the process of identifying the initial conditions and the objectives of
S.......+• each object in the task. When you do a create task command, the default initial conditions ate the f•tS:•'--/ :-+ member of e, sch property set. For sets of one member, constituting the X, not X case -- the not X is the

" default. For the objectives, the default is the last member of each property set and the X case holds for
ii single member set.

:,: For the pilot, the defaults are OK

..S+++ •- •mJ goZZoW•mll mm the • lmt •£tta;L eon•l.t:LomB for -p£Zot,,.

S..... •++ •41eaCe which oaos you went change•l:
++ - . iX] p£1ot £m not oXeEred •o dsl•L•t

(3) p£Xo• £e mot ole•wod •or taz£[3] 17£1ot £s •t €leered for tak•fChoeee oue or •re of tim above or "z.ame"> none

• 3:•Lcate •b£©h properties you v•t changed.

IX) p£1ot £m •£eezed to •Im=t
i•) p£1ot 48 ¢Xo• for •ax£
[3] p£1o• £8 €le|ured for tekeoffS...but for the huffer, we must make a couple changes. The +fault says that the huffer is nm
Choose o•e oz' more of the above 03: "m•e"• mo•e

present, which is not Irue. What we do is identify the first property as needing to be changed. We select
the correct property and then continue on.

Sfogl•wLng are the ¢u•reat 4•4t4aX eondtt£c•m fez "hu•fer".
•4cat0e wh:f.eb onos • vl•,• change4:
IX) huffe• •e mot present
[2] Imffer :Lo •Lso•gagod

bit G•lle Or I•re Of the • OI "nolle") 1

- : .. Cboole tim mppZ•=l•=£a•=e new J•LtAal oom•l£tLon•
[1]]mffe: 18 nee l•e•t
ta)]mffe: 4., •e..,•k iI

--- I•aoome o•e of the Elx•> 2

Zm•La•to wl•Loh olo0 • want elutageds

r$] buffer &e pte•ent
i•- O.hoole one ot more of •he above or -none-> •o - _

* [2| buffer £11 d:Lsez•ja•ed

Now, for the objective• we '•U change one of the pmperlies also. The huffer, according to task,
is disengaged when the la•k is finished. Well, let's say thai we really don't care what condition the buffer
is in so we will declare it as a don't P•u'e. The "is immaterial" option is the me we want. _ _

The follov:l.•g •e the e•t•t•at obJeetivet "buffer,'.
•a•l.eate wh£ah proimrttas you wa•t cbaalled.
1•] h•ffer £1 preeen•
13] h'.•ffer Is •4raged

Cboole tF, e appzop•£ate n+w ob:je¢t£ves
[:•] h•ffer £8 •416Dgaged
[31 huf•er is m|g•ged
iS] h•ffer'o enOag•uumt t8 / •erXal
Choose ome of tke •e> 3

+--!

;• i i •i " i -- j i ,

-20i1cato which properties you vant changed.
(1) huffer is present

23 huuffer'. eagegeant Is Imatsrial
Choos one or more of the above or "non" e

Don't cares in the objectives an not printed to the student -- so the only thing that the student will
see is that the huffer must be present when the task is complete. The following is the best rule for deciding
don't cares -- an item should be a don't care if it meets the following criteria:

- The property set value is not critical in defining the desired end result.
o c-- The property set value will only serve to confuse the student if it is listed (the
objec.ives

should be a minimal set).
-- The property set value is something that might change after the student has finished

with it.
For example, a similar task might be set up such that an agent might move the hiffer

to
another aircraft after the student is through with it).

The initial conditions of the aircraft are the default -- no changes needed (not preflight inspected,
at the terminal, APU and its components are off, brakes unchecked, engine off, external power available
and off. NWS checked, throttles off, and trim unchecked). We will now skip ahead to the point where the
objectives of the aircraft ax specified.

"]ldate which properties yom want changed.
III aircraft is preflight inspected
12 aircraft is airborne

131 aircraft's AhUes switch position is immaterial
143 aircraft's iPU'os generator's switch position is immaterial
15] aircraft's AlU's bleed air's switch position is imiaterial
(63 aircraft's brakes are chocked

tU7 aircraft's emgine is running
t$3 aircraft's external powerms usage is imaterial
[9] aircraft's external power's switch position Is immaterial
(103 aircraft's m is ohech4cke
t111 aircraft's t' -tles are full

(12) aircraft's =W Is chocked
Choose one or more of the above or "1nonw"> -, n

Numbers 3,45,8, and 9 are reasonable choices to omit from the objectives because the pilots main
task is to check everything and ge-t the plane in the air. The APU and external power don't tell the student
anything directly perhaps. One could argue that #11 could be omitted as well. It all depends on what you
want the student to see and which items =e absolutely critical in defining the final objective (such as #2).

We will also skip the wind sock (IC-not checked, OBJ=checked). Once the four objects are
completely done, we then enter 0-, 4ird step -- where MEBuilder attempts to find a solution. Here is the
one it found:

Piease wait Z am trying to solve the problem...
lI. following Is my first atteapt at solving the task.
I11 conduct preflight inapction on aircraft

123 eswase aircraft's external power
13) engage hufofr
141 start airoaf t's eng.in

135

151 start aircraft's APU
161 eova"e aircraft' 'an~'s generator
173 engage aircraft's AlMB bloed air
1al have pilot request flight clearance
1,3 diseWavae buffer
1101 disengage aircraft,* oatornal Dower
1111 aheck aircraft' UI aM
1123 check airazaft'. brakes
1233 have pilot req'4est taxi cloaz4aco
124 taxi aircraft
1151 hawe pilot request takeoff clearance
1163 check wind sock
1171 adjurt aircraft's trim
M1al hut off aircraft's AMU
1193 ama aircraft's throttles
1202 fly the aircraft
action successfully added to the task.
action successfully added to the task.
action successfully added to the task.
Action successfully &aidd to the task.
Action successfully added to the task.
Action successfully added to the task.
Action successfully added to the task.
Action successfully aided to the task.
Action succaesfully added to the task.
Action successfully added to the task.
Action successfully added to the task.
action successfully added to the task.
Action successfully added to the task.
Action successfully &aidd to the task.
Action successfully aided to the task.
Action succearfully added to the task.
Action successfully aided to the task.
Action successfully added to the task.
Action successfully "aidd to the task.
Action successfully added to the task.

What the "action successfully...." message means is that the task data structure is now set such
tha the above10~-step procedure is ThebW solution. We know, however, that this is not the case.

IMPORTAN'T: Troubleshooting the task if there is no solution found or the solution is wrong. Currently,
MEfluilder has a very limited capability to identify specific reasons why a solution cannot be found.
Remedies are underway. Ink the meantime, here are several steps to take if ME~uilder does identify such a
p~roblem.

1. Using the set iniMa canditons or set objectives commands, reduce the scope of the task to a
specific segment (say, step (a) in the original task description). Locate the segment in which MEBuilder
cannot find a solution and then check the operations in that segment.

2. Using the set objectives command, remove some of the don't care conditions and name a hard
value. as an objective. Sometimes a don't care will make the objective unachievable.

The next thing that happens is that the promnpt has changed to the following:

[lAStprep aircraft]:-

136

This indicates that you are now in dlie Task Loop. There are different commands available here.
In general, you can still use many of the view commands available from the Main Loop to query about
objects and some of die attribute items. However, you cannot manipulate the object definitions -- while
you we in the Task Loop all objects, other tasks, etc. ar frozen.

Now, the first thing we will do is use the YLd splk, wmmand. This command looks through the
task and decides if and which operators could be done in different orders. Currently, with the one solution,
the task dictums that the request for flight clearance must precede the disengaging of the huffer -- which
we know not to be the cast This command will identify this and propose a possible change:

Itwalprp a•izraft3i find splits
fte following appear unrelated and could be parallel:

IIl have pilot request flight clearance
Sequences
[i1 disengage huffer
31 diLsmagag aircraft's external power
M~ check aircraft' a We
1t4 check aircraft 's brakes
"Make them parallel sequences? yes
The following is the procedure as presently defined.
(1] conduct preflight inspection on aircraft
(21 engage aircraft's external power
Mal "gage hulrff

41 start aircraft's ewine
gs] start aircraft's APU
(63 engage aircraft's APU's generator
173 engage aircraft's IIV~s bleed air
to] all of thojes

($a] subtprocedure s
([all disengage buffer
14a2] disengage aircraft's ezterxAl power
.teac] ck aircraft's uWE
g4a4] check aircraft's -akes

lab) subprocedurel
(8b1] have pilot request flight clearence

19) bmVw pilot request taxi cleasrance
.LiOl taxi aircraft
[1]1 have pilot request takeoff clearance
(121 check wind sock
[13] adjust aircraft's trim
(141 shut off aircraft's APU
tISl a" aircraft's throttles
1161 fl•y the aircraft

Now look at the task construction. The steps have been renumbered such that step 8 now consists
of a *split" -- two sequences of actions that must be completed before continuing on. So step gal can be
done anywhere among the steps in 8b so long as it follows 7 and precedes 8.

Another is found.

the following enpeer unrelated and could be parallels
SequenceI
[1 have pilot request takeoff clearance
sequences
11) check wind soak
2[adj&ust aircraft 's trim

.MadWe tm parallol sequences? yes

137

noe following to the procedure as presently definead.
(13 conduct pref light Inspection On aircraft
121 e=gage aircraft 's external power
131 engag butffer
141 start aircraft's *%wine
[SI start aircraft's APO
163 engage aircraft's WPI'S generator
173 oengae aircraft's AIDV's bleeod air
183 all. of theses

is&) subprocedare I
(&all dise~aga buffer
(0.23 disengage aircraft,* extemnal pwoer
[Os)1 c heck aircraft's a Wo
1041~ check aircraft's brakes

tab) Iupoeue
tShI3 have pilot request flight clearance

to] have pilot request taxi clearance
EL01 t.ui aircraft
[III all of theses

tile3 subprooedures
Maal check wind soak

(11&21 adjust aircraft's trim
tub) subprooedure a
Elibll have pilot cemuent takeoff alearauacv

1123 shut off aircraft'. APO
11314 ma. aircraft's thizattles
1141 fly the aircraft.
Thera are no possible parallel actions rE,.aining.
EVAStuprep aireraft) .

At this point, if you study the task construction you will notice that it conforms to Oe original
task specification -- meaning we are done! Two steps and that was it.

However, we all know that some task constructions are not quite this convenient Therefore. we
will demonstrate some of the other common options. The first item to note is that most of these commands
use the step number as theargument. In order to keep up todate on step numbers -- use theviewwksk
command.

We will first demonstrae the move step command. This command is especially useful if you
need to move a single step into or out of subpwocedures, or declared it as an unordered action. Let's say that
the "disengage buffer" operation really needed to precede the request for flight clearance -- we can move

thtstep out of the subprocedure and establish it at step 8 -- the split becomes step 9:

['kUIPrep aircraft3~o move step number &&I
nere in what you many do$
U13 Leave it alone
(23 Uwe it out of suabprooedure to In front of it.
131 Declare it doable 'aMytime 5 before "disengage aircraft's external

power"
Choose one of the above0 2
Action successfully moved.
(YAl~sprep sixcrattlos view taski
the following In the procedure as presently defined.
III conduct preflight Inspection an aircraft
123 engage aircraft's external POwer
[33 engage huff er
143 start aircraft's engiia
153 start aircraft's APO

138

62 Ieege aircraft'. Avg'I generator
73 Osweg aIirocaf•'. A*l* I blood air

183 dis, fmge buffer
to) all of thosel

[lal OWbtoeduaes
Mal disegage aircraftts e"trnal pow r
[1&23 oheck aircraft,' MEs
[3.32 oheek Airaft's br.kes

tlb) subosroodures
19b13 have pilot requst fltght alearanae

t101 have pilot request teaL clearance
[113 taxi aircraft
t123 all of theses

[lA~t1 subproeouzes
112.12 check wind sock
112s23 adJust aircraft's trim

[lab] subprcaedurol
[ubl) hasv pilot r•euest takeoff clearanee

113) shut off aircraft's Avg
(2.42 sax aircraft's throttles
I15] fly the aircraft

ATIAVIZMO... please wait... Doan
[!MKtlprep aircraft] >

The moe step command is inverible as well -- a second application of this command will allow
you to put step 8 back where it was. Similarly, if you use the third given option to make the step
unordered you can use move step to make it ordered again. The imnog=t rhing to understand about thibs
commind is that the obiect definition restricts your ontions -- if you want to move the sten somewhere that
violates the obiot dfinition MEN uilder will not let you.

Let's say that we decide that we rally didn't want the split in step 9 after all. The combine step
command combines the subprocedures together. The arguments must be the first step in the two
subprocedures to be combined.

tfkftsprp aircraftt]i combine step number gal with 9b3
Combination of *%bproceGxr.. successful.
[(aIUtprop aLlrrafl3. view task
The following is the Vrocoedtr as presently defined.
M conduct preflight inspection on aircraft

[21 eagage aircraft's ertermal pvr
[23 eagage huffier
[43 start aircraft's orgine
(53 Stant aircraft's J"U
[61 eagage aircraft's APO's generator
173 eagage aircraft's AM'S bleod air
to] d4iseaUe buffer
[33 disengage aircraft's external power
(101 check aircraft's uWE
[112 Mchek aircraft' braken
112) ave Pilot reawest flight clearance
t[1) have pilot reawest taxi clearence
[143 taxi aircraft
[153 all cc~ thaete
(hal subpracediare:
Ma5ll check wind sock
115i3] adlust aircraft's trim
ISb] siabprocedures
- Sbl] have pilot rewest takeoff clearance

1163 shut off aircraft's AM0

139

-ROM

12.72 m saxircraft's throttles
1ts) fly the aircraft

You will notice now dho the request for flight clearance is now stop 12. Let's say that we wanted
it in step I1I ahead of "check aircafts brakes". Ile sa#p step command will allow you to swap adjacent
stopX andYifY d oes not havelto olw -Xdue tn Xand Y'sonemtnn definition,. For example, we
cannot do 1S before 17, so doing swa~p shp ,ewmber 17 with 18 will be disallowed. However, reviewing
the operation definitions for I11 and 12 we find that we can swap them.

tUMAZXVID AiacroftI;W @gsap stop MUrher 11 with 12
@Cam1.atioa of sWoreeodwas successful.
(YAMspv asiaraftls-~ view took
fte fe,1awiaw Is the procedure as presently def ined.
(13 am.s %preflisht Ianspectica *a aircraft
(23 swag*g ailrcraft'Is extoe~al power
031 eamge huffeor
(41 start aircraft's Ougili
(53 start~ aircraft's Apo
161 eagago aircraft's "u's venerator
173 ewasae aircraft's "U's blood4 air
[a] disenoage hbuffer
(91 diseagago aircraft's external power
1010 check aircraft's WNe

1111 have Pilot request flight cloaraao"
(121 ahock aircraft's brakes
1133 have pilot request taxi clooranue,
(143 taxi aircraft
1151 all of thou.'

(15a3 huproco4.toa
115all aback wiad sock
115.21 adjust aircraft's trim

EMIb subproco'iuro a
115bhi hAVe pilot roQOst takeoff CloareaLCe

1163 shut off aircraft's AMc
(173 mmx aircraft's throttles
Ile] fly the aircraft

There we other useful commands such as nied4f seep which allows you to add Preconditions and
side effets (espeially probabilistic ones) and messages that are valid only within the context of this task.
The command reference guide will be of more assistance.

140

TAB 4. BUILD THE LESSON

Now th the tak is complete, we ready to build the lesson. The lesn is set up as a
workbook, a series of problems relating to the same theme. In this section we will demonsutae how one
can act up three problems, where problems one and two relate to the two halves of the task and problem
tiree is considered a comprehensive test.

The creak k/aso command behaves in a similar manner as croak tak in that a series of steps am
accomplished:

- Naming the lesson and identifying the cast and props
Naming the tasks to be used in the lesson

During the task construction phase, you were referring to the objects by type name. Now you are
going to identify objects and give them proper names -- which will be used in referring to the lesson. For
many simple applications, you will not need to identify any fancy nmes tfor the objects. A simple
convention is to ,use "you" for the role of the student and "the <object>" for all the objects. But sometimes
spicing up the ffsair can make the problem more fun -- like calling the aircraft "Bouncing Betty" a In
World War n.

The important thing about the create lesson command is that you must specify the entire cast and
props. As you create problems for the lesson, you will name objects and cast members not included in the
problem (This is like naming the entire cast for a film and then leaving out some members in each scene).

Here is a script run of the create lesson command:

3X5ULi create lesson named pilot training I
Choose all of the props and characters for the lescs. i gay
wge cuitted •n may o* the problem, you will specify those in
the problem. Choices for commads are&

am mew N - add a memnber of object type #X
UM item n -- remve U gram the current list

clear -- wipe out the list and start over
quit -- accept the list and continue
abort -- abort defining the lesson

these are cutr•ently in the lessons

These arn you choices for adding to the lessona
13. character
121 wind soak
133 aircraft
(4] aircraft tUi
[53 aircraft throttlos
Is] aircraft MW
t73 aircraft extermal power
MS aircraft engine
tI] aircrarft brakes

9103 aircraft Art
9113 aircraft arU bleed air
121 aircraft APU geserator

CAlY/VltUMlS add aeW 14
Give a name for the now pilotý captain Jack
2 assuse "captain Jack" Is a singular name. Correct? [1ue/.Mol yes
these are caureztly in the lessons

141

"[It] Char'wter "captain Jack" of "pilot"
ftevo are your choices for adding to the lessOn
III3 Chavact~.r
(2l wind sock
131 aircraft
it) aircraft trim
[53 airgraft throttles
Ed] aircraft MWS
t73 aircraft extexual power
to] aLircraft engine
([9 aircraft brakes
L101 aircraft AM
ti11 aircraft A10 blood air

112] aircraft MW generator

[.31 buffer
[.41 pileo'
CM11P.0F8-> 4d0 new 3
Give a ame for the new aircraft> the aircraft
Sassum "the aircraft" is a oingular nom.. Corre•t? (Yes/Vo] yes

TOese are currently in the lessio:

III Character: "captain Jack" of "pilot"
!21 Props "the aircraft" of "aircraft"

Tbese are your choices for addiag to the lesson:
[11 character

[21 wind sock
(31 aircraft
(4] aircraft trim
[51 aircraft throttles

[6] aircraft MWS

[73 aircraft external power
t[o aircraft engine

[91 aircraft brakes

[10] aircraft APO
[III aircraft APO bleed air

[121 aircraft APO generator
12.33 huffer
[143 pilot
C•AT/PROPS1>- add new 13
Give a name for the new huffer3. the huffer

S..... etc. as we add the other items (a huffer and a wind sock), we get.

Thoese are currentl!y iL the lesson%

[12 Characters Ocaptain Jack" of "pilot"
[(3 Prop: "the aircraft" of "aircraft"

[3) Props "the huffoe" of "huffer"
[43 Props "the wind iock" of "wind sock"

These are your choices for adding to the lessons

[13 character
[21 wind sock
13) aircraft

[4] aircraft trim
153 aircraft throttles
Ed] aircraft NUB
171 aircraft external power
IS) aircraft engine
(91 aircraft brakes
[101 aircraft APO

Uil aircraft APO blood air
[12) aircraft AIP generator

142

1131 buffer
4li) pilot

CAST/pROPS> quit

Now, upon reaching this point you will be asked to supply the tasks to be used in the lesson.
Only those tasks which have been loaded and whose required objects are a subset of the cast and props
listed above will be included. In this exercise, oniy the "prep aircraWft" task applies, so we show it.

When listing the t*sks, specify tha tasks according in the most
likely order that the student would app.y them. This will
esteblish the default scene and obJectIves for the problems.
The following loaded tasks are availsable:
IlI prep aircraft
Choose one or more of the above) 1
Lesson "pilot training 11 is now defined.
Work oan lesson now? yes
now workinag on lesson "pilot training 1,".
Type "quit" to return to WuEZVI pru.pt.
IL2BUONvpilot training 132

Important Every object must have a task associated with it! No object may be idle!

Now, note that the prompt has changed again. Just as before with the tasks, the create Icsson
command brings you into the Lesson Loop. Once you are here, the things to do are the following:

-- Set up the introductory text using the edit lesson intro command.
-- Seo up the problems.
-. Compile and run the lesson to test it out

We will skip the edit lesson bitro command and show you the intro we put in using view lesson
intro.

t(8M3BOUSpi.iot training Z)3 view lesson intro
The following is the introduction text for this lesson:

PILOT TRAI33.: LES80N 1

this lesson is the first lesson in flying an aircraft. After this
lesson you wili be familiar with the process of starting the plane end
taking off. The specific exill taught in this lesson aroi

(a) Conducting all prefiight checks and inspectiont

(b) basic cowmanioations with the tower

There is •eo problem in the lesson, a omorhensivo test of the
skills described above. Good luck.

Now, we are ready to create problem. This command is set up similarly to the task definition,
first you verify the objects, then set the scene and goal. The difference with the create problem command
is that the. scene and goal default to the task's initial conditions and objectives. If an object was involved
with more than one task, then the default are set 3ssuming that the tasks listed were given in the order of
application.

143

You will be asked to verify the cast and props for the problem. You cannot remove any cast
member - you only option is to change a cast member to a new type. The new type m. Ibe a derived
object type of the one given. Therefore, if you select [1] below, then there must be a derived object of
pilot loaded into the MEBuilder session. If no such types are loaded in, then you cannot change it.

We are going to do the comprehensive test first because it is actually the easier problem to create.
Lati on we will show you how to re-order a set of problems.

IigUIIOUvpilot traiing Z33. create problem

Nam the new prolemt' Cpreoehnsive Test
The student w4il play the role of "captien Jack".
You may modify the type of any of the object* by selecting its
Lade" below. The new type must be a derived object of the current
type *ad must already be loaded into the session.
the current set of objects aret
[1 Character: "captain Jack" of "pilot"
[23 Prop: "the aircraft" of "aircraft"
[33 Prop: "the buffer" of "buffer"

[41 Prop: "the wind sock" of "wind sock"
[S] Accept this list and continue
Choose one or more of the above or "1n"ne. 5
The current initial setting for "youl" is

based on the Initial conditions of task "prep aizcraft",
the current objective. for "you" is

based oc the objectives of task '"prep aircraft"
The current initial setting for "the aircraft" is

based on the initial conditions of task "prep aircraft"
The current objective. for "the aircraft" is

based on the objectives of task "prop aircraft"
The current initial setting for "the buffer" is

based on the initial conditions of task "prep aircraft"
The current objectives for "the buffer" is

based ou the objectives of task 'prep aircraft",
The current initirl setting for "the wind sock" is

based on the initial conditions of task "prep aircraft"
The current objectives for "the wind sock" is

based on the objectives of task "prop aircraft"
Now working on problem "CoMrehensive Teot".
Type "quit" to return to Lesson Nuilding prcpt.
(]RODspilot training Z:3I]

The prompt has now changed again. We are in the Problem Loop. In this loop, we can adjust the
initial scene and objectives, or view them, using the set scene, view scene, set goal, and view goal
commands. We can also edit problem intro and view problem iktro for the problem's introductory text.
The view problem command is also useful here.

lPROIspilot training Z:Xl3 view problem

Probleam 02. of leseson "p-ilot tera-ining I" I
Mam. of Problem>3 "Comprehensive Test"

Description of Pzrbleom
Mow that you have successfully co•pleted the various phases c)f the
prooess, let's put the whole thing together from the start. good
lucki

-[lOUpilot training Z:s 3]

144

Because we are making a comprehensive test, the task and problem are basically the same. So for
this problem we are done. The quit command will return you to the Lesson Loop.

[PI03,ilpot trainin 1:13] quit
ELUS8O"P[iclt trainin Il.q

(Presently, thee are a lot of enhancements for the Problem Loop that are planned but not yet
implemented -- some of the enhancements will include overriding or blocking random events, changing
some of :he aequencies of some events, etc. etc. These are in the works.)

Next we will create the other two problems. We will have the first problem be for the First Half
of the task, defined as the point where we are looking to leave the terminal (which is after the
subprocedures in step 8). We will create the problem as before, but now we will invoke the set goal
command for each object and tell it the exact point in the task where we want to end.

[ILSBOW~pilot training X13- create problem named First Half
The student will play the role of "captain Jack'.
Tou iay modify the type of any of t.he objects by selacting its
index below. The now type must be a derived object of the current
type end most already be loaded into the session.
TyWO 'none' for no changes.
The current sot of objects a&rot
ill Character: captain Jack" of "pilot"
[21 ProPt "B-101' of "aircraft"
131 Preps "the buffer" of "huffer"
[4] Props "the wind sock" of "wind sock"
[51 , Accept the list and continue
choose one of the above4- S
Whis now problem Is number 2.

.....etc
[PkOn•pilot trainng 1:213. set goal for captain Jack
This is the current sconariao for the objects
[E 1 captain Jack's flight clearance is iLmatrial
[23 captain lack's taxi clearance is imaterial
[31 captain jack is cleared for takeoff
Your options asrt

stp -- Met the objectives of the object to that of a given stop
in a task.

modify -- Make adjustments to the current objectives of the object
start over -- Undo, all changes in this comnand
help -- Prints out this message
quit -- queries to save changes and exits

83T GOALZ.

You are now in a special loop for the set goal command (set sceno has a similar loop). The
option you will normally provide is the step option, demonstrated below:

U3W GOAL. step
The following are your choices,
[1) Leave it alone
[23 As it looks after step I of task prep aircraft
131 As it looks after stop 2 of task prep aircraft
[4) As it looks after stop 3 of task prop aircraft
15 As it locks after step A of task prep aircraft
16I As it locks after stop 5 of task prep aircraft
[71 As i?. looks after stop 6 of task prop aircraft

145

161 As it looks after stop 7 of task prep aircraft
(91 As it looks after the subprooeduros in I of task prop aircraft
1101 As it looks after step 9 of task prop aircraft
1113 As it looks after step 10 of task prop aircraft
1131 As it looks after the subprocedures in 11 of task prep aircraft
[131 As it looks after stop 13 of task prop aircraft

141) An it looks after step 13 of task prep aircraft
115] As it looks after step 14 of task preop aircraft
111 As it looks at tho beginnin of task prep aircraft

Choose one of the above 9
TIe ourrent objective, for the object Lot
I1 captain Jack is cleared to depart
123 captain Jack's taxi clearance is iosaterial
[31 ceptain Jack's takeoff clearance Is Imaterial
53T GOAL). quit

Notice what the objectives look like. Everything is treated as immaterial except for the last
change to the object made in the task. This means that the only objective that will be shown to the student
is that the student must be cleared to depart. If you want something else to be shown to the student, then
you can select the modify option to make adjustments -- but be very careful when doing so otherwise you
may make the problem unsolvable.

After adjusting the pilot, we perform the same adjustments to the other three objects. The B-10
aircraft is demonstrated:

([AOispilot training Z:2]* set goal for U-10
- - This is the current scenario for the object:

[1] &-10'. preflight coopletics is immaterial

[21 B-10 is airborne
133 3-10's APO's switch position is iastorial
(41 B-lOse APPt's generator's switch position is i:material
15] B-10's Afl's bleed air's switch position tis i-aterial
[61 3-lOg1 brakess' check status are -latorial
171 S-lO's ngine's running status are imaterial
[8] I-10's external power's usage is imaterial
(91 a-10's external power,s switch position is imaterial
1101 1-10's WeN's check status are imaterial
I11] U-10's throttles' position is immaterial
(121 3-10's trim's check status are inamterial
TYur optic"n ares

step -- got the objectives of the object to that of a given step
in a task.

modify __ Make adjustments to the curront objectives of the object
start over -- Undo all changes in this oammnd
help -- Prints out this message
quit -- queries to save changes and exits

S" GOAL3 step
The following are your choicest
M11 Leave It alone

(21 As it looks after stop I of task prep aircraft
[3] as it looks after step 2 of task prep aircraft
(41 As Lt looks after step 3 of task prep aircraft
(S) As it looks after step 4 of task prop aircraft
161 As it looks after step 5 of task prep aircraft
17] As it looks after step 6 of task prep aircraft
III As it looks after step 7 of task proep aircraft
193 As it looks after the subprooedures in 8 of task poep aircraft
(101 As it looks after step 9 of task prep aircraft
1111 As it looks after step 10 of task prep aircraft

146

U11 As it 'look after the sUbprOoQedurs in 11 of task prep aircraft
U131 As it looks after step 12 of task prep aircraft
114) As it looks after step 13 of task proep aircraft
U153 As it looks after step 14 of task prep aircraft
"[161 A* It looks at the beginning of task prep aircraft
Choose one of the above>, 9
the current objectives for the object is,
III 1-10's preflight loapletion is I matorial
[12) -1O's location Is immaterial
13] 1-10'0 l•a' switch position is inaterial
141 S-10's APV's generator's switch position is immaterial
15 3-10's APO's blood air's switch position is imaterial
163 X-20's brakes are ch•ecked
(7) 3-10' engaine's running status are Imaterial
16] U-10's sitarnal power's usage Is imaterial
193 -10's eaterzal power is off
U101 3-10's UVO is chocked
I11) a-Iola throttles' Position is inmaterial
(12) 1-10's tria's chock status are Imaterial

8UT GOAL• quit
Nave changes to objectives? yes
Objective modification completed.
Objectives set for "-101"

Important: It is not necessary but strongly recommended that the same step be selected for all
objects if possible. Failing to do so could have Wyverse consequences (there is presently no way to do this
automatically).

We will skip the rest of the creation of problem 2 and all of problem 3. Problem 3 is identical in
concept except that the set scene command is used to put the initial scenario fer all objects to the end of
step 8 in the task which the goals are left alone. Below are the intros for these problems.
IPROltpilot training ls2]> view problem intro

The following is the introduction text for this lesson,

terminal Preflight Operations

First. we will train you c the procedure for handling the
aircraft when you first arrive. Your job is to start with an
aircraft with everything turned off and take it through the
Initial sequence of checks and gain clearance to depart the
terminal. Good luck, Captaint

PROD 0pilot tra inng z,32) quit
tfSAO•uspilot training XI]• work on problem number 3

Now working on problem "Second Nalf"

t"Oabipilot training 1,332 view problem intro
The following is the introduction test for this lesson:

Tazi and Takeoff Procedures

in this problem, your plane is now ready to leave the terminal
and tower har granted you pormision to depart. Tour Job is to
team the aircraft to the runway, perform the last set of checks,
and fly your 3-10 aircraft. Don't forget to ownicate with the
tower. Good luck, Captain!

147

11-0i5sp1lot training Z131. quit

Here is how our lesson looks with the view lesson command.

(LESUhp£ilot trainLng I2. view lesson
Lesson "pilot training Z"I
Casts
captain lack . pilot
1Zopas
a-10 o.. . aircraft
the buffer h%* f for
the wind ,,•k wind sock
problea sets
t1l] CcrsehonuLve Test
121 First salf
131 Mecond Balf
EILHSOMspilot training XI2-

Obviously, the problems are not in the correct order. We now wish to order them correctly. The
order problems command is used for this purpose.

[LcbaOutpilot training ID- order problems
Choose the reordering of the problems. Your input must be an ezact
permtation of the numbers of the left of each entry.
1[] Comprehensive Test
132 First Half
[3] Second Half
Nam the nw orGer or 3 31
(LEISyOlot trali-n I33

You can perform another view lesson to see the reordering.

Now, once we have completed the problems, we are ready to compile lesson. This command will
assemble an METutor-ready file which, in the next section, will be demonstrated. The sequence of events
of this command are -- check the integrity of all the objects, tasks, and the lesson - then produce the
METutor database. The integrity checks can be performed ahead of time using the check object, check
task, and dchck lesson commands. Here is how it looks (note - on a SPARCStationlO, this took about 10
seconds to do).

UalOwspilot training 72 compile lessoe
Chocking integrity of object "wind mock" OK.
Checking integrity of object ,aircraft 0K.
Checking integrity of object "aircraft tr"m" OK.
Checking integrity of object "aircraft throttles"-.. .OK.
Checking integrity of object 'aircraft W911 OK.
Checking Integrity of object "aircraft external poer" O1.
Checking integrity of object "alrcraft eag ine" OX.
Checking integrity of object "aircraft brakes". .. OK.
Checking Integrity of object "aircraft ApU".
Checking integrity of object "aircraft 7.PU blood air".... OK.
checking integrity of object "aircraft AIPV generator"... .0K.
Checking Integrity of object "hufecr"... .0K.
Chocking integrity of object "pilot" OX.
Checking integrity of task "prop aircraft"...OX.
T.anslating "orecoms-nded.t" Facts OK
Translating "preconditiont" Facts0.
Translating "delatepestco•ditiont" Facts OR
Translating "*aIpostcc-diioA..t', Facts OK

148

i |h ! 1 ! 1 ,I J _1alcI sI. I.I..I OK

3raamla.t•a "esingular.t" Facts OR
ftenslatLia "plural-t" Facts OK
tcanslatLim "only.teat.t" Pats .Fact
translating "doletetztot"]Pact* 0o

Translating "&4W•tezt_t" Facts 0o
C=Vi3atien successful and marked current.
"C[tS•LMEpilot training Z3,

To save wn METutor compiled file -- use the save compikd lessen command. The compiled file
will be the name of the lesson with underscores attached with an .met extension (pilot-raining-l.met).
The METutv wif be in the current working direcItor, not the library directoryl! !

The remainder of this appendix shows the beginnings of an METutor session run from within
MEBuilder using the run/ sson command. All we are doing here is showing that the lesson compiled
properly and that the workbook structure translated correctly. See the next section for a detailed execution
of the lesson.

UtZ.SBOtsplot training Z1]; run lesson

+--4

I Moans-mnds tutoring system -- Version 29 (NiaT'Ltor) i
4--.4

I by professor Nowe and CP1 Galvin, Naval PG School I
4--4

Welome. The name of this lesson is "pilot training 1*1.

Welcome to Pilot Training, part x Takeoff

The purpose of this lesson is to acquaint you with the
basic procedures in taking off -- including preflight checks,
toer aommionications, and takeoff proooduros.

There are two MaJor segments of the process -- those
procedures that must be done at the terminal and those that
are done during taz and takeoff. The first two problems
will train you on the two parts; the third will bring it all
together for you for a comlrehensive test.

Good Luck, Captaini

There are 3 problems in the lesson.
Tou may "list" the problems, "view" a sumary of a problem,
or 0"do" a problem. "help" is also available.
aMtltor> do list
The following are the available problems in the lessons
I1I lirst Ralf
123 second Xalf
13] caprehsnuive Test
Uffatorl do problem 1
Loading end checking the problem please wait Done.
FROMMN 91

terainal preflight Operations

first, we will train you on the proc•dure for lia-Aling the

149

aircraft when you first arrive. Your job is to start with an
aircraft with everything turned off and take it through the
Initial sequence of checks end gain clearance to depart the
tormuial. Goed luck, CaptainL

The following are your objectives$
you mst be cleared to depart, 3-10's brakes must be chocked, B-10's

external PONsr asut be of f, B-10,8 USWB must be cheocked, and the
huffer mist bs disengaged

The following is the current situations
1-10 is at the teramnal, the huEufer is disengaged, 2-10's AlPU i off,

9-10's eNIgn is off, 3-10's throttles are off, the hbuff•r is
present, 2-10's UWe In unchecked, a-10's brakes are unchecked,
3-10s' trin is uncheckeO, B-10's external power is available, 3-10's
APU's generator is off, 2-10's external power is off, and 3-10's
APUI's bleed air is off

Mhat do you want to do? quit
MTator" do problem 2
Loading and checking the problem please wait Done.

ROBDIM #2

Taxi and Takeoff Procedures

In this problem, your plane is now ready to leave the teminal
and tower has granted you permission to depart. Your job is to
taxi the aircraft to the runway, perform the last set of checks,
and fly your 3-10 aircraft. Don't forget to comunicate with the
tower. Gocd luck, Capta:lt

The following are your objectivess
you must be cleared for takeoff, 3-10 must be airborne, the hbuffer mst be

disengaged, and the wind sock must be chocked

The following is the current situations
3-10 is at the terminal, you are cleared to depart, 3-10 is

preflight Inmpcted, 3-10's MIK is chocked, 3-10's brakes are
chocked, the huffer is disengaged, 3-10's throttles arp off, 8-10's
APU is on, the bhufer is present, 3-10's engine is running, 2-10's
trim is unchecked, 3-10's external power Is available, U-10's
external power is of f, 3-10's APT's generator is on, and 2-10's
APT's bleed air is on

What do you want to do? quit
INTtorz; do problem 3
LoaUdng and checking the problem please wait ... Do•e.

c•taehensive Test

Mow that you bave co"pleted both phases of the process,
let-s put the whole thing together. Good lucki

The following are your objoctiveol
you mest be cleared for takeoff, 3-10 mast be airborne, the huffer must be

disengaged, and the wind stok mast be checked

The following is the current situations

150

1-10 is at the teala", the hutter is die•agaged, 2-10o A" is off,
-- 104O egea. is off, 3-1010 throttle ar:e off, the hbfter Is
present, S-1014 MW is unchecked, 3-10'10 brakes are unchecked,
2-10's trim is unchecked, I-10's external power im available, 3-10's
AlnI geneaator is off, M-10,a exter"al po"er is off, and 3-0'
AP's bleed air Is oft

what 4o you mot to do? quit
lI'ttor" quit

Returned to UIuai2lder...
[£rlBOyipilot trainim X]3,

151

TAB 5. RUNNING THE LESSON IN METUTOR

The folluwing is a sample run of the lesson in METutor. This sample run demonsrates several .fJ
the commands and features of WETutor. The METutor session is best run from the original working

"Key item to notice - remember the "have pilot request <x> clearance" operations? Notice that
because the student is serving in the role of the pilot that the "have pilot" portion is chopped off and that all
references to the pilot ae in second person form in order to put the student more into the scenario.

:, -galvint/rnebutidl~N3Tetor -

naow the loosen I ilea" pi2.ot..trainiag.-I.mot
4---4

I HMea-Sat T'ator la ystem -- Version 29 (IMYttor) I
4---4

I by Professor Rove and CPT Galvin, Naval Pe School I
4---4

welcome. The name of this lsesu is v"pilot traiening z".

Wet1omo to Pilot Training, Part X Takeoff

The purpose Of this looson is to acquaint you with the
basic procedures in taking aft -- including preflight checks,
tower aecommicatlcnas, and takeoff procedures.

There are two majo-r negmeHts of the process -- those
procedures that must be done at the terminal and those that
are done during tazi and takeoff. The first two problem
will train you on the two partes the third will bring it all
together for you for a cereobnsive test.

Good Luck, Captainz

--- --- --- --- --- ----...---- ---- ----

There are 3 problems In the lesson.
io may " list" the problems. 'view" a summary of a problem,
or "do" a problem. "holp" is also available.
W3'.torD do problem I2
Leading and checking the problem please wait Done.

Terminal Preflight Operations

First, we will train you an the procedure for hanuding the
aircraft when you first arrive. Your job ii to start with an
aircraft with everything turned off and take it through the
Initial sequence of checks and gain clearance to depart the
toei.mil. Good luck, Captaint

The following are your objectives,
you mat be cleared to depart. S-10's brakes must be checked, S-10's

ezternal power met be off, 3-10'a N38 must be checked, =d the
huffer met be disengaged

The following In the current situatlont
2-10 Is at the terminal, tha huffer Is disengaged, 3-10's AJU is off,

152

' W

2-11s e"wine is off, a-1's throttles are off, the huffer is
pxo.s•e t. 3-.I~s IN$ Is unchecked, l-10's brakes at* unohecked,
:-10e trim is unchecked, 2-10i external power is available, 5-10's
&al~ generator is off, U-1l1s external power to off, anm B-1010
&ll's bleed air is off

What do you tgmt to do? help

YOU IMy eater &J, operator or ofe of these special Comand
help -- print this test
quit -- return to)mtor main level
v4., ew state -- pretty prints tho current state
view objectives -- pretty Prints your objectives
qwurzy Operator -%perator3.

-. prints all information about an operator.
qpery object .4abjeatý

-- print operators available on an obj ect.
query fact Cobjeatc..

-- prints all information about a fact or objective.
""e following are the Operators available in this lessont
13 adjust 3-10 ' trim
121 check 3-10's WKS
132 check 2-10's brakes
14 check the wind sock
152 conduct preflight inspection on 3-10
I11 lisenage U-10's external power
171 disengage the huff er
15) "easae U-10's Au's bleed air
191 engage B-10's AIU's generator
1101 engage B-10's external pow r
MU12 engage the huff•r
1121 fly the B-10
1133 max 2-10's tbottles
1143 request flight Clearance
[153 requ•et takeoff clearance
1163 request taxi Clearance
U173 shut off 2-10's APO
[111 start B-10's APU
M191 start 9-10's enwine
(203 text 3-10

What do you mwnt to do? conodct preflight inspection on 3-10
YTo chose to Conduct preflight inspection on I-10.

OR.

[13 3-10 is 3ow Preflight inspected

What do you want to do? engage 2-10'a external power
Ton chose to engage 2-101s external Power.

OK.
113 3-10's external power is now on

What do you want to do? eWage the buffer
To% chose to engage the huf fer.

(11 the huff er is now engaged

What do you want to do? request takeoff clearance
you chose to %equest takeoff clearanse.

153

What action requires that I
.13 you mast be cleared for taxi
'21 a -La Imst be oan th runvay

alt do. you Want to doV taxi 3-10
T"u ohose to teui a-10.

Mhat actiQS 1equires thett
113 you must be cleared tot taxi

mhat do you vast to o01 request taxi clearance
Tau ohose to request taxi clearance.

that action require* thatt
I) you mast be cleoted to depart
131 3-10, brakes mast be chocked

What do you want to do? vi"w objectives
Mhe following are your oblectivasa
you mast be cleared to depart, a-10's brakes must be checked, M-lO's

extemnal power must be off, 3-10's MWI mast be chaeked, and the
buffer mest be disengagod

What do you want to do? query fact 3-10 ,s external power is on

The fo9l0Oiag operators are reCMMmended for achieving this fact$

(1] enage 3-101s external power

""2'at do you wat to do? query object the hufefr

the following *&An be perfoarmed ons "the huffeor".
-' operator a 'e•gage the huffer"$

te operator is Intended to achieve "the hbuffe e would be engaged ",

' Operator a "dliammage the huf •fr1"
"sho operator is intended to achieve "the hueffer would be disengaged ".

What do you want to do? query operatiom check the wind sock
Sorry, that Is not a valid commans. Please try again.
What do you vsat to 4o? query operator choek the wind a sockk
The following is true about "check the wind sock"a
"T Who operator is recoa•aded for achieving "the wimd sock is chocked

Th., operator is recommended for achieving "the wivAmo sek is chocked
TO The precondition for the operator is "5-10 mast be wA the runway and the

wind soak msat not be checked ".
*e pmtoandito for the operator is "" while "the wind soak would be

chocked ".

* t•he poetacoditiom for the operator is "" while "the wind sock would be
checked".

*" the pocatodition foe the operator is "" while "the wind sock would be
checked -.

"n h poetoondition for the operator is "" while "the Win sock would be
checked ".

What do Vao want to do? quit
30mor3 quit

154

APPENDIX D. SAMPLE DATA FILES

This appendix contains examples of data files produced by MEBuilder during the

session scripted in Appendix C. Then following are the files included in this Appendix:

Tab L. mebuild.lib -- The library directory file produced by MEBuildLIB

Tab 2. pilot.cls -- The definition file for the "pilot" object.

Tab 3. aircraft.cls -- The definition file for the "aircraft" object.

Tab 4. prep.aircraft.tsk -- The definition file foy the "prep aircraft" task.

Tab 5. pilot-trainingll.les -- The definiticn file for the "pilot training I" lesson.

Tab 6. pilo-turaining•.L.et -- The compiled METutor file. Appendix E contains

excerpts of a script run of this file in METutor.

- 155

TFAB 1. LIBRARY DIRECTORY FILE

/* M1ufldaer Library File -Directory of Clausee end Lessons ~

I- dynamic type...f .prolog-.f lie/i.

S - inaltlZ le typs-oI-proiogj 11./i.

I- dyasmic library.. aasse.sntzy/4, library-taslc....t-y/4,
library..l~vseoza.ntry/S, l1.brary..livk/i.

-mulitile iiraxy-alass--antzy/4, librazy..ta.#..etxy/4#
library-lossonaentry/S, library..llmk/i.

type~of..pwoioV.f lie C Duli~ldr Library DIxeatozy file,).

P llbrary-..lase-o.ntzy/4 t

iibrey...iaes..eatry((aircraft, thriatl, ' /l,/aliraraft.rla. ale'.t

date (94, £,4, 2.056, 35).

(propi).
iibaray-a.lasM..entry C [ircraft *tbotiesl, ./li/sircraft-..throttleI

dato(ld4,6,6,lO,56.33),
[propl).

librazy-c.aiauu.entry C aircraft, '111183, ./ lIb/alraraf t..UWS .ale',

dat*(94,9,26,10,56,3S),
(prop)).

iibrazry...oaeu...eatzy((aLrara~ft, 'zter~az3,oeratr, I ./lb/aircraf text

date(94.,36,iC,S06.35).

(pawpl).-
iibrezy...lae....eatzy(ialrcrsf./aglne2, '.a/ls/lcat.'slecs

date(914,.26,11,56,35),

(pbraftel. .

llbrary..oiasse...tzy([aircraft. 'AU'bieedq~~c.air, .iberaa

date(34.6,26,iO,5435),

date(4,6,I~i0,5156)

library..class....tzy(4 (aircraft, *APU'l ./lb/airaraft.A clsalu,
dat. (94, 6,24, 1) ,54, 32),

[aircraft, 'A ge' gneratorj,
prop)).

taircraft, tbrottloo3,
[aircraft, '1118',
(aircraft, *zt~rsAlpower],
la.. roraft, euginel,
lairaraft,brakeel,
[aireraft, 'AP!?'],
Drop]).-

P. 1iary..Aask..ntry/4 *
*library..taek...eltry (prep, aircraft], . /li3/prep..aircraft tskb,

dat (94,8, 27,130, 48, 4)
E [wIzd, sock],
aircraft,
Iaircraft, trial,
taircraft, throttlea],
[aircraft, '11s1I],
[aircraft, ezternal,powor],
[aircraft,engine3,
[aircraft ,brakes),
[aircraft, '))U],

[aircraft, 'APP' ,gsneratorl,
buffeor,
pilot)).

1* ibrazy-lessoa-enztryl5 "
ILbrary-leossa~ntry([pilot,training, 'I'].' . il/pIpot..traiLnirngZ. lee',

date (94, 6, 27,131, 55, 50)
[[wind,sock),
buffer,
aircraft,
pilot],
([prep, aircraft]]).

157

TAB 2. OBJECT DEFINITION FILE FOR PILOT

KOUL~dedr Class Definition Pilo

- Gyamia type...f..pzologjiU26/l.

I- miltifil. typ..of..prologjfile/l.

8- Gy~ua.± alaum..Aef/2, comonent/4, property-.set/4,
property.Aisplay..data/d, relatioa/4, daeaon/6,
operation/&, opeatiea..Aiuplay..Aata/4.

I- 21Qltifile clamsudeffl, component/4, property-s.et/4,
proprty-.dimplay..Aata/d, relationl4, daemon/6,
operation/*, coprati*oadisplay..Aata/4.

type..of..prelog..f il* ('2Ufilder Library Class Definition File').

1' al.ass..of /2 */
classdef (pilot, tcahractorl).

1' aomponent/4 *I

I' property-set/4 I/
property.. et (pilot, [flight, alearance3,

ameof(EC'olared to depart,]),
not-.hideehle).

property-et (pilot. Itazi,aleareao.J,
onsef(Ec'learei for taxi,)),
not..hi.eabl.).

property..mt (pilot, (takeoff,clearanceV,
oneof(Eloleared for takeoff 1),
not-hideable).

Pt propezty...iuplay-data/4 t

/* operation/$ '

q~iration (pilot, Cairaraft),
hav.,pilot, [requst,flight,alearanoel,

Coa(1APU11s1blaed,airVJI,
'cleared to depart',

158

[[,cleared to depart'),
Echertked Cbiakos) I3I,
'cleared for tazx',
MI
CIM.

operation~pilot. Iaitcrafti,
have,pilot, [boquxet. takeoff cleS?&aucOI,
I caleared ZOPC tazi -I
Pon the zravayl3l,

'cleared for tak'.offl,
Ell,

(M3.

/. operation41epp.ay.4ata/4

1 59

TAB 3. OBJECT DEFINITION FILE K A AIRCRAFT

I' Imfluilder Class Definition File '

s- dynaltici two-.of-prolog-file/l.

s - dynamic alas..Aef /2, componest/4, property..setJ4,
property..Aisplay.Aata/4 * relation/4, daemen/6,
operation/$, qperation~dIsylay..Aat&/4.

:- ltif ile alass-def /2, ccomaonntI4, p~roperty..set/4,
Vrag~rty~display.Aata/', relation/4, daeuon/g,
aperation/f, operaticeadisplay..asta/4.

typoe..oproleUjfile C 1W~uilder Library Class Definition File,).

P' olass..Aef/2 0

olaxss.d~f (aircraft, [propj).

/* componeat/4 6/

default).
component (aircraft, (aircraft brakes] brakes,

default).
cooponeat (aircraft, taircrvaft,enqine) engine,

default).
ocomponent (aircraft, [aircraft,eszternal,power], [ezternal,powerl,

default).
ccomponent(aircraft, (aircraft, IMIIW', UWB',

default).
acumpcnnt(aircraft, [aircraft,tbrottleu3 ,tbrettles,

default).
camoneat(aircraft, (aircraft,trinl ,trim,

default).

Pproperty-.set/4 0

property-set (aircraft, (prefligIht,comletion],
oneol (Ppreflight inspected *)
not...hideehle).

property-set (aircraft, location,
oneof([lat the tersmiall,lon the ramway',airbornel),
not...ideable).

/P property-.display-lata/4 0

/P xelation/4 0

/P daemon/6 0

160

[(off (eztomnl'yover) I,

Ell,

operation(aircraft, tPi2otl,
coc~k,bralwes, 3,
E(aheake4(IS')],

cohcke4(brakes),

operatioas(airaraft, (pilot, CviM, soah23,
.ajiust~trim, (2,
Ell,
12,
fcebckeG] 2,

ohoaked (trim),

OD.

Ishut,offL, APU,(2
1 (aheck.4(trim) 3,
11aleared for tak~off22l,

(fC),)

apezatiou(aircragt, (pilot),

IC),
Pcleared for taxi']],
, on the runvay',
10,

six, thxttl*S, 12,
C [of f CAP01I I
[$cleared for takeofEIII,

ful~l(throttles),

112),

Operation(airoraft, (pilot),
tfly,:hml ,aircraft, 1),
itfull~thZottleU)],
131,

airborne,
[1),

oegration(airaraftA PLilti,
start, APU'l,12
E pyceflight inspected' ,rumning (engine) 2,
(2),

onl IPU'),

111)1

operatjona(rcraft, Ipilot],

Io'Prfligtprflht inspectd'),o3,izat(1

Calet hterminalwe),

strtsgis,3
pt~reflight inspeted',

@peration(aircraft, (pilot!,pio
diengage, (ezternal,poerl, (1,

off ezternal, poer),

/*operation~displayft, a/ *h1ft~ioI

start engie,162

TAB 4. TASK DEFINITION FILE FOR PREP-AIRCRAFT

MMIui3er 'Pask Definition File 0

I- dynammic typ...of..prolcg...file/i.

wA- tifiie type.of..proicg..f ile/i.

dyn~amic task/3, iaitiai...ocaitions/2. objectives/2, stage/S,
action/S. unocrdeeed.action/2, relation/3.

t- m~ltif ilo task/3, initiai...canditions/2. objectives/2, stage/6.
action/6, iuaogderod~action/2, relation/3.

tpe..0f .roiog...f il*Vi.(' luder Library Task Definition File,).

1. task/3 0/

task([Cpzupaircraftl, [pilot.pilotl,
C[Ehuff er,huf for].
jaircraft *aircraft 3,
[[wiad,eockl. Cvind,sochN3M

/* initial-.g.onditions/2 0/

initiai..aondit ion, (pilot.
[aot(Icleared to departlCpllot)),
not~cleared for taxil(pilot))t
&ot~cieared for takeoff'(pilet))J).

iuitia3ýeoeditioa. (huffer,
[present(buf for),
disengaged (hut for) I)

iuitial~couditicus (aircraft ,
[not C preflight inspectedl(aircraft)),
,at the terainal (aircraft).

vLockf('air craft t'u,'&'),rke)
off(sAiroraft''u','JhVU'',geeao)
aff('ail(&rcraft' '','Als,blteedai~~r),

u..checked(aircraft 'al' brehe

off(aircraft' '' throttle.),
unchecked('aircraft' '.,trimM1.

imUaIti~ouditicas ([wind, sock],
[not (cheaked(wind. soak) 3).

/0 objectives/2 */
objective. (pilot,

[,cleared to departl(pilot).
,cleared for tazi'(Pilot).
'cleared for takeoff'(PilotM1.

objectives (buffer,
[presentth(uffer),

163

VT prflght inspectedl(airczaft),

rwiim neaircraft aou, is

checked(aircraft 'a Wb~e')

full(I'aircraft-s''' tbxott3es),
hoeckodC aircraft' a' ,triuM).

objectives I IviA4,sock).
KaheakeG Cuini.sock)I).

I. tagels *1

stage(staztinear~none, linear,

stag* WAIinear, name, linear,
(W5ar,2O6,13,
K]).

stage (42,linear, os linear,
E~q17*121]3,1,

stage (q34, lnaudmri,qoS.lnear,

staqe (qlg, linear. mone, linear,
113,04,1]*31.
11)3.4*~,j

stage (gina lizeaz .none, linear.

Itg IgI$ 117a,11, EU, linea, 1

EK]). z~l])
stage (ql7.liAsar'nons. joiniug,

stage (ale, linear, none, linear,

IMq1,116,131,

C164

stage (qLI~. linearnoame,l~~

E IqlS. 14913,11
t13). ud:l)

stge (G2Oes ,n-aaptia, ace, limsar,
C[q19,120,131P
[3).

stag. Clo0,11neaz,mon ljinara,
[1q2l,1OO,113, [l..21
[[q20,&nd,131).

Jjq2O,&mdll,13

sctag.(q201,ani-uplt(q17liueaz,Loctnoniraf)

[[qEn103,u133,bffr)

sctige(IOA. linarteon, lrcartlo,ogn

action (q106 engageao. airceaftrA, enrtr

actiae(lOl,covedupat(~requgb~g~ht isp ctineuaincra),

1165

(2,

40ttos(1O3,dimealw.f (buffer).
ti,
ti,

t).I

12.

U,

E2)

actosa(130.flyaheakCairraft a, m t ,
(),

(166

II°

I. rel'at.aai3 *, "

167/

TAB S. LESSON DEFINITION FILE FOR PILOT-TRAINING

/. inZ~uildar Loescm Definition Pile 0

t- dynamic type..of-prologj ie/i.

s- dynamic lesson/4, iemsseaJutro/l. problea/5, V roblem...iatro/2,

imitia3.,sett1.ag/3 * objeatives /3 * side..effsct....mrri4e/S.

a- multif ile leusou/4. iesoseci!itro/l, Problem/I, Pzcblem..iatro/2s
Watial..uettinaa/3, o bjeatl'res/3, sidr...effoct...verrid%1S.

type..of jprolog...!ii.(1WfUtildor Library Lessn Definition Vile,).

j.losson/4 *
lessoan Cpilot,tzaaimng., v3

([icaptaLa, Saak,pilot.4efaultl 1.
13-Oairzrattidifault3.

I Itbm,wind.oock3, Cwi4, soak),def cult)),

loosev,sitrozat)3)

~esoa~troWel ..e-0. Pilot ftr4-ain , Part X Takeoff ').

lees .-. utro(' The pupaos. of this lesson is to acquotint you with the,).
Jle~ssoajntrc(1baia procefures In taking off -- includi:vg preflight checks,) .
levssanntro 'tcoer conaiaations, and takeoff' procedures.').
lessomn-Ltro C').
lesuon-introC More &soe two major segmentsi of the process -those)

ieeem.iato(proeduesthat must he dame at the terminal and those that').
l..s~somatgo C *are &ame dua'Ing taxi and takeoff. *The firqt two problems').

h ies~omcxk_1tro C will train you on the two partal the third will bring it all,).
* ~~l.sson..intro (' tagetho., for you for a camprehnusive test.')

leasom-intro(''3
lossoinýLtro(I Good Luck, Ceptaint').

/*probleM/I 0

ParableMC3 [Ieod Too 1ai 1 ,tat. jepan ack),
C Iloaptaim, jack) .pilot.defeult) 1,
1Cm-la',aircrafttdefaaait),
C Ctho,haaffer3hutffer~def cult),
I (theAw3.d, cook). wind.sooii) defaultl) 3)

problemC3. ['C~retbe-alaivEaaTs') eptaia,jack j,
l[CE oatain~jack) ,piiot,default])3,

C i'-ia',airraftdef168)

(ttha,wdoal[windG sock),[3C o*,def &ulq]V).

phlesOAatro (2 a 'lanA and takeoff P'rocedures',
Vrohlemj1Atro(z.'').
pxoblemAjatzo (2. I Zn this problem, your plan. Is now ready to leave the tezainal I).
PtobleJatzO (2' and tower has granted you permissioan to depart. Your job I* to').
problemk4.neroM('tazi the aircraft to the runawy, per! orm the last out of checks, ').

prob14mJAtzoca,'WAn fly Your B-10 aircraft. Don,'It forget to macnieaste with the').
PVrlm....hAtto(2# tQWer. good luck, CaptLnl I).
1problemjLatro(2.1 ').
problemjnLtro(3 * 'Comprkhessive fest').

ptublmj~iAtVO(3,* Now that you have completed both phase* of the process, ').
poblemaLItrOU'(3let''s put the whole thing together. Good lucks').
prablem-jatro(1, 'Tezuinal Pref light aperatinna).
problML1atro(.1 1,
VVlMLJ~tXV(l,% First, we will train you on the procedure for handling the').
prolem~xtzo(I. 'aircraft when you f irst arrIve. Tour job is to start with an').
vroblum-.Intro (1, 1'aircraft with everything turned off and tak'o it through the 1)
problem...intto(l,Iizitia:. *eq"ene* of checks and gain~ clearance to depart the,).
problesmjatro(1, 'tmzialm * Good luck, CaptainiI).
ProblemjLatro U,'1').

/* Lnitia1_amtting/3 *1
initiL~setting(2, tcaptain,jackl.

1'cleared to depart'(captuin~jack),
noc('cleared for taxi' (captaindtack)),
not('cleared for tekeoffl(oaptaimolack))]).

£.nitial-settimg(a, 18-10'.
(checked('3-10' 'a'.brakes).
off (3-10' 's'.eternal.power),
checked('3-10 '5',I'MWd')
'preflight inspected' ('3-10'),
tat the L.ezminal'('31-l0')#

available('3-10a s'external. power) ,
off ('3-10' 's'throttles),
uncbecked(IN-10' 's',trim)3.

inftial-metting(2, ths~huffer3,
(tiisengaged (the. huff er) ,
present Ith*ehU99*r) .

litialseattima(2, Cthe, wind, sock],
Cnot(checked(the.vinmd~soek))).

initiO&..stting(3, (captain. jack).
[not C cleared to depart' (captain, jack)).
mot('olearod for taxi' (captain~jack)),
not('cleared for takeoff' Ccepteain,jack))).

Imitia2...etting(C.A'3-10',
tnot('pef light inapected' ('3-10')),
'at the terminal'(10-10') ,

off (13-10''.'a I, 'AIU' IIs' generator),

unchecked('3-10's' ~brake.),

169

Off('S-10' 'a',emirVae).)

availabest '3-10' baker),ee~pue

1" 1i13-10''.aq(b.v" ,tlOal).

1aI~tLaOLsettimg(5. t~eaam. Jack] .

a~t('leared gto tpaxi, (tom a, jack)).
wtv'cleared for teakL (cpalapi, jack)).)

Jcti '1eref tot iectak dl' (ww'8- a.la), I)

'at the tezofaal'('3-1Q'),
edf('3-10' W,' '11W').
off (ON-10' S.' 'an 00' '.geaeratov),
olff(1-10 1 ,an, aal '.blood, ait),
unchockeiC '3-10' 1 a *brakes),
off (I3-10' '.'.euLa).
avAilablo(I3-101 'a' ,extena1.power),
oft I'-0 6's'.otermaa2,poer).
uumeakodf *D-101 Iv. '313'),
oft*-&O, '.'.throttle.).
umuhecked(lo-lo, W.Czaiw).)

airtWal.etting (1, (tbs. buffer],
bceaeat (tbo,bufter),
diamooee4(t~he. buffer) 1)

laiait.Wetift (I. (thervind, sock),
(not (aback" (tho,vind. sock)))).

EV cjeativow/3 *1

a'oSective. 13. lcapta,", jack).
11mteolaUL(copta~a 'jack' W.. flight. clearance),
tumterial tceetala, Jack' '' ,ttxit. l~aaarae).
'clear"d for tekeaU' (ceptala. jack) Ii.

c'Joatwive (, 13-10 1
(terAmtaX4 '3-10' * ~e~b~a~1c)

fImterialf 13-10'' W, '11W. Ia, vgoch.toel 1"Sit"Po,'.a-

itmaterla~t '3-10' Wa', bhte""* I Ichouk.ustatus),

Smmterial('5-10' a,'le a i.au)
ImmtarialVD-1@' W,.utmrJ 'paie 1',aokma' .use,

Lhmtazul (tbe, Ibhj*Rerl fo"oc)

objmhct1'MeWU. Ib~id.~
Cchaboedftbe'VA".ai~mi) 1).

akJocpiw. (3. (eapt&Az. jack),
imm.stevLa1 (saptaia, I'Ijack'a' 1110t, cleertmce).
ImmftorJ.al mptaim. '.,ac' I'a',teaxi, le-reaws)

.7P

luloared for takeoff' caaptalnjack) 3).
objeativea (3.3&-10',

(imaterial('5-10 'a' ,preflight, .cmetoicm),
albOraa('3-10'),

S~atrla('3-0'''.'10'''.beed'a'a'.awitch~poittion),

cb ~mattee@a3,'t-1O''n'.aovt.ma.pm'a.ag
Ob ntati al(M 310s EetI, Jack] al 'pr a ivtkpato

[Ltearia(3-0'','M 'a' deatoain ~ack)aat
Linateria1('u-1O' '.'.'tbrosttle.' ''.pouiti).
LImmterial (capt'ain. Jack ' takeoffkClearance).I

objeotlves(3,ltbe-hffo r

(Immaterial (1be 'h-ifer '3 A" bo8od, i asich oito
dcaooueed(tbe101iffArake).
Immeat~veril(91 I, Ctewn~ok, IOL&IaIrm tts

Imaeteiial (1 15-1e1p1a I, exeraackowr 8 iw)
E'ereto dI-018,zeart (alptai jac),
1abookerIN1(aaptIv. 'jI k a'.axI)erac,
Imaterial (captai Iak Is' .1thotlkerII"off, larec) 3)

(Iiaterial('3-10' I a I.,trim- s,, c1okstticm) 1

limmaterial('-10 'a'Wee'r, aithpeii~)

disogaed(3-0''a. 'uffer).

ebjeetLwve(1, (tbo,uIW.sovk3,

I. idoaftect.pvervidels "I

TAB 6. METUTOR READY FILE FOR PILOT TRAINING

4'. Usaam-hds Lesson Defisitias File -- ftunable In XWIter

s- dynamic tye.o.ploje4.

s- inltiftLie type-.of...polog..f ile/i.

I- dynamic loecu/I. iessonAjatro/i. probilmjS. problem-jatro/2,

precaaiiticA-t/5. doiot"Potecslitiea.t/S.
aadostoooditicit.l5/. roudkibaas..t/7, singular..t/2,
Piurai..t/2# aMeIY..teat..t/4# delota..tezt..ti4, aMLtezt..t/4.

i-muitif i.e iessmai.leojar/ probiam/3. problei-mjstro/2.

Precouditioa..t/S. eolotopoetoadaitiaa..t/5,
addsoetogaditioa-.t/5. vanichaaga..t/7, sinwwlar..t/2,
plurai..t/2, * a"W..text..t/4 * dueate..taxt..t/a, aMdtat...t/d.

type..of..prolea..filie C Inftor Lassos File,) .

4" iesso1a.itrol /
lo~oj~kr(usomto pilot Ireimas. Part I Takeoff') .

lossos istro ''3.

loomomin.LtroI noTh porpose of this lossos Is to sowuaint you with the,).
iasoseea-trolsbasic proce.tres in tinklin off -- including preflight checks.I).
joesssj.istt(-towr oommmictties. and takeoof pcooogares. 3

lessosatZo (, * Tbere are twomao swegimots of the process -- those *).
lessms...Atro ('proefares that most be dome at the tmeawia sam thoe, that,) 3
lessomajatroC * ax dome devise toseal takeoff. ragh first two 9vablown 3
loossas...tro v will train V" a the two partas the third will brims It a1l'9.
lassmsjatro (, together for y.ou ter a oomrshsasive test.*)3
lessonAjatroV * 3.
ImeosasjstroP gooud Look, Cowta"at* .

/* pssbiam43 0/
qrobismul, I livt' a 'Elfg,], toopt"&.1ao*1 3.

pavblimm~t I'0gmd.bei. [qQtest'j * eepa.aei.

PC problemAU.IT0o43
prohlaL..iatrol1. 12oxmimasl Proil~ieht Operations 1

proheblamatme1i.' - irst, we will trasin you an the proceduer for havdling the').
pcsblom..Iatwell. sILreraft umyes first acrive. Your job is to start with &a*) .
prebbleft.istro~l. airnrett with ewexythiag turmed off and take it thromgh the').

172

Probieu-Intro (1, 'intial sequence of checks and gain clearance to depart the,).
pzobemjtro~. 'ermial.Good luck, Captain~l).

vrcbl.....intro(2, '!azi and Takeoff Procedures').
problemi-Lutro(2,'1).
problem-LatroM(,' Zn this problem, your plans is now ready to leave the terminal,).
problemj.antro(2,'and tower has granted you permission to depart. Tour job is We).
Problem..irtro(,'ltazi the aircraft to the runway, perform the Inst set of checks, 1).
proble...intro2, 'end fly your a-to aircraft. Don 't forget to ocousuicate with the,).
prable.3.ntro (2,' tower. Good luck, Captainil)
problewjintrOU3''l).

PecblOO...5.tro(3.* '').
problem-.intrOO (aw that you have completed both phases of the process, I).
pr'ablemj.antro(3.'let's puit the whole thing together. Good luck!').

1' prcbleskdcmain/3 '/

t[ca&Ptain:Jakl3'.
problem..dcmain (1, aircraft,

Problem...dcmaim(l, buffer,
[[the.hufferlD1.

-rbleakdckasin(, 1 wind, sock).
(Ithisowindpeookil).

prablem..damain(2 ,pilot,
[CcaPtainSaok)I).

prcblesi.&omin(2 *aircraft,

('5-109).
Problem..indaia(2 ,buter,

11tho'huiforii).
prcblem..Aomin (2, [wind, sock).

I[tbe.wind. socakl]).
qwr 6lemaomain (3. pilot,

[jamptain.jack)1).
prablem.Adaa"~ (3. aircraft.

problesi.denia(3 .ffer,
((the.bugferli).

problesi~dcomdn(3, * winkd,*sek).
II~tbetwindsock))).

start..state-t El

I'Iat tbe texmizal'VD-lO'

off ('3-10's a, '"91) e.gmac

o1f 9(6-1O Is 'Am'II s.bleled air),
vamebeekdsdV-10 sebrakes),
@11(13-10 1 101 einn).

099ilab10 9-, .xeutezaalVpower)

.ff(3-10'a ''tbufttlea),
Uffibeeks('-10"M'AWD #sti
yressemt tbe.abuffer),
disseeged (tb.hu.f for) D)

ataut-state-t (3.

173

[,cleared to depart' (yeu),

Off(IN-101'a' eztornal'yover0.
cheWOAMd('-10' '*aI, I'NyU'9,

'at the terminaa3.'(-10'),
on(1-1,lei, '.,AIU),
ou('3-lO''u,'APU''a',generatoz),

avalahie '310'"A 'a',ezteeraliovr),

unaoaaked('3-10s' '',trim),
dismeoaged (the, hutf at),
Swesent (th,buf fer) 3).

0I,
P'at the torminal'(13-10'),

bf5('3edC ''l0aP'),ba*,

-mcheake-10 Ia-1, 'aP Iu,geaerto))

offf's-10' 'u,tbrottleu),
uaohecked('-10'*'.',trLm),
present (thehbuf tar),
"aseeaged~tbe~buttar)).

ja l-t/3 ,

1'oleazed to 4.part'(vcU).
chechedvI '-0s' 'ebrake.),

1,1seek tar -1O' off, ou').

Lhe~akod(thesvams efek) 3).
VD&It (2

V 'cleared ivocta~keotff' (YOUs)

cheheks(tbe, waiM sock) I)

ramel..t t (ept-- Jc]

a3410t).(3-0)
tiuemeglgthlseahuler),wll
0ffeba twelltbe~ta. msoak)im an3). 1

P reamme~j174

zeacmen~do&.t tc Cptaia, Jack].
[aircraft,
pilot],

emseage(Paxv(1) .stezual, power) 3
Voemaminde&..t ((captain. J ack3

thuf fez,
aircraft),

"Snage4(azg(13fl

z~cQI4Mede-t IC APtain, JackI,

buf!fer,
pilot],
tuamingiverg(l) ,emns~a)
Stazt(parg(13 ,emaine3).

T~ccineude&.t ([ca~ptain, Jack],
[aircraftl,

sIar(pazg9lb APv' a

rea.nowne4.t C Icoptin, Jc)
la~irrarft3,
Cvs(Pazg~l), 3AIU e',gbleedair)),
".ugagePazg9(1), 'API' a .b1mdator3).

r*ca~unwek-([Captain, Jack],

a4irarafti,

zecmmededt~craptain~a, ak],

[buffer,

(off (pwg* (13g (.tzalp r 3,
dio-eage (aprg (1) ,ee) nl oex)

recommede&t-([aeptaia, jack].

[aircrat,
buffer,

If(omeipergM 1.*ztSrn j,Vwr,
*bUcvesmge (ag(1) , o'Usa l power)

ro"*MndeAt ([captain, 3 ack .

pilot],

tchmake4Cpan (I), msk~) 1,
cock (parg(1), Mreko)).

plot],

Ieleark to imprt' Ca"gel)1,

SOOOMMO404t C(oeaptaln, jeok),
(pilot,
aircraft),

t'elemorea fat teal' CasgL))1.
ROW"': (trAmi,@1earame) 3

175

[aircraft,
pi~lot),
Poen the Z-may'(argml))3
tazM (erg (1) 2) .

rsc~mtA4d~t ((captain, lacki,
[pilot,
aircraft],
('010areG feor takeoff'(arq(l))j.
reqest (takooff,cl~erance) 2.

"mCowAmded~t (caeptain, J ac!k3
K (wind. mock],
pilot,
aircraft),
Ichscke4(arg(il) j,
chack(%rg(l))).

XzSccmmsue4..t ([*apt &Ln, jack I,
[aircraft,
pilot,
(wind, sock 23.
Cchoaked(paxg(i) ,trim) I,
adjuet (pa~rgil),trln)).

v~cc~wmAnd~dt ((Icaptain. J ack] ,
(aircraft,
pilot),
toff(pargtl),, APU')3,
shut (off~parg(l) *))

reccimned.&~t ((captain, J acki ,
(aircraft.
pilot)I,
(full (Pargl M, throttles) 2

rsc~mmndet ([captain. J ack].,
[aircraft,
pilot)2.
taizbornm(arg(l))).
fly(th.earg(l).

xOeCcMMUM1.G4tC(EcaPtain. jack],
[aircraft),.
(off (pazg(l). * ?UI aw #90arator) 2.
Gisemago (pan (1) , - m- a generator))

rcOGinMO&..t C captain, jack].
(arcraft I,
[off (Pam'g(l) Avg 'ubl..d'air) I

*eeosAe&.4At C(1catain, jack],
(aircraft),
[off (rarg(]2,.agine) 2.
abut (off,pazgmi)mvain.2).

laircraft 2.
toff (Para () .throttles~2
uut(peg(l) .tbzottlea) 2.

taircraft].
lcabbefed(Parg(1). ,trim) 2.
check(pw (1), ,trim)).

P vrmo~miitigAwtis ti
9 00mi"tIMs.t C(Ecaptalfn, Jack),

176

(1vLa,mockl,
pilot,
aircraft],
check (aw (l))

Pon the ruawayl(azg(M))).
p:.@@aditLom-t ((captdai, sack3

ihuf for.
aircraft),

aiemeaqgo(arg(l)),

tom(parg(2), 'AU .bloeeQ,&Lf,
"Gaage (szg(l)),

precobdition.t WCeaptala. IaakJ,
Muggeor,
aircraft),

eauage(arg Cl)).
Ill
Ioulparg(2),extermaa,pover).
disewaoagd(arg(l)).
preseeh(arg(l)).
'preflight insepcted, (arg (2)) 1).

precoaditioak..t (Captala. jack).
[aircareft.
pilot],.

teai(arg(l)),
[It
Pcleared for taxil(avvC2)).
not(Ion the ruuway' CergWl)))).

Vr~eemditIoakt (ECeptain. Jack].
[aircraft,
pilot,
twind,socklj.

aIdJut (parga M.trim),
Ill
tabaekeG(arg(3)).
unahataked(parg(l) .triuM)).

pvecemditiou~t([captain, Sack),
tatvrarft.
pilaot
hiafferl,

check (pug (1). I WO'I
I].
lotf IWWIf(l) , extemnal. pover) .
unchecked (parg (1). I N I)).

w.euMition-t C [aptain, aab).
[aircraft,
pilot),.

aheck(parg~l) .bzekos),
Ill
Iobsekad(pazg(l),I 1N3).
umobekohe(parg (1) .brakes))).

preoacuit icmt ([captain, Jaak),
La012=a9t).
checok(pars () .trim),

Cuaebaced e(parg 1) , trim)))I
Preoauitia-t (teaptain. J ek) .

cut (Nw (I). .throttles).

177

[not (oft (Parg MthrottlesM))3)
weocqmdition-t (capteitu. ~ckc1,

[aircraft,
pilot).
fly(ths,arwf(l)),

(gull (pazg(l) ,throttles),
not (airbonm (arg (l)) 3).I)

preccaditica..t (tcaptain, ack 3,
taim-oraf a,
pilot],

uaz~panrg(l) ,throttles),

toff (parg (l) AM),
not(full(pavgaW ,trottles)),
Icleared for takeoff '(arg(2))).

preccnditicn..tC(Icaptaim,jack],
[pilot,
aircraft)3,
request (flight, clearance),

precenditioin~t ((captain. J acki,
[pilot,
aircraft],.

request (takeoff, clearauce),

('en th. =away,(arg (2)),
'cleared for tazil(orgCL))).

VtecmAditien..t (captain, Jack1,
[pilot,
aircraf t ,

reopest (tan. clearance),
[I.
(cleared to depat' (ang(1),
checked Cparg(2). brakes) 3I

preocarditice-t ((Ecaptain, Jack),
taircraft.
pilot).

gruaiia (pang (1) ,msiie).
off (Paru(l), 'Ill).
apreflight Inspected, (ari(l)) 3).

preoowfttitic.tC([captaIz, Jack),
(atircraft,

bfter,
pupio.
start (VMS t I)I ,MgWe),

off (pan (1) . emaas I.
spreflight inspectedl(argo.) 3).

V- -Aditim...t te(cptaiz. Jack),
Iativrcafti,
&ioom~ge(pang(1). 'am, a ,gmmurator).

ca~prg~),AM, a' ,geserater) 3).-

178

tairaraft,
buaffer,
pilot)*
Gits"Oag. (Paxg (1) *exterbal pmerz[
D.
tdisewagog.(azg (2)).
Ca (Para(1). .ezteztal,pcvvsz 0).

taircazat).

D).

PeRccaDitLOcA.. (teaptain. jack],
(aircraft.
pilot),
onvage (par (1) ,erternal~pow r),
11,
('preflight inspectedltazw(l)),
off (paxg(l) .ezteznal~pver)).

precanditiaa..tC(tcaptain, lack),
[aircraft.
pilot),

,cleared for tekecffl(arg(2)),
ca(pargUl). '&1UI) 3)

pteoanditios$ C (tcaptain, lack).
(aircraft),
what (off pargtl),swnime),

truamming(pars(1). .angine)))

(aircraft.
pilot).

Pa~t the tersimaal(ass(I))).
pz "cinitics.. C captain. ack].

[aircraft])I
dieemgage(pazg~l), 'NMlols bloo.ehir),
U3.
(capa(i) * 'MU 'a' .glmerator).
gm(parg(i) * %",u 'a' .bloed'air))).

myccnitcs.I Cceptaia Jack)#
taircraft).
ingage0pargI) * '&IU' 'a .legG4,iw),

13.
OW(werS(3 *'AwPP' 'a gmaratcr).
off (parg~l. *M 'IsY 'a'.blood, aftJ)).

604eltepostoondtiemftfl/ *j
imleaapwataeooitionAm.. (Ecapt~ai, jack).

aircraft).
chaak(arg WI),

179

[buf fer.
aircraft 3,

[buffer,
aircraft),.

.nagea(arg(l)),

tdisawaago (erg (1) 1.
iolotepoetoanditica-t C (maptain, J aek I,

[aircraft,
pilot),
taxi(arg(l)).

tCat the temzinal,(arg(2m)),
airborneao(.gUl)).

dolotepostacadition.-t (t(.aptain, Jack).
[aircraft,
pilot.

check~ (Parg Cl) *rm),
I],

ioletsogatocamiit icaL-t C captain, J ack I,
taircraft,
pilot).

Cuabcko(Parg'(l).bra 311)

4.lotepacamiitiarg (1) baktas) Iak

taircralt,

sheck (pars (1) #trimo) ,
t),
Cumahmaked(Pag Cl) .hcokfa) 3) .

ioletapinetcomiiticaLtz ((captai, Jaew
(aircraft).

fhocl Ivarg~l) ,tbrottes),

Piltqot].~toj catils)

Peimuat).I

ma(idoPox (1) .throttles).

[ISO

013

4.lat.osotcaositioske joaptait, jaok2,
(pilot#
aftraaft].

request (1 lkteaflemavaoe)

(2).
4eltetpoutciitioa-t ([aptain. 3ack2,

aircraft].
reqest (takeff,cleeraznae),

delatepost-aamiition. g ([captain. Jack),

(pilot],

streqt (tpan (1 . I Arsne

deletepoataomditiaon,.. (C aeptain, J ack] ,
(aircraft,

Pilot I,
sterttparg(l).6"ImU),

[Ot1), () mim
6woetqpc~aw(33,~a ((catai, Jck)

deletepeatcomiltioe..t (caeptain, Jack),
(airftatt,
hixfqee,
pilot] v
ta-rt- (par n (1) .exaerslPOS

912
9oft(psan () exeral.) po'). M

delet"Postaosditigsmt 4 caeptain. 5actj.

'AM,160.sasatr)

#wlwtqpwmtemitia..t 4 lomptaft. Jack].
9airareft.t

1.

left(paxw(l3, .efteralmover) 2).
aslemipmetoams~iatit lea~ptala. ýamkl.

ant leref.me ,-m)

Gelet6Pomteom~ltLWAt ([ceptala, lack],
Ce1,?araft],

*but 2Lbg~paxg(1) ewgine),22

raircraft,
Pilot],

ocadfict (preflight. inspection, on, ang (1))

Gelotepcatcoaditior..t(Koeuitain, jack] ,
1.5 ercitft]

[ircraft)pgl, LU .bed~l

-ddoste .~ataati~ak t (captainJack) .

(Aircraft].

aftmetconaitiont c artain. Jack),

aircraft],
diseckg(erg (1))1,

14hsaft.4("argOl 21.
oGdoestoos4Stiea..t I capt ain, J acE.I

aircraft).

tiewaseae~rv(1) 2.

I on teatag.4azgI(am (1
a4ftstooCmmiet-~t (cpan Jack).

aiCOLaft).

s (essmveae~oangleat& Jack.
agaotoireuttc.eCCati.lc

Idiot#.

tezilew C182

[cokehd (Parg (1), W))
a60tacm~itioIL-t (caPtakia. JaLI.

[aircraft,
pilot),

check (p~zg9l,bxrekss),

[air~craft],
chzek(parg(l) .trin),

(ckecked(paxgvl),t.rim)I))
ndAtoetcandition-.t (Ectaptain, J ack],

iairat&It].
eit (perv(.) .tbzattlea),

uf(v)! xagll) tbxottleu) 3).
&ft~omtao&4i"..iat ([captain, j ack]I,

pilot].
fly(the'argfl) .
(I,
Kairbom.I arg ()) I)

e4@tcond iticfl.t (Ecaptain. I ack) .
[aircraft.
pilot],
=2 (paug () .throttLee) ,
I),
(!ulllpargv),tbrottlGA) Ii.

aa4pont~ooditioaL.t (tcaptaia, lack],
[pilot.
aircraft),

rCOW*eat (flight * clearazuce) #

t I leared to depart I Ouv(ll)3
644po tc0Sditi0s..t IC Iptain. Jackl.

Epil.0t.
aircraft].

recuest (takeof2. clearance*).

t I leared for takeoff I ar 11) j))
adfioeteomiti@S.t ([captain. J &CIO)

(pilot,
&LiOW491 tI

fcloared foe twaltarg(U)3j).
adfeteostiitioO..t ([CaaPtJa" Jack).

(eiiataft.
pilot).

start(peargl). 'Avg,)
El.
toatar(DWSM %W1)))

adopsteamiitica..t C(caeptain. jack)
taircraft.

bettr.

start tvar a. eagzo).

183

Ell
Czuaniw (parg (1) , enine) 1).

ado~tcondit ioznt ([captain, j ack]I,
(aircraft),

[aircraft,
huffer,
pilot),

disengage (parg (l) , azternal, power),

(off9 (parg (1 , external,soarer)])I
adipostconditicn..tC(Ecaptain, jack),

(aircraft],
sngags(perg(l), Apu aogeaeratczj,
0].
Con.(Parg (1), .APU as'generatorf).I

addpom tconditLoznt (tcaaptain, jack) ,
taircraft.
pilot],

engage (parg(l) ,external,powezi,

addpostconditien~t((captain, jack],
[aircraft,
pilot],
shut(off,paroMW, APOI),

(off Cparg(l) *APU')]).
addpostcan~ditieaLt C E captain, jack I,

[aircraft],
shut (of f,parg(l) engine),
El,
(off (parg(l) ,engine) 3).

addpotetondition..t(Ccaptain,jack),
[aircraft,
pilot],

conduct (preflight, izepectionk,on, arg (1)),
1],
('preflight inspected' (arg(l))]).

addpostconditionL~t (captain, j ack] ,
[aircraft),
disengaage(parg(2), &PU 'a ,bleed,air),

Ioff(ipaxgf(i), APU u,,bleed,air)]).
eddpostcendities~tC([captain, jack],

(aircraft],

/* rendcbange~t/7

JP oingualar..t/2

I'pliaal-t/2 ~

184

1* lel~y~tlt._tt4 */1

185

18

186

APPENDIX E. SCRIPT RUN OF METUTOR ON AN MEBUILDER
FILE

This appendix showvs METutor being run on the lesson produced in Appendix C and

provided in Appendix D, called "pilot training r".

Script started on Wed Jul 27 14:11:36 1994
-alias: No such file or directory.
> -galvint/mebuild/KZ'Ntoz,
Navs the lesson tile> pilot..training_I
*---4

I Means-Ends Tutoring System - - Version 29 (MTutor) I
+---+

I by Professor Row* and CPT Galvin, Naval PO School
------------------------------------ m -------- m ---------------------------- 4

Welcome. The name of this lesson is "pilot training 1".

PILOT TRAINIMG: LRSSON I

This lesson is the first lesson in flying an aircraft. After this
lesson you will be familiaz with the process of starting the plane and
taking off. The specific skills taught in this lesson are:

(a) Conducting all pref light checks and Inspections

(b) Basic co~mmnications with the tower

There is one problem in the lesson, a comprehensive test of tbi

skill. Good luck.

There are 3 problems in the lesson.
You may "list" the problems, "view" a sumary of a problem,
or "do" a piablem. "help" is also available.
=3Tutor> help

The following comnands are available at this level:
help -- print this text
quit -- quit =NTutor
list -- lists all the problems available.
learn < not yet implemented - - this is a hook

for future use In administering lessons.ý-

187

View (Problem cnumber>]
-- prints a description of the problem.

do (Problem <numberJ
- - run a problem.

If the optional argument is not supplied, KiTutor will ask
for it. A different command set in available while running
a problem.

V M toz,> view problem 3
The neo= of the problem in "Comprehensive Test".

Descriptions
Now that you have successfully completed the various phases of the
procams, let's put the whole thing together from the start. Good
luck!

II3Tutor> do problem 3
Loading and checking the problem....please wait Done.
The following in thl current situations

Nov that you have suaccessfully completed the various phases of the
process, loet put the whole thing together from the start. Good
lucki

The following are your objectives:
you must be cleared to depart, you must be cleared for taxi, you must
be

cleared for takeoff, 5-10 must be preflight inspected, the
aircraft must be airborne, 3-10's brakes must be checked, the
aircraft's engine must be running, 3-10's NWS must be
checked, 5-10'. throttles must be full, 3-10's trim
must be checked, the buffer must be present, and the wind sock
must be checked

The following is the current situation:
5-10 Is at the terminal, the buffer is disengaged, the buf fer is

present, 3-10's APU is off, 5-10's engine is off,
3-10's throttles are of f, 9-10's XWS is unchecked,
B-10's brakes are unchecked, 2-10's trim is
Unchecked, B-10's external power is available, 5-10's
APU's generator is of f, 5-10's external power is off, and
B-10's AIV~s bleed air is of f

What do you want to do? help

You may enter an operator or one of these special comnandst
help -- print this text
quit -- return to MiTutor main level
view state -- pretty prints the current state

188

view objectives -- Pretty Plint$ Your objectives
query operator <operator>

-- prints all intormation about an operator.
query object <object;,

-- prints operators available on an object.
qaery fact <object>.

-- prints all infeoration about a fact or obje--tive.
The following ara the operators available in this lessons
M1 adjust 5-1010 trim
123 check 5-10's IMS
133 check 3-10's brakes
[43 check the wind sock
153 conduct preflight Inspection on 3-10
[63 disengage 5-10's external power
173 disengage the hut ter
to] engage 3-10's APUms bleed air
[93 engage 5-10's Apuls generator
1103 engage 3-10'n external power
[113 engage the huff er
[123 fly the B-10
1133 max 5-l0's throttles
[143 request flight clearance
1153 request takeoff clearance
1163 request taxi clearance
[173 shut off 5-10's APU
[183 start 5-3.0's APT.
[193 start 5-10's engine
(203 taxi 5-10

What do you want to do? view operator start 5-l01s APU
Sorry, that is not a valid command. Please try again.
What do you want to do? query operator start 5-10's APUJ
The following is true about *start 5-10's APU03
*'The operator is recowmmended for achieving 08-10's APU is on
SThe precondition for the operator Is 5B-lO's engine must be

running, 8-10's A.PU Dust be off, and B-10 must be
preflight inspected 0.

*'The postoondition for the operator is "3-10's APU is no longer of f
" while O5-10's APT. would be on ".

What do you want to do? query fact 3-10's external power is on

The following operators are recommended for achieving this tact:

[13 engage B-10's external power

What do you want to do? query object 5-10

The following can be performed on "5-100.
*~Operator 0 "conduct preflight inspection on 5-10":
The operator is intended to achieve "B-10 would be

pref light inspected "

1899

Operator a *taxi %-10"t
The operator Is intended to achieve "B-10 would be on the runway u.

* Operator m "fly the B-10":
The operator is intended to achieve "B-10 would be airborne ".

What do you want to do? conduct preflight inspection on 5-10
You chose to conduct preflight inspection on U-10.

OK.
[1) 5-10 Is now preflight inspected

What do yiu want to do? start B-10's APU
You chose to start 5-10's AMU.

Have you confused 03-10's engine is running " with "5-10's
engine is ofI "?

That action requires that:
[1i 5-10's engine 3ust be running

What do you want to do? start B-lo's engine
You chose to start 5-10's engine.

Rave you confused "the buffer is engaged." with "the buffer is
disengaged "?
That action requires that:
[11] the buffer must be engaged

What do you want to do? engage the huffer
You chose to engage the buffer.

Have you confused "5-10's external power is on " with "B-10's
external power is available "7

That action requires that:
[11 5-10' external power must be on

What do you want to do? engage B-10's external power
You chose to engage 2-10's external power.

OK.
[13 5-10's external power iS now on

What do you want to do? engage the buffer
You chose to engage the buffer.

OK.
[13 the buffer is now engaged

What do you want to do? start B-10's engine
You chose to start B-10's engine.

190

OK.
[I] 2-10's engine is no% running

What do you went to do? request flight clearance
you chose to request flight clearance.

Rave you confused 03-10's APUsa blood air if On " with "B-10'0 APU'8
blood air Is off "?
That action requires that:
11] a-10's APUs* blood air amst be an

What do you want to do? query fact 31-10's APU's blood air~ in on

The following operators ore recomaended for achieving this fact:

M1 engage B-10'. APU's bleed air

What do you want to 4,3? engage 3-10's APU's bloed air

You chose to engage B-10's APU~s bleed air.

Have you confused "3-10's APUsx generator is on 'with 03-10's APU~s

generator is off "?
That action requires that:
(1] 9-10's APTJs generator must be on

What do you want to do? quit
23MTutor'. quit

" exit
"~ exit

script done on Wed Jul 27 14:15s26 1994

191

192

APPENDIX F. EXPERIMENT CONDUCTED USING MEBUILDER

This Appendix contains the raw infatmation produced and gathered in the process of conducting the

validity experiments during the Summer Quarter of 1994. This experiment is discussed in thorough detail in

Chapter V. The following lists the informalion in this Appendix.

Tab 1. Geneal Instructions for the Experiment

Tab 2. Suite One: The Scuba Diving Problem

Tab 3. Suite Two: The Cooling System Problem

Tab 4. Sample Run of the Data Collection Program

Tab 5. Initial Data Files for the Scuba Diving Problem

Tab 6. Initial Data Files for the Cooling System Problem

Tab 7. Data Collected

Tab 8. Selected Comments from Participants

193

TAB 1. GENERAL INSTRUCTIONS FOR THE EXPERIMENT

ASSIGNMENT
You will be required to construct a lesson in a simple procedural task using two different tools. One

tool is based on the principles of Computer-Aided Instruction (CAI), the other using a intelligent lesson
authoring system (MEBuilder).

PURPOSE OF THE EXPERIMENT
The purpose of the experiment is to gather evidence concerning how well MEBuilder helps teachers

wriwe lessons versus older methods. This evidence will be interpreted based on raw data produced from the
follooing:

a. Amount of time required to produce the lesson material in each platform. This will be measured in
terms of raw time and number of steps required.

b. The completeness of each lesson -- whether or not MEBuilder hindered the writing process to the
point that the desired lesson could not be written satisfactorily.

c. The robustness of each lesson -- whether or not the resulting lesson affords the student the maximum
or correct numbers of choices at any point while running the lesson.

CONDUCT OF THE EXPERIMENT
The experiment will be conducted as follows:

a. Odentation. This document will be presented and classroom instruction given on the differences
between CAI sn ICAi techniques. This will be followed by a detailed block of instruction on the use of two
tools -- CAIBuilder and MEBuilder -. introduced later in the text.

b. Conduct. A set amount of time will be allowed for students to build the lesson material and to gather
the necessary data as requested below. Handed out separately is th'. specific subject matter the student will
be required to author a lesson on.

You will be given a library with half-completed solutions in i;. The files include. a CAI-solution where
there is exactly one path to the goal and no options given to the student, and an MEBuilder-solution where
there is exactly one path to the goal and no options given to the student. Your job is to make both lessons
robust in order to conform more closely to the task descriptions given.

NOTE: This experiment is intended to require no more than six hours of application running time. This
time includes familiarization with the two systems. If you are having serious problems performing the
reqeirements under six hours, contact galvint by email as soon as possible for assistance.

c. Debriefing. A forum will be held for students to provide specific general comments about the
experiment. In addition, the experimentor will provide additional data relating the students' experiences with
the expected or optimistic results.

TOOLS AND DOCUMENTATION PROVIDED
a. General Information. Each student will have a copy of this document plus a copy of the specific

subject matter for his lessons. You must establish a single subdirectory for this project, and you must run all
the below listed programs from within this subdirectory. You are free to copy the executables into your own
directory (it totals to about 3.6MB).

b. CAlTutor and CALBuflder tools. Each student will have a copy of the user's manual for the CAITutor
and CAIBuilder systems. The programs are available in executable form in -plvinticaltutor and are called
CAlfutor and CAlBuilder, respectively.

194

c. METutor and MEBuilder. Likewise, the student's will have a copy of the user's manual for MlTutor
and MEBuilder systems. The programs are available in executable form in -galvint/mebuild and are called
MITutor and MEBuilder, respectively.

d. Statistical Gathering Programs. The student's will have access to getfdata which is a simple five-
step prorpam that retrieves statistical information from the student's directory, queries some time information
of the student, and then prints a standard data report for analysis. get,data is located in the -galvint/
mebuild directory.

e. User's Manuals. User's Manuals for CAlBuilder and MEBuilder will be available in binders in the
Al lab (they may be available individually). The user's manuals contain a description of the programs,
complete command references, and sample sessions using a lesson with a scope similar to that of the assigned
lesson.

f Library, In the -galvlnt/samph/llb/ directory is all of the preliminary dita you will need. It contains
the skeletal lessons for both the CA] solution (M.cai) and the MEBuilder solution. You are to do the following:

(1) Copy the directory into an lib subdirectory. It must be named fib, so if you are -student and
you intend to work in the -4tudeut/cs4310 directory, then you must put this library in the -studenutcs4310i
lib subdirectory and you must run MEBuilder from -studtdt/cs4310.

(2) Move the appropriate ,cai file into the library's parent directory (in the above example, it
would be -student/c64310.

Note: Included in the library are the sample lessons built under the demonstration portions of
the two manuals (prep aircrqft.cai and pilot trainingl~es. respectively) and pilot training I~met is also
available for running in METtator).

DELI VERABLE,'
The required deliverables are a summary of your work with the two systems including comments about

the interface, brief script runs of the lessons being run in CAlTutor and METutor (no need to show a complete
run, just enough to show some of the changes you made) and the output of the geLdata program. The
summary should not exceed two pages in length,

NOTES CONCERNING THE USE OF MEDUILDER
In order to ensure that the statistical measurements are accurate, your use of MEBuilder mast conform

to the following rules:

a. The MEBuilder lesson will contain precisely one problem.
b. The MEBuilder lesson will be based on precisely one task, which encompasses the entire procedure

being taught.
You are free to experime-t with the MEBuilder lesson structure once the deliverable statistical

information has been gathered.

I19

TAB 2. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE ONE

Lesson One. The Scuba-Diving Problem

The student is a scuba diver who plans to dive for lobster from an anchored boat. The lesson focuses
on the ability of the student to self-equip and descend to the sea floor to get the lobster.

At the start of the problem, the student will be inside a boat wearing no scuba gear. At the end of the
problem, the student should be located on the sea floor with the lobster in his possession.

Descrtion of the Procedure

For those of you who actually scuba dive, you will note that this is a subset of the actual procedure used
and the ordering of steps is more restrictive than in a real situation. The scope has been reduced in order to
make the size of the problem manageable.

The student has the following gear present -- a knife, an air regulator. an air tank, a weightbelt, fins, and
a mask. Also present is the diver's buddy. You do not specifically have to model the buddy, boat, or the
lobster (ways to do this are given below). The task is as follows:

(1) The diver must in order install then test the regulator, and mounts it on the air tank.

(2) The diver dons the knife and the weightbelt and dons the air tank. These three stepe can be
done in any order.

(3) The student then dons the fins and mask, and checks his buddy's tank. These three steps can
be done in any order.

(4) The student then in order valsalvos to clear his sinuses, enters the water, sets the tank to
negative buoyancy by releasing some air, then descends to the sea floor and bags the lobster.

Hints and Helpial Information

For MEBuilder, provided are the objects "diver", "knife", "air regulator", "air tank", "weightbelt",
"fins", and "mask"; along with the task "prepare diver". The lesson is not provided, you will build it. The
CAI lesson is in preparediver.cai.

In CAMBuildei, the s"utes in the lesson are nuribered in order start, 1, ... done. When following
Appendix B of the CAlBuitder manual, pages 4 and most of 5 are already done. Your requirements begin at
the bot•ern of page 5.

In MEBitilder, you are starting at the point where the initial solution is completed, bottom of page 54.
Do the work on task named prepare diver command to reach this point.

196

Lm

TAB 3. SUBJECT MATTER FOR THE EXPERIMENT -- SUITE TWO

Lesson Two. The Cooling System Problem

You are presenting the student with a car with a leaky gasket in the water pump. His job is to complete
the task of removing the water pump, replacing the gasket, and restoring the car to service.

The start state is that all parts of the engine are in their normal configuration - that is to say the radiator
is filled with fluid, the hoses are attach-,d, the belts ame in place, etc., etc. You want the student to have
restored the engine's condition with the exception of the new gasket being in place.

Description of the Procedure

For those of you who actually work on cars, you will note that this is a subset of the actual procedure
used and the ordering of steps is more restrictive than in a real situation. The scope has been reduced in order
to make the size of the problem manageable.

The student is only going to be concerned with the following items on the car -- the engine fan, the
radiator, the radiator's hoses, the belts, and the water pump. You do not specifically have to model the car.
The task is as follows:

(1) The mechanic must do the following two tasks in either order:
(a) Unbolt, then remove the fan
(b) Drain the radiator, then remove the hoses

(2) The mechanic must then do the following in sequence -- remove the belts, unbolt the pump, remove
it, replace the gasket, install the pump. then bolt it in place. andreinstall the belts.

(3) The mechanic must then do the inverse of Step (1) above. In either order:
(a) Install the fan, then bolt it in place
(b) Install the hoses, then fill the radiator

Hints and Helpful Information

For MEBuilder, provided are the objects "fan", "radiator", "hoses", "water pump'; along with the task
"replace gasket". The lesson is not provided, you will build it. The CAI lesson is in replace, gasket.cai.

In CAIBuilder, the states in the lesson are numbered in order start, 1 ... ,done. When following
Appendix B of the CAIBuilder manual, pages 4 and most of 5 are already done. Your requirements begin at
the bottom of page 5.

In MEBuilder, you are starting at the point where the initial solution is completed, bottom of page 54.
Do the work on task named replace gasket command to reach this point.

197

TAB 4. SAMPLE RUN OF THE DATA COLLECTION PROGRAM

In order to use the getdata program, you must be in the directoy that contains the special file user.cg.
The task created from MEBuilder must be in the "lib" subdirectory. The resulting text file will appear in the
mebuild.rpt file in the working directory. The following is a get data session with user inputs highlighted.

gem4in:t/uoers/workl/galvint/sample>> -galvint/mebuild/gotdata
+--4

I wBUILDNR Experiment Data Retrieval and Interpretation I
I Program -- Experiment of SQ 94 1
+--4
Name the Ch! file> flashlight.repair.cai
I found 2 solutions to the task.
The solution has 1t nodes and 16 transitions.
Give the TASK RW -- not the file name
Name the =Builder task- flashlight repair
I found 2 solutions to the task.
The solution has 8 nodes and 7 transitions.
You will now be asked a series of questions regarding the amount of
time you spent using wiBuilder and CAIBuilder and how that time was
spent. When you entire "quit", a report file named "mebuild.rpt"
will be produced. This report should be submitted with the rest
of the experimental deliverables.
DO NOT include time lost due to CAkBuilder or NiBuilder program bugs.

Please give integer values for the following. include time spent
reading through the materials, practicing, editing, testing, etc.
How many hours dil you spend on the CAI task? 12
How many hours did you spend on the MEB task? 10

You will now provide a rating list of the areas within the building
process that you spent time on.
Please express your answer as a *poemutation* of the following letters:

f d a t
... the order must be of most time spent to least time spent
fafamiliarization. Reading the user's manual, and running practice

sessions in an attempt to get accustomed to the process.
dadesiguing. Time spent designing the objects on paper.
euwntering. Time spent entering the lesson data
titesting. Time spent testing and "debugging" the end result.

Again, please answer as a permutation of Cf,d,e,t] in order from
most time spent to least time spent.
How did you spend your time using CAIfuilder> e d t f
How did you spend your time using MNuilder > t e d f

For Neluilder, provide your response the same way, but only for the
named subportion of the procesms
Building objects in UEBuilder a e f t d
Building the task in Ki~uilder > t d e f

198

Building the lesson in NEbuilder> t a d f

The report ham boon printed. Thank you for your participation.

Ite Molowing is the sample mebuild.rpt produced from the session.

gemini.i/users/vorkl/galvint/sample>>i more mebuild.rpt
EB~uilder Experiment Report

Summer Quarter 94

1. Coimmnd Usage Comparison
CAI MES

Number of Cosmimnds Performeds 84 95
Number of Commands Aborted: 6 11
Percentage of Aborted Commandas 7.14% 11.57%

2. Time Usage and Effectiveness
CAI MEB

Total time (in hours): 12 10

Most Time-Consuming Process: entering testing
2nd Most Time-Consuming Process: designing enterilig
3rd Most Time-consuming Procenss testing designing
Least Time-Consmin-Jg Process: familiar familiar

For the components of the MEBuilder process:
OBJECTS TASKS LESSONS

Most Time-Consuming: entering testing testing
2nd Most Time-Consuming: familiar designing entering
3rd Most. Time-Consuming: testing entering designing
Least Time-Consuming: designing familiar familiar

3. Lesson Material Produced
CAI MEB,

Number of Solutions in Lesson: 2 2
Number of Nodes: 14 8
Number of Transitions: 16 7

gemini :/users /workl /galvint/Isample. >

199

TAB 5. INITIAL DATA FILES FOR SUITE ONE

This tab contains the CAIBuilder lesson and the MEBuilder task given to the students for suite one of
the experiment. The MEBuilder object files are not included since the students will not modify them as part
of the expenment.

The CAlBuilder files consist of ca1node(<nwde>) facts which declare the valid nodes, and
caijtep(osurce node>, <operation>, <message>, <destination node>) which declare the valid wansitions.
As with MEBuilder, the strt and done nodes are reserved for the beginning and completion of the task. The
convention used for CAlBuilder is to name the nodes the same as the MEBuilder steps in the task.

ORIGINAL CAIBUILDER SOLUTION

a- dynamic typoflP.rologf il/1.

4- malt£•tile typeeof.prolog-fileol.

I- dynamic cai. intro/l, caLestep/4, caJAodqJ'l.

I- altifile ca_£intro/l, caiLstop/4, catNoAd/1.

ty.t..fProlog-file('C.gluild Lesson Wfinition ile,').

/* caijvtAtro/l *1

CaLintro(' You are a scuba diver who plans to dive for lobster from en,).
caijitro('1nchored boat. This lesson will focus on your ability to self-').
caiintro(equip and descend to the save floor to got the lobster.).
oaiintro(,').
oaijintro(, At the beginning, you will be in the boat wearing no scuba').
cai-_ntro(Igoear. The gear present includes a knife, a regulator, an air').
ca~inltroC tank. a weightbelt, Zins, and a mask. You also have a diving').
Gaijintro('buddy present.').
cajijntro(I').
caLintre(' the lesson will end ones you have reached the sea floor and').
V©i._.intro('bagged the lobster. Good luck I').

/* oaistep/4 '1
aaLstep(start, [Cnstall ,the, regulator],

[the ', regulator, is, now, installed],
2).

oCaieop1(2, tturn,oA,th*,air1,
t "Noe',a•ir,ieLow, ,turiaed, on],

3).
caistep (3 Ctoet,oth•,kroguitor],

I ' Tho ', regu.wor, i£, thrke, knife) ,
4).

ca:L~tep•(4, t~on,the,knife),
['You' ,are, now,weerting,tOh•, knifo,
5).

aL.step(S, tdon•the,weightbeltl,
I 'Ytou' ,ae,awoweariag,the,weightbelt],

6).
aaLstop(6, (don, tbe,oirtnk],

200

t I To.are, mim,weariagAhe, air, tank),
7).

caaLstap(7, 1",t.he, final,
I$you.' .arsmav,weaxlag.tbs, zing]
0).

aLustep(4, ldon,ths,vaak),
I 'Yow, ,are,aww~weaking, the,mask],
9).

10).
ca1..utep(11. Cro2.as,airl,

C 'your .taakIa~aov,aegatively,buoyaat],

,LOK).

oaL-step('1OA, ateztbs,tw~ateri.
P 'lu' .ars,nov,±n,tb*,wat~r),

1W..

['You' ,havs,oaiptursd,a,a~ice,big,juicy,lobutsr3,

cai~uods(2ar).
caat...de(doa).
oaj...ads(2).
aai-mode(3).
oai..AOds(6).
cai~noda(7).
cai-xods(a) .
cai-noda(7).

cai-nods(19).
oai-xode(IO).

ca±..aode(12).

cai..aod*(13).

ORIGINAL MEBUILDER TASK

/0 ~ X ammder Task Definition Fle 0

I- dynamic type..ot..pzo2og..file/1.

I - inaltif ii. type..ofjizolog..f 1e1./i

a- dynamic task/3, Laitial-..onditions/2, objectives/2, stage/6,

201

action/f, uanordered-action/2, relation/3.

I- mkltif ii. tauk/3. Laitialaon tiona/2, objects.ves/2, stagel6,
action/S. voordered~action/2, relationJ3.

~.ofrolef~le 'I~uiderLibrary Task Definition File'.

/* task/3 '
task((propare.diverl * diver,diverl,

([lobster,lobsterj3l).

I. InitialcosditionsI2 */
initial-.comditione (di~ver,

Enoe Cbuddy abackad' (diver)),
not (cleared(diver))
'in the boat'(diver),
doff ed('diver' 's',weightbelt),

ffed('diver' 'e',kife),
Zled(Idiver I ',a'su~k),

doffed('divet' 'a'fina),
removed(I'diver'I a'I .regulator) I
not(teuted('diverl''.',regulator)),

doffe(Idiver-ole'air,tank),

'positively buoyent, ('diver' s',air,tenk)]).
Lnitial-conditiena (lobster,

tfree(lobmter)]).

/* obJeotives/2 '
objectives (Giver,

('buddy cheoa~dI(diver),
aleared(diver),
'on the sea, floor' (dive?).
donied('diver' 'e' .eightbelt),
donned('diver's' ,knife).
donnedICdiver' a' ,ask),
donned(diver' e' ,fin).)
installed('diver' 'a' regulator),
tested('diver' 'e,regulntor),
on('diver' a' ,air,teak),
doamn"(Idiver'II 'u, eir.tack) ,
'-egatively buoyant'(diver'' ,eir* taik2 3)

obJectives (lobster,
(capture4(lobsterM .

/* stage/I 0/

stage(start,limeer,none, linear,
(3.

stage iql, linear, none, linear,

stage (0d, linea.r, Mme, linear,

stag& (0i, linear, ncme, linear,

St9(qlI~ioar,133, ~ na

stage (q12, linear, none, linear,

t(q6l,107,lN,
(3).

stmgelq13,lixear~noue, linear.

Stage (dolnea, n nAonsmm, linear,
IN(qS1lO5,133,
fl).

s atge(iolnea onlie

11q,lO2,
(2t

sctags (103, turn (zonoeI diversairr tsk

I]).

actige (10S, dlone, none, lnar.xf

1203

[It.

aatiomC106.Gcav(iver*a.ahorktbunk),

M3.

acti.gb(2I.O7,aae(iver ',fva.sl),

[11
Ell

M2.

11,

I],
Ell
M3.

act1.an(113.ave (diver,deslandv).

acin11. 'a~ose)
Ell
Ell

ED.

C204

TAB 6. INITIAL DATA FILES FOR SUITE TWO

This Ab contains the CAIBuilder lesson and the MEBuilder task given to the students for suite two of
the expeximenL The MEBuilder object files are not included since the students will not modify them as part
of the experiment.

Th7 CAlBuilder files consist of cai-xW(<ede>) facts which declare the valid nodes, and
cea1_p(4aowt nod>e, <opemra*>, <aessage>, <desnatox nod*>) which declare the valid transitions.
As with MEBuilder, the start and done nodes are reserved for the beginning and completion of the task. The
convention used for CAIBuilder is to name the nodes the same as the MEfBuilder steps in the task.

ORIGINAL CAIBUILDER LESSON

I- dyn"aL type.of...prologfLle /1.

3- MIlUMla . typ oftprologjfile/l.

t- dwyami•a caLiutro/l. aLetep/4, *aa,.aodo/l.

a-mltiflle oai..atro/l. caL-step/4, eai-._ode/l.

type..of...prologf.f le(I ,CAxZamLd Lesseo Definition Fl1e,).

/ * aaiL.utrol */
oaiintro-(' Before you :to a car with a leaky gasket in the water pwov.).

caLijtrol('Your job Is to replace the gasket sad restore the car to its').
aL_Lntro('workina conditian.').

cai..intro('').
caLi-tro(' The car presently has it@ fan, belts, end hoses installed.').
caLIntro (•'The radiator is full, and the water pum is in place.').
CaLiatro (I').
cai.-atro(Good luck. ').

/* Ca:lstsyp/4 *
caiLstep(start,. C•boltthef an],

('The', 1fan, is, now, free],
2).

caLe.tepiS (r3e ove the,f en],
['Y•m* hu'fa, is, ow, remaveIfrm,tlhetcar],
3).

ceaLstep(3, tdrain. the. radiatore,
S'The,' .radiator, is, nov,f ree, of, liquid],

4).

cai-step(4, [romve, the, bosets],
['The', hboe.,ave • ev a. ,restved from, itha, redUator],
5).

onLeste•piS, [remoe, ,the,betlt,,

'The ,belts, have,•been, removed,
4).

*aLstepl(, [uubelt,the, vatewr,];p],
'The' 6 water iM , Is ,I IPo, free 1,

205

7).

K 'Wo' wstt~p,1eaowrum.4,ros.%homasz3,

o.±.ti-tp(t, Inplaoe. th. gasket),
I 'The' l,mvgasket, has, nv, bem, installed)3
9).

Oi-start' Unstall, the raowle pw),.a1e)

12).
ueL-step(13, linsta13.the,famI,

,fb. .am. 10sa, v. lpluav3,

C 'toe .tan. la'now.bolte4. Lapplao.3,
14).

V'The,. hose..are, now, installed],

I 'The ,radiktov, im.ao, '.Al.11..'3
done).

o.Lmnode (start).
Coa-node (4o.).
cai~mode(2).

cai-mode(S).

oaftiode (4).
Cai-pode(s).

Calpaode (7).

mi-mode(10).

oaL-koda(12).

oaL-Acde (14).-
oai...acde(1).

ORIGINAL MIEDUILDER TASK

=bmildev Task Definition File '

206

s- ndtil. team/3, Lual,-eaud..aititone2, objaeativeo/, stag*j6,
.action/S umoroe4.rG.actioa/2# relatiou/3.

aot~a/6,ua~Librsaryo~2 Task 1afnitca iW

I* task/) *1
teek((troplamo.gasket3. Cemactrotr,charaaterI.

Lxtatl.&.omait1.s Waho actor.
[D)

1nJ.tJa1..aoadti~ons ((car, magLmo.3

insatalled (ar, I mue I a, .bases) .

warn(caaz.eal 'a' gasket),
laataU.Gd(csrp leagle Ia. Iwater,pump),
belted(car, I agLUOI a, .water, pap),
fi12.d(oar, Ismize gImlradaftor),

installed(car. I msag a. 1s. tan)

'a ajeutives12 '

Objectives (oharsater,
ID).

objecti~ves C(triaeamino1.

serviceable caar, engine a 1.gasket) .
imatalled(caz, en*mine I Ia Water.pang),
baltod(aar, Iengine a 1,vaterepang)

stg*(sar.linear, enone. lnar.riao.

stage allneaar, noelinear.fa)
t IstedaeLo, 'egie'uf1))

stage (qtar liUnear, none, Ilinar.

*twoe Vq, linear, aon., linear.

at""e (44, *linear, niona, ILnear.

(2).7

£2).
atago fqS, linear, sa,], are

1101106#,1331
[3).

*stp (q7, llawsr, a. .inear.
[(q , L07, 13 1,

13).

stage(qA. linara. wous linear.
j(qY81•oS,33,
'3).

state (ql. linear•nowa linear.

stag.Cq2.0.lno-aztmonsen linear,

act qi, 101,1] u ,

atio. (qil.,1SnemvecO•n linear,

(3).[tg [q1113, Lner]n,lie.

[1q12,1l3133.1],
(3).

atage (q14, o lintarnoae, lineaz,
[(q13,1:1.4+1]]

[().
atigo (1ne4. ro-omios c, nne, l snbases),

[[q14,1l5, 1]],
(3).

t1, actionlE/ e

action(l0, raooms (car, 'ezine wu',iots),
t],
(3,

aio(1.40

[]09

(3).
aottoa(102,ee•movel•oer, e lngin~e ,1' e en)•]

(],
[],
(3,
(3).

aoti.onm(1$03$, drain-(aer, ' engin .e 'a*•', raditat o~r)

(],
(].

[]).
aatonJ•(04. reoe [aar . engine ', 'e,hoses),

(].

13).
• aotio.,nl05, reive (cer,, •'engine' 'e•' belt.8),

1]3
13,

13),

.oi•n (0S1,unblt (oar, 'aenlI~ne ' ' a ' ,water',plrm),
[3,

208

t3,
tl,

13.

(2).

action (109', Install (caur, ,lowikeul., ,lelgvelr,pmae)

13,
t3.
t3.

tl).

,uLoa~(•LO9, 1AU?•L11 (oar'. '•.ae' .o' ,waskw~a),
130
13.

t3.

13.

'3.

13.

t],
£3).

actio (1.2O, nstall, '(car. engne a e•.a).
t£,

ti,

t1t

13).

tit
tit

(3).

l209

t(3.

aet:Le (UE.flfl•.t(aar.,.g~ a':L•, •, ran1).
13.
£3.

'3).

t209

TAB 7. RAW EXPERIMENTAL DATA COLLECTED

For the row headers marked in italics, the following is the legend:
"* D Tiune spent designing the task (prior to running the authoring system)
"* E = Time spent entering the necessary commands into the authoring system.
"* F = Time spent familiarizing (reading the manuals and running the sample cases).
"• T - Time spent testing and debugging the lesson in the ITS.

Table 1: Raw Data Collected from the Data Collection Program

Raw Data Per Subject 1 2 3 4 5 6

(D)jver Problem or (E)ngine Problem E D D E D D

(C)AIBuilder first or (M)EBuilder first C C C M M C

Time Spent Using CAIBuilder (hours) 2 3 3 2 1 3

Tune Spent Using MEBuilder 3 2 2 1 1 2

Most 7ime-Consuming Process (CAIIMEB) E/E D/E F/F F/F UF FIF

2nd Most Time-Consuming Process (CA1lMEB) D/F E/D T/T E/E F/E EIE

3rd Most rime-Consuming Process (CAJiMEB) F/D F/F E/E D/D D/D DID

4th Most 7ime-Consuming Process (CARIMEB) TIT TIT D/D TfT TIT TIT

Numbor of CAI Comma-ads Performel 78 140 164 151 117 68

Number of CAl Commands Aborted 1 9 3 2 0 0

Percentage of Aborted Commands 1.3 6.42 1.82 1.33 0.0 0.0

Number of MEB Commands Performed 29 25 20 11 45 unk*

Number of MEB Commands Aborted 9 8 1 0 6 unk*

Percentage of Aborted Commands 31.03 32.0 5.0 0.0 13.3 unk*

Number of Solutions (actual = 36) 32 36 36 4 36 36

Number Nodes(Thinsitions in CAI Solution 26/33 23/32 23/32 23/38 23/32 23/32

NumberNodesTfransitions in MEB Solution 16/15 14/13 14/13 16/15 14/13 14/13

* - The data collection program failed for this participant's MEBuilder usage. The participant stated

that his usage was somewhat on par with his peers.

The minimal number of CAI nodes and transitions were: for the diver problem, 23 nodes and 32
transitions; for the engine problem, 24 nodes and 31 transitions. All participants achieved the minimal
lMBuilder data structure.

210

TAB 8. SELECTED COMMENTS FROM THE PARTICIPANTS

The vast majority of the comments were interface-related, mostly having to do with specific program

glitches, the cumbersomeness of the command-line interface, or complaints about the help system (which was

not fully updated in time for the experiment). A common theme among the interface comments was the call

for a grmphic-user interface.

The comments selected below were those which specifically addressed the focus of the experiment -- the

respective learning curves and flexibility of the two methods.

From Participant #3:

"MAI: Initial I found the concept, manual, and help very confusing, but once I broke the code it went
smoothly. MEB: [MEBuilder] was just as confusing if not more so than CAI. I was not sure what was being
provided and what I needed to create. Once I broke the code though. it saved a lot of time as compared to
CA1."

From Participant #4

"...Both are frustrating to learn (especially when you aren't too motivated). But once you get going,
neither are too bad...Once I understood what to do, MEB was quick; however, I wonder if it would have been
as easy if the post & pre conditions, etc. weren't already done...A menu-based application would be easier for
the average computer-phobic to use."

From Participant #6

"...My general comments are that both systems seem fairly straight forward to use. Actually,
MEBuilder seemed much more complicated and I don't know the system well enough to make a fair judgment
of what this additional complication got me. Not act,,ally building the objects...left me wondering what was
going on....and what I did seemed trivial once I got a clue as to what I was...doing."

211

212

LIST OF REFERENCES

Barr, A. and Feigenbaum, E.A., The Handbook of Artificial Intelligence, Volume 2, pp.
229-234, 291, William Kaufmann, Inc., 1982.

Carlson, P.A., and Crevoisier, M.L., R-WISE: A Computerized Environment for
Tutoring Critical Literacy, World Conference on Educational Multimedia and
Hypermedia, pp. 111-116, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994.

Davis, E., Representations of Commonsense Knowledge, pp. 390-391, Morgan
Kaufmann Publishers, Inc, 1990.

Elson-Cook, M., Presentation as a panelist for Authoring for ITS: From minimalist
approach to ITS Shells, conducted at the World Conference on Educational Multimedia
and Hypermedia, Vancouver, BC, 1994.

Feifer, R. and Allender, L., It's Not How Multi the Media, It's How the Media is Used,
World Conference on Educational Multimedia and Hypermedia, pp. 197-202,
Association for the Advancement of Computing in Education, Vancouver, BC, 1994.

Galvin, T.P., and Rowe, N.C., Using the A* Search Space to Develop a General-Purpose
Intelligent Tutoring Shell, World Conference on Educational Multimedia and
Hypermedia, pp. 725, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994.

Gescei, 1. and Frasson, C., SAFARI: an Environment for Creating Tutoring Systems in
Industrial Training, World Conference on Educational Multimedia and Hypermedia, pp.
15-20, Association for the Advancement of Computing in Education, Vancouver, BC,
1994.

Guralnik, D., and Kass, A., An Authoring System for Creating Computer-based Role-
Performance Trainers, World Conference on Educational Multimedia and Hypermedia,
pp. 235-240, Association for the Advancement of Computing in Education, Vancouver,
BC, 1994.

Heift, T., and McFetridge, P., The Intelligent Workbook, World Conference on
Educational Multimedia and Hypermedia, pp. 263-268, Association for the
Advancement of Computing in Education, Vancouver, BC, 1994.

213

Homem de Mello, L.S. and Sanderson, A.C., A Correct and Complete Algorithm for the
Generation of Mechanical Assembly Sequences, IEEE Transactions on Robotics and
Automation, Volume 7, Issue 2, pp. 228-240, IEEE Computer Society, Spring Field,
MD, 1991.

Jones, M.K., Gibbons, A.S., and Varner, D.C., A Re-Usable Algorithm for Teaching
Procedural Skills, World Conference on Educational Multimedia and Hypermedia, pp.
299-304, Association for the Advancement of Computing in Education, Vancouver, BC,
1994.

Ki, W., and others, A Knowledge-Based Multimedia System to Support the Teaching and
Learning of Chinese Characters, World Conference on Educational Multimedia and
Hypermedia, pp. 323-328, Association for the Advancement of Computing in Education,
Vancouver, BC, 1994.

Lalonde, W., and Pugh, J., Subclassing * Subtyping * Is-a, Journal for Object-Oriented
Programming, pp. 57-62, January, 1991.

McDowell, Perry, Homework Assignment for CS-4310: Advanced Artificial
Intelligence, Winter Quarter, Naval Postgraduate School, 1993.

Moreland, R., On-Line Tutorials Even YOU Can Create! Computer-Based Multimedia
Training Slide Shows, World Conference on Educational Multimedia and Hypermedia,
p. 748, Association for the Advancement of Computing in Education, Vancouver, BC,
1994.

Murray, T., Presentation as a panelist for Authoring for ITS: From minimalist approach
to ITS Shells, conducted at the World Conference on Educational Multimedia and
Hypermedia, Vancouver, BC, 1994.

Naval Postgraduate School Report NPSCS-93-009, Instructions for Use of the METutor
Means-Ends Tutoring System, by N.C. Rowe, pp. 1-7, July, 1993.

Psotka, J., Massey, L.D., and Mutter, S.A., Intelligent Tutoring Systems: Lessons
Learned, p. 5, Lawrence Erlbaum Associates, 1987.

Rowe, N.C., and Suwono, F., Aiding Teachers in Constructing Virtual-Reality Tutors,
Fourth Annual Conference on Artificial Intelligence, Simulation, and Planning in High
Autonomy Systems, pp. 317-323, Tuscon, AZ, 1993.

Rumbaugh, J., and others, Object-Oriented Modeling and Design, pp. 2,57-91, Prentice
Hall, 1991.

214

Sacerdoti, E.D., The Non-Linear Nature of Plans, in Readings in Plannin2, Allen, J.,
Hendler, J., and Tate, A., eds., pp. 162-170, Morgan Kaufmann Publishers, Inc., 1990.

Seem, Dennis, Homework Assignment for CS-43 10: Advanced Artificial Intelligence,
Winter Quarter, Naval Postgraduate School, 1992.

Sierra On-Line, Inc., Leisure Suit Larry 6: Shape Up or Slip Out, MS-DOS Version 1.0,
1993.

Sleeman, D., PIXE: A Shell for Developing Intelligent Tutoring Systems, in n Artificial
Intelligence in Education, Volume 1, pp. 239-265, Ablex Publishing, 1987.

Tenney, Y.J., and Kurland, L.C., The Development of Troubleshooting Expertise in
Radar Mechanics, in Intelligent Tutoring Systems: Lessons Learned, Massey, L.D.,
Mutter, S.A., and Psotka, J., eds., pp. 59-84, Lawrence Erlbaum Associated Press, 1987.

U.S. Army Training and Doctrine Command (TRADOC), FM 25-101, p. 21, Fort
Leavenworth, 1991.

Woolf, B. and others, Teaching a Complex Industrial Process, in Artificial Intelligence
i, Volume 1, pp. 413-427, Ablex Publishing, 1987.

215

216

BIBLIOGRAPHY

Allen, J., Hendler, J., and Tate, A., Readings in Planning, Morgan Kaufman Publishers,
San Mateo, CA, 1990.

Association for the Advancement of Computing in Education, Proceedings of the World
Conference on Educational Multimedia and Hypermedia, Vancouver, BC, 1994.

Barr, A., and Feigenbaum, E.A., The Handbook of Artificial Intelligence: Volume 2,
HeurisTech Press, Stanford, CA, 1982.

Davis, E., Representations of Commonsense Knowledge, Morgan Kaufmann Publishers,
San Mateo, CA, 1990.

McGraw, K.L., and Harbison-Briggs, K., Knowledge Acquisition: Principles and
Guidelies, Prentice-Hall, Englewood Cliffs, NJ, 1989.

Michalski, R.S., Carbonnell, J.G., and Mitchell, T.M., Machine Learning: An Artificial
iartelligence Approach, Tioga Publishing Company, Palo Alto, CA, 1983.

Psotka, J., Massey, L.D., and Mutter, S.A., Intelligent Tutoring Systems: Lessons
Learned, Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

Rumbaugh, J., and others, Object-Oriented Modeling and Design, Prentice Hall,
Englewood Cliffs, NJ, 1991.

5'.,. •,n, D., and Brown, J.S., Intclligent Tutoring Systems, Academic Press, 1982.

217

218

218

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Professor Neil C. Rowe, Code CS/RP 5
Computer Science Department
Naval Postgiaduate School
Monterey, California 93943

Professor Timothy M. Shimeall, Code CS/SM 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Professor Man-Tak Shing, Code CS/SH 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

Lieutenant Commander John Daley, Code CS/DA 1
Computer Science Department
Naval Postgraduate School
Monterey, California 93943

219

