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INTRODUCTION

The problem of partial differential equations on thin domains is a basic problem

in engineering. We mention, as an example, the typical problem of the homogeneous or

laminated plates and shells. The usual theory is either based on physical models (see,

e.g., [1], 12], [3], [4]), the asymptotic models (see e.g., [5], [6]) or the hierarchic models

(see, e.g., [7], [8], [9], [10]) which reduce the original 3 dimensional problem to a coupled

system of partial differential equations in two dimensions. The main idea behind the

hierarchic modelling is to create a sequence of two dimensional problems the solutions of

which converge to the solution of the original three dimensional problem. The problem

of a-posteriori error estimation for this dimension reduction was addressed in [9].

The main computational problem arises from the obvious fact that the solution of

the higher order, hierarchical formulation is much more computationally expensive than

the lowest one. Hence, a major question arises, how to solve the two dimensional elliptic

system by an iteration procedure. The method proposed here falis in the general

category of subspace correction methods.

The convergence of (parallel and successive) subspace correction methods under

fairly general conditions on the space splittings is standard by now 1111. The most widely

used splittings are either related to domain decompositions or to h-multilevel methods.

Frequently, however, sharp estimates of the convergence factors cannot be obtained for



situations of engineering interest.

In the present paper, the function space used to derive the hierarchical plate

model is split with respect to the (spectral) order of the transverse shape functions used

in the derivation of the hierarchical plate model. Further, a Fourier analysis of the

resulting subspace correction method is performed and explicit and sharp expressions for

the convergence factors of the subspace correction method in terms of the transverse

shape functions "directors" are obtained. This allows in particular to (computationally)

optimize the shape functions used in the dimensional reduction with respect to the

convergence rate of the subspace correction method.

The outline of this paper is as follows: in Section 2 we present the heat

conduction problem and the hierarchic models. In Section 3 we introduce the

hierarchical subspace correction methods. Section 4 introduces the tool of Fourier

analysis and contains the main results. Section 5 discusses in more details the Fourier

analysis of the subspace corrections in dependence on the basis used in the modelling.

Section 6 finally presents numerical experiments.

2. THE BOUNDARY VALUE PROBLEM AND THE HIERARCHY OF MODELS

For a, E R!., we define the (hyper) rectangle

(2.1) "- {x E R x I < a,/2, 1 < i < n).

We will be mainly interested in n = I or 2, but our analysis is for convenience for any
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n E N. WAth &), and 0 <d< 1 we associate the domain

(22.) 0 :- c. X (-dd)

of thickness t = 2d and the "edge"

(2.3) r - y x (-d,d), y = au,.

Points in 0 shall be denoted by (xy) where x E c', I y I < d. We also define the

faces

(2.4) R± { f(x;y)i x E w., y = ±d}.

In 0 we consider the boundary value problem

Lu a0inQ

(2.5) u - 0 on r,

Du = f± on R.

where D denotes the conormal derivative and L is defined (in the sense of

distributions) by

Lu [a! u +b[]V.-CV.

where V. denotes the gradient with respect to x Lc r and ab E L"(-1,1) satisfy

(2.6) 0 < a !5 a(z), 0 < b_ !5 b(z)

and C = C' is an n x n matrix for which

(2.7) o < c Itl 1 . TCTE, vO•E E r.

For the weak formulation of (2.5) define

3



H1(Ir) - W(n) n {uiu -o on rn.
Then (2.5) becomes: Find u E HW(ar) such that

(2.8) B(uv) = F(v), v E H' (o,),

where

(2.9) B(u,v) - J.{a 11] lu + b [1)]V~v.CV~uldxdy,

(2.10) F(v) a L.{f(xvx,d) +f(x)v(x,-d)}dx.

Under the assumptions (2.6), (2.7) the problem (2.8) has a unique weak solution

u E HI(or) provided that, for exazrple f',f- E L2(q) (this could be weakened).

For simplicity we assume also that

a(z) - a(-z), b(z) - b(-z), ae. z E (-1,1)

and that

(2.11) f- f" -

which ensures u(xy) = u(x,-y) a.e. in 0.

Hierhical modeLk of (2.8) are approximations of (2.8) by elliptic boundary value

problems on w, which are obtained from (2.8) by a dimensional reduction method

which we now describe. Let

4



(2.12) S(q) qX(x)E

with linearly independent director functions p, - (, ) and such that span

{}•*4 - span{f }.O where Oj(z) -=0,(-z) and the functions , are linearly

independent and recursively defined by

(2.13) 1 a(z)o4v'dz - 0,

(2.14) J _a(z)o'v'dz + J _b(z)ovdz - v(1)+ v(-1),

(2.15) J_ a(z)ovldz + _b(z),_,vdz - 0, j - 2,3,... VvE Hl(-1,I).

This selection of the functions ensures certain optimality properties of the

hierarchical models 171. Moreover, it was shown in [7] that

(2.16) Wj}l is dense in HI(-1,1) n %¢(z) -u -)

Remak 2.1. From (2.13) it follows that #,o is constant.

The sequence of Neumann problems (2.14), (2.15) defines the functions

uniquely since the constant for 0, is uniquely determined by the compatibility condition

ensuring the existence of 0'-,. 0

Obviously, the space S(q) in (2.12) is a closed, linear subspace of H'(0,F) and

hence the dimensionally reduced problem is : find uq E S(q) such that

5



(2.17) B(uq,v) = F(v), Vv E S(q).

This problem admits a unique solution Uq. The problem (2.17) results in the following

boundary value problem for X := (XoXI,...,Xq)T E

L(D)X := -d2AP(D,)X + BX = 2df(x),p(1) in w
(2.18)

X = 0 on 8w,

where p(z) := ....,.oq)T and

(2.19) A = J _b(z),pidz, B f Ja(z),'V T dz

and the differential operator P(D1 ) is given by

(2.20) P(D.) = V.CV.

Remak 2.2 More generally than (2.12), S(q) may be defined to admit a model order

q which varies throughout w.. This will not te considered here and we refer to [13],

[14] for details. 01

Remark 2.3. Other boundary conditions on r could of course also be considered. 0]

&mn±2A. In general, the boundary value problems (2.18) must be solved

approximately, e.g., by the finite element method, but we will not address this

approximation explicitly and assume that all boundary value problems on % are solved

exactly. 0
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Remark 2.5. Define V(q) := span{(0j}q.0 C H'(-1,1). Then obviously

S(q) - Hý (w) ® V. and the dimensionally reduced solution Uq in (2.17) is

independent of the particular basis { ijl.° of Vq used in the definition (2.12) of S(q).

EJ

3. HIERARCHICAL SUBSPACE CORRECTION METHOD (HCM)

Solving the problem (2.18) by the finite element method (cf. Remark 2.4), a large

system of linear equations has to be solved. We formulate therefore block iterative

techniques for the solution of these systems, each block corresponding to one equation in

(2.18), with a size comparable to that of the simplest model in the hierarchy for q = 0.

We assume here that the equations (2.18) of the hierarchical model have been

discretized with high accuracy. This allows to formulate and analyze the iterative scheme

in the semidiscrete setting, i.e. under the assumption that (2.18) is solved exactly.

All methods considered can also be interpreted as subspace correction methods

(see, for example, [11]) based on a suitable splitting of S(q) in (2.12) which we now

introduce: we write

(3.1) S(q) = So +S, + . + Sq

where

and
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span{f,})I. = span{0}),q0

with ý, as in (2.13)-(2.15). Since the pj are by assumption linearly independent, we

have

(3.2) s.mlSn = {o), m d n, 0 s m, n r q.

We can therefore write

Uq U19 1 U'I = XjxVj ES

and (2.15) takes the form

q

(3.3) E B(Ul,v,) = F(vk), VVk E Sk, k = 0,...,q,
i.O

where v 1; vk E S(q), vk E Sk Evidently, (3.3) and (2.17) are equivalent weak
k.0

formulations of the reduced problem (2.18).

Our subspace correction algorithms will be based on the decomposition (3.1). We

begin by formulating a successive subspace correction algorithm with relaxation which

becomes, upon FE discretization of (2.18) in the x variable, a block SOR-method.

Algorithm 3.1. 1. Given a relaxation parameter 0 < 0 < 2, and an initial approxima-

tion u,.o Set n = 0.

2. Repeat until convergence based on a given tolerance:

2.1. eq - i U•If> _,. U!" E Sj
j-o

2.2. For k = 0,...,q solve the problem: Find U k E Sk such that

8



"-'k In)/

(3.4) - ý>'..ik i*(U+ ') ) + Ed. U ~

+ 6 F(vk), Vvk E Sk

2.3. Set

= I(
i-o

n := n +.

2.4. end.

We already observed in Remark 2.5 that dtere is considerable freedom in the

selection of the basis functions jp,, which does not affect u,. It is apparent, however,

that the space decomposition (3.1) strongly depends on the basis {%} chosen in (2.12).

This, in turn, shows that the convergence properties of Algorithm 3.1 are governed by

the basis {Jp}. Our purpose in the following sections is a quantitative analysis of the

convergence rate K of the Algorithm 3.1 dependhig on the basis {ij} and the data

f(x) of the problem. By convergence rate we mean the smallest number i. E [0,11 such

that for any u,

(3.5) II <q'l 0lu -<, II ' K ,11 II -Uq

where 1lv l, E (B(vv))1 2.

The convergence rate K in (3.5) guarantees a reduction o' the error by a factor

9



x per step. Frequently, however, the asymptotic convergence rate

ý3(a

.6) = sup T Imu•)-uq II I(O 1 1

is a better measure for the actual performance of the HCM.

Remark 3.1. As we will see in the following section, we always have p <_ x. In our

experience the observed rate of convergence is much closer to ,p than K except for

possbly the very few first steps. 0

Remark 3.2. Algorithm 3.1 could be interpreted in the usual fashion as a multiplicative

subspace correction. Since it is based on the hierarchy of models, we shall refer to it as

Hierarchic Subspace Correction Method (HCM for short).

Along the same lines, of course, also additive subspace corrections based on the

splitting (3.1) could be considered. 0

4. FOURIER CONVERGENCE ANALYSIS OF THE HCM - I

In this section we give a convergence proof for the HCM using Fourier analysis in

the case of problem (2.5). To this end we define for a e r. the (hyper) rectangle

10



(4.1) a R a.
1 ' 2

A function w on V is called a -periodic, if

w(x+o e,) = w(x), a.e. x E I', vi.

The vector # = ( corresponding to a is defined by

To present the weak form of (2.5) in the periodic setting, we collect first a few

notions on periodic function spaces (for more on dhe asymptotic analysis of hierarchical

plate models in the periodic setting, we refer to [15]). Throughout the present section

we will understand all Sobolev spaces as spaces of complex valued functions and indicate

by a bar the conjugate complex quantity. By H•(&•) C H'(k) we denote the space

of all 2a-periodic functions w E I-I(k,).

If w E I-I•,(c), then let

(4.2) w(x) = -n
wEZ"

where the Fourier coefficients w. are given by

W = (E,^2...00) Jw(x)ei<7">tdx
and [mP] denotes ( For v(x) = (2'r)" E v.e"z-(>J' we also

have Parseval's formula

ii



(4.3) J w~dx = (2 w)"(00 1 92 )...0. ) W.V..

Mez,

Fourier transforms of vector functions are taken componentwise. Analogously, by

Hr(~la) we denote the set of all w(x,y) E H'(6) which are a -periodic with respect

to the first variable in

(x,y) E "a x (-d,d).

From Parseval's equation we obtain immediately

Proposition 4.1. For all u E per1(4.)

(4.4) E(II a(!){[] ~ +b [.](Vzu) CVzu~dd

-- (2)-'(,,....)" E J .{d` a(z) I u'-(z) 12 +db(z)[m,]' qm, I u.-(z) 1 2}
mEZ?

The expression (4.4) in Proposition 4.1 is a norm on the subspace

H' (bj: HI(ki) flu {I 1JC dxdy - 0}.

Further define

DA((l) : •,. n( u ) l =0.udxmO}.

Defining S•(q) := Hý,(o%) 0 V(q) and Spj,(q) := H )l Sp,(q), we can write

Uq(Xly) = X(X)T d .~ E Sp,,(q) in the form

(4.5) U,= (27)-a MEZ XE

where X = (x 0,',.X) are (the vectors of) Fourier coefficients of order m of the

12



(vector) function X(x). Moreover

H Iu, = (2)-E(Bl...�,f)ld-1 E = {d2[i•]TC[lP]A + B}

(4.6)

(4.7) 17= := ([mp]TC[m#])112

and where the matrices A and B are given in (2.19). Then the symbol of the differential

operator L(D,) in (2.18) is

(4.8) Lqj7 ) :)A + B

Due to Proposition 4.1. the norm defined by (4.6) is a norm on the subspace

T per(q).

Remark 4.1. If j =const and %- •dz = 0 for j > 1, we find that

Uq E 9per(q) ** X. = 0 in (4.5).

More generally, for let 1 = eT"o for some e E IV+'. Then

uq E 9 per(q) ** eTx, = 0 in (4.5).

By B.(.,.) and F.(.) we denote the forms in (2.9), (2.10) with integrations

over 0 and w, respectively (and using V instead of v).

P•ropositon 4.2. Let f E L2(&), f(x)= (2E)" • f~e-i',"J . Then

Jf(x)dx-0*fo -0 and if

13



(4.9) fo = 0

then the boundary value problem : Find u E 1 per(6) such that

(4.10) BE(u,v) = F(v), vv E pr 1
per~k

and the reduced problem: Find uq E S'per(q) such that

(4.11) B(uq,v) = Fa(v), Vv E 9 per(q)

both admit solutions which are unique up to constants. 0

We shall now link the problem (2.5) on 0 to an equivalent one on 6. This

will be done by an extension operator 3' defined as follows. We subdivide c into 2

hypercubes and identify one of them with ') in (2.1). We extend

u E HW(a,F) to 0i E fil(k) as follows: in 2r- octants we select i = -u, with

the argument of u properly shifted, and in the remaining 20-1 -1 octants we select

G - u. (We note that u = 0 on &q x (-dd) and that this guarantees

1D E HB(6).) In the same way we extend the function f. Here, of course, only

Ie LE(• ).

proositi•4.3. The etension ' :HI(0,r) -- ; II() is continuous and isomeiric, in the

sense that

(4.12) 11C, 112 2 IUI12 11 2 = 211ifIll .
WO F4Q M(.) ý*

Proof: Due to the homogeneous essential boundary conditions satisfied by u on r we

observe that Tr E HI(k) and that ii = 0 on 86, x (-dd). Hence it admits an

14



a-periodic extension to r x (-d,d) which is locally in H'. This implies that

E E H'I(O ). The properties J 6.T dxdy - 0 and (4.12) are obvious from the

definition of T 13

Remark 4.2. We have actually shown the extension " to be continuous from H'(a,r)

onto 1A1 ((1j), the subspace of H;(k) of functions the traces of which vanish on the

hyperplanes xi = i /2 , i = 1,2,...,n. 0

Rmrk 4.3. The space AFir(O.) is a closed, linear subspace of II(4) and we

define

Spe(q) := ge(q) n al(o.).

Then, if we set for given f E L2 (cqi)

F(v) := J . (x)(v(xd) + v(x,-d))dx,

(4.10) and (4.11) admit unique solutions i E 0,(1a), 0q E SP(q). Their

restrictions to 0 coincide with the solutions of (2.8) and (2.17), respectively. 01

Remark 4.2 is the basis for an equivalent formulation of the HCM Algorithm 3.1

in the periodic setting. To this end we introduce, analogous to (3.1), the subspace

decomposition

(4.13) S,(q) = S•o + 1 + " +" S gq

and we observe that 9': Si -. 9 continuously. Then the periodic version of Algorithm

3.1 is defined exactly as in (3.4) and, due to Remark 4.3, the restrictions of the resulting
iterates E •,(q) to w are those produced by Algorithm 3.1, i.e.

15



(4.14) tk•"), u"'a, V n.

From this equivalent periodic formulation of Algorithm 3.1, however, a precise estimate

of the convergence factors p and i in (3.5) and (3.6) can be derived.

TeioremA41. Let u(k)(xy) E g,(q) denote the k-th iterae of the successive subspace

correcion algorihm 3.1. Let further for a relaxation parameter 0 < 0 < 2

(4.15) M(O,V) :- (D+$E)-'((I-$D-OEH)

be the SOR iteration maviv conmponding to L(C) defined in (4.8) (as it is us•4

D(r) and E(') denote the diagonml and strictly lower triangular parts, rapectively, of

L(r)). Then

i the contraction constant K in (3.5) admits the estimate

(4.16) :r. sup X(9(Oi.d)}

where X(On,) is the largest eigenvalue of

and

z: - Z' fl {m 4e-"4 E '

ii) the asymptotic convergence rate p in (3.6) admits the estimate

(4.17) p - sup {r(M(O,q..d)))

where r(.) denotes the spectral radius.

ProLo: We proceed in several steps.

16



i) We write Oq(xy) - X(x)Tjo ( d ft)(X'y) _ X~k)(x) T
4.(W

and have the Fourier expansionF

X(x) - (2 w)-" E x. e"<'t',
mEZ.

X(k)(x) - (2)-)(-) • x•ke -i<'AMA

where Mez;

- , ,, .... ,X.,M), etc.

Let further
f'(x) - Tf - (2r)- f*e-'s 1 ..

mez•

Then the Fourier coefficients x. of the vector function x(x) are determined from the

linear system

(4.18) L(v,.d)X. - 2df..(1), m E Z•

where

1. :_ ([mp] TqmpJ)1 -2.

The crucial observation is now that the successive subspace correction algorithm

3.1 becomes, in our periodic setting, a (frequency dependent) SOR-method for the

solution of the hermitean linear systems (4.18), i.e.

X:k.) = M(OV.d)x.(k)+ 2df..[(O,%d)p(l),

where

(4.19) r1(0,..d) - 0(D(n.d) + 0E(..d))"1.

In particular, no Fourier modes that are absent in the right hand side f(x) and the

17



initial approximation XVI(x) will be excited in the course of the iteration.

ii) From (4.10) we obtain that

lUq -Uq,*1,qo) - 1 2

- 2C E (X. -X'))H44.dzc -X.)
.e2•

where C. =

With the Fourier coefficients of the error X - X•),

Y.:. -x, mEz7,
we find

IOq'I4) 1 2 0 k)2
where mrzz

- YI -- M(O,)Iqd)y(4,=d)M(,k.d)Y(-k-')

< X(O,,.d) I .'" .

This proves (4.16).

iii) To prove (4.17), we first establish a perturbation result. Recall that

L = +2A B, A and B as in (2.19) and (4.8). Then

D - 712Do +D 1, E - 712EO -E l,

and we have for sufficiently large qi

18
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M - ((! 2D0 +D1 ) + O(n'E 0 +E1))-' I (1 2D0 D1 ) -1+E)H}

- ((rD0 .9E0) + q'D+OGEI))*{(i-9) 0 -E' ''( GD -04')

- (+ -D+ GE4 1 (D1 + E1)) (D0 + E41- {(10-O)DO 0 4-9) + i7-((1 -O)D,_O EH')

- (Do÷OE0 )-1((1-O)Do-OEý) + R

where the remainder R is given explicitly by

(-- 2 G+ EO)-I(D 1 + 9E1) (DO+ GE 0)A1((1 -G)D 0 -6E :) + - i-~ 1 -e~ )

+ ,'2(Do + OEo)1 ((1 -O)D - OE.)

provided that t > 1o, ;o is selected sufficiently large to ensure the convergence of

the Neumann series. Hence we have shown that, as t1 - ,

(4.20) M(,, 1) = MA(O) + R(,,i)

where MA(G) is the (M - independent) SOR matrix corresponding to A and

IIR 0 o(,1?-) as ,7 -- oc in any fixed, 17-independent matrix norm.

iv) We prove (4.17). As before, we find for k E No

I1qu E-'" - 2-Co 1 (•+)"CMk).1.d)MWv°
*EZ,

a 2-C 0 E IIMWYIL
mEZ:

where IIYII, 1 :2 llv"LYiI.

19



As it is well known, for every matrix M and every e > 0 there exists a vector

norm 111 1I11 on C0' such that for the induced Lu.b matrix norm (which we again

denote by II1 II•)there holds

(4.21) 11MIll r r(M) +-!/2 , c > 0

(the norm " .I1l, depends on e).

In particular, we observe that therc exists a constant c ! 1

independent of q) such that

(4.22a:) IIjg (O,ij)lll !g c 12, -" _ ".Go

(4.22b) r(M^A) - c/, 2 < r(M) s r(MA)+ c/l,.

Now we fix e > 0 and introduce the index sets

f{ E Z. I c4 -9' 2) < C/4}, Z .- \,

with the constant c as in (4.22) and n.d > -90. Then we split

Il,-q' -u ".,, - 2"co { •E "• .,, -

and discuss both sums separately. For = E •, we have

II M• Ii ,' - " (y(o))H(bp)HLd)l~y•.)

- (,,-)H(,,)H(,,,d2A + ,)(,),

< A..d2 IA"2 Mky",) II + (Y=())H(M)H BMk"V.

We estimate the first term by
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,-d2llA 1 2 Myý.l -2 .d2 IA1 2(MA+ R)'YK/) II

: ,B II A II2A(e,d),III (MA R)k III' I".(° 112

Sild 2A,(2L,d)cond2(A)(111lMA III. + RIII ,) 11 j-VA

where A1(e,d) is the equivalence constant between I. fl1 and III IIIf for

sufficiently large k. For sufficiently large k, the second term can be estimated by

(V:)H(Mk)HBMky.(O r(B) II Mky*" 1 2A2(,E.d)

e/4-dI4r(B) •A',M"Y=) (A)-' zd

- (E,),~dN2 d' IIA!MkY.(0)Il.

Then we continue as in the estimate of the first term. By (4.21), this yields with a new

constant A(e,d) the estimate

IMNY?- IL :5 A(e,d)cond,(A)(r(MA)*e/4÷+e/4)"'IY4 )112

and hence we obtain for every e > 0, 0 < d < 1 and k E No

(4.23) e IMY.('fl,. : cond2(A)A(e,d)(r(M^)+ e/2)Y a•yO) a

We consider the caoe m E C.. Since 1, is a bounded set for fixed e and d,

we esdmate
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h V ' 2 jj kj 2 0)

• mEl. mES,(4.24) weca Mn(omnl(.3)an (.2) Iit

mEG.E

< 2Csup A.(C,d))@ (r(M(O,en.d)). +)-£ ll y

From (4.22b), we see that

r(M^(O)) _S r(M(8,%d)) + E0'2, V)m E

so we can combine (4.23) and (4.24) into

(4u.2u5)l112" 2"CI(e,d) s (r(M(0,nd)) + c)'

: 2-"(C0C,(e,d)(r-+e)a E II'L.°)U,7

mEEZ;

and Cq depends on - and d, but is independent of k. Hence

k-ec~u q -I UqV E I~ -c

= r + e-i.

Since E > 0 and 0 < d < 1 were arbitrary, the assertion (4.17) follows. 0

Remaik4.3. In (4.17) we have taken the sup over all n.d E Z:. Obviously we get
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an upper bound when we aefine

10) - sup {r(M(0,i1))}.
)>0

Theorem 4.1 has several importanat consequences which we discuss next. The

crucial observation was (4.16) and (4.17) which states that in the periodic setting the

HCM becomes simply a (parameter dependent) SOR method for the solution of the

linear system (4.10). Since for every m + 0 the matrix L( 7%d) is symmetric and

positive definite, we have from Kahan's theorem (e.g., 12, Thm 8-1.5) the

gCojjaa4. ThereZ ho, for every d E (0,11 and m E Z•,

(4.26) I :-1[ p ! <____(_,_d)_.

ar.f: We have Kahan's lower bound I - I1 !5 p(M(0,,•)) for all q , 0 (see, e.g.

[12, Chap. 81) and hence (4.26) follows from x > p(M(,in)). 0

gr£•laa 4. The rate K of convergence of the HCM is bounded from above

independent of d

eoof: From Theorem 4.1 we have

(K)2 < sup {X(9,,d)}
mEI4

:r sup W0~,17))
where X is as in (4.16). mEl

The result follows since the matrices M(O,,q) and L(,1) are independent of d. 0

The SOR-iteration applied to a diagonal matrix L converges in one step.
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Consequently, if we can give a basis p that renders A and B in (2.18) diagonal

simultaneously, the matrix L(4 d) will become diagonal and the HCM will converge in

one step.

Corol=A4.3. Let A b(z)#Tdz, B J 'a(z)o' "ITrdz with the functions

dtfined in (2.13)-(2.1-,). Let Q be the (q+1) x (q+1) matrix the columns of which are the

eigenvectors of

(4.27) Bx = 9i Ax

normalized so that xTAx = 1 and 0 <G < i. Then the basis i = QO4 renders

L(tj d) in (4.14) diagonal and the HCM converges in one step, i.e. K = 0 in (3.5).

Proof. We have x3iBx w= xAx = at by (4.19). Now, due to Qo = QT 4 ,

JIb(z)Vj'dz = QTAQ f 1,

Jz)•orrdz = TBO = ...

hence with a. = 0

L(Q) - •A + B = diag{•+u•}•.0.

Frequently, especially in elasticity problems, it is not possible to find a j-

independent transformation Q which renders L diagonal. Nevertheless, as we shall see in

the next section, it is often useful (and possible) to have L(Q) approach diagonal form

as r--O oras C-- .

Corollary 4.4. Assume that 0 < 0 < 2. Then
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1: lim X(O,t1)= 0 if B = la(z)o'(&')Tdz is diagonaL

20: lrn X(Ot) = 0 if A =Jb(z)ijojdz is diagonaL

1[.Q. *. Consider L(') as r -- 0. Since then L(') = jA + B -4 B and B is

diagonal, the assertion would follow if B were nonsingular. Since, however, rank (B) =

q < dim(B) = q + 1, we assume that 2 = 0, po = const. and that

Jb(z)•jpOodz = 0 for i Z 1. This uncouples the first equation in (4.18) from the

remaining ones, i.e. the iteration matrix M(0,t) attains block diagonal form:

M(6,10 = [x 0j.

The corresponding lower right block of B is now diagonal and positive definite, hence

1° follows.

20. We write in this case

L(f) = B).

From the formula for M in Theorem 4.1, 20 we find that M corresponding to L in

(4.20) and M corresponding to (A + "2 B) are identical (i.e. a scaling of L does not

alter M). Since A is diagonal and positive definite, and r'B -- 0 as r -* a, we

find 20.

In summary, we have shown that the influence of the basis {p'j}., on the
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convergence rate of the HCM Algorithms 3.1 can be analyzcd quantitatively with the

iteration matrix M(0,,q.d) in (4.15). In the same vein any other iterative method that

is based on the subspace decomposition (3.1) can be analyzed, in particular the parallel

subspace correction method.

Remark 4.4. The analysis presentcd so far applied only to the case where w is an

interval or a rectangle and the boundary conditions are either homogeneous Dirichlet- or

periodic conditions. However, analogous results can be obtained for arbitrary Lipschitz-

domains o C RW, if the unknown coefficient functions X(x) and their iterates X(k)(x)

are expanded into series of eigenfunctions ,k(x) of the operator -A, in w with

appropriate homogeneous boundary conditions on 8w.

5. FOURIER CONVERGENCE ANALYSIS OF THE HCM-ll

In the previous section we introduced the tool of Fourier transformation of the

reduced model (3.3) to obtain explicit estimates on the convergence rate x in (3.5) and

p in (3.6). This was achieved by taking the supremum overall wavenumbers m of the

largest eigenvalue X(0,iqd) of (4.16), resp. of r(M(0,t=d)) of (4.17). Our purpose in

the present section is to show that the eigenvalue curve X(0, 7q), resp. r(M(0,,q))

contains more information: it is a factor by which the energy contained in error

components of "wavelength" q-'d is reduced in one step of the HCM. We consider

here the special case of (2.5) where
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(5.1) a =b = 1, C=1 (unit matrix),

so that L = A and D.= F .. Then it is readily verified that the director functions

in (2.13)-(2.15) are even polynomials of z and we list the first of them in the following

table.

TA BLE 5.1. The function ej(z), 0 :< j m 2.

j j(z)

0 1

1 (3e2 - 1)/6

2 (15z' - 30z2 + z)/360

The basis functions Oj which render A in (2.17) diagonal are orthogonal in

L2(-1,1) and we select them to be the even Legendre polynomials, i.e.

(5.2) Oj(z) = L4(z)

where L4(z) = 1, L(z) = (3z2-1)/6, etc.

Analogously, the functions which render B in (2.17) diagonal are orthogonal in

H1(-1,1) with respect to the inner product

(5.3) (1,,o,) = J ' ' d -

A basis which satisfies , = is therefore given by
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(5.4) tPO(z) = 1, j,|(z) f 2 JL1(0)d4, j > 1

or, more explicitly, •i(z) = (2(4j - 1))-'1 (I.(z) - L,.(z)).

Figures 5.1 and 5.2 depict the bounds p(M(6,7 )) for 0 = 1 (iLe. no relaxation) over

several orders of magnitude of the normalized frequency 1 for the basis function in (5.2)

and (5.4), respectively. We remark that L4(z) and 1.2(z) are orthogonal in the Y -1,1)

and in the H1(-1,1) inner product (5.3) - hence we have X(e,-I) = 0 for q = 1 with the

basis (5.2), in accordance with Corollary 4.3.

In accordance with Corollary 4.4, we have

(5.5) lim p(M(1,,9)) = 0 for (5.2)

and

(5.6) lim p(M(ln)) = 0 for (5.4),,r.0"

i.e. (5.2) is better for a rapid convergence on the high frequency components while (5.4)

performs superior on the low frequencies. Of principal interest is the overall supremum

p(M(0,7q)) for 6-1, q = 1,2,3,4 with the basis (5.4).

(5.7) sup {o(M(1,,1))} =: p(q).

In Table 5.2 we report the numerical values for the bases (5.2) and (5.4).
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Figure 5.1. p(M(8,t7 ) for 0=1, q = 2,3,4 with the basis (5.2).
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Figure 5.2. p(M(D,Tl)) for e =1, q = 1,2,3,4 with the basis (5.4).
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TABLE 5.2: p(q) in (5.7) for the bases (5.2) and (5.4).

q 0 1 2 3 4

(5.2) 0 0 0.3000 0.4764 0.5833

(5.4) 0 0.833 0.9400 0.9694 0.9811

We see clearly that the basis (5.2) is more robust than (5.4), since it yields reasonably small

contraction rates uniformly on all frequencies q. The performance of the basis (5.4) can

be poor if the error contains high frequency components. In the following table we list

for q = 1 and the basis (5.4), for small 9.

TABLE 5.3. p(q) for q = 1 and the basis (5.4).

0.001 0.01 0.1 0.25 0.5

P(M(1,Q)) 0.33.10- 0.33.10" 0.33.10-2 0.22.10"' 0.75-10".

We see clearly that we have here

(5.8) p(M(1,1)) - #2/3 as 1 0.

In Figure 5.3 we depict this quantity also for higher q, with the slope according to

(5.8).
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Figure 5.3. p(M(On)) for 0 = 1, q = 1,2,3,4 with basis (5.4), log-log bcdie.

V "e further that (5.8) is practically independent of the model order for tj r 1.

The above graphs show that we can expect generally a different performance of the

HCM on high and low frequency components of the error Yk)(x) := X(x) - X)(x). This is

of significance since the exact solution X(.) consists, especially for small d, of two

mutually distinct components: a smooth, asymptotic part and boundary layers X)L(x) of the

form

(5.9) ~B~) =
(5 -9) {X exp (o rj x/d)}

where a, depends only on the model order q [16] and XBL(x) is smooth.
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In Table 5.4 we list the values of a,(q).

TABLE 5A4: Boundary layer exponents oj(q) for small q.

q 1 2 3 ca

al(q) Vr1 3.1529 3.1416

o2(q) 9.7498 6.4791 2,r

a3(q) 18.0596 3-

It is further shown in [16] that

or(q)- j- as q-e. =

Comparing formally exp(-ax/d) and exp([m#Jr) with - we expect large Fourier
2

coefficients X. for [m,] - v/d or for

(5.10) air

a

We remark at this point that for certain compatibie data f(x) the components (5.9)

vanish. Nevertheless, for arbitrary data the boundary layers (4.9) are generally present and

we see from (5.10) that we can expect the contraction rate

(5.11) < =

for the HCM. If several distinct layers are present (cf. Table 5.4), we see that

air/o can be quite large, hence, a decay of X(Ot) as tj -, c is highly desirable.

Remark 5.1. It follows from Theorem 4.1 only that X < x. Nevertheless, we found in all

cases for the matrix M in (4.15) that p - X.
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6. NUMERICAL EXPERIMENTS

In order to verify the applicability of our theory in a computational setting, we

considered the following model problem:

(6.1) -Au = 0 in (-1,1) x (-d,d),

(6.2) u = 0 for x = ±1

(6.3) u= 1 for y = ±d.

The solutions exhibit boundary layers of the form (5.9) (see also [16]).

The problem (6.1)-(6.3) was discretized by a two dimensional FEM with rectangular

elements w,, x (-d,d) where w, C (-1,1) are subintervals., Tensor product polynomial

subspaces with degree p in horizontal and uniform degree q (only even shape functions

were used here) in the transverse direction were used. We selected p = 10 to ensure that

the models were solved accurately.

Remark 6.1. In practice a locally variable degree q is of high interest, see e.g. [13]. In this

case the HCM becomes a block iterative method (here a block SOR) for the fully discrete

system.

An exact solution was obtained by direct solution of the linear system and the

iteration was stopped when

(6.4) II'e'k- X.lII X.IE < 10-S

where U" denotes the (discrete) energy norm. We selected the initial guess xP0) = 0

throughout (in practice when solving the higher order models, one should start from a

converged solution of the lower order problem). As an averaged convergence rate we took
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the geometric mean of J iterates before convergence occurred, i.e.

(6.5) k '~ -Xk _X. }Vi
(J = min(10,k') was selected). In Figure 6.1 we show the average convergence rates for

models based on the director functions (5.2). The model orders q = 0 and q = 1 were

not shown, since the HCM converges in one step here.

We observe in Figure 6.1 thbt the maximum convergence rates are very close to the

values predicted by our Fourier analysis. Moreover, we observe that as d -* 0 all rates

tend to 0.3, the theoretical value (cf. Fig. 5.1). This is due to the contribution of the q -

3 and 4 models being of higher order as d -* 0 and due to the 1-step convergence of

HCMfor q= 1.

Let us now turn to the HCM with the basis (5.4). Figure 6.2 shows the performance

for (6.1)-(6.3).

Note that for the boundary layer case (Fig. 6.2), the convergence rates are once again

close to the ones predicted in Table 5.2 which are in this case, for large d, very close to

1.

Finally we present in Figure 6.3 the convergence history for the HCM with (5.2) for

various values of d and for q = 2. Figure 6.4 presents the analogous data for the basis

(5.4).
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Figure 6.4. Convergence history for q = 2, (5A4).
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7. CONCLUSIONS

We have shown that the hierarchic models can be solved very effectively by an

iterative procedure, provided that the shape functions used (in y direction) are properly

selected. The iterative procedure employed was based on a subspace decomposition with

respect to the spectral order of the hierarchic plate model. Sharp estimates for the

convergence rate of the subspace correction in dependence on the selection of the director

functions were obtained using the Fourier transform. The technique will be extended to

elasticity problems in the forthcoming second part of this work.
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