RL-TR-94-150

Final Technical Report
August 1994

NEURAL NETWORK

COMMUNICATIONS SIGNAL

PROCESSING

AD-A285 681

Harris Corporation

T SELECTE ;

Dennis Tebbe, John Doner, and Tom Billhartz

DTIC

0CT 21 1994‘%

F

|
|

3@JIII"Hiilli|l||||||lllllllllilllllllll I

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

94-32739

/

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

4

Ne
¥ON

, Y 2

prIL e L

'

. This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL;TR-94—150-has been reviewed and 1is approved for publication.

APPROVED: M‘,

SCOTT S. SHYNE
Project Engineer

S T

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing 1list, or if the addressee is no longer employed by your organization,

please notify RL (C3BB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | oW nbro70a01es

PL&!MW!GMMdWhMtoW:@! hour per respones, nchuding the tims for reviewing instructions, searching existng data sousces.

gathering and mairtsining the dets nesded, and cormpleting and reviewing the colection of rformetion. Send com me—ts regarding this burden estimate o any other aspect of trss
colection of Ifomation, including suggestions for reducing this burden, to Washington Headquarters Services, Drectorats for Information Operations andReports, 1215 Jefferson
Davis Highway, Sulte 1204, Aringgon, VA 222024302, and to the Offics of Mansgemaert and Buciget, Paperwork Reckuction Project (0704-0188), Washinggon, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
August 1994 Final Sep 92 - May 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-92-C-0051
NEURAL NETWORK COMMUNICATIONS SIGNAL PROCESSING PE - 62702F
PR - 4519
6. AUTHOR(S) TA - 42
Dennis Tebbe, John Doner, and Tom Billhartz wu - 78
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Harris Corporation REPORT NUMBER
Government Communications Systems Division
P.0. Box 91000
Melbourne FL 32902 N/A
9. SPONSORING/MONITORING AGENCY NAME (S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Laborato ry (C 3BB) AGENCY REPORT NUMBER
525 Brooks Road
Criffiss AFB NY 13441-4505 RL-TR-94-150

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Scott S. Shyne/C3BB/(315) 330-4819
12a DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT Msdusm 200 words)
This final technical report describes the research and development results of the
Neural Network Communications Signal Processing (NNCSP) Program. The objectives of
the NNCSP program are to: (1) develop and implement a neural network and .
communications signal processing simulation system for the purpose of exploring the
applicability of neural network technology to communications signal processing;
(2) demonstrate several configurations of the simulation to illustrate the system's
ability to model many types of neural network based communications systems; and
(3) use the simulation to identify the neural network configurations to be included
in the conceptual design ¢f a neural network transceiver that could be implemented
in a follow-on program.

14. SUBJECT TERMS 15 NuTg%a OF PAGES
Neural networks, Signal processing, Communications 16 PRICE CODE
17. SECURITY CLASSIFICATION 18 SECUFWTV CLASSIFICATION 119, SECURITY CLASSKICATION |20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSITIED UNCLASSIFIED UL
NSTI 7540.01.280 3300 StanGarC F orm 238 (ev £ o

PugﬂuuwAn&am Zx g
298102

TABLE OF CONTENTS

PARAGRAPH

1. INTRODUCGTION. ...ttt e e e e eaneees 1
1.1 BACKGROUND. ..ottt eieen e eeeieaesnenesesnenneneneas 1
1.2 SCOPE ...t re et reetteneeese e e s e s e e e aeans 1
1.3 REPORT ORGANIZATION.....ccccuiiiirieiciiitiencvenieerentnceeeransesreneeeeeens 2
1.4 REFERENCE DOCUMENTS........ciiiiiiiiiiiiiiciircince e enn 2
1.4.1 Government DOCUMENLSciuiiiiiiiiiniiiiiiieneeriaeeeeeersacteesensenensenes 2
1.4.2 Non-government Documents........c..ccceiieuciiierieniieciunieennerieeenenennnenns 3
2. NEURAL NETWORK COMMUNICATIONS SIMULATION SYSTEM.....5
2.1 FEASIBILITY STUDY ..ottt eteeiecneesrreeseneanannes 5
2.1.1 Neural Network Applications in Communicationscccveererennnnnnns 5
2.1.2 Neural Network Paradigm Choices for NNCSScccooiiiiiiiiiiiininnnn.. 6
2.1.3 Candidate Applications for NNCSS.........cccciiiiiiiiiiiiiiiiiriiiieienanannes 11
2.2 SYSTEM ARCHITECTURE ...ttt riicee e e en e aeae 13
3. NEURAL NETWORK COMMUNICATIONS LIBRARYc.cccevenen.n. 15
3.1 NNCL OVERVIEW.....iiiiiiiiiiriirieiiinerieeitnnesenncnnesnnessensesananenns 15
3.1.1 NNCL CSCIAIChIECIUI®vutiiiiineiinenenrieiarerereenenessassenensnnnennsns 16
3.1.2 System States ADd Modes.......cooiiiiiiiiiiiiiiiiiiiiiiirecir e e 17
3.1.2.1 Symbol Model.cuininiiiiiiiiiiiiiiiiii e e e reere e e e en e 17
3.1.2.2 Parameter Model........c.ovniniiiiiii i a e e e 18
3.1.2.3 Detailed Model........cccovininiiiiiiiiiiiiiii ittt e e e 19
3.1.2.4 Block Model.......cooiiniiiiiiiiiiiiiiii et ee e e s s e aensenen 20
3.1.2.5 Expression Model.coooiiiiiiiiiiiiiiiiiiieicr e e e 20
3.1.3 Memory And Processing Time Allocation............ccoeeviiiiiiiiinenieninneneen. 20
3.2 THE COMPUTER SOFTWARE COMPONENTS OF NNCL................... 21
3.2.1 Neural Network Object Manager (CSCO1)........cceevmieniniuiiiiniiiniininenncnes 21
3.2.2 Neural Network Management (CSCO2)ocviieineineniiniieennnieneaennnnns 22
3.2.3 Register Function Blocks (CSCO03)cceviiiiiiiiiiiiiieiiieieenrenenienenns 24
3.2.4 Neural Network Instruments and Probes (CSCO4)cccovviiiiniiiininnnnn. 25

3.2.5 Backpropagation Function Blocks (CSCOS)..........cocveviiiiivinininininininne. 25
3.2.6 Kohonen Feature Map Function Blocks (CSCQ06).............ccovvumrivnunncnne. 28
3.2.7 Fully Recurrent Network Function Blocks (CSCO7)cccovvuininienininnnn. 31
3.2.8 Adaptive Resonance Theory Function Blocks (CSCO8)...............cooooininin. 35
3.2.9 Brain State in a Box Function Blocks (CSC09)ccviiiiiiiiiiiiiiinienecnnnnn, 47
4. NEURAL NET. COMMUNICATIONS SYSTEM APPLICATIONS. 50
4.1 SIMPLE NON-LINEAR MAPPING WITH A NEURAL NETWORK......... 52
4.2 EQUALIZATION OF MULTIPATH DISTORTED 64-QAM 57
4.3 EQUALIZATION OF DYNAMIC MULTIPATH DISTORTION 63
4.4 DEMODULATION OF NON-LINEARLY DISTORTED 16-QAM 68
4.5 DEMODULATION OF QPSK WITH BACKPROPAGATION 72
4.6 DEMODULATION OF QPSK WITH KOHONEN-OUTSTAR.................. 76
4.7 DEMODULATION OF NON-LINEARLY DISTORTED 16-QAM 79
4.8 DEMODULATION OF 16-QAM OVER A RAYLEIGH CHANNEL........... 83
4.9 IMPROVING SOFT DECISIONS IN A JAMMING ENVIRONMENT 86
4.10 DEMODULATION OF QPSK WITH A RECURRENT NETWORK 96
5. FUTURE NEURAL NETWORK TRANSCEIVER........c.cc.cvviniiiiininnnn. 100
6. (6,006 3013 (01 TP 103
7. 12305300 (0. €)1 7.1 4 7 | (PP 105
8.0 (€ 5.0 U1T. N L) TSN 111
PN 2 % 101 5). G PP PP 113

TABLE

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 3-1

TABLE OF TABLES

PAGE
Summary of Applications Relevant to NNCSS 7
Choices of Neural Paradigms for the NNCSS.......................... 9
Neural Network Applications in Communications Systems........... 12
NNCSS Computer Software Configuration Items...................... 14
NNCL Computer Software Components and Groupings.............. 17

Accesion For

)

NTIS CRA&I N
0

Ol

DTIC TAB
Unarnnounced
Justitication

BY o
Distribution

Avatability Coces

_ Avail and [or
Dist Special

Al

FIGURE
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 4.1-1
Figure 4.1-2
Figure 4.1-3
Figure 4.2-1
Figure 4.2-2
Figure 4.3-1
Figure 4.4-1
Figure 4.4-2
Figure 4.5-1
Figure 4.5-2
Figure 4.6-1
Figure 4.7-1
Figure 4.7-2
Figure 4.9-1
Figure 4.9-2
Figure 4.9-3
Figure 4.9-4
Figure 4.10
Figure 5-1
Figure 5-2

TABLE OF FIGURES

PAGE
NNCSS System ArchiteCturecceuviiieierninieeninuenenenerennenennnn, 13
Typical Non-linear threshold functions usedin ANS 16
Function Block Symbol Modelcccciiiiiiiiiiiiiiiiniiiinnninnn.. 18
Function Block Parameter Model............c.coevviiiiiiiiiiiiiiininin.. 19
Function Block Detail Model............ccoociiiiiiiiiiiiiiiiiiiiiiiinene, 20
SPB/NNOM Interface.for NNCL Function Block 21
Neural Network Builder Interfaces............cccoceiiiiiiiiiiiiiniiinnnnnnnn.. 22
Neural Network Object Management Component Architecture............ 23
Backpropagation Network Architecture.........ccccocvvrummrrrreeeirenenne. 26
Backpropagation Learn Algorithm for a Layer.............cc.ccoooeiiia.l. 27
Kohonen Topological Feature Map Architecture...........cc.ccceeeeuuueee.. 29
Kohonen Neighborhood Diagram............c.c.cooiviiiiiiiiiiinninn.. 30
Fully Recurrent Networkcoiiiiiiiiiieiiniiiiiiiiiiiinicec e, 32
Fully Recurrent Network Dynamics for Learning Algorithm 34
ART2 Architecture.........ccciiiuiiiiiiiiiiiiiiiiitiiiiirecerene s caneas 40
ART 3 ArChiteCture.oiiuieiiiiitiiiierneenneeeenenenenenenensncncnnns 44
Brain State in 2 Box ArchiteCturecocoovvvviiniiiiinnnneiieiennnnnas 49
Neural Network Target and Output for 0.5x2 Function................... 53
Neural Network Target and Output for 0.5x3 Function..................... 55
Trained and Generalized Outputs for the 0.5x2 Target Function........... 56
Rummler Channel Frequency Response..........c.ccevieiiiuininninenennnn.. 58
Signal Constellations for 64-QAM Equalization............c..cccvuvenennnia. 62
Various Signals in Backpropagation Network Equalization................ 67
Bit Error Rate Performance.........cccooveuuememeeremuneneeneneneeuenernenans 70
Decision Regions Compared to Received Constellation 71
16-QAM Signal Constellations at Points in the Channel Model............ 74
Bit Error Rate Performance.............ccccocoriiiinmumnniiciiinnirininncnnn. 75
QPSK Input and Output Constellations...............ccoeniiinicinininnnnne.. 78
Unequalized and Equalized 16-QAM Signal Constellations................ 81
Bit Error Rate Performance.............cccooiiriiiniiunnnnncccciinecneneannnn. 82
Initial Neural Network Soft-Decision Metric (Before Adaptation)......... 92
Neural Net. Soft-Decision Metric During and After Adaptation 93
Optimum Soft-Decision Metric for Pulse-Jammer Scenario................ 94
Bit Error Rate Performance.........cccccooriiiiniiinenuunniiccieniicenneeannee 95
Bit Error Rate Performance...........cccceviiiiiruniiiiiiiienniinninnnnnnnnes, 99
High-Level Block Diagram of Generic Multiband Transceiver. 100
Future Neural Network Receiver.........cooovvniiiiiiiiiiininnninnn. 102

iv

1. INTRODUCTION

This Final Technical Report describes the research and development results of the Neural
Network Communications Signal Processing (NNCSP) Program, contract number
F30602-92-C-0051. The objectives of the NNCSP Program are to: 1) develop and
implement a neural network and communications signal processing simulation system for
the purpose of exploring the applicability of neural network technology to communications
signal processing, 2) demonstrate several configurations of the simulation to illustrate the
system's ability to model many types of neural network based communication systems, and
3) use the simulation to identify the neural network configurations to be included in the
conceptual design of a neural network transceiver that will be developed in a phase II
follow-on program.

1.1 BACKGROUND

Possible application areas for neural network technology in the communication system
domain are the signal processing functions of transceivers which include noise cancellation,
demodulation, decoding and channel equalization. A modular design approach that couples
neural network modules with conventional signal processing modules has the potential of
producing a smart radio that exhibits a flexible design and enhances link survivability in an
electronically hostile environment. The current status of neural networks and their
application to the communication system domain remains in a state of basic research. This
basic research has resulted in several papers with general theory and some pieliminary
results but very little else. These papers provide an initial baseline and provide motivation
for obtaining a computer aided design system for the creation of neural network based
communication systems. Ongoing work for the "Speakeasy" multiband, multimode radio
program and the smart radio development program at Rome Laboratory requires suppcrt in
the application areas mentioned above. Neural networks may be able to provide
communication systems with a great deal of processing power while at the same time
providing a degree of fault tolerance. Previous efforts have addressed small aspects of
communication systems using neural network technology but an overall simulation system
that compares neural network techniques with conventional signal processing techniques is
unique to this effort. The successful completion of this effort significantly enhances the
state of the art in design capability for smart radio technology.

1.2 SCOPE

This program represents the first of two developmental phases. In the first phase, the
contractor designs and implements a software simulation environment that will be used for
modeling neural network based communications systems. In the second phase, the
contractor will fabricate a breadboard transceiver based on the results of the phase I effort.
This contract only addresses the phase I neural network communications signal processing
simulation, and the remainder of this description of the technical scope addresses only the
tasks of phase I.

The first task of the NNCSP program was a feasibility study to determine which Neural
Network paradigms can best be applied to the communication domain. The results of this
feasibility study formed the basis for specifying the neural network modules in the software
simulation environment. The next task was the design and development of a software
package which provides the capability for communication engineers to design and test
communication systems that contain modules of neural network algorithms and also
modules of conventional signal processing techniques. The simulation software provides
the capability to interchange neural network modules with similar conventional signal
processing modules. When the simulation software was completed, the next task was to

demonstrate several configurations of the simulation to illustrate the system's ability to
model many types of neural network based communication systems. The following task
consisted of a series of simulation experiments aimed at identifying neural network based
communications signal processing functions which should be included in future neural
network based transceivers. As part of phase I, the last task was a high-level conceptual
design of a prototype neural network communication system which is recommended for a
phase II implementation . Based on its review of phase I, the Government will decide
whether to proceed with a procurement of a phase II effort.

The software package that was developed and implemented in this contract is named the
Neural Network Communications Simulation System (NNCSS). It is a communications-
oriented digital signal processing (DSP) simulator with the capability to invoke neural
network paradigms into signal processing chains. This is a generic tool which will greatly
facilitate the design and simulation of communication signal processing products that
incorporate embedded neural network technology.

The NNCSS is based on the Signal Processing WorkSystem™ (SPW™), a commercial
off the shelf (COTS) signal processing simulator, offered by Comdisco Systems, Inc.
SPW provides a block diagram approach to constructing signal processing simulations.
The entire prototyping effort is viewed in schematic form on the workstation monitor,
providing a familiar engineering-oriented paradigm for the analyst. Using SPW, the analyst
attaches special function signal processing modules to each other, and provides input signal
sources, which may be cither digital data retrieved from disk or real-time analog signals
digitized "on the fly" as the simulation runs. The analyst has the capability to insert
"probes” at various points in the signal processing chain and view signal characteristics at
the probed points. Such probes may collect data for real-time viewing or post simulation
analysis.

In this contract, additional function blocks and codes have been added to SPW to allow the
design and simulation of neural network based communication functions. With the
functions provided by the Neural Network Communications Library, the NNCSS allows
the analyst to compare the performance achieved by neural network based designs with the
performance of similar functions which use conventional signal processing approaches.

1.3 REPORT ORGANIZATION

Section 2 presents the NNCSS. Specifically, the feasibility study which defined the
NNCSS is summarized in 2.1,and the NNCSS architecture is described in 2.2. Section 3
describes the Neural Network Communications Library (NNCL) which is the library of
neural network function blocks used within the NNCSS environment. Section 4 describes
all of the simulation experiments which were used to investigate the application of neural
networks in communications signal processing. Section S presents the high-level
conceptual design of a neural network transceiver which could be developed in a phase-1I
follow-on program,. Section 6 presents the conclusions of the program and
recommendations for additional work to be done.

1.4 REFERENCE DOCUMENTS
1.4.1 Government Documents

The following documents define the contractual requirements for the Neural Network
Communications Signal Processing Program

DOD-STD-2167A, Defense System Software Development, 29 February 1988.

DI-MISC-80711/T, Data Item Description (DID).for Scientific and Technical
Reports (Final).

F30602-92-R-0005, Request for Proposal, Neural Net Communications Signal
Processing, Rome Laboratory, Griffiss Air Force Base.

F30602-92-C-0051, Contract, Neural Network Communications Signal Processing
Program, Rome Laboratory, Griffiss Air Force Base.

1.4.2 Non-government Documents

The following documents are contractual data requirements of the Neural Network
Communications Signal Processing Program:

Feasibility Study, Technical Information Report for the Neural Network
Communications Signal Processing Program, CDRL A003, 31 March 1993.

Software Development Plan for the Neural Network Communications Signal
Processing Program, CDRL AQOS, 1 March 1993.

System/Segment Design Document for the Neural Network Communications
Simulation System, 6 June 1994,

Software Design Document for the Neural Network Communications Library,
CDRL A004, 6 June 1994.

Software Design Document for the Neural Network Object Manager, CDRL A004,
6 June 1994.

Software Test Description for the Neural Network Communications Simulation
System, CDRL A006, 6 June 1994.

Software Test Report for the Neural Network Communications Simulation System,
CDRL A007, 6 June 1994,

Software Users Manual for the Neural Network Communications Simulation
System, CDRL AQ08, 7 June 1994.

The following documents define the Signal Processing WorkSystem™ that comprises the
commercial off the shelf (COTS) computer software configuration items (CSCI) that are
part of the Neural Network Communications Simulation System:

SPW™ . The DSP Framework™ User's Guide and Tutorial, Product Number:
SPW8010, Document Version: 3.0, Comdisco Systems, Inc., September 1992.

SPW™ . The DSP Framework™ Macro Command Language Reference, Product
Ngu;nber: SPW8011, Document Version: 3.0, Comdisco Systems, Inc., September
1992.

SPW™ . The DSP Framework™ Designer/BDE™ User's Guide, Product
Ngugzlber: SPW8012, Document Version: 3.0, Comdisco Systems, Inc., September
1992,

SPW™ . The DSP Framework™ Signal Calculator™ User's Guide, Product
Nguél;ber: SPW8013, Document Version: 3.0, Comdisco Systems, Inc., September
1992.

SPW™ - The DSP Framework™ Signal Flow Simulation User's Guide, Product
Nraber: SPW8014, Document Version: 3.0, Comdisco Systems, Inc., September
1992.

SPW™ . The DSP Framework™ DSP & BOSS™ Communications Library
Reference, Product Number: SPW80i5, Document Version: 3.0, Comdisco
Systems, Inc., September 1992.

SPW™ - The DSP Framework™ Tool Interface Language Reference, Product
Ngugmbcr: SPW8016, Document Version: 3.0, Comdisco Systems, Inc., September
1992.

SPW™ . The DSP Framework™ Standard C Code Generation System™, Product
Number: CGS8000-C, Document Version: 1.6, Comdisco Systems, Inc.,
Scptember 1992.

SPW™ - The DSP Framework™ Interactive Simulation Library™ Reference,
Product Number: ISL8000, Document Version: 1.0, Comdisco Systems, Inc.,
September 1992.

2. NEURAL NETWORK COMMUNICATIONS SIMULATION SYSTEM

The development of the NNCSS provides a communications-oriented digital signal
processing (DSP) simulator which smoothly incorporates the capability to invoke neural
network paradigms into signal processing chains. This is intended to be a generic tool
which will greatly facilitate the design and simulation of communications signal processing
products that incorporate embedded neural network technology.

The NNCSS is based on the Signal Processing WorkSystem™ (SPW™), a commercial
off the shelf (COTS) signal processing simulator, offered by Comdisco Systems, Inc.
SPW provides a block diagram approach to constructing signal processing configurations
for simulation.

The users of NNCSS are expected to be communication analysts and designers with a
detailed understanding of communication signal processing and only an elementary
understanding of neural network techniques. The NNCSS will cast the neural network
paradigms into a function block form that will allow the analyst to design and simulate
neural network based communication functions in a manner similar to what is currently
done using conventional design approaches.

The primary mission of the NNCSS will be to support investigations in the design of
specific communication systems based in part or totally on neural network approaches. The
NNCSS will allow comparison of neural network and conventional communication system
designs.

2.1 FEASIBILITY STUDY

The first task in the NNCSP Program has a feasibility study which identified a feasible
approach for developing a simulation software package for neural network communications
signal processing. The feasibility study also selected a set of neural network paradigms
which could provide a compreheasive set of neural network capabilities. That part of the
feasibility study which dealt with the selection of neural network paradigms is summarized
in 2.1. The software architecture is summarized in 2.2.

2.1.1 Neural Network Applications in Communications

A literature search was undertaken as a precursor to the initiation of NNCSS software
development. This search focused on determining what sorts of neural network paradigms
have been successfully applied to communications signal processing problems. The search
included the DIALOG database search system, and a search of the Defense Technical
Information Center (DTIC). Several papers also were found in IEEE periodicals, including
papers from [EEE Transactions on Communications.

A search was performed using the key words "Ncural()thwork" and
"Commumcanon()gystem on the DIALOG database which contains articles from
published technical periodicals. This database produced 98 matches. Of the titles
observed, there were 17 which appeared to be very relevant. Abstracts for these 17 were
ordered, and the full text of 13 were acquired.

A search was also performed on the DTIC using the key words "neural nets" and
"communication and radio systems". DTIC has a specific guide which constrained the key
word choices. Nineteer documents were ciscovered by this search; six were of interest
and were acquired.

In summary, the literature search produced a total of 46 papers (included in the
Bibliography, Section 7.0) which appeared relevant to NNCSS. These 46 papers were
individually reviewed, with a short report being generated for each paper which in fact had
strong relevance to the expected applicability of the NNCSS. Of the original 46 papers, 19
were of direct interest. These 19 are identified in the following list.

[e—y
.

AN O S ad M

— et p— r— et \O 00 ~J
.A P .N .~.°¢ . .

—
W

Povsd b
o0

19.

List of Applicable Papers

Aazhang, B., et al., "Neural Networks for Multiuser Detection in CodeDivision
Multiple-Access Communications”

Anderson, J., et al., "Radar Signal Categorization Using a Neural Network"

Andersson, G., et al., "Generation of Soft Information in a Frequency-
Hopping HF Radio System Using Neural Networks"

Chesmore, E.D., "Application of Pulse Processing Neural Networks in
Communications and Signal Demodulation”

Feiz, S., et al., "Adaptive ML Neural Network Based Receiver for QZPSK
Modulated Data Transmission Systems"

Fontana, R., et al., "Communications Signal Recognition and Demodulation via
Neural Networks"

Hussain, M., et al., "Neural Network Application to Error Control Coding"

Kohonen, T., et al., "Combining Linear Equalization and Self-Organizing
Adaptation in Dynamic Discrete Signal Detection"

Jeffries, C., "High Order Neural Models for Error Correcting Code”

Johnson, J. , "Neural Network Algorithm Decoding and Sequence Predictor”

Kechriotis, G., et al., "Using Recurrent Neural Networks for Blind Equalization
of Linear and Nonlinear Communication Channels"

Lee, T., I:t al.:);'kAdaptive Vector Quantization Using a Self-Development Neural

: etwork”

Naylor, J., "A Neural Network Algorithm for Enhancing Delta Modulation/LPC
Tandem Connections"

Santamaria, M., et al.,, "Neural Net Filters: Integrated Coding and Signalling in
Communication Systems"

Rao, S., et al., " A Neural Network Tunable Filter for Multi-Tone Detection"

Siu, S., et al., "Decision Feedback Equalization Using Neural Network
Structures”

Spect, D., "Probabilistic Neural Networks"

Tasic, J., et al., " Theory and Application of the Neural Net-Based Adaptive Filter
in Communication Systems"

de Veciana, G, et al., "Neural Net-Based Continuous Phase Modulation
Receivers"

2.1.2 Neural Network Paradigm Choices for NNCSS

This section summarizes the evaluation of the applicable papers and the selection of neural
network paradigms for NNCSS.

Table 2-1 summarizes the 19 papers mentioned above. Note that the uses of neural
paradigms comprised: o o
1. use of backpropagation networks in nine applications,

2. use of associative recurrent networks in four applications, specifically Hopfield and

Brain State in a Box (BSB),

3. use of Kohonen feature map structures in two applications,

4. use of ART once,

6. use of the Probabilistic Neural Network once, and

5. use of two rather unique networks in one application each, specifically Time
Discriminant (TD) and SPAN.

The types of communications applications to which these networks were applied can be

taxonomized as

1. channel equalization,

2. interference rejection,

signal detection,

N o wn kAW

multipath rejection,

error detection and correction,

signal source identification, and

8. digital sequence prediction.

baseband data recognition and/or compression,

Table 2 - 1 Summary of Applications Relevant to NNCSS

S backpropagation 1
perceptron
Signal source brain state in a box | dynamic feedback 2
identification (BSB)
Exrror detection and two-layer back propalgatiqn, 3
cofrection continuous learnin
Signal detection 'ig network hardwired = 4
(unconventional)
QZPSK signal Hopficld/Tank hardwired 3
detection
-PSK vanant of ART continuous scif- 6
signal detection organizing
mdéwcﬁpn three-Tayer backpropagation T
correction
nonlinear channel SEE-Drganizing autoadaptive 8
equalization Feature Map
error detection and | associative content hardwired 9
correction addressable
pseudorandom three-layer backpropagation 10
sequence prediction perceptron

(unconventional)

channel equalization | Self-organizing autoadaptive 13
feature map

Adaptive filtering multilayer backpropagation 14
perceptron

signal detection three layer backpropagation 15
perceptron

intersymbol three layer backpropagation 16
interference perceptron

signal source probabilistic neural | computed from 17

identification network training vectors

mulnpath three-layer complex | backpropagation 18
perceptron

CFM mgnal two-layer backpropagation 19
detection perceptron

It should be noted that some of the neural applications simultaneously represented
applications in more than one area, especially the application papers dealing with signal
detection/channel equalization schemes jointly carried out in a single neural architecture.

Of these applications, the highly successful ones tended to be those which replaced
computationally intense processes of traditional signal processing. In particular, the
applications in signal detection/channel equalization and error correction, where Viterbi
processes (normally quite computationally complex) were replaced or augmented tended to
provide large performance gains, and all of the forms of signal detection tended to be good
or adequate, although some of them were not as good as (computationally complex)
optimal Bayesian decision rules. Another strong point of several applications dealing with
channel impairment was the unique ability of the neural paradigms to adapt to varying
signal environments. All of these papers documented work in which the neural application
was found to work as well as conventional approaches, at least over some practical range
of operation.

The application types and network types found in the literature search elucidate the fact that
many neural network paradigms are useful in signal processing applications, and in fact,

different neural paradigms were successfully applied to the same application area, as
illustrated in Table 2-1. It would be desirable for the NNCSS to support a range of neural
paradigms which provide the capabilities, in terms of architectures, training techniques, and
mathematical estimation possibilities, that are found in the neural literature. At the same
time, it is best if the NNCSS can deliver that range of versatility with a small collection of
well-known and well-documented paradigms.

Following this approach, the paradigms to be included were determined by creating a
prioritized list of criteria, and finding a set of networks which fulfilled all of those criteria.

The neural were chosen by satisfying the highest priority criterion not yet met by
prior selections with the best unrepresented neural paradigm meeting that criterion. Of
course, in some cases, a single paradigm satisfies several criteria, and in most cases,

several paradigms satisfy individual criteria. In this way a relatively small collection of
neural paradigms provides a wide range of neural capabilities to the NNCSS user.

Table 2-2 below provides a synopsis of the neural paradigm choice process. The rows of
the table are indexed by the criteria of choice, ordered in importance, with the topmost row

reflecting the criterion deemed of greatest i

. The columns of the table reflect the

neural paradigms chosen to satisfy these criteria, and the marked row-column intersections
show which criteria are satisfied by each paradigm.

Table 2-2 Choices of Neural Paradigms for the NNCSS

Backprop- {| Kohonen | Recurrent | ART | BSB | Probabilis
Criterion agation SOFM | Backprop | 2 .
tic
1 Most popular X
SEf= emm.
earnin X X X X
4 UusupervisefE X X X X
leaming
5 Recurrent X
6 Vanable topology
7 Associative X
8 itive learming
9 One pass training X
10 Applied X X X X X

The criteria of table 2-2 are elaborated as follows:

1. the most popular architecture found in applications is the multilayer perceptron

structure trained using backpropagation;

2. the backpropagation leamning algorithm is known to have important theoretical

properties and has performed well in many previously documented applications;

3. several network architectures can be trained using supervised training;

4. likewise, several autoadaptive networks, most notably the Kohonen Self-Organizing
Feature Map (SOFM), can be trained in unsupervised mode;

5. recurrent networks are valuable in modeling processes with indefinite or infinite
temporal memory, such as the infinite impulse response filter, and the recurrent

backpropagation network is useful in such applications;
6. networks with variable topology permit the addition of new nodes in order to

accommodate recognition problems where an unknown (or varying) number of pattern

exemplars are involved;

7. associative networks are good at restoring partial patterns, or patterns
corrupted with noise, and the Brain State in a Box is a versatile but fairly simple

architecture of this type;

8. the competitive learning law (e.g., in the SOFM) can create a network which provides
equiprobable exemplars relative to the probability density of the input space, and is thus a
valuable technique in analysis and estimation;

9. one pass training refers to network structures that can be trained with a single pass
through the data (or, in some cases, by computing the weights directly from the known
probability of the function to be modeled), providing for very rapidly trained networks;

10. the networks found in the applications literature of this study happen to coincide
with the choices made by the preceding nine criteria, providing a validity check that using
such criteria leads to a range of paradigms which will be found in practice.

Thus, the networks shown in Table 2-2 were, at the conclusion of the feasibility study,
those recommended for initial inclusion in the NNCSS, and would provide the required
versatility to address a wide range of application areas.

During the preliminary design of the NNCSS it was realized that the synthesis of neural
networks within a flexible signal processing simulation system, such as SPW, provided
opportunities and capabilities that had not been envisioned in neural network simulation
tools previously. With the NNCSS, different neural network paradigms can be combined
into more complex neural network designs to create entirely different neural network
solutions. For example, the reset logic of Adaptive Resonance Theory (ART) can be used
to trigger state changes to a recurrent network that is mapping the features extracted by a
Kohonen network to the input of a multilayered backpropagation network that is
performing process control that is effecting the original input pattern. Therefore, the
development of NNCSS leads to the identification and implementation of neural network
paradigms that can be configuréd with other paradigms to form multilayered architectures.
Because of this natural progression, the Adaptive Resonance Theory I (ART1) and
Grossberg Outstar paradigms were added to the NNCSS.

ART!1 is the original binary version of Adaptive Resonance Theory for processing binary
(0,1) input patterns. This network has proven itself as a valuable network in data
compression and pattern recognition. More importantly, in the NNCSS, the network
provides another view of pattern features that can be used to stabilize the learning in other
neural networks such as the recurrent and backpropagation networks. Likewise the
Grossberg Outstar paradigm provides a simple but general technique for retrieving target
patterns from self organizing networks such as the Kohonen or ART networks. For
example, Hecht-Nielson’s Counterpropagation network combines two outstar layers with a
Kohonen layer to retrieve target patterns in both directions (input to output and output to
input mappings). Also the Fully Recurrent Network, which typically is configured as a
single layer network, has been modified to output a backpropagating residual error that
::'lc?ivs the recurrent layer to feedback to other recurrent or backprop layers in a multilayered
tecture.

Before any software development efffort had been expended on the Probabilistic Network
(PN), consideration was given to trading the PN for the Adaptive Resonance Theory III
(ART3) network. The primary advantage of the PN paradigm over other neural networks is
that the learning is comparatively fast, in that the network does not need more than one pass
through the training data to reach its full capability. However, the Kohonen Topological
Feature Map as currently implemented has proven to be a feature extractor that converges
quickly to a stable feature mapping which can then be updated on a real-time basis.
Furthermore, the PN paradigm operates on a finite database of all previous patterns and
does not have the same capabilities of abstraction as the Kohonen network.

10

.

It was finally decided that the software effort would be better spent on ART3 than on the
Probabilistic Network because the ART3 network paradigm is strongly suggested for the
following reasons:

a. Adaptive Resonance Theory III is the latest update to the Adaptive Resonance
Theory and completes the trilogy of network paradigms developed by Carpenter and
Grossberg.

b. ARTS3 is a hicrarchical version of ART2 allowing for multilayered ART networks
which continues the current direction of development for NNCSS, and extends the
applicability of ART in communication designs.

c. The Air Force has provided the major research funding for the development of
Adaptive Resonance Theory, and it seems appropriate to include ART III in an Air Force
developed neural network simulation.

The final list of neural network paradigms that are implemented in the NNCSS are:

1. Backpropagation ,

2. Kohonen Feature Map and Outstar,

3. Fully Recurrent,

4. Adaptive Resonance Theory I, II, & III, and

S. Brain State in a Box.

2.1.3 Candidate Applications for NNCSS

The NNCSS Study includes effort to create several prototype applications on the NNCSS
which integrate the use of neural paradigms into signal processing algorithms which are
embedded in communications systems. The effort focuses on demonstrating the
capabilities of the NNCSS, rather than on producing new research results in neural
network theory. Thus in selecting potential applications, there were several objectives:

1. the applications should provide tutorial support to NNCSS users;

2. the theoretical structures of the applications should not be too complex, with low
technical risk of implementation;

3. the applications should represent more common types of communications signal
processing functions which have been implemented with neural networks;

4. the inputs required for the application should be easily obtained or easily simulated
using the SPW foundation of NNCSS.

In order to illustrate the potential range of applications in communications signal
processing, we reiterate the types of applications which were found in the literature, as
referenced in Table 2-1; the number of occurrences of these applications are shown in Table
2-3. For completeness, this table includes one category which would seem to be a potential
application area (phased array antenna control), but for which no papers were found.

11

The tabulation suggests that the most common applications are signal detection, channel
equalization, and error detection and correction. However, the remaining categories also
illustrate that useful adaptive implementations can be found for signal processing tasks both
at the digital and analog signal processing levels in communications chains.

Table 2-3 Neural Network Applications in Communications Systems

e el
. occurrences |
1. signal detection ,4,5,6, 15, 19 v
. channel equalization 6, 3, 11, 13, 14, 16 6
[3. error detection and correction 3, 71,9 3
. signal source identification) 2
. interference rejection 1, 14 2
6. data compression 12 1
7. digital sequence prediction 10 |
. multipath rejection 18 1
9. phased array antenna control none 0

The results of the literature search, together with the objectives set forth at the beginning of
this section, and a subjective judgment of the value of neural networks (as compared to
conventional technology) in different application areas leads to selection of

1. channel equalization,

2. interference rejection,

3. signal detection,

4. multipath rejection and combining,

5. baseband data recognition and/or compression,

6. error detection and correction, and

7. signal source identification,

as those applications areas which were targeted for further investigation using the NNCSS.
This further investigation also was focused on the advantages of neural architectures in
adaptive situations.

12

—_

2.2 SYSTEM ARCHITECTURE

The NNCSS was developed by integrating SAIC's Neural Network Object Manager
(NNOM) and Industrial Strength Neural Networks (ISNN) Library into Comdisco's Signal
Processing WorkSystem™ (SPW™). SPW provides interfaces and tools for integrating
custom function blocks. The NNCSS development involves developing neural network
function blocks and supporting tools that interact with ISNN via the NNOM.

Figure 2-1 gives the overall architecture and illustrates the development activity. The square
rectangles indicate non-development items based upon already existing codes. The rounded
rectangles identify development activities required to integrate neural network function
blocks to SPW. The arrows indicate the dependencies among the configuration items and
the development activities required to integrate function blocks into SPW.

Interactive Simulation Library

%s’mmﬂ;lanmwy

SPW Flle Manager

mmhw

NNCSS Custom Code industrial Strength
Function Blocks Neural Networks (ISNN)

Neural Network paradigme
Custom coded function blocks
which can be inegrated o SPB oy riod as sandard layer

3 =

NNCES Dowsiopment
Acivity

Figure 2-1 NNCSS System Architecture

Table 2-4 describes the NNCSS configuration items included in this system architecture,
including commercial off the shelf (COTS) and non-development items (NDI). The Neural
Network Communications Library (NNCL) Computer Software Configuration Item
(CSAI) is the product of the software development effort in this contract. The software
design was documented in the Software Design Document (SDD) for the NNCL CSCI.

13

The non-development items (NDIs) are documented in separate documentation and user
manuals prepared for the item outside of this contract.

Table 2-4 NNCSS Computer Software Configuration Items

CScCi COTS| NDI |DESCRIPTION

SFM X X SPW File Management - manages the various files required
by the other modules and allows the user to enter the other
CSCls.

BDE X X Block Design Editor - Provides a graphical environment for

designing function blocks and systems with results stored in
the BDE database, which can be accessed by other CSCls.

SigCalc X X Signal Calculator - Used to generate the input source files
for the simulator and review the results after a run.

SPB X X Simulation Program Builder - Builds an interactive
simulation program from the BDE database and runs the
simulation. Calls the function block codes using the source
inputs created by SigCalc and outputs the results.

CGS X X Code Generator System (OPTIONAL) - Allows the user to
generate C source code to implement a BDE design
independent of SPW. The custom coded expression blocks
must be defined for each SPB function block.

DSPCL X X Digital Signal Processing Communications Library -
provides function block symbols and implementations that
can be used to design conventional communications
systems.

ISL X X Interactive Simulation Library (OPTIONAL) - Provides
interactive graphical elements that can be included in a
design to allow the user to interact with the simulation

during a run.

NNCL Neural Network Communications Library - Provides custom
function blocks for embedding neural network functions
within conventional communication designs.

NNOM X Neural Network Object Manager - Provides a standard
operating environment for all neural network paradigms to
support creating, initializing, saving, loading and deleting
neural network objects within a simulation.

14

3. NEURAL NETWORK COMMUNICATIONS LIBRARY

Section ? summarizes the Neural Network Communications Library (NNCL). The
NNCSS in operation is simply SPW with the specific inclusion of the NNCL. The
information and instructions necessary for user interaction with SPW is presented in the
SPW references given in Section 1.4.2. The user of the NNCSS should first study and
refer to the relevant SPW manuals regarding the operation of SPW and the generic use of
optional function block libraries such as NNCL. The Software User’s Manual for the
NNCSS presents the information about the NNCL and its function blocks that should be
available to the SPW user who intends to create block diagrams with NNCL functional
blocks and to run simulations that include NNCL functional blocks. This section consists
of excerpts from the Software User’s Manual.

3.1 NNCL OVERVIEW

The Neural Network Communications Library (NNCL) is a set of neural network function
blocks that can be used with BDE to design communication systems that include neural
network based signal processing functions. It implements selected neural network
paradigms and provides support functions for training and processing neural networks
within communication designs. It also provides special handling functions for data
preprocessing and propagation of vector activations. With the NNCL, the analyst can
construct various configurations of neural networks and conventional signal processing
networks to perform signal processing functions.

Artificial Neural Systems represent a rather diverse set of approaches to solving problems
in pattern recognition, image analysis, associative memory, classification, filtering, and
prediction. The various approaches are referred to as paradigms. The paradigms provide
the general rules and procedures for constructing a neural network to perform a specific
function. The common elements of an ANS paradigm are the processing elements which
are local centers of computation which represent an artificial neuron. The processing
elements are connected to form a network with each processing element receiving input
signals from other processing elements in the network and generating an output signal
which propagates to other processing elements in the network. Often the processing
elements are grouped into &yers within a network with the outputs of the processing
elements of one layer being distributed to the inputs to the processing elements in the next
layer. The connections among the processing elements are weighted such that the output
activation signal from the processing element has either an excitatory or inhibitory effect on
the other processing elements.

The weights represent the memory of the system, and are formed through a process called
training. During training, examples are presented to the network at input processing
elements that initiate the propagation of signals through the network. The weights are
adjusted to represent the mapping of the input pattern to an output pattern. The paradigm
method for adjusting the weights is called the paradigm's learning algorithm. For
unsupervised learning, the input patterns are organized internally to form categories. Such
algorithm's are self-organizing since they form their own output patterns for each input
pattern. For supervised learning, the network is given the desired target for a given input
pattern. The network is trained to map input patterns to desired output patterns. Once
trained the neural network is able to retrieve the desired output pattern for a given input
pattern even if the input pattern does not exactly match any of the original training patterns.
The important characteristic of the neural network is its ability to generalize from the
training examples.

15

Hard Threshold Ramp Threshold

—F——

Sigmoid Threshold Cosine Threshold
Figure 3-1 Typical Non-linear threshold functions used in ANS

Another important characteristic of neural networks is that the mapping from input patterns
to output patterns is non-linear. This is achieved by passing the output signal from the
processing element through a non-linear threshold function such as a ramp, hard threshold
or sigmoid function (see Figure 3-1). This prevents a multi-layered network of processing
elements (where the output from one set of processing elements propagates to the next layer
of processing elements) from being reduced to a linear matrix operation.

3.1.1 NNCL CSCI Architecture

The basic architectural unit of the NNCL is called a function block. Each function block is
identified as a Computer Software Unit (CSU) in the NNCL design. A function block
performs a function within a signal processing network. The NNCL provides custom
function blocks for incorporating neural network functions into communications system
designs. There are two kinds of function blocks in the NNCL:

a. Custom Coded Function Blocks (CCFBs) - low level function blocks that require
code to implement the function.

b. Custom User Function Blocks (CUFBs) - hierarchical function blocks that are
composed of a connected network of low level function blocks. These do not
require any custom code and can be configured and saved by the user.

The NNCL includes both low level CCFBs and higher level CUFBs that provide common

configurations of CCFBs to aid the user in incorporating neural network designs into a
system.

16

The NNCL function blocks are logically ordered so that the user can select the appropriate
function block to incorporate into a communications system design. The logical groupings
and sub-groupings will be identified as Computer Software Components (CSCs) of the
NNCL CSCI. Table 3-1 describes the first level of groupings in the NNCL.

Table 3-1 NNCL Computer Software Components and Groupings

cscC Grouping | Description
01 nnom Neural Network Object Manager
02 manage Neural Network Management
03 registers Register Function Blocks
04 probes Neural Network Instruments and Probes
05 backprop Backpropagation Function Blocks
06 kohonen Kohonen Feature Map Function Blocks
07 recurrent Fully Recurrent Network Function Blocks
08 ant Adaptive Resonance Theory Function Blocks
09 bsb Brain State in a Box Function Blocks

3.1.2 System States And Modes

A function block has various representations in the NNCSS depending upon the module or
tool accessing the CSU. Each representation is referred to as a model and has an associated
file containing the information for the model A model of a function block will be
interpreted as a mode of a CSU within the NNCSS system. The specification of all of the
models for a function block will provide the detailed description for each CSU in paragraph
3.3. The following paragraphs define each of the models and required content.

3.1.2.1 Symbol Model

The symbol model defines how a function block is represented in a system's block
diagram. It consists of a function block symbol (typically a block) with connectors
defining the input , output, and control signals to the block (see Figure 3-2). By
convention, the input connectors are to the left, and output connectors are to the right of the
function block symbol. The connectors from the bottom indicate Boolean control
parameters that can vary during the simulation.

The parameters shown in the function block identify the configuration properties of the
function block, which distinguish the specific instance of the block. All of the parameters
of a function can be shown in a separate detailed or parameter view that is linked to the
symbol. The user can double click the symbol to access these views depending upon
whether the block is CCFB or CUFB. The parameters can be edited to define a specific
instance of the function block.

17

Context

connector
vector 51 vector
N o] connector - n connector
Doy
g3 - —d o
E 8‘ scalar scalar c g
LI? — connector connector &5 5
N—— Function Block —A 53
O
—
« vecto
= 8 vector connector E
% 5 connector n 50
80 B¢ —~<=N 2=
- — =3
connector connector Q
Control

Figure 3-2 Function Block Symbol Model

3.1.2.2 Parameter Model

The parameter model for a function block defines the state parameters that are different for
each instance of the function block. The parameters can be used to define the inital
configuration of the function block (e.g., number of layers and processing elements; learn
rate, etc.); state parameters that will vary during the simulation (e.g., accumulated RMS
error; number of passes; weights; etc.); miscellancous parameters that define detailed
options or variants of the function block (e.g., momentum; filter gains; scale factors, etc.)
and hidden parameters which are not shown to the user but are used internal to the function
block (e.g., neural network object; network configuration file; etc.).

The parameter model is displayed to the user in a separate window or screen that the user
can edit or enter parameter values. Figure 3-3 illustrates a parameter screen, which is
divided into sections. Each parameter has a name, and description that describes the entry
and units for the parameter. Each parameter has a default value which is used if the user
does not enter a new parameter value.

18

Function Block Parameters

MAIN PARAMETERS:

Parameter description value

Parameter description value
MISCELLANEOUS PARAMETERS:

Parameter description value

Parameter description value
HIDDEN PARAMETERS:

Figure 3-3 Function Block Parameter Model

For custom coded function blocks, the parameter model is displayed in a separate window
linked to the symbol. The user entries to parameters in this window are passed to the
function block during initialization to configure the specific instance of the function block.
Also any changes to the state can be inserted back into the BDE database for latter viewing
by the user using the BDE.

For custom user function blocks, the parameter model is displayed is a parameter screen
associated with the detail model. The user entries to parameters in this window are passed
on to the custom coded function blocks that make up the detailed design. This allows the
user to edit or configure the low level function blocks without enter each's parameter
model. Also it can be used to identify and propagate common parameter values to all
constituents.

3.1.2.3 Detailed Model.

The detailed model represents the implementation for custom user function blocks,
showing the detailed block diagram of the constituent function blocks associated with the
symbol model. The detailed model identifies the constituent function blocks, their internal
connections, and processing paths (see Figure 3-4). The detailed model is linked to the
symbol model and can be accessed by the user by double clicking the symbol in the system
block diagram. The user is able to convert any block diagram into a hierarchical function
block with an associated symbol model using BDE.

19

vector

octor | vector
conn n | connector
foncl
'5 N Gl “,;,‘ﬁ';ﬁ" X4 fynction —>'E O
Q. scalar block scalar =1
£ connector connector 'CCJ
—t

NO—Ehe i el A
X X

51 5ol
[|

connector connector

Control
Figure 3-4 Function Block Detail Model

3.1.2.4 Block Model.

For custom coded function blocks, the block model represents the internal processing of
the block during simulation. The template for the function block source code is generated
from the symbol and parameter models. This establishes the relationship and interface to
these models in the function block implementation. The template is then edited to include
the custom code that will be called during the simulation. See paragraph 3.1.3 for a
discussion of the allocation of.processing resources to a function block during simulation.

3.1.2.5 Expression Model.

The expression model is the same as the block model except that expression model
describes the code to be generated by the Code Generation System (CGS). The code
generation can be customized to generate only the necessary code of a particular
configuration of the function block based upon the instance's configuration parameters.
Also the code generated may be optimized for a specific host platform or paraliel
configuration.

3.1.3 Memory And Processing Time Allocation

The memory and processing time for each function block instance is managed by the
signal flow simulator during runtime. The Simulation Program Builder will reduce a
hierarchical block diagram into a network list of low level function blocks removing all
hierarchical (custom user) function blocks. The custom code function blocks are called
during runtime to perform specific process tasks for an instance of the function block.
The simulation will manage the memory allocation for all parameters and external
signals to the function block. The function block will be given an opportunity to

ocate, access, and dispose any internal parameters or objects for an instance. Figure
3-5 gives the SPB interface which shows the support from the NNOM in the
implementation of a neural network function block.

4 “
—
SPB Interface Neural Network XNNet
Initiakize | Object Manager
Detonming e neursl net 1o lomd Seiup inkialize / Setup
el s
____.InsMﬁate Instantiste
oo suaws | DEPOSS | SERRIIIIIRIT
processed and e procses meds Extract Extract / Set 'SNN
m’-—?"“ g - Gat v vakse of an intemal parameter
Mﬂn;.ma;g Set m,mnunmum
Whrite Write / Checipoint
Run Input "———""’r Writs 1o curent stase and weights 0 &
Ostormine the neursl object and Checkpoi m“‘"’"’
corvent inpus from sirmulator. Enter
e rputs I the newral network. Recall Extract / Set
Exvract o vehue for an intemad
Torminate Leam parameter and oot e vake for conwol
Save 1he neursl netwark 1 I8 et Recall / Leamn / Relax
e and destray the neurel netwark W Sanderd methods kr implementing
] WU Pstmark layer parsig.
Relax Reset / Dispose
Aoest the irilal sinte or destroy T
Q y ol netwok.
\ J

Figure 3-5 SPB/NNOM Interface.for NNCL Function Block

3.2 THE COMPUTER SOFTWARE COMPONENTS OF NNCL
3.2.1 Neural Network Object Manager (CSCO01)

CSC Purpose. This CSC provides the standard interface between the SPW function
blocks and the Industrial Strength Neural Network (ISNN) Library. Each neural
network function block must have a representation in the BDE database and a
corresponnding neural network object in the NNOM database. Figure 3-6 illustrates
the interfaces for the construction of neural networks within the NNCSS.

Execution and control data flow. The neural network object management routines are
implemented as standard C functions that are called from within custom SPW function
block implementations. The primary object managed by the NNOM routines is a neural
network object that can encapsulate other neural network objects as well as internal
parameters and registers. The NNO's are created and setup by the NNOM from
parameters defined in the BDE prior to a simulation run. The NNOM saves the NNO's
to binary and text files for loading in subsequent simulations. Also the NNOM routines
translate and report the ISNN error code status to SPW error reporting and processing.

21

p
BDE Neural Network |
User designs a sysiem using Neursl Oblem Manager
compled Derives from the database the kst of
of neural network objects according to
nput parameters.)

\ .net

Industrial Stren?th
Neural Networks (ISNN)

%MP;JOM to mﬁ: update the
neural network and saves 10 &
.net and .net.ckp
params natckp
Y
Neural Network
Function Block

Neural Network Files
Binary file giving the current state

network file is loaded to instantiate the

neural object. The network is saved at of the neural network and its
termination of the simulation. leamed weights.
\. y

Figure 3-6 Neural Network Builder Interfaces
3.2.2 Neural Network Management (CSC02)

This CSC provides general function blocks to manage the
processing of neural networks during a simulation. This includes custom coded
function blocks for cycling the system through multiple passes of the input signal files
for embedded neural network training; and general custom user function blocks to
define typical configurations of neural network and preprocessing function blocks.

Execution control and data flow. Figure 3-7 gives the general function block
architecture for management of neural network objects within the NNCSS. The NNOM
function block creates an object manager to contain the neural network objects. At the
top level the NNOM manages all neural network objects including instantiation,
checkpointing, writing, and disposal of the system of neural network objects. At
system initialization, it either loads a previously saved neural network configuration or
creates a nnom to manage the neural network objects created within the simulation. The
resulting nnom is output to all neural network objects.

The neural network object function block is typically a specific neural network
paradigm process. The neural network object function block either retrieves a
previously saved neural network object from the nnom or creates a new neural network
object to be managed by the nnom. The function block uses the BDE defined
parameters to setup the function block during system initialization. After all the function
blocks have setup their neural network objects, the NNOM function block allocates and
instantiates all of the objects at the start of processing. During the simulation, the
NNOM periodically saves binary versions of the neural network objects during

22

checkpointing. At the termination of the simulation, the top level NNOM writes the
system to a text configuration file.

Each neural network object has control inputs that define the processing state of the
object. These include hold - suspends processing whenever hold is greater than 0.0;
learn - activates the paradigm learning algorithm when greater than 0, and relax -
performs the learn epoch update processing during the pass.

{

(nnom_in h
Neural Network Object
Manager (NNOM)
l ___J
Y
(oom)
ke Neural Network
Object - T
model g
- residual oror b—-- o
[leam hoid olax
INNOV
é 4 A # Register
(arget | g
f oM ra g deita
Neural . hold _ reset
N&t;ovork leam '
joct
Corjmol hold I
rolax |
train hold update

Figure 3-7 - Neural Network Object Management Component Architecture

The Neural Network Object Controller (NNOC) function block coordinates these
control signals during a simulation. It generates the appropriate learn and relax control
signals to implement multiple training epochs during a simulation. It supports feedback
of a delta error signal, such that the rms or max output error from the innov register can
be used to threshold the learning during the backward pass through the neural network
object. The NNOC is used primarily for controlling supervised neural network objects.

For unsupervised learning, the Neural Network Object Control Clock
(NNOC_CLOCK) (not shown) is used to generate an inner and outer loop counter
signal that allows various neural network objects to be processed at a higher rate than
the other function blocks. This allows the internal cycles of the neural network object to
be observed. The outputs from the NNOC_CLOCK are control signals that are
connected to the function block's hold pin. The outer loop (pass) control signal is held;

23

the function blocks on the inner loop (cycle) are activated for a simulation cycle. At
each epoch, the pass control signal is held down so that the other function blocks can
execute.

3.2.3

Register Function Blocks (CSC03)
This CSC extends the standard library of vector function blocks to

provide activation function processing commonly required for neural network
processing. This includes normalization, shift, delay, window, merge, split, and error
registers used in neural network designs.

Execution and control data flow. The activation function blocks are special vector
processing functions, which are used to prepare the activation data for a neural network

paradigm. These are based upon existing vector operators in the DSP Communications

Library

. There will be additional vector operations required to connect neural network

function blocks within a communications system. These include:

a.

Shift Register. A vector input is shifted onto the top of an array such that the last, t,
inputs are represented within the register. The full register is output at each time
step, providing a fixed window sample of the time sequence of input vectors.

Delay Register. The same as a shift register except that the bottom vector sample in
the register is output with each time step, effectively delaying the output by the
number of shifts in the register.

Merger Register. Combines vector inputs of different sizes into a composite vector
at the output.

. Split Register. Splits a larger vector into two smaller vectors.

Offset Register. Accesses a vector at a constant offset from a larger vector.

Normalization and Denormalization Registers. Perform the required normalization
and denormalization in and out of a neural network function block.

3.2.4 Neural Network Instruments and Probes (CSC04)

CSC Purpose. This CSC extends the ISL to provide custom user function blocks
that are particularly useful for the display and control of neural network simulations.
These blocks provide instruments and probes to assist in the training and validation of
neural network based simulations.

i . These function blocks shall be implemented using
ISL low level function blocks and will follow the execution and control data flow
defined for these latter functions. Function blocks which will be controlled by these
instruments will provide the appropriate control pins for attaching the instruments with
a system design. General data extraction and data set function blocks shall be used to
extract or control internal parameters and vectors within a neural network object.

3.2.5 Backpropagation Function Blocks (CSCO0S)

CSC Purpose. This CSC provides custom function blocks for implementing the
Backpropagation Neural Network within a communications design. The CSC includes
custom coded function blocks that implement forward and backward processing
algorithms, and multilayered feed forward neural networks. It also provides custom
user function blocks which allow backpropagation to be incorporated in various
configurations and to perform various functions within a communications design.

Execution and control data flow. The execution and control data flow is defined by the
propagation architecture of the Backpropagation Neural Network. The following
defines the overall architectire to be implemented by this CSC.

The Backpropagation Neural Network is one of the most important and widely applied
ANS paradigms. The backpropagation network is a form of supervised learning.
Figure 3-8 illustrates the network architecture. The network is formed of one or more
layers of processing elements. The first layer represents the input pattern and the output
of these elements are connected to the input of each of processing elements in the next
layer and so on through the network. As the signals feed forward through the network,

25

Processi
Elemer?tg
input .
Activation Unit
Output
TX.W.
xi i | w'] y j
Hidden Output
Aclt?\?aut}on Activation Activation

Hidden Output
Processing Layer Processing Layer

Figure 3-8 Backpropagation Network Architecture

cach processing element takes the weighted sum of the activation input signals and
passes this sum through a sigmoid threshold function to generate one output signal to
each of the elements in the next layer. The output from the last layer in the network
(called the output layer) represents the learned or retrieved pattern.

Initially the connection weights are set to random values. During training, example
input patterns are propagated through the network. The output pattern is compared to
the desired target pattern. The difference between the output and target patterns is the
error which is back-propagated through the same connections. During backpropagation
cach processing element adjusts its connection weights slightly and propagates a delta
error to the preceding layer of processing elements. The next time the input examples
are propagated through the network, the output pattern is generally closer to the target

26

pattern. The error is again back-propagated and the training cycle repeated until the total
RMS error over the training set converges to an arbitrarily small value. The
backpropagation network implements gradient descent learning which means that the
weights are adjusted such that the total RMS error decreases to zero.

Figure 3-9 gives the leamning algorithm for the network. It illustrates the algorithm for a
processing element as two processing paths --the path of the forward activation signal

Forward Activation Signal E——

Jjth processing element in Layer J

Opj

i
/ Jth Layer is separated into
O \ forward and backward
Pl "\ processes that share the same

op,- \ Weights and signals.
Jth Layer inversion {4
)

r5191‘ = 0pj(1-0)0 \
8p,<— @ Awii @ +1) =10 pOpi d pj
3,,,-,- =0,
.)

N\
Ay ,
N -)

<$smsemmsemms Backward Delta Error Signal
Figure 3-9 Backpropagation Learn Algorithm for a Layer

and the path of thebackward propagated delta error signal. The two processing paths

share the same connection weights between weight changes. The input, output and
target patterns of the forward signal path are used to compute the changes to the
weights during the backward processing. This algorithm is performed on all of the
processing elements (j) within a layer.

The delta error backpropagated from a single processing element is a vector that
corresponds one-to-one with the input activation vector. In turn, each processing
clement in a hidden layer receives a delta error component from each processing
clement in the next layer to which it is connected. During backpropagation every
weight in the entire network receives a specific delta error which is used in the equation
to change that weight.

27

For optimal gradient descent learning, the delta weight changes are accumulated for a
designated number of cycles, and then applied to change the connection weights at the
end of each update interval. To train the neural network requires multiple passes
through the training data or multiple training epochs through the input stream.

3.2.6 Kohonen Feature Map Function Blocks (CSC06)

CSC Purpose. This CSC provides custom function blocks for implementing and
training Kohonen Topological Feature Map neural networks. The CSC includes custom
coded function blocks for unsupervised learning and recall processing algorithms. It
also provides custom user function blocks that allow Kohonen networks to perform
various functions within a communications design.

Execution and control data flow. The execution and control data flow is defined by the
propagation architecture of the Kohonen Topological Feature Map. The following
defines the overall architecture to be implemented by this CSC.

The Kohonen Topological Feature Map provides a method for creating networks that
can be trained to classify input vectors while preserving the inherent topology of the
training set. Topological preserving maps mean that the nearest neighbor relationships
in the training set are preserved in the network such that input vectors presented to the
network that have not been previously "learned” will be categorized by its nearest
neighbor in the network's learned exemplar set.

Such a network becomes a parameterized version of a Bayesian classifier, except that
the probability distribution does not have to be known a priori. The only requirement is
that the training set has to be a representative sample of the distribution of input
patterns. Once a network has been trained, it will provide near optimal performance in
classifying input patterns with minimal processing.

Its ability to map unknown distributions can extend the use of the network to areas
where Bayesian approact.es are intractable - such as voice recognition and vision
processing. It can be used for feature extraction within a more complex network such
as counter propagation, or as a filter in a signal processing network.

28

A\
\

Input

_'

NN
L\l\

e

- Output

Figure 3-10 Kohonen Topological Feature Map Architecture

\ '

Figure 3-10 gives the network architecture. The network consists of an input vector of
dimension N that is fully connected to a set of M processing elements, where M is the
number of exemplar vectors for the mapping. The M processing elements are arranged
to form a two dimensional array at the output. The dimensions of the array can be any
size, but are typically arranged to form a square array with M1/2 elements per side. The
output from the network is a vector of M elements given by:

-1 2 1.2
Ye=5 W —x =3l k=1.. M 3.2.6-1
where the winning node y; is the minimum element value:

y]=min {)’1,}’2,---,}’M} 3.2.6-2

giving the nearest exemplar vector (w)) to the input vector (x). The network can also
work when maximum activations are used during training. In that case, the exemplar
vectors are in the hyperplane normal to the input vector.

During training the exemplar vectors are arranged into a two dimensional topological
map where the output values will increase proportionally to the distance from the
minimum. This two dimensional configuration gives the maximum degree of freedom
for representing nearest neighbor relationships that are not strictly ordered. A strictly
ordered relationship requires that the distance among the exemplar categories be

29

transitive (A < B < C implies A < C and that B is between A and C). With square
arrays, weakly ordered and quasi-ordered relations can be accommodated. The ordering
can have a geometric interpretation for simple two-dimensional vectors. For example, if
the input vector has two dimensions whose element values are distributed uniformly
over the interval [0.0 to 1.0], then the set of exemplars will span the space uniformly
such that the output values increase proportionally to the distance from the minimum
element in the output array. For higher dimensional input vector spaces, such a
geometric interpretation is not possible. The resulting output array will be a minimum
spanning tree where regions of the array will become excited by the input vector
according to their distance relative to this relational metric.

Figure 3-11 Kohonen Neighborhood Diagram

To achieve a parameterized topological map, the network is presented with a training
set, which is a random sample of the values that the elements of the input vector can
have. Initially, the exemplar weights are randomized unit vectors. When an exemplar
vector is found nearest to the input training vector, the other vector weights are updated
in proportion to their distance from the minimum in the output array for a neighborhood
about the minimum. The dynamics of the weight equation are given by:

Awiji=a (x,- - Wij) 3.2.6-3

where j is in a neighborhood of the jth node in y, and a is the learn rate for the weight
connections. The neighborhood is defined by a neighborhood depth, giving the number
of nodes from the minimum to be updated. This is illustrated in Figure 3-11. At first,
the entire array of exemplar vectors is adjusted about the minimum vector for each
input. After a number of iterations, the region about the minimum is gradually reduced

30

until only the nearest neighbors are updated. Subsequent iterations refine the exemplar
vectors by reducing the learning rate according to:

o =ap(—]t;—”p} 3.2.6-4

where p designates the learning phase, T) is the maximum number of interations within
the current learning phase, #, is the number of iterations since the beginning of the

learning phase, and & is the initial learn rate for the phase.

At the end of a learning phase, 1, =T , the maximum time is increased by a factor of
5, Tp = 5Tp-1, and the learn rate is decreased by a factor of 5, ap = ap_; /5.

Likewise, during the initial phase, p =0, the neighborhood depth, ®, is decreased as a
function of the interations by:

t
= -2 3.2.6-5
o=k

where g is the initial neighborhood depth, set to one-half of the output array side
dimension. In subsequent phases, ® = 1, indicating only the nearest neighbors are

updated.

Typically, 100,000 iterations are required to achieve an optimal mapping function,
however the basic topology is achieved during the initial training phase.The resulting
parameterized map will be a set of exemplar vectors of near-uniform length that will
model the input probability distribution. The exemplars will be arranged such that each
exemplar is equally likely to capture an input vector. Regions of high probability will
have more exemplar vectors than regions of low probability.

3.2.7 Fully Recurrent Network Function Blocks (CSC07)

. This CSC provides custom function blocks for implementing and
training fully recurrent back propagation neural networks within an embedded system
design. The CSC includes custom coded function blocks that implement forward recall
and error feedback learning algorithms. It also provides custom user function blocks
which allow recurrent networks to be incorporated in various configurations and to
perform various functions within a communications design.

Execution and control data flow. The execution and control data flow is defined by the
propagation architecture of the Fully Recurrent Network. The following defines the
overall architecture to be implemented by this CSC.

The Fully Recurrent Network is similar to the Backpropagation Network except that the
neural network learns to map sequences at the input into sequences at the output. A
fully recurrent network consists of a set of processing elements which are fully
connected with every other processing element in the network and with the input
activation vector. Figure 3-12 illustrates the fully recurrent network architecture as
developed by William and Zipser.

31

target in

‘ delay dreg
target out
ereg
yreg
pregs
1 |HEERE RN s
\ o 00 \1\:“_
input in
e -]] ‘ delay xreg
input out

Figure 3-11 Fully Recurrent Network

The input to the network, z(t), consists of the input activation vector, xi(#), combined
with the output activation vector of the previous cycle from all of the processing
elements, yt):

_[x.(t) ifkel
Zz(t)-{y‘(t) fkeU 3.2.7-1

where k=1 ... M + N where M is the number of external inputs and N is the number
of processing units. The sets / and U designate the input and output indices
respectively.

The output for the kth element at the next time step, yy(t+1), is given by the sum of the

weighted connections for the kth processing element, 5,(¢), passed through the unit's
squashing function fy:

32

s.(0)= IZWu)’,(‘)* Ywuxi)= Y w.z.® 3.2.7-2

lel laUul

yk(t+l)=fg(st(')) 3.2.7-3

The recurrent application of the output to the input allows the network to form its own
internal organization for learning time sequences at the input (i.e. recurrence of patterns
at the input) and it also allows the network to form its own internal layers over several
iterations of the input pattern.

The output from the network consists of a subset of the processing element outputs
(yreg) which are trained from target vectors (dreg). The processing elements which are
not directly trained are used internally to the network as hidden activations. Let T(t)
designate the set of active indices for the output, y(¢), at time t for which there is a
corresponding target element, di(t), then the delta error, ex?), is:

- ifkeT
er)= d,(1)-y,0) ifke ,(t) 3.2.7-4
0 otherwise
The delta error is back propagated to all of the units and the weights updated using:
k
Aw,)=a 2, e.)p,(1) 3.2.7-5

keT (1)

where a is the learning rate and p*(?) is kth unit's contribution to the weight change
given by:

p;(t+l)=%tl—)=f '(S.(t))[gwu D +5,.,z,.(t)] 3.2.7-6

Since p%; incorporates the weighted sum of all other p!;; then equation 3.2.5-5
distributes the error, ex(r) over all of the weights, w;j, incluciing the input connected
weights. Each processing element accesses the entire connection weight matrix and
accumulates delta weight adjustments in internal registers (pregs) for each weight and
each processing element . At the end of each input time step the weights are adjusted in
preparation for the next input. Figure 3-13 shows the process block diagram for a
training cycle.

Because the network is conditioned by both the input activations and previous output
activations, there are a number of options which can be employed during training. The
first has already been mentioned and involves the update of the weights at each input
iteration. This allows the network to train in real-time on a stream of input activations
without accumulating delta weight changes. As a result the network can be applied to
streams of various lengths in real time without having to define epochs often decreasing
by orders of magnitude the number cycles required to train the network. This is referred
to as the realtime option.

33

deriv(yreg)

ereg
®
Ym_units

weights .

+
]
e *
-
| learn_rate 1 HH + paccum
e A "T" ™ +
- -:—:r-
- pregs HHT
= iyt 0 ik
n HH]

u[-

zreg
Figure 3-12 Fully Recurrent Network Dynamics for Learning Algorithm

The shifting of the output to the input for the next input iteration presents two options.
The first is to recycle the output generated by the network, and the second is to replace
the generated output with the target output for the next cycle. The latter is referred to as
forced learning. With forced learning, the network can leam sequences which would be
impossible using the generated outputs. These situations involve learning to bifurcate
an input value to more than one output value depending upon previous history of output
activations. For example, learning a sine wave, the network can distinguish between
the value 0.74 predicting a higher or lower value depending upon the previous output
being lower or higher. Without forced learning the network will attempt to converge on
a value which does minimizes the error between the two predicted values such as 0.74.

Another important option is that the target vector can change over the processing
elements so that different subsets of processing elements are selected as output
activations at each time step. This allows certain processing elements to be specialized
to certain target events while still being available internally as hidden processing
elements for other events. Because the processing element is sometimes an output

34

processing element and other times a hidden element, its behavior is different from
those that are strictly output or hidden. These processing elements would attempt to
form weight connections which attract certain patterns representing the target and repel
at various degrees other patterns which do not map to the target. This implies that these
processing elements can be self organizing similar to an adaptive network such as a
Kohonen topological feature map.

Another useful option is to delay the application of a target vector for a specified
number of cycles for an input. In Figure 3-12, this is shown as shift registers for the
input and target activations. The input and target vectors are placed at the top of the shift
register and shifted down with each new input/target pair. The input vector is taken
from the top of the input shift register and the generated output is compared to the target
at the bottom of the target shift register. The output corresponds to the input vector
placed on the shift register n cycles previously. The network is process and trained just
as before except that the output is delayed. What this option does is cause the hidden
processing elements to form layers similar to backpropagation layers.

3.2.8 Adaptive Resonance Theory Function Blocks (CSCO08)

CSC Purpose. This CSC provides custom function blocks for implementing and
training Adaptive Resonance Theory (ART 1, 2 and 3) neural networks within
embedded system designs. The CSC includes custom coded function blocks for
unsupervised learning and recall processing algorithms. It also provides custom user
function blocks which allow ART networks to perform various functions within a
communications design.

Execution and control data flow. The execution and control data flow is defined by the
propagation architecture of Adaptive Resonance Theory. The following defines the
overall architectures to be implemented by this CSC.

\daptive R It - Bi (ART 1)

ART 1 is the first paradigm developed by Carpenter and Grossberg based upon the
adaptive resonance theory by Grossberg. In the latter paper, Grossberg investigated the
instability of non-linear systems that incorporate feedback, and determined stable
processes that are adaptive and self-organizing. ART 1 is applied to binary input
vectors (i.c., the elements of the vector are either 0.0 or 1.0).

ART 1 Architecture. The network consists of two sets of nodes. The first set, F1,
is connected to the input vector and presents a short term memory (STM) activation
vector at its output. The second set, F2, generates an output activation vector giving the
recalled category from long term memory (LTM) for the current input vector. Initially,
the STM from F1 is activated by the input vector. This pattern activates all of the nodes
in LTM concurrently via bottom-up weights from F1 to F2. These activations compete
until F2 becomes active with a candidate category of a pattern stored in LTM. The F1
STM then receives the recalled LTM pattern via top-down weights from F2 to F1. If
this pattern is not sufficiently close to the input pattern, a strong inhibit signal is sent to
F2. This suppresses the winning category and another category becomes active. If the
new category matches the input pattern, the system becomes stable and resonates for a
sufficient time interval, such that the LTM pattern is reinforced by the new input pattern
and learning occurs.

The learning process involves updating the bottom-up and top-down weights
representing the LTM pattems. If an input pattern has not previously been presented to

35

the network and is sufficiently different for the other input patterns stored in LTM, the
new pattern is eventually introduced to LTM. This ability to learn new patterns while
distinguishing previously learned patterns represents the adaptive feature of ART].
ART!1 is also self-organizing. The categories are selected and the members of the those
categories are determined by the properties of the network and not from an external
target vector as is the case of supervised learning paradigms such as back propagation.

The properties of an ART1 network are defined by a set of parameters representing the
coefficients of the general dynamic equations for the network. These dynamic equations
are based upon a dimensionless form of the membrane equations developed by Lin and
Segal. Though the number of parameters has been reduced to a minimum, there
remains a relatively large number that must be defined to achieve a stable network.
Therefore, tuning an ART1 network to a particular problem requires understanding the
dynamics of the network from the equations which define the network. The essential
equations are presented without derivation to allow the user to experiment with the
model and develop intuition as to the model's performance under various parameter
settings. For a more complete theoretical understanding of the properties of the ART1
network amzi as a foundation to the other ART networks refer to the referenced papers
in Chapter 2.

ART 1 STM Equations. We denote the activation vectors from F1 and F2
with the subscripts i = 1, 2, 3,..,,N and j = 1,2,3,...,.M respectively. N is the number
of elements in the input vector and M is the total number of available categories in
LTM. The parameters A, B, C,... for layers F1 and F2 are denoted with subscripts 1
and 2, respectively. The equations governing the dynamics of the activation vectors
xi(t) and xj(t) for F1 and F2 are:

S%x‘ =-x.+(1 ~Ax)J:-(B+Cix)J; 32.8-1
e%x, =-x;+(1 - Aux)J; - (B:+ Cax))J; 3.2.8-2

where Jit is the total excitory input at unit k = i or j, and Ji~ is the total inhibitory input
to unit k. All of the parameters are non-negative. If A >0 and C > 0, then the elements
of the activation vectors, xi(t) and xj(t), will remain in the finite interval [-BC-1, A-1]
regardless of how large the non-negative inputs Jx* and Jk~ become.

The excitory input Ji* for the ith node of F1 is the sum of the bottom-up input I; and
the top-down template input from F2:

J! =I.-+D,§f (x;)z; 3.2.8-3

where f(xj) is the threshold signal generated for an F2 node by the activation xj, and zji
is the top down LTM weight from F2 to F1.

The inhibitory input Ji- is derived from all active nodes in F2:

36

e

"= ; f(x) 3.2.8-4

If F2 has at least one element active, then Ji~ > 0 and has a non-specific inhibitory effect
on all of the units of F1.

The excitory input J;j* to the jth node of F2 comes form the bottom-up trace of
activations from F1 and the positive feedback signal g(xj) to itself:

J;=8(x,)+ D:(Zh (x:)z; -a,’-) 3.2.8-5

where h(xj) is the threshold signal generated by F1 at the activation xi and zij is the
bottom-up LTM weights from F1 to F2. Here the weights zjj and zjj denote two

different matrices and not the transposition of the same matrix. The vector element aj+

is the excitory activation from the orienting subsystem which indicates the category is a

learned category. If biases the competition to first find categories which have been

Fumnhvioulsly learned before starting a new category for the input vector. This is discussed
er later.

The inhibitory input J " 10 the jth node of F2 is the competive negative feedback from
all of the other nodes in F2:

J;=28(x)-a; 3.2.8-6

knj

where aj” is the inhibitory activation signal from the orienting subsystcm when the
category does not match the current input pattern. When active, it suppresses the
winning category so that other categorics will be considered. The dynamics of the reset
or orienting subsystem are discussed in the subsection entitled "Orienting Subsystem
Equations” for ART 1.

ART 1 LTM Equations. The dynamics for the LTM weights are as follows:

g:'zi‘ =f (xj)['zﬁh ()] 3.2.8-7

L= Kaf (x| 2Lk ()2 Zh(x)] 283

When a stable resonant configuration in the STM presists, the weights are updated by
the above dynamic equations. For a stable network, it is important that the weights are
modified at a time scale that is long compared to the update of the STM activations.

This is achieved by keeping the time scale for the leamning, &t, small while allowing E

to be large enough such that ESt = 1. After the input activation hasn been presented for
a sufficient interval to indicate that the system is resonating, the ART1 model solves the
dynamic equations and updates the weights to their asymptotic values for t >> 0. This

37

r

is referred to as the "quick learn mode". The quick learn mode is engaged when the
following condition is satisfied:

counter = 2~7E 5 ' 3.2.8-9
1

where dt is the time constant and counter is the number of iterations since the last reset.
E is a parameter of the ART 1 implementation that controls LTM leaming rate and is not
originally a Grossberg ART 1 parameter.

ART 1 Orienting Subsystem Equations. The orienting subsystem compares
the STM recalled pattern to the input vector and becomes active when the comparison
falls below a vigilance threshold. The vigilance is set within the range 0.0 to 1.0 where
1.0 indicates that the STM and input patterns must match exactly and lower values
allow proportionally greater dissimilarity among the members with a category. Higher
vigilance will result in greater discrimination among the input vectors, whereas lower
vigilance will tend to group the input patterns with greater variation into the same
category.

When a mismatch is found, the orienting subsystem is "aroused” and an inhibitory
signal is transmitted to F2 which has the following dynamics:

g}'a; =Gi(-a;+o8(x))) 3.2.8-10

where a is the arousal level for the inhibitory signal and is a function of the vigilance.
When the arousal is greater than zero, the active element k; transmits a self-inhibiting
signal until it is zero, at which time the inhibitory signa.l' decays at a time scale of

G2*5t.

When the orienting subsystem is not aroused, an excitory activation signal is sent for all
categories that have been learned by the network. The equation for this process is:

-;:;a,’=G. glx) -a;+| —LKL S h(x) (1- 6a)) 32811

Lz—l*’?h(x.') i

where p is the vigilance, P is the average initial value for the bottom-up weights, which
is leass than L2/(1.2 - 1 - N), and (o) = 1 when a > 0, and 8(a) = 0 otherwise. This
sends a self-excitory signal to the ah<.ady leamned categories slightly above the average
signal, B, of the unlearned or initialized categories. Therefore, the competion is biased
to the learned categories for initial searches, but still allows new categories to be

generated from the uninitialized weights. The effect of choosing L2 large is to bias the
network to choose uncommitted category elements in response to unfamilar input

patterns.

38

Adaptive Resonance Theory - Gray Scale (ART 2)

ART 2 applies the adaptive resonance theory developed by Carpenter and Grossberg to
input vectors whose elements can vary continuously over the range from 0.0 to 1.0.
ART 2 is an example of unsupervised leamning where the output represents the category
for the input pattern determined by the network itself. No target vector is provided
during training. ART2 is also an example of adaptive learning in that when new
patterns are presented, which are significantly different form the previously learned
patterns, the network will recognize that the patterns are different and form new
categories.

ART 2 Architecture. The architecture for ART2 is shown in Figure 3-14. The sets
of nodes, F1 and F2, are connected by long term memory (LTM) weights. An orienting
subsystem O contains the vigilance parameter that resets F2 if the recalled pattern is
significantly dissimilar from the input pattern. A gray scale input pattern activation Ii
enters the network at F1, which eventually sends activation signals to F2 via bottom up
weights z;;. These signals compete with the winning category in vector y;, sending a
recalled pattern via the top down weights z;; at vector p;. This activation vector, along
with the short term memory (STM) activation, u;, establishes a candidate model of the
input pattern at r;.

This expected activation vector is compared against the vigilance threshold p to
determine closeness of fit. If the expected pattern sufficiently matches the current input,
the STM vector is modified via vector v;, and the system will resonate for the recalled
category. If the expected vector is dissimilar, the orienting system will send an
inhibitory signal to F2, suppressing the winning category and allowing the network to
test the next category.

The ART 2 architecture diagram shows the activation vectors for F1 and F2 and their
interconnections. The black dots in the figure indicate the application of a non-specific
excitation bias during the computation of the activation signal. The other arrows
indicate the inputs to the vectors representing excitatory activities within the unit.

39

F- reset

yi
g(yi) J
- Zj Zji +
r \
F a
1p g)
7 - l bri
Ui Vi
a f(ui) l 1 f(xi)
W Xi
\— ! _J

Figure 3-13 ART2 Architecture *

ART 2 STM Equations: F1. The STM activity V; of the ith element at any one of
the F1 processing stages obeys the Lin Segal membrane equation:

E%VF'A V+1-BV):-(C+DV)J; 3.2.8-12

fori =1 ... M where i is the number of elements in the input vector and J;* is the total

excitatory input to the ith element, and J;~ is the total inhibitory input. With no input
signal, the activity decays to 0 with a relax time given by A. The dimensionless

parameter € is the ratio between the STM relaxation time and the LTM relaxation time,
which is 0 < € << 1. By setting B = C = 0, the ART 2 activation equation has the
asymptotic form, where € approaches 0, given by:

e Ll

A+D J; 3.2.8-13

In this form the dimensionless equations characterizing the STM activities, p;, i, u;,
v;, w; and x; are computed at F1 as follows:

p,.=u.-+;g (y,)z,-i 3.2.8-14

__D
qi_e"'l I
p 3.2.8-15
= 3.2.8-16
e +|v|
vi=f(x)+br: 3.2.8-17
w=I.+au 3.2.8-18

W'
x=—2 3.2.8-19
e +|w|

where IVIl denotes the inhibitory signal form the other elements within the unit V given
by:

M 2

|V|=i Z(Vi"vi)

! 3.2.8-20

and where y; is the STM activity of the jth node in F2. The nonlinear signal function
f(x) is of the form:

0 if0sxs<s?d

re={]
"y x>0 3.2.8-21
which is piece-wise linear. The above activation equations, computed in the order
given, will result in a dynamic network where the activations are shifted into the next
activation as the input vector persists at the input.

ART 2 STM Equations: F2. Initially, F2 is inactive with no category selected
from LTM. At this stage F2 is represented with an input signal from F1 via p; which is
an adapted form of the input pattern. The signal across all categories in LTM is
computed concurrently as:

=2.D.z
¢ Zi‘,P v 3.2.8-22

for j=1... N where N is the number of categories or storage capacity of LTM. When

the signal passes a threshold and F2 makes a choice, the activation vector y; is passed
through a gated dipole threshold function given by:

41

d ify, = max{y; | the jth F, node has not
g (y J) = been reset on the current trial}
O otherwise 3.2.8-23

This signal is passed back to F1 via the top-down weights, z;;, modifying the F1
activity at p; which reduces to the following:

U; if F, is inactive
P:=\u.+dz, if the Jth F, node is active

3.2.8-24

This activity is combined with the STM activation, u;, to form the activation r;. This last
vector has properties essential to the orienting of the network.

ART 2 Orienting Subsystem Equations. The activity at r; is such that r;will
attempt to model the input patten with a pattern recalled from long term memory. That
is to say, it will attempt to match the input pattern as given by the STM vector with a
pattern which the system has previously learned and stored in LTM. The match may not
be exact. The equation for this activity is:

r= ut+cq,
| e+|u|+1cq| 3.2.8-25

The activation vector has been normalized such that the sum of the square difference,
lirll, will be 1 if the patterns match and will be less than one in proportion to the
dissimilarity between STM and LTM patterns. The degree that patterns are allowed to

be dissimilar before resetting the network is given by the vigilance parameter, p. The
orienting subsystem will reset F? if the following condition is satisfied:

P >1
e+ 3.2.8-26

where the vigilance parameter p is set between 0 and 1. The reset causes the previously

winning node in y; to be suppressed and then another pattern to be recalled from F2 and
submitted to Fi1.

When the above condition is not satisfied, the network will begin to resonate. This can
be observed in the activity of ;. At first r; will appear as a superposition of p; and u;,
but then gradually becomes a modeled version of the input vector. It highlights those
features of the input that categorize it in LTM. For high vigilance, r; will become an
accretive form of the input. For lower vigilance (i.e., more patterns within each
category), specific features will be shown. This modifies the STM activity, u;, which
will show an idealized version of the input pattern.

When processing input patterns in the presence of noise, the non-specific parameter ¢

acts as an excitation bias that desensitizes the network to noise fluctuations. In the
computation of activation signals, ¢ is the rate at which the activation decays given no

42

excitatory or inhibitory input to the vector. In the computation of the vigilance ratio, e
biases the reset to a higher vigilance threshold.

ART 2 LTM Equations. When the network resonates for a time scale that is
long compared to the STM settling time, the LTM weights are modified by the
following dynamic equations:

" w)

iz;. gy \p.-z:l=d[p.-z:]=d(1-d) T_L_‘—‘d-zjij
: 3.2.8-27

, i

—Zui™ NP~ ij=d i u=d 1-d e i
z7=80NP-zl=dlp-2]=d(-d)|1Zg-z|
Vj J,% z,=0and % z,=0 3.2.8-29

\daptive R TI . Hi hical (ART 3)

ART 3 completes the trilogy of adaptive resonance theory network architectures by
implementing hierarchical search within multiple ART 2 networks. To achieve this, the
F1 and F2 modules in the ART 2 architecture must become homologous and bi-
directional. Note that F1 and F2 are not the same in the ART 2 architecture. In the ART
3 architecture, the F2 Field, which gives the category encoding of the input pattern at
F1, is implemented as a F1 STM field. This means that the input pattern to F2 is
homologous to the input pattern to F1. As a result, partial compression of the category
encoding is introduced (ART 1 and ART 2 implement maximal compression encoding)
to allow for multiple winners during the categorization of a dynamic input pattern. To
allow for distributed competion between F1 bottom-up and F2 top-down retrieval, a
medium term memory (MTM) is added to the the ART 2 architecture that models the
chemical transmitters within biological neural systems. The MTM is longer scale to
STM but sufficiently shorter time scale to LTM to allow the system to stablize before
learning. These changes to the ART 2 allow the F1 STM fields to be cascaded within a
multiple layer architecture where the STM represents both input patterns and partially
compressed categories.

ART 3 Architecture. The architecture for ART 3 is shown in Figure 3-15. The
sets of nodes, Fa, Fb, and Fc consist of the three layer unit architecture used in F1 of
the ART 2 architecture. The output from Fa is input to Fb without adaptive weights. As
a result the number of elements in the output from Fa matches the number of elements
in the input of Fb. Adaptive bottom-up and top-down weights connect Fb and Fc. This
allows the number of elements into Fc to differ from the number of elements from Fb.
The orienting subsystem combines the STM output from Fa and Fb to establish the
resonance pattern i, which is compared to the vigilance parameter, r. The reset signal is
sent to Fb and Fc and the to the adaptive weights connecting these modules.

By convention, xial represents the input of the ith element in Ath layer of the ath STM
field, and yi“l represents the output from the ith element in the Ath layer of the ath

STM field. The pairing of xial and yi‘u defines a unit layer in the ART 3 STM field.
This parallels the layering found in F1 of the ART 2 F1 STM field. The output from the

43

middle layer represents the internal STM value for the input pattern and the output from
the third layer is pattern that is effected by the combination of top-down retrieved and
internal STM patterns.

Figure 3-15 ART 3 Architecture

The LTM memory traces are as defined in the ART 2 architecture. However, in ART 3
the retrieved bottom-up and top-down signals are modulated over time by the chemical
transmitters accumulating at each ith or jth node. The dynamics of the transmitters is
given by the equations for presynaptic and bounded transmitters at each node. The
presynaptic transmitters define the potential for generating chemical transmitters from a
synapse node for a given signal and weight. The bounded transmitters define the
resulting transmitters that are bound at the receptive synapse node. This results in a post
synaptic activation that represents the input to the receiving STM layer. As a result of
this mechanism, distributed nodes (i) can effect the state at a receptive node (j) over a
time scale that is long compared to STM dynamics but is short =ith respect to LTM

adaption.
The new ART search mechanism has a number of useful properties:
a. works well for mismatch, reinforcement,or input reset;

b. is simple;

c. is homologous to physiological processes;

d. fits naturally into network hierarchies with distributed codes and slow or fast
learning;

e. isrobustin thatit does not require precise parameter choices, timing, or analysis of
classes of inputs;

f. requires no new anatomy, such as new wiring or nodes, beyond what is already
present in the ART 2 architecture;

g. brings new computational power to the ART systems;

h. although derived for the ART .ystem can be used to search other neural network
architectures as well.

ART 3 STM Equations. Except during reset, equations used to generate the
STM values are similar to ART 2 equations. Dynamics of the fields Fa, Fb, and Fc are
homologous. The steady-state variables for the fields, when reset signal equals 0, are
given by the following:

Input variable. The input value for the ith unit in the Ath layer of the ath field is
defined by the dynamics:

d ' {¢ & al a(i+
ea_:_x:u = —xl"+S; @-n D, S.- (a+) 3.2.8-30
In steady state,
a . qa@a-1 G2 a(a+l) 3.2.8-31
Xi =Ji + px S" -

wherelis 1,2, or3and ais field a, b, orc. If1 - 1 ==0, then « is the next field down
from o, and 1 = 3. When 1 +1 == 4, a is the next field up from o and 1 = 1.

Ouwsput variable. The output variable is a normalization of the corresponding input
variable. The output variable corresponding to the input variable for the ith unit in the

Ath layer of the ath field is defined by the dynamics:
a ai
Y e 3.2.8-32
p; +bl
where the interfield input signals are given by the non-linear signal function:

s*=g{y") 3.2.8-33

and the top-down intrafield signal across the adaptive synapse is:

45

(a+1)l _ (a+l)a
St g ;v,. 3.2.8-34

The normalization is the Euclidean norm or L2 norm used in ART 2 (eq. 3.2.8-). This
supports the orderly pattern transformations under a variable processing load and direct
access to learned category representations without searching in LTM.

ART 3 Signal Functions. The ART 3 signal functions have two forms depending
upon whether the matching is distributed (partially compressed) or choice (maximally
compressed) encodings of the output variable:

Distributed

0 if w< pi + py

g w)= (W—ap-,) £ pE 4 pe 3.2.8-35
Py
Choice
0 ifw<ps
3.2.8-36

*(w)= a)’
8 - (___w-ap.,) if w> ps
Dy

In the case of choice the p7a parameter is dependent upon the number of categories by:

p; = ‘/\/IT, so that the resulting output signal will reflect only one choice regardless of

the number of choices. Otherwise the parameters p7 and p§ are non-negative (0.0 -
1.0).

ART 3 Transmitter Equations. When the reset signal equals 0, the levels of
presynaptic and bound transmitter are governed by the following equations:

Presynaptic transmitter, Fb -> Fc

%"7 = (25 -ur)-uf pi(x;'+ p})S? 3.2.8-37

Bound transmitter, Fb -> Fc

d be be b € cl ¢ 53
—Ve =~V -~y Pi{ x5+ P))S. 3.2.8-38

Presynaptic transmitter, Fc -> Fb

G =(2-u)-u pi(x+ p))S; 283

Bound transminter, Fc -> Fb

d o cb eb L bf b3 8\ el
Zvs=-vi-u pi(x>+p))S: 3.2.8-40

ART 3 Reset Equations. Reset occurs when patterns active at Fa and Fb fail to
match according to the criterion set by the vigilance parameter. The reset unit for the ith
node is

¢2+ b2
riz—s), -). - 3.2.8-41
P+ +b
Reset of the Fb and Fc fields occurs if
I"1 < p’ 3.2.8-42
where
0<p’<1 3.2.8-43

The effect of a large reset signal is approximated by setting input varables and bound
transmitter variables equal to 0.

3.2.9 Brain State in a Box Function Blocks (CSC09)

CSC Purpose. This CSC provides custom function blocks for implementing and
training Brain State in a Box (BSB) neural networks within embedded system designs.
The CSC includes custom coded function blocks for unsupervised learning and recall
processing algorithms. It also provides custom user function blocks which allow ART
networks to perform various functions within a communications design.

Execution and contro] data flow. The execution and control data fiow is defined by the
propagation architecture of Brain State in a Box (BSB). The following defines the

overall architecture to be implemented by this CSC.

BSB: Linear Associator. The BSB Network is an example of associative
memory , which has been extensively investigated by Hopfield and Kosko. It is based
upon the properties of a linear associator using a generalized Hebb learning rule. The
tquﬁput, yj, from the linear associator is generated from the weighted input, x;, as
OlLIOWS:

Y= ZW'.I.x.. 3.29-1

wherei=1..Nand j=1 .. M where N and M are the number of input and output
elements respectively. The associative memory weights, w;;, are adjusted according to
a generalized Hebb rule with each input/output pair, &, given by:

ow;j =ay;X 3.2.9-2

47

where y; and x; are the kth associative learning example. The associative weights are
the sums of the output vector products,

Y
Wi=n2Y, X 3.2.9-3

k=)

where 1) is a learning constant.

To illustrate the properties of this network, define the input as a combination of a mean,
D, combined with a non-linear distortion, g, as follows:

xi=p+d: 3.2.9-4

Substituting this into equation 3.2.9-3, the associative weights are:

w;= ngy Xi = ny,(np,.+ gdf) 3.2.9-5

where n is the number of training examples, xk, and y is the corresponding output state
associated with these examples. If it is assumed that the sum of d* .25 a zero mean
error, then the associative weights, relate the output, y;, with the mean input, p;, given
by:

w; =Ry p. 3.2.9-6

Even though none of the examples explicitly provide the mean, the network is able to
extract the mean input even if the distortion is non-gaussian or non-linear.

BSB Architecture. Figure 3-16 gives the architecture for a general application of
the above linear associator. The outputs for the BSB processing elements are fully
connected to one another, such that the output state s; of the jth unit at time ¢ is given
by:

©=aS e ©)+8,(0
5,(0) “;W"y O+ 1,0+ 8x,0) 32.9-7

The first term, passes the current system state, xy(¢), through the weight connections to
generate the associative state, y; at the current time step. The second term causes the
current output state to decay slightly. This has the effect of forcing the distortion to zero
over multiple interactions. The third term keeps the initial information constantly
present and has the effect of limiting the flexibility of the possible states of the
dynamical system since some vector elements are strongly biased by the initial input.
The output is passed through a non-linear limit function to generate the next state of the
system:

y,e+)=f(s5,0) 3.2.9-8

48

The purpose of the limit function, f(), is to maintain the output state within limits for
multiple interactions of feedback through the network. The output is not allowed to
exceed the positive limit or be less than the negative limit. The limiting process contains
the state vector for the dynamical system, hence the designation, brain state in a box.

The dynamical system is free to move within the boxed limits established by the
network. For multiple iterations, the state fluctuates until it settles to a stable state for
the given initial input vector. For auto-associative, symmetrical weights the final state is
associated with the minimum energy state of the network. By changing the input state,
the system will move to another attractor which has been learned by the network.

Output Activation

l Auto
W} Associator
't Elements

X.

Input Activation
Figure 3-16 Brain State in a Box Architecture

BSB: Error Correction Equation. By using a Widrow-Hoff error correcting
procedure, the associative weights are incrementally adjusted by Aw given by:

k
Aw;= '7()’ - Zl:w.,-x.')xf 3.2.9-9

This error correcting procedure will have the accumulative effect of forcing error to zero
so that the weights approximate a least means squares mapping of the input to the
output vector.

49

4. NEURAL NETWORK COMMUNICATIONS SYSTEM
APPLICATIONS

This section summarizes the results of simulating Neural Network applications in
Communications Signal Processing. The simulation objectives were:

1. Demonstrate a Neural Network simulation capability for the study of Neural Network
applications to communications systems and signal processing.

2. Investigate how selected areas of communications can benefit from Neural Network
technology via the developed simulation capability.

3. Use the simulation to identify neural network configurations to be included in the
conceptual design of a phase II neural network transceiver.

In the following summary of selected applications of Neural Network technology, each
simulation is summarized using the following format:

Introduction- A brief statement to preface the simulation which follows.

Overview- A description of the problem, including a block diagram of
the system and background information of certain system
components.

Simulation Parameters- Specific parameters used by the Neural Network
configuration.

Paradigm Neural Network architecture/leaming algorithm used

Input Nodes | Size of the input vector

Hidden Nodes | Number of internal Neural Processing nodes

Output Nodes | Number of output nodes (the size of the output vector)

Learn Rate Degree to which the error signal is applied to weight changes

Momentum | Degree to which previous weight changes influence future weight
changes

Update Interval | Number of training vectors between weight updates

Number of | Number of times that the training set was applied during learning
passes

Training Size | The total training size, giving the total number of input vectors
applied during learmning

SPW Iterations | The number of simulation iterations to produce a single input
vector

per vector

Results-

Lessons Leamed-

Potential Extension-

Procedures-

Observations and data collected which displays the results of the
Neural Network, including performance curves and signal plots.

Experience gained in the effort to apply the Neural Network
technology to the problem which may be useful in other Neural
Network applications. (Included when applicable.)

A discussion of areas of future research for Neural Network
applications related to the current problem. (Included when
noteworthy.)

Procedures to execute the simulations described in Section 4 are
documented in the Appendix.

51

4.1 SIMPLE NON-LINEAR MAPPING WITH A NEURAL
NETWORK

Application

Non-Linear Mapping by a Backpropagation Neural Network

Introduction

Backpropagation Neural Networks have been shown to be capable of emulating continuous
functions and discrete mappings from one input vector to another. In an initial experiment,
we investigated the capability of Backpropagation networks to learn a simple non-linear
mapping such as the square function.

Overview

This problem was studied using the block diagram below:

Souceof | gl y-05x 2 ___T__""“ Backpropegation
X Vakes Nearal Q';
-
from -1.0t0 1.0 Tnput Network

A training set was created consisting of 21 real numbers between -1.0 and 1.0, inclusive,
spaced by a distance of 0.1. The target consisted of the input value squared, multiplied by
a factor of 0.5. The factor 0.5 was chosen because the output of the Backpropagation
network produces values ranging from

-0.5 to 0.5 (which is a result of the sigmoid non-linear transfer function in each output
node). An input value and target value were presented to the Backpropagation Network at
cach iteration. Weights were updated in batch mode after each pass through the training

set. In a second experiment, the neural network was trained to learn the 0.5x3 function.

Simulation Parameters

Paradigm Backpropagation
Input Nodes 1
Hidden Nodes 9
Output Nodes 1
Learn Rate 1.5

52

Momentum 0.9
Update Interval 21
Number of 476
Passes
Training Size 9996
SPW Iterations 1
per Vector
Results

Figure 4.1-1 displays two X vs Y plots where the neural network is trained to learn the
0.5x2 function. Plot A1 shows the target value (vertical axis) for each corresponding input
value (horizontal axis) in the training set. Plot A2 shows the mapping created by the neural
network after training has completed.

.35 Scatter Diagram
- + Point ¢ : 20“
0.2 . . X valos - 0. 40000f
Y Valus = 0.08000
fo.1- * *
+
0- + . L+ ++
-1 -0.5 0 0.5 1
E' — Network Qutput
To.ad - .
+ -
110.3-
L + + Scatter Diagram
Point & = 0
0.2 . . ¢ Points = 200
X Valus = 0.40000
Y value = 0.07261
0.1 * P
+
+ + !
’44;4. < +
-1 -0.5 0 0.5 1

Figure 4.1-1 Neural Network Target and Output for 0.5x2 Function

Figure 4.1-2 displays similar plots for the 0.5x3 function. Further training with a lower
learning rate would increase the precision of the mappings.

53

The neural network has been trained to learn a function by providing it with only 21 pairs
of input and target values over the range from -1.0 to 1.0. To examine the ability of the
network to generalize, i.e., perform the desired mapping for inputs for which it has not
been trained, we held the weights at their final values and added noise to the input values,
thus approximating a continum of inputs. Figure 4.1-3 shows that the network can indeed
generalize, which in this case means specifically that the neural network effects a smooth
interpolation between the trained points. However, the A2 plot in Figure 4.1-3 suggests
that the generalization is not valid for values of x outside the interval from -1 to 1. Note
how the A2 plot in Figure 4.1-3 reveals more effectively than Al the incomplete
convergence to the square function, even though the A2 plot overlays the Al plot.

Lessons Learned

Upon initialization of the Backpropagation algorithm, weights are initialized randomly
between an upper and lower bound. As a default, -0.3 and +0.3 are used. These bounds
produced inferior results. For the square function, training time was significantly longer.
The mapping remained linear for about 400 passes through the training set before
significant convergence began. For the 0.5x3 function, a local minimum was found and
the correct maping was never reached. Upon changing the initial bounds to -4.0 and 4.0,
the network quickly converged to a good solution.

54

|§‘

e Eat View Seiea
B.SX*%3 Target
0.5]
-
0.25.
+ Scatter Dia
0— . + +++* Point s 80
+ ¢ Points = 100
+ X Value = -o.1ooq
+ ¥ Valus = -0.000%
=0 .25 o
+
-0.%
hd 1 1] L
-1 -0.5 0 0.5 1
‘ .
! Network Quiput
0.4 R
0.2
+
Scatter Diagram
0 .+ + +++ " roint ¢ =0
+ ¢ Points = 100
+ X Value = =0.10
0.2 + Y Value = 0.002¢
-0 .44 *
g L I
-1 -0.5 0 0.5 1

Figure 4.1-2 Neural Network Target and Output for 0.5x3 Function

55

Square Function Mapping for Training Set

0.4 f‘

-1 -0.5 0 0.5 1

Square Function Mapping for Continuum of Values

e

lo.3—

0.2

0.1~
____J! T I q T T
-1 -0.5 0 0.5 1

Figure 4.1-3 Trained and Generalized Outputs for the 0.5x2 Target Function

56

L

4.2 EQUALIZATION OF MULTIPATH DISTORTED 64-QAM
Application

Equalization of Multipath Distorted 64-QAM using a Backpropagation Neural Network
Introduction

The use of Neural Networks in the equalization of signals exhibiting intersymbol
interference (ISI) was studied using the block diagram below:

Backpropagation
Neunal
. s Network
64 QAM Souree] | Rollodt Fiter -’v Raised Cosine
Linear Adaptive
Equali
AWGN

Overview

A transmitter generating random 64-QAM symbols at a sampling rate of 20 samples/symbol
was used as the system input. A 256-tap raised-cosine rolloff filter with a rolloff factor of
0.5 was used for pulse shaping at the ransmitter side. The channel model used was a
multipath Rummler model consisting of the primary signal summed with a delayed, rotated,
and attenuated version of the primary signal. Additive white Gaussian noise (AWGN) with
a variance of 0.005 was added to the multipath signal to complete the channel model. A
256-tap raised-cosine rolloff filter with a rolloff factor of 0.5 was also used for pulse
shaping at the receiver side, fulfilling Nyquist's criteria for minimizing ISI. The ISI-
distorted signal (after receiver pulse-shaping) is input to a Linear Adaptive Equalizer and a
Backpropagation Neural Network for comparison. The channel model causes ISI to occur,
necessitating the use of equalization for proper demodulation. In the Backpropagation
Neural Network and the linear equalizer, one in-phase sample and one quadrature-phase
sample of each of the last 16 received symbols are used as input, hence 32 inputs. The
output layer produces an in-phase and quadrature pair which represents the equalized signal
at the optimum sampling time for demodulation.

Rummier Channel
The Rummler channel model consists of the primary signal summed with a delayed,

rotated, and attenuated version of the primary signal. The input to output relationship for
this channel is:

y(®) = x(t) - Bx(t-t)e2xthy
where x(t) is the Rummier channel input
y(t) is the Rummler channel output

B is the gain of the reflected signal

57

1 is the time delay between primary and reflected signals
fg is the null frequency

Taking a Fourier transform of the Rummler channel impulse response gives a spectrum
with severe attenuation for certain frequencies, called nulls (see Figure 4.2-1). The
Rummler channel model lets the user specify these frequencies. The null frequency used in
this system is 4 MHz. The sampling frequency is 320 MHz. The baud rate is 16 MHz.

8 Rumnler Channel Frequency Response
-s"—d
-50 . 5t
=60t
-61. 5
dB “ Frequency Response
-63— voint = 512
* Pts = 102§
-u.s] Freq = -0.000487005
-6¢ - Db = -66.0172
-0.5 -0.2% 0 0.25 0_5|Pbase = -0.153553
3.uﬁ
Phase B e S—
-3.14

Figure 42-1 Rummler Channel Frequency Response

58

Raised Cosine Rolloff Filters

The raised cosine rolloff filter is a family of lowpass filters which assist in satisfying
Nyquist's First Method for eliminating Intersymbol Interference (ISI). Basically, the goal
is to have a system with equivalent transfer function

He(f) = HOHx (DH(OH (),
where H(f) is the frequency spectrum of the modulated signal before filtering

Hex(f) is the transfer function of the Transmitting filter
Hc(f) is the transfer function of the Channel
Hgx (f) is the transfer function of the Receiving filter

such that the corresponding system impulse response, he(t), is zero at all sampling times
other than the time associated with the transmitted symbol at that instant:

he(kT9) =C for k=0,

=0 for k not equal to 0
where Tg is the sampling period

C is the value of the transmitted symbol

If this is true, the adjacent symbols in a stream will not bleed into each other at the
sampling times, which are the only times of interest. Choosing a raised cosine rolloff
filter for Hyx(f) and Hpx(f) with a well-behaved channel will satisfy Nyquist's First

Method. However, the channel may not be well-behaved or it may even be varying. An
equalizer (or Neural Network) can be used to compensate for the channel behavior in order
to result in a total system transfer function, He(f), satisfying the above criteria.

This Raised Cosine Rolloff Filter block performs frequency-domain filtering. This routine
is typically much faster than the time domain implementation which uses a linear
convolution method. The generated raised-cosine frequency response can be either a
complete raised-cosine or a square-root raised-cosine filter depending on a parameter.
Also another string parameter is provided if a complete (or square-root) raised-cosine
cascaded with an inverse sinc function is required. The actual filtering is implemented in
the following steps: The input vector signal is zero padded so that its length is twice as
large. That is, the length of the zero-padded input signal is equal to the number of
interpolation points (or FIR tap length). The complex FFT of this signal is then taken, and
the resulting vector weighted by the frequency domain description of the filter which was
calculated during initialization. Then the inverse FFT is taken to convert the resulting
sequence back to the time domain The output is then delayed and summed to realize the
“"overlap and add" computation of the output.

59

Network Parameters

Paradigm Backpropagation
Input Nodes 32
Hidden Nodes 2
Output Nodes 2
Learn Rate 0.3
Momentum 0.9
Int 20*
Update Interval *The training set consisted of a continuous
Number of 2500 su'eamofmndom6.4QAMreceivedsymbols
Passes and the corresponding target symbols.
Weights were updated at the end of every 20
. . . input vectors. The I and Q values for the last
Training Size S0K 16 received symbols constituted the input
SPW 20 vector.
Interations per
vector
Results

In Figure 4.2-2 Signal A1 represents the constellation for the equalized, unquantized signal
at the output of the linear equalizer. Signal A2 shows the same for the Neural Network.
Signal A3 displays the rotated, ISI distorted signal constellation appearing at the input to
the Neural Network and the equalizer. Both the Neural Network and the linear equalizer
were able compensate for the majority of the distorting effects of the multipath channel.

Both the Neural Network and the linear adaptive equalizer exhibit the following
functionality:

1. Both can correct intersymbol interference with “multipath delay” on the order of several
symbols (e.g. 30 samples) when given a training signal. We are using a Rummiler channel
which consists of a primary signal component summed with a scaled, rotated, and delayed
secondary component. The amount of this delay in time is what we are specifying when
we refer to the “multipath delay”. This delay is specified to be some number of samples.
To determine a delay in seconds, you must know the sampling rate, fg. Using our

terminology, one sample of multipath delay equals 1/fg seconds.

2. Both can correct ISI with multipath delay on the order of a few samples (e.g. 2
samples) from start-up using hard decision feedback instead of a training signal, given a
suitable initial weight setting. For the linear equalizer this suitable initial weight setting was
to initialize all taps to 0.0 except for the center tap which was set to 1.0. For the Neural
Network, the initial weights were set to those resuiting from training to a zero delay
multipath situation.

3. Both can continue to correct ISI with either a fixed multipath delay or a slowly varying
multipath delay using hard decision feedback instead of a training signal, given prior
convergence. Here, slowly varying means step increases (or decreases) of 1 sample of
multipath separated by sufficient time to allow for re-convergence.

4. Both will not correct ISI for a rapidly changing multipath delay. Here, rapidly
changing multipath delay means step increases (or decreases) of S or more samples .

Lessons Learned

Scaling of signals is very important for the Neural Network. Input and target signals must
be scaled appropriately to remain within the bounds of the sigmoid. Improper scaling may
cause saturation of the sigmoids which in turn will cause training to virtually cease
(network paralysis) and/or cutput levels to be clipped at the upper and lower bounds of the
sigmoid.

Synchronization and timing in SPW are also very important. Careful synchronization
between input signals and corresponding target signals is required. An extemnal clock is
used to control the clocking of samples into the network. Only the center sample of each
symbol is input to the Neural Network. Weights are updated once per symbol.

Convergence time for the Neural Network requires about 50 times as many iterations as the
linear adaptive equalizer.

61

mee—————
e—pa—

Equalizer Cutput

+

h

Scatter Diagram
Point ¢ s 0

¢ Points = S00

X Value = 1.20097
Y Valus = 2.1295%%

U
-
o

NN Qutput

. v v
W v O n w
L++0+++4
4
LI N EREEEEX
bt e+ 4449
" T S Y T QP
Y W AR
-

B d e L 2
< * < <
Q.2

" L L 2 + L

< ” L J
0 L 4
+ + + +

L 4
+F L 0.2 . » *
+ &> <+ <*
* S "
-0.2

O 4

4

Input to NN or Equalizer

4 o+ +*- " -
2 — : :: » oy : ;,J
adiiad L ;: d v e ¥ |scatter Diagram
O W o» *™ % @b g frounts =0
o oo sy $ v I 2oer22
-2~ : r o W .a oy - Y value = 0.96788
s % - .
-4 -2 0 2 ‘

Figure 4.2-2 Signal Constellations for 64-QAM Equalization

62

4.3 EQUALIZATION OF DYNAMIC MULTIPATH DISTORTION
Application

Use of a Backpropagation Neural Network to Control a Bank of Equalizers in a Dynamic
Multipath Environment

Introduction

The simulation of the multipath-distorted 64 QAM system previously discussed showed
that a Backpropagation Neural Network could equalize a rotated constellation, and also
adapt to "slow" changes of the multipath delay in an unsupervised scenario (using its own
output as a target). This was truc of the Linear Adaptive Equalizer as well. However, if
the multipath delay were to change suddenly and to a "large" degree, both the Neural
Network equalizer and the linear adaptive equalizer would not be able to keep up and would
require a training signal to once again cancel the effects of multipath. This section is a
summary of the use of N equalizers (neural or linear adaptive), where each has been trained
(and have their weights fixed) to a different amount of multipath delay, to create a structure
which will be able to handle a large range of dynamic multipath distortion.

Overview

The use of Neural Networks in the equalization of signals exhibiting intersymbol
interference (ISI) as a result of a dynamic multipath distortion was studied using a structure
described by the block diagram below.

..’u-m_.

Requalionr 1
Dysumic Makipets
4QAM Rainad Cosins L’ e Reiond Cosd By)
Somee Rollaff Plwr Rolloff Pl
Backpropagation
Baualiae 2 — -
v Signal

AWGN

P

A transmitter generating random 64-QAM symbols was simulated using a sampling rate of
20 samples/symbol. A 256-tap raised-cosine rolloff filter with a rolloff factor of 0.5 was
used for pulse shaping on the transmitter side. The channel model used was a multipath
Rummler model consisting of the primary signal summed with a delayed, rotated, and
attenuated version of the primary signal. The input to output relationship for this channel
is:

y(t) = x(t) - Bx(t-t)e2ntiy
where x(t) is the Rummler channel input
y(t) is the Rummler channel output

63

B is the gain of the reflected signal

1 is the time delay between primary and reflected signals
fo is the null frequency

The time delay (1) is varied to represent a dynamic multipath channel.

Additive white Gaussian noise with a variance of 0.005 was added to the multipath signal
to complete the channel model.

A 256-tap raised-cosine rolloff filter with a rolloff factor of 0.5 was also used for pulse
shaping on the receiver side. The channel model causes ISI to occur, necessitating the use
of equalization for proper demodulation.

We are using a Rummler channel which consists of a primary signal component summed
with a scaled, rotated, and delayed secondary component. In some practical cases, the
delay of the secondary path relative to the primary path is a fixed, constant value. For
example, a Line of Sight microwave link may have a secondary path due to the reflection
off a nearby building. If the transmitter and receiver are stationary, the relative delay
between the signal components due to the reflection is constant. In other situations, the
relative delay may be dynamic due to something in the geometry of the system being in
motion. In practice, situations like this can also occur when changing atmospheric
conditions alter the path of one (or both) of the two main signal components thereby
affecting the time delay between them. "Slowly" and "quickly" varying multipath are
qualitative terms we used to gauge how fast the relative delay is changing. Here, "slowly
varying" means step increases (or decreases) of one sample of multipath delay separated by
sufficient time to allow for re-convergence. "Quickly varying” means step increases of
more than one sample of multipath delay. As before, we equate one sample of multipath
delay to a relative delay between the signal components of 1/fg seconds.

The Backpropagation Neural Network is used to decide which of the fixed equalizers is
best at equalizing the multipath distortion (in effect estimating the value of the dynamically
varying multipath delay). It makes decisions based on a function of the last three complex
symbols output from each equalizer. This yields an input vector of size 18: 2 elements per
complex symbol for the last 3 symbols for each of 3 equalizers. To expedite training, we
use the absolute value of the difference between the complex symbol output of an equalizer
and the nearest 64 QAM symbol level as the inputs to the Neural Network. The output of
the Neural Network is a vector identifying which of the equalizers is correctly cancelling
the effects of multipath at the current time. As the multipath channel varies dynamically,
the Neural Network will make decisions dynamically as to the proper equalizer to use for
signal demodulation. This structure can be expanded to include more equalizers. Such a
structure would be more robust and be able to compensate for a wider range of multipath
fluctuation and in a faster manner compared to conventional methods.

Linear Adaptive Equalizers

Several 16-tap linear adaptive equalizers are connected to the output of the raised cosine
filter at the receiver side. Each of these equalizers have been trained (and have their
weights fixed) to a different amount of multipath. We have shown that Backpropagation
Neural Networks are capable of performing linear equalization, and could be used here
instead of the linear adaptive equalizers. We use the linear adaptive equalizers simply for
convenience in this simulation.

The SPW equalizer block implements a minimum-mean-square error linear adaptive
equalizer for QAM. It has an equalizer input, training sequence input, quantized QAM
output, unquantized QAM output, and the tap weights output. Parameters include the
number of taps, first angle, QAM order, feedback gain. The taps are separated by one
symbol interval in time. The sample at symbol center is used to update the taps, i.e. this is
assumed to be the point at which the eye is most open, and will be the point forced onea by
the equalizer. The feedback gain constant should be made smaller as the number of taps
increases. If it is too large for the number of taps, then the equalizer may not converge. A
control signal chooses either the decision feedback or the reference (training) signal for the
feedback loop.

Generation of Training Data

Figure 2 depicts the SPW system which provides the input data for the Neural Network.
Initially, each of the linear equalizers are themselves trained to a specific multipath delay (0,
2, and 4 samples of the 64 QAM signal). Once convergence is reached, the equalizer taps
are fixed. At this point, a random number generator is used to specify a multipath delay of
either 0, 2, or 4 samples. The resulting ISI-distorted signal is processed by each of the
equalizers. For each received symbol, a vector of length 18 (as previously described) is
written to disk.

In addition, a vector of length 3 (v0, v1, v2) is written to disk representing the target
vector. For a given multipath delay (0, 2, or 4 samples), one of the 3 equalizers produces
superior results in comparison to the others. A target vector is created as follows:

Equalizer Producing | Target Vector
Superior Results
1 (0.5, -0.5, -0.5)
2 (-0.5, 0.5, -0.5)
3 (-0.5, -0.5, 0.5)

The process is repeated for each of 64 received symbols such that a training set of 64 input-
target pairs is created.

Network Parameters

Paradigm Backpropagation
Input Nodes 18
Hidden Nodes 3
Qutput Nodes 3

Learn Rate 0.2
Momentum 0.0
Update Interval 64

65

Number of 1719
Passes

Training Size 110016
SPW Iterations 1
per vector

Results

A Backpropagation network with 18 input nodes, 3 hidden nodes, and 3 output nodes
(Figure 3) was used to learn the training data set. After 100K iterations, the error, rms
error, and output signals appeared as shown in Figure 4.3-1. Note that the error signal at
all times was less than about 0.05. Any errors greater than 0.5 would lead to less than
100% accuracy on the training data. This means that the Neural Network output could be
thresholded to yield 100% accuracy on the training data.

Potential Extensions

The structure previously described uses a Neural Network to make decisions as to which
signal stream is most correct. It does this for multipath cases which the equalizers are
previously trained to. This dynamically adaptable equalizer structure can be extended to
cover: a) a greater range of multipath delay, b) variation in the relative strength of the
primary and secondary signal components, and c) intermediate values of multipath delay
and relative strength which fall between the fixed values for which the bank of equalizers
have been trained.

Lessons Learned

The Target vector involved in this experiment consisted of values of either -0.5 or +0.5. In
other examples it has been observed that training is expedited (when “binary” target values
are appropriate) when the target values are not the saturation values for the sigmoid. For
examples, -0.4 and +0.4 could be used. However, this particular experiment showed no
significant performance advantage using one method over the other.

 ———————

Windows 29 Win Sizes 200 St 0 Tugn-l&bm Isaeg.l I
" error A

0.1

Figure 4.3-1 Various Signals in Backpropagation Network Equalization

67

4.4 DEMODULATION OF NON-LINEARLY DISTORTED 16-QAM
Application

Demodulation of Non-Linearly Distorted 16 QAM using Backpropagation
Introduction

This application examined the use of Neural Network demodulation techniques to
counteract the effects of non-linear channels.

Overview

A Backpropagation Neural Network was used to reconstruct the signal constellation of a 16
QAM signal which has been passed through a Travelling Wave Tube amplifier (TWT) and
an AWGN channel. The TWT causes the 16 QAM signal to be distorted in a non-linear
manner such that the corners of the constellation become rounded.

16 QAM TWT Backpropagation
e . - — Neural
Source Amplifier Network >
AWGN

To restore the transmitted signal constellation, we require a non-linear mapping from the
distorted input to the undistorted target. The 64 QAM multipath-distorted signal previously
examined (in 4.2 and 4.3) exhibited only linear distortion. In that case, the target symbol
was a linear combination of previous and present received symbols. In the case of 16
QAM distorted by a TWT, the Neural Network must emulate a non-linear function.

The training set was 16 received vectors, each of size 2, corresponding to a single sample
of each of the 16 QAM symbols. The target vector for each input was the 4-bits (+/- 1)
cprrcsp:nding to each symbol and scaled by 0.4 to remain inside the limits of the output
sigmoids.

Traveling Wave Tube Amplifier

This simulation models the AM-to-AM and AM-to-PM characteristics for a typical
Traveling Wave Tube (TWT) amplifier. The input and output are complex envelope
representations. The equation coefficients and the operating point (dB) are the parameters
of the TWT model.

The TWT amglifier is implemented using the following equations for am/am and am/pm
conversions [2].

af agr?
A(r) =
1+ B2 1 +Bgr2

The coefficients ar, By, ag, and bg are specified as parameters.

A(D=

Network Parameters

Paradigm Backpropagation
Input Nodes 2
Hidden Nodes 16
Output Nodes 4
Leam Rate 0.5,025 *
Momentum 0.5
Update Interval 16
Number of 3125,3125 *
Passes

.. . * This network was trained in two
Training Size 50K, 50K * phases. The first number gives the

. value of the parameter in the 1st phase;

SPW Iterations 1 the second gives the value in the 2nd
per vector phase.
Results

We found that the Backpropagation Neural Network was capable of mapping distorted 16
QAM into the corresponding 4-bit vector under varying amounts of noise. Figure 4.4-1
compares the BER for the Neural Network and a “Slicer”. The Slicer is simply a decision
device whose decision thresholds are fixed to that of ideal 16 QAM. The decision regions
formed by the Slicer are shown in Figure 4.4-2.

Lessons Learned

We achieved faster convergene to a solution by modifying the error signal utilized by the
Backpropagation Network. Typically, the error signal for a neural network is chosen to be:

¢ = target - network output
We found that using an error signal equal to
¢ = target - Quantized network output

provided much faster convergence. We quantized the network output in the following
manner:

Quantized network output = .4, if the network output > 0
= -4, if the network output <0
Note that since each component of the target symbol is either 0.4 or -0.4, this causes the

error signal io be 0.8, -0.8, or 0.0. This choice of error signal avoids changing any
weights in the neural network when they are producing the currect quantized output.

69

Potential Extensions

Superior performance could be achieved by pre-distorting a 16 QAM signal prior to
transmission in a way that causes TWT amplification to result in the ideal shape instead of

distorted QAM.

16 QAM Backpropagation TWT Ideal
Source Network Amplifier| 16 QAM
16 QAM 16 QAM
—8— Slicer

=3 Ngural Network

Probability of Bit Error

wn
S R s o °
& o 8 ™ o
= e o b= =4
o =1
o o -] o
3 o

AWGN Variance

Figure 4.4-1 Bit Error Rate Performance

70

£ty o-
i8cBI "o

eniep X
enyep X
00001 sjuyod #
0 & jujod
weibejq iejjeog

G'0 62°0 0 GZ'0-6G°
1

™y

“»

—62°'0-

»

_#.ﬁ,

-

. ™ =

- | e
-

* o =

—4%Z2°0

suotbey uorsyoeq y[ruoyjueauo) wnwyido-gqng

2

P3jaS MAIA W3 aig

Figure 4.4-2 Decision Regions for Ideal 16-QAM Compared to Received Consteliation

71

4.5 DEMODULATION OF QPSK WITH BACKPROPAGATION

Application

Demodulation of QPSK over a Non-Linear, Dispersive Channel using a Backpropagation
Neural Network

Introduction

This application demonstrated a major area of advantage for Neural Networks over

conventional techniques. The use of Backpropagation neural networks to adapt to non-

linear functions gives considerable improvement over Linear Equalizers.

Overview

QPSK was transmitted over a dispersive, discrete channel using the block diagram below:

Channel Model Backpropagation
Neural L’

Network
QPSK Muitipath Non-Lisearity
Sowce [T HG) ’@" Y=05X3 '*

Linear Adaptive
AWGN Equaiz~ [

The dispersive, discrete channel was modeled by the transfer function :

H(z) = 0.3482 + 0.8701z-1 + 0.34822-2
where z represents a delay of 1 symbol.

A channel of this form was chosen as in [1] and [2] to emulate a situation where a
transmitted symbol interferes with the previous and next symbol due to dispersive effects.

Furthermore, the channel imparts a non-linearity of :
y = 0.5x3
where x is the output of the dispersive portion of the channel model and
y is the output of the non-linearity
Finally, AWGN was added.

The I and Q values of the last 3 received symbols was input to the Neural Network,
requiring 6 input nodes.

72

Network Parameters

Paradigm Backpropagation
Input Nodes 6
Hidden Nodes 8
Output Nodes 2
Learn Rate 0.005
Momentum 0.5
Update Interval 10
Number of 100K
Passes

Training Size IM
SPW Iterations 1
per vector

Results

In Figure 4.5-1, Plot A1 shows the signal constellation prior to the non-linearity. Plot A2
shows the constellation at the Equalizer and Neural Network Input. A performance
comparison was made between the Linear Adaptive Equalizer and the Backpropagation
Neural Network in terms of Bit Error Rate (BER), showing a distinct improvement in favor
of the Neural Network (Figure 4.5-2). The Linear Equalizer was unable to compensate for
the channel distortion regardless of noise power level while the Neural Equalizer was able
to significantly reduce the channel effects and result in a much lower BER.

The BER curves show the results of several methods of applying a Neural Network to this
problem:

1. Train the Neural Network to an intermediate or expected value of noise power, then fix
the weights.

2. Train the Neural Network on a noiseless case, then fix the weights.

3. Continuously train the Neural Network as the noise power varies.

The BER curves corresponding to the first and second methods described above are shown
in the diagram below. A BER curve for the third method would show it to be superior to
both of the other methods for all ranges of noise power.

Potential Extensions

Providing for Decision Feedback in the Backpropagation Network should improve
performance. Comparisons can then be made to Decision Feedback Equalizers.

73

Al QPSK with Noise and ISI
2 b > w9 ™.
1 o s o <
- - » -
0'1: » - » »
. - * @ »
S e & &
-1 0 1
2 QPSK with Noise, ISI, ond Non-Linearity
41 219 2
2'—1
- et
= e+
...2._.
- 4 2 0

Figure 4.5-1 16-QAM Signal Constellations at Various Points in the Channel Model

74

——s——— BP Net Trained w/Noise

—0—— BP Net Trained
wo/Noise

———e+—— Linear Equalizer

0.1
[+ o
w
o
0.01
0.001

& 8 8 8 38 3

= S < S <

W o O = Vel o

- - ~ N ™

Eb/No (dB)

Figure 4.5-2 Bit Error Rate Performance

75

35.00

4.6 DEMODULATION OF QPSK WITH KOHONEN-OUTSTAR
Application

Demodulation of QPSK using a Configuration of Kohonen and Outstar Neural Network
Introduction

The Kohonen Self-Organizing Feature Map is useful in categorizing distributed input
vectors into exemplar vectors. Given a received signal constellation, the Kohonen
Network was used to adapt its weights without the use of a training signal such that the
resulting weights represented the ideal transmitted symbols minus the effects of AWGN.

Overview

Initial examination of Kohonen Topological Map applications to signal processing was
done using QPSK transmission over an AWGN Channel. QPSK symbols were
represented with complex envelope representation at 1 in-phase and quadrature sample per
symbol. QPSK plus noise was input to a Kohonen Neural Network with 16 nodes. The
Kohonen output was sent to an Qutstar which effectively mapped each winning Kohonen
node to a specific QPSK symbol. The trained configuration resulted in a network which
could make decisions on received QPSK symbols based upon their Euclidean distance from
the ideal QPSK

symbol positions.
Kohonen Outstar
QPSK ° Neural P Neural |-
Source Network Network
Paradigm Kohonen Qutstar
Input Nodes 2 16
Hidden Nodes N/A N/A Network Parameters
Output Nodes 4 2
*The Kohonen network
Learn Rate » 0.05 was trained in adaptive
mode, where weights
are changed only for
Momentum N/A N/A the winning node
(neighbarhood depth
Update Intezval 1 1 =0). The learning rate
was decreased lincarly
g“mb“ of 5K 8K from 1.0 10 0.0 over
asses SK iterations.
Trainigg Size 20K 20K
SPW Iteration 1 1
per vector

76

The Kohonen weights will converge to or near the centers of each of the four QPSK
clusters in the received signal constellation. The Outstar network simply learns a mapping
between a each Kohonen weight and an ideal QPSK symbol. The resulting trained
Kohonen/Outstar configuration performs quantization of received QPSK symbols in a
manner equivalent to a QPSK slicer.

Quadrature

2 1

In-Phase

That is, any received symbol is mapped to the corresponding ideal QPSK symbol based on
which quadrant in the signal constellation it lies. For communication constellations with
only AWGN distortion, optimum decision regions are determine:! by linear dissections of
the signal constellation. Thus this Neural Network configuratic-. provides no advantage
over conventional techniques in terms of performance. However, when there is non-linear
distortion present and/or dynamism in the channel, Kohonen/Outstar configurations can
give BER advantages due to their ability to form optimum decision regions, under certain
conditions. These situations are examined in the next sections.

Results -

In Figure 4.6-1, Plot A1 shows the noisy received signal constellation. Plot A2 shows the
output constellation over the last 10000 symbols during training. Note that the resulting
exemplars have settled to the centroids of the 4 QPSK symbol clusters. Symbol decision
for received [-Q pairs may be made based on their distance from each of these exemplars.

F“
Al Input Constellation

A2 OQutput Constellation
0.2
0.1 + *
0
-0.1-] + +
0.2

-0.2 -0.1 0 0.1 0.2

Figure 4.6-1 QPSK Input and Output Constellations

78

4.7 DEMODULATION OF NON-LINEARLY DISTORTED 16-QAM
Application

Demodulation of Non-Linearly Distorted 16 QAM using a Configuration of Kohonen and
Outstar Neural Networks

Introduction

When there is non-linear distortion present and/or dyname variation in the channel,
Kohonen/Outstar Neural Network configurations can give improved bit error rate (BER)
performance due to their ability to adaptively improve decision regions.

Overview

The use of a Kohonen/Outstar configuration can be used to adaptively maintain near-
optimum decision regions. A Kohonen network with 16 weights (1 weight for each 16
QAM symbol) will converge to a situation where each weight lies at or near the center of
the corresponding distorted QAM symbol cluster, when AWGN is added to the TWT
output. Instead of making symbol decisions based upon a linear dissection of the
constellation, the Kohonen network will map a received symbol plus noise to the closest
(by Euclidean distance) Kohonen weight. The Outstar maps each Kohonen weight to an
ideal 16 QAM symbol after a brief training period given a training signal. In this manner,
BER performance is improved with the neural configuration.

16 QAM _’ TWT _’ Bandiimited Kohonen/Outstar/
Source Amplifier Channel Equalizer Hybrid

AWGN

The Travelling Wave Tube (TWT) Amplifier produces a compression of the 16 QAM signal
constellation due to AM-AM and AM-PM conversion. The non-linear effects worsen as the
output power increases. For this reason, output power levels beyond a certain point are not
feasible using conventional techniques.

79

+
+ + + . + + +
+ +
+ + +
+ + + + +
+ + + + + + + +
Decision Regions are Optimum Decision Regions are Sub-Optimum

The constellation diagram in Figure 4.7-1, Plots A3 and AS display the resulting signal for
16 QAM through a TWT, through a bandlimited channel, plus AWGN.

The Kohonen network will not converge to the centers of the transmitted symbols.
However, if the effects of ISI were eliminated, the resulting constellation would be as in
Figure 4.7-1, Flots A4 and A6, and the Kohonen network could converge to cluster
centers. The removal of ISI is easily performed by linear equalization. A Backpropagation
Neural Network has also been shown to be capable of linear equalization.

The following structure is capable of demodulating a received signal as in Figure 4.7-1,
Plots A4 and A6:

— Kohonen Outstar
Neural _’ Neural "
/ Network Network

| Ve | ot
/ .

In this structure, an N-tap Linear Equalizer is used to remove the ISI. This may be done
conventionally as shown, or with a Backpropagation Network. In the diagram above, the
output of the equalizer is quantized to the nearest symbol. The difference between the
g;x:ntized and unquantized output is an error signal which is scaled and fed back to adjust

weights of the equalizer in an adaptive manner. In the structure above, symbol
decisions are made based on the nearest Kohonen weight vector. Given that the ISI is
removed by the equalizer, the Kohonen Network can be used to find the centers of the
resulting symbol clusters, which represent the optimum or near-optimum quantal levels for

)

+

80

v 3 o - - ,]
060¥L°Z- = enyep X 4 LR X - w..
80090°'T = ®nysa X '%t = -
GZ9 = sjuyod § M ... S * ...t?% + T 0
0 = # juyoa|, i,

ueabera asj3wos w?tw

é + t#*:

b3
f A
ilsm-a #%‘# § (AR v
60 0 = z/oR ‘pezirenba @
14 14 0 N.l - o
s200e°z- = enea &l jhu +_.£«m.¢h¢mnlﬂ+ !m | I w,,ﬁa.mﬂﬂ: i z-
T60ST'T = snisa X 1—7-
§Z9 = sjuyog § ¥ ¥ * ﬁmo.ﬁ.w.»#ur u#ﬁ" + 0
= 4
o__-uuouqo MOMMHMM Wi} 3 +n+_ +m“+mf¢“+ ¢ |,
»_ .u@ ’ +n¢ﬁ &V e 14
§0°0 = z/on ‘pezyyenbeun T @
v ¢ 0 t- v
6199 Z- enten Al g I e, | 1A KT v-
96990 T Z-

snieA Xi 1 + v##goy# +¢Né& +§J

529 sjutod # +
,

0 jutod v
= ueabera uoﬁqon .hmf?&» ;@W, - %1 2
T NE el K
m..S.o = g/on ‘pezyienba [vv

1 value. Thus, the Kohonen/Outstar configuration in tandem with the Linear
ackpropagation Network) yields better performance than either alone.

ideal symbo
Equalizer (or B

pTITT T~ = snysa X
TYLHYT' T = enyes X
gl9 = sjujod §
¢ = # uyod

weabeyg ae)3wog

§LO 0 = Z/oR ‘pezitenbeun

making symbol decisions. An Qutstar Network maps each Kohonen weight vector to an

81

Figure 4.7-1 Unequalized and Equalized 16-QAM Signal Constellations for Varying
Degrees of Channel Noise

Network Parameters

Paradigm Kohonen Outstar
Input Nodes 2 16
Hidden Nodes N/A N/A
Output Nodes 16 2
Learn Rate * 0.05
Momentum N/A 0.05 * Kohonen network was trained in two
phases. In Phase 1, training
Update Interval 1 1 proceded conventionally with a
learning rate of 0.7. Phase 1
Number of * 25K training was in effect for 16K
Passes iterations. At the completion of
Phase 1 training, Phase 2 training
Training Size * 25K began. Phase 2 training was in
adaptive mode where only the
SPW Iteration 16 16 weights to the winning Kohonen node
per vector were updated. The learning rate
during Phase 2 training was 0.1.
Results
Figure 4.7-2 compares the BER of a Linear Equalizer alone against that of the
Kohonen/Outstar/Equalizer hybrid.
§ 1 Illlllllllll""lll“llll“"“ﬂl
i
- 0.1
o
- Equalizer
° 0.01
2 ——O— Kohonen
-§ 0.001 Equalizer
-
o
o 0.0001 + 4 —
0.26 0.126 0.1 0.075 0.05
AWGN Variance

Figure 4.7-2 Bit Error Rate Performance

82

4.8 DEMODULATION OF 16-QAM OVER A RAYLEIGH
CHANNEL

Application

Demodulation of 16 QAM over a Rayleigh Channel using a Configuration of Kohonen and
Outstar Neural Networks

Introduction

We investigated the use of a combined Linear Equalizer and Kohonen network to "learn
and track” the dynamic movement of a 16 QAM constellation when subjected to a Rayleigh
Fading Channel.

Overview

A more extensive application of the Kohonen network has been formulated. Mobile
communication experiences dynamic channel distortion which has been modeled by
Rayleigh Fading Channels. In such channels, the received signal constellation is both
rotated and attenuated as functions of time. Typically, PSK-based communication
schemes are used in mobile communications since all transmitted symbols are of the same
magnitude. This allows for Automatic Gain Control to compensate for the variable
attenuation induced by the channel. However, PSK-based communication is not as
spectrally efficient as QAM-based communication. Use of Automatic Gain Control for
QAM is more complex because QAM symbols are of different magnitudes. The
application of the Equalizer/Kohonen hybrid to the Rayleigh channel was examined using
the block diagram below:

16 QAM > TWT > Rayleigh ’< ; > > Kohonen/Outstar/
Source Amplifier Fading Equalizer Hybrid
Channel

AWGN

Rayleigh Fading Channel

The Rayleigh channel in the above block diagram represents the flat (or single ray)
Rayleigh fading channel model used to model the effects of multiple point scatters i the
neighborhood of a moving receiver in mobile communications.

The output of the block is simply the input times a single complex time-varying weight.
The weight is called the Rayleigh channel weight and is generated by passing complex
white Gaussian noise through a fading filter and then interpolated the output of the fading
filter. The fading filter, also referred to as the spectrum shaping filter, is based on Jake's
model [Jake, 1974] and has a frequency response of,

83

H= 1 i IfISfy
[1 - £/ £%10S

HH= 0 i fI>fy

where fq is the Doppler frequency.

Since the Doppler frequency is usually much less than the sampling frequency the fading
filter response H(f) is usually a very narrow lowpass filter.

Kohonen Equalizer
In an earlier experiment, we found that a Kohonen/Outstar configuration could be used to

form near—optimum decision regions for a transmitted signal constellation that has been
corrupted by non-linear effects, ISI, and noise.

Signalling > Non-Linear 'S Intersymbol
Source Effects Interference

.Noise

The final extension to the above configuration is useful for signaling which has been
distorted by non-linearity, ISI, and noise in a dynamic sense. Consider using the
winning Kohonen weight vector as the target signal for the computation of the feedback
error signal. If the received constellation of Figure 4.7-1 Plot A4 is also rotating,
compressing, and expanding, as in a Rayleigh channel, the conventional equalizer will not
be able to keep up under certain conditions. A modification to the Kohonen learning
algorithm allows the weight vectors to track the movement of the constellation, thus
relaxing the rate at which the linear equalizer must adapt. The use of the winning Kohonen
weight vector for the computation of the error signal further assists the adaptation. It is
also hypothesized that a conventiona! equalizer will be unable to eliminate ISI if the
transmitted constellation is non-linearly distorted beyond a certain point unless given a
more accurate desired (or target) signal from which to derive the error signal. The
configuration below can accommodate this more accurate target signal via feedback from
the winning Kohonen weight vector.

84

Kobonen Outstar
Neural @1 Newa [
Network Network

N-Tap
Linear
Equalizer

/

Network Parameters

@«l

Paradigm Kohonen Outstar * Kohonen network was trained in two
phases. In Phase 1, training

Input Nodes 2 16 proceded conventionally with a
leamning rate of 0.7. Phase 1

Hidden Nodes N/A /A training was in effect for 16K
iterations. At the completion of

Output Nodes 16 2 Phase 1 training, Phase 2 training
began. Phase 2 training was in

Learn Rate 0.7 0.05 adaptive mode where only the
weights to the winning Kohonen node

Momentum N/A 0.05 were updated. The leaming rate
during Phase 2 training was1.0.

Update Interval 1 1

Number of * 12K

Passes

Training Size * 12K

SPW Iteration 1 1

per vector

Results

Results of this experiment are best displayed via the corresponding interactive SPW

demonstration. Refer to the Appendix for the demonstration procedures.

85

4.9 IMPROVING SOFT DECISIONS IN A JAMMING
ENVIRONMENT

Application
Improving Viterbi Decoder Soft Decisions in a Pulse Jamming Environment
Introduction

Convolutional coding of data has been shown to improve performance of communications
systems in the presence of additive white Gaussian noise (AWGN). Decoding of
convolutionally encoded data in an AWGN scenario is optimally done via Viterbi decoding.
Supplying soft decisions to a Viterbi decoder instead of hard decisions can give a
performance increase of approximately 2 dB. We propose an adaptive, non-linear method
of supplying the soft decisions which yields a performance gain in a pulse jamming
environment. This technique is similar to that applied in several papers [Asato, Grover &
Cahn, “Artificial Neural Network Adaptive Non-Linear Digital Receivers”], [Anderson,
“Generation of Soft Information in a Frequency Hopping HF Radio System Using Neural
Networks” Milcon ‘92 Proceedings Vol. 2]. This adaptive receiver structure can adjust to
varying jammer conditions. It requires no training signal, no knowledge of pulse jammer
duty cycle, channel error rate, or jammer magnitude. If the jammer were to be permanently
turned off or its duty cycle were to change, the network would change its soft decision
metric function appropriately.

Overview

This neural network application was studied using the block diagrams below:

Background
Noise
Random Rate /2, K=§
Encoder
Pulse
Jammer
Transmitter and Channel Model

86

Backpropagation Ou
. IPSL l Lo . Viterbl tput ’
Transfer
Weights
Error ‘
Backpropagation Signal
Delay —> m Computation ‘1 ca;-ender .

Receiver Model

Random binary data with equally likely probability of 0 and 1 was encoded by a rate 1/2,
constraint length 5 convolutional encoder. This encoded stream modulated a binary phase
-shift keying (BPSK) tramsitter, whose outputs were +1 or -1. The channel consisted of
background AWGN and a pulse jammer as described below. The received signal was
demodulated and input to a Backpropagation Neural network which adaptively generates a
soft decision metric for input to the Viterbi decoder. The Viterbi decoder utilizes the soft
decisions quantized to 8 levels to produce the estimate of the transmitted data stream.

The weights of a Backpropagation Neural Network are adjusted via an error signal which is
calculated based upon a comparison between the network output and a target signal. In
some applications, a training signal is available. In situations where a training signal is not
available, the target signal must be estimated from information at hand. In this application,
a fairly good estimate of the transmitted signal is the Viterbi decoder output. The neural
network will produce a soft decision metric which will be used by the decoder to produce
an estimate of the message data. The job of the neural network is to learn to use the
demodulator output to give the decoder an accurate metric. For this reason, we re-encode
the decoder output for use in calculating the error signal. The re-encoded decoder output is
a good estimate of the actual signal for comparison with the received noisy signal.

The Viterbi decoder and encoder contain internal delays which must be accounted for when
using their output in calculation of error signals. For this reason, two Backpropagation
Neural Networks are used. The error signal is applied to the bottom neural network. The
input to the bottom neural network is a delayed version of the demodulator output, in order
to compensate for internal decoder and encoder delays. The weights of the bottom neural
network are transferred to the top neural network immediately upon change for use in
calculating the soft decision metrics.

Ideally, the soft decision metric given to the Viterbi decoder for an arbitrary demodulated
signal level is the log-likelihood function. It is the logarithm of the likelihood ratio which is
the quotient of the probability of bit correctness divided by the probability of bit error,
given the demodulated signal:

Metric =log Pr(comect/demodulated valuc)
Pr(incorrect/demodulated value)

The Viterbi decoding algorithm for convolutional codes is equivalent to maximum
likelihood decoding and thus is optimum for equally likely messages.

87

Most conventional soft decision implementations are designed for stationary AWGN
degradation. In many situations, channel noise is not stationary, such as in pulse jamming
environments. In AWGN environments, the ideal soft decision function is simply a linear
function of the demodulator output. For BPSK signalling with transmitted symbols +1 and
-1, demodulator outputs near () would be assigned a small metric since it is not certain
whether a +1 or -1 was actually transmitted. Large positive (or negative) demodulator
outputs would be assigned a large positive(or negative) metric since it is nearly certain that
a +1 (or -1) was transmitted since AWGN is unlikely to account for such a change in
received signal voltage.

Soft Decision
Metric

Demodulator Output

Conventional Soft Decision Metric
Pulse Jammer
The pulse jammer is modeled as an AWGN noise source that is switched on and off at a
particular duty cycle. When the jammer is off, the noise caused by the channel is simply
that of the background noise, No/2. When the jammer is on, the noise power is Nj/2 >>
No/2. This jammer will cause bits transmitted during the "on" times to vary greatly in
magnitude. Thus it is much less certain whether a +1 or -1 was transmitted. For this
reason, that bit should be assigned a low metric.
Error Signal

The error signal, E, is the difference between the Neural Network Target and the Neural
Network Output (OUT)

E =Target - OUT

The Target, and hence E, is dependent upon a comparison between the quanitized
demodulated signal and the encoder output.

Let D denote the output of the BPSK demodulator, and define the “sign” of D to be:
S(D) = +1 if D is positive or zero, and
S(D) =-1if Dis negative.
Also define the demodulator’s “hard” bit decision to be:
H(D) = 1 if D is positive or zero, and
H(@) = 0if D is negative.

88

Then the Target is defined to be:

Target = S(D)IOUTI(1+1/R) if H(D) = encoder output

Target =0 if H(D) does not equal encoder output
In this equation, R denotes the estimated likelihood ratio.

Since the Neural Network Output, OUT, is trained to the log-likelihood function, the
estimated likelihood ratio, R, is defined as:

R = 10/0UT

Thus when the neural network has supplied a metric which has resulted in an incorrect bit
decision, the metric is driven towards 0. When a correct bit decision is made, the metric is
re-inforced by an amount (1 + 1/R) which ideally will balance the metric at a value
according to its likelihood ratio. For example, if a given demodulated value D has a
likelihood ratio of Rp, then 1/Rp of the times that D is input to the network will result in an
incorrect bit decision, giving a Target of 0. To offset this and allow the network to stabilize
at the true value of log(Rp), we must supply a target of 1+1/R times the network output

when a correct bit comparison is made.

Simulation Parameters

Paradigm Backpropagation
Input Nodes 1
Hidden Nodes 10
Output Nodes 1
* Linearly decreasing from 9.0 at the rate of
Learn Rate * <4.5t/40K (where t is the SPW iteration
count) over the 1st 25K iterations. Learning
Momentum 0.0 rate equals 0.1 afterwards.
Update Interval 1
Number of| Alwaysin training
Passes
Training Size N/A
SPW Iteration 1
per vector

The neural network was initally trained

to an identity function to approximate the conventional soft decision metric. These initial
conditions are necessary for the network to give reasonable metrics to the Viteribi decoder
at startup for convergence to occur. Training consisted of varying the learning rate from
9.0 to 4.5 linearly over the first 25K iterations, then applying a constant 0.1 learning rate

89

over the next 40K iterations. The initial large learning rates accelerated the learning process
to a point where finer adjustment with a learning rate of 0.1 could begin.

Theoretical Background

The benefit of the neural net approach is to enable the use of near-optimal log-likelihood
ratios without requiring any knowledge of jammer power or duty factor. It automatically
learns this during operation, and it tracks any changes in these characteristics as the
jamming environment changes. To see how important this might be we can calculate the
ideal log-likelihood ratio that would be used as a metric and examine the changes in the
ratio as the jamming environment changes. The demodulator output probability density
function as a function of the output voltage n is the Gaussian pdf, N(n,m,s), where

e-(v—u)’lZa'
N(v,p,0)=

2rG*

and where the demodulator output voltage in the absence of noise is assumed to be m and
the standard deviation of the noise process is s. The correctly received signal is assumed to
have m = JE, where Eg is the received energy per channel symbol. The noise processes
are assumed to be such that when the pulse jammer is on a fraction d of the time the noise
standard deviation is s = JN; 72 , and the other fraction (1-d) of the time the noise standard
deviationis s = JN.72 , i.¢., that of the background noise. Thus, the equation for the ideal
log-likelihood ratio as a function of the demodulator output voltage, n, the signal mean, m
= JE, ,the jammer duty factor, d, and the background and jammer noise standard de-
viations, N 72 and JN; /2 is given by LLR(n) where

(1-d) N(n, VB %72) + dNn, V& 5 77) @
(1-d) N@n,- B V%72) 4+ dN(n, - VB SN T2)

Behavior of the ideal log-likelihood ratio as given by (2) is shown in Fig. 1 for a pulse
jammer 20 dB larger than the background noise and with duty factors of 0.05, 0.1, and
0.15. The log-likelihood ratio departs significantly from the ideal linear case for only back-
ground noise, but there is not a great deal of variation as the jammer duty factor, s is
varied. The main effect is that the positive and negative peaks are reduced as the duty factor
increases because the reliability of decisions at those voltages decreases. In contrast, there
is a much more significant change in the shape of the ideal log-likelihood function as
jammer power varies with constant jammer duty factor as shown in Fig. 2. The main effect
is that as the jammer power is reduced, the reliability of bit decisions for larger net input
voltages is improved significantly causing the log-likelihood ratio to increase. Hopefully,
the neural net can converge to a log-likelihood function that is quite close to the optimal. In
this process it is most important that the neural net provide near zero log-likelihoods for
input voltages corresponding to unreliable symbols. This allows the Viterbi decoder to treat
such symbols as unreliable in accumulating path metrics thereby minimizing their effect on
decoder bit decisions. Performance will be significantly degraded if larger log-likelihood
ratios are produced for input voltages corresponding to a high percentage of unreliable
symbols. What this shows is that there is a need to have a neural net approach that can
adaptively track changing jamming conditions to provide the decoder with the best log-
likelihood ratio metrics at a given time. As part of our development plan we want to insure
that the approach does the best possible job of converging to nearoptimal metrics while
having the capability to quickly track changes in noise conditions.

LLR(n) = log

90

Results

Figures 4.9-1 and 4.9-2 displays the soft decision metric transfer function produced by the
network before, during, and after training for a 5% jammer which is 20dB greater in power
than the background signal-to-noise ratio. Ep/N, is 4.5 dB.

Figure 4.9-1 is the initial transfer function, with a linear characteristic which is optimal for
an AWGN environment. Figure 4.9-2 Plot A1l displays the transfer function near the end
of training. Plot A2 shows the final transfer function.

Figure 4.9-3 is a plot of the upper half of the theoretical optimum transfer function.
Figure 4.9-4 is a graph of Bit Error Rate curves comparing the neural network performance
to a conventional linear soft decision metric and theoretical bounds. The theoretical curves

assume infinite soft decision quantization, knowledge of pulse jammer on/off times, and
knowledge of the relative magnitude of the jammer over background noise.

91

T0LL°1T = antea A
61I8°'L = anyea X
0000¢ = sjutrod $

¢S = & jurog

92

Figure 4.9-1 Initial Neural Network Soft-Decision Metric (Before Adaptation)

0 0 0z-
pr— N'
A9 1- = enjea X — I—
1065 ‘0- = enyep X
o000V = gsjujod # e s o
0 = & jujod \ e
weibeyq Asay
— T
| T
DTIISH UOTISTO®T FJOS NIAOMIBN TEANSN [zv

)BET "Z- = enyes X % —T1—
18E6°1- = enyea X K7 oL
00001 = sjurod = AR MMt e T .lo
0 = _ & qugoa|. - WL AR
weiberq Xxsay H
—-C
Ppurureal Burang OTIISH HIAOMISN TeEansN @
djaH P3j3S MIIA 1P3 31iJ

93

Decision Metric During and After Adaptation

Figure 4.9-2 Neural Network Soft-

1.2r

Figure 4.9-3 Optimum Soft-Decision Metric for Pulse-Jammer Scenario (Positive
Received Signal Energy)

94

Probability of Bit Error

®—— Neural Network
5%

—O0— Linear 5%
——¢—— No Jammer - Ideal

——O0— 5% Jammer -
ideal

s 10% Jammer -
Ideal

—&— Neural Network
10%

*—— Linear 10%

m.u.' .,*\.. """"

Eb/No (dB)

Figure 4.9-4 Bit Error Rate Performance

95

4.10 DEMODULATION OF QPSK WITH A RECURRENT
NETWORK

Application

Demodulation of QPSK over a Non-Linear, Dispersive Channel Using a Fully Recurrent
Network

Introduction

We examined the use of the Fully Recurrent Network in a situation where previously the
Backpropagation Network was applied (in Section 4.5). In particular, the areas of channel
equalization show potential as areas for Fully Recurrent application. Just as Decision
Feedback techniques enhance the performance of Linear Adaptive Equalizers, we expect the
Recurrent Network to be superior to Backpropagation when used for channel equalization,
whether linear or non-linear. This is due to the Fully Recurrent Network architecture
which contains feedback from the output layer back to the input layer.

Overview

QPSK was transmitted over a dispersive, discrete channel using the block diagram below:

Channel Model Rm >

Network
- Maultipath Non-Linearity
’ H@) ’ Y=05X3 ’@J

AWGN Equalizer

i

The dispersive, discrete channel was modeled by the transfer function :

H(z) = 0.3482 + 0.8701z"1 + 0.3482z-2
where z represents a delay of 1 symbol.
Furthermore, the channel imparts a non-linearity of :

y = 0.5x3

where x is the output of the dispersive portion of the channel model, and y is the output of
the non-linearity

Finally, AWGN was added.

96

Network Parameters

Several network configurations were examined. The first was similar to that of the
Backpropagation Network in an earlier experiment. Here, the I and Q values of each of the
last three received symbols constituted input layer. The second configuration attempted to
make use of the Recurrent Network's inherant feedback nature by inputting on the current
received symbol. It was theorized that the network would be able to form its own
representation of the multipath delay.

Paradigm Recurrent Recurrent
Input Nodes 6 2
Hidden Nodes 8 6
Output Nodes 2 2
Learn Rate 0.01 0.01
Momentum 0.5 0.5
Update Interval 10 10
Number of| 100K, 100K * | 100K, 100K *
Passes

Training Size IM, IM * 1M, IM *
SPW Iterations 1 1

per Vector

* Each of the Recurrent configurations were trained in two stages. The first stage of
training was with forced learning, i.e., the target vector is fed back to the input layer
instead of the actual output vector. The second stage of training did not involve forced
leaming. This technique is necessary since the Recurrent network uses its own output as
input to the hidden layer (and also output layer) nodes. Initially the Recurrent output is
very error-prone and training will not occur if the nodes are given meaningless input.

Results

A performance comparison was made between the Linear Adaptive Equalizer and the
Recurrent Neural Network in terms of Bit Error Rate, showing a distinct improvement in
favor of the Neural Network. The Linear Equalizer was unable to compensate for the
channel distortion regardless of noise power level while the Neural Equalizer was able to
significantly reduce the channel effects and result in a much lower BER.

As in the Backpropagation application to this problem, the BER curves show that several
methods of applying a Neural Network to this problem:

1. Train the Neural Network to an intermediate or expected value of noise power, then fix
the weights.

97

2. Train the Neural Network on a noiseless case, then fix the weights.
3. Continuously train the Neural Network as the noise power varies.

The BER curves corresponding the the first method described above are shown in Figure
4.10-1 for each of the Recurrent Network Configurations. A BER curve for the third
method would most likely be superior to both of the other methods for all ranges of noise
power. The second configuration did not perform as well as the first, but performed well
considering it uses only the current received symbol as input. BER curves from the
Backpropagation application to this problem are included for further comparison.

98

BP Net Trained w/Noise
—0O— Linear Equalizer

——+—— RC Net 6-8-2 Trained
w/Noise

——O— RC Net 2-6-2 Trained
w/Noise

0.1
0.01
[+ o
w
m
0.001
0.0001 } } t { $ |
g o o o o o
Q e Q Q <
n o w o w0 o
- v ~N N ™
Eb/No (dB)

Figure 4.10 Bit Error Rate Performance

99

35.00

5. FUTURE NEURAL NETWORK TRANSCEIVER

A high-level block diagram of a generic multiband transceiver is shown in Figure 5-1. It is
shown to illustrate where we are likely to insert neural network technology in the future.
The most likely places are in the Programmable DSP Module where baseband signal
processing is performed and in the Band Switch Controller where adaptive control is
implemented to sense the channel conditions and switch to another band (if the frequencies
are jammed or heavily used). Multiple RF modules may be employed to cover different
bands. The RF modules along with the TRANSEC (if needed) and Frequency Synthesizer
are implemented with conventional technology. When we develop the Phase II conceptual
design, it will, of course, be much more detailed and correspond more closely to the Speak
Easy radio.

Y

—
AD

me neceIves I:I‘— ’:.

Vi

DSP MODULE

%

USER
DATA

RF TRANSMIT TEF Y]
_
MODULE FREQUENC
=] SYNTHESZER

B Skt

CONTROLLER
MODULE
/A NNC-04 (MS)

Figure 5-1 High-Level Block Diagram of Generic Multiband Transceiver (Shaded Blocks
Have Potential for Utilization of Neural Network Technology).

Certain candidate problems to be addressed by neural network technology (interference
cancellation, intersymbol interference elimination, multipath combining, etc.) would
normally be implemented conventionally via an algorithm on the Programmable DSP
Module. A neural network solution for any or all of these problems could be implemented
in software on one of the DSP processors, or a neural network hardware implementation
may be more desirable because of significantly increased processing power and fault
tolerance. (SAIC is currently developing a neural network VLSI chip under DARPA
contract which can be used for this purpose.) The tradeoffs that will be done in considering
software versus hardware implementations will be the subject of one of the tasks that
would make up a Phase II Neural Network Transceiver Program.

The (Phase I) Neural Network Communications Signal Processing Program (NNCSP) has
addressed the question of which (or what) communications signal processing functions
should be considered for implementation in a Neural Network Transceiver. Because
communications signal processing is a very mature technology a greater payoff is likely if
neural network implementations are considered only for those functions for which greater
performance flexibility may be obtained or there is a processing speed and fault tolerance

100

advantage provided by a highly parallel neural network implementation. Problems
identified in Phase I for which this may be true include:

» Interference cancellation or mitigation
» Intersymbol interference elimination
» Multipath combining

+ Joint optimization of interference cancellation, intersymbol interference elimination, and
multipath combining

* Recognition of modulation type for an unknown waveform.

In addition to these problems there may be a role for neural network technology in
mechanisms for adaptive data rate selection and adaptive band selection. However, the
focus of the Phase I investigation was on the signal processing functions which are part of
the chain of transmit and receive functions: source encoding, encryption, error control
encoding, modulation, demodulation, error control decoding, decryption, and source
decoding. Further, practical considerations excluded consideration in this program of
source encoding and decoding and of recognition of modulation type. Within the scope of
this program, neural networks were demonstrated to be effective in: eliminating
intersymbol interference, multipath combining, removing nonlinear distortion, and
reducing transient interference.

While conventional signal processing has been employed to accomplish all of these
functions within specific environments, there is one category of comparison in which
neural networks provide considerable advantage. This is the category involving flexibility,
adaptivity, and robustness. In this case a neural network might not perform any better over
any narrowly defined range of application, but instead might maintain the same or roughly
the same performance over a significantly broader range of application than is possible with
any conventional signal processing technique. Thus the metric of interest in this case
measures the range of input or environmental variation over which an acceptable level of
performance can be maintained. Furthermore, conventional systems may accomplish a
required flexibility or robustness by employing a "man in the loop," and in that case a
?cural network may reduce or even eliminate the need for manual intervention in some
unctions.

The future Neural Network Transceiver can take advantage of improved flexibility,
adaptivity and robustness by embedding neural network technology in the programmable
DSP module which is highlighted in Figure 5-1. The results of Section 4 showed that
existing neural network technology can provide these benefits by using neural networks for
linear and nonlinear equalization, signal detection, and the generation of soft decision
metrics.

A general, high-level conceptual design for implementing the functionality of the
programmable DSP module is illustrated in Figure 5-2. This particular conceptual design
combines and implerents the neural network based adaptive signal processing functions
that were simulated during this program and that were described in Section 4. Specifically,
these functions are: a) equalization to correct for intersymbol interference, b) equalization
to correct for nonlinear amplitude and phase distortion, c) symbol detection, and d)
generation of soft bit decisions for a Viterbi error-correction decoder. In Figure 5-2,

101

functions (a) and (b) are grouped together in one functional block and functions (c) and (d)
are grouped together in another functional block. This particular grouping was chosen for
purposes of conceptual description and is not meant to constrain the detailed design of these

functions.

The functions are cach separated into two parts: a forward processing path which does not
include training and a delayed trainable path that uses the error-corrected bits from the
Viterbi decoder as its target information. The adaptive weights that are trained in the
delayed path are transferred to the corresponding slaved function in the forward processing
path. This type of configuration was demonstrated for soft bit decisions in section 4.9.

boll:t?rrfhw- & s ; Sobi(t’l Bli)temm ' = Il:e‘-‘ P Viterbi _?
erence r- iterbi
Phase Decisions leaver Decoder
ortion
Ma'tchin; 2 2
Delay %]
-3 3

A

Tnteraymbol Inter ference daptive Symbol

& Amglltude-l’hm i‘“"n “"‘I i

bol]
Znerator l},‘.‘ﬁ, o Encoder ‘l“

Figure 5-2 Future Neural Network Receiver

102

6. CONCLUSIONS

The objectives of the Neural Network Communications Signal Processing (NNCSP)
Program were all successfully accomplished. Specifically, the achieved objectives of the
NNCSP Program are: 1) the development and implementation of a neural network and
communications signal processing simulation system for the purpose of exploring the
applicability of neural network technology to communications signal processing, 2) the
demonstration of several configurations of the simulation to illustrate the system's ability to
model many types of neural network based communication systems, and 3) the use of the
simulation to identify neural network configurations to be included in the conceptual
design of a neural network transceiver that could be developed in a phase II follow-on

program.

The overall goal that unites the Program objectives and gives purpose to their
accomplishment is to reach a new plateau in the state of the art of neural network based
communications signal processing (CSP). The state of the art that existed at the start of this
Program can be characterized as a collection of isolated research efforts that resulted in
publications which typically described the capability and performance of one specific neural
network approach to CSP. The capabilities of neural networks in a number of different
CSP applications had been demonstrated, but--with few exceptions--those capabilities were
not compared quantitatively with those of conventional (non-neural-network-based) state-
of-the-art CSP techniques, and furthermore the publications in most cases did not give
sufficient information for other researchers to reproduce the results or to use the results as a
foundation upon which to build.

The NNCSP Program provides tools and techniques which can be used by future
researchers to easily compare neural network and conventional techniques and to easily
exchange implementation information with other researchers. The Neural Network
Communications Simulation System (NNCSS) provides a block diagram approach to
constructing CSP configurations for simulation, and both conventional and neural network
function blocks can be used in the design and simulation of CSP products. The NNCSS
provides the capability to interchange neural network modules with similar conventional
signal processing modules, and makes it convenient to compare the performance of neural
network based approaches with conventional approaches within the same overall system.
Furthermore the NNCSS block diagram provides implementation documentation that can
be archived in both paper and electronic forms. By saving the simulation block diagram
file in a User Library, a researcher can automatically provide the means by which to
reproduce his or her results at a later time. By sharing User Library files, researchers can
easily share the implementation details that allow other researchers to reproduce their
results.

As part of the NNCSP Program, ten different configurations of neural networks were
simulated using the NNCSS, and the results are documented in Section 4 of this report.
Nine of those simulations demonstrated neural network approaches to CSP, and seven of
those demonstrated capabilities which go beyond what is currently being implemented with
conventional technology. These simulations demonstrate the power and versatility of the
NNCSS, and they demonstrate the adaptive nonlinear capability of neural networks in
communications signal processing.

The state of the art of conventional CSP includes the capability of adaptive linear
processing and some fixed nonlinear processing, but the design of conventional CSP is
still typically limited by assumptions of linear channels and Gaussian interference. Neural
networks go beyond conventional CSP by providing the capability of adaptive nonlinear

103

processing which is continually self-adjusted to minimize the effects of non-Gaussian
interference. In the results reported in section 4, neural networks were shown to be
effective in several CSP applications: equalization to correct for intersymbol interference,
equalization to correct for nonlinear amplitude and phase distortion, symbol detection for
time-varying channels, and the generation of soft bit decisions for a pulse jamming
environment.

Following upon the results of this Program, there are numerous opportunities for further
research and development. The recommendations for further research can be grouped into
three categories: further refinement and simulation of neural network based CSP
applications, further improvements to the NNCSS, and the development of a prototype
neural network based transceiver.

Additional opportunities exist for refining and extending the applications summarized in
Section 4, and there are many more applications that have been described in the literature
which can be further refined and compared to conventional approaches using the NNCSS.
While it is not practical to name here all of the potentially useful techniques that could be
investigated, one particular area of development is worth mentioning here because it is a
continuation of the application described in 4.9. In particular, the neural network based
generation of soft decisions can be extended to additional modulation formats and, in
addition to pulsed jamming, the technique is applicable to atmospheric noise, and to the
near-far interference problem of code-division multiple-access. The recent article by Asato
and Grover [Asato,1993] presents performance bounds which suggest that very significant
improvements in performance can be obtained.

The NNCSS in its initial deliverable version is a remarkably versatile and capable design
and simulation tool. Nevertheless, several incremental improvements can be
recommended. The first set of recommendations would be to add as options several
learning acceleration techniques for backpropagation such as delta-bar-delta, the
Levenberg-Marguardt algorithm, and the entropic error function. The second
recommendation would be to add the Radial-Basis Function Neural Network as an
additional function block.

This Program was strategically positioned and specifically aimed at the prerequisites needed
prior to a follow-on program to develop a neural network transceiver. The necessary
design and simulation tools have been incorporated in the NNCSS, and the selection and
simulation of potential neural network based CSP functions are documented in Section 4.
Section 5 presents a high-level, conceptual design of a future neural network transceiver
which is recommended for a follow-on program.

104

7. BIBLIOGRAPHY

Aazhang, Behnaam, Paris, Bernd-Peter, Orsak, Geoffrey C., "Neural Networks for Multiuser
Detection in Code-Division Multiple-Access Communications," IEEE Transaction on
Communications, Vol. 40, No. 7, July 1992 pp. 1212-22.

Almeida, L.B., “A Leamning Rule for Asynchronous Perceptrons with Feedback in a
Combinatorial Environment,” Proceedings of the 1987 IEEE Conference on Neural Networks,
Vol. 2, 1987.

Anderson, J.A. and Mozer, M.C,, “Categorization and Selective Neurons,” In G.E. Hinton and
J.A. Anderson, Eds. Parallel Models of Associative Memory (Rev. Ed.), Erlbaumm Hillsdale,
NJ, 1989, pp. 251-276.

Anderson, J.A., Silverstein, J.W., Ritz, S.A. and Jones, R.S., “Distinctive Features,
Categorical Perception, and Probability Learning: Some Applications of a Neural Model,”
Psychological Review, Vol. 84, 1977, pp. 413-451.

Anderson, James A., Gately, Michael T., Penz, P.A,, and Collins, Dean R., "Radar Signal
Categorization Using a Neural Network," Proc. of the IEEE, Vol. 78, No. 10, October 1990,
pp. 1646-1657.

Andersson, Gunnar, Andersson, Hakan, "Generation of Soft Information in a Frequency-
Hopping HF Radio System Using Neural Networks," Milcom ‘92, Communications - Fusing
Command, Control and Intelligence, Volume 2, Session 33A, pp. 779-783.

Asato, S. , Grover, MK, and Cahn, Charles R., “Artificial Neural Network Adaptive
Nonlinear Digital Receivers,” Government Microcircuit Applications Conference Digest of
Papers, 1993, pp. 257-260.

Bachre, Mark D., "Neural Networks Applied to Signal Processing," DTIC, September 1989.

Barnhart, Craig M., Wieselthier, Jeffrey E., Ephremides, Anthony, "Scheduling Link Activation
g; Muglgtihop Radio Networks By Means of Hopfield Neural Network Techniques," DTIC, Sep.
, 1991,

Berman, Piotr, Schnitger, George, Parberry, Ian, "A Complexity Theory of Neural Networks,"
DTIC, Aug. 09, 1991.

Bijjani, R., and Das, P.K., Rejection of Narrowband Interference in PN Spread-Spectrum
Systems Using Neural Networks", IEEE Global Telecommunications Conference & Exhibition
Part 2 of 3, Dec. 2-5, 1990, pp. 1037-1041

Cain, G.D., Yardim, A., and Taori, R., “Error Measurement Issues in Darwinian Adaptive
Notch Filtering,” IEEE International Workshop on Intelligent Signal Processing and
Communication Systems, Taipei, Taiwan, R.O.C., March 1992.

gcalxxpentcr. G.A. and Grossberg, S., “Absolutely Stable Learning of Recognition Codes by a

98-Organizing Neural Pattern Machine,” Computer Vision, Graphics, and Image Processing,
1986.

105

Carpenter, G.A. and Grossberg, S., “ART 2: Self-Organization of Stable Category Recognition
Codes for Analog Input Patterns,” Applied Optics, Special Issue on Neural Networks, Vol. 26,
1987, pp. 4919-4930.

Carpenter, Gail A. and Grossberg, Stephen, “ART 3: Hierarchical Search Using Chemical
Transmitters in Self-Organizing Pattern Recognition Architectures,” Neural Networks, Vol. 3,
1990, pp. 129-152.

Carpenter, Gail A., Grossberg, Stephen, Rosen, David B., "ART 2-A: An Adaptive Resonance
Algorithm for Rapid Category Leamning and Recognition," Neural Networks, Vol. 4, 1991,
Pp. 493-504.

Carpenter, Gail A., "Neural Network Models for Pattern Recognition and Associative Memory,"
Neural Networks, Vol. 2, 1989, pp. 243-257.

Chang, Po-Rong, Yang, Wen-Hao, and Chan, Kuan-Kin, "A Neural Network Approach to
MVDR Beamforming Problem," IEEE Transactions on Antennas and Propagation, Vol. 40, No.
3, March, 1992, pp. 313-322.

Chapman, Richard A., "Classification of Correlation Signatures of Spread Spectrum Signals
Using Neural Networks," DTIC, January, 1991.

Chen, Sheng, Mulgrew, Bernard, and Grant, Peter M., “A Clustering Technique for Digital
Communications Channel Equalization Using Radial Basis Function Networks,” IEEE
Transactions on Neural Networks, Vol. 4, No. 4, July 1993, pp. 570-579.

Chesmore E.D., "Application of pulse processing neural networks in communications and signal
dcmodulation,':';al" i;.it IEEE International Conference on Artificial Neural Networks (Conf. Publ.
No. 313) pp. 337-341.

Choi, Joongho, Bang, Sa Hyun, and Sheu, Bing J., “A Programmable Analog VLSI Neural
Network Processor for Communication Receivers,” IEEE Transactions on Neural Networks,
Vol. 4, No. 3, May 1993, pp. 484-495.

Crooks, Ted, "Care and Feeding of Neural Networks," Al Expert, July 1992, pp. 37-41.

de Veciana, Gustavo, Zakhor, Avideh, "Neural Net-Based Continuous Phase Modulation
Receivers,” IEEE Transaction on Communications, Vol. 40, No. 8, August 1992, pp. 1396-
1408.

Doner, John R., "Improving Unsupervised Learning in the Neocognitron", SIMTECH ‘91
Proceedings, Society for Computer Simulation, Orlando, FL, October, 1991, pp. 589-594.

Dubosq, Philippe, "An Overview of Artificial Intelligence," Brevard Technical Journal, August
1993, pp. 47-49.

Dubosq, Philippe, "An Overview of Artificial Intelligence Part II: Neuron Activation versus
Symbol Manipulation," Brevard Technical Journal, Sept. 93, pp. 35-39.

Feiz, S., Soliman, A. S., "Adaptive ML neural network based receiver for Q2PSK modulated
data-transmission systems,” 39th IEEE Vehicular Technology Conference (IEEE Cat. No.
89CH2739-1) pp. 2639 Vol. 1.

106

Field, R. L., and Yoerger, E. J., "Performance of Neural Networks in Classifying
Environmentally Distorted Transient Signals,” IEEE Conference Proceedings - OCEANS '90,
Sept. 24-26, 1990, pp. 144-148.

Fontana, Robert J., Mort, Michael S., "Communications Signal Recognition and Demodulation
via Neural Networks," DTIC, May, 1991.

Freeman, James A. and Skapura, David M., Neural Networks, Addison-Wesley Publishing
Company, Reading, Massachusetts, 1991.

Garcia-Gomez, R., Gomez-Mena, J., and Diez del Rio, L., "Adaptive Receivers for Removing
Linear and Non-linear Intersymbol Interference by Mean of Time Delay Neural Nets (AR-
TDNN)," 1989 International Conference on Acoustics, Speech and Signal Processing, May 23-
26, 1989, pp. 2368-2371.

Hancock, Monte F., Jr., MS., "Solving Hard Problems Using Machines That Learn," Brevard
Technical Journal, August, 1992, pp. 23-24, 41-45.

Haykin, Simon, Neural Networks: A Comprehensive Foundation, Macmillan College Publishing
Company, New York, 1994.

He, Zhen-Ya, and Li, Li-Hua, "High-Resolution Multipath Time Delay Estimation Using a
Neural Network," Proceedings of the 1991 International Conference on Acoustics, Speech, and
Signal Processing - ICASSP 91, May 14-17, 1991, pp. 1469-1472.

Hecht-Nielsen, Robert, "Applications of Counterpropagation Networks," Neural Networks,
Vol. 1, pp. 131-139, 1988

Hecht-Nielsen, Robert, Neurocomputing, Addison-Wesley, Reading, MA, 1990.

Hiramatsu, Atsushi "Integration of ATM Call Admission Control and Link Capacity Control by
Distributed Neural Networks," IEEE Journal on Selected Areas in Communications, Vol. 9, No.
7, September 1991 pp. 1131-38.

Homer, Larry, Madey, Greg, Sandridge, Brian, "Application of Artificial Neural Nets for
Recognition of Forward Error Coding,” DTIC, Aug 31, 1991.

Hussain, M., Jing Song, Bedi, J.S., "Neural network application to error control coding,” Proc
of the SPIE - The International Society for Optical Engineering vol. 1294 pp. 502-9.

Hyland, David C., King, James A., “Neural Architectures for Stable Adaptive Control, Rapid
Fault Detection and Control System Recovery,” Harris White Paper, 1992

Jacobs, R.A., “Increased rates of convergence through learning rate adaptation,” Neural
Networks, Vol 1, 1988, pp. 295-307.

Jake, W.C., Microwave Mobile Communication, John Wiley & Sons, New York, 1974.

Jeffries, C., Protzel, P., "High-order neural models for error correcting code,” Proc of the
SPIE - The International Society for Optical Engineering Vol. 1294 pp. 510-17.

Johnson, J.R., "Neural network algorithm decoding and sequence predictor," INNC 90 Paris.
International Neural Network Conference pp. 153-6 Vol. 1.

107

Kechriotis, G., Zervas, E., and Manolakos, E.S., “Using Recurrent Neural Networks for
Adaptive Communication Channel Equalization,” IEEE Transactions on Neural Networks, Vol.
5, No. 2, March 1994, pp. 267-278.

Kechriotis, G., Zervas, E., Manolakos, E. S., "Using Recurrent Neural Networks For Blind
Equalization Of Linear and Nonlinear Communication Channels,"” Milcom ‘92, Communications
- Fusing Command, Control and Intelligence, Volume 2, 1992, pp. 784-788.

Kim, Myung Soo and Guest, Clark C., “Modification of Backpropagation Networks for
Complex-Valued Signal Processing in Frequency Domain,” International Joint Conference on
Neural Networks, 1990, pp. III-27-1I1-31.

King, Todd, "Using Neural Networks for Pattern Recognition: Recognizing and Learning
patterns is one thing neural nets do best," Dr. Dobb’s Journal, January, 1989, pp. 14-28.

Klimasauskas, Casey, "Neural Nets and Noise Filtering: Back-propagation is a powerful
adaptive method for filtering out noise or identifying underlying signals," Dr. Dobb'’s Journal,
January, 1989, pp. 32-48.

Kohonen, Teuvo, Raivio, Kimmo, Simula, Olli, and Henriksson, Jukka, "Performance
Evaluation of Self-organizing Map Based Neural Equalizers in Dynamic Discrete-Signal
Detection,” Proceedings of the 1991 International Conference on Artificial Neural Networks
(ICANN-91) Volume 2, June 24-28, 1991, pp. 1677-1680.

Kohonen, Teuvo, Raivio, Kimmo, Simula, Olli, Venta, Olli, Henriksson, Jukka, "Combining
Linear Equalization and Self-Organizing Adaptation in Dynamic Discrete Signal Detection”,
International Joint Conference on Neural Networks , 1990, vol. 1, pp. 1-223 - 1-228.

Kohonen, Teuvo, Self-Organizing and Associative Memory, Springer-Verlag, Series in
Information Sciences, Vol. 8, Berlin-Heidelberg-New York-Tokyo, 1984.

Kovalick, Al and Titchener, Paul, “Bridge the Gap Between Simulation and Hardware
Prototyping,” Electronic Design, June 13, 1991, pp. 77-88.

Kunz, Dietmar, "Channel Assignment for Cellular Radio Using Neural Networks," JEEE
Transactions on Vehicular Technology, Vol. 40, No. 1, February, 1991. pp. 188-193.

Lawrence Jeannette and Andriola, Peter, "Three-step method e\}aluates neural networks for your
application,”" EDN August 6, 1992, pp. 93-100.

Lee, Tsu-Chang, Peterson, Allen M., "Adaptive Vector Quantization Using a Self-Development
Neural Network," IEEE Journal on Selected Areas in Communications, Vol. 8, No. 8, October
1990, pp. 1458-71.

Lippmann, Richard P., "An Introduction to Computing with Neural Nets, " IEEE ASSP
Magazine, April 1987, pp. 4-22.

Lirov, Yuval, "Computer Aided Neural Network Engineering," Newral Networks, Vol. 5, pp.
711-719, 1992.

Naylor, J.A., "A neural network algorithm for enhancing delta modulation/LPC tandem

connections,” ICASSP 90. 1990 International Conference on Acoustics, Speech and Signal
Processing (Cat. No. 90CH2847-2) pp. 221-4 Vol. 1.

108

Nguyen, Derrick and Widrow, Bernard, “Improving the Learning Speed of 2-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights,” International Joint Conference
on Neural Networks, 1990, pp. III-21-111-26.

Nobakht, Ramin A., Van Den Bout, David E., Townsend, J. Keith, Ardalan, Sasan H.,
"Optimization of Transmitter and Receiver Filters for Digital Communications Systems Using
Mean Field Annealing,” IEEE Journal on Selected Areas in Communications, Vol. 8, No. 8,
October, 1990, pp. 1472-80.

Peng, Marcia, Nilias, Chrysostomos L., and Proakis, John G., "Adaptive Equalization for PAM
and QAM Signals,” Conference Record of the Twenty-Fifth Asilomar Conference on Signals,
Systems, & Computers, Volume 1 of 2, November 4-6, 1991, pp. 496-500.

Raeth, l;estgr G., "Event-Train Restoration Via Back propagation Neural Networks," DTIC,
Dec., 1989.

Rafie, Manouchehr S. and Shanmugan, K. Sam, “Simulation of an End-to-End 9600 bps V.32
Modem Using SPW,” Proceedings of the 1991 International Simulation Technology Conference
(SIMTEC ‘91), Orlando, Florida, October 1991.

Rao, Suthyanarayan S., Sethuraman, Sriram, "A Neural Network Tunable Filter For Multi-Tone
Detection,” Milcom *92, Communications - Fusing Command, Control and Intelligence, Volume
2, Session 33A, pp. 789-793.

Rumelhart, D.E., Hinton, G.E. and Williams, R.J., “Learning Internal Representations by Error
Propagation,” Parallel Distributed Processing, Vol. 1, Bradford Books - The MIT Press, 1986.

Rummler, William D., “More on the Multipath Fading Channel Model,” IEEE Transactions on
Communications, Vol. COM-29, No. 3, March 1981, pp. 346-352.

Santamaria, M.E., Lagunas, M.A., Cabrera, M., "Neural nets filters: integrated coding and
signaling in communication systems,” MELECON ‘89: Mediterranean Electrotechnical
Conference Proc. Integrating Research, Industry and Education in Energy and Communication
Engineering (Cat. No. 89CH2679-9) pp. 532-5.

Sejnowski, Terrence, "IEEE Conference on Neural Information Processing Systems - Natural
and Synthetic Held In Denver, Colorado on 28 November - 1 December 1988," DTIC, Aug., 14,
1989.

Sengoku, M., Nakano, K., Shinoda, S. Yamaguchi, Y. Abe, T. "Cellular mobile
communication systems and a channel assignment using neural networks, "Proc of the 33rd
Midwest Symposium on Circuits and Systems (Cat. No. 90CH2819-1) pp. 411-14 Vol. 1.

Sietsma, Jocelyn and Dow, Robert J.F., "Creating Artificial Neural Networks That Generalize,"
Neural Networks, Vol. 4.,1991, pp. 67-79.

Siu, S., Gibson, G.J., Cowan, C.F.N., "Decision feedback equalization using neural network
sngctm'cs, " First IEE International Conference on Artificial Neural Networks (Conf. Publ. No.
313) pp. 125-8.

Sorensen, Helge B. D., "A Cepstral Noise Reduction Multi-Layer Neural Network," ICASSP

gl , 1991 International Conference on Acoustics, Speech and Signal Processing, Vol. 2, pp. 933-

109

Specht, D.F. and Shapiro, P.D., “Generalization Accuracy of Probabilistic Neural Networks
Compared with Backpropagation Networks,” Proceedings of the International Joint Conference
on Neural Networks, IEEE Press, New York, 1991.

Specht, D.F., “Probability Neural Networks and the Polynomial Adaline as Complementary
Techniques for Classification,” IEEE Transactions on Neural Networks, Vol. 1, 1990.

Specht, Donald F., "Probabilistic Neural Networks," Neural Networks, Vol. 3, 1990, pp. 109-
118.

Speidel, S. L., "Neurobeamformer II: Further Exploration of Adaptive Beamforming via Neural
Networks," DTIC, Nov. 22, 1989.

Stubbendieck, G.T., Oldham, W.J.B. "Recognition of patterns in electronic communication
signals using neural networks,” Knowledge-Based Systems and Neural Networks: Techniques
and Applications pp. 237-51.

Tasic, J. Grlj, M. "Theory and application of the neural net based adaptive filter in
communication systems,” Communication, Control and Signal Processing. Proc of the 1990
Bilkent International Conference on New Trends in Communication, Control and Signal
Processing pp. 1788-95 Vol. 2.

Thacker, Neil, A., Mayhew, John E-W., "Designing a Layered Network for Context Sensitive
Pattern Classification,"” Neural Networks, Vol. 3, 1990, pp. 291-299.

Van Ooyen., A. and Nienhuis, B. “Improving the Convergence of the Back-propagation
Algorithm, “Neural Networks, Vol. 5, 1992, pp. 465-471.

Welstead, Stephen T., Ward, Michael J., and Keefer, Christopher W., “Neural Network
Approach to Multipath Delay Estimation,” SPIE Vol. 1565 Adaptive Signal Processing, 1991,
pp. 482-491.

Wieselthier, J. E., Barnhart, C. M., and Ephrimedes, A., "Sequential Link Activation in
Multihop Radio Networks by Means of Hopfield Neural Network Techniques," Proceedings of
the 1991 International Symposium on Information Theory, p. 155, June 1991.

Williams, R.J. and Zipser, D., “A Leaming Algorithm for Continually Running Fully Recurrent
Neural Networks,” Neural Computation, 1, 1989, pp. 270-280.

Xiang, Zengjun, and Bi, Guangguo, "New Fractionally Spaced Recursive Polynomial
Perceptron Model for Adaptive M-QAM Digital Mobile Radio Reception," Electronic Letters,
Vol. 28, No. 22, Oct. 22, 1992, pp. 2049-2051.

Ziemer, Rodger E. and Peterson, Roger L., Digital Communications and Spread Spectrum
Systems, Macmillan Publishing Company, New York, 1985.

110

8.0 GLOSSARY

ABAM Adaptive Bi-directional Associative Memory
ANN Artificial Neural Network

ANS Artificial Neural System

ART Adaptive Resonance Theory
AWGN Additive White Gaussian Noise
BAF Block Attributes File

BAM Bi-directional Associative Memory
BER Bit Error Rate

BEX Block EXpression file (binary)
BDE Block Diagram Editor

BP Backpropagation

BPSK Binary Phase Shift Keying

BSB Brain State in a Box

CCFB Custom Coded Function Block
CDRL Contract Data Requirements List
CGS Code Generation System

COTs Commercial Off The Shelf

CPU Computer Processing Unit

CSC Computer Software Component
CSCI Computer Software Configuration Item
CSCI08 Computer Software Configuration Item No. 8 (NNCL)
CSP Communications Signal Processing
CsuU Computer Software Unit

CUFB Custom User Function Block
CUPS Connection Updates Per Second
DI Developmental Item

DID Data Item Description

DMA Direct Memory Access

DAD Department of Defense

DSP Digital Signal Processing

EXPR EXPRession file (text).

FIR Finite Impuse Response

FFT Fast Fourier Transform

FMS File Management System

GFI Government Fumnished Item

GUI Graphical User Interface

HF High Frequency

HWCI Hardware Configuration Item

ISI Inter Symbol Interference

ISL Interactive Simulation Library™

111

ISNN Industrial Strength Neural Network

KTM Kohonen Topological Map

LMS Least Mean Squared

L™ Long Term Memory

MCL Macro Command Language

MHz Mega (Million) Hertz (cycles per second)
MIPS Millien Instructions Per Second

ML Maximum Likelihood

MMI Man/Machine Interface

NDI Non-Developmental Item

NNCL Neural Network Communications Library
NNCSP Neural Network Communications Signal Processing
NNCSS Neural Network Communications Simulation System
NNO Neural Network Object

NNOC Neural Network Object Control

NNOM Neural Network Object Manager

PN Probabilistic Network

QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying

RC Recurrent

RF Radio Frequency

RFP Request for Proposal

RISC Reduced Instruction Set Computer

RLS Recursive Least Squares

RMS Root Mean Square

SFS Signal Flow Simulation

SigCalc Signal Calculator™

SOFM Self Organizing Feature Map

SPB Simulation Program Builder

SPW Signal Processing WorkSystem™

SSDD System/Segment Design Document

SDD Software Design Document

STM Short Term Memory

TIL Tool Interface Language™

TWT Traveling Wave Tube

VLSI Very Large Scale Integration

112

APPENDIX

PROCEDURES FOR RUNNING THE SIMULATIONS

These instructions give steps to execute the simulations described in Section 4. It is
assumed that SPW and the associated NNCSS tapes have been installed and a simulation
kernel in nncss_all has been created. In each of the following ten simulation procedures
"Run the simulation for XXX iterations" will mean to perform the following operations:
Select Tools-Simulator-Run.

Select More Options

Enter (or select from the extended dialog button) nncss_all as the Simulation Kernel.

Press OK

Enter XXX in the No. of Iterations field

Press Start

1. Non-Linear Mapping by a Backpropagation Neural Network (refer to
4.1)

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm

/spwsys/pool/nncss_all/sqr.net
Step 2 Open the SPW simulation model entitled square(10).system.

Step 3 Run the simulation for 10K iterations. This will display the network learning the
function 0.5x3.

Step 4 Change the value of the constant feeding into the y-input of the x¥ block to 2.0.
This will display the network learning the function 0.5x#, starting with the weights
which resulted from training the network to learn the 0.5x3 function.

Step 5 Select File-Close on the Simulation Run window.

2. Equalization of Multipath Distorted 64-QAM using a Backpropagation
Neural Network (refer to 4.2)

This demonstration displays the results of a trained Backpropagation Network to equalize a
Multipath-Distorted 64-QAM signal. The actual training of the network is time-
consuming and is not appropriate for an interactive demonstration using the
Interactive Simulation Library (ISL). To execute the ISL demonstration:

Step 1 Since this demonstration displays results for a previously trained network, we must
begin with the weights which resulted from this earlier training: cp
/spwsys/pool/tbill_3_all/64gam_3.net /spwsys/pool/nncss_all/64qam_3.net

Step 2 Open the SPW simulation model entitled bp_eval(27).system.

113

Step 3 Turn learning off by changing the value of the constant feeding into the train input
to the bpnet block to 0.0.

Step 4 Run the simulation for 30K iterations.
Step 5 Select File-Close on the Simulation Run window.

To see that the neural network can indeed be trained to equalize a Multipath-Distorted 64-
QAM signal, this simulation can be executed in a non-ISL mode with the following
modifications:

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/64qam_3.net

Step 2 If it is not already on, turn learning on by changing the value of the constant feeding
into the train input to the bpnet block to 1.0.

Step 3 To expedite the simulation, select and cut all of the ISL blocks in the ISL Output
portion of the system diagram.

Step 4 In the Network and Output Control portion of the system diagram, edit the
parameter on the Unit Step block which feeds into the Inverter and wait connector.
Change its value to 950000. This will cause signal files to be written to disk only
after simulation iteration 950000 has been reached, thus writing less to disk.

S+p 5 Run the simulation for 1000000 iterations. This may take about 90 minutes to
complete.

Step 6 After completion, press SigCalc on the Simulation window to view resulting
signals.

Step 7 Select File-Close on the Simulation Run window.

3. Use of a Backpropagation Neural Network to Control a Bank of
Equalizers in a Dynamic Multipath Environment (refer to 4.3)

This demonstration displays the results of a trained Backpropagation Network to equalize a
Dynamic Multipath-Distorted 64-QAM signal using the outputs of a bank of
cqualizers. The actual training of the network is time-consuming and is not
appropriate for an ISL demonstration. To execute the ISL demonstration:

Step 1 Since this demonstration displays results for a previously trained network, we must
begin with the weights which resulted from this earlier training: cp

/spwsys/pool/tbill_3_all/mmpath_1.net /spwsys/pool/nncss_all/mmpath_1.net

Step 2 Open the SPW simulation model entitled bp_mmtest(8).system.

Step 3 Run the simulation for EOF iterations. The simulation will read test data from a
file, re-starting from the beginning when the end is reached. When satisfied with
the ISL display, press Abort in the Simulation Run window.

Step 4 Select File-Close on the Simulation Run window.

114

4. Demodulation of Non-Linearly Distorted 16 QAM Using
Backpropagation (refer to 4.4)

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/classify6.net

Step 2 Open the SPW simulation model entitled classify(16).system.

Step 3 Run the simulation for 25K iterations. You will observe the error rate of the neural
network decrease drastically over the course of the simulation as the network learns
better decision regions, and eventually performing better than the Linear Decision
Regions for Ideal 16 QAM.

Step 5 Select File-Close on the Simulation Run window.

5. Demodulation of QPSK over a Non-Linear, Dispersive Channel using
Backpropagation Neural Network (refer to 4.5)

This demonstration displays the results of a trained Backpropagation Network to
demodulate a QPSK signal which has been transmitted over a non-linear, dispersive,
AWGN channel. The actual training of the network is time-consuming and is not
appropriate for an ISL demonstration. To execute the ISL. demonstration:

Step 1 Since this demonstration displays results for a previously trained network, we must
begin with the weights which resulted from this earlier training: cp
/spwsys/pool/tbill_3_all/qpsk6.net /spwsys/pool/nncss_all/qpsk6.net

Step 2 Open the SPW simulation model entitled bp_qpsk(13).system.

Step 3 Make sure that learning is off by changing the value of the constant feeding into the
train input to the bpnet block to 0.0.

Step 4 Run the simulation for 10K iterations. The in-phase and quadrature components
produced by the neural network (shown in a constellation diagram) are thresholded
to produce the demodulated QPSK symbol.

Step 5 Select File-Close on the Simulation Run window.

To see that the neural network can indeed be trained to demodulate a QPSK signal which
has been transmitted over a non-linear, dispersive, AWGN channel , this simulation can be
executed in a non-ISL mode with the following modifications:

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm

/spwsys/pool/nncss_all/qpsk6.net

Step 2 If it is not already on, turn learning on by changing the value of the constant feeding
into the train input to the bpnet block to 1.0.

Step 3 To expedite the simulation, select and cut all of the ISL blocks in the ISL Output
portion of the system diagram.

115

Step 4 In the Network and Output Control portion of the system diagram, edit the
parameter on the Unit Step block which feeds into the Inverter and wait connector.
Change its value to 950000. This will cause signal files to be written to disk only
after simulation iteration 950000 has been reached, thus writing less to disk.

Step 5 Run the simulation for 1000000 iterations. This may take about several hours to
complete.

Step 6 After completion, press SigCalc on the Simulation window to view resulting
signals.

Step 7 Select File-Close on the Simulation Run window.

6. Demodulation of QPSK using a Configuration of Kohonen and
Outstar Neural Networks (refer to 4.6)

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/koh3.net

Step 2 Open the SPW simulation model entitled koh_qpsk(8).system.

Step 3 The Kohonen and Outstar networks each are controlled by a Neural Network Object
Controller (NNOC) block. The NNOC for the Outstar is on the top system level,
while the NNOC for the Kohonen Network is inside the KTMNET block. The
Delta Learning Threshold parameter inside each of these NNOC blocks should be
changed to -1.0. This is necessary since there is no delta input to the NNOCs. By
definition, if the delta signal is less than or equal to the value of the Delta Learning
Threshold parameter, then weights will no longer be updated.

Step 4 Run the simulation for 20K iterations.
Step 5 Select File-Close on the Simulation Run window.

7. Demodulation of Non-Linearly Distorted 16 QAM using a
Configuration of Kohonen and OQOutstar Neural Networks (refer to
4.7)

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/koh16qam13.net

Step 2 Open the SPW simulation model entitled 16gam_twt(18).

Step 3 The Kohonen and Outstar networks each are controlled by a Neural Network Object
Controller (NNOC) block. The NNOC for the Outstar is on the top system level,
while the NNOC for the Kohonen Network is inside the KTMNET block. The
Delta Learning Threshold parameter inside each of these NNOC blocks should be
changed to -1.0. This is necessary since there is no delta input to the NNOCs. By
definition, if the delta signal is less than or equal to the value of the Delta Learning
Threshold parameter, then weights will no longer be updated.

Step 4 Run the simulation for 35K iterations.

116

Step 5 Select File-Close on the Simulation Run window.

8. Demodulation of 16 QAM over a Rayleigh Channel using a
Configuration of Kohonen and Outstar Neural Networks (refer to
4.8)

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/mobile.net

Step 2 Open the SPW simulation model entitled mobile(15).

Step 3 The Kohonen and Outstar networks each are controlled by a Neural Network Object
Controller (NNOC) block. The NNOC for the Outstar is on the top level inside of
the Kohonen Equalizer block, while the NNOC for the Kohonen Network is inside
the KTMNET block, which is also inside of the Kohonen Equalizer block. The
Delta Learning Threshold parameter inside each of these NNOC blocks should be
changed to -1.0. This is necessary since there is no delta input to the NNOCs. By
definition, if the delta signal is less than or equal to the value of the Delia Learning
Threshold parameter, then weights will no longer be updated.

Step 4 Run the simulation for 35K iterations.

Step 5 This demonstration contains many controls which make it rather complicated.
There are 3 Eye and Scatter diagrams which appear. In each case, the Eye pattern
produced is to be ignored. The Eye and Scatter blocks were used simply for their
built-in controls. The leftmost scatter plot is the received constellation from the
Rayleigh channel. Over the course of the demonstration, it will contract, expand,
and rotate. As it contracts and expands, it will become necessary to adjust the Gain
via the scroll bar to keep its display within the bounds of the scatter window. The
center scatter plot is the resulting constellation produced by a stand-alone Linear
Adaptive Equalizer. Given a training signal, the equalizer can adjust to the Rayleigh
effects. As the Rayleigh fades occur, the equalizer will lose track of the
rotated/compressed/expanded constellation and again will require a training signal to
re-adjust.

The rightmost scatter plot is a plot of the Kohonen weights. These weights will converge
to the centers of the clusters formed by the equalizer portion of the Kohonen Equalizer.
They will individually move in order to quickly track the rotating/compressing/expanding
constellation.

Below the Eye and Scatter controls are several pushbuttons which control training and
learning for the stand-alone Linear Adaptive Equalizer and the Kohonen Equalizer.

Train KTM - Toggles weight adjustment for Kohonen portion of the Kohonen Equalizer,
whether in normal or adaptive mode.

Train Equalizer - Toggles the presentation of the actual transmitted 16 QAM signal as a
training signal to the stand-alone Linear Adaptive Equalizer.

Train Outstar - Toggles the presentation of the actual transmitted 16 QAM signal as a
training signal to the Outstar Network.

117

Use Training Sig - Toggles the presentation of the actual transmitted 16 QAM signal as a
training signal to the equalizer portion of the Kohonen Equalizer.

Use Conventional Decision Regions - In the Kohonen Equalizer, an error signal is fed back
to update the weights of the equalizer portion. This pushbutton controls the method of
creating this error signal. If the button is pressed, the error signal is the difference between
the closest Ideal QAM symbol and the equalizer output. If the button is not pressed, the
error signal is the difference between the weights corresponding to the winning Kohonen
node and the equalizer output.

Re-Train KTM - If a severe null occurs, the Kohonen Equalizer will be unable to track the
moving symbol constellation, and will require re-training. When this button is pressed,
retraining will occur. Note that re-training the Kohonen network will require a re-mapping
(and hence re-training) of the Outstar Network.

At the bottom of the display are two bar graphs which display symbol errors. The left
graph corresponds to symbol errors made by the Linear Adaptive Equalizer, and the right
for the Kohonen Equalizer. Note that when a training signal is given to either equalizer, the
corresponding symbol error graph is disabled and will show a zero value.

Once the ISL Window appears on the screen, first set the Scatter Persistence scroll bar on
the rightmost scatter plot to 16, since we are interested in the weights corresponding to the
16 Kohonen nodes. Initially, all buttons except for the Re-Train KTM button should be
depressed. Around simulation iteration 5000, the Kohonen network enters adaptive mode.
At this time, the Kohonen weights have found the symbol centers of the equalized
constellation and are tracking movement. The stand-alone equalizer too has been trained to
equalize the received signal. Train Equalizer and Use Training Signal may be turned-off.
Over the next 6000 simulation iterations, the Outstar Network will map each Kohonen node
to an explicit 16 QAM symbol. The Outstar training may be accelerated by increasing the
learn and decay rates. So at around iteraton 11K, Train Outstar may be turned off.
Depending upon the noise seed and the Doppler of the Rayleigh channel (the scrollbar
entitled Amplitude on the display), the Kohonen Equalizer and the stand-alone equalizer
will correctly demodulate the received signal, as evidenced by the two bar graphs at the
bottom of the display. Usually, the stand-alone equalizer will fail first during appearance
of nulls. Failing is indicated by a large number of spikes (corresponding to symbol errors)
in the bar graphs.

Once cither equalizer has failed, a training sequence is required for proper demodulation to
resume. If the stand-alone equalizer fails, press the Train Equalizer button. The equalizer
will require some time to re-adjust its weights. Once the center constellation appears fairly
organized, the Train Equalizer button may be turned off. Note that when a training signal
is given to either equalizer, the corresponding symbol error graph is disabled and will show
a zero value. If the Kohonen Equalizer fails, the KTM must be redone, and hence the
Outstar mapping. This is accomplished by depressing Train KTM, Train Outstar, Use
Training Sig, Use Conventional Decision Regions, and Re-Train KTM. After several
thousand iterations, the KTM is ready to resume adaptive mode. Toggle Use Training Sig,
Use Conventional Decision Regions, and Re-Train KTM. The Kohonen weight should
now appear at the 16 QAM cluster centers. The Qutstar may then be trained. About 8000
iterations later, Train Outstar may be turned off.

Step 6 Select File-Close on the Simulation Run window.

118

9. Improving Viterbi Decoder Soft Decisions in a Pulse Jamming
Environment (refer to 4.9)

Step 1 We initialize the network weights to values previously determined by training the
network to learn an identity mapping. Thus the initial transfer function for the
neural network will be linear over a range of signal values typical of a no-jammer
scenario. This transfer function is similar to a conventional soft decision metric. To
do this: cp /spwsys/pool/tbill_3_all/viterbi_id_10nodes
/spwsys/pool/nncss_all/viterbi3.net

Step 2 Open the SPW simulation model entitled bp_viterbi(24).system.

Step 3 Run the simulation for 70K iterations. You will observe the neural network soft
decision metric adapt from its initial form to a form similar to the theoretical
optimum.

Step 5 Select File-Close on the Simulation Run window.

10. Demodulation of QPSK Over a Non-Linear, Dispersive Channel
Using a Fully Recurrent Network (refer to 4.10)

This demonstration displays the results of a trained Recurrent Network to demodulate a
QPSK signal which has been transmitted over a non-linear, dispersive, AWGN channel .
The actual training of the network is time-consuming and is not appropriate for an ISL
demonstration. To execute the ISL demonstration:

Step 1 Since this demonstration displays results for a previously trained network, we must
begin with the weights which resulted from this earlier training: cp
/spwsys/pool/tbill_3_all/qpskénew.net /spwsys/pool/nncss_all/qpsk6new.net

Step 2 Open the SPW simulation model entitled rc_qpsk(3).system.

Step 3 Make sure that learning and forced is off by changing the value of the constant
feeding into the train and forced input to the rcnet block to 0.0.

Step 4 Run the simulation for 20K iterations. The in-phase and quadrature components
produced by the neural network (shown in a constellation diagram) are thresholded
to produce the demodulated QPSK symbol.

Step S Select File-Close on the Simulation Run window.

To see that the neural network can indeed be trained to demodulate a QPSK signal which
has been transmitted over a non-linear, dispersive, AWGN channel , this simulation can be
executed in a non-ISL mode with the following modifications:

Step 1 Make sure that weights are initialized from random values instead of from the
stopping point of a previous execution of this system: rm
/spwsys/pool/nncss_all/qpsk6new.net

Step 2 If it is not already on, turn learning on and forced on by changing the value of the
constant feeding into the train input and forced input to the rcnet block to 1.0.

119

Step 3 To expedite the simulation, select and cut all of the ISL blocks in the ISL Output
portion of the system diagram.

Step 4 In the Network and Output Control portion of the system diagram, edit the
parameter on the Unit Step block which feeds into the Inverter and waiz connector.
Change its value to 950000. This will cause signal files to be written to disk only
after simulation iteration 950000 has been reached, thus writing less to disk.

Step S Run the simulation for 1000000 iterations. This may take about several hours to
complete.

Step 6 The Recurrent Network has been trained with forced learning. It now requires
further training with unforced learning. Turn learning on and forced off.

Step 7 In the Network and Output Control portion of the system diagram, edit the
parameter on the Unit Step block which feeds into the Inverter and wait connector.
Change its value to 950000. This will cause signal files to be written to disk only
after simulation iteration 950000 has been reached, thus writing less to disk.

Step 8 Run the simulation for 1000000 iterations. This may take about several hours to
complete.

Step 9 After completion, press SigCalc on the Simulation window to view resulting
signals.

Step 10 Select File-Close on the Simulation Run window.

#U.S. GOVERNMENT PRINTING OFFICE: 1994-510-117-50036

120

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.

