
oo•

In
cog-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

F DT]•V STAlT

ELECTE L; 0

OCT 2 5 1994 :' f

THESIS

INDUSTRY VERSUS DOD: A COMPARATIVE
STUDY OF SOFTWARE REUSE

by

Robert W. Therriault
94-3294S and

September, 1994

Thesis Advisor: James C. Emery

Approved for public release; distribution is unlimited.

9..-1-'

.REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704

blic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
truction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection offormation Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions

for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
avis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project

0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1994 Master'sThesis

4 TITLE AND SUBTITLE 5. FUNDING NUMBERS
Industry versus DoD: A Comparative Study of Software Reuse

6 AUTHOR(S) Robert W. Therriault and Kristina E. Van Nederveen

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those cf the author and do not reflect the official policy or
osition of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; 12b. DISTRIBUTION CODE
distinbution unlimited A

13. ABSTRACT (maximum 200 words)
Software reuse is a longtime practiced method. The technical issues, such as how to link software repositories and

programming for reuse, have been resolved. The problems faced by industry and the Department of Defense are of a non-technical
nature and can be categorized into three broad categories: managerial, economic, and legal. This thesis compares industry and
DoD reuse efforts highlighting common problems and lessons learned The comparison is between IBM, Hewlett-Packard, the Air
Force's Central Archive for Reus le Defense Software (CARDS), and the Restructured Naval Tactical Data System (RNTDS).
Each reuse effort is studied using personal interviews and written descriptions. Problems encountered by private industry and their
solutions are analyzed and compared to DoD. Many of industry's problems are found tc be prevalent in DoD. Industry recognizes
these issues and is taking steps to rectify them, Legal issues are the least understood by industry and DoD, and need further
research to overcome these hurdles. Some economic and managerial issues are recognized by DoD and are in process of b- in8g
resolved. Industry Is more advanced than DoD in their programs and understanding of rease. DoD can al'zviate some of its
software re,,re pob!ems by employing tht !essons learned from industxy.

14. SUBJECT TERMS 15. NUMBER OF PAGES104

Software Reuse Program, Software Dcvelopment 16. PRICE CODE

17, SECURITY 18. SECURITY 19, SECURITY 120. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL

Un4assi fled Uncltsifled Uaclassified

NSN 7540-01-28G-3500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i i l i

Approved for public release; distribution is unlimited.

Industry versus DoD: A Comparative Study of Software Reuse

by

Robert W. Therriault
Lieutenant, Supply Corps, United States Navy

B.S., Flodda State University, 1984

Knstina E. Van Nederveen

Captain, United States Army
B.S., The Ohio State University, 1987

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL

Septembei 1994

Author:____________________ ___

"Robert W. Therriault

Kdstina E. Van Nederveen

Approved by:
•.James C. Emery, Thesis 4)dvisor

William Short, Associate Thesis Advisor

David R. \hip le, C n
Department of Systems Ma gement

ii

ABSTRACT

Software reuse is a longtime practiced method. The technical issues, such as

how to link software repositories and programming for reuse, have been

resolved. The problems faced by industry and the Department of Defense are of

a non-technical nature and can be categorized into three broad categories:

managerial, economic, and legal. This thesis compares industry and DoD reuse

efforts highlighting common problems and lessons learned. The comparison is

between IBM, Hewlett-Packard, the Air Force's Central Archive for Reusable

Defense Software (CARDS), and the Restructured Naval Tactical Data System

(RNTDS). Each reuse effort is studied using personal interviews and written

descriptions. Problems encountered by private industry and their solutions are

analyzed and compared to DoD. Many of industry's problems are found to be

prevalent in DoD. Industry recognizes these issues and is taking steps to rectify

them. Legal issues are the least understood by industry and DoD. and need

further research to overcome these hurdles. Some economic and managerial

issues are recognized by DoD and are in process of being resolved. Industry is

more advanced than DoD in their programs and understanding of reuse. DoD

can alleviate some of its software reuse problems by employing the. lessons
Acc(.foiun For

learned from industry. r!,Is CRA&I I

-DTIC TAB [3
Uua(m,)i:nced I

J .i..i.tow l

iii - • I.... •. .

A....v', ~ .' ,,
• J.• bi;v :.jjl

TABLE OF CONTENTS

I. INTRODUCTIO N 1

A. BACKGROUND DISCUSSION 1

1. O verview 1

a. What is Software Reuse 1

b. General Software Reuse 2

c. DoD Software Reuse 2

2. Reuse's Shortcomings 4

a. Software Reuse Standardized Methodology 4

b. Incentives .. 5

c. Legal Considerations 7

B. BRIEF SUMMARY OF THE AREA OF RESEARCH 8

C. DEVELOPMENT OF RESEARCH QUESTION 9.............. 9

I1. LITERATURE SEARCH 11

A. DEFINITIONS 11

B. DISCUSSION OF LITERATURE SEARCH 13

1. Software Reuse 13

a. Prieto-Diaz Facet Classification or Reuse 13

b. Other Reuse Classificatiions Discussion 16

c. DoD Reuse Standardization Efforts 16

iv

2. Software Reuse Legal Issues 18

3. Economic Factors of Reuse 18

III. INDUSTRY AND DOD SOFTWARE REUSE EVALUATION... 20

A. INDUSTRY REUSE EVALUATION 20

1. IBM Boeblingen 20

2. Hew lett-Packard 26

B. DOD REUSE EVALUATION 32

1. Restructured Naval Tactical Data System (RNTDS) 32

2. Central Archive for Reusable Defense Software (CARDS) 38

IV . FIN DIN G S .. 46

A. PURPOSE OF CHAPTER 46

1. Software Reuse Origins 46

B. LEGAL ISSUES 47

1. Legal Issues Found in the Evaluations 47

2. Patents, Copyrights, and Liabilities 50

3. Software Repositories 55

a. Access 56

b. Content of Repositories 57

c. Who is Liable for Faults 58

4. Opening Software Reuse to Outside Users 59

5. Effects of Legal Issues on DoD Reuse Program 60

v

C. ECONOMIC FACTORS OF SOFTWARE REUSE 61

1. Software Reuse Economics 61

2. Econom ic Barriers 62

3 . Incentives ... 6 5

4. Econom ic M odels 68

5. Effects of Economic Issues on DoD Reuse Program 70

D. MANAGERIAL ISSUES OF SOFTWARE REUSE 71

1. Upper-level Management Involvement

2. Reorganizing the Organization 73

V. CONCLUSION AND RECOMMENDATIONS 76

A. DETERMINATIONS 76

1. DoD Software Reuse in General 76

2. Positive Effects of Software Reuse in DoD 78

a. Support for Software Reuse 78

b. Software Reuse Horizon 78

3. Negative Effects of the Software Reuse Program in DoD 81

a. DoD Software Reuse Initiative Infrastructure 81

b. Repository Concerns 82

(1) Domain Analysis 82

(2) Certification and Search Tools 83

(3) Legal Concerns 84

vi

c. Acquisition Regulations 84

d, Education and Training 85

B. CONCLUSIO NS ... 86

C. RECOMMENDATIONS FOR FURTHER STUDIES 87

1. Software Development and Reuse Legal Issues 87

2. DoD Acquisition Regulations 88

LIST OF REFERENCES 89

INITIAL DISTRIBUTION LIST 94

vii

I. INTRODUCTION

A. BACKGROUND DISCUSSION

1. Overview

a. What is Software Reuse?

Software reuse is accomplished by creating programs from previously

developed software modules. Many different aspects of software can be reused,

such as source code, documentation, design, and algorithms (Krueger, 1992:

Prieto-Diaz, 1993). This should provide system developers with greater

productivity by reducing the work required to produce modules that commonly

occur in other systems. Reuse is expected to lead to reduced system

development time arid maintenance while increasing reliability by using existing

working modules. Most important are the potential monetary savings that would

be realized by using such a system. In a climate of shrinking assets, reducing

costs is welcomed by both the Department of Defense (DoD) and the military

services as well as industry.

Software is the Achilles' heel of implementing any portion of an

information system. Software drives the hardware and is quite often the

breaking point for either successful implementation or failure of that system.

Software reuse is intended to simplify this development process and abate high

1

maintenance costs. The idea is to use some type of software reuse to build an

epp!ication quicker and more efficiently than starting from scratch.

b. General Software Reuse

The idea of reuse has been around for a long time. Instead of

reinventing solutions, it is easier to extract the applicable information from

previously developed solutions, and use it in the creation of a new one.

Mathematics is an example where the reuse concept has been formalized for a

long time. "Formal generic mathematical models are good examples of

successful reuse because they can be applied to solve specific problems across

several engineering fields and domain" (Prieto-Diaz, 1993). This idea of reuse

can also be applied to the various aspects of related software products. Why

reinvent the wheel when somebody else has already created it?

c. DoD Software Reuse

Software reuse is being touted as a primary way to reduce systems

development expenditures. The Department of Defense (DoD) and the military

3ervices perceive that it will greatly reduce the cost of systems development.

System development currently consumes about 10 percent of DoD's annual

budget (Endoso, 1992). To accomplish these savings, systems will need to

"reuse" previously designed and implemented software modules. These

modules would be maintained at centralized software repository centers for

reuse by authorized vendors and the military services.

2

The gains that would be experienced by investing in a software reuse

system are attractive at first glance. There are, however, some major obstacles

to be hurdled to achieve success. To facilitate a venture of this immensity one

central authority will be required to be the focal point of all efforts. The central

authority would be responsible for:

"* Standardization of requirements for the DoD system;

"° Acting as the quality filter for the reusable modules being sponsored for

acceptance;

"* Providing incentives to encourage sponsorship and use of the reusable

modules;

"• Maintaining a central repository library system and reuse system interface;

"° Providing mechanisms for distribution.

DoD has taken bold steps to achieve this with the Corporate

Information Management (CIM) initiative. This initiative seeks to improve DoDs

management of information resources. CIM calls for functional interoperability

between systems, standards compliance, and efficiency in software

development. The efficiency would result from dependence on reusable

software components (RSC), commercial off-the-shelf (COTS) products, and

computer-aided systems engineering (CASE) tools. CIM additionally promotes

the establishment of a software reuse repository. The purpose of the repository

is to develop a central DoD-wide RSC clearinghouse, establish a data dictionary

fcr DoD, and build an integrated repository for C31 software (Bui, et al., 1993).

3

This will require a reuse library system capable of multiple user access,

interconnectivity across different operating systems, search and retrieval,

cataloging, classification, and user/library documentation

At the ,:ame time that DoD is grappling with these issues and trying to

introduce a global software reuse system, private sector firms have dealt

successfully with some of these issues and are pursuing software reuse as a

way to cut development costs and production time. By no means have they

perfected reuse, but some corporations are starting to reap the benefits of their

reuse program.

2. REUSE'S SHORTCOMINGS

Software reuse is hindered by issues such as training, costs, legal

problems, poor incentives, technical difficulty, and cultural resistance (Garry,

1992). Reusable code is not a cure-all for programmers and does not always

provide significant benefits. Quite often maintaining old programs or developing

shell scripts for reuse of old code is overlooked (Plauger, 1993). A brief

discussion of the important issues follows.

a. Software Reuse Standardized Methodology

There currently exists no clear-cut directive or docunentation from

higher authority detailing how reuse should be accomplished in DoD. The

services are pursuing reuse, but are doing so with their own individual guidance

instead of a unified DoD basis. This is going to produce four to five sets of

different service-unique requirements and methodologies.

4

Paul A. Strassman, former director of the DoD's CIM program, defined

two of the challenges facing reuse as: 1) developing identifiers that are easy to

understand for the code in the repository and 2) providing search capability

(Perry, 1992). Each military service has developed identifiers and search

capabilities for their programs, but each one is service-unique. This has led to

no standard identifier format or search mechanism shared by the military

services. Without some form of repository and reuse standardization, users will

ultimately be forced to using an interconnected system and having to learn the

various idiosyncrasies of each. This will not encourage use of the system, but

rather discourage it. Users will not use a system that requires a lot of effort to

learn. The system will either be viewed by the user as not being user-friendly or

it may be perceived by them to be more frustrating than useful.

b. Incentives

For a repository to be effective, the RSCs it accepts and maintains

should be delivered at a high level of quality. The present method utilized to

certify candidate RSCs has been adopted from the Army's Reusable Ada

Product 'or Information System Development (RAPID). This certification

determines the attributes of the RSC, its reuse potential, and the level of

re-engineering needed. Following this, one of four levels is assigned to the

RSC. The levels range from no formal testing and documentation (first level) to

fully tested and documented that meets all standards (fourth level). There is a

5

fifth level that is not currently being used, for designation in the future (Bui, et al.,

1993).

Sponsors of software for reuse have no incentive to provide anything

but level one or two RSCs. This is because there are no monetary incentives to

provide a RSC with the necessary documentation and testing for level three or

four certification. Nor are there any directives stipulating this must occur for

every RSC submitted to the repository(ies). RSC's at level one and two are in a

less developed state and will result in software development personnel having to

analyze and tailor them more than levels three and four. Though this has to be

done for all levels, the process of fitting levels one and two to the project needs

will prove more costly than building it from scratch due to their less developed

state. Any consideration of reusing components created by others must include

analysis of cost and benefits, quality, achievable reuse goals, domain analysis,

staff experience, development, and recognition of the effort involved (IEEE

Software, 1993).

Another problem is that vendors have no incentive to use RSCs if they

are not directed to or do not get paid a bonus for using them. Even if these

methods are implemented, a vendor may still not use software reuse unless it

can be demonstrated to save them time and money. Internal and external

incentives have to be determined to make the software reuse system pay for

itself. Also, the DoD must offer vendors a motivation for reuse, and the

6

companies must provide the same things to their employees to encourage their

reuse (Endoso, 1992).

c. Legal Considerations

Problems exist with the current DoD acquisition regulations that hinder

giving incentives for reuse. Many questions about legal rights and government

ownership of the reusable components have also surfaced. Software reuse has

not been addressed very well at the acquisition management level. Acquisition

personnel who have to implement reuse do not have the proper guidelines in

place. In fact, the regulations do not address reuse at all (Endoso, 1992).

Additionally, these personnel are ill-trained concerning many of the other

aspects pertaining to information systems, which only compounds the problems

experienced in acquisition. Acquisition is the basic tool used in instituting the

development of new software systems and is where concerns regarding the legal

issues are the most relevant.

The General Accounting Office (GAO) recently released a report on the

DoD software reuse plan. The report stated that technical, organizational, and

legal barriers must be overcome by the DoD to realize the benefits of software

reuse. The report, entitled "Software Reuse: Major Issues Need to be Resolved

Before Eenefits Can be Achieved," dated January 1993, points out many of the

previously discussed shortfalls of reuse in this chapter. The report found the

following:

• Methodologies for implementing reuse have not been fully developed

7

"• Tools supporting a reuse process are lacking, and

"* Standards for guiding critical software reuse activities have not been

established (GAO, 1993).

The GAO report presented some of the barriers to software reuse, such

as higher initial costs to develop reusable software and the possible legal battles

that may evolve among software suppliers, repositories, and users (Endoso,

March 1993). This report did not, however, address the various legal issues

surrounding software reuse repositories. Software reuse, in theory, is an

attractive idea, but the GAO report highlighted various pitfalls and, as a result,

has caused more scrutiny of software reuse efforts.

Industry has been studying software reuse for many years and one of

the first case studies, at the Hartford Fire Insurance Group, was published in

1983 (Biggerstaff and Perlis, 1989). Many information technology managers in

industry have implemented some type of software reuse program, with some

success. These case studies reveal the experiences and growing pains of

implementing a successful software reuse program. These experiences should

provide valuable insight into the reuse methodologies, legal issues, and

economic factors that industry has had to tackle. These experiences can be

utilized to assist DoD in its similar goal of implementing software reuse.

B. BRIEF SUMMARY OF THE AREA OF RESEARCH

In order to reduce the staggering expense for software development and quell

the critics, software reuse has to prove that it is a viable cost cutting

8

methodology for future software development. Currently, each of the services

conducts software reuse using various methodologies, techniques, and

procedures. DoD has mandated software reuse, but has not developed a

detailed game plan to achieve this directive. This thesis will explore issues

associated with the implementation of software reuse, such as software reuse

methodologies, incentives for software programmers, ownership of software

modules, compensation for software developers, and procurement changes.

All of these issues need to be addressed before DoD can to institute an

effective software reuse program. Using examples from both industry and DoD,

these issues will be explored, drawing on both successes and failures in

developing reuse, to determine the best practices of software reuse. Comparing

and contrasting both adequate and inadequate practices in industry to what is

being achieved in government may give the Armed Forces new insight on how to

implement software reuse.

C. DEVELOPMENT OF RESEARCH QUESTION

The objective of this research is to compare and evaluate how private firms

have implemented software reuse and how private firms' methods compare to

DoD's effort. The thesis will focus on issues concerning ownership of modules,

incentives to use software reuse modules, and how intellectual property rights

impact software reuse initiatives. How has industry structured reuse? Is it a

global concept or an internal concept? Did actual software reuse exist prior to

being implemented as part of the software development.cydle? What came first,

9

ad-hoc reuse or structured reuse? Are there lessons that can be learned from

successful industry implementations that can be applied to DoD?

The research will be achieved using case studies and personal interviews

with programmers, executives, and others involved with the establishment and

use of software reuse in industry and DoD. Literature searches will be

conducted on the relevant issues addressed previously in this chapter, Data will

be collected from these various sources and then analyzed to attempt to

determine similar trends. Hopefully, this comparison will assist in conceiving a

process of how to best conduct software reuse

10

II. LITERATURE SEARCH

The literature search was conducted at the Knox Library, the Naval

Postgraduate School, the Computer Center Library in Ingersoll, personal

interviews, CD ROM, and via the Internet. Many of our contacts were made by

subscribing to newsgroups on the Internet and receiving mailings from news

sources. In our search we came across certain authors many times, such as

Ruben Prieto-Diaz, Ted Biggerstaff, Will Tracz, Joyce Endoso, and Barry

Boehm.

A. DEFINITIONS

While conducting the literature search on the topics to be covered in this

thesis, certain terms were found to be defined in various manners. To clarify any

potential misinterpretation of terms and provide continuity throughout, it is

necessary to define these terms in the context in which they will be used in this

thesis These definitions will apply to various aspects of software reuse, legal

issues, and economic topics. The definitions are as follows:

Software reuse - The use of existing software components to

construct new systems. Software products such as source code,

designs, specifications, objects, text, architectures, processes,

domain analysis, megaprogramming, etc. can be reused.

11

Software reuse repositorn - Resembles a conventional library

system. Used to store the various software components to be used

in the reuse effort. These components are the same as those

described in the software reuse definition. Various classification

schemes are used to file software components in the repository.

Internal reuse - Reuse of software produced internal to the

organization that is developing the program. Usually conducted by

the same programmer who wrote the original software product.

External reuse - Reuse of software produced external to the

organization that is developing the program. Author of the

software product is not part of that particular organization. For the

purposes of this thesis, an organization is defined as a DoD

service or a corporation in industry.

Domain-specific reuse - Reusing components in a specific domain

to build an instance of an application in that domain

(Direction.Level Handbook, 1994),

Patent - A government grant of monopoly on an invention for a

limited amount of time. Usually in the United States, these patents

last forseventeen years. An invention is a new device, or a

composition of matter, or a newly created technical method

(Henderson, 1993).

12

Copyright - A grant of an exclusive right to produce or sell a book,

motion picture, work of art, musical composition, or similar product

during a specified period of time (Hirsch, 1988). !t protects the

expression of an idea, not th• idea itself. A copyright is automatic,

in the sense that it is obtained by simply displaying prominently

within the document the word 'copyrighted' followed by the year of

creation and the author's name. This copyright lasts for three

years.

Liability - Addresses the legal responsibilities of the software

developer and software repository administrator for any misuse of

the software products contained in the reuse repository.

B. DISCUSSION OF LITERATURE SEARCH

1. Software Reuse

a. Prleto-Diaz Facet Clessffication of Reuse

Industry appears to be as committed to achieving a viable software

reuse program as is DoD. Software factories in Japan, such as those at Hitachi,

NEC, and Toshiba, as well as programs in the United States at AT&T, GTE, IBM,

and Hewlett-Packard, demonstrate this resolve. In conducting the literature

search for this thesis, we found many different types of reuse to be used by

industry and DoD. Ruben Prieto-Diaz, who has published many essays on

classifying software products for reuse, has stated that all reuse can be viewed

as falling into six facets: by-substance, by-scope, by-mode, by,-technique,

13

by-intention, and by-product (Prieto-Diaz, 1993). His facets best illustrate the

many approaches that can be used to achieve software reuse and they are

discussed below.

By-substance: defines the essence of the items to be reused.

- I~te.g Involves the reuse of formal concepts to a particular

class of problems.

• Artifacts: Components or parts reuse involve using portions cf

programs. Parts reuse focuses on quality, reliability and

certification of reusable components.

- Procedures. Procedures reuse encompasses reuse of

process pogramming and environments focusing on trying to

formalize and encapsulate software development procedures.

By-scope: defines the form and extent of reuse.

SVertical, Reuse within the same domain or application area.

Its goal is to derive generic models for families of systems to

be used as templates for new systems.

- Horizontal: The use of generic parts in different applications

that do not necessarily perform in the same manner as the

original application.

By-mode: defines how reuse is conducted.

* Planned: Systematic and formal practice of reuse where

guidelines and procedures for reuse have been defined.

14

Metrics are collected and used to assess the performance of

the reuse effort.

" Ad-hoc: Informal practice in which ccmponents are selected,

by a programmer, from previous projects or a generalized

library of reusable products.

By-technique, defines what approach is used to implement reuse.

"* _2ompsitional: The use of well defined, existing components

as building blocks for new systems.

"* Generative: Reuse propagated by use of application or code

generators at the specification level.

By-intention: defines how elements will be reused.

"* Black-box: The reuse of software components without any

modification or the necessary documentation and

specifications to comprehend how the component funct'ons.

"* White-box: The reuse of components by modification and

adaptation for use in the development of a new system.

By-product: defines what work products are reused.

"* Source code: The reuse of actual programming source code.

"* Desion: The reuse of designs of existing software matched to

specifications for the software system being developed.

"* Specifications: The reuse of specifications with its respective

implementations at the design and source code levels.

15

"* Objects: The reuse of objects using object oriented tools and

methods to cover all phases of development.

"• Text: The reuse of text by integrating reusable text with all

other work products.

"• Architectures: Analysis of application domains to find generic

designs that are then used as templates for integration of

reusable parts or development of code generators,

b. Other Reuse Classifications Discussion

The breakdown presented by Ruben Prieto-Diaz is the most

comprehensive classification system for softvare reuse that we found. Several

other ways to categorize software reuse were encountered, but they were not as

descriptive. For instance, Tracz places software reuse into two categories:

Vertical reuse and horizontal reuse. Vertical reuse can occur when the majority

of the applications built by software developers are representative of a single

kind of data processing activity, and many software objects that are employed by

one can be shared among the others, Horizontal reuse, by contrast, occurs

across a broad range of application areas (Tracz, 1987).

c. DoD Reuse Standardization Efforts

In pursuit of developing a formal reuse policy, DoD has established

how it envisions software reuse in the DoD Software Reuse Vision and Strategy

Initiative document. The vision portrayed in the DoD initiative is "To drive the

DoD software community from its current re-invent the software cycle to a

16

=~ M."

process-driven, domain-specific, architecture, library-based way of constructing

software" (DoD, 1992). The strategy details that the purpose of the vision is to

incorporate reuse into the software development cycle of each program. The

strategy consists of ten elements that basically address the following issues:

"* Targeting domains that have the greatest potential lor reuse.

"* Solving the various legal issues surrounding reuse.

"• Establishing a metrics program to measure the payoff and guidance for

developers in the selection process.

", Exploiting near-term products and services that can facilitate movement to a

reuse paradigm.

"* Integrating reuse as an integral aspect of the software acquisition process.

In support of this initiative, DoD established the Defense Software

Repository Service (DSRS) to eventually encompass a distributed operation with

four remote centers supporting the different armed services. DSRS is intended

to support reuse efforts at the centers performing domain analysis and plan for

effective software reuse. In order to achieve a centralized DoD clearinghouse

the services have been developing a telecommunication infrastructure with a

standard network interface. This is intended to eventually allow users to access

software code at the four reusE. centers that now use separate systems. This will

permit access to each of the DoD reuse repositories without having to access

them separately.

17

Five centers will eventually become involved as integrated test sites for

the system. The sites are (Bui, et al., 1993):

" DSRS, Washington, D.C.

" Standard Systems Center, Gunter Air Force Base, Ala.

"* Army's Software Development Center, Falls Church, Va.

"* Navy Computer and Telecommunications Station, Washington, D. C.;

"* Marines Corps Central Design Activity, Quantico, Va.

The ability to access the system will be controlled by the services and library

security will be maintained by the services (Endoso, 1992).

2. Software Reuse Legal '-sues

Something that many software developers tend not to think about too often

are the legal issues involved with software development. Software reuse has

added some unforeseen complications to these issUes. The legal issues

involved with software reuse center on the software repositories and copyrighted

or patented software modules. For many programmers, copyrights, patents, and

other legal issues are too abstract and unrelated to their process of software

development and reuse. Yet the fear of patent infringements, copyright

violations, and the associated liability, make software development personnel

increasingly hesitant to use repositories or administer them. Software reuse will

not be a viable solution to reducing software development costs if ihese legal

issues are not resolved. These legal issues will be discussed further in Chapter

IV.

18

3. Economic Factors of Software Reuse

Economic factors play an important role in software development. Project

managers have to keep the product on time and within budget. If software reuse

is combined with this process, then economic factors will include the cost of the

reuse program. These costs include incentive programs, education of al!

personnel, and changes to the organization. Any organization that embarks on

a software reuse program has to be willing to accept the high initial costs

associated with such a program. Reuse will require a significant departure from

the normal operations of the software development team. Costs associated with

finding reusable software, verification and validation of software, and adaptation

of software must be considered before embarking on a software reuse program

(Emery and Zweig, 1993).

Software reuse, in the short term, may seem to be an exp(nsive method to

reduce software development costs. This could cause management to become

unwilling to consider software reuse because it may be viewed as a drain of

critical resources. This impression is further complicated by the lack of a

"standard" economic model for software reuse to measure any potential cost

savings. The cost of reusing software must be less than the cost of developing

new software, but much of the reuse efforts today do not consider the cost factor

(Conn, 1993). The economic factors of software reuse will be discussed in

greater detail in chapter IV.

19

III. INDUSTRY AND DOD SOFTWARE REUSE EVALUATION

A. INDUSTRY REUSE EVALUATION

Industry has been toying in the reuse arena for several years. Some

companies have recognized the benefit of software reuse, or more generally

reuse that includes the design phase through the maintenance and

implementation phase of software development. The benefits are realized in

quicker product releases and better quality products. In this section we will

examine two examples from industry where reuse has been successfully

instituted, IBM and Hewlett-Packard.

1. IBM Boeblingen

IBM is one of the giants in computer software and hardware. Recently

IBM has been forced to -eorganize its corporate structure to stay competitive in

the industry. IBM uses Market-Driven Quality (MDQ) to identify ways of attaining

greater productivity and quality goals. MDQ is IBM's version of Total Quality

Management (TQM), a new management style that emphasizes quality of the

product and meeting the customer's needs and desires.

As a result of MDQ, there was a greatly increased demand for reusable

software, designs, and documentation (Wasmund, 1993). Through software

reuse, the corporation can develop products quicker and more efficiently. Reuse

started as an ad-hoc idea and has expanded throughout the corporation. It was

20

centered around programmers using existing components from previous

projects. In the early days of software reuse at IBM it was done by-substance

(artifacts) and by-mode (ad-hoc) (Prieto-Diaz, 1993).

As in many new projects, the inhibitors to the new project had to be

identified and addressed. In the case of software reuse, four major inhibitors

were found. These were the lack of reusable components, lack of component

compatibility, lack of appropriate development environment, and lack of

appropriate database retrieval mechanisms (Wasmund, 1994). Although IBM

used incentive programs to entice programmers to create and use the reusable

components, it eventually had to mandate the reuse program in order to make

any progress. To make reuse a more accepted practice throughout IBM, the

project required support from management and a structured method for

implementing software reuse. In order to achieve this, IBM has focused on

establishing reusable parts centers.

The first reusable parts center was established in Boeblingen, Germany.

IBM calls software modules "parts," since they are not limited to software code,

but can also inc!ude documentation, designs, and specifications. The parts

center was created as a pilot program, but has proven to be a successful way to

proliferate reuse through the corporation. Its objective is the production and

maintenance of highly generic and reusable software components for worldwide

use within IBM. The concept is that for reuse to occur there has to be a "trading

infrastructure" or "reuse marketplace" to get customers and suppliers together.

21

For reuse to be successful, there has to be a forum or place where the

developers of software modules can interact with the customer to create the

parts they require for a project. Management support also plays an important,

if not crucial part in the implementation of software reuse. Without the support,

the trading of parts would be restricted. Management can oversee the process

and straighten out any problems.

A repository is used to store parts and their descriptions. The parts in

IBM's repository are assigned a particular certification level, which indicates the

level of completeness and the defect rate level of the part. The more a part is

used the better it becomes. Each time a part is used it is refined and hidden

defects are discovered. The certification level alerts a programmer that the

component has either been newly created, and therefore has a low certification

level and the potential for defects, or it has been used numerous times and has

proven its worth ty having most of the bugs corrected, deserving a higher

certification level. Managing the repository requires continuous maintenance in

order to keep the components up-to-date and usable for the programmers.

Maintenance of these parts is very important to both the user and the quality of

the part. This is consistent with IBM's MDQ philosophy.

An accounting system is also needed to trace and account for exchanges

and costs in order to determine savings. Existing accounting systems had to be

modified to reflect the high initial cost of the reuse program with the cost benefits

coming later once the program was fully operational.

22

Michael Wasmund, who is the site coordinator at IBM Beoblingen, has

been the driving force of the parts centers for reuse. He established a reuse

methodology using the Critical Success Factors (CSF) method (Wasmund,

1993). The Critical Success Factors method takes a problem or tasking and lets

one build a project out of that problem by identifying critical tasks that need to be

accomplished in order to achieve the goals set out by the project. The basic

steps of the CSF method are as follows (Wasmund, 1993).

• 1. Define a goal

- 2. Decompose the goal into a set of factors.

• 3. Define activities.

* 4. Build and validate the CSF matrix.

* 5. Execute the activities.

While defining the goal, it is of utmost importance to be as specific and detailed

as possible about purpose, scope, and time constraints. It has to include the

exact definition of the quantities desired by the goal.

The next step takes the goal and breaks it down into factors. The factors

should describe entities and not activities which are mission essential. The

factors state things or entities that must be obtained to reach the goal. An

example of a factor is availability of a specific software engineering tool. These

factors have to be as independent of each other as possible. In a reuse

environment these factors are best derived from brainstorming and intense

discussions (Wasmund, 1993).

23

In step 3, activities are defined and include verbs that describe the action

required to achieve the goal. These activities describe the actual work that

needs to be accomplished, in this step it is essential to consult everyone who is

involved in the environment to be changed or who might be affected by the

changes otherwise the execution of the defined activities will meet with low

acceptance (Hooper and Chester, 1993).

Next, in step 4, a matrix is built using factors and supporting activities as

the matrix outliners. This matrix, Figure 1, helps identify unsupported factors,

redundant activities, and priorities. From the matrix, unsupported factors can be

recognized, redundant activities eliminated, and activities can be tracked and

readjusted for better project management.

Critical
Success
Factors A B C D E F

Activity

Y. X X X

2 X X X

3 X X X

4 X X

5 X X
6X X X

7 X X X --

Figure 1: CSF Matrix __

24_-__-__

24

The last step, step 5, is executing tha activities. Execution has to be

geared to the local work culture and experience level, otherwise problems can

occur. "Every failure started with a great plan. If the plan cannot be translated

into action, then nothing will come from it" (Wasmund, 1993).

The following are some lessons learned by IBM Boeblingen when they

implemented the CSF method for establishing software reuse:

• The greater the effort spent in Steps 1 and 2 of the CSF to obtain accurate

and agreeable statements, the less rework was required to achieve the

overall goal. The goal was to shorten the development cycle, increase the

reliability of marketed products, and attain high reuse maturity within IBM

(Wasmund, 1993).

"• IBM explored the issue of providing tools for reuse compared to establishing

methodologies for reuse. IBM decided to use both simultaneously to allow

teams to start the reuse effort. There still is a problem with too! integration

because the repository has to be compatible with the configuration libraries

required for the development of the product. The requirement for data

transfer standards has not been fully developed yet. There is a disconnect

because the standards have not been developed due to the various

development environments. Tools and methodologies have to be consistent

throughout the company to allow interaction between different projects.

"* IBM found that although incentives worked well for the cost associated with

them, overall, their effect was limited. The purpose of the incentive program

25

was achieved, because programmers created items, i.e. parts for reuse and

these items were actually reused. Yet the incentive program did not bring

about cultural change within the organization to shift to reuse. The incentive

program was tied to other already existing award programs. The incentives

were not based on just the creation of parts for the repository, but on having

parts used in products and the creation of parts for others to use. Rewards

were awarded only if the part did not require modification. Incentives are still

being used, but are not seen as the main catalyst for implementing reuse

throughout the organization.

- IBM used education and consultation to spread the concept of reuse through

the organization. Education heightened the awareness of IBM's software

reuse concept. Consultation, on the other hand, was not as useful. This

was due to the consultation being viewed as interference from the outside.

Through the CSF method, IBM Boeblingen is making parts reuse an

inherent tool in developing high-quality products faster, The reuse concept ,s

cutting costs and is recognized as a fundamental tool in the creation of new

products in the future. IBM is actively pursuing software reuse by incorporating

it into developing new products, educating management, and continuing

research in new technologies.

2. Hawlett-Packard

Hewlett-Packard has extensively researched software reuse and has

applied it to its organization. Serious work on reuse started in the early 980s.

26

Early work involved the development of instrument libraries in BASIC, the

construction and use of databases to store and distribute software components,

and more recently the use of Objective-C or C++ to develop class libraries

(Griss, 1993). Early reuse was centered around software code only. Most of

these software modules were reused in-house, but some were actually provided

to outside developers. Hewlett-Packard used incentives to elicit software from

contributors. The problem with this was that the repositories were filled with

software modules that did not work well together (there were no standards or

methodologies to make modules compatible). This problem was exacerbated by

the fact that incentives were given to contributors but not to users of the library.

The mission statement of the software reuse program at Hewlett-Packard

is stated as follows: "We have initiated a multifaceted corporate reuse program

to help introduce the best practices of systematic reuse into the company,

complemented by multidisciplinary research to investigate and develop better

methods for domain-specific, reuse-based software engineering" (Griss, 1993).

The aim of the reuse program is "to make software reuse a more significant and

systematic part of the software process" (Griss, 1993). At this point in time

Hewlett-Packard has not focused on just one way to do software reuse. Instead

they are exploring various methods and studying new business management

philosophies and engineering concepts.

27

In order to support the corporate reuse program at Hewlett-Packard, a

general model was developed, The general model used at Hewlett-Packard has

four steps:

" Step 1 Business Analysis. This requires that the business be modeled to

understand how reuse may be applied and what key issues are involved.

"* Step 2 Technical Analysis. In this step, software reuse process elements are

identified and matched to the entire product development process.

"* Stec 3 Social Analysis. This step involves the definition of the new

organization based on the experience of knowledge work organizations,

reuse organizations, and the software processes used by other software

entities.

"• Stec 4 Tools and Environment. Create a software factory through kits of

software factory support components to provide a technical infrastructure.

The development of this four-step model was based on research on how to

improve reuse at Hewlett-Packard. From the research done at Hewlett-Packard,

it was found that most problems associated with software reuse were not based

on technica! problems; instead they were attributed to non-technical problems

that were managerial or economic in nature. The research also focused on

inhibitors to reuse and divided them into three categories: people, process, and

technology. Inhibitors to software reuse were attributed to one of these

categories and alleviators to these inhibitors were developed.

28

First and foremost among these inhibitors was management support of

software reuse. Long-term support and up-front investments are needed to get a

software reuse program up and working. The organizational culture needs to be

changed. Employees need to have confidence in the reuse program. This can

be achieved through incentives, training, and management backing. The

organization also needs to change with respect to financial policies, contracting

mode!s, and legal policies.

Technical aspects may be expressed in guidelines and standards for

building, testing, and documenting reusab!e work. Hewlett-Packard has found

that the best way to introduce software reuse to an organization is to start with a

pilot program. Starting off with oversight on a small project can demonstrate the

benefits derivable from software reuse with only a small Investment up front. A

srmall project is easier to manage, making it possible to convert the nonbelievers

and lead to a change in culture.

The researchers also found that to achieve efficient and effective software

reuse, there had to be a shift from the library model to a model that emphasizes

software engineering. 'The library metaphor and model, used for many years to

guide work in reuse, needs to be replaced by a software engineering model

based on kits, factories, manufacturing, and engineering. Software engineers

and managers need to change their view of software reuse from that of simply

accessing parts in a software library, to that of systematically developing and

29

using well-designed parts following a careful process within a reuse-based

software factory" (Griss, 1993).

Hewlett-Packard's work on kits has centered around the LEGO concept

for kits. The fundamental idea of LEGO is tc use blocks that fit together with

other blocks in the kit to create a product. In the LEGO for kids, kits are

designed to let them build castles, space stations, and pirate ships. These kits

can be combined to build more complex projects. "A 'kit' should contain

well-designed and packaged compatible reusable work products, tools, and

processei to assist in providing more 'complete' solutions for application

developers" (Griss, 1993).

In the beginning Hewlett-Packard used by-substance (artifacts), by-rhode

(first ad-hoc, then planned), and by-product (source code) reuse (Prieto-Diaz,

1993). More recently Hewlett-Packard has pursued another area of research

that led them away from software repositories to what they term software

factories, A software factory is a way to combine factory and manufacturing

concepts to deveiop and produce software in a flexible manner. Flexible, in this

case, means applying a less rigid and concrete software engineering method

that is able to be easily manipulated. This carries the concept of kits one step

further. The software factories use the same concepts found in industry in order

to build a production line of software products. It brings back the engineering

side to software product development. The factory is designed to use the

components in the kits to create the product, but also includes the engineering

30

and rework associated with different products. The goal is to be able to cut out

redundancy in the redesign and reengineering of different products.

The lessons learned are based on earlier reuse efforts by

Hewlett-Packard that brought about the framework for software reuse discussed

above.

"* Incentives lacked the desired effect at Hewlett-Packard because it populated

the repositories with modules but did not increase the instances of reuse,

"• Since the repositories did not bring about dramatic increases in software

reuse, Hewlett-Packard looked for a more systematic approach to reuse that

combined such aspects as fourth-generation languages (4GL),

object-oriented technology, computer-aided software engineering (CASE)

tools, and formal methods for specifications.

The bottom line, based on Hewlett-Packard's experience, is that for an

effective reuse program to be established it has to start small, be well-supported

from the start, and gain experience through pilot projects. Research has

established three major stages of reuse adoption: introduce the commitment to

try reuse, institutionalize the commitment to change and expand the pilot

program,. and sustain the commitment to improve (Griss and Latour, 1992).

Hewlett-Packard has made a commitment to reuse by establishing a corporate

reuse program. There are numerous pilot programs being studied by

researchers to determine which way to expand the programs. Hewlett-Packard

31

does not want to narrow it's options by limiting it's reuse program to just one

facet, but instead is exploring various aspects.

B. DOD REUSE EVALUATION

DoD has employed many different approaches in its aspiration to achieve

software reuse. As discussed in Chapter II, these approaches are similar to

those pursued by industry. DoD, however, seems to be attempting to narrow its

scope from an ad-hoc, informal and unstructured strategy to a structured,

planned, compositional methodological approach to software reuse. This is

evident with the Air Force's Central Archive for Reusable Defense Software

(CARDS), the Navy's Restructured Naval Tactical Data System (RNTDS), and

the Army's Reusable Ada Product for Information System Development (RAPID)

program. The Defense Software Reuse System (DSRS) has chose to emulate

the RAPID program.

The common threads among all of these DoD systems is the combining of

domain-specific, compositional, systematic and vertical methodologies of

software reuse to derive a more efficient program. The RNTDS and CARDS

programs were selected to exemplify a couple of the efforts that have been

pursued in DoD.

1. Restructured Naval Tactical Data System (RNTDS)

As far back as 1976, the Naval Sea Systems Command's software support

activities wanted to develop an architecture to take advantage of the

commonality present in the Combat Direction System (CDS) domain. The CDS

32

domain consists of numerous command and control functions - such as

navigation, fire control, control of air assets, identification, tracking, and operator

display - that present the current tactical situation and allow the execution of the

operators' orders. Achieving this requires that the CDS have over a dozen

asynchronous interfaces with the ship's combat system. The CDS can be

viewed as the integrating system of each ship class. This is what the RNTDS

architecture was designed to exploit, the commonality between these systems

across various ship classes. The commonality wouid lead to reuse of the

modules that were found in each of the different COS's (Stevens, 1991).

Early studies conducted found that there was a high degree of

commonality among the CDS program functions. The study concluded that only

20 to 40 percent of the requirements were unique to one ship class. To take

advantage of this functional commonality, software reuse was considerd to be

the best methodology to exploit the advantage. The original basic goals of the

RNTDS were (Stevens, 1991):

"* Automate the construction of multiple CDS programs with varying

requirements from a single repository of small, reusable components.

"* Reduce the life cycle maintenance costs through the abstraction of common

processing requirements.

"* Reduce the impact of software change resulting from corrections,

improvements, or hardware changes.

33

• Provide the ability to deliver C,"DS program improvements across all ship

classes through a single implementation.

* Create a common operator interface across all ship classes to minimize

training requirements.

The following goals evolved subsequent to the original ones and were adopted

for inclusion into the RNTDS goals (Goodall, 1992):

"* Ensure transportability of applications.

"• Improve program reliability.

The CDS software development in the RNTDS architecture followed a

structured methodology that consisted of the following phases: specification

development, program performance specification development, preliminary

design analysis, pre-code analysis, function testing, performance acceptance

testing, combat systems integration testing, and fleet introduction support and

testing (Stevens, 1991). Software reuse was incorporated in the program

performance specification development phase. The RNTDS development can

be classified as using a combination of the facets described by Prieto-Diaz.

They are by-substance (artifacts), by-scope (vertical), by-mode (planned), and

by-product (,architecture) (Prieto-Diaz, 1993).

The performance requirements of each CDS program are specified in a

standard syntax adhering to a strict format to promote clarity and to allow for

consistency and completeness checks. The domain model used by the RNTDS

was the) Program Performance Specification, which is a stand-alone document.

34

In this document the CDS processing requirements are expressed in small

discrete numbered paragraphs. Each paragraph contains pointers to the next

one that continues the processing.

This is done to be able to allow for stimulus-response threads to be traced

through the entire specification. Maintaining one specification to serve all

applications permits an automated matrix to be used to relate which paragraphs

are needed for each program. A change made to one requirements paragraph

results in the change being made to all related programs that include that

paragraph (Stevens, 1991). The Key point to this philosophy is that software

reuse begins by reusing specifications and forcing development to reuse

specifications and not "reinvent the wheel." The programmers knew they could

reuse code, but they wanted to focus the reise effort on the program

performance specifications instead (Goodall, 1992).

The domain model became the point of departur, for all of the programs that

followed after the original development of the first program. When new

requirements were provided they were analyzed against the domain model

(Program Performance Specification) to ascertain tne similarities. This analysis

identified which requirements paragraphs could be reused or modified and which

ones would have to be generated. A new specification document is not

generated for each project; instead, a column is added to the matrix after the

new and modified paragraphs are added to the specification.

35

The artifacts from the first project were used to populate the reuse

repository, which is referred to as the Common Reusable Library (CRL). As a

project is comp;ated, the new and modified artifacts are included in the CRL.

The CRL is used in conjunction with the analysis in determining which

requirements paragraphs can be reused or modified or need to be built from

scratch (Goodall, 1992). The RNTDS program has used support tools that were

developed concurrently with the application program. The tools were also

managed under the same configuration as the application software.

Through the development of the RNTDS program there were many

valuable lessons learned by the project members. The first lesson, related to the

project, assumed that all artifacts are reusable if they were designed from their

inception to be reused. The artifacts that were used included performance

specifications, design specifications, source code, test procedures, and user

manuals (Stevens, April 1994).

The second lesson learned by the project team was related to the size of

the code components. They found that with the smaller code components reuse

was enhanced, but complicated program construction. What they learned from

this lesson was that it was necessary to automate construction with stringent,

automated source update procedures supported by automated tools to assure

adherence to architecture standards (Stevens, April 1994). Additionally, it was

found necessary to use configuration management to assist in simplifying

maintenance.

36

The third lesson learned dealt with the development and evolution of the

support tools. They first built a working methodology and then worked to

optimize it by improving performance, including transitioning to a unified

relational database and to commercial hardware. They learned that support

tools are not static and should not be expected to remain static. They

determined that evolution of the tools to a more robust, dynamic set of tools

should be built into the project's acquisition plan (Goodall, 1992). They also

observed that the tools and application software need to be co-located to be

effective.

Lastly, the project team found that it was necessary to maintain an

independent repository engineering group. The group was made responsible for

coordinating the interaction of application program development teams with the

repository (CRL) (Stevens, April 1994).

The RNTDS project also used published standards set forth by the

Software Productivity Consortium (SPC) and Software Engineering Institute

(SEI), as well as applicable DoD standards and instructions. The SPC economic

models applied will be discussed later in this chapter. The SEI affiliation and

use of their Software Capability Maturity Model was instrumental in providing

measurement throughout the project development. They also applied available

standard government progress and planning practices and found them to be

adequate (Stevens, June 1994).

37

The future enterprise of the RNTDS is to continuously improve the present

processes and continue to deliver CDS programs with high degrees of software

reuse. This will be accomplished by applying the RNTDS reuse techniques to

other CDS's, reengineering existing programs to make use of the functional

commonality, applying architectural lessons learned, and migrating software

reuse techniques to workstation-based technologies to improve its portability.

Pursuit of these goals will serve to make the RNTDS program a more flexible

system capable of maintaining a high degree of reuse for the future.

2. Central Archive for Reusable Defense Software (CARDS)

The Central Archive for Reusable Defense Software (CARDS) was initially

designed for the Air Force command center domain. Since the origin of the

program, CARDS has evolved to become structured around the elements found

in the DoD's Software Reuse Vision and Strategy document discussed in

Chapter II. The main purpose of this emphasis is to remove the redundancies

found in software development by using a process-driven, domain-specific,

architecture-centric, library-based way of building software. CARDS has

evolved to a global concept so that it could be used by other DoD organizations

in implementing their software reuse programs. The four main goals of the

CARDS program are (Technical Document, 1993):

Program, document and propagate techniques and processes to enable

domain-specific reuse throughout DoD and to support contractors across

various domains.

38

"• Develop a franchise plan that provides a blueprint for institutionalizing

domain-specific, library-assisted reuse techniques to be used throughout the

DoD.

"• Implement the franchise plan and provide a tailored set of services to support

reuse.

"• Develop and operate model-based, domain-specific library systems and

necessary tools in support of the franchisees.

To assist in identifying and removing technical and business related

obstacles to domain specific reuse, the CARDS program is developing a

"Knowledge Blueprint" for reuse. It will include the necessary materials to

support the transition of the "Blueprint" into the software community. The

blueprint is communicated by a "Franchise Plan" that is supported by library

operation and maintenance related documentation, reuse adoption handbooks,

and training and education materials. The Franchise Plan provides descriptions

of reuse processes and the appropriate instructions for tailored implementation

of domain-specific reuse processes., The Plan also describes in precise steps a

scenario for implementing a domain-specific library (Direction-Level Handbook,

1994). The Plan is embraced as a universal document that provides the outline

of the processes needed to implement domain-specific reuse for any DoD

organization or DoD contractor,

CARDS was designed to incorporate a domain-specific, model-based

approach to software reuse. A model-based approach to reuse emphasizes the

39

relationships between components, as well as the actual components

themselves; in contrast, the component-based approach emphasizes just the

component. A component is usually easily described and follows

well-partitioned functional lines. Examples of these include documents, models,

subroutines, and applications. The CARDS reuse effort can be classified as

using a combination of the facets described by Prieto-Diaz: by-substance

(artifacts), by-scope (horizontal), by-mode (planned), by-technique

(compositional), and by-product (all forms) (Prieto-Diaz, 1993).

The domain-specific software architecture lends itself to being the

organizing principle of the library model. This supports traceability of

requirements to particular components and the subsystems implemented by

aggregations of components, which is also captured in the library model. The

architecture is also used for the process of qualifying the reusable components

for the library. The architecture appraises the software "'orm, fit, and function"

ag" st the requirements mandated by the software architecture.

Domain-specific component qualification goes further than qualitative

assessments of conventional reuse libraries to show how a component is used

within an application domain (Technical Document, 1993).

The r",RIDS model-based libraries differ in many ways from conventional

reuse libraries, in the following ways:

40

•=' ~~~ - M "' -I' 1 1 i I P1• 1'I •"1 I

"* In CARDS, components are not easily defined and include concepts such as

requirements, generic architectures, other conceptual models and their

interrelationships.

"* CARDS does not use component search and retrieval, with its singular

application emphasis supporting interactive search, but rather a collection of

applications tailored to the domain of interest and a prescribed user. These

can include a graphical browser, system composer, and component

qualification.

"* CARDS relies on the use of modeling formalisms to describe, manage, and

use complex sets of relationships that are characteristic of an application

domain and its software architecture and components. CARDS modeling

formalisms are better than lower-level data modeling formalisms used in

conventional ;ibrary schemes. This sophistication is due to the fact that

CARDS applies knowledge representation technology to derive its modeling

formalisms.

To support this modeling, CARDS has engaged the Reusable Library

Framework (RLF), which is an open system knowledge representation

framework designed for use as a foundation for domain-specific reuse

repositories/libraries. RLF is comprised of a semantic network and a rule-based

inferencing system, similar to an expert system, that captures and maintains the

constraints of actual problem domains. RLF was found to be the best repository

41

candidate, used in the right environment, from 12 government and commercial

programs because of its unique abilities (Reuse Tool Assessment, 1993).

The CARDS system provides a group of library applications adapted to the

domain of interest for the individual user. The CARDS model-based library is

designed to be used for more than component storage; it also provides a

collection of reuse tools. These tools are implemented on the open systems

programming specification provided by the RLF. Individual tools provide

specialized reuse services adapted to certain application domains, This is made

possible due to the tools using the RLF to manipulate domain models and the

ability of the RLF to support domain models for different application dcmaiý-?

The domain model, in turn, contains significant inf,,.rmation ccicerning the

application domains, including requirements, arc.C. ,'*yjtures, and rationale.

Ultimately, the domain model refers to reusable software components kept in a

component store for use by the user (Technical Document, 1993).

While the lessons learned by the RNTDS program were mainly technical

in nature, the ones that evolved from the CARDS program were managerial in

context. Based on experiences of the program, it became evident that to

implement software reuse, more than just the technical side of the program

needed to be emphasized. In response to this, four handbooks were developed

to aid the adoption of software reuse and were targeted at specific audiences.

These handbooks were based upon past CARDS experiences in constructing

42

and operating domain-specific reuse repositories/libraries. The four handbooks

are:

"* Direction-Level Handbook is targeted at top-level acquisition managers to

assist in their understanding of implementing software reuse. It provides a

framework to aid them in establishing plans to manage reuse across their

systems and obtain the goals outlined in the DoD Software Reuse Vision and

Strategy document (Direction-Level Handbook, 1994).

"* Acquisition Handbook is directed at program managers and contracting and

legal professionals involved in the acquisition/software development cycle. It

is designed to assist them in incorporating software reuse into all phases of

the acquisition life cycle (Acquisition Handbook, 1994).

"• Enaineer's Handbook is geared towards software engineers and other

technical personnel in discussing the integration of software reuse

development methods and techniques into their own command/contractor

software engineering processes.

"• Component and Tool Developer's Handbook provides a technical basis fcr

the creation of components and tools for domain specific reuse libraries

(Technical Document, 1993).

Another lesson was derived from the initial efforts that were centered

around the singular domain of command centers. As the efforts proceeded,

there came the understanding that this singular CARDS focus could evolve to

include support for other domain libraries as necessary and that it could serve

43

as the test bed for emerging technologies. This evolution provided the

groundwork for testing and developing more fully the concepts and process&s.

Both the testing and development underlie both the creation and the use of

model-based, domain specific reuse libraries.

The CARDS program also realized that to achieve software reuse,

education and training of all personnel involved in the software development

cycle was necessary. From this lesson originated a training plan that was

written for DoD and industry personnel, as well as undergraduate and graduate

computer science and software engineering students. The plan and courses

were developed to support the integrem'on of library-assisted, domain-specific

reuse into the dcvelupment cycle. The purpose of this task is to educate

software professionals and to assist in the elimination of cultural barriers

(Technical Document, 1993).

The CARDS blueprint was designed with the consideration of future

transition to other DoD organizations. The blueprint will serve as the overall

plan for developing and supporting library-assisted, domain-specific

infrastructures throughout the DoD. The future vision of the CARDS program is

that of a virtual component library consisting of locally kept software components

with a seamless, high-speed interoperation with other libraries. Thi, would

increase the number of assets available to the user and, in theory, reduce

software development costs. This has been prototyped by CARDS, in

44

oartnership with the STARS/ASSET and DISNDSRS component libraries

(Schwartz, 1993).

The CARDS program has taken well coordinated steps to assure that

software reuse becomes an integral part of its software development cycle. The

fact that the program is flexible enough to be ported to other DoD activities

displays the thoroughness of the concept design and implementation. This

forward looking approach allows the continual enhancement necessary for the

program to remain viable in the future.

45

IV. FINDIAIGS

A. PURPOSE OF CHAPTER

The four examples described in Chapte.r III are a small sample of what is

being accomplished in both industry and in DoD. Each of the examples have

some commonalities, but each is distinctly different in its approach to software

reuse. In this chapter we will draw out the similarities and differences of the

examples and discuss these findings. From the examples, readings, and

interviews with personnel in DoD and industry, there were three major areas of

inhibitors to successful reuse that we encountered and propose to discuss in this

chapter. These inhibitors can be grouped into legal, economic, and managerial

issues. Each group of theso issues, in its own right, can be enough to

undermine the best software reuse initiative.

1. Software Reuse Origins

Each reuse effort in tne examples from Chapter III tended to start with

software reuse being conducted in small pockets internal to the organization.

This sometimes occurred when a programmer used a part of a software program

that he or she borrowed from another programmer and used it in a new project.

More often it was the programmer reusing his or her own previously written

software in another program (Emery and Zweig, 1993). Reuse was born out of

these pockets of closet reusers and its value was recognized by management.

46

Management, swamped by the need to produce high quality products in a short

period of time and at reduced costs, endorsed the idea of reuse.

The small groups of programmers who were doing reuse did so in an

ad-hoc, unstructured basis. As reuse was consolidated at each of the four

organizations, it became more formal and structured. This can be clearly seen

in the DoD examples. The fundamental reason that CARDS and RNTDS were

established was to provide a systematic approach and a structured framework to

conduct software reuse. Out of the spontaneous impulse of a programmer to

use a previously created piece of software evolved a somnetimes mundane and

bureaucratic formal structure. Each of the organizations realized this and sought

to refine their reuse structure. IBM pursued a parts center geared to alleviating

the search and retrieval frustration of programmers and project managers.

Hewlett-Packard drifted away from the software repository to its factory concept,

while RNTDS narrowed its focus on CDS commonalities and CARDS focused on

using all forms of reuse.

B. LEGAL ISSUES

1. Legal Issues Found in the Evaluations

Reuse in industry has remained mainly an internal process because of the

legal issues involved in porting reuse to outside users. The reason IBM gives

for keeping software reuse internal is because of the legal issues related to

copyrights and patents (Wasmund, 1994). Neither IBM nor Hewlett-Packard

have sold their parts library or software kits to their customers. One can argue

47

that they feel that the technology is still in its infancy and nct ready to be

released to customer,. "New methods and technologies cail yield highly

reusable domain-specific kits, comprising reusable components, frameworks,

and glue languages. Nuw processes and organizations can produce flexible and

effective software factories. These approaches offer great promise fr further

gains, and a more systematic attack on the software problem" (Griss, 1993).

Hewlett-Packard and IBM have demonstrated so far that software reuse is

a viable option in fne development of software. Their research has been geared

towards making internal software reuse - i.e., for use within the organization - a

practical solution. "Before a product can be shipped, the origin of all its internal

code must be clear. This means exclusion of public domain code in almost all

cases" (Wasmund, 1994). At IBM, software is limited to only IBI I-owned

software. They have not explored the possibilities of porting software re\!e to

their customers, or at least have not disclosed such a possibility if they have.

Both RNTDS and CARDS were originally designed to reside internal to the

organization, but with their maturity are now being used as portions of each

service's model for global implementation (Legal Workshop, 1993; Huber, 1994;

GCN, 1994).

Another argument is that software reuse is an internal tool to develop and

produce a better product and keep the companies away from costly lawsuits. By

selling the parts repository or software kits, the companies would lose their

competitive edge. "Increased and formalized reuse of software and related

48

assets is one essential method to allow faster delivery of high-quality products to

the market" (Wasmund, 1993). Letting other customers produce their own

software with the assistance of the software repository would limit the growth

potential of the original owner of the software repository. When IBM uses

cutsourcing, the corporation tries to develop cross-license agreements under

which both parties license their respective patent portfolios to each other

(EDGE, 1993). In essence, IBM buys up the licenses it needs to keep its market

dominance. For competitive reasons, IBM does not use software reuse when

working with outside contracts unless all the rights are owned by IBM.

The most compelling reason for keeping software reuse internal is the

multitude of legal issues related to it. Organizations are hesitant to open reuse

to outsiders, because the law is not clear on how to deal with software reuse

legal issues. "Generally, as the law is based on facts, legal assessment shouid

only be made on detailed facts. However, it must be remembered that specific

case law on computer software technology, in general, is lacking and for

reusable software there is none" (Baxter, 1994). In the last few years there has

been an increase in lawsuits brought against software and computer companies

for patent and copyright infringements. There are two main lessons learned

from these lawsuits. One is that the patent process Is hopelessly outdated,

which makes patent searches difficult to conduct. The other is that the judicial

system of the United States is not familiar enough with computers, algorithms:

and software to be able to make fair and just judgments.

49

There has been no case in the courts dealing with the legal complexities of

software reuse (Legal Workshop, 1993). This may be contributed to

commercial enterprises staying away from permitting outsiders to use their

software reuse program. By keeping the reuse internal, the company can keep

intellectual property rights to any module. Each programmer and analyst, when

joining a firm, usually signs a statement giving the rights of any software

designed by them to the company. Anything that is developed inside the

company belongs to the company and is usually copyrighted by them.

Through our interviews and readings, we presume that the reason that

IBM and Hewlett-Packard have emphasized internal software reuse is due to the

legai issues involved in incorporating third-pArty software, DoD, on the other

hand, has to resolve these legal issues due to the type of software (mostly

contractor developed) it maintains in its software repositories.

2. Patents, Copyrights, and Liabilities

One of the problems with software repositories and software reuse

initiatives is the content of these repositories represents the work of some

person. The genercl term for this is intellectual property. Intellectual property

can be protected by patents (used mostly for inventions), copyrights (applies to

the expression of an idea), and trade secrets (Hjber, 1994).

The difference between a copyright and a patent is that a copyright

applies only to the specific expression of an idea, while a patent protects the

idea itself (Bielefield and Cheeseman, 1993). Both the patent and the copyright

50

are used in guarding against the illegal use of software. Technical!y, any time a

program is written, it is an expression of an idea and therefore copyrighted. The

patent protects against the new idea being stolen and used by somebody else,

even if expressed in a different manner (in another computer language, for

example).

Why is there a need for patents and copyrights in industry? Some see

copyrights and patents as ways of gaining monopolies. "The economic

philosophy behind the clause empowering Congress to grant copyrights is the

conviction that encouragement of individual effort by personal gain is the best

way to advance public welfare through the talents of authors ... in science and

useful arts!" (Bielefield and Cheeseman, 1993). These monopolies are intended

to improve the quality of the product or promote standardization. Others believe

that patents and copyrights protect small software development companies from

ý',ing taken over by the industry giants. Without the patent process, small

software companies cannot compete with the larger companies.

Another prevalent view is that patents and copyrights are seen as a

hindrance to the software development process. Paul Eggert, in the

misc.legal.comp. newsgroup on the Internet, summarizes it as follows: "Early

experience suggests that patents are not a cost-effective way to promote

progress in general-purpose cormputer software, and this is a principal reason

why their use is so controversial. It is reminiscent to the controversy associated

with the discredited earlier practice of granting pst'-nts on non-inventions."

51

Others build upon this argument. "Every single piece of software builds on the

work of previous software developers" (Miller, 1994). Many in industry deem

that copyrights can sufficiently protect software. Copyright laws seem to be

easier to enforce, because the copyright lasts only three years. A monopoly is

granted for the expression of an idea, not the idea itself. Instead, only

intellectual property is guarded and software development can continue to be

innovative and unrestrained.

The question is how to protect those rights. "If systems are built

incorporating proprietary reusable components, how is the proprietary software

protected from being plagiarized in delivered systems?" (Tracz, 1987). This is a

question that has been asked in industry, but no clear-cut answer has been

found. It appears that many companies pursuing software reuse avoid the issue

by focusing on only internally created software. The company owns the patents

and copyrights of software developed by the programmers who work for the

company.

DoD, in contrast, is soliciting and placing software modules in its

repositories that were created by contractors for use by other contractors. DoD

realizes that there are problems with this and is working on agreements to limit

copyright and patent liabilities for use of the software repositories (Huber, 1993).

The users generally have to agree to pay royalty fees for copyrighted and

patented software moduies and release the repository of any responsibility in

collecting these royalties.

52

"US copyright laws give the copyright to the author of a work, but the

'Work Made for Hire' doctrine enables the ownership of the copyright to be

transferred to the employer when stipulated in writing" (Bennun, 1994). In recent

years there has been a noticeable increase in the number of patents requested

and received by corporations. "IBM received 1,085 patents in 1993 and

displaced a Japanese company from first place in the US Patent Office's list of

top 10 patent winners" (Chartrand, 1994). Not all of the patents were for

software, but industry has realized that to protect their products, they have to

patent them so that other corporations cannot reverse engineer them and

develop their own products from this process. Patents also provide a means of

keeping ideas developed at one corporation even if the person who developed

the concept leaves and moves on to another company. "Most of the IBM patents

are for multimedia, computer networks, storage devices and software and were

developed by managers no longer with IBM" (Chartrand, 1994). It is detrimental

to IBM's welfare for its former employees to take vital information with them when

they leave. IBM, and other companies, protect themselves with

employer-employee contracts when the employee begins work to prevent this

from happening.

Liability applies to the process of how reuse modules are used. There are

three bases of liability to be considered (Legal Workshop, 1993). First there is

contractual liability, which arises from oral or written agreiements. The risk with

this form of liability arises when a term or condition of the contract is breached.

53

"For example, a subscriber agreement to a software repository provides the

terms and conditions. If the subscriber fails to meet one of these terms and

conditions, then there is a breach of agreement unless there is some defense

which the subscriber can raise" (Legal Workshop, 1993).

The second basis of liability is statutory. This arises from copyrights,

patents, and international trade and commerce. No contract is required for

statutory liability. For example, statutory liability occurs when a federal copyright

law is violated, and the infringer is not even aware of it (Legal Workshop, 1993).

The last basis of liability is tort, which pertains to a legal duty that must be

extended to participants (Huber, 1994). "For example, a library of reusable

software components which holds itself out to a community of subscribers to be

qualified to conduct testing for conformance of components of standards has a

duty to apply standard of care which pertains to a person assuming the role.

That is, the library, having undertaken to do the testing and certifying of

components for conformance based on the results of that testing, has a duty to

adhere to that standard of care appropriate for that role" (Legal Workshop,

1993).

Liability comes into play after a software reuse program has been

established. How to deal with these liabilities has to be discussed and decided

prior to the program being used. CARDS has made assertive efforts to resolve

liability issues, present in DoD, by conducting workshops and briefs regarding

these issues. Through these efforts, the CARDS program has found that

54

developers, users, and maintainers of DoD repositories, as well as legal

counsel, are not knowledgeable regarding software reuse legal issues

(Huber,1993).

Since copyrights and patents for software belong to the corporations, the

only issue in industry is to ensure that the new product developed using software

reuse does not infringe on any other corporation's patent or copyright. In

contrast, DoD does not own any of the copyrights or patents for the software

developed by its contractors. Instead, DoD is able to use the software

throughout the services on an unlimited basis if they have unlimited distribution

rights (Huber, 1994). The contractor who developed the software application is

the holder of the patents and copyrights associated with the application.

3. Software Repositories

Each of the four organizations in Chapter III required a means of storing

reusable software for use in the software reuse program. Most were similarly

based on the software library theory of reuse - that the keys to reuse are a large

library of objects within the application domain, and a catalog to help locate them

as needed (Banker, et al., 1993). From this the software repositories were

established and populated. Each of the four examples started their reuse

program with a software repository as its centerpiece. Criteria for how to place

software modules into the repositories were developed and the software

modules were evaluated to determine their maturity level. Procedures for

storing, cataloging, and retrieving the modules were designed by each

55

organization. Hewlett-Packard is the only company of the four that is moving

away from the software repositories and the library metaphor (Griss, 1993).

The software repository has some obligations and responsibilities when it

comes to storing and disseminating the modules contained within it. First of all,

the library has to obtain the appropriate rights from the supplier. Second, the

library has to ensure that the component is marked properly - i.e., with

disclaimers, copyright information, or patent numbers. And most importantly, the

library has to ensure that the user is made aware of the status of the original

owner's rights (Huber, 1994). If the software repository is internal to an

organization, then the obligations and responsibilities are not required to be

written in legal jargon. At 'BM, the user of the repository is more concerned with

the quality of the part than the royalty. Since the company owns the rights, it

would be paying the royalties to itself. Management can mediate disputes

between two development teams and resolve the issues without going to court.

a. Access

In order to regulate the access to the software repository and decrease

risk, it is best to limit access to only certified and registered users. In the case of

DoD repositories, this may be difficult. There is a question as to whether the

information stored in the DoD repositories are subject to the provisions of the

Freedom of Information Act (FOIA) which allows public access to unclassified

information. To date there has been no court case challenging the public's

access to software repositories (Baxter, 1994).

56

The concern of access to the repository is to allow only authorized

users to access the software modules. If there is no mechanism in place to

control access, then the library cannot guarantee its content, because any

person can alter the module, or delete or add faulty software modules. The

public's right to access the information in the repositories, through FOIA, can

lead to many legal complications.

Additionally, a mechanism is needed that lets the repository interact

with the user. This enables the repository to obtain the necessary information

from suppliers, subscribers, and other libraries, and manage the repository

better (Huber, 1994). The software module information contained in the

repositories is important to the user as a measure of quality and legitimacy.

Repository access is also important to internal software reuse. The difference is

that the user is more concerned with the quality of the module than with the

copyright of the module. Yet the same mechanism as discussed above is

needed to guarantee the quality of the module. Whether the repository is

internal to an organization or has external users, access to it has to be regulated

to ensure the quality and completeness of the modules. Users should not have

unlimited reign to manipulate modules.

b. Content of Repositories

Another aspect of the repository that can cause legal headaches is the

content of the repository. One way to reduce the risk of legal action is to have

the supplier attest in writing to the module's accuracy and completeness. The

supplier should also certify that they have the authority to submit the module. A

57

standard procedure is required for the certification process. "If there are no

standards to control what is entered into the component library, then time and

money must be spent setting and maintaining the standards" (Chandersekaran

and Perriens, 1983). Yet even the best certification process will miss an error on

occasion. Dealing with third-party software modules complicates the issue even

more. if those modules are copyrighted or patented, then the library has to

track the use of them and develop a method for ensuring that the software

developer is properly compensated for the use of the module. RNTDS and

CARDS have their own certification processes, but this is not the case for all

DoD repositories. A recent market study, conducted by the CARDS program,

indicated that less than 50 percent of the personnel surveyed used a minimum

set of criteria to evaluate reusable components prior to placing the modules into

the repositories (Market Study, 1994).

c. Who is Liable for Faults

"If a defect appears in a program developed using reused components,

who is legally responsible for damages?" (Tracz, 1987). This is another

question asked often in industry, but it has not been answered because of the

legal issues involved. Again it is easily solved if the software repository is

located within the same organization. The quality of the software repository

relies on the quality of each software module.

The question arises, if a faulty component is in the library and an

application developer uses it in his product and the product fails, who is at fault?

58

What if that developer, due to that error, defaults on his government contract

because of a module he received from a government software repository?

"Courts have rejected the theory that persons in the computer industry are

subject to professional malpractice standards" (Baxter, 1994). Since there is no

established legal precedence for software reuse, each case will have to be

examined individually.

Another issue to be considered when starting a repository is whether it

will be operated by the government or a contractor. If it is contractor-operated, a

method has to be developed for the contractor to evaluate other contractors'

software modules in an unbiased, objective manner, If the method is applied

incorrectly, there may be a potential conflict of interest (Legal Workshop, 1993).

These are some of the issues facing CARDS as its repositories are

activated. RNTDS did not experience similar problems because, like IBM and

Hewlett-Packard, their work was internal to their organization (Stevens, June

1994). CARDS is the only repository of the four examples that has expressed

concerns about the legal issues involving third-party software modules.

4. Opening Software Reuse to Outside Users

As long as software reuse is accomplished in-house under the umbrella of

one company, the legal issues are manageable. Opening up software modules

to outside users raises new legal issues. The same holds true for bringing in

outside software modules to be reused in-house. "Incorrect contracting

mechanisms actively discourage reuse. The lack of contracting mechanisms

59

makes it hard to create agreements that can be trusted or enforced. Increasing

the use of third-party software increases the importance of this issue. The

solution may be to develop new contbacts, maintenance agreements, and royalty

systems" (Griss, 1993).

Hewlett-Packard realizes that for software reuse to be ported outside of

t,. company, legal and business practices have to change. Internally,

Hewlett-Packard is working on agreements between different divisions to

facilitate software reuse. This is to protect both the supplier and user. DoD has

come to the realization of this also and has put in place disclaimers, subscription

agreements, and supplier agreements (Huber, 1994). Since this is virtually new

legal territory, it is best to take extra precautions and relax them as precedence

is established.

5. Effects of Legal Issues on DoD Reuse Program

Since DoD is currently pursuing a software reuse program that lets outside

users browse the modules, it has to deal with many legal issues not faced by

industry (Legal Workshop, 1993). One example is that of a contractor being told

by the contracting office that reusable components are available in a software

repository. The contractor spends money to reuse the module, only to find out

that it is defective. The library can be held liable depending on the mitigating

circumstances of the scenario. To minimize these issues, the government has to

reduce the risks involved in running a software repository. For instance, library

risk depends upon the library activities. In order to avoid lawsuits, the repository

60

needs to have clear and definite operating procedures that are flexible enough

to cover even the most obscure situation.

The case of the DoD software repositories is made more complicated

because many of them are government-owned and contractor-operated. The

components or modules in the software repository are gained from government

agencies, commercial organizations, academia, and individuals. Depending on

the supplier, copyrights and patents have to be enforcod and royalties paid. The

user is either a contractor working for the government, or a government

empioyee, or a casual browser not related to the government at all. Depending

on the user, certain rules and agreements have to be followed. The library has

to maintain oversight of the supplier: and users and ensure that the operating

procedures are being followed. Once again, the most foreboding fact is that

there has been no legal case involving software reuse that has been heard in

court (Legal Workshop, 1993). This means programs like CARDS and RNTDS

will provide the lessons learned for future software reuse development

programs.

C. ECONOMIC FACTORS OF SOFTWARE REUSE

1. Software Reuse Economics

The economic payoff of software reuse in DoD, as in industry, comes from

the promise of increased productivity and quality. Systems that are developed

with reusable software components should cost less and contain fewer defects

(Tracz, 1987). 1"he promise software reuse holds for potential economic benefits

61

has led to its pursuit by DoD and industry. This was largely in response to

conventional development practices, in DoD and industry, having the following

problems (Abdel-Harnid and Madnick, 1991):

"* Exceeded budget and schedule.

" Maintained legacy systems that absorbed available appropriations.

"* Consisted of inflexible applications unable to adapt to changing needs.

"• Were abandoned after millions of dollars were already expended on them.

There have been many Government Accounting Office (GAO) studies and

various Congressional repoits that have provided a chronicle of the

ineffectiveness of software development practices in DoD. The above factors,

coupled with the dramatic increases in computing power due to technological

advances in hardware and the proliferation of personal computers, have

propelled these organizations to search for better development methods.

The search has led to software reuse with its enticement of producing

software that would cost less and be of higher quality (Tracz, 1987). Software

reuse has become an economic focal point for all four of the organizations

included in the study. In both the DoD and industry examples it was understood

that for software reuse to be successiul the process must produce economic

benefits while overcoming some of the early barriers to its adoption.

2. Economic Barriers

One potentially harmful barrier to software reuse is the high initial costs

associated with such a program. Software reuse requires that the software

62

development team change to realign themselves with the new development

approach. Effecting these changes will mean assuring that members receive

education and training in software reuse methods. The Hewlett-Packard and

IBM programs realized that the conversion and education of personnel

concerning software reuse required an up-front investment, Most software reuse

projects require several years of investment before savings are realized. This

causes managers to be reluctant to make long-term investments without some

assurance of success (Griss, 1993). DoD has made initial investments in

software reuse and has recently come to the realization that acceptance of reuse

begins with education and training (DoD, 1992). The CARDS program is

rectifying this oversight and is placing great emphasis on providing education

and training for all development personnel at all levels (Technical Document,

1993).

We found that software reuse, as a long-term investment, has to be

adequately articulated to management. Congress and DoD upper management,

who expect savings to appear in the near term, will find ihe higher initial costs an

impediment if the process is not thoroughly communicated to them. They need

to understand that the cost of producing reusable components and implementing

the reuse process must be written off over the long-term. Hewlett-Packard and

IBM have achieved this and are in the process of streamlining their programs

(Griss, 1993; Wasmund, 1993). Management of the RNTDS and CARDS

programs understand the need to communicate the benefits (and costs) of

63

software reuse. CARDS has taken innovative steps to produce handbooks and

establish training courses to educate personnel on the software reuse process

and its long-term benefits (Technical Document, 1993). The RNTDS process

system is being used as the foundation for the Navy's Software Reuse

Implementation Plan and Software Reuse Guide (GCN, 1994).

Repositories, in most instances, are populated with reusable components

that must be acquired, stored, validated, catalogued, indexed, documented,

transmitted, and maintained. These services are costly and will need to be paid

for either by cost recovery fees or subsidy by a central agency (Emery and

Zweig, 1993). Populating the repository requires tnat a search be conducted to

find reusable candidates. This is costly because there exists no standard

conventions for naming, indexing, documenting and designing reusable

candidates (Emery and Zweig, 1993). In fact, both the RNTDS (Stevens, 1991)

and CARDS ('echnica' Document, 1993) programs use disparate methodologies

for achieving software reuse thai further complicates the usability of the

repositories for a programmer in a global operation. With Hewlett-Packard and

IBM, the cost of a software reuse program is recouped by passing the costs to

the project, They found that the longer the program is in place the less the cost

and the number of defects. This is due to more and more reusable parts being

used and less original work having to be accomplished (Griss, 1993; Wasmund,

19S3; Poulin, et al., 1993).

64

L O i la l! " II ' '1 ?

Maintenance of software repositories and their components is a

continuous effort that is expensive to sustain. In the future, maintaining

repositories may not be exempted from the Defense Budgeting Operating Fund

(DBOF), which requires activities to be fully reimbursed for all costs related to

their services. The current practice for the RNTDS and CARDS sponsored

reuse systems is for each to subsidize their own efforts with no fee charged to

the user. Hewlett-Packard and IBM, which are profit-based, have no delusions

in regard to who will pay for the use of repositories. IBM uses their own

accounting methods to charge the other users within the company (Wasmund,

1993) and Hewlett-Packard's software reuse division did not charge others

originally, but is actively pursuing their own research in accounting for repository

operations (Malan, 1993; Griss, 1993).

3. Incentives

Many forms of incentives were used by Hewlett-Packard and IBM that met

with various levels of success. Incentives in industry have taken both monetary

and non-monetary forms. Both have used incentives to populate software

repositories with modules for reuse. Hewlett-Packard's experience with this type

of program led to the population of a repository that collected large quantities of

software components regardless of their quality. They found that while the size

of the library increased, the amount of soitware reuse did not. Programmers

were willing to contribute components, but not to search the repository and use

them in their own projects (Griss, 1993). Hewlett-Packard is in the process of

65

reworking their incentive programs. Malan (1993), of Hewlett-Packard, provides

a detailed discussion of the aligning of reuse incentives with reuse goals and the

organization's objectives.

IBM's experience in the incentive arena began with what they called a

Non-point based program. The program granted monetary or other awards to

selected individuals or teams to reward successful cases of software reuse. The

criteria were qualitative in nature, emphasizing innovation over more quantitative

measurements such as cost savings or quality gains. Over the course of a year,

there were three reuse awards submitted and only one was granted. IBM found

that schedules did not encourage making software reusable even if a

programmer spent his or her own time producing it. The incentive to contribute a

component was reduced because the component had to be reused prior to

receiving an award, adding both uncertainty and a time 13g. They found the

impact of this method of determining incentives led to only minor success and

did not significantly change people's adherence to traditional development

methods (Wasmund, 1993).

Realizing little progress was effected by the Non-point based program,

IBM mandated software reuse by establishing a forma! reuse target for the

organization and included the targets as part of individuals' performance plans

(Wasmund, 1993). IBM established a program, named the Point based system,

that rewarded an indiv~dual practicing reuse with monetary awards after the

accumulation of a required point total. Practicing reuse meant either using

66

available components or producing reusable components for deposition in the

repository. This led to an immediate increase in the number of requests for

reusable components. This program forced the professional to depart from thj

traditional development process to support the reuse target and management

team (Wasmund , 1993). However, there were also some side effects to this

program:

"• Some organizational units overdid the setting of targets by setting contribution

targets regardless of the work individuals were conducting.

"• Unprepared application of complex reusable components caused int9gration

problems because of the zeal of some groups to implement reuse without

appropriate training.

"• No differentiation in the application of the target across the various groups

caused a perceived inequity because the individual groups' actual ability to

use reuse was not considered.

"* The method of assigning a target caused great confusion about what the

target meant,

"* Individuals tried to enhance their personal reuse by integration of extra large

components whose entire function set was not needed by the program

(Wasmund, 1993).

Notwithstanding these side effects, there was a marked difference

between the ,wo programs. It was clear to IBM that introducing a new

technology through the establishment of a sensible quantitative target was

67

successful for their particular organization, but that it could result differently for

other organizations.

Incentives have been more successful in industry than they have been in

government. In government, the use of incentives has come face-to-face with

some inflexible barriers. Foremost of these barriers are the restrictive

acquisition laws that OoD has to obey . Most software development for the

government is contracted out to vendors, and current acquisition regulations

hinder giving incentives for reuse (Endoso, 1992). Even when software is

developed internal to DoD, incentives face many obstacles based on the existing

civilian and military personnel regulations. There are many &, -,,d programs that

are detailed in appropriate personnel directives, but these are generic and do

not consider software development or reuse separately. The RNTDS and

CARDS programs do not have, nor can they maintainr same flexibility that

industry has to reward people for contributing to the r- . .. When DoD

does resolve the incentive problem, a system similar to IBM's Point-based

program 3hould be considered because it only rewards personnel who practice

reuse.

4. Economic Models

The development of an economic model to accurately measure software

reuse has been an elusive goal for both DoD ai.d industry. The lack of

economic metrics to measure software reuse ha. resulted in one of the major

inhibitors of an integrated software reuse program (Poulin, et 1' 1993).

68

Economic models are required for a program manager or software development

organization to effect decisions pertaining to software reuse. Measurement

usually accountG for the software development process and does not consider

software reuse. Software reuse measurements have generally been measured

as a ratio of reused code to the total code present in a particular system

(Banker, et al., 1993). Though many models have been published in the

literature, they tend to focus on limited aspects of the reuse process, usually

after completion of the project. Our research found that none of the

organizations we studied was found to be using a common economic model to

evaluate its software reuse program. Each organization uses varying methods

of measuring Its economic success and the measurements of one organization

cannot effectively be compared to another in most cases.

There does not seem to be a consensus, in industry or DoD, on what

economic model of software reuse is suitable for capturing the cost saving

associated with reuse. Organizations use economic models of software reuse to

assist them in making managerial decisions throughout the development

process. The measurement tools used by the organizations vary with some

using internally-developed models and others using previously published

models. IBM uses an economic model designed internal to its Critical Success

Factors approach (Wasmund, 1993), Hewlett-Packard has its own model (Griss,

1993), RNTDS uses Gaffney/Durek and SEI's Software Capability Maturity

Model (Stevens, June 1994), and CARDS uses both of the models used by

69

RNTDS, as well as their own cost model used for the preliminary stages of reuse

(Direction-Level Handbook, 1994).

5. Effects of Economic Issues on DoD Reuse Program

Industry and DoD differ greatly in the manner in which software reuse is

being handled. In industry there is a more dynamic interpretation of software

reuse. Even though Hewlett-Packard and IBM have established reuse

programs, they are continuously researching new and emerging technologies

and how they can effect software reuse. Through this type of research,

Hewlett-Packard has moved away from the use of software repositories. DoD,

in most cases, has a more static approach to software reuse. To date, DoD has

emphasized only one way to do reuse, and that is to use software repositories.

CARDS, however, provides some encouragement with its emphasis on using the

program as a testbed for emerging technologies (Direction-Level Handbook,

1994).

The cost savings that the software reuse program has promised have not

yet been realized. This is due to initial investments into a software reuse

program eating away the early cost savings. This initial investment also does

not guarantee that the program will be a success. Compounding this is a lack of

a corporate infrastructure that encourages and rewards reuse and the fear that

higher degrees of reuse may lead to reduced staffs (Kim and Stohr, 1992).

These factors make the acceptance of software reuse difficult to accomplish in

any organization, not just DoD.

70

D. MANAGERIAL ISSUES OF SOFTWARE REUSE

Software reuse has evolved to become a corporate- or department-wide

concept in industry and DoD, At IBM and Hewlett-Packard, for reuse to work,

there has been support from the highest levels of management. Each of the

organizations wants to eventually achieve software reuse in a global context,

Prior to going global and pursuing a world-wide reuse propram, industry

recognized the need to accomplish organizational changes and changes in the

work culture (Tracz, 1987). Without making the necessary changes the effort is

attempted in a halfhearted manner and can fail to be completed.

DoD has not fully recognized these problems and has not embraced software

reuse as wholeheartedly as industry. "For example, at a jointly sponsored

workshop by the Software Productivity Consortium, the Microelectronics and

Computer Technology Corporation, the Software Engineering Institute, and the

Rocky Mountain Institute on Software Engineering, attendees unanimously

agreed that management generally has a shortsighted view on software

development and is often not willing to commit resources to acquire needed

tools and training in software reuse tec'hnology" (GAO, 1993). DoD's reuse

program is more erratic, with top management requiring software reuse without

fully understanding the issues, especially the non-technical issues. Although the

vision of how reuse should be conducted has been articulated in a vision

strategy (DoD, 1992), no specific guidelines have been established for the reuse

effort.

71

Industry and DoD, the latter only recently, have realized that for software

reuse to become an effective tool, all inhibitors have to be addressed (Endoso,

1994). There are many problems that can crop up when implementing a reuse

effort. They can be of a technical, managerial, or socioeconomic nature.

Neglecting any one of these inhibitors can undermine the best reuse effort. As

DeMarco and Lister have noted, we too often focus on the technical rather than

the human side of work, not because it is more crucial, but because it is easier

(DeMarco and Lister, 1987). Within each of the organizations these inhibitors

are being addressed, and though the solutions may differ, DoD has recognized

them and is now seeking to eliminate them.

Education is another important factor in the successful implementation of a

software reuse program. Each of the organizations emphasizes the importance

of not only educating the technical staff, but also the managerial personnel.

Education needs to be geared to the respective audience so that it helps

institutionalize the reusa concept. The CARDS program provides the best

example of the effort needed to educate and train personnel involved in the

software development life cycle. CARDS has emphasized training of technical,

managerial, and acquisition personnel. CARDS has even gone as far as to

develop graduate and undergraduate courses in software engineering to assist

in educating people concerning software reuse (Technical Document, 1993).

This is noteworthy, because a recent survey found that very few respondents

72

had learned about reuse through their own education and training process

(Frakes and Fox, 1993).

1. Upper-Level Management Involvement

Upper-level management needs a planned approach to support software

reuse in a perceptible manner for it to be creditable to the organization. This

approach should follow the classic phases of technology transfer: increasing

awareness, cultivating interest, and persuading someone to try the technology,

followed by prototyping and then complete adoption (Basili and Musa, 1991).

When personnel see that upper-level management is supportive of the program,

they will be much more likely to discard the "not invented here" syndrome.

Additionally, upper-level management must comprehend the complexities of

software reuse and the associated technical and non-technical problems.

Management can be supportive of software reuse, but if there exists no baseline

understanding among managers then it will be hard for them to institute reuse

and guide implementation.

2. Reorganizing the Organization

In order to achieve the promised productivity and co3t savings of making

software reuse a standard organizational process, the organization needs to

establish a support structure as part of the software development process (GAO,

1993). One way to acquire this infrastructure is to create a central support staff

organization. It has been observed in case studies that the attainment of a high

level of reuse requires the entire organization to be oriented to the goal (Banker,

73

et al., 1993). Organizations committed to the idea of software reuse must not

only change their way of developing software, but must meke fundamental

changes in the manner in which they are structured.

In order to change the organization, the way management assigns projects

has to change. "Survival from a managerial perspective has meant handling

multiple, concurrent, and conflicting goals" (Hyman, 1993). Management has to

reduce red tape and overhead and encourage rapid prototyping and

responsiveness, while maintaining the necessary supervisory controls for

reliability and quality (Hyman, 1993). Management has to juggle the assets and

determine the best way to apply each asset. Software reuse adds another ball

to the juggling act. Currently, industry is grappling with these issues.

Hewlett-Packard and IBM developed and implemented, respectively, software

kits based on the LEGO building block concept and Critical Success Factors to

change management styles so as to incorporate software reuse. In DoD,

"project managers and software developers must be willing to make fundamental

changes in the way they develop software" (GAO, 1993). In other words, all

management levels have to be included to effect the necessary changes.

IBM and Hewlett-Packard have been committed to making the necessary

adaptations to their development processes as they have discovered the need

(Griss, 1993; Wasmund, 1993). RNTDS has been so successful that the Navy is

developing its Software Reuse Implementation Plan and a Software Reuse

Guide based on the RNTDS system (GCN, 1994). CARDS has also blazed new

74

paths in understanding organizational challenges and designed a program that

can be acquired and implemented by any organization in DoD (Technical

Document, 1993). All four of the organizations researched have recognized the

compelling need to restructure their software development infrastructures and

hos modified them as each circumstance has dictated.

75

V. CONCLUSION AND RECOMMENDATIONS

A. DETERMINATIONS

1. DoD Software Reuse in General

In January of 1993, GAO presented a report to the Chairman,

Subcommittee on Defense, Committee on Appropriations, House of

Representatives, on the DoD Software Reuse Initiative. The report highlighted

the discrepancy between what the initiative promises and what is actually

achieved. There are many points made in the report that illustrate the

contradictions that were found.

As discussed earlier in this thesis, the report found that there are no

standard methods for domain analysis or classifying software for repositories nor

consistent software metrics, yet all of these are considered important aspects of

tha initiative (GAO, 1993). The GAO report went on to further discuss

non-technical barriers to software reuse, such as higher initial costs to develop

reusable software, lack of management support and commitment, and various

potential legal issues which could encumber software suppliers, repositories,

and users.

All software reuse goes through growing pains. IBM and Hewlett-Packard

did not achieve a global software reuse program overnight, The same issues

that are being discussed in the GAO report were also issues in IBM and

Hewlett-Packard. The difference is that these two corporations have recognized

76

0
0

these issues and have fixed them while pursuing better ways to conduct

software reuse. We conclude that each organization moves through these

stages when implementing a softwara reuse program.

Though there exists a software reuse initiative, the initiative does not

provide clear direction or documentation from higher authority detailing how

reuse should be accomplished in DoD. Each of the services is energetically

pursLuing reuse, but is accomplishing it with their own independent, versus

integrated, guidance. This has caused a duplication of effort, expenditure of

valuable shrinking assets, confusion among programmers due to the various

methodologies, lack of cooperation in sharing solutions to technical and

non-technical issues among the services, and the proliferation of systems

dissimilar in their operations.

For software reuse to be successful, it must be understood by all levels

involved in software development. Hewlett-Packard supports this concept. "A

fairly broad, well-coordinated software reuse program involving management,

process, and technology was needed to make significant progress (Griss, 1993).

The news is not all bad because there are some good systems in the DoD

inventory that should be emulated and distributed to DoD sites. The two DoD

programs that were discussed in this thesis are exemplary models of the

progress that has been made on the individual program scale.

77

2. Positive Effects of Software Reuse in DoDl

a. Support for Software Reuse

The efforts in DoD to incorporate software reuse as part of the software

development process are not lacking. Each of the services has its own software

reuse programs as part of DoD's remote reuse centers (Bui, et al, 1993). Many

of the different service personnel engaged in developing software were recently

surveyed and foresee software reuse as necessary due to budgetary and

resource constraints. Many of these same participants believe that there is

support for software reuse at all levels of DoD management (Market Study,

1994).

By virtue of the different DoD programs there is not a lack of assets

being appropriated for the pursuit of software reuse. Even with the obstacles

presented by widespread software reuse, DoD officials feel that the potential

savings are worth investilg the time and money to solve the problems (Endoso,

1993). The Honorable John Murtha (D-Penn), Chairman of the House

Appropriations Subcommittee on Defense, recently offered to increase funding

for software reuse efforts (Endoso, 1994). It is apparent that DoD is willing to

expend the funds to make software reuse a functional part of the software

development process.

b. Software Reuse Horizon

The services have been conducting software reuse and implementation

efforts since the introduction of the software reuse initiative in 1991. These

efforts have been individual, and they have experienced similar troubles

78

associatea with obtaining an employable software reuse program as in industry.

Hewlett-Packard's first step towards the inception of a software reuse program

was to establish a software repository, but none of the programmers used it

(Griss, 1993). IBM tried a volunteer program of software reuse, but found that

few programmers were willing to use it even with the offer of incentives

(Wasmund, 1993). Similar troubles in DoD have not escaped the scrutiny of the

House Appropriations Committee, which last year, as part of the 1993 Defense

appropriations bill, commented, 'The department with its decentralized

approach, runs the risk of permitting the many organizations participating in

reuse initiatives to misdirect or duplicate reuse efforts" (Endoso, 1994).

These disjointed, independent efforts have been recognized by DoD as

being counterproductive in nature, In a recent Pentagon report to the House

Appropriations Committee concerning the initiative, DoD discarded the original

voluntary software reuse initiative for one that will assign roles and

responsibilities to all service components. The plan, dubbed the Software

Reuse Initiative, or SRI, calls for developing an infrastructure, bringing reuse

technology into the mainstream, and encouraging, rewarding and

institutionalizing effective software reuse, The new SRI plan is projected to be

completed by September 1994 according to Pentagon officials. These

objectives will be the responsibility of a new software reuse program office within

the Defense Information Systems Agency (Endoso, 1994). This is a step in the

right direction, because focusing the attontion of the individual services will allow

79

them to concentrate on one aspect of software reuse. This should alleviate

many of the duplicate efforts and allow for better dissemination of information.

Another possible contribution to software reuse is an economic model

developed and researched, with the assistance of students, by Dr. Tarek

Abdel-Hamid of the Naval Postgraduate School. The Dynamica Reuse Model is

a computerized program that simulates a software development organization

practicing organization-wide software reuse (Abdel-Hamid, 1993). The model

has three significant characteristics that differentiate it from other published

economic models. The model integrates the complex technical and managerial

functions required for organization-wide software reuse; it provides feedback

using the principles of system dynamics to better comprehend software reuse

organizational complexities; and it uses computer simulation to handle over 200

different equations integrating hundreds of variables relating to technical and

managerial issues in organization-wide software reuse (Gallup, 1994;

Abdel-Hamid, 1993).

The major benefit of this model is that it actively integrates software

reuse into an economic model for software development. It not only brings

software reuse into the mainstream of software engineering, but also

standardizes the economic benefits available through software reuse. This

model has not reached full maturity yet, but is more robust than any other

published model that integrates software reuse and holds promise for the future.

Further research is being conducted to expand the model from a single

80

organization simulation to multiple organizations engaged in the process of

software reuse as a group (Gallup, 1994).

3. Negative Effects of the Software Reuse Program in DoD

a. DoD Software Reuse Initiative Infrastructure

The DoD Software Reuse Initiative has been a voluntary program that

did not require the services to pursue software reuse as part of their software

development process. Software reuse was envisioned to occur whether DoD

took an active role or not (DoD, 1992). As documented by GAO (GAO, 1993)

and other published literature (Banker, et al, 1993), software reuse will not

flourish if there is no support from management. At IBM the software reuse

program flourished once everyone in the organization from top management to

the programmers understood the potential benefits (Wasmund, 1994). IBM and

Hewlett-Packard, as well as other researchers, found that lack of a clear

software reuse strategy has been a major factor that inhibits the institution of the

reuse process (Griss, 1993; Poulin, et al., 1993; Biggerstaff and Richter, 1987).

Moreover, management needs to recognize that software reuse is more than a

method to reduce costs; is part of the greater software development process.

Software reuse should not be viewed as a cost-cutting method. Instead it should

be included from the start of a software project and used throughout to achieve

future benefit.

Prior to introducing software reuse in a global context, a software reuse

infrastructure that reduces the costs of implementing and operating a uoftware

reuse program should be developed. DoD's software reuse program has not

81

aken this approach. In fact, DSRS populated a repository before reuse was

incorporated as part of the development process. Research has found that

organizations successful in producing high levels of software reuse are relatively

small and located in one geographic area (Tracz, 1987; Kang and Levy, 1989).

Software reuse, in other words, was established and matured in one location

before it was implemented throughout the organization.

At both IBM and Hewlett-Packard, the software reuse programs were

started as pilot projects. Once the pilot projects had proven themselves, the

corporations expanded the pilot projects into the global strategies for software

reuse. Most thriving and effective software reuse programs begin small, ale

funded from the start, and have acquired their experience through pilot projects

(Griss, 1993). The point here is that DoD should concentrate on a pilot project

and work out the many legal, economic, and managerial issues before they

implement a global reuse program.

b. Repositoqy Concerns

(1) Domain Analysis. The maturity of repositories is another area

where DoD has experienced many growing pains. Domain analysis is one of the

key elements of the SRI strategy, yet there exists no DoD standard method on

how to process and represent information about a domain (GAO, 1993). The

domain analysis process itself is more of an art than a science, and only with

time can applicable design decisions occur that optimize the design for the

purpose of reuse (Prieto-Diaz, 1990). IBM and Hewlett-Packard have realized

the need for a structured standard method and have established their own

82

formal methods to conduct domain analysis at their companies (Poulin, et al.,

1993; Griss, 1993). Lack of a standard DoD method for domain analysis has

produced several sets of methodologies and program implementation

philosophies that are unique to each service.

(2) Certification and Search Tools. Similar to the domain analysis

problem are the certification and search processes for reusable software

components. Certification requires certain characteristics to be present in a

reusable component prior to ir'clusion into the repository. The DSRS/RAPID

programs use varying "levels of confidence" dependent on the components

quality (Bui, et al, 1993). CARDS and RNTDS use other means to certify their

reusable software components. In DoD's global concept each certification

scheme would require user training. Users do not want to spend the effort to

learn the various aspects of each scheme. Multiple certification schemes and

dissimilar search tools will only discourage use of the system.

Hewlett-Packard and IBM both found that users will be hesitant to

use a system that they have no confidence in because the certification process

is ambiguous - i.e., no universal standards are followed (Poulin, et al., 1993;

Griss, 1993). Well documented, tested, verifier', and classified reusable

components need to be developed for programmers to have confidence to use

them (Tracz, 1987). Unless a standard certification and search tool is used at

each of DoD's repositories, a user will be frustrated by new jargon and unfamiliar

methods. The user will be reluctant to accept the risk of using a reusable

83

software component without first spending considerable effort verifying that it is

safe to use (Emery and Zweig, 1993) or forego even using reusable software

and build it themselves (Banker, et a., 1993).

(3) Legal Concerns. Legal questions regarding establishment and

operation of a repository have surfaced and have not been adequately

addressed. The CARDS program sponsored a workshop for government

lawyers to discuss the legal aspects of operating a software reuse library to

attempt to resolve these various issues (Huber, 1993). This workshop displayed

a lack of knowledge, on counsel's part, regarding software reuse. In general,

however, there is a lack of legal cases dealing with software issues. In Chapter

2, some of these legal issues were discussed. Clear, concise legal counsel is

necessary to assist in solving software reuse legal issues, but this will prove

difficult until precedents are set through individual cases (Legal Workshop,

1993).

c. Acquisition Regulations

Many legal problems find their foundations in the DoD acquisition

process. There have been two studies concerning the DoD acquisition process

and the legal ramifications regarding software development and reose. Both

found that changes to the Federal Acquisition Regulation and the DoD Federal

Acquisition Regulation Supplement were necessary to effect software reuse

(CSRO, 1993; STARS, 1991). Changes to the regulations are not easy to make

because they can Lcome political points of contention.

84

DoD acquisition regulations also fail to provide incentives for

contractors engaged in the software reuse process (Endoso, 1992). IBM found

that its software reuse program gained more use once a fair and equitable

incentive program was established (Wasmund, 1993). Incentives are necessary

to motivate contractors to reuse software, who must then reward their own

personnel. Incentives are also hard to award to government personnel due to

the legal restrictiveness of personnel regulations and guidelines. Awards cannot

be established for one specific program and are up to the approving authority's

whim. Additionally, there are no provisions in any of the appropriate governing

regulations measuring the amount of award.

d. Education and Training

Software reuse implementation should start with education and training

for all individuals involved in the software development process. Both IBM and

Hewlett..Packard recognized that to bridge their non-technical inhibitors they had

to develop an educational program. Everyone related to the software

development process, from the programmer to top management, was educated

in the software reuse process (Griss, 1993; Poulin, et al., 1993). Training needs

to be addressed as early as possible in the life cycle so that software reuse is

understood. No concept can be truly successful unless there is someone who

can properly implement it (Direction-Level Handbook, 1994). Experiments

conducted with software development personnel have led to the conclusion that

personnel untrained in softwai,. reuse cannot truly assess the quality of a

reusable component. The experiments also found that the participants were

85

influenced by minor features and not by the important features of reusable

software (Woodfield, et al., 1987).

Some progress has been made in educational efforts by some DoD

affiliated programs. SEI has been involved with some colleges and universities

in establishing software engineering programs at the undergraduate and

graduate levels (Direction-Level Handbook, 1994). The CARDS program has

developed education and training courses for DoD and contractor personnel

(Technical Document, 1993), but like much of the other training programs, these

courses do not receive the visibility they should. Training programs are

available, but need to be advertised more aggressively in order for more people

to become aware of them.

B. CONCLUSIONS

This thesis has attempted to address the software reuse issues in DoD by

analyzing reuse efforts at two companies in industry and two programs within

DoD. Software reuse is being accomplished in industry and in DoD, but as

acknowledged by Rear Admiral John Hekman, Commander of the Naval

Information Systems Management Center, "Software reuse is not even close to

being standard operational procedure" (Endoso, 1994). As learned from the

examples of IBM and Hewlett-Packard, DoD is experiencing the same growing

pains as in industry.

IBM and Hewlett-Packard have evolved their software reuse program into a

more robust and mature software development tool, DoD is still faced with many

86

economic and managerial issues such as a definite implementation plan,

standardization of domain analysis, certification of reusable software, search

tools, education, and training programs. Industry and government must still

untangle the myriad of legal issues presented by software and software reuse.

When it comes to legal issues, DoD has to resolve more complex situations due

to the composition of the software repositories.

Industry - specifically IBM and Hewlett-Packard - started with small reuse

projects located in one geographical location. Once the worth of the reuse

project was demonstrated, it was expanded as a global concept for use by the

entire corporation. DoD, in contrast, jumpea straight into trying to implement a

global reuse program without full consideration of other established programs

and the lessons they taught. Widespread DoD software reuse was attempted

before personnel at all levels understood what it was and how to achieve it. This

approach has proved difficult because issues have tended to become magnified

at this level of enforcement. DoD needs to learn from industry's lesson learned

and apply the recommended changes of this thesis to its own reuse effort. Only

then will DoD be able to achieve local acceptance of software reuse, then

expand it to a global concept as it matures DoD-wide.

C. RECOMMENDATIONS FOR FURTHER STUDIES

1. Software Development and Reuse Legal Issues

Though this thesis covered many different lgal issues pertaining to

software reuse, it was by no means an exhaustive review. There still exist many

87

unanswered legal questions relating to the software development process, of

which software reuse is just a portion. Some good ground work has been

achieved by DoD (Legal Workshop, 1993; Baxter, 1994; Huber, 1993 and 1994)

in the arena of software reuse, but this needs to be expanded to include

software development.

2. DoD Acquisition Regulations

The software development life cycle is governed by DoD acquisition

regulations, which do not adequately address software reuse. There is a need

to change the regulations, and some preliminary work (CSRO, 1993; STARS,

1991) has been conducted. Other research has resulted in the development of

handbooks to assist acquisition personnel with the inclusion of software reuse

into the development life cycle (Technical Document, 1993). An interesting next

step would be to see how the regulations need to be modified to incorporate

incentives and solve the legal issues surrounding software and software reuse.

88

LIST OF REFERENCES

"Current FAR and Budget/Finance Environments", STARS-AC-03501/001/00,
technical report, (STARS) March 1991.

"Lawsuit: IBM Files Patent Suit Against Conner Peripherals," EDGE:
Work-Group Computing Report, p. 29, 16 August 1993.

"Legal/Acquisition Issues: A Technical Report", 1222-04-210/49.1, technical
report, DoD ,Center for Software Reuse Operations (CSRO), February 1993.

"Managing Reuse: Exposing The Hidden Agenda," IEEE Software, January
1993.

"Proceedings: Software Reuse Legal Issues Workshop (Legal Workshop) (22-24
Mar 94)", Central Archive for Reusable Defense Software (CARDS), Informal
Technical Data, STARS-AC-04117/001/00, 30 April 1993.

"Six Offices Hook Up to Navy Net," Government Computer News (GCN), March
21,1994.

Abdel-Hamid, Tarek K., "Modeling the Dynamics of Software Reuse: An
Integrated SystemDynamics Perspective," paper presented at the Sixth Annual
Workshop on Software Reuse (WISR '93), Owego, New York, 2-4 November
1993.

Abdel-Hamid, Tarek K. and Stuart E. Madnick, Software Project Management,
Prentice-Hall, 1991.

Banker, Rajiv D., Robert J. Kauffman and Dani Zweig, "Repository Evaluation of
Software Reuse," IEEE Transactions of Software Engineering, v. 19, n. 4, pp.
379-389, April 1993.

Basili, Victor and John Musa, 'The Future Engineering of Software: A
Management Perspective", Computer, v. 24, n. 9, September 1991.

Baxter, Murry B., Major, "Legal Issues for Reuse Libraries," The Sixth Annual
Technololgy Conference '-7 Predictable Software: Order Out of Chaos, Salt
Lake City, UT, 10-15 April 1994.

Bennun, Irene, "A 7-step Guide To Consulting Agreements," Data Based

Advisor, p. 86, June 1994.

89

Bielefield, Arlene and Lawrence Cheeseman, Libraries and Copyright Law, pp.
1-33, Neal-Schuman Publishers, Inc., 1993.

Biggerstaff, Ted and Alan Perlis, Software Reusability, Volume 2: Applications
and Experience, Addison-Wesley, 1989.

Biggerstaff, Ted and C. Richter, "Reusability Framework, Assessment, and
Directions", IEEE Software., v. 4, n. 2, March 1987.

Bollinger, Terry B. and Shari Lawrence Pfleeger, 'The Economics of Reuse:
Issues and Alternatives," Proceedings of the Eighth Annual National Conference
on Ada Technology, pp. 477-499, 5-8 March 1990.

Bui, T., James Emery, G. Harms, T. Van Hook, and M. Suh, "A Llearing House
for Software Reuse: Lessons Learned from the RAPID/DSRS Initiatives," Naval
Postgraduate School, October 1992.

Chandersekaran, CS., and M.P. Perriens, 'Towards and Assessment of
Software Reusability," Proceedings of IT Workshop on Reusability in
Progragramming, 7-9 September 1983.

Chartrand, Sabra, "U.S. Gains on Japan in Patents, I.B.M. was Leading
Reciepient Last Year," The New York Times, 14 March 1994.

Conn, Richard, "Impediments to the Software Reuse Industries", paper
presented at the Sixth Annual Workshop on Software Reuse (WISR '93),
Owego, New York, 2-4 November 1993.

Demarco, T. and Lister T., Peopleware, Dorset House, 1987.

Direction-Level Handbook Update, Central Archive for Reusable Defense
Software (CARDS), STARS-VC-B012/001/01, 25 March 1994.

Emery, James and Dani Zweig, "The Use of Ada for the Implementation of
Automated Information Systems within the Department of Defense," Naval
Postgraduate School, 16 December 1993.

Endoso, Joyce, "Business issues impede software reuse," Government
Computer News, 9 November 1992.

Endoso, Joyce, "Audit says DOD's software reuse plan faces many barriers,"
Government Computer News, v. 12, no. 6, p. 46, 15 March 1993.

Endoso, Joyce, "House Puts Teeth into DoD Systems Unification," Government

Computer News, v. 12, n. 22, p. 8, 11 October 1993.

90

Endoso, Joyce, "Paige moves to put teeth in software reuse program",
Government Computer News, v. 13, n. 9, p. 1, 2 May 1994.

Frakes, William and C. Fox, "Software reuse survey report", technical report,
Software Engineering Guild, Sterling, Virginia, 1993

Gallup, Pamela, "A System Dynamics Based Study of Software Reuse
Economics", Masters Thesis, Naval Postgraduate School, June 1994.

GAO/IMTEC-93-16 Report (U.S. General Accounting Office, Information
Management and Technology Division Report), Software Reuse-Major Issues
Need to be Resolved Before Benefits can be Achieved, pp. 1-21, 28 January
1993.

Goodall, Thomas, "Restructured Naval Tactical Data System (RNTDS): An
Example of Applying Megaprogramming Concepts", Presentation to the Defense
Advanced Research Project Agency, 8 December 1992.

Griss, Martin, "Software Reuse: From Library to Factory", IBM Systems Journal,
p.595, December 1993.

Griss, Martin and L. Latour, "A Working Group on Management and Technology
Transfer", Proceedings of the Fifth Annual Workshop on Software Reuse, Martin
Griss and L. Latour, Editors, University of Maine, November 1992.

Henderson, David, "Patents", The Fortune Encyclopedia of Economics, edited by
David R. Henderson, 1993.

Hirsch, E. D., Jr., "The Dictionary of Cultural Literacy', Houghton-Mifflin, 1988.

Hooper, James W. and Rowena 0. Chester, "Software Reuse: Managerial and
Technical Guidelines," Proceedings of the Eighth Annual National Conference
on Ada Technology, Fort Monmouth, New Jersey, pp. 424-435, 1990.

Huber, Theresa, "Findings of the CARDS Sponsored Software Reuse Legal
Workshop (22-24 Mar 93)", paper presented at the Sixth Annual Workshop on
Software Reuse (WISR '93), Owego, New York, 2-4 November 1993.

Huber, Theresa, "Reducing Risks for Government Software Reuse Libraries,"
The Sixth Annual Software Technololgy Conference on Predictable Software:
Order Out of Chaos, Salt Lake City, UT, 10-15 April 1994.
Hyman, Risa B., "Creative Chaos in High-Performance Team: An Experience
Report," Communications of the ACM, v. 36, no. 10, p. 56, October 1993.

91

Kang, K. and L. Levy, "Software Methodologyin the Harsh Light of Economics",
Information Software Technology (U.K.), v. 31, n. 4, June 1989.

Kim, Yongbeom and Edward Stohr, "Software Reuse: Issues and Research
Directions," Proceedings of the Hawaii International Conference on System
Sciences, v. 4, pp. 612-623, January 1992.

Krueger, Charles, "Software reuse (Creating Applications from Existing
Elements)," ACM Computing Surveys, June 1992.

Lillie, Charles and C. Paul Bond, "Reuse Tool Assessment: Library Mechanism
Summary Report", Asset Source for Software Engineering Technology (ASSET)
Report presentation, p. 30, 23 April 1993.

Malan, Ruth, "Motivating Software Reuse", paper presented at the Sixth Annual
Workshop on Software Reuse (WISR '93), Owego, New York, 2-4 November
1993.

Market Study, Central Archive for Reusable Defense Software (CARDS),
STARS-VC-B001 /004/00, 25 March 1994.

Miller, Michael, "Software patents must go", PC Magazine, 15 March 1994.

Plauger, P., 'Reusability Myths. (Programming on Purpose)," Computer
Language, May 1993.

Perry, William, "For DoD Software Reuse to Succeed, It Must Be Easy,"
Government Computer News, 26 October 1992.

Prieto-Diax, Ruben, "Domain Analysis: An Introduction", ACM Software
Engineering Notes, v. 15, n. 2, April 1990.

Prieto-Diaz, Ruben, "Status Report: Software Reusability," IEEE Software, ',
10, no. 3, p. 61, May 1993.

Poulin, J., J. Caruso, and D. Hancock, "The business case for software reuse",
IBM Systems Journal, v. 32, n. 4, December 1993.

Ray, Garry, "Software Reuse Not A Panacea; Some Firms Pursue It As A
Development Goal; Others Question Its Viability," Computerworld, 21 December
1992.

Schwartz, Karen, "DoD Reuse Libraries Get Linked Today. (Department of
Defense project boosts software engineering efficiency)," Government Computer
News, v. 12, n. 8, p. 1, 12 April 1993.

92

Stevens, Barry, "A Case Study in Software Reuse: The RNTDS Architecture,"
Masters Thesis, Old Dominion University, 1991.

Stevens, Barry, "Results from the Navy's RNTDS Architecture", The Sixth Annual
Software Technololgy Conference on Predictable Software: Order Out of Chaos,
Salt Lake City, UT, 10-15 April 1994.

Stevens, Barry, Interview conducted on 28 June 1994.

Technical Concept Document Update, Central Archive for Reusable Defense
Software (CARDS), STARS-AC-04107A/001/00, 9 February 1993.

Tracz, Will, "Software Reuse: Motivatiors and Inhibitors," COMPCON, Spring
1987, IEEE Computer Society Press, Washington, D.C., 1987.

Wasmund, Michael, "Incentives Versus Target - A Practical Experience," paper
presented at the Sixth Annual Workshop on Software Reuse (WISR '93),
Owego, New York, 2-4 November 1993.

Wasmund, Michael, "Implementing Critical Success Factors In Software
Reuse," IBM Systems Journal, December 1993.

U.S. Department of Defense, Software Reuse Initiative Vision and Strategy, July
1992.

Zachary, G. Pascal, "Software patent given Tribune Co. unit is overturned by
U.S. in wake of protest (Compton New Media unit)", The Wall Street Journal, 25
March 1994.

93

______________H

INITIAL DISTRIBUTION LIST

Number of Copies
1. Defense Technical Information Center 2

Cameron Station
A,exandria, Virginia 22304-6145

2. Library, Code 052 2
Naval Postgraduate School
Monterey, California 93943-5002

3. George S. Coker
Software Reuse Program Management Office
Defense Information Systems Agency
Center for Information Management
500 N. Washington Street, Suite 200
Falls Church, VA 22046

4. Gary Shupe
Head, Software Engineering Branch
Software and Data Management Division
142val Computer and Telecommunications Command
4401 Massachusetts Avenue, N. W.
Washington, D.C. 20394-5000

5. Dr. Michael Mestrovich
Office of Integration and Interoperabilility
5201 Leesburg Pike
3 Skyline Place Suite 1501
Falls Church, VA 22041-3201

6. Donald J. Reifer
Executive Administrator
DoD Software Initiatives
Defense Information Systems Agency
Center for Information Management
1951 Kidwell Dr., Rm. 521
Vienna, VA 22182

7. James C. Emery, Code SM/Hg
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

94

8. CDR William B. Short, SC, USN Code SM/Sh I
Department of Systems Management
Naval Postgraduate School
Monterey, California 93943-5002

9. LT Robert W. Therriault, SC, USN 3
CINCLANTFLT (N413F)
1562 M-tscher Ave, Suite 250
Norfolk, Virginia 23551-2487

10. CPT Kristina E. Van Nederveen 3
P.O. Box 610
Lincoln, California 95628

95

