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Abstract
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INTRODUCTION

The problem of partial differential equations on thin domains is a basic problem
in engineering. We mention, as an example, the typical problem of the homogeneous or
laminated plates and shells. The usual theory is either based on physical models (see,
e.g., [1], [2), [3], [4]), the asymptotic models (see e.g., [S], [6]) or the hierarchic models
(see, e.g., [7), [8], [9], [10]) which reduce the origiral 3 dimensional problem to a coupled
system of partial differential equations in two dimensions. The main idea behind the
hierarchic modelling is to create a sequence of two dimensional problems the solutions of
which converge to the solution of the original three dimensional problem. The problem
of a-posteriori error estimation for this dimension reduction was addressed in [9].

The main computational problem arises from the obvious fact that the solution of
the higher order, hierarchical formulation is much more computaticnally expensive than
the lowest one. Hence, a major question arises, how to solve the two dimensional elliptic
system by an iteration procedure. The method proposed here falis in the general
category of subspace correction methods.

The convergence of (paralle] and successive) subspace correction methods under

fairly general conditions on the space splittings is standard by now [11]. The most widely

used splittings are either related to domain decompositions or to h-multilevel methods.

Frequently, however, sharp estimates of the convergence factors cannot be obtained for




situations of engineering interest.

In the present paper, the function space used to derive the hierarchical plate
model is split with respect to the (spectral) order of the transverse shape functions used
in the derivation of the hierarchical plate model. Further, a Fourier analysis of the
resulting subspace correction method is performed and explicit and sharp expressions for
the convergence factors of the subspace correction method in terms of the transverse
shape functions "directors” are obtained. This allows in particular to (computationally)
optimize the shape functions used in the dimensional reduction with respect to the
convergence rate of the subspace correction mzethod.

The outline of this paper is as follows: in Section 2 we present the heat
conduction problem and the hicrarchic models. In Section 3 we introduce the
hierarchical subspace correction methods. Section 4 introduces the tool of Fourier
analysis and contains the main resulis. Section § discusses in more details the Fourier
analysis of the subspace corrections in dependence on the basis used in the modelling.

Section 6 finally presents numerical experiments.

2. THE BOUNDARY VALUE PROBLEM AND THE HIERARCHY OF MODELS

For o, € R,, we define the (hyper) rectangle

@21 w, = XER||x] <af, 1sisn)

We will be mainly interested in n = 1 or 2, but our analysis is for convenience for any
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n € N With o and 0 <d <1 we associate the domain
(22) 1 = X (-dd)
of thickness t = 2d and the "edge"
(2.3) I' = y x(-dd), v = dw_
Points in @ shall be denoted by (x,y) where x € «w_, |y| < d. We also define the
faces
(24) R, = {xy)|x € o, y = +d).
In @ we consider the boundary value problem

Lu = 0 in @
(2.5) u =0 on T,
Du = f* on R,

where D denotes the conormal derivative and L is defined (in the sense of

distributions) by
L = 2(af2] 2] cv[Y]v..cv,,
ay | |d] oy d
where V_ denotes the gradient with respectto x € R* and ab € L%(-1,1) satisfy

(2.6) 0O<asai), 0<b s b
and C=C" isan n X n matrix for which

(2.7) O<cl|E]?) SECE vO =t ER.

For the weak formulation of (2.5) define




H@I) = H@ N {uJu=0 on T},

Then (2.5) becomes: Find u € H'(Q,I') such that

(28) Buv) = F(v), vv € H'(QD),
where
29) Buy) = In{a[%] %‘ Z_y" . b[%] v,v.cv_u}dxdy,

(2.10) F(v) = L {f*xv(x,d) +£(x)v(x,-d)}dx.

Under the assumptions (2.6), (2.7) the problem (2.8) has a unique weak solution
u € H(QT') provided that, for example f*.f" € 1*(w) (this could be weakened).
For simplicity we assume also that
a(z) -~ a(-z), bz) = b(-z), ae z € (-1,1)
and that
(2.11) f* = f = f

which ensures u(xy) = u(x,.y) a.e. in .

Hierarchical models of (2.8) are approximations of (2.8) by eclliptic boundary value

problems on _, which are obtained from (2.8) by a dimensional reduction method

which we now describe. Let




(2.12) S(q) = u= 2:; xi(x)¢,(%), Xi(X) € H(lr(w.)}

with lincarly independent director functions ¢ = (y....,)", and such that span
{¢} = span{y,}l, where y(z) = y,(-z) and the functions y, are lincarly

independent and recursively defined by

(213) [ l_'a(z)%v’dz = 0,
(214) j l_la(z)%v’dz . ] :b(z)wovdz = v(1) + v(-1),

(2.15) I:a(z)wj'v’dz + j‘_lb(z)w,_lvdz = 0, j=23,.. VvEH!(-11).

This selection of the functions ¢, ensures certain optimality properties of the
hicrarchical models [7]. Moreover, it was shown in [7] that

(2.16) {¥}% is dense in H'(-1,1) ) {¥(2) = ¥(-2)}
Remark 2.1. From (2.13) it follows that y, is constant.

The sequence of Neumann problems (2.14), (2.15) defines the functions ),
uniquely since the constant for y, is uniquely determined by the compatibility condition
ensuring the existence of ;.. O

Obviously, the space S(q) in (2.12) is a closed, linear subspace of H'(Q,I') and

hence the dimensionally reduced problem is : find u, € S(q) such that




(217) B(u,v) = F(v), vv € S(q).
This problem admits a unique solution u . The problem (2.17) results in the following
boundary value problem for X := (X,Xp.X,)" € [Hp(w )1

L(D,)X := -®*AP(D)X + BX = 2df(x)e(1) in «

(2.18)
X = 0 on duw,

where ¢(2) := {opo,qo,,...,goq}T and

(2.19) A - ]l_lb(z),o,,'rdz, B = [ l_la(z)e"w'r &z

and the differential operator P(D,) is given by

(2.20) P(D) = V,-CV,.

Remark 2.2 More generally than (2.12), S(q) may be defined to admit a model order
q which varies throughout _. This will not be considered here and we refer to [13],

[14) for details, a
Remark 2.3. Other boundary conditions on I' could of course also be considered. [J

Remark 2.4. In general, the boundary value probiems (2.18) must be solved
approximately, e.g., by the finite element method, but we will not address this
approximation explicitly and assume that all boundary value problems on «_ are solved

exactly. o O




Remark 2.5. Define V(q) := span{n[:i}f'_0 C H'(-1,1). Then obviously

S(q) = H; () ® V, and the dimensionally reduced solution u, in (2.17) is

independent of the particular basis {goi}?_o

of V, used in the definition (2.12) of S(g).
a

HIERARCHICAL SUBSPACE CORRECTION METHOD (HCM)

Solving the problem (2.18) by the finite element method (cf. Remark 2.4), a large
system of linear equations has to be solved. We formulate therefore block iterative
technigues for the solution of these systems, each block corresponding to one equation in
(2.18), with a size comparable to that of the ;ﬂ'mplest model in the hierarchy for q = 0.

We assume here that the equations (2.18) of the hierarchical model have been
discretized with high accuracy. This allows to formulate and analyze the iterative scheme
in the semidiscrete setting, i.e. under the assumption that (2.18) is solved exactly.

All methods considered can also be interpreted as subspace correction methods
(see, for example, [11]) based on a suitable splitting of $(q) in (2.12) which we now
introduce: we write

(3.1) S(@) = S+ S + e+ S‘l

where

5, = i) @ o [3]]




spanfp)f, = spanfy)s,,
with ¢, asin (2.13)-(2.15). Since the ¢, are by assumption linearly independent, we
have
(3.2) S.NS, = {0}, m#n 0<m n=<gq
We can therefore write
w o= Y U, U - Xj(x)soj[%] €s,

and (2.15) takes the form

q .
(3.3) Y B(Ulv) = F(), Vv, €S, k=0..,
j=0

where v = g v, € S(q), v, € S, Evidently, (3.3) and (2.17) are equivalent weak
formulations of the reduced problem (2.18).

Our subspace correction algorithms will be based on the decomposition (3.1). We
begin by formulating a successive subspace correction algorithm with relaxation which
becomes, upon FE discretization of (2.18) in the x variable, a block SOR-method.
Algorithm 3.1. 1. Given a relaxation parameter 0 < 6 < 2, and an initial approxima-
tion u:. Set n = 0.

2.  Repeat until convergence based on a given tolerance:
" D e
2.1. uq = ’g U, y U, € Sl

22. For k = 0,.,q solve the problem: Find U™ € S, such that




BUSy) = 1-0BUMY,)

- o BTN + B, B{U)

+ 0F(v), Vv, € §,

G4

23. Set
(@e1) N (@D
uq = E Ui N
j=0
n:=n-+1
24, end
We already observed in Remark 2.5 that there is considerable freedom in the
selection of the basis functions #, which docs not affect u_. It is apparent, however,
that the space decomposition (3.1) strongly depends on the basis {¢,} chosen in (2.12),
This, in turn, shows that the convergence properties of Algorithm 3.1 are governed by
the basis {¢;}. Our purpose in the following sections is a quantitative analysis of the
convergence rate « of the Algorithm 3.1 depending on the basis {¢} and the data
f(x) of the problem. By convergence rate we mean the smallest number « € {0,1] such
®

that for any u.",

(3.5) lug~us™] = clu-uPfge, vo =0

where [[v[lgq = (BE¥)™

The convergence rate x in (3.5) guarantees a reduction o' the error by a factor




x per step. Frequently, however, the asymptotic convergence rate

lug’-

3.6) sup Tm
fe Lz(wa) k—’m Il u

is a better measure for the actual performance of the HCM.

Remark 3.1. As we will see in the following section, we always have p < x. In our

experience the observed rate of convergence is much closer to p than «x except for

possibly the very few first steps. a

Remark 3.2. Algorithm 3.1 could be interpreted in fhc usual fashion as a multiplicative

subspace correction. Since it is based on the hierarchy of models, we shall refer to it as
Hierarchic Subspace Correction Method (HCM for short).
Along the same lines, of course, also additive subspace corrections based on the

splitting (3.1) could be considered. o

FOURIER CONVERGENCE ANALYSIS OF THE HCM -1
In this section we give a convergence proof for the HCM using Fourier analysis in

the case of problem (2.5). To this end we define for a € R, the (hyper) rectangle




: . 3q,
@1 o 1= {x € R| - o < x < 31,
“ 2 2

A function w on R° is called «-periodic, if
w(x+ae) =w(x), ae xE€ R, Vi

The vector g = (8,,...8,) corresponding to « is defined by

« - [___] .
B, B, B,

To present the weak form of (2.5) in the periodic setting, we collect first a few
notions on p;riodic function spaces (for more on ihe asymptotic analysis of hierarchical
plate models in the periodic setting, we refer to [15]). Throughout the present section
we will understand all Sobolev spaces as spaces of complex valued functions and indicate
by a bar the conjugate complex quantity. By H:ﬂ(&u) C HY(&,) we denote the space
of all 2«-periodic functions w € H'(& ).

If we H,L,(G:ﬂ), then let

4.2) wix) = 2n)™" Y wer

mEZ

where the Fourier coefficients w,_ are given by
w, = (8,6,8.) Leéw(x)ekx.[!ﬂb.dx
and [mg] denotes (m,B,mpB,..mpB). Forv(x) = 2x)" Y v ™ we also

mEZ

have Parseval’s formula




(4.3) j LW = 20 (BB,8)" T WL

m€Z

Fourier transforms of vector functions are taken componentwise. Analogously, by
H:,,,(ﬁa) we denote the set of all w(xy) € H‘(ﬁa) which are «-periodic with respect
to the first variable in

xy) € Q_:= o X (-d,d).
From Parseval’s equation we obtain immediately

Proposition 4.1. Forall u € per'()

o Pl = [ [20e[3] (5] (3] croreme e

= QO7E-8)" T [ {4720 1w @) [*+db(z){mB] Clm) [u, ()}

n€Z’

The expression (4.4) in Proposition 4.1 is a norm on the subspace
Hi() = (@) N {u|[ﬂ udxdy = 0).
Further define .
D0) = 1@ 0 {ul [, vex -0}
Defining S,,(q) := Hp{(é,) ® V(q) and §_ (q) := FI;,(G;.) N Spe(q), we can write

uq(x,y) = X(x)T [¢ [%” € Sw(q) in the fo_rm

(4.5) u = (29" )3 Xie [%]e«q.‘p

1=y Al

where X, = (Ko oXmg) are (the vectors of) Fourier coefficients of order m of the

12




F

(vector) function X(x). Moreover

lulze, = @076.-8)d" ¥ X {dmf"CimB]A + Blx,

(4.6) n€Z
= (2x)™"(8,..8,)d"! g;_ X L(dn)x,,
%)) 1. = ((mB]"C[mp])"?

and where the matrices A and B are given in (2.19). Then the symbol of the differential
operator L(D,) in (2.18) is

(4.8) L(y,) := 7aA + B

Due to Proposition 4.1. the norm defined by (4.6) is a norm on the subspace
S per(@-
Remark 4.1. If ¢, = const and rlgojdz =0 for j = 1, we find that

u € Sper(q) ex, = 0 in (4.5).
More generally, for {¢, 3 let 1 =¢eTp forsome e € R*. Then
u, € S'per(q) o €y, =0 in (4.5). a

By B(:,c) and F_(:) we denote the forms in (2.9), (2.10) with integrations
over @ and w_, respectively (and using Vv instead of v).
Proposition 42. Let f € L¥(&), f(x) = 2x)™ Y fei*™> Then

mEeZ

[_f(x)dno«foso and if

13




(49) £, = 0

then the boundary value problem : Find v € H ;cr(ﬁ-) such that
(410) B(wy) = F(), vveEHA lpcr(ﬁ,)

and the reduced problem: Find u, € S'per(q) such that

(4.11) B(uyv) = F(v), W€ sper(q)

both admit solutions which are unique up to constants. O

We shall now link the problem (2.5) on @ to an equivalent one on ﬁa. This

will be done by an extension operator & defined as follows. We subdivide &_ into 2°
hypercubes and identify one of them with «»_ in (2.1). We extend

u € H(QT) to @ € AH'(fl) asfollows: in 2*' octants we select & = -u, with
the argument of u properly shifted, and in the remaining 2°! -1 octants we select

G =u (Wenotethat u=0 on dw_ X (-d,d) and that this guarantees

i € H,(f1).) In the same way we extend the function f. Here, of course, only

fe ')

Proposition 43. The extension & :H'(Q,T) » A__(f),) is convinuous and isometric, in the
sense that

(412) 15l = Zholior ITE, = 20l
Proof: Due to the homogeneous essential boundary conditions satisfied by u on I' we

observe that & € H'({,) and that 0 =0 on 9&, x (-d,d). Hence it admits an

14




a~periodic extension to R* X (-d,d) which is locally in H'. This implies that
U € H,(fi,). The properties lﬁ.i dxdy = 0 and (4.12) are obvious from the
definition of & ‘ O
Remark 4.2. We have actually shown the extension & to be continuous from H(Q,I')
onto H:ﬂ(ﬁ“), the subspace of H_({l) of functions the traces of which vanish on the
hyperplanes x, = ¢,/2, i = 1,2,..,n. O
Remark 4.3 The space F({1) is a closed, linear subspace of H,.(}) and we
define

8@ 1= § (@) () HL(D).
Then, if we set for given f € L¥w)

F ) = [, T 00 + vix-d)dx,
(4.10) and (4.11) admit unique solutions ¢ € FI (@), 8 € §_(q). Their
restrictions to 1 coincide with the solutions of (2.8) and (2.17), respectively. ()

Remark 4.2 is the basis for an equivalent formulation of the HCM Algorithm 3.1

in the periodic setting. To this end we introduce, analogous to (3.1), the subspace
decomposition

(4.13) Spﬂ(q) = So + Sl + see + Sq

and we observe that &S, — Sj continuously. Then the periodic version of Algorithm
3.1 is defined exactly as in (3.4) and, due to Remark 4.3, the restrictions of the resulting

iterates 0 € Sw(q) to w_ are those produced by Algorithm 3.1, i.e.

15




(4.14) o, = uw, wvn

From this equivalent periodic formulation of Algorithm 3.1, however, a precise estimate
of the convergence factors p and « in (3.5) and (3.6) can be derived.

Theorem 4.1. Let u{’(xy) € Sw(q) denote the k-th iterate of the successive subspace
correction algorithm 3.1. Let further for a relaxation parameter 0 < ¢ < 2

(4.15) M(8,y) := (D +6E)™(1-6D - 6E")
be the SOR iteration matrix corresponding to L({) defined in (4.8) (as it is usual,

D(}) and E(}) denote the diagonal and strictly lower triangular parts, respectively, of
L($)). Then
i) the contraction constant x in (3.5) admits the estimate

(4.16) 2 s sup{N6m,d)}
w€Z,

where \(0,n) is the largest eigenvalue of

M0, )"L(n)M(6m)x = NOm)L(n)x,

Z: = Z() {m|ei=m> € {_(a,)}
ii) the asymptotic convergence rate p in (3.6) admits the estimate

(4.17) p = sup{r(M(6;n.d))}

mEZ;

where 1(.) denotes the spectral radius.

Proof: We proceed in several steps.




i) We write 0(xy) = X(xw[-g], 0(xy) = XU [%]

and have the Fourier expansions

X@ = @0V ¥ x, e,

m€Z;

x(k)(x) = (2'-)(") E x(-k) c'i<qdl >
u€Z

T
K& = GGl et

fx) = &f = Qo)™ Y feiimr,
mEZ
Then the Fourier coefficients x, of the vector function x(x) are determined from the

lincar system

(4.18) L(nd)x, = 2df ¢(1), m € Zg

where

7 = ((mBI"ClmB])".
The crucial observation is now that the successive subspace correction algorithm
3.1 becomes, in our periodic setting, a (frequency dependent) SOR-method for the
solution of the hermitean linear systems (4.18), i.e.
xa? = M(0m d)x (K)+ 2df, M(6:md)e(1),
where
(4.19) M@0 d) = 6(D(n d) + 6E(y d))™.

In particuiar, no Fourier modes that are absent in the right hand side f(x) and the




initial approximation X™(x) will be excited in the course of the iteration.
ii)  From (4.10) we obtain that

l“q‘“:n':(n,) = 2" Iﬁq-ﬁff’li(o,)

= 2°C, ¥ (x. -xf’)ﬂl-(n.d)(x. -xﬁ’)
n€Z,

where C, = d(2x)*(8,8,)"
With the Fourier coefficients of the error X - X®,

Y, = x, ¥ meZ,
we find

lo, - 001, = G X IYPRE

where 22
YO : = YOULG v

- YN (00,0) Lin AM(Gin, d)YE D

< MO D IYEIE -
This proves (4.16).
ili) To prove (4.17), we first establish a perturbation result. Recall that
L = A + B, A and B as in (2.19) and (4.8). Then

D = 9D,+D, E = 9E  +E,

and we have for sufficiently large n




M = (Dy+Dy) + 0(r7E, +E))” {(1-0)s"D,+D)) - os%E, +E/f}

- (D +08) + 271, +05,)" - {(1-010,-062) + v{a-0)0, -0}
= (1+97D, + 0} (D, +01=.,))"(D., . OEO)"{((I -6)D, -6EL) + n{(1-6)D, -oE:*)}

= (D, +0E,)"((1-6)D, - 6E;) + R

where the remainder R is given explicitly by

fé (47D, +0Ey '@, 05, | 0, 0Ey {(1-0D, -6E2) + n{1-0)D, -0}
p-

+ 1”(D, +0E,)*((1-0)D, - 6E})
provided that n > g, n, is selected sufficiently large to ensure the convergence of
the Neumann series. Hence we have shown that, as n - «,
(4.20) M(6m) = M,(0) + R(0:m)
where M,(0) is the (n- independent) SOR matrix corresponding to A and
IR} =0(n? as 5 - o in any fixed, 9-independent matrix norm.

iv) We prove (4.17). As before, we find for k € N,

fu, w2 = 27C, T (¥ MY L MY

m€Z,

= 2*C, ¥ MY

nEZ,

where | Y[, := [|YRLY|j3.




As it is well known, for every matrix M and every ¢ > O there exists a vector
norm ||| «|ll,, on C*' such that for the induced Lub matrix norm (which we again
denote by (|| -|ll,) there holds

(4.21) Ml = M) + <2, e>0

(the norm ||| - |||,, depends on ).
In particular, we observe that therc exists & constant ¢ = 1
independent of 7) such that

(4223) NREDI s o’ - 0.
(4.22b) M, - ¢yt s (M) s ©(M,)+ oy’

Now we fix ¢ > 0 and introduce the index scts
6. - {m€ Zickid) < af, 6 -6

with the constant c as in (4.22) and n,d > 5, Then we split

lu, - w®)2 = 2-C, { )INRID

and discuss both sums separately. For m € G, we have

IMYO . = (V) (MY L MY

- (V) (" i + B)MOYE

< i |AnMyO | + (O v BMYY.

We estimate the first term by




T |ARMY_ | = sd’|AVM, R},
= nE|ALAEDIM, R I, 1Y

< nad®Aj(ed)cond,(A)(IIM, Il + HIRI)* HYS [

where A,(e,d) is the equivalence constant between |-}, and ||| I, for
sufficiently large k. For sufficiently large k, the second term can be estimated by
(O MBMY,® < £(B) [MY®[34Ked)
< nuded- r(1.3) |AMY,© 240 (A)Al(e,d)
- A(edmiE|ATMY O
Then we continue as in the estimate of the first term. By (4.21), this yields with a new
constant A(e,d) the estimate
IMYQ L. s Ae.d)cond,(A)(r(M,) + /4 +e /4y | YO | L,

and hence we obtain forevery ¢ > 0, 0 <d <1 and k € N,

(4.23) Y IMY, 9. s cond(A)A(ed(M,) + 2 T YO

We consider the case m € §,.. Since §, is a bounded set for fixed ¢ and d,

we estmate
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Ml < 3 ML

nEg,

(4.24) s 3 AlDNM i) Yo'l

< | wp AT @M@nd) + > Y] .
mEQ, =€q,

From (4.22b), we see that
M, (0) = (M(@n.4d) + €2, vm € §_

so we can combine (4.23) and (4.24) into

lu,-uPlE = 2°Ced) T (T(M(On.d) + &>

mEZ,

s 2°CCAE+* T YDl
mEZ;
= Cl(‘id)(? + f)?x “uq - uf,o)llf;,
where
(4.25) (0) = sup r(M(6nd))
mEZ,
and C, depends on ¢ and d, butis independent of k. Hence

1A

)
Pl 2 Gom e
kvoo | To, -0l kevco
= T +e
Since ¢ > 0 and 0 < d <1 were arbitrary, the assertion (4.17) follows. a

Remark 4.3. In (4.17) we have taken the sup over all 9 d € Zy. Obviously we get
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an upper bound when we aefine

W6) = sup {r(M(Om))).
11')0

Theorem 4.1 has several important consequences which we discuss next. The
crucial observation was (4.16; and (4.17) which states that in the periodic setting the

HCM becomes simplv a (parameter dependent) SOR method for the solution of the

linear system (4.10). Since for every m 4 0 the matrix L(n_d) is symmetric and
positive definite, we have from Kahan’s theorem (e.g., 12, Thm 8.3.5) the

Corollary 4.1. There holds, for every d € (0,1] and m € Z,

(4.26) jo-1] < p < « s\/)\(ﬂ,n.d) X

Proof: We have Kahan’s lower bound |w-1] < p(M(f,7)) forall n » 0 (sec, c.g.

[12, Chap. 8]) and hence (4.26) follows from x = p(M(8,7)).

Corollary 4.2. The rate «x of convergence of the HCM is bounded from above
independently of d.

Proof: From Theorem 4.1 we have

x)? < sup {NO7n )}
mEZ;

< sup {A6m)}

where A is as in (4.16). mE R’

The result follows since the matrices M(f,7) and L(n) are independent of d.

The SOR-iteration applied to a diagonal matrix L converges in one step.
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Consequently, if we can give a basis ¢ that renders A and B in (2.18) diagonal
simultaneously, the matrix L(nd) will become diagonal and the HCM will converge in
one step.

Corollary 4.3. Let A = I‘_lb(z)wsz, B = Il-la(z)\p’ V/Tdz with the functions
defined in (2.13)-(2.15). Let Q be the (q+1) % (q+1) matrix the columns of which are the
eigenvectors of

427 Bx = JAx

normalized so that XAX =1 and 0 < o} < o’.,. Then the basis ¢ = QT renders
L(nd) in (4.14) diagonal and the HCM converges in one step, ie. x = 0 in (3.5).

Proof. We have x"Bx = o x"Ax = o by (4.19). Now, dueto ¢ = QTy,

I :b(z)¢¢"dz = QTAQ = 1,

Iatgz)¢' ¢’sz = QTBQ = {0,6:,..-,0':},

hence with ¢, = 0
L() = FA+B = diaglf+df) .

Frequently, especially in elasticity problems, it is not possible to find a {-
independent transformation Q which renders L. diagonal. Nevertheless, as we shall see in
the next section, it is often useful (and possible) to have L({) approach diagonal form
as (=0 oras { - o

Corollary 4.4. Assume that 0 < 6 < 2. Then




1% lim M@n) =0 if B = j " a@@)e’ (¢’ )'dz is diagonal.
"_.0 -1

2°: lim M@6n) =0 if A = ]‘ b(z) ¢’ dz is diagonal.
U pdd B
Proof. 1°. Consider L(¢) as ¢ - 0. Sincethen I(}) = PA +B-+B and B is
diagonal, the assertion would follow if B were nonsingular. Since, however, rank (B) =
q < dim(B) = q + 1, we assume that o; = 0, ¢, = const. and that

I ilb(z)cp,qpodz =0 for i = 1. This uncouples the first equation in (4.18) from the

remaining ones, i.e. the iieration matrix M(6,y) attains block diagonal form:

0
M) = [g x]-

The corresponding lower right block of B is now diagonal and positive definite, hence
1° follows. |

2°, We write in this case

L) = $(A+¢7B).

From the formula for M in Theorem 4.1, 2° we find that M corresponding to L in
(4.20) and M corresponding to (A + {2B) are identical (i.c. a scaling of L does not
alter M). Since A is diagonal and positive definite, and {?B -+ 0 as { -» o, we
find 2°. : a

In summary, we have shown that the influence of the basis {¢,}j.; on the
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convergence rate of the HCM Algorithms 3.1 can be analyzed quantitatively with the

iteration matrix M(0,7_d) in (4.15). In the same vein any other iterative method that

is based on the subspace decomposition (3.1) can be analyzed, in particular the parallel
subspace correction method.

Remark 4.4. The analysis presented so far applied only to the case where « is an
interval or a rectangle and the boundary conditions are either homogeneous Dirichlet- or
periodic conditions. However, analogous results can be obtained for arbitrary Lipschitz-
domains « C R°, if the unknown coefficient functions X(x) and their iterates X®(x)
are expanded into series of eigenfunctions y,(x) of the operator -A, in « with

appropriate homogeneous boundary conditions on dw.

FOURIER CONVERGENCE ANALYSIS OF THE HCM-II

In the previous section we introduced the tnol of Fourier transformation of the
reduced model (3.3) to obtain explicit estimates on the convergence rate x in (3.5) and
p in (3.6). This was achieved by taking the supremum overall wavenumbers m of the
largest eigenvalue A(0,n_d) of (4.16), resp. of r(M(6,9.d)) of (4.17). Our purpose in
the present section is to show that the eigenvalue curve A(8,3), resp. r(M(6,n))
contains more information: it is a factor by which the energy contained in error
components of "wavelength" #~'d is reduced in one step of the HCM. We consider

here the special case of (2.5) where




(5.1) a=b=1 C=1 (unit matrix),

sothat L = A and D, = % Then it is readily verified that the director functions

in (2.13)-(2.15) are even polynomials of z and we list the first of them in the following
table.

T#BLE 5.1. The function ¥,(z), 0 < j <2.

j ¥(2)
0 1
1 (2% - 1)/6

(152* - 302> + z)/360

The basis functions y, wiich render A in (2.17) diagonal are orthogonal in

L*(-1,1) and we select them to be the even Legendre polynomials, i.e.
(52) 4@ = L)
where Ly(z) = 1, L(z) = (32%-1)/6, etc.
Analogously, the functions which render B in (2.17) diagonal are orthogonal in

H'(-1,1) with respect to the inner product
1
(5'3) (‘Pja‘Pi) = I _l¢,j¢,idZ.

A basis which satisfies (¢,¢) = 8, is therefore given by
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(5.4) o =1 e@= [L L@ 21

or, more explicitly, ¢(z) = (2(4j-1))"*(L(2) - L,.,(2)).

Figures 5.1 and 5.2 depict the bounds p(M(6,7)) for 6 = 1 (ie. no relaxation) over
several orders of magnitude of the normalized frequency # for the basis function in (5.2)
and (5.4), respectively. We remark that Lo(z) and L,(z) are orthogonal in the ¥ /-1,1)
and in the H'(-1,1) inner product (5.3) - hence we have A(f,9) = 0 for q = 1 with the
basis (5.2), in accordance with Corollary 4.3.

In accordance with Corollary 4.4, we have

() lim p(M(1,9) =0 for (52)
7>

and

(5.6) | ’lr'u.%'p(M(lm)) =0 for (5.4),

i.e. (5.2) is better for a rapid convergence on the high frequency components while (5.4)
performs superior on the low frequencies. Of principal interest is the overall supremum

p(M(6,9)) for 6=1, q = 1,2,3,4 with the basis (5.4).

.7 sup [p(M(Ln))} = o(q).
nER’

In Table 5.2 we report the numerical values for the bases (5.2) and (5.4).
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Figure 5.2. p(M(8,n)) for 6=1, q = 1,2,3,4 with the basis (5.4).
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We see clearly that the basis (5.2) is more robust than (5.4), since it yields reasonably small
contraction rates uniformly on all frequencies 5. The performance of the basis (5.4) can
be poor if the error contains high frequency components. In the following table we list

for q = 1 and the basis (5.4), for small 7.

TABLE 5.3. p(q) for q = 1 and the basis (5.4).

0.01 0.1

p(M(1,7)) 0.33-10°* 0.33.10%

We see clearly that we have here
(>8) PM() ~ 73 as g0

In Figure 5.3 we depict this quantity also for higher ¢, with the slope according to

(5.8).
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Figure 53. p(M(8,n)) for 6 =1, q = 1,2,3,4 with basis (5.4), log-log scaie.

¥ -ce further that (5.8) is practically independent éf the model order for 3 < 1.

The above graphs show that we can expect generally a different performance of the
HCM on high and low frequency components of the error Y®(x) := X(x) - X®(x). This is
of significance since the exact solution X(x) consists, especially for small d, of two

mutually distinct components: a smooth, asymptotic part and boundary layers X (x) of the
form
(59) X)) = {x"exp(o;xid))

where o¢; depends only on the model order q [16] and xj“(x) is smooth.




In Table 5.4 we list the values of o(q).

TABLE 5.4: Boundary layer exponents ¢,(q) for small q.

q 1 2 3

o,(q) J15 A8 3.1416

0,(q) 6.4791

a,(q) 18.0596

It is further shown in [16] that
0(q) = jx as q - oo.
Comparing formally exp(-ox/d) and exp([mp}x) with g = % we expect large Fourier

coefficients x, for [mg8] ~ ¢/d or for
(5.10)
We remark at this point that for certain compatibie data f(x) the components (5.9)

vanish. Nevertheless, for arbitrary data the boundary layers (4.9) are generally present and

we see from (5.10) that we can expect the contraction rate

o

(5.11) - p < k = x[o,"_']

for the HCM. If several distinct layers are present (cf. Table 5.4), we see that

ox/a can be quite large, hence, a decay of M#6,9) as # - oo is highly desirable.
Remark 5.1. It follows from Theorem 4.1 only that A < x. Nevertheless, we found in all
cases for the matrix M in (4.15) that p = A.
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NUMERICAL EXPERIMENTS

In order to verify the applicability of our theory in a computational setting, we
considered the following model problein:
6.1) ~au = 0 in (-1,1) x (-d,d),

(62) u =0 for x = #1

(6.3) %‘; = +1 for y = +d.

The solutions exhibit boundary layers of the form (5.9) (see also [16]).

The problem (6.1)-(6.3) was discretized by a two dimensional FEM with rectangular
clements w, X (-d,d) where w, C (-1,1) are subintervals. Tensor product polynomial
subspaces with degree p in horizontal and uniform degree q (only even shape functions
were used here) in the transverse direction were used. We selected p = 10 to ensure that

the models were solved accurately.

Remark 6.1. In practice a locally variable degree q is of high interesi, see e.g. [13]. In this

case the HCM becomes a block iterative method (here a block SOR) for the fully discrete
system.
An exact solution was obtained by direct solution of the linear system and the

iteration was stopped when
(64) I X e | / ¥ e < 207
where |- | denotes the (discrete) energy norm. We selected the initial guess x® = 0

throughout (in practice when solving the higher order models, one should start from a

converged solution of the lower order problem). As an averaged convergence rate we took




the geometric mean of J iterates before convergence occurred, i.e.

i
(6.5) N e
vo [x*0-x [lg

(3 = min{10,k’} was sclected). In Figure 6.1 we show the average convergence rates for
models based on the director functions (5.2). The model orders q =0 and q =1 were
not shown, since the HCM converges in one step here.

We observe in Figure 6.1 that the maximum convergence rates are very close to the
values predicted by our Fourier analysis. Moreover, we observe that as d - 0 all rates
tend to 0.3, the theoretical value (cf. Fig. 5.1). This is due to the contribution of the q =
3 and 4 models being of higher order as d -» 0 and due to the 1-step convergence of

HCM for q = 1.

Let us now turn to the HCM with the basis (5.4). Figure 6.2 shows the performance

for (6.1)-(6.3).

Note that for the boundary layer case (Fig. 6.2), the convergence rates are once again
close to the ones predicted in Table 5.2 which are in this case, for large d, very close to
1.

Finally we present in Figure 6.3 the convergence history for the HCM with (5.2) for
various values of d and for q = 2. Figure 6.4 presents the analogous data for the basis

(5.4).
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Figure 6.4. Convergence history for q = 2, (54 ).

36




7. CONCLUSIONS

We have shown that the hierarchic models can be solved very effectively by an

iterative procedure, provided that the shape functions used (in y direction) are properly

selected. The iterative procedure employed was based on a subspace decomposition with
respect to the spectral order of the hierarchic plate model. Sharp estimates for the
convergence rate of the subspace correction in dependence on the selection of the director
functions were obtained using the Fourier transform. The technique will be extended to

clasticity problems in the forthcoming second part of this work.
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