RL-TR-94-111
Final Technical Report
August 1994

PST: A SIMULATION TOOL

FOR FARALLEL SYSTEMS
AD-A285 680
(LT T N h

Clarkson University Cl.2119

Ei F Ch
9(
David J. Potter, William A. Rivet, and Hisham Awad % gvﬁ
.3'

GCTEDQ ’

caIyg
v).1‘“)?

T
@

D‘X y -

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

\%Lﬁf
//II/I/I//I/III////I//I///II//I/II//I//II
Rome Laboratory

Air Force Materiel Command
Griffiss Air Force Base, New York

94 ~ o

-

:—————

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it «will be releasable to the general public, including foreign nations.

RL-TR-94-111 has been reviewed and is approved for publication.

APPROVED: MD@ ‘Z(}:ﬁ};‘b

RICHARD C. METZGER
Project Engineer

FOR THE COMMANDER: %/& : :

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CcB) Griffiss AFB NY 13441. This will assist us in raintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices o1 a
specific document require that it be returned.

e ———————————————————————

rorm Approved
OMB No. 0704-0188

REPORT DOCUMENTATION PAGE

sxisting dsts sousces,

mmmmumawhmm-uwm‘ hous per respones, inch.ading the tme for reviswing instructions, seerching
reviewing the colection of Inforration. Send corryments regerding this burden estimete o any other aspect of this

Quthwring ancd rmaintaining the data nescled, and compisting and
calaction of Infarrmtion, inckuding suggestions for recucing this burden, to Weshington Heacicerters Services, Directorate for ifornetion Operations sndReports, 1215 Jeiferson
Davis Highway, Sulls 1204, Arington, VA 222024302, ardd to the Office of Manegerma—t and Buciget, Paparwork Reck.ction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1994 Final Feb 93 - May 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-93-C-0055
PST: A SIMULATION TOOL FOR PARALLEL SYSTEMS PE - 62702F
PR - 5581
6. AUTHOR(S) TA - 18
David J. Potter, William A. Rivet, and Hisham Awad WU - PC
7. PERFORMING ORGANIZATION NAME (S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER
Clarkson University
Dept of Electrical & Computer Engineering N/A
Potsdam NY 13699-5720
GTSPCNSONNGIMON‘TORNG AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Rome Yanoratory (C3CB) AGENCY REPORT NUMBER
525 Brcoks Road
~TR-94-111
Griffise AFB NY 13441-4505 RL-TR-94-11

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer:

Richard C. Metzger/C3CB/(315) 330-7650

12a. DISTRIBUTION/AVARABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Madmum 200 words)

parallel computer systems.

The objective of this research effort was to develop a tool to simulate various
The tools would give users insight into the different
classes of parallel machines in terms of architecture, software, synchronization,
communication, efficiency, connectivity, and application specialties.
would give valuable information towards the development of languages and tools which
can be used independently of the machine architecture.
objectives set by the Software for High Performance Computers Group at Rome Laboratory,
namely: a) developing technology for general purpose parallel computing and b)
developing methods for predicting parallel software performance.
compatible with the Parallel Experimentation and Evaluation Platform (PEEP) at Rome,
in particular totally compatible with X Windows workstations.

This work would contribute to

The tool would be

In addition it

14. SUBJECT TERMS 15 NUMBER OF PAGES
Parallel Architectures, Simulation, Program Development |aPmmggx;

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION (19 SECURITY CLASSIFICATION 120. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

w

NSNS %.adﬁgﬂﬁgﬁdéﬁﬂ

Table of Contents

Table Of CONENLSooeiiiiiiieeeie ettt eve et ereeeeveeaeeenea s 2
ACKNOWICBAZEMENLSceeviiiiiiieiiiieieieeteee et ee et st e et e neaeste e bnesaeeesae e 4
INEPOQUCHION ...ovviiiiiiieciteeieect ettt ae e te e e rs et s e s eae e e s e s st enaneenee 4
PUIPOSE Of PIOJECTcouviiiniiiiiiiicniiiieeeeree et a e e s 4
Project SUMMArYc.oooviiiiiiiinieniieeeee et et ee e st e et e re et sene e 4
ProjeCt OVEIVIEWccovuiiiiriiniieiiiiticieeie et esae vt e seresaeesaeeerseensseensa e 5
USEr INEIfACE. ... ciiveeiciiieiiieie et eee ettt e a e e arneens 5
RAP LAt . 7€ ittt et e s 9
DESIZN © 1 v ittt sttt s s 9
UiV 20ULE e 10
Architectra Module ... 10
Language Module.............cooovemirinriioireieeeccieeeee e 12
Evaluation Module......ccooeevveiiiiiiiniiiineiniiir e 13
Processor Handler....... .coocovvveiieeiniciiienieeneincenreece e 14
Communications Handlercococevvviiiniinrieciinneeenee, 16
Report Organization.........c.ccovveeeeeiienireennennnns ceeret teeereeeeerrareeraeeeertaeesnaeas 16
User INterface MOdUIE.........c..ooiviiiiiieeiieece ettt et e e e eneeas 16
ArchiteCture MOAUIE.........oocvieiiiiiiiiieice et eete et ee e e sve e bresae s e be e sae e I8
Language Module.......ccooouriimiiiieeirieertreeerer e e ameerecsraessesasseeeserarenasens 19
Evaluation MOGUIEc.ceeiiiiiiiiiiiieee et et eereees cevaeescieecestresesneeenses e seeananeeas 22
OVEIVIEWconitiienieietrecitecietearerinstreessseesesssseesasaeassetasssseesssssesesenssesessssennnns 22
The Sequent MOGEL.........ccccoviiiiiiiiiietecteeeeseesseereetessesesiraeresesseeseeesseeeseens 23
MemOry MOUEIS.........oviiiiiiiieiiiiciitcccnreenrrerceeiresesere e cseere e s earae s e et aee s renas 24
Local Memory MOEIScoooiiiiiieiiecereeencteecteeie e vee e 25
Shared Memory MOGEISccooviieiiiiniiiaiieierenteereeeetee e vaens 25
Cache Memory MOdel............cooviiiiiirrniireieirccerreencnrecee e es e 26
The Process MOdelcooiiiiiiiiiieeiecereensteneeceeieessenessere e aees e eseaeans 27
The Processor Modelcoooiiiiiiiiiieenicereeneecsnee e 27
Variable ALOCAON..........cooieiiriiriiieierreeeeie et erereeireee e e aeeeseaeanns 32
Sequent Model Details........c.cccverevieiiiiiiniiinieieieeeseeenie et esertessas e senessneeseeas 33
The IPSC, Delta and CM-5 models..........cccovvverieereceiirieeieerieereeerieeee e eeinene 33
The CLIP MOdEL.......cooviiiiririiiniiiireiscereeneesteestesetsiaesees avevessseesseenns 34
CHip EXIENSIONS ...oovvviiiiiinieinenineeieesie et seesseteinnes cveesieesseessuenns 35
Communication Model..........cocveeriiiiiiiiniieiiiectccierceeeenees cveeserresaeeeans 35
GENETALeiiiiiiiiettieiiiecieererrerrreeeeeesenerreesessssntaneeaees - sneeessssssssseees 35
Description of Hypercube, Delta and CM-5 Communication
NEIWOTKS ..ottt ettt re e e s e aaeeaes 37
DI, ...ooieiiiiieiee e et e et e e be e e e raaaeas 37
Hypercube ..o 40
CME-5. ettt sttt s s e s e et e et aae e st ee e s trae s nnrens 42
1/2

General Communication Model Qutlingcccoovveeiiiiiiiiiiiiiieeieieeee, 44

Hypercube Model.......coooiiiii e 47

CM-5 and Delta EXtENSIONSvueeiiireieeeeeeeriiierieerreeecireeseeeeeeeseeeenenens 61

| D7) (7 VRO RU ROPOR R URSTPRRRUTPNt 61
M-Sttt et ettt e e s e s e s tar e e s s s eratabeeeaessnnanssaesesssnnnns 65

Performance SUMMATY........cccceiiiiiiiiiiiieceeec et s e e et e seesraeesesesseeste e e e e aesseansesas 68
FULUIE WOTK ..ottt errere e s rar e e e e e s e srbae e e seessassbaeessesesnbenneeeenann 69
REECIEINCES. .. .oeeiiiieieiieiees ettt cetee e et eestrr e eseserstrareaesseseaaaaeaeesasssssaanesesaesssssssneres 69
APPENAICES.....veiviiiniiiiiie ettt ettt b ettt 70
1. List of Other Documentation..............cvveveieiieeiiiieeiieeeecccrerarireee e eeeees 70

Aacsssion For o

{ NXIS CRA&I &

LTI TAR 0
Unaunoosced O

Juatif .catdem o]

By -

Disw;t}gggnm 3

Availability Cedes
AVLAl and/fap
‘Dist Spscial

M

Acknowledgements

The authors wish to thank the following.

Rome Labs, New York for funding and support of this project. In particular we would like
to thank Rick Metzgerr and Loretta Auvil for their contributions and support.

Sun Microsystems Inc. for the donation of a Sun SPARC 1(/52 workstation to develop
PST.

Jacqueline Wu and Han-Can Wang for writing a great deal of Lex and Yacc code.

William Mauer and Eric Wright for writing a great deal of the X-interface code.

Introduction
Purpose of Project

The objective of this research effort was to develop a tool to simulate various parallel
computer systems. The tool would give users insight into the different classes of parallel
machine in terms of architecture, software, synchronization, communication, efficiency,
connectivity and application specialties. In addition it would give valuable information
towards the development of languages and tools which can be used independently of
machine architecture. This work would contribute to objectives set by the Software for
High Performance Computers Group at Rome Laboratories, namely: a) developing
technology for generai purpose parallel computing and b) developing methods for
predicting parallel software performance. The tool would be compatible with the Parallel
Experimentation and Evaluation Platform (PEEP) at Rome, in particular totally
compatible with X Windows workstations.

Project Summary
This section describes the accomplishments of the research project in a summarized form.

A paralle]l simulation tool PST was developed at the Department of Electrical and
Computer Engineering Department at Clarkson University for Rome Labs, New York.
The tool was written in C using Motif to develop the user interface. The code has been
designed to support the following features:

« ease to add new or additional parallel architectures

o ability to simulate many different algorithms because of C-like coding used for all
architectures

« ability to monitor many different aspects of computer performance

e ease to add new tutorials describing different aspects of parallel computation.

PST enables the user to select a computer application trom a menu and determine how a
particular algorithm performance differs when evaluated on different parallel systems. PST
allows users to change various parameters uf a given machine such as the number of
processors and the size of memory to see how different parameters can effect the
performance. PST allows users to compare different architectures in terms of performance
and efficiency for the same application. Also, PST helps in introducing users to the issues
and problems of parallel programming, i.e. synchronization, communication, blocking,
deadlock, etc. The user is not limited to the algorithms provided by the tool, she can
program any one of the simulated machines with a C like language to investigate the
performance of her own algorithms. In addition, the user can add other parallel computer
architectures to the simulator with relative ease.

Currently, PST evaluates algorithms on the Connection Machine model CM-5, the Intel
iPSC/2, the Intel DELTA, CLIP4, the Sequent Balance Series and a single processor
machine. Some tutorials have been written to demonstrate the tools use as a teaching aid.

In terms of accomplishments relative to the tasks proposed in the research proposal, all
major issues have been completed. In addition, the graphing tool extends the power of
tool first proposed. Due to time constraints, some of the higher level C* constraints for
the CM-5 such as shape were not completed by the due date ot the project. However, it is
a minor trivial task intended to be finished in the near tuture.

Project Overview

User Interface

The X-window User Int:rface Module (UIM) provides a robust, easy to use multi-
window user interface. The UIM allows the user to control the PST operations through
mouse and keyboard input and pull down menus. Both run-time and summary statistics
resulting from the evaluation are made available to the user through the UIM.

Through the UIM the user can select the machine, change its architecture parameters,
select the application, select the evaluation criteria and select what results to graph. Also,
through the UIM the user can access a tutorial that gives her a quick introduction to
parallel algorithms and architectures by taking her through the process of selecting
relevant architectures, applications and parameters.

At the beginning of the program, a menu with three choices: New Record, Tutorial, and
Quit PST appears. Each click on New Record brings up a new record window. The
record window controls how each individual simulation will run. Tutorial provides on-line
help, stored in the form of text files. Quit PST ends all parts of the simulator and exits to
the operating system.

Figure 1

Pressing New Record causes the Architecture Simulator window to pop up (see Figure 1).
The top of the window contains the menu bar, with two pull-down menus: File and
Debug. File provides Architecture, Application, Run, Graph, and Close buttons.
Architecture brings up a file selection window, allowing you to choose an architecture to
simulate. Architecture files must end with .ACH. Similarly, Application allows you to
choose a program to run on the current architecture. Applications must end with .RAP.
Run will simulate the selected application on the selected architecture. Run will not work
if you haven't selected one (or both) of these, nor if the application and architecture are of
incompatible types. Graph calls up the corresponding graph module for this particular
record. Close will get rid of the record, and all corresponding windows. The debug pull-
down menu allows you to turn debugging on or off. When on, debug information is sent
to a resizeable scrollable window. Debugging information includes diagnostics such as
which processor is executing and which instructions are being executed.

The upper pane of the window contains the architecture file name and the application file
name, along with three buttons controlling local memory options, Memory Size, Cache
Size, and Block Size. The only limitations on the values are: block size must divide evenly
into cache size, and cache size must divide evenly into memory size. When applicable,
global memory buttons with the same restrictions appear.

The middle pane of the window contains quick buttons having the same effect as the
buttons on the File menu of the menu bar. The last pane provides the results of the
simulation: Total Time (in micro-seconds), Average Cache Hits, and Average Cache
Misses.

i

The graph module allows the user to run the simulation multiple times by changing one
parameter and comparing the change against another. The upper pane of the window
contains the area where the graph appears, along with labels to tell the user what the graph
means (see Figure 2). The lower pane contains three buttons: Change, Run, and Close.

The Change button pops up a menu of buttons (see Figure 3) used to modify the Graph
Module: X Label, Y Label, Runs, X Start Value, Y Start Value, X Increment, Y
Maximum, and Close. X Label sets the x axis parameter. This will be the value which will
be varied over. Y Label sets the y axis parameter, which will be compared against the x
axis. Runs sets the number of simulations the graph will show. X Start Value lets the user
change the value to start the simulation's first x value. Y Start Value is the lowest value
recorded on the y axis of the graph. X Increment is the amount the x axis parameter will
increment between each test run. Y Maximum is the largest value recorded on the y axis
of the graph. Excluding X Label and Y Label, a window with editable text will pop up if
one of these buttons is pushed. Clicking in the text window, typing the new value desired
and pressing OK changes the value in the Graph Module.

When the X Label or Y Label button is pressed a selection window appears (see Figure 4),
from which there are limited choices. Clicking on one of the choices twice, or clicking on
it once and pressing the OK button sets the axis to the selected field. The Run button of
the Graph Module runs the simulation, and graphs the results in the upper pane. The
results of the Graph Module are not posted on the Record Window. The Close button
closes the Graph Module window.

Figure 3

Figure 4

The tutorial button on the main window allows you to have one or more help files present
on the desktop while you are running a simulation. After clicking on the tutorial button, a
file that corresponds to the topic of interest can be chosen from a selection list. A window
with the tutorial text appears; you can resize the window, scroll through the text using the
horizontal and vertical scrollbars, or close the window by pressing the close button. The

tutorials explain how to load the particular files and run the simulations for different
computing issues.

Y AP Language

PST offers its own language: the RAP language. RAP language is a subset of C, but has
extra features to support parallel computation. RAP recognizes several modes: CM-5
mode, DELTA mode, Sequent mode, iPSC/2 mode and CLIP mode.

The simulator parses the application program (RAP code) via a Lex and Yacc generated
parser which transforms it to the mode that is appropriate for the machine under
consideration. For example CM-5 mode for the CM-5 architecture. This is important tor
an appropriate mapping of the application code to the specific machine. To get better
understanding of the execution of the code, the simulator allows the user to trace the code
as it is being executed.

In the different modes, most of the operations that are specific to each machine are
supported. For example, in the CLIP mode, the CLIP boolean operations (pointwise and
local) and in the Sequent mode, m_fork Sequent library routine are supported.

Design Overview

As PST is required to evaluate various interactions within a parallel system, several issues
needed to be addressed. Since parallel systems have many important activities occurring at
the same time, and PST is required to be a sequential, non-parallel system, the general
modeling of arbitrary systems by PST is difficult. One way to evaluate system performance
is to actually program the parallel system and record the real performance of the system.
This is not possible in most situations, and is why PST was developed. Another way to
determine system performance is to formulate analytic expressions that can be used to
determine system performance. These analytic expressions are difficult, if not impossible,
to formulate correctly and does not lend itself to a system that allows easy evaluation of
new parallel systems. Finally, a simulation of various components of a parallel system can
be used to determine system performance. A parallel computer would be described, a
model constructed, and a parallel program would then be run on the system and the
performance reported. Although this means a fairly detailed and time consuming
evaluations of all the processors, it has the potential of showing bottlenecks as the system
is evaluated. This is the method PST uses.

PST was designed to allow easy addition of new system models. In order to accomplish
this, care was taken to keep the design of subsystem models modular. For example, local
and shared memory are first modeled, then a general cache is modeled to act the same way
as "normal” memory, except that it is capable of using another memory device. When a
memory device is to be connected to a processor, it is possible to connect local, shared,

cached local, cached shared, or any other combination of memory devices that is desired.
New memory models can easily be added following the general rules of memory devices.

The processors were designed with similar issues in mind. For Single Instruction
machines, it is not necessary to simulate all processours since they all do the same
operations at the same time. For these machines, only one processing element is evaluated.
For Multiple Instruction machines, multiple processors are evaluated. Since PST is a
sequential system, each processor is evaluated in turn, simulating a parallel system. Any
concurrent activity is modeled in this manner Each concurrent activity will have its own
time associated with it, so that the time it takes the complete system to complete a task
can be reported.

In order to allow several different experiments to be displayed simultaneously, all the data
needed for a given experiment is kept in a separate Record_Table. There is a place for the
communications model, processor models and timing information in each Record_Table.
PST itself is broken down into four modules. The UIM (User Interface Module), the AM
(Ar itecture Module), the LM (Language Module) and the EM (Evaluation Module). All
these modules work together with the data kept in the Record_Table to evaluate the
performance of a given hardware/software system.

IM Modul

The User Interface Module (UIM) handles all the interaction between the user and the
Evaluation Module. The visual appearance of the UIM has been described above and is
also dJescribed in the User Manual. It is through the UIM that the user is allowed to
specify what architecture and application is to be evaluated. The user is also allowed to
evaluate the system after changing some parameters or even changing the entire system.

Architecture Module

The main job of the Architecture Module (AM) is to parse the architecture files ((ACH
files) into the Record_Table in a form the Evaluation Module and AM's architecture
models can handle. Lex and Yacc were used to generate the AM lexer and parser.

The lexer is responsible for counting lines, filtering out comments, and tokenizing all
terminal symbols such as numbers, time units, memory units and architecture parameters.
The parser checks statement validity and handles errors. The parser also fills in the
architecture parameters in the Record_Table, as illustrated below.

10

—

ACH file Record_Table

/* Sequent ACH file */ (ignored by AM, line counted)
machine = SEQUENT Architecture_type=SEQUENT
num_processors = 4 dimension.x[0]=4

int * int = 53 us (report error in line 4)

Before the EM can be run, the machine has to be constructed. There are routines in the
AM to construct each machine PST can handle. These routines create the appropriate
number of processors and connects the correct caches and memory devices to the
processors. "Connecting” devices means setting up function and data pointers that can be
used instead of calling routines directly. The result is a modular design that allows easy re-
use and addition of different models for various devices. Figure S shows pictorially how
processors in the Sequent are connected to two caches, each Processor has it's own local
memory, but they all connect to the same shared memory.

.]
1
] |- 1 1
Read Read
Processor — Cache Shared
Memory
Write Write
L 1
l r
Read 1 Read e —
- Cache Local
— ‘ Memory
Write Write

Figure 5.

Once these pointers are initialized the AM's job is essentially finished, since the EM will
not have to know what routines to call. The EM need only call the routine pointed to by
the device handler with the associated data. In the case of memory, a cache's data can be
placed in the Record_Table for some memory range. The EM will call the routines for the
cache whenever that memory device is accessed. This is how the second job of the AM is
accomplished. All architecture models are utilized in this way. For example, a shared
variable on the Sequent would be read from the shared memory range. From the figure,
we can see that the request will go through the cache.

11

Language Module

The Language Module (LM) also has a Lex and Yacc generated parser in it. The lexer,
again, simply counts lines, filters out comments and tokenizes all non-terminals. Since the
LM has to recognize several modes of languages, all of which are similar to C, the LM
parser is much more complicated than the AM parser.

The LM lexer uses several tables to recognize terminals. These tables allow easy addition
of new terminal symbols and built-in functions. The LM parses .RAP files into the
Record_Table. Each line of code is tokenized and saved in a Record_Table as an array of
tokens. The parser also handles making sure that symbols used by the program are
defined, and that called functions that are not built in are also defined. The parser also
generates tables of variable descriptions for each function it parses. A sample section of
code with a partial list of the sequence of tokens that PST uses to represent the program is
shown below.

mtest() proc_begin, reduce
{ semicolon, var_name a, declare_type,
int a; declare_local_class, reduce,
a =my_pid(); get_line,
if(a==1) sendit(); var_name a, mypid, assign, reduce,
else var_name a, const 1, log_equ, if_0,
recvit(); reduce,
} func_call 3(sendit()),reduce,

Below is a portion of the tables describing the statistics of the function mtest. These
statistics are used when PST evaluates a function call, return, and variable allocation.

Function Stats:
name: mtest
start position: 11
return type: VOID
num params: 0
total vars: |
var names: a
var types: INTEGER
var dimension: 0
var_data: (internal structure representing INTEGER

variable)

12

Before the EM can do its job, the LM startup routine must be called, which initializes the
processor execution stack with the first line of parsed code. Then the LM is only needed
by the EM to obtain and process the tokens.

Evaluation Module

The backbone of PST is the Evaluation Module (EM) and it's associated Record_Table,
but the EM relies heavily on tables and function/data pairs that are stored in the
Record_Table by the Architecture Module (AM) and Language Model (LM). The
Record_Table has entries in it for system performance parameters, architecture specific
functions (i.e. communications models) as well as parsed RAP code and symbol tables.
The entire model of a system is built on these Record_Tables. Since the EM relies only on
these Record_Tables, it is a simple matter to allow multiple systems to be constructed and
evaluated independently.

(w* > LM (e—
UM B AM
EM
__ J
*\1
AY
Records

Figure 6.

Notice that all modules have access to the Record_Table. The AM and LM are
responsible for part of the table. The EM is responsible for using the data stored in the
Record_Table to evaluate the performance of the system.

The Evaluation Module (EM) is by far the most important part of PST. It is responsible
for scheduling all the processes in the system. Before the EM starts scheduling process
events, all data is flushed, the AM construction routines need to be called to construct the
model of the experimental system and the LM startup routine has to be called to-setup the
first line of code.

PST associates a different time with each process. Generally, these times simply indicate
the amount of time a process has consumed. The process with the lowest time is the
process that has been waiting the longest amount of simulated time to run. By giving the
process with the lowest time attention, processes are given a "“first come first serve”
priority with respect to simulated time. There are special times that are treated differently
in PST. For example, INFINITY is a time that is used to indicate that a process cannot
continue without another processes influence. INFINITY is used to block a process that
is, for example, waiting for a message from another processor.

The main loop of the EM is the process scheduler which simply passes control to the
process with the lowest time associated with it. When the EM has completed the program
evaluation, results are tallied, garbage collection is performed and control is handed back
to the UIM.

There is a routine for each architecture that builds the model of the machine and otherwise
gets the system ready for evaluation. The EM calls on various AM routines to setup
memory devices and communications networks. The LM is called on to setup execution of
the first line of code on the appropriate processors in the system. The use of these routines
come into play later when program evaluation requires the use of these devices.

Once the system has been built, the EM simply goes into a loop that repeatedly passes
control to the process with the lowest time. There are three types of processes. The first
type, the Processor type, handles evaluating the execution of a program on a processor.
The second type is the Communications process, which handles the simulation of a
machine’s communications network. The final type, the Temp process, is used to make the
evaluation of communications routines simpler and will not be discussed further in this
overview. The Processor and Communications processes are described below by the
handlers used to implement them.

Processor Handler

The processor handler function is called by the EM scheduler. It simply looks at the
processor's execution stack to determine what token needs to be evaluated. Each token
has a token handler associated with it. There are many token handlers. For example, the
source code "a=b+c;" would be parsed into the token string "VAR-a, VAR-b, VAR-c,
BIN_ADD, ASSIGN, REDUCE". When tokens are pushed on the processor stack the
REDUCE token is used only as a mark indicating that a complete action is ready to be
evaluated, so the three VAR-? tokens are pushed first, the BIN_ADD, then the ASSIGN
(REDUCE is not pushed on the stack).

(bottom) ... VAR-a, VAR-b, VAR-c, BIN_ADD, ASSIGN & (top of the stack)
The ASSIGN token handler first pops the ASSIGN token off the stack. Next, the stack is

prepared by checking the types of the tokens on top of the stack. If the top token is not a
VALUE, the token handler for that token is called. In this case, the BIN_ADD token. The

14

BIN_ADD token also prepares the stack in the same manner. So the VAR token handler
is called, which will convert the VAR-c token to a VALUE token by calling on the
memory device routines set up by the AM to evaluate a memory read, and by looking up
the value associated with the variable “c". The VAR token handler then returns, and each
of the previous handlers also return. The stack now looks like this:

(bottom) ... VAR-a, VAR-b, VALUE, BIN_ADD, ASSIGN « (top of the stack)

When the processor handler is called for this processor again, the same sequence of events
occur, except that the BIN_ADD token handler finds a VALUE on t the stack, so it
pops this value (one of the operands) off the stack, and looks for the v ALUE, but a
VAR token is on top, so the VAR token handler is called again, to «. ..vert the VAR-b
token to a VALUE. The VALUE that was popped is now pushed back on the stack and
all these handlers return as before, leaving the stack as follows:

(bottom) ... VAR-a, VALUE, VALUE, BIN_ADD, ASSIGN « (top of the stack)

The next time this processor is scheduled, the BIN_ADD token will see two VALUES on
top of the stack, so the BIN_ADD can now be reduced by removing the two VALUES,
adjusting the processor time for the addition, adding the two values, and pushing a
VALUE on the stack. Now the stack contains:

(bottom) ... VAR-a, VALUE, ASSIGN « (top of the stack)

Now the ASSIGN token sees the VALUE on top, and the variable name next, so the
ASSIGN can now be reduced by copying the contents of VALUE to the variable "a", and
by calling the memory read handler set up by the AM to evaluate the writing of this value
to memory. The ASSIGN token leaves only the VALUE on the stack:

(bottom) ... VALUE <« (top of the stack)

The VALUE token handier simply removes the VALUE from the stack. Now the
evaluation of "a=b+c" is complete. Notice that there were two memory reads, one addition
and one write evaluated.

Other examples of tokens and token handlers are those associated with the
communications routines such as "send”, and the "if...else" structure. The communications
routines are set up to allow different communications handlers to be used,. The ISEND
token handler, for example, calls the ISEND routine setup by the AM. This way, any
communications network can be used with the same communications token handlers.

In nesting constructs such as IF/ELSE, the structure has a token and token handler for the
IF_n token, the ELSE_n token and the ENDIF_n token, where n is a number that allows
the EM to search the code and stack for matching IF, ELSE, ENDIF and other
intermediate tokens. This matching allows arbitrarily nested "if...else" structures to work.

15

The intermediate tokens are used to allow the EM to pause the evaluation of each part of
the "if...else" structure to allow another process to have some processing time. IF1_n and
IF2_n are examples. These helper tokens are needed to allow the simulated concurrent
evaluation of the conditional statement, and then the execution of the true or false part of
the "if...else" statement. Basically, the IF1_n, IF2_n, etc. tokens are used to keep track of
which stage the evaluation of the "if...else" structure is at. For example, IF0_n is used
when evaluating the conditional, the others are used for evaluating the true part of the
conditional, and yet another for the optional false (else) part. A more detailed description
of all these tokens and token handlers will be covered later.

ications Handl

The communications handler handles the communications network by simulating the
movement of data on the network. When a processor needs to send a message, it places
the appropriate data to the Communications process. The Communications handler takes
the data and simulates it movement through the simulated network. When the data arrives
at the destination, it also simulates the final delivery of the data to the destination
processor.

Report Organization

The remainder of this report describes the PST tool design in detail. The following four
sections describe the key modules of the system: the User Interface Module (UIM); the
Architecture Module (AM); the Language Module (LM) and the Evaluation Module
(EM). Being the largest of the modules by far, the evaluation module section is further
broken down into sections describing the various models used such as memory, processor
and communications.

Following the description on the design of the tool, a summary of tool performance is
given as well as directions for future research and development of the tool.

User Interface Module

The user interface module is divided into several sections: the UIM main loop, record
interaction, graph interaction and architecture specific buttons. All of these sections rely
on a supplementary data structure (widget) called the NewRecStruct. The UIM main loop
sets up the main window, initializes global variables and handles functions that do not fit in
with the other main sections. The record section handles all functions pertaining to the
creation and modification of a record; the NewRecord() function creates a new record
widget, initializes its unique NewRecStruct, and sets up the callbacks for all of its buttons.
The graph section handles the functions pertaining to the graph module. Lastly, the
buttons section defines the functions that insert buttons specific to a particular architecture
into the record widget.

16

NewRecStruct is a structure that contains all of the widgets and variables inherent to each
individual instance of a record window. When NewRecord() is called, it creates a new
NewRecStruct. To keep the notation simple, we will refer to the NewRecStruct. When the
NewRecStruct is passed to callback functions, there is an entry, w, which holds the parent
record widget defined by NewRecord. There is also an entry, temp_widget, which is
initially set to NULL. It points to widgets that are to be destroyed at the end of a callback.
For example, when you pop up a file selection dialog to choose an architecture,
temp_widget gets set to the newly created FileSelection widget; when the user presses OK
or Cancel, XtDestroyWidget() is called on temp_widget. There is also an entry, rec, which
is a pointer to a Record_Table. This entry gets updated every time the user picks a new
architecture or application. After a run, several values stored in rec are used to report
system performance information (such as cache hits, cache misses, and total time). The
rest of NewRecStruct contains variables that, for example, determine whether or not
windows are opened or closed and label widgets that get updated.

Most of the window layouts are straightforward, with the possible exception of the
Record window. This window begins with a form-shell, which contains a main-window
widget. The main-window widget contains a paned-window widget with four panes. The
main-window widget contains a menu bar. The first (top) pane has a form, inside of which
are the buttons and labels that pertain to all architectures. The second pane has a form
with nothing in it (initially). When a Sequent architecture file is selected, the
SequentButtons() function is called, which puts a second form inside of the first, and fills
that form with buttons specific to the Sequent architecture. When a different architecture
is selected, XtDestroyWidget() is called on the second form, thereby allowing forms to be
inserted into the first form later on. The third pane contains a form, in which there are
"speed buttons" that merely duplicate the functions found on the menu bar. Lastly, the
fourth pane contains a form and several labels that report the results of a simulation run.

When the Graph button is pressed it pops-up the Graph window, and creates a new
NewRecStruct with all of the settings of the original. The Graph window consists of a
form widget with a paned-window widget of two panes. The top pane contains a form
which has three drawing areas: the left and bottom rulers, along with the main graphing
area. It also holds all of the labels showing the current settings of the module. The second
pane consists of a form with three buttons in it. The Change button calls up the menu by
which the settings can be changed, and the Run button calls the GraphRun() function. This
function runs the simulation according to the "Number Of Runs" button. It does not affect
the Record window in any way because of the new NewRecStruct created at the start of
the Graph module. Note that the GraphModule will not run if you do not have a valid
architecture and application selected.

The buttons section handles all of the functions pertaining to specific architectures. The
function names are prefixed with the name of the architecture, followed by the word
Buttons. (Ex.: SequentButtons, IPSCButtons) New architecture buttons can be
implemented by duplicating the existing set-up code, and then modifying it to suit the new
architecture's needs.

17

itecture Modul

The AM is primarily responsible for parsing architecture definition files (.ACH files) into
memory, and reporting errors as they are found. Lex and Yacc are used to implement the
AM parser. The parser is fairly straightforward although the AM parser is modified to
avoid confiicts with the LM parser. For each parameter that the user can specify there is a
matching terminal symbol defined in the Lex/Yacc code. When the lexer recognizes these
terminal symbols they are passed back to the parser, which recognizes collections of
symbols according to the rules of its grammar. As the .ACH file is parsed and complete
parameter assignments are recognized, the corresponding entries in the Record_Table are
filled in. When errors are encountered yyerror is called with a meaningful message. As is
standard practice, yyerror is redefined to print errors to the standard error channel,
provide line number information and error counting capabilities. The following is an
example of the ACH source file and the entries that the parser fills in:

ACH file: Record_Table:

#architecture iPSC architecture = IPSC

num_processors = & /* comments are also size.x[0]=8 (check that 2*n=8

filtered out */ where n is an integer)(comment
ignored)

int + int = 250 us intadd=2500

local_cache_block_size = .5 kb local_cache_block_size = 512

Tables are used by the parser to recognize number-unit pairs as memory or time
specification. These tables contain pairs of strings and numbers. For example "byte" is
paired with "1" and "kb" is paired with "1000". When the parser parses "kb", it searches
the table and sees that "kb" means "*1000" memory units. Similar tables are used to
convert other user strings such as machine names to architecture numbers that can be
stored in the Record_Table.

time units list symbol table: memory unit list symbol table:
"ms" -- 10000 "bytes" -- 1
"us" -- 1 "kb" -- 1024

"kbytes” -- 1024

When parsing is complete, some parameters are checked for validity while others are
computed. The error count is then returned to the user interface so that the user can be
prompted to fix the problem and try again.

18

|

Conceptually, there is another part of the AM. The collection of routines used to construct
and implement hardware models such as processors, shared and local memory, cache,
communications networks, and bit memories, can all be considered part of the AM, but
their discussion will appear in the EM section.

Language Module

The Language Module (LLM) is responsible for parsing RAP source code into a form the
Evaluation Module can use. Lex and Yacc are again used to generate the one-pass parser.
For memory management simplicity, there are permanent storage tables that temporarily
hold the parsed code and tables. The parser requires that the first line of code define the
language mode, which gets stored in the Record_Table. Beyond that, the parser is a fairly
standard C like parser.

As with the AM parser, symbol tables are used to associate text with symbols, although
the LM parser makes more use of them since it is much more complicated. In addition,
symbol tables are dynamically built as functions and variables are defined. Errors are
reported in exactly the same manner as the AM parser. Errors are counted and line
numbers reported with the error messages. Care was taken in the grammar to re-use
sections of the grammar wherever possible so that modifications or additions to the
grammar would be simplified.

As the parser recognizes code, tokens are added to the Record_Table. These tokens have
several values associated with them, the most important being the token type. Tokens will
be primarily referred to by their token type. The tokens are generated in a reverse polish-
like manner. That is, the arguments appear first, followed by the actions. Here is an
examples:

.RAP code: parsed code (tokens):

a=b*c+d; VAR-NAME-"a",
VAR-NAME-"b",VAR-NAME-"c",
BIN_MULT,
VAR-NAME-"d", BIN_ADD, ASSIGN,
REDUCE

Notice that reading parsed code must be dore in reverse, and that the order of operations
is always clear. The parsed code in the above example says that there will be an
assignment of the addition of the variable "d" and the result of the multiplication of
variables "c" and "b" to the variable "a". The REDUCE token is just a place keeper that
means "execute”, or "stop and reduce the current line of code". In order to allow
arbitrarily mixed and nested "if...else" and "for(...)" constructs, there is a count associated
with “for” and "if..else" constructs that counts how deeply nested the code is. When the
sequence of tokens associated with "if...else" or "for" are generated, these counts are used
to mark the tokens.

.RAP code: if counter: parsed code:

if (a==9){ 0 [F_TOKEN(0),REDUCE
...code... 1 ...code...
if (b==2){ l IF_TOKEN(1),REDUCE
...code... 2 ...code...
}]
else{ l ELSE_TOKEN(I)
...code... 2 ...code...
}] ENDIF(1)

} 0 ENDIF(0)

...code... 0 ...code...

In the above example, a nested "if...else" construct is shown. The count is used and then
incremented as each part of the "if" is parsed. The count is decremented after each part is
parsed. In this manner, a nested "if" will always use a count that is one greater that the
previous level of "if" statements. It may be noticed that the "if...else" and "for" constructs
appear in a "forward" direction, that is, they appear in the same order as you might
naturally read them. "if" come first, then the "else”, and so on. This is due to the fact that
it is unknown ahead of time what code will be executed. When the "if" and "for" tokens
are evaluated, the appropriate sections in the code are found and executed, using these
token types and counters.

As variables and functions are defined, tables are constructed containing their descriptions
in addition to recording the token strings that declare them. When variables are declared,
their name, type, size and dimension are recorded and stored in a variable table and
variable name table as shown below:

RAP code: Variable New Var_Data:
names:
int x; index: name tracking=FALSE

0:a address=unknown until run-time

I:b size=4 (bytes)

2:x (new dim_list=NULL (because it is not an

variable) array)
dim_count=0 (because it is not an
array)

value=? (not initialized)

In the above example, an integer, X, is declared. The variable name is added to the list of
variable names, and a Var_Data table is created and added to the Var_Data list. Later,
when the variable x is used, the variable name is indexed in the variable names list, and this

20

index is stored in the VAR_NAME token to indicate which variable the token refers to.
These indices are later used to find the correct Var_Data table. Since variable might be
global or local, there are two difterent places for these tables. Global variables have their
own set of tables. Local variable tables are part of function tables. This way it is easy to
keep variables that are local only available when used in the function block that declared
them.

User defined functions are treated in a similar manner to variables. When functions are
declared, the starting location within the parsed code. the number of parameters, return
type and list of variable tables that describe the parameters are all stored in a function
table.

RAP code: Function statistics table:
void fred(int a) start_pos = 10 (start of fred is 10th
{ int b{10]; token)
. ret_type = VOID
} num_params = |
total_vars = 2

var_names={"a","b"}

var_types={ INTEGER,INTEGER }

var_dim = {NULL.{1}}

var_dim_count = {0,1}

var_data = NULL (these are filled 1n at
run time as variable are
created)

Notice that parameter variables are listed first. When "fred" gets called, all the parameter
variables are initialized. Variables which are declared inside a function block are initialized
as their declaration is evaluated. This way, all the variable tables can be created at once
when the function is called and the entries can be filled in as they are declared and used.

When a variable is accessed, the variable tables of the current function are checked
followed by the global tables. If the variable doesn't exist in the current context, an error is
reported. If a function call is parsed, only the function name and number of parameters are
recorded within the token. After parsing is complete, a check is made to verify that all
functions were defined and used consistently.

The parser also treats some code differently based on the language. Depending on the
language, built-in functions such as communications or image processing functions may or
may not be valid. If a given language does not have a communications network,
communications functions are not allowed. If a machine has shared memory, variables can
be specified as shared or local. These checks are easy to modify if new language modes or
features are added.

21

Since the parsed code is stored in permanent (global) storage and needs to be copied to
the desired Record_Table, the exact amount of memory can be allocated for this table. At
the same time, a) the code and supporting tables are copied to the desired Record_Table;
b) function references are resolved by verifying that the functions are defined and were
called with the correct number of parameters and c) the function names are replaced by
the function table index (to allow efficient access). The permanent storage and supporting
tables can be used again when another file needs to be parsed.

After the parsing is complete, and the parsed code is stored in the Record_Table, the
number of detected errors is returned to the user interface and reported to the user. Once
the AM parser and LM parser have been called, and there were no errors, the Evaluation
Module can be called on to evaluate the system.

Evaluation Module
Overview

The Evaluation Module (EM) is PST's engine. On the highest level, the EM is very simple.
Once the architecture model has been constructed, the EM can just call the routines that
have been set up, which may, in turn, call other routines. The main job of the EM is to
schedule the attention of PST across the various activities that must appear to happen in
parallel. There is a time associated with each concurrent process in PST. The scheduler
simply calls the handler with the lowest time without regard to what kind of process it is.
Since any memory access might be to shared memory, each access must cause the
evaluation of a program by a processor to pause in order to give other processors a
chance to operate, in case another processor is affecting the memory at the same time.
This arrangement also keeps all processors at about the same simulated time.

Before the Scheduler is called, the system model must be constructed. As mentioned
earlier, the entire model is built on a Record_Table. First, any models already in the record
are destroyed. This is accomplished by destroying all current architecture models and
language tables. Then a general architecture construction is initiated by the general_init
routines. For example, the Sequent models are constructed by calling the
SEQUENT _general_init routine. All these routines are very similar. They all construct the
appropriate number of processors, initialize communications, create and connect memory
models. After the processor models are constructed, they are initialized with the first line
of parsed code.

Once the entire system has been modeled, the EM scheduler continuously passes control
to the process with the lowest time until all the processes are done or have indicated that
they are waiting forever (Figure 7). Once this condition is met, all processors in the system
have completed evaluating their code, so the performance of the system can be recorded.
There are machine specific routines to record the performance of the evaluated system,
since each machine might have a slightly different organization. When the EM returns
control to the user interface, these performance parameters are displayed.

22

\

Clean up
old model

run process handler

create and
initialize
system

model

find lowest time
of all processes

record

system
performance

v

Figure 7.

To describe how the models were designed and implemented, we will describe the Sequent
model as a base form. Other models will then be described in terms of additions and
modifications to the Sequent model.

The Sequent Model

The Sequent is a shared memory, multiple processor system that generally has between 2
and 30 processors, each running their own copies of a variant of the UNIX operating
system. All processors are connected to the same shared memory through 8 KByte caches.
Each processor is also connected to its own small local memory. All inter processor
communications is done through the shared memory.

The difficulties involved with shared memory are as follows: only one processor can have
access to the memory at a time and caching is difficult, since another processor might
change the data at a memory location that is in another processor's cache.

There is not much that can be achieved for the first problem. In practice, the effort

required to allow more than one processor to access shared memory is considered to be
much greater than the advantage such a scheme would provide.

23

To deal with the second issue, the Sequent implements a First In First Out, Write-Through
cache (FIFO WT cache). The cache is a fairly standard one. with one modification to
make it compatible with a shared memory system. Each cache ensures that if it contains a
block containing a memory location that has been modified by another processor, that
block will become invalid. Notice that since the caches are write-through, whenever a
processor writes to shared memory, the shared memory gets written to, regardless of
whether of not the block was in cache. Since the writing processor can update its cache, it
does not need to re-read the entire block. Any other cache that has a block containing the
address, however, needs to re-read the block if the processor reads any data from the
same block. Notice that the other caches do not need to immediately re-read the block,
their copy of the block just becomes invalid, and is thus free for re-use.

To model the Sequent, it is necessary to model shared memory, local memory, and caches.
Since this is the first system described, the models used to carry out the evaluation process
will be described. The next system that is covered builds on the models developed for the
Sequent to a great extent.

Memory Models

To model memory in general, there are a few features that are required for all models. The
address range must be described, and access functions must be available. The information
to determine access time is only needed within the memory model and is only needed
when con-tructing the model. Once a memory model is constructed, simulating a memory
access to the device involves calling the memory model's general read or write routine
with the current time, address, and size of access. The access routine determines and
returns the access time. By making all memory models cenform to these rules, memory
can be connected to a processor in any arrangement. Shared memory, local memory, and
cache devices are all written to conform to these rules which means that any combination
of these devices can be modeled by simply creating and connecting the models as desired.

general memory model:

memory_read evaluate a read of the memory device
memory_write evaluate a write of wic inemory device
destroy_memory used to destroy the memory device

Specific memory models all have the general memory model in common. Specific models
only add information to the model. To read and write to these memories, the general
memory model is Aways used. Since the memory read and write access functions will be
set to the correspunding model functions, the specific data will be available to those
routines. All these inemory devices can be connected to the processor model with the
connect_??? routines, which simply add the memory device to the processor model's list of
memory devices for the particular architecture 7??.

24

Local Memory Models

The local memory model is the simplest model. Since local memory only has one
processor accessing it, the only information it needs, in addition to the general model, is
the access time. To simulate a read, the local memory only needs to compute the amount
of time it takes to read the amount of data requested. This access time is returned. The
same procedure is used for writing. Since only one processor is connected to a local
memory, there are no other issues to consider. The time at which the memory is accessed
is irrelevant since no other processor or device affects local memory. The memory can
always compute the access time easily. The access time is:

Access Time = (size of read) * (access_time),

To create a local memory, the create_LM routine is called. It accepts the start and end
address, as well as the memory access time. This routine creates a local memory data
table, fills in the access time, addresses, and access functions. When a general memory
model read or write is executed, the local memory access functions for read or write will
be called. These functions, of course, have access to the extra information in the local
memory model.

Shared Memory Models

The shared memory medel is only slightly more complex. A shared memory is memory
that can be accessed by more than one processor. In this model, shared memory is
Exclusive Read/Exclusive Write. That is, only one processor can read or write to shared
memory at a time. A processor that tries to access shared memory has to wait if another
device is already accessing it. In PST, only one task can be accomplished at a time, so
some method of enforcing the ER/EW must be devised.

When a processor model to access shared memory, it is assumed that the processor
making the access is the one with the lowest time (this is the way the scheduler functions)
and should be the first to win access. The processor is given the access time and
evaluation continues. The next access of shared memory cannot happen until this access is
complete. So the shared memory model keeps track of the earliest time that it can be
accessed, that is the time it again becomes available. The waiting processor's access time
will be longer. This second processor also gets an access time, but if the access was
requested before the memory was available, it will get a longer access time, otherwise the
access time is computed as before. In either case, the next available timne is updated.

This protocol ensures that processors get access to shared memory on a first come first
serve basis, and that processors have to wait for other accesses before it can complete its
own. The only added responsibility of the shared memory model keeping track of the
earliest time that it can be accessed. The access time is computed as follows:

25

Access Time = MAXIMUM((avail),(time of access)) + (size of access)*(access_time).

As with the local memory, there is a routine called create_SM, that accept the address
range and access time. This routine creates the shared memory model data, and initializes
it with the shared memory access functions, memory ranges, access time and an initial
available time of zero. When the shared memory access functions are called through the
general memory model, these shared memory access functions have access to the extra
data needed to implement the above described model.

Cache Memory Model

Caches are memory devices that are used to speed up accesses to some other memory
device. Caches also act in the same manner as other memories. When a cache is accessed,
the cache checks its tables to see if the data is in the cache, if it is not, it accesses the
cached device, also following the general rules of memory access’. It updates it's tables,
and returns the total access time.

The Sequent uses a First In First Out Write-Through (FIFO WT) cache. This type of
cache handles reading and writing differently. When a read access occurs, the cache
determines whether the cache contains the requested memory (referred to as a "hit") or
not (referred to as a “miss”). If it is in memory, the cache calculates the time to access the
(local) cache memory. Otherwise, the block containing the requested data must be
swapped into cache memory. If there is not enough room in the cache, a block must be
swapped out to make room. In a FIFO cache, the first block that was swapped in is the
first one that gets swapped out. This means that there are three possibilities on a read: the
data is in cache; the data is not in cache, but there is room for a block to be read; the data
is not in memory, and there is no room for a new block to be read. The first case is the
most desirable, while the third is least.

A write, on the other hand appears simpler. A cache is said to be Write Through when it
always writes the data to the cached memory, regardless of whether or not it is in cache.
As suggested above, there is a hitch. If a cache is connected to shared memory, it is
necessary to know when another processor changes data that is in this processor's cache.
This will be referred to as invalidation. The caches in PST have an "invalidate" option
which allows them to invalidate the blocks of other caches whenever a write occurs. With
this option, caching of shared memory can be modeled.

The additional data required by the FIFO WT cache are the same as for shared memory
PLUS a table of blocks and an entry for the cached memory device. Notice that the cached
device can be any valid memory device that follows the general rules of the memory
model. The function create_FIFO_WT_cache handle building the cache. This function
accepts the following parameters: start and end address, size of cache, cache block size,
cache memory access time, hit and miss penalties (time to decide hit or miss), the mode of
operation (does it invalidate other caches?), and the memory device that is being cached.

26

The Process Model

Now that the memory devices that the Sequent uses have been modeled, it is necessary to
model the processors, and to connect the models together. The highest level of the
Evaluation Module has already been described briefly above. Any model that needs to
appear to operate in parallel will be broken down into units called processes. In the case of
the Sequent, the only processes we have are processcr processes. Since caches are
attached to processors, and memories are attached to caches, these models can be
attached to the processor model and do not need to be considered separately. To make
each process behave as though it were running in parallel, the process with the lowest time
always gets control. It is the responsibility of the process to only do one discrete task at a
time, and to return its new time. It is assumed that discretizing the tasks of each process
will have the effect of allowing each process to be given control in turn, with the result
being each process behaves as though it is continuously running alongside the other
processes.

All processes are treated in the same manner, even though they may be doing completely
different tasks. All processes are based on a generic process that has a handler and
collection of data. Each process has a handler (function)/data pair. The way control is
passed to a process is by calling the process handler for that process with the data
associated with the process. In general, all processes have a number, process tag, and
destroy_process entry. The process tag is used to uniquely identify each process, the
number is used to give the process a meaningful number that , in the case of a processor, is
the same as that processor's node number.

All these processes return their current notion of their time so the EM scheduler can
update its tables. There are special times that PST treats differently. INFINITY means that
a process is in the middle of doing something that relies on another process' influence to
complete, and that it may be blocked for an infinite amount of time. PROCESS_DONE
(greater than INFINITY) means that the process is done and needs no further evaluation.
If no process has a finite (less that INFINITY) time, then PST assumes that evaluation is
complete since all the processes are either done, or waiting for forever. When this
happens, the scheduler calls the machine specific parameter recording routine which does
a final tally of system performance by calculating average cache hits/misses and any other
parameters that need to be calculated. Control is then returned to the UIM.

The Processor Model

Since all machines have some kind of processor, and PST will not be modeling the
differences caused by using a different microprocessor, the processor model will be
general. A processor is just the device that is responsible for all the computation in a
system. Processors have memory devices attached to them. They also know how to
execute parsed code. The processor model has a very simple high level routine. A

27

processor simply processes the execution stack one more step. When the processing step
is complete, the processor simply reports its notion of time.

return new
processor
time

call token handier for
token on top of the
stack

Since the main task of the processor is to simulate execution of the parsed code, a
discussion of how code is treated is appropriate here. Recall that we are still describing a
system of evaluating a Sequent system, even though many aspects will be applicable to
other models. Since PST will only be evaluating the performance of a parallel system, and
should run in a reasonable length of time, only the values of integers are tracked. With this
in mind, the language for the moment is limited to handling integer data types, and arrays
of integers. It is straightforward to determine the value of an expression. Any value
derived exclusively from known values (variable that have had some know value stored in
them, or constants) will also have a known value. If a value is derived from one or more
unknown values, it, too, will have an unknown value. The process of determining whether
or not a value is known will be referred to as tracking. That is to say, values are either
tracked (known) or not (unknown). Due to this fact, decisions (if conditions, for loop
condition, etc.) cannot be derived from untracked expressions. For example, elements of
an array cannot be used to make decisions, although reading, writing, and other
mathematical manipulations are completely supported. The reasoning behind this is that it
is not necessary to actually, for example, convolve two images to determine the
performance of a convolution algorithm. The impact of these assumptions will affect the
details some of PST's token handlers, which will be discussed shortly.

Remember, a process is only supposed to do one discrete task, then return control back to
the scheduler. To accomplish this a processor utilizes an execution stack, program
counter, memory models, call stack, function tables, variable table and its own notion of
time (the processor time). To process user code, PST implements a fairly standard stack-
based algorithm. The only difficulty encountered here is the restriction of accomplishing
only one task at a time. In an ordinary stack based algorithm, parsed code is executed by
calling token handlers, that, if necessary, call other token handlers. Each token handler
does its job and returns. The problem is that in PST, each token handler might not be able
to complete its task if it or any token handlers that descend from it cannot complete their
task. In fact, very few tokens can complete their task in one call, since they are required to
return control as soon as they have done one discrete task. It is observed that the only
modification that is needed is to make each token handler re-entrant. Another way of
looking at it is to say that each token handler must save its state on the stack before it
returns, so that the next time the stack is processed, the correct token handlers will be
called, and they can continue their job.

28

To help explain the design and use of token handlers, an example will be presented. When
a processor needs to execute the line "a=b*c+d", it simply reads each token,
VAR_NAME-"a", VAR_NAME-"b", VAR_NAME-"c", BIN_MULT, VAR_NAME-"d",
BIN_ADD, ASSIGN, and REDUCE, pushing each one on the execution stack in turn, so
that REDUCE is on top. The routine that does this is "Get_line_of_code", which simply
reads tokens from the parsed code, and pushed them on the execution stack until a
REDUCE is encountered. The REDUCE is never left on the stack.

Parsed code:

..VAR_NAME-"a", VAR_NAME-"b", VAR_NAME-"c", BIN_MULT,
VAR_NAME-"d", BIN_MULT, ASSIGN, REDUCE....

Execution
stack :

before: after:

ASSIGN
BIN_ADD
VAR_NAME-
Ild"
BIN_MULT
VAR_NAME-
llcll
VAR_NAME-
llb"
VAR_NAME-
llall

...(other ...(other

tokens) tokens)

There is actually a token handler that is responsible for calling the Get_line_of_code
routine. It is the GET_LINE token, and its sole job is to bury itself under other tokens.
Each time the execution stack is reduced down to the GET_LINE token, it reads more
code on top of itself. We will assume that the current state of the stack is as shown above.
When this processor is called by the EM scheduler, the ASSIGN token handler is called.

The ASSIGN handler first removes the ASSIGN token from the stack. It then looks for
two arguments: a VALUE and a VAR_NAME. Each is taken from the stack if found. If
ASSIGN finds both, the assignment is made (VALUE is copied to the variable names by
VAR_NAME), and the VALUE is returned to the stack. The reduction looks like the
following:

29

Stack before reduction: Stack after reduction:
ASSIGN
VALUE VALUE
VAR_NAME ...(other tokens)...

...(other tokens)...

In the "a=b*c+d" example we are considering, ASSIGN does not see VALUE on top of
the stack, the ASSIGN cannot be reduced. Instead, ASSIGN simply calls the token
handler for the token on top of the stack, the BIN_ADD token handler in this case. When
this token handler returns, the ASSIGN token will replace the ASSIGN token, and itself
return. The next time the ASSIGN token is called, the same sequence of operations will be
followed based on the new contents of the stack.

The BIN_ADD token handler falls into the category of a binary operation. Since all binary
operations are similar, they all use the same token handler. This token handler treats all
binary operations in an identical manner with the exception of what it actually computes,
which is determined by the type of the token. The binary token handler removes the
BIN_xxx token, then looks for two VALUES. If they are found, they are removed, the
given binary operation is carried out, and the resulting VALUE is pushed on the stack,
yielding the following stack reduction:

Stack before reduction: Stack after reduction:
BIN_ADD
VALUE VALUE (sum of two VALUES)
VALUE ...(other tokens)...
...(other tokens)...

Recall that some VALUES may not be tracked, and the tracking rules must be enforced in
this token handler. In our example, the VALUE token is not found, so the BIN_ADD
cannot be reduced. The stack is again processed by calling the token handler for the token
that is currently on top. In this case, the VAR_NAME token handler.

The VAR_NAME token handler is very simple. It simply looks up a variable's contents,
address, and size information. The access time determined by the memory models is added
to the processor time and a VALUE is created and pushed on the stack to replace the
VAR_NAME token. Thus the reduction of a VAR_NAME token is simply the
replacement of the VAR_NAME with a VALUE. The VAR_NAME handler now returns.

In our example, the VAR_NAME handler returns to the BIN_ADD handler. The
BIN_ADD token handler replaces the BIN_ADD token to the stack before it returns.
Now the ASSIGN replaces its ASSIGN token and returns to the EM scheduler. The net
result is as follows:

30

Before processing:

ASSIGN
BIN_ADD
VAR_NAME-"d"

BIN_MULT
VAR_NAME-"c"
VAR_NAME-"b"
VAR_NAME-"a"
...(other tokens)

After processing:

ASSIGN
BIN_ADD

VALUE - (the value of variable

")
BIN_MULT
VAR_NAME-"¢"
VAR_NAME-"b"
VAR_NAME-"a"
...(other tokens)

The next time through the process, the BIN_ADD token will get the first VALUE, but
will not get the second. Instead, the BIN_MULT handler will be called, which will look
for a VALUE. It will instead see the VAR_NAME-"c" token. The VAR_NAME token
handler will be called, and another memory read will occur. Each token handler will
replace its tokens on the stack, referred to as "saving its state”, and return. The next time,
the variable "b" will be read, and each token will again save its state. The next time, the
BIN_MULT will be reduced, and so on until finally the ASSIGN can be reduced. The
following table shows the state of the stack after each step. The asterisks indicate tokens
that will be reduced.

Step 1: Step 2: Step 3: Step 4: Step 5:
ASSIGN ASSIGN ASSIGN

BIN_ADD BIN_ADD BIN_ADD

VALUE VALUE VALUE ASSIGN

BIN_MULT BIN_MULT BIN_MULT* BIN_ADD *
VAR_NAME- VALUE VALUE * VALUE * ASSIGN
IIC"*

VAR_NAME- VAR_NAME- VALUE * VALUE * VALUE
"b" llb"* v

VAR_NAME- VAR_NAME- VAR_NAME- VAR_NAME- VAR_NAME-
ﬂaN n a“ "a" "a" Ila"
...(other ...(other ...(other ...(other ...(other
tokens) tokens) tokens) tokens) tokens)

All other token handlers are implemented in a similar manner. When a user defined
function is called, the FUNC_CALL token handler is called. It behaves in a similar manner
as the binary operation token handler, except that it looks for as many VALUES as it has
parameters. When it has all the parameters it needs, it looks up the location of the called
function. The current function is suspended by placing all the local variable tables and the
current program counter on the call stack. Then the current program counter is changed to
the new one. Get_line_of_code is called to start the new function, and a new set of local

31

Step 6:

VALUE

...(other
tokens)

variable tables is constructed. A series of assignments between parameters and VALUE is
also pushed on top of the stack to initialize the parameters before the first line of parsed
code for the function gets processed.

The details of other token handlers will not be covered here in as much detail. Techniques
are used to allow the stack to remain fairly small while still allowing nested "if...else" and
"for(...)" constructs. The solution lies in using the counts supplied by the LM with these
tokens and matching intermediate tokens to keep track of each level. For example, there
are a total of ten tokens used to implement a “"for(..)" construct. There is the
FOR_TOKEN, which initiates the loop, the END_FOR, which marks the end of a for loop
in the code, as well as several tokens that handle evaluating the initialization, conditional,
body, and increment statements.

While the details of other token handlers will not be discussed, the methods used by the
Evaluation Module to allocate variable storage will be discussed. Since PST does not
allow the dynamic allocation of memory, allocation of function variables within a function
block can be accomplished in a stack-like manner.

Variable Allocation

When functions are called, new variables must be created. This means that there must be
some kind of memory management model that keeps track of memory usage, and most
importantly, variable addresses. The Sequent has shared class variables which exist in
global memory, and local class variables, which exist in local memory. For this reason,
processors need to model the memory usage of these memories.

Since PST does not allow the dynamic allocation of memory, variables in local memory
are declared and freed in opposite order. It is only necessary to keep track of the highest
memory location that is available for use. As variables are allocated, they are given this
address, and this top of memory (referred to as top_mem) is incremented. When the
variable is destroyed, the top_mem is replaced by the address of the variable. For example,
when one function calls another, the parameters and variable of the new function are
allocated. When that function returns, all its variable storage is given up, and the memory
usage returns to the same state as before the call. Since the memory usage of local
memory are not affected by other processors, we are guaranteed that this property will
hold regardless of the program being evaluated.

Allocation of variable storage in shared memory is more difficult, since each processor
may allocate and free memory at different times. Each processor will allocate and free
memory in a similar fashion as described above for local memory. Two processors may
not happen to allocate and free memory in the same order, especially if one takes more or
less time to execute. This complicates shared memory allocation substantially. As with the
local memory, PST keeps track of the highest available memory location in shared
memory, but a technique is used to help determine the new top_mem (top of memory).
There is a table of memory addresses that mark the end of each variable allocation. A new

32

entry is created for each new allocation. When a variable is freed, this table is scanned to
determine the new top_mem. While there are other schemes, this one provides a simple,
easy to compute, memory management system.

Sequent Model Details

So far we have described how the memories that the Sequent uses are modeled. The
processor model, complete with the methods used to evaluate user code and memory
management have also been developed. The only thing that is left is to explain how all
these models are brought together.

The data that the AM parser set up in the Record_Table is used to construct the system
model. The Sequent general initialization routine creates a shared memory and as many
processors as specified in the Record_Table. For each processor in the system, a local
memory is created, and two caches are created. One cache is created for the local
memory, the other for the shared memory. The memory usage tables are initialized.
Finally, one processor is initialized with the first line of code and is added to the EM
scheduler.

Now when the scheduler is called, the system will perform the evaluation of the Sequent.
The only issues left to discuss are the system calls. There are several Sequent specific
functions that are supported. The mfork() function initializes a specified number of
processors with the first line of code of a specified function. Two other functions are
needed to complete the Sequent system calls: mypid(), which returns the node number of
the current processor, and numnodes(), which returns the number of processors in the
system.

The mfork() routine is the more difficult of the three to implement. It is assumed that the
processor that is initially running is processor number 0. When mfork is called, for
example, "mfork(4,.fred)", 3 more processors are added to the EM scheduler at the current
time of processor 0, and they are initialized with the first line of the function fred's code.
When the mforked processors finish, they are removed from the EM scheduler. Processor
0 always waits for all mforked processors to return before continuing with the next line of
code.

The function myid() and numnodes() are trivial. They simply return the number of the
current processor, and the number of nodes in the current system respectively. Since these

data are in the processor table and Record_Table, they are simply copied to a VALUE
token, which is left on the stack for the evaluated code to use.

The IPSC, Delta and CM-5 models

The iPSC, CM-5. and Delta are all multiple processor machine connected in different
pattern. Each processor in these systems has only local memory, and communications

33

between processors is through the communications network. When these machines
execute programs, all processors are started at the same time. To model the iPSC, the
general initialization routine needs to construct many of the same models as the Sequent.

Before the initialization routine can start, the AM parser must be expanded to recognize
the new communications parameters, such as link latency and bandwidth. Notice that these
new parameters must be valid in the correct types of .ACH files and not valid in Sequent.
The LM parser must also be expanded so that in iPSC mode recognizes the new
communications system calls such as csend() and crecv(), while not allowing the Sequent
system calls.

The data that the AM parser sets up in the Record_Table is used to construct the system
model. The general initialization routine creates as many processors as specified in the
Record_Table. For each processor in the system, a local memory is created, and a cache is
created for the local memory. The memory usage tables are initialized. Finally, all
processors are initialized with the first line of code and is added to the EM scheduler.
Finally, the communications network is initialized.

Now when the scheduler is called, the system will perform the evaluation of the given
machine. As with the Sequent, there are special functions that are valid in these new
machines. They are all communications related and are covered in the Communications
section of this report.

The CLIP Model

The CLIP is a single instruction, multiple data machine, which means that there is only one
operation happening at a time, but it is happening in all the processing elements. The CLIP
is connected to a host machine that gives it its instructions.

The CLIP is a 96x96 array of bit processors which are generally intended for image
processing. Each processor has only a few bits of memory, usually 32 bits. The processors
can operate on these bits, update the bits, pass one of its bits to a neighbor and accept one
bit from its neighbor. There are special functions that load an entire bitplane into the CLIP
memory, or swaps out an entire bitplane. There are also functions to latch the bits that are
to be processed, as well as functions that cause a bit operation to be carried out. Since
each processor only processes a bit at a time, multiplication of images with 8 bits by
images with 8 bits requires the processing of each bit separately. While this makes the
code long, there is an advantage in that all 96x96 processors will be running at the same
time, and will complete the operation at the same time. Software on the host computer
implements a FIFO cache scheme with the bit memories.

To model the CLIP, it is only necessary to evaluate one processor since each processor
will be doing exactly the same thing. Since the CLIP is a completely different kind of
machine, which primarily processes images, PST must be expanded to handle images as
well as bit memories.

34

Clip Extensions

The CLIP memory model also follows the general memory model. The extra data the
CLIP memory has is as follows: length (number of bits per processor), processor register
A and B and bitplane information. The CLIP memory is viewed as occupying one memory
location. All reads and write to CLIP memory are empty functions, since images are not
directly accessed. The CLIP memory model is so simple because all the action happens
based on the user code.

As before, the AM parser must be expanded to recognize the CLIP parameters, such as
number of bitplanes, bitplane access times and primitive operation times. The LM parser
must be modified to recognize image types, and the CLIP system functions such as LDA,
LDB, PST_local, PST_pointwise, and image locking functions. Once the parsers have
been updated to include the CLIP constructs, the token handlers corresponding to the new
system calls in the Evaluation Module must be added.

Both the LDA(), and LDB() system calls simply latch the specified bitplane into the CLIP
bit memory. If the bitplane is not already in memory, it is loaded. The PST_local() and
PST_pointwise() first ensure that the destination bitplane is in CLIP memory, if it is not, it
designates a bitplane to be the destination, and the old one is discarded. If there was no
room for the destination image, a bitplane is swapped out to make room. While the
evaluation of PST_local() and PST_pointwise() are very similar, they may be specified to
have different execution times since they actually carry out different operations.

Since the bitplanes are cached, the bitplane load and store operations follow the rules of a
FIFO cache, with one modification. Bitplanes can be locked. A locked bitplane will only
be swapped out if there are no other planes that can be swapped. That is, if an image must
be swapped in, unlocked images will be swapped out before locked images. The system
calls im_lock() and im_unlock() to set a lock flag in the specified images.

The CLIP general initialization routine simply creates one processor and creates local
CLIP memory. Both memories are connected and the processor is initialized with the first
line of code. Now the EM will evaluate the user code, and all the CLIP system calls will
be evaluated.

Communication Model

General

The communication model si.nulates the message passing operations performed on the
distributed-memory parallel MIMD systems considered by the PST; currently the Intel
Hypercube, Intel Delta and Thinking Machines' CM-5. Systems of this kind are made up
of a set of nodes, each of which consists of a main processor, memory, and interface to the

35

network. Nodes process information independent of one another and communicate by
sending and receiving messages. This independence gives these systems what is called a
loosely-coupled architecture.

Even though each processor has its own goal, all must work together to produce the
overall objective of the parallel application. Therefore, communications among processors
in a loosely-coupled system is essential. In fact communication on such systems serves
both to synchronize processes and to exchange code and data information among
processes.

The importance of communication on such systems rises from its cost and the problems it
may cause. The cost of sending messages between processes is the time required to send,
transfer and receive them; time that could be spent doing computations that advance the
solution of the problem. In general, minimizing the ratio of the number of messages to the
number of calculations performed on each node will improve the running time of the
algorithm.

Bottlenecks and deadlocks are serious problems that may result from careless message
passing algorithms. A bottleneck results when all the nodes in the system send a message
to a single node at the same time. Deadlock may result when all nodes are waiting for a
message that never get sent.

As explained above, each processor has its local memory. When information that is stored
on one node is required by another node, one node must send the information and the
other node must receive it. This is the concept of message passing that is used by the
above three machines. Sending a message requires cooperation from the sending node, the
receiving node and the communication network. On the above three machines, when the
communication network accepts a message it takes the full responsibility of delivering it to
its destination. Because of its independent operation, PST views the communication
network as another process running on the system that needs to be evaluated.

As explained above, the Evaluation Module (EM) evaluates one line of code from the
application code at a time. A line of code can specify a simple operation or an architecture
specific operation. A simple operation is an operation that requires only one processor
local resources for its execution. An architecture specific operation is an operation that
involves more than one processor.

The EM provides routines that are called to evaluate architecture specific operations.
Message passing operations, being architecture specific operations, are evaluated by
calling the appropriate handler. For example, to evaluate a csend() function call on the
DELTA, the DELTA csend handler is called.

PST divides the messages passing operation into two functions: The processor function

and the communication network function. The processor function also has two functions:
the sender function and the receiver function. Each of these functions gets evaluated be

36

calling the appropriate message passing handler. When a processor issues a crecv()
function call, 7?7?_Crecv() - where ??? is the machine name - is called to evaluate it.
Similarly, when a processor issues a csend() function call, ???_Csend() is called to
evaluate it. Evaluating the communication network function of the message passing is
done by calling the Handle_???_Communications routine. This routine gets called by the
EM when there is an active message on the communication network.

Description of Hypercube, Delta and CM-5 Communication Networks

Delta

The Touchstone DELTA system has 576 nodes, where 512 are computational nodes,
connected in a 2-dimensional 16x36 mesh. Each processor is connected to a VLSI Mesh
Router Chip (MRC) which connects it to its nearest neighbors: this means four
connections per MRC, except for the top, bottom, and side MRC, which have three (see
Fig. 8).

VTR

—| MRC ———P» ———®] MRC [——— [
- |

- |

—| MRC ;:2 MRC MRC [G————#1 MRC |[@*——
NODE NODE NODE NODE

—| MRC (@ | MRC [MRC |[G————#] MRC [

MRC a VLSI Mesh Router Chip a processing NODE

Figure 8.

37

The system contains two system buffers (array of packets) that are statically located at the
system initialization time. The first is called the free pool. This space is used on a first-
come-first-served basis. The free pool allows large messages (or many small ones) to be
buffered by the receiving node. The free pool can hold up to 2¥84 packets. The second is
called the reserved pool It is logically divided among all of the other nodes in the system.
It guarantees that a certain number of packet buffers are available for every other node in
the system. The reserved pool has enough space to reserve 6 packets for each other node
in the system.

Each node maintains 3 counters for every other node in the system to keep track of flow
control of the message passing protocol. One counter (c-1) keeps the number of packet
buffers the nude has reserved for each other node in the system. Another counter (c-2)
keeps the number of packet buffers that each other node in the system has for this node.
Finally, a third counter (c-3) keeps the number of packet buffers that the node owes each
other node in the system.

Each potential sender is guaranteed at all times to have a certain amount of buffer space at
the receiver. Both sender and receiver know this (by the counters). The sender can send
packets to the receiver until it has used up its guarantee. Then the sender blocks until the
receiver “gives back” some guaranteed buffer space.

At the receiver, the guaranteed buffer space is replenished immediately if possible. This
can be done in one of two ways. If the incoming packets had to be buffered, but the free
pool had space, then the guaranteed buffer space is replenished from the free pool.
Another way to think of it is that the packets were actually put in the free pool, and thus
did not consume guaranteed space. If the incoming packets did not actually have to be
buffered (because the corresponding receive had already been issued), then the guarantee
is just incremented to account for buffer space not actually consumed.

The receiver keeps track of the sender's view of the guarantee, as well as its own. When
the receiver finds that the sender's view has gone below some threshold, then the receiver
"gives back” the difference between its view and the sender's by including it in the header
of a packet going the other way, if there is one, or by sending a packet just for that
purpose.

Given N is the number of buffers reserved for each node in the reserved pool, the
communication protocol on the DELTA can be described as follows: if a receive was
posted for the message before the message arrived, the sender decrements c-1 and the
receiver decrements ¢-2 and increments c-3. If a receive was posted when the message
arrived, but the free pool was not full, the sender decrements c-1 and the receiver
decrements ¢-2 and increments c-3. Finally, if a receive was not posted when the message
arrived, but the free pool was full, the sender decrements c-1 and the receiver decrements
c-2 but does not increment c-3. When c-3 goes to zero, senders get blocked (prevented
from sending messages to that node). The above three counters (c-1, ¢-2, ¢-3) enable the

38

"—_—

sending processors of knowing if the receiver has enough space to provide temporary
storage for the message until its corresponding receive is posted. This is a kind of hand-
shaking that helps in minimizing the chances of errors in the message passing.

The DELTA uses its bi-directional communications links to implement a wormhole
routing algorithm. The wormhole name is chosen to indicate that even though the message
is sent packet-by-packet, the routing algorithm guarantees that the packets will arrive at
the destination node in the same order they were sept. Messages on the DELTA are
broken into packets before they are sent. Each packet couisists of a 32 bytes header and a
maximum of 480 bytes of data. The DELTA provides up to a 10 megabytes/second link
bandwidth and a nearest neighbor hardware latency (delay) of less than 1 microsecond.

The DELTA communication library provides for both synchronous (blocking) and
asynchronous (non-blocking) communication functions. The synchronous send function
call (csend()) and the asynchronous send function call (isend()) take the following form:

csend(type, buf, len, node, pid)
isend(type, buf, len, node, pid)

where;

type: Is the type of the message being sent.

buf: Is a pointer to the buffer that contains the message being sent.

len: Is the size (in bytes) of the message. Message size is limited only by the
memory available for the buffer.

node: Is the node to receive the message being sent. Setting node to -1 implies
sending the message to all nodes except the sending node.

pid: Is the ID to receive the message (always 0; other values ignored.)

The synchronous receive function call(crecv()) and the asynchronous receive function call
(irecv()) take the following form:

crecv(typesel, buf, len)
irecv(typesel, buf, len)

where:

typesel: Is the message type.

buf : Pointer to the buffer in which to store the received message. The buffer can
be of any valid data type, but should match the data type of the buffer in the
corresponding send operation.

len : Is the size (in bytes) of the message. Message size is limited only by the
memory available for the buffer.

39

As explained above, crecv() is a synchronous call. The calling process waits until the
receive completes. To receive a message without blocking the calling process, irecv() (an
asynchronous call) instead of crecv() is used. To achieve the correct operation of irecv()
and isend(), the DELTA communication library provides another two function calls that
informs the programmer when irecv() and isend() are completed. The first is msgwait()
which takes the message ID as a parameter and returns when isend() or irecv() are
completed. The second is msgdone() that returns TRUE if isend() or irecv() are
completed, otherwise it returns FALSE.

Msgwait() is a synchronous function call while msgdone() is asynchronous. Msgwait()
blocks the calling process until the corresponding isend() or irecv() is completed. On the
other hand, msgdone() checks if the corresponding irecv() or isend() is done or not, and
returns TRUE or FALSE (does not wait).

Hypercube

The iPSC/2 system consists of a collection of single board processors or "nodes"
interconnected with full-duplex bit-serial channels to form a hypercube. In a hypercube
where each node has N nea.est neighbors nodes, the system is said to have dimension N.
The nodes are assigned unique addresses so that the address of any two nearest neighbors
nodes differ only by one binary digit. The dimension of a channel between two nodes is
determined by taking the binary exclusive-or of the two nodes addresses. The bit position
that remains a one is the dimension of that channel. For example, the channel connecting
nodes 5 and 7 is determined by exclusive-or of 111 and 101. The resuit is 010 and because
the "one" is in bit position one, that channel is in dimension one (Fig. 9).

000 010

D -

100 110

001 011

J
A

101 111

Figure 9.

40

Each hypercube node has a Direct-Connect router which allows simultaneous bi-
directional message traffic between any two nodes. The routers form a circuit-switched
network that dynamically creates a synchronous path from a source node to a destination
node, and these remain open for the duration of the message. The path is composed of a
series of channels that form a unique route from the source node to the destination node
and may pass through some number of intermediate routers associated with other nodes.

The Direct-Connect router supports connections for eight full duplex channels and can be
interconnected to form a network of up to seven dimensions containing 128 nodes. Each
of the eight channels is routed independently allowing up to eight messages to be routed
simultaneously. The router communicates with nodes over two unidirectional parallel
busses.

The combination of channels that compose a path are defined by the e-cube routing
algorithm. The algorithm guarantees deadlock free routing by only allowing the messages
to be routed in increasingly higher dimensions channels until the destination is reached.

For example, looking at Fig 9, one can see there are two paths with the same length that a
message sent from node 010 to node 111 may take. The first is to send the message to
node 110 and then to node 111. The second path is to send the message to node 011 then
to node 111. But using the e-cube routing algorithm, the first path must be taken since
XORing 010 and 111 results in 101. The first 1 in the result (left most 1) is in position 2 is
of higher than the | in position 0 (right most). Complementing the bit in position 2 in the
source id (010) we get 110. So, the message is first sent using the channel that connects
node 010 and 110 then to node 111.

A complete path is built in a step-by-step process involving arbitration for additional path
segments at each router. The channels that constitute a path are held for the duration of
the message. A channel is released when the tail of a message passes between the routers
connected by that channel. Taking over the whole path eliminates the need for flow
control buffering in the intermediate routers.

Like the DELTA, each node in the iPSC/2 maintains 3 counters for every other node in
the system to keep track of flow control of the message passing protocol. The
functionality of these 3 counters is the same as the ones for the DELTA and will not be
repeated here. Also, as with the DELTA, the iPSC/2 system contains two system buffers
(array of packets) that are statically located at the system initialization time: the free pool
and the reserved pool. The functionality of these two system buffers on the iPSC/2 differ
from that on the DELTA.

The free pool on the iPSC/2 is used on a first-come-first-served basis for only long
messages (>100 bytes). The reserved pool is logically divided among all of the other
nodes in the system. It guarantees that a certain number of short messages (<= 100 bytes)
buffers are available for every other node in the system.

41

The iPSC/2 provides two levels of communication protocol, one for short messages and
one for long messages. Messages of 100 bytes or less use one trip protocol. The reserved
pool for each node provides a large number of short message buffers to provide temporary
storage for short messages. When a node wants to send a short message to another node,
if the receiving node has a reserved buffer to receive the short message, the sending node
sends a probe to take over the path and then transmits the message. If the receiver had its
reserved buffers used up, the sending node holds the message until a reserved buffer is
available to receive the message.

Messages longer than 100 bytes use a three-trip protocol. The sending nodes first send the
first 100 bytes of the message the same way it sends short messages. This first 100 bytes
serves as proxy for the entire message. The proxy gets saved in the reserved pool at the
destination node until a receive is posted for the message or there are enough spaces in the
free pool to receive the whole message. When one of the above conditions become true,
the operating system sends the sending node a control message to send the rest of the
message. Receiving this control message, the sending node sends the rest of the long
message. When the rest of the message arrives at the destination node, the operating
system puts the message together and places it in the free pool or in the application buffer.

The iPSC/2 system uses its bi-directional communications links to implement a wormhole
routing algorithm that provides 2.8 megabytes/second bandwidth. Also, the iPSC/2
guarantees a nearest neighbor hardware latency of 25 microseconds. The iPSC/2
communication library is the same as that of the DELTA described previously.

A Connection Machine model CM-5 system can contain thousands of computational
processing nodes. These nodes are connected by a Control Network and a Data Network.
We focus our discussion on the Data Network which provides point-to-point
communication that is considered in this model.

The CM-5 Data Network is a 4-ary fat tree - so called because some branches are "fatter”
(of higher bandwidth) than others (see Fig. 10). The size of the CM-5 Data Network is
often described by its height, which is the base-4 logarithm of the number of network
addresses spanned. The height of the network equals one-half the number of bits in a
processor address. A CM-5 scale 3 system, for example, contains a height-3 fat tree,
which can span 43 = 64 network addresses (see Fig. 10).

Each internal node of the fat tree is implemented as a set of Data Network switches, each
a separate VLSI chip. The number of switches per node depends on where it is in the tree:
the closer to the root, the fewer nodes and the more switches per node. Each switch has
four children and either two or four parents. Fig. 10 illustrates a fat tree with 16 leaf
nodes.

42

4668

The routing algorithm is very simple. The message can take any path up the Data Network
fat tree. Once the message has reached the necessary height in the tree, it must then follow
a particular path down to its destination.

Figure 10.

The processor breaks the outgoing message into packets and transmits the message packet
by packet to its destination node. When sending a packet, the processor writes it to the
memory mapped Network Interface (NI) chip, and the NI is responsible for sending the
packet via the fat-tree intercommunication network to the destination processing node NI.
The destination NI alerts (or is polled by) the SPARC chip that there is a packet waiting to
be received.

The Connection Machine communication library provides for both synchronous (blocking)
and asynchronous (non-blocking) communication functions. The library also provides a
number of global functions that operate under the same general protocols as the
point-to-point functions. The global functions include:

broadcasting data from one node to all nodes

reducing data from all nodes to all nodes or to the host (like global sum)
performing scans (parallel prefix operations) across the nodes

performing segmented parallel prefix operations

concatenation of elements into a buffer on all nodes, or into a buffer on the host

43

Communication on the CM-5 can be explicit or implicit. In explicit message passing the
programmer must specify the destination node, the starting address of the buffer to send
and its length. Implicit communication is implied through the data type used, for example,
if A and B are arrays and X is scalar quantity, the statement A = B + X implicitly
broadcasts X to all processors so that the value of X can be added to every element of B.

General Communication Model Outline

We will start the description of the PST communication model by defining some terms.
The Evaluation Module in the Parallel Simulation Tool, has a scheduler that keeps a list of
all the processes in the system. For each process, the scheduler associates a handler, data
and time. The scheduler calls the handler for the process with the lowest time to evaluate
the process. Hence, when a process's time is set to INFINITY (very large time), the
process is blocked because its handler will not be called until its time is changed from
INFINITY to a smaller time.

The Evaluation Module (EM) keeps two kinds of handler: Processor and Temp. EM
associates with each processor a Processor handler which evaluates one line of its code
then advances to the next line of code to evaluate it and so on. Temp handlers evaluate
one line of code but does not advance to the following line. So, if a processor's handler
was changed from Processor to Temp, the processor gets stopped at a line of code and
cannot advance to the next line. The communication model uses this method to force
processors to wait (block) until some commands (synchronous operations) finish.

When a processor initiates an operation whose completion depends on another processor
in the system such as a receive command which does not complete until the message
arrival from another node, evaluations of such an operation depends on whether it was
done synchronously or asynchronously. If a processor's operation was done
synchronously, the communication model replaces the calling processor's Processor
handler and data with a Temp handler and temporary data to complete evaluating it. For
asynchronous processor operations, the communication model creates a new process and
associates with it a Temp handler that completes evaluating the operation.

Notice that the processor executing a synchronous operation gets blocked because its
handler was replaced by a handler which does not advance to the next line of code. In the
asynchronous case, the processor’s handler was not replaced, so it can advance to the next
instruction.

Having defined some terms, lets turn our attention to the communication model. Recall
that the DELTA, the iPSC/2 and the CM-5 are distributed-memory MIMD systems.
Systems of this kind are made up of a set of nodes, each of which consists of a main
processor, memory, and interface to a network that connect them together. Nodes process
information independent of one another and communicate only by sending and receiving
messages.

The communication network used on the iPSC/2, the DELTA and the CM-5 allows
messages to route through intermediate nodes (nodes on the path from the source to the
destination) without interrupting the processes on these nodes, thus the communication
model presented views the communication network as another process in the system with
a dedicated task. This task of delivering messages is viewed to run independently from the
other processes in the system.

When the network accepts a message, it takes the full responsibility of delivering it to the
destination node. This allowed a communication model that divides point-to-point
communications on the above three machines into two parts: the processor part and the
communication network part. A processor may execute a send, receive, message wait or
message done function call. The send or receive function call may be done synchronously
or asynchronously. Message wait is a synchronous function call while message done is an
asynchronous one.

The communication network's role in the model is to accept a message from one node and
deliver it to another. This includes finding the correct route from the source node to the
destination node which is different for each topology, updating the links (called channels
on the iPSC/2) times and preventing message colliding. The operation of the
communication network is the same as if the message passing function call was performed
synchronously or asynchronously.

The network consists of nodes that are connected by links. These links are used by all the
processors in the system to send and receive messages. Sharing this one communication
network among all the processors requires some kind of scheduling to prevent messages
collisions. The DELTA, the iPSC/2 and the CM-5 communication models adopt the
first-come-first-served scheduling policy to prevent message collisions.

When a processor executes an asynchronous send (isend()) function call, it posts a send
request to the communication network and continues to the next instruction. In our
communication model, this is evaluated by increasing the sending processor time by the
time to execute isend() function call and by creating a new process which continues
evaluating the send operation. By this we ensure that the communication network
accepted the message. When the communication network accepts the message this process
gets removed from the list of processes that need to be evaluated.

If a processor executes an asynchronous receive (irecv()) function call, it posts a receive
request to the communication network and continues to the next instruction. This is
evaluated by increasing the processor time by the time to execute irecv() function call and
by creating a new process that continues evaluating the receive operation. Continuing the
irecv() may require waiting till the message arrives at the receiving node and copying it
from the communication network to the application buffer specified by the irecv().

45

Asynchronous send and receive function calls have another two function calls associated
with them: message wait (msgwait()) and message done (msgdone()). These two function
calls are used to determine whether isend() or irecv() operations identified by the message
id is completed or not. This message id is given to the message when isend() or irecv() is
initiated.

The PST communication model associates a FALSE value with each message id when
isend() or irecv() is initiated and a TRUE value when they are complete. Evaluating
msgdone(id) is performed by retuming the value associated with this message id to the
calling processor and by incrementing its time by the time to execute msgdone(). The
msgwait() function call is evaluated differently because it is a synchronous function call.

Evaluating msgwait(id) function call is performed by replacing the calling processor's data
and handler by a handler and data that continue evaluating it. This handler gets called
repeatedly until the value associated with the message id in question is TRUE. When this
happens, the calling processor time is set to the time when msgwait() is completed and its
original data and handler get restored so it can continue to the next instruction.

PST evaluates synchronous send (csend()) and receive (crecv()) in the same way it
evaluates isend() and irecv() with one exception. Instead of creating a new process that
continues evaluation of the csend() or crecv(), the calling processor's data and handler get
replaced by a temporary communication data and handler that continue evaluation of the
operation. Also, the calling processor's time does not get changed until the operation is
completed. This is because in a synchronous message type the sending process waits
(blocks) until the message has left the sending process memory. This means the message
was copied by the communication network but does not mean that the message has been
received by the destination node. The process executing the receive waits (blocks) until
the message arrives in the application buffer specified by the receive command.
Remember, in asynchronous (non-blocking) message type the sending and the receiving
processes continue to run while send or receive are being carried out.

In the DELTA and the iPSC/2, each processing node keeps a buffer which provides a
temporary storage for messages which arrives earlier than their matching receive. This
buffer is divided into two buffers on the DELTA and on the iPSC/2: the free pool and the
reserved pool. The CM-5 does not provide such a buffer because its communication
protocol does not allow sending a message before its corresponding receive is posted.

The reserved pool and the free pool at the receiving node effects the operation of the
sending processes. The sender must insure that the corresponding receive for the message
is posted at the receiver node or the receiver has enough space in its reserved pool or free
pool buffers to receive the message. Otherwise, the sending process gets blocked until one
of the above two conditions becomes valid.

The operation of the handlers which complete evaluating the send and receive operations
are machine dependent: their role in the communication model will be presented when the

46

T

detailed communication model is discussed in the following 3 sections. The next section
describes the communication model for the Intel Hypercube system. Later sections
describe the differences of this model to those or the Delta and CM-5.

Hypercube Model

The communication module for the iPSC/2 starts by initializing the communication
network channels, the system buffers and other data needed by the model. Initialization is
performed by calling iPSC_Communications_init() which perform the following steps:

iPSC_Communications_init()

{

1- initialize the communication network channels
2- initialize the free_pool_sizes array to free_pool_size
3- initialize the free_pool_msgs array to NULL
4- initialize the reserved_pool_sizes array to recv_pool_size
5- initialize the reserved_pool_msgs array to NULL
6- initialize the recv_posted_msgs array to NULL
7- initialize the recv_posted array to not_posted
8- initialize the msg_id array to FALSE
9- initialize the msg_id_time array to INFINITY
10- initialize the message id counter to O
11- initialize the blocked_process array to FALSE
}

Step 1 above creates for each processing node in the system a number of channels that
equals the dimension of the hypercube. For example, if the hypercube has a dimension of 5
(32 nodes), then each node has 5 nearest neighbors. So, step 1 above creates 5 channels
for each node (5 * 32 = 160 channels).

Each channel has the following data associated with it: id, processor_num, avail, probe,
in_use and busy. After creating the channels, step 1 gives each channel an id which is used
to refer to it. Also, each channel is given a node number (processor_num) to which it
belongs. Then, each channel is given a time which indicates when the channel is availabie
to be used (avail). This time is initialized to O since each channel is available to be used
when the system is started. The remaining data associated with each channel (i.e. probe,
in_use and busy) will be explained later when they are used.

As explained earlier, each node in the iPSC/2 keeps two buffers to provide temporary
storage for messages which arrive earlier than their matching receive. Each node keeps
one free pool that provides temporary storage for long messages (> 100 bytes). The
Parallel Simulating Tool (PST) allows users to change the size of the free pool to examine
the effect of the free pool size on the program performance. Thus, step 2 above initializes
each node free pool's size to the size provided by the user. And since at the start of PST,
all the free pools contains no messages, step 3 initializes them to contain NULL.

47

B =

Also, each node keeps several 100 bytes buffers for each other node in the system which
provides temporary storage for short messages called the reserved pool. PST allows users
to change the size of the reserved pool to see how this may effect the program
performance. Thus, step 4 above initializes each node's reserved pool's size to the size
provided by the user. As for the free pool, they are initialized to NULL.

In the iPSC/2, when a message whose corresponding receive is posted arrives at its
destination node, it goes to the application buffer specified by the receive command. To
make the operation of the communication model easier to understand and debug, we
chose to place the message in a temporary storage (recv_posted_msgs) to be copied later
to the application buffer. Step 6 above initializes this temporary storage to NULL,
meaning it contains no messages.

When a processor issues a receive command, it posts a receive request to the
communication network. When the receive is completed, this request is deleted. The PST
communication model uses a 2-dimensional array to accomplish this. When a processor
issues a receive operation, it places the message type in the column that corresponds to the
processor number in the recv_posted array. So, when a processor tries to send a message
to this processor, it checks the receiver column in recv_posted array to see if the receiver
had posted a receive request t0 message with the same type to that it is sending. Since
message types are positive numbers, step 7 initializes the recv_posted array entries to
not_posted indicating no receive request is posted yet.

The two arrays initialized in steps 8 and 9 and the counter in step 10 are used to provide
proper operation for msgdone() and msgwait() function calls. When a processor issues
isend() or irecv() function call, the message is given an id (= the counter value) and the
value that corresponds to this id in msg_id array is set to FALSE. When irecv() or isend()
completes, the FALSE value is changed to TRUE and the time of completion is placed in
the position that corresponds to the message id in msg_id_time array.

Step 8 initializes all positions in msg_id array to FALSE (not completed yet) and all
positions in msg_id_time array to INFINITY (a large value). The counter in step 10 is
used to give isend() and irecv() messages an id. It is initialized to 0 in step 10.

Finally, iPSC_Communications_init() initializes all the entries in blocked_process array to
FALSE in step 11. In PST, each process is given a number that distinguishes it from the
other processes. If a process gets blocked because of a message passing operation, the
value that corresponds to its number in blocked_process array is set to TRUE to indicate
it is blocked. This is done to keep track of all the processes that are blocked because of
message passing. When a change happens on the communication network that may
unblock this process, the blocked process gets activated to continue its operation. Since at
the beginning of each program none of the processes are blocked, step 11 indicates that by
setting all the entries in blocked_process array to FALSE.

48

_

After the initialization, the PST communication model is ready to evaluate the message
passing operations. Lets follow a message starting from when the send was issued untii the
message is received. When a csend() function call is issued by a processor, iPSC_Csend()
handler gets called which performs the following steps:

iPSC_Csend()
{
1-set send type to CSEND.
2-if(the message size <= 100) flag = 0 else flag = 3.
3-create a probe for the message.
4-save the probe and the processor's time in a temporary communication
data.
S-replace the calling processor data and handler by the temporary
communication data and iPSC_send_cont().

}

Step 1 sets the send type 0 1. The send type is set to CSEND for csend(), ISEND for
isend(), CRECYV for crecv(), IRECV for irecv() and MSGW for msgwait(). The value of
send type is used later by the communication model and will be explained at that time.

‘The flag's value in step 2 is used to keep the stage in which the send operation is in. The
send operation can be in one of 9 stages which will be explained later.

The probe cr2ated in step 3 has two purposes. The first is to save the message parameters
(i.e. mes:age ..., source, destination, type, id) and some information that helps in
delivering the me...age to its destination, such as the flag and send type mentioned above.
The second purpose is to take over (control) all the channels from the source node to the
destination node which are required to deliver the message.

Since csend() is a synchronous operation, the processor has to wait (block) until csend()
completes. The PST communication model simulates the blocking of a processor by
saving its data and handler and replacing them by a temporary communication data and a
handler which continues evaluation of the blocked operation.

Step 4 saves the probe that holds all the necessary information to complete the csend()
operation and the processor time in temporary communication data. Then step 5 blocks
the sending processor by saving its data and handler and replacing them by the temporary
communication data and iPSC_send_cont() which completes evaluation of the csend()
operation. The Evaluation Module in PST associates a handler and data with each process
which specifies its functionality. Step 5 above specifies the blocked processor's handler as
iPSC_send_cont() and the temporary communication data as its data.

The send operation also can be performed by an isend() function call. If a processor issues

an isend() function call, the communication model evaluates it by calling iPSC_Isend()
handler that performs the following steps:

49

iPSC_lIsend()
{

1- give the message an id and set msg_id[id] to FALSE and
msg_id_time[id] to INFINITY.

2- set send type to ISEND.

3- if(mess_size <= 100) flag = 0 else flag = 3.

4- create a probe for the message.

5- save the probe and the processor time in a temporary communication

data.

6- create a new process and put iPSC_send_cont as its handler and
the temporary communication data as its data.

7- increment the calling processor time by the time to execute isend().

8- return the message id.

}

Step 1 gives the message an id that can be used by msgdone() or msgwait().
Asynchronous send and receive function calls have another two function calls associated
with them: msgwait() and msgdone(). These two function calls are used to determine
whether the isend() or irecv() operation identified by the message id (given in step 1) is
complete. The PST communication model associates a FALSE value with each message id
when isend() or irecv() is initiated and a INFINITY time as its completion time. This
information is kept in msg_id and msg_id_time arrays in step [.

Step 2 sets the send type to ISEND indicating an isend() function call. Steps 3, 4 and 5 are
the same as iPSC_Csend() steps 2, 3 and 4. Step 7 increases the sending processor time by
the time to execute the isend() function call. Since isend() is an asynchronous operation,
the calling processor does not get blocked, thus step 8 creates a new process that
completes the send operation. The Evaluation Module in PST keeps a list of all the
processes in the system. It also associates a handler and data with each process that
specifies its functionality. Step 8 above creates a new process and specifies
iPSC_send_cont() as its handler and the temporary communication data as its data. This
new process will be scheduled to run until the isend() is completed, it will get removed
from the list of processes when isend() completes.

Notice the differences between iPSC_Isend() and iPSC_Csend() handlers. Since isend() is
an asynchronous operation, the calling process was not blocked but its time was increased
by the time to execute isend(). For isend() the handler created a new process that
continues its evaluation, but for csend(), the calling process data and handler were
replaced to continue the operation.

iPSC_send_cont() handler continues the evaluation of both csend() and isend() operations.
When iPSC_send_cont() handler gets called, it performs the following steps:

50

iPSC_send_cont()
{
case 1: message size less than or equal to 100 bytes,
if did not get space (flag = 0), then get space and set flag to
1.
if got space but did get first channel (flag = 1), then get first
channel and set flag to 2.
set the process's time to INFINITY, add it to the
blocked_process array.

case 2: message size greater than 100 bytes, sending the first 100 bytes
if did not get space (flag = 3), then get space and set flag to
4.
if got space but did get first channel (flag = 4), then get first
channel and set flag to 5.
set the process's time to INFINITY, add it to the
blocked_process array.

case 3: message size greater than 100 bytes, sending the rest of the
message

if did not get space (flag = 7), then get space and set flag to
8.
if got space but did get first channe! (flag = 8), then get first
channel and set flag to 9.
set the process's time to INFINITY and add it to the
blocked_process array.

case 4: got space and first channel, waiting for the message delivery
flag=2,5,0r9
set the process's time to INFINITY and add it tc the
blocked_process array.

}

Now we can explain the use of the flag's value mentioned above. The flag value is used to
save which stage the send operation is in. The send operation has three stages. Stage |
consists of ensuring that the destination node has reserved space to receive the message.
Stage 1 is followed by stage 2 which tries to place the message's probe on the first channel
toward the message destination. Stage 3 is the waiting stage. After a process places a
message's probe on the first channel it must wait until the probe controls all the channels
required to transfer the message. Also, since the iPSC/2 provides two different
communications protocols, the flag's value is used to indicate to the communication model
which protocol to use.

Case 1 handles the short message's one trip protocol. As explained earlier, before sending
any message the sending processor must make sure there is space at the destination node

51

to receive the message. For short messages the space may be in the application buffer if
the matching receive was posted for the message or in the reserved pool. The sending
processor checks the column that corresponds to receiver in recv_posted array to see if
the receiver had posted a receive request for the message. If the receive was not posted,
the sending processor checks if the destination node has enough space in its reserved pool
to receive the message by checking the entry that corresponds to the sending processor
number and the receiving processor number in the reserved_pool_sizes 2-dimensional
array. If the above entry is not equal to zero, space is found. Finding enougn space in the
reserved pool, the reserved size is decreased by the size of the message.

If no space is found to receive the message, the process calling iPSC_send_cont() time
gets set to INFINITY. Setting a process time to INFINITY prevents the processes
scheduler from calling it to be evaluated. Recall that the processes scheduler calls the
process with the lowest time to be evaluated. This time gets changed to the original time
when a space to receive the message becomes available.

Having ensured that the destination node has a space to receive the message, the sending
node tries to place the probe on the tirst channel towards the destination node. Getting the
first channel requires checking if the channel is not in_use and is not busy. A channel is
busy when it is used by another message at the time of checking. A channel is in_use when
it has a probe on it. The real distinction between these two terms will become clear later.

If the first channel toward the destination is not busy or in_use, the sending process places
the message probe on this channel and labels the channel as busy and in_use. This labeling
is done to indicate to all the other nodes in the system that they can't use the channel at
this time. Having placed the probe on the first channel, the process must wait unti! the
probe controls all the channels required to transfer the message. We indicate that the
processor is waiting (case 4) by setting its time to INFINITY and setting the entry that
corresponds to its number in the blocked_process array to TRUE. This time will be
changed when the probe takes over the required channels and the message transmission
starts. Similar to getting a space, if getting the first channel failed (the first channel was
busy or in-use) the process calling iPSC_send_cont() is blocked until the channel become
available.

Case 2 and case 3 handle the three-trip protocol used by the iPSC/2 for long messages.
Case 2 handles sending the first 100 bytes to the destination node and case 3 handles
sending the rest of the message. One can easily see the similarity between case | and case
2 in that both of them first get space and then get the first channel towards the
destinations. We chose to make them two separate cases to stress that case 2 must be
followed by case 3.

As with case 1, case 2 finds a space at the destination node then places the message probe
on the first channel toward the destination. After delivering the first 100 bytes, the probe
flag is set to case 3. This indicates that the first 100 bytes were delivered and it is time to
send the rest of the message.

52

The steps performed by case 3 are the same as those performed by both case 1 and case 2
except in getting the space to receive the message at the destination node. While case |
and case 2 look for space only in the reserved pool because they are sending 100 bytes or
less, case 3 first looks for space by searching the recv_posted array to see if the
destination node had posted a receive request for a message with the same type as the type
of the message in the send operation. If such a receive request was found it gets deleted
from recv_posted array and the process tries to place the probe on the first channel
towards the destination. Otherwise, case 3 looks for space in the destination free pool but
not in the reserved pool. This is because the reserved pool is designed to provide
temporary storage for messages with sizes less than or equal to 100 bytes only.

After ensuring that the destination has enough space to receive the message, case 3 places
the message prcbe on the first channel towards the destination. Doing that the process has
to wait until the probe reaches the destination node, thus it gets blocked by setting its time
to INFINITY.

In the above three cases, when getting a space to receive the message, an indication is
placed in the probe of where that space was taken from. This is important to indicate to
the communication network where to place the message when it arrives at its destination:
i.e. the reserved pool (reserved_pool_msgs), the free pool (free_pool_msgs) or in the
application buffer specified by the corresponding receive command (recv_posted_msgs).

Having placed the message probe on the first channel towards its destination, the
responsibility of moving it to its destination is passed to the communication network. The
PST communication model views the communication network as another process in the
system that needs to be evaluated. Thus, it keeps a handler that is called to evaluate it.
This handler is called Handle_iPSC_Communications(). When called by the process
scheduler, it updates the channel with the lowest time which is in_use.
Handle_iPSC_Communications() performs the following steps:

Handle_iPSC_Communications()
{
1- find channel that is in_use with lowest time whose probe is not blocked.
2- if no channel is used, return INFINITY
3- if the probe on this channel (old_channel) has reached its destination
call iPSC_message_deliver(). return.
4- new_channel = find next channel using the probe information
5-if(the new_channel is not busy)
move the probe to the new_channel.
set the old_channel as not in_use
set new_channel as in_use and busy, set its time and return.
6- else
block the old_channels, go to step one

53

Step | searches all the system channels to find the channel with the lowest time which is
in_use (has a probe on it) and whose probe is not blocked. The difference between in_use
and busy used in labeling channels is now explained. The channel which has a probe on it
is labeled as in_use. This indicates to Handle_iPSC_Communications() that the channel
has a probe that needs to be advanced towards it destination. When a probe moves from
channel A to channel B, channel A is labeled as busy meaning it is controlled by (reserved
to) this probe while channel B is labeled as in_use and busy meaning it is controlled by the
probe and it has a probe on it which needs to be advanced. Also, a probe is blocked if the
next channel towards its destination is busy. In other words, it can't be advanced.

If no such channel is found, Handle_iPSC_Communications() returns INFINITY, step 2.
INFINITY here is used to prevent the processes scheduler from choosing
Handle_iPSC_Communications() to be evaluated. This is because not finding a channel
which is in_use and whose probe is not blocked means that either there is no active
messages in the system or that the communication network has to wait until a process
releases some channels. In other words, there is nothing to evaluate on the communication
network. As noted above, the scheduler chooses the process with the lowest time to be
evaluated. As a result, a process with time INFINITY will not get scheduled to be
evaluated.

The old_channel in step 3 is the channel with the lowest time that was found in step 1. If
the probe on the old_channel has reached its destination i.e. has controlled all the channels
required to transmit the message, iPSC_message_deliver() - explained below- is called to
handle the message transmission.

Step 4 finds the next channel towards the probe destination (new_channel). The
new_channel may be in_use by another probe or may be available to be used by the
current probe. Step 6 handles the first case and step S handles the second. Step 5 moves
the probe from the old_channel to the new_channel and labels the new_channel as in_use
and busy and the old_channel as busy only. As explained earlier, a channel is busy if it is
controlled by a probe but does not have a probe on it. A channel is in_use if it has a probe
on it that needs to be advanced to its next channel.

After moving the probe to the new_channel, step 4 sets it available time to the maximum
of the old_channel and the new_channel time plus the channel latency. The channel latency
is the nearest neighbor hardware latency which is 25 microseconds on the iPSC/2. The
communication model was designed to allow users of PST to change the channel latency
to investigate how this may effect the program performance.

We arrive at step 6 if the probe on the channel with the lowest time is blocked. Step 6
labels this probe as blocked so that it will not be chosen again to be evaluated until a
change happens on the communication network that may unblock it. Failing to update the
channel with the lowest time, step 6 tries to find another channel to update by going back
to step 1.

As mentioned above, when a probe reaches its destination node i.e. has controlled all the
channels required to transmit the message, iPSC_message_deliver() is called to handle the
message transmission. It performs the following steps:

iPSC_message_deliver()
{
1-set the first channel's time.
2-label the first channel as not busy and not in_use.
3-free all the used channels and unblock all the blocked probes.
4-remove the probe from the last channel and place the message in
the destination buffer.
S-unblock all the processes that were blocked because of a message
passing operation and activate the communication network handler
case |: message size is less or equal to 100 bytes
set message receive time = to the last channel's time +
channel latency
if the send was ISEND, msg_id
array[id]=TRUE; msg_id_time[id]=time;
restore the sending process and return
case 2: message size greater than 100 bytes, sending the first 100
bytes
set the probe flag to 7 and return
case 3: message size greater than 100 bytes, sending the rest of the
message
set message receive time = to the last time + channel latency
if the send was ISEND,
msg_id array[id]=TRUE and msg_id_time[id]}=time
copy the first 100 bytes from the reserved pool
restore the sending process and return

}

Care is taken when finding the first channel's (toward the destination) time in step 1. This
is because message transmission starts after the probe reaches the message destination's
node and because there are two different protocols: one for short messages and one for
long messages. In general this is the equation used to find the first channel's time after the
tail of the message passes by it's end:

1st channel'’s time = last channel's time + msg_size / bandwidth + channel latency

If the message size is less or equal to 100 bytes, the value used for msg_size above is the
message size. But if the message size is greater than 100 bytes and we are sending the first
100 bytes, the msg_size equals 100. Finally, if the message size is greater than 100 bytes
and we are sending the rest of the message, the msg_size equals the message size - 100.
Also, in the third case the last channel in the above equation is actually the first channel,

55

since in the three-trip protocol, a control message is sent from the message destination to
the message source node to start message transmission. After this control message arrives
at the message's source the message transmission starts.

After setting the time of the first channel, it gets freed by labeling it as not in_use and not
busy, step 2. This will enable other nodes to use this channel to send messages. Having set
the time of the first channel and freeing it, the other channels used to transfer the message
times need to be set and they need to be freed in step 3. Also, the probes which were
blocked (because their required next channel was busy) get unblocked so they will not get
ignored by the handler that advances probes.

A channel gets freed when the tail of the message leaves toward its destination. Thus a
channel available time is set to the previous channel's time plus the channel latency. Step 4
removes the probe from the last chanrel and places the message at the destination buffer.
This buffer may be the destination's reserved pool, free pool or the application buffer.
Which one of the above buffers depends on from where space was reserved to receive the
message in iPSC_send_cont() above. If the space was taken from the reserved pool, the
message gets placed in the reserved_pool_msgs array, if the space was taken trori the free
pool, it gets placed in the free_pool_msgs array. Finally, if a receive was posted when the
corresponding send was initiated, the message gets placed in recv_posted_risgs array.

Since delivering a message frees the channels used in transferring it to its destination, all
the processes that were blocked for message passing reasons get unblocked in step 5
above. By unblocking the processes we mean changing their time from INFINITY to the
time that was kept in the temporary communication data when they were blocked. Also,
these processes are removed from blocked_process array by changing the entry that
corresponds to their numbers from TRUE to FALSE. When unblocked, these processes
check to find if the reason of blocking them is still valid or not and act accordingly.

What is left in the role of iPSC_message_deliver() in the communication model depends
on the size of message being delivered. As before we have three cases to consider. Case 1
handles short messages. After delivering the whole message, the message receive time gets
set to the last channel's time plus the channel latency. If the send command was done
asynchronously (isend()), an indication of the isend() completion is placed in the msg_id
array. As explained earlier when isend() is initiated its message is given an id and the
position that corresponds to this id in msg_id array is labeled as FALSE. Now, the isend()
is completed, this position is labeled TRUE. Also, the message receive time is placed in
msg_id_time array to indicate when the isend() was completed. Also, the process that was
created to continue evaluating isend() gets removed from the scheduler list of the
processes that need to be evaluated. This is what is meant by " restore the sending
process” at the end of case 1 if the send was done using the isend() function call.

When a processor executing a csend() was blocked its data and handler were replaced by

the temporary communication data and iPSC_send_cont() handler to continue the send
operation. After the message gets delivered, it is time to restore the original processor

56

data and handler. Also, its time is set to the first channel's time minus the channel latency.
This is because a csend() is complete when the communication network accepts the
message.

Case 2 in iPSC_message_deliver() above sets the probe flag to 7 indicating that the first
100 byte were delivered to the destination. Since not all the message was transmitted to its
destination, the message receive time is not set and the sending process data and handler
did not get restored as in case 1.

The steps taken by case 3 are the same as case | except the step that copies the first 100
bytes. For long messages, the sending processor first sends the first 100 bytes to their
destination and then it waits for a control message from the destination to transfer the rest
of the message. The first 100 bytes gets saved in the destination node's reserved pool but
the rest of the message gets saved in the destination's application buffer or free pool
buffer. Thus, after delivering the rest of the message the operating system on the iPSC/2
combines the two parts of the message together.

Up until here, we explained what steps the message has to go through to reach the
receiving node. Now, we focus our attention on the receiving processor part of the
communication operation. When a processor executes an asynchronous receive (irecv())
function call, the iPSC_Irecv() handler is called to evaluate it. When called iPSC_Crecv()
handler performs the following steps:

iPSC_Irecv()
{
1-post a receive request in post_recv_request array
2-increments the processor’s time by the time to execute irecv()
3-give the message an id
4-set msg_id array[id] to FALSE and msg_id_time[id] to INFINITY;
5-set the send_type to IRECV
6-create a probe for the message
7-save the probe and the processor's time in a temporary communication
data
8-create a new process and put iPSC_recv_cont as its handler and
the temporary communication data as its data
9-return the message id

}

If a processor executes an asynchronous receive (irecv()) function call, it posts a receive
request to the communication network (step 1) and continues to the next instruction. This
is evaluated by increasing the processor’s time by the time to execute irecv() function call
(step 2) and by creating a new process (step 8) that continues the receive operation.

As explained earlier, asynchronous send and receive function calls have another two
functions calls associated with them: msgwait() and msgdone(). These two function calls

57

are used to determine whether isend() or irecv() operations identified by the message id
(given in step 3) are complete. The communication model associates a FALSE value with
each message id when isend() or irecv() is initiated and a INFINITY time at its completion
time, step 4. This is performed to ease evaluating msgdone() and msgwait().

PST evaluates a synchronous receive (crecv()) differently from the way it evaluates
irecv(). A process executing the crecv() waits (blocks) until the message arrives in the
application buffer specified by the receive command. When a processor executes a crecv()
function call, iPSC_Crecv() gets called to evaluate it. iPSC_Crecv() performs the
following steps:

iPSC_Crecv()

{
1-set send_type to CRECV
2-cost a receive request in post_recv_request array
3-create a probe for the message
4-save the probe and the processor time in a temporary communication
data
5-replace the processor's data and handler by the temporary communication
data and iPSC_recv_cont()

}

Step 1 sets the send_type to CRECYV indicating the function call was a crecv(). Similar to
the irecv() handler, step 2 posts a receive request and step 3 creates a probe and saves in it
the necessary information to continue crecv() evaluation. Step 4 saves the probe and the
processor's time in a temporary communication data and step 5 blocks the processor by
replacing its data and handler by the temporary communication data and iPSC_recv_cont()
to continue evaluation of crecv().

Notice the difference between evaluating irecv() and crecv(). For irecv() the message was
given an id and some other information were initialized to enable evaluating msgdone()
and msgwait() function calls. Since crecv() is a synchronous function call, msgdone() and
msgwait() are not valid for it. Also, in evaluating irecv() a new process was created to
continue evaluating it while for crecv() the processor's handler was replaced by
iPSC_recv_cont(). This is because irecv() is an asynchronous function call while crecv() is
a synchronous one.

Lets turn our attention to iPSC_recv_cont() that continues evaluating irecv() and crecv().
It performs the following steps:

58

iPSC_recv_cont()
{
1-If the message has already arrived at the its destination node
2-move it to the application buffer
3-return the space taken by the message
4-if irecv(), set the msg_id array and msg_id_time
remove the process from the scheduler processes
S5-if crecv(),
set the processor time
restore the calling processor data and handler
6-unblock all the processes which were blocked because of message
passing
7- else
set the calling process time to INFINITY
}

Step | above searches only the calling processor reserved pool if the receive was for a
short message, and only the free pool and the receive posted array for long messages to
determine if a message with the same type to the type specified by the receive command
has arrived or not. If the message did not arrive yet, the calling process time is set to
INFINITY in step 7. Setting the calling process's time to INFINITY in step 7 is done to
prevent the process scheduler from calling it until a change happens on the communication
network that may enable it to continue its operation. As explained above, when a message
gets delivered at its destination, all the blocked processes get unblocked to see if the
reason of blocking them is not valid any more. When a message arrives at its destination,
the iPSC_recv_cont() time gets changed from INFINITY to the time saved in the
temporary communication data to enable it to look if the arrived message is the message it
requires.

If the message has already arrived, step 2 moves it to the application buffer specified by
the receive command. If the message was found in the reserved pool or the free pool step
3 returns the space that the message occupied to the respective pool so it can be used by
other messages.

Now the use of send_type mentioned above can be explained. If send_type value was
equals to IRECV (irecv()) the completion of irecv() is declared in msg_id array by setting
the entry that corresponds to the message id to TRUE in step 4. Also, the time of the
completion is saved in msg_id_time. Doing that, the role of the process that was created
to complete irecv() is completed. Thus, it gets removed from PST process scheduler in
step 4.

If send_type value was equal to CRECV (crecv()), the calling processor time is set to the

maximum of the processor's time and the message receive time. Finishing evaluating
crecv(), step 5 restores the processor's data and handler which were replaced by

59

iPSC_recv_cont and the temporary communication data to enable the processor to
continue to the next instruction.

Having explained how the PST communication model evaluates csend(), isend(), crecv()
and irecv() we turn our attention to msgdone() and msgwait() evaluation. When a
processor issues a msgdone() function call, it gets evaluated by iPSC_msgdone() handler
which performs the following steps:

iPSC_msgdone(id)
{
1- if ((msg_id arrayfid] is TRUE) AND
(the processor's time <= msg_id_time[id]))
increase the calling processor's time by the time to execute
msgdone
and return TRUE
2-else
increase the calling processor's time by the time to execute
msgdone
and return FALSE
}

The PST communication model associates a FALSE value with each message id when
isend() or irecv() is initiated and a TRUE value when they are completed in the msg_id
array. Also, when the irecv() or isend() is completed, the time of completion is saved in
msg_id_time array. Evaluating msgdone(id) is done by checking these two entries and
acting accordingly. If the position that corresponds to the message id in question in
msg_id array is TRUE and the same position in msg_id_time has a time that is less than or
equal to the calling processor time, iPSC_msgdone() increments the calling processor time
by the time it takes to execute the msgdone() function ¢ ' and it returns TRUE, step 1.
Otherwise, the calling processor time gets incremented by the time to execute msgdone()
and it returns FALSE, step 2.

The msgwait() function call is evaluated in a different fashion than msgdone() because it is
a synchronous function call. When a processor issues a msgwait(id), it gets blocked and its
data and handler get replaced by a temporary communication data and
iPSC_msgwait_cont() handler that continue evaluating the msgwait() function call (step 3
below). iPSC_msgwait_cont gets called until the value associated with the message id in
question is TRUE. When this happens, the calling processor's time is set to the time when
msgwait() returned and its original data and handler get restored so it can continue to the
next instruction.

60

iPSC_msgwait()
{
1-create a probe and save the message id in it
2-save the probe and the processor time in a temporary communication
data
3-replace the calling processor handler and data by iPSC_msgwait_cont
and the temporary communication data

}

When iPSC_msgwait_cont() gets called by the processes scheduler it performs the
following steps:

iPSC_msgwait_cont()
{
1- if (msg_id array[id] is TRUE)
set the processor time to:
max(msg_id_time[id] and the processor time)
+ time to execute msgwait
restore the processor data and handler
return TRUE
2-else
set the calling process time to INFINITY
}

Step 1 above checks the value stored in the position that corresponds to the message id in
set msg_id array. If this value was FALSE the calling process time is set to INFINITY
(get blocked). Otherwise, the processor time is set to the maximum of the time stored in
msg_id_time[id] and the processor time added to it the time to execute msgwait() function
call. Then step 1 above restores the processor original data and handler that was replaced
in iPSC_msgwait() handler.

CM-5 and Delta Extensions

Delta

The communication model for the DELTA is similar to that of the iPSC/2. Only the
differences between the two models are highlighted here.

The major difference between the communication protocol on the DELTA and that on the
iPSC/2, is that on the DELTA messages get sent packet by packet rather than as a whole
done on the iPSC/2. Because of this, the DELTA adopts one communication protocol for
long and short messages rather than two on the iPSC/2.

61

Also, the use of the free pool and reserved pool on the DELTA differs slightly from that
on the iPSC/2. On the DELTA, a packet is saved in the reserved pool only when the free
pool is full. Whilst the free pool on the DELTA provides temporary storage for all
message sizes, the iPSC/2's free pool is used only for long messages.

As with the iPSC/2, the routing algorithm on the DELTA is deterministic. On the
DELTA, a packet moves horizontally until it reaches the destination's column, then it
moves vertically to its destination. Compare this to the e-cube routing algorithm used on
the iPSC/2.

As with the iPSC/2, the communication module for the DELTA starts by initializing the
communication network channels, the system buffers and other data needed by the model.
Since both systems keep a free and reserved pool, Delta_Communications_init() performs
the same steps performed by iPSC_Communications_init(). But, due to the fact that the
Delta's architecture is different from that of the iPSC/2, step 1 in
iPSC_Communications_init() has a different meaning. Step | in
Delta_Communications_init() initializes the Delta's 2-dimension mesh. It creates for each
node in the mesh 4 links which connect it to its neighbors (up, down, left and right). Even
though the nodes at the edges of the mesh have only three connections and the nodes at
the four corners of the mesh have only 2 links, the extra links will not be used.

After creating all the links in the mesh, step | labels them as not busy and not in_use the
same way we labeled the channels for the iPSC/2. This labeling indicates that these links
are not in_use (do no have a probe on them) at the moment.

As with the iPSC/2, lets follow a message starting from when the send was issued until the
message is received and highlight the differences between the iPSC/2 and the DELTA
communication models. When a csend() function call is issued by a processor,
Delta_Csend() handler gets called which performs the following steps:

Delta_Csend()
{
1-set send type to |
2-create a probe for the message
3-break the message into packets and place them in the probe
4-save the probe and the processor's time in a temporary communication
data.
5-replace the calling processor data and handler by the temporary
communication data and Delta_send_cont().

}

The role of steps 1, 2, 4 and 5 above are the same as their corresponding steps in
iPSC_Csend() explained in the previous section. Step 3 breaks the message into 512 bytes
packets and places these packets into the probe. The probe now has to keep track of the
number of packets in the message, which have been sent, and which still have to be sent.

62

As with the iPSC/2, the send operation can be performed by an isend() function call which
gets evaluated by calling Delta_lIsend() handler. Again, the steps performed by
Delta_Isend() are the sams as the steps performed by iPSC_Isend() except in the step that
breaks the message into packets. The reader is referred to the discussion presented for
iPSC_Isend() in the previous section for more details.

Lets see how the Delta_send_cont() handler continues the evaluation of both csend() and
isend() operations. When the Delta_send_cont() handler gets called by the processes
scheduler it performs the following steps:

Delta_send_cont()
{
1-if did not get space (flag = 0), then get space and set flag to I.
2-if did get space, but did not get first channel (flag = 1), then get first
channel and set flag to 2 and activate the communication network
handler
3-set the process's time to INFINITY, add it to the blocked_process array.
}

The Delta_send_cont() routine is much shorter than iPSC_send_cont(). The reason behind
this is that the DELTA uses only one communication protocol for both short and long
messages while the iPSC/2 uses one protocol for short messages and one for long
messages. Notice also, the steps performed by Delta_send_cont() are exactly the same as
the steps performed by case | in iPSC_send_cont().

After Delta_send_cont() places a message's probe on the first link towards its destination,
the responsibility of moving it to its destination is passed to the communication network
handler. The communication handler is called Handle_Delta_Communications() for the
DELTA. Because it performs exactly the same steps performed by
Handle_iPSC_Communications() it will not by discussed here. Needless to say, wher: the
probe reaches its destinations node Delta_packet_deliver() handler is called instead of
iPSC_message_deliver().

When a probe reaches its destination node i.e. has controlled all the links required to

transmit the packet, Delta_packet_deliver() is called to handle the packet transmission. It
perform the following steps:

63

Deita_packet_deliver()
{
1-set the first link's time.
2-label the first link as not busy and not in_use.
3-free all the used links and unblock all the blocked probes.
4-remove the probe from the last link and place the packet in
the destination buffer. Move to the free pool if possible
5-unblock all the processes that were blocked because of a message
passing
operation and activate the communication network handler
case 1: the packet was last packet of the message
set message receive time = to the last channel's time +
channel latency if the send was ISEND,
msg_id array[id]=TRUE;msg_id_time[id]=time;
restore the sending process and return
case 2: the packet was not last packet of the message
set flag to 0 and return

}

Steps 1, 2, 3, and 5 above perform exactly the same functions performed by their
corresponding steps in iPSC_message_deliver() keeping in mind that we are now dealing
with a mesh architecture rather than a hypercube.

The Delta packets get delivered to their application buffer if a receive was posted to the
message when the matching send started. Otherwise, they are delivered to the reserved. If
the free pool had space when a packet is delivered to the reserved pool, the packet is
moved to the free pool. Moving a packet from the reserved pool to the free pool requires
returning the space that the packet occupied back to the reserved pool and decrementing
the free pool's available space by one packet. Also, since the message is sent packet by
packet, some information is kept in the packets to enable reconstruction of the message.

What is left in the role of Delta_packet_deliver() in the communication model depends on
if the packet just delivered was the last packet of the message or not. If the packet was not
the last packet of the message that need to be delivered, case 2 above changes the flag
value to zero so Delta_send_cont() handler will start looking for a space for the next
packet of the message. On the other hand, if the packet just delivered was the last packet
of the message (case 1), the message's receive time is set. Also, if the send command was
done asynchronously (isend()), an indicating of the isend() completion is placed in the
msg_id array. Finally, the message's receive time is placed in msg_id_time array to indicate
when the isend() was completed.

The Delta’s irecv(), crecv(), msgdone() and msgwait() are evaluated exactly in the same

way their corresponding function calls were evaluated in the iPSC/2 communication model
so they are not repeated here.

64

The reader may notice that the Delta's communication model was easily obtained by a
slight modification of the communication model for the iPSC/2. Now we will see how the
communication model evaluates message passing operations on the CM-5.

CM-5

Although the communication protocol on the CM-5 is completely different from that of
the DELTA, the CM-5 communication model is easily obtained by a slight modification of
the communication model for the DELTA.

The communication network (the Data Network) on the CM-5 does not guarantee the
order of delivery of each message's packet (even from single source to single destination).
This is because packets traveling up (to least common ancestor level) make random
choices among available channels. Finally, on the CM-5, there is no lock-down path
created from the message's source to its destination.

Needless to say, the handler that moves the probe from one channel to another channel on
the Delta’s mesh must also be modified to move it on the fat tree instead. Also, the CM-5
routing algorithm must be kept in mind when moving a probe from one channel to
another. Remember, packets traveling up (to least common ancestor level) make random
choices among available channels while when uaveling down they have a deterministic
path.

Recall that the CM-5 does not allow messages to be transmitted before their matching
receive is posted. This simplifies the communication model for the CM-5 since the
reserved and free pool sizes and messages manipulation is not needed any more.

As with the DELTA, the communication module for the CM-5 starts by initializing the
communication network channels and other data needed by the model. When called
CM5_Communications_init() performs the following steps:

CM5_Communications_init()
{

I-initialize the communication network channels
2-initialize the recv_posted_msgs array to NULL
3-initialize the recv_posted array to not_posted
4-initialize the msg_id array to FALSE
S-initialize the msg_id_time array to INFINITY
6-initialize the message id counter to 0
7-initialize the blocked_process array to FALSE

}

CM5_Communications_init() performs fewer steps than the Delta_Communications_init().
This is because the CM-5 does not keep a free and a reserved pool like the DELTA so

65

they are not initialized. Also notice that only step 1 above will require a different
explanation from that on the DELTA.

Step | above built the CM-5 fat tree with the required number of nodes. The fat tree
nodes are then given a number and a type. Each node is given a type that corresponds to
its level in the fat tree. For example, the leaf nodes are given a type 0. Notice that type 0
nodes have 0 down links and 2 up links (see Figure 9). Types | and 2 nodes have 4 down
links and 2 up links and types 3 and above nodes have 4 down links and 4 up links. As
with the DELTA channels, all the fat tree's links are labeled as not busy and not in_use and
given a 0 as their available time when created.

As with the DELTA, lets follow a message starting from when the send started until the
message is received and highlight the differences between the DELTA and the CM-5
communication models.

Because CM5_Csend() and CMS5_Isend() handlers perform the same steps performed by
Delta_Csend() and Delta_Isend() handlers we omit repeating them here and focus our
discussion on CMS_send_cont() handler.

CM5_send_cont()
{
1-if the matching receive is not posted (flag = 0)
set the calling process's time to INFINITY and return
2-if the matching receive is posted (flag = 1)
place one packet on the communication network and
increment the process time by the time to do that
3-if the packet was the last packet in the message
restore the process data and handler
if the send was isend()
set msg_id array[id] to TRUE
and msg_id_time[id]=time
4-else return

}

The major difference between the CMS_send_cont() and the Delta_send_cont() come
from the fact that the CM-5 communicat’ ~ protocol does not lock all the links from the
message's source to its destination befcr : icing a packet on the first link towards its
destination. In other words, the sending prucess does not wait until a packet is received by
the destination node before sending the next packet.

Also, on the CM-5 a space is available to receive the message only when the message's
corresponding receive is posted by the receiving node. This is because the CM-5 does not
allow message transmission to start until the receiver has issued its corresponding receive.
So, step 1 above searches the recv_posted array to see if the message's destination node
has issued a receive for this message or not. If the matching receive was found, step 2 tries

66

to place one packet on thc communication network. Otherwise, step | sets the sending
process's time to INFINITY to block it until the required receive is posted.

As explained earlier, the CM-5 communication protocol first moves the packet up the tree
until it reaches the desired height, then it moves it down to the destination. Because each
leaf node has two up links, packets are placed on the link with the lowest time that is not
busy or in_use (step 2).

If the packet was the last packet of the message, the send operation is complete and
CM5_send_cont() is not needed anymore. The sending processor's data and handler get
restored so it can advance to the next instruction. Recall from the discussion on the
DELTA communication model that restoring the processor's data and handler is done only
for csend() function call evaluation. If the send was done using an isend(), the process that
was created to complete the send operation is removed from the process scheduler when
CMS5_send_cont() is completed.

Having placed a packet probe on the first channel towards its destination, the
responsibility of moving it to its destination is passed to the communication network. The
communication network handler for the CM-5 is called Handle_CM5_Communications().
It performs the same steps performed by Handle_Delta_Communications() with only one
exception. On the CM-5 when a probe is moved from channel A to channel B, channel A
is freed by labeling it as not busy and not in_use and channel A is labeled as busy and
in_use. This is because the CM-5 does not lock all the channels (links) from the packet's
source to its destination.

When a packet reaches its destination node, CMS5_packet_deliver() is called which
performs the following steps:

CM5_message_deliver()
{
I- remove the probe from the last channel and place the packet in the
destination buffer.
2- if the packet was the last packet in the message
set message receive time = to the last channel's time + channel
latency
}

Step | removes the probe from the last channel and places the packet it caries in its
destination buffcr. Removing the probe from a channel, the channel get freed by labeling it
as not busy and not in_use. If the packet was the last packet in the message, the message's
receive time is set in step 2.

At the receiving end, the CM-5 communication model performs the same steps performed
by the DELTA co.nmunication model. In other words, the CM-5 communication model

67

evaluates the receive operations the same way the DELTA does. The reader is referred to
the discussion presented in the previous section for more details.

Performance Summary

PST has successfully illustrated several aspects of parallel systems. Cache effect have been
witnessed in several experiments, shared memory "bus" contention and deadlock. have all
been seen.

With the Sequent architecture using only one processor, cache effects can be witnessed in
simple image processing applications. Specifically, comparing an image processing routine
that ensures processed regions fall evenly on memory pages with one that does not shows
a noticeable performance difference. When page size and the mapping of an image onto
memory pages are not considered, there is a loss in performance. In addition, when the
same program is adapted to a multiple processor algorithm, cache effects become even
more important since any overlapping memory that one processor uses may affect another
processor's access to data in the same block. An ideal four processor algorithm would
yield a system that consumes only one quarter the amount of time a non-parallel algorithm
consumes. When cache effects are noi considered, the parallel version often approached
the same execution time as the non parallel system.

The cache size and block size both affect system performance based on how long and how
frequently blocks must be swapped. For programs that use a small set of data that are
spread out in memory, large block size means that a large amount of time is spent reading
memory that will never be used. In these cases a smaller cache block size is desirable. On
the other hand, if the block size is to small, the cache will constantly be swapping.

The CLIP model has successfully illustrated the importance of locking bitplanes. In small
examples, locking bitplanes increases execution time, while other, larger examples have
shown an improvement in performance when the correct bitplanes are locked. In addition,
the difficulty associated with manipulating an entire image is apparent by inspecting the
code used to implement simple operations such as convolution.

Communications effects have also been observed on the CM-5, Delta and iPSC. On the
CM-5, when csend and crecv are not exactly matched, PST reports an INFINITE
execution time, as it should since the CM-5 requires a matching crecv before csend can
complete. The other models only report INFINITE execution times when a crecv is not
matched with a csend. The execution times for these models all show a proper dependence
on the times messages are sent and received. That is, when one processor posts a crecv
early, and a matching csend occurs much later, the receiving processor does indeed wait
for the receipt of the entire message before it continues its processing.

The communication model for the iPSC/2 was coded and tested to prove the theoretical
predictions. The effect of varying channel latency, channel bandwidth, message size and

68

path length on the message latency were fully investigated and found to agree with the
theoretical predictions. Similar experiments were also found to agree with theory for the
Delta and CM-5 machines.

Future Work

It is proposed that in thc the tool will be extended further. In particular, the
design and implementation ui PST enables us to consider several visualization techniques
which could be added to the tool. For example, page swapping or message passing could
be shown physically on the screen as the application is simulated, making it even easier for
a novice to appreciate the problems and issues associated with parallel computing. Other
additions to the tool will include:

« Completing a full set of evaluations on PST in terms of its performance and
functionality

o Testing the tool with the students at Clarkson University enrolled in the Parallel and
Distributed systems graduate course. In particular, students would be encouraged to
develop tutorials for the system.

¢ Add more parallel architectures to the tool. MasPar and pipeline architectures would
be candidates for this.

e Add some more higher-level programming constructs to the architectures already
modeled.

References

[1] Nugent, S. 'The iPSC/2 Direct-Connect Communication Technology'.
Conference on Hypercube Concurrent Computers and Applications, 1988, 3,
pp 51-60.

(2] Littlefield, R. 'Characterizing and Tuning Communications Performance
on the Touchstone DELTA and iPSC/860".Intel Scientific Computers pp 1-5.

[3] Pierce, P. "'The NX/2 Operating System'. Conference on Hypercube
Concurrent Computers and Applications, 1988, 3, pp 348-390.

[4] 'Concurrent Supercomputer Consortium

Proceedings of the First Delta New User Training Class Notes'.
Edited by M. Maloney & P. Olsen. CCSF-24-92 ; July 1992.

69

[S] ‘Concurrent Supercomputer Consortium

Proceedings of the First Intel Delta Application Workshop'. Edited
by Tina Mihaly and Paul Messina. CCSF-14-92 ; February 1992.
[6] 'Concurrent Supercomputer Consortium

Proceedings of the Delta Advanced User Training Class Notes'.
Edited by M. Maloney & P. Olsen. CCSF-25-92 ; July 1992.

[7] 'Connection Machine CM-5 Technical Summary'. Thinking Machines Corporation
Cambridge, Massachusetts. November 1992.

[8} iPSC/860 System Manuals
iPSC/860 System Technical Documentation Guide
iPSC/860 C System Calls Reference Manual
iPSC/860 System User's Guide

iPSC/2 and iPSC/860 C Language Reference Manual

Appendices

1. List of Other Documentation
User Manual
Programmers Guide

70

_—-——T

PST Programmer's Manual

The Programmer's Manual will describe how the PST source files are organized,
how the makaefile is arranged and how support for new features can be added.

Eile Structure and installation

The file PST.01.src.tar.Z is the complete source tar'ed and compressed into one
file. Use "zcat PST.01.src.tar.Z | tar -xvf -* to expand the file. This command will
create a directory "PST", which is the root of the PST source structure.

File Structure

The file organization is outlined in the foliowing tree:

PST -------- README - brief description of file structure
|-----Makefile - "make all* makes executable *make clean"
| removes temporary files
|-----*.ACH - example architecture files
|-----*.RAP - example application files
|-----UIM - User Interface Module source
[
|-----AM - Architecture Module source
I
|-----LM - Language Module source
|
|-----EM - Evaluation Module source and language

| module token handlers

l-----sequent - sequent model source
: ----- clip - clip model source
: ----- ipsc - iPSC (hypercube) model source
: ----- delta - delta (2-d mesh) model source
{ ----- cmS - CM-5 (fat tree) model source

71

Makefile
The file "Makefile" has the following rules:

make all - builds the entire program, results in the executable
*PST" (see paragraph below)

make clean - removes all the intermediate files

make scour - removes all files created by “make all* including any
executables

make EMtest -make a command-line version of PST that is intended for
development purposes

The Makefile uses the CC variable to define the compiler make uses. PST was
developed on an ANSI compatible compiler, and as such, requires an ANSI
compatible compiler. One warning about the makefile: the makefile has no
explicit dependencles on header files. For this reason, a change on a header
file used by more than one source file should be followed by a “make clean all"
to rebuild the entire system. There are specific rules in the makefile to generate
object code from C source (.c.o rule), Lex source (..0) and Yacc source (.y.0).
The Lex and Yacc rules use intermediate "PREFIX" files that are used to allow
renaming of appropriate functions in order to allow multiple parsers to be linked
together.

There is a list of directories assigned to variables that are used in the makefile. If
a new directory is added, another entry should be added. If there are include
files, the directory can be added to the INCLUDES variable, and the object file
can be added to OBJECTFILES. There is no dependency on header files, so if
any header file is changed, a "make clean” should be done before continuing.

UM

The UIM directury contains all the source for the User Interface Module (UIM).
This source is written to run under X-windows and relies on the Motif widget set

The user interface module is divided into several key C files: uim-main.c,
record.c, graph.c, and buttons.c. All of these files include uim-main.h, the header
file that includes all of the necessary X-Window files, and defines our widely-
used NewRecStruct structure. The uim-main.c file sets up the main window,
initializes global variables, and contains the few functions that aren't separated
into the other .c files (such as Tutorial). The record.c file contains all functions
pertaining to the creation and modification of a record; NewRecord() creates a
new record widget, initializes sique NewRecStruct, and sets up the
callbacks for all of its buttons. gra; contains the functions pertaining to the

72

graph module. Lastly, buttons.c defines the functions that insert buttons specific
to a particular architecture into the record widget.

NewRecStruct is a structure that contains all of the widgets and variables
inherent to each individual instance of a record. When NewRecord() is called
during a callback function, it creates a new NewRecStruct (nrs is a pointer to a
NewRecStruct that gets passed to nearly every callback). When nrs is passed to
callback functions, w usually holds the parent record widget defined in
NewRecord. temp_widget is widget, set to O initially; it points to widgets that are
to be destroyed at the end of a callback. For exampie, when you pop up a file
selection dialog to choose an architecture, temp_widget gets set to the
FileSelection widget you created; when the user presses OK or Cancel on the
dialog, XtDestroyWidget() is called on temp_widget. rec is a pointer to a
RecordTable structure (defined in the simulator code). This struct gets updated
every time the user picks a new architecture or application. After a run, several
values of rec return performance information (such as cache hits, cache misses,
and total time). The rest of NewRecStruct contains variables that determine
whether or not windows are opened or closed, label widgets that get updated,
etc.

Most of our window layouts are straightforward, with the possible exception of
the Record window. This window begins with a form-shell, which contains a
main-window widget, which contains a paned-window widget with four panes.
The main-window widget is used for the menu bar. The first (top) pane has a
form, inside of which are the buttons and labels that pertain to any architecture.
The second pane has a form, with nothing in it (initially). When a Sequent
architecture file is selected, the SequentButtons() function is called, which puts a
second form inside of the first, an. fills that form with buttons specific to the
Sequent architecture. When a different architecture is selected,
XtDestroyWidget() is called on the second form, thereby aliowing forms to be
inserted into the first form later on. The third pane contains a form, in which
there are "speed buttons” that merely duplicate the functions found on the menu
bar. Lastly, the fourth pane contains a form and several labels that report the
results of a simulation run.

When the Graph button is pressed it pops-up the Graph window, and creates a
new NewRecStruct with all of the setting of the original passed in. The Graph
window consists of a form widget with a paned-window widget of two panes. The
top pane contains a form which has three drawing area widgets in it: the left and
bottom rulers, along with the main graphing area. It also holds all of the labels
showing the current settings of the module. The second pane consists of a form
with three buttons in it. The Change button calls up the menu by which the
settings can be changed, and the Run button calls the GraphRun() function. This
function runs the simulation "Number Of Runs" times. It does not reset anything
in, nor affect in any way, the Record window because of the new NewRecStruct

73

created at the start of the Graph module. Note that the GraphModule won't run if
you don't have an architecture and application selected. Error checking may be
added, but is non-existent as of right now.

How to add archi _specific !

The buttons.c file contains all of the functions pertaining to specific
architectures. The function names are prefixed with the name of the architecture,
followed by the word Buttons. (Ex.: SequentButtons, IPSCButtons, etc.) You can
mostly cut-and-paste the widget set-up code found in SequentButtons; you'll
probably need to change the names of the buttons and labels (such as
GlobalMemoryLabel), and add the new ones into the NewRecStruct definition.
The callback functions are similar - you can cut-and-paste them for the most
pant, with changes needed to be made to variable identifiers, and to whatever
“control” info that differs. SequentButtons() is a good exampie to look at.

AM

The Architecture Module (AM) directory contains Lex (IAM.l) and Yacc (yAM.y)
source. These files are fairly straightforward. The rules for recognizing specific
tokens are very explicit. The parameter names are ail Lex/Yacc tokens. The
memory units and time units are stored in a table to allow easy modification. In
yAM.y there is a function ParseArchitecture, which parses the file specified in
the Record_Table that is passed to it. Many parameters are checked for validity
and various architecture specific parameters are computed. The main outcome
of ParceArchitecture is that the Record_Table entries are filled in. No new data
is created.

One difficulty in the AM is the fact that PST has two parsers, one for the
Language Module and one for the Architecture Module. The AM parser has been
modified to have a prefix "AM_PST". This is accomplished through a script file
"gnPREEFIX" which creates a prefix file that gets used by the Lex and Yacc
makefile rules to change the names of functions that would otherwise be multiply
defined.

M

The Language Module (LM) directory contains Lex (IRAP.1) and Yacc (yRAP.y)
source. These files use many tables to make implementing the C-like RAP
parser easier. The Lex source recognizes very few tokens. For example,
variable names and function names are just considered names, and whether or
not they are defined is determined when parsing is complete.

Most of the action in the LM parser is in the Yacc source. If a new machine is
added to PST, a search should be made for existing machines to see where the
new machine needs to be added. There are several switch statements that make
the parser behave differently based on what application type it is intended for.
For example, the Sequent has global memory, so global variables have to be
allowed, CLIP has image primitives that PST will evaluate. There is a section
that determined what types are legal in various machines.

Before a new file is parsed, the global tables that the LM parser uses are
cleaned up. Then the LM parses the file. Finally, the resulting tables are
checked for errors and then copied into the current record table.

EM

The Evaluation Module (EM) constructs the mode! of the current system, then
evaluates it by executing the parsed code, calling on the architecture models as
needed. When a new machine is added, a search should be made in EM.c on an
existing machine type to see where the new machine needs to be added. Again,
switch statements are used to allow machine specific routines to be called to
construct the system model and report performance.

For performance reasons, tokens (token_types) that the LM generates are
consecutive so that the functions associated with them can be stored in an array
of function pointers which can be indexed by a simple subtraction of the first
from the desired one. If any changes to the language are desired, is new tokens
are added, there must be token handlers added as well. It is imperative that
these tables be kept current. The files EM.c, yRAP.y, and record.h all need to be
updated if any new token handlers are added. When adding new tokens, always
add them to the end, and always include the number of the token relative to the
first (REDUCE) token, as all the previous tokens are.

Models

A modular approach was desired for all the models. The memory models are
created in such a way that new memory models can easily be added, or new
arrangements of memory can be tried. For example, a memory can be directly
connected to a processor, or a cache can be inserted, or even two caches, one
of which might be used to imitate register optimization or virtual memory support.
These models are designed so that they are. all called in exactly the same
manner.

The modeling of all concurrent systems, such as multiple processors, and

communications networks, were designed in a similar manner. The EM
scheduler just calls a process handler, without regard for what the process is.

75

The handler takes care of it's job, whether it is to update the communications
network, or allow a processor to evaluate more code.

Machine Fi

sequent.c’, "CLIP.c", “ipsc.c", “delta.c and "cm5.c" are all the most important
files in regards to defining a new machine. These files contain the routines that
construct the machine model. If a machine has a communications model, one of
these existing models can be used, or a new one can be added. if a new
machine is added, any models that are unique to it can be added in it's file. In
general, the format of the existing files should be followed.

The CLIP model, for example, has bit-plane models, and is a SIMD machine,
which means that only one processor is modeled, and image types are used.
Since images are unique to CLIP and affect the Language Module, and bitplanes
are a type of memory, the LM parser had to be modified to support images, and
only in CLIP mode. The file *"memories.c” also had to be modified to add support
for image types.

The Sequent model does not have a communications network, but does use
shared memory, so the LM has code to handle shared and local memory
variables. If a new machine were to be added that had shared memory and a
communications network, it would be simple to add a communications network
the existing sequent model by enabling the communications system calls (csend,
crecy, etc.) in the new machine, and either copying the communications source
from an existing file, making global the existing communications code or writing
a new communications model.

Adding an Architecture

The following is a list of existing features that new architectures can take
advantage of with little (removing "static" or block copying code) or no change:

Memories - FIFO WT cache, shared memory and local memory

CLIP - CLIP bit memory routines

Communications - The iPSC (hypercube), Delta (2-d mesh), CM-5 (fat tree)
networks

Language - The language parser supports local and shared class

variables, as well an image types

To add a new architecture, a general understanding of how the current system
works is essential. To add a new machine, an old machine that is closest to the

76

new one should be copied first. The new machine should be exactly the same as
the existing one. Once this copied system is functioning properly, and a general
understanding of how the system works has been developed, the new model can
be modified to match the desired architecture.

it is suggested that modifications be made in the following order: 1) add new
architecture parameters to the AM (may involve adding parameters to the
Record_Table in record.h. See warning above), 2.) modify LM to recognize new
language constructs, keeping in mind that these constructs may not be desirable
in other language modes, and should be invalid in other modes, 3) develop new
token handlers to implement the new language constructs (make sure that the
programs execute, properly, without the new architecture models. i.e. ensure the
language processing is correct), 4) develop any new architecture models and
5)integrate all the changes by now allowing the token handlers to call on these
new models.

77/78

Contents

(003 o 1 =) o § i -
164 Lol ot T LD ¥ ol 1o } o« 1
System Requirements
Terms and Features
Screen Layout
DULCK SLaATE ittt it i ittt s ettt et e e et e e e e
User Interface (... .ottt ittt ettt ti e te et
General Record Informabtiono.euiemeeeseennenn
Graph Module ittt ittt ittt tee st ennaeaeeennn
0 R s T U
Reference GUide ittt ittt tteinetnseneeseeeonnenn
Language GUIAE .o vvr ettt tnreneeenennenonnsanonnaeeens
General FeatUresv e ieeneenenneeeoeeeeenee
RAP ittt it ittt eeeenernennenneoneseaeesnnoenenn

......................................
.......................................

..

3] 1
Message Passing Protocol

Sequentttt it i i s s e s e e
Hypercube ittt innennnnnnnnanns
Message Passing Protocol
Architecturettt ittt ittt eeeteeeeeenonnnnnns
Architecture Module ittt ennnn.
Supported Machinesc.oiuteeenenroenennns
Delta Architectureciieiieenanans
Sequent Architecturecioeeeevnenn

1 T

O P

iPSC Hypercubeccuitiiiieeenenennnnn
Software Module ittt eneneeenns
Supported Modesttt vetencneannns

RAP & ittt ittt iceeoaesoeonssnasooseans

Seqguent (... i e e et i et

CM5, Delta and iPSC Hypercube

L T

...

Sample Files

79

Introduction

PST is a tool designed to illustrate how different algorithms and applications perform on different
parallel computer systems as well as to point out where bottlenecks and system slow-downs
occur. PST allows the user to interactively change the architecture parameters as well as to graph
the performance of an algorithm over a range of parameter values.

t ir nt
PST was developed in the UNIX environment in C and requires X-Windows and the Motif tool
kit.
Terms and Featur
PST has three main tools:

l. Record Windows - This is where the user selects an application and architecture
specification. System evaluation for a specific architecture/application combination
and relevant tutorial information will also be shown in this window.

2. Graph Windows - This is where the user can select which performance parameter
to graph and which parameter to vary. Multiple graphs are supported to allow the
user to compare either different machines or the same machine with a different
parameter varied.

3. Tutorial Windows - This window will allow the user to select tutorial files which
walk the user through sample sessions and point out strengths and weaknesses of
different architecture and application combinations.

reen out

When PST is started, a simple vertical menu will appear on the screen. This is the Main Window.
From here you can invoke New Record, Tutorial, Quit. Each option pops up a new window.

To activate or select an option, simply click on it by positioning the mouse over the button then

pressing and releasing the left mouse button. Along the top of the windows are menus. These
buttons invoke pull-down menus which list some additional options.

80

Quick Start

Start PST by executing the main program PST. A window will pop up with a simple vertical
menu. Select New Record. This will cause a new Record Window to appear.

Now that we have a Record Window open, click the Arch button in the Record Window. This
action will cause a list of architecture files (.ACH files). Select the entry that reads Seql.ACH.
This will cause PST to parse the Seql.ACH file into memory. If there are any errors, they are
printed to the standard error device, and a dialog window warning that the file was invalid will
appear. Since this file is correct, the title bar of the Record Window will now contain the label
Sequent, the selected architecture will show the Seql.ACH file name and memory parameter
buttons will appear.

To select an applications, click on the App button. A file selection window will appear as before,
but this time application source (.RAP) files will be listed. Select Seq1.RAP. As with the
architecture file, the selected file will be parsed into memory. If there are any errors, they are
printed to the standard error device, and a dialog window warning that the file was invalid will
appear. Since this file is also correct, the selected application line will contain the "Seql.RAP" file
name,

Any of the visible architecture parameters can be changed and examined. The bottom of the
Record Window shows several measures of performance. These values are updated when the Run
button is pressed.

User Interface

When PST is started, you will see a menu with three choices: New Record, Tutorial,
and Quit PST. Each click on New Record will bring up a new record window. The
record window controls how each individual simulation will run. Tutorial provides on-
line help, stored in the form of text files. Quit PST will end all parts of the simulator
and exit to the operating system.

General Record Information

Pressing New Record causes a Record Window to pop up (see Figure 1). The top of the
window contains a menu bar with two pull-down menus: File and Debug. File
provides Architecture, Application, Run, Graph, and Close buttons. Architecture
brings up a file selection window, allowing you to choose an architecture to simulate.
Architecture files must end with .ACH. Similarly, Application allows you to choose a
program to run on the current architecture. Applications must end with .RAP. Run will
simulate the selected application on the selected architecture. Run will not work if you

81

*—-'—ld

have not selected one (or both) of these, nor if the application and architecture are of
incompatible types. Graph calls up the corresponding graph module for this particular
record. Close will get rid of the record, and all corresponding windows. The debug
pull-down menu allows you to turn debugging on or off. When on, debug information
is sent to standard error.

Fle 1

The upper pane of the window contains the architecture file name and the application
file name, along with three buttons controlling local memory options, Memory Size,
Cache Size, and Block Size. The only limitations on the values are: block size must
divide evenly into cache size, and cache size must divide evenly into memory size.
When applicable, there will be global memory buttons with the same restrictions.

The middle pane of the window contains quick buttons having the same effect as the
buttons on the File menu of the menu bar. The last pane provides the resulits of the
simulation: Total Time (in micro-seconds), Average Cache Hits, and Average Cache
Misses.

Graph Module

The graph module will allow the user to run the simulation multiple times by changing
one parameter and graphing the result against another. The upper pane of the window
contains the area where the graph will appear, along with labels to tell the user what
the graph means (see Figure 2). The lower pane contains three buttons: Change, Run,

82

_

and Close.

The Change button pops up a menu of buttons (see Figure 3) used to modify the Graph
Module: X Label, Y Label, Runs, X Start Value, Y Start Value, X Increment, Y
Maximum, and Close. XLabel sets the x axis parameter. This will be the value which
will be varied. Y Label sets the y axis parameter, which will be compared against the x
axis. Runs sets the number of simulations the graph will show. X Start Value lets the
user change the value to start the simulation's first x value. Y Start Value is the lowest
value recorded on the y axis of the graph. X Increment is the amount the x axis
parameter will increment between each test run. Y Maximum is the largest value
recorded on the y axis of the graph. Excluding X Label and Y Label, a window with
editable text will pop up if one of these buttons is pushed. Click in the text window,
and type the new value desired. Then press OK for the value to change in the Graph
Module. Lastly, Close will close the button menu.

83

‘Figure 3

Fie 4

When the X Label or Y Label button is pressed a selection window will appear (see
Figure 4), from which there are limited choices. Simply click on one of the choices

twice, or click on it once and press the OK button. Warning: There is very little error
checking in this section. Invalid runs will not be skipped.

84

The Run button of the Graph Module will run the simulation, and graph the resuits in
the upper pane. The results of the Graph Module will not be posted on the Record
Window. The Close button will close the Graph Module window.

Tutorial

The tutorial button in the main window allows you to have one or more help files
present on the desktop while you are running a simulation. Simply click on Tutoriai to
bring up a new one. From the file selection list, pick a file that corresponds to the topic
of interest. A window with the tutorial text will appear. You can resize the window
and scroll through the text using the horizontal and vertical scrollbars, or close the
window by pressing the close button. The tutorials are self-explanatory.

85

Reference Guide

Create a new Record - Click on the New Record button in the Main Window.

Change Application - In the Record Window, press the App button. Next, choose an
application from the list of stored application files.

Change Architecture - In the Record Window, press the Arch button. Next, choose an
architecture from the list of stored architectures files.

Open a new Graph - In the Record Window, click on the Graph button. Click on the
Change button. This will pop up a list of parameters that need to be
set before the Run button is pressed in the Graph Window.

View Tutorial - To start the tutorial, click on the Tutorial button in the Main
Window.

Language Guide

To write a RAP program (file name must be of form fname.RAP), the user must first decide
which language mode is to be used. To specify the mode, the first non-comment in the file must
be "language = language-mode”. For example:

/* First define language mode */
#language CM5

This makes RAP interpret some supported CMS functions, csend, crecv, etc.
Once a language mode has been chosen, the program can be written. The following is a brief
description of features supported in all modes, followed by a description of each mode and its
unique features.
General Features
All modes are "C-like”. The semicolon (";") is required between statements.
Strings are supported.
+, -, /, * and % (remainder) are supported.

& (bitwise AND), | (bitwise OR) and * (bitwise XOR) are supported.

& & (Logical AND) and Il (Logical OR) are supported.
86

<, >, <=, >=, ==, != are supported.
= (assignment) is supported.
int and integer arrays are the only general data types available.

image is only available in CLIP mode.

function calls are the same as for C. To call fred with a parameter x, use "fred(x)"
if, if .. else, and for are supported as in C.
break, continue, return, and return expression are supported.

RAP

The PST source code is RAP code. There are several modes for RAP code. These modes are
used by PST to parse the source code correctly based on the type of machine the code is intended
for.

CMD

CM-5 only supports local non-shared variables. The communications system calls are supported
as listed below.

Message Passing Protocol

csend - Blocks until a corresponding crecv has been posted and the message sent.
crecy - blocks until a message is received

isend - does not block sending processor, message is sent while program executes
irecv - does not block, message is received while program executes

msgwait - wait for completion of message

msgdone - returns O if message send/receive is not complete, non-zero otherwise
my_pid() - logical node number

numnodes() - number of nodes in program

CLIP

The CLIP supports the standard integer and integer arrays. The CLIP architecture only operates
on image types, so image types are also supported:

87

B

image x[length}{width]{height];

This declares variable x to be an image of length bitplanes, of size width by height. The CLIP
supports many of the primitive system calls:

LDA - load bit register A with the given bitplane

LDB - load bit register B with the given bitplane

PST_local - execute a local bit process, store result in specified bitplane
PST_pointwise - execute a pointwise bit process, store result in specified bitplane
im_lock - mark a given image as locked

im_unlock - mark an image as unlocked

ELTA

Delta only supports local non-shared variables. The communications system calls are supported as
listed below.

Message Passing Protocol

csend - Blocks until message has been completely delivered to the communications
network

crecy - blocks until a message is received

isend - does not block sending processor, message is sent while program executes
irecv - does not block, message is received while program executes

msgwait - wait for completion of message

msgdone - returns 0 if message send/receive is not complete, non-zero otherwise
my_pid() - logical node number in partition

numnodes() - number of nodes in partition

sequent

The Sequent has shared memory, so allows local and shared variables. All global variables are
treated as shared. Additionally, the Sequent has a library of routines used to implement parallel
programming:

m_fork - create a new process in parallel
my_pid() - return process id
numnodes() - return number of child processes

88

Hypercube

Hypercube only supports local non-shared variables. The communications system calls are
supported as listed below.

Message Passing Protocol

csend(), crecv() - provides message buffering:

csend - Blocks until message has been completely delivered to the communications
network

crecv - blocks until a message is recetved

isend - does not block sending processor, message is sent while program executes
irecv - does not block, message is received while program executes

msgwait - wait for completion of message

msgdone - returns 0 if message send/receive is not complete, non-zero otherwise
my_pid() - logical node number

numnodes() - number of nodes in program

Architecture

To write an architecture file (file name must be of form fhrame.ACH), the user must first decide
which machine is to be defined. To specify the machine, the first non-comment in the file must be
"architecture = machine-name". For example:

/* First define architecture */
architecture = Delta

Supported machine-names are iPSC, Delta, CLIP, Sequent and CMS.
All architecture parameters are specified by equating the parameter name with the numbers
necessary to specify the parameter. Most common units are supported for given parameters. For
example:

main_memory = 16 MBytes
This specifies that there is 16MBytes of main memory.

Some parameters are defined by type and operation. The following example defines the time
required for image addition on the CLIP:

load =8 cycles
PST = 10 cycles
SET =12 cycles
89

e ——————————————————————

Architecture Module

The architecture module is responsible for interpreting architecture files (fname.ACH) for
simulation. There are several machines ready for simulation, including the CMS, Sequent, Delta,
Clip and iPSC machines. These files specify the type of machine, all the relevant machine
parameters, and the language parameters, if the machine has its own characteristic language.

Supported Machines
Delta Architecture
The following is a description of the Delta architecture:

* System Hardware configuration
* 32 compute nodes maximum MIMD mode

Compute Node
¢ 33 Mis(Integer)
* 16 MBytes Main Memory (expandable to 64 MBytes)
* 160 MBytes/sec peak DRAM access rate

Delta System Interconnect
* System-Wide Communications Fabric
* handles all inter-node communication
* handles all /O communication
* Automatically routes messages without interrupting intermediate compute nodes
* Programmer can ignore details of how messages move along the interconnect network
* Interconnect supports 28 MB/S node-node bandwidth

Note: The above is based on the Proceeding of the Delta New User Training Class Notes,
July 1992.

nt Archi r

The following is a description of the Sequent architecture:

Hardware:
* there are two models.
¢ Balance 8000 include from 2 to 12 processors
¢ Balance 21000 include from 4 to 30 processors,
(32 max for evaluation)
* all processors share one bus to global memory

90

* inter-processor communication through main memory
* main memory ranges from 4 to 28 MBytes

* each processor has 8KByte on-chip cache

e each processor has an 8KByte local memory

CMS
The following is a description of the CM-S5 architecture:

Hardware
¢ 32 Processing Nodes (PN) maximum
¢ three networks connect all nodes
* Control Network (CN) for concurrent operations
¢ Data Network (DN) for bulk data transfer
* specific hardware and software support improve speed of many special cases

Processing Nodes
¢ general purpose (RISC) computer
* 8, 16 or 32 MBytes of memory (32 maximum for experiments)
* 64KByte cache for instructions and data

Network
» each PN has its own Network Interface (NI)
*once the Data Network accepts a message, it takes on all the responsibility of delivering
the message.
* Data can be transferred between I/O devices without involving the Processing Nodes
* the Control network handles special global operations
* broadcasting
* reduction
* parallel prefix
¢ synchronization
* error signaling
* guaranteed network bandwidth
* DN: 5 MBytes/sec
* CN: 20 MBytes/sec
¢ the networks are completely scaleable

CLIP

The following is a description of the CLIP architecture:

* 96 x 96 SIMD processor array
¢ each processor has two boolean processors

91

e

* Jocal access takes same time as neighbor access

* 80ms per bit plane input

* UNIX host

* lock, unlock - keeps a bit plane in memory if possible

iPSC Hypercube
The following is a description of the iPSC architecture:

* n-dimensional array of processors (n=5 maximum = 32
Processors)

* 7 bi-directional channels on each node
(maximum 4 used when n=4)

Software Module

The software module is responsible for interpreting the application code files. These files are
written in a new language called RAP. RAP has several modes of operation that allow the user to
write code in a generic pseudo-C, or in a simplified version of the language widely supported on
specific machine. All the language modes support parallel programming. All the languages modes
assume only integer data types in parallel structures. Non-parallel integer variables' values are
tracked, if possible.

r M S

RAP

RAP mode supports a simple C-like language that allows the user to evaluate standard C-like
programs with little modification. There are sample .RAP files below.

Sequent

Sequent mode supports library routines that are used to implement parallel programs. Again, the
.ACH files hold the appropriate information for these functions.

CM5, Delta and iPSC Hypercube

These machines all have a library of routines for message passing. Thelr details differ slightly, but
the names of the routines and their usage are all the same.

CLIP

The CLIP supports CLIP primitive system calls as described above.

92

Sample Files

Sequent Architecture Parameters

/***/

/* Hardware definition for the Sequent */
machine = sequent /* define what machine this is */
num_processors = 4 /* typically range from 2 - 30 */

/***/
/* Language-specific definitions

* Parameter definition of general operations

*/

int + int = 2.5 us
int - int 2.5 us
int * int = 11.6 us
int / int = 14.4 us
/* loop-overhead, i.e. for (i=1; i<100; i++); */

loop_overhead = 3.5 us

/* call without parameters or statements */
subroutine_call_n_return = 11 us

/** Parameter definition of machine-specific functions */
/* memory specs */

local_memory = 8 kb

local_access_time = 1 us

local_cache_size = 96 bytes

local_cache_access_time = 0.1 us

local_cache_hit = 1 us

local_cache_miss = 5 us

local_cache_block_size = 32 bytes

shared_memory = 16 kb
shared_access_time = 10 us
shared_cache_size = 32 bytes
shared_cache_access_time = 0.1 us
shared_cache_hit = 1 us
shared_cache_miss = 5 us
shared_cache_block_size = 4 bytes

93

Sequent Application file

/* This is an example RAP Sequent program */
#language Sequent

int xyzzy([64],abc([64]; /* These are shared & global*/
int joe,in(8][16),o0ut[8]{16];
int fullx, halfx, fully,halfy;

/* globals are in shared memory */
main()
{

int i,z; /* example variable declarations */

/* break image into 4 gquadrants, add joe to each element*/
m_fork (4, &doit) ;

}

doit (void)

{
int my_id;
int xu,xl,yu,vyl;
int x,vy;

my_id=my_pid{();
{
x1=0;
xu=halfx;
yv1=0;
yu=halfy;
}/* do upper left */
else if (my_id == 1)
{
xl=zhalfx;
xu=fullx;
y1l=0;
yu=hnalfy;
}
else if (my_id == 2)
{
xl=halfx;
xu=fullx;
yvl=halfy;
yu=£fully;
}
else if (my_id == 3)
{

94

xl=halfx;

xu=fullx;

yvl=zhalfy;

yu=fully;
}

for (x=x1; xX<xu; x=x+1)
{ for(y=yl; y<yu; y=y+1)
oét[x] [yl=in{x] [y]+Jjoe:
: }

95

CMS5 and iPSC Architecture Parameters

/* Notice that CM5 and iPSC have identical format */
/***/
/* Hardware definition for the delta * /
machine = delta /* define what machine this is */

num_processors = 8

/*******************‘k*************************************/

/* Language-specific definitions
* pParameter definition of general operations
*/

int + int = 2.5 us
int - int = 2.5 us
int * int = 11.6 us
int / int = 14.4 us

/* loop-overhead, ie. for (i=1; 1<100; i++};
*/
loop_overhead = 3.5 us

/* call without parameters or satements *x/
subroutine_call_n_return = 11 us

/** Parameter definition of machine-specific functions*/
/* Communications parameters */
packet_size = 100 Bytes

/* memory specs */

local_memory = 8 KB
local_access_time = 0.5 us
local_cache_size = 8 KB
local_cache_access_time = 0.1 us
local_cache_hit = .1 us
local_cache_miss = 1 us
local_cache_block_size = 1 kb

96

Delta Architecture Parameters

/* Notice that CMS and iPSC have identical format ~/
/***'A'***/
/* Hardware definition for the delta */
machine = delta /* define what machine this 1is */

num_processors = 2 by 4

/************************ k********************************/

/* Language-specific definitions
* Parameter definition of general operations
*/

int + int = 2.5 us
int - int 2.5 us
int * int = 11.6 us
int / int = 14.4 us

/* loop-overhead, ie. for (i=1; 1<100; i++);
*/
loop_overhead = 3.5 us

/* call without parameters or satements */
subroutine_call_n_return = 11 us

/** Parameter definition of machine-specific functions*/
/* Communications parameters */
packet_size = 100 Bytes

/* memory specs */

local_memory = 8 KB
local_access_time = 0.5 us
local_cache_size = 8 KB
local_cache_access_time = 0.1 us
local_cache_hit = .1 us
local_cache_miss = 1 us
local_cache_block_size = 1 kb

97

CMS5 and iPSC application code

/* This 1is a sample file that uses communications system calls */
#language cm5S

main{)
{
int a;
a = my_pidl();
if(a ==) {
al);
}
else if(a==1){
b();
}
else if(a==3){
cl);
}
a=2+a*a;
}
alvoid)
{/* 3->0->1 */
int 1i,3;
1=9;
j=irecv(300,100,100);
isend(0,100,100,1,0);
msgwait (j);
}
b(void)
{/* 0->1->3 */
int j,k;
j=0;
k=irecv(000,100,100);
for(j=0; 3j<100; j=j+1){
j=j-k;}
j=isend(100,100,100,3,0);
/* msgwait(3j); */
/* msgwait (k) ; */
}
c(void)
{/* 1->3->0 */
int j;
3=8;
j=irecv{100,100,100);
msgwait (j);
j=isend (300,100,100,0,0);
}

98

TLIP: (Cellular Logic Image processor) architecture file

/**************- & kodkk ok odododk ok 'k******************************/

/* Hardware definition for the Sequent */
machine = CLIP /* deiine what machine this is */
num_processors = 96 by 96

/***/

/* Language-specific definitions
* Parameter definition of general operations */

int + int = 2.5 us
int - int = 2.5 us
int * int = 11.6 us
int / int = 14.4 us

bitplanes = 32
bitplane_access = 80 ms
lda = 12 ms

1db = 12 ms

pst_local = 12 ms
pst_pointwise = 12 ms

/* loop-overhead, ie. for (i=1l; 1i<100; i++); */
loop_overhead = 3.5 us

/* call without parameters or statements */
subroutine_call_n_return = 11 us

/** Parameter definition of machine-specific functions */

/* memory specs for CLIP's host system*/
local_memory = 8 KB

local_access_time = 0.5 us
local_cache_size = 8 KB
local_cache_access_time = 0.1 us
local_cache_hit = .1 us

local_cache_miss = 1 us
local_cache_block_size = 1 kb

/* these are just placekeepers */
shared_memory = 16 MB
shared_access_time = 1.2 us
shared_cache_size = 8 KB
shared_cache_access_time = 0.1 us

shared_cache_hit = .1 us
shared_cache_miss = 1 us
shared_cache_block_size = .5 KB

99

CLIP: (Cellular Logic Image processor) application file

/* This is a sequent mode RAP program */
#language CLIP

image a(4]({96]1([96],b(8]1(961(96],c(4]1(96](961;

main{)
{ int 1i;

image A[4][96][96],B[8])[96][96],C[4)[96][96]),D[8]1[96][96];
image x[16](96][96],y[16]1[96]([96];

im_lock(x) ;
fred();
for(i=0; i<16; i=i+1)
{
LDA(CI[1]);
LDB(D[1]);
PST local(yl[il);
}
fred();
fred{() ;
}

fred(void)
{

int i,3;

for(i=0; i<8; i=i+1)
{
for(3=0; j<4; j=j+1)
{
LDA(c{i]);
LDB(b[3j]);
PST_pointwise(al[i+j]);
}
}

oU.S. GOVERNMENT PRINTING OFFICE: 1994-510-117-50035

100

- -

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.

