RL-TR-94-151

Final Technical Report
August 1994

ADVANCED TECHNIQUES FOR ANALYSIS
AND EVALUATION OF ROBUST
PROTOCOLS

AD-A285 6§82
IRk

Clarkson University and Boston University

Robert A. Meyer and David A. Perreault

DTIC

GCi 21 1994%3
F

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

32751
UMD

JHl

94~
il

L

!\

IR

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

9

S
hg;‘u

:’

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-151 has been reviewed and is approved for publication.

APPROVED: (M _qnQeq W

CHARLES MEYER
Project Engineer

FOR THE COMMANDER: %M‘w

JOHN A. GRANIERO

Chief Scientist
Command, Control & Communications Directorate

I1f your address has changed or if you wish to be removed from the Rome Laboratory
mailing 1list, or if the addressee is no longer employed by your organization,

please notify RL (C3BC) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing lis:.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | B ReRote e

mwmhﬂcma"mhdvnnmm!Mmmmhhhmmmmnnwm
gatharing and rmairtaining the dsta nesded, and completing and reviswing the collaction of Irforration. Send corrsments regarding this burden setimats or sy other aspect of trvs

colsction of Informetion, Inckuding suggestions for reducing this busden, to Washingtion Headguentars Services, Directorats for inforration Operations srciReports, 1215 Jeiferson
Devis Highway, Suts 1204, Afingion, VA 222024302, and to the Offis of Manegement and Buciget, Papenwark Reciction Project (07040186, Washington, DC 20503
1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1994 Final Aug 92 - Nov 93
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
ADVANCED TECHNIQUES FOR ANALYSIS AND EVALUATION OF C - F30602-92-C~0074
ROBUST PROTOCOLS PE - 62702F
6. AUTHOR(S) PR - 4519
Robert A. Meyer* TA - 22
David A. Perreault** WU - PH
7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Clarkson University* (Electrical & Computer Eng. Dept.) REPORT NUMBER

Potsdam NY 13699
Boston University** (Microprocessor Research Laboratory)

Boston MA 02215 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER
Rome Laboratory (C3BC)
525 Brooks Road
Griffiss AFB NY 13441-4504 RL-TR-94-151

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Charles Meyer/C3BC/(315) 330-1880

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Madmum 200 words)

The objective of this effort was to study new algorithms for robust communication
network protocols and to develop techniques for analysis and evaluation of these
protocol algorithms. These techniques are necessary to provide an objective

basis on which to judge the effectiveness of these new algorithms for future

C3I Air Force networks. A primary contribution of this work was to assist in the
transfer of technology from on-going contract research efforts to the Rome
Laboratory Network Design Facility. This report describes the testbed environment
used during this study, presents an example of a typical protocol algorithm study,
and illustrates the analysis and evaluation methodology with this example protocol.
Sample experimental results that were used to identify certain problems with this
protocol are also included.

14. SUBJECT TERMS 15 NUMBER OF PAGES
28
Protocols, Simulation, Robust, Communication networks 18 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
- pwh;gvmnge S Std 239 '8
298102

i'—

e

Table of Contents

Abstract 1
1. Introc on 1
2. Protocol Development and Simulation Testbed 2
3. Protocol Description 7
4. Protocol Analysis and Evaluation 9
5. Conclusions and Future Work 16
Bibliography 17
wist of Figures
Figure 1 NAPI - SNAPS 4
Figure 2 NAPI - OPNET 5
Figure 3 Ten Node Experimental Network 11
Figure 4 End-to-End Delay for Source 8 to Destination 5 12
Figure 5 End-to-End Delay for Source 6 to Destination 3 14
Figure 6 End-to-End Delay for Source 0 to Destination 4 15
i Accesion For |
'NTIS cReal W

DTIC IAB 0

Ut annodiced O

Justication |

BY e]

Distiibution/

Availability Codes

Avail andjor
Dist Special

Al |

Advanced Techniques for Analysis and
Evaluation of Robust Protocols

Abstract

The objective of this effort was to study new algorithms for robust
communication network protocols and to develop techniques for analysis and
evaluation of these protocol algorithms. These techniques are necessary to provide
an objective basis on which to judge the effectiveness of these new algorithms for
future C3I Air Force networks. A primary contribution of this work was to assist in
the transfer of technology from on-going contract research efforts to the Rome
Laboratory Network Design Facility.

This report describes the testbed environment used during this study, presents
an example of a typical protocol algorithm studied, and illustrates the analysis and
evaluation methodology with this example protocol. Sample experimental results
which were used to identify certain problems with this protocol are also included.

1. Introduction

The C°I networks of the future must be able to operate at high performance
levels under very adverse conditions. Although significant research has been
conducted over the past several years on packet switched networks, this previous
work has not focused on the specific environment expected as these networks are
extended into theater operations involving military conflicts. In order to address this
need, Rome Laboratory has established a testbed within the Network Design Facility
in which experimental research is being performed with the objective of testing and
evaluating packet-switched network protocols in highly dynamic networks.

An objective of Rome Laboratory’s research program is to develop the necessary
advanced technology for support of high speed, theater level packet-switched
networks. This objective is achieved through a combination of in-house research and
contract research projects directed toward various specific aspects of this technology
development effort. Each of these projects brings experts in the various subareas of
networking technology together to study the problems in the light of current
technology and to make advancements in those subareas which are found to be
limiting factors in achieving the goal of high performance C°I networks. One of these
efforts was a project entitled EDMUNDS (Evaluation and Development of Multimedia
Networks in Dynamic Stress) under contract to SRI International. This effort, which
concluded in October, 1993, developed three new protocols f. - routing and flow control
in packet switched networks subject to highly dynamic stress. Qur work has focused
on two major tasks. First, we have conducted an analysis and evaluation of these

1

three algorithms. Second, working with the Rome Labs engineers we have developed
a sound methodology for experimental testing of these and similar algorithms using
the testbed tools developed by SRI. These tools were available within the Rome Labs
Network Design Facility and within our own Distributed Systems Laboratory at
Clarkson.

In this report we first describe the testbed environment in which this study
was conducted. Although this testbed was designed and implemented by SRI, we
provided guidance in its design by using and evaluating early versions of these
testbed tools and making recommendations for improvements and enhancements.
Having appropriate, easy to use tools is a key factor in developing an effective
methodology for protocol test and evaluation. Second, we discuss the protocol
algorithms and summarize our analysis of these. Third, based on one of the example
protocols, we illustrate the evaluation process and show how a problem was identified
using the testbed tools. Conclusions and suggestions for continued evaluation of
these protocols complete the report.

2. Protocol Development and Simulation Testbed

The design of new protocols in packet switched networks typically involves at
least three distinct software development steps: algorithm testing, protocol
evaluation, and final implementation on operational hardware. This process typically
suffers from the inefficiencies of porting between different software environments at
each of these different phases of development, and from the likelihood of introducing
new errors at each step. In this section we describe a new software testbed which
supports an integrated environment for the development of protocols by providing
smooth transitions from initial testing of core algorithms, to comprehensive protocol
evaluation, and finally to implementation on a platform suitable for easy porting to
a high-performance packet switch.

The architecture of this testbed has been developed in several stages. As
experience with each stage was gained, we and the Rome Labs engineers who were
using it provided feedback to SRI and recommended changes for its improvement.
In this report we present a "snapshot” of the testbed based on its status during the
majority of the time in which this work was done. We also give a brief description
of the changes which have taken place since then.

The testbed consists of a set of software development, simulation, and data
analysis tools in an integrated environment running on a Sun SPARC workstation.
The testbed components include a Network Algorithm Programmer’s Interface
(NAPI), a Simple Network Algorithm Prototyping Simulator (SNAPS), an
OPNET-based [OPNET (Optimized Network Engineering Tools) is a commercial
network simulation package developed by MIL3, Inc.] packet level simulation
platform, a set of automated data analysis tools, and a color graphical Network
Visualization tool (NetViz). All of the data analysis and NetViz tools are compatible

with and may be used with simulation data produced by both SNAPS and OPNET.

2.1 Protocol Development

The first step in the development of a new protocol is a highly interactive,
iterative design process. This process involves specifying the basic algorithm for the
protocol in some language and then testing it in a simplified simulation of the
network environment. SRI created a simulation tool called SNAPS (Simple Network
Algorithm Prototyping Simulator) for this purpose. SNAPS is a C language based
simulation tool in which the interface between the user’s specification of the protocol
and the simulation package is a small set of C functions. This set consists of
functions which may be called by the user’s code (e.g. initialization, generate a
packet, etc.) and functions which must be written to respond to calls from the
simulator (e.g. packet arrival, packet received at destination, etc.). SNAPS provides
a good high-level view of a protocol algorithm in operation, but is not detailed and
uses a simplified network model. It assists the protocol designer in debugging the
basic concept of a new algorithm and gives an approximate indication of the likely
performance of an algorithm. It is not intended as a tool for making comparative
judgments about the relative merits of two or more well developed protocols, nor is
it intended as a tool for final verification of an algorithm’s correctness.

In order to ease the transition from the SNAPS simulation to a more detailed
simulation, SRI developed a common interface to both the SNAPS simulator and the
OPNET simulator. This interface is called a Network Algorithm Programmer’s
Interface (NAPI). It consists of the following components:

(a) Environment - the simulation platform, mostly protocol independent,
(b) Core - the network protocol,
(c) Wrapper - the part of the environment which is protocol dependent,

(d) Libraries - common functions such as traffic generator and parameter file
parser.

The interrelationships of these components of NAPI are illustrated in Figure 1 and
Figure 2. Figure 1 shows the components used in conducting a SNAPS simulation.
These include the protocol code - the core - which is represented by the innermost,
light blue circle. This code interfaces with the simulation package via the wrapper
functions, shown as the blue ring. The simulation code is represented by the
outermost ring and is made up the SNAPS simulator and a set of library functions.
The benefits derived from this architecture can be seen by examining Figure 2. This
illustrates the components used in conducting an OPNET simulation. We note that
the protocol code is identical and the wrapper interface functions are identical and
the libraries are identical. Thus, in order to simulate a given protocol, only the
simulator component need be changed. Similarly, if we were to consider NAPI for a

SNAPS

Figure 1 NAPI

Figure 2 NAPI - OPNET

second (different) protocol algorithm, we would need to change only the core and
parts of the wrapper functions. The libraries and environment portions remain the
same for different algorithms.

Since the time during which our work was conducted, SRI has continued to
improve this protocol development system. The current version is known as NAPI+,
indicating that it is an object-oriented (C++) development environment. The major
differences are that the protocol algorithm is specified in terms of object-oriented
modules using C++ as the language, and the OPNET simulator has been replaced by
an SRI developed C++ simulator. This simulator provides a comparable level of
simulation as OPNET, but is more compatible with the object-oriented design
philosophy of the protocol. The use of C++ for the protocol code enables this same
protocol code to be ported directly to a multiprocessor emulation environment based
on C++.

2.2 Protocol Simulation

As discussed in section 2, above, the work described in this report was done
using the OPNET-based version of the simulator OPNET (Optimized Network
Engineering Tools) is a commercial software package developed by MIL3, Inc.
OPNET is an open architecture network simulation system which provides a general
purpose framework for a network designer to use in building specific simulation
models of networks.

OPNET provides several editing environments, predefined functions that
perform common networking tasks, and capabilities for network display, data
collection and analysis. Models may be represented graphically, and are specified by
code written in the C language. The protocol algorithm is modeled as an OPNET
process. In addition, there are processes to model a traffic generator and a link
manager. For a typical protocol algorithm which is distributed over all nodes of the
network, these processes are then inserted into each node model. The nodes are then
connected together to form a network model.

A simulation requires two input files. The script file specifies network
connectivity, link capacities and link dynamics. The environment file specifies values
for simulation parameters, eg. length of simulation, output file, etc., protocol
parameters, eg. smoothing values, threshold levels, etc., and information specifying
what data to log. As the simulation executes, the selected results are output to the
log file. The log file is then used for post-simulation data analysis.

An integrated set of data analysis tools are available to be used on the output
log file. These tools are written using the Unix PERL language (Practical Extraction
and Report Language), a language useful for scanning text files to filter out the
specific data of interest, and the gnuplot plotting programs. Data collected on the log
file is filtered by a PERL script, prepared for the plot software, and then displayed
and/or printed. This approach has several advantages over traditional simulation

programs which only plot requested data as the simulation is being run. It allows the
user first to view the results of a complete simulation run and then re-examine the
same data at a specific point of interest, perhaps stepping through the log file in
small incr<inents of simulated time. Since the computational effort to perform the
simulalon is usually much greater than that to do data analysis, there is a
significant benefit if a single simulation run may be used for several different
analyses. The only costs incurred from requesting more data to be logged than is
actually needed for one analysis is the increased size of the log file and some increase
in the simulation time. When several different aspects of a simulation are to be
analyzed, the log file approach has proven be a useful technique. Other advantages
include the ease with which batch simulations may be run during non-peak time,
thus permitting better utilization of computing resources.

In addition to the data analysis and plotting tools, there is an animated color
graphics network visualization too] (NetViz). NetViz is written in C++ and provides
a graphical user interface using the X-window/Motif environment. NetViz may be
used in one of two modes. In the first mode, NetViz reads the output log file and
effectively "replays” the simulation, allowing the wuser to display graphic
representations of traffic routing, queue sizes, expected delays and other parameters
of interest. In the second mode, NetViz may be run in real-time with the simulation,
reading the log file as it is produced. Thus while not actually a part of the simulator,
it gives the user an interface essentially equivalent to a real-time interactive
simulation. The visualization of qualitative data which is not readily analyzed by the
analysis and plotting tools is an important component of the testbed and greatly
enhances the usefulness of the testbed in protocol analysis. Visualization of events
in the network simulation is also important for demonstration purposes.

3. Protocol Description

In this section we describe a typical example protocol used in this research.
This protocol was developed by SRI under the EDMUNDS program as described
previously. It is the first of a family of protocols specifically designed for packet
networks operating under the extreme conditions which are typically found in theater
operations. This family is called the Secure Tactical Internet Protocol (STIP), and
STIP1 is the first version to be analyzed and evaluated in the testbed. Development
of STIP2 and STIP3 were in progress while we did most of the work for this effort.

STIP1 [1] is a multimedia network protocol in two senses. STIP1 is intended
to support transport of multimedia or multiple information services, such as voice,
video, or data. It is also intended to utilize multiple transmission media, or links
having a diversity of characteristics such as bandwidth, delay, vulnerability to
jamming, etc. STIP1 is specifically designed to be robust in highly dynamic tactical
operating environments. These environments are characterized by link states (up or
down) which may change rapidly in the presence of jamming, and by frequent
topology changes due to node mobility and/or node destruction and reconstitution.

7

STIP1 is a distributed distance vector algorithm, which means that each node
uses the information supplied by its neighbors as the basis for its actions. This is in
contrast to link state algorithms which use global information about the entire
network. Using neighbor data improves the response to localized problems and
avoids difficulties which arise from the use of obsolete information in the event of
long delays from distant parts of the network.

STIP1 uses thresholding to limit state updates to those instances in which
significant changes have taken place. This reduces the overhead traffic and results
in a smoother response to network changes by ensuring that a short term change in
the network state does not produce oscillations in the response. It also averages
delays over time so that delay information to more distant nodes is averaged more
than that used for nearby nodes.

The basic cycle of the protocol is repeated as frequently as possible and is
called an epoch. During each epoch the link and routing variables are measured and,
if necessary, re-calculated. If thresholds have been met and a variable needs to be
upda 3, an update packet is generated at this time and sent to a node’s neighbors.
Examples of variables computed during each epoch are link probabilities, link delays,
effective link capacities, queue sizes, optimal flow rates for each link and destination,
expected delays and queue thresholds.

Link probability is used to estimate the probability that a packet transmitted
across a link will result in a corresponding ack being successfully received back. The
estimate is based on the ratio of packets acknowledged to those transmitted; it is
smoothed over short time periods. The raw delay across a link is calculated as the
sum of three quantities: transmit time, propagation delay and the delay due to
potential retransmissions. Effective link capacity is calculated as the product of link
probability and actual capacity.

The link scheduling algorithm decides which destinations will be served by a
specific link during an epoch. Each link has a scheduler that works independently
of all others, and each node contains a queue for traffic to each destination. The
pivotal parameter in the scheduling process is the queue threshold. The queue
threshold, theta(/,d), is computed for each link, destination pair. For a given link, [,
and destination, d, it represents the point in the queue for destination d, such that
it is better for a packet to wait for a link other than I. When a link becomes available
for the next packet transmission, first priority is given to any acknowledge packet
(Ack packet) for a destination with an Ack packet above theta(l,d). After that,
packets are selected on the basis of position in the destination queue for the next
destination in the link schedule. The link schedule is computed on a frame basis
which ensures that during the current frame, each destination gets a fair share of the
information flow across this link. The link transmission algorithm gets the next
packet eligible for sending when a link notifies the algorithm that the link is free.
It also passes incoming packets to the packet processing function.

The next group of algorithms deal with the packet processing. Functions that
fall under this heading include enqueueing, retransmissions and queue size.
Enqueueing deals with placing packets in their queues according to their priority.
There are five packet priority levels(from highest to lowest): acks for traffic, acks for
updates, acks for probes, updates and traffic. These priorities are based on size. The
acks for larger packets have highest priority to avoid retransmissions of the large
packets. Acks as a class have higher priority for two reasons. The first is that in
order to be able to handle fast network dynamics, acks must be received quickly to
minimize their timeout window. The second reason is that acks are small, so their
transmission will not cause the delay for updates or traffic to increase significantly.
The retransmission function reinserts into the appropriate queue traffic or update
packets for which no acks have been received during the timeout window. They are
placed just ahead of any other packet of the same type already in the queue. This
maintains the first come first served property.

At the network level, algorithms to calculate link flows, queue thresholds,
expected delay and routing DAG (directed acyclic graph) are performed. These
processes use expected delay information received from a node’s neighbors in
combination with local link properties such as delay and capacity to compute the
flows for each link and destination as well as the expected delays form this node to
each destination. The flow is the information rate (in bits/sec) at which packets
destined for a destination are transmitted over a link. The optimal flows are
computed so that the sum of expected delays to the next node for the last packet
currently in the queues is minimized. As described above, the queue threshold is the
position in a queue for a particular destination at which it is equally good for a
packet to use a secondary link immediately as it is to wait for the best link to be
available. This is computed once the flows have been computed.

The expected delays are taken into account when computing the flows. These
values are time averaged progressively so as to average them more as they are
propagated farther away from a node. The expected delay information received by
a node from its neighbors is used in combination with the characteristics of local
links, such as capacity, to compute expected delay from this node to each destination
as well as the flows [bits/sec] for each link and destination.

A DAG is the set of links that are valid for routing to get to a specific
destination. These links are chosen in a manner that avoids routing loops, making
use of the reported expected delays. To maintain a stable DAG in a dynamic
network, the changes in expected delays must meet certain thresholds before they can
trigger a change in the DAG.

4. Protocol Analysis and Evaluation

Simulations of the STIP1 protocol were conducted in the Network Design
Facility at Rome Labs by the Rome Labs engineer. Performance and vulnerability

testing were conducted by exercising the algorithm under various test scenarios.
More than fifty simulation runs were performed. As this is the first release of the
software, interaction between the Rome Labs engineer and contractor engineer was
frequent in order to debug operation and clarify documentation. As a result, efforts
initially were in a trial and error mode. Initial experiments concentrated on testing
all the analysis tools and simulation options to get a better understanding of how
they all worked. A few anomalies were encountered that were easily corrected. A
static simulation, with traffic but no jamming, is the usual starting point in a series
of experiments. This creates what should be a steady state performance baseline to
which subsequent runs can be compared. Most experiments have been done using
the ten node network shown in Figure 3. The number of traffic streams, traffic rates,
and jamming patterns are the main input properties changed among experiments.
In this section we discuss how the protocol simulation is used to analyze the protocol
and evaluate its performance.

Performance of a protocol algorithm must be measured in terms of several
different factors. In the development of these new protocols, SRI defined a
performance measure based on throughput, delay, reliability, and fairness [2]. The
simulation testbed tools include a capability for directly computing this performance
measure for each simulation run. Itis not possible to use this statistic as an absolute
measure of the effectiveness of a specific protocol. Rather it is useful for making
comparisons with other protocols or with the performance of one protocol under a
variety of different jamming scenarios. However, our experience at this point
suggests that a single number is not adequate in many cases. In order to fully
understand a protocol, one needs to look at more detailed measurements. The
simulation testbed tools provide the necessary capabilities to do this.

For example, for each traffic stream (a set of packets with a specified source
node and destination node) we have found it very useful to examine end-to-end delay.
Each packet that is received at the destination experiences a delay from the point of
first transmission by the source node. This delay is called the end-to-end delay. For
a typical simulation run, Figure 4 shows a plot of end-to-end delay for packets in the
stream from source node 8 to destination node 5. Each "dot" on this plot represents
a single packet. It is clear from this data that when a set of links was jammed at
time t = 20 to 26 sec., the end-to-end delay of most packets in this stream increased
by factors of 3 to 5. We also note that after jamming, the delay quickly returned to
a "normal” level.

The example in Figure 4 further illustrates why just looking at single
performance numbers is not sufficient to understand protocol operation. Later in this
scenario, at time t = 226 sec., a second set of links was jammed, and again we see a
short term increase in delay. What is most interesting is that in this case the delay
after jamming returns to a new level which is actually lower than the original. To
understand why this happens one must examine the other traffic streams both before
and after the jamming at t = 226 sec.

10

Figure 3 Ten Node Experimental Network

11

ETE Delav for SRC 8 DEST 5

3 e L] T T v T T Ll T
2.8 - “pac25 _d_3s_1l0n.log.fil_ete"
2.6 -
2.4} -
2.2 -
2 -
5 1.8 p 1
@
2 1.6 <
o
K 1.4 .
o
e 1.2k n
1 - -
0.8 - 1
J‘I [A:”f_'..dfi;
o 1 - b & L 1 A L L e
0 590 100 150 200 250 300 350 400 450 500

Time (sec)

mean ete delay = 0,268
variance = 0.016

Figure 4 End-to-End Delay for Source 8 to Destination 5

12

The other traffic streams in this example were source 6 to destination 3, and
source 0 to destination 4. End-to-end delay plots for these streams are shown in
Figures 5 and 6. These indicate that the reduction in delay for stream 8-to-5 has
taken place at the expense of increased delay for streams 6-t0-3 and 0-to-4. By
calculating the mean end-to-end delay over the "steady-state” time intervals between
jamming events and after the second jamming event, it is possible to get a
quantitative measure of this effect. We computed these delay times by simply using
the same tool which produced Figures 4, 5, and 6, but excluding all times except the
specific time interval of interest. This is a good example of the = “lness of the log
file approach. These delay measurements are shown below in 7 {

100 - 200 sec. 350-450 sec.
(after first jamming event) | (after second jamming event)

e

Stream

8-to-5 0.287 0.210
6-to-3 0.320 0.327
0-to-4 0.349 0.379

Mean End-to-End Delay (in seconds)
Table 1

As is evident from the data, the mean delay for stream 8-to-5 was reduced by 0.077
sec. while the mean delay for stream 0-to-4 and 6-to-3 was increased a total of 0.037
sec. Thus it appears that the second jamming event results in the overall network
being in a better state with respect to total mean delay. We have observed similar
behavior in other examples as well.

Based on the theory behind the algorithm’s development, this sort of anomaly
should not occur. It seems that during the first time interval the algorithm is failing
to find a true minimum delay solution. Using the NetViz tool to examine detailed
routing information during each of these time intervals suggests that minor
differences in routing decisions lead to these results. We investigated possible causes
and have concluded that the only significant difference between the algorithm in
theory and practice is the use of threshold limits which prevent continuous updates
to each node’s neighbors. We believe the thresholding may be the cause of this
behavior.

In other experiments in which several jamming sessions took place, the first
jamming had the greatest effect on end-to-end delay. We believe this also occurred
¢ 1e to the change in routing described earlier. Continually jamming only one node

13

ETZ Celay fcr SRC 6 DEST 3

3 T LI o T T L T) T
2.8 b "pac25_d_3s_10n.log.fil ete"
2.6 F 4
2.4 F .
2.2 -
2r -
- 1.8 o
U
L4
a 1.6 P -
= 1.4 b 4
o
Q 1.2 -
DA o -
0.8 } - 4
0.6 X - '\' J
. .
0.4 F N N g ;o o "k?-_ s nine res i
— AR ES A R R AN RN
0.2 r .
0 1 i . e A L. i 3 "
0 50 100 150 200 250 300 350 400 450 500

Time (sec)

mean ete delay = 0.398
variance = 0.247

Figure 5§ End-to-End Delay for Source 6 to Destination 3

14

Delay (sec)

ITE Delay for SRC Q DEST 4

3 T T T T L RE R T T
2.8 L "pac25_d_3s_10n.log.fil ete"
2.6 F ~
2.4 . -
2.2 1
1.8 “
1.6 r ’ -
1.4 ’ s
1.2 F -

1 b .
0.3 -
0.6, , '
0.4 r'{'.,’.‘.,‘.t.}".: 7 '.r 15’,.1-‘ ”[;: u "‘,d;‘.l] l.'-
0.2 } .

O 2 1 __ L § 1 8 1) - -

2 g0 100 1590 200 250 300 350 400 450 500

Time (sec)

mean ete delay = 0.397
variance = 0.066

Figure 6 End-to-End Delay for Source 0 to Destination 4

15

did not continually raise delay for traffic initially traversing that link. Jamming for
an extended period of time (10 sec) resulted in behavior very close to a long jam (5
sec) with delays either increasing very slightly or decreasing.

5. Conciusions and Future Work

A set of experiments with a new packet network protocol has been described.
The preliminary evaluation of the protocol has shown that although in theory it
should find a unique optimal set of routing paths with minimal end-to-end delays,
there appear to be cases in which there are multiple "nearly equally good" solutions.
Perturbations resulting from short term link outages may cause the algorithm to
move from one solution to another. We believe this is a result of the thresholding
which is used to reduce the overhead traffic of reporting every state change to all
neighbors. This hypothesis should be investigated by additional experimentation.
Also we note that the STIP1 protocol is only the first version in the STIP family, and
more sophisticated protocol algorithms (STIP2 and STIP3) have since been delivered.
Simulations should be run on these as well as on a baseline protocol to be used for
comparison. By comparing the results of running the same experimental conditions
across the three STIP protocols and the baseline, an accurate picture of each level of
sophistication will be acquired.

16

Bibliography

[11 D. Beyer, J. Hight, R. Ogier, and D. Lee, "Secure Tactical Internet Protocol 1
(STIP1)", Technical Report ITAD-8558-TR-93-31, SRI International, Menlo
Park, CA, Feb. 24, 1993.

[2] D. Lee, D. Beyer, and R. Ogier, 'EDMUNDS Network Environment Profile:
Benign and Adversarial Conditions, and Benchmark Scenarios,” Technical
Report ITAD-8558-TR-91-23, SRI International, Menlo Park, CA, March 1991.

[3] J. Hight, E. Costa, D. Lee, R Ogier, and J. Wong, "Evaluation and
Development of Multimedia Networks in Dynamic Stress (EDMUNDS): Final
Technical Report”, Technical Report ITAD-85558-FR-93-277, SRI International,
Menlo Park, CA, October 1993.

®U.5. GOVERNMENT PRINTING OFFICE: 1994~510-117 -50037

17

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materie
Command product centers and other Air Force arganizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.

