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I
STATISTICS OF THE SMALL SCALES

Robert H. Kraichnan

369 Montezuma 108
Santa Fe, New Mexico 87501-2626, U. S. A.

Abstract

Some sL at empirical features of the smJJl-scale structure of isotropic incompress-

ible turbulence at various Reynolds numbers are reviewed. Attention is focussed on

the energy spectrum and the probability distributions of velocity and space deriva-

tives of velocity. A progress report is given for a current effort to approximate

small-scale statistics from the the Navier-Stokes (NS) equation by the systematic use

p of dynamic stochastic models in physical space.

The small scales of near-isotropic turbulence present a variety of intriguing features at modest as well as large

v-alues of Taylor microscale Reynolds number RA. For the entire range 'R 2! 15, the wavenumber spectrum of

kinetic energy E(k) falls off exponentially with k for k larger than values where most of the dissipation occurs.

For this range of R%, the probability distribution function (pdf) of a vorticity component w, deviates markedly

from Gaussian. In particular, the flatness factor (W4) / (w2) 2 exceeds the Gaussian value 3 and the pdf has

wide skirts at large lw, 1. These deviations from Gaussian form increase with 'R,%. It is unclear from existing

data whether the deviations saturate or increase without limit as x -- oo. Other statistics, including the pdf

of pressure fluctuations, also deviate markedly from values for a Gaussian velocity field.

Kolmogorov's 1941 theory of the small scales (K41), together with modifications suggested by Kolmogorov

and others starting in 1962, has provided the language and mind-set that underly most efforts to classify and

understand empirical data and to construct models of the small scales. Surprisingly, it is difficult, even fifty

years later, to say how correct are his ideas. The most celebrated prediction of K41 is the E(k) cc k-/ 3 inertial-

range spectrum. This spectrum, or something close to it, seems definitely to be supported by a a large body of

experimental and simulation data. But the cascade ideas behind the spectrum are less clearly supported. In

particular, the existence of well-defined ropelike structures with large ratio of length to diameter and sheetlike

structures with large ratio of extent to thickness implies statistical dependence that extends over a considerable

ILM-I



range of icales If these ratios increase without limit as RA - o0, that would be inconsistent with the concept

of informateon-destroying cascade that underlies both K41 and the later corrections to K41.

The dissipation ,.f turbulent kinetic energy by viscosity is notably intermittent at modest as well as large 7.

But there is a difference in character as well as magnitude of the intermittency at low versus high R.. At large

l.k there are strong hot spots that dominate the higher moments of the dissipation fluctuation while occupying

only a small fraction of the flow volume. However the volume averaged dissipation seems, even at large IZA. to

be supported mostly by the regions between the hot spots where the velocity field is not too far from Gaussian.

At low 7Z,. the intensity of dissipation varies gently on energy-range spacial scales. The exponential shape of the

spectrum at large k, together with this gentle variation, results in strong spacial intermittency of the velocity

field if the latter is passed through a high-pass filter in k space. This is demonstrated by recent simulatic:.

A large number of models of the small scales have been offered in the past few decades that involve eddy-

mitosis scenarios and fractal or multifractal statistics. These models become ever more elaborate, but typically

have little or no contact with the NS equation. Their relation to empirical data is hard to weigh because the

models typically offer only inertial-range scaling. It is difficult to quantify the dissipation-range corrections and

other corrections that must be applied to finite-'R. data in order to make meaningful comparisons.

Most attempts to obtain turbulence statistics by actual analysis of the NS equation have been based on

renormalized perturbative schemes of one kind or another. A fundamental difficulty here is that the radius of

convergence in Rx probably is zero so that the resumnations and truncations that characterize perturbation-

theoretic approximations are completely uncontrolled. Model dynamical systems are a valuable device in this

situation. Here the statistics of a tractable dynamical system are followed exactly, and this assures certain

basic consistency properties. Inspection of the model system can give a feel for what NS physics is retained in

the model and what is lost or distorted.

A central role is played by the direct-interaction approxmation (DIA). This approximation is, at the same

time. a truncation of renormalized perturbation theory and the exact representation of a model system. For

homogeneous turbulence, the latter can be obtained by putting stochastic phase factors in all the interaction

coefficients of triads of wave-vector modes. Thereby the model keeps the correct strength of each triad interac-

tion and the detailed energy conservation, but it totally scrambles the relative phases of distinct interactions.

The spacial structures characteristic of the small scales of turbulence clearly do not survive in this model. Sur-

prisingly, the model nevertheless does a good job (without adjustable parameters) of reproducing the spectrum

of isotropic turbulence at all wavenumbers up through those that carry most of the dissipation, and at 1Z.

values up to 200. It also predicts an exponential fall of E(k) in the far dissipation range, in accord with data.

At large enough Z., the DIA is invalidated because it does not portray correctly the sweeping of small scales

through space by the energy-range excitation. A modifcation, based on Larangian statistical functions, cures

this problem and gives good absolute agreement (again using no adjustable constants) with the inertial- and
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dissipation-range spectrum at R,% = 3000. Like the original DIA. this approximation cannot portray the spacial

structures that characterize the small scales of real turbulence.

The implications of the success of low-order closure approximations like DIA and its Lagrangian counterpart

in predicting the energy spectrum are not fully clear. One strong possibility is that the structures so important

in shaping the higher statistics of the small scales are, in effect, just ornaments to the basic energy transfer

process. There is evidence that the latter involves principally regions of the flow whose statistics are not far from

Gaussian. In any event, approximations of the DIA type totally fail to predict intermittency of NS turbulence.

In the past several years, an attempt has been made to construct model dynamics in physical space in order

to capture the highly non-Gaussian character of the pdf's of vorticity and other velocity derivatives. A brie

progress report is given in this talk. The basic device is to approximate actual turbulent fields by nonlinear

transformations, or mappings, of fields (called reference fields) with known statistics. The latter have been

Gaussian fields in the work to date. The mapping transformations that have been used are locally-determined

changes of field amplitude and distortions of the space in which the Gaussian reference field lives. If the

mapping functions are known at a given time, the rate of change of one-point pdf's can be found exactly from

the Gaussian statistics of the reference field. The mapping functions can then be changed self-consistently

with time in order that the model fields have statistics that reproduce the evolution of chosen one-point pdf's

under the dynamical equations. The method is wholly non-perturbative. This mapping approach has been

spectacularly successful, both qualitatively and quantitatively, in predicting the highly non-Gaussian statistics

of evolving Burgers turbulence. Applications to NS dynamics are currently under development. The mapping

representation of the pressure term in the NS equation is of crucial interest.

An excellent reference for the current state of knowledge of the statistics of small scales and the progress of

active research trends is the Kolmogorov anniversary number of the Proceedings of the Royal Society [Proc.

Roy. Soc. London A 434, 1-240 (1991)].
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Abstract

Results are presented from two experimental techniques allowing direct laboratory measurement of the
four-dimensional spatio-temporal structure and dynamics of the dissipative scales in turbulent flows, via
gigabyte-sized data spaces containing a level of resolution and detail comparable to direct numerical
simulations. The first of these deals with fully-resolved measurements of the structure and topology of the
scalar energy dissipation rate field associated with large Schmidt number mixing in turbulent flows. The second
allows the fine structure and dynamics of the underlying velocity gradient field to be extracted from such
measurements, allowing direct experimental studies of the vector vorticity and tensor strain rate fields on the
inner scales of turbulent flows.

1. Introduction

The study of turbulent flows has, over the past decade, undergone such a dramatic change as to fairly
qualify this as a revolution. In this newest phase of turbulence research, highly detailed four-dimensional spatio-
temporal inform-nion about the structure and dynamics of turbulent flows, of a type that would previously have
been inconceiveable, has become almost routinely available. The earliest source of this type of information,
and still by far the best known, is direct numerical simulation (DNS) of the full Navier-Stokes equations.
Generally less well known are more recent advances in experimental techniques for whole field measurements
in turbulent flows, which are beginning to allow direct experimental studies of the structure and dynamics of
velocity and scalar fields in turbulence at a level of resolution and detail entirely comparable to DNS and at
parameter values inaccessible to such numerical simulations. These techniques are beginning to demonstrate a
potential that would have been unthinkable as recently as five years ago. They are proving to be the next stage
in this revolutionary progress in providing the researcher detailed access to turbulence structure and dynamics,
permitting studies of real flows in nonperiodic domains, at conditions beyond the reach of DNS.

Reviews of some relevant techniques are given by Adrian (1986, 1991), Merzkirch (1987), and Lauterbom
& Vogel (1984). This paper gives an overview of two other techniques, aimed at studies of the dissipative scales
of turbulence. The first, in 12 and Ref. 5, pertains to studies of mixing in turbulent flows, allowing fully-resolved,
four-dimensional, spatio-temporal measurements of the scalar energy dissipation rate field (ReSc)-'Vý.Vl(xj)
of a dynamically passive, conserved scalar quantity ;(x,t) in the flow. The second, described in 13 and Ref. 11, is
derived from the scalar field measurements and allows extraction of the underlying vector velocity field u(x~t),
along with the vector vorticity and tensor strain rate fields, at the dissipative scales of turbulent flows.

2. Four-Dimensional Scalar Field Measurements

Studies of the fine scale structure and dynamics associated with the molecular mixing of conserved scalar
quantities in turbulent flows are a major branch of turbulence research. In the mixing of such a conserved
quantity ý, the scalar field ý(xj) satisfies the advection-diffusion equation

Y[t ReSc VI](x
where the Schmidt number Sc w (v/D) characterizes the ratio of the vorticity and scalar diffusivities. From (1),
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the scalar energy per unit mass 1I2ý2(x.t), defined analogous to the kinetic energy per unit mass ,/ 2 u2 (X.1),
follows an exact transport equation in which (ReSc)•.V;tV(x,t) gives the rate of scalar energy dissipation per
unit mass, namely the local instantaneous rate at which non-uniforrmties in the scalar energy field are being
reduced by molecular mixing in the flow. Here we describe a laser imaging diagnostic specifically designed for
very highly resolved, four-dimensional, spatio-temporal measurements of the conserved scalar field ý(x.t) and
the associated scalar energy dissipation rate field V;.Vý(x,t) in turbulent flows. Measurements with this
technique have been obtained in the self-sirmilar far field of axisymmetric turbulent jets at outer-scale Reynolds
numbers Res = (u6/v) as high as 6000, and with resolution finer than the local strain-limited molecular diffusion
scale XD in the underlying scalar gradient field. Since the imaged volume in the flow is quite small in comparison
with the local outer flow scale 8, and comparable to the inner scale k of the turbulence, the resulting measured
turbulent scalar field fine structure is essentially independent of the Reynolds number and the flow. Features of
the fine structure in the scalar energy dissipation rate fields captured within these four-dimensional data spaces
should thus, to a large degree, be generic to large Schmidt number mixing in all high Reynolds number
turbulent flows. Additional details of the technique and results are given in Ref. 5.

2.1 Experimental technique

Briefly, the technique involves measurement of the aqueous concentration of a dynamically passive laser
fluorescent dye carried by one of the fluids. The dye mixture fraction is a conserved scalar with Sc - 2075. This
is measured in time throughout a small three-dimensional volume in a turbulent flow by imaging the laser
induced fluorescence from a collimated laser beam onto a high-speed planar photosensitive array. A pair of
very low inertia, galvanometric mirror scanners are used to synchronously sweep the beam in a raster scan
fashion through the desired volume in the flow field. The resulting laser induced fluorescence intensity is
measured with a 256 x 256 imaging array, having center-to-center pixel spacings of 40gtm. The array is
synchronized to the same clock that drives the scanners, and can be driven at variable pixel rates up to 11 MHz,
allowing measurement of successive data planes at a continuous rate in excess of 140 planes per second. The
fluorescence data from the array is serially acquired through a programmable digital port interface, digitized to
8-bits, and then routed into a 16 MB buffer from which it can be continuously written in real time to a 3.1 GB
high-speed parallel transfer disk rank. The overall sustained data throughput rate to the disks, accounting for all
line and frame overhead cycles, is up to 9.3 MB/sec. The 3.1 GB disk capacity can accommodate more than
50,000 of these 2562 spatial data planes, yielding a four-dimensional spatio-temporal data space structured as
shown in Fig. 1. The spatial separation between adjacent points within each data plane, and between adjacent
data planes within each data volume, is smaller than the local strain-limited molecular diffusion lengthscale XD of
the scalar field. Similarly, the temporal separation between adjacent data planes within each data volume and,
depending on the number of spatial planes, between the same data plane in successive data volumes, is shorter
than the local molecular diffusion scale advection time X.tu. This resolution, together with the high signal
quality attained, allows accurate differentiation of the measured conserved scalar data in all three space
dimensions and in time to determine the components of the local instantaneous scalar gradient vector field
V;(x,t) at every point in the four-dimensional data space.

om vbh Se.,

Figure 1. Structure of the experimentally measured, four-dimensional, spatio-temporal
conserved scalar data space ý(x,t) as a temporal progression of three-dimensional spatial
data volumes, each consisting of a sequence of two-dimensional spatial data planes, each
composed of a 256 x 256 array of data points. The data space typically consists of more
than 3 billion individual point measurements. The spatial and temporal resolution
achieved is sufficient to allow direct differentiation of the conserved scalar data in all
three space dimensions and in time, allowing the evolution of the true molecular mixing
rate field V•.V;(x,t) to be directly determined.
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.s':'. :, Ie'etween acqulsition or successive uata planes witnin vacni spatial data ,oiunie. •nii Detween tne same

:_'i :,,ane0 :ucces5ive data volumes. To assess the r -tc•:nc ,cative resolution. these :m;s: -e cvrnpared warn

":'1.:nesrt !cal s'atial and temporal scales on which cantients in the conserved scaiar ::eil -ar. !e iocallv

,..:.ained in the flow. In both the vorticim" and scalar t:.'xs. :ne erfect or the local time-varvin"- strain rate E is to
*.s taoish a competition between strain and molecuiar 1,1rUsion, leading to an equilibrium stramin-lrmted

..::fuson laver thickness X - (D/) 1'2 i With the peak striin rates locally in the flow scaling as E - i,6S Res'-'.
:.e stram-iinimted scalar diffusion scale is .tk16) - Sc-'-' Res ,. with X XD" Sc1"2 Recent measurements give
::,s proportionality constant as approximate!v 11 2. Note that the scales k, and X'D are respectively

r'cporional to the classical Kolmogorov and Batchelor scales, hut are about an order of magnitude larger.
The results presented here are from measurements in the self-similar far field of an axisymmetric

%rurulent let, located 235 jet momentum diameters t 1.15 mJ downstream of the tet source and 13 cm off the let
enterline. To estimate the resulting resolution, note that 6(x_ - 0.44 • x and ulx) - 7.2 (1/p ii = r-'. where J is

.:re .et source momentum flux and p is the amoent fluid e.ensirv At an outer scale Revnoids number of 3-0C
cin with Sc 2075,. the local strain-limited molecular ciftusion lcngthscale estimate is Xr)- 262 ýLm and the local

z:%ecton timescale estimate is (X.lu) - 105 mrisc. With :he :neasurements having an imaze rati or 2.- he in-
plane spatial resolution was Ax = Ay = 108 gim. with the inter-plane resolution Az - 120 11 m. indicating that the
scalar field measurements are essentially fully-resolved.

2.3 Sample results

Figure 2 shows the conserved scalar dissipation rate data in a typical 256 x 256 spatiai data plane. All
quantities are normalized by the inner scale reference values X•, and (vfX) of the underivinw rurbulent flow
IThe V V'(x.) field was obtained by direct -.hfferentation of the data in the three acdacent scaiar pianes
centered on that in Fig. 2a. Linear central differences were used to evaluate the three components or the scalar
gradient vector field Vý(x.), with no explicit smoothing or filtering of the results. Owing to me wide range of
dissipation rates. the logarithmic compression logVýVr(x.) in Fig. 2c allows the structure at low dissioaton
-ates to be examined. Fine structure maps such as these show that essentially all of the molecc.air mixing occurs
;in tin sheet-like layers. Numerical analysis of the detailed internal structure of the moie.uiar mixing within

•hese layers has confirmed that strain-lirmted solutions of the Burgers (1948, 1950) and Townsend 1951) form
give a remarkably accurate description of the scalar energy dissipation profiles within these lavers.

Our present interests are pnncipailv in the topoiogy which the scalar dissipation layers assume as a result
"-f heir repeated stretching and folding by the turbulent strain rate and vor'iciry fields. The aim is to obtain
:measurements of the scalings which this topoiov satisfies. and relate these to the dvnamics of the -turbulent
,:ascade" represented by this stretching and folding process. We are motivated by recent successes in
comparativeiv simple two-dimensional chaotic flows rtino 1992; Muzzio, Meneveau. Swanson & Ottino 1992),
where a pernodic stretching and folding of the scalar layers leads to scalings for the distribution of dissipation
;aver separations that can be reconciled with simple phvsical arguments. From the three-dimensional spatial
*haracter of -he turbulent dissipation rate field in any given data volume (see Fig. 2c), we construct the surface
I .ocai laver-normal dissipation maxima. We can then compute the distribution of dissipation laver

separations . X,,. as shown in Fig. 3. The roughlv lognormal form appears consistent with the scalings obtained
in me simpwe periodic flows (Refs. 9. 10), but for large laver separations we find the power law form shown in
Fig .t [he . ' scaling obtained is consistent with simple %olume-preserving constraints and suggests a
mu:tiplicative process consistent with a seif-sirmiar repeated stretching and folding of the lavers.

3. Four-Dimensional Velocity Field Measurements

This section describes a technique for measurement of the fully-resolved. four-dimensional, vector
vejecitv field u(x.t) on the inner scales of turbulent flows. It is based on the technique described above for

otamining rcilv-resoived. four-dimensional measurements of the fine scale structure or me Sc - i conserved
,cair field •(x.t). The method involves inverung the exact conserved scalar transoort equation throughout the



Figure 3. Measured distribution of
the scalar dissipation layer separation

.°4 distances ý/X, obtained from the
particular three-dimensional data
volume containing the data plane
shown in Figure 2. Note the quasi-

o *4 lognormal form obtained for small
J# layer separation values. See also Fig. 4.

.3 .4 .. 6

4 Figure 4. Log-log form of the mea-
sured distribution of scalar dissipation
layer separation distances X/X, in Fig. 3.

"S •Notice in particular the -3 power law
-3 form obtained for large layer separa-

"tion values, and the cutoff value for
small separations. The -3 slope is con-
sistent with simple volume preserving

o arguments for a muitiplicative process
underlying the repeated stretching and

.¶ folding of scalar dissipation layers by
the turbulent flow field.

log (XV,)

dense, four-dimensional, spatio-temporal data space to directly yield the velocity component field ut(x,s) along
the local scalar gradient vector Vý(x,0. An examination of the corresponding gradient field Vu, 1(x,t) then
allows the extraction of the full vector velocity field u(x,t). A detailed discussion is given in Ref. 11.

3.1 Extraction of u(x,t) from ;(x,t)

Since the conserved scalar field ý(x,t) follows the advective-diffusive transport equation given in Eq. (1),
the influence of u(x,t) on the scalar field is strictly through the u.Vý term. This can be written as ul IVýI, where
u,1 is the component of the local velocity vector along the local scalar gradient vector direction, namely

uS(x,t) = u(I-t)" iv;(x,t) (2a)

with
in, (x, 1) -a vý(z, t)/]V (x,tI (2b)

Four-dimensional measurements of the scalar field ý(xt), with resolution and signal quality sufficient to allow
accurate direct differentiation in both space and time, allow extraction of this velocity component throughout
the spatio-temporal data space as

[ReSc
Measurements of uj 1(x,t) using Eq. (3) for the relatively simple flow field represented by an axisymmetric
laminar vortex ring have been reported in Ref. 12 These show that remarkably clean first- and second-
derivative fields are indeed obtainable from measured four-dimensional conserved scalar field data, allowing
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accurate differentiation of the scalar field in all three space dimensions and in time to determine the
components of the instantaneous time derivative field (3/9t)(xt). the scalar gradient vector field Vý(xj). and
the Laplacian field V2 i(xt) involved in Eq. (3).

The value of ut(za,) differs between any two points x and x+dx due to Wi) the change in the gradient vector
direction, which is known, and NOi) the change in u(x.t). This can be expressed formally as

VU, = u.- V;,T + Vu,. - (4)

In Eq. (4) the u,1(x,) field and the scalar gradient vector orientation field i/(xt) are known from the measured
scalar field data. The unknowns are the three components of the velocity field u(x,t) and the nine components
of its gradient field Vu(x.t). However, the nine components of Vu(x.t) result directly from relations among
adjacent values of u(xj), and thus the availability of such adiacency information from the three-dimensional
spatial character of the scalar field measurements motivates an iterative procedure to find the velocity field
u(xjt) in Eq. (4).

For large Sc scalar mixing in turbulent flows, we can expect that the scalar gradient field V7(xt) will
contain considerably more fine structure than the velocity gradient field Vu(x,t). The velocity gradient field
Vu(x.t) will be linear over lengthscales of the order of X,,, while Vý(x,t) is linear over ID - XV.-iC'S2. For &c -
2075 this ratio of scales is about 45, so the underlying velocity field which we art, aiming to extract from the
scalar field measurements is considerably smoother than the scalar data itself. We can therefore expect in in
Eq. (4) to vary with dA more rapidly than will u. This allows a starting solution for the velocity field by assuming
that for small dx, 8u.i•9 in Eq. (4) is small in comparison with u. n. The ull's found at three different points in
a small neighborhood around any point x are then essentially the projections of a single local velocity vector u
onto the three different unit vectors i n. If the points are selected so that the three in's are sufficiently non-
colinear, then the local velocity vector u = (u, v, w) can be obtained from the measured u,(x,t) via the inverse of
this local projection matrix. Of course, in any such small neighborhood, there are in principle many
combinations of points from which estimates for the local velocity vector u can be obtained. This high level of
redundancy leads to a strong probability of finding at least one set of points for which the projection matrix is
sufficiently nonsingular to allow its accurate inversion. Moreover, this redundancy affords considerable
opportunities for incorporating explicit noise reduction, if needed, in this zeroth estimate of u(xt).

This starting solution can be improved by writing Eq. (4) as a sequence of successive approximations as

Vu, = . V• + (Vu••)- n (5)

The iterative procedure begins for k = 1 with the result of the zeroth iteration, u0(x,r), from which we find
Vu 0(x,t). Equation (5) then involves only the three unknown velocity components uk, which we can obtain
from the three components of this equation based on the measured ul(x,t) and i(xt) fields. Successive
iterations based on Eq. (5) can then be made until the velocity field uk converges to a self-consistent result.
While various constrained iteration schemes that explicitly require V-u - 0, or that even enforce the vorticity
transport equation explicitly, are possible if needed to accelerate convergence to the velocity field u(x,t), our
results show that stable, relatively rapid, and acurate converrgence is achieved without the need to resort to any
such measures.

To validate this scalar imaging velocimetry technique and assess its potential accuracy, we have applied it
to a number of test cases in which synthetically generated scalar fields as well as actual measured turbulent flow
scalar fields (see Fig. 5) are numerically advected in time under various imposed velocity fields. An example is
shown in Fig. 6, where the imposed velocity field consists of two vortical structures. The velocity field
obtained after four iterations leads to the vorticity and strain rate tensor components compared in Fig. 6 with
the exact flow field. Note that all the major structural features of the vorticity and strain rate component fields
are accurately extracted, and that continuity is remarkably well satisfied by the resulting velocity field.

3.2 Sample turbulent flow measurement

To demonstrate the application of this scalar imaging velocimetry technique, Figs. 7a-c show the full
vector velocity field u(x,t) in the scalar field data plane from Fig. 5, obtained from the third iteration in Eq. (5)
with nothing imposed. The resulting u- and v-component fields are at least qualitatively consistent with the fluid
motion apparent in the x-y plane from the time evolution of the measured scalar field data. The velocity
projections, which are common in whole field velocimetry techniques, are shown in Fig. 7d, though it is
apparent that the individual color-coded velocity component planes give a far better indication of the resulting
structure in the measured vector velocity field.
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PARTICLE TRANSPORT IN TURBULENT DISPERSE FLOWS

T. J. Hatrany

University of Illinois

Urbana, IL 61801

Abstract

Considerable progess has been made in undersanding the dynamics of particle In a homogeneous

isotropic turbulence and in understanding the addition forces on particles that amise in non-homogneous flow

fields. This work is reviewed and its use in describing gas-liquid annular flow, sediment transport and aerosol

deposition is explored.

1. intoduc

Particles in a aurbulent field assume a turbulent motion because of their response to fluid velocity fluctuations.

An undemtnding of this phenomenon is central to solving many problems in multiphase flow. This paper

concentrates on the behavior of dilute suspemions for which particle-particle inemrction is unimportant and for which

the influence of the particles on fluid turmden cam be ignored.

The particles do not follow the fluid exactly became of inertia effects and because the gravitational field can

cause a drift relative to the fluid. Considerable progress has been made in understanding the dynamics of particles

that originate from a point source n a homogeneous field. Nontomonogeneities in the flow field, that can

dramatically change this behavior have also been quaified. However, no generally accepted solution for dispersion

from a point source in a n field is available.

The principal focus of this pape is the utilization of these advances to analyze multiphamse sysems. Particular

attention is givm to decribing the disuibution of particles and the deposition on a wall.

Droplet behavior in vertical ps-lk anmular flow is described by considering the wall layer to be a series

of differential 1om-es of drops. In this system the inertia of the drops is Irpe enough that they move through the

viscous wall region in free-flight. As a coueequence, a first order approxination can be obtained by assuming a
homogeneous flow field. This approximation is also remonable for horizontal gs-Liquid annular flows and sediment

transport. However, the influence of the gravitational field must be taken into accoun.

Aerosol particles have much smaller inertia than droplets or sediment particles. They impact on a wall by a

free-flight which originates within the viscous wall region, where Imp spatial varitions of the turbulence properties

of the fluid are found. As a consequence, an understanding of the effect of non4-omogeneities in the flow field are

of first order importance. Here, the principal problem is understanding the details of the free-flight. Computer
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experiments offer the opportunity of obtaining much needed infomiation on this phenomenon.

2 D soersion of fluid particles from a 0oint source in a homoaeneoUs flow

A starting point for understanding particle transport is Taylor's (1921) description of diffusion from a point

source. The spread of particles may be characterized by the mean-square of the x-component of a large number of

particles from the place where they originated. F. For molecular diffusion. Einstein derived the relation

I dX7 DI

2 dt

where D is the molecular diffusion coefficient.

Taylor assumed a homogeneous. isotropic field and showed that

I u f (s)di (2)
2 d: JF

0

Here 2 is the mean-square of the x-component of the velocity fluctuations and RLF is the Lagrangian correlation

defined as

RL (s) - E737 (3)

S-7
The numerator is the average of die product of the velocity of a particle at times zero and s. For small s.

=-~n u-L and RF (s) -.i,1. For large times, iRs) is not related to Wo) so that u(o)u(s) can be plus as often as

it is minus. Consequently uo•u~s) -*o for s-- The integral in (2) for s -4 - is a constant, defined as the

Lagrangian time scale of the fluid,

A Lagrangian trbulent difif ioncoefficiemn, p(t), canbe defined by (1). For t--* o, eF - u-t and for t-

TL~ fR Ls) ds(4T (4

0

"C £F - u - . Consequently die mubulent diffusion coefficient is time-dependet. It varies linearly with time

for small time awd is a constant for larg time.

An alteim method to describe diffsion from a point source is to use random flight models. These give the

path of the particle over a number of discrete tine itervals, 6, as

dx1  5

where up, the x-component of the velocity of the particle at the beginning of time interval, At, is allowed to vary

randomly with time. An example of this approach is die LaMgevin equation (van Dp et al. 1985),
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0du -- - dt + (2-! 2 dO) , (6)

where dow, is a random acceleration which is uncorrelated from time step to time step. Equations (5) and (6) am

solved for the initial condition that u, is a random variable specified by a Gaussian distribution with variance u-.

This solution gives a model of one of the possible paths for a fluid particle originating from the origin at time

zero. An average over a large number of paths gives

~L.FTL. -117)
2 u- ' I + I 7

This is a solution of (2) if RFL - exp (-s/.,).

3. Dimersion of heavy ortxcles from a Roint source in a bomoaeneous ismorOic it•

Turbulence properties of particles can be defined analogous to those for the fluid: v, LP, and E p. The

goal of a theory for heavy particle dispersion is to predict the tuulence properties of the particles from given

turbulence properties of the fluid. The approach that is taken is to solve the equation of motion of a particle in a

randomly varying fluid field and to take an average over a large number of possible particle paths.

The simplest form of this equation and the one used in this paper is

PF )d-v' _ -V (p P_ ) .fD I Pp(- Ff~

(8)

Here Vp is the volume of the partile, the pJ2 term on the left side is the mdded ma, the fir term on the right is

the force of gravity and the second term on the right is dhe fluid drag. The drag coefficient, D', is obtained from a

steady flow correlation.

From (8) an inertial time constut can be defined as

"I, -1 0 3fD PF [U-+ v-1 ,+9)

2 dp (2p, + PF)

For a Stokimi resistance

PS ( 36 pF (10)
(2pp- p ) d;p

wid (8) is linear in V When time is large enough the average acceleration of the particles is zero, and the average
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of (8) gives a drift (or free-fall) velocity, designated by Vi-, for the particles due to the gravitational field.

More complete forms of the equation of motion have been considered. In particular, the works of Tchen

(1947). Comm & Lumley (1956), and Maxey & Riley (1983) should be mentioned. Complications arise because of

the treamment of the added mass effect, fluid pressure variations, non-linear drag and the effect of unsteadiness on

drag. A detailed assessment of these problems has recently been given by Mei (1990).

The solution of (8) for Stokesian drag gives the following average results (Friedlander, 1957):

7- U C S'- R(s)ds (11)
0

-. 2 (r -s) R(s) ds (12)

Ep (t -+-0) - U7 fR(s)ds (13)

The turbulence properties of the particles ate, thus, defined in term of the fluid turbulence properties, u and R(s).

The coefficient, R(s), correlates fluid velocity fluctuations seen by the particle as it moves through the field. It is not

equal to the Eulerian or to the Lagrangian correlation coefficient; it cannot be measured, directly, in laboratory.

As pointed out by Lumrley (1957), this presents a fundamental non-linearity. Equation (12) gives the mean-

squared poition of the particle, but in order to specify R(s) the position needs to be known.

A major breakthrough is the approximame resolution of this problem made by Reeks (1977), Pimnen & Nit

(1978) and Nir & Pismen (1979). They applied Corrsm's (1959) independence approximation by assuming that the

Lagrangian correlation RL(s) at time s equals a spatial average of the Eulerian space-time correlation at tume s:

Rij(S) - I !,s x)d- (14)T fff 811

Here p(-, s) is the probability that a particle has a displacement Xi+after time s. It is assumed to be Gaussian with

variance Xp.

An iterative procedure is used to solve (12) and (14). A function for R(s) is assumed and Xp($) is calculated

from (12). A first approximation of p(-x-•s) is obtained and a second approximation of R(9) is obtained from (14).

Reeks, Pismen & Nit explored an Eulerian space-time correlation of the form

RE (xs) -RE (x- R'(S) (15) a.
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The Eulenan spatial correlation is calculaed from isotropic relations using

f(r) - exp _ (16)

and the Eulenan time correlation is specified as

RE(s) _ Cap _ 4 (17

Here LE and E are the Eulerian length of time scales. The ratio (lr 1 c E LE was fixed.

Reeks, Pismen and Nir found for cortelation function (15-17) that < < u and that the long-time turbulent

diffasivity of the particles is larger than the long time turbulent diffusivity of the fluid, if the time constant of the

particle is large and if VT is negligible. For a very small particle time constan the particle diffusivity is the sawe

as the fluid and u - 7. Incmasing values of VT were found to came a decrease in the long time turbulent

diffusivity of the particle, in agreement with the crossing of trajectoris concept of Yudine (1959). In the limit of

very large VT asymptotic relations were derived by Csuandy (1963):

R(O) - R - VTt, y-0, z-O) (IS)

VT

X c -. / L (19)

- l~ (20)

Mei (1990) has extended the work of Reeks, Pismen and Nit to include the effects of non-linear drag. This

work, a well as a study by Lumley (1978), shows that , * y =0,. where x is the direction of particle settling,

in conwst to a Hear drag for which these thre mciprocal tine coa ta- would be equal.

Anodt qqrroach toward understanding particle turbulence in a homogeneous field is the description of

individual paicle pths by the use of random flight models. However. the adaptation of methods developed to

describe Lagr=gian siotica for the fluid is not clearcut. So, the results of different investigators are not in

aeement. One of the first papers in this ama was by Hutchinson, Hewitt & Dukler (1971). Other works along this

line are by Shuen et al (1983), Kalilo & Reeks (1988), Bumage & Moon (1990), Ormancey & Martinon (1984).

Beremont t al (1990).

Laborsory studies of particle turbulence have been performed by Snyder & Lumley (1971) and Wells & Stock

IL4-5



(1983) in grid generated turbulence. Studies in pipe flow were carried out by Calabrese & Middleman (1979). Lee.

Adrian & Hanutry (1991).

The latter two studies are of particular importance to this paper. These showed that, within expenmental error.
the long-tune turbulent diffusivities of the particle and the fluid are approximately equal. The ratio of the particle

and fluid turbulence were found to be given by

'i 0.7 - PtLr F
Ur

For VT / u* > I the long time diffusivity of the particles becomes smaller than the long time diffusivity of the fluid.

An experimental approach that has been most firuitful is to carry out computer studies of particle turbulence.
This can involve the use of a direct numerical simulation (McLaughlin. 1989 Brooke et al. 1992; Squires & Eaton,
1991) or various versions Kraichnan's (1970) kinematic representation of isotropic Gaussian turbulence with Fourier

series (Maxey, 1987; Mei, 1990).

5. Effects of flow non-homozeneities

A consideration of particle dispersion in non-homogeneous flow fields introduces a number of phenomena not
seen in homogeneous turbulence. Gradients of the turbulence cause particles to have a time average drift away from
maxima in the energy. The drift velocity for this turbophoresis phenomenon (Reeks, 1983; Caporaloni, 1975) has been

given as

VDi (22)

for a Stokesian particle.

For a fully-developed particle field in a cylindrical polar coordinma system the drift velocity defined by Reeks

would be given as

avp "p. V' (23)

S r r

However in CidBurag the efect of nonhosogenenies one must also take into accouM their influence on the time-

averaged pressie gradietm in the fluid (as discussed by Young & Haraty 19912).

Air (24)T "PF - 7+

This exerts an average force on the panicles so that from (23) and (24) the average dri velocity due to turbulence

non-homogenities is given as
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13vo - 7 -7

wheren = 3pF / (2pp + pF). For pp = PF it is noted that VDr - 0.

A simple interpretation (Young & Hanrany. 1991a) of these results can be obtained if one considers that the

right side of (23) is a time-averaged acceleration, either of a fluid particle or of a solid particle. If it is a fluid particle

die acceleration is associated with a time-average pressure gradient in the fluid. If it is a solid particle, the

acceleration is not balanced by presure gradients in tde fluid. At approximately equilibrium conditions the

acceleration equals a drag force on the particle, given by P YIn, for a Stokesian particle, where VD, is the radial

componet of the slip velocity.

Lift forces transverse to the direction of particle slip the (x-axis) can be caused by particle rotation (Rubinow

& Keller. 1961) or by a mein velocity gradient in the fluid (Saffmnan 1965. 1968). The particular results obtained

by Saffman for Stokesian particles am restricted to values of (dt7 / dy) d; I/v which ame small, but still much larger

than the particle Reynolds number, dp I - VI / v. McLaughlin (1991) has extended the analysis of Saffman for0
Stokesian particles so that a small value of d, (drY. / dy) / I e- VI need not be assuimed. 'fle interesting finding

is that the lift starts to decreme significntly for values of this rabo of the order of unity and that it is negligible for

large slip velocities. The lack of an appreciation of this effect has lead to enon in a number of analyses dha have

appeared in the literature. Lift forces asocied with velocity gradin appear to exist, also, for lIe particle

Reynolds numbers, but cearcut theoretical guidance is not available.

When particles approach a wall a number of important effects can occur. The fluid drag in directions

perpendicular and parallel to the wail increase (Breamer, 1961; Goldmat t al., 1967; Cox & Bremner, 1967; Young

& Hanratty, 1991b). Furthermore, when particles approach a wail very closely tire is a Lift forc away from the wail

that results from an iisibition of fluid displacement. This wu discovered by Cox & Hsu (1977) and by Vasseur &

Cox (1977) n their analysis of particles sedimenting in a stationary fluid. These results have been confirmed

experimentally by Cmrukat & McLaughlin (1990).

A numbe of experiments have been performed which clearly show the effects of a non-mogen flow

field on particle distribution. In their study of the motion of 100 micron copper and glas s pheres in downwardly

flowing turbulent wae, Young & Hanratty (l991b) found that the paticles ca be trapped in necklace fomiations

tha move parallel to the wall slowly at a distance of les tu one particle diameter fom the wall. Measurements

of concestration profiles of the particles show a maximm in the cente of the pipe and gradients toward the wall,

indicating tht particles am transported toward the wall by turbulent diffusion. The trapping phenomenon is

interpreted as occurring when the Saffman Lift force toward the wall overcomes the ability of fluid turbulence to flix

the particles. Te location of trapped parcles i. dictated by a balance between the Saffnan lift force and the wall-
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induced force associated with the displacement of fluid as a particle moves parallel to the wall.

Sun & Link t1 98 6 ), in their studies of aerosol particles, reported on an accumulation of particles close to the

wall. so that a maximum in the concentration is close to the wall and there is a gradient of particle concentration away

from the wall. Computer experiments by Kallio & Reeks (1989) and by McLaughlin (1989) have shown the same

behavior. This can be explained by a drift toward the wall by turbophoresis. which is counterbalanced by turbulent

diffusion away from the wall (Brooke et al. 1992).

6. S

From the arguments presented in the previous sections thdee dimensionless groups emerge as being particularly

important in understanding the behavior of dilute dispersed systems.

One of these is the ratio of the Lagrangian time scale to the inertial time scale of the particle. •t.P As k

decreases the ability of particles to follow the turbulence decreases. This is exhibited in (21) wher it is seen that

1/2 / ý" decreases with decreasing JkL At P'~ = 1, the ratio of particle and fluidl root-mean-square

velocity fluctuations equals 0.77.

The quantity Tp = (t/S) multiplied by a velocity gives the stopping distance of a particle with thad velocity

in a stationary fluid. The thickness of the viscous wall region where the flow is highly non-homogeneous is given

as 30v/u., where the friction velocity, u*, is of the order of the turbulent velocity fluctuations outside the viscous wall

region. The dimensionless group t-*"- U / T - is a measure of die ratio of the stopping distance of die

particle to the thickness of the viscous wall region. Thus, a correlation of particle deposition data presented by

McCoy & Hanratty (1975) shows for cp+ < 20 that the dimensionless deposition constant, kD/u° varies with tp÷2 or

with particle diameter to the fourth power. Ths reflects the very large effect of turbulence non-homogeneities on

deposition since particles with cp < 20 have stopping distanc less than the thickness of the viscous wall region.

For rt,+ > 20 the data indicate kt/u" is only weakly dependent on tp*. This arises because particles with cp+ > 20

have stopping distances greater than the thickness of the viscous wall region; their deposition rate is not sensitive to

the details of the non-homogeneities close to the wall.

The ratio of die particle terminal velocity to the friction velocity, V/u*, is a measure of the influence of the

crossing of trajectore on the long tame turbulent diffusivity, so that for (Vlu*)> 1 Ithe particle diffuuivity will be

less than the ftid diffusivity. ForVT/u*S I the two diffusivites are roughly equal.

7. Fornialo-n of a diffusion model

For cases in which p ÷ > 20 it is of interest to explore the applicabiity of a diffusion model to describe

particle distribution and particle depoition. A fully-developed turbulet flow is considered. When an Eulerian

framework is used the concentration field for a horizontal flow is defined by the equation

I0
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where Ep is the Eulenan diffusion coefficient and diffusion in the flow direction has been neglected. Velocity

component iV is a constant equal to the negative of the free-fall velocity, VT. Values of Vy less than VT we

sometimes used to account for hindered settling. However. little recognition has been given to the possibility that the

particles might not have been in the field long enough to reach their free-fall velocity. For a vertical flow V, - 0

The specification of boundary conditions presents difficulties. Unlike the case of molecular transport, the

transport of particles from and to the boundary is not described by a gradient model, whereby the flux equals - E,

(cC/oy). and the concentration is not zero at a completely absorbing boundary. As a consequence. boundary

conditions are usually specified empirically.

In an Eulerian framework the influence of the time-dependency of turbulent diffusion cannot be taken into

account directly; it is usually absorbed in the specification of the spatial variation of _p (Hanratty, 1956, 1958;

Hanratty & Flint, 1958; Eckelman & Hanratty, 1972). However, in some circumstances the time-dependency cannot

be overlooked. Vertical annular flow is an example.

Because the spatial scale characterizing turbulent diffusion can become quite large the paths of droplets

entrained in the gas phase in an annular flow can sometimes be characterized by unidiectional flights from one wall

to the other, and not by the usual zig-zag motion of diffusional processes (Andreussi & Azzopardi, 1983). Under

these circumstances dispersion is governed by the small time asympotote of (2), whereby the turbulent diffusivity

varies linearly with the time the particles have been the field,

E - . t (27)

For the masons cited above the physics emerges in a more natural way if a Lagrangia formulation is used.

The concentration field is pictured as resulting from a distribution of point sources. The critical physical problem is

to describe the behavior of one of these souces.

One approach would be to use the 1u-om flight analysis outlined in section 2. However, different viewpoints

exist on how to use random flight methods to describe particle dispersion in a homogeneous field, their application

to a non-homogeneous field must be regarded as speculative. In addition, a large number of radom flights must be

calculated to get a proper statistical average. This could make it cumbersome to study an extensive parameter space.

As a consequence, it seems reasonable to explore, initially, a homogeneous turbulence that uses Taylor's theory

to describe a wall source. This is justified for tp+ > 20 since particles start their free-flight to the wall beyond the

viscous wall region.

8. Gas-l molar flow and sediment trasomo.

(a) Outline of a homogeneous model for a wall source

The behavior a differential source that entered a homogeneous, isotropic field at time I and at field is

conveniently calculated as a solution of the following equation (Bathchelor, 1949; Hanratty, 1956; Binder & Hanratty,
1992):

aC I d' 2 V2C _ V t6-) S8(y(o)6/tll),(2L)
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whereY 2 is defined by (2). S is the source strength at -', r' . having the units of mass per unit area, and the 6's

are delta functions having the units of reciprocal length and reciprocal tine. The first term on the right side reresents

the spread due to turbulent motion. The second term represents the y-component of the average deterministic velocity

of the particles associated with the gravitational field. The mean flow is in the x-direction so that V is zero for a

vertical system. A plug flow is assumed so that

dt - dx / V, (2)

and the mean particle velocities, V, , V Y are functions only of (t-t6).

Velocity V is defined by

RIP - p o ID- Li(v Y - U,) - Imp 1-I (30)

S -- I-P)

Here I i - Llj is the mean relative velocity between the solid and the fluid; UY - 0 since there is no net fluid

motion in the y-direction; Ap is the projected area of the particle; mp is the particle mass; fD is the particle drag-

coefficient. In the context of (28) and (30) the xi-cm nt of the velocity enters the problem in the calculation of
I •'- U and in relating the time coordinate to the space coordinate in (29). Velocity V, is defined by the equation

dV7 _D I¢ (v. (31)

Particles can enter the field from a wall sourv with a range of sizes and velocities. Equations (28-31), in

general, would have to be solved for each member of this population. In order to simplify the problem the

calculations in this paper assume the particles could be reptesented by a single size and a single velocity. Thus, at

t" V, - VZo and VY - VYO . For a source on the bottom wall of a horizontal system dte average velocity VY will

be less than V for t > /. For t much large than / ther will be an average drift toward the wall given by

VY - -VT.

The boundary conditions to be used in solving (28) require special consideration. For amular flow, die wall

is considered to be a perfect absorber. For a process involving only molecular diffusion the assumption of perfect

absorption implies a zero concentration at the boundary. However, this is not the cme for droplet deposition, for

which the length scale of droplet motion can be large compared to the scale characterizing the droplet concentration.

This can be seen by using a radiation boundary condition

- I ac 1w - VC(w) (32)

where V is the velocity with which drops move to the boundary. If tp is represented by the product of V and a

characteristic length L then (32) can be rewritten as
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-VL i VC(w) (33)

If L is small (as in the case for molecular diffusion) and OC/Iy), is finite, then C(w) = 0. However, if L is of the

order of the length scale characterizing oCIoy, then C(w) needs to be a finite number.

Lee et al (1989b) give the following formulation for the boundary condition:

-E • j2. c)13cf 3

The function f is the fraction of the particles moving toward the wall.

The Lagrangian correlation is taken to be

R - exp [-(t (35)

Following arguments of Binder & Hanratty (1991), flt) may be approximated s

f(t) - p(_ 41) / -(36)

Initially all of the particles from a wall source are moving away from the wall so ffO) -0. The function f.t)

approaches 1/2 asymptotically at large times with the same time dependence as the diffusivity.

(b) Analysis of vertical annular flow

Binder & Hanratty (1991) used the approach oudined in the previous section to analyze vertical gas-liquid

annular flow in a pipe under conditions that the concentration field is fully-developed. Here, the droplet field is

pictured to result from a series of differential ring sources along the wall whose behavior we described as a solution

to (28) with VY - 0, subject to boundary condition (34).

For vertical gas-liquid annular flows Jkx.r is typically in the range of 0.01 to 0.2, cp+ > 20 and VT / u" <

I. This means that the droplets are not following the turbulence

7 , but that e, -,. From (21), (,, / (-) - 0.1 to 0.5 and ,, I.= 0.014 to 028 for gas-liquid

anmular flow. Characteristic ILarangian lengths scale can be defined as L P - ()I %p and asLF " (u- 1/2 tF

so that Lp / Lp - 10 to 2.

Figure I shows typical calculation for a single ring source by Binder & Hatraty (1991). Values of rL.F&*

2a = 0.046 and u a 0.9a, given by Vames & Hwatty (1988), were used. Because of a lack of information about

the details of how the droplets enter the field it was assumed that they were initially fully entrained in the flow field;

that is, VXo - Ux and the turbulence characteristics of the particles entering the field am given by (21).

The odinm in figure 1 is CDU* / RA, where RA is the rate of atomization of the liquid wall layer per unit are.

The abscissa is the dimensionless radial distance, r/a. The parameter for the different curves is the dimensionless

time. The calculations am for quite sluggish drops, f•k.r=0.01. At small times f a 0, so that there is no droplet

deposition on die wall. A maimum occurs at the wall becase ther is a diffusion of drops away from the wall. As

IL4-11



f takes on values different from zero. deposition occurs and there is diffusion both to the wall and away from the

wall. As a consequence, the maximum in the concentration profile occurs away from the wall. As tme increases

the concentration profile becomes more diffuse. At long enough times the maximum is at the pipe center and

diffusion occurs only toward the wail. Eventually. all the drops redeposit and the concentration is zero over the whole

pipe cross section.

The rate of deposition on the wail is given by

T21/ (37)

For large enough times this can be looked upon as the sum of diffusion and free-flight resistances. Diffusion governs

the concentration at the wall and free-flight is the final mechanism for deposition. According to (21), 2;t/2 decreases

with decreasing ftL%. It is expected that the free-flight mechanism controls for mLF -+ 0 and that the concentration

gradients at the wall become very small. Thus, calculations for IkLF = 1.0, shown in figure 2. give larger spatial

variations of the droplet concentration for larger tim than shown in figure I for fk, = 0.01.

Fully developed concentration profiles for large t can be calculated by summing the contributions from sources

at d ren/:

t

C - f C, (t-t') ds' (38)
0

Figure 3 shows results for values of Atu calculated from the dropsize measurements of Azzopardi (1985) and the

friction velocity measurements of Asali et al (1985) to correspond to experiments of Gill et al (1965). The

calculations and the measured profiles are seen to agree reasonably well.

A deposition constant can be defined foa these fully developed concentration ptofiles as

kD - RD / CD (39)

where Cq is the bulk-averaged conm ration. The calculations show that ko I ,* varies with fj.F For large AC

(or small particles) kD / u approaches a constant value. As fkS decreases (the particles increase in size) kD / u

decreases becaue v / u decreases. With decreasing f, the relative role of free-flight becomes more important

and, at small enoauh Il.,, fMe-fligt is compltly controlling. Good agreement was obtained between the calculated

values of kD / u" and laboratory measurements (Binder & Haratty, 1991).

(c) Analysis of horizontal annular flow

Binder & Hanraty (1992) analyzed gas-liquid annular flow in a horizontal rectangular channel, using the

methods outlined in the previous two sections. The range of Lr, vp and VT / u characterizing the droplet behavior

in this flow is the saoe as for vertical gas-liquid annular flow. The values of Vr I u*, usually encountered, ate small

enough that the long-time turbulent diffusivities of the particles are appoximately equal to the long-time turbulent
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diffusivities of the fluid. However, it is large enough that the droplets are asymmetrically distributed and that the

liquid layer on the top wall is thinner than the liquid layer on the bottom wall.

The analysis of this flow requires the introduction of another dimensionless group, a Froude number defined

as Fr = u* i f gH. where H is the channel height. For Stokesian particles,

FrP'c, - 0.046 u*/Vr (46)

Therefore, the reciprocal of FrfkLF may be looked upon as a measure of the ratio of settling velocity to the

magnitude of the velocity fluctuations of the fluid.

The walls are represented by a series of infinitesimal line sources. The stsength of the sources on the bottom

wall are greater than on the top wall because the wall layer is thicker. The behavior of these sources is obtained by

solving (28), (29) and (30). Binder & Hanratty used VYo- (J- 2 where v is given by (21). A reasonable

assumption for the initial x-component of the velocity is V.o . So U, , where U, is the bulk average fluid velocity

in the x-direction and So is the initial slip ratio. Because of a lack of information about how the drops enter the flow.

S. was taken as unity.

Deposition at the boundaries occurs by the parallel mechanism of turbulence and gravitational settling

where RDr is given by (37). The contribution due to settling is

RD - RDT + RDS, (41)

RDS - - C (0, -t/) Vy (t-r) (42)

at the bottom wall and

R - C (H, -t) VY (t-t) (43)

at the top wall.

From a consideration of the behavior of these line sources the faction of the drops originating from the bottom

wall (y = o) that deposit on the top, FOa, and on the bottom wall, Foo, can be calculated. Similarly FHO and FHH

can be calculated for sources on the top wall. From conservation of mass the ratio of the rates of deposition on the

top, RDH, and on the bottom, RDO, walls can be calculated for a fully developed droplet field

RDH FOH (44)

Figure 4 gives the results of a calculation of RDH I RO versus Fr*LF, which varies inversely with VT I u.

It is noted that results for different P collapse, approximately, on a single curve. This plot may be interpteted as

flow regime map. For FrOtLF < 0.5-0.7 deposkion of droplets on the top wall is extremely small. This would seem

to correspond to the stratified-.nuular flow defined by Williams (1990). For 0.5 - 0.7 < FrLF < 7-9 an asymmetric

nutular flow exists for which the liquid is unequally distributed on the walls aid the droplets in the gas phase are

stratified. For F ,LF > 7-9 gravitational settling is relatively unimportan and the liquid in the gas phase is

distributed synmietricaily.

Concentration profiles downstream of a wall source, similar to thos shown in figurs 1 and 2 can be calculated
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for droplets that enter the field at time f from infinitesimal line sources on the top and bottom walls. Fully-developed

profiles can then be calculated by summing the contributions from a large number sources with (38) Ehariple

calculations for ?L.F = 0.01 and 1.0 are shown in figure 5. These correspond to values of 0.1 < Fro't.F < 1000. or

0.00092 < Vr i u* < 0.40. The curves for Fr*r., = 0.1 and 0.5 represent a stratified-annular flow; the curves for

Fro~L.F = 1 .0 and 5.0, an asymnmetric annular flow; the curves for FrfLF = 10.0 and 100. a symmetric annular flow.

The parameter RAH / RAO is the ratio of the rates of atomization from the top and bottom walls. Because the flow

is fully developed (RAH / RAO) = (RDH / RDO).

(d) Analysis of sediment transport

The distribution of droplets in gas-liquid annular flow has strong similarities to sediment transport. Here a

solid-liquid mixture flows through a horizontal enclosed space of height H. Because of gravitational effects, the

particles distribute asymmetrically in the liquid and settle out on the bottom of the channel. If the liquid velocity is

large enough, the rate at which settled particles are removed from the wall is such that complete suspension occurs.

However, at low liquid velocities the rate of removal is smaller and a bed forms on the bottom wall.

Binder (1991) used the Lagrangian analysis outlined in part a of this section to calculate concentration profiles

of suspended sediment and the load carried by the fluid. The concentration is considered small enough that the fluid

turbulence is not affected by the presence of the particles and that particle-particle interactions are not important. The

bottom of the channel is supplying particles to dte system at a rate per unit area defined as RA and particles are

depositing at a rate per unit area of RD. The approach taken by Binder was to consider the concentration field as

resulting from a distribution of sources along the sediment bed, which have a strength proportional to RA. A fully

developed condition was considered for which RA = RD.

Sediment transport differs from horizontal armular flow in that the particles do not lose their identity when they

reach the top boundary, as do liquid drop.. One approach is to assume a perfectly reflecting boundary at the top.

This would be treated in the marner outlined by Hairatty (1956). The boundary at y = H would be ignored but a

fictitious source would be located at y = 2H/at t -= of the same stngth as the one at y = o. This fictitious source

would be analyzed with (28) except that Vy (t-t/) would be calculated by using a negative gravitational constant.

Binder used a different assumption. He viewed the particles that strike the wail to fall out of an eddy so that

the turbulence charcterists of pamicles coming off the wall ate unconelated with the turbulence characteristics of

particles approadting the wall. Following this viewpoint, Binder argued that the particles reaching the top boundary

form new souruc.

Anotha diirievce from gas-liquid anmular flow is that the range of paraneters characterizing the dynamics

of the particles is different. For sediment transport I<0,9 L,<100, VT/U S I andtp÷ > 20. For these conditions

the turbulence characteristics of the paticles are approximately the same as the turbulence characteristics of the fluid.

However, tp+ is large enough that particles move in free-flight through the viscous wall region. The calculations

presented by Binder used die simpfying assumption that Vy - Vr2 )t 2and that Vo - 17,.

The rate of deposition to the bottom wall may be considered as the sum of contributions due to turbulence and

gravitational settling as described by (37), (41) and (42). Figure 6 a plot of the ratio of the contributions due to

turbulence and setling, RDT I RDS. These results ae not strongly affected by changes in fF. Furthermore the
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paricle Reynolds number, d4. is only important when the particles are non-Stokesian. As with gas-liquid annular

flow the parameter Frvr 2 is a good means of characterizing the flow pattern.

For FrftrLF > 2 the deposition by turbulence is ten times greater than the deposition by settling. For Frf'Lt>

0.03 the deposition by settling is ten times greater than that by turbulence. For 0.03 < FrjýrV < 2 both turbulence

and settling are important.

Fully developed concentration profiles ame presented in figure 7 for Fr = 0.01 and dp÷ = 10. In the ordinate

the concentration is made dimensionless with the bulk concentration. In the abscissa the distance from the lower

boundary is made dimensionless with the height of the channel. The profiles in figure 7 are characteristic of the

regime where both turbulence and settling are important contributors to deposition. It is noted that the profile

becomes increasingly stratified as RDT I RDS changes from 6 to 0.2. A depth, 6, of the suspended particles can be

calculated if 6 / H is defined as the location where C / Cwa = 0.01. In this way, values of 6 / H = 0.22 and 8 / H

= 0.40 are calculated for FrO'r,- = 0.05, 0.1. Using this criterion the suspended solids fill the entire channel for

Frlv = 0.5, 1.0. This would suggest that there is a fuzzy liquid slurry interface for small FrfrktF and that this

interface ceases to exist at a value of FrO¶,F between 0.1 and 0.5.

9. Aerosol d=

Aerosol deposition, unlike the situations treated in the previous section, is characterized by tp+ S 10. The

classical theory by Friedlander and Johnstone (1957) (for particles large enough that Brownian motion is not

important) is that particles are transported by turbulent diffusion to a location in the viscous wall region from which

they move in free-flight to the wall. The rate of deposition is very sensitive to changes in the free-flight location

because the turbulent diffusivity and the turbulent velocity fluctuations vary dramatically with distance from the wall.

A number of modifications of the original implementation of this idea have been proposed but no physically

sound explanation of measurements of the rate of deposition has evolved. McLaughlin (1989) and Brooks et al (1992)

have shown how computer experiments can be used to obtain the type information about free-flight that is needed to

make theoretical progress with the problem. The experiment are carried out in a direct numerical simulation of

turbulent flow in a channel. The flow is seeded with aerosol particles and the paths of these particles are followed

by solving the equation of motion of the particles. Results from these studies we quite different from classical ideas.

Figure 8 shows a calculated concentratimon profile for particles with vp,+ = 5. In this experiment the particles

originated in the y÷ = 40 plane a time zero. The only force considered was Stokesian drag. The lift force, the

Magnus force and wall effects were ignored. At times of the order of i÷ = 300 an approximaly stationary state is

observed in the region displayed in figure 8.

The picture that emerges from these experiments is different from that given by Friedlander & Johnstone. It

is noted that there is an accumulation of particles close to wall. Particles ae brought to the wall by the turbophoretic

phenomenon described in section 5. This is actually opposed by turbulent diffusion. The particles start a

unidirectional flight to wall from different distances, rather than from a fixed distance. The average velocity of

particles on this free-flight is much larger than the local ; or the local -.

The solid curve in figre 8 is the result of an analysis carried out by Brook. et al (1992), based on the physical

picture oudined above. This calculation required information on the variation of _ with y, the variation of the
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turbulent diffusion coefficient with y and a distribution function characterizing the distance from the wall at which

free-flight began. Consequently, it is by no means a complete theory.
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DYNAMICS OF COHERENT STRUCTURES

IN TURBULENT JETS

Reda R. Mankbadi
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

1. INTRODUCTION

The existence of large-scale coherent structures in shear flows has now been confirmed by an overwhelming

number of experimental observations. The earlier work of Browand & Weidman (1976), Brown & Roshko (1974),

Crow & Champagne (1971), and Winant & Browand (1974) demonstrated that the developing flow in both

axisymmetric jets and two-dimensional shear layers is dominated by large-scale, wavelike coherent structures.

Subsequently, coherent structures have been observed in other configurations, such as wakes (e.g., Miksad et al. 1982

and Wygnanski, Champagne & Marasli 1986), the initial region of planar jets (Antonia et al. 1986; Gutmark &

Wygnanski 1976; Thomas & Chu 1989; Thomas & Goldschmidt 1986; and Wygnanski & Weisbrot 1987), elliptic jets

(Gutmark & Ho 1983a; Husain & Hussain 1983; Tso & Hussain 1989; and Tso, Kovasznay & Hussain 1981), and the

self-similar region of jets (e.g., Hussain 1986 and Thomas & Brehob 1986). These observations indicate that the

structure starts as an instability wave on the shear layer, the amplitude of which reaches a maximum and then decays

gradually downstream. The structures can merge with their neighbors as the shear layer develops downstream. The

importance of coherent structures nas warranted several reviews from different perspectives (e.g., Browand 1980;

Cantwell 1981; Ho & Huerre 1984; Hussain 1983, 1986; Liu 1988, 1989; Lumley 1981; Roshko 1976, and Wygnanski &

Petersen 1987).

Numerical simulations have succeeded in revealing some features of coherent structures (e.g., Acton 1976; Claus

1986; Corcos & Lin 1984; Corcos & Sherman 1984; Gatski & Liu 1980; Knight 1979; Mansour & Barr 1987; Patnaik,

Sherman & Corcos 1976; Riley & Metcalfe 1980; and Scott 1987. Although as pointed out by Ho & Huerre (1984) the

extraction of detailed information regarding the intrinsic scales of motion is more involved in the numerical simulation

case, the numerical simulation has been quite helpful in clarifying several features. For instance, the dependence of the

coalescence of two vortices on the initial phase difference was first obtained through numerical simulations. The

numerical results can be compared with flow visualization and seem to yield a realistic modeling of the rollup of the

shear layer and vortex pairing in the two-dimensional case.

The subject of coherent structures is a salient example in which the initial research objective was only to

understand the basic physics involved, but soon after, this understanding provided the technological basis for using

coherent structure ideas in flow control. Controlling the mixing of two fluids can be quite helpful in several technical

applications, such as combustion, chemical processes, diffusion flames, and ejectors. Several experimental observations

indicate that coherent structures and vortex interaction play a key role in shear layer growth. Winant & Browand

(1974) demonstrated that successive merging of the vortices is responsible for most of the entrainment in the mixing

layers. Browand & Weidman (1976) found that the vortex-pairing process promotes the transverse momentum and

hence the mixing rate. Ho & Huang (1982) also showed that if a mixing layer is perturbed at very low forcing levels
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near a subharmonic of the most amplified frequency, the spreading rate of the mixing layer is greatly manipulated. In

addition, the experimental observations of Ahuja et ad. (1982), Favre-Marinet & Binder (1979), Zaman & Husain

(1980), and others show that the growth of coherent structure increases the intensity of the fine-grained background

turbulence, which is of technological importance. Such coherent structure investigations have also helped in

understanding some aspects of the laminar-turbulent transition (Reshotko 1985, 1986) and in putting some of the

coherent structure observations into practical applications. For a review on the use of coherent structure ideas in

technologically important situations, the reader is referred to Hussain & Husain (1987) and Rice & Zmnan (1987).

The objective of this review is to examine our cuT rent understanding of some of the coherent structure features as

explained by the nonlinear stability theory. Emphasis is placed on turbulent jets for their obvious technological

,ortance. The hope is that this understanding will enhance our ability to exercise further control over turbulent

-)Ws.

2. SYMBOLS

A amplitude

aijc constants

a0 speed of sound

Cr total velocity component in observer's direction

cc complex conjugate

D differentiated with respect to r

d nozzle diameter

dis turbulence dissipation

E(x) integrated kinetic energy in a slice of the jet

f frequency, Hz

G(O) normalization function

g variable

I integral that is a function of 0, w, and N

IMA mean-flow advection integral

IMT mean-flow production integral of random turbulence

IMW mean-flow production integral of wave component

ITA turbulence advection integral

'WA wave advection integral

imaginary

Mc convection Mach number

MT mean-flow production of turbulence

MW mean-flow production of wave components

N azimuthal wavenumber

P pressure

Q kinetic energy of wave

q kinetic energy of turbulence

R nozzle radius

Roc distance between observation point and jet exit

Re Reynolds number

real part

r radial coordinate
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Srij'mn wave-induced stresses

S Strouhal number

T time scale for return to isotropy

Tij Lighthill's strew tensor

t time

tr retarded time

U.e exit mean velocity

U1  mean velocity

uI background, fine-scale random turbulence

ai periodic component

V mean-flow radial velocity

v radial velocity

WT energy transfer between waves and turbulence

WW interaction between one wave and other existing waves

w azimuthal velocity (angular velocity)

x axial distance

y transversal coordinate

a complex wavenumber corresponding to frequency w

0 phase angle of streamwise oscillatory velocity component

012 initial phase difference between waves of Strouhal numbers S1

and S2

A23 initial phase difference between waves of Strouhal numbers S2

and S3

azimuthal angle at jet centerline

6 displacement thickness

Kroneker's delta

60 initial boundary-layer thickness

-t angle between wave-induced stresses and strains

9 dissipation

C emission angle

0 momentum thickness

p fluid density

AO initial wavelength

a argument of I

r period

0• azimuthal angle

phase angle

w frequency, rad/sec

Subscripts:

A advection

crit critical

e jet exit

eff effective
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ex excited

f fundamental

i initial

i~j,kJEm,n indices: 1,2,3

M mean flow

oc exit, centerline

p Peak
r radial direction

s subharmonic

T turbulence

t turbulence

ux unexcited

W wave

x axial coordinate

9 based on momentum thickness

0 azimuthal angle

0 initial conditions

Superscripts:

time average of flow quantity

-• wavelike

* compi ý conjugate

eigenfunction

differentiated with respect to r

* phase

3. HYDRODYNAMIC STABILITY THEORY AND COHERENT STRUCTURES

Coherent structures in mixing layers can be viewed as a composition of interacting instability waves that

propagate and amplify in the downstream direction. The observations of Bechert (1988), Binder & Favre-Marinet

(1973), Crow & Champagne (1971), Dimotakis, Miake-Lye & Papantoniou (1983), Drubka, Reisenthal & Nagib

(1989), and Moore (1977), among others, lend strong support to the traveling-wave representation of the large-scale

structure. For example, Crow & Champagne (1971) showed that linear stability theory can predict some of the

observed features of the preferred mode of an axisymmetric jet. Also, Crighton & Gaster (1976) took the divergence of

the jet into consideration and calculated the preferred mode of the velocity profile two diameters downstream of the

nozzle. The suitability of the spatial formulation, over the temporal one, in describing the initial growth stage of the

shear layer instability was established by several experiments, such as those of Browand (1966), Cohen & Wygnanski

(1987a,b), Gutmark & Ho (1983b), Ho & Huang (1982), Mattingly & Chang (1974), and Thomas & Chu (1989), as

well as by analytical studies, such as those of Huerre & Monkewitz (1985) and Monkewits & Huerre (1982). As

pointed out by Liu (1988), if one extends the physical ideas from nonlinear hydrodynamic stability and transition in

laminar flows (e.g., Stuart 1963, 1965), it is not entirely surprising that such instabilities and transitional structures

should also occur in the geometrically similar turbulent shear flows.

The fluid motion can therefore be split into three kinds of motion: a time-averaged motion 'i(x.; a periodic,

organized, large-scale wavelike structure 0i(x,t); and a background, fine-scale random turbulence u'(it). Thus,
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and the pressure P is similarly split. The usual time average of a given quantity q is denoted by an overb.r and is

defined as

q(x) - T-' f• q(x,t)dt, (2)

where T is at least greater than the period r of the large-scale structure. The conditional average, which is here the

phase average, is denoted by ( and is defined as

N

(qtx,t)) - lim N- 'r (x,t + nr). (3)
N- - 0n=O

The process of using averaging to separate the governing equations has been discussed in detail by Hussain & Reynolds

(1970).

By using ideas from the nonlinear stability theory (Ko, Kubota & Lees 1970; Liu 1971; and Stuart 1960, 1967,

1971), the coherent structure component can be written as a superposition of several interacting Fourier components,

which, in polar coordinates, takes the form

iii I'mn(x)!fiim,(r,6) exp[i 0.(x) - iwmt + iNO + cc (4)

The assumption here is that the Fourier coefficient can be separated into an amplitude that is a function of the

downstream coordinate x and a transversal shape function of the transversal coordinate (r or y) at a given location

along the jet, The amplitude A is to be determined from nonlinear analysis; the transversal profile fii'mn(r,*) is

taken as the eigenfunction given by the locally parallel linear stability theory (e.g., Michalke 1971). The phase angle

0 can be assumed to be given by the linear theory, as was done in numerous investigations, or to be governed by its

own nonlinear evolution equation as was done in Lee (1988), Lee & Liu (1989), and Mankbadi (1986, 1991). Here N

is the azimuthal number and cc denotes the complex conjugate.

The assumption that the profiles of the coherent components are given by the locally parallel linear theory follows

from the fact that the governing momentum equation of the coherent components reduces to the Orr-Sommerfeld

equation upon linerisation. The comparisons in Mankbadi & Liu (1981) between the theoretically calculated

transversal profiles based on the locally parallel linear stability theory and the measurements of Favre-Marinet &

Binder (1979) confirm this assumption. This issue has also been addressed in greater detail by Strange & Crighton

(1981); by comparing the linear theory with their measurements, they concluded that although the amplification rate

of coherent components is not well predicted by the linear theory, the transverse distribution of the coherent quantities

is well predicted by the linear theory. The same conclusion has now been confirmed by other experimenters, such as

Cohen & Wygnanski (1987a,b), Gaster, Kitt & Wygnanski (1985), Thomas & Chu (1989), Weisbrot (1984),

Wygnanski & Petersen (1987), and Zhang, Ho & Monkewitz (1985).

In the triple decomposition the time-averaged momentum equation is replaced by a phase-averaged one. The

classical time-averaged Reynolds stresses are also replaced by phase-averaged ones (uuj). These phase-averaged

stresses can then be split into the time-averaged component and oscillatory modulated component:
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The closure problem now i6 not only for the classical time-averaged Reynolds stresses but also for the wave-induced

stresses i01. The latter are defined as the difference between the conditional and the time average of the instantaneous

fine-grained turbulent stresses. These modulated stresses play an essential role in the energy exchange between the

large-scale structure and the fine-grained turbulence. By time averaging the product of these stresses with the

appropriate wave rates of strain, one can explain the local kinetic energy transfer mechanism.

4. DYNAMICS OF ENERGY TRANSFERS AMONG DIFFERENT SCALES OF MOTION

4.1. GOVERNING INTEGRAL EQUATIONS

To understand the energy transfer mechanisms, we consider here the kinetic-energy equations of the different

scales of motion in a turbulent axisymmetric jet. The integral kinetic energy equation of the mean flow can be

obtained by applying boundary-layer approximations to the mean quantities, that is, a-)/8& < < a(-)&, V < < :.

These approximations are applied to the averaged equations of motion, viscous terms are neglected, and the equations

are integrated over r and •. The resulting mean-flow energy equation is given by

d 1,3r dr =.- -u 'a v rdr _ - uo- , -u'' r, (6a)
2 dx 0&

which can be written symbolically as

dl I d fi-7r dr - -MW - MT (6h)_dx -2 To-,(b

where 0 is the momentum thickness and MW and MNT are the first and second integrals, respectively, on the right

side of equation (6a). Equation (6) states that the growth of the momentum thickness (the drain of the mean-flow

energy) is governed by the mean-flow production of the wave components MW and by the mean-flow production of

the turbulence MT.

The integral energy equation for the random turbulence is obtained by applying boundary-layer approximations to

the mean quantities and by handling the viscous dissipation terms in the usual manner. After integrating over r and

0, the turbulence kinetic energy equation reduces to

d q- rdr-fo u-"•0 rdr + v # Z iro dr _ f*SI rdr (7a)

dx & f~r o~ ri2-u r. R e 0O ac'ax

which can be written as

d f U r dr - MT + WT - (dis). (7b)

Equation (7) states that the development of the turbulence energy is governed by its production by the mean flow

MT, by the energy transfer from the wave to turbulence WT, and by the turbulence dissipation (dis).

The integral energy equation for the mn-wave component is obtained from the full energy equation in the same

manner:

d f; UQ r dr U r dr - fo - 4. r dr
ix• U rr -ninma ) -,w

(8a)

+ j (ij. r - (wo),.m r dr,
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where

- - - Vmnr n - - rr#mn
&j r r

This system of equations can be written in the form

d fo" r dr MW. - WT. , WW. (Sb)

Equation (8) states that the development of the wave energy is governed by the mean-flow production of this

particular wave MW,,, by the energy transfer between this wave and the turbulence WTm., and by the interactions

between this wave and other existing waves WWme.

4.2. MODE DECOMPOSITION AND INTERACTIONS

In the mean-flow energy equation (6) the production of all waves is given by

M - f - r-- _ r dr (g)

With the use of equation (4) the waves' Reynolds stress f'zI can, in general, be written as

'UV m -'E (UmuV;, + cc) +* E.,nkvm, exp[i(Nk - N*] + cc(
m~n r~ký L(10)
lot

The first summation is over the product uv* of the same wave. These terms are axisymmetric irrespective of their

azimuthal number. The second summation over the product uv* is produced by waves of the same frequency but
different azimuthal numbers. These terms are not axisymmetric and therefore destroy the symmetry of the mean flow.

Note that these terms vanish unless there is more than one azimuthal component of the same frequency. Thus, this is

consistent with Cohen & Wygnanski's (1987a~b) conclusion that single-mode excitation cannot destroy the

axisymmetry of the mean flow. The azimuthally dependent terms in equation (10) vanish when integrated over 0.
Therefore they redistribute the mean-flow energy in the azimuthal direction but do not contribute to the total energy

integrated over 0. Because the mean-flow energy in equation (6) is integrated over 0, these nonaxisymmetric terms

vanish and the mean-flow production of the wave can be written as

MW E • MW_ (11)
mtn

with

MW. =Zf Ua V,* r dr + cc (12)mn&

Therefore the mean-flow productions of the waves are given by the linear superposition of the individual mean-flow

production of each wave.

In the turbulence energy equation (7) the energy transfer between the waves and the turbulence WT is given by

vi a~j3• • Wr dr (3

WT = J. i - + r(

% O -r rr
where the wave-induced stresses are = (u'uj) - u'uX Now let us decompose %ij as we did for 6, that is,

F(x,r,Et) = F .m(x,r) exp(-iw mt + iNh,) + cc (14)
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Thus rj is generally given by

77 - (r.ru;. -cc) -i- E ý.,u expi(Nk - NJ# ÷ cc})
m'n m,k,#,n

I so

The first summation is over the product produced by the same wave. The second summation is over the product

produced by two waves of the same frequency and different azimuthal numbers. This second summation vanishes upon

integration over 0. Thus with the energy defined as integrated over # we can write

WT = E WT.

with

WT -= . . - r + " .. dr

Therefore the turbulence energy exchange with the waves is given by the linear superposition of the energy exchanges

between the turbulence and each individual wave.

Next we consider the wave-wave interactions appearing in equation (8a): namely,

WW + i(uiu() 2 r 1 dr (17)Innr

Because of the time ave-aging and the azsmuthal integration these terms are generally zero unless w and N

simultaneously satisfy one of the following sets of conditions:

or W wk + wt and Na =Nk ÷N (18)

Wmi Wk -W1 and Nn Nk NI

These are the same relations given by C -hen & 4ý vgnanski (1987a~b). Equation (18) is not quite a restrictive

condition because if one starts with only two fretency components, they can amplify other frequency components that

satisfy the conditions of equation (18). If the process is repeated, an enormous number of frequency components can be

amplified. This analysis is applicable to an unlimited number of components. Mankbadi (1991) considered the

interactions among only six wave components: three axisymmetric frequency components and three first-helical

frequency components. The frequencies of the helical components matched those of the axisymmetric components. In

principle, these initial wave components can interact with each other to generate an enormous number of other

frequency and azimuthal components. However, only the interactions among these initial components were considered.

Thus other frequency and azimuthal components that could be nonlinearly generated were forced to be identically zero.

The frequencies were chosen to satisfy the harmonic relations: that is, with m = 1,2,3. Thus each two consecutive

frequencies are related to each other by subharmonic-fundamental relations

W=i (2)m-1. (19)

The lower frequency denotes that of the subharmonic, and the higher denotes that of the fundamental under these

conditions.

The wave-wave interactions can be classified into three groups: (1) interactions among the axisymmetric waves,

which can be manipulated to be in the form of subharmonic-induced stresses multiplied by fundamental-induced

strains, (2) interactions among the helical waves, which produce nonaxisymmetric terms that vanish upon integrating

over 0 (thus with the energy defined as that integrated over 0 the integrated interactions among the helical modes
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are identically zero; this is an interesting result because it indicates that, unlike the axisymmetric modes, two first-

helical frequency components cannot generate other frequency components), and (3) mixed interactions between the

axisymmetric and the helical waves. The interactions between the first-helical and the axisymmetric components are

formed by two subharmonic frequency components of different azimuthal numbers interacting with the first-helical

fundamental component. The general form of the wave-wave interactions is given by

wijt= 8+ ui I

, vvkv vwijvkf&

(20)

I*- a*
+~ w~ a -jfv + Vi j~kU . + w iiwktr I odod

' - vijjkti'nn )r drj

5. NONLINEAR DEVELOPMENT OF AMPLITUDE

5.1. PERTURBATION METHODS

Rational perturbation or expansion procedures have been applied to determine the nonlinear development of

amplitude. This approach is dependent on weak nonlinearities or on a near-equilibrium situation in which the

amplification rate is small (Stuart 1960). Monkewitz (1988) considered the weakly nonlinear interaction between the

fundamental and subharmonic modes in an inviscid, parallel mixing layer. He has shown that a critical fundamental

amplitude has to be reached before the subharmonic becomes phase locked with the fundamental and exhibits a

modified growth rate. Cohen & Wygnanski (1987a,b) obtained a series solution in terms of a small parameter

representing the amplitude of the wave and were able to obtain improvement in the saturation of the wave when their

results were compared with the experimental results of Gaster, Kit & Wygnanski (1985).

Asymptotic analysis of critical-layer nonlinearity has also been used to explain some of the coherent structure

observations. The critical layer is laterally located where the mean-flow velocity equals the phase speed. In this

approach it is demonstrated that once the instability wave amplitude becomes sufficiently large, nonlinear effects

become important in the critical layer but the flow outside the critical layer remains governed by the linear

mechanisms. Goldstein & Hultgren (1988) demonstrated that the critical-layer nonlinearity causes the fundamental

instability to undergo saturation upstream of the linear neutral stability point. Also, Goldstein & Leib (1988) and

Hultgren & Goldstein (1990) have used the critical layer to investigate the rollup of the instability wave. Recently

Hultgren (1991) studied the nonlinear spatial equilibration of an externally excited instability wave in a free shear

layer. The flow in the critical layer is governed by a nonlinear vorticity equation that includes a spatial-evolution

term. Expansions for the various streamwise regions of the flow were recombined into a single formula accounting for

both shear-layer spreading and nonlinear effects. Good agreement with Thomas & Chu's (1989) experimental results

was obtained.

5.2. INTEGRAL-ENERGY METHOD

The integral-energy method for determining the nonlinear development of coherent structures has been quite

successful in describing many of their observed features. Therefore particular emphasis is placed here on this method

and how it can interpret most features of the observed coherent structures. In this method, the integral-energy
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equations (eqs. (6) to (8)), coupled with radial shape assumptions, are used to derive the nonlinear ordinary differential

equations that describe the energy exchanges between the different scales of motion.

Because of the shape asaumptions involved and the finite number of coherent modes considered, the integral-

energy method is only an approximate one. However, it allows the study of the strong nonlinear interactions, whereas

weakly nonlinear theories are necessarily restricted to small amplitudes. Applications of this method to different flow

situations have been reviewed by Liu (1988, 1989). This method is illustrated here by considering the coherent

structure and its interactions in a turbulent round jet.

The integral-energy equations (eqs. (6) to (8)) are a set of ordinary differential equations representing the energy

exchanges among the different scales of motion. But shape assumptions for the mean flow, the waves, and the

turbulence are required in order to perform the radial integration in the energy equations. As discussed in section 3

the shape of the local profile of each coherent component is taken as the eigenfunction obtained from the locally

parallel linear stability solution at the corresponding parameters. The mean flow can be described by the two-stage

hyperbolic tangent profile in terms of (r,O) that was proposed by Mlchalke (1971) and used by several researchers to

describe the mean flow in the initial region of the jet. The mean flow is thus characterized by the momentum

thickness 9 rather than by the axial distance. Therefore functional dependence on x in the integrals invo'ved in the

energy equations is replaced by functional dependence on 9.

As for the random turbulence several experimental observations (e.g., Bradshaw, Ferriss & Johnson 1964 and

Davies, Fisher & Barratt 1963) have suggested that the radial distribution of the turbulent stresses can be represented

by a Gaussian distribution in the form

uuiu - ajE(x)G(O) exp(-i1) 2

where 2 rl)2 (21)

02c

Both ai and c are constants given in MAnkbadi (1985a). The normalization function G(O) is introduced such that

Et(x) is the fine-grained turbulence energy over a section of the jet.

Such a turbulence model is based on a quasi-steady assumption (i.e., that the characteristics of the turbulence, in

terms of radial profile and ratio of stresses, are not affected by the unsteadiness), although the intensity of turbulence

is affected by unsteadiness. Some arguments are given in Mankbadi (1991) to justify this quasi-steady assumption,

which has not yet been fully addressed experimentally for free shear flows. The use of rapid-distortion theory to

account for such unsteady effects on the characteristics of turbulence seems to be promising (Mankbadi & Liu 1991).

An eddy viscosity model for the wave-induced stresses is inappropriate because it cannot predict the reversal of

energy transfer from the mean flow to the coherent structure and from the coherent structure to the turbulence (this

issue is discussed further in section 8). Instead, Mankbadi & Liu (1981) obtained a dynamic equation for the wave-

induced stresses by considering the unaveraged equation for u'u' and subtracting the time-averaged one from the

phase-averaged one. The resulting equations for ij are linearized, producing a set of simultaneous linear equations

for determining the radial distribution of i.j across the jet. From the linearized form it can be shown t!at i takes

the form

F, - IA.m(x)IEt(x)iij,mn exp[i(Oln(x) - wmat + iNn~ - cc, (22)

where aij.Mn are obtained from the resulting algebraic equations (Mankbadi & Liu 1981).
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With these shape assumptions the energy equations (eqs. (6) to (8)) can be integrated across the jet to yield the

following system of simultaneous ordinary differential equations: The mean-flow momentum thickness O(x) is given by

IdIMA IMTE, - 1: MW,.IEm- (23)

2 d9 dx VI

The turbulence kinetic energy Et(x) is given by

d (ITAEt) - IMT + E IWTmnEmnEt- IE3/2 (24)
T.- m,n

The energy of the nin wave Emn(x) is given by

d (IWAmnEmn) = IWMEmn -lwT,mnEmnEt . WW.n" (25)
dx-

The phase angle 0.(x) is given by

EmnIWA d _ trSmnEinn + W en (26)

Here Emu = A=L2, S is t' - Strouhal number defined as S = wd/21rU, and d is the nozzle diameter. In this

system of equations I represents an integral that is, in general, a function of the momentum thickness 0, the Strouhal

number S, and the azimuthal number N. These integrals are given in Mankbadi & Liu (1981) and Mankbadi

(1985a). The left side of equation (23) is ýhe mean-flow advection. The first term on the right side of equation (23) is

the mean-flow production of the turbulence, and the second term is the production of each individual wave. In the

tuirbulence energy equation (eq. (24)), ITA is the integral of the turbulence advection by the mean flow. The first

term on the right side of equation (24) is the turbulence produced by the mean flow, the second term is the turbulence

energy exchanged with the waves, and the last term is the viscous dissipation. The first term on the right side of

equation (25) is the wave production by the mean flow, the second term is the interaction with the turbulence, and the

last te:m is the interaction of the inn wave with other waves. The phase-development equation (eq. (26)) is obtained

in a manner similar to that used by Mankbadi (1986).

This system of equations (eqs. (23) to (26)) is subject to the initial conditions at x = 0, 0(0) = Oi, E(O) = Eti,

and E.(O) = Emni and to the initial phase angle Oinn(0) = Bmi with respect to a given reference.

6. DEVELOPMENT OF SINGLE-FREQUENCY COHERENT MODE

The development of a single-frequency instability wave in free shear flows has been investigated by an

overwhelming number of researchers. One of the early experiments, in which the excitation level was considerably

large, is that of Binder & Favre-Marinet (1973). In this experiment well-controlled unsteady forcing of a round jet was

imposed by means of a rotating butterfly valve upstream of the nozzle exit. The phase-averaging technique, with the

frequency of forcing as a reference, was used to reduce the large-scale structure from the total fluctuations. The

physical picture derived from the experiment is that the large-scale structure first grows, because of extraction of

energy from the mean flow, and subsequently decays downstream, because of the energy transfer to the fine-grained

turbulence and the possible transfer of some of its energy back to the mean flow. The fine-grained turbulence is

enhanced because it obtains energy from the mean flow and through the large-sca%- structure. Although the amplitude

of the coherent structure in Binder & Favre-Marinet's (1973) experiment reached considerable levels (40 percent of the

mean flow), the integral energy technique predicted results in close agreement with experiment (Mankbadi & Liu

1981).
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6.1. STROUHAL NUMBER EFFECTS

The development of a single-frequency component in a turbulent round jet for various Strouhal numbers

(Mankbadi & Liu 1981) is shown in figure 1. The figure shows that the streamwise lifespan of the wave is inversely

proportional to the Strouhal number. Because the wavelength 2 r/ar is the primary dimension that describes the

wave geometry, it seems that the wave "recognizes" physical dimensions relative to its wavelength. For instance, for

all Strouhal numbers considered, the wave decays to an amplitude of 0.1 A after an axial distance of about four times

its wavelength. That is, for any Strouhal number, the wave makes four cycles along the jet before it disappears.

Figure 3 also shows that the location of the peak moves closer to the nozzle exit with increasing Strouhal number.

Thus high-frequency components dominate upstream and low-frequency ones dominate farther downstream, as one

might expect (Alper & Liu 1978; Liu 1974; and Merkine & Liu 1975).

The "peak" or "most amplified" Strouhal number at a given axial location decreases with distance, as illustrated

in figure 2. The peak Strouhal number is inversely proportional to x, which is consistent with Chan's (1974)

experimental observations that the amplitudes of the pressure oscillations along the jet for different Strouhal numbers

become similar if plotted against Sp.

The maximum attainable amplification as a function of Strouhal number is shown in figure 3 for a low excitation

level of 10"'.. At such a low excitation level the peak Strouhal number is about 0.7, but the results in Mankbadi &

Liu (1981) show that the peak Strouhal number decreases to about 0.35 when the excitation level is increased to 10"3.

6.2. SATURATION WITH INCREASINC EXCITATION LEVEL

For low levels of excitation the maximum attainable peak of the coherent component is linearly proportional to its

initial level. However, at higher excitation levels a saturation mechanism comes into effect (Mankbadi & Liu 1981).

The production of the coherent component by the mean flow is proportional to the energy of the coherent component

and inversely proportional to the local momentum thickness. Therefore higher initial levels of the coherent component

cause excessive energy drain from the mean flow. This energy drain leads to rapid growth of the momentum thickness,

and hence less energy is available for the subsequent development of the coherent component. Thus the coherent

structure "chokes" from its own energy, further increase of the excitation level causes saturation, and the coherent

component can no longer amplify.

This saturation mechanism has been observed experimentally by Fiedler & Mensing (1985) and Oster &

Wygnanski (1982) in a turbulent mixing layer and by Raman, Rice & Mankbadi (1988) in a round jet. The ratio of

the momentum thickness of the excited to the unexcited case at x/d = 9 is shown in figure 4 versus the excitation

velocity. Both the theory of Mankbadi & Liu (1981) and experiment of Raman et al. (1988) point to the saturation

trend in enhancing the momentum thickness via excitation. However, the theory underestimates the saturation value

of the momentum thickness because the theory in this case ignores the appearance of the subharmonic, which becomes

important downstream as discussed later.

This saturation effect points to the limitation of using single-frequency plane wave excitation to enhance jet

mixing. Therefore using devices that provide higher levels of single-frequency excitation may not yield better jet

mixing. More effective methods of flow control, such as simultaneous excitation of the fundamental and subharmonic

waves, should be considered in order to obtain greater jet mixing enhancement.

6.3. TURBULENCE EFFECTS ON JET EXCITABILITY

The growth of the fundamental is due to the imbalance between its mean-flow production and its energy drain to

turbulence (see eq. (24)). Increasing the initial turbulence energy reduces the growth of the instability components in

two ways: directly, because increasing the turbulence level increases the energy drain from the stability component to

the turbulence: and indirectly, because higher initial levels of the turbulence cause higher rates of energy transfer from

the mean flow to the turbulence and consequently less mean-flow energy becomes available for amplifying the wave
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component. The two mechanisms combined cause the initial turbulence to suppress the growth of instability

components. The large-scale structure could thus be reduced, or possibly eliminated, by increasing the initial level of

random turbulence as observed experimentally by Chandrsuda, Mehta, Weir & Bradshaw (1978).

6.4. EFFECT OF INITIAL MEAN-FLOW VELOCITY PROFILE

Crighton & Gaster (1976), Husain & Hussain (1979), Hussain & Zedan (1978a,b), and Oster, Wygnanski,

Dziomba & Fiedler (1978) emphasized the importance of the initial mean-flow velocity profile for the stability of the

developing shear layer. The role of initial mean-flow velocity profile can be investigated by using the integral approach

and varying the initial momentum thickness Oi. If 0i = 0°, the mean-flow velocity profile resembles a tophat, and as

9 increases, the initial profile becomes smoother. Because the tendency toward instability decreases with increasing 9

(lower (dU/dy),.), the amplification of the coherent structure was found to decrease with increasing 0. Therefore

the development of the coherent structure can be suppressed by designing the nozzle for a smoother mean-flow velocity

profile, as was done in the experiment of Chan & Templin (1974).

7. FUNDAMENTAL-SUBHARMONIC INTERACTION AND VORTEX PAIRING

The early observations of Browand & Weidman (1976) and Winant & Browand (1974) indicate that the coherent

structure develops into vortices that can pair downstream. Winant & Browand (1974) injected a filament of dye into

the flow. The dye rolled into lumps that proceeded to pair with their neighbors, generating a larger and more sparsely

distributed structure. The later experiments of Browand & Laufer (1975), Hussain & Clark (1981), Laufer & Zhang

(1983), and Petersen (1978), among others, also confirm that the interactions between the vortices in an axisymmetric

shear layer dominate the near-field flow dynamics.

The importance of the subharmonic in vortex pairing is indicated by the analytical and computational results of

Patnaik, Sherman & Corcos (1976), Kelly (1967), and Riley & Metcalfe (1980), among others. In the experiment of

Kibens (1980) a circular jet was excited with an asimuthally coherent perturbation at the most-amplified instability.

The perturbation orv nized the large-scale structures in the shear layer into a sequence of successive vortex-pairing

stages at fixed streamwise locations. After each pairing the peak frequency of the spectrum was found to be halved,

indicating the amplification of the subharmonic. The connection between the subharmonic and vortex pairing was

underscored by Ho & Huang (1982), who showed that for a mixing layer pairing of vortices is the product of the

subharmonic instability. They found pairing to occur at the downstream location where the subharmonic saturates.

Hence Ho & Huang (1982) viewed the subharmonic as a catalyst for vortex pairing. These experimental investigations

suggest that vortex pairing can be viewed as the interaction between a fundamental instability wave and its

subharmonic.

Considering a laminar shear layer, Liu & Nikitopoulos (1982), Nikitopoulos (1982), and Nikitopoulos & Liu

(1984, 1987) split the total disturbance into fundamental and subharmonic components and used the integral energy

technique to follow the development of each component. Their results (shown here as fig. 5) indicate good agreement

with the experiments of Ho & Huang (1982) until the fine-grained turbulence becomes sufficiently important. The

existence of multisubharmonics in a two-dimensional shear layer was also considered by Nikitopoulos & Liu (1989).

The extension of the laminar shear layer case to the turbulence case was considered by Kaptanoglu (1984) and Liu &

Kaptanoglu (1984, 1987).

Vortex pairing in a turbulent round jet was studied by Mankbadi (1985a), who used the integral-energy method.

The total disturbance was split into coherent and random components. The coherent component was then considered

to be composed of a fundamental one and successive harmonics or subharmonics. Vortex pairing was viewed as

occurring when the subbarmonic interacts with the fundamental and exceeds the level of the fundamental to become

the dominant instability component (see fig. 6). Excitation at low-to-moderate Strouhal numbers was found to result

in amplifying only the first subharmonic, which was found to be most pronounced if the excitation Strouhal number is
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in the range 0.6 to 1.0. The results are in close agreement with the experimental data of Hussain & Zaman (1980) and

Zaman & Hussain (1980). Excitation at higher Strouhal numbers results in the amplification of several subharmonics, 0

which is in accordance with observations of Drubka (1981), Ho & Huang (1982), Husain & Hussain (1983), Laufer &

Zhang (1983), and Zaman & Hussain (1980). Increasing the Strouhal number moves the location of the first pairing

closer to the nozzle exit, as also observed by Ho & Huang (1982) for the plane shear-layer case. The location of the

subharmonic's peak was found to coincide with the rapid decay of the fundamental.

Zaman & Hussain (1980) adopted the view that for a circular jet rolled-up vortex rings undergo pairing under two

distinctive conditions of excitation: the "shear-layer mode," and the "jet-column mode." The shear-layer mode is

similar to the plane mixing-layer mode and is observed for the circular jet when the excitation Strouhal number based

on the momentum thickness is about 0.012 and the exit boundary layer is laminar. It involves pairing of the near-exit

thin vortex rings. Zaman & Hussain defined the jet-column mode as involving pairing of the thick vortex rings farther

downstream. They are observed for both laminar and turbulent exit boundary layers when the excitation Strouhal

number based on diameter is about 0.85. They concluded that the jet-column mode of pairing can form independently

of the shear-layer mode, or from evolution of the shear-layer mode, or when the jet is excited directly in the jet-column

mode. The predicted growth of the first subharmonic at the excitation Strouhal number range S = 0.6 to 1.0 in

Mankbadi (1985a) did not account for the presence of the shear-layer mode and is therefore consistent with Zaman &

Hussain's (1980) conclusion that the jet-column mode can occur independently of the shear-layer mode. But on the

other hand the calculated development of the fundamental and its subharmonic in Mankbadi (1985a) indicates that

there is a continuous response as the excitation Strouhal number increases. The especially pronounced amplification of

the subharmonic when the jet is excited with a fundamental at S = 0.8 (fig. 6(b)) is attributed to the growth of the

subharmonic being governed by both its interaction with the mean flow and the fundamental. It is well known that

the most-preferred frequency associated with the mean-flow velocity profile of a jet corresponds to S = 0.4 (e.g.,

Gutmark & Ho 1983b; Hussain & Zaman 1981). When the jet is excited at a fundamental Strouhal number of 0.8, the

corresponding subharmonic is at 0.4, which is the "preferred" Strouhal number of the jet, causing the subharmonic

amplification to be particularly strong. Thus the specially strong pairing at a fundamental Strouhal number of 0.8,

corresponding to the jet-column mode, is attributed to the characteristics of the mean-flow instability in addition to

the fundamental-subharmonic interaction.

7.1. EFFECT OF EXCITATION LEVEL

The results in Mankbadi (1985a) indicate that the strength of the fundamental-subharmonic interaction increases

nonlinearly with increasing initial level of the fundamental (fig. 7). The peak of either the fundamental or the

subharmonic moves upstream as the initial level of the fundamental increases, as indicated by Laufer & Yen's (1983)

measurements. However, beyond a certain level any further increase in the initial level of the fundamental reduces or

suppresses the growth of the subharmonic. Large forcing levels can thus result in suppressing the vortex-pairing

process as observed experimentally by Reynolds & Bouchard (1981). This saturation is caused by the excessive drain

of the mean-flow energy by the fundamental, which reduces the available mean-flow energy for the subsequent growth

of either the fundamental or the subharmonic. Thus there is an optimum excitation level that will produce maximum

subharmonic amplification, as also concluded by Monkewitz (1982) for the two-dimensional shear-layer case.

7.2. ENERGY TRANSFERS

The study of the energy transfers between the different flow components along the jet indicates that the

significance of each mechanism involved depends on the Strouhal number and on the streamwise location (,Mankbadi

1985a). At moderate Strouhal numbers the fundamental's production by the mean flow is the dominant mechanism

close to the exit (fig. 8). Subsequently the fundamental decays through three equally significant mechanisms:

turbulence damping, generation of its subharmonic, and "negative production," in which energy is transferred from the
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coherent component back to the mean flow. The fundamental amplifies the subharmonic through direct and indirect

mechanisms. In the direct mechanism it transfers some of its energy to the subharmonic. In the indirect mechanism

the enhanced level of the subharmonic results in increasing its direct production by the mean flow. The subharmonic

decays mainly through turbulence dissipation. At higher Strouhal numbers the subharmonic can amplify a second or

even higher subharmonic, which constitutes an additional decay mechanism for the first subharmonic.

8. REVERSAL OF REYNOLDS STRESSES

8.1. NEGATIVE MEAN-FLOW PRODUCTION OF COHERENT STRUCTURE

The stability wave grows by absorbing energy from the mean flow, but as the flow diverges in the downstream

direction, the linear theory predicts a damped solution. This results in a negative mean-flow production of the

coherent stability component (fig. 8), which signals the decay of the coherent component by returning some of its

energy back to the mean flow. Because the mean-flow gradient does not change sign, this negative production results

from reversal of the sign of the time-averaged coherent Reynolds stresses.

The reversal in the Reynolds stresses is not restricted to the streamwise location where the coherent component is

decaying. Figure 9 (from Mankbadi 1985b) shows that at the streamwise location where the waves are growing the

transverse distribution of the time-averaged coherent stresses shows transversal regions of negative stresses. This

indicates that even if the net radially integrated energy transfer is from the mean flow to the coherent components, it

can locally reverse direction.

Browand (1980) was the first to comment on the significance of negative production and its relation to the pairing

process. It was also observed by Fielder, Dsiomba, Mensing & Rosgen (1981), Weisbrot & Wygnanski (1988), and

Zaman & Hussain (1980) for a plane shear layer. Hussain & Zaman's (1980) measured contours of the phase-averaged

coherent stresses are shown here as figure 10; the alternate regions of positive and negative values are quite apparent in

the figure. This change in sign represents a reversal in the direction of energy transfer between the mean flow and the

coherent structure.

Browand & Ho (1983) interpreted the negative Reynolds stresses as resulting from the tilt of the vorticity

distribution. If the tilt is upstream on the low-speed side, the resulting momentum flux is away from the mixing layer,

resulting in negative Reynolds stresses. As far as the stability theory is concerned, this negative production results

from the phase alignment of the coherent velocity components as given by the eigenfunctions of the locally parallel

linear stability solution. This phase alignment becomes negative particularly when the solution becomes damped; an

explanation that is not in contradiction with the favorable or unfavorable tilt advocated by others. The success of the

integral energy nonlinear stability theory in predicting such reversals in the energy transfer should be underscored

because this "negative production" is quite significant in interpreting several observations but cannot be predicted by

eddy viscosity models.

8.2. REVERSAL OF ENERGY TRANSFER BETWEEN LARGE-SCALE STRUCTURE AND TURBULENCE

The energy transfer between the coherent structure and the fine-grained turbulence is governed by the wave-

induced stresses. The relative phase between % and the rates of strain determines the direction of this transfer. The

total energy transfer between the large-scale structure and the fine-grained turbulence is the sum of the local transfers

integrated across the jet. Typical transverse distribution of this energy is shown in figure II (from Mankbadi & Liu

1981). Because most of the local energy transfer is positive, the direction of the net total energy transfer is from the

large-scale structure to the fine-grained turbulence, as expected. However, it is also clear from the figure that the local

energy transfer can be in either direction and that it is not restricted from the large-scale structure to the fine-grained

turbulence.

In earlier work eddy viscosity was used to model these wave-induced stresses (Liu 1971, 1974; Merkine & Liu

1975; and Morris 1974). However, such an eddy viscosity model implies one-way energy transfers from the mean flow
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to the large-scale structure and from the large-scale structure to the fine-grained turbulence. Although this assumption

may be generally true, the local energy exchange can, in fact, go either way, as shown in figure 11, from the large to 0
the small or vice versa. This indicates the intrinsic weakness of the eddy viscosity model. Thus an eddy viscosity

model ignores the detailed physical picture of the energy transfer mechanism although it has been useful in assessing

the overall process. Favre-Marinet & Binder (1979) also concluded from his experiment that an eddy viscosity model

for the wave-induced stresses is incorrect locally. Therefore the interaction between the large-scale structure and the

fine-grained turbulence must be based on the detailed physical mechanisms of the wave-induced stresses.

9. EFFECT OF INITIAL PHASE-DIFFERENCE ANGLE BETWEEN FUNDAMENTAL AND SUBHARMONIC

Direct numerical simulations of vortex-pairing interacaions in two-dimensional mixing (e.g., Patnaik, Sherman &

Corcos 1976 and Riley & Metcalfe 1980) show that the pairing process is dependent on the phase difference between

the fundamental and subharmonic instability waves. Monkewitz (1982) extended Kelly's (1967) temporal instability

analysis of a spatial periodic mixing layer to include an arbitrary phase difference between the fundamental and the

s31bharmonic. He concluded that an arbitrary initial phase difference leads to transients with two angles where the

subharmonic growth rate is initially increased or decreased depending on the initial phase difference. Although Kelly

and Monkewitz did not consider the .nfluence o! the subharmonic on the fundamental, Nikitopoulos (1982) and

Nikitopoulos & Liu (1987) used the integral-energy method to study the fundamental-subbarmonic interaction in a

laminar shear layer, allowing the subharmonic to react nonlinearly on the fundamental. The fundamental-subharmonic

interaction in a turbulent round jet (Mankbadi 1985a) was found to be dependent on an effective phase-difference angle

Oeff = Of- 20,, where Of and 0, are the phase angles of the fundamental and subharmonic, respectively. Using

weakly nonlinear stability theory, Monkewitz (1988) considered the spatial evolution of a fundamental mode and its

subharmonic on an inviscid parallel mixing layer. His results show that a critical fundamental amplitude &,ri, has to

be reached before the subharmonic becomes phase locked with the fundamental and exhibits a modified growth rate.

Monkewitz's results for the effect of the initial phase difference on the growth of the subharmonic are shown herein as

figure 12. His analytical results, as well as those of Mankbadi (1985a, 1986), Nikitopoulos (1982), and Nikitopoulos &

Liu (1987), show that the initial phase difference has a weak damping effect on the growth of the fundamental but a

strong influence on the subharmonic. Depending on the initial phase difference, the fundamental-subharmonic

interaction can either amplify or suppress the growth of the subharmonic as compared with its growth resulting from

the mean-flow instability alone.

This dependence on the initial phase-difference angle has been confirmed in Zhang, Ho & Monkewitz's (1985)

experiment in which a shear layer was subjected to a bimodal excitation. Their results show that significantly different

vortex-merging patterns can occur as a result of changing the initial phase difference between the fundamental and the

subharmonic. The experiments of Arbey & Ffowcs-Williams (1984), Ng & Bradley (1988), and Raman & Rice (1989)

for a round jet also indicate that the subharmonic can be amplified or suppressed depending on the initial phase

difference with respect to the fundamental.

The experimentally observed "jitter" in the location of pairing (e.g., Brown & Roshko 1974; Browand & Weidman

1976; Husx-i..i 1986; Oster et al. 1978; Oster & Wygnanski 1982; and Zaman & Hussain 1980) can be explained by

dependence on the initial phase-difference angle, If the subharmonic at the jet exit is at the proper phase-difference

angle, it will be amplified, resulting in vortex pairing. If it is not at the proper phase-difference angle, the pairing

process will be altered or possibly eliminated. The net outcome is the random variation in the location of pairing.

The jet instability thus acts as an amplifier not only with respect to selective frequencies, but also with respect to

selective phase differences between the fundamental and the subbarmonic (Mankbadi 1985a, 1986). In natural,

uncontrolled conditions the phase of the initial components at the fundamental and subharmonic frequencies would 0vary randomly, resulting in a random initial phase difference between the two. The mean flow acts as the first
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amplifier to amplify the stability component according to its frequency. The fundamental instability wave associated

with the mean-flow profile will then act as a second amplifier that will amplify or dampen the subharmonic according

to its relative phase difference. For a given frequency the most amplified subharmonic is thus the one with the Droper

phase difference.

9.1. EFFECT ON SPREADING RATE

Because vortex pairing is an important mechanism in the growth of a shear layer, the initial phase angle can, in

turn, control the development of the shear layer. Figure 13 (from Mankbadi 1986) shows that the growth of a laminar,

axisymmetric shear layer is governed by the initial phase and that it is maximum when the subharmonic is subjected

to maximum amplification. In fact, choosing the initial phase difference to be the one predicted theoretically as the

optimum results in the corresponding predicted growth of the shear layer being in good agreement with the

corresponding experimental observations of Laufer & Zhang (1983). The stepwise development of the momentum

thickness shown in figure 13 was also obtained by Nikitopoulos (1982) and Nikitopoulos & Liu (1987, 1989) for the

two-dimensional mixing-layer case. Their results agree favorably with the corresponding experimental data of Ho &

Huang (1982). The momentum thickness first increases as the fundamental grows by draining energy from the mean

flow. The fundamental subsequently decays by returning some of its energy back to the mean flow, tending to increase

the mean-flow energy and reduce the momentum thickness. But this is balanced by the growth of the subharmonic,

which amplifies partially by draining energy from the mean flow. The net outcome is a balance between the two

mechanisms, resulting in the no-growth stage shown in the figure. Once the fundamental is fully decayed, the growth

of the subharmonic by draining energy from the mean flow takes over, resulting in the subsequent growth of the

momentum thickness, as shown in the figure.

9.2. SPATIAL DEVELOPMENT OF PHASE

The phase angle 0 is not fixed at its initial value but varies along the jet. In Mankbadi (1985a,b,c),

Nikitopoulos (1982), and Nikitopoulos & Liu (1987) the phase was assumed to vary in the streamwise direction

according to the linear theory. It seems irrational to assume that the phase behaves linearly while the amplitudes

behave nonlinearly. Therefore Mankbadi (1986) used the integral approach to formulate the nonlinear development of

the phase-difference angle. Figure 14 (from Mankbadi et al. 1989) shows the development of the phase-difference angle

obtained according to the nonlinear analysis of Mankbadi (1986) in comparison with the corresponding experimental

results. The agreement seems to be acceptable.

Th. ronlinear behavior of the phase-difference angle is also apparent in the experimental data of Thomas (1990)

for an e ed shear layer. The experimental results in Mankbadi et al. (1989) for the development of the phase-

difference angle at various initial conditions (shown here as fig. 15) also clearly indicate that the development of the

phase-difference angle is a nonlinear process, particularly farther downstream, where the amplitudes reach considerable

levels. The nonlinear development of the phase-difference angle described in Mankbadi (1986) is therefore more

appropriate than the linear assumption previously adopted.

10. CONDITIONS FOR RESONANCE INTERACTION

Cohen & Wygnanski (1987a,b) examined the conditions for resonance interactions between two instability waves

for a nondivergent mean flow. The two interacting waves were assumed to be small with respect to the mean flow,

and the wave resulting from the interaction of the two waves to be much smaller than either of the two interacting

waves. By examining the second-order terms in the momentum equation of the disturbances, they have shown that the

particular solution becomes secular when it satisfies one of the following conditions:

Wm . wt + wk, m = n I + nk, and Om =a 0 g ok (27a)
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or

om w W k - ')t, m . nk - n p and am . ak - at (27b)

where w is the frequency, n is the azimuthal wavenumber, and a is the complex streamwise wavenumber.

Subscripts k and I denote the interacting waves, and m denotes the resulting wave. Combining the conditions on

streamwise wavenumber and frequency results in the equality of phase velocity as a condition for the fundamental-

subharmonic resonance interaction. The shortcoming of this result is that it cannot explain the dependence of the

subharmonic resonance on the initial phase difference, which, even if the phase velocities are equal, can lead either to

amplification or suppression of the subharmonic. Also, some experimental results (e.g., Corke 1990) indicate that

resonance can occur, even if the phase velocities are not equal.

On the basis of the energy transfers a nonlinear analysis of the condition of resonance interaction in a diverging jet

is given in Mankbadi et al. (1989). The conditions on the frequency and azimuthal wavenumbers remain the same as in

equation (27). But the condition on the wavenumbers is replaced by the condition that the fundamental-induced strain

must align with the subharmonic-induced stresses, which can be written as

0. - Ok - O, - a (28a)

Om - Ok + Of - 0 (28b)

where a is the argument of the fundamental-subharmonic interaction integral WW and 0 is the phase angle in

equation (4).

To understand the physical significance of this condition, we write the wave-wave interaction WW symbolically

ww- fo i u k ui:k r dr o I•- IRIISIcos -y (29)

where "y = "k ± Ol + a and K and V are vectors representing the radially averaged wave-induced stresses

and strains, respectively. Resonance interaction occurs when the stresses and strains are in phase. That is, if -1 = 0,

we obtain maximum positive energy transfer to the output wave, resulting in the resonance condition. But, if

"1 = 180, we obtain the highest energy drain from the output wave, resulting in its suppression and the

experimentally observed vortex shredding.

The situation is analogous to the mean flow-turbulence interaction. There the turbulence growth is governed by

the scalar product of the mean-flow strains and the turbulence-induced Reynolds stresses. The energy transfers

between the fundamental and the subharmonic are analogous to those between the mean flow and the turbulence, but

the wave-induced stresses and strains are now vectorial quantities. The energy transfer is no longer a scalar product

but a vectorial dot product governed by the phase-difference angle between the two vectors representing the stress and

the strain.

The experimental data in figure 16(a) (from Raman & Rice 1989) show that the subharmonic is either amplified

or suppressed depending on the initial phase-difference angle. The effect is pronounced immediately after the flow

leaves the nozzle. The phase velocity based on the linear stability theory (shown in fig. 16(b)) is independent of the

initial phase difference, and the results of the linear stability theory indicate that the phase velocities of the

fundamental and the subharmonic become close to each other only for x/d > 3 although the difference in the

subharmonic amplification is quite pronounced much before that. Therefore the equality of phase velocities cannot

explain the observed differences in the amplification rate of the subharmonic when the initial phase difference is

changed.
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The resonance amplification or suppression of the subharmonic is determined in the initial region of the jet. The

wave-wave intei action mechanism is efficient only at low momentum thicknesses close to the jet exit (Mankbadi

1985a). Thus only the initial behavior of cos -1 matters (say, for x/d < 0.2). Later values of cos y are

insignificant because the wave-wave interaction mechanism becomes less efficient as the jet spreads and the subsequent

growth of the waves is dominated by its interaction with the mean flow and the turbulence. The angle -y between the

wave-induced stresses and strains in the initial region of the jet is shown in figure 16(c). The figure shows that if the

initial phase-difference angle is such that cos 7 is initially positive, the energy transfers from the fundamental to the

subharmonic, resulting in strong amplification of the subharmonic. On the other hand, if the initial phase-difference

angle is such that cos -y is initially negative, energy drains from the subharmonic, causing suppression of the

subharmonic's growth in accordance with observations.

The condition of equation (28) replaces the previously reported condition that the two waves must have the same

phase velocity in order for the subharmonic resonance to occur. The initial phase-difference angle between the two

imposed waves controls the stress-strain angle and determines whether the fundamental-subharmonic interaction

suppresses or amplifies the growth of the subharmonic. It is shown in Mankbadi et al. (1989) that this condition

reduces to that of equation (27) under the following simplifications: (1) the linear stability theory provides a valid

approximation to the phase angles of the waves, (2) the initial phase-difference angle between the two interacting

waves is ignored, and (3) the argument of the wave-wave interaction integral a is set to zero. However, the

experimental results in Mankbadi et al. (1989) indicate (1) that phase-difference angle development is a nonlinear

process that cannot be adequately described by the linear theory, (2) that the effect of initial phase-difference angle on

the resonance interaction is now supported by several experimental observations (Arbey & Ffowcs-Williams 1984, Ng

& Bradley 1988, Raman & Rice 1989, and Zhang et al. 1985) and cannot be ignored, and (3) that the variation of the

argument a is considerable along the jet (Mankbadi 1985a) and cannot be neglected. Therefore it appears that the

alignment of the wave-induced stresses and strains, as a condition for resonance, reduces to the equality of the phase

velocities, only under crude approximations. The .nain conclusions are that the equality of phase velocities for

resonance interaction is only an approximate condition that need not be precisely satisfied in order for resonance to

occur and that the alignment of the wave-induced stresses and strains is a better description of the resonance

condition.

11. MULTIFREQUENCY EXCITED JETS

In a natural situation the coherent structure is not restricted to discrete single- or two-frequenc components but

occurs in a broad band of frequencies. Furthermore when in a laboratory experiment a jet is excitea oy a single- or

two-frequency component, other frequency components amplify as well. A study of the interactions among several

coherent components is therefore necessary to understand such excitation experiments, the natural coherent structure,

and the later stages of the transition process. In Mankbadi (1991) the interactions among several frequency

components were considered by using the integral-energy method. The situation becomes quite complicated, as

demonstrated in figure 17, even if the interactions of only three components are considered. The figure shows the

streamwise energy peak of each wave normalized by its initial value as a function of the initial phase-difference angles.

With three frequency components there are two initial phase-difference angles, 012 and 023. The nonlinear

interactions depend on the initial energy level, which is taken to be the same for the three waves and is varied in the

figure from 10.6 to 10"3. At low levels nonlinear interaction is negligible, and each wave behaves as if the others were

not present. With increasing initial energy level, nonlinearity becomes quite evident and the interactions become

dependent on the two phase-difference angles. In the natural situation there is no such control over these angles.

Therefore the observed amplification of the waves is irregular, which perhaps explains the irregularity in the flow
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structure. One can even go further and consider this irregularit, c- %ed by random initial phase-difference angles to be

the first key, as far as the nonlinear instability theory is concerned . i the chaotic nature of turbulence.

At much higher initial levels a saturation condition is reached in which the waves can no longer amplify each

other and the dependence on the initial phase-difference angle diminishes (fig. 17). This saturation is caused by the

excessive energy drain from the mean flow, which makes the individual wave-wave interaction negligible with respect

to the interaction of each wave with the mean flow.

12. MODULATION OF SPREADING RATE BY CONTROLLING COHERENT STRUCTURE

Exciting a jet by a wavelike coherent component can either enhance or reduce the mixing rate, depending on the

forcing Strouhal number (see fig. 18, from Mankbadi 1985c).

12.1. ENHANCEMENT OF MIXING AND SPREADING

12.1.1. Low Strouhal numbers. - At Strouhal numbers less than 0.5, the momentum thickness increases

monotonically with the forcing level, and the effect is pronounced for forcing levels higher than 0.5% of the jet exit

velocity. This increase in the spreading rate with forcing was experimentally observed by Gutmark & Ho (1983b), Ho

& Huang (1982), and Reynolds & Bouchard (1981), to mention only a few. At such low Strouhal numbers the pairing

activities are insignificant (Mankbadi 1985. and Reynolds & Bouchard 1981). The forced fundamental component

enhances the mixing rate directly by absorbing energy from the mean flow and indirectly by enhancing the random

turbulence, which in turn absorbs energy from the mean flow.

12.1.2. Intermediate Strouhal numbers. - If the forcing Strouhal number is in the range 0.6 to 1.0, which

corresponds to about twice the "preferred mode of the jet," the increase in the mixing rate is pronounced even at

forcing levels as low as 0.01% of the jet exit velocity. The first subharmonic of the fundamental is amplified,

indicating the formation of a single vortex pairing. The enhancement of the momentum thickness in this range of

Strouhal numbers is due to the growth of the fundamental and also due to the enhancement of the turbulence, as in

the low-Strouhal-number case. But now the vortex-pairing process forms an additional mechanism that enhances the

mixing further. This is in accordance with the early observations of Browand & Weidman (1976) and Winant &

Browand (1974), among others, which indicate that vortex pairing is responsible for most of the entrainment in mixing

layers. This additional mechanism for mixing enhancement is due to the generated subharmonic, which absorbs

additional energy from the mean flow and pumps some of this energy to the turbulence, resulting in further increases in

the mean-flow energy drain by the production of turbulence. Thus, because of the subharmonic amplification, forcing

at this Strouhal number range is quite effective in enhancing the mixing rate.

12.1.3. Mixing enhancement by bimodal excitation. - Because the vortex pairing is an important mechanism, one

might expect that direct bimodal forcing at both the fundamental and subharmonic frequencies would be quite effective

in intensifying the vortex pairing process, leading to further increase in the growth rate. The results in Mankbadi

(1985b) demonstrate that simultaneous forcing at Strouhal numbers of 0.4 and 0.8 results in considerable enhancement

of the mixing rate relative to single-frequency excitation.

The use of two-frequency forcing to extend the range over which the flow can be controlled has now been explored

experimentally in several investigations, such as those of Ng & Bradley (1988), Raman & Rice (1989), Thomas (1990),

and Weisbrot & Wygnanski (1988). The experimental results of Weisbrot & Wygnanski (1988) are shown here as

figure 19, which demonstrates that combined forcing at two frequencies makes the shear layer grow faster than forcing

at either frequency alone at the same forcing level.

12.1.4. Highly turbulent jets. - Although the growth and pairing of coherent structures are important direct

mechanisms in laninar or weakly turbulent jets (typical of laboratory experiments), the situation is different for highly

turbulent jets (typical of technological applications). Examining the energy transfers in highly turbulent jets

(Mankbadi 1991) reveals that the enhancement in the momentum thickness is dominated by the mean-flow turbulence

IL5-20



production, rather than by the fundamental-subharmonic interaction or growth. But, although the coherent

components do not appear to be directly responsible for the enhanced mixing in turbulence, they still play a major

indirect role. The coherent components are responsible for enhancing the turbulence by pumping energy from the

mean flow to the turbulence, which in turn increases the mixing rate by increasing the direct mean-flow production of

the turbulence. Thus, although the role of instability waves and their interaction is directly responsible for the mixing

rate of laminar or weakly turbulent jets, their role in highly turbulent jets becomes mainly an indirect one through

enhancing the turbulence.

12.2. REDUCTION OF MIXING RATE

If the Strouhal number is large enough that the Strouhal number based on the momentum thickness is close to

that of the "shear-layer mode," the forcing can result in reducing the spreading rate (fig. 18). This is explained in

Mankbadi (1985c) as follows: Forcing at this Strouhal number range results in amplifying several subharmonics. The

forced fundamental grows by absorbing energy from the mean flow, but it rapidly decays by dissipating some of its

energy back to the mean flow in the form of "negative production." It also decays by transferring some of its energy

to the next subharmonic, but its energy transfer to the turbulence is negligible. The subsequent subharmonic behaves

similarly. The growth of the fundamental and its first subbarmonic thus results in initially increasing the momentum

thickness very close to the jet exit (x/d < 0.5). But because for such Strouhal numbers these waves are not effective in

enhancing the turbulence, and because the momentum thickness is initially enhanced, leaving less mean-flow energy for

turbulence production, the turbulence is initially suppressed. The subsequent spreading of the jet in this case is

dominated by the mean-flow turbulence production. Because this production is proportional to the turbulence

intensity, which is suppressed in the initial region, the mean-flow energy drain to the turbulence and the spreading are

therefore reduced.

Although the effect of excitation in enhancing the mixing rate is well documented by several experiments, only

rare experimental data are available on mixing suppression. Suppression has been observed in Husain's (1982)

experiment, which is shown here as figure 20 along with the corresponding theoretical predictions of Mankbadi (1985c).

The figure shows that forcing can result in either enhancement or suppression, depending on the Strouhal number. The

theory indicates an increase in the momentum thickness when excited at S = 0.8, and the experiment indicates a

similar increase at S = 0.92. But at higher Strouhal numbers the situation is different. For So = 0.01244 the theory

indicates a slight increase in the momentum thickness very close to the jet exit (x/Oi < 260) but an apparent reduction

in the momentum thickness for the rest of the jet. The same features are qualitatively apparent in the data. At

so = 0.0134 the data show a slight increase in the measured momentum thickness very close to the exit (x/oi < 200)

but a pronounced reduction in the momentum thickness for the rest of the jet.

13. TURBULENCE ENHANCEMENT OR SUPPRESSION DUE TO EXCITATION

13.1. ENHANCEMENT

At low-to-intermediate Strouhal numbers Favre-Marinet & Binder (1979), Fiedler & Mensing (1985), Husain &

Hussain (1979), Hussain & Thompson (1980), and Thomas & Goldschmidt (1986), among others, observed that

increasing the level of coherent structure through excitation results in enhancing the random turbulence. Browand &

Weidman (1976) found that the pairing process is responsible for the production of Reynolds stresses and can therefore

increase the turbulence intensity. The mechanisms by which vortex pairing can enhance turbulence are classified in

Mankbadi (1985a) as follows: (1) the fundamental absorbs energy from the mean flow and pumps it to the turbulence

as it decays, (2) the nonlinear growth of the fundamental amplifies the subharmonic, which in turn pumps energy from

the mean flow to the turbulence, and (3) these two mechanisms amplify the turbulence energy and the turbulent

Reynolds stress, increasing the direct production of the turbulence by the mean flow. This latter mechanism was also
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suggested by Ho & Huang (1982), who speculated that the large strain rates resulting from the coalescence of the

coherent structures are responsible for the generation of small-scale eddies.

The question of what is the optimum excitation Strouhal number was addressed in Mankbadi (1990a), which

considered & jet excited at a dominant Strouhal number but allowed the forced component to interact with the

naturally present coherent components at other Strouhal numbers. The study reveals that the high-frequency waves

are effective in pumping energy from the mean flow to the turbulence only close to the jet exit. But on the other hand,

low-frequency waves have a longer strearnwise lifespan and therefore are more effective than high-frequency waves in

pumping energy from the mean flow to the turbulence in a wider streamwise domain (fig. 21).

13.2. SUPPRESSION

At higher Strouhal numbers based on diameter the experimental observations of Vlasov & Ginevsky (1974) and

Zeman & Hussain (1981) for a circular jet indicated that turbulence is suppressed under excitation. Zaman & Hussain

(1981) show that suppression occurs for the Strouhal number range 1.2 to 2.4, and their results are presented here as

figure 22. The figure illustrates the ratio of the longitudinal peak fluctuation intensity under excitation u,1 to the

unexcited value u.. Suppression is optimum at a Stroubal number So = 0.017. This suppression is explained in

Mankbadi (1985a) as follows: At high Strouhal numbers the streamwise lifespan of a coherent component is short and

therefore the component pumps almost no energy to the turbulence. But, because it drains energy from the mean flow,

less mean-flow energy is available for the subsequent production of turbulence. Consequently the turbulence is

suppressed when the jet is excited at such high Strouhal numbers.

14. THREE-DIMENSIONAL EFFECTS

Numerous experiments have pointed to the three dimensionality of the coherent structure in the form of spanwise

periodicity in the plane shear- layer case or in the form of spiral modes in axisymmetric jets (e.g., Alvarez & Martinez-

Val 1984; Bernal & Roshko 1986; Browand & Troutt 1980, 1985; Huang 1985; Jimenez, Cogollos & Bernal 1985;

Lasheras, Cho & Mamxworthy 1986; Miksad 1972; Thomas & Brehob 1986; and Thomas & Prakash 1991). We first

consider here the development of a single three-dimensional (spiral) mode; then we consider the interaction among

various azimuthal modes.

4.1. DEVELOPMENT OF FIRST HELICAL MODE IN TURBULENT JET

Linear stability analyses (Mattingly & Chang 1974; Michalke 1971; and Plaschko 1979) indicate that the initial

region of the jet is equally unstable to both the axisymmetric and first helical (n = 1) modes and that higher azimuthal

modes are less unstable. Cohen & Wygnanski (1987a~b), Drubka (1981), Drubka et al. (1989), Rice, Raman &

Reshotko (1990), and Strange & Crighton (1981) document experimentally the existence of these two modes in the

initial region of the jet. Corke, Shakib & Nagib's (1991) and Strange & Crighton's (1981) experimental results confirm

that the axisymmetric and first-order helical modes have comparable growth rates in the initial region of the jet.

However, Corke et al.'s short-time spectral estimates show that these two modes do not exist at the same time or

space. The apparent nondeterministic switching observed between these two modes is attributed to the jet's response

to stochastic input of axisymmetric or nonaxisymmetric disturbances.

Although the linear stability theory predicts almost the same growth rate for both the axisymmetric and first

helical modes, their nonlinear developments in a turbulent jet may be different, as the study of Mankbadi & Liu

(1981) reveals. The nonlinear growth of both modes is shown in figure 23. At low Strouhal numbers the mean-flow

production of the n = I mode is higher than that of the n = 0 axisymmetric mode, and therefore the initial

nonlinear growth of the n = I mode is higher than that of the n = 0 mode as long as the Strouhal number is low.

However, for all Strouhal numbers considered, the n = I mode decays much faster than the n = 0 mode. This is

attributed to the azimuthal actions of the n = I mode that produce azimuthal stresses not present in the
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axisymmetric case. This additional stress causes the energy transfer mechanism between the large-scale structure and

the fine-grained turbulence to be more efficient for the n = 1 mode. The decay of the waves through dissipation of

their energy to the turbulence is therefore stronger for n = 1. This causes the helical modes to be restricted to a

smaller region next to the jet exit than when n = 0 at the same Strouhal number. Thus for the subsequent region of

the potential core the observations would most likely show the n = 0 mode to be the dominant one, as observed by

Michalke & Fuchs (1975).

The effectiveness of an instability wave in pumping energy to the turbulence is governed by its efficiency, its

maximum attainable amplitude, and its strearnwise lifespan. The helical modes are quite efficient in pumping energy

to the turbulence, but their streamwiee lifespan is short because of their rapid decay. The net outcome is that the

helical modes are still slightly more effective in enhancing the turbulence and the growth rates than the corresponding

axisymmetric component (Mankbadi & Liu 1981). This trend was confirmed in the experiment of Strange (1981),

where the turbulence was observed to increase noticeably when the jet was excited with helical modes. This suggests

that if somehow the azimuthal mode could be sustained for a longer distance along the jet, such as by combined

bimodal forcing, it could be quite a powerful tool in jet control.

14.2. THREE-DIMENSIONAL MODE-MODE INTERACTION

Cohen & Wygnanski (1987a,b) experimentally studied the azimuthal interactions in a circular jet. Their results

show that the interactions can produce steady azimuthal variation of the mean flow. These results showed that the

mean-flow profile remains axisymmetric if it is forced with either the axisymmetric mode or the first helical mode

alone. This was also confirmed theoretically by Cohen & Wygnanski (1987a,b) and Mankbadi (1991). But when the

modes are excited simultaneously at the same frequency, there are substantial deviations from axial symmetry, as the

figure illustrates.

Corke & Kusek (1991) experimentally considered the mode-mode interaction in a round jet. They forced first

helical modes of n = ±1 along with an axisymmetric mode at the harmonic frequency. Their results indicate that the

axisymmetric mode develops according to linear theory throughout the initial region of the jet. The initial growth of

the forced helical mode was according to linear theory. But this initial growth was followed by a sharp change

indicating an enhanced secondary growth of this mode (shown here as fig. 24). Their results also indicate that the

downstream development of the momentum thickness is characterized by strong azimuthal distribution. The total,

azimuthally summed, momentum thickness was three times more than the natural jet (shown here as fig. 25).

Corke & Kusek (1991) also studied the interactions resulting from seeding a pair of first helical modes (n = =1) at

a Strouhal number close to the natural helical mode, but more importantly where it could couple with the natural jet-

column mode instability. This occurs through a difference interaction between the forced mode and the natural

axisymmetric mode. The results of this lead to a highly organized jet, with numerous discrete modes that are all

derivable from the interactions with the jet-column mode. They also found the near-subharmonic modes to show a

secondary enhanced growth that is comparable to that of the previous exact subharmonic resonance case.

Raman (1991) and Raman, Rice & Reshotko (1990) have considered the interaction between the axisymmetric

and helical modes in a round jet with emphasis on the Strouhal number range relevant to the jet-column mode. They

examined the effect of combined forcing of the axisymmetric and first helical modes on the spreading rate by measuring

the jet velocity at various cross sections. The results indicate that combined forcing results in considerable

enhancement of the mixing rate (see fig. 26) and also in severe distortion in the jet cross section.

On the theoretical side some aspects of the three-dimensional mode interactions were studied by Corcos & Lin

(1984), Pierrehumbert & Widnall (1982), and Metcalf et al. (1987). The first analysis of three-dimensional interactions

in the initial region of a round jet was given by Lee (1988) and Lee & Liu (1985, 1987, 1989). They considered the

nonlinear interactions among five modes: three at the fundamental frequency (n = 0,1,2) and two at the subharmonic
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frequency (n = 0,1). Their results, shown here as figure 27, indicate that the axisymmetric and helical modes grow

almost identically in the initial region until the energy densities of the fundamental modes reach peak values. When

the initial energy densities of the fundamental and subharmonic modes are equal, the initial growth of the shear-layer

momentum thickness and the fundamental energy densities is mainly governed by the energy transfer from the mean

flow to the fundamental modes. The subharmonic energy reaches peak values at earlier or later streamwise positions

than in the linear case, depending on the energy transfer between the fundamental and the subharmonic, which is

controlled by the initial phase-difference angle. The results of Lee & Liu (1989) confirm the experimental

observations of Bernal (1981), Huang (1985), and Jimenes (1983) that in the two-dimensional mixing layer the number

of three-dimensional spanwise-periodic coherent structures lessens with the downstream distance; that is. the spanwise

wavenumber decreases with x. Their results also show that the axisymmetric mode persists longer in the streamwise

direction than does the first helical mode.
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Understanding turbulence via vortex dynamics:
some new perspectives

FAZLE HUSSAIN

Department of Mechanical Engineering
University of Houston, Houston

TX 77204-4792, U.S.A.

Abstract: This lecture will review some new aspects of vortex
dynamics, which are elucidated by direct numerical simulation of the
Navier-Stokes equations. Recognizing from our study of the
reconnection mechanism that vortex lines associated with coherent
structures are frequently helical, we study first the evolution of a
laminar vortex column with nonuniform core and then its evolution
in the presence of fine-scale homogeneous turbulence. We show that
core dynamics, although ignored so far, consists of travelling vorticity
wavepackets and can be very significant in vortex dynamics and vortex
interactions, and can be better explained by complex helical wave
decomposition, a new mathematical tool, than in terms of swirl and
meridional flow. Our results reveal a new mechanism for direct
coupling between coherent structures and fine-scale turbulence and
hence for the failure of the hypothesis of local isotropy.

1. Core Dynamics
Here we build on our long-standing proposal that coherent structures in

fluid turbulence should be characterized by coherent vorticity, the underlying
instantaneously space-correlated vorticity, and that vortex dynamics is a
tractable avenue for understanding evolutionary dynamics of coherent
structures, their role in turbulent transport phenomena, and their interaction
with fine-scale turbulence.

Investigation of vortex lines in the bridges during reconnection of two
antiparallel vortex tubes (Melander & Hussain, 1988, referenced as MH)
revealed that these lines are helical, hence inducing flow along the vortex
axes; as a result of this, there is an inviscid 'vorticity smoothing mechanism'
that causes enstrophy production opposite to that which would otherwise be
expected and counters vorticity augmentation caused by vortex stretching in
the same cross section. In order to focus on the axial flow in the bridges, we
have idealized this problem to that of an axisymmetric vortex with a
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sinusoidal variation of core size. This way we eliminate the complications of
curvature and the flow induced by the threads (MH). Because of the axial
variation of the core diameter, there is also an axial variation of swirl and
hence twisting of vortex lines soon after t = 0. Figure 1 shows a schematic of
the vortex at a time t > 0 with vortex lines lying on the shaded surface
denoting an axisymmetric vortex surface (not a vorticity level surface, but rv
= constant); a 90* cutaway is introduced to enhance comprehension of
meridional streamlines, and swirl and axial velocity profiles. The vortex
evolves as a result of the interaction between meridional flow and swirl. The
velocities u,v, and w in the (r, 0, z) coordinates are governed by the following
equations:

Dtý = viscous term; • = rv; (1.1)

DtTi =raý2/az + viscous term; 71 = "oe/r (1.2)

where Dt = at+u~t+waz denotes the material derivative in the meridional

flow, whose streamfunction V is related to u, w and co8 as follows:

u = Vz/r, w = -Nfz/Z and r"o = Vrr - Vr /r+ xVzz.

The axial variation of the swirl, ý, produces coiling of vortex lines and
hence axial pumping of fluid in a direction that will tend to smooth out core
size variation which is opposite to the axial variation of I0)1 (i.e., w is
opposite to the vorticity flux). Swirl is large where core size is small and vice
versa. Also, the twisting is stronger near the axis than at the outer edges. Note
that both swirl and meridional flow would have undergone uneventful

decay were it not for the coupling term r-4a 2 /az between the two fields.

Azimuthal vorticity, coO, initially zero, is thus immediately created by axial
expansion and contraction of the vortex tube via the coupling term. This is
the basic mechanism for motion of waves along the vortex axis. Maximum

twisting of the vortex lines occurs at the inflection points of ý 2 (z). The

creation of coo is necessary to induce the meridional flow. Since the
meridional flow first forms counter circulating cells (we call them primary
cells), the vorticity peak (at the smallest initial core) bifurcates into two parts
which travel in opposite directions. We may also think of this phenomenon
as a wavepacket which bounces back and forth while undergoing viscous
decay. The first rebound induces a meridional flow reversal within each
primary cell, thereby generating a secondary cell, which soon dominates by
pushing out the primary cell. The wavepacket behavior of the vorticity is

associated with enstrophy production P(O, which can be related to xV for
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inviscid flows as:

-4coz2 o (1.3)
r2 az

Thus, Pco can be inferred at any time from the meridional flow streamline
pattern.

It is important to focus on the generation of meridional flow, hence
il= oue/r . We find that for inviscid flow,

Dtil = (axial vorticity) x (differential rotation),

the rotation being along an axisymmetric vortex surface; thus, the
instantaneous value of 11 does not affect instantaneous material generation of

T1, i.e. DtTi. Because of axial transport of vorticity as wavepackets, TI and DtTI
also oscillate in time, 11 leading DtTi by a phase shift of about 900; this phase

shift controls Tl-transport. The two TI-transport mechanisms (convection of 71
by meridional flow and TI-generation by differential rotation along the axis)
are in opposite directions (hence slower TI-transport) in the primary cell, but
in the same direction (hence faster TI-transport) in the secondary cell.

By investigating this flow for increasingly higher Re we have found that
the core size variations do not decay in the high Re-limit. Moreover, we find
that the wavemotion is more rapid at higher Re, albeit the wavespeed
remains finite as Re-->oo. This result has significant implications for
computational vortex filament models (e.g. Moore & Saffman, 1972) where it
is assumed that core variations are smoothed out by the above wavemotion.
This assumption becomes dubious in the light of our findings.

2. Helicity and Helical Wave Decomposition
The helical nature of flow has become the focus of considerable interest

in recent years (Moffatt 1969). Of the three quantities: helicity density h = u-W,
relative helicity hr = h/(0 u I I (o 1), and helicity integral H = fu.WdV, only the
last is Galilean invariant and is a conserved quantity for inviscid flow. From
I cOau 12 = u2c,2 /(1- hr2) and the Navier-Stokes equations:

Ut + c•Au = -V(P/p+ u2/2) + v A u, (2.1)

it is common to claim that cascade is small if hr ±1. But such thinking is

fraught with many pitfalls. First, although hr ± ±1 does imply small I WAu I, it
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does not imply small VAOAu as high frequency oscillations of WAu are possible.
In some frames, ^AU can be large but purely potential so that vorticity obeys
the purely diffusion equation and hence there is no cascade. A rectilinear
vortex provides a glaring example. Thus, for cascade suppression,
Beltramization (i.e., hr = 1) is sufficient, but not necessary. An example of
cascade suppression for which VAWAu = 0 is not satisfied is a laminar vortex
ring which travels at a constant speed.

Thus, while H is a topological property, h and hr are of questionable use.
But recognizing that local helical structure in a flow contains some essential
physics, we propose that complex helical wave decomposition (Moses 1971;
Lesieur 1990) is the relevant tool for understanding vortex dynamics and
interactions. This decomposition in essence expands the field variables (e.g.,
u, ca) in terms of the eigenfunctions of the curl operator, which has only real
eigenvalues in a periodic box or in infinite space. Moreover, the
eigenfunctions can be chosen to form a complete set of orthonormal basis
functions. In Fourier space, for each wavevector k there are two eigenmodes
corresponding to the positive and negative eigenvalues k and -k. All
functions which are linear combinations of eigenfunctions of positive
eigenvalues can be called right-handed as trajectories or vector lines locally
form right-handed helices. Similarly, we call linear combinations of
eigenfunctions corresponding to negative eigenvalues left-handed. Thus for
an incompressible velocity field, u = UR+ UL + VO. Since VO is the projection of
u onto the eigenspace corresponding to the eigenvalue k= 0 of the curl
operator, and since V.u = 0, we have AO = 0. If the potential part of the flow is
constant at infinity, or for a periodic box, V7 is a constant. Thus UR and UL are
unique, and both translationally and rotationally invariant. Similarly,
W = (AR+ COL (assuming no rotation at infinity).

The decomposition of a flow field into polarized (i.e. right- and left-
handed) components is rooted in the intrinsic physical nature of the Navier-
Stokes equations: the eigenmodes of the curl operator are exact solutions of
the Euler equation and constitute a special class of solutions called Beltrami
flows with constant abnormality (i.e. co = constant u). Because of orthogonality
of the eigenfunctions of the curl operator, helicity takes the simple form

H=HR+HL (2.2)
where

HR = fUR.(ORdV > 0; HL = fUL.CoLdV < 0. (2.3)

The decomposition also provides a clearer insight into the flow physics:
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* cascade is inhibited wherever (OR+ i)L )A(UR+ ur) and its first spatial derivative
are small. One can also easily show that cascade from interactions of modes is
small when the modes are of the same parity (i.e. same handedness) but large
when they are of opposite parity. One can thus infer that polarized vortices
are persistent, hence "coherent," features of the flow.

We apply the decomposition to obtain some understanding of our
axisymmetric vortex in the physical space. Remember that vector lines of

(OR(COL) are right-handed (left-handed) helices. In general the physical space

distributions of mR and COL overlap. The mR and QoL distributions of our vortex
are shown as functions of time in Figure 2 (note identical distributions of

I O)R I and I COL I at t = 0 in Figure 2a). This evolution is much more revealing
than the evolution of the hr field (not shown). The polarized components
move in opposite directions. Aside from the nonlinear interaction between

(OR and cOL there is an obvious resemblance to d'Alembert formula for the 1-D
wave equation!

Note that I mR I is antisymmetric to I (oL I in z with respect to z = I at all
times, coinciding in frame (a). The helical decomposition thus gives unique
separation of co into (OR and COL components, a feature we think is essential for
deeper understanding of coherent structures in turbulent flows. Note that the
I (OR I peak moves to the left instead of to the right as one would expect; this is

* a consequence of nonlinear interaction (discussed below). In fact, in the case

of an isolated vortex with only right-handed polarization, the I (R I peak does
indeed move to the right. In Figure 2 we see that as they move, the
wavepackets deform: they broaden by diffusion, but also elongate and form a
bubble by nonlinear effects. The nonlinearity is also responsible for the
breakup of the initial front-back symmetry, i.e. steepening at the front with a
tail at the back.

To understand the nonlinear interactions between polarized components,
we extract each component by the projection operators (P+, P-). Here we

discuss only I ORI (by symmetry, the coL equation is obvious):

aft- -=(VA(0RAUR,) + {P'[VA(0RAUR)]) - (P[u.W'VWRI)
at

I II III

+(P+C0R'VUL]} - P+[VA(OLLAU)]) + A°OR)) (2.4)

IV V VI

Term I is the inviscid self-evolution; term II is the generation of (oL by
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evolution of 0R; term III is the contribution to OR by its advection by UL; term
IV is stretching of COR by UL; term V is the 0 R generation by WL, consisting of
self-interaction of WL and the right-handed part of stretching and advection of
WL by UR; and term VI is the viscous diffusion term. Terms II-V represent
coupling between the left- and right-handed components. We have evaluated
these terms for the vortex and find that in general their dominance in
decreasing order are as follows: MI, I, V, IV, VI, and II.

The evolution of WR can be largely understood in terms of two effects:
self-evolution and advection by the UL field. The self-evolution (term I)
attempts to move the W0R-packet to the right by adding vorticity at the front
and deleting it at the back. But because UL moves the c0R-packet to the left, the
leftward motion dominates, although it is slower than UL. Also, because the
velocity field has the largest axial component on the axis, it pushes the front
of the packet backward at a faster rate near the axis (Figure 2g), hence causing
the formation of a low enstrophy bubble (Figure 2i). The enhanced elongation
is a combined effect of terms III and V.

The above gives a glimpse of how helical wave decomposition provides a
new tool for analysis of core dynamics in terms of tractable interaction of
polarized velocity and vorticity wave packets (see Melander & Hussain 1991a
for details). Such physical insight into the core dynamics is impossible via the
usual tools of vortex dynamics such as Biot-Savart law and local induction
approximation. We hope many other important vortex phenomena (one
discussed briefly below) can be understood better by this approach. Vortex
breakdown is another obvious candidate (subject of a separate study by us).

3. Interaction with Fine-scale Turbulence
In an attempt to understand the coupling between large-scale coherent

structures and fine-scale turbulence, we have repeated the simulation
reported earlier with the axisymmetric sinusoidal coherent vortex (called CV)
immersed in a background of isotropic fine-scale incoherent turbulence. Care
was taken to assure that the initial rms level was sufficiently high for the
fine-scale turbulence to survive long enough to dynamically interact with
CV. The fine-scale size was chosen to be the smallest permitted by the
resolution, but still with a spectral gap between it and that of CV. We find that
the scales in the background incoherent vorticity grow progressively, so that
at the end of the simulation the largest incoherent scales are comparable to
CV. The spectral gap is gradually filled not by diffusive mechanisms, but by
interaction between incoherent turbulence and CV. While the size of the
incoherent turbulence remains uniform in space, the strength is higher at the
boundary of CV, where it is wrapped around CV and energized by stretching.
This is not dissimilar from the growth of axisymmetric vortices on an
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* impulsively rotated rod except that in our case the curved vortices around CV
are intrinsically asymmetric, induced by the shear in the boundary of CV.

The spiral structures formed from organization of the incoherent
turbulence are indeed quite different from the spiral sheet-like structures
proposed by Lundgren (1982). The structures we find are rod-like spiral
patterns wrapped around CV with senses aligned or opposed to the swirl of
CV (Figure 3). The helical wave decomposition is also helpful in
understanding the coupling between CV and incoherent turbulence. The
spiral structures are found to have a tendency to be highly polarized: they are
either predominantly right-handed or predominantly left-handed. We indeed
find a strong correspondence between peaks of incoherent turbulence in the
boundary of CV and high values of the degree of polarization. The incoherent
turbulence spirals undergo growth through merger by the (truly inviscid)
pairing mechanism and not by fusion through viscous decay and diffusion. In
order for the spiral vortices to pair, their transport (axial to CV) is essential.
There are two distinct mechanisms for such transport: i) transport of nearby
opposite-signed vortices as dipoles, and ii) self-induced transport due to
curvature of the azimuthally aligned vortices (not present in the 2D case).
Because of the shear of CV, the small-scale 'vortex spiral undergoes
differential stretching, which provides the spiral an intrinsic tendency to
become polarized.

In virtually .all turbulence theory, local isotropy, which also forms the
cornerstone of Kolmogorov's hypothesis, is universally assumed and implies
decoupling of large and fine scales. By extrapolating our results (Figure 3), we
conjecture, for the case of very high Re, a hierarchy of structures of
successively smaller scales, i.e. a fractal cascade. This supports our long-held
doubt regarding the validity of the concept of local isotropy. Of course, local
isotropy does not require individual fine scales to be isotropic, but merely
suggests the lack of any statistical preference for the fine-scale structure's
orientation. We think that the fine scales retain some preferred orientation
with respect to the coherent structures.

The CV-in-turbulence naturally decays, and these unforced flows will
eventually laminarize, in a time scale depending on both Re and the initial
rms turbulence level. 1i the level is too low, CV recovers axisymmetry; if it is
too high, CV is completely disrupted. For intermediate values interactions
discussed above occur. In this case, however, there is the interesting
possibility of excitation of bending waves on CV. Without bending waves, the
spiral structures tend to be axisymmetric as they wrap around CV, thus
diminishing their stretching by CV. When bending waves are excited, CV
ceases to be axisymmetric and is then in a position to continue the stretching
of the spiral incoherent turbulence. This is an example of feedback (or
backscatter) from the smaller scales to CV. Thus, we have a mechanism of
coherent structure/fine-scale interaction: the former organizes the latter by
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vortex stretching and the latter, if Re is high enough, induces bending waves
in the former to generate the mechanism of its own survival.

Thus, for very high Reynolds numbers we propose a fractal scenario of
vorticity cascade from the largest scale CV to the smallest scales. Since the
smallest scales are closely coupled with the CV, which will have preferred
orientations in any turbulent shear flow, this study provides a direct
challenge to the hypothesis of local istotropy, as well as provides a
mechanism for small-scale anistropy.

This lecture is based on joint research collaboration with Professor M.
V. Melander of the Southern Methodist University in Dallas, Texas. This is a
progress report of our continuing research activities on vortex dynamics and
their connection to coherent structures in shear flow turbulence. This
research is funded by the Office of Naval Research and the Air Force Office of
Scientific Research.
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Axisymmetric vortex surface

Fig. 1. Axisymrnetric vortex surface with a 90* cutaway on which vortex lines lie.0 Also shown are streamlines in a meridional plane, and v(r) and w(r) profiles.

Fig. 3 .jwj surface at 10% of the peak value.
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Abstract

The small scale characteristics of turbulent flow resulting from a jet exhausting
into a quiescent environment is investigated. The Reynolds number based on exit
conditions is approximately 20,000. Second order derivative moments are obtained
using a flying hot-wire anemometry.

The measured derivative moments are used to evaluate both deviations from the
requirements of local-isotropy and the conditions for turbulence which is locally
invariant about a preferred direction. Results of the rate of dissipation of
kinetic energy are presented.

I Introduction

The present work consists of an investigation of the small scales in a planar
turbulent jet using flying hot-wire anemometry. The overall objective is to
provide a basis for evaluating turbulence closure hypotheses from measurements of
the moments of the velocity and the rate of dissipation of turbulence energy. The
secondary objectives are: evaluation of deviations from local isotropy and a
direct measurement of the dissipation.

The high turbulence intensity in a jet gives rise to cross-flow and rectification
errors on hot-wires (Tutu and Chevray 1975). These errors as well as the effect
of the fluctuating convection velocity on the measured derivatives can be reduced
by superimposing a velocity on the hot-wire, thereby reducing the effective
turbulence intensity. This was accomplished by using hot-wires mounted on a flying
wire system which reduced the effective turbulence intensity from 28% to 13% at
the centerline of the jet and to a maximum of 30% at the outer edge.

Measurements of the dissipation rate of energy have in the past relied on the
assumption of local isotropy. The concept of local isotropy is of prime importance
to the theory of turbulent flows since it implies the universality of the small
scale structures and the loss of all directional preferences at the dissipative
scales. Although this leads to considerable simplifications in determining the
turbulent dissipation rate, it's validity is limited to flows with sufficiently
large Reynolds numbers. Recent measurements of the fine scale structures in
laboratory turbulent jets show deviations from the conditions of local isotropy,
Antonia et al (1987), George and Hussein (1991) and Praskovsky, et al (1990).
Extensions of the theory of local isotropy and introduction of the concept of
local-axisymmetry which accounts for the directional preferences due to the finite
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Reynolds number of these laboratory flows have recently been developed, George and
Hussein ý1991). These experimenthl results show that the velocity derivative
correlatiops in a large number of flows are not well described by the conditions
of local-'sotropy.

The objective of this work is to provide experimental evidence of deviations from
local isotropy in a planar turbulent jet. Earlier experiments on planar jets by
Antonia et al (1986) give credence to deviations of the small scales from the
requirements of local isotropy. The present investigation addresses these dnd
other questions on the nature of local-isotropy at laboratory range Reynolds
numbers. Since one of the primary consequences of lo:,l isotropy is on the
determination of the dissipation rates of turbulence, the best test for local
isotropy is one in which different sets of the measured velocity derivative
correlations are compared relative to each other. In the present investigation,
this was accomplished using flying hot wire anemometry to obtain measurements of
the streamwise and cross-flow derivatives of the velocity. These investigations
of the dissipative scales of turbulence reveal dependence of the small scale
structures on the large-scale anisotropic turbulent motion. This is exhibited in
the deviations of the small scales from the requirements of local-isotropy. Iz
is well known that this effect becomes more negligible as the Reynolds number
tends to infinity. The importance of this large-scale and small-scale interaction
is exhibited in all moderate Reynolds number flows. Since a large portion of
fluid systems in laboratory flows are in this Reynolds number region, the
reported research is of importance to understanding of the nature of the energy
transfer in shear flows.

2 Small Scale Turbulence

2.1 Local Isotropy

One of the cornerstones of turbulence theory over the past fifty years has been
the hypothesis of local isotropy. Introduced by Kolmogorov in 1941, local
isotropy assumes that the small scale turbulence satisfies the
relationships for isotropic turbulence, regardless of the anisotropy of the
large scale energy-containing motions. The principal applications of
local-isotropy have been the determination of the rate of dissipation of
turbulence kinetic energy. In general, determination of the dissipation
requires the measurement of twelve different derivative moments. (To-date, this
has never been accomplished). The assumption of local isotropy reduces this
requirement to the measurement of only a single derivative moment -- usually
<a ,/ax, 2 , the streamwise gradient of the streamwise velocity. Modellers of the
kinetic energy and Reynolds stress equations also depend on local isotropy to
reduce the component dissipations to a single isotropic dissipation.

There has been an increasing body of literature over the past 10 years
documenting experimental results taken in a variety of flows which do not
satisfy the isotropic derivative relations. For example, Browne et al.
(1987) measured nine of the twelve derivative moments necessary to detn-mine the
dissipation in a plane wake, and showed clearly that local isotropy was not an
appropriate description of at least that flow. Their best estimate of the
actual dissipation differed by about a factor of two from the isotropic value.
Similar results were obtained recently by Hussein and George (1989) in a round jet
at much higher turbulence Reynolds number. Deviations from the requirements of
local isotropy can be quantified by comparing the magnitudes of various mean
Squdre derivatives across the jet.
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2.2 Locad'y-axisymmetric homogeneeus turbulence

For a Newtonian fluid with a kinematic viscosity, v, the rate of dissipation
of turbulence kinetic energy per unit volume, e, is given by

e =2v I ~)

"31j2 ( \3x 2 (1)

÷/au ,2 ÷ /au 2 ( au 2 [ ,au,,

x) \Kx,, + K\ ), aI \)K
2 <au3><2l

ax \ax&1\ax

The direct measurement of the average dissipation and mean square vorticity
clearly requires measurements of various components of the spatial derivatives.
Because of the near impossibility of this in practice, investigators have usually
relied on the assumption of local isotropy and Taylor's frozen field hypothesis
in determining the dissipation.

For isotropic turbulence (Hinze 1975):

2K..) \ (•x)Z \8u 1 \ 2 \ 7x/ \ ax3 /\ a /\ax (2

__ Iz /_\I \ \1\

\=x, (L (,,U(
2 au 2 au 2a2 U22 a 2

(au,) \au,\ Iu Iu / /au3\ _ 1 au1
2  (4)

O2 ax 1! \Ox3  ax1  \ axi ~ ax2 2 \ax

Thus only measurement of <aul/ax,>2 is necessary. This has been usually
accomplished by measuring only the temporal derivative of the longitudinal
components of the velocity and using Taylor's frozen field hypothesis.

The assumption of local isotropy simplified the experiments significantly but
the accuracy of the results were impaired by the fact that shear flows such as the
jet did not usually satisfy the relations for local isotropy. For the jet, this
anisotropy of the small scales becomes more pronounced the further one gets form
the centerline.
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From the measurement of seven of the terms in equation (2) it was clear from
tne data that these derivative measurements did not satisfy the conditions for
local isotropy. However, they were found to satisfy the conditions for
axisymmet-ic homogeneous turbulence (Batchelor 1946, Chandrasekhar 1950) to within
the experimental error. Thus it is appropriate to use the concept of locally
axisymmetric turbulence introduced by George and Hussein (1991) for which

-aux (ax3) (5)

(au) ()2 (6)

(:)' = ( , (7)

K-xx32 = ax) (8)

ax , 3 (9)

{au,\/• =3 u-Cauu,5 = -1-ux,\ (9o)

au (au • (10)
(au:>(9 u:> (9X3 >& 1(8 2 (1x2)

aIx31aX21 6 \ax,/ 3 \ax,l

From equation (3) it follows immediately that

e= V[ 5((3u,,2.+ 2(/±ul) 2 2(u±,I +. 8,(u)2 3 (12)S= v3\axl \axz, \ax 3\ax/

For isotropic turbulence equation (1) reduces to the familiar result,

e = 15v u (13)ax i
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3 Experimental facility and techniques

3.1 The ;e: facility

TIe exoe- •ental program was carried out in the far field of a planar turbulent
jet issuing into a quiescent environment. Driving the air jet was a 3-hp paddle
b'ower. Swirl, spatial inhomogeneities in the mean flow and turbulence
intensities were removed using wire screens and plastic straws. A smooth fifth
order polynomial contraction ensures a top hat velocity profile at the exit. The
experiments were performed in a large 4mx4mxlOm room. The results presented in
this report were carried out at X/d of 100 an 120 for experiments with exit
Reynolds number for the experiments was 20000.

3.2 Data acquisition and sampling considerations

The hot-wire signals were digitized using a 15 bit, 16 channel A/D converter with
a throughput rate of 150 kHz. The anti-aliasing filters used were Bessel Low-Pass
Filters (manufactured by Frequency Devices, Model 848 P8195) and were tunable over
a frequency range of 200 Hz to 51.2 kHz. Measurements of all of the components of
the velocity and a number of the velocity derivatives were made. Care was taken
to ensure that record lengths were long enough to ensure that statistical
convergence was achieved.

3.3 Description of hot-wire probes

An array of standard cross-wire probes were used for the experiments. All the
wires used on the probes were Wollaston (Pt-10%Rh) with 2.5 micron diameter.
Compared to the Kolmogrov scales in this flow which are about 0.16mm at the
centerline of the jet, the wires were sufficiently short so that the variances of
the measured derivatives were not affected by length effects ( Iw<nl where n is
the Kolmogorov microscale, Wyngaard 1968). The small diameter of the wires was
chosen since smaller diameter wires have higher resistance and hence better signal
to noise ratio.

The anemometers used were Dantec 56C17 constant temperature anemometers operated
with 0.6 overheat ratio. To avoid aliasing of the signals, signal conditioners
were used to low pass the signals. The highest frequency in the flow
(corresponding to the Kolmogorov microscale) was 12 kHz, so the low pass setting
for the filters was at 15 Khz. This cutoff frequency was calculated using the sum
of jet velocity and the superimposed velocity (flying wire speed) as the
convection velocity.

The cross wire array made up of two standard cross-wire probes was selected to
measure all the terms in the dissipation equation assuming locally axisymmetric
homogeneous turbulence (George and Hussein 1991). The criteria used in design of
this probe were that it have the least amount of probe interference, and
acceptable spatial resolution for the derivative measurements. The spacing
between the two cross wire probes was approximately 0.4 mm which is close enough
in regards to the Kolmogorov microscale to avoid spatially filtering the
derivative signal. This probe was used in two different experiments. In the
first, the probe was aligned with the jet in such a way that the terms <au1/8x, 2,
(Sau21/X, 2, <8u 2/ax 3 ', 8u'/8x3,2 , were measured. In the second, the probe was
rotated 90 degrees to obtain <au1 /ax> 2 , <.au3/ax 2 2, <au3/ax 2>2, Caul/axY.

The hot-wires were calibrated in a low tirbulence intensity calibration tunnel.
The error in predicting the measured velocity from measured voltages was typically
less than 0.1% over the entire range. Once the calibration coefficients were
found, they were used for the determination of instantaneous velocity from the
instantaneous voltages sampled by the A/D. The calibration data was verified at
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the end of each experiment to insure that the calibration did not shift during the
course of tne experiment. The afrgle calibration for the cross-wires was done
using a mod',"ed cosine law with a velocity-dependent k-factor (Beuther et al.
1987).

3.4 Differentiation

The streamwise gradients of the velocity components were computed from Taylor's
hypothesis using

•x uc a (14)

where Uc is the convection velocity usually taken as the local mean velocity.

The differentiation of the electronic signal was accomplished by utilizing the
high-pass filter characteristics of the Dantec 55N26 signal conditioning unit. It
is well-known that the differentiation corresponds to +6dB/octave frequency
response function which is also the low asymptote of a single-pole high pass
filter. To ensure that deviations from this asymptote near the breakpoint were
negligible, the high pass cutoff frequency was chosen about five times higher than
the highest frequency of interest in the signal, that corresponds to a high
frequency cutoff of 50 KHZ for these experiments. The time derivatives were
computed from the output using the following relation which can be readily derived
from linear system theory:

de-- =2 fpe, (15)
dt

where e, is the voltage of the signal to be differentiated, e. is the voltage of
the differentiated signal and fP is the setting of the high pass filter. Because
of the severe attenuation at the lowest frequencies by the high-pass filter, the
amplifier gain was set at 100 to provide additional amplification.

The measurements of the spatial derivatives were done by measuring the velocity
components at two points that are in close proximity to each other, and taking the
difference to approximate the velocity gradient. The noises in the difference
signal are due to either quantization and electronic noise or to uncertainty in
the calibration of the two wires. The voltage to velocity transformation is
accurate to within 1% and the quantization error is of order of 0.6 mv, and rms
electronic noise is of the order of 3mv. For this work the spacing between the
wires is given by a =2q. The velocity from each wire and the corresponding
spatial difference was computed from sampled voltages.

3.5 Rationale for flying probe

The numerous problems associated with the use of standard hot-wire anemometry in
high turbulence intensity flows are well known. The errors due to cross-flow and
the effect of the fluctuating convection velocity on the measured derivative both
scale with the turbulence intensity, (u2/U2). These hot-wire errors can be avoided
by reducing the effective turbulence intensity. This is accomplished in this work

AI-6



by movinc ot-wires through the flow so that the effective mean velocity seen
by the _: is that of the flow- plus that of the wire, thereby reducing the
effective tjrbulence intensity.

Flying hot wires in turbulent flows were used in the past by various
investigators. Uberoi (1965) used a flying wire in his study of entrainment in
shear flows. Cantwell and Coles (1983), Watmuff et al (1983), Panchapakesan and
Lumley (1987) are other investigators that applied the moving wire techniques in
a wind-tunnel, wake and heated jet respectively. There are various reasons why the
moving wires were used. In this work the object is two-fold: to decrease the
errors due to cross-flow and rectification, and to enable a correct implementation
of Taylor's frozen field hypothesis, Lumley (1965) and George et al (1989).

3.6 Description of the flying wire system

Depending on the method by 'irobes are moved relative to the flow, flying
hot-wire methods require considerations that are not important for
conventional hot-wire anemomet. The first is the possible wake and obstruction
effects from the probe support mechiaism. The second is the possible need for
slip rings or optical methods for the transmission of velocity signal from the
probes to the data acquisition equipment. The third is the need for an accurate
determination of the position and vel':ity of the probe relative to the flow.

Figure I shows the flying wire system that ý,as used for the experiments reported
here. The design of this apparatus ensures that a constant traverse velocity is
obtained and that the probe vibrations have scales which are smaller than the
Kolmogorov microscales. A rake of multiple hot-wire po.obes is mounted on a
streamlined cantilever beam. The beam which is mounted on a c~omputer controlled
track, extends from a traversing platform to a posit~on that enables the probes
to be in the measurement location of interest. The probes are traversed parallel
to the axis of the jet.
In the flying hot-wire system, a rake of hot-wire probes are mounted on a
cantilevered airfoil which attached is to a one-dimensional track. This
mechanism enables the superposition of a steady uniform velocity on the hot-wire
probes. A computer controlled optical encoder that enables the support mechanism
to be traversed at constant velocities. During an experimental run, the mechanism
is traversed towards the jet in a trajectory that is parallel to the jet axis.
This enables the superposition of a uniform velocity on the hot-wire probes. This
was accomplished by using an encoder pulse that triggered the A/D converter to
collect the data. The short charging time of the sample and hold of the A/D
(nanoseconds) insured that the measurement was effectively taken at a point. The
data was sampled along the track at specified locations along the track and 4800
samples were taken for a number of selected locations across the jet.

The effect of the wing on the flow was carefully studied. The wing had a low
coefficient of drag Cd of 0.003 and a Reynolds number of 1500 at I m/s. The large
scale characteristics of the flow around the wing were observed with smoke wires.
There are minimal amounts of flow disturbances on the jet as the wing is traversed
through it.

Measurements of the velocity field were obtained at X/d- 100 and 120. The problems
associated with the support mechanism being continuously in the path of the flow
is overcome by waiting for the flow to readjust after each traverse. The probe
speed was selected so that the velocity derivative information can be resolved.
The location and velocity of the beam were obtained from an optical encoder along
the track. The signal is transmitted through a set of cables embedded inside the
beam and which are connected directly to the A/D converter, enabling the
measurements to be carried out without the use of slip-rings.
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4 Exper'me:tal Results

The mean axial velocity normalized by the centerline velocity, U/Uc, is plotted
versus tre non-dimensional radial coordinate, y/b,, in Figure 2. The virtual origin
of the jet is 5.2 and the jet spread constant is 0.093. The jet spread result
obtained by Goldschmidt (1983) is 0.095 which means that the previous results
indicate a jet spread which is wider than that of the present investigation. Even
though the results are close, it is important to note that the difference can be
explained by the fact that the earlier stationary wire measurements are expected
to read higher velocity readings due to cross-flow errors. This is consistent with
the expectation that the stationary wires measure wider jet growth than the moving
wire results, Hussein and George (1989).

The streamwise derivatives of the three velocity components were calculated from
their corresponding measured temporal derivatives of <8u1/at>, <au2/at>, <au 3/8t>.
The issue of the applicability of Taylor's hypothesis was addressed by utilizing
the flying wire mechanism. The effect of the fluctuating convection velocity is
most prominent in the breakdown of Taylor's frozen field hypothesis (Lumley 1965).
The contribution of the terms depending on the fluctuating velocity are less than
4% for the flying wire results, and they therefore are close to the actual values
of < u,/lax> 2 .

Figure 3 shows the profiles of the velocity derivatives in the streamwise
direction. These derivatives satisfy the isotropic relations near the centerline,
but progressively dfviate from thsm as the radius increases. On this figure,
<au,/ax1>. <au2lax,, and <ua3 /axI measured with the cross-wire probes are
plotted as a function of transverse positions
across the jet. a

The velocity derivatives in the azimuthal direction, <au/ax3  and au2/ax3
measured with two cross probes in close proximity to each other shown on Figure
4. The other experiment which was performed by rotating the probes by 900 to
measure the velocity derivatives in the transverse direction. The results from
this experiment, •au1/ax 2> and <au 3/ax 2

2 are also shown on Figure 4. Local-
Axisymmetry requires that the terms <au3/ax 2  be equal to &u2 /"x 3

2 and that
<au 2/ax)>2 be equal to <au 3/axl> 2. These terms are shown on Figures 2 and 3, and the
results shown to within the accuracy of the measurements that the flow appears to
be truly axisymmetric in the small scales.

The full implications of this local axisymmetry is presented in George and
Hussein (1991). The most significant consequence for the present experiment is
that the entire set of derivative correlations can be represented in terms of four
invariants which in turn, depend only on measurable Quantities. Thus the
determination of the dissipation and mean square fluctuating vorticity is limited
only by the measurement accuracy of the four independent derivatives.

Figure 5 shows the comparison between e... obtained with the assumption of
local axisymmetry and else calculated from <au1/ax 1>2 and assuming local isotropy.
For the jet, the isotropic results differ from the dissipation by about 25% at the
centerline and by about 40% near the point of maximum mean shear (Y/Y1 /2 2 0.9).

5. Summary and Conclusions

The statistical correlations of a number of the mean square velocity
derivatives in the dissipation tensor are presented for the planar turbulent jet.
Three of the mean square derivatives were computed from their corresponding
measured temporal derivatives. The use of the flying wire probe which reduces the
effective turbulence intensity provides the only way to measure these terms
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accurately n thnis flow, since Taylor's frozen field hypothesis does not
accurately aooly to the stationary wire results. Having obtained a set of data
with and witrout moving the wire, an assessment of the breakdown of this
hypothesis was done. The issue of cross-flow and rectification errors was
addressed with pertinence to the use of hot wires in flows with turbulence
intensities that is higher than 30%. Comparisons between the results of the moving
wire and stationary wire enabled the evaluation of these errors.

This work also provides a considerable amount of data on the dissipative
scales of turbulence for the isothermal axisymmetric jet. It was proven that the
jet is not locally isotropic but rather locally axisymmetric in the small scale.
The direct measurement of the dissipation is presented for this type of flow.
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RESPONSE OF FINE-SCALE TURBULENCE TO EXTERNAL PRESSURE FIELDS
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Abstract

Grid generated turbulent flow has been subjected to a local disturbance in the
form of a pressure force on the mean. This is accomplished by a standing acoustic
wave in the cross-flow direction. This radiation pressure disturbance appears as
a single a single spike in the energy spectrum and corresponds to external
forcing at the selected frequency. With this kind of external forcing, the
amplitude and the frequency of the excitation can be varied independently.
Response of the flow to the excitations are presented by reporting the evolution
of the energy rate and estimates of the dissipation.

1. Introduction

The practical relevance of local-isotropy in turbulent flows is of prime
importance in both the measurement of the dissipation rate as well the premise
that the smallest scale motions do not receive energy directly from the mean flow.
Traditional methods of studying these phenomena have relied on experiments on the
dissipation and vorticity field of turbulent flows. Of interest are both the
description of both the statistical nature of the fine scales as well as the
response of turbulent flow to superimposed disturbances More recently numerical
simul3tions on distant triadic interactions by Yeung and Brasseur (1991) have
indicated the persistence of
anisotropy even at large Reynolds numbers. Attempts to corroborate these results
have relied on the developments of techniques that utilize disturbances that are
local in nature. In this attempt, one would prefer known disturbances that can be
assumed to be ideal spherical shells in wavenumber space. In the case of
anisotropic flow, these superimposed disturbances on the fluid velocity produce
an external distortion that would persist to the small scales. The nature of the
transfer of the energy mechanisms are key to understanding inter-scale coupling
as well as deviations from local-isotropy..

The existence of universal similarity of the small scales of turbulent flow fields
is observed for flows with sufficiently high turbulent Reynolds numbers. Recent
measurements of the fine scale characteristics of laboratory turbulent jets by
Antonia et al (1986) and George and Hussein (1991), show considerable deviations
from the requirements of local isotropy. Measurements by Praskovsky et al, (1990)
in elliptic jets at turbulence Reynolds numbers of about 2000 also corroborate
these results. Since Kolmogorov's universal similarity hypothesis is based on
dimensional arguments for the infinite Reynolds number limit, these deviations are
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expected for moderate Reynolds number flows. Questions have been raised on the
valioity of t:e hypothesis even at large Reynolds numbers. The physical
implications of t-iese results are that the small-large scale couplings not only
exist at low ' Ynolds numbers but also persist even at relatively large Reynolds
numbers. Tl's leads to the possibility of influencing the structure of the fine
scales Dy suoerimposing external excitations on the large scale motion. Of
partic..lar interest are experiments in which the characteristics of the small
scales are influenced by external forces at the small wavenumbers. These
simulations which are carried out at low Reynolds numbers have no experimental
verifications. The present work involves an experimental program in which the flow
4s loaded at specific low frequencies with standing acoustic waves. The
experiments are performed in grid turbulent flow in a low turbulent intensity
wind tunnel.

2. Description of Experiment

2.1 The wind tunnel facility

The experiments reported here were carried out in the wind tunnel illustrated in
Figure 1. The facility which is the same used by Han
(1988) for studying the effect of contraction in grid generated turbulence
consists of five main units: blower, flow conditioning unit, grid and test
section, contraction and a traversing section.
The turbulence generator was a biplane grid constructed of circular steel rods
with 40 percent solidity. The test section followed the
grid and consisted of a 4 ft circular section with a diameter of 19.25 in. The
operating point for the system was selected so that the tunnel velocity was 2.4
m/s. The velocity corresponding to the grid Reynolds number of 4000 and at X/M=25
(were the forcing is applied as described below) and the turbulent Reynolds number
R;=27.

2.2 Forcing technique

In this paper, we present a technique using a sound field as an external force in
grid generated turbulence. Earlier investigators have avoided using acoustic
excitations primarily because of the associated inherent compressibility effects
and the corresponding complexities in the balance of the governing equations.
Selecting acoustic waves (rather than screen of low solidity as others have used),
Itsweire and Van Atta (1984) has advantage of avoiding wake effects. It also
enables the possibility of adjusting the amplitude and frequency of the
disturbance independently. The results from the earlier measurements do not lend
themselves to a comparison with the theory specifically because of the complicated
wake interactions.

Two kinds of terms exist in the force on a flow which is from a sound field: The
first is from a radiation pressure, the second is the effect of the
compressibility of the flow. In the present application the former dominates,
since the flow has a very low turbulent Mach number. The forcing was superimposed
at 25M downstream from the grid.

3. Results

The measurements were taken along the centerline of the tunnel with a free-stream
velocity setting of 2.4 m/s. These measurements were aimed at identifying the
effect of the external disturbance on the characteristics of the flow. Results of
the streamwise component of the Reynolds Stress, the mean-square velocity
derivative in the axial direction and one component of the spectral tensor are
presented for a number of X/M locations. Evolution of the energy, and an estimate
of the dissipation rate are inferred from these measurements for both the forced
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and unforced cases. Figure 2 shows the evolution of the streamwise component of
tne Reynolas stress u2, for both the forced and unforced cases. As shown on the
Figure, tle external power input compensates or the viscous dissipation. Figure
3 shows an estimate of the dissipation rate assuming local isotropy, e =15(au/ax) 2 .
As shown on the Figure, close to the position at which the disturbance is
superiroosed (X/M=25), the dissipation is less than that of the incoming
turbulerce. Tn's is oe to the increased energy cascade from the inertial range
to the viscous range.

The spectral results are presented on Figures 4 and 5. Figure 4 shows the
streamwise velocity spectrum normalized by the Kolmogorov length and velocity
scales at several X/M locations for the unforced case. As shown on the Figure
even though the tunnel characteristics do not provide for a large inertial
subrange, the turbulent Reynolds number is considerably larger than those attained
with direct numerical simulations. Figure 5 shows the spectrum for the forced
case under the same flow conditions. As shown on the figure, the disturbance is
in the energy containing scales and show as a single spike in wavenumber space.
In the ýigh wavenumter region there is a larger magnitude of loss of energy in the
longitudinal power spectrum. This is consistent witn the results obtained in
numerical mu~ations.

In summary, the experimental data gives considerable confidence in the local
nature of the disturbance. We have presented a forcing technique that is capable
of forcing the flow in such a manner that the assumption of a local disturbance
at a single wavenumber holds. The -estion of the nature of equi-partition of
energy and the issue of balancing the energy equations can be achieved with a set
of measurements that include both the streamwise and the cross-flow components of
tne velocity field.
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Abstract

The anisotropy of the dissipation rate tensor has been studied in the self-preserving region of a cylinder wake.

Hot-wire techniques have been employed to measure the derivative moments in the streamwise, lateral and normal

direction. From these measurements the streamwise component of the dissipation rate tensor was determined and

compared to an anisotropic dissipation model.component. It was found that the dissipation rate anisocropy could

essentially be accounted for by the employed model. In this flow field triple velocity correlations were also

measured and a comparison with the corresponding modelled profiles has been made.

1. Introduction.

Much of the research in the area of turbulence modelling is today directed towards an improved generality of the

of the closure models for the Reynolds stress transport equations. An important part of this work is the

experimental determination of the dissipation rate tensor and the triple velocity correlations. The anisotropy of the

dissipation rate tensor and its coupling to the anisotropy of the Reynolds stress tensor has been shown to be quit

useful in the modelling, see Browne et al. (1987), Hussein and George (1989), and HaUblick et. al. (1989). For a

more complete discussion of the closure problem and todays turbulence modelling see e.g. George & Taulbee

(1990) and in Groth (1991).

A key element in obtaining the components of the dissipation rate tensor is the measurement of the velocity

gradients. Due to limitations in current experimental techniques a determination of all components in the

dissipation rate tensor is impossible. However, if the flow is symmetric in some coordinates, like the

axisymmetric case of HallbAck et al. (1989), the number of components is reduced. In order to assess the

applicability of the results obtained in the aforementioned fundamental investigations, the present experiment was

carried out in a more complex flow, the self-preserving region of a cylinder wake. Measurements are presented of

the dissipation rate and triple velocity correlations, and comparisons are made to theoretical models.
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2. Experimental Arrangements.

All measurements were performed in a low-speed closed circuit wind-tunnel, with a test section of 3.0 m x 1.8 m

x 1.2 in. The self-prcserving wake was generated by a circular cylinder, of a diameter of 4.0 mam. which was

mounted in the midplane of the test section. In the measurements a free stream velocity or 7.0 a/s was used,

giving a Reynolds number, based on the cylinder diameter, of 1840. All measurements of velocity derivatives

were made in the self-preserving part of the wake at xi/(2e) = 440.

For the determination of the free stream velocity a micro manometer and a Prandtl tube was usc , turbulence

measurements were carried out using a standard DANTEC constant-temperature hot-wire anemometer and

standard DANTEC hot-wires ( 55P01 and 55P61). The output voltages of the anemometers were filtered and

amplified,the low-pass filter setting was 3.0 kHz. (This value was appropriate since the Kolmogorov frequency

was approximately 2300 Hz). The signals from the micro manometer, the anemometer and the signal condwuoner

were subsequently sampled using a twelve bit A/D converter with a sample and hold unit

A hot-wire method based on single- as well as cross-wires was developed to enable these measurements. For the

cross-wire measurements this method uses a look-up table. Lueptow, Breuer & Haritonidis (198), in the

calibration routines for the improvement of the angular sensitivity and the elimination of correction factors due to

the probe geometry. A more comprehensive description of the hot-wire method can be found in Aronson (1991).

In order to obtain a satisfactory spatial resolution in the determination of the velocity derivatives, George &

Hussein (1991) and Johansson (1992) stressed that the spatial extension of the employed sensor must be of the

order of the Kolmogorov microscale. The experimental conditions used here gives the advantage of the relatively

large size of the Kolmogorov microscale, ranging from 0.47 mm at the centre line to about 0.8 mm near the edge

of the wake, needed to obtain a satisfactory spatial resolution.

In the transport equation for the average turbulent kinetic energy the dissipation rate is given by (e.g. Hinze

(1975))

C=V + dj u (1)= axi ax,

The streamwise components e.g. (aulaxl)2 may be rewritten, using Taylors hypothesis,

(aut)2 .. L4ul at2

where .t is defined as the Taylor microscale. Since a transformation from a spatial to a temporal derivative is

necessary the validity of Taylors hypothesis was established according to the criteria of iUn (1953), and for all

parts of the self-preserving wake it was found that the employment of the hypothesis was justified.
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In order to correctly compute this microscale it is important to choose an appropriate sampling frequency or time

between samples (At) when measuring. If At is too short effects of electrical noise and insuffici.,nt resolution in

the AD-converter will give a too low value of the microscale. on the other hand if At is too long tie fine scales

will not be resolved yielding a too large value.

t +where X2. I udt~+ A0)-Ut(2t))2 (2)

As shown in figure I the measured time scale, X=, in the intermediate region (0. 1 < At / X, < 0.4) closely

adheres to relation (2). This makes it possible to accurately obtain the wanted microscale, Xt, Irom extrapolation

of measurements. These results are in close agreement with the results of Hallback et al. (1989).

Xt U'
2.5 0.05-

2 ~00
1.5. 0.03-

1 0.02

0.5 0.01

00 AL o X,
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Figure 1. The measured microscale &) Figure 2. The normalized distribution of
normalized by X as a function Reynolds shear stress.
of ALA.

To obtain (aui/'x 2)
2 and (au1 /"x3)2 a similar technique was used. At is then replaced by the spatial separation

Ax2 and Ax3 resp. According to Wyngaard (1969) the present probe geometries would give an 90% response,

or better, during the gradient measurements.

3. Results and discussions.

3.1 The self-preservation of the cylinder wake.

In the plane two-dimensional wake behind a cylinder, sufficiently far downstream, the transverse distributions of

mean-velocity and Reynolds stresses are assumed to be self-preserving. That is, these distributions assume

functional forms which are independent of xt when normalized by the characteristic velocity and length scales.

These conditions can be expressed in the form;

U1 = U_ -SI(x2/t), = u,21(xt) and UiU2 = U,' 3 (x2/t), (3,4. 5)
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where the characteristic velocity. Us, is defined as the maximum value of the mean-velocity defect at that

position.and the characteristic length, L, is defined as the distance from the centerline to the position where the

mean-velocity defect is 0.5 Us, following Tennekes & Lumley (1972). In the self-preserving region U, and •. the

normalized velocity and length scales should vary as

:L"A x -xo)1/2 and = I B ( OL112 . (6 7)U_ (20 !0 20

where A and B are universal constants, 0 is the momentum thickness ( here 0 = 1.90 mm) and xo is the virtual

origin. Measurements were made at distances ranging from 210 to 880 momentum thicknesses downstream of the

cylinder. The data obtained indicated that some 400 momentum thicknesses downstream the velocity scale U,

was proportional to (xi - xo)"/ 2 . and the width of the wake t, was proportional to (xI - xo)" 2 . In this region the

coefficients A and B take the values 1.25 and 0.41 respectively and xo/(20) = -112. These values of the

coefficients are in good agreement with the corresponding values reported by Wygnanski, Champagne & Marsali

(1986) who found A=1.24 and B--0.41.

To asses the quality of the turbulence data we checked if the directly measured Reynolds shear stress agreed with

the value calculated from the mean momentum equation. For a two-dimensional, small-deficit w:tke the mean

momentum equation can be approximated to

U ý±.i ER = 0 .(8)

uaXI .X2

Here the Reynolds number is assumed to be sufficiently large for viscous and diffusive terms to be neglected, and

the strearnwise gradients of the normal stress have also been neglected by using the boundary layer

approximation. The Reynolds shear stress uju 2 can be calculated using eq. (3), eq. (5) and integrating eq. (8)

across the wake. This yields the normalized distribution of u-u 2.

af fS dx- bXst, (9)

where

a= ' .,. b=-=dL and Xx2/
U2 dxi U, dx U, dxl

The use of eq. (6) and (7) indicates that a of eq. (9) should be zero so that eq. (9) can be simplified to

U- =-12 j_!IU-'_U._.I .(10)
Uj 4A t U,

In figure 2 the measured Reynolds shear stress is compared to the calculated value from eq.(10). At the position

of maximum shear stress the largest difference between the experimental and the calculated values is about 6%.

Based on a number of measurements, we estimate the error in U, to bet 5.5% and the uncertainty in uIU2 to be
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± 5%. U'sing the propagation of errors approach, the resulting uncertainty in the measured ui u2 / U5 is estimated

to ± 9%. At x, / I = 1, near the position of maximum shear stress, U- - UI is exactly U, / 2 , yielding that the

only uncertainty in the ,.dculated shear stress is the uncertainty in B/A, which is estimated to be approximately

2%, so the agreement between the momentum balance and the direct measurements of the shear stress is

satisfying.

3.2 Average turbulent kinetic energy budget and the anisotropy factors.

An approximation to the transport equation for the average turbulent kinetic energy (k = 1/2 uu,) is given by

(Townsend (1949))
Uak -- U'

U. --- 2- [u2 (k+ P/p)j + e =0. (1)

Estimates were made for all the terms in eq.( 11) except for the pressure diffusion term which was determined by

difference. The gradient ak/ax, was inferred from the streamnwise variations of U, and L, and the lateral

derivatives of U I and 2"k were obtained by fitting a curve to the data and then performing a differentiation. Since

one component of U-2, uJu2, was not measu'ed. we inferred our distribution for uJu2 from our .,,u2 data via the

* relation

(ui2J.tc (jU)pesnc~L (Brwnxeet al. (1987))
U tU2 Imm

In general, the magnitude of u3u2 is sufficiently smaller than uju2 or u+ to suggest that the determination of u~u2

is not critical in the context of obmining ku-2. The various terms in eq.(I I), normalized by multiplying with L/UU.

are plotted in figure 3. Assuming symmetry with respect to x2 It = 0 the diffusion terms should satisfy the

following two integral constraints

f± (0u 2) dX2 =o 0 f (P/p-Ui) dX2= 0

The diffusion of k satisfies the integral constraint by about 3%. However the pressure diffusion term, obtained by

difference, is small compared to the diffusion of k. and does not satisfy the integral constraint. This demonstrates

that in this case the pressure diffusion is inaccurate due to the assumption of an isotropic dissipation rate and is an

indication of the need for a better estimate of the dissipation rate.
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Figure 3. Budget of average turbulent Figure 4. The distibution of the ratios
kinetic energy K! though K4.

If the assumption of isotropy in the self-preserving region of a cylinder wake would be correct, the ratios K,

through K4 should be 1.0. Here K, through K4 are defined as:

K, 2 (aUl/,aXi)2(aU2/DXi)2 K2 =2 (aul/'aX1)2 (aU3/Cx)X 2

K3 = 2 (aulaxl/(aul/Dx2  4 = 2 (auI/D U

In Figure 4 the distributions of the ratios KI through K4 of the present flow case are shown. A. is evident in

this Figure these ratios are never equal to unity, indicating that the condition of isotropy is not fulfilled, and

further emphasizes the need for a better estimate of the dissipation rate. It may, however, be noted that KI - K2 >

I and K3 - K4 < 1, an observation in full agreement with what has been suggested by George and Hussein

(1991) as a case of local axisymnmetric turbulence.

3.3 Dissipation Model.

To investigate the assumed relation between the anisotopy of the dissipation rate tensor and the stress tensor the

streamwise component ( el I ) of the dissipation rate tensor was measured as well as computed using a

dissipation model based on the anisotropies of the Reynolds stress tensor. In the measurements, terms in eI

requiring the use of more than one cross-wire have been estimated using the assumption of isotropy, thus

yielding

Ell =2v +(+1 if (13)

The here employed dissipation model was suggested by HailbAck, Groth and Johansson (1990), and is basically

an extension of a model originally suggested by Rotta (1951) and later developed by Hanjalic and Launder

(1976). This dissipation model satisfies both the weak and the strong realizability conditions, due to Pope (1985).

6(14)
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where

e, , 2 I 3 ( }laj , -(akak -3-II. 8j ) }

a,, V .2 ,j and lIa = aiak,

The value of ot in this comparison was chosen to be 0.75. In figure 5 a comparison bet.. een the experimental and

modelled distributions of the streamwise component ( e I I) of the dissipation rate tensor is shown. (the various

terms in eq.(13) and eq.(14) are normalized by multiplying with tUU,.) It is seen that the isotropic estimate of Ei

is smaller than the measured value across the whole wake, at the centerline of the wake the difference is about

5%, at x2/1- = I about 15%, and near the edge of the wake the isotropic estimate of ej I is 25% smaller than the

measured value. It is seen that the modelled distribution of El I agrees well with the measured distribution of el1.

However, eq.(1 3) does overpredict the dissipation rate at the centerline of the wake by about 3%. This result

shows that the model used, which describes the anisotropies of the dissipation rate tensor in terms of the

anisotropies of the Reynolds stress tensor, to some extent can predict the anisotropies of the small scales in this

case. Here it should be pointed out that the Reynolds number of this investigation is relatively low, a fact that can

be in favour of the model.

0.025
0.02 o 188

AA 0

0.015- 
0
a 8

0.01- £0

0.005 £Ioipo MOM
0 MCeinMuu

0 0.5 1 1.5 2 2.5 t

Figure 5. The distributioo of e£.

3.4 Triple velocity correlations.

In the beginning of the seventies Hanjalic and Launder (1972) suggested a model for the triple velocity

correlations. Looking at high Reynolds number flow and refering to measurements in a plane axisymmetric

channel they neglected the viscosity and pressure dependent parts, and suggested the following model.

"-Ulurk = u u•ax C m ax' xx, " (15)

A3-7



The model parameter c, was set to 0.11. due to Launder. Reece & Rodi (1975). The from eq. (15) calculated

triple velocity correlations were compared to the present measured profiles of the triple velocity correlations.

Shown in Figures 6 and " are the comparison for the total streamwise and the total lateral transport correlations.

(The different correlations have been normalized by dividing with U,3.) In general the shape of the predicted

profiles similar to those measured, however, it can be seen that the model underpredicts the experimental profile

for the strearnw:e transport. For the lateral transport eq.(15) predicts the measured profile better, but the

predicted values are consistently lower than the measured values.

0.01 0.01

0.005 • • 0 Medd .0 00
0 0 0 0 0.005- o 00 oo 0ooOgo

0 0 0
-0.005 0 0 0 0 0

-0.01 - 0o
0 -0.005. o-0.015 -. 0 S M~ammment

-0.02 1 T -0.01 0 Moz"
0 0.5 1 1.5 2 2.5 L 0 0.5 1 1.5 2 2.5 t

Figure 6. Streamwise transport 1/2-U-uTu. Figure 7. Lateral transport 1/2Uj2ii.

4. Conclusions.

An investigation has been carried out in which the derivative moments have been measured, employing hot-wire

methods. The streamwise component el1 of the dissipation rate tensor was determined and compared to the

corresponding quantity computed with an algebraic dissipation model. From these comparisons the following

conclusions can be made.

"• The present experimental arrangement fulfils the requirement of a two dimensional, self-preserving

cylinder wake flow. For the studied Reynolds number, 1840, the dissipation rate terms have been

shown to have a non-isotropic structure.

"* The measured profile of the strearnwise component of the dissipation rate tensor agrees well with the

profile predicted by the dissipation rate model of Hallback et al. (1989). As compared to corresponding

quantities obtained under the assumption of isotropy, large deviations can be noted.

"• The profiles for the third moments predicted by the model of Hanjalic and Launder (1972) show similar

shaped profiles with those measured, but they are different in magnitude.
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Abstract

The two-dimensional, forced, barotropic vorticity equation on the $-plane is studied

using the Renormalization Group (RNG) technique. It is shown that the 3-term does not

renormalize in the process of infra-red (k --+ 0) renormalization. As k --. 0, the RNG

viscosity develops significant anisotropy, due to the 6-effect. The RNG viscosities were

used for calculations of energy transfer, energy spectra and two-parametric viscosity in the

energy sub-range. It was found that, as k --. 0, the energy spectrum becomes substan-

tially anisotropic, with energy concentrated in a zonal flow and zonally propagating Rossby

waves. Such a spectrum is consistent with the spectral energy transfer that has local neg-

ative maxima at 0, = 0, r and ±v = :/2. These results have important implications for

geophysical fluid dynamics.

1. Introduction

The two-dimensional (2-D) barotropic vorticity equation has long been recognized as one of the simplest

models relevant to geophysical flows. It describes non-vortex-stretching large-scale horizontal motions and,

when forced, its non-linearity supports well-observed energy and enstrophy spectra, inverse energy and

direct enstrophy cascades. Numerical simulations with this equation reveal generation and evolution of

coherent structures which may be isolated or multiple vortices [1-31. Such structures can be reproduced

in the laboratory settings [4,5]. In the geophysical context of differentially rotating flows, this equation

is supplemented by the 0-term that reflects the variation of the planetary vorticity. Then, the vorticity

equation on the 3-plane supports large-scale Rossby waves and describes the interaction between these

waves and two-dimensional turbulence. The 6-effect tends to destroy the coherent structures characteristic

of purely 2-D turbulence thus improving the applicability of statistical theories to 3-plane turbulence [61.
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Without dissipation, this equation constitutes preservation of potential vorticity on both f- and 3-planes.

the evolution of which is believed to be the dominant factor determining large-scale, wind-driven oceanic

circulation 1. This equation can also be generalized to include effects of stratification, bottom topography.

friction and three-dimensionality [8-101. Extensive reviews of different properties of the barotropic vorticity

equation can be found in L8, 11-131.

Pioneering studies of turbulence and waves on the .3-plane were conducted by Rhines [141 who found that

at large k the flow is relatively unaffected by the differential rotation and behaves largely like two-dimensional

turbulence. With decreasing k, inverse energy cascade halts and flow evolves towards the regime of linear

Rossby waves. The transitional wave number introduced by Rhines [14] is related to 3 and velocity scale

C as ks = (3./2U)'/ 2 . Holloway and Hendershott [15) corroborated Rhines's results using the Test Field

Model (TFM) by Kraichnan [16]; they defined ka based upon the rms vorticity, to assure the Galilean

invariance. Later, Rhines's suggestion on the inhibition of the inverse energy cascade by the 3-effect was

given an important implementation in the theory of geophysical predictability where k, was identified with

the maximum scales which can be attained by the initially small-scale errors (17].

Despite the great effort invested in studies of barotropic vorticity equation, its basic non-linear features

are still poorly understood. Furthermore, enstrophy dissipation is often neglected or, when included in nu-

merical models, is parameterized by ad-hoc eddy- and/or hyper-viscosities. There exist only a few analytical

studies of the flow anisotropization due to differential rotation (see, for instance, [151); this phenomenon has

usually been demoriitrated via numerical experimentation [14, 18].

This paper is aimed to advance our understanding of the analytical properties of the fully non-linear

and dissipative barotropic vorticity equation on the 0-plane. For this purpose, the RNG formalism, recently

developed for purely two-dimensional turbulence [20], will be extended to account for the $-effect. Unlike

the standard quasi-geostrophic approximation, in our approach not only weak non-linearity is not assumed

a priori but, on the contrary, strong non-linear interactions are responsible for renormalization and rescaling

of all flow parameters in the process of small scales elimination.

2. Mathematical Formulation

The basic equation of the present study, the barotropic vorticity equation on the 0-plane, is:

-+ 1(,O+ _ =oV ,(1

ax

where 0 is the stream function, - V 20, is the relative vorticity, 0 describes the differential rotation

(implying that the Coriolis parameter, f, is given by f = f. + fly, y is directed northward and 0 is a

constant), v. is the molecular viscosity rind J(O, () is the Jacobian. This equation can be re-written in the

self-contained form:
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+ ~ - v''ý +,31- (V-1) = Li,'V2C, (2)
at kz ax(9Z~O

where e.6 is the unit antisymmetric tensor and V-' is the inverse Laplacian which renders the problem

non-local. Following L201, Eq. (2) can be Fourier-transformed resulting in

((k) = G'(k)e.6 k. qb ((4)((k - j) d, + (3)
q+ (2w)++'

Here, k (k,11), G*(i) = (inl + iikzk- 2 + ik 2•)- 1 is the bare propagator that includes the 3-effect. and

d = 2 is the dimension of space. The random, zero-mean, white Gaussian stirring force f in the rhs of Eq.

(3) accounts for the steady energy input localized in the vicinity of a wave number k.. This term maintains

a fully developed nondecaying turbulence for the unbounded homogeneous system under consideration and

is equivalent to the stirring force introduced by Yakhot and Orszag [191. As was shown in (201, the effect of

the localized random stirring on the 2-D flow field in the RNG formalism is equivalent to introducing, in the

renormalized equation, of the spatially- and temporarily-distributed forcing with the correlator

< ý(k, fl)ý(kW, n') >= 2D.k -+2(2,r)d+b6(k + k')6(fl + IZ'), (4)

where y and D. are different for k < k. and k > k.. The region k -C k. corresponds to the inverse

energy cascade for which y = 2 and D. o c, Z being the constant energy injection rate; the region k > k.

corresponds to the direct enstrophy cascade with the constant rate 17; in that region D. o 17 and i = 4.

Similarly to the case of purely two.dimensional turbulence [201, Fourier-coefficients of the relative vor-

ticity can be separated into "small scale" and "large scale" modes, (>(k) and (<(k), where 0 < k < A.,

A. being the vorticity analog of the Kolmogorov length scale, i.e., the scale of the viscous dissipation of

enstrophy. Then, the modes from the interval A. - 6A. < k < A. are eliminated; the remaining modes (<(k)

are defined over a reduced domain 0 < k < A. - 6A.. Equation (2), written for (<(k), now contains a new

(subgrid) term accounting for the unresolved scales; its Fourier-transform represents correction to the Green

function defined by Eq. (3) and is the same as given in [201:

6G(k)-_ > = - (k 1 q)2 G(k - 4) IG(4)12 Doq-1+2 d (5)
__ P ( 2 Iq - k12) (21r)+'' (

where f > denotes an integration over the band of wave numbers being removed. Frequency integration is

straightforward; in the limit 11 --* 0 the subgridscale correction to the Green function becomes

f> (1 1_ _ D(q) [k2q2 - (k' q)2 ] d9(q

G(k)-' - k-Iq -- kJ) 2,u(q) [,(q) + p(k - q)] (r)d, (6)

where s(q) = vq 2 + i~q,q- 2 . Considering the limit k --* 0 and retaining only the terms up to O(k2 ), one

calculates corrections to # and v given by 0(k') and O(k 2) terms, respectively. It can be easily seen that in

the process of infra-red renormialization Eq. (6) produces only O(k"), n > 0 terms, which essentially meas

that the 6-term does not renormsalize. Although this result has been implied in all large-scale geophysical
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modeling, it is non-trivial and its mathematical justification has not been widely discussed, Still, the 3-term

renormalization is possible if an ultra-violet (k -. oo) renormalization is considered.

3. Renormalized Viscosity and Energy Spectra

The O(k2 ) terms generate an integro-differential equation for RNG viscosity v(k). This equation can

be re-casted in terms of the non-dimensional parameter M = vk 3/3:

dM(z, o) 3 M + 1 1 1 f 2 " dO F(M, ., ()
dx 9-c x 2 9-e 2r 0  21r M2  ' (7)

where e = 4 + y - d, z D= k-'//33 and

(1 - cos02 0){M 2(1 - 6cos 2 0) + cos( + 0) cos 0[cos o - 2cos(O+ 0) cosO0}
F(M, 0, 0) = M2 + cos2(o + 0) (8)

The renormalized viscosity v(k) given by Eq. (7) is depicted in Fig. 1 in cylindrical surface coordinates.

Figure 1. Renormalized viscosity u(k).

One can see that for relatively large wave vectors, z >> 1, v(k) is isotropic and is growing monotonically as

k-E/ 3 with decreasing k, consistently with the results for purely 2-D turbulence [20]. The anisotropy induced

by the /3-effect develop@ as k -- 0; while v(k) grows sharply for 0 E [r/4, 3r/4) and 4 E [5r/4, 7r/4], it

abruptly decreases to zero along 0 = 0, r. Such a behavior of v(k) causes singularity in Eq. (7) at z : 0.04

thus making its numerical solution impossible at smaller wave numbers.

The relative importance of processes associated with turbulence and Rossby waves can be measured

by the ratio of the respective time scales, the turnover time, _ t (vk 2)-1 , and the Rossby wave period,

rR = (6coso,/k)-:

-,. '6 coo4 _ osou(9
7R - k M(k,,) (9)

A6-4



For -,. -R . :rouience dominates, while in the range r, rR > 1. Rossby waves prevail. Figure 2a shows

-he behavior i ",, f R = coso/Ml(k.a. One 'an see that at large k, this ratio is smaller than I and the ,iow

i, tuirbuience-domrinated. At z < 1. the ratio becomes substantially anisotropic: it remains much smnailer

than I for the directions close to o = ±+r/2 but rapidly increases in the vicinity of o = 0) and ,r. Figure

2b shows only the region where r,.'rR > 1. which is dominated by Rossby waves. One can see that this

region excludes the vicinities of o = =/2 where Rossby waves cannot propagate; the effect of Rossby waves

dramatically increases as k - 0. particularly along o = 0.7r.

tim scls .ai. co ol/k 6) oiain/osoMk )>1

, r i /

Thpessed tre s idcthe sthts thh fied makingE•k (10)

Fiars becoe so- cmpdensa th uossry nanisotro Fic 2. rspectrum E )e casoneside re

The energy spectrum. E(k, 0), can be related to the vorticity correlactor U(i . ) which in turn can be

expressed in terms of the stirring force correlator:

U(kA )E(]•, ) = , • , (10)

U(k€.o) = U(k) =< ((k)c(-k) >= (k (-k))
i,(k)k2  11

Figures 3a~b show compensated energy spectra E(Ir, €I•I and E(k, o~k?/2 , respectively. One can see that

for large k. E(k¢, 0) is isotropic and proportional to k 5-sl. which is characteristic of the energy subrange of

purely 2-D turbulence. As k -- 0, the spectral anisotropy develops: Fig. 3b indicates that E(k., o) • k?-/2 is a

good approximation for o -- 0, ,r. One could speculate that this spectrum is generated by strongly interacting

non-linear Rossby waves. One should note, however, that the k-'1 / spectrum is rather qualitative since it

occupies a very. small range of k and therefore should be taken cautiously.
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Figure 3a. Compensated energy spectrum, E(k)kl'3 . Figure 3b. Compensated energy spectrum. E(k)kl12.

4. Two-Parametric Viscosity and Spectral Energy Transfer

The RNG viscosity given by Eq. (7) characterize- the flow field in the limit k -- 0; it allows to calculate

spectra of energy and enstrophy but does not directly relate to their transfer. To gain a deeper insight into

energy and enstrophy transfer processes. a two-parametric viscosity, L(klk/). should be introduced following

Kraachnan 1211. This quantity is a measure of enstrophy and energy transfer from all subgrid wave numbers

outside of the circle limited by the cut-off wave number k, to the given wave number k, k < ke. The

two-parametric viscosity correctly accounts for the direct enstrophy and inverse energy cascades, it implies

energy and enstrophy conservation and it was shown in [211 to be a powerful tool for description of isotropic

2-D turbulence.

The RNG-ba.,ed. 3-D. spectral energy transfer der.',tion was given in [221. Similar procedure can be

performed for the vorticity equation describing 2-D turbulence (201; it is based on a fixed point solution for

the resolved scales. (<(k) = G,f, G, being the renormalized Green function, and leads to the enstrophy

equation in the second order of e-expansion:

j+ 2&,(kt)k') U(k.t) = T(k,t), 12)

where

T(kt) = ID T(k, p, q, t)dpdq, ,13)

and

r p2 _ q2
T(k.pq) = k -q 2 )sin a P2 qI U(p)U(q) - 2 k q2I [ pqk2q2U

+ k2 - ,2U(p)U(k)] + similar terms. 114)
+k~p 2

I
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Here, a is an angle between the vectors p and q; k, p. q form a triangle, k + p + q = 0, and the integration

domain. D. is defined by Ik - pi < q < k + q. Note that Eq. (12) depends not only on k, but also on its

direction, in anticipation of the anisotropy introduced by the 8-term. Not shown in (14) are the terms that

correspond to the mirror image of the triangle with respect to k.

In the limit t --# 0o, an anisotropic two-parametric viscosity, L'(klk,), is defined by

T( ki kk) 
()

z'(kIkr) = 2k 2 U(k)'

where

T(klkc) = T(k, p, q)dpdq, (16)

and where A denotes integration over all such triangles that p and/or q are greater than k,. For the 3-plane

turbulence, the triad relaxation time, e-k.p.q, in (14) is given by

Vk + Vp + Vq (17)
e-kp~q = ('"-1 +iUp + Vq) 2 + (Ld-k + Wp + Wq) 2

'

where

& _v(k)k2  and W k (18)

Expressions similar to (12-14, 17, 18) were derived in [151 based on a Test Field Model.

It is useful to mention that if M(k)k/k, + M(p)p/p. + M(q)q/q, --* 0, then

e-kp,q --* w6(OWk + Wp + wq),

which corresponds to the results obtained from weak turbulence theory [12, 23, 24]; expression (13) is then

converted into Boltzmann integral of the kinetic theory.

Figure 4 presents ('(kflk) for isotropic 2-D turbulence (6 = 0) calculated using the RNG viscosity (here,

the angular integration has been performed). Similarly to [21], ,v(kjk) in this case has a sharp positive cusp

near k, and becomes negative as k -- 0. Numerical values of the RNG-based v(kltk) are close to those

derived in [21].

r

u 1

"• 0--

0 0.2 0.4 0.6 0.8 1

k/k,

Figure 4. Two-parametric viscosity for isotropic (8 = 0) 2-D turbulence, v(klk,).
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Figure 5a shows an angle-dependent, RNG-baped v(klk,) for isotropic 2-D turbulence (j3 = 0). Obvi-

ously. it is the body of revolution formed by the curve shown in Fig. 4. The isotropy of Fig. Uo is broken in

Fig. 5b. where v(k;lk) is shown for xc - Dok,9-'/$ 3 = 103. For approximately 0.5 < k/k, < 1, the 3-effect

is weak and v(klkc) behaves quite similarly to the purely 2-D turbulence; there is a sharp positive cusp

and then v(klkc) becomes negative. As k -. 0, the effect of the 3-term becomes stronger; v(kik,) remains

negative in the vicinity of o = ±ir/2 but increases in other directions. The negativeness of ,(kikc) along

o = ±r/2 is indicative of the strong inverse energy transfer to these directions which, in physical space,

corresponds to a zonal flow u = u(y). This is an important result demonstrating that zonal flows, typical of

Lne Earth's and planetary circulations [25, 261 can be generated and maintained by the quasi-2-D turbulence

on the $-plane, forced at relatively small scales.

Figure 5a. Two-parametric viscosity for isotropic (6 = 0) 2-D turbulence, z,(klk,).

To single out the mechanism causing v(klkc) to remain negative along 0 = ±-r/2 for small k, which is

the mechanism of zonalization in the physical space, v(klk,) was calculated with the RNG-based vorticity

correlator (11) for isotropic turbulence, such that the #-term was retained only in the relaxation time,

e.-k,pq- Figure 5c shows that v(klk,) in this case has the same general features as the two-parametric

viscosity calculated with the full model, Fig. 5b. Particularly, strong negative values along , = ±ir/2 are

also present in Fig. Sc. This result indicates that the zonalization is rather the result of the O-effect on

e-k,p.q than on the correlator U(k).
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Figure 5b. Two-parametric viscosity i'(kdk,) Z 1

0/

a s

Figure 5c. Two-parametric viscosity v(kik.) with isotropic U(k), z,=8.0.

Finally, let us consider the spectral energy transfer, T.(kjk,) - 2k 2 zv(kjk)E(k). By definition, this

function accounts for the total energy transfer, which may be due to turbulence or non-linear waves. Figure

6 shows T.(kltk) calculated for zx = 10. For relatively large k, the spectral transfer function behaves

similarly to z,(k[k.), Fig. 5b. However, as k --. 0, T,(kjký) develops two negative dips, along 0 = +W/2

and, much stronger, along q$ = 0, r. The former has been identified earlier with the flow zonalization. The
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ýnterpretatiuon oi -he Latter is more subtle. As was shown on Fig. 2b. the region in the vicinity of :he

,lips alonr - = 0..r is strongiy dominated by Rossby waves. Thus. 7,, kk, i is consistent with this resuit

,ilowing that alung with the energy flux into a zonal flow there is also a significant energy flux into zonalvy

propaiatini Rossby waves. The arising structure of the large-scale flow consisting of zonal jets and zonaily

propagating Rossby waves is consistent with results of numerical simulations '14. 18i

Figure 6. Spectral energy transfer, 7.(k~k.), z, -103.

5. Conclusions and Discussion

Renormalization Group theory of turbulence was applied to barotropic vorticity equation on the 4-plane.

In this framework, the complex interaction between 2-D turbulence and Roasby waves was studied from first

principles. It was shown that at relatively small scales, the $-effect is weak and the flow structure resembles

that of purely 2-D turbulence. At large scales, the 4-effect dominates and results in aziisotropization of the

renormalized viscosity and energy spectrum. Consideration of the spectral energy transfer reveals that as

k - 0. the energy is preferably transmitted to zonal flows and zonally propagating Rossby waves. This study

provides the first analytical evidence that zonal flows can be sustained by 2-D turbulence on the 3-plane.

Two problems of the method should be mentioned. First. the forcing introduced in (2) is assumed

isotropic. It is not clear a pnrsr if it indeed is isotropic at large scales where 3-effect is significant. Second, it

was shown that the 3-term does not renormalize in infra-red renormalization. It is possible that the situation

will change in the process of ultra-violet renormalization. Then, the renormalized 3 will characterize the

Rossby frequency shift. Such a shift was discussed in (12. 23, 271 but whether or not it indeed excists is not

clear at the present time. Both problems are difficult and require further investigation.
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ABSTRACT

The differential diffusion of passive scalars of different diffusivities is studied by direct numerical sim-

ulations of statistically stationary isotropic turbulence at low Reynolds number. The statistical correlation

between different scalars is closely linked to that between the gradients of different scalars. At small times the

scalars de-correlate fairly rapidly, at a rate proportional to the square of the diffusivity difference. At large

times the variance of each scalar decays exponentially in time at a slightly different rate, and the correlation

coefficients continue to decrease, but only slowly. The question of whether the scalars ultimately become

mpletely de-correlated (and remain so) requires further investigation.

INTRODUCTION

If two passive scalars of different molecular diffusivities are introduced into a turbulent flow and made

identical-valued at some initial time instant, differing rates of diffusion cause them to subsequently become

displaced and statistically de-correlated from each other. This phenomenon of differential diffusion has impor-

tant effects on the structure of turbulent flames in which multiple diffusing species, including heat, of different

diffusivities are almost always involved.

Most theoretical models of turbulent diffusion flames effectively ignore differential diffusion by assuming

(a) the molecular diffusivities of all species, and of heat, to be equal, and (b) the effects of molecular diffusion

to be negligible compared to turbulent diffusion. Assumption (a) is equivalent to taking the Lewis numbers of

all species to be unity. These assumptions lead to great simplifications. However, Bilger and Dibble I pointed

out that they are questionable at the low and moderate Reynolds numbers often encountered in turbulent

flames. More recently, based on results reported by Chen et aL. , Pope 3 noted that methods based on the

equal-diffusivities assumption could not match experimental data.

As a basic fluid mechanics problem, the mixing of multple scalars is not well understood, perhaps

considerably less so than the mixing of a single scalar. For instance, there is little definite knowledge of

the time scale on which two initially identical scalms de-correlate, and of whether the correlation coefficient

between the two scalas attains a non-zero asymptotic value at large times. These are questions we address
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in the present work

%,e .,der the differential diffusion between three passive scalars (taken in pairs) in numerically

simulated pi ci turbulence. To provide a simplified setting in which to study the scalars, the hydrodynamic

field is kept -tat:sticallv stationary in time using the forcing scheme of Eswaran and Pope ". Direct numerical

simulations are ,arried out using the pseudo-spectral algorithm of Rogallo ' on a 643 grid. The time-averaged

Taylor scale Reynolds number is 38. corresponding to one of the (hydrodynamic) simulations of Yeung and

Pope '. Three initially Gaussian-distributed passive scalars (A, *2 and 03, at Schmidt numbers (SO) 0.25.

0.5 and 1.0 respectively are introduced into the flow and allowed to evolve. High wavenumber spectra of the

scalars are well resolved at these Schmidt numbers. After a transient period the decay of scalar variances

becomes approximately exponential in time, consistent with the results of Eswaran and Pope ;. Subsequently

ol and 02 are made identical to 03 (the scalar with unity Schmidt number). Differential diffusion effects

become important in the ensuing evolution.

Our results show that the correlation coefficient decays rapidly at early times, but more slowly at later

times. The small-time behavior is compared to an approximate analysis of the pure diffusion equation (with

velocity field removed). The difference in diffusivities, rather than the ratios between them, is an important

parameter. At large times the ensemble-averaged correlation coefficients appear to change slowly with no clear

indication of approaching asymptotic values.

In the following sections, we give the basic equations governing differential diffusion, and an overview

of the numerical simulations. Results are then presented for discussion. The path of further investigations is

addressed.

BASIC EQUATIONS

Consider a set of a, passive scalars 01, •,..., • evolving in a field of homogeneous isotropic turbulence.

In the absence of mean scalar pradients, the mean value of each scalar may be taken to be zero without loss

of generality. Then the fluctuation of each scalar 0. (a = , ..... , with no sum over Greek indices) evolves by

the equation
00- + D. 8'0

a9t 0z a',z

where u, = u.(1) is the fluctuating velocity field, and D. is the diffusivity of the scalar 0.. The diffusivity

is constant but (in general) different for each scalar. As ig proceeds, the scalar variance (0.) decays

according to

= / --- -x.,(2)

where X. is the dissipation rate of the scalar •.

In studies of differential diffusion the covariance of two scalars, (0.00), is important. It evolves by

8401 = \X49 3
- (D. + DO) (2) - X8 3

where ;t• denotes the "joint" dissipation. (Unlike X., when a 0 03, X.0 is not necessarily positive.) From

Eqs. 2 and 3 it may be shown that the cross-correlation coefficient between the scalasn . and ,0, i.e.,
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evolves by

"_0. ol* 4','ý k.) -4

Equation 4 may be viewed as a "budget" equation for the two-scalar cross-correlation coefficient. This

equation directly confirms two qualitative expectations. First, consider that the two scalars be made identical

valued at some initial instant to. Since the scalar fluctuations are differentiable in time, a simple Taylor

expansion shows that the correlation coefficient must depart from unity quadratically in time. Consistent

with this fact, Eq. 4 indicates that 8pa~j/ t = 0 at t = to. The second expectation is that if the variances of

both scalars as well as the their covariance decay exponentially with time at the same rate, then their cross-

correlation coefficient does not change. In this case 0,' () and 110.o) are all proportional to exp(-ct),

where c is some positive constant. Substituting the corresponding forms for the dissipations (via Eqs. 2 and

3) in Eq. 4 again leads to a vanishing time derivative for the two-scalar correlation coefficient.

Clearly, the correlation between the gradients of two scalars, through the joint dissipation, plays an

important role. In the results section, we study the dynamics of the correlation between pairs of scalars and

between their gradients with reference to the equations presented above.

OVERVIEW OF SIMULATIONSS
The exact Navier-Stokes equations are solved together with the scalar transport equation (1) numeri-

cally to obtain velocity and scalar fluctuations. This is accomplished by carrying out direct numerical simu-

lations (DNS) of homogeneous isotropic turbulence using the Fourier pseudo-spectral algorithm of Rogallo s

in the form implemented by Yeung and Pope s. The solution domain is a 64' uniform grid with periodic

boundary conditions imposed in three dimensions. The hydrodynamic field is made statistically stationary in

time using the forcing scheme of Eswaran and Pope '. The time-averaged Taylor-scale Reynolds number is

38, with all hydrodynamic statistics corresponding closely to those of the first-listed simulation in Yeung and

Pope '. (In effect, numerical parameters are chosen to obtain different realizations of statistically the same

flow.)

The scalars are introduced first using Gaussian distributed random numbers in conjunction with a

specified wavenumber spectrum. This Gaussian state is unphysical because it implies Gaussian distributed

scalar gradients as well. However, when the scalar is allowed to evolve, after a transient period it attains a

self-similar state, independent of the details of the initial spectrum. Sell-similarity of the scalar is characterized

by approximate exponential decay of variance with time, a Gaussian probability density function (p.d.f.) for

the scalar but not for the gradients, and a collapse of the high-wavenumber scalar spectrum under Kolmogorov

scaling. The case of Sc = 1 is taken as reference, and after it has remained self-similar for a few eddy-turnover

times, two other scalars at Sc = 0.25 and Sc = 0.5 are introduced and made identical-valued to the Sc = 1

scalar. We choose Schmidt number values not exceeding unity so that, like the hydrodynamic field, the scalar

fields remain well-resolved at the small scales. The drawback is that for small Schmidt numbers (say 0.25)
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the scalar P- .'"" quickly becomes dominated by the large scales. This contributes to statistical v'nability

since reiat'- ,- -amples of the large-scale modes exist in the solution domain.

U -.-- i , r,-ed hydrodvnamic field. the scalar fields are not statistically stationary and thus time

averages are not taken. Consequently, each run represents only one realization, and considerable differences

between realizations can be expected. Indeed, the numencal results presented in this paper exhibit sigruficant

statistical variability, especially at long diffusion times. This necessitates performing ensemble averaging over

multiple independent realizations that are statistically identical but different in detail. Different realizations

are created by introducing randomness via the initial conditions, and via the forcing scheme which is based on

a stochastic process. Since each simulation covered as long as 16 eddy-turnover times, the velocity Lad scalar

fields at the beginning and end may be considered statistically independent. Thus, the final conditions for

each run are conveniently taken to be the initial conditions for the next run, with each run then representing a

different realization. We have obtained and processed 11 realizations in this manner. For the forcing scheme,

since only a small number of large scale modes are forced, insufficient sampling of the forced modes leads to

large temporal fluctuations in volume-averaged flow statistics, as previously discussed by Yeung and Pope '.

Differential diffusion occurs when the three scalars of different diffusivities are subsequently aliowed

to evolve together. Results are presented in the next few sections. For convenience, time is measured from

the instant at which the scalars are made identical, and the scalar variances at this time (called indial time

hereafter in this article) are normalized to unity.

RESULTS AND DISCUSSION

In this section. we describe and discuss the temporal evolution of scalar variances, covariances and

cross-correlation coefficients. The behavior at small and large times are separately discussed further. In view

of the statistical variability at (especially) large diffusion times, ensemble averaging is performed over multiple

realizations created in the manner described in the previous section.

Figure I shows the evolution of scalar variances and covariances, which are equal at the initial time at

which the scalar fluctuations are made identical valued. The dissipation of scalar fluctuations by mixing occurs

faster for more strongly diffusing scalars with lower Schmidt numbers. A transient period necessarily occurs

during which the scalars adjust to the different rates of mixing. At large times the data suggest exponential

decay of the variances in time, represented by approximately straight lines of constant slopes on the linear-log

plot. Exponential decay at large times was also observed in forced stationary turbulence by Eswaran and

Pope 7 who used very different initial conditions for the scalars.

True exponential decay of the variance implies a constant decay time scale, defined as the ratio of

variance to dissipation. Eswararn and Pope 7 used only one Schmidt number of 0.7. To compare the decay

time scales of different scalars of different Schmidt numbers among themselves and to that of the velocity field,

we show in Fig. 2 the evolution of the mechanical-to-scalar time scale ratios

" = "(q/))

(Here q'/2 and It) are the mean turbulence kinetic energy and dissipation rate respectively.) Except during
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an initial tra i,;ent p,-riod. the time scale ratio -, oscillates around a value slightly greater than 5, which is

qualitatv•- • .- '. with the results of Eswaran and Pope 7 tin which the definition of scalar dissipation

was half '...f 4.ed .n this paper). However. a slight but systematic dependence of the decay time scale on

Schmidt number can be discerned. Lower 5chmidt number is seen to be associated with a laager mechanical-

to-scalar time scale ratio. and hence a smaller decay time scale and larger decay rate for the scalar vanance.

The transient period observed in Fig. 2 appears to be less than one eddy-turnover time. Concurrent..

the spectra of the two initially-perturbed scalars (5c = 0.25 and 0.5) are found to adjust rapidly to a statis-

tically steady shape under Kolnogorov scaling. Figure 3 shows the scaled stf ady-state spectra for all three

scalars, using the the same scaling as Kerr ". The spectra are well resolved, with small or no turn-up at

the high wavenumber end. The spectral collapse at later times is consistent with self-similar decay of each

scalar. The p.d.f. of each scalar remains near-Gaussian throughout the simulations. We also observe that, as

expected. the spectra of scalars of lower Schmidt numbers have more low wavenumber content.

Figure 4 shows the correlation coefficient between the Sc = 0.25 and Sc = I scalars for 11 diferent

realizations, up to 16 eddy-turnover times. This pair of scalars has the largest diffusivi~y difference among

the three scalars used. The sample mean and standard deviation are also indicated. It may be seen that at

early times (less than one eddy-turnover time) the correlation coefficient decreases fairly rapidly with little

statistical uncertainty. In contrast, the different realizations differ widely at later times. The possibility of

asymptotic values at large times is explored further at the end of this section.

The correlation coefficients of all three pairs of scalars are compared in Fig. 5. Besides the sample

means. 90% confidence intervals for the ensemble averages &re also indicated. (That is, at each given time the

ensemble-averaged correlation coefficient falls inside the marked intervals with 90% probability.) Differential

diffusion between the Sc = 0.25 and Sc = I scalars is clearly much more pronounced than for the other two

pairs. The pairs Sc = 0.25,0.5 and Sc = 0.5, 1.0 share the same diffusivity ratio. However, the correlation

coefficient is consistently lower for the forrner-i.e., the pair with higher diffusivities and larger dlffusivity

differences.

According to Eq. 3, the rate of dce-correlation of scalar fluctuations is tied to the de-correlation of

the gradients of different scalars. Figure 6 shows the evolution of the scalar-gradient correlation coefficients

g.j (defined similarly to p.0) averaged over different realizations and (in view of isotropy) over different

coordinate components. Clearly, the scalar gradients are persistently more strongly de-correlated than the

scalars themselves. Statistical variability, as measured by the size of the confidence intervals, is substantially

less than that for 'Ve scalars. Since the gradients are more closely related to the small scales, this comparison

is consistent with the expectation that the statistical uncertainty arises mainly at the large scales. At large

times the correlation coefficient between the scalar gradients appears to approach a quasi-steady value, or at

least changes very slowly.

Sma4l-time behavior

p At sufficiently small times it is natural to expect differential diffusion to be largely determined by

the small scales (which have the shortest time scales) at which molecular effects are most important. Thus
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an approxinia:- naivsis can be made based on the pure diffusion equation, (Eq. 1 with the advective term

removed

- -- D ' •(5)

Let oý!ik.n be the Fourier transform of the scalar field 6.(I_. t). where k_ is the wave-vector with magnitude

k. The Fourier-space equivalent of Eq. 5 is

co• _D. 200 0  (6)
Ot

which upon integration gives

0.(k,t) = oo(k)exp(-DkVt) , (7)

where the subscript '0' denotes initial conditions which are identical for all scalars. The scalar spectrum is

given by

Ea,(k, t) = (•.') = Eo(k) exp(-2D.k 2 t) , (8)

and so the variance can be expressed as

(.2= JEo(k)exp(-2D.k2t)dk_, (9)

where the integral is taken over all Fourier modes. Similarly, the covariance is given by

(0-0.0) =Jf Eo()expý-(D. -,- Dj)kltld (10)

The correlation coefficient is hence

f Eo(k)e-(. _.DA),'tdk
P~a = {f Eo(k)e-z'D.'dkf Eo(k)e-2D.h'dk-}/2 (11)

By expanding the exponentials, (0.00) can be written in terms of even moments of the initial scalar spectrum:

I, = f Eo(_)k•dk, (12)

where p = 0, 2.4, ..., and 1o is just the initial vazriance.

Consider now times so small that Eq. 11 can be expanded as a binomial series, with higher order terms

neglected. After straightforward algebra, the final result is:

paj(t) = I - i(D 0 - Da) 2rI4/Io - (12/Io)t" - 0(t 4 ) • (13)

The factor 14, Io - (12/1o)2 depends on the shape of the initial scalar spectrum. In general, 14/lo > (13/10)3,

so that paa(t) initially decreases quadratically with time. This analysis also shows that, at least initially, the

rate of de-correlation is proportional to the square of the diffusivity difference. The result (13) is compared

to numerical data in Fig. 7. To accentuate the quadratic behavior, we have plotted 1 - pa(t) versus time on

log-log-scales. Since the early time evolution is a small scale process, time is normalized by the Kolmogorov

time scale (which is 0.136 T, in this flow). The agreement is evidently close at sufficiently small diffusion

times. Also, the range of validity of (13) is longer for lower Schmidt numbers at which the diffusive effects are

stronger compared to the convective effects.
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Th..-- ,-,a'ural interest in whether the scalar and scalar-gradient correlation coefficients approach zero,

representing complete de-correlation, or other asymptotic value at long enough diffusion times. Figures 5 and 6

indicate that asymptotic values, if they do occur, are not yet reached after 16 eddy-turnover times. Withun the

limits of statistical uncertainty, the correlation coefficients show a continuing but slow trend of approximately

linear decrease with time. If the ensemble-averaged joint-scalar correlation coefficients are extrapolated linearly

in time. they would reach zero at nearly 45 eddy-turnover times for the Sc = 0.25 and 1.0 pair. and as long

as 160 eddy-turnover times for the Sc = 0.5 and 1.0 pair.

The question of long-time asymptotic behavior can be addressed further using Eq. 4. The rate of

change of the joint-scalar correlation coefficient is determined by two competing effects. A positive joint-

scalar correlation coefficient tends to reinforce itself, while a positive correlation of the scalar gradients tends

to de-correlate the scalars. The relative magnitudes of these effects are compared in Fig. 8, where they are

seen to nearly balance. The overall rate of change is indeed small--on average, for the Sc = 0.25 and 1.0

scalars, it takes some 5 eddy-turnover times for the correlation coefficient to decrease by 0.1. (For comparison,

according to Fig. 1, in the same time interval the scalar variances decay by a factor of of order at least 103.)

We earlier remarked that if the scalar variances and covariances all decay at the same rate, the corre-

lation coefficients would become constant. However, the decay time scales are seen in Fig. 2 to be different

for each scalar. Considering also the trends observed in Fig. 5 and 6, it seems more likely that, on average,

the correlation coefficients would continue to decrease. Nevertheless, this statement needs to be tested by

further numerical simulations over extended periods of time. We may note that if the scalars and their gradi-

ents become perfectly uncorrelated at some time, then Eq. 4 indicates that the correlation coefficients would

pass through another inflection point at which the first-order time derivative OPaB/ot vanishes. Additional

interesting deductions may be drawn from Eq. 4, but will be reported elsewhere.

CONCLUSIONS AND FURTHER WORK

We have studied the differential diffusion of passive scalars with different diffusivities, a problem es-

pecially important in turbulent combustion, in the case of statistically stationary isotropic turbulence. The

dimensionless parameters are a Taylor-scale Reynolds number of 38, and Schmidt numbers of 0.25, 0.5 and

1.0.

It is shown that each scalar attains a self-similar state and decays exponentially in time with a slightly

different decay time scale. The scalars are initially identical but subsequently de-correlate due to differential

diffusion. At small diffusion times the joint-scalar correlation coefficient departs from unity quadratically in

time, proportionally to the square of the diffusivity difference, and to a parameter describing the shape of the

scalar spectrum.

At large diffusion times the data show considerable statistical variability among different realizations.

The ensemble-averaged correlation coefficients between different scalars and between the gadients of different

scalars appear to decrease slowly up to 16 eddy-turnover times and beyond. A definitive answer to the question
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of long-time &ýnyptotic behavior awaits further investigations. 0
Thi A rxK w-.U be extended in several directions. The numerical simulations will be extended to cover

longer nirf,•.. .r -ime_. Whereas this paper is largely based on statistical analysis in physical space, useful

insights may adso be gained using Fourier-space descriptions and three-dimensional visualization. The effects

of Reynolds number. and of different types of initial conditions are also to be studied.
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Fig. 3. Three-dimensional scalar spectra (E4(k)) Fig. 4. Evolution of the correlation coefficients be-
in the self-similar period of decay, shown in Kol- tween the Sc = 0.25 (01) and Sc = I (0s) scalas
mogorov scaling (Y is the kinematic viscosity, and q shown in normalized time. Each solid line repre-
is the Kolmogorov length scale). Schmidt numbers sent& a diferent realization. The dashed line repre-
are: 0.25 (L), 0.5 (0) and 1.0 (0). seats the average over all (11) realizations, and the

vertical bars indicate one standard deviation above
and below the mean.
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correlation coefficients at very small diffusion times latios coefficient (un-marked solid line) between the
(normalized by the Kolmogorov time scale r,) with Sc = 0.25 (01) and 1.0 (03) scalars into three terms
prediction from analysis of the diffusion equation according to Eq. 4: -( 41)(3)XIs (6), 1 (00)0,) _(3

(Eq. 13). The scalar pairs are: Sc = (0.25,0.5) (L), (0), and )(i)(4)xi (0), all normalized by
Sc = (0.25, 1.0) (0), and Sc = (0.5,1.0) (0).
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ABSTRACT Investigations of mixing in homogeneous turbulence us-
The linear eddy mixing model is used to predict the ing direct numerical simulation have provided an extensive

evolution of a decaying scalar field in statistically steady data set on the evolution of the scalar field statistics.3 
'

homogeneous turbulent flow over a wide range of Reynolds These studies have involved the use of a pseudo-spectral
and Schmidt numbers. Model results at low Reynolds num- scheme to simulate the evolution of the scalar field on a
ber and order unity Schmidt number are shown to be in 643 grid with periodic boundary conditions. Owing to the
good overall agreement with direct numerical simulations. extreme range of length scales in turbulent reacting flows,
Results at higher Schmidt and Reynolds numbers repro- resolution of all relevant length scales is computationally
duce conventional scaling properties of the scalar statistics. demanding. Complete resolution of the dynamic range of
Predictions of Schmidt number and Reynolds number sensi- length and time scales was achieved by restricting the sim-
tivity of the evolution of the scalar concentration probability ulations to low-Reynolds number (Re.% % 50, or Re, = 100)
density function are presented and interpreted, and order unity Schmidt number. Sc. Since all relevant

1. INTRODUCTION length scales were resolved and highly accurate numerical
methods were employed, the statistics computed can beThe decay of a scanar field in a homogeneous turbulent confidently treated as predictions of the scalar field behav-

flow has emerged as a standasd test problem for models of ior under the condition of low Re, homogeneous flow in a
mixing in turbulent flow fields. Two broad classes of models periodic domain.
are commonly considered. The classical treatment of tur- Eswaran and Pope" investigated the evolution of the
bulent flows is based on a decomposition of the dependent scalar field pdf and the effects of various initial scalar
variables into mean and fluctuating components (Reynolds length scales on the scalar field statistics. Their initial
decomposition). Solutions for the mean values are sought, scalar field consisted of blobs of scalar concentration of -1
with scalar transport modeled by assuming gradient dif- and + I, with some smoothing to ensure that the scalar field
fusion. Turbulent transport is handled by introducing an was resolved numerically. The computational domain was
effective diffuaivity that is determined by flow field con- a three-dimensional box, and the velocity field was numeri-
ditions. Other approaches are based on solving for the cady 'forced' to maintain a statistically steady state. The
probability density function (pdf) of the scalar field. If initial velocity to scala: length scale ratio was shown to havethe one-point pdf is known, moments and other one-point a large effect on the initial rate of scalar variance decay, but
statistical information on the scalar field can be obtained, the decay rate eventually became independent of the ini-
However, evolution equations for the single point pdf re- tial scalar length scale ratio. This observation differed from
quire information on the joint statistics of the scalar and its the experimental results of Washaft and Lumley,s which
dissipation rate. Several models have been developed in an showed a lasting dependence of the scalar variance decay on
attempt to describe the mixing process, 2 These models do the initial scalar length scale. It was suggested by Eswaran
not fully capture the underlying physical mechanisms, and and Pope that the difference between the experiments and
none of them satisfactorily predict the scalar variance decay simulation was a physical consequence of the adoption of
in a homogeneous turbulent flow fied a statistically steady velocity field in the simulation, in

The problems associated with modeling molecular mix- contrast to a decaying turbulence field in the experiments.
ing and chemical reaction can, in part, be traced to the dif- This interpretation is supported by a recent DNS study of a
ficulty of realistically describing and resolving the physical similar configuration involving a decaying turbulence field.'
processes of turbulent convection (stirring) and molecular McMurtry and Givi3 studied a configuration similar to
diusion at the smallest scales of the flow - two distinctly Eswaran and Pope using direct simulation. The velocity
different physical processes. Turbulent stirring is effective field was forced at the lowest wave numbers, and the initial
at redistributing the scala: field at all length scales above scalar field 0, consisted of two slabs, one with 0 = 1,
the Kolmogorov scale, while molecular diffusion acts most the other with 0 = -1. In addition to pure mixing.
effectively at the smallest sca length scales of the Bow. they also investigated the evolution of the statistics of a
An accurate description of mixing thus requires a realis- reacting scalar. The primary objective of this work was to
tic treatment of the Blow at the smallest hydrodynamic and assess a number of mixing models', 2 '. and study the effect
scala: length scales. Most mixing models involve an ad-hoc of reaction on the scalar statistics. None of the models
treatment of the small-scale processes that include no dig- investigated predicted the correct behavior for the scalar
tinction between turbulent stirring and molecular diffusion. pdf. It was shown that the reacting scalar did not tend

toward a Gaunssian distribution.
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For a puss-ý scalar. the question of the asymptotic and Do fDamk6hler numberi, but the underlying klne.
form of the i-.,aar pdf an steady, homogeneous turbulence matic picture is the same in all cases On this basis, the
has been aa,--sse. .n a number of recent modeling studies, model reproduces the following measured properties: 1 1,
as well as "• DS studies. Using DNS. Eswaran and three distinct scaling regimes governing turbulent plume
Pope fou.,,a :nat the shape of the scalar pdf as it evolved growth. and spatially resolved scalar fluctuation statistics
in time was not sensitive to the initial length scale ratio, within such plumes,:" "s 12) the spatially resolved cross.
and it evolved from the initial bimodal form towards a correlation of diffusive scalars in a three-stream miLng
Gaussian. Valiflo and Dopazo' obtained a family of pdfs configuration.s 63) Da dependences of reactant concentra-
in good agreement with the DNS results using a model tions in a two-stream configuration.' (4) spatially resolved
that. by construction, yielded a Gaussian pdf in the limit of scalar fluctuation statistics in free shear flows. and the de-
vanishing variance. Mapping closure' generates a family of pendence of local and overall shear-flow muting on Re and
pdf's that is also in good agreement with DNS,°.ioi yet the Sc,"i-i and (5) scalar fluctuation statistics reflecting dif-
scalar statistics display persisting non-Gaussian behavior as ferential molecular diffusion effectsat• The unification of this
the scalar variance vanishes.11"" Another model indicating diverse phenomenology acieved by linear eddy modeling is
non-Gaussian behavior has also been developed.13  unprecedented.

Interpretation of these results is hindered by the narrow A category of mixing configurations to which the model
range of Re and Sc accessible by DNS and by the insen- has not previously been applied is spatially homogeneous.
sitivity of predicted families of pdfs to these parameters. transient mixing. Spatial homogeneity facilitates the inter-
(In the aforementioned models, these parameters influence pretation of results in terms of simple scaling ideas, while
the rate of evolution but not the family of pdfs that is oh- transient effects introduce some of the phenomenological
tained.) A complete mechanistic description of turbulent richness of spatially developing flows. It is largely for these
mixing, with regard to pdf shape evolution or any other reasons that the DNS study of such a configuration by
measurable property, should reflect the sensitivity of the Eswaran and Pope4 has come to be regarded as a paradigm
mixing process to all the governing parameters. On this of the turbulent mixing problem and has motivated many
basis, it is evident that the analytical and computational subsequent numerical and analytical studies.
methods employed to date have not provided a complete The objectives of the present study are twofold. First.
characterization of the mixing process. linear eddy computations, based on a formulation that

In this paper Kersteins" 1.1 linear eddy model is used incorporates high-Re inertial-range scalings. are compared
to study the evolution of a scalar field in a steady, homoge. to the results of Eswaran and Pope in order to demonstrate
neous turbulent flow field over a wide range of Reynolds and the applicability of such a picture to their moderate- Re
Schmidt numbers. One of the features %hat distinguishes the results. Second, computations are performed beyond the
linear eddy model from other more commonly-used mixing limited range of Re and Sc accessible by DNS in order to
models (e.g., eddy diffusivity, coalescence-diaspersion mod- extrapolate the DNS results to other regimes of physical
els, mapping closure) is that all relevant length sales, even interest. Re and Sc dependences of computed quantities
for relatively high-Re flows, are resolved. This is achieved are found to be consistent with simple scalings based on
by reducing the description of the scala field to one spatial dimensional considerations, where such considerations are
dimension. By resolving all length scales, the mechanisms of applicable. Novel qualitative features of the evolution
turbulent convection and moleculaW diffusion can be treated of the concentration probability density function (pdf) for
distinctly, even at the smallest diffusion scale.. Parametric high Sc are identified. Higher moments of the concentration
sensitivities can therefore be addressed on the basis of the field are found to relax to values that exhibit Sc- and Re-
underlying physical mechanisms, dependent deviations from Gaussian values. These features,

In previous work, the linear eddy model has been ap- which are shown to be intuitively reasonable, constitute
plied to mixing in spatially developing flows and to a homo- -experimentally testable predictions.
geneous, statistically steady mixing configuration. These
applications served both to validate aspects of the model 2. LINEAr EDDY MODELand to provide mechanistic interpretations of measured The development of the linear eddy model has been
properties in a unifying framework, described in detail elsewhere,'"" and is only briefly out-

A statistically steady configuration can be obtained by lined here. This approach has a number of unique features
imposing a unicrm scady gradcent on a homogeneous tur- that distinguish it from other more commonly used mix-
bulent flow field, resultin in relaxnion of the mean scaitr ing models (e.g., eddy diffusivity and coalescence-dispersion
variance to a codmtaut nonzero value after a transient in- models). In paticular, the distinction between molecular
terval. Computatons for this configuration reproduced diffusion and turbulent convection is retained at all scales
key feature. of the scatar power spectrum, induding de- of the flow in a computationally affordable simulation bypendfencures of theynolsand porsch trumbr, andscaluing d reducing the description of the scalar field to one spatial
pendences of Reynolds and Schm dt numbers, and scaling dimension. Diffusion and convection have very differentproperties of higher-order scalar statistics, thus validating effects on "aa field evolution; accounting for these dif-
the model representation of micromixing kinematics."s fects is sealat aceudael y dcribe th eseld.

The applications to spatially developing flows coil ferences is crucial to accurately describe the species field.
tively demonstrate that the diverse phenomenology oh- especially when chemical reactions are involved. This dis-
served in such flows may be viewed as various manifesta- tinction has not been achieved by any previously proposed
tions of a simple underlying kinematic picture. In such mixn model.

a reflected n Velocity field statistics are inputs into the model, al-applications, configu~ration-specific aspects as relctdi though no explicit velocity field appears. The required

the initial and boundary conditions of the computations

and in the model analogs of quantities such as Re, Sc, model parameters that describe the flow field include the
turbulent diffusilvity (D7.), the integral length scale (L),
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and the Reynolds number, Re (which determines the Kol-
mogorov scale. - Thus. the low field properties are inputs
to the linear ed&. model, not predictions of the model. The 1.0
formulation of :he model presented here is reparameter-
ized in terms of L. Re. and %t, where r. is the large eddy -
turnover time in the model and is defined as rL z Vl/Dr. 0.5

The first mechanism acting on the scalar field. molec-
iular diffusion, is simply implemented by the numerical
solution of the diffusion equation, 19 = Dm*4. over the 4W 0.0
linear domain. at

The key feature of the model is the manner in which 0
turbulent convection is treated. This is implemented by
random rearrangements of the scalar field along a line.
The frequency of these rearrangements is determined by -1. -
requiring that the stochastic rearrangement events result in .0

a turbulent diffusivity consistent with accepted scalings for 0 1 2 3 4 S 6
hgh- Re turbulent flows. Each rearrangement event involves I
spatial redistribution of the species field within a randomly rigure 2: Typical ,esisazio -- of ike is al scala t laid on the isear

selected spatial domain. The size of the selected domain. Figure 2: Tpc t 0/s0 = ti - - f on = 4e

representing the eddy size, is sampled from a distribution of domain (0. 211. (- he11o a 1. - - - k./ho = 4).

eddy sizes that is obtained by applying Kolmogorov scaling Given an initial scalar distribution, the evolution of the
laws. In this model, the spatial redistribution of a segment scalar field is governed by the molecular diffusion process,
of length I represents the action of an eddy of size i. A punctuated by the random rearrangement events param-
rearrangement event is illustrated and described in Fig. i. eterized by f(l) and A. This formulation provides an

approximate, yet physically sound description of turbulent
mixing. Namely, molecular diffusion is accounted for explic-
itly by numerical solution of the diffusion equation, while
turbulent stirring (convection) is modeled by the stochas-
tic scalar rearrangement events. By limiting application to
one dimension, all relevant length and time scales can be
resolved.

The scalar information within the linear eddy domain
provides a statistical description of the scalar field. The one-
dimensional representation of the three-dimensional scalar

Figure 1: The scala, rearrasgemeat (tarbalest stirring) proem is field can be interpreted as a space curve aligned with the
carried oat by the an of the Itnipkes map. The triplet map involves local scalr gradient.'s This interpretation is not unique.
selecting a segment of the linHe domain for rearrsagemaet, making and it can be instructive in other cases to view the linear
three compremed copies of the scala, lad in tha segment, replacing eddy domain as a particular spatial coordinate in the flow
the original fied by the three copies, sad inverting the ceont copy. field. 1

a) Initial scalar fiel. chosen in th ilsutratioa to be a Hna fuction
of spatial location. b) Scanao Said sfter rearraSgment. 3. APPLICATION TO SCALAR MIXING

IN A HOMOGENEOUS TURBULENT
The rearrangement process is governed by two parame- FLOW

ters: A, which is a rate parameter with dimensions [L-r t -F]o
and f(I), a pdf describing the segment length distribution. 3.1 " n

Ths p rnear ed y model s •pplied here to mixing of aThese parameters are determined by recofnizin that the scalair field, #, in a homogeneous turbulent flow field. (The
rearrangement events induce airand walkdof aimarker analogous physical configuration is a three dimensional flow
partile on pthel domain. Equating the ditr uslivity of field with periodic boundary conditions in a box of size
the random proeme with scarinsl for tho turbulent d Affu- B in each spatial dimension.) Within this domain the
sivity provides tae h miusaR y relantionhids to determine A scalar field is initially distributed in blobs of concentration
and (L). For a s igh-Re turbulent o ow described by a Kol- -1 and 1, with smooth transition layers at the interfaces.
mogorov cascade, the result of Keratesnt 5 can be e The transition layers are necessary to satisfy numerical
as resottion requiremets in direct numerical simulations.

I roll The numerical specification of this scalar field for a three-
1(1) = , " <rIr<L; ( dimensional DNS study is described by Eswaran and Pope.'o otieris~e In particular, the initial length scale of the scalar field is

4 1 ()11/ 3  
generated in a manner such that the initial scalar-energy

A = -- 1-,- ) (2) spectrum is equal to a specified function, f,(k), where
5 rL r7 fe(k) is a top-hat function of width k0, centered on a

where the model turnover time TL is related to a particular selected integer wavenumber k.; (ko is the smallest nonzero
empirically defined turnover time ri. by a constant factor, wavenumber resolved in the simulation). The ratio k,/k 0
O = cri. (see 13.3). Equation (1) defines model Kolmogorov thus determines the integral length scale of the scalar field,
and integral scales q and L, respectively, that bound the 0. In the linear eddy model results presented here, the
range of segment lengths. one-dimensional analog of this initialization is applied to a
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RIes a 90 lad Scs = 0.7. companed with DNS of Eswas uad W Fig. 3.
Pope (- -- Eavaraa mad Pope (1958), - linear eddy mumnlaon). the scalar field statistics were averaged over 1000 sepa-
(+. k,/ko 1 I). (e. k.lho = 2), (*, k./ho = 4), (a. k./ho - 6). rate realizations (except the Res = 10.000 case in which
(4-. he/ho 8 5). Time is soemalised by r". a lo300 realizations were taken), yielding sufilcient statistical

linear domain of B = 2r. For comparison with the results of precision for quantitative comparison to DNS results.
Eswaran and Pope, various initial scalar fields with different 3 Model Parameters
scalar length scales were constructed by varying the ratio The early applications of the linear eddy model involved
k,/k 0 . All additional parameters of the initialization areas specified by E~awaran and Pope. The one-dimensional no parameter adjustments. The model is built upon scaling
implemifientation of their indtiaizaion. poe-du genenat laws for high Re flows, and order unity coefficients implicitimplementation of their initialization procedure lgenera~tu ntesasnlto hl eesteuit n.Hwvr

non-random scalar fields, but they are soon randomized by in the sale relaships were set equal to one. However,

the spatial rearrangement events (eddy action). Figure 2 some parameter adjustments must be done to achieve direct

il1ustrates two of the different initial one-dimensional scalar quantitative comparisons. In particular, the model analogs

fields that were used in this modeling study. of Se, Re, and L must be related to their physical (D.NS)
counterparts.

3.2 Algorithm and Implementation The large-scale Reynolds number inthe DNS of Eswaren
The total number of computational elements along the and Pope was calculated to be Re,. a u'Lo/v = 107. The

domain must be chosen to resolve the lrge t and smallest linear eddy analog of Re#. is Res a ( L/17) 413 . where L is the
scales in the flow. The computational domain was selected integral scale of the model. Based on this definition, the
to include one integral scale, i.e, B = L. From Kolmogorov model Reynolds number Res was selected to give approxi-
scalings, the ratio of the largest to smallest length scales mately the same range of eddy size. as in the DNS. This was
in the flow is approximately L/lj = Re3/4. For Re = 104, achieved as follows: The DNS used here to compare model
this ratio is 1000. By taking six computational elements to results contained a wave number ratio of k../ko = 30.
resolve the eddies at the Kolimogorov scale (i.e., rie = 6), where k,. and k0 are the largest and smallest nonzero
6000 elements are needed to resolve the complete flow wavenumbers in the simulation. Applying an eddy size -
field for Re = 104. Scalar field resolution requirements wavenumber an ao 30 yields an equivalent length scale ra-
can be more stringent. The Batchelor scl, I., which tio, --- ; be k".../ko = 30. resulting in a
must be resolved, is smaller than the Kolmogorov Kale in model Reynolds number Res = 90. NOTE: The nominal
high-Sc flows. Scaling arguments yield qu/l. - Sc'1e. A Kolmogorov scale quoted by Eswaran and Pope is not nec.
numerical sensitivity analysis indicated that approximately essarily the stualest resolvable eddy in their flow. but is
twice this number of rid points (2Sc'i' x Pie) is needed per the scal that gtisfies q = (u'/c)1/4 , which in their simu-
Kolmogorov scale bWfore multi-point statistics (e.g., scalar lation corresponds to roughly 1/3 of the grid spacing. The
dissipation) become insesitive to resolution. Schmidt number of the model Scs is taken to be Scs = 0.7,

The molecular diffusion process is implemented by ref- equal to the physical Schmidt number.
ularly advancing the one-dimensional diffusion equation The final consideration is the relationship between the
using a space-centered finite difference technique. To im- integral scale defined in the model, L and the measured
plement each rearrangement event. a location is randomly integral Kale in the DNS. to. The two are not equivalent
selected within the domain. The segment size is also ran- since L is defined as the largest allowable eddy for a given
domly chosen, but in such a way as to satisfy the probability flow, while 10 represents a "typical" eddy size. As pointed
distribution given by f(t). One rearrangement takes place out by Kerstein,14 the relationship between L and 1t is not
per time interval /-. The process is repeated until a desired universal since the definition of 1n for different flows is not
time has elapsed. always consistent. The value of L in the model is taken as

The complete model is implemented as a Monte Carlo the domain size, L = 2r. The data of Eswaran and Pope
simulation of many individual flow field realizations. The yield 4o = 1.01, giving L = 6.2210. This is close to the value
statistics are then computed by averaging the ensemble of of L = 5.61s found by Kersteins in simulating the
realizations. For each of the simulations presented below,

A9-4



concentration field downstream of a ine source in decaying
homogeneous turbulence. With these model parameters
determined, all computed statistical properties of the scalar

2.0 field are predictions that can be compared directly with the
simulation results.

To perform direct quantitative comparisons, the large
1.5 eddy turnover time of the linear eddy model rL - LV/Dr.

± ,must be related to the large eddy turnover time in the
1.0 • iDNS. ri. "=_ o/u'. This was done by inferring the relation-

ship between rt. and Dr- from the data reported in Eswaran

and Pope. The chosen linear eddy model parameters im-

0.5 ply a turbulent diffusivity based on the model definition• "'"Dr/DN = ResScs = 63. The given molecular difusivity

used in the DNS (Dw = 0.035) then implies a turbulent
0.0 . .t, ,•, diffusivity Dr = 2.205. From the reported values of u' and

-2 -1 0 1 2 10 by Eswaran and Pope. a relationship for the turbulent

* diffusivity of the DNS can be expressed as DT = 0.82u'13 .
The time scale ratio between the linear eddy model and

Figure 3a Computed scl pdf fom "eat eddy model for the DNS for the runs reported in the following is thus
Rs = 90 sad Scs = 0.7, ,./ko = 1. (solid Us*. *'/e, = 0.89), TL/ri. = L'/(0.824o2 ) - 47. In all model/DNS compari-
(dota. e'/*• = 0.72), (dash, e'/@:. - 0.63), (losg dah. .'/e,• = 0.47),(dlot-sh, #/o. 0.34). (dason reported in J4.1 the time axis is scaled by ri.. For the
(dot-dah, /, 0.34) Schmidt and Reynolds number effects reported in 14.2. time

is scaled by the linear eddy turnover time. rL.
In addition to the comparisons presented in 14 on the

basis of the foregoing parameter assignments, additional
1.S comparisons have been performed in which different com-

binations of input parameters were varied by a factor of
two or more. The quality of the agreement with simula-

41- 1.0 tion results was found to be only mildly sensitive to input
/ 1parameter values, so the inferences drawn in J4 are not

"- -- strongly dependent on the mechanistic basis of the param-
eter assignments.

0.S With regard to direct quantitative comparisons, it is
noted that the parameters defining the linear eddy model
'see Eqs. 1 and 2) are developed based on Kolmogorov in-

0.0 , t.• . t , -; r,•,, ,ertial range scalings, while the direct simulations that have

- -1 0 1 2 been performed of scalar mixing to date display only a
barely perceptible inertial range. As a result, the distribu-

* tion of eddy sizes and frequencies in the linear eddy model
Figure 5b: Computed scalar pdf from DNS of Eewssa sand Pope and in the direct simulations cannot be made to match ex-
for k./ko = 1; (solid line, *'/*. = 0.9). (dots, -'/* 0.73), actly. This can contribute to differences between model
(short dash. e'/*j' 0.55). (log dash, '/0• 0.40), (dot-h,, results and DNS data. Furthermore. it is expected that

0.27). there will be some inherent limitations when describing the

full three-dimensional turbulent mixing process in one di-
maension. However, previous results and the comparisons

1.5 that follow demonstrate the ability of the linear eddy model
to realistically represent the turbulent mixing process.

4. MODEL RESULTS

1.0 Validation of the linear eddy model in the configuration
studied here was achieved by direct comparison to low- Re
DNS. The model was then applied to study the mixing
characteristics over a wide range of Reynolds and Schmidt

0.5 numbers.
. . 4.1 Comparison with Direct Numerical Simulation

The decay of the scalar rms O for various initial scalar
0.0 _.......____ .length scm is compared to DNS results in Fig. 3. The

-2 -1 0 1 2 overall agreement is good, with better agreement seen in
the cam with the larger initial scalar length scale. Both

* linear eddy and DNS indicate that in the final state of scalar
Figure Scz Computed scalar pdf from Linesa eddy model for siame vaiance decay, the decay rate becomes independent of the
cas as (a) except k,/ho = 4. (solid Uise, '/* = 0.93), (dote, initial scalar length scale. It was suggested by Eswaran

0'14 = 0.78), (dasb, 0'/1. = 0.7o), (leg dash. 0'/,," = 0.63), and Pope, and shown numerically by Mell el al.,' that this
(dot-dash, 0 o.4o) independence of the initial scalar length scale
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miUxng and molecular diffusion yield a mixed fluid concen-
tration peaking at o = 0. Figure 5b shows the development

2.0 of the pdf as predicted by the DNS of Eswaran and Pope

for the same value of k./ka. The family of pdfs evolving
from the double delta function distribution to the final pea6k

is . jat the mixed fluid concentration is well represented by the
linear eddy model. In particular. the transition from a bi-
modal to unimodal form is found to involve an intermediate

"1.0 form t(t o'/ol % 0.6) with a broad plateau. as in the DNS
II I results.

' The evolution of the concentration pdf for k,/k, =4
0.5 I is shown in Fig. 5c. For this initialization the pdf displays

some qualitative differences during its evolution from the
L . .case of klko = 1. Namely, there is an indication of

0.0 trimodality during intermediate stages of the evolution.
.2 .1 0 1 2 Some differences in the pdf evolution for different values

of k,/ko are also apparent in the higher order moments
(Figs. 7 and 8), as will be discussed shortly. This behavior

Figure 4a: Computed scalar pdf with initial sc5aiar feld given was not observed by Eswaran and Pope, who found little
by double delta distribatia (so trmaaatiao region) (o Res = 90 dependence of the pdfevolution on k,/ko.
and cs, = 0.7. Linear eddy model reults one period, (solid line, To further investigate the dependence of the pdf on the

='/e• - 0.6"). (dots, '/e. = 0.58), (small duh, 5'/5• = 0.43), (long scalar field initialization, two additional simulations were
d sh. *'/I" = 0.32) run with an initial scalar field consisting of discrete regions

1.6 of +1 and -1, with a sharp transition between these values.
(The initial scalar field pdf in this case is a pure double delta

1.4 distribution.) Results of this are shown in Fig. 6 for initial

1 scalar fields consisting of one period and four periods of
, the -1.+1 regions. respectively (corresponding to the scalar... 1.0 length scales of the cases k,/ko = I and 4). Under this

0. 8 .initialization the two families of pdfs that are obtained are

"0 • -essentially the same.
eQ 0.6 The lUnear-eddy results indicate the joint influence of

V .,.,, two scalar length scales: the scalar integral scale governed
0.4 by k0, and the transition layer width governed by a cutoff
0.2 wavenumber k. in the initialization algorithm. As in the

0 . DNS study, the ratio k./k, has been set equal to 2, except
00-2 -1 0 1 2 for the double-delta case (Fig. 6), which corresponds, in

effect, to infinite k,. The linear-eddy results indicate that
* the occurrence of a trimodal intermediate sLage of pdf

Figure 6b: Computed scalar pdf with initi scalar field givea by evolution exhibits a dependence on the magnitude of k.
double delta distnbutioa (so tra"tWios rNgoa) 1n, ReS = 90 sad such that large k. favor trimodality.

Sc$ - 0.7. Linear eddy model results t piWios, (solid fai. Trimodal pdf's indicate intermittency in the scalar field

='/* s 0.68). (dote, *'/*t - 0.61), (mall dub, *'/.# = 0.43), (bag in the following sense. Sharp scalar interfaces are subject

dash. e'/ - 0.34). to rapid stirring by small eddies acting on relatively short
time scales. This results in completion of local mixing

is a characteristic of scala: decay in a statistically steady near interfaces (and hence, development of the central peak
turbulent flow. In deaying turbulence this is not observed, of the pdf) before large-scale mixing depletes the initial

Based on the intepretation of the linear eddy compu- unmixed peaks. It is evident that the degree of sensitivity
tational domain a space curve aligned with the scalar indicated by the linear-eddy results is not supported by
gradient, the model analog of the mean scalar dissipation, DNS. Nevertheless, the mechanistic plausibility of the trend
defined by Eswarum and Pope as (i,) a Dm(Vo . VO), suggests that a wider-ranging DNS parameter study to
is Dsv((89/a8z)2). This quantity is computed by first- check the qualitative prediction would be worthwhile.
differencing the discretized one-dimensional scalar field. Related considerations bearing on the Sc sensitivity of
The evolution of the mean scalar dissipation is shown in pdf evolution are discussed in 14.
Fig. 4. The agreement with the DNS data is again good. To analyze the structure of the pdf in more detail, it is
The largest discrepancy is seen to occur at early times, instructive to examine some of the higher.order moments of
where the dissipation computed by the linear eddy model the concentration field. In Figs. 7 and 8 the standardized
consistently grows at a faster rate than in the DNS. At fourth and sixth moments are presented. Two significant
later times the dissipation decays at a rate which is approx- features can be pointed out. First, the asymptotic values of
imately independent of the initial scalar length scale. these moments relax to a constant value that is independent

The evolution of the concentration pdf for k,/ko = I is of the initial scalar length scale. However, the manner in
shown in Fig. 5a. At t = 0 the initial field is approximately which the curves approach the final value is seen to depend
represented by a double delta distribution, indicating the on the initial state of the scalar field. At early times. the
initially unmixed scalar field. As time proceeds, turbulent simulations initialized with the smaller scalar length scales
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in Figs. 7-9 may reflect the use of high-Re scalings in a
30 moderate-Re application. High-Re scaling may result in a

larger contribution of the small scales to the mixing process
25 j \• than occurs in a low-Re DNS. This is consistent with the

differences observed in the decay of the scalar rms at smaller
A 20 initial scalar length scales and in the initial development

of the scalar dissipation for all cases. On the other hand.is1 the differences between the linear eddy results and the
DNS may reflect a fundamental limitation of the linear

10 eddy model with respect to its representation of mixing
kinematics. This issue can be resolved on the basis of DNS

S and/or laboratory experiments at higher Re.
In general, the linear eddy model is found to accurately

0 1 2 3 4 represent important features of the turbulent mixing pro-
cess. The agreement is particularly remarkable considering

t/T 10 that the scaling laws upon which the model is built are
Figure 8: Evolution of supetakeurns (normalized 6ti moment) from based on high-Re turbulent flows, and the DNS results have
linear eddy model for same cam an Fig. 7. been obtained for relatively low-Re flows.

show a rapid increase in their higher order moments before 4.2 Reynolds and Schmidt Number Sensitivities
relaxing to their final state. In the case presented here, the Owing to the severe computational requirements of
final values of the fourth and sixth moment are somewhat DNS, previous DNS of turbulent mixing has necessarily
less than the corresponding Gaussian values of 3 and 15. It been limited in the range of Re and Sc that could be
was indicated both by Eswaran and Pope4 and McMurtry treated. The effects of Re and Sc on the overall mixing
and Givis in their DNS studies that the pdf apparently process have not as yet been quantified. However. with the
tended towards Gaussian in the limit as the scalar variance computationally economical one-dimensional formulation of
became small. However, more recent analytical work" the linear eddy model, a much wider range of length scales
and simulations"3 suggest that non-Gaussian behavior may can be treated, allowing parametric Re and Sc studies. In
persist throughout the mixing process. Further discussion the simulation results that follow. results are parameterized
of this matter is deferred to 14.2a. by Res and Scs, whose relation to the physical quantities

The dependence of c, on # can be examined by com- Re and Sc is discussed in 13. The initial scalar fields for
puting the correlation function p a (•2e,)/((42)(e,)) - 1. all simulations that follow were initialized with a value of
Comparson of this quantity with the DNS results is shown k./4 = I unless otherwise noted.
in Fig. 9. Quantitative and qualitative differences are appar- 4.2a Schmidt Number Dependence
ent. For the conditions considered (Scs = 0.7, Res = 90), The linear eddy model was used to perform simulations
the model predicts that p converges to a nonzero value, spanning a range of Se = 0.1 - 1000 for Res = 90. The
while DNS indicates eventual convergence to a different low-Re cae was selected for Se comparisons as resolution
value. The linear eddy result indicates a lasting dependence requirements become severe when resolving the Batchelor
of e# on 4, consistent with the persistence of non-Gaussian scale for high Schmidt number flows even in one spatial

Sbehavior" evident in Figs. 7 and 8. This quantity also dimension. Scs sensitivities are shown in Figs. 10-13.
displays a Sc, dependence as shown in 14.2a. Figure 10 indicates that the computed early growth rate

As mentioned in 13.3, the quantitative discrepancy of scalar dissipation increases with increasing Scs. This is
between the linear eddy results and the DNS results shown reasonable since the effects of moleculai diffusion decrease
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Figure 11: Evolution oftahescaaSldmufor samecame asFi. 10. For Sc a 1, I = vqexp(-t:/r]rJ, where rK is the Kol-

as Scs is increased, rualting in Wes molecular smoothing mogorov time and q/ls = A 5cl/2, where A is a coefficient.
of scalar gradients. Subsequently, the magnitude of the Since rK = B Re-WI/rL, where B is another coefficient. tis
dissipation, when scaled by the Large eddy turnover time, gves t92/r = B(InA + (1/2)inSRc'Re- /. Combining (I
rL, is independent of Sc for Scs 1 1. This is consistent and t3, i can be expressed in the general form
with c# - 01'/rL. where ' is an order unity quantity.

The time at which the scalar dissipation peaks is also i/rL = c, + Re" 2 (c2 + c3lnSc), (3)
consistent with conventional scaling analysis. The maxi-
mum dissipation will occur when the scalar length scale is where the coefficients c, and c3 are positive, but c2 can be of
reduced to the Batchelor scale, ts. For Sc > 1, this time, i either sign. This relationship can be interpreted in terms of
can be estimated in two steps, i = :t + t3, where ti is the the model quantities Res and Scs. The In Sc, dependence
time to reach the Koamzogorov scale, and t3 is the additional on the time of peak dissipation is borne out in Fig. 10.
time to reach the Batchelor scale. To estimate tt, con- The decay of the scalar rms (Fig. 11) shows little
sider the size evolution I(t) of a scalar blob initially of size Sc, dependence for Sc, > 1. The behavior of the scalar
1(0) = L. Based on dimensional considerations applicable variance is consistent with the scalingp presented above and
to the inertial-range cascade, that evolution is governed by the behavior of the walar dissipation shown in Fig. 10.
di/dt = -L/t,, where the characteristic eddy time ta scales The higher-order moments display an interesting Scs
according to to - (I/L)2 l3rg.. Integrating from the integral dependence (Fig. 12) which is also reected in the scalar
scale L to 9 gives t1/rL = [1 - (i7/L)"'j = I - Re-1/2. (Nu- variance-scalar dissipation correlation function (Fig. 13). In
merical coefficients are suppressed here, but are rtore general, the low.Sc simulations give values of the kurtosis
shortly.) This demonstrates the Re sensitivity (vanishing and superskewuess well below Gaussian values. As Scs is
at high Re) of the time (in units of r, ) for a scalar blob to increased, the values of both the kurtosis and superskewness

traverse the inertial range. Further length scale reduction increases. This trend is apparent over the Sc, range studied.
to the Batchelor scale 1j occurs at an exponential rate. For Scs of order one, the moments ae below their Gaussian

values, while for high Sc,, the final values of the higher
order moments are near the Gausian values.
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The occurrence of non-Gatsiaan pdf's can be under- St di 0.7 considered here, the scaar dissipation decreases
stood as follows. If fine-scale mixing is fast rela~tive to rapidly at the Kolnogorov scale. The time to reach this

laorge-scale stirrino, small regons will become well mixed scale, as discussed in 14.2a, is t4 = "l (I - Re-'O). This is

while ld gecade vsribtions of m aye lr-still present. Each consistent with the small es effect, which valishes at high
smail, tnixed region converges to m Ghuasian distribution caes, seen in the model results.
whon e mean corresponds to the local mean vaiue of b, The effects of 3ies on the scawar dissipation evolution

which generally differs from the igobac mean vaoue i th 0. are shown in Fig. 15. The maximum value of the sca0ar
Therefore thi regad, the sputially f veraged pdf consists diaipttion is ive eond, ent of Ri s when scaled with vl.

ofn superponition of Gawssians withh different mean vdlues, This agrees with the scaling analysis outlined in §4.2a.

yielding a distribution that may be longer-tailed or shorter- Furthermore, the time o t which the scadar dissipation ped s
tailed than Gaussian. Since this mechanlism is predicated can also be interpreted by the scaling analysis summarized

on the redative efcacy of the fae-scar e mixing, it implies by Eq. 3. First, Eq. 3 indicates there will be t unique value

thft the linear-eddy results reflect a larger contribution of of S os nt which the R1es dependence will vandsh. The fg k

the small scales to the mbyg process than occurs in the of Res sensitivity in Fig. 15 indicates thtt Ses = 0.m is neas

DNS. In this regatd, the results for the higher moments are this value. Second, a cs is increaed above this vawue,
consistent with the results for pdf evolution, discussed in the Res sensitivity should increase. Computed results for

Sc.1.al cr Ses = o0 e bit t1pe trend (Fig. 16).
The evolution of the scalan pdf r s described by the4.2b Re~ynolds Number Effects higher-order moments does not show a strong Re depen-

The decay rate of the scalar variance is shown in Fig. 14 dence beyond Res = 100 (Fig. 17). This and the foreg•oing
for Ries = 10 - 10, 000 and $¢s = 0.7. With time nondi- results indicate that Re effects may be sufficiently wellSmensionalized for each case by its large eddy turnover time, ch~araterized by studying a limited rneof Re. How-
•'L, all curves at or above Ries = 100} collapse. This indi- ever, a complete understanding of $Sc ~effects may require
cares that, in terms of the model parameters, high Reynolds wider-ranging study and improved analytical methods.
number similarity is obtained at Res = 100. For the case of
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DIFFUSIVE MIXING IN TURBULENT JETS
AS REVEALED BY A PH INDICATOR

by

A.F. Cormveau and W.D. Baines
Department of Mechanical Engineering

University of Toronto
Toronto. ON. CANADA. MSS IA4

This paper describes an experimental study which is currently being conducted to investigate the mixing in turbulent

jets and plumes. The objective is the description of the structure of turbulent flows from a coherent picture of the

entrainment and mixing process. An essential component of this research is the application of pH sensitive dyes to

view the three-dimensional structure of the flow by identifying all fluid exceeding a predetermined concentratiom of

source fluid. This is best described as a threshold technique on the concemation: the specified concentation is located

on the surface of the coloured fluid. The technique facilitates the examination of the interrelations of large and small

0turbulent structures through the observation of the instantaneous tireshlOV ontaumam :t distribution. Photographs have

indicated that the source fluid of the jet is contained in thin sheets whose thickness is of the order of the Batchelor

microscale: the distribution of which is fitted by a Gamma distribution. The spacing between the sheets are of the

order of the Kolmogorov microscale. Obseram ons of the colour disribution ussmg a permanent inert dye in a jet

showed that the Gaussian distribution cannot be a valid description of the concentration at the edges of the jet. These

show that all of the contamimant is contained within an envelope of width kb, where b is the characteristic velocity

radius and k has a value of 1.86. This has led to a simple equation based on the conservation of mass for predicting

the time averaged mean fro location within the jet. Tlhs equation compares well to the expenmenal results. The

normalized r.m.s. values of the concentraon locatiom are also presented.

I Introduction

Central to many problems encountered in engineering practice is the phenomenon of turbulent mixing and this

is often produced by jets and plumes. The srucure of these flows determine the rate of entrainment from the

surrounding and the rate of srching and defornunon of the fluid particles. Consequently this structure regulates

the mechanism of mixing and thus controls the rare of chemical reactions such as flammability or iantaneou

concentration of conminants.
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In rurnuitn. *ow. it is the small -ddies convection which intensify the concentration gradients over short

distances ie -i,;uit s a mixing rate orders of magnitude larger than that in laminar flow. The concentration at a

point is a runction ot the Reynolds and Schmidt numbers but the precise relationship cannot be ascertained by analysis.

The flow is alwa. s unsteady so statistical properties must be used to describe the concentration such as the time mean

concentration. This time mean is the value quoted for toxic limits and used in chemical processes. However. the

fluctuation of concentration, although usually of an order smaller in magnitude, produces instantaneous large values

and these should be the concentrations considered. For example. the presence of a concentrated. highly toxic pollutant

can be damaging to health. The time mean value at any point would be small if these parcels were widely spaced and

so passed over a measuring point rarely. In this case it is the maximum dosage. not the time averaged dosage. that

is of importance.

For a complete description of the fluctuations of concentration the probability distribution must be determined.

From the probability distribution the second moment gives the r.m.s. value and the third and fourth moments define

the skewness and flatness factor. In most cases the measurements fit a Gaussian distribution so the mean and r.m.s.

values are the only measurements of practical interest.

The next section is a description of a simple, versatile technique for investigating the diffusive mixing in

turbulent flows of water. In section 3. some observations made using this technique with forced plumes are presented

to illustrate the potential for identifying turbulent sucwures and examining the interactions of these structures. Section

4 outlines the deenvation of a conservation equation for the time averaged mean front location. A comparison of this

calculated mean is made with the experimenul results obtaied using the pH sensitive dyes. Finally an estimate for

the concentration r.m.s value is made.

2 pH Sensitive Dye Tecnmiqu

The introduction of a pH sensitive dye makes possible the identificaionm of all fluid with a concenration above

a preset value. The technique involves observing the progress of the acid-base titration occurring within the

expermenta tan. The tank fluid is made acidic with the addition of an acid, and a base is added to the source fluid.

During the experiment. the entrained environment fluid mixes with the alkaline source fluid. Mixing and diffusive

mixing are used interchangeably. Both refer to the diffusion of a polluanm across an intermaterial surface resulting in

the fluid being molecularly mixed. If the source fluid neutralized the esuained fluid, the pH indicator in the entrained

fluid becomes the base colour. When the source fluid is fiaUly neutralized by the entrained acidic fluid, the pH

indicator in the source fluid changes to the acidic colour. The specified concentration is located on the smrface of the
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fluid with the 'ase olour The dilunon ot

the •ourct 'uid it ,hich the colour

changes. :ontrolled by the relative

strengths of the acid and base. Hence. the

photographs of the flow field show clearly

all fluid for which the concentraion is

above the predetermined value. b , " -

The main assumption. in the I If

conceptualization of this technique, is that b

the neutralization of the base (the source

fluid) by the acid (the entrained fluid) will

produce a distinct and abrupt change in

colour at a specific concentration. This can
Figure I. Apparent structures have been identifiel: (a) hollow core. b

only be achieved if (1) the neutralization "bubble* structures. (c) shadowgraph effect. (d) spherical vortex. Scale:
3.7:1.0. Re = 235 and dilution = 5.

curves for the acid and base have a sharp

transition through the equivalence point, (2) the reaction is diffusion limited, and (3) the indicator responds within the

transition zone. The first requirement is satisfied by using a strong acid with a strong base (Laitinen 1960).

Hydrochloric Acid and Sodium Hydroxide were chosen which satisfies the second criteria (Cussler 1984). Phenol-Red

was chosen as the indicator because it responded within the sharp pH transition.

The dilution for an experiment was defined as the number of unit volumes of the environment, one unit from

the source would neutralize. The concentration at which the colour change occurred can be calculated by.

C (C)
DIL + I

where c, is the initial concentration and DIL is the dilution set for the experiment.

3 Turbulent Structures

The two photographs of Figures 1 and 2. which are salt water plumes, are typical examples of the structures

which are revealed if the dilution for colour change is 5 and 12.5 respectively. There are several points of interest in

the first photograph. There appears to be very little source fluid at the core of the flow near the start: in other words

it appears hollow. This was observed for all jets which emerge laminar from the orifice. Perhaps more important is
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•he aosenc: ... ' •. t fluid which appear as the big eadies in Figur- -, Nil of the source tluiw has been stretched

ito ,neets , 'nr-- dimensionai sheets. on close inspection. are interconnected and continuous is they stretch an

-oil up At :,an-utret .nvironmental fluid. Within the flow. there are three additional features. Bubble-Itke structures

irt '.istole tn ,everaJ locations Thesc structures look similar to the photographs of a surting vortex Xuerback 1987.)

Further in•esugation with a high speed movie camera is planned to faclitate trame by frame measurement of individual

,tructures for correct classification. The second structure is the shadoweraph effect wtich is evident throughout the

upper half of the photograph. This indicates that the concentration of source fluid in these areas is below the preset

value and the remaining salt is diffusing out of the sheets. The third structure visible in the photograph appears to be

a sphencal vortex above the mid-plane and to the right. Again further investigation capable of following an individual

structure is planned to ascertain if these are truly spherical vortexes or merely fluid elements in solid body rotation.

The second picture clearly shows that all the source fluid has been stretched into sheets. Bubble struceires ar

evident here too. Note the open ended vortex midway in the photograph. One concludes that the vorucity extends

into the environmental fluid or the other side of the nng is diluted. This sructure is often observed in the plumes.

The detail in Figure 2

provides the opportunity to ft

obtain charactenstic length

scales of the structures found ,

in the flow. The diameter of

the bubble-like structume

vaned between 5.6mm to

2. 1 mm. The interpreuciat of

the lines un the photograph are

sheets of ogigul fluid with

concentrations above the

threshold value, perpendicular

to the camera. Typical line

spacing averaged 0.13mm.

The line or sheet spacing Figure 2. Close-up photoraph clearly shows all the source fluid has been stretched

should be related to e into sheets. identified structires: ta) 'bubble' structures. (b) the end of a vortex
ring. Scale: 4.8:1.0. Re = 440. dilution = 12.5.
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,mallest % tic:- '•ucm.iatons found in the flow These can be estimated using Kolmogorov nmcroscaie which is defined

by the dissicarn -ate per unit mass e (m-sec and the viscosity v (i- 5sec I ITennekes and Lumley 19721. For the

plume zc %a• i!umed that the rate of energy dissipation was proportional to the buoyancy flux per unit area. Based

on this assumption the estimated Kolmogorov's microscale for Figure 2 is 0.26mm. This is the same order of

magnitude as the measurements for the sheet spacing. The width of the lines were measured in increments of

0.005mm. Line widths ranged from 0.010mm to 0. 16mm. The line widths were found to have a Gamma distribution.

The most frequent width was 0.020mm. The sheet thickness should be on the order of the concentration fluctuations

expected in the flow. The concentration fluctuations can be estimated using the Batchelor microscale which is

0.014mm. Again the measurements are of the same order of magnitude as those predicted.

4 Measurements and Analysis

A turbulent jet is one of the simplest flows with vigorous

mixing. Fluid is injected from a circular opening into an environment

at rest. The intense shear on the edge of the jet generates large

turbulent eddies which entrain fluid from the environment. Thus the

width of the jet expands and the man velocity decreases at sections

downstream. Dimensional consistency requires that the width expand

linearly with x. the coordinate along the centerline. The conservation

of momentum and mass of a pollutant dictate that man velocity and

concentration on the centedine vary with lI/x. These trends have

been verified in many experimental studies and these have also

described the properties of the turbulent flow. Recent publications FAll contained within

by Papanicolaou and List(1988) and Dahm and Dimotak1990) a half angle of 12°. The experiment used
Poutssium Permanganate. Re = 3.225.

present the properties obtained by the technique of laser-induced

fluorescence of a dye. The lateral profiles of both mean velocity nd mean concentration follow Gaussian distributions.

A characteristic width of the velocity profile is defined by the radius b at which the value is lie of the centedine value

and the conservation of momentum sets b - 2 a x. Experiments give a value of 0.057 for the entrainment coefficient

a. The concentrtion profile is wider and the width is quoted as the ratio I. of this width to b. Experiments give X

the value 1. 16. Distributions of the r.m.s. of both velocity and coceneation across the jet show a drop-off from the
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:enter to the -jet On the centerline the r m.s. longitudinal velocity component is about 0.25 of the mean velocity

while the ,m :oncentraaon is 0.2 of the mean.

4.1 Containtant Envelope and Flame Frosts

Observation of the colour distibuton using a permanent. inert dye in a jet shows that the Gaussian distribution

cannot be a valid description of the concentration at the edges of the jet. This is demonstrated by the photograph of

Figure 3 which is a jet containing potassium permanganate. There is a distinct edge of the jet which is contorted and

lumpy from the large eddies. All of the coloured water is contained within an envelope of width kb. This and other

photographs define a half angle of 12"which corresponds to k = 1.86. Measuremems of both the mean and r.m.s.

concentration reported in recent papers give finite values beyond this edge. There must be a slow oscillation of the

jet not evident in the instantaneous picture which leads to finite values when a time mean is taken.

Another view of the mixing is obtained by taking instantaneous photographs of the jet with a pH sensitive dye

for comparison with the inert dye photograph of Figure 3. The coloured region has the shape of a brush or a flame

front and the length increases with dilution as expected. There were two distinct zones, an inner dark regon and a

surrounding lighter region. These are sketched on Figures 4 and 5 for different cocenuitions. The lighter zone

initially coincides with visible edge from Figure 3. This confirms the conjecture dhat the visible edge is an envelope

for all of the source material. In the downstream pan there ar large lumps of colour visible which show the effect

of turbulence. A sequence of photographs taken at 0.2 s intervals showed that these lumps changed shape but a mean

position of the edge of the region could be defined. The mag•itude of the excursion of the downstream end was about

the total width of the jet, which mirrors the passage of one of the large eddies. Figure 4 is a plot of several

photographs which illustrate the variations in shape of the colotured region. There is only a smail vanation of the edge

near the source.

4.2 Mean Frost Locatio

A simple conservation equinon for the time averaged mean concentration can be derived by assuming the

velocity and concenmttaon profiles are Gauss . In the case of the concenation. the Gaussian profile is only valid

from r = 0 to r = kb: all of the source material is comined within the visible ed. Thus.

U U , ( 2 )

c =ciex, 4 '2

where u is the velocity, c is the time mean concentration and the subscript m is the centeriine value. Conservation of
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momentum r+.-uuir+-! that the momentum at (he source, which is assumed to

have a top hat -rntitt. is equal to that found at some axial distance from the

source. This gi~s.

4 U; D; it•; b- (3)
4

where U, is the top hat velocity of the source and D, is the diameter of the

source. Similarly conservation of the scalar contaminant gives.

p~Uoc 0 Dz fc 2 % dr (4)
a

Substituting into the expression for u and c. using Eq.(3) and evaluating

with the values for a. I and k leads to

c = D0 571.ilFigure 4. Tracing of the outline for
5- .415--expj (5) Re=3.225 using Phenol-Red.

C0  z - Everything above 6.25% original source

This is essentially the same scaling constant of 5.4 found experimentally by f is visible.

Dahm and Dimokis( 1990).

The edge of the deep colour zone is plotted in Figure 5. For comparison. X's indicate where Eq.(5) estimates

the mean concentration to be the value set in the experiment. The deviation of the locus of points found using Eq.(5)

is due to the small set of experiments from which the mean was derived. However, the agreement is quite good.

4.3 Diffusion from the Sheets

Outside this deep colour zooe the aime averaged mean concentration is less tham the one set for the experiment.

Here the colour is contained in the thin sheets described above. These are tickness )•., the Batchelor nmcroscale

which is. following the measurements of Dahm and Dimotakis(1990)

S, (6)
ID 200& At ' Se ~z

Eq.(6) shows that I* increases lineary with x. This rate of thickening is much laWr than the rate of diffusion of

Na'OH ions out of the sheet. Thus most of the Na*OH in the sheet when it was established remain in it. The

concentration decreases as the NaOH diffuses into the fluid being added onto the surface of the sheets. if the

concenutton profile is similar as this progresses, then the concentrtion in the tener times Io is contant. Thus it

would be expected that the point x, on the centerline where colour disppears would be inversely proportional to the

defined concentaion. Ths is indeed sauisfied by the mm positons of the tee diluions plted on Fire 6. The

mean concentration also decreses with I/x as seen in Eq.(S), so there is a conmtn ratio of the lengths where the

colour changes and where the concemtion is the mean. The measured value of s constait from these expenmeat
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is 1.65. The Iinear ý anauon in Eq.(6) can be , xa to show that the

maximum :onctntraton in the thin sheets relative to the mean at the

same point is -qual to the length ratio. List and Papmancolaout 1988)

measured the maximum concenutaon at the centerline using

Rhodamine G dye and found that it was 1.65 times the mean. Thus.

the same value was obtained for species of different diffusivity. A X

This supports the conjecture that the rate of thickening of the sheets it

is larger than the rate of diffusion.

4.4 Turbulence Properties

A series of 4 expenments were performed to give a

comparison to turbulent measurements found in the literature. The Figure S. Tracing for Re = 3.225.

experiments were performed at a Reynolds Number of 3000 to Everything above 4.26% is visible. The dark
zone is coommed within the lighter zone. X's

match those published by Papanicolaou and List (They measured the mark the zone given by Eq.(5).

longitudinal and radial velocities and Rhodamine 6G dye concenrations simultaneously at the same point by a Laser-

Doppler Velocimeter {LDV} combined with a Laser-Induced-Fluorescence {LIF} system). Each experiment consisted

of 40 photographs which were taken at a rate of 3 per second. This time interval is large enough so that each

photograph is statistically independent: meaning each photograph was of a different large scale saucture. This

independence was latter confirmed when the correlation between

300.00
sequential photographs was found to be nmr zero. The film and

lens were selected to closely match the measurement resoluom 25000

of the published dam of 0.2mm. The maximum location of the 200.00,

contaminant was recorded for each lpbomg -; along the cener z2

line of the jet as wedl as for increments of dihme degPre off the D', 0.0

center line from mum twelve to plus twelve demgr. -
100.00

The normafized r.m.s. concentaton posmions for the jet

are plotted in Figure 7. The measuimm are flat between 50.00

Ir/zI < 0.15 and are consistent with the shoe of
0.00

Papanicolaou's r.m.s. memremens in a jet for this range of 0.00 0.07 0.14 C 0 2 1  0.28 0.35

rlz. The meured r.m.s. value of 0.1 is less than the value of CT
Figure 6. Plot of the mxmum axial distance

0.2 found by Papanicolasou and List for the r. m.s. concemtrons Observed usi Penol-Red. The line corresponds to
Eq.(S) with a coefficient - 1.65 and r = 0.
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Sjr Rhodamine -4 " - However. these two wets of 0.5 1

measurement' nau iot be the same property. In

Figure - ne r m.s. of the locations of a 0.4..-

concentration are shown whereas. Papanicolaou and

List measured the r.m s. of the concentration at a 03

point.

In Figure 8 the maximum recorded position 0.2 -

normalized by the mean centerline value ( given by A A

Eq.(5) ) are plotted versus r/z. The profiles have a L 0 0 0

maximum value around 1.6 and are quite self-similar. 00.1

This is in excellent agreement with Papanicolaou and 0.1
0 .0 I , • , • , i T

List who measured the maximum concentrations at a -0.2 -0.1 0.0 0.1 0.2 0.3

r
given location (normalized by their mean centerline

values). Provided both experiments have the same Figre 7. Normalized r.m.s. profile of maximum

concentration location across a turbulent jet: Re = 3000.
resolution. the measurements are equvalent.

2 . 5

S Summary

The picture which emerges from these 2.0

photographs is a field of turbulent eddies which are

diffusing the pollutant down the gradient as in a Z1.5

conventional diffusion. All of the pollutm is L,

contained within an envelope of wift kb. Buried in L 0  3 0
1 .0 -

this field and widely distributed through it are thin
A 0 A

sheets which cotan high concentrations of original 0
0.5 0 -

source fluid. The thickness and spacing of these

sheets are of the order of the Be.belor and !

Kolmogorov microscales respectively. The -0.2 -0.1 0.0 0.1 0.2 0.3

concentrtuion within these she is slowly decreasing r

S~as new fluid is added to the sheets and the
SFigure 1. Maximum recorded position normalized by the

contamimate within diffuses into the new fluid. Thus. mea centerlie value for a turbulent jet. Re 3000.

AIO-9



ý,increases The ailtied fluid had previously been entrained from the environment by the biggest eddies and much

)f it is or % t -h ,oncentration when it comes in contact with the sheets.

The pH sensitve dyes facilitate the observation of turbulent structures through the examuion of the

instantaneous zontaminant distribution. The conservation equation presented above for the time averaged mean front

agrees with the pH sensitive dye experiments as well as with other investigators. This has lead to an estimation of the

r.m.s. of the concentration and provided an intuitive picture of the physical mixing process in turbulent flows.

Future work will investigate the characteristics of the lines and the identification of turbulent flow structures.

The pH technique is uniquely suited for this type of investigation.
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1 Introduction

Turbulent reacting lows have been studied for many decades and are widely recognised for the challenges they pose to

both the turbulence community and those whose primary interest is in the chemistry. Neither the transport aspect nor the

chemical kinetic detail necessary to predict such tows can be considered to be well understood even when the role of density

luctuations is unimportant, as may happen in aqueous solutions.

One of the problems is the necemty to describe turbulent transport in a low conflating of eaougk species to represent

the chemical kinetics adequately. Two elements of progress have been established in the last two decades with respect to

this problem; the introduction of the joint probability density (pdf) of concentrations[T) and the exploration of Monte-Casio

techniques to minimise computational efort(181 as the number of species increses.

A pdf framework is essential for any realistic study of reactive lows, but it is especially important foe lows with complicated

chemistry because the reaction terms cannot be treated accurately by moment methods. The Monts-Caldo procem is also

important when the number of species is laps; it has only been developed for the one-point pdf which han the disadvantage

of not representing directly the relative motion of particle pairs. This motion is a fundamental property of turbulence and is

particularly dominant when the turbulence bas a high degree of symmetry as in homogeneous cases.

Recent studies have seen the development of a fully two-point pdf model of homogeneous turbulent reactive low which

successfully mimics the results of direct numerical simulation (DNS)[131. It is, however, limited to the two species kinetic

scheme A +. -. Product, with the coal•1sion that it would be anecosomical to extend the model to more reacting species.

In this paper we develop a less compatadionally intensive alternative to Jiang's fully two-point pdf model. This is achieved

by nosing that selar corrsation fectidon carry all the two-point information needed for the reprenttion of the ef'ects

of advection and molecular difflion while the one-point pdf fully represents the role of chemical kinetics. The model, as

developed in the body of the paper, featiers a parallel evolution of the one-point pdf and the sclar corslation functions,

the latter providing a time scale foe the former.

As a consequence of the reduction in dimensions that follows dropping from a two-point to a one-point pdf it is possible

to treat kinetic schemes with up to five reactats. This progress is obtained at the expense of a similarity assumption. which

connects the moments of the one-point pdf at any insteat to the correlation functions at the smune instant.

The model is AMt evaluated for the two species reaction A + 5 - Products against Jiangs' model and DNS data obtained

for the same reaction(I lJ. It is then extended to a four-species consecutive reactioa of the type

A+B-.L D (1)

A +D , LA(2)
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where A 3 `,%ad P ate (our different chemical species. D is the dentred product. P is the by-product and 41 and k3 try

reaction '113iA1,111 rhe temperttiure effect OR reaction rates is ignored. Furthermore, we also assume the chemicali reactio.,

rases aip 711.n-ar which means the chemical reaction rate is a Anrt order function of the reactants A and B or A and D

The model allows prediction of the effects of Schmidt. Reynolds and Damk6hler numbers on the evolution of means.

vatriances. cross-varkances and mzcroscnles A full stange of predictions can be found in the Ph.D dissertation Of the first

author.20; In this manuscript we Present a few samples of the results to indicate the model's performance

2 Problem formulation

The governing equations for an isotropic scalar field 40(j, I) advected and diffused by a stationary isotropic velocity field

u(I. can be written as:

_1 4. % 1 V V1 31

V 0 14)

where the constant density of fluid is taken to be unity, L' is the kinematic viscosity, p is pressure. D# is the molecular difusivity

of 40 and ii is the chemical production term. Following Eskwarsa and 0Dnrita[101, We adopt a timne-splfitting Kiheme which

separates equation (6) lnto three parts and each part is treated separately at each time stepý Witht time-splitting, three

equations ate obtained

ki.o.p= -2 -LA bA'u,) (6)O

=Do. FC7 -#,A~h.8D % 14 . T ~ ~71
a (S

Of these, equations (6) and (8) are not clossd; more unknowns will be generated by thke averaging process than there are

equations. For equation (6), many models usek available. An EDQNU closure is adopted for the advectiom Process, and this

is discussed in the next section. Equation (8) is ussualy very troublesome. Because the nion-limear chemical production term

*..A1111.8 varies with different chemical reaction schemes, this makes the modelig extremely difi~cult. In the present study.

we take advantage of the one-poinit pdf formulation and the DNS data of Gnsoj~ll to use a sirsllnrity assumption to close

this equation. The details of this assumption are given in the next section. Becaus we are Only intereste in the bilinlear

reaction rate Iii.k.~) the sscond-ordet equations listed above for two-point correlation functions are enough to serve

the purpose.

Tb. one- point PHfevolution equations, which is to be used in conjunction with equaitions (6). (7) sand (86), is ens follow,

a p + a (P l y) = 0, (9 )
at 8ia

where

v(,)D# Umn VUZ(~42I-~it) a) (10

E 4 i) is the expectation of j%!, 1) at point E, conditiontall on its kralne at EL In this formulation, the transport

terms disappear because of homogeneity. Instead, this information is implicitly included in the Anrt term on the RHS of

equation (10). The steps for calculating the evolution of the one-point pdf are straightforward.

1. Calculate (6) for the advection process using a turbulent transport closure.

2. Calculate (7) for the diffusion process.
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3 Lise th. uiaj wa uiformation derived from stop 2 and a molecular diffusion closure to calcuiate the one-potmt pdf

eque. ,

4 i ni~..!e-p-ýant second-order moments from the one-point pdf. then use this informnation and a similarity assumptioa

to caiciiate sýo-point correlation functions a1~et chemical reaction.

5 Repeat for the next time step.

By this method, a simulation for any chmitrcal reaction scheme which involves only four or five reactatig scalars is possible

There are two closure approximations and a similarity assumption in the model; these are outlined ir, the next section

3 Modeling assumptions

Following the method of Eswwarn and O'Brientl0l using timne-splitting to separate advection. diffusaion and reaction. we are

*,Sle to %teat each process separately and with more flexibility. The closures used in this study wre sot the most sophisticated

ones, but rather they ace the most suitable. The derivations shown here ace based asn the single-species caser201

Modeling turbulent advection

In homogeneous turbulent advection. the one-point prif of scalars remains unchanged. This point can be observed by looking

at (9) from which the advection terms ace missing because of homogeneity. However. the advection, terms still exist in the

equations for two-point correlation functions. By determining the micto-scale these functions affect the evolution rate of the

onte-point scalar pdf due to molecular diffusion. A modifled EDQNU mocdel is adopted to represent advectiona. It is a physical

space version[10J for an isotropic which interprets the turbulent advectiont effect as an eddy viscosity &', which is determined

by the turbulence spectrum.

The EDQNM model is not the most advanced spectral closure. Others, such as DIA and LHDIA(121, have been proven

to be more dynamically satisfactory. D'rt the computability of the EDQNM closure makes it more accessible. Some recent

rewwach(IOl has shown the ability of this model to predict the comrect scalar dissipation rate when compared with experimental

data. The numerical comparison with DNS data by Jiang(131, who used the EDQNM advection closure in a fully two-point

pdf model, has also been found to be satisfactory.

Modeling molecular diffusion

Closure modeling of the transport of the prif due to molecular diffusiou has long been a challenging part of the pdf approach

for turbulent reacting flow. Because the subsequent chemical reaction is closed in the pelfformsulation, an accurate prediction

of pdf evolution in molecular diffusaion is the key point for the pdf to represent the chemical procesis correctly. There ace two

main difficaultes in modeling the di~liasi equation of the pdf. The Aunt is the santi-diffusive behavior of a scalar pdf in this

process. When a scalar is diffused in a flow field, although the mean valuei of scalar remains unchanged, the fluctuation is

smoothed out as time goes on. This phenomenon, reflected in the phase space of the pelf. is such that the pel will become

a delta function at the mean value of the scalat in the UWnalt.# -- 'oieculair diffusion. Such a pdif equation is numerically

unstable. The second difficulty comes from the same phenomes .i, which is, no matter what the initial condition of the

scalar pelf it should, asymptotically, approximate a Gaussian. So far. only the mapping closure developed by Chou et. al.[4J

preserves such a property. The others, such as an integral-type cloenrele), assumed pdilfll and linear mesan square estimations

(LP4SE) do not possess such behavior.

Linear mean square estimationa (LMSE) is a well established method to estiate a conditiona expectastiou(171. It is also,

the simplest way to modify the expectation teas in equation (10). Which "an be writtent ss(161,

A13-3



E(ý3 O*) = t)jt -.. p(rt) ' -qL.

w het. r-- r : and p. o,. and 0P are the usual correlation coefficient, variance. and mean of #I j, t 1 Although this as a

Gaussian closure. a correct evolution equation for second order moments is reproduced(SII. This property to especially useful

when a multi-icblar case is of interest. For a two-species bilinear reaction, if the time scale can be derived correctly, then the

scalar means and seond order moments should also be correct.

The pdf equation, with molecular diffusion terms only. for a two-species case in an isotropic field is

Do -t liint-.. V'(E.(i.' I . 01 )P( 4 ., 00l1 2

where the subscripts a and b denote two different chemical species, (') represents the second physical position. Do. and DO,

are the diffusivity constant of scalar 0. and Ob. El and E-: have the same definitions as in (10), but this time the expectation

value is conditioned on both i.1 t) and O',A 9). By LMSE closure. Et and E3 can be expressed s.,

E. =a,(0.-.)-s- 31(06 - 0) +-0, (13)

E6 j.) +03(o - j6) +j7&(14)

where

at if=

With this approximation equation (9) is closed and from it the evolution equati-ons for second-order moments due to molecular

diffusion can be recovered by multiplying (12) successively by j! j, and ý.Oib and integrate over 0. and 0&.

Modeling chemical reaction

As we mentioned earlier, the chemical reaction term in equation (5) is always a challenge for a moment clan"r but requires no

approximation in the pdf formulation. However, to match the pdf model for reaction with the two-point models for advection

and molecular diffusion it is necessary, in principle, to use a two-point pdf formulation[ 14.131. To avoid the computational

intensity of the two-point pdf we have chosen instead to use a one-point pdlf representation of reaction combined with a

similarity assumption which approximates the effects of reaction on the scalar correlation functions. Gao's DNS data( IlIl

shows an insensitivity of the dissipation rate with respect to chemical reaction in the one-species case with second order

reactions and in the two-species case with a bilinear reaction. This suggests that an assumption that the shape of two-point

correlation functions are not significantly altered during chemical reaction may be reasonable. We examine this assumption

as follows.

The evolution equations for the two-point second order moments are,

at=_2kA2 A' (9

A13-4



which Caffrio nas '0 a one-opecies second order reaction. &Ad

& - -2ki A'AB 20)

,r=-2k,5'_Af (21)

which correspond to a two-species bilinear reaction. A *and B awe two different chemical species, (*) denotes the second point.

and km. Jr, and k3 are chemical reaction rate constants.

In equation (19), a similarity assumption means that XAA should have the same shape as A3A' For the two-pecies

bilinear reaction of equation (20) mand equation J21), it assumnes XA has the same shape as kA' A and k88' has the same

shape as frAi. This assumption is very likely to be true for the lirst case. An analytical solution for this case derived by

O'BrienjI15 shows a strong resemblance to this assumption. However, for the other case it is not very obvious. Another

theoretical study on this topic is by Corrsin[5), who studied the effect, in spectral space. of a first-order reaction with a single

scalar. Fortunately, in such a case, the evolution equation for the two-point correlation fnaction is exact. This can be seen

in the following equation.

kA'=tAAk (22)

Here, we apply thme similarity assumption to the two-point autocorrelation functions. By doing this, several properties can

be deduced and these properties can further be used to cloe the evolution equation for two-point croas-correlation functioas.

Returning to the bilinear reaction case with (20) and (21), we separate

A = A+a (23)

and

8 = B+ b. (24)

where a and b are the fluctuation parts of the variables A and B. With this, the evolution equations of the two-point

correlation functions follow,

-r 2k(iW 3 + isb X+ i'b) (25)

2kjZ7ff +W I ;W)(26)

-=- (aj W + & j W) _ k(7M7 1+ W6 6-'e ) (2T)

Once the similarity relations are assumed in (25) and (26), the evolution of Wh can be found by

It a;6_ I (26)

Renders should keep in mind that the assumptionu made, here only affects the shape of two-point quantities. Because all

one-point quantities cant be derived exactly from the one-point pdf, all two-point quantities should be renormalised by the

exact one-point quantities derived from the pdf. A similar analysis for the four-species reaction can be found in Tsai's

dissertationi201.

4 Numerical method

The closed evolution equations of two-point conelatfion functions for turbulenat advectiont have the folloing form,

= zetv~,, a,,(29)

where &i, is the eddy viscosity. This equation has a similar form to equation (7), and both equations wre solved by the Crank-

Nicolson algorithm. The exact form of v-. is not listed here, the intersted reaerl can lAnd it in PAwaran sand O'Bries(l0J.

In order to calculate v'. a Gleashaw-Custis quadratre is employed to integrate the turbulent velocity spectrumf9,131. The
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Chosen fuaeli aal form 3f the spectrum has a form similat to Chas adopted in Jiang's siudyjl3) which is determined by

turbuleuc- ~it~nsitt Taylor micro-scale and the integral scale. The details can be found in Tints disseetationi2Ol

Num.'rt-ii ntegrittiou of the pdf equation 01 is far more difficult. Following the method of Jiang. a iux-split. upwind

secoad-order %lacCormack schome[191 is combined with the multi-dlimenssonal FC*Tjlj algorithm proposed by Zalesaki=2

Howover, we And this hybrid scheme cannot have a satisfactory solutiot. because of the the numencal ripples that always

occur in a hyperbolic system A' -,'-ink has suggested some useful tricks in his paper, monotonicitY of the solution

in multi-dimensons is stil noý e propose the following limiting algorithm (a two-dimeaisional example I which

can really enforce monotonicity on the solution in all directions.

p,. mim(p,". exp((-V 1,WAL

=f m-r(p,", expl(-V jj9.~L

d

=mln(pl., ezp((

(30)

then

(31)

where p is the dependent vuriable (probability densiy in thi case), subscript L represent$ the low-Orde" solution sand

superscript ns the solution at the previous time step. instead of dehindg the bounds base on all the neighboring points of

(s. j), this procedure defines the bounds according to the largest and smallest values in eacb directiona. Therefore, the above

algorithm actually enforces monotonticity on every direction sand does not keep the pdf value fro, becoming a delta function.

in tests for two- and four-dimensional computations, th" procedure is virtually firee of the oscillationis created by higher order

algorithms.

5 Results and discussion

In order to cseck the va~ility of the proposed model, comparisons have been made with DNS data and the fully two-point

pdf calculations of Jiang[ 13). We compare oat results with Gao's DNS data for one-scala, second-order reactions. two-scala,

bilinear reactions and four-scalar consecutive reactions. The date of Jiang was also compared with out tesslts in the case of

a two-scala, bilinear reaction. A DNS calculation of the same case was performed by Chaltrnbarti and Hilifal for decaying

turbulence, but comparison with their data is not appropriate because of the stationzary spectrum adopted in tbe present

study. Besirles the comparisons with other data, we also computed the four-scalart consecutive reactions case, for a range of

Schmidt numbers and "syold* numbers beyond those which are accessible to DNS.

There were five velocity spectrat adopted in the study. Each of them refers to a dlifferest initial velocity field in the DNS

data of the MWy two-paint pdf calculation. These parameters are listed is Tables I and 2. The initial parameters for the
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- fields r- isted in Tables 2, 3 and 51

All o r va r ming equations and variables in the present study awe in dimensionless form. To avoid confusion, several

dimensio.nii, Parameters and variables need to be defined clearly. The Dainkhhler numbers axe defined as

Doa 32z

where k is the reaction constant. o,. the initial scalar mean and 1/u the eddy turnover time of the turbulence field. The dimen-

onliess time is defined as r = gull. The evolution of cross-vanance is studied through the variable -r, Z = (;, 0, 1

Following Corrsin(51. the scalar micro-scaue is defined as follow

"Ad = 285.- 133)

where o = ;lIt/1. Another variable of interest is the selectivity factor in a consecutive chemical reaction, which is defined

". '21

X .(34)

where o, is the mesa concentration of the desired product D while i, is that of the by-product P. X. is sero for perfect

selectivity end unity when only P is obtained.

The initial pdf in the single-scalea case is chosen to be an inverted parabola to simulate the double-spike initial condition

similar to the initial condition for the DNS data. For the two-scalr cases, all the initial pdfs ate chosen to be multi-varate

Gaussian. In the consecutive reaction case, four scalars are involved, two pre-existing species A and B. main product D and

by-product P. We choose a joint-normal distribution for A and B end a top-hat distribution in the first three grids for C

and D. This is because of the difficulty in representing the delta functions of a pdf numerically.

A complete set of numerical results can be found in graphical form in the dissertation of Tsai[201. For this paper we limit

ourselves to a small sample of the results, enough to demonstrate that the model has promise end can effectively treat four

species reactions.

The upper graph in Fig. I presents the mode predictions of concentration variance evolution for a single species second

order reaction in - range of Damk6hler numbers from 0 to 3.0. In the lower graph we show the corresponding predictions

from DNS. The agreement is excellent and is as good for the scalar mean and disipation, which are not reproduced here.

Fig. 2 show a similar level of agreement between the model and DNS for the cotm-vatriance in a two-species reaction for

a range of Damkahler numbers from 0 to 1.0. Simila, levels of agreement with DNS are also obtained (but not shown) for

concentration means, variances and microscales.

We also obtained very good agreement with Jiang's model results for these some quantities both when the Schmidt

numbers of A and B are equal and when they differ by a factor of 3. Figure 3 shows a comparison of the scalar dissipation

for two Schmidt amber ratios at a Damkahler number of 2.S.

Fig. 4 summrimas the predictions of the model with respect to means, variuaces aid cross-variances for the four-species

consecutive reaction as a function of Reynolds number. Damk6haer numbers and Schmidt numbers are held constant in the

calculations. It is clear that Reynolds number has a profound effect on second order quantities as would be expected give the

important role of turbulent advection in enhancing particle pair separation and thereby increasing the influence of molecular

diffusion.

Figure S shows the effects of greatly increased Schmidt number on the evolution of concentration means, variances and

crome-variances. The Damkh6ler numbers are held fxed and we the same as in Fig. 4. The Reynolds number, Rex, is also

held constant at 21.69. An increase in Schmidt number by two orders of magnitude has the same effect as a seven-fold increase

in Re,% under the particular circumstances of this calculation. It is no surprise that an increase in molecular difusivity, as
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rePresen%.-1 -' iermidt number, gives results qualitatively similar to ean increase in Re %. The differences in the weorld order

quantities .a nih are apparent in the lower graphs of Fig. 4 and 5. indicat, that the structure of the turbulent field can play
a role in 2i-ttrmitiag the evolution of a reaction. beyond merely enhancing ditfustesties.

Figutre 'S ihow a typical evolution of the selectivity fibaor (Eq.. 34) as a function of the Darakohier numbers of species A
and B. Domkiihler number ratio is adominant factoraiasexpected but the iaztialsupenority I(lower .Y. I of the ease f Do I= 5 0.
Dal = 1.0) over (Dal = 1.0. Doi, = 0. 1) reveals an interesting dependence on Damk6ltler numbers am well as onk their ratio

The model agrees well with existing DNS data and the fully two-point pdf predictions of Jiang. It ha. been shown to

easily handle 4 specie, and may be able to treat 1 or 2 more. It should be a useful predictor for other kinetic schemes with
this number of species and a testing ground for simplier models of chemtically-reacting, homogeneous turbulent flows.
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S.%ol i Specifications of initial velocity fields of DNS (vi & v3) and fully two-point pdf (SC3.4)

Vei.Field n I A I/u Re%
v1 0.0429 1.2156 0.5754 0.6012 46.54
v3 0.0874 1.3585 0.8006 2.0057 21.69

$C3.4 0.036 1.009 0.463 0.38 49 2

Table 2: Specifications of initial velocity fields of present study

Vel.Field n 1 .l.u Re%

vl 0.505 1.274 0.58 0.66 44.93

v3 0.0863 1.691 0.729 2.273 21.69
SC3.4 0.0425 1.056 0.4915 0.4217 49.2

v4 007396 3.9872 2.1584 2.302 150.0

Table 3: Specifications of initial scalac felds of DNS

PDF Cases l#i1 Ark., A
vlpd pds2 0.536 0.749

v3pb pbe2 0.577 1.367
pbs3 0.385 0.977
pbc3 0.444 1.068

Table 4: Specifications of initial scala, fields for SC3 &ad SC4 in fully two-poiat pdf calculation

Caes < 0,>0 < '* >./a <0'.0, >0 Sc. Sc,
SC3 0.266 0.1382 -0.000756 0.7 0.7
SC4 0.266 0.1382 -0.000756 0.7 2.1

Table 5: Specdieaioms of initial scala fields in the present study

Caes * vlpds2 v3pbs2s2 v3pbs2s3 v3pbs3s3 v3pbs2c3 v4pbe2c3

<* . > 0.5 0.5 0.5 0.5 0.5 0.5
< , > 0.5 0.5 0.5 0.5 0.5 0.5
* >6 0.1 0.1

< , > 0.1 0.1
< 4'' >'/3 0.4483 0.2381 0.2388 0.2381 0.2365 0.2365

< 40 1/3 0.2381 0.2388 0.2381 0.2365 0.2365
< ,•2 >1/3 * 0 0.05774 0.05774
< #'04 >1/3 * 6 6 0.05774 0.057"4

< 0**O > * 0.00744 0.0 0.003 0.01983 0.01983
(A#.' 4). 0.741 1.352 1.352 0.966 1.352 1.4961
(A6/A) " 1.352 0.968 0.960 1.056 1.1477
(41/A). 0 0 1.352 1.4691
(A*/A)d 6 6 0 6 1.382 1.46891

(VIt/). 0.5228 0.5772 0.5772 0.3852 0.5772 0.5772
(1./),/ * 0.5772 0.3852 0.3852 0.444 0.444
(1,/L), • • 0.5772 0.8772
(./I),d . . . . 0.5772 0.572
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ABSTRACT

A new sub-grid mixing model for use in large eddy simulations of turbulent com-
bustion is presented and applied to a hydrogen-air diffusion flame. The sub-grid model
is based on Kerstein's Linear Eddy Model (Comb. Sci. Tech., 60, 1988). The model
is first used to predict the mixing of a conserved scalar in a turbulent shear flow. The
model correctly predicts the behavior of the pdf of the scalar field and displays a non-
marching peak at the preferred mixture fraction as the shear layer is traversed. It is
then illustrated how a reduced chemical mechanism can be implemented within the
linear eddy subgrid model formulation. The model is used to predict NO formation in
hydrogen-air diffusion flame using a reduced chemical mechanism involving nine reactive
scalars.

1. INTRODUCTION

Conventional turbulent mixing models based on gradient diffusion assumptions are
not capable of accurately predicting mixing and reaction rates in most practical com-
bustion devices. Furthermore, at the small scales, most conventional models make no
distinction between turbulent convection and molecular diffusion. This distinction is
critical for the accurate description of the mixing and reaction process. In addition, it
is known that turbulent mixing and entrainment processes in shear flows are dominated
by unsteady large scale vortical motions. The spatial and temporal evolution of these
large scale structures is difficult to model and must therefore be explicitly computed for
accurate predictions.

Modeling the subgrid scalar mixing in turbulent flows provides challenges not present
in subgrid models for momentum transport. Turbulent mixing, and particularly reac-
tion, is an inherently small-scale process, and any predictive scheme must contain a
description of the flow field down to the diffusion scales. This is much more stringent
than the resolution requirement for modeling momentum transport, where the small
scales basically provide dissipation for the large scales. As such, subgrid models for
momentum transport which utilize various formulations of a subgrid eddy viscosity can
be expected to give reasonable predictions of the large scale transport.
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In this paper, a new subgrfd modeling technique is described for use in large eddy
simulations of turbulent mixing and reaction. In particular, a model for mixing and

chemical reactions at the subgrid level is developed based on the Kerstein's[1-31 linear
eddy approach. A unique feature of this model is the separate treatment of turbulent
convection and molecular diffusion at the smallest scales of the flow. This distinction
is critical for predicting the small scale mixing process and capturing Schmidt number
dependency and the effects of finite rate reaction. The model potentially has the
capability to treat reacting and non-reacting flows at both low and high Mach numbers
Thus, it should be applicable to many reacting flow fields of interest.

The model is first applied to mixing of a conserved scalar in a turbulent shear
flow. To test the subgrid mixing model, the velocity field is described by an analytical
function describing vortex rollup in a shear flow. Turbulent fluctuations are added to the
velocity field at each time step. Thus, the velocity field is taken as an input, and is not
computed directly. This allows the testing and validation of the subgrid model without
the complication of simultaneously solving for the velocity field. The subgrid model is
then applied to a hydrogen-air diffusion ame. Predictions of combustion radicals as
well as major species are computed.

In the following section, a basic description of the linear eddy model is given. Next,
the implementation of the linear eddy model as a subgrid model for use in large eddy
simulation is presented. In section 3.1. the model is applied to mixing of a conserved
scalar, while the hydrogen-air combustion problem is treated in section 3.2.

2. MODEL FORMULATION

2.1 The Linear Eddy Model

Turbulent mixing can be envisioned as consisting of two distinct processes: 1) tur-
bulent stirring, and 2) molecular diffusion. The unique aspect of the linear eddy model
is that this distinction is retained at all length scales of the flow by resolving all relevant
length scales. The model is formulated in one spatial dimension, allowing fully re-
solved computations even for relatively high Reynolds number flows - a computationally
unfeasible task in two and three dimensions.

In the linear eddy model, the processes of molecular diffusion and turbulent stir-
ring are treated as described below. Diffusion is simply implemented by the numerical
solution of the diffusion equation over the linear domain for each species k,

80k a 2 1k82=bk(1)

The scalar field is regularly updated during a simulation to account for molecular diffu-
sion.

The key feature of the model is in the manner in which turbulent convection is
treated. This is implemented in a stochastic manner by random, instantaneous rear-
rangements of the scalar field along the line. Each event involves spatial redistribution
of the species field within a specified segment of the spatial domain. The size of the
selected segment represents the eddy size, and the distribution of eddy sizes is obtained
by applying Kolmogorov scaling laws. In this model, rearrangement of a segment of size
I represents the action of an eddy of size 1. A detailed description of the rearrangement
events is given in Ref. 3.
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The rearrangement events are specified by two parameters A,. which is a rate pa-

rameter with dimensions [L-lt- 11, and f(l), which is a pdf describing the length scale
distribution. The value of these parameters is determined by recognizing that the re-

arrangement events induce a random walk of a marker particle on the linear domain.
Equating the diffusivity of the random process with scalings for the turbulent diffusivity
provides the necessary relationships to unambiguously determine A and f(l). For a high

Reynolds number turbulent flow described by a Kolmogorov cascade, the result is3

5 1-8/3
f() = 3-5/3 - L-9/ 3  (2)

A 54 (ReL V 5/3 (33, = T3 ( 7)

where ?/ is the Kolmogorov scale and L is integral scale.

Given an initial scalar distribution, scalar redistributions (turbulent mixing) are car-
ried out governed by the parameters described above, while molecular diffusion is im-
plemented at each time step according to the discretized form of Eq. 1.

This formulation allows one to resolve all relevant length and time scales for flows
of practical interest.

The model was originally developed to investigate the qualitative mixing properties
of turbulent flows and has so far been applied as a stand-alone model in application
to homogeneous turbulent flows, 1'3 planar mixing layers,2 and turbulent jets.4 The
important qualities of this model stem from the fact that the basic physics of turbulent
mixing are incorporated. Molecular diffusion is treated in a deterministic manner by
numerical solution of the diffusion equation, and turbulent convection is modeled in a
physically sound manner by the stochastic scalar rearrangement events. The distinction
between molecular diffusion and turbulent convection, particularly at the subgrid scales,is crucial to the accurate description of the evolution of the species field, especially
when chemical reactions are involved. This distinction is not made in most turbulent
mixing models.

2.2 Implementation of the subitrid model in an LES code

The classical implementation of large eddy simulations involves filtering out the
small scales of motion, and explicitly computing the larger scale motions which can be
resolved on a numerical grid. The modeling process is then concerned with modeling
only the small scale motions, and their interactions with the large scales. 'Subgrid
models for momentum transport have primarily been based on ideas of a subgrid eddy
viscosity. The eddy viscosity idea is a reasonable approach to the extent that the small
scale motions primarily provide a mechanism for energy dissipation and transfer at the
larger scales. For turbulent mixing and reaction processes, however, it is not possible
to characterized the overall statistical state of the scalar field in such a manner. This
is a result of the subtle interactions between turbulent stirring, molecular diffusion, and
chemical reaction at the smallest scales of the flow. A reliable subgrid model should
therefore attempt to provide a description of these different physical mechanisms, even
at the subgrid level.
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The linear eddy model has proven to be an effective tool for studying scalar field
mixing processes by retaining this distinction at all relevant length scales. In the previous W
applications, the model has been implemented as a stand-alone mixing model in which
the statistics of the velocity field (i.e., turbulent diffusivity, Dt, and length scale, L)
have been assumed inputs. The previous applications of the linear eddy model suggest
its potential as the basis for developing a subgrid model to be used in large eddy
simulations.

The procedure developed here for implementing the linear eddy model as a sub-
grid model involves performing separate linear eddy calculations in each large eddy or
computational grid cell. With the Reynolds number of the flow as an input parameter,
classical scaling arguments lead to an approximation for the range of eddy sizes in the
flow, and thus, the range of eddy sizes in the subgrid range. Because the small scales
have much higher frequencies than the large scales, a number of scalar rearrangement
events, along with the Fickian diffusion process at the subgrid level, must be performed
between each time step in the LES.

Within each large eddy cell, or computational grid cell, the linear eddy simulation
corresponding to that cell represents mixing and diffusion at the unresolved scales. No
directional dependency is associated with the linear eddy simulation. In this situation
the linear domain may be viewed as a time varying space curve aligned with the local
scalar gradient. This interpretation is consistent with the action of the rearrangement
events, which always result in an increase in scalar gradient.

The unresolved length scales can thus be accounted for with a one dimensional line
of scalar information. Therefore, if the ratio of the smallest relevant length scale to
the large eddy grid-cell spacing is N, the scalar information can be computed with an
array of size N, irrespective of large eddy grid dimensionality. Full simulations in two
dimensions would require array of N 2 , and in three dimensions, N 3 . The economy of W
this method compared to direct simulation of the multidimensional convection-diffusion-
reaction equations is apparent.

Besides the rearrangement events (turbulent convection) and molecular diffusion
which are treated in the linear eddy simulation associated with each grid cell, other
events must be carried out to couple the subgrid mixing process to the large eddy
transport and to the mixing processes occurring in neighboring grid cells. These events
are associated with the convective transport across each grid cell (large scale transport)
by means of the resolvable velocity field. In the present model this is carried out
by splicing events, in which mixing processes associated with neighboring grid cells
undergo a transfer of material based on the scalar flux across each grid cell interface,
as computed from the resolvable grid scale velocity. This transfer is implemented by
excising a portion of the linear eddy domain associated with the donor grid cell and
splicing it into the linear eddy domain associated with the receiver grid cell. In Fig. 1
the processes involved in the linear eddy subgrid algorithm are illustrated.

In addition to the resolved velocity field, random turbulent fluctuations will result in
additional scalar transport across grid cells. The flux across each grid cell is modified
to account for this flux by adding the subgrid rms velocity vectorially to the resolvable
velocity field. The direction of this perturbation is randomly chosen at each time step,
so the mean flux is not affected by this fluctuating component.

In summary, the subgrid implementation consists of two processes: 1) the linear
eddy calculations in each grid of the computational domain, and 2) the splicing events
which account for the convective flux of the scalar field across computational grid cells.
An explicit species transport equation is not solved, since the large scale convection
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is accounted for by the splicing events and the small scale convection and diffusion is
modeled by the linear eddy simulations.

it is noted here that the splicing events associated with the exchange of scalar
material among grid cells can in principle result in an additional, unphysical contribution
to the turbulent diffusivity through the generation of discontinuities in the scalar field
However, the frequency of scalar rearrangement events scales as URe 5/4/A while the
frequency of splicing events is the inverse of the large eddy time step, on the order
of U/I, where U is the large scale convective velocity and A is the grid size. For
high Reynolds number flows, the rearrangement events occur at a much higher rate
Therefore, the spurious scalar dissipation caused by splicing events is not statistically
significant.

3. RESULTS

3.1 Scalar Mixing

The linear eddy subgrid model has been implemented using a deterministic velocity
field representing vortex roll-up in a shearing flow. A deterministic, analytically explicit
velocity field is used to reduce computational requirements and to isolate the charac-
teristics of the subgrid mixing model. However, the subgrid model implementation is
the same as it would be with a full Navier-Stokes solver. The assumed velocity field is

(F), cosh sinh (21)Z p 2 ,2)4v (4

sin X e_(z2+ j2)/4 wt

V(z' ,yt) 2a= cosh (iZZ X2 co (y2 (5) x

This velocity field has been used previously in studies of molecular mixing by Cetegen
and Sirignano. 5 The subgrid turbulent fluctuations were specified as 5% of the mean
velocity difference across the mixing layer. In more comprehensive calculations, the
subgrid turbulent kinetic energy would, in general, vary from location to location in the
flow. The subgrid rms velocity would in this case be determined from the subgrid model
used to determine the momentum transport in the flow.

The domain is chosen to extend from [-7r,7r] in both the x- and y-directions,
with an initial scalar field of 0 for y : 0 and 1 for y > 0. The velocity field is resolved
on a 32 x 32 grid. A linear eddy simulation with a maximum array size of N = 100
elements is implemented for each grid cell, giving an effective Reynolds number of 5000
for the simulations. (This allows for 6 linear eddy elements to resolve the Kolmogorov
scale.)

The initial scalar field consists of • = 0 for all x and y > 0 and 0 = 1 for all x
and y < 0. The development of the scalar field with time is shown in Fig. 2. This
figure is based on a representative scalar concentration for each grid cell obtained by
averaging over the linear eddy array for that cell. The characteristic roll-up structure
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is reproduced by the exchange of scalar elements across grid surfaces. These exchange

(splicing) events are seen to accurately represent the large scale roll-up of the shear
laver

The statistical state of the scalar microfield within each grid cell is represented by
the linear eddy model. The pdf of the scalar field across the mixing layer (Fig. 3) gives
some indication of the effects of the small scales. The pdf was computed at several
transverse locations across the mixing layer at a time of t = 6. The pdf's at each
transverse location were computed by sampling the data in each grid cell over all z
(streamwise direction) for a constant value of y (vertical coordinate). Beside the two
peaks in the pdf at 0 and 1, (corresponding to the unmixed free stream concentrations),
a broad, third peak can be seen in the distribution. This corresponds to a mixed fluid
concentration which is relatively independent of the transverse location. The qualitative
features of this pdf compare favorable with those computed for laboratory experiments. 6

3.2 Hydrogen-Air Flame

Chemical reactions within the linear eddy model can be accounted for in a straight-
forward manner by including a reaction term in the diffusion equation (Eq. 1). An
additional linear eddy array must be used to account for each of the separate chemical
constituents. Although this approach is fundamentally sound, practical complications
arise when several chemical species must be tracked and when the reaction rates cover
a wide range of time scales. In the work performed for this study some of the complica-
tions associated with treating full chemical kinetics are avoided by employing a reduced
chemical mechanism for the hydrogen-air flame as used by Chen and Kollmann. 7 '8
The reduced mechanisms can be conveniently incorporated into the linear eddy subgrid
model formulation. In the hydrogen-air problem trea'--d here, ten elementary reactions
are considered. The total number of scalars in the reaction mechanism is 10, of which
seven are active chemical species ( H2 , 02, H20, 0, H, OH, HO 2 ), plus temperature,
density and pressure.

The advantage of the reduced mechanisms is that the number of scalars that need
to be tracked during the simulation is minimized. In the simplified scheme, three scalars
are tracked throughout the simulation: the mixture fraction, 0, a progress variable de-
scribing the extent of reaction, q, and the NO concentration. The reaction mechanisms
used are solved beforehand to generate a look-up table that can be used to interpolate
for the species whenever required. The mechanism used to model the formation of NO
in the H2 -air combustion process is based on thermal pathways characterized by the
well-known Zeldovich mechanism. A detailed description of the reaction mechanisms
and reduced mechanism formulation used in this work can be found in Ref. 9.

The simulation starts from mixture fraction values corresponding to air in the upper
stream (y > 0), and hydrogen in the lower stream (y < 0). The velocity field given by
equations 4 and 5 is used. Combustion is initiated by setting several elements of the
linear eddies located along Y = 0 equal to their stochiometric values (• = 0.028) and
equilibrium chemical states.

The mixture fraction evolves as shown in Fig. 2. At this stage of model development,
effects of combustion heat release on the velocity field and on transport properties has
not been addressed, although such effects can be accounted for within the linear eddy
model.9 The temperature field at t = 6 is shown in Fig. 4, and the NO concentration
at the same time is shown in Fig. 5. The stochiometric temperature of 2500K occurs
across the flame front, although the temperature is not uniform across the flame front.
The flame is located at the outer regions of the vortex, extending into the air side W
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of the shear !ayer. The flame penetrates into the air side of the stream because the
stochiometric mixture fraction is less than 0.5. (The free stream reactants for this test
are hydrogen and ambient air, respectively.)

The concentration of OH is shown in Fig. 6. Comparison between Figs. 4 and 6
indicate that OH production occurs where the temperature is a maximum. However.
accumulation of NO over time is more widely distributed over the mixing region.

4. Discussion

The implementation of the linear eddy model as a subgrid model has been shown to
realistically represent important features of the turbulent mixing process. This extension
of the linear eddy model from its original formulation as a one-dimensional, stand-alone
model is significant as it allows for a realistic description of the scalar field at the smallest
scales of the flow for multi-dimensional flow simulations. It has also been shown that
rather complex chemical mechanisms can be incorporated into the model formulation
in a relatively straightforward manner.

For full three-dimensional large eddy simulations, computational requirements will
become- an issue, as a large one-dimensional array is needed to account for the scalar field
distribution within each grid cell. Furthermore, regardless of the form of the subgrid
model, numerical integration of reaction mechanisms will continue to b! severe as
the sophistication of the chemical models implemented in the simulations is increased.
However, it should be noted that the present model formulation is ideally suited for
implementation on parallel processing machines. Most of the work in the mixing subgrid
model is confined to individual linear eddy arrays. If a separate processor is used for
each linear eddy, communication between processors is necessary only during the large
scale convection process - an infrequent event with respect to the rearrangement and
diffusion processes ongoing within each cell.
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Figure 1. Schematic illustration of linear eddy subgrid model. The one-dimensional
elements within each grid cell represent the on-going linear eddy calculations that are
performed in each cell. At each large eddy times step, linear eddy elements are ex-
changed across neighboring grid cells, accounting for large-scale transport. The arrows
indicate the components of convective flux across the grid cells, which determines the
amount of scalar information contained in the linear eddies that is exchanged at each
large eddy time step.
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Figure 2. Contours of grid averaged mixture fraction. Within each grid cell, the
linear eddy elements are averaged to give the local scalar average value for each grid
cell. a) t=2, b) t=6.
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Figure 3. Pdf of scalar value at several transverse locations across the shear layer.
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Figure 4. Temperature concentration contours for the hydrogen-air flame at time
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Figure 5. NO Concentration, t=6.
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Figure 6. OH concentration, t=6
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THE EFFECT OF CHEMICAL REACTIONS ON
TURBULENT DIFFUSIVITIES

H.L. Toor

Department of Chemical Engineering
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

A mixing length model is used to explain and model the recently observed (Bilger er at.. 1991) effect of

chemical reactions on turbulent diffusivities. This coupling between microscale reactions and macroscale

mixing occurs because reaction rate is a quasi-transferable property which causes more reaction in fluctuating

fluid lumps leaving regions of high rate than low rate. The net effect is to either raise or lower reactant

diffusivities depending upon a characteristic macromixing time and the rate at which the mean reaction rate

changes with mean concentration,

6 dCA

The model shows observed qualitative behavior and also appears to be in quantitative agreement with

much of the existing data. It adds an apparent flux, e tMVF,, to the convective diffusion equations which can

either enhance or hinder the normal turbulent fluxes.

Two kinds of closure problems arise when the convective diffusion equations for a dilute, reacting

Fickian system with non-linear chemistry are averaged to give

a-1c V0 +.V. (DiVi---•)• - ri,ii=A, B.... (1)

The closure problem in the reaction term follows from non-linear chemical rate laws which lead to

correlated concentration covariance terms,--terms which decrease reaction rates in non-premixed systems. These

micromixing (or more accurately, microsegregation) effects have been studied in one dimensional systems where

they can have a very large effect on reaction rates and where models have been developed to handle them in such

systems (Harada. et al., 1962; Kanan and Adler, 1967; Mao and Toor, 197(. Toor, 1969; Treleaven and Tobgy,

1972; Mehta and Tarbell. 1983; Li and Toor, 1986; Baldyga and Bourne, 1989).
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Or, ihe other hand the velocity-concentration covanance term. which has little effect in one dimensional 0
systems. i -ore likely to dominate multidimensional systems like jets and wakes (Hanks. 1991). This tern has a

long histor% n non-reacting systems where it has been usefully modeled with a turbulent diffusivity tTaylor.

1915. Hinze. 1959: Tennekes and Lumley. 1983). Since the term is non-zero only in the presence of gradients of

the time average concentration it describes macromixing. Because it apparently has the same significance in

reacting as well as non-reacting systems it is tempting to treat it with the normal turbulent diffusivity. i.e. to

assume that the reaction does not affect the turbulent diffusivity. This is almost surely true with slow enough

reactions, but is less likely with faster reactions--reactions whose half lives are comparable to or less than the

integral time scale (Corrsin, 1974; Klimetnko, 1992). Since recent measurements of Bilger e al. (1991) show a

significant effect of faster reactions on turbulent diffusivities, the novel effects need to be treated in order to close

Eq. (1). A way around this coupling of the reaction with the turbulent diffusivity (micro-macro coupling) is to

dispense with both terms and recognize that both effects are different manifestations of imperfect mixing, as is

done in the recent conditional mean methods (Bilger, 1991; Klimenko, 1990). The alternative, adopted here, is to

accept the coupling and relate turbulent diffusivities in a reacting system to both the reaction and the turbulent

diffusiviities in the analogous non-reacting (passive) system.

The Experiment

Bilger et al (1991) studied the reaction between non-premixed dilute nitric oxide (reactant A) and dilute

ozone (reactant B) behind a splitter plate with grid generated turbulence. With Damk6hler Numbers of 0.3 and

1.8 they deduced turbulent diffusivities for the reactants as well as the passive non-reacting value and their non-

dimensional diffusivity results for a Reynolds Number (based on grid mesh and mean velocity) of 11,700 are

reproduced in Figure L. Their non-dimensional mean concentration and reaction rate data are also reproduced in

Figures 2 and 3. Both their nomenclature as well as that used here are shown. All the data are 21 grid spacings

downstream. They pointed out that the turbulent diffusivities for the reactants "are substantially higher than those

for the mixture fraction on the sde of the layer from which the reactant comes but are much lower on the other

side. In this latter region the diffusivities also show a dependence on ND with values for high ND being smaller

than those for low ND." (The effects are seen more clearly in Figures 6 through 9.)

It was subsequently shown that for the particular chemistry which was used, A+nB -+ products (Tour.

1991), that die hree turbulent diffusivities are related by

(CA - C) VRA - 0 (CB - C) V 9X (2)

Equation 12) is qualitatively consistent with this non-premixed experiment where the gradients are of opposite

sign although, as will be seen, some of the data do not quantitatively satisfy the equation. Equation (2) does
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suggest that nre ntv.idual reactant turbulent diffusivities will depend upon the mean concentraton gradients. It is

explicit reLir:,nmnips "or these individual reactant diffusivities which are needed for closure of Eq. (1) and we will

use a mixing .engtn model iTaylor, 1915-. Hinze. 1959; Tennekes and Lurriley. 1983) to attempt to do so.

A Qualitative Explanation

We first show that the qualitative features of Bilger et al.-that in their particular expenment reactant

turbulent diffusivities are increased on the side from which they come and are decreased on the other side-are

predicted by a mixing length model which also brings out the underlying physical cause. (The Datnkohler

Number effect is more easily seen in the next section.)

Figure 4 is a sketch of data of Bilger et al. which shows the mean concentrations and reaction rate as a

function of position transverse to the main flow. The time average velocity in the transverse direcuon is zero so

transport in this direction is caused by velocity fluctuations which exchange lumps of fluid between regions of

different concentrations (large scale molecular transport is negligible). Thus in the absence of reaction this model

leads to a positive turbulent diffusivity which depends upon the intensity of the velocity fluctuations and the

distance (mixing length) traveled by the lumps before they mix with the surrounding fluid, i.e. before they are

micromixed. During this motion, since the lump is not in equilibrium with its environment it can exchange a

passive tracer with the surrounding fluid by molecular diffusion leading to an effect of molecular diffusivity on

turbulent diffusivity. Any micromixng inside a non-uniform lump, since it conserves material, could only affect

the macro-transport indirectly by affecting the interchange between the lump and its surroundings and even this

"leak" will normally be small (Tennekes and Lumley, 1983). (It is this small interchange which leads to the idea

of transferable properties and mixing length models.) However a reaction which takes place inside a lump, a

microscale phenomenon, does not conserve material even in the absence of a leak, and. as will be seen, is the

apparent cause of the observed effects.

Consider the situation in Figure 4. focus on reactant A on the right side of the centerline and consider two

imaginary parallel planes perpendicular to the y direction and separated by a small distance. Lumps are

interchanging between these planes, but now a reaction takes place inside the lumps-in this case removing

reactant A. Because the integral scale lumps are much larger than the Kolmogorov scale, the microscale at which

the reaction takes place, lumps will sample the mean reaction rate as well as mean concentration of their

birthplace. Consequently lumps leaving from the right plane will leave on the average with the time average

concentration and time average reaction rate at that plane so less A will reach the left hand plane in that lump than

would occur in the absence of reaction. Similarly, lumps leaving the left plane on the average leave with the time

average concentration and reaction rate in that plane and this lump will carry less A to the right than it would if

there were no reaction. But note, however, that if the reaction rate in the left and right leaving lumps were the

same during their flight the net transport and hence turbulent diffusivity would not be affected by the reaction.
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The transpr L,1 turbulent diffusivity is affected because the reaction rates are different and they are different

because of :t_. >."aiia leakage from the lumps during their flight so the initially different reaction rates persist. (If

converston in a :ump is small, rate will be essentially conserved, but even if not the two average rates will differ

so long as the lumps do not immediately equilibrate with their surroundings. Reaction rate is in this sense at least

a quasi-traP.sferable property.)

The right leaving lumps leave with a lower reaction rate (see Figure 4) and this lower rate persists so less

A is lost from these lumps than is lost from the left leaving lumps which start with and continue with a higher

reaction rate as they move right. Hence as observed experimentally (Figure 1), the net transport from nght to left

is increased-the turbulent diffusivity of A on the right-the side from which A comes is increased by the

reaction as observed, but it is increased because of the persistence of the reaction rate bias-it is not an eddy

leak-it is a true microscale effect within the lumps.

On the left side of the centerline the gradient of the mean concentration of A and its rate are both in the

same direction. Again consider two parallel planes on the left of the centerline. Now left leaving umps are

reacting more slowly than right leaving lumps so more A is lost by the right leaving lumps than the left leaving

ones. Hence less A is transported down the mean gradient-the turbulent diffusivity is decreased by the

reaction-again as observed. Reactant B merely mirrors the behavior of A-same arguments and conclusions.

Although this elementary mixing length viewpoint is qualitatively in accord with experiment and affords a simple

explanation for the micro-macro coupling, practice requires a quantitative result which is presented in the next

section.

Quantitative Development

We will use unidirectional definitions of the turbulent fluxes

N v-t, - e dC (3)
dy

NA = V'CA A dCA (4)
dy

If 2X. is the mixing length, lumps cross a plane carrying their transferable properties from within distances of 2X,

on either side of the plane, so the average distance of travel to the plane is X, if statistical properties do not change

over the distance 2;L. Hence in order to relate z and CA we consider the two imaginary planes discussed earlier

(now drawn in Figure 5) to be the distance 2X apart and determine the net flux from left to right crossing a parallel

plane midway between the two planes. All the lumps crossing the midplane are thus taken to have traveled the

average distance ..
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A-c . o ing with the velocity u from left to right carnes u CA? moles Altime area to the right and the

amount a acror;s the midplane is given by

u(C!A1 -ýrAi) (5)
U

It is assumed that there is no leak from the lump and that rAI is the average reaction rate in these left leaving

lumps based on the average flight time X/" .

The amount of A crossing the midplane in right leaving lumps is then

so for two equal and opposite moving lumps the net flux across the midplane is

NA MU [KA1 -?A2) r -~ 1A) (6)

As usual, for small X (see Tennekes and Lumley (1983) for other justifications)

Z^M - iffA,2 A- 2; (7)
dy

There are two opposing tendencies within a lump-conversion decreases reaction rate while micromixing

increases rate. To avoid the difficult problem of evaluating the net effect we assume negligible rate change during

the lifetime of any lump. Then for small X

ra-rA2 -U 2X d (8)
dy

Combining (7). (8) and (9) and averaging

9A 2UL dy l dy(9)

When rA is set equal to zero, Eqs. (3) and (9) identify 2u;. as e so

NA - - (10)
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The flux i, c!nhanced or diminished. depending upon the relative signs of the gradients of CA and fA.

R•Lm,•ging Eq. (10) gives the relationship between the two turbulent diffusivities which closes the

macromixing term in Eq. (1).

E dCA

The non-dimensional form is

-I' - NDm G- (12)
C dXA

where the Damkohler Number which arises is the ratio of the flight time or characteristic macromixing time.

tM -, to the characteristic reaction time. tR,
U

NoM =iM (13)

Equation (12) is presumably valid for any chemistry but if the reaction is described by the mass action law

A - k ACS (14)

then 'tR = /k CBO,RKA XAXB,

NDm 4 k CwO (15)
u

and

I - NDM dXAX (16)C dXA

The equation for B is

(17)
£ 3 dXA

Sappears in this equation because of the choice of NDM made in Eq. (15).

This form is not particularly useful for an instantaneous reaction, but closure is not needed here since the

solution to Eq. (1) at this limit is known in terms of the solution to the analogous non-reacting problem (Toor.
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1962). Thi, • Known as the "Conserved Scalar" method in the combustion literature (Bilger er al. 1991)

Equa*,on ', ý ) can also be derived by determining the effect of the reaction on the reactant concentration

fluctuation, A reaction which consumes a reactant decreases positive fluctuations and enhances negative

fluctuations. Equation (11) also follows from this viewpoint because of the persistence of the bias in the reaction

rates.

Proceeding any further with Eq. (16) and (17) requires a micromixing model since

XAXB = XA X XX (18)

However this is not needed with first order reactions which are unaffected by micromixing so Eq. (8)

always overestimates the amount of reaction in the case. With

FA = k CA (19)

Eq. ( 11) becomes
I - k tM (20)

The diffusivity is always decreased by the reaction because the reaction rate is always higher at the high reactant

concentration.

This first order reaction is not very interesting in its own right, but it does allow examination of the

approximation introduced by Eq. (8) since the reaction rate in a lump is now simply given by Eq. (19). The result

obtained by summing the reaction effects in all lumps originating within a distance 2X on either side of a given

plane is

ýA 1 -(1 + 2ktm)e-Zkvm (21)
S2 (kTM)F

so Eq. (20) is only valid for small values of the macro Damnkdhler Number, kTM. Unfortunately this does not help

much in determining the error in Eq. (11) for other kinds of reactions which are sensitive to micromixing.

Comparison with Experiment

Returning to Eq. (11) (or (12)) we first note that with its counterpart for reactant B it satisfies the

consistency condition of Eq. (2) because ft = n YA for the single step reaction. Secondly we observe that Eq. (12)

has the correct overall behavior-it shows the behavior observed by Bilger et al. (1991)=-for their experiment:

(1) the reactant turbulent diffusivities are higher than the ordinary (passive) values on the side from which the

reactant comes (because of the sign of dRA/dX,,), (2) are much lower than the ordinary values on the other side

(because the rate of change of reaction with concentration is much larger on that side), and (3) in this latter region
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there is a Da-, ,er etfect with diffusivity values for the high ND smaller than for the low ND (obvious, from Fq.

i i, not precisely fixed by the model it would be reasonable to take t*4 as an adjustable

parameter. However it is interesting to evaluate TM with measured quantities. The mixing length -x should be

approximately the integral length scale (Tennekes and Lumley, 1984). U the RMS velocity fluctuation, and since

Bilger et al. (1991) has measured these values we can estimate a single value of T.M from their measurements

Using the average measured integral scale of 0.25m and iof 0.025 rn/s (Saetran. 1989) gives an average

micromixing time, TM, of 5.0s.

The macromixing Damkohler Number in Eq. (12) is related to that used by Bilger by

MUl+D

The mean velocity U is 0.55 m/s and M is 0.32 m. -, 0.94 in the experiment with ND,,1.81 and 1.0:. in the

experiment with ND = 0.3. Then for ND = 1.8. NDM = 7.61 and for ND = 0.3. NDM = 1.30.

We read RA, XA and X8 off Figures 2 and 3, determined -d A and - by finite differences and then

dXA dXB'

interpolated to obtain a value of dRA/dXA for each reported value of ,. Equation (12) was then used to calculate

iA and Eq. (17) to calculate £m. Figures 6 through 9 compare these values with experiment. They all show E and

both experimental and predicted values of iA or s and i.

Figures 6 and 7 are at the higher ND of 1.81. In Figure 6 the experimental values of EA left of the

centerline are much lower than t. We do not have an estimate of the uncertainty in these values, but the

predictions of Eq. (12) captures this behavior surprisingly well, as it also does on the other side. the side from

which A comes. There, Eq. (12) predicts a small increase in i A for all points-close to experiment for most of the

data (some of the reaction rate data here is questionable so we have used the rate data from the left side of Figure

4). EB, shown in Figure 7 is predicted almost as well by Eq. (17), except for the cluster of very high points, near

left center. It is possible that these iB data are incorrect since the reported eA and La data do not satisfy Eq. (2).

We have recalculated £ from Eq. (2) by assuming that the reported iA are correct and these corrected

values, shown in Figure 7, are much closer to the predictions of Eq. (17), which may lend some credence a the

suggestion thzt the data are in error here.

Figures 8 and 9 repeat 6 and 7 at a lower ND. The decrease in diffusivities, on the left in Figure 8 and

right in Figure 9, less than at the higher Darr-k6hler Number in Figures 6 and 7. is very nicely predicted by Eqs.

(12) and (16). The small increase on the other side is also handled well, although there are more anomalous high

data points in both figures. The reported values of 4A and 4 are inconsistent with Eq. (2) in such a random

manner that there seems little point in recalculating ig (oriA) as was done before.
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In .i.: -e :J:culations we assumed :k to be constant, the mixing length 2X to be the measured integral

length sca. o cle Me measured average RMS velocity fluctuation and obtained reasonably sv tsfac oi

agreement '.,mh expenment-unexpectedly good in many cases, but the model cannot explain the very high

values of . and ea in Figures 7. 8 and 9. Is this a failure of the model or are these data erroneous' Funher data

are needed to answer the quesnon.

Convective Diffusion Equation

Retaining the diffusivities as scalars while generalizing Eqs. (3). (4) and (12) to three dimensions gives the

final result.

&E.+ _.V , = 7.(D) + )rVC1 -cV MVfi - ri (18)jF I.

The new term. Ve rMV1I, contains the macro properties e and tM and the reaction term which depends upon

micromixing. This is a true macro-micro coupling which causes an apparert flux. E tMV!, which can either

enhance or hinder the normal turbulent flux. -eVC. How important a role it plays in the overall reactive mixing

process remains to be determined.

Equation (18) still requires evaluation of the concentration covai mance term or terms which appear in the

mean reaction rate term. There is much less information available in multidimensional than in unidimensional

systems as to how to handle these micromixing effects. Bilger et a!. (1991) found that Toor's closure (Toor.

1969) predicted their reaction rate moderately well. This closure assumes that the concentation covariance term.

CACB, which arises with the single step bimolecular reaction, is the value which would exist with an

instantaneous reaction. Assuming perfect micromixingFCA M = 0) did less well, but this avoids the micromixing

problem altogether and closes Eq. (18) for all chemistries. Because macrotransport tends to control in

multidimensional systems (Hanks, 1991) this naive closure may well give acceptable results in practice, but this

,peculation requires further study.

Nomenclature

A.B reactants A and B
C concentration in nonreacting systems, moleim3
C1  concentration of reactant i, mole/m3

CALCA2 average concenna" on of A in lumps leaving positions l and 2. respectively, mole/m3

Di molecular diffusivity of i, m2/s
k reaction velocity constant, m3/mole s for a second order reaction, s for a first order reaction
M pitch of grid in experiment
n stoichiomiemc coefficient
N flux in absence of reaction. moles/m2s

NA flux with reaction, moles/m2s

ND Damkdhler No., hM k (CAO + Cgo)"U
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'IDM1 nacro Damkohler No.. !hi . For a second order bimolecular reaction = k Ceo
TRU

ri mction rate mole/m 3s
r'. I, -,\ aerage traction rate during flight in left and right leaving lumps, respectively. m3/mole s

R, non-dimensional reaction rate, r, xR/CO. For a second order bimolecular reaction =rAt CAQCBO
t tme. s

u lump velocity. rn/s
C mean experimental flow velocity, mis

U average lump speed. rn/s
v vector fluid velocity. m/s

v, velocity fluctuation

Xi non-dimensional concentration of i. C
v distance normal to flow, mCI

Greek
stoichiometric ratin of feed, CeO/n CAO

S width of mixing layer. m
E passive turbulent diffusivity-no reaction, m2/s

£h,.E9 reactant turbulent diffusivities. m2/s
X half mixing length, m

'TM characteristic macromixing time, ý. s
u

rR characteristic reaction time. 1/k CBo for a bimolecular second order reaction. l/k for a first order
reaction, s

Subscripts
Sreactant A or B

0 initial value
- vector

Superscripts
- time mean value

A non-dimensionalized by hJUM
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Figure 3 Mean Reaction Rate vs. Position from Bilger et al. Figure 18. IL ND = 0.3; (. ND = 1.81.

Figure 4 Mean Reaction Rate and Species Concentrations vs. Position During Reactant Mixing.

Figure 5 Mixing Length Model.

Figure 6 Turbulent Diffusivities of Species A at ND = 1.81; 9 from Figure Ib; 0, from Eq. (12); A, Non

reacting Diffusivity from Figure Ia.

Figure 7 Turbulent Diffusivities of Species B at ND 1.81; (, from Figure ic, 0, from Eq. (17); A Non-reactin

Diffusivity from Figure la. C is from Eq. (2).

Figure 8 Turbulent Diffusivities of Species A at ND 0.3; ML from Figure lb; [from Eq. (12); A Non-Reacti

Diffusivity from Figure la.

Figure 9 Turbulent Diffusivities of Species B at ND = 0.3; IL from Figure lcQ" from Eq. (17); A Non-Reactin

Diffusiviry from Figure ILa.
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CHEMICALLY REACTING TURBULENT MIXING LAYERS
WITHOUT HEAT RELEASE

Robert A. Gore
Francis H. Harlow

Group T-3. MS B216
Los Alamos National Laboratory

Los Alamos. NM 87545

ABSTRACT

A new model for the velocity and concentration profiles in a reacting mixing layer is proposed. The

concentration model is based on a two-point turbulence model such that the small scales of turbulence which

can enhance the mixing of individual species is correctly accounted for. Comparison with experiments and

direct numerical simulation are made.

INTRODUCTION

We consider the far subsonic mixing of two chemically reactive species separated by a free shear layer.

This classification of flow has been studied in some detail due to its generic appearance in many practical

situations. These investigations have included direct numerical simulations (e.g., McMurtry et al.. 1986 and

Riley et al.. 1986). experiments (e.g., Mungal and Dimotakis, 1984. and Batt. 1977) and theoretical or modeling

studies (e.g., Broadwell and Breidenthal, 1982, and Borghi, 1988). The present approach applies a two-point

turbulence model coupled with moment closure for the averaged species equation. The advantage of using a

two-point approach is that the total energy in the turbulent fluctuations is decomposed to give the amount

at each wavenumber (or heuristically, each "eddy" size). Knowledge of the turbulent energy at each scale is

important to correctly quantify the mixing of reactant species occurring at the fine scale. This mixing will

greatly enhance the ability of molecules to come into direct contact which is necessary for chemical reaction to

occur.

At this stage of the investigation we assume a temperature-independent reaction between two species with

no heat release and thus no change in overall fluid density. This decouples the equations for the turbulent

velocity field and the species conservation. Also the reacA on rate is assumed to be infinitely fast such that

its magnitude will not have an effect on the mean velocity and concentration profiles and thus the rate at

which product is formed is limited by turbulent mixing and molecular diffusion. Comparisons are made with

numerical simulation and experiments in which these assumptions are valid.

For latter investigations, we will be interested in the regime where T./T <• 1 and T'/T < 1, or flows

at high temperatures and low activation energies. Staying in this regime allows us to neglect the effect

of fluctuating temperature on the averaged reaction rate where typically the reaction rate is written as

f = -Bexp(-T./T)YFYo before averaging.
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MODEL DEVELOPMENT

The mo,.,e used :n calculating the turbulent velocity field is a sipectral transport model first described in

Benard. Har:,•w Rauenzahn. and Zemach t1990) and applied to nonreactive mixing layers in Gore. Harlow.

and Zemach ý !991 The latter investigation showed that the model predictions are in good agreement with

expenments for that class of flows. In essence, the model describes the transport of the turbulent energy

spectrum1 in wavnumber space) through the physical processes of mean flow coupini. viscous and turbiilent

diffusion, cascade in wavenumber space. viscous dissipation, and a return to isotropy. The equation for which

is: aE . ) u . ,E 1 V ý E ,, 11t ,E,,, 28E 82 EO,"-•' - (1 - CB )( u,.,,Ej,, + .,,,

& iJx 2 8:2"

- C826 , uk..Ek. + CD _L JVT2-5-" C,8 1k (vITE,J

+C2-i 'k3V-k 8E.) CkkE E,,8 -. 8 ' m~E EbT)

where E = E,, and Vr = f, v/k/E/k 2dk. The above-modeled equation was deduced from an exact derivation of

E.,(7. k). which followed from two steps. First the two-point velocity correlation was Fourier transformed and

then integrated over shells in wavenumber sp-ce. The latter was done to reduce the modeling of interactions

in wavenumber space from those between vectors to that between scalars. Mathematically these steps are

represented by

R = J '.PR(7 +'F/2. 7- //2)dF

and d T k - k2dfQ
E,,(•k)-

where it is noted that

R.,(7 + F/2.7 - 7/2) = u'(7 + F/2)u',(7 - 7/2)

and

u'(7)u(7) = 2fE.(7,k)dk . (2)

Equation (1) was solved coupled with the ensembled averaged Navier-Stokes equation:

-- e + C,• M. p8:, + 8,8z, 8:, 3)

to give a complete description of the turbulent flow field. The equations were coupled through the calculation

of the Reynolds stress terms by (2).

The equations were simplified in the present situation by the assumption of 1-D flow. Fig. 1. In this

configuration mean fluid properties vary only in the y or croass-stream direction and time. By making this

assumption computational costs were greatly reduced without loss of the ability to compare to experiments (for

nonreactive flows see Gore, Harlow, and Zemach, 1990).

The instantaneous form of the species transport equation with chemical reaction is:

"8"Y, 8kz Y, 18 f r Y,1 O~
-l,+ U h---= _ (pDa- +Wu, (4)
&t 8X& p CIZ, I Ox,,

where i denotes species i. In the following, the simple reaction A + B -- C is considered so that

A16-2



4 = -` . -4 d' 1'3B and 4_ - -' . where .4 is the reaction coefficient and Y, is the mass fraction of
species i As mentioned. the reaction rate is considered to be so large that its value will not have an effect
on the flow properties. So while the form of A may be considered to be of the Arrenhius form. it will not be
modeled as iuch and will remain a constant albeit a very large one such that its value t which may in reality be
fluctuating due to temperature fluctuation if there were any) does not result in any significant changes in the
solution. The constraints on this assumption for a nonisothermal case are discussed in the introduction.

x-

t t0  t=t 0 + At

Fig. 1. Schematic of computational domain.

Ensemble averaging of Eq. (4) yields various terms that need to be modeled. First ut " -. -k
Co.)- LIT av} which describes the disordered (diffusional) part of the turbulent transport and neglects theordered (or large-scale) part that can lead to a counter-gradient flux. The other term in need of modeling is
=,, For species A. .A = -A/pYAYB or, since A and p are constants, ZA = -7A"TB. The first step we used
in modeling IAYB is to obtain a transport equation for that quantity. This is accomplished by multiplying
YB by the equation for Y4 (Eq. (4)) and adding to that the product of YA and the equation for Y9, then
averaging. This gives an equation for the transport of =A,9 which can be reduced by the homogeneous-time
steady assumption (ie.. = = 0) and the length scale assumption (i.e., a = 7,7,1- This
procedure for obtaining FYB is analogous to the procedure for "deriving" the Bousinesq assumption in single
species turbulent flows; -u',u"--, = vT( a a- + 3

The resulting equation is:

0 = -AYs(Yh + YB) - 7!-(DA +D9)YA (5)
P 9chein

One of the most important parameters in the present model is the definition of 9chem as defined in the length
scale assumption described above. It is an "average" scale over which the chemical reactions will be most
affected by turbulence, or conversely it is the scale at which the small scale turbulent motion enhances the
molecular mixing of individual species. This scale is derivable from a spectral analysis similar to that used to
derive the spectral transport model for the turbulent fluctuation, Eq. (1). This derivation follows.

First we define W,,(7,,7 2) = (Q-.), (k)Q(7 ,,2) where Q(71,72) = TBi = Y4(xj)Yý(x2). By defining
7 = (71 + 72) /2 and 7 = (71 - '2) and making this substitution in the preceding equation one obtains after
performing the Fourier transform of W,,(7, ,)
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/ _( o( o -k) Q(.k
w.•'• : •'*wi'v :-. •-/2)df= l-• ÷ -'2-k Q(-Y. 1)

By nee.-ing the higher order derivative terms. this is simplified to

U ,1. 'j T ) -.• k, kQ(7. 1) .

In keeping with the approximations that lead to Eq. 1), we examine only the variation of I',J as a function of

magnitude of wavenumber vector, thus we let

W(:F. k) k= 2Q(T.k)

Note that f Q({. k)dk = Y' 7Y, where Q(7, k) is the turbulent concentration energy spectrum.

This was done to obtain the single point correlation Y4Y' which is needed to close the ensembled-average

concentration equation. Thus, by definition

W(Y, k)dk ý _

f P kQ(T, k)dk.

It is postulated that Q(7, k) can be modeled as a function of E(7, k) so that

Q(7.k) E(7,k)
fo- Q(7, k)dk fo E(7, k)dk

This gives 0

TYA :Yj W(T k )dk

= Jk2Q(Y' k)dk

V [A fo' Q('Y, k')dk' ]ETkd2 L f. E(T, k')dk'J

f,- Q(T, k')dk' k2E(,kdf - k2  E(, kk)dk= A E(:•, k')-dk'
S2

y-fr Lk E(zk)dk

The limits of integration as they now stand would lead to a divergent sum for f0w k2 E(7, k)dk since E goes

as k-5/3 for k and Re approaching infinity Of course finite values for molecular viscosity and diffusion would

limit these integrals such that

_= iyyq fk (6)
ax ax fo'" E(T, k)dk

where k. , the Kolmogorov wavenumber is equal to (e/i?)1 / 4 and kD = v'• k., where Sc is the Schmidt

number. This value for kD is obtained from the cut-off of the so-called viscous-convective range as presented

in Lesieur (1987). After this cutoff the spectrum of the concentration fluctuation decreases exponentially and

any valves beyond this point are considered to be insignifcant. For Sc < 1 it is postulated that the smallest

scales in the concentration spectrum are those created by turbulence and as such kD = k,, although later we

test both approximation (kDo - k. and kD = v*k,) for Sc < 1. This results in the postulated spectrum for
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Q given in Fig 2 The final result, Eq. t6). is the length scale assumption:

O8 m; = C

where
: fo,"' E('I. k )dk

k f E(Y. k)dk
fo k2E(, ak)dk

Elk) Sc •

k , k ko
kD

Fig. 2. Postulated spectra for E and Q.

This procedure results in a defined h. scale to be used in (5):

0--IYAY'B(YA +YB) - A -(DA +DB)YAYL

p Schem

P 3Chem

for which the first term on the right-hand side is still in need of modeling since, through appropriate expansion

YAYB(YA + YB) = TVA + 17B) (VAFB + 21k'Y)

+ VAFryrY + V 8 Y Vry + YA YL(YA' + Yý

or T9AV(VA +YB) + 2(TA +B)YFAYB

where Z =VFAFB 'VBT + ;B(Y

It is then proposed that Z be a linear combination of the preceding terms in the above expression. that is,

Z = (1 +a)TAYB (VA +V7) + a (VA +Ya)7j7

where a = + + + + - YAVB (FA + FB)
(VA + rB) (rFAB+YAYB)

From examining the direct numerical simulation data from Riley, Metcalfe, and Orszag (1986), it was found
that to a good approximation a can be considered constant.
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This yields. for species A., the finai modeled form for the species concentration equation:

aY4  (9'r.4  af(D C 217A A~l-DA -I- =•VT) -• lA _T 7-1
a - I' I z P+ T

where = J&D k2E(kt)) E(k, t)dk
6hem 0 /f

with A being the only new variables to be fit by comparison to experiments. C6 was taken as 1.5 CD as the

typical value used in scalar diffusion of concentration.

As A approaches infinity the ensembled average reaction term approaches a finite value of A j2

D ,D which does not depend on A, consistent with the idea presented earlier that the reaction rate will

be some large value that does not affect the final solution.

RESULTS

"The results presented in this section have used the value A = .18 to optimize the comparison with available

information. This comparison is chiefly made with two sets of results. One is the direct numerical simulation

of Riley et &1. (1985) and the other is the experimental investigation of Mungal (1983). The comparison is

presented in Fig. 3. As shown, the comparison is quite good but some discussion of parameters is needed. The

present model has been matched to the data of Mungal using the parameters of their system, i.e.. Sc - 1 and

Re - 30,000, which are the values used in the present model. The simulation of Riley has a Sc = 0.6 and a

Re of approximately 300. They found a good match between their simulation and Mungal's data despite these

differences. As will be shown in the following figures our model would predict different product concentrations

depending on the value of Sc. Note that for the present model the profile presented in Fig. 3 is the final

self-similar form and as such does not change with time.

-30000 -

X

260.00

z-I

180.00 - ,

S140.00k

"Z it
I A0.00-

Z L®: .• "00k Ii-,

U '

20.00.- /

0.00- -

-4.00 -2.00 0.00 ,100 4.00

Y/yin

Fig. 3. Comparison of model with experiment and direct numerical simulation.
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In Fig. 4 ;s shown the variation of the production concentration as a function of time for two Schimdt

numbers. Time. rhough. can be linearly correlated with Re (based on width of the layer) since the width varies

linearly with time. Demonstrative values of Reynolds number are also shown. As can be seen, the centerline

production concentration quickly converges to its final self-similar value.

280.00 r- •., sc. I.o

240.00

E-

Q 160.00 -

P.7.

0
S120.00

S80.00

- 40.00

Z SC 1000.

0.00 -

0.00 200.00 400.00 600.00 30000

TIME
Fig. 4. Centerline product aenntration as a function of time (or Reynolds number)

The variation of the centerline product concentration at a Reynolds number of 30,000 is shown in Fig. 5.

The results of the two possibilities of kD = k. and kD = V'c k9 for Sc < 1 are presented. The theoretical

foundations for the turbulent concentration spectrum for Sc less than one are much less established and in need

of further experimental verification. Regardless, the general trend is consistent with other models and theories

in that the centerline product concentration decreases with increasing Sc.

As can be inferred from Eq. (7), the variation of a reactant species, say A, with time, dYA/dt, will come

from two sources, reaction and diffusion. The relative magnitude of these terms is shown in Fig. 6. In this

figure the croa-stream location is nondimensionalized by the momentum thickness, and each of the values for
dYAldt. reaction and diffusion are normalized by the maximum value of the diffusion term. The values were
taken after self-similarity has been reached, and therefore Fig. 6 is independent of time.

Finally, the self-similar value of the chemical reaction scale, seh.,, can be correlated with the various
parameters of the flow, namely, 0, P, D, and AU. Forming the proper nondimensional groups, one obtains

Schem (it 0"'U

Curve fitting the calculation of the present model leads to

sch 5.125 (.@ . (8 AU -(8)
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Fig. 5. Centerline product concentration as a function of Sc. Fig. 6. Contribution to the change in YA.

This form can be obtained approximately by making various assumptions. First, by definition

k2  = (*)_d_ f E(/)dk

2 fo-° kE(k)dk foa)' ( k)dk
s, kE(k)dk ( -.AS) k 2 E(k)dk

Then by making the assumption that

E(k) = -s1 k

IEm k > km.

where k,. is the wavenumber at which E is a maximum, E,.. This gives

-
2  Er kE. (k )-k /Ad

Sc•hem 
W / -j)14k 3A

or by performing the integration

7/4 Em k. - 3/2 E.mkI
3 /2t

Scem ==c 3 / EEk/ 5l 37 8
3/4Ek~n' DQ7 -I 7/12 Em k3

In the limit as v -. 0 or Re -- oc the previous equation reduces to

2 7/4 E,. kmS¢hem 5/

= ck, 21 3 e-1/3D2 13/lV 3
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or with the scalrg of k, - 1/0 and e At"/`

-ciefn -"1/
2 AL,-'112 D1t/3 1v1/6 or

which is ver- close to the form found through curve fitting the results from the computer simulation, Eq. I8,.

An alternate form of Eq. (8) can be obtained by using the scaling 6 - 3 (the scale of the most energetic eddy i

and AI •- vk (the square root of the turbulent kinetic energy). This results in

Schea = 2.6 33 ( L' 0

S -

CONCLUSIONS
The present investigation is the preliminary attempt at modeling the turbulence-chemistry interaction in

a mixing layer when the reaction rate is very large. The comparison with the limited experimental evidence is

encouraging and the use of a model of the turbulent concentration energy spectrum to obtain the length scale

approximation leads to a good approximation of the physics. As the Reynolds number becomes large and the

energy spectrum becomes self-similar, one can correlate the length scale associated with the most energetic

eddy and the scale of turbulence that most affects the chemical reaction. With this scaling the ensembled

averaged concentration equation can be used with a simpler one-point turbulence model such as k - e.
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VISUAL STUDY OF THE NEAR-COMPLIANT-WALL FLOW STRUCTURE
IN A TURBULENT BOUNDARY LAYER

T. Lee and W.H. Schwarz
The Johns Hopkins University

Baltimore, Maryland

The near-wall flow structure of a fully developed turbulent boundary layer with a single-layer passive

viscoelastic compliant surface was studied using the hydrogen-bubble technique. Low-speed compliant-wall streaks

with increased spanwise spacing and elongated spatial coherence were found and were compared to those obtained

on a rigid surface. More interestingly, an intermittent laminarization-like phenomenon was observed at lower

Reynolds number for the particular compliant surface investigated. Apparently, the observed changes in the

near-compliant-wall flow structure are caused by the stable interaction between the compliant surface and the turbulent

flow field. The visual results are then linked to the optical holographic interferometry compliant surface displacement

and laser-Doppler-velocimetry mean velocity and turbulence intensity measurements so as to better understand the

physics of the stable interaction between a turbulent boundary layer and a passive compliant surface.

1. INTRODUCTION

The idea of using a compliant coating to delay the laminar-to-turbulence transition and to affect the turbulent

boundary layer so as to produce significant drag reduction was introduced by Kramer'. The search for such a surface

has been elusive, despite reports of substantial drag reduction by some investigators. Irreproducibility seems to be

an outstanding characteristic of compliant surface experiments. The interaction between a passive compliant surface

and a turbulent boundary layer is still not well understood. Recently, Hansen et aP.2, Gad-el-Hak et a.3, and Riley

et al.' observed hydroelastic instabilities, in the form of large-amplitude static-divergence waves, which are developed

on viscoelastic compliant surfaces when the ratio of U, (onset velocity of the static-divergence waves) to the

transverse-wave speed in the solid Cq (= (G/p,)"2 , where G is the shear modulus of the compliant material, and p, is

the density of the solid) exceeds an asymptotic value of about 3. The presence of these unstable surface responses

was always accompanied by an increase in the skin friction drag. It is, therefore, necessary that the amplitude of the

surface motions must be kept low enough to avoid causing a "roughness" effect which would increase, rather than

decrease, the drag.

For a zero-pressure-gradient, flat-plate turbulent boundary layer, the production and transport of the turbulence

are dominated by the formation of the well-organized spatially and temporally dependent wall structures and their

interaction with other portions of the flow through a process of gradual lift-up, then sudden oscillation, bursting, and

ejection in the near-rigid-wall region (Kline et al.s Blackwelder and Eckelmann6 suggested that the flow in the

sublayer and wall adjacent regions is featured by counter-rotating pairs of streamwise vortices which dominate the

bursting events or frequency (ft) and the associated turbulence production. It seems, therefore, that a promising

candidate for the compliant-surface drag reduction would somehow be able to generate a small-amplitude, stable
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surface displacements (in the absence of unstable static-divergence waves) to disrupt this bursting process. Bushnell

et al. hypothesized that a successful compliant coating would modulate the "preburst flow" in the turbulent boundary

layer by providing a pressure field that would tend to inhibit or suppress the burst formation. This would result in

a reduced number of bursts occurring per unit time and consequently a lower skin-friction drag. It is also

hypothesized that any variation in the magnitude of dimensionless wall-streak spacing X" (=Xu./v, where X is the

wall-streak spacing, and u. is the friction velocity) is accompanied by a change in skin-friction coefficient.

The correlations among V, dimensionless streamwise wall-streak coherence x,* (= xu./v), f* (= f~v/u.) and

the skin-friction coefficient Cq have been investigated by researchers elsewhere. Grass' reported that the nature of

the interaction between the inner and outer regions remains quite similar whether the wall is smooth or covered with

roughness elements protruding up to about 80 wall units (v/u.), well outside the viscous region. This may be

interpreted as minimizing the importance of streaks. On the other hand, smooth-wall data in drag reduction by

polymer addition (e.g., Tiederman et al.9) show that there is a direct correlation among increased V, decreased f* and

Cf reduction. However, Gad-el-Hak et al.3 reported that no significant differences were observed in the number or

the length of recorded streaks for a PVC plastisol-gel compliant surface, and no measurable variations in the

skin-friction coefficient was observed as long as the magnitude of the compliant-surface displacements are less than

30 m in a turbulent boundary layer.

The objective of the present study was to use the hydrogen-bubble technique to determine if the presence of

a small-amplitude compliant-surface undulations would modify the spatial structure of the wall streaks and if this

modification leads to any changes in the velocity and turbulence intensity and C, measurements. In other words, it

is important to examine that if any observed changes in the compliant-wall-streak spacings would lead to: (1) an

alteration of the turbulent flow structure; and (2) a wall shear stress reduction or increase. Optical holographic

interferometry and laser-Doppler-velocimetry techniques were also employed to obtain the corresponding basic

parameters of the turbulent boundary layers examined and the whole-field flow-induced small compliant-surface

displacement measurements so as to better understand the physics of the stable interaction between a turbulent

boundary layer and a passive compliant surface.

2. EXPERIMENTAL APPARATUS AND METHODS

2.1. Test Facility and Compliant Material

The closed-loop, low-turbulence water tunnel at the National Institute of Standards and Technology was used

in the present experiments. The test section is 0.6 m in diameter and 3.6 m in length. A stainless steel flat plate

(3.6x0.6x0.048 m) with a highly polished top cover is rigidly mounted within the test section along the centerline to

generate a fully developed turbulent boundary layer. A tail flap was mounted on the downstream end of the plate

to control the pressure distribution along the plate, as well as the angle of attack at the leading edge. The

momentum-thickness Reynolds numbers (Re) investigated ranged from 900 to 8650. The single-layer isotropic

passive viscoelastic compliant materials were made by mixing commercially available RTV silicone elastomer

(Dow-Coming Sylgard 184) and silicone oil (Dow-Coming 200 series silicone oil). The mixture were chosen in

accordance with Duncan's'o theoretical results to produce small amplitude, stable surface displacements on the

compliant surface which represent the "footprints" (see figure I from Hess et al.") of the flow structure in the shear

layer. The amount and viscosity of the oil in the mixture can be varied to change the viscoelastic properties of the

compliant material and allows one to alter the response of the compliant surface to the flow Reynolds numbers of
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Figure 1. Compliant surface response for Re = 7200: compliant material
9/91-100 cSt oil: photographed region: 22.3x28.6 cm; spacing between hot-film
prongs: 0.3 cm (photograph is reproduced from figure 5 in Hess et al. ").

interest. The compliant surfaces were prepared in 3.8 cm deep plexiglas trays which were placed flush within the flat

plate and which cover about 10 percent of the working surface. A compliant material with 91 percent by weight of

100 cSt oil and 9 percent of elastomer (9/91-100 cSt) was used in the present experiment. The shear modulus of this

compliant mixture was measured with a Weissenberg rheogoniometer at the Johns Hopkins University, and found to

be about 2300 dynes/cm 2.

2.2. Near-Wai Flow Structure Visualization

The near-wall flow structures were tagged with time lines of bubbles generated using the hydrogen-bubble

technique as described by Schraub et al.'2. A simple and inexpensive electronic circuit which followed the design

of Budwig and Peattie' 3 was built for delivering high-voltage (0 to 395 volts) pulses to the bubble wire. The pulse

circuit is triggered by a TTL input signal, which allows great flexibility in its operating frequency (f;). The anode

is set at the ground potential to eliminate the electrical shock hazard. A platinum wire, of diameter 25 m and length

30 cm. was used as the cathode of the electronic circuit to generate small hydrogen bubbles. The hydrogen-bubble

time-lines were made visible by lighting (using three 500 W incandescent bulbs) at an oblique angle of about 450 to

the view direction or with the line of sight of the camera. Two specially-designed hydraulic pistons driven by two

separate micrometers (each with a resolution of 2.5 m) were built to accurately position the bubble wire. A

cathetometer with a maximum resolution of 10 m was used to determine the distance of the wire above the surface

(based on the distance between the wire and its reflection from the surface). A 35 mm Nikon camera with a shutter

speed set at 4 millisecond and with the lens aperture set at f2.8 was used to view and record the hydrogen-bubble time

lines. The films used were Kodak Tmax rated at 400 ASA. The still photographs were used in negative form for

projection to an enlarged scale where measurements could be easily obtained.

23. Turbulent Boundary Layers Characterization

The Dantec 60x Fiberflow series fiber-optic laser Doppler anemometer (LDA) was used to acquire the

mean-velocity and turbulence-intensity data for the turbulent boundary layers. A 4-watt argon-ion laser

(Spectra-Physics 2016) yielding 1.6 watts of power at a wavelength of 514 tnm was used for the LDA. The measuring
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.,iume is -7 .n :n ,.ameter and 0.63 mm in length which corresponded to about 4 wall units at Re., = *)0. The

smail measur:ng %,lume in combination with the fast signal-processing electronics permits high-bandw\idth

tine-resolveJ .i•asurements ot the fluctuating velocities. The probe head was mounted on a spec~aal. -buit traverse

mecnanism \P. itn tive degrees of freedom and a resolution of I m) to measure the turbulent flow fieid properties over

ine surtace.

LDA signal processing and validation are obtained using a Dantec 57NIO Burst Spectrum Analyzer (BSA)

signal processor. The BSA performs an Fast Fourier Transform on the burst produced by each panicie when it crosses

the fringes (up to a 624 KHz maximum data rate). The fully computer-controlled BSA is capable of working in

conditions of poor seeding; i.e., low signal-to-noise ratio (SNR), and in conditions of severe reflections from nearby

surfaces. Compared with a conventional counter, its SNR threshold is, according to the manufacturers, about 15 dB

lower. This means that bursts of small panicles, which are usually buried in the signal noise, can now be "seen".

The water flow is seeded with silicone carbide particles (TSI Model 10081). of a mean diameter of 1.5 m, to obtain

good signals in the present backscatter operation. The mean-velocity measurements are estimated to have about a 2

percent experimental uncertainty. This estimate is based on the maximum value of each quantity.

3. RESULTS AND DISCUSSION

3.1. Near-Wail Flow Structures

The near-wall flow structures were visualized using hydrogen-bubble time-lines at Re = 350. 1950, 1350 and

900. respectively. Plan-view pictures of the spanwise low-speed wall streaks at different locations above both the rigid

and compliant surfaces are presented with the flow direction from top to bottom.

3.1.1. Rigid surface case

Figure 2 summarizes the low-speed wall-streak structures observed in the present investigation at various Re

which are consistent with those of previous investigators using the same hydrogen-bubble technique (e.g., Kline et

al.s. Lu and Smithi", and others). Figure 2a shows the low-speed wall-streak flow structure in the viscous sublayer.

The collection of the hydrogen bubbles into a streaky structure is characteristic of this region. Figure 2b shows that

the streaks become less noticeable in the buffer region. The streaks ejected from the near-wall region interact as they

enter the outer regions of the flow. Figure 2c shows the flow structure in the log region. The streaks become less

visible as compared to those shown in figures 2a and 2b. Various scales of motions are evident, also the entire flow

appears to be turbulent.

Figure 3 shows the collection of all the data availableSi'i 9 on the values of the mean dimensionless spanwise

spacing of the wall streaks using the hydrogen-bubble technique at different R.. The present observed X. values are

in good agreement with the values given by Kline et oW. and the values obtained by nearly all subsequent

investigators. A mean value of )" of 95 for y" = 2 - 5 was found from the present study. Figures 2 and 3 also show

clearly that low-speed streaks are essentially invariant with R,.

3.1.2. Corntliant surface case

Visual observations with the presence of surface compliance indicated, in general, a similar low-speed

wall-streak appearance compared to the rigid surface case, but with larger values of X° (as indicated by the solid

squares in figure 3). Also, the compliant-wall streaks appear to be more quiescent. More interestingly, an intermittent

laminanzation-like flow phenomenon over our particular compliant surface was observed at R = 1350 and 900 with
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Figure 3. Variations of mean dimensionless spanwise wall-streak spacing with
Reynolds number.

the bubble wire pulsed at , = 20 Hz and positioned at y' z 46 for R, = 1350 and y' = 17. 20 and 26 for R 900.

respectively.

Figures 4a, 4b and 4c show the plan views of the near-compliant-wall flow structure at three different time
sequences at y" = 20 for R& =900. The time intervals were specified but arbitrary. Apparently, there is a stable

interaction taking place between the present particular compliant surface and the turbulent flow field. Results show
that at time t, large scales of motions are more evident than that at the previous time t. and t. The flow structure
became more (quasi-) laminar-like or quiescent as time elapsed. The observed laminarization or the reversion of a
turbulent boundary layer implies that either the turbulence production is being turned off suddenly, or dramatically

reduced, or the energy dissipation is much larger than the turbulence production, which then infers that the present
compliant surface may be an effective energy absorber. In other words, this particular compliant surface seems to
effect a change in the balance between the turbulence production and dissipation and to exert a large net influence

on the turbulence as a whole. Similar laminar-like observations were found for a y" of 26 at two different time
sequences (figures 5a and 5b). Figure 5a shows the plan views of the near-compliant-wall flow structures at time t,
Figure 5b shows that at time t., the flow structure became quiescent or laminar from a original turbulent boundary
flow condition. The corresponding instantaneous peak-to-valley amplitudes and the rms value of surface displacements
obtained by the non-invasive optical holographic technique over a 5 cm diameter area are: 1.67 m and 0.32 m for

0 = 90. 2.93 m and 0.38 m for R , = 1350, and 3.82 m and 0.72 m for R , = 1950, respectively. A typical

photograph and isometric phase map of the reconstructed interferometric fringes at R, = 1950 are shown in figure 6.

The details of both the optical arrangement for hologram recording and reconstruction and the determination of the
compliant-surface displacement from the interferometric fringe patterns are given in Lee et alI.'

3.2. Turbulent-Boundary-Layer Characteristics

A series of time-mean velocity and turbulence-intensity profiles were investigated for 900 < R < 8650. The
mean-velocity data were fitted to appropriate empirical correlations, and these correlations were used to establish the

parameters for the visual studies.
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Figure 6. Photograph and the isometric phase map of the reconstructed
interferometric fnnges at R_ = 1950: (a) nterterogram. and (b) isometnc phase

map (photograph and figure are reproduced from figures 11 and 12a in Lee ei
aL. -).

3.2.1. RieLd surface case

Figure 7 shows the mean-velocity profiles in the wall-variable form at seven different R,. The

nondimensionalized parameter u. was obtained using the Clauser's2- cross-plot method. Results show that the

law-of-the-wall is independent of Reynolds number but the extent of the logarithmic region was found to decrease

with decreasing R.. The existence of the fully developed turbulent boundary layer at the lowest R& (= 900)

investigated in the present study is assured by comparing this value to the minimum R, determined by investigators

elsewhere. The lower and upper bound of the minimum R, for which fully developed turbulent flow could be

observed experimentally on a rigid-surface plate boundary layer are 354 and 738 as reported by Smits et al.= and

Granville . respectively. The existence of the turbulent boundary layer at R, = 900 can also be demonstrated from

:he visual observations shown in figure 2a.

Figure 8 shows the variation of the skin-friction coefficient with the Reynolds number. The present C,

measurements are a little larger than Purtell et al.'s: data (indicated by open circles) and Coles's-" proposed values

for an equilibrium turbulent boundary layer ( R, > 5000, dashed line). Figure 9 shows the streamwise

turbulence-intensity profiles for Re < 5000. Results show that the peak in the turbulence intensity profile increased

with decreasing R& compared to the values of equilibrium conditions (dashed line) from Klebanoff&. This tendency

is consistent with the measurements of Purtell et al. ý and Erm and Jouber7, except that the LDA turbulence data

are slightly higher than hot-wire measurements. Figure 9 also indicates that the Reynolds number effect penetrates

the boundary layer much deeper in terms of the turbulence intensity than it does for the mean velocity (see figure 7).

3.2.2. Compliant surface case

Figures 10a through lof show the comparisons oa the mean-velocity profiles of the compliant-surface case

(ctrcles) with that of rigid-surface case (squares) at six different R,. All these point-velocity measurements are made

in the absence of the large-amplitude static-divergence waves. The compliant-surface mean-velocity data were

nondimensionalized by u. which were obtained using the wall-slope method (in which the wall shear stress is obtained

trom the slope of the mean velocity profile near the wall). Results show that the compliant-surface u'-y" profiles
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always had well-defined logarithmic and wake regions, but with a slight shift in the log-wall region at low R (see

figures 10c, 10d, and l0e). The magnitude of this shift increases with decreasing R. The shift in the

compliant-surface log-wall region at low R, is accompanied by: (1) a slightly broadened buffer region (see figures

10c, 10d and l0e); (2) a lower u. or C.; (3) a higher value of X* (figure 3) and (4) a reduction in the strearnwise

velocity fluctuation (figure 9) compared to the rigid-surface data. Figures 10c through 10f in connection with the

visual results (figures 2 through 5) indicate that the mean-velocity flow fields were altered by the stable interaction

of this particular compliant surface with the turbulent flow field. Apparently, the formation of the low-speed

wall-streaks is suppressed by the presence of the compliant-surface undulations which in turn yields a lower

skin-friction coefficients and also a possible decrease in the average bursting rate. In other words, vortex stretching

which responsible for the transfer of turbulent energy and vorticity is modulated by the surface compliance or the

stable fluid/compliant-surface interaction. However, the physical mechanism responsible for this favorable interaction

of the compliant surface with the fluid is still not understood. No significant changes in the compliant-surface u*-y"

profiles (see figures 10a and 10b) were found compared to the corresponding rigid-surface measurements as the

Reynolds number approaches or becomes larger than the value for the equilibrium conditions. The results of the

present compliant-surface u*-y+ measurements (in figures 10c and 100) and the C, thus determined, compared to the
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Figure 9. Comparisons of streamwise turbulence-intensity measurements
between rigid- and compliant-surface cases at four different Reynolds numbers.

values of rigid surface, are not consistent with the measurements of Gad-el-Hak et aV.. Gad-el-Hak et al. concluded

that the mean-velocity and the rms velocity-fluctuation measurements for a turbuleat boundary layer over a PVC

plastisol-gel compliant surface (with G = 50-125000 dyne/cm' and 0.05-0.7 cm thickness) did not differ from that on

a rigid surfaces as long as the static-divergence waves were absent. They also found that no significant differences

were observed in the number or the length of recorded streaks for displacement-thickness Reynolds numbers ranging

from 400 to 6,000.

The disappearance of the log wall region shown in figure 10f at R* = 900 is consistent with the observed

intermittent laminarization-like phenomena discussed above in Section 3.1.2. This phenomenon is accompanied by

the following experimental observat; )ns: (1) an increase in the compliant-wall streak spacing (see figure 3); (2) the

appearance of the intermittent laminarization-like flow structures (typical photos are shown as figures 4 and 5); (3)

a decrease in the streamwise turbulence-intansity measurements (figure 9); and (.) the break-up of the log wall region

(figure 100) demonstrated that the stable interaction between the present compliant surface aaid the turbulence flow

field at Re = 900 does strongly modulate the ntir-compliant-wall flow structure. This modulation ma) be attributed

to the relative increase in dissipation occurs %hen '.be Reynolds number goes down in a flow especially with the

present compliant surface, or to the hypothesis that the compliant surface inhibits vortex stretching and leads to a

quiescent state. The mechanism responsible for the appearance of the laminar-like flow phenomenon is still not clear.
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Figure 10. Comparisons of mean-velocity measurements between rigid- and
compliant-surface cases at six different Reynolds numbers.

4. SUMMARY AND CONCLUSIONS

The stable interaction of the present single-layer passive viscoelastic compliant surface with a fully developed

turbulent boundary layer was visualized with hydrogen-bubble time lines in connection with surface-displacement and

flow field measurements. For low Reynolds number flows, a small-amplitude stable fluid/compliant-surface interaction

was found from the following experimental results (compared to the values of rigid surface case): (1) an increase in

K' and x,* which imply an associated decrease in the bursting rate; (2) the appearance of intermittent

laminarization-like flow phenomena near the compliant wall; (3) a slight broadened buffer region; (4) a shift in the

compliant law-of-the-wall; (5) a decrease in the streamwise velocity fluctuation; (6) a reduction in the skin-friction

coefficient.

In summary, visual studies associated with the mean-velocity and turbulence-intensity measurements indicate

that the compliant surface motion was modulating the flow field close to the wall and that the feedback loop which

allows the turbulence to be self-sustaining seems to be modified at low Reynolds numbers. However, the mechanism

responsible for the above observations is still not well understood. Detailed turbulent flow field measurements and

the statistical measures of the real-time random topography of the compliant surface are needed in order to better

understand the nature of the stable fluid/compliant-surface interaction.
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MODELLING THE TIME DEPENDENT FLOW
OVER V AND U GROOVE RIBLETS

S. Tullis and A. Pollard 1

Department of Mechanical Engineering
Queen's University at Kingston

Canada. K7L 3N6

Abstract

The flow over V-groove and U-groove riblets is examined computationally using a time dependent
model of the viscous wall region. This "2 1/2 D model", developed by Hatziavramidis and Hanratty
(1979) and modified by Nikolaides (1984) and, Chapman and Kuhn (1981,1986) assumes homogeneity
in the strearmwise direction so that the flow is solved only in the cros-sectional plane. The flow at
the upper bound of the computational domain (y+ -- 40) is described using a streamnwise eddy model
consisting of two scales, one of the streak spacing (A+ -- 100) which dominates vertical momentum
transport, and a larger scale accounting for the influence of large outer flow eddies.

A control volume finite element method utilizing triangular meshes is used to exactly fit the riblet
cross-sectional geometry. Results obtained using fairly large drag-neutral riblets compare well with the
limited experimental data available. Observations of the transient flow conditions for both larger drag-
neutral and smaller drag-reducing riblets suggest that the riblets limit the lateral spread of inrushes
towards the wall and retain low momentum fluid in the riblet valleys effectively isolating much of the
wall from such inrushes. The generation of intermittent secondary vortices within the riblet valleys also
occurs; however, these appear to be quite weak and fairly short-lived.

1 Introduction

The ability of riblets to produce significant skin friction reductions in turbulent boundary layer flows
is well established. Walsh (1990) and Savill (1989) have suggested that the viscous effect of the riblets
in accumulating slow, low shear stress flow in the riblet grooves plays a major role in the skin friction
reduction. The effect of riblets, however, has been observed by Benhalilou et al. (1991) and Choi (1989)
to extend well above the viscous wall region. This has led these authors to the conclusion that at least
some portion of the drag reduction is a result of the influence of riblets on near wall turbulent coherent
structures.

In the very near wall region (y+ 5 30-40), the dominant turbulent structures appear to be quasi-
periodic streamwise eddies (Bakewell and Lumley, 1967; Robinson et a.., 1990). These eddies act as a
mechanism for the transport of streamwise momentum to and away from the wall which then contribute
to thehigh Reynolds stress and turbulence production close to the wall. The near-wall low-speed streaks,
which have a characteristic spanwise "streak" spacing of A+ -_ 100, are generally accepted (Smith et
al., 1989) to be the lift up of low momentum fluid from the wall by an adjacent streamwise eddy. The

1to whom all corrspondence should be addressed

A22-1



surface drag reduction effect of riblets then seems to involve some sort of influence on these near wall
eddies. An increase in the streak spacing and a decrease in their spanwise motions over riblet surfaces
has been noted experimentally by many researchers, including Gallager & Thomas (1984), Bacher &
Smith (1985) and Choi (1989). Both of these effects are similar to the drag reduction produced by
dilute polymer solutions (Tiederman, 1989).

Until very recently, the modelling of the flow over riblets has usually been performed with simple half
or single riblet geometries and with either laminar flow or mixing-length turbulence models (Djenidi et
al., 1990; Benhalilou et aL, 1991) and, more recently, k-c turbulence models (Djenidi, 1991; Launder and
Li, 1991). These approaches have used Reynolds-averaged and often parabolized equations to produce
steady-state solutions. These methods do not consider multiple riblet interactions with any specific
near wall turbulent structures, particularly streamwise vortices, and depend critically on the near wall
damping assumptions made.

The approach taken here is to use a "simple eddy" or "coherent structure" model to directly model
quasi-periodic strearnwise eddies in the very near wall region. The model was originally developed for
flat wall turbulent boundary layers by Hatziavramidis and Hanratty (1979) and developed and refined
by Chapman and Kuhn (1981,1986) and Nikolaides (1984). The model is not intended to exactly predict
the flow; it is a representation of near wall strearnwise eddies and their time development - although
the models do provide good agreements with experimentally measured mean velocity, Reynolds stress

and turbulence intensity, skewness and flatness profiles for flat walls.

2 Turbulent Boundary Layer Modelling

2.1 Governing Equations

The model of the turbulent boundary layer is time dependent with the coordinates oriented such that
the downstream direction is along the z axis, the y direction is perpendicular to the wall and the z
axis is across the flow in the spanwise direction. With the streamwise eddies and low speed streaks
being highly elongated (Smith and Metzler, 1983; Kasagi, 1989) a major assumption is made that the
streamwise velocity derivatives can be neglected in comparison to the cross-stream velocity derivatives.

The governing equations are then:

8,,+ 8V+2  L,•+,+ ap+ 52V,+ 02 V+T+-+ _y- -+ aT-+ V=- - ;72+ T.-• + 2- (1)

8W+ O,,+W+ LW+ 2  Lp+ 42Wu+ 02W+•-• - • a-V=-a•-+••-+ -•-(2)

49,+ (9,+-_ +- =0o (3)

and, LqU+ LgV+ U+ LgW+U+ 192U+ L82U+
8j+_ + -yy+ + -'3-+ V F + O+ (4)

All of the quantities in equations 1-4 are normalized by the friction velocity, u,, with u,. =V/•'• ,
where r, is the flat wall shear stress. Wall normalized units will be used for the remainder of this paper,
so the superscript "+" will be dropped.

It can be noted that the cross-stream velocities v and w and the downstream velocity U are not
coupled; the cross-stream velocities can be solved using equations 1-3, then U can be solved directly
using equation 4. Because of this feature, this type of model is often referred to as a "2 1/2 D" model.

There is also no downstream pressure gradient.
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*2.2 Boundary Conditions

The computational domain consists of a cross-sectional y--z plane with 0 < y 5 y. where y. is typically
40. The spanwise size of the domain depends on the particular variation of the model but is usually in
the range of 100-200 wall units.

The main modelling assumption of the method is in the specification of the velocities along the upper
edge, y. = 40, of the domain. These specifications can vary depending on the specific model; however,
in all of the models, the velocity components specified at the upper boundary are periodic in time
and spanwise location (z) and have overall magnitudes of the experimentally determined turbulence
intensities at that distance from the wall. The downstream velocity U is specified to consist of two
components: a fluctuating component u and a constant component U which is determined, for flat
walls, from experimental measurement or from the log-law relationship.

The fluctuating velocity components usually have two scales: one which dominates vertical momen-
tum transport and roughly the size of the streak spacing and a larger scale accounting for the influence
of all large "outer flow eddies". The full form as given by Nikolaides (1984) is:

U=U+flcos\tr + Ou1) cos F- + U2cos ( t+ u22cos) (5)

v = i cos COS LW ) + i2 cos (Lt + 4t2) cos2 Z (6)

W f ti) cos + 0.1) sin + 2 cos (-rt + .2) sin (7)

The periods in the spanwise direction, Al and A2 , are typically set respectively as 100, the size of the
flat wall streak spacing, and 400 or infinity as a larger period accounting for the influence of all larger
scale eddies. The time periods T, and T2 are usually set to roughly the same values as A, and X2 to
agree with bursting frequencies and because it is reasoned that the larger scale transient and convective
terms should be of the same order (Nikolaides,1984). The model used in this study is basically that of

Chapman and Kuhn (1986). The parameters used are summarized in table 1.

A, 100 A2(u, V, w) oo, -, oo
T, 143 T2 (u, v, w) 143, -, 286
U1 1.8 U2 2.53
rI 1.0 V2  0
W1 2.0 W2 1.175
Oul 0 (reference) Ou2 0
0.i 0 Ov2 -

Owl *L w2 _______

Table 1: Parameters used in Chapman and Kuhn's (1986) model.

The sides of the computational domain (at z = 0 and z = z.) are treated with cyclic boundary
conditions. The wall surface has the simple no-slip condition: U = v = w = 0. The specification of
the upper y. = 40 conditions requires a definition of the location of the y = 0 surface. For flat walls,
this surface location is simply the wall surface. For riblets walls, the protrusion height as defined and
calculated by Bechert and Bartenwerfer (1989) is used to provide a specification of the y = 0 location.
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2.3 Numerical Scheme

The numerical solution procedure used in this study is a Control Volume Finite Element Method
(CVFEM) based on the work of Saabas (1991). The approach is an equal order co-located control volume
method and is a development of earlier work by Baliga and Patankar (1979,1983) and Prakash and
Patankar (1985). The computational domain is divided into three-node triangular elements which are
able to fit exactly such complex geometries as riblets in cross-section. Control volumes are constructed
about each node with the complete discretized equations assembled for each control volume on an
element-by-element basis. Interpolation functions are used within each element to evaluate the velocity
components. These exponential flow oriented functions correctly simulate the nature of convection,
resulting in a substantial reduction of false diffusion (Baliga, 1979; Tullis, 1992). A time-stepping
procedure was incorporated into the CVFEM using an implicit scheme similar to that of Patankar
(1980). A structured grid is used with the triangular elements constructed by connecting the diagonals
of a rectangular grid. This allows the use of line-by-line solvers.

3 Presentation and Discussion of Results

Five different cases are considered in this study: flow over a flat wall and flow over both V-groove and U-
groove riblet walls for two different sizes of riblets. The larger sized riblets (2h+ = s+ = 33.3) are in the
drag-neutral size range (Walsh, 1990) with three complete riblets in the computational domain. These
riblets correspond well with the experimentally investigated cases of Vukoslaveevid ct al. (1987) and
Benhalilou ct al. (1991). The grids used for these larger riblets and the flat wall case are approximately
21 x 43 (y and z directions) with more grids in the y direction for the riblet cases. The flat wall and
V-groove cases use uniform grids while a non-uniform grid is used to produce the semi-circular U-groove
riblets. Drag-reducing riblet geometries are also considered: V-groove riblets with h+ = s+ = 16.7 and
U-groove riblets with 2h+ = + =- 16.7. A 32 x 85 (y and z directions) grid is used with extensive grid
refinement about the riblet peaks. The solutions consist of approximately 500 time steps with a time
step size of At+ = 2. This time step size was selected from a comparison of solutions obtained using the
particular spatial grid sizes and various time step sizes. The initial solution within the computational
domain used at t = 0 is simply Bechert and Bartenwerfer's (1989) solution for the downstream velocity

(U) with no cross-stream velocities (v = w = 0). The effects of using this simple initial solution are not
significant after two of the larger scale time periods (T2 ).

The results of this study are be divided into two sections: the first section presents a comparison
of calculated mean velocity profiles and streamwise turbulence intensities above the larger drag-neutral
V-groove riblets and the experimental measurements of Vuko@lavdevi6 ei al. (1987) and Benhalilou
et al. (1991) using similar riblets; the second section deals with general observations of the time-
dependent interaction between the near-wall streamwise vortices and riblets of various sizes and shapes.
Although the comparisons of the first section can be presented graphically, the time-dependent general
observations are more difficult to present here. The thesis and accompanying video of Tullis (1992)
provide better presentation of this aspect of the results.

3.1 Mean velocity profiles

The model provides good agreement with experimental measurements for the mean streamwise velocity
profile over a flat wall, as observed by Chapman and Kuhn (1986). There is, however, a noticeable
discrepancy near the outer edge of the domain. This effect can be also noticed in many of the other

computational results, particularly the turbulent statistics. This irregularity has been observed by
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Chapman and Kuhn (1986) and Nikolaides (1984) who have suggest that it is the result of too restrictive
boundary conditions, probably on the smaller scale eddies. Both Chapman and Kuhn and Nikolaides
consider that this effect is limited to the outer 10-20% of the domain.

The calculated mean strearnwise velocity profiles over the drag-neutral V-groove riblets agree reason-
ably well with the experimental measurements of VukoslavEevi4 et al. (1987) as shown in figure 1. The
velocity gradient distribution at the riblet surface shows the same features observed by Vukoslav~eviý
et al.

As depicted in figure 2a, the wall shear stress drops nearly to zero in the angled valleys of the
V-groove riblets. The wall shear stress over the riblet peaks is much larger than over the flat wall - the

increase is approximately 150%. This increase is larger than that noted by both Vukoslaveevid ei al.
and Benhalilou ef al. (1991) but may be exaggerated by the relatively coarse grid used in the present
calculations. A similar surface drag distribution is observed over the U-groove riblets (figure 2b). The
wall shear stress in the rounded riblet valleys drops to about 25% of the flat wall case while the increase

above the riblet peaks is approximately the same size as for the V-groove riblets.

3.2 Streamwise Turbulence Intensity

The calculated turbulence intensities over a flat wall show fairly good agreement with experimental
data, as was demonstrated by Chapman and Kuhn (1986). Experimental measurements of turbulence
intensities within and above riblets are very limited. Vukoslav~evii et al. have measured profiles of
streamwise velocity fluctuation intensity (u') while Benhalilou et al. were also able to obtain spanwise
velocity fluctuation intensity (w') profiles with similarly large-sized V-groove riblets. Consequently,
attention will be concentrated on the strearnwise turbulence intensity profiles. The two sets of exper-

imental data collapse quite well when plotted using wall coordinates (u'+ versus y+); however, there
are significant differences. With increasing distance from the wall, Benhalilou et al. observed a rapid

increase in the u' intensity over the riblet peaks followed by nearly as rapid decrease, as can be seen in
figure 3. The intensity over the riblet valley reaches a much lower maximum value and the peak and
valley intensities appear to converge to a flat wall value of approximately 1.5, significantly lower than
most other flat wall experimental values such as those of Clark (1968) and Ueda and Hinze (1975), at

a height of y+ = 35. Vukoslav~evi6 et al., in contrast, observe very little decrease in the u' intensity
profiles after they reach their maxima - with the peak and valley profiles converging at a higher than
flat wall value of u'+ - 2.4. The computationally calculated u' intensity profiles resemble those of

Vukoslav~evi6 ef al. close to the wall, although the valley profiles appear to reach slightly larger values

closer to the wall. In the upper half of the calculation domain, however, the peak and valley profiles
converge while steadily decreasing to a value of approximately 1.8 at the outer edge of the domain. In
this aspect, the calculated results are roughly between the two sets of experimental data.

3.3 General Observations

As the transient vortices develop close to the wall, intermittent, rapidly decaying secondary vortices

can be observed within the riblet valleys for all of the riblet configurations examined. This is essentially
the same phenomenon that Bacher and Smith (1985) suggested as a mechanism in the weakening of the
original primary vortices. However, the computationally observed vortices are generated and driven by
the periodic outer edge conditions, so the strengths of these primary vortices would not be expected to
be changed by the riblets. For the smaller drag-reducing riblets, there is a definite lag-time between
the start of a roughly horizontal flow over the top of a riblet and the development of a secondary vortex
within the riblet valley. This lag-time is only marginally shorter than the time taken for the reversal
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of the flow above any particular riblet. It is then speculated that this is the reason why the calculated
secondary vortices are quite weak; the maximum transverse velocity observed in valley of a V-groove
riblet is approximately one-twentieth of the maximum in the adjacent flow above the riblet. These low
secondary vortex strengths may, in contrast with the ideas of Bacher and Smith, actually help reduce
the overall surface drag. Strong secondary vortices would be a mechanism for the transport of high
downstream momentum fluid into the riblet valleys, resulting in high shear stresses and drag in the
riblet valleys. The development of only relatively weak and short duration secondary vortices does
not allow this momentum transfer to occur. The stability of such low momentum fluid in the riblet
valleys has been experimentally observed by many researchers including Gallager and Thomas (1984)
and Bacher and Smith (1985). For the larger drag-neutral riblets, these secondary vortices are still
quite weak but are significantly stronger than those in the valleys of the smaller riblets.

The other significant effect that can be observed is the influence of riblets on inflows towards the wall
that occur beside and between vortices. These inflows carry high strearnwise momentum fluid towards
the wall and, when reaching a flat wall, spread laterally. This creates an extended area of the surface
with a high streamwise velocity gradient and, consequently, a high wall shear stress. The riblets appear
to impede this lateral motion of the inrush at the wall. The size of the region with a high wall shear
stress is then decreased. This is essentially the same effect noticed in the direct numerical simulation
of Chu (1992) and hypothesized by Smith ei aI. (1989) and Choi (1989). The impact of an inflow is
most noticeable as an increase in the pressure at the wall and, with riblets, this is often present only in
the riblet immediately below the inflow. Even within riblets directly beneath such inrushes, the riblet
valleys appear to retain most of their low momentum fluid. The main increase in wall shear stress
appears to occur, for the most part, on the riblet peaks. So, not only is the inflow confined in the
spanwise direction, it is also effectively unable to influence large areas of the surface within the riblet
valleys.

4 Conclusions

A 2 1/2 D model of the viscous wall region has been used to investigate the flow over surfaces with both
V-groove and U-groove riblets. Visual observations of the transient flows suggest that the riblets limit
the lateral spread of inrushes towards the walls and retain low momentum fluid in the riblet valleys
effectively isolating much of the wall surface from such inrushes. The riblets also appear to interact with
the near wall streamwise vortices through the generation of transient secondary vortices in the riblet
valleys in a manner similar to that proposed by Bacher and Smith (1985). The magnitude of these
vortices, however, seems to be relatively minor which probably helps account for the experimentally

observed stability of the low momentum fluid in the riblet valleys.
Further work with the results of these simulations is required; in particular, comparisons with the

direct numerical simulations of Chu (1992). The mean and turbulent flow statistics for the various riblet
geometries should also be examined in detail, especially for the drag reducing riblet sizes. In addition,
the use of alternate riblet configurations (e.g. compound riblets) could be investigated.
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Figure 3: Streamwise turbulence intensity profiles over the larger V-groove riblets.

Comparion of the calculations (.,0, ,) and experimental results from Vukoslav~evi6
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peaks and valleys, and valleys respectively. Data from Benhalilou et aL. do not include
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A22-10

&



0 AN EXPERIMENTAL STUDY OF

THE FLOWS ASSOCIATED %wrM
CIRCULAR CAVITIES

E Savory and N Toy

Fluid Mechanics Research Group
Department of Civil Engineering

Lniversitv of Surrey
Guildford GU2 5XH

I Jnited Kingdom

Abstrta

This paper presents some findings from a study of circular cavity flows that has been

undertaken as part of a wider provIect to examine the flows associated with different

three-dimensional cavity geometries having elliptical. rectangular or square planforms.

1. Introdut in

Surface cut-outs occur in many aerodynamic applications including equipment housings. panel handles.

cargo'bomb bays. rivet depressions and flap recesses. They are often the cause of undesirable effects such as

parasitic drag and noise generation. Our knowledge of the effects of surface cut-outs andcavities ismainlv limited

to the overall drag increments due to single or multiple holes, such as the early data obtained by Weighardt(1946).

rillmann (1951). Roshko (1955) and Tani et al (1961) using essentially two-dimensional rectangular slots normal

to the flow direction. Weighardt and Tilimann. along with Friesing (1936). Gaudet and Johnson (1971). Gaudet

and Winter (1973) and Pallister (1974). also provided data concerning the overall drag due to cavities of varying

depth but with circular planform. Much of the early research was summarised by Hoerner (1965). whilst

AGARDograph 264. Young and Paterson (1981). provides an excellent presentation of the best drag data in a

form that may be used for design purposes. However. apart from a few surface pressure distribution measurements

by a limited number of workers, such as Roshko (1955). Maull and East (1963). Rossiter (1964) and. more

recently. Sinha et al (1962) and Plentovich (1990). the drag data has been derived from force balance

measurements which provide very little insight into the flow regimes occurring within the cavities. Hence. the

present work provides data which should be of use. not only in aerodynamic design. but also in the development

A
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of turbulen,.c models for caityv dow problems. I he next section outlines the experimental arrangements and thi,

is toUoloed h,, . J.Lussi.on of some of the results obtained.

2. Experimental details

A wind tunnel with working section dimensions of I.37 m height x 1.07m width x 9.Otn length was employed

for all the measurements. A 20mm high metal wall fence was placed across the tunnel near the contraction to

produce a thick boundary layer with good lateral uniformity. Across the tunnel the velocity was uniform to within

+ -21. Mtiilst the rms turbulence intensity was within 5%. These boundary layer profiles were obtained at a

freestream velocity of 12m,'s which was the speed used in most of the subsequent experiments. The principal

boundary layer parameters were: 8 = 320mm. 6. = 27.9mm. e =21.2mm and c, =0.00265.

The circular cavity model has a diameter of 75mm and is constructed from brass. There is a single line ot

thirty five 0.5mm diameter pressure tappings down the cavity wall. spaced 2.5mm apart beginning at tmm from

the rim. There are also fifteen tappings in the base of the hole at 5mm intervals centred on a line across the

diameter of the base. Ten tappings are located on the rim of the of the hole to allow measurements on the tunnel

wall close to the lip of the cavity. These begin at 1.5mm out from the rim and are spaced 2.5mm apart. A linear

position transducer may be used to accurately set the depth of the cavity for each test.

A typical apparatus arrangement for the mean surface pressure measurements is illustrated in figure 1. The

model was mounted flush with the tunnel interior and a pitot-static tube was positioned in the freestream. directly

across the tunnel at the same downstream location, for measurement of the reference dynamic pressure. The

model position was on the wall at 4.5m downstream of the tunnel contraction. The pressure tappings on the model

were attached to connectors which, in turn. were inserted into Scanivalve switch mechanisms. This allowed the

connection of each tapping to one side of a differential pressure transducer. The other, reference, side of the

transducer was connected to the freestream static pressure. via a damper to ensure that unwanted fluctuations were

removed. A series of transducers were used in the experiments. with ranges from +/-1mm WG to +.,-10mm WG.

since the magnitudes of the pressures varied enormously from the high positive values at the reattachment point

of the separated shear layer to the very small pressures deeper into the cavity. A PC was used to acquire the

pressure data via an amplifier and A-D convener system and the data was used to compute the mean pressure

coefficients (Cp). The computer also controlled the operation of the Scanivalve system via a relay switch

arrangement. Typically. a delay time of 15 seconds was used after each switching of a Scanivalve port to allow

settling of the pressure at the transducer. Similarly. the sampling times were 30 seconds at each port to permit
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dete rminatic n ,"t re!able mean %Alues. The reference dynamic pressure was monitored throughout each experiment

and the accuriac'. ,t the data was e~timated to I'c + -U.003 Mn Cp. The overall drag coefficients. based on the model

plan form area mnd the freestream dynamic pressure. were obtained by integrating the wall pressures and resolving

the force vomponents in the appropriate direction. The drag increment due to the cavity. &CD. was determined

by subtracting the skin friction coefficient from the drag coefficient.

In order to obtain direct measurements of the drag coefficients. for comparison with the data from integrated

pressure distributions, a force balance was designed and installed into the floor of the tunnel. The balance has a

plan area of 0.5m length x 0.3m width into which around boards containing models can be inserted. Essentially.

the balance mechanism is a parallelogram in which rotation can occur at each corner on frictionless bearings. This

mechanism is attached to a rigid frame which, in turn. is fastened to the underside of the tunnel. A load cell is

incorporated into the framework and a small threaded shaft on one upstream vertical arm of the balance impinges

upon the load cell sensor. On the other upstream vertical member is a cantilever upon which weights may be

placed to pre-load the load celL The gap between the balance place and its surrounding frame at the tunnel floor

is of the order of 0.05mm but the actual position of the plate within the frame is set by adjusting the cantilever

loading and the threaded shaft. The frame surrounding the balance plate is pressure tapped. with six tappings on

both the upstream and downstream faces and two tappings on the two side faces. This was carried out in order

to assess the effect of any flow through the gaps on the loading on the sides of the balance plate. However. for

these cavity models at least, there is no measureable difference between the pressures on the upstream face and

those on the downstream face. The ground board is constructed from timber with a circular hole cut in the centre

where the models may be inserted. The board is screwed down onto the plate with packing material underneath

to ensure a flush finished surface.

The balance is located approximately 6m downstream of the tunnel contraction and. in order to generate a

boundary laver similar to that used in the pressure measurements, an identical 20mm metal fence was used across

the tunnel floor. The skin friction coefficient measured at the balance is approximately 0.00257 which is within 36C

of that measured on the tunnel wall for the cavity pressure measurements.

The output from the load cell is taken to a unit which contains a precision high gain amplifier. This provides

an accurate output with a calibration of 76.19 grammes/volt and repeated calibration tests using small weights

showed that hysteresis was less than +/-0.0002V or +/-i5mg. Since only mean loads were of interest in the present

work the amplified output was filtered at 5Hz before being sampled by a PC via and A-D converter system. Before
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each set of cxe.rnme.nt- the load cell and dieitisation system were calibrated in-situ to an accuracy of better than

0.OOV. that t,, -emg

For each model configuration the load with no airflow was measured and this was then subtracted from the

load measured at the test velocity. A similar procedure was adopted for measuring the load on the plate without

a cavity present. From this data the net drag coefficient due to the cavity. AC,,. could be computed by taking the

load increment and dividing by the cavity model planform area and the freestream dynamic pressure. A sampling

time of 40 seconds was used for each measurement and several data sets were taken for each configuration to

ensure reliability and to assess the experimental scatter. The model used in these experiments had a plunger-type

base to allow variation of the cavity depth. The cavity had a diameter of 103mm. with sides constructed from uPVt

pipe and the base from timber.

3. Results and discussion

Mean pressure coefficient distributions on the base. side wall and surrounding ground plane for the circular

cavities with hiD=0.1 to 0.7 are illustrated in figures 2 to 8. The upper part of each figure shows the wall

distribution "unwrapped" with the extreme upstream location (00) at the ends and the extreme downstream location

(1800) at the middle. The base distribution is given in the lower left hand plot. whilst the right hand distribution

shows the pressures around the cavity on the tunnel wall.

For the shallowest cavity., with h/D=0.[. the flow pattern displays an essentially open regime with a

symmetrical pressure distribution. The pressures on the base rise almost linearly from zero to just greater than

0.2 in the region where the separated shear layer reattaches. This value is similar to that typically found just after

reattachment downstream of a 2-D backward-facing step. It would appear that shear layer reattachement occurs

near the base on the downstream wail with subsequent separation at the cavity lip. This separation over the

downstream half of the rim circumference gives rise to a strong pressure gradient on the tunnel wall close to the

cavity with high suction values at the lip. However. the magnitudes of the pressures in this region are considerably

lower than those typicaily occurring immediately downstream of a 2-D forward-facing step. The wall pressure

distributions indicate that at this depth there is no strong vortex present within the cavity. With an increase in

depth to biD=0.2 a pressure distribution broadly similar to that found by Friesing (1936) is established. Here. the

pressure rise on the base as reattachment is approached is more rapid. The maximum pressure on the downstream

face (at about 1800) occurs near the lip where the shear layer reattaches. resulting in less strong separation at the

rim in this region and reduced suction pressures on the tunnel wall downstream of the cavity. On the downstream
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face there ,- a prv-ure minim tum about half %.'v,in the wall. together with lower pressures over the wall at around

Qi°P and 27O' I[hi, ndiacates the formation ,f -in identifiable svmrnotrical vortex pattern. For the slightly deeper

cavitv with h D=o) , the vortex becomes more pronounced. with a pressure minimum occurring across the baser

from about 100' to 260'. The flow is still svmmetrical and the extent of the re.zon influerned b% separation from

the downstream lip remains the same.

At hD=0.4 there is the onset of asymmetry as one side of the main vortex rises (almost 240') and appear,

to shed some vorticity, causing a change in the pressure distribution on the tunnels wall in this region. The mean

vortex line rotates slightly and no longer runs normal to the freestream flow direction. With the depth at h D=0.5

the flow regime in and around the cavity becomes extremely asymmetrical with the separated flow near the

upstream lip reattachmg shghtly to one side of the centre-line (around W0'). The greater stagnation pressure here

may be due to the entrainment of higher momentum fluid from further out in the boundary layer. The main cavit',

vortex appears to be formed by two vortex sheets, the upper one rolling up from a spiral point on the side wall

and engulfing a lower one emanating from the floor, as noted by Gaudet and Winter (1973). As a result, the mean

vortex line lies across the cavity at about 450 to the freestream direction with the downstream raised arm (about

2250) shedding vorticity from the cavity. The upstream end. at about 450. remains well within the cavity. The

pressure distribution asymmetry shows the same hand as the oil film visualisation of Gaudet and Winter (1973).

There is good agreement between the visualised flow and the pressure field. Within the cavity the maximum

reversed flow velocity near the base. is approximately 0.2 5U, (measured using a pulsed-wire anemometer) which

is similar to that found in two-dimensional rectangular cavity flows. This velocity is slightly greater at about 90'

than on the other side of the cavity at around 2700. The flow regime for a slightly deeper cavity, with hD=0.6.

shows a rapid return to more symmetric conditions. Here. the wall pressure distribution indicates that both ends

of the main vortex are within the cavity, although the downstream arm is slightly higher than the upstream portion.

The vortex line is still at about 450 to the freestream direction but shedding of vorticity from the cavity appears

to have greatly reduced. For the final cavity studied. with h/D-=:0.7. the cavity flow is symmetric and dominated

by a single large vortex positioned laterally across the hole. The pressure minima around the entire circumference

of the wall at about half the cavity depth. together with the minima across the base, is evidence for a stable vortex

regime. as shown by Roshko (1955).

The variation of the overall drag increment due to the cavity with depth is illustrated in figure 9. The graph

shows both the integrated pressure values and the direct drag balance data. together with the results from previous

workers. There is a peak in the drag coefficient at about h/D=0.45 associated with the asymmetric flow pattern
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descnbed aho, e. I he present data lies well within the large scatter of the pre% ious results and there is reasonabl,'

good agreement between the balance and pres.'ure dnta. The length of the bars for the balan-e data pointN

indicates the range of the results obtained at each depth. The large scatter in the results from previous workers

is principally due to the different experimental apparatus used and the differences in the approach flow boundary

laver conditions. The asymptotic drag value at large depths is about 0.01 which is typical of deep 2-D rectangular

cavity flows.

In an attempt to provide a rational basis for presenting circular cavity drag coefficient data Gaudet and

Johnson (1971) noted that the drag depends upon the depth ratio. the roughness Reynolds number (L'..Dv). thte

skin friction coefficient and the Mach number. It was found that the data could be represented by the expression

showu in figure 10 in which at each depth the normalised drag increment is related to the roughness Reynolds

number by two parameters A and B. Parameter B was dependent solely on the Mach number and at low subsonic

speeds took the value of 0.31. The parameter A varied with the depth ratio and is plotted in the figure. It may be

seen that there is good agreement between the pressure and balance data and that the peak at about h/D=0.5 is

again evident. The early data of Wieghardt (1946) and Tilimann (1951) appeared to show a second, much reduced.

peak drag value at around h/D=L.0 possibly associated with the formation of deeper secondary vortices. However.

Gaudet and Winter's results (unpublished. private communication) showed no evidence of this peak and their data

followed the lower bound of the previous data. The present values obtained at a low subsonic Reynolds number.

appear to follow an upper bound to the previous data which may be reasonable iC as stated above. Gaudet and

Winters' data at very high Reynolds number represents a lower limit. Certainly. the results of Friesing (1936) and

Pallister (1974) lie within this region and do not indicate the presence of a peak at h/D=l.0.

The pressure distributions show the development of highly asymmetric flow conditions at a depth/diameter

ratio of about 0.5. associated with strong vorticity shedding and high drag. The distributions at this depth illustrate

that the main vortex is aligned at approximately 450 to the freestream direction and the results also agree well with

the surface oil film visualisation of Gaudet and Winter (1973). The data for overall drag coefficients obtained from

the integrated pressure distributions and the force balance measurements are in reasonable agreement and also

concur well with existing data. No evidence has been found to support the presence of a second peak in the drag

versus depth/diameter curve at around h/D=1.0 which had been noted by some early workers. The pressure

distributions on the ground plane near the lip of the cavities exhibit very strong gradients associated with flow
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senaration At tht: •A•,stream nim. It is clear that further study of these distributions is necess•r•r it the gradieub

are to le .ini.horad ih% au changes in nrm protile carried ullt Io reduce cavity drag.
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Towards a Direct Numerical Simulation Procedure for

Inhomogeneous Turbulence in High-Speed Flows

By FOLUSO LADEINDE

Department of Mechanical Engineering, SUNY Stony Brook

In this paper we sketch a procedure which, if properly implemented, could provide

a means of obtaining high-order calculations of the type needed for the direct numer-

ical simulation (DNS) of turbulence in the supersonic flow regime. We are interested

in a procedure that handles more complicated geometries and boundary conditions

than those currently receiving attention. The proposed procedure is based on the

so-called essentially non-osciiiatory schemes, which is here formulated in terms of

the finite element meth,. 1. Part 0el implementation for arbitrary complex geometries

on the Intel i860 hypercube is discussed. More work is needed for a cost-effective

implementation.

1. Introduction

The present work is numerical, and has the objective of providing a sketch for a

procedure which, if properly implemented, could provide a means of obtaining high-

order calculations of the type needed for the direct numerical simulation (DNS) of

turbulence in the supersonic flow regime. We are interested in a procedure that

handles more complicated geometries and boundary conditions than those currently

receiving attention, and in which inhomogeneity is more realistic than those in chan-

nels or boundary layers. However, the procedure will be limited to low R.'s, as is the

case for all DNS calculations.

A
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Of the three common procedures for calculating shocks the capturing approach has

the best chance for complicated systems. However, and as pointed out by Hussaini

and Speziale', the numerical viscosity, in various forms, which is required for the

procedure seriously distorts small-scale features, making most capturing approaches

suspect for DNS. Moreover, calculations usually degrade to first order in the vicinity

of strong discontinuities, even in TVD (total-variation-diminishing) schemes that are

otherwise formally high-order in the smooth part of the flow.

The basic ingredients for the formulation presented in this work are available in

Harten and Osher 2 and Harten, Engquist, Osher, and Chakravarthy3 , on essentially

non-oscillatory (ENO) finite difference calculation of the Euler equations. ENO has

been used in other contexts, for example, to refer to procedures where any unphysical

oscillations in the solution are prevented, by whichever means. Moreover, in many

papers distinctions are usually not made between oscillations in the smooth part

of the flow and those resulting from discretization across discontinuities. Although

the two are related they require different considerations with respect to the ability 0
to obtain high-order accuracy. ENO is used in the present context in connection

with oscillations associated with discontinuities which, in the ENO procedure, are

inhibited, not by an artificial viscosity, but by avoiding the cause of the oscillations:

discretizing across discontinuities.

The ENO procedure, again in the sense used here, has its origin from the earlier

work of Godunov4, and the correction by van Leer'. The Godunov scheme is first-

order accurate while van Leer's is second. Generalization of the Godunov scheme

to obtain higher-order accuracy as well as the introduction of the ENO terminology

came with the work of Harten and his colleagues. We think it is safe to say that most

of the work on ENO originated from the group of Professor Osher in the Mathematics

Department at the University of California, Los Angeles.

That the ENO procedures could be suitable for DNS came with the work of Os-
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her and Shuo and Shu et al.". This is a welcome news at a time when interest in

compressible turbulence is growing, coupled with the realization that the spectral

method, which would be the choice for "simple" flows and has dominated DNS, is

not directly applicable to flows with strong discontinuities. The problem with the

spectral method is its sensitivity to nonlinear instability. The method also has diffi-

culties with complicated geometries and boundary conditions. As for finite difference,

highly-accurate calculations for compressible flows are possible with the fourth-order

MacCormack schemeg.5 and the compact methods1°'". However, we are not aware

that these schemes do not degenerate to first-order in the vicinity of discontinuities.

The spectral element method is suitable (and has been used) for low Mach number

flows. However, as far as we know, we are the first to suggest the use of lower-order

finite elements for DNS' 2 .

The ENO procedure of Shu and his colleagues is a simplified version of the original

one by Harten, Osher, and others. The procedure can achieve uniformly high-order

accuracy with sharp, essentially non-oscillatory shock transitions. This is accom-

plished by using an adaptive stencil interpolation based on difference tables, whereby

the data for interpolation is selected from the smooth regions of flow. Because we try

to avoid discretization across discontinuities we inhibit the Gibbs phenomenon and

(hopefully) remove the need for artificial dissipation for shock capturing.

The Shu's code is a very valuable tool for DNS research, and a version we have

rewritten for parallel processing on the i860 hypercube has been used for many DNS

calculations. However, the implementation of the schemes in the code to handle

more realistic systems is bound to be very complicated and less cost-effective than

of procedures based on finite element. Further, the dimension-by-dimension fashion

in which the convective terms are treated, both in the component-by-component

approach and the approach based on local characteristic directions, might give a

"blurred" resolution of bow-type shocks, or otherwise complex shock patterns not

0
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aligned with the coordinate directions along which discretization is done.

A recent finite difference/volume procedure by Harten and Chakravarthy13 avoids

the forgoing difficulties. In the present work we formulate the procedure for the

finite element method (FEM), as we believe that the latter is capable of giving the

flexibility needed for a cost-effective implementation for realistic systems. The price

we pay for this flexibility is the requirement of a more advanced programming skill.

Implementation for complicated geometries in an enviroment of parallel processing

with the Intel i860 hypercube is given. It is hoped that other researchers of high Mach

number turbulence will find sufficient interest to pursue the procedure to establish

survivability in terms of computational cost.

2. A Base Scheme

The equations to be solved for DNS are those governing the conservation of mass,

momentum, and energy, at high speeds. The nondimensional form in Ladeinde12 is

used. A base numerical scheme is needed for the ENO procedure discussed here.

There is some flexibility in the choice of spatial interpolation for the base scheme in

that one could, conceptually, use a linear element or a higher-order element. At the

present we are experimenting with the 8-node linear element and a 64-node cubic

element, both of the Lagrange type. With the cubic element we are pushing FEM

towards its spectral limit. This element is less attractive from parallel processing

standpoint, and may share some of the difficulties with the spectral method. Our

interest in the element is to establish these facts, since the element has such a powerful

interpolation potential compared to the linear one. In the present paper we will

assume that the 8-node element is used.

We also need a time integration scheme which, from the onset, must be high-order

(third, fourth, .. ), explicitat, or implicit. For the explicit approach high-order Lax-

OtThere is no finite element scheme that is trudy explicit in the sense that finite difference is,

but we frequently manipulate the so-called mass matrix (for exawcple, by lumping, or "throwing"
terms to the right-hand-side), to obtain a matrix-free approach.
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Wendroff applied to forward Euler formula is a possibility, as are explicit Runge-Kutta

procedures. For the latter, the third-order TVD scheme of Shu7 could be used since

it has been tested extensively. Our approach is to allow both explicit and implicit

schemes in any one simulation; the one actually used in a region will depend on the

(expected) local flow field (that is, implicit near solid walls, and explicit away from

walls). The latter is quite straight-forward with the domain decomposition approach

used for parallel processing. For an implicit procedure we have used a two-stage,

third-order semi-implicit Runge-Kutta approach that is both A- and algebraically

stable. The first stage of this scheme is essentially backward Euler, and the second is

a trapezoid rule1 2 .

Finally, depending on the approach used to obtain non-linear stability (SUPG,

upwind elements, or other upwind approaches), we could have for the base scheme, a

Galerkin system:
N
SB(w,ww')uj= (f,w'), I < i < N, (I)

where familiar notations have been used in this equation.

3. The ENO Procedure

Whatever is used for the base scheme we can always express the problem in the

form u-l+l = us + At divf or, for convenience, in the undiscretized form

ut + divf(u) = 0; z E D C ', u(z,0) = uo(Z); z E D (2)

OD is the boundary of D. In the foregoing a vector equation is implied, and

a is the dimension of the space, = 3. It is pointed out that D is, in the present

context, a subdomain from the decomposition of the original domain, but we are

giving up notational formalities, for clarity. In the same token the fact that the

subdomains could be overlapped is also suppressed. We will now give the finite

element formulation, using the notations in the paper by Harten and Chakravarthy,

A24-5



for easy reference.

D is assumed one-piece but partitioned into finite elements (cells) C. where,

D = UC,; CflCO (3)

We define

I C3 f= dV,

= zdV A(C j )z,

and,

ii = j u(z)dV A(C,)u(c).

Given element-averages U = {I} of u(z) in D, we denote by R(z; U) a reconstruc-

tion of u(z) from U, which satisfies

R(z;U) = u(z) + o(h"), (4)

where u is smooth, and requires for consistency, that

A(C))R(z; 9) = VI (5)

We denote the reconstructed polynomial in element C, by RP(z; U). Taylor series

expansion of R, about Yi gives

R._z 1) •(z - liD; zEC, (6)
h_ 11= 18

Above, we have used the multi-index notation, and

1 (I,,I ,...,L.); [l = lh + l2+ ... + lo; C'= (Ci)", (Cz)',..(( .), (7)
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0 Also,

k It k, = : . , 1+ 12+ . + 1. =k, s
11=-k It=012-=0 i.-=-0

A= -, j) +O(hr-I 1 ); 0 <111!< r - 1 (9)

so that,

Do = R,(; ii) = u(ý,) + o(h'); DA = - . (10)

The following remarks on R might be useful. R is a polynomial which has the

dimension of velocity, and it interpolates velocity to 0(h'). Thus we must choose r so

that R meets the desired order of accuracy of the scheme, and R must be differentiable

upto order r - 1. Also R must be constructed by using elements (nodes) from the

smooth part of the flow, as much as possible, and in a way that retains the conservative

properties of the scheme. (For example, an element must always be included in the

stencil for calculating its R, even when the element harbors a discontinuityo¶.) R is

very important: it is used to evaluate the flux term, the latter multiplying the (large)

Reynolds number, and hence the source of the hyperbolicity and nonlinearity in the

flow. If we can construct R in .the manner outlined above we are sure that when R

is differentiated to obtain the flux we will not be discretizing across discontinuities.

Hence the Gibbs phenomenon will be inhibited, and and no artificial viscosity will be

needed for this purpose. Thus, when we look at the behavior of the inner scales, for

example in the turbulence spectrum, we can be sure we are not seeing the effect of

artificial viscosity, and we can confidently make statements about the physics of flow.

The details of our procedure for stencil selection are available in Ladeinde".

°¶We leant from a private discussion with Dr. Chakravarthy that this has not caused problems.

0
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To obtain DA needed for the reconstruction we average Ri(z,U) over all elements

in a stencil J(O) associated with element Ci

A(Cj)R, =ii; j E J(i), (11)

The matrix problem for DI is

Saj,,D, =iU; E J(i) (12)
kf=f0 11=k

where

.. A(Cj)(z - 1j)' f(z - [i)'dV (13)

(Note that the foregoing equation has to be written for each element in J(i).)

In the present work we consider r = 4 and a = 3. The equation for an element in

the stencil becomes:

a,,(o,o*o)D(o,o,o) + aj,(o,o,1)D(o,o,1) + aj,(o,l,o)D(o,l,O) + a,,(l,o,o)D(l,oo) + a.,(o,o, 2 )D(o,o,2 ) +

ai,(oll)D(o,l,l) + aj,(o,2 ,o)D(O,2 ,O) + aj,(I,ol)D(lol) + aj,(,l,O)D(II,o) + aj,(2 ,o,o)D(2 ,o,o) +

aj,(o,.os)D(O.o,3) + aj,(o,j. 2)D(o,, 2) + aj,.(o0.2,)D(o. 2,j) + aj,(o,S,o)D(O,3,O) + a*.,(i.o, 2)D(1,0.2) +

a.,(I,is)D(i,jij) + aj,(1, 2 ,o)D(l.,o) + ai,(2 ,o,1)D(2 ,o,1 ) + a,,(*l.,o)D(2 ,1 ,o) + aj,(3,o,o)D(S,o,o) = Uj

(14)

We write this equation as AD, = U. It can be seen that twenty elements are needed

in a stencil, giving a 20 x 20 matrix problem for D1. (The matrix is full, unfortunately.)

We assume an irregular geometry from the onset and employ the usual finite element

procedure of coordinate transformation. Further, for this preliminary work, a Gauss-

Legendre procedure is used for numerical integration. With this we have

I C• I= f I J I ,diTdd = E, EZ E, I J I (qi, qj, q)) WWkWo

I Cj I , = E, Ej Ek E. x.Nm . (q,, qj, qk) I J I (q,, qj, qk) WWW.
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C) I aj 7E, E2 1, -k E,. u (, N. ~ (q, q,%)IjIW, qj) - ..)I SiW A

( y,, N,.. (q,, q,, q&) -,jN" (E. zmN. (q,, qi, q&) -,j)" jJ I (q,, q,, q,) W, W, W,

Above, the physical coordinates (z, y, z) have been transformed to the the com-

putational coordinates ( via the the Jacobian J, with determinant I J I .

(qi,q,,q,) are quadrature points of the Gauss-Legendre procedure, with associated

weights (Wi, Wj, WA). The N's are the finite element basis functions. Upon solution

for D1, we obtain R(z;U) - R(q.; U), ct E i ® j ® k, (or, qa E q9 0 qj q%) at the cath

quadrature point of Ci using

r-1 I

R(q.; V) - (z(q.) - Y)t1 (y(q6 ) - .- )1 (z(q.) - 1j)" . (15)

Note that 11, 12,13 will be 0, 1, 2,3 according to equation (14).

In the present work we represent the convective terms by

- NsmNiR(r;Um)dV(pun)', (16)

where R(x; V,) is a reconstruction from the element-average values, and

' -f umdV (17)

Of course the actual form of the convective terms will depend on the procedure

used to control non-linear instability, A non-Galerkin approach is a sure possibility.

4. Parallel Implementation

The current state of scientific computing is such that only low RX values can be

simulated in DNS. Even then, one would need those front-end computers with parallel

architecture to generate DNS data for these cases. In our work we are experimenting

with the Intel iPSC/860 (hypercube) parallel supercomputer. Currently we are using
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the 32-node, 16-megabytes, one processor per node Delta machine. (This will soon

be replaced by the 56-node, 32-megabytes Paragon machine, with two processors per

node.)

The hypercube is an MIMD machine. We use the domain decomposition pro-

cedure and pregenerate the subdomains using standard (isoparametric) polynomial

mappings. The host node is used for the start-up processes - input data, further mesh

generation, despatching data to other nodes, and so on. We make extensive use of

disk I/O and out-of-core procedures during start-up. The latter is necessary because

of the relatively small memory size of a node. In our code there is no global indexing

of any array or data, and grid is structured, (i,j,k).

Finally, our codes are written so that subdomains can be overlapped (Figure 1),

the extent of overlapping varying from 0 to 3 elements, depending on user's choice.

Overlapping results in a faster convergence and reduced interprocessor communica-

tion, as grid data need not be communicated. There is, of course, an overhead from

overlapping: more unknowns to solve, but this becomes less critical for large subdo-

mains. (At any rate, we do not believe that a time-accurate solution can be obtained,

in a cost-effective manner, with non-overlapping subdomains.) The solution in the

regions of overlap is obtained by some form of interpolation, for which the simple-

nded approach in Figure 2 is currently used.

5. Conclusion

What seems to be important at this point is the design of ways to cut down

on the cost of simulation. From a naive implementation of the schemes presented

here we observed a two- to three-fold increase in computational cost, using 32s grid

points, compared to a non-ENO code with first-order accuracy at discontinuities.

More details on the computational cost are available in Ladeinde12 where we also

give some suggestions on possible ways to cut down on the costs. At the present time

we are trying out some of the suggestions.

A
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A PRELIMINARY STUDY OF TWO-DIMENSIONAL TURBULENT

CHANNEL FLOW UTILIZING PARALLEL COMPUTATION

M.S.Pervaiz, P.R.Smith and G.A.Reynolds

Department of Mechanical Engineering

New Mexico State University

Las Cruces, NM 88003

Abstract

Two-dimensional turbulent channel flow was studied. Jones and Launder's k-e model at low Reynolds,

number was applied to model the Reynolds' stresses. Patankars' algorithm SIMPLE was adapted to solve

numerically on a parallel processor the decoupled partial differential equations for turbulent kinetic energy,

mean velocity and rate of dissipation. The computer codes were developed in Fortran 90 and run on Connection

Machine 200. The parallelly computed results for mean velocity, kinetic-energy and rate of dissipation compare

well with experimental data of J. Laufer and serially computed data by S.W.Kim.

1 INTRODUCTION

The necessity for extremely small grid spacing and the iterative nature of solution algorithms for solving turbulent

flow problems leads to very long run time on serial-type digital computers. Parallel processors have the potential

of speeding up these calculations and offer hope of someday allowing real-time solution of at least some types

of turbulent flow problems. In this paper we examine, as a preliminary step toward a-Aieving more efficient

turbulent calculations, a simple two-dimensional duct flow, as shown in Fig 1, with a known pressure gradient and

requiring a relatively small number of internal nodes. This problem was chosen since very extensive experimental

measurements have been made of the velocity profiles, kinetic-energy profiles and dissipation profiles. Furthermore,

the problem has been solved carefully on serial machines using a two-equation model, i.e., the k-e model. Hence by

solving the two-equation model on a parallel machine, we can check the results against both experimental data and

computational data. This will give us some insight into how well parallel algorithms work, before the technique is

extended to problems with unknown pressure fields (requiring another level of iteration) and problems requiring

very large numbers of internal nodes (say on the order of 10P or more).

Reynolds equation for a two-dimensional conduit are solved. Jones and Launder's [1] k-c model at low Reynolds

number is used to model the Reynolds stresses. Patankar's [2) method to solve the non-linear partial differential
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equations is adapted to develop the parallel algorithm. TL.- spacing of the grid is variable from wall surface to the

centerline of the duct and grid spacing in stream wise direction is kept constant (see Fig 2). The no-slip boundary

condition at the wall surface and vanishing gradient of the variables at the centerline of the duct are adapted. The

computer code was developed in the parallel mode using Fortran 90 and run on the Connection Machine 200.

2 GOVERNING EQUATIONS

The main governing equation is the Reynolds' equation of motion for turbulent flow, which can be developed from

the Navier-Stokes equations [5]:

_at aP a , ; .77)i -

T, TZ3o a (1)

Where the terms with the overbar are the time averaged values and the primed terms are the fluctuations about

the time average. The terms -p(u'uý) are called Reynolds' stresses which must be modeled. Let's replace ii, and

P by u and P for simplicity. For two-dimensional steady state flow in the x, direction, eqn (1) can be written as:

au, au, 8 u-l 0 .Ou

Pu, - + PP1 i - -- +, --- j - L (2)
as O2 azi Oxi 49Z2 8X2 ax,

ott OU2 8a t a0 t2 . a•P
p,,5,J + ,•+- - - (3)

OX, z2 +OW2 OA 302 Ox2

In fully developed turbulent two-dimensional duct flow, the variation of mean values of fluctuating quantities

w.r.t. x, should be zero [3], i.e. the flow pattern is independent of the stream wise direction, therefore pressure is

independent of z2. Further, assuming that u2 is zero, then eqn (3) can be dropped.

The two equation model assumes that Reynolds' stresses are equal to mean rate of strain times the turbulent

viscosity [I].

-(lu) out (4)-p•tt4 = PT0 -;,

where PT is the turbulent viscosity, ([6], [7]). The turbulent viscosity is assumed to have the form

AT = C,,pk (5)

where C,, is a constant,k is turbulent kinetic energy and I is the turbulent length scale. Equation (5) can be recut

as ([8], [9], [101)

PT = C.p-, (6)

wer C, is a constant of proportionality. The variables k and e (the turbulent dissipation) can be calculated for
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steady, two-dimensional flow from the following two differential transport equations at low Reynolds' number ([2]

and [111):

Ak a AT£3k dU,,U £u,, ,£ak & 2put-- = [(A + -- T + +T-+I + 2juf l - -ft'-- p - i, j = 1,J 2 (7)Jr ax, U _ £31),, , ou , ,, (7, )
u a Ta-u, a •,-)el•- 2+C ,.;.-+ L , i.j= 1.2 (8)

a.5x 5-( - -8 13 UjX[ ') J-C2p;-+2MjAT() 2 ,

where

CA. = 0.9Exp(-2.5/(l.0 + RTI50)) (9)

C2 = 2.0(1.0 - 0.3Exp(-4)). (10)

C1, ak and a, are usually assumed to have the values 1.45, 1.0, and 1.3, respectively ([2], [11]).

The continuity equation for the mean flow is

auI-=0•=o (11)

Equations (2), (4), (7), (8) and (11) represent a complete set of equations for the steady turbulent flow through a

two-dimensional duct. Equations (2), (7) and (8) can be represented in the general form as:

a( ) =-L4 ) + s , = 1,2 (12)

where 4, r and S are as defined in Table 1 for the three equations.

Table 1. Variable values for eqn. (12)

Eqn.f4r ]s

2 U #+AT -P-

7 k p+ A /T(h)-p•--2p(L)2

8 +~ CI T( C)2 P+ pýf!2

3 DESCRIPTION OF THE ALGORITHM

Equation (12) is a set of non-linear coupled partial differential equations. These equations can be decoupled and

solved by different methods, (e.g, see [2], [12], and [13]), but in the current study a modified SIMPLE algorithm

[2] is adapted. A staggered grid is used, as shown in Fig. 3. The pressure is asnumed known at the center (main)

grid point p and the velocity, turbulent kinetic energy, and dissipation are calculated at the 1/2 grid points e, w,

n, s. Note that the main grid points are the intersection of the grid lines shown in Fig. 2. Now, let

+ "D = s, (13)
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where

ax, aX,
Y., pu0 -r OO• and Yz= u - z"

Integrating eqn t 13) over the control volume shown in Fig 2 gives

J. - J. +J, - J, = (SC + $,,)AzAz2. (14)

The quantities J,, J,,, J,,, J. are the total integrated fluxes over the control volume faces, e.g., J. stands for f J, dz1

over the interface e, etc. Integrating the continuity equation times density (eqn (11)*P) over the control volume

gives,

F. - F. + F. - F, =0 , (15)

where F., F,., F., F. are the mass flow rates through the faces of the control volume. If pul at e is constant,

F. = (pu,).Az 2. (16)

The other mass flow rates are found in the similar way. Multiply eqn (15) by 4, and subtract it from eqn (14):

(J. - F.$p) - (J. - F.,4) + (V. - F,4p) - (J. - F.A,) = (S. + S,4,)AziAz 2  (17)

which becomes

ap=• = aGEE + aw~w + 4NON + as#S + b, (18)

where

ap = aE + aw + aN + as - SpAzIAz 2

aE= D.A(I P. I) + [-F.,0] 4w= D.A(I P,, 1) + [F.,0]

aN 4 D.A(I P. I) + [-F,.,0] as = DoA(I P. I) + [F.,0]

b = S'AZxAz 2

Do = ,Az.. D. = r",& D. r-..' D. -"z,

(6z,). (6Z2).

and the Peclet numbers are

F = f,. = F. Fo
,. P- P. D. P DD.

and Az,, 6z, are defined in Figs 3 and 4, respectively. The function A(I P 1) was selected as [21,

A(I P I) = [0,(1.0 - 0. 11 P I)'], (19)
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where [... represents the maximum of the bracket. Equation (18) represents the equations for ul, k and e (i.e. 0)

which must be sokhed at internal node p. F. can be approximated by

S2r,+FE (20)

F, + Tr'

if (6z&), is midway between p and E [2]. A similar equation results for F,. in terms of r, and Fw.

If the source term is linear and depends on 4, we can treat it as a linear function i.e.,

S = S, + S,*,. (21)

When the source term in non-linear and depends on #, the source term can be linearized in the following way.

dS
S = s" + ( )(, - M,(22)

where star terms are calculated on the previous iteration and 4#, is the new value which will be calculated. The

constants S, and Sp will become

dS dS

The values of S. and S, are calculated on every iteration.

In order to maintain conservation of man and to ensure the stability of the calculation, the following rules must

be obeyed:

I)When a face is common to two adjacent control volumes, the flux across it must be represented by the same

expression in the equation for the two control volumes.

2)AIl coefficients i.e. ag, aw, as, aNa,. must be positive at all times during the calculation.

3)When the source term is linearized as S = Sc + Sp, the coefficient S, must be less than or equal to zero.

4) Sum of the neighboring coefficients should be equal to ap.

The system of equations were solved along one horizontal grid line by substituting the estimated values of 41 in

the neighboring lines. This is called the line-by-line technique. The equation for two dimensions can be written as:

aP1- = aE4OE + GWOW + aN41 N + 4S$S + b (23)

For this study the line-by-line technique it is applied only in the zi-direction. The estimated values of 4 1 v and #s

will be substituted into eqn (23). The resulting equation is:

Ea•jO = b~j+j+ + cj#4 _i + d i = 1,2,3 ..... Nn, (24)
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in which 4, = (P.. 4,,, = 4hr, f,-i = *w. a, = ap, , = Ea, C, = aw and d, = aN4*. + as#; + b, where 90

and $b are t•e estimated values of the neighbouring lines. N., is the number of central nodes in the x, direction.

the subscript i is the grid point location in the zi-direction and a,, b,, c, and d. are the known coefficients in the

equation. To begin the calculation the values of the velocities, turbulent kinetic energy and the dissipation at all

internal nodes are set to the entrance values assumed at x, = 0. Beginning on the rn, = 1 line, eqn (24) yields

an N, by N, tridiagonal matrix in the 4, (i = 1,2.3 ..... N) which can be solved by a parallelized tridiagonal

matrix solver. Solving gives new approximations to the *, on the rn,, = I line. These new values of 4, are used

in calculating the 4i on the rn, = 2 line, but the entrance conditions are still used as the approximation for all

the values of 4i on the rn,2 lines above the m,3 = 2 line. This procedure is repeated for all 160 rn, lines. One

completion of the calculation of the 4, for all 160 rn, lines represents one iteration toward the complete solution.

We now have new approximations to the values of ul, k and e at al the internal nodes. We return to the m,, = I

line and begin the procedure again, using the new approximations to the fi. This procedure continues the until

the maximum relative difference between successive iterative values of a flow parameter at all nodes is less than

the specified convergence criteria for that particular parameter.

Variable grid spacing in the z,-direction and constant grid spacing in the z1 -direction were used. The crom-

channel half-width of 0.0635 meter was divided into one hundred and sixty grid points. The grid spacing was

calculated from a second degree polynomial:

AX2 = 0.00003 + 0.03055z 2 - 0.24056z2 2  (25)

The laminar sublayer contains twenty one nodes. The near wall region contains seventy eight nodes and the

turbulent core region contains sixty one nodes.

A no-slip boundary condition was used at the wall, i.e. at.

X2=O, u 1 =u 2 =u 3 =0 and k=e=O.

The z1 -direction grid spacing was held constant at 0.001 meter and 110 z, nodes were used for all calculations.

The gradient of $ was kept zero at the center line of the duct, i.e.

O= 0 k 0, = 0.

The inflow boundary condition at z1 = 0 was assumed to be the entering profiles of ul, k, e. The out-flow boundary

condition wu determined after calculating al the unknowns at the interior nodes.
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Since we are interested in the fully developed turbulent flow, the entering turbulent mean velocity profile at

x, = 0 was provided by empirical relations [51 (similar methods are used by other authors ([1]. [-4;), who showed

that the entrance profiles assumed have little influence on the final fully developed flow) and the problem treated

as an entrance length problem. The flow proved to be fully developed before the .V,1 = 110 node was reached.

4 RESULTS AND DISCUSSION

The parallelly computed results for turbulent kinetic energy, rate of dissipation and mean velocity are compared

with experimental results by Laufer [3] and with serially computed results by Kim [4] in Figs 5, 6, 7, 8 and 9.

Turbulent kinetic energy results are shown in Fig. 5. The magnitude and location of maximum and minimum

turbulent kinetic energy are in good agreement for all three methods. The results for normalized turbulent kinetic

energy ( = *.- and Y+ = 2a) near the wall are shown in Fig. 6. The location and magnitude of the over shoot

is in good agreement for all three techniques.

The results for normalized rate of dissipation (e+ - .-) near the wall are shown in Fig. 7. These results are

compared with semi-empirical data [4]. The location of maximum overshoot is in good agreement with the available

data. The semi-empirical data is actually the mean value of many experimental data or the turbulent quantities

obtained from the analysis of various experimental data.

The results for the turbulent mean velocity are shown in Fig. 8. The parallelly computed results are in good

agreement with serially computed results and within 10% of the experimental results. In this study the pressure

gradient was taken from Laufer's publication [3]. The same pressure gradient was used by Kim [4]. The normalized

turbulent mean velocity (u+ = I-) near the wall is shown in Fig. 9. The parallelly computed velocity prediction in

the laminar sublayer is in excellent agreement with the available data but deviates from it somewhat in the fully

developed region.

5 CONCLUSION

A numerical technique utilized on a parallel processor for determining the fully developed turbulent flow of known

pressure gradient in a two-dimensional conduit has been demonstrated. The technique appears to predict the

turbulent mean velocity, the turbulent kinetic energy and the turbulent dissipation as accurately as a similar

numerical calculation which is completely serial in nature,
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SAN IMPROVED k-C MODEL
FOR

PREDICTION OF ADVERSE PRESSURE GRADIENT TURBULENT FLOUS

By G. Chukkapalli and O.F. Turan+

Mechanical Engineering Department
McMaster University

Hamilton. Ortario L8S 4L7
Canada

ABSTRACT
A modified k-c model is proposed to predict complex, adverse pressure

gradient, turbulent diffuser flows. A fuller treatment of the rate of kinetic

diffusion terms is incorporated in modeling the transport equations for both k

and E. A third structural parameter is introduced. A three-layer

representation is proposed for each structural parameter. Improved prediction

is obtained with the present model.

I. INTRODUCTION
Prediction of adverse pressure gradient (APG) turbulent internal flows

finds practical applications in designing turbomachinery passages, wind

tunnels and diffusers in general. Such flows are complex (Bradshaw, 1976), and

as a result, numerical prediction is difficult. The main reasons for this

complexity are wall effects which are common to all wall bounded flows, and

the effects due to adverse pressure gradients. The effect of wall on

turbulence structure is two-fold. First, viscous effects surface due to

reduced local turbulence Reynolds number. Secondly, wall effects

preferentially suppress transverse normal Reynolds stress and distort

turbulent eddies, thus making turbulence structure anisotropic. On the other

hand, the effects of adverse pressure gradients on turbulence structure are

many fold. First, the assumption of self preservation in the longitudinal

direction becomes questionable. Additional mechanisms of production,

dissipation and transport of turbulence, such as through lateral vortex

stretching, appear. Host prominent physical phenomena responsible for this

additional activity are irrotational strains and lateral divergence.

The present study is a step towards practical numerical prediction of

turbulent diffuser flows. In the representation of Reynolds stresses, the

concept of structural parameters is compared with the Boussinesq formulation.

A modified k-c model is proposed with structural parameters, and the triple

correlation model of Hanjalid and Launder (1972, hereafter referred to as HL)

is incorporated. The prediction of k, and of its rate of dissipation, E, in an

eight degree conical diffuser with a fully developed inlet is compared with

the prediction using a conventional eddy viscosity k-c model.

II. MODELING DIFFICULTIES
Turbulent diffuser flows with the complexities mentioned above are still

Address correspondence to this author.
Tel. (416) 525 9140 Ext. 7296/7321, Facs. (416) 572 5944.
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out of reach "or direct numeri-'ai simulation or large eddy simulation, due to

their w~i i range of time and length scales. As a result, the prediction of

these ,:mmori urbulent flows have to depend on the averaged, unclosed

Navier-St~kes equations and closure modeling. A popular closure approach is to

solve the transport equations for turbulence kinetic energy, k. and its rate
of dissipation, E, along with the averaged N-S equations. By using the

Boussinesq formulation, the Reynolds stresses which appear in the mean
momentum equations, are linked to the mean gradients through the eddy

viscosity which is derived from k and c. The unmodeled transport equations for

k and e in tensor form are given below:

Dk/Dt = -a/ax Eu (p/p + k)] - u u .a8 /ax + u.al/ax [u au lax + au /ax 4-
_j I __ _ _ _ _ _ I _ _ kD J J I I

k

- (.cau lax + du /dx )du lax (1)

DE/Dt =- 2.i.au /ax (au lax .au /&x + au lax "au lax) - 2.(.. u •u•xax 2

k I I k I I I ki k I

- (J/P)'a/ax (Pp/ax aulax - 2.v' au lax au lax u lax -a•/ax (uC) (2)

P CT t:

where D, Ph' D and c of Equation I represent the rates of kinetic (turbulent)

diffusion, production, viscous diffusion and anisotropic rate of dissipation,

respectively, of turbulence kinetic energy, k. Similarly, P., PCT' cc' D and

D of Equation 2 represent the rates of production due to mean field.

production due to turbulence, destruction , turbulent diffusion and pressure
diffusion, respectively, of C. The kinetic diffusion and dissipation terms of

the k-equation and most of the C-equation terms, have to be modeled in terms

of k, C and mean gradients in order to obtain a closed form. The pressure

diffusion is neglected here based on the available experimental data for the

k-equation (Turan and Azad, 1992).

BASIC k-c MODEL

Various terms of the k-equation are modeled as follows. The kinetic

diffusion is given by, D = a/ax I(V Tak/8xi), (3)

where CT = C k2/c is the turbulence eddy viscosity. Reynolds stresses are

modeled by using the Boussinesq formulation as, uiu. = V.%.(8Ui /hx + au/ axi)
2/3.6 k. Thus, the rate of production becomes, Ph = (VT.(au I/ax ÷ au lax) +
2/3.8, k].aU /ax . The following isotropic form is used for the rate of

dissipation: c V'.(au lax Similarly, the terms of C-equation are modeled

as follows: Pc C Cl..P it /k; cc = CC2z. c/k; D = a/ax(UTac1/axL ) where Cw, C 1
etc. are the model constants.

The high Reynolds number basic k-C model, fails to produce correct trends

and most importantly, the correct limiting behavior, as the wall is

approached; yet the wall behavior is important in engineering applications.

The main reasons for this discrepancy are, the assumption of isotropy and

neglecting viscous effects.

Large number of modified two-equation models have appeared in the

literature to remedy the drawbacks of the bas'.c k-e model. Earlier models use
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high Reynolds number forms wi:n wall functions. In more recent models, high

SReynolds n'1mter models are modified for low Reynolds number applications by

using wal iamping functions. \ -,omprehensive review of near wall models is

given by Fatý- et al.A1985), and more recently by So et al. (1991) and

Speziale et al. (1992j. In order to obtain the correct near wall behavior of

various turbulence quantities. PC and E. of the c-equation and vr are

multiplied by wall damping functions fI. f2 and fP, respectively. These are

appropriate functions of y* and become unity away from the wall. With these

corrections to the basic k-c model, most wall bounded flows, especially their

mean flow fields, can be predicted with accuracy (Lai et al. 1989). Still,

these modified models fall short of predicting the turbulence fields of

arbitrary adverse pressure gradient flows.

The reason for this shortfall can be examined from three points of view:

First, the response and recovery rates of the mean and turbulence fields to

the disturbances, such as due to an APG, are quite different; whereas history

effects are not taken into account when the Boussinesq approximation is used.

Reynolds stresses cannot respond instantaneously to the rapid change of strain

rates as modeled by an eddy viscosity model. Secondly, scalar gradient

diffusion model is expected to yield poor results when turbulent transport is

dominated by large eddies. Another disadvantage of this model is the

assumption of isotropic diffusion such that diffusion of all normal Reynolds

stresses in all three directions is taken to be similar. Thirdly, almost all

k-e models use the isotropic c-equation, because of the shear complexity of

the anisotropic one. In addition, various terms such as production, transport

and destruction of the isotropic E-equation are modeled on similar grounds to
that of the k-equation, even though there is not ,xperimental evidence of both

scalars being governed by similar physics.

III. PRESENT MODEL
STRUCTURAL PARAMETERS

There is outstanding experimental evidence that turbulence Reynolds

stresses are closely related to turbulence kinetic energy (Bradshaw, 1967,

Fernholtz and Vagt, 1981, Cutler and Johnston, 1989, Saddoughi and Joubert,
1991). In the present study, the eddy viscosity concept is replaced by

structural parameters to relate various Reynolds stresses to the turbulence

kinetic energy as follows:

2 2 2 2
uv = a 1 .k; (4a) u -v S a 2 .k; (4b) w -v = a3 .k, (4c)

where structural parameters a. and a3 represent the flow anisotropy in

transverse and span-wise directions, respectively. From Equations 4b and 4c
"2 V2 W2

and k =( u 2+ v+ w 2w)/2, the following relationships between normal Reynolds
2 2m

stress components and k can be obtained:u2 = b . k; v = b. k; w2 = b 3 .k;
where bi = (2 + 2.a 2 + a 3 )/3; b2 = (2 - a 3 + a 3 )/3; b 3  (2 - a 2 - 2. a 3 )/3.

al (Bradshaw et al. 1967) and a. (Hanjalid and Launder, 1980) were assumed

previously to be constants throughout the flow field. As it is shown in

Section IV, the structural parameters a,, 1 a 3 are not constants. The

parameter a 3 is proposed in the present stuc
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THE KINETIC DIFFUSION TERM OF THE k-EOUATION

The triple velocity corr.,lations in term, D, of Equation I. are modeled

using HL s symmetric expansion into gradients of Reynolds stresses which was 0
shown t, .-eld most acceptable results (Ammano and Goel 1987).

- /t (~ U~i U a uu T /(3x +7~ a U)U (5)
j k , I j k I j k 1 I i I

This model replaces the isotropic scalar gradient diffusion form of the

k-E models found in the literature. When expanded in the r-9 coordinates the

turbulent diffusion term yields,

-a/ax (uk-- = a/ax(Ck/lIu2(ak/lx+au2/dxk÷uv)aklar4au2 lar4.vlax)+v a-u' /larfl

+1/r.a/ar{rCk/c(u'au-v/8x+'%'(cak/ax+a8•v/ar+av 2 /ar)+v2 (ak/ar+av 2 /ar)]}. (61

The Reynolds stresses in Equation 6 are then expressed in terms of k by using

the structural parameters. Equation 3 can be obtained from Equation 6 by

invoking isotropy. With the assumption of isotropy, the relationship between

CMI, •k and C can be obtained as, C /a = (10/9) C. The model constants of

the present study are given in Section V.

Complete production term, Pk' is incorporated without neglecting any

normal stresses as the axial mean gradients and additional strains due to

conical geometry are not negligible. Thus the production of k. Pk is:

-u u.dU/axi = k.(a1.(aC/&3r + av/ax) + a2.3U/ax + a3.V/r]. (7)

Here, term I represents the production due to basic shear; term II represents

production due to irrotational strain; term III represents production due to

lateral divergence specific to conical geometry.

THE C-EOUATION

The terms of the E-equation, Equation 2. are modeled similar to the basic

k-£ model, as in Section II. except for the rate of turbulent diffusion, D1,

and the rate production. P . The turbulent diffusion of dissipation rate was

modeled according to HL's model (1972):

S= -8/ax[C k/c(uZac/ax++ 'vac/ar)]+I/r. /a r(.rCC k/ ('u'ael/ x+v 2 /ar)l . (8)

Generation of c is taken as similar to that of k production with the inclusion

of CC3: PC = -c/k([C C1.a (aL -r + aV/fx) +C Ca2.aUCC* .a3.V/r] (9)

:V. MODEL EVALUATION
STRUCTURAL PARAMETERS

Four adverse pressure gradient diffuser flows, namely, Flow Of41,Flow 0(42

and Flow 0143 of the 1981 ArOSR-HTTH conference ( Kline, Cantwell and Lilly

1981) and an eight degree conical diffuser (Turan 1988, referred as Flow Tu

hereafter were selected for the evaluation of structural parameters. The APG

characteristics of these flows are different enough to help assess generality

of the structural parameter concept. Flow 141 is an increasingly APG planar

diffuser flow; whereas the others are decreasing APG conical diffuser flows.

Flow 143 has high core turbulence. Flow TU has a fully developed inlet;

whereas others are boundary layer flows.

In the present study, it has been observed that the constant structural

parameter assumption is not valid in these flows, especially close to the

wall, consistent with the results of Gillis and Johnston (1983) and Fernholtz

and Vagt (1981). The behavior of each structural parameter is similar in the

decreasing APG flows examined. Detailed comparison is given by Chukkapalli and
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Turan '•C. Four zones are identified in these flows in the transverse

directi.,n a s shown by an example in Figures 1 to 3 for the structural

parameters. a , a, and a 3

t.h l. a ., region. y*< ?0. Asymptotic analysis is invoked in which channel

flow simulation data of Kim et aI.(1987) are used.

2.The logarithmic region, 20 <y*< 250. In this region, parameters al. a,

and a, follow a logarithmic variation with respect to y*.

3.The constant region in which all the structural parameters are

approximately constant, y*> 250.

4. The core region where large scatter of the structural parameters was

found. This can be attributed to the low values of both the numerator, a

Reynolds stress, and the denominator, the turbulence kinetic energy, in

calculating the structural parameters. As a result, the uncertainty in the

calculations due to experimental error is high in this region. Constant

structural parameters may be assumed in the core region without causing large

errors as both turbulence and mean gradients are weak in this region.

The extent of the constant region depends on core turbulence and

increasing or decreasing APG. The constant region expands when the flow

approaches equilibrium; whereas the logarithmic region is observed in all

three decreasingly APG flows tested. In Flow 141, in increasing APG, only two

of the four regions identified above in decreasing APG, are present, namely,

the constant region and the core region. The reason for this observation can

be due to lack of experimental data for y* < 100 in this flow, where the

logarithmic region is expected.

As a result of these observations, it can be concluded that the structural

parameters can be expressed as follows at any station:

a, = (yog y) + (ab 1), (10a)

a2 = (a2 - 2 y* ) + (aL2 - bL2.log y*) + (a,)2 11Ob)

a3  (a 3 - z'Y ) + (aL3 - b 3"log y*) + (a 3 ) " (10c)LýY* I Oý L20y< Ly>2SO
Using the coefficients given by Kim et al. from channel flow simulation at Re

= 6,500, the following wall region values can be obtained: 0, = 0.0087, a2

1.56, 02 = 0.0009. a3 = 0.44. The constant region values, at 1 , ac2 and a,3,

respectively, are, 0.11. 0.33 and 0.15. In APG flows due to production of k by

irrotational strain, lower values exist than in zero-pressure gradient

flows.The modeled behavior of a I, a2 and a 3 is also illustrated in Figures 1.2

and 3, respectively.

The use of structural parameters is more advantageous than an eddy

viscosity model due to two reasons. First, structural parameters are expected

to be more general than eddy viscosity, since the constraint for applicability

of structural parameters is similarity of averaged turbulence structure;

whereas the eddy viscosity concept requires that flows have similar mean and

turbulence fields. The second advantage of the structural parameter concept

over the eddy viscosity model is the correct near wall behavior of the

predicted Reynolds stresses; whereas the eddy viscosity model Reynolds

stresses have to be corrected by an appropriate wall damping function such as

f . The predictions can be carried out up to the wall by using structural
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parameters without using wa' *iarnpng functions.

EVALUATION OF THE KINETIC DIFFUSION TERM

Flow I"- has been used for evaluating the modeled triple correlations and

diffusi)n term, since triple velocitv correlation measurements are not

available tor the other three APG flows examined here. In Figures 4a and 4b

respectively, comparison is presented of experimental and modeled u v and v

correlations at station x = 66cm. These correlations are chosen as the best

and worst examples. Comparison of the total diffusion term, Equation 6 KHL

model), with experimental data and the scalar gradient representation,

Equation 3, is shown in Figure 3. Agreement with experimental data is observed

except for the oscillations in modeled terms around the centerline and close

to the wall due to differentiation of discrete experimental values. The
3

asymptotic variation of the unmodeled diffusion term is O(y* ); whereas the
4

scalar gradient and HL modeled diffusion terms were found to have O(y" ) and
6

O(y* ) variations, respectively. Similarly, the HL modeled triple correlations
3 +

vary as O(y* ) higher than their asymptotic equivalents as y + 0. Since the

rate of turbulent diffusion close to the wall is negligible compared to the

rate of viscous diffusion and dissipation, the incorrect near-wall behavior

has been found not to affect k and c predictions here.

V. COMPARISON OF PREDICTED k AND WITH EXPERIMENTAL DATA
A turbulence model which can predict turbulence quantities well is

expected to predict the mean field equally well, if not better. Hence, only

the k and E transport equations are solved here by inputting the necessary

mean data. The equations are solved radially by inputting the axial gradients.

Control volume approach is used with Patankar's power law scheme (Patankar,
1980). Grid and initial guess independence has been verified.

The computations were carried out first for a fully developed pipe flow.

The Reynolds number based on the centreline velocity was 139,000 (Turan,1988).

This flow at the inlet of Flow TU was chosen as a simple test case. For

comparison with the present model, an eddy viscosity k-E model was also used.

Out of the several model constants tried, the constants derived from the

re-normalization group (RNG) methods by Yakhot and Orszag (referred to as Y-O

hereafter, Speziale 1991) gave the best results. These model constants are,
ak = 0.7179; at = 0.7179; Cj = 0.0837; Cel = 1.42; CC2 = 1.7215.

The pipe results are presented in Figures 6a and 6b. As can be seen from these

plots, both k and c predictions are within experimental error.

The computations failed to converge when the eddy viscosity k-C model is

used with the same constants in the diffuser flow, Flow TIT, along with C.3 in

the C-equation to account for the enhanced dissipation due to irrotational

strains. Slight modifications to these coefficients gave good prediction of

experimental results both in the pipe and diffuser flows, as can be seen in

Figures 7a to lOb. In these figures, the k and c predicted by the present

modified k-c model and by the eddy viscosity k-c model with the modified Y-O

constants are compared with the experimental data. The modified Y-O constants

are as follows:

aig = 0.7319; a( = 0.7319; Ct = 0.0730; Cel = 1.42; C z = 1.7235.
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Ct3 = . .- Rodi and Scheuerer. 198b6 was used in the diffuser flow

predictions. 7hese modified -onstants were calculated with a minimum nodal

residual -:i: rton.

The ,:.nstjnts of the present model are as follows:

C = 0.11; Cc = 0.15; Ce. = 1.395; C E = 1.92.

These coefficients are similar to Hanjalid and Launder's (1972). Here. C,. is

derived from C,. and C, by using the following expression: C C1 C c•- 3.5C as

derived by Hanjalij and Launder (1972) for a constant shear layer. A CI of

2.5 was used by Hanjalic and Launder (1980). This value was modified to 4.44

and 5.6, respectively, by Rodi and Scheuerer (1986) and Henau et al. (1990).

In the present study, the following range is calculated as the optimum values

for Flow TU: 3.5 4 CC3 s 6.5.

From a comparison of Figures 6a and 6b with Figures 7a and 7b, it can be

seen that the eddy viscosity k-C model with the unmodified Y-0 constants gives

better prediction of both k and E in the fully developed pipe flow. This

result is expected, since the eddy viscosity k-c model and the Y-0 constants

were developed for simpler turbulent flows. In the APG diffuser flow as seen

from Figures 8a to lOb, an improvement can be observed in the predicted k and

E when the present modified model is used, in comparison with the predictions

obtained with the eddy viscosity k-E model with modified Y-0 constants. The

improvement is in that the predicted slopes are closer to the experimental

ones when the present model is used. Since the gradients of Reynolds stresses

calculated by using structural parameters are needed in the averaged mean

equations, the present model is expected to give better prediction of the mean

flow field for engineering applications.

The improvement obtained in predicting k and C with the present model is

less than expected with the improved representation of Reynolds stresses and

kinetic diffusion. This discrepancy can be attributed to the poor modeling of

the terms of the c-equation, as also indicated by the lack of generality of

the model constant C C. Experimental results from complex cases, or direct

numerical simulation data of simple flows, are needed of the terms of the

exact c-equation for testing the modeled terms. Thus, measurement of these

terms in an APG diffuser flow is the direction of further research in this

work.

VI .CONCLUSIONS
A third structural parameter, a 3 , is introduced to account for the

production of k due to lateral strain for conical cases. The development of

structural parameters a,. a2 and a3 is examined in four APG plane and conical

diffuser flows. It is shown that the structural parameters are not constant in

these flows. A four-region three-layer description is proposed for each

structural parameter, which includes the limiting behavior for y÷ < 10

followed by a logarithmic region and a constant region. Near wall limiting

behavior of a,, a 2 and a3 is derived from the asymptotic behavior of Reynolds

stresses.

A modified k-c model is developed which uses structural parameters instead

of the Boussinesq approximation in estimating Reynolds soresses. The rate of

kinetic diffusion of k is derived from the expansion of triple correlations by

using the HL model which reduces to the conventional scalar gradient diffusion
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form if isotropy is assumed. Similarly. the rate of kinetic diffusion of C of

the full Reynolds stress model of HL is introduced in conjunction with the

structurl. Parameters into the •-equation. With these changes, the modified

model enan.es better prediction of k and c in an APG turbulent diffuser flow.

The present results indicate the need for further improvement of the

c-equation modeling.
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SFgures 1, 2 and 3. The four-region representation of the structural
parameters a,. a 2 and a 3 respectively. given by Equations 10a, 10b and 10c.
The experimental data from the last station of Flow TU are shown as an

example.
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Abstract
Two new turbulence models (k - e- S and k - kr - e) based of the k - e model of turbulence

have been implemented and tested on simple wall bounded flows at various Reynolds numbers.
Encouraging results have been obtained and preliminary plots of mean and turbulence quan-
tities are presented. The consistency of the constants over a wide range of wall bounded flows
in both models is immediately apparent, although the constants still need to be adjusted to
achieve accurate predictions of the flows considered.

Introduction
The k - c model was used as a basis for the development of two new turbulence models.

These models are being tested to provide a novel way of calculating wall bounded turbulent
flows. In particular, the k - c - S, Lumley [1] and the k - kr - e, Zeierman and Wolfshtein [2]
and Arad and Wolfshtein [31 models are further developed. The motivation behind this work
is to obtain a relatively simple yet widely applicable model for turbulent flow which could be
used in an industrial setting.

Model 1: k - e - S, Lumley (1]
In the search for a non-local model for turbulence, Lumley [1] has scrutinized the dissipation

equation in the k - e model of predicting turbulent flow. Lumley has proposed an auxiliary
equation and a new time scale for the modelling of the dissipation of the turbulent kinetic
energy.
The new time scale, T has the following form:

T = cti,..2( )(1 - 1.29RI 2) (1)

Where Ctime is a constant to be determined, t is the turbulent length scale, u is the integral
velocity scale and Rt = lu/v. The resulting dissipation equation is then:

u Le + f -Ci us f(2)

The time scale is derived only for the dissipation equation. It is intended to more accurately
model the time associated with the dissipation of the turbulent kinetic energy from small wave
numbers through to the high wave numbers, the latter of course being associated with the

0 'Graduate student, all others appear in alphabetical order
2 To whom all correspondence should be addressed
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Kolmogorov scales. The time scale incorporates a time lag for the dissipative scales to receive
all of their energy" from higher wave numbers.

Bousinessq approximations are employed for the time-averaged fluctuating correlations (117c
and ,-luy ): of course, other practices could be employed. The resulting dissipation rate equation
is of the form:

af , Cium2f 3L7, - +V52= ýý-v72Si (3). 'T T T

Where Ci,,.m and Cl,,,2 are Lumley constants, the values of which need to be determined.
The generation term in the dissipation rate equation (vr 2 Sj2 ) is now replaced by the auxiliary
variable (S), which takes into account an averaging of the magnitude of the mean strain rates
in areas from which the fluid is advected to the point in question. The rate at which energy
enters the spectral pipeline should be determined by the local value of the energy and the
local value ,- the time scale. The auxiliary equation gives a spreading Gaussian average with
a fading exponential memory of scale QŽ (again, ! being the local time scale) back along the
mean streamline [I].
The auxiliary (5) equation has the following form:

OS {[s sf/]i - S} 02S
Oxj =+ (4)

where: ks k
VT = CA-L, !.I=c- (5)

The resulting e equation is:

S a02 f CUM1 sClu2E
lT J (6)uz + b,-'X=

The new time scale is also incorporated into the turbulent viscosity. Since the turbulent
viscosity is proportional to a turbulent length scale multiplied by a turbulent velocity scale,
the turbulent viscosity must also be revised to account for the new turbulent time scale. This
is done as follows:

=T() C2 ;tb4,.b = ctVtbT (7)

Where Vtub is the turbulent velocity scale. As the Boussinesq approximation is employed, the
turbulent viscosity is approximated by the square root of the turbulent kinetic energy [Prandtl,
1945; Kolmogo:-ov, 1942], resulting in:

mr(2) = CCc 2kT (8)

final form of the dissipation equation is:
OE OC2,E Cz•I • C.,2

af Y2 -Clv1Clum2f 9S= (9)
Ox, iT ax? T

Due to the multiple time scale, the new model also contains multiple viscosities. These two
changes introduce many new constants to be evaluated. A summary of the constants for the
three flow fields are given in Table 1.

To our knowledge, the use of k - - S has never been applied to wall bounded flows and the
new time scale has not been used in conjunction with the auxiliary (S) equation. Preliminary
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Table 1: Preliminary values of the constants for the k - c - S model

Constant F Channel Flow - Re=5600 Pipe Flow - Re=50000 Pipe Flow - Re=:380000
a 1.2 1.2 1.2
a 1.2 1.2 1.2

ctime 1.0 1.0 1.0
c2 0.1 0.1 2.0

CIUMI 0.1 0.1 0.1
CI,,,2 1.0 1.0 1.0

C_ 0.625 0.625 0.625

Mean Axial Velocity. Vgf(k)=-PRf-,ie 2. C.-Q.625 Turbulent Kinetic Energy. Proff(k)-Pr~fl(J- ).2. C,-0.625
Re-5600, Cw,..C.%wxl .0. C2,CQm' -0.1 Re-5600, C.I.W-C.z 0, .02a-Ck"' -0.1

i , i \,

aOOOoooodoooo . .. = S.........

.L

Figure 1: The k - - S model compared to channel flow simulations [7] at a Reynolds number
of 5600; (a) Mean axial velocity; (b) Turbulent kinetic energy.

results for channel flow at a Reynolds number of 5600 and two pipe flows at Reynolds numbers
of 50000 and 380000 are given in figures 1, 2, and 3. These results are compared against data
from Laufer [4], Lawn [5], Nikuradse [6], and the direct numerical simulation data of Kim et
al. [7].

The consistency of the constants for the various flow fields is very encouraging for a robust
model of turbulent flow. The model, however, over-predicts the turbulent kinetic energy in the
core of the flow field away from the walls and under-predicts the diffusion of the mean flow
variables.
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Figure 2: The k - c - S model compared to pipe flow data [4] at a Reynolds number of 50000;
(a) Mean axial velocity; (b) Turbulent kinetic energy.

Mean Axial Velocity, Ple(k)=P,*wnl.iA c..o.s2s Turbulent Kinetic Energy. PMr*(k)lPr(• =.2, C.,"O.625
Re-380000. Cu.s-Cg~..-l.0. Cum .-.1. C4-2.0 Pe.180000, Cgm-Cmw-.jl0. Chm. -0.l. C2.2.O

ei 5, Si 5 .5 s- , .

Figure 3: The k - e - S model compared to pipe flow [5] at a Reynolds number of 380000; (a)
Mean axial velocity; (b) Turbulent kinetic energy.
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Model 2: k - kr - c, Zeierman and Wolfshtein [2] and Arad and Wolfshtein [3]
The basic k - c model uses a single local turbulent time scale to model the flow field. The

problem with the k - c model of turbulence, recognized by Wolfshtein and Arad [3], is that the
energy carrying and dissipative scales are not the same, yet the same scale is used to model
both the energy production and the energy dissipation. Using two scales, one for the energy
producing scale and one for the dissipative scale, ought to permit better prediction of turbulent
flow fields than standard two-equation models.

The k - kr - e model uses a turbulent time scale based upon the integral scale of turbulence
to model the flow field, where the new time scale is determined explicitly in the solution
algorithm from its own conservation equation. This multiple time-scale approach recognizes
that dissipation occurs in the smallest scales of turbulence; thus, the dissipation is modelled
based on local values for the dissipation time scale [2].

To implement this model, the energy content of the small eddies is assumed to be negligible
compared to that of the larger eddies so that in the outer domain of the flow (away from walls)
the integral time scale is used to model the production of energy. The new turbulent viscosity
has the form:

vt = Ckr (10)

where r is the integral time scale.
The turbulent kinetic energy equation and the momentum and continuity equations have

the same form as noted previously except that the turbulent viscosity has incorporated into it
the new time scale. The integral time scale is solved via [2]:

Dk-" = + k +k C. - pC i~k
=, [ )y + C,?11Pk

The dissipation rate equation then becomes:

-T [(A' + -)1T + P~ PQc (12)
cDt aOz kk

where c, = C k

The dissipation rate responds slowly to the applied mean strain (this gives a better represen-
tation of a rapidly changing turbulence field [3]); however, the decay term of the dissipation
rate equation depends on the high wave number turbulence scales.

Near solid walls, where the turbulence and mean flow quantities have the largest gradients,
very high spatial resolution is required. Wolfshtein and Arad [3] avoid this problem by using
the two layer method (see Wolfshtein [8] or Chen and Patel [9]) to bridge the core region of
the flow to that in the near wall region. The turbulent kinetic energy equation is solved to
the wall and the t and kr equations are only solved in the outer domain. In the inner domain
(the region close to the wall) both kr and i are solved using algebraic equations. These
algebraic equations are matched to the outer domain values and used as boundary conditions
for the outer domain. Chen and Patel [9] recommend, and this has been confirmed in more
complicated flows, Waddington [10], that the interface between the two domains be taken at
a turbulent Reynolds number of 250 (Re. = v/lky/v). It has been found however, that the
matching interface can not be taken at a constant turbulent Reynolds number in o, der for
the matching interface to remain outside the viscous sublayer and yet still be inside the one
dimensional zone adjacent to the wall. Using the y+ wall coordinate or RT = k2 /ve to set the
location of the matching interface may be a more appropriate variable. The turbulent kinetic
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Table 2: Preliminary values of the constants for the k - kr - e model

Constant , Channel Flow - Re=5600 Pipe Flow - Re=50000 Pipe Flow - Re=380000
a 1.2 1.2 1.2
a, 1.2 1.2 1.2
ajA 0.000006 0.0006 0.0002
0, 0.05 0.05 0.05

Rey 60 65.0 540.0

energy is still integrated down to the wall using the time and length scales calculated from the
algebraic equations.

The algebraic equations are derived from known asymptotic behavior of the length scales
near the wall. For the low wave number scales:

L --UV (13)
k2 T-

and for high wave number scales: - = (14)

Substitution of a Taylor series expansion of the velocities into the above equations yields the
following relations for the two length scales:

LJA = ( L-),y(1 - ezp(-ac.Re,)) (15)

S(L )m .y(1 - ezp(-ac Re,)) (16)

Where (L?;),,, and (L-L),, are the values of the length scale at the matching interface between
the inner and outer domains, and Re. is the turbulent Reynolds number based on the distance
from the wall.

In the inner domain the turbulent viscosity is calculated using:

lit = pL;,ki (17)

and the dissipation is calculated using the dissipative length scale:

ki L(18)

Some preliminary results of the k - kr - e model for channel flow at a Reynolds number of
5600 and for two pipe flows at Reynolds numbers of 50000 and 380000 are compared to those
data sets noted above and are given in Figures 4, 5, and 6. For a summary of the constants
used, see Table 2.

The constants in the k - kr - model are consistent, implying that the model of turbulence
is robust. For the simple, parabolic flows considered, the value used for normalisation of the
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Figure 4: The k - kr - e model compared to channel flow data [7] at a Reynolds number of

5600; (a) Mean axial velocity; (b) Turbulent kinetic energy.

Mean Axial Velocity Turbulent Kinetic Energy. Prew(k)Pr,.WI,.l.2
1:-650000 Re.50000., a-.0.S a..O.0006. Ry-6S

*0' -

y-S ' ~ ' m a m - -m ot *e 1i a, *ms

Figure 5: The k - k-r - e model compared to pipe flow data (4] at a Reynolds number of 50000;

(a) Mean axial velocity; (b) Turbulent kinetic energy.

Mean Axial Velocity. Preqwk)-Pra,(da1 =2 Turbulent Kinetic Energy. Pr.Mk)-Pr#Af(•)-l.2
Re-380000. a.-0-t , ..0 0002. Ay6540 Re,380000. a,-0.05. ci,,O.0002. RVS40

C'.

Figure 6: The k - kr - e model compared to pipe flow data (51 at a Reynolds number of 380000;

(a) Mean axial velocity; (b) Turbulent kinetic energy.
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distance from the wall in the inner wall region apparently should be the turbulent Reynolds
number based on the distance from the wall. It can also be seen that the various Reynolds
numbers examined have different values of the turbulent Reynolds number for the matching
interface indicating that the parameter that should be used for finding the matching interface
should be the normalized wall coordinate, y+.

Summary
The k - E - S and k - k" - e models of turbulence have both been implemented and applied

to simple wall bounded flows. Preliminary results have been presented and it is obvious that
further work needs to be done. The k - , - S model works for a variety of flow fields with
no change in any of its constants; however, it is apparent that these constants still need some
adjustment to account for the over prediction of the turbulence quantities in the core region
of the flow field and the under prediction of the diffusion of the time-averaged flow variables.

The k - kr - c model predicts the flow field well when the inner layer algebraic equations
relfect the near-wall behavior. However, the inner layer equations do not accurately predict a
variety of flow fields for a given set of constants. A more robust set of algebraic equations for
the inner wall layer is required for the k - kr - e model to perform well.
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Abstract

The dynamic subgrid model is implemented in the frame of a finite difference Large Eddy

Simulation (LES) solver and used to investigate turbulent flow in a square duct at equilibrium.

The results show a much improved agreement with available experimental data, in comparison

with the standard Smagorinsky model.

1. INTRODUCTION
For many applications LES appears to be a most attractive compromise, which avoids both the

prohibitive cost of the Direct Simulation [1) and the forever increasing complexity of the full Reynolds
Stress Transport model [2]. However, the lack of suitably general boundary conditions and subgrid
scale models, as well as the difficulty of developing flow solvers of sufficient accuracy and efficiency, has,
up to now, restricted the applicability of LES to quite simple flow geometries at moderate Reynolds

numbers.

In particular, for a long time relatively small effort has been devoted to the development of SGS
models, and the Smagorinsky model [31 has remained at present the standard tool in LES. Although,
modifications of this model have been successfully applied to LES of transitional and turbulent flows, it
remains fundamentally handicapped by the need to use one single "universal constant' to relate resolved
and modelled part of turbulence, which is unlikely to be a realistic representation of the wide variety
of flow phenomenologies which can be encountered in nature. Moreover, the subgrid scale viscosity
produced by this model does not vanish in laminar flows, does not have the correct limiting behavior
dose to solid boundaries, and cannot account for energy transfer from small to large scales (backhcatter).

Differet new models (4, 51 have attempted to overcome these limitations. A particularly promis-
ing new approach is the 'dynamic SGS model' proposed by Germano et. al. [6] which is based upon
the idea of calculating locally the model coefficient, function of the instantaneous resolved velocities.
This model has already been successfully applied [6, 71 to some cases of simple turbulent flows. Here
the model has been extended to the fully 3D case of equilibrium duct flow, with impressive results, as
will be discussed below.

2. GOVERNING EQUATIONS
The LES approach is based on the application of a filtering process to the dependent flow

variables, in order to decompose them in a large scale contribution to be resolved numerically, and a
small scale contribution to be modeled.
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Applying the filtering operation, signified by the overbar, to the continuity and Navier-Stokes

equations, the corresponding equations for the large scales are obtained:

=--0 (1)

+ L- = - + F - t, + (2)

where Re is the Reynolds number based on average shear velocity < u, > and half height 6 of the cross

section and F, = (F I , 0,0) is a forcing term representing the average pressure drop in the longitudinal

direction. The influence of the small scales upon the resolved part of turbulence appears in the SGS

stress term :

To= u-- U U7 (3)

The basic assumption of the LES technique is that the subgrid part of turbulence is ioeropsc and can,

therefore, be modeled in terms of a fictitious diffusivity coefficient, the aabgrid viscosity ut, relating

the subgrid stress tensor to the strain rate S,, of the resolved scales, giving the well known Smagorinsky

model [3]:

r,, - jr.6a = -2c 13 ii (4)

were is:

11= (23i- Z)i (5)

and A is the length scale associated with the filtering procedure. In a finite difference discretization

the size of the filter is determined by the mesh itself. Therefore:

A = (.•.A3A)k (6)

and c is the coefficient relating mesh sine to filter size.

As it was mentioned in the previous paragraph, in the above model c is a constant, theoreti-

cally universal and practically a function of the discretisation, (8]. Germano [6] proposed a dynamic

estimation of this coefficient obtained sampling the smallest resolved scales and using this information

to model the SGS. To this end, a coarser spatial filter, denoted by a tilde over the overbar, is applied

to the equations and the SGS stress is redefined as:

T,• = I•j - k, (7)

Using the same approach as in (4) T,, is approximated by:

To- !T.Ia6,, -2&~jj (8)

Consistency between (4) and (8) depends on the proper choice of c, which can be found by substracting

the te.-t scale average of ri, from Tj :

L,• = To - 72 (9)

where L., are the resolved turbulent stresses representing the contribution to the Reynolds stresses

by the scales whose length is intermediate between the grid and the test filter. Li4 can be explicitly

computed and compared to the rhs of (9) From equations (3), (7) and (9) it is:

L, = -2cMij (10) 0
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where

Equation (11) represents six independent equations in one unknown, and there is no unique value of c
which satisfies all six. Lilly [91 proposed to derive c minimizing the square of the error of (10), which

yields:
I , , / M1 / 3  (12)

3. NUMERICAL ASPECTS

3.1 Numerical scheme

The integration of the equations in time is done using an Adams-Bashfort fractional step method:

U," = UV" + (1.5H," - 0.5Hi"' + 0.5 -) At (13)

1.5at -= • (14)

U,"÷' = Uj* - 1.5at !f! (15)

where H includes all the right hand side terms minus the contribution of the pressure. All spatial

derivatives are approximated with second-order central differences.

Equation (14) is solved using a Direct Poisson Solver based on Fast Fourier Transform. The
constraints imposed by the Direct Poisson solver lead to choose a staggered discretization with uniform

mesh spacing in the three coordinate directions zm. At each time step the step size at all mesh points
was chosen to respect the advective and diffusive stability limits. Following Horiuti [101, the advection

term is recast in the Arakawa form which offers optimal conservation properties close to the walls.

It has been shown [8] that, when using a staggered mesh, it is important to compute the Sii and
Yt in such a way a to minimize averaging between different mesh points and the consequent smoothing

of the perturbations. Following this argument three different turbulent viscosities were defined : vi is

computed at the same location as 9,/ and is used in the corresponding momentum transport equation.

The Si, are computed at their physical locations as shown in fig. I; in this way the absolute minimum

of averaging operation.s is used in all three momentum equations.

The values of c(z, V, z, t) were derived using equation (12). The test filter was represented by a
grid with spacing twice that actually used to solve equations (13) to (15), (1 coarse cell for 8 fine cells,

fig. 2). All test filter quantities in (12), assumed to be constant over one coarse cell, were obtained by
averaging the corresponding resolved quantities over the 8 fine cells. A value of c was then obtained for

each coarse cell and transferred to the appropriate position of the fine mesh by interpolation. Practically,
it was found that, following this procedure, c can occasionally become quite large at some grid points, or

a considerable number of negative values can occur, possibly leading to computational instability, (see

also Germano et. al. [6] and Lilly [9], who discuss the occurrence of similar problems). The approach
here taken to overcome this difficulty was to define an upper and a lower bound for e(z,y, x, t) and
truncate accordingly the computed values.
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3.2 Initial conditions and boundary conditions

The initial solution was obtained taking the experimental mean velocity profiles from [11] and

superimposing to them a divergence free perturbation.

Periodic boundary conditions are used for the streamwise direction, while a more critical problem

lies with the modeling of the region close to the wall. In fact, getting closer to a wall the scales of

turbulence become progressively smaller and a prohibitive number of mesh points would be needed to

maintain the resolution required by the LES approach, f12].
For this reason most authors adopt wall condi~tior based upon the assumption that the first

internal mesh point is located within the logarithmic layer and that local velocity and average wall shear

stress r., are related. In a previous study [13], the present authors found that the ejection boundary

condition [14] which takes into account the influence of the velocity normal to the boundary ( turbulent

filaments moving towards the wall increase the shear stress in the longitudinal direction and filaments

moving away from the wall decrease it ) gives the best results for the square duct problem. For z3 = 0

the resulting formulation is:

r 12(z 1,0, zs) = < r. > -C1u6, 2 (z1 + hl,h ,z,) (18)

'[2(,1,0, Z3) = 0 (17)

r3(zt, 0, Zs) = < r. > U(z ,h,,2s) (18)

where h, = Adctge represents the shift in the correlation between velocity and wall stress, h. is the

distance from the wall Zx = 0 to the first internal mesh point, and C is a coefficient of order 1. Due to

the lack of specific data to optimize e for the duct problem, in the present simulation the value 0 was

taken. The average shear velocity and wall shear stress are determined for each mesh line assuming the

logarithmic law to be valid :

< 91(21,0,23) > _ 2.51n ( Ur + 5.5 (19)

4. RESULTS AND DISCUSSION

4.1 Test conditions

The equations were integrated over a rectangular domain of size 41r x 25 x 26, in x1, z2, x3,

directions respectively. The simulation was performed at Reynolds number Re, = 1125. The adoption

of approximate wall boundary conditions makes possible the use of relatively coarse meshes and a mesh

of 40 x 20 x 20 was used for the parametric study. Moreover, previous tests [13] had shown that a 50%

refinement of the mesh in the directions normal to the walls does not affect significantly the results.

In all computations 6 non-dimensional time units (t.. = ut/6) were necessary for the initial

perturbation to disappear. Then the mean values of the resolved quantities (U,,, V,,, W,.), the rms of

the turbulent fluctuations (i,,.. ,,, ib,,) and the Reynolds stress fi were obtained averaging both

in time over 10 non-dimensional time steps and in space over the homogeneous streanmwise direction.

In Fig. 3 contours of mean streamwise velocity and secondary velocity vectors at a cro" section are

shown and it is clear that the present averaging is sufficient to obtain a fair degree of symmetry over

the quadrants. Further integration in time was found to have small effect on the computed averages. 0
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For the comparisons with experimental or other LES data, all the cross sectional averaged

variables were further averaged over the four quadrants. Following this procedure the sample size

is effectively quadruped. All the flow quantities shown in the following figures are normalized with

respect to the centerline velocity and all distances are normalized with respect to half the duct height.

Moreover, taking into account the symmetry of the flow field, all profiles are given only for one of the

wall bisectors.

4.2 Comparisons with Smagorinsky model

Several tests with different values for the upper and the lower bound for c(z, y, z, t) were done.

In a first approach the upper bound was the computed mean value and the lower bound was set to 0.01,

(boundl). Then the range was increased and the upper bound was set to 0.05 and the lower to 0.004,

(bound 2). Both combinations gave good results, without causing instabilities in the computation.

Isolines of c averaged in space and in time over the different cross sections for both caes are given it.

fig. 4. The build in damping properties of the model are evident in the smooth decrease of c close to

the walls, while in the core of the flow c is nearly a constant.

Isolines of the mean streamwise velocity and the Reynolds stress R-, compared with the corre-

sponding experimental data [11], are given in fig. 5 and fig. 6 respectively. The agreement is fairly

good, taking in to account that the experimental data available refer to a higher Reynolds number

(Re,. = 1900).
In fig. 7 profiles of turbulent intensities (i,,,, t,,,,,.) and Reynolds stress UTv along the

left wall bisector are shown, in comparison with the corresponding profiles obtained with the standard

Smagorinsky model and experimental data [151. The optimum value of c for the Smagorinsky model

was found to be c = 0.15. To demonstrate the sensitivity of the model to the value of c, another

computation with c = 0.18 is also presented. It is evident that even for this 15% change in c all

turbulent quantities are affected, specially close to solid boundaries. For both turbulent intensities and

the Reynolds stress, the predictions with the new dynamic SGS model are much improved compared

with those obtained with the standard Smagorinsky model. Especially in the region close to the wall,

in most of the cases, the data obtained with the new model are following fairly well the slope of the

experimental data, due to the fact that the model can provide the correct asymptotic behavior close to

solid boundaries. Moreover, the limiting bounds of c were found to have a small effect on the results.

Modest improvement can be observed for some of the statistics when the larger bounds are used.

5. CONCLUSIONS

The dynamic eddy viscosity subgrid scale inodel has been applied to the fully 3D case of equi-

librium flow in a square duct. Very good agreement was obtained between LES prediction and experi-

mental data. However, the bounds presently applied to c in order to avoid computational instabilities

also eliminate the the possibility of backscatter whose importance is a quite important property of the

original model. A detailed study of the best formulation for the bounding of c is progressing together

with the investigations of alternative ways of extracting information from the smallest resolved scales.

A
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ABSTRACT

A new wall shear stress approximation has been formed using stochastic estimation for future use in large eddy

simulations. The stochastic estimation method resolves the coherent smtctures of the wall layer using empirical correlation

functions, and will be used to provide an accurate estimation of the wall shear stress in channel flow. 1nitial a priori

calculations show that the method is more accurate than previous wall shear stress models. The method has also been

used to approximate shear stress boundary conditions in direct numerical simulations with promising results as compared

to previously published no slip results.

I. INTRODUCTION

In large eddy simulation (LES), only the large energy containing scales of motion are predicted accurately, while

the energy transfer to the smaller, sub-grid scales (SGS) of motion is panmeterized. For wall bounded flow,

computational efficiency also dictates that the wall layer be unresolved, and thus forces the use of approximate boundary

conditions and near wall SGS models that approximate the effects of the boundary layer on the large scale flow. These

models must implicitly contain information on the unresolved coherent structures that are thought to be responsible for

much of the momentum and energy transfer from the boundary layer. Conventionally, this has been handled through wall

shear stress boundary conditions. Of course, accurate wall shear stress estimation is also important in the analysis of fluid

machinery as it is the fluctuating lift and drag force on the solid body. Previous models have typically been based only on

the statistically first order law of the wall, with little knowledge of the structural characteristics of the wall layer

turbulence.

It would be useful to incorporate more of the recent knowledge gained in coherent structure studies to model the

effect of the solid wall. The present study seeks to develop a new approximation to the wall shear stress using the

Scoherent structure information contained in stochastic estimation. Previous results (Adrian etal. 1987; Adrian etal. 1988)

confirm that the two-point spatial correlation tensor contains enough information to specify the average character of the
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wall layer su: . such as hairpin vorti%;es and near wall steaks. Thus, multi-point stochastic estmation could be used

to factor col .iuctre information into the near wall LES models.

Here, an approximate wall shear stress boundary condition is formulated for direct numerical simulations (DNS)

of channel flow. Results of these initial calculations show that the method is more accurate than previous wall layer

models in a priori tests and is capable of emulating the wall condition when applied as a boundary condition to the DNS.

Although the method is more reliant on empirical knowledge than previous estimates, it is potentially useful if the

correlation tensor can be obtained and expanded to general geometies and Reynolds numbers.

2. LARGE EDDY SIMULATION WALL SHEAR STRESS MODELING

In large eddy simulation, only t_: :..e .Aergy containing scales of motion are computed accurately, in order to

save computational time and memory. The twnniqt - relies on a snatial filtering formalism (Leonard 1974; Schumann

1975) that separates the flow, f, into a resolved scale field, f, to be calculated on the numerical grid, and a sub-grid scale

field, '; whose effect on the resolved scales must be mc.-led. Curre'ni SGS mn'dels generally take the form of algebraic

equations of state (Germano et al. 1991; Smagorinsky 1963), diilar to the zero-equation models for the Reynolds stress

found in the Reynolds averaged Navier-Stokes equations. A more comprehensive revtr of LES modeling may be found

in Rogallo and Moin (1984).

This formalism works well for homogeneous flow, or for inhonogeneous flow far from solid boundaries, where

the SGS stesses are more nearly isotropic and easier to model. However, in the vicinity of the wall, the energy

containing eddies become smaller and mor anisotropic. If these scales of motion are to be computed accurately, a large

number of grid points must be located in the wall region. To ease this requirement, it becomes necessary to employ

anisotropic, near-wall SGS models and approximate boundary conditions to model the momentum tansfer to the

boundary layer. Conventionally, this has been achieved mainly through the approximate boundary conditions.

The most popular approximate boundary conditions used to date have been shear stess boundary conditions in

the tangential directions coupled with a zero velocity condition in the normal direction. An excellent review of current

models is given in Piomelli et al. (1989), from which the following summary is taken. Schumann (1975) proposed the

following boundary condition:

-- au <'w>
1.,(x.z) = -a-y (xz) -W - u (x,ye,z), (l.a)

- w-- (xz)-- V% w (x'Y.'Z)(lb
?W3(xZ) - - (xz) wall Ye'-yWa (Lb)

v(x.z). =0. (l.c)
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p where Ye, the event location, is the first interior computational grid point and the < > operator represents the ensemble

average. The direccuons xI, x2. and x3 ; or x. y. and z. will refer to the sureamwise, wall normal, and spanwise directions

respectively. The rato of the ensemble averages in equation l.a forms an empirical constant that may be estimated using

the law of the wall. For instance, in channel flow, < > is equal to the mean pressure gradient divided by the molecular

viscosity. < u (Ye) > can be found using < -t > and the law of the wall.

PiomeL ci al, (1989) extended the Schumann model by making use of inclined structure information known to

exist in the wall region. Experimental evidence (Rajagopalan and Antonia 1979) indicates that the wall shear stress

correlates best with the velocity condition taken downstream. From this, they formulated the shifted boundary condition

by incorporating an optimal displacement. A, into the Schumann model:

- - u (x+A,,y,,z)
wi (xz) - < ' t, > ( (2.a)< u" (y') >

---- w ( x + A , . .y , z )1 -3 (x,z) - < w(Cs > - , (2.b)

< U (ye) >

v(x,z) wLa = 0.0. (2.c)

S Again, the relationship between the ensemble averages may be taken empirically from the law of the wall. The optimal

displacement is approximately equal to I y, - n I cot(g*) for 30 < y, < 50-60.

While boundary conditions of this type are not strongly grounded, they do satisfy the law of the wall in the mean

and compare well to experiments in the region away from the wall. However, the model should also contain enough

information to accurately emulate the fluctuang effects of the boundary layer on the core flow. This is a region of swong

anisotropy and statistical inhomogeneity in which coherent snuctures play a crucial role. Hence, a better model would be

one that accurately predicts the wail's influence in generating coherent strtctures such as wall streaks and st-eainwise

vortices.

3. LINEAR STOCHASTIC ESTIMATION

The wall shear stress models employed to date are generally based on first order statistics. One could also form the

approximation by requiring that the model be the best mean square estimate given some event. E, where the event may be

obtained directly from the velocities on the computational grid. This best mean square estimat is the conditional average

of v,,, < T,,i I E >. Further. the conditional average may be approximated by its linear stochastic estimate (LSE),

defined as,

< Ti I E > " j,,ij Ej j=1,2,3 ........ N, (3)
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when N is the number of events being considered, and Lij is an estimation coefficient relating tj to Ej. By forcing the

coefficients to satisfy a minimum mean square error between T., and •.M, a set of linear equations can be found for L.j as.

< T,, Ek > = < Ek Ej > Lj. (4)

These form the equations governing LSE. The main difficulties left are obtaining the correlation functions, <t,,i Ek > and

< Ek Ej >, (which must be known empirically) and the proper selection of the events that best characterize the structure of

the random wall shear stress.

To date, stochastic estimation has been primarily a tool for investigating coherent flow structures. These coherent

flow stiuctures have been termed conditional eddies, to distinguish them from actual flow structures that may exist.

Conditional eddies display features similar to actual flow structures found in experiment. Using simple one point events,

linear stochastic estimation predicts a vortex ring structure in isotropic flow (Adrian 1979). In homogeneous shear flow,

Adrian & Moin (1988) found that linear stochastic estimation, based on local kinematics (velocity plus deformatio-).

predicted a hairpin-like structure in homogeneous shear flow, thought to be a dominant structure in shear flows. In

channel flow for example, a single-point Q2 event specified at y÷ = 103, will predict a fluctuating flow field that is

structurally similar to a hairpin vortex. This is shown in Figure 1. In this figure, the large vector indicates the single-point

velocity event, which is located beneath the head of the vortex and between the two legs. The lines reside on a surface of

constant fluctuating vorucity magnitude, which form the head and trailing legs of the hairpin-like vortex. Although it is

not evident from this picture, the single point event is also capable of predicting the alternating streak structure in the

viscous sublayer. Hence, stochastic estimaton may be regarded -. a technique that reorganizes the structural information

contained in the two point, second omer correlaton tensor into a realizable random vector field (Adrian 1988).

A logical extension to this research is to use averaged structure information, based on stochastic esdtimtion, to

predict the statistics of the wall layer in large eddy simulations. This may in general include estimating both the sub-grid

scales stress and approximating the boundary conditions. In keeping with the current wall modeling in LSE, it would be

useful to try to emulate the effect of the solid wail, through the wall shear stress boundary condition. Although this will

not eliminate the artsty involved in selecting the best form of closure and the event field, it is a clear mathematical

framework one may follow to minimize the error in the mean square senme.

4. RESULTS

To evaluate its ability to estimate the statistics of the wall layer, LSE has been used in a direct numerical simulation

(DNS) of channel flow with stochastically estimated wall shear sumess boundary conditions. Using a well resolved DNS

calculation with appmximate boundary conditions allows the dynamic impact of the boundary conditios to be assessed

without contamination from SGS estimation error that would occur in a LES. The necessary conrelamons for the LSE have

been taken from an existing numerical database available from NASA Ames (Moin and Moser 1989). This DNS was for
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turbulent channel flow at Rem - 5600 ( Re m, 2 Ur 8 / V, 8 = channel half width).

The LSE of the wall shear stress has been estimated from an event field consisting of all velocities at a single

horizonta plane;

T,= Jdx' Jdz' Lik (X-X',YIZ-Z') Uk (x',Y.,Z), (5)

k=1,2,3 i=1,3, and

y. = event plane.

The stochastic estimation coefficients, L.&, satisfy a coupled set of three convolution integrals,

<t.i(x,z) uj(x-r,,y.,z-rz)> =

fdr1 'fdr.'<uj(x-r1 .y,.z-r.) uk(x-rX',y.,z-rz')> Iik(rxYe,rz), (6)

j=t,2,3.

The form of equation 5 was chosen because it is simple to implement in a spectral computation and because it has a form

similar to the Schumann boundary condition. Taking the Fourier transform of equation 6 results in a set of three linear

equations for each wave number;

<(t.,(kx,k) uj,(k,1,y,,k.)> = <uj,(kx,y..kz) Uk(k,,y.,kZ)> Lj&(k,,ye,kz), (7)

j=1,2,3,

where the superscript., refers to the complex conjugate. This linear set of three equations may be inverted to obtain the

stochastic estimation coefficients in wave space. In an integration of a DNS, estimating the wall shear stress from

equation 5 is a small computational burden.

To gauge the model's validity, it is useful to perform a priori tests on the model. These are tests that may be

constructed from previously determined statistics and hence do not require the model be used in an expensive calculation.

Both a priori tests presented here were computed using the correlation database of Moin and Moser (1989). It should be

noted, however, that these tests are not conclusive as they do not take into account dynamic feedback between the

modeled wall shear stress and the event field in actual calculations (Piomelli 1987).

The relative mean square rrot is a suitable a priori reliability criterion

relative mse = ('TWI " ,WO2 > (8)
<Aw3 -2>
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An exact model would have zero relative mean square error. Figure 2 compares the relative mean square error for the

streamwise wall shear stress using the shifted model in equation 2 to LSE models using one and multiple planes of

velocity data as events. On this graph, the abscissa refers to the y* iocation of the event In the multiplane LSE, the event

field consists of all velocity planes in a channel core extending from the indicated y,÷ location to the opposite wall y.'

location, and hence is the most acv.urate possible LSE. The a priori test in Figure 2 thus confirms that the stochastic

estimate is more accurate in the mean square sense.

A priori tests may also be formulated to give an indication of the turbulent strcture that will emerge when the

model is used in a simulation. For example, the mean streak spacing, X÷, in the wall layer may be estimated from the first

minimum of the estimated wail shear suess correlation,

'I •'t( ,z •* xr,z+r,)•> Irx---O rz=k ÷/2< , xz (xr (9)

This estimate of the streak spacing has been plotted in Figure 3 for the actual value, the single plane LSE, and the shifted

model vs. the event distance from the wall. This test indicates that the LSE will be better able to predict the mean streak

spacing than the shifted modeL The new length scale information is only available if the event field is multipoint.

The a priori tests previously mentioned are only one indication of the model's validity. A more stringent test is to

use the model as a boundary condition in a dynamic simulation. To this end, a DNS calculation has been performed using

the spectral code of Kim et at. (1987), modified for wall shear stress boundary conditions in the horizontal directions. No

penetration is still enforced in the wall normal direction. No changes were made to the solution algorithm. The wall shear

stress was estimated using equation 5, with the velocity events taken from the previous dimestep at y.÷ - 30. However,

the wall region is still well resolved in the sewne that all computational grid points were retained in the region below the

event plane. The channel was discretized on a 128 X 129 X 128 grid, the same resolution as Moin and Moser (1989).

Mass flux boundary conditions and 2/3 rule de-alising control wese used in the homogeneous directions.

The calculation was carried out for 4.64 8/u1 time units, where the last 2.24 &u/ time units were used for

statistical sampling. Due to the computational expense, the statistical sampling is rather sparse, resulting in an estimated

statistical error of :5%. Time histories (not shown) confirm that the boundary condition is capable of sustaining the

turbulent kinetic energy. The various low order statistics, non-dimensionalized by the channel half width, 8, and wall

shear velocity, LL, are plotted in Figures 4 through 7 with comparisons to results from Moin & Moser (1989), where the

natural no slip boundary conditions were applied. Various global statistics are given for comparison in Table 1. Figure 4

shows the mean velocity vs. y÷'. While the mean slip velocity at the wall was 8% of the centerine velocity, the velocity

does converge to the law of the wall in the log layer. The rms velocities plotted in Figure 5 show a substantial deviation

from the true values for y+ <-20. The incurred rms slip velocity at the wail is 10% of the mean centerline velocity. Figure

6 shows the mean Reynolds stress and total shear stress profiles. Theoretically, the total shear stress in the channel should

be a=-y, which is accurately predicted here. Figures 7 a and b show the spanwise wall shear stress spectra and
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correlations, clearly indicating the loss in amplitude prominent at high wave numbers that typically occurs when LSE is

used to predict a field. Hence, the small scale structure will be overly damped. The net result is primarily a large rms slip

velocity from the reduced gradients at the wall. This tends to drive down the turbulent kinetic energy dissipation while

increasing the production in the near wall region. The effect is somewhat negated by the increased turbulent kinetic energy

at the event plane, which in turn increases the wall shear stress and dissimnation. Hence, the model is dynamically stable.

The wall shear stress correlation fields of Figure 7.b indicate that the sreak spacing in the wall layer is being accurately

modeled.

5. CONCLUSIONS

Using the coherent structure information contained in linear stochastic estimation offers many possibilities for use

in modeling turbulence, such as the wall shear stress model presented here. The method is a clear mathematical

framework from which estimates may be constructed and is inexpensive to implement once the correlation data is known.

The major expense of LSE is that the correlation tensor must be known empirically, either from experiments or from DNS

simulations. This factor will be offset somewhat if the correlation tensor can be expanded to general geometries and

Reynolds numbers and if a reliable estimate may be formed with fewer event points than those considered here. It would

be advantageous to attempt stochastic estimates that can be obtained reasonably from experiments, thus expanding the

scope of problems to be considered.

The LSE model is able to capture the salient features of the wall shear sress enough to accurately account for the

wall influence in DNS. Overall, the statistics deviate from the irue values only in the region of y+ < 20, but agree well for

the core of the channel Mhich is what one expects from an approximate wall boundary condition.
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Table 1. Comparison of DNS statistics from LSE shear stress BCs to no slip BCs.
no slip LSE shear

stress

Re-u8/v 180. 178

U.n/ut 15.6 15.6

Ct - 2 v <v,,w> / 8.20X10-3 8.23X10-3

T.,,. / (Re, u2 ) 0.360 0.196

,,3.j= / ( Rex U,2 ) 0.271 0.129
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Figure 1. Hairpin-ke structre resulting from the Q2 event specified at y*fl0 3 .
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CORRELATION BETWEEN

REATTACHMENT LENGTH DOWNSTREAM A BACKSTEP
AND STRUCTURE OF THE INCIDENT FLOW

A Aroussi and A Senior
Department of Mechanical Engineering,

Nottingham University, Nottingham. NG7 2RD. UK.

Abstract

The fluid motion behind a rearward facing step is scrutinised as a function of

the characteristics of the primary flow approaching the step. The flow

properties measured with optical anemometers are predicted numerically with

a model of turbulence. The measured velocity values are used to adjust the

numerical solution until satisfactory simulation is obtained. These measured

and predicted values are compared to each other and to results reported by

other workers.

1. Introduction0Separated flows are of common occurrence in engineering applications and are characterised by abrupt changes

in pressure which invariably lead to oscillations. These flows are encountered in numerous engineering devices

such as turbomachines, heat exchangers and chemical process equipments as well as in gaps or openings in moving

objects, valves, sudden expansion of pipes and flow over hills and mountains. In fluid devices, for example, flow

separation produces significant losses in the performance of the machines.

Generally, the type of flow separation itudied is that on a flat plate, behind a rearward facing step or within

cavities. In addition to their practical applications, cavity flows and those downstream a step are usually used to

test numerical techniques and mathematical models of turbulence. The presence of fixed geometry with one or two

free boundaries and the certain presence of vortices makes an efficient environment for computational work and

the testing of numerical techniques.

The flow pattern behind a typical rearward facing step is shown in figure 1. The important features of this flow

event are the separation point, at the comer of the step. the recirculation zone behind the step, and the reattachment

point. The turbulent intensities and shear stress reach maxima in the reattachment zone, and decay rapidly after

the reattachment. The reattachment length is taken as the distance from the back of the step to the reattachment

point. The boundary layer downstream of the reattachment point interacts with the shear layer over it and

approaching from upstream. The structure of the fluid motion resulting from this complex interaction between the

separated shear layer and the adjacent flow depends on the characteristics of the approach flows, consequently,

comparisons of data on the reattachment length must take into account the characteristics of the incident flow.

The reattachment point is an important property of any reattaching flow. Practically it may indicate deposition of
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fluid partucles; particularly in two phase flows. For comparison with other work. the reattachment length gives a

quantitative result which is easier to correlate than a general flow pattern.

It is how this reattachment length varies with different inlet conditions which this paper investigates

experimentally, using LDA and PIV, and numerically using a model of turbulence. The inlet conditions specifically

examined are the velocity, and the degree of turbulence in the approaching flow.

2. Literature review

The fluid motion behind rearward facing step has been the subject of numerous studies in the past. A

comprehensive review of these is given by Kim et al (1980). The present survey examines more recent and

pertinent experimental and theoretical work as well as any relevant publication not included in the review by Kim

et al. The present survey is split into two sections; namely experimental and theoretical.

Experimental work:

The fluid behaviour downstream a rearward facing step has been scrutinised using flow visualisation and devices

such as pitot tubes, hot wire anemometers pulsed wire anemometers, laser Doppler anemometers and particle

imaging velocimeters. For example, a study by Moss and Baker (1980) uses a pulsed wire anemometer and gives

the reattachment length as 5.2 step heights, at Re=50000. This value of the reattachment length is lower than the

6.7 reported by Bandyopadhyay (1990) also using a hot wire. A similar device is used in the investigation into

the effect of inlet turbulence and reported by Hanson and AI-Ohali (1988). A loudspeaker is used to induce a

varying intensity of pressure perturbations. Increasing the turbulence level causes the reattachment point to move

upstream. from 7.0 to 5.5 step heights.

A laser Doppler anemometer based investigation by Etheridge and Kemp (1977). gives a reattachment length

of 5 step heights. However, Makiola and Buck (1990) use a similar device and report a reattachment length of 8.3

step heights at Re=33000. Armaly et a[ (1982) also using LDA report an almost linear relationship between the

reattachment length and Re in the laminar flow region (600>Re>70) and higher Re values give higher reattachment

lengths. For turbulent flow, the reattachment length is found to be more constant, slowly decreasing to a value of

about 7 step heights.

Another laser based anemometer, namely a particle imaging velocimetry technique is used by Grant et al (1990)

to study the flow event at Re,45000 and gives a reattachment length of 7.1. Various measuring devices are

employed by Kim et al (1980) to study the flow at Re=1300. The authors find that although the reattachment point

fluctuates with time, the mean reattachment length is 7.1.

The effect of turbulence on the reattachment length is investigated by Isomato and Honani (1989), who find the

reattachment point tends to move upstream with increases in turbulence. The study concentrates on a turbulence

intensity range between 10% and 12%. This is induced by a rod or a cavity at the inlet.

Theoretical work:

Theoretically, bluff body flows have been extensively investigated. However, these studies tend to differ in their

purpose and in the techniques used. A vast number of these investigations choose bluff body flows purely as a

medium to test their theoretical techniques. Consequently. the aim is generally to predict the overall flow pattern.

Some relevant publications from this plethora of studies are reviewed next.

Analytical methods. In the past, theoretical studies of flows around bluff bodies have used conformal mapping
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0
or the soluuon of the linearised equations of motion. The success of these methods has been limited, since the

streamlines and pressure distributions obtained. are mostly applicable to two dimensional flows with little

turbulence.

Of the analytical work of interest to this research, is that of Tani et al (1961) on the wake and re-attachment

behind a backward facing step. The main feature of such a flow is the relatively steady vortex behind the rear face.

Conformal mapping is used to predict the downstream re-attachment point at a distance of 1.7 times the model's

height; this prediction has subsequently proved unrealistic since the range of practical values is 4 to 18.

A study by Kim and Chang (1989) uses Pronchichs turbulent flow data to investigate the region close to

reattachment. The reattachment length is calculated as 6.5 step heights.

Numerical studies Back step flows are often used to test newly developed numerical techniques and

mathematical models of turbulence in the handling of re-circulating flows. However, most of the investigations

reported have concentrated on the generation of reverse flow rather than on the accuracy of the results or on their

practical applications.

A solution of the two equation Ke model by a finite element technique is reported by Sohn (1988). The

reattachment length is given as 5.59 step heights for Re=69610. The author attributes the underprediction to the

possible unsuitability of the KE model, to bluff body flows, and to numerical diffusion in the solution procedure.

A similar numerical investigation of various cases of differing Re and turbulence intensity is reported by

Lovgren (1985). For turbulent flow (Re=7000). the reattachment point moves downstream with the increasing

turbulence. This contradicts the findings of AL-Ohali (1988). For a degree of turbulence of 1% at the inlet, the

reattachment length is 6.7, whilst for 2% it is 7.6 step heights.

Autret et al (1987) employ a Galerkin finite element method to solve the Ke model, providing a reattachment

length of 5.22 for Re=42000. This low value is thought to be due to the diffusive terms in the momentum equation.

The authors state that improvements can be made to the conventional KIE model by expressing C, as a function

instead of a constant. This is shown by Gooray et al (1972), who find the reattachment length changes from 4.5

to 5.8 step heights by implementing the function. Other models of turbulence have also been used. For example.

Spalding et al (1983). compare the KW model with the Ke model. A reattachment length of 7.2 predicted by both

models, indicates a good performance by both.

The Reynolds stress model when applied by Celerligil and Mellor (1985) gives a reattachment point at 7.89 step

heights. Morinishi and Kobayashi (1990) use the Smagorinsky model, with various values for the Smagorinsky

coefficient, to determine the reattachment length. The most accurate result, compared to experimental work, is a

reattachment length of 7.1. This is for Re=46000.

To compute the flow, Kwon and Pletcher (1986). apply a zonal method. The flow domain is divided into 3

different flow modules, each of which is modeled by a different technique, namely, viscous or invicid. Some

turbulence modelling is still required, for which the KL model and L model are used. These give reattachment

length of 7.65 and 7.2 respectively.

Kamiadakis and Orszag devised a way of modelling the flow based on renormalization theory, using spectral

element methodology. Two cases are performed; when Re- 4444, the reattachment length is 9 and when doubled

to Re-8888. the flow reattaches at 6.8 step heights.
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This short :evzew has shown the unreliability and the limited applicability of some of the experimental work

and most of the analytical methods. However, three numerical studies are found to be particularly useful in respect

to the present study in that they review the influence of turbulence on the reattachment length. The study by

Isomato and Honami (1989) is used as a comparison with the present results. The findings of Hanson and AI-Ohali

(1988) are presented in qualitative style and consequently are only used for genera] comparison. However. the

results of Lovgren (1985) are not used since they contradict the first two studies and only cover a very narrow

range of turbulence.

3. Experimental programme

The measurements are conducted in an open circuit wind tunnel and in a water channel. The wind tunnel has

a maximum speed lOms1 and an adjustable flow profile in the working section. This is made of perspex to allow

access to the laser beams of the LDA system. Similarly. the flume has an adjustable flow to the test section, but

the maximum speed is only 2ms1. The water is driven by a submerged pump which provides a maximum flow

rate of 90m3h"'. The working section is built of 4mm glass. In both devices, the incident flow is controlled by the

introduction of screens upstream of the test section. These are flow smoothing screens and slatted screens for the

generation of turbulence. These are located downstream of the honeycomb straighteners. The model of the step

is made of perspex and mounted on the floor of the flow channel. The optical anemometers used to acquire the

flow properties are a two component Laser Doppler Anemometer (LDA) and a Particle Image Velocimeter (PMV).

PIV is used in conjunction with the water channel and involves the recording of multiple images of scattering

particles on a single photographic negative. If the displacement of separate scattering particles images and the time

between consecutive exposures can be measured, the velocity of the flow local to each such particle can be

calculated.

The light source for the PIV system used is provided by an 18W, continuous wave, Argon Ion laser. This type

of laser is employed because the light produced is in the blue-green region of the spectrum, and has the lowest

absorption-attenuation characteristics in water. The arrangement used is such that the beam passes through a

mechanical chopper in the form of a rotating disk with a transparent segment. which allows the generation of the

required discrete images, and then a glass rod to produce a light sheet. 2mm thick, in the investigated flow area

(Fig 2). The water is seeded by a commercially acquired powder of naturally buoyant particles. The analysis of

the flow images recorded by the PIV is as shown in figure Fig 3.

The second anemometer in the form of a digital correlator based two component LDA system is used with the

wind tunnel to obtain the longitudinal and vertical components of the mean velocity. This system uses a 15mW

HeNe laser and a back-scatter arrangement mounted on a traversing mechanism. The relative position of the control

volume is determined to an accuracy of ±0.5mm and the air flow is seeded with smoke generated by the

vaporisation of a light mineral oil.

These two techniques are shown to provide complementary information. LDA offers the opportunity for time

series (and thus spectral) information at various measurement stations while PIV enables the spatial distribution

of instantaneous fluctuating flows to be measured.

4. Computational programme

The turbulent and recirculating fluid flows generated downstream of the step by the separation of the free stream
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are elliptic in nature. The primary eddy is formed when the separated shear layer reattaches downstream of the

step after which the flow returns to its normal boundary layer state. Between the step and the reattachment point

a large vortex is maintained by the energy in the shear layer above it. As the primary vortex sweeps backwards

it is forced upwards by the vertical boundary generating a recirculation zone in the bottom corner. These flow

features are mathematically approximated by most one and two equation models of turbulence (Launder and

Spalding 1972).

The initial intention of this study was to examine the performance of three models of turbulence, namely the

Constant Viscosity model (CV), the two equation Kre model and the Algebraic Stress mc However. the

rigidity and to an extent the uniqueness of solution of the CV model has excluded it fror, esent paper. On

the other hand the flexibility in prediction of the KIe model and the strong dependence of the solution on the inlet

boundary conditions dictate a full devotion of the present numerical work to it.

The aim is to simulate the flows measured with the optical anemometer and assess the accuracy of the solution

of the IFa model and evaluate the dependence of such a solution on the inlet boundary conditions. Furthernore.

establish a relationship between the degree of turbulence at the inlet boundary and the reattachment .ngth.

The Ke effective viscosity model This is the simplest mathematical model of turbulence in dealing with

elliptical equations that govern the recirculating flow associated with backward facing steps and rectangular

grooves. The two dependent variables solved for are the turbulence energy K and its dissipation rate E. These two

quantities are related by the equation

e CD KM

where C. is a constant usually set to unity. The Ke model expresses the Reynolds shear stresses according to the

Boussinesq hypothesis, that is a product of the mean velocity gradient and the turbulent viscosity pI,

a u aBu
+ :71)

The turbulent viscosity is calculated from the local values of K and E:

e

The empirical constant C,= 0.09. In many applications the empirical constant of the Ke model are varied "to tune"

the predictions to fit the experimental results. However for bluff body flows, other workers found that predictions

did not improve by changing these constants (VasilicoMelling 1977); therefore the values of these constants have

not been altered in this study and are those specified by Launder and Spalding (1972).

Treatment of wall regions The KE turbulence model is designed to simulate flow regions of high Reynolds

number. However, near solid boundaries a viscous sublayer exists because the mean velocity components and the
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turbulent viscosity fall to zero, due to the no-slip condition. The IM model does not lend itself to the near wall,

low Reynolds number flow. The alternative approach is to use the "wall function" method which connects the

sublayer with special functions which bridge the conditions at its outer edge to those at the wall, thus avoiding

this low Reynolds number region (Launder and Spalding 1972).

The numerical procedure used to solve these differential equations involves an up-wind finite difference

technique and the algorithm "SIMPLEST' of Spalding (1983). This technique is adopted in order to ensure stability

at high Reynolds numbers. The grid used for the solution is 81x91, rectangular and non-uniform with a fine mesh

in areas of steep gradients, particularly in the shear layer and close to walls.

5. Results and discussions

This study concentrates on the effect of increasing the amount of turbulence in the flow approaching the step

on the reattachment length downstream. Numerically, the turbulence is specified as a uniform profile at inlet, just

above the back face of the steg, and covers a range from 1% to 90%. Experimentally, the turbulence intensity range

at the inlet is 5% to 40%.

The changes in flow pattern caused by increasing the inlet turbulence are such that at low turbulence intensities

the vortex is long and slender giving a long reattachment length. but at high turbulence level the vortex shrinks

in size, resulting in the reattachment point being closer to the step. The centre of the vortex is also nearer to the

back face of the step.

This is illustrated in the comparison of the predicted vertical profiles of the U-velocity at 10% and 90%

turbulence intensities at the inlet (Figs 4 and 5). Each of these profiles is taken at a different location downstream

of the step. At X/H=0, which corresponds to the back face of the step the profiles show the uniform velocity stated

at inlet. Obviously the velocity at the back face of the step is zero, since it is a solid boundary. Further

downstream the vortex is shown by the fact that the profiles indicate positive longitudinal velocity at high Y/H

and negative values at the lower end. The end of the vortex is indicated by a return to a positive value by the

whole of the profile. This also defines the reattachment point. From Figure 4 the reattachment point is

approximately 6 step heights downstream of the step. Examination of the raw data of the velocity in the flow

domain gives the more accurate value of X/H=5.8. Similar profiles are shown in Figure 5 for 90% turbulence.

These profiles straighten out more quickly than the previous 10% turbulence case. The cross-over point of the

profiles occurs at YIH=1 in figure 4 and at Y/H=0.94 in figure 5 which indicates that the flow develops more

rapidly. due to the high mixing forces within the flow. This higher turbulence level of 90% results in a shorter

reattachment length, of about 4 step heights.

At values of Y=0 on the floor of the domain, both sets of profiles, obtained numerically, indicate a negative

velocity. This is impossible due to the no slip condition at walls; the velocity at these points should be zero. The

reason for this error is the poor treatment of the wall region. As explained earlier, the region close to the wall is

bridged by a "wall function". The distance covered by the wall function is taken as one cell height. Although the

profiles are shown to Y=0, they do in fact stop one cell height short of this level. The error in these profiles is

due to the dense grid close to Y=0; hence the wall function only bridges a small gap.

The variation of the turbulence kinetic energy gives an indication of the flow development (Figs 6 and 7). These

profiles are taken at similar locations to the velocity profiles. At 10% turbulence it is apparent that although the
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initial degree of turbulence energy is low, the energy contained within the turbulence lasts well downstream. The

initial sharp peak of turbulence energy spreads out due to the mixing behind the step. The momentum of the fluid.

and thus its kinetic energy is conserved until well downstream. This contrasts with the case of 90% inlet turbulence

(Fig 7). where the turbulent energy spreads quickly across the height of the domain giving a flat profile. The

energy also decays rapidly. shown by the low values of turbulence energy at each of the profiles, compared with

the initial energy at X/H=0.

To validate the use of the computational results over the whole flow domain, profiles of velocity and turbulence

energy are compared with present experimental results and those reported by other researchers. For example. a

comparison of the present vertical profiles of the longitudinal velocity at 10% turbulence intensity are shown with

those of Baker and Moss in Figure 8. The profiles at X/H=2 give a good correlation, but further downstream at

X/H-=4. the predictions compare favourably with the present measurements but give lower velocities than Baker's.

The profiles of turbulent energy at 10% inlet turbulence energy and at X/H=2 and X/H=4 are compared with

the present LDA measurements and with the hot wire results of Baker and Moss (Fig 9). The shapes and maximum

values of the profiles compare well indicating that the turbulence energy is well modelled. The IE is known to

underpredict behind a step by up to 20% (Kim et al 1980). Here it also underpredicts at X/H=2 and 4. The

maximum error in the present predictions in comparison to Baker's results at XIH=4 is 16%. There is a larger error

between the profiles at X/H=2 for low values of Y (around 0.5H). This is due to different inlet conditions. Baker's

experiment naturally produces a profile velocity inlet, but a uniform velocity inlet is modelled here.

This project concentrates on determining a relationship between the reattachment length and inlet turbulence.

By varying the uniform inlet turbulence profiles from 1% to 90% a relationship is obtained. Overall, the results

show that at low turbulence levels the reattachment point decreases rapidly with increasing inlet turbulence. As

the turbulence increases, the reattachment length decreases more slowly in an exponential form. At 60% turbulence

a steady state is reached. Even with increasing turbulence the reattachment length remains at 3.5 step height

downstream of the step. The present LDA results cover the inlet turbulence rate 5% to 40% only. The

measurements compare extremely well to the predictions and also show an exponential decay of the reattachment

length with increases in the turbulence energy. These findings are plotted against the experimental results obtained

by Isomota and Honami (1989), (Fig 10). Their study examines the effect of inlet turbulence between 10% and

12% on the reattachment length. A very strong linear relationship between turbulence and the reattachment length

is indicated. Increasing the turbulence by 2% moves the reattachment point upstream by two step heights. Although

the present study does indicate a lower value of reattachment length at 10% turbulence, the values at 12% compare

well. If the results of Isomota and Honami are interpolated to slightly high turbulence, the curves indicated by

present predictions and those of Isomota would join to form a reasonably smooth curve of exponential form. This

shows that the present predictions closely agree with the trend indicated by the experiments, and the exponential

form of the graph is correct.

S. Conclusions

This study demonstrates that higher inlet turbulence results in great mixing in the flow. This causes the profiles

of the variables to become uniform more quickly in high turbulence flows and the reatachment point can form

further upstream. At ve high turbulence the flow is saturated with mixing and an increase in the inlet turbulence
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has no effect on the re-attachment length.

In modelling the rearward facing step some simplifications have been made. All the cases which have been

considered have modelled 2-dimensional effects only. In any practical situation of flow behind a step. the step

would have a finite width and it is known that cyclic three dimensional effects exist in the flow. These have been

found to affect the reattachment length. A second simplification made in this study is the use of a uniform inlet

velocity profile. In practical situations, the flow will have developed a boundary layer before reaching the back

face of the step.

This study concentrates on the effect of varying the inlet turbulence. To fully investigate how the reattachment

point changes with inlet conditions, other flow parameters need to be investigated. A more comprehensive study

of the effect of inlet velocity is needed. It is shown here that the reattachment length decreases with increasing

turbulence. This indicates that the rate of decay of turbulence E may also affect the reattachment length.

NOMENCLATURE
U Longitudinal velocity p Density of fluid U. Free stream velocity
K Turbulence kinetic energy V Vertical velocity E Kinetic energy dissipation rate
Pt turbulent viscosity H Step height X.Y Longitudinal & vertical directions
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QUASI-TWO-DIMENSIONAL TLrRBULENCE AND STOCHASTIC TRAVELING

WAVES IN THE STRATOSPHERE AND IN THE LABORATORY

H. Branover, A. Bershadskii, A. Eidelman, and M. Nagomy

Center for MMD Studies

Ben-Gurion University of the Negev

P.O.B. 653, Beer Sheva, Israel

Abstract

On the basis of data produced by measurements conducted in the

stratosphere and in laboratory models (by the authors and other

researchers), it has been shown in this paper that turbulence in the

stratosphere is of a quasi-two-dimensional type. Such a turbulence appears

as a secondary stable regime after the loss of two-dimensional turbulence

stability because of three-dimensional disturbances (helical traveling

waves). The energy spectra pertaining to this type of turbulence are

considerably different from energy spectra of two-dimensional turbulence.

Nevertheless, inverse energy transfer actually exists, albeit it has essentially

a different nature than in the case of two-dimensional turbulence (transfer

from vortexes to helical waves).

I. Instability of Two-dimensional Turbulence in the Stratosphere and the Laboratory

Initial theoretical works on two-dimensional turbulence acknowledged its instability in three-dimensional

space [1]. However, secondary turbulent motions ensuing as a result of two-dimensional motion-instability can

be stabilized by such external stabilizing factors as statification, rotation or strong magnetic fields if the liquid

has a high conductivity. These secondary, quasi-two-dimensional motions, having become stable, are actually

the ones which arise in natural surroundings. In some cases, the stabilizing factor is so strong that it overwhelms

A
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the instabihry of the initial two-dimensional motion caused by three-dimensional disturbances, and then, intrinsic

two-dimensional turbulence can take place.

Instability of two-dimensional turbulence in three-dimensional space will primarily display itself by

exciting waves which bend the two-dimensional motion-planes. These travelling waves will bring about

fluctuation of average turbulent energy dissipation rates (a'). As is generally known [1-3] the value re plays a

major role in spectrum formation on such scales when direct viscosity influence can be ignored and where

everything depends only on energy transfer between fluctuations of different scales in the so-called inertia-

interval.

If the space-scale of the principle mode of these waves L is much larger than scale L* on which energy is

injected into turbulence, then in the scale-interval between L and LO, e will not be the most important parameter

any more the crucial one will be average race of e-fluctuation, i.e. a value 'e/•zI where z is the coordinate along

the z perpendicular to the two-dimensional turbulence-plane. Thus, the two-dimensional plane-bending waves

will propagate specifically along axis in three-dimensional space. In those cases when - was the only crucial

parameter it was decided on the basis of dimensional consideration [1,3] to express the energy spectrum in the

following way:

E - (C)213 k -5/3  ()

where E is the spectral density of kinetic energy and k- the wavenumber.

On a scale interval, when L >> r >> L*, where the only crucial parameter is a•e/iaz dimensional

consideration leads to:

E-l -i 21 3 k-- 3  (2)

As we can see, the difference between the two spectral laws (1) and (2) is considerable. As to the

direction of energy transfer on a scale-range between L and L*, it is clear that energy exciting the three-

dimensional oscillations of two-dimensional turbulence planes is supplied from the same source as the rest of the

energy generating two-dimensional turbulence. Since L > L*, the energy going into motion on -L* - scales must

be transferred towards larger scales - L, i.e. from the smaller scales to the larger ones. Hence, in the scale-range

which obeys the spectral law (2) inverse-energy transfer will take place. However, the nature of this inverse

transfer is essentially different from that of two-dimensional tutplence proper [ 1-3].

Secondary motion as travelling three-dimensional waves, can be stabilized by external stabilizing factors.

In this case a quasi-two-dimensional turbulence on a certain large-scale interval characterized by inverse energy

transfer would be brought about.
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Recent spectral data obtained in the framework of "Global Atmospheric Sampling Program" (GASP) for

the stratosphere is presented in Fig. 1 [2]. Older data [41 is presented in Fig. 2. The straight lines in Figs. I and

2 are included so as to compare with the dependence (2). In Fig. 3 one can see the results of spectral energy

transfer - function measurements corresponding to measurements shown in Fig. 2. The negative values of the

spectral transfer function correspond with inverse energy transfer. Similar results (a spectrum of the type (2) and

inverse-energy transfer on the same scale interval) were also obtained in the laboratory ii.zasurements of turbulent

stratified liquid flow generated by a hydrodynamic grid [5].

The situation considered above pertains to the case when the initial two-dimensional turbulent spectrum

was determined by spectral energy transfer (parameter e'). In the case of two-dimensional turbulence inertial

spectra determined by enstrophy transfer are also possible [2,3]. For the case when the only crucial external

parameter in the inertial interval is ew again from dimensional considerations, the following spectral law was

established [2.3)

E - (E,)Z'3 C-3 (3)

And in this case, the instability of two-dimensional turbulence in three-dimensional space leads to changes

in the spectral law. Similarly to the tansformation of law (1) to law (2), formula (3) is also transformed to the

following:

E - -I=-12•3 k-t1/3 (4)

As to the inverse energy transfer, all the previous discussions remain valid. However, the structure of

travelling waves bending the two-dimensional turbulence surface in this case will be different. This interesting

issue will not be discussed in detail here. We will just note that problems relevant to wave structure distinction in

the first and second cases depend on different types of breaking reflexion symmetry and are related to such

fundamental concepts as helicity and superhelicity (6].

Spectral energy data shown in Fig. 4 was obtained in laboratory where quasi-two-dimensional turbulence

was generated by a grid-bars parallel to uniform magnetic field B[7]. Straight lines are plotted in Fig. 4 so as to

compare them with laws (2) and (4). The electrical conductivity of liquid mercury is high enough to allow an

external magnetic field to exert a strong force influencing its motion.

In order to demonstrate in a direct manner the presence of inverse energy transfer in this type of

turbulence, the wake of a separate grid-bar, parallel to the external magnetic field was investigated. The

development of the wake behind the bar in the presence of magnetic field and in its absence is shown in Fig. 5. It

is evident that in the absence of a magnetic field the velocity profile in the wake behind the bar becomes flatter at

greater distances from the bar. This is accounted to energy transfer from fluctuations of large space-scales to
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fluctuations of smaller space-scales, and their subsequent dissipation associated with viscosity. As to the wake

behind the bar in the presence of a magnetic field it behaves in quite an unusual manner. Instead of the velocity

profile getting flatter it preserves its convex form at great distances away from the bar. This is caused by the

inverse-energy transfer.

Fig. 6 demonstrates that the change of motion regimes described by spectral laws (2) and (4) are

associated with the loss of stability and violation of symmetry. In this figure the vertical axis is used for values

of power in the spectral law for the longitudinal fluctuations component of the velocity field (E - k-0) and the

horizontal axis - for values of parameter Ha/Re, (Ha - IBI) From Fig. 6 it can be seen that the sharp change of

the stable quasi-two-dimensional turbulence from (2) to k4) takes place when the external stabilizing parameter (in

this case-magnetic field B) passes a certain critical value.

Measurements conducted in the stratosphere indicate the validity of just one formula (2). This fact shows

that factors stabilizing the quasi-twe-dimensional turbulence in the stratosphere usually are not strong enough to

keep in force the second quasi-two-dimensional regime (4).

2. Quasi-two-dimensional Turbulence Diffusion of Passive Scalar

Dimensional cornsiderations employed in section I for deriving scaling spectral laws can also be used to

obtain the dependence of the effective value of diffusivity K* on scale L. If, indeed the only dimensional

parameter in the inertial interval is the value I& / dzA, then, taking into account dimensional considerations, we

obtain

K* - I-• l•5 1 3  (5)

Another measurable quantity characterizing the diffusion of passive impurity is the mean square relative velocity

of particle pairs as a functional relative separation L:

)I 1 1213 L4/3  (6)

We should note that for intrinsic two-dimensional turbulence, K* - 143 in the energy transfer iaterval,

and K* - L2 in the interval of enstrophy transfer. At the same time

I L / dt)' 2 - 0,3 in the energy transfer interval and IL-/dt)I2 - L2 in the interval of enstrophy transfer. In both

cases the laws are substantially different from those of (5) and (6).

Experimental data obtained in the lower layers of the stratosphere (8] for K* and for (a-&)2 are shown in

Figs. 7,8. The straight lines are meant to be compared with the laws. (5) and (6). Similar results have been

obtained in the experiment devoted to passive impurity diffusion in a rotating liquid [9] (Fig. 9).
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3. Fractal Dimension of Surfaces in the Quasi-two-dimensional Turbulence.

First of all a strictly two-dimensional turbulence obeying spectral law (1) will be examined. The

expanding passive scalar patch of a turbulized liquid is to be monitored. Approximately the boundary of the

patch formed by sections of equal length 71(t) - Kolmogorov scale. Assuming the effective radius of the patch to

be - R(t), the number of Tj-sections in the broken line being approximated

'1N 4()-Dp (7)

where Dp is the fractal dimension of the patch-boundary. Determining the effective increase of the patch-area dS

during a time-period of dt, we introduce an effective instant velocity v(ri,t) of the il-section motion in a direction

perpendicular to this section. Then

dS =l(v~dt)N (8)

Substituting (7) into (8):
dS =_ TI(v.dt) (q)-Dp (9)

The expression (9) can be written as:

dS = F(t)RDp dt (10)

where

F(t) -- I•-DP v(rI,t)dt (11)

If scale R belongs to the inertial interval, then F(t) can depend only on - for Kolmogorov's turbulence

and

dS - c(')'RVp dt (12)

where c and x are certain non-dimensional constants. Dp and x can be determined by dimension considerations:

dS M c(Ce)-"3Rndt (13)

Consequently, in the two-dimension case with Kolmogorov's turbulence, Dp = 4/3. in the inertial

interval. This result has been known and experimentally proved, see, for instance, the review [101.

Above consideration can also be readily conducted in quasi-two-dimensional turbulence for which the

crucial dimensional parameter is J/dzj. In this case, correspondingly, we obtain

ds - R-3 3 dt (14)

Hence, for turbulence of such kind

Dp = 5/3 (15)
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The data obtained in laboratory simulation with stratified rotating liquid [I1I is shown in Fig. 10. Here.

DP = 43 at small scales, and DP - 5/3 at large scales. are marked by straight lines. Atmospheric observations

conducted on scales < 103 km showed D, - 4/3 [101. One can expect a value D. = 5/3 on scales ? 103 kmi

(Fig. 1).

4. Solitons in Quasi-two-dimensional Turbulence

Travelling waves after having lost their stability appear as a secondary stable regime, gain the capacity to

engender space-localized three-dimensional (helical) formations of a soliton nature (e.g. [12-141). The physical

structure of these solitons can be easily understood, provided that the vortex perpendicular to the two-

dimensional turbulence plane are represented in filament form (3,121. The initially small disturbance of such a

filament will bring about two helical local formation, propagating in both directions [12-14]. Hasimoto [151 has

conducted an analytical study of these helical solitons for a laminar case. The question is: how will the show-up

of these soiitons in large scale turbulence influence its behavior. It is clear that these solitons are going to act as a

supplementary sink of energy driven into motion on smaller scale (see section I about the mechanism of inverse-

energy transfer into travelling waves). However, these energy sinks are space-localized, so the energy spectrum

corresponding to them would not be determined by the space-density dissipation as in the case of space-

distributed energy sinks), but by the total dissipation.

C= leC() di" (16)
V

So, taking into account dimension considerations, a scaling dependence of large scale spectral energy

density can be presented:

E - E2' ' k1/ 3  (17)

This would essentially be a long-wave energetic spectrum of "turbulence with solitons". In the short

wave range of the spectrum, structures based on discrete discontinuities described by Saffmen [16] will, most

likely, dominate [17]. Accordingly, in the short wave range, the spectrum law %-11/3" will tend to tansfer to law

"-4".

The spectra shown in Fig. 11 we obtained in the same conditions as data presented in Fig. 6 beyond the

critical point. A very broad low frequency range of the spectrum, corresponding to the soliton spectral law of

"1/3" (17) can be noticed.

It is also evident that as the stabilizing factor (magnetic field) grows, so the energy of the longitudinal

velocity fluctuations arise, mainly because of the "soliton" part of the spectrum. This was accompanied by a

growth of the number of soliton states. A typical oscillogram segment of the longitudinal velocity fluctuations in

A38-8



a magnetic field B a IT is shown in Fig. 12. Also, a "soliton mode" was accomplished at high angular rotation

rates in a numerical turbulence experiment, described in [181, see Fig. 13 and in laboratory experiment (191.

One can suppose that such phenomena as tornado and related atmospheric cataclysms can be, to a certain extent,

attributed to the "soliton mode" of a quasi-two-dimensional turbulence.
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VORTICITY AND MIXING DYNAMICS IN AXIALLY

PERTURBED COFLOWING JETS

C. Cuerno and A. Vledma
E.T.S. de Ingenieros Aeronauticos
Universidad Polit*cnica de Madrid

P1. Cardenal Cisneros 3
28040 Madrid. Spain

Abstract

The development of coherent structures formed between cof lowing vertical

jets at moderate Reynolds numbers has been studied experimentally. By means of

LDV and flow visualization it has been possible to produce data enough to

describe the flow subjected to the effects of axial forcing. Flow mapping

includes axial and radial phase-averaged velocity profiles, vorticity maps and

streamlines. Vorticity dynamics inferred from these data shows a good agreement

with numerical simulations. Mixing between the streams is also analyzed.

improving with higher levels of forcing amplitude.

I Introduction

The axisymmetric instability of a cylindrical laminar shear layer Is well

understood, both from a theoretical and experimental point of view ( Becker and

Massaro (1968), Beavers and Wilson (1970). Crow and Champagne (1971). Michalke

(1984)). This instability produces the roll up of the cylindrical vorticity

sheet into periodic vortex rings. The evolution has also been detected In

transitional and turbulent jets ( Yule (1978), Tso and Hussain (1989)).

Some authors ( Yule (1978) have shown that the transition to turbulence In

jets involves a relatively orderly three-dimensional deformation of the initial

vortex rings. This suggests that a global comprehension of the growth and

development of the initial and round vortex rings formed at the jet exit nozzle

can give the key to understand some aspects of the transition to turbulence.

The actual investigations of axisymmetrlc coflowing Jets are focused

meanly on flow visualization due to Its simplicity to produce results faster
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than other experimental techniques ( AgUi and Hesselink (1988), Chao et al

(:)90j. Lasheras et al (1990)) although some numerical simulations are found (

Acton (1980), AgSi and Hesselink (1988). Martin and Melburg (1991)). Being

these works very Interesting, it is clear that detailed quantitative

experimental results of velocity profiles, vorticity and mixing are needed. The

experiment described in this paper is an attempt to characterize the flow

topology, using LDV to obtain quantitative data of velocity and vorticity

distributions and mixing evolution, in coflowing jets that are axially forced

to lock to a given value the frequency and wavelength of the Jet's vortex rings

and to increase the periodicity which allows a phase locking of the measuring

systems. The effects of more intense structures due to perturbation on

vorticity and mixing are also reported.

2 Experimental Apparatus and Equipment

The experiments were conducted In a high versatile, atmospheric pressure,

open return and vertical wind tunnel where either non-reacting, heat transfer

or combustion experiments can be conducted. A layout of the flow facility In

shown in Figure 1. The wind tunnel consists of three coflowing, low-speed

axisymmetric streams independently created. The inner stream is produced

through a circular nozzle with an outer diameter of 24.3 am. This jet is

surrounded by a coflowing concentric gas stream which discharges into the test

section through a round nozzle, 160 mm In diameter. The tertiary coflowing jet

is formed by atmospheric air drawn into the square-cross test section, through

the ejection-like effect produced by these coflowing streams discharge. A

detailed description of the experimental apparatus can be found elsewhere

(Lasheras et al (1990)).

The periodic streamwise forcing is produced through a vibrating membrane

located In the settling chamber of the Inner flow. At the base of a small

chamber, a loudspeaker fed with a sinusoidal wave generates pressure pulses

that result in the periodic displacement of the membrane In a piston-like type

fashion. The membrane fluctuation adds a streamwise velocity perturbation of a

given amplitude and frequency to the inner jet.

Velocity measurements have been carried out with a two-component, Ar-Ion

LDV system arranged In forward-scatter mode. A counter-type processor was used

for laser signal handling. Two Bragg cells were installed to detect reverse
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f.cw produced by the forcing external perturbations. Incense smoke and oil

drops have been the kind of particles used for seeding the flow.

Flow visualization has been the first step before the LDV study and a

helpful tool to understand the dynamics of the structures. Images of the forced

flow have been obtained visualizing with a laser sheet TIO2 particles at the

interface of the two jets. These particles appear in the reaction between

TiCl 4 . present In the dry air of the inner jet, and the atmospheric air of the

surrounding jet. More detailed descriptions of the LDV and visualization

systems can be found elsewhere ( Lasheras et al (1990). Cuerno (1992)).

3 Results and Discussion

As a preliminary study, LDV data from the unforced flow have been

processed to obtain mean axial velocity profiles and turbulence levels up to

ziD = 8 ( Cuerno (1992), Cuerno and Vledma (1992)). These profiles show that

the mixing layer is not completely developed and the flow is still dominated by

the nozzle wake effect showed by a loss of momentum in the mean axial velocity

profiles and a peak in the turbulence levels. The turbulent fluctuations at the

exit in the primary jet are about 1%. as in other experiments ( Crow and

Champagne (1971). Hussain and Zaman (1981)), and 2% for the secondary jet. The

exit boundary layer shape factor for the primary jet Is H - 6 /e = 2.49 close

to the Blasius profile for the laminar boundary layer, and ReD a 1000.

Also, the instability frequencies of this configuration have been studied.

Through the estimation of autocorrelations and power spectra of axial velocity

data in the primary and secondary jets have been detected two values. 10 and 16

Hz. Each value is associated to a zone of the flow. The frequency of 16 Hz

appears up to zID - 6 where coexists with 10 Hz. For zID > 6 the spectrum is

dominated by 10 Hz. So it seems that 16 Hz is associated to some initial

instability and 10 Hz to other process. The Strouhal number based on the

initial momentum thickness Is 0.019 for 16 Hz and the Strouhal number based on

the jet diameter Is 0.36 for 10 Hz. These values fall In the range of St for

the initial instability ( which depends on the Initial velocity profile and

vorticity distribution) and the preferred mode (or jet column mode, which is

defined as the most amplified mode at the end of the potential core and is

related to some global jet instability) for axisymmetric jets ( Gutmark and Ho

(1983)). The first one was selected as the forcing frequency because locking
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the excitation at that value the generation of structures in the flow Is more

repetitive, enabling the use of phase-locked analysis.

Once this value being obtained, the flow has been forced streamwise with

a single sinusoidal wave at 16 Hz and two different amplitudes of forcing

corresponding to 28 and 54 % in velocity ( % amplitude of forcing - ( V zmX"

V zan/ Vz V zin) x 100). The lower one is the most common condition found

In other works and the higher one was selected due to the apparition of small

counter-rotating vortex rings. Figures 2 and 3 show phase-locked

visualizations of the selected excitation conditions. Phase-locked LDV

measurements of axial and radial velocity have been obtained at four

downstream distances z/D - 0.16, 1, 2 and 3 in order to get a detailed

description of the forced near field, measuring up to 59 radial positions

along 29 mm at each profile.

Applying phase average processing to these measurements has been possible

to map the response of the flow along the cycle of perturbation. The details

about the scheme used to Interpolate the axial velocity for zID < 3. the

estimation of the convection velocity of the structures and the estimations of

the phase-averaged streamlines and vorticity can be found elsewhere ( Cuerno

(1992), Cuerno and Viedma (1992)). As a first qualitative result, at every

downstream station where we measured and In both conditions of amplitude of

forcing, velocity maps as the one showed in Figure 4 have been obtained. In

this map we present simultaneously, In a reference system moving with the

convection velocity, radial and axial phase-averaged velocities In terms of

radius and phase. This kind of figures allow a preliminar Identification of

structures In the flow.

More complete Information about the evolution of the structures can be

found in the study of the streamlines due to Its strong linking with the flow

visualization. As the flow is periodic, axisymmetric and Incompressible the

phase-averaged stream function can be estimated In moving or fixed reference

systems, which allow to obtain phase-averaged streamlines for the whole flow

(zID s 3 ) Just interpolating the axial velocity profile using (I). Figure 5

shows the evolution of the streamlines for the higher excitation case In moving

reference system for six phase positions along the cycle of perturbation ( one

cycle is subdivided into 30 Intervals), giving a clear image of a section of

the vortex rings and their downstream evolution along the cycle.
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te next step is going to be the study of the phase-averaged vorticity.

F.gures 6 and 7 show the vorticity maps at z/D = 0.16, 1. 2 and 3 for the lower

and higher excitations cases. At z/D = 0.16 for the lower case the positive

vorticity is distributed along the interface between the streams in a way like

the unforced flow. With increasing values of z/D the positive vorticIty

concentrates forming vortex rings with almost circular section. For the higher

case, the effect of the increasing amplitude of excitation can be seen as a

greater concentration of positive vorticity to form rings even from z/D = 0.16.

From z/D = 1 there are secondary negative vorticity zones between consecutive

vortex rings and seem to be associated to the counter-rotating small vortex, as

the ones showed in Figure 3, that appear when the excitation levels grows

Lasheras et al (1990)).

In both cases of excitation the positive vorticity distribution in terms

of radius and phase Is conical, being the levels of the maximum almost double

for the higher case than for the lower. The behavior of these distributions are

analogous: the maximum decreases with increasing downstream distances and the

vorticity concentrates to form rings although the perturbation level intensify

0 this effect.

These results have been compared with recent works on numerical simulation

of jets subjected to axisymmetric perturbations ( Martin and Meiburg (1991))

showing a great agreement specially with the lower excitation case: the

evolutions of vorticity distributions are analogous, the free stagnation points

( in moving reference system) do not form at the center of the region between

consecutive vortex but are shifted towards the jet axis ( see Figure 4) and as

a result the upstream neighborhood of the vortex rings becomes depleted of

vorticity more rapidly than the downstream side ( see Figure 6).

Finally the variation in mixing between the two streams is going to be

analyzed using information from visualization together with streamlines.

Comparing phase-locked photographs taken in several phase positions with the

streamlines in moving reference systems is possible to measure the radial

position of the interface separating mixed from unmixed primary flow for

different downstream distances at several phase positions along the cycle.

Taking these parameters into the streamlines maps in fixed reference system,

the phase-averaged unmixed primary flow can be estimated in terms of downstream

distance because there Is a proportionality between the flow rate through a
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section and the values of the streamfunction at the borders of that section.

Fig',re 9 shows, for both excitation cases, the evolution of the unmixed primary

fl.w with downstream distance. In the near region and for the higher values of

z analyzed the mixing levels are analogous, but the great difference is in the

intermediate zone. For 0.8 s z/D s 2.5 mixing Is much more effective with

increasing levels of forcing amplitude, for instance, at z/D a 1.6 a 70 X of

primary flow Is mixed for the lower case and 92 . for the higher. Another fact

is that the non-linear behavior grows with amplitude levels, as was expected.

Although the quantitative data are not completely accurate, this process allow

to compare the mixing efficiency with increasing levels of forcing and to show

how mixing grows with structures having greater concentrations of vorticity.

4 Conclusions

Using LDV and flow visualization we have been able to produce data enough

to obtain a detailed quantitative description of the vorticity and mixing

dynamics In the flow formed between axially forced axisymmetric coaxial jets at

moderate Reynolds numbers. This study takes flow visualization images of the

flow as a first aid to generate a complete quantitative velocity and vorticity

description using LDV data, that can be used to complete theoretical models for

the behavior of axlsymmetric jets.

First of all, the unexcited configuration has been analyzed being

comparable to other works. Also, the values of the Strouhal numbers obtained

for the instability frequencies are confirmed with the ones presented In other

works { Gutmark and Ho (1983). Ho and Huerre (1984)).

The forced flow has been documented with phase-averaged axial and radial

velocity profiles, phase-averaged streamlines and vorticity. Basically this

configuration is characterized by ring shaped structures associated to positive

vorticity that are formed from the exit plane and are convected while develops.

An increase In the forcing amplitude means greater Intensity of the structures

and also the formation of small counter-rotating vortex rings with negative

vorticity between consecutive mean structures. The vorticity distributions

obtained for the lower excitation case show a very good agreement with

numerical simulations ( Martin and Melburg (1991)) not only In the shape but In

the dynamics.

Finally, the study about the effect of the amplitude of perturbation on
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mixing gives the expected conclusion: mixing Improves with Increasing levels of

fcr:lng due to the more Intense structures that produces faster and higher

vortlclty concentrations.
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SFig. 2. Phase-locked Image of the

" flow forced at 16 Hz and 28%
S1 of perturbation amplitude.

2

Fig. 1. Schematics of the experimental set-up.

1. 2:horizontal and vertical traversing
systems; 3: loudspeaker; 4, 6: primary

and secondary settling chambers; 5, 7:
primary and secondary flow Inlets; 8:
tertiary flow Inlet; 9: nozzles; 10: test
section; 11: exhaust fan.

Fig. 3. Phase-locked image of the 0
flow forced at 16 Hz and 54X
of perturbation amp•itude.
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LONGITUDINAL VORTICES IMBEDDED
IN THE TURBULENT CHANNEL FLOW
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Institut fu-r Thermo- und Fluuiddynamik

Ruhr-Universitit Bochum
Universtititsstr. 150, D 4630 Bochum, Germany

Abstract
This paper reports results of experiments at Reynolds numbers of 12000 and 36000 in the
turbulent channel flow in which imbedded longitudinal vortices are generated by a circu-
lar cylinder placed with its axis perpendicular to the walls. Flow surveys were conducted
in this geometry using a quadruple hot-wire probe and the wall shear stress vector was
measured "directly" by a sublayer fence pair. The probe output was processed to obtain
the development of all the Reynolds stress terms in this complex flow. The results show
that the Reynolds stress terms containing the spanwise velocity component dominate
over others in this disturbed flow. Analysis of the time dependent u' w'- signals indicate

the possibility of a significant clustering of events around a characteristic
nondimensional time TUc/D of 2.7.

Nomenclature
H semi channel height
Ue centre line velocity of fully developed undisturbed channel flow
DC cylinder diameter
(x,y,z) streamwise, crosswise and spanwise coordinates,

origin located at centre of cylinder on one of the channel walls
U,V,W mean velocity components
u' ,v' ,w, fluctuating velocity components
u., friction velocity derived from the pressure gradient measurement of

the wall shear stress in the undisturbed fully developed channel flow
A( denotes incremental stress in ( ).normalised with u,
T averaging time in VITA-algorithm
VITH threshhold in VITA-tlgoritbm
var(f(t,T)) variance of f(t) averaged over the time T
Sratio, var(f(t,T))/vr(f(t,oo))

1. Introduction
Large scale longitudinal vortices imbedded in a turbulent shear flow are a prominent
feature of many flows in engineering. They are invariably present in current aeronautical
applications where wing-sweepback and wing-fuselage junctions are the more immedi-
ately obvious sources of longitudinal vortices, see eg. Bradshaw and Cutler (1987).

Longitudinal vortices are also purposely generated in heat-transfer augmentation de-
vices, see eg. Eibeck and Eaton (1985), Fiebig et al. (1991), Zhu et &1. (1991) and

Tiggelbeck et al (1992), and as corrective measures for stabilisation and improvement of

')present adress: Betriebsforschungsinstitut, Sohnstr.65, D 4000 Dfisseldorf, Germany
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diffusor performance, see eg. Senoo and Nishi (1974). Streamwise vortices are certain to

have been present in the experiments of Anderson and Eaton (1989) in the boundary

layer profile skewed by a wedge. Their attention is however focussed mainly on the three

dimensional boundary layer outside the region of imbedded longitudinal vortices. All

these studies show a strong departure of the turbulence structure of the three dimen-
sional shear layer from that in the more conventional kinds of shear layer. Since most of

the turbulence models of the present day are based on experimental data on the more

conventional kinds of shear layer, the flow with imbedded longitudinal vortices presents

a challenge to turbulence models. Here, the quantity of primary interest whose accurate

prediction is often regarded as the test for a turbulence model, is the wall-shear stress

vector. Clearly there is a need for experimental data on the evolution of Reynolds

stresses, on other details of the turbulent motion and, not the least, on the wall shear

stress in flows with imbedded longitudinal vortices. The motivation for the present work

has been to provide these experimental data in a flow configuration that is relatively
simple, yet retaining the essential features of these flows. Earlier flow investigations in

the configuration of a circular cylinder with axis placed perpendicular to the walls of a

large aspect ratio channel at the moderately high Reynolds number of 75000, were

reported by Schulz and Vasanta Ram (1989), see also Schulz (1989). In the present study

we have conducted experiments in the same geometry at Reynolds numbers of 12000 and

36000. These are lower than in the study of Schulz (1989) and are closer to the

transitional flow. The wall shear stress vector has been measured directly by a sublayer

fence pair. Instantaneous values of the local mean velocity vector and of all the six

components of the Reynolds stresses have been obtained with a specially fabricated

quadruple hot-wire probe, see Schulz (1989).

2 Experiments
A schematic diagram of the experimental facility is shown in fig. 1. The dimensions of

the channel are 40rm.m 720mm x 7550mm. The large aspect ratio of 1:18 ensured two-

dimensionality of the oncoming flow. The diameter D of the cylinder spanning the

channel walls with its axis perpendicular to the walls, was the same as the channel

height 2H, with D=2H=40mm. The experiments were conducted at centerline velocities

of the fully developed oncoming channel flow Uc of 9m/s and 27m/s, which correspond

to Reynolds numbers based on the semi-channel height H, Re=UEH/Y, of 12000 and

36000 respectively.

The V-patterned sublayer fence pair for measurement of the wall shear stress vector is

sketched in fig. 2a. The pressure difference across the fence was measured by a

commercially available pressure transducer (Baratron of MKS Instruments Inc.,

Andover, Massachusetts, USA) of the range 0-Imbar or 0-lTorr as required. The fence

height was 0.03mm which, in our experiments, gave rise to Reynolds numbers based on

A
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the wall friction velocity and the fence height in the range of 1-3. The device was

calibrated for both magnitude and direction of the wall shear stress vector in the

undisturbed fully developed channel flow, a state that could be realised with ease in our

facility by removing the cylinder. The calibration map of our sublayer fence pair is

presented in fig.2c.
A dimensioned sketch of our quadruple hot-wire probe with a wire-arrangement as in
Eckelmann et al. (1984) fabricated in our laboratory is shown in fig. 2b. The four wires

of the probe were driven independently of each other by commercially marketed constant

temperature hot-wire sets without linearizer (make of AA-Labs, Tel Aviv, Israel). Since

the "cosine law" method of accounting for the angular response was found to be

unsatisfactory for the individual wires in the quadruple probe arrangement, the probe
was calibrated for its behaviour with respect to the velocity vector at 77 pairs of angles

within the region of a cone of semi-apex angle 250. The calibration data were arranged
in a computer readable look-up table.

The four signals from the quadruple hot-wire probe were recorded for a duration of two

seconds after passing them through an analog/digital-converter of 12-bit resolution

(make of Keithley-Instruments, Munich, Germany) installed in a 386 MS-DOS
computer. 2000 samples per channel were acquired in the sampie-&-hold mode with a

sampling rate of I kHz. Discrete time series of the three components of the instantaneous

velocity vector were therefore available from which long-time averages and correlations

of the fluctuating quantities could be obtained in a straightforward manner.

The profile measurements were conducted over half the channel height at 21 points in
the y-direction (perpendicular to the channel walls) at 18 xz--locatiois in the 'near

field' which we define here to be the region 2ýx/DS7.5, 0<z/D<1.5, see Schulz (1989).

Here, x and z are streamwise and spanwise distances respectively from the center of the

cylinder, see fig.3.

3. Data analysis

The disturbance generated by the cylinder to the channel flow is of a highly complex

nature influencing the turbulent motion over a broad range of time and length scales.

The long-time averages of the mean and fluctuating quantities as well as the spectra and

other details of the fluctuating motion are all therefore affected. In order to keep the

length of this communication within set limits, we restrict ourselves in this paper to

reporting the results of data analysis from two points of view, one with respect to the

long-time averaged stresses and the other to the search of structures, if any, in the flow.

Insofar as the long-time averaged quantities are concerned we have examined the
departures of these quantities from those in the undisturbed fully developed channel

flow. In our search for structures the time-dependent quantities have been analysed with

the VITA--algorithm.
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Lont-time averared ouantities
Fig. 4 shows the conventionally normalised U-component meuaured with our quadruple

hot wire probe in the fully developed flow with the cylinder removed. The friction

velocity for normalisation in this plot has been obtained from the pressure drop

measurement. The measured mean velocity data are well represented by a logarithmic

law, with a slope of 2.43 and 1.64 at Reynolds numbers of 36000 and 12000 respectively.

This difference in slope is consistent with observations in literature, which show a

departure of the Karman constant from a value of 0.41 at lower Reynolds numbers. The

agreement with the log-law also provides a test of confidence for the technique of

measurement by the quadruple hot-wire probe.

Fig. 5 is a plot of the "directly" measured local wall shear stress vector for Re=36000.

From the measurement of the instantaneous velocity vector, the various long-time

averaged quantities of interest that enter turbulence models, viz. the mean velocity, the

Reynolds stresses and triple correlations of the fluctuating velocity components may be

obtained. To preserve clarity of presentation in the midst of the voluminous data we

reproduce here a selection of results which exhibit salient features of the departures from

the fully developed flow .These are in the Reynolds stresses u 1 w' 2, u'w'. It is also

meaningful to view these quantities in terms of their differences from their profiles in the

fully developed channel flow. We refer to these differences as incremental Reynolds

stresses.

Figs. 6 and 7 show the streamwise evolution of the incremental Reynolds stresses at the

channel centre and at y/H=0.5, nondimensionalised with respect to the friction velocity

of the undisturbed channel flow. We draw the reader's attention to the following points

in this figure.

1. The incremental Reynolds stresses that contain the spanwise component w'

dominate over the others. The stress term containing the cross component (v') is

generally lower than the others.

2. The location of the maximum disturbance at a certain wall distance shifts

downstream as the observer moves across spanwise away from the plane of

symmetry. This feature is retained at all wall distances.

3. At the location given by the normalized x- and z- coordinates (2, 0.75), which, in

the two-dimensional flow put a circular cylinder of long span would lie in the

region of the wake, there is hardly any departure from the fully developed

undisturbed channel flow discernible. Clearly, the reason for this is the strongly

confining effect of the channel walls on the wake past the cylinder. The gradual

spreading of the disturbance into the adjacent fully developed region is evident on

comparing the streamwise plots of the incremental Reynolds stresses at different

values of z with each other.

4. The incremental Reynolds stresses at the different wall distances clearly pass

through a turning point at the locations given by the normalised x-, s-

v) The complete measurement data are obtainable from the authors on request.
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coordinates (3.25, 0.75) and (4.5, 1.5), downstream of which they decay. The

strea•mwise evolution of the incremental stresses downstream of the cylinder is

therefore not monotonic.

Analysis of the time series

The discrete time signals of the instantaneous Reynolds stress u' w' at & few selected

stations were analysed both by FFT-methods and by a VITA-algorithm. We present
here the results obtained at the point x/D=3.25, y/HI 0.5 and z/D=0.75. The

significance of this location may be seen on referring to Fig. 7. It lies just within the

border of the disturbed region at x/D=3.25 and half way between the wall and the

channel center. Straightforward spectral analysis of both u' 2 and u'w' by standard

FFT-methods showed that the spectrum of the disturbed flow is broadbanded, but

discrete frequencies with a significantly higher energy content are indeed discernible at

nondimensional frequencies fD/Uc of 0.18 and 0.36, the former being more dominant for

u'w' and the latter for u' 2 .

Signals of both u' 2 and u' w' were subjected to analysis by the VITA--algorithm for a
range of averaging times and threshholds along lines laid out by Blackwelder and Kaplan

(1976), Narasimha and Kailas (1987) and Morrison et a&. (1989). This analysis was done

for both the undisturbed fully developed channel flow and the flow disturbed by the
imbedded longitudinal vortices. Fig 8a,b shows a perspective view of the count of events

in the two flows as a function of the averaging time and the threshhold. We have

adopted the following as the criterion for detecting an event:var(f( t , T))
The quantity a = should exceed the threshhold VITH, (cf.

var(f(T=oo))
Narasimha and Kailas (1987), Morrison et a&. (1989)), with the additional

constraint that the duration over which a exceeds the threshhold VITH is not less
than 50% of the longest duration encountered within the data set.

A comparison between the two shows that whereas in the undisturbed fully developed

flow a large number of events occur around a nondimensional averging time UCT/D of

around 2 in the flow disturbed by the cylinder, not only is the count of events around

this averaging time considerably larger but also they occur at several other averaging

times too. Noteworthy here is that the nondimensional averaging time of 2.7, at which

there is a large number of events, is consistent with the location of the peak of the

spectrum with the nondimensional frequency of 0.36.

4. Conduding remarks

Measurement of the components of the Reynolds stress tensor and of the wall shear

stress vector has been conducted in the turbulent channel flow with imbedded

longitudinal vortices generated by a cylinder placed with axis perpendicular to the

channel walls. The results shed light on some salient features of the Reynolds stressA
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development and structures in this flow.
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A COMPARISON OF SPATIAL CORRELATION AND AUTOCORRELATION MEASUREMENTS
IN AN AXISYMMETRIC SUDDEN EXPANSION FLOW USING LDV

R. D. Gould and L. H. Benedict
Mechanical and Aerospace Engineering

North Carolina State University
Raleigh, NC 27695

ABSTRACT

Two-point velocity correlatiou measurements were made in the anisotropic flow field of an axasymmetric
sudden expansion using two single component LDV systems. Both longitudinal and lateral spatial corre'atlons
were measured. The integral length scales and Taylor nmcroscales were estimated and compared with those
obtained from autocorrelation measurements in conjunction with Taylor's hypothesis. The agreement of the
integral scales was within 20 % and the values obtained scale well with the flow geometry. Agreement of the
microscales was within 43 %. however, the classical parabolic shape near zero separation was not found in any of
the co,,-lations. This may be due to insufficient resolution of the correlation functions near zero separation and
possible spatial integration effects of the probe volume length.

O. INTRODUCTION

Few two-point velocity correlation measurements have been made using laser Doppler velocimetry(LDV)
primarily due to the difficulty in obtaining suitable optical access when the laser probes are separated by large
distances. In general, two independent single component LDV systems are required to make completely general
two-point measurements. One LDV probe volume must be movable relative to the other in a very precise fashion.
In addition, it may be difficult to collect the scattered light from each probe volume at all probe locations due
to space or optical access limitations, possible signal cross-talk, and stray reflections from windows and lenses.
Because of these difficulties and also because the LDV is a relatively new instrument, most spatial correlation
measurements reported in the literature have been obtained using either hot wire or hot film probes. Spatial
correlation measurements have been made in a variety of flows using hot wires including: free jets, grid generated
turbulence flows, wake flows behind bluff bodies and boundary layer flows. Of course, hot wire correlation
measurements require wake corrections(Champagne et aL (1970)) whereas LDV measurements do not. In contrast.
autocorrelation measurements using LDV are numerous due to the fact that a single component LDV system with
time recording capability is all that is required to make these measurements. Theoretical discussions of turbulent
correlation functions(spatial and auto) and their physical interpretation can be found in the texts by Batchelor
(1953), Bradshaw (1971), Tennekes and Lumley (1972), Hinze (1975), and Townsend (1976) to name a few.

Morton and Clark (1971) were among the first to make spatial correlation measurements using LDV. They
used two single component reference beam LDVs to make both longitudinal and lateral correlation measurements
in turbulent pipe flows using water for Reynolds numbers ranging from slightly above transition to 18,100. Their
measurements agreed well with other published turbulent pipe flow measurements. Pfeifer (1986) has written a
rather complete review paper on the topic of correlation measurements using LDV and thus is a good general
reference. Lateral spatial correlation measurements using LDV were made by Fraser et al. (1986) on the centerline
of fully developed pipe flow (ReD = 11,800 based on centerline velocity). An elongated probe volume(A = 5 14.5um)
oriented such that the axial velocity component could be measured was used. Adal velocity measurements
separated by as much as 9 mm in the radial direction could be made with this system. Two photo detectors
oriented 900 from the forward scattering direction wi'e used to collect the signals. The apertures of the two
photo detectors were mounted on a traversing mechanism and thus determined the separation distance of the two
axial velocity measurement points. Correlation measurements at separation distances closer than I mm were not
possible with this system due to signal cross-talk problems. In another study, Absil (1988) made lateral spatial
correlation measurements in the wake of a circular cylinder using a single LDV probe volume (A = 514.5,um).
Correlation measurements were made at three radial locations at a plane 125 diameters downstream of the circular
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cylinder. The probe volume in this study was 600 pm in diameter and 31 mm in length. The two signals were
detected unzz a setup similar to the one mentioned above. Autocorrelation measurements were also made in
this study. Cenedese et al. (1991) investigated the validity of Taylor's hypothesis in a channel flow at a Reynolds
number of 4._,00. The turbulence intensity ranged from 20 % at the entrance of the tunnel (close to a honeycomb
grid) to 7 7 at the exit. The optical set up allowed spatial correlation measurements to be made both in the axial
and transverse directions at a maximum separation distance of 1 cm corresponding to half the minimum channel
dimension. The spatial correlations were compared to autocorrelations transformed using Taylor's hypothesis
They concluded that Taylor's hypothesis was valid even in the high turbulence regions when the separation
distance was small. Agreement between the spatial correlation coefficient and the transformed autocorrelation
coefficient deteriorated as separation distance increased.

2. EXPERIMENTAL APPARATUS

2.1 Flow Geometry

An axisymmetric sudden expansion flow geometry was produced by joining a 101.6 mm (4 in.) inside diameter
entry pipe to a 152.4 mm(6 in.) inside diameter clear acrylic test section. The entry pipe was 3.5 m long so that
a fully developed pipe flow velocity profile existed at the entrance to the sudden expansion. The step height for
this geometry was 25.4 mm(1 in.). The entry pipe and sudden expansion face were mounted on a movable table
and thus could be positioned at various axial locations in the rigidly fixed test section as shown in Figure 1. This
arrangement allowed for measurements at various downstream positions within the sudden expansion flow field
without having to move the LDV probe volume location in the axial direction. The face of the sudden expansion
was moved to position the probe volume at a new z1H location; hence optical access was accomplished using a
relatively small window with this apparatus. A felt gasket was used to seal the small gap between the sudden
expansion face and the inside diameter of the test section.

Air was provided by well regulated shop air compressors and was monitored using a calibrated orifice plate
located upstream of a large settling chamber which preceded the entrance pipe. Flat quartz windows 50 mm x
132 mm x 3.2 mm(2 x 6 x .125 in) were mounted in flanges on both sides of the 152.4 mnm diameter test section
such that the inner flat surfaces were flush with the inside diameter of the test section.

2.2 LDV System

Two TSI single component dual-beam LDV systems, both operating in backscatter mode, were used in this
study. Both systems were oriented to measure the axial velocity component on the diameter of the test section
as shown in Figure 2. The stationary LDV system was adjusted so that the probe volume was located on the
diameter of the test section(z = 0) and at the required axial, z, and radial, r, measurement location. Once this
"home" position was located, this LDV system was locked in place. The 5 14.5pm laser line from a Model 2025
Spectra Physics argon ion laser was used in this system. A Bragg cell shifted the frequency of one beam by 40
MHz causing the fringes to move in the downstream direction. Fringe spacing and half-angle were measured and
found to be 1.886 jm ±.006 and 7.838* ±.025, respectively. A second LDV system(TSI Model 9277 190 mm fiber
optic probe), mounted on a precision zyz positioning table with resolution of ±2.5#m in each axis, was located on
the opposite side of the test section(see Figure 2). The 488m laser line from a Model 165 Spectra Physics argon
ion laser was used in this system. A frequency shift of 40 MHz was used causing the fringes of this system to move
in the upstream direction. Fringe spacing and half-angle were measured and found to be 1.728 um ±.006 and
8.117* ± .025. respectively. Both LDV systems employed 3.75x beam expansion optics and gave probe volumes
approximately 601m in diameter and 450pm in length.

A 20pm diameter pinhole mounted on a fixture supported on a spare test section window was used to find
the position where both laser beam probe volumes overlapped. This fixture was used prior to each test sequence,
thus ensuring that both probe volumes overlap at the zero separation distance point. Specially designed beam
blocks were fabricated to block reflections from the LDV focusing lens(they face one another) and from test
section windows. Narrow bandpass filters were placed in front of each photomultiplier tube to eliminate cross-talk
between che two channels.

Two TSI Model 1990C counter processors interfaced to a custom built coincidence timing unit were used in
the data collection and processing system. High and low pass filters were set to 10 MHz and 50 MHz, respectively,
for the stationary LDV system, and 20 MHz and 100 MHz, respectively, for the fiber optic LDV system. Both
processors were set to make a single measurement per burst, count 16 fringes and use a 1 % comparator. A
hardware coincident window was set at 20s foi aU of the tests. Data(two velocities and the running time for
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each realization were transferred through two DMA ports to a MicroVax minicomputer and later uploaded to a
VAX 8650 for analysis.

The flow "eid was seeded using titanium dioxide(TiO 2 ) particles generated by reacting dry titanium tetra-
chloridejTiCIA; with the moist shop air. Craig et al. (1984) measured the particle sizes generated by this device
and found that they were fairly uniform and in the 0.2 - lium diameter range. Data validation rates varied
between 5000 and 500 per second on each counter processor and depended mainly on how well the chemical
reaction proceeded. This seemed to be very sensitive to shop air temperature and relative humidity. Coincident
data validation rates ranged from 1000 to 50 measurements per second.

3. EXPERIMENTAL PROCEDURE

All flow conditions were maintained at near constant values throughout the testing procedure. The inlet
centerline velocity, 671, was maintained at 18.0 m/s * 0.1 m/s(59 ft/s ± 0.3 ft/s) giving ReD = 114,000 based
on centerline velocity and inlet diameter. Spatial correlation statistics and histograms were formed by using 5000
individual realizations for each velocity channel at each measurement point. Autocorrelations were formed by
using 50000 individual realizations from the stationary LDV system.

A two step process was used to eliminate noise from the data prior to computing statistical turbulence
parameters. In the first step, a 5% threshold level was applied to the raw velocity data in an effort to estimate the
standard deviation of the valid data. This estimate was made by creating a histogram of the raw velocity data
with 100 equally spaced bins bounded by the actual maximum and minimum velocity. Next, the bin containing
the maximum number of samples in it was found. Finally, all bins having at least 5% of the number of samples
found in this "maximum" bin were located. The width of the data which met this threshold criteria was then
used to estimate the standard deviation of the "good" data. Upper and lower cutoff limits were then set by
adding and subtracting, respectively, 2.5 times the half-width of the data which met this 5% threshold. Applying
this technique to a Gaussian distribution is equivalent to setting cutoff limits which correspond to ±4.1 standard
deviations and thus this first step is used only to remove spurious data. This method is a variation of the
method suggested by Meyers (1988) and is used to eliminate spurious data which if not removed would give an
abnormally large value for the standard deviation and thus wider cutoff limits. In the second step, the mean and
standard deviation of the remaining data(spurious data removed) were calculated. This data was then further
filtered to remove data which deviated more than 3 standard deviations from this new mean. Finally, revised
statistics were calculated once these additional outliers were discarded. For a properly operating LDV system
very few points are removed during the first step(typically less than 10 out of 5000) and less than 1% of the
data should be discarded after both steps. It should be noted that ensemble averages were used to calculate
statistical parameters in this study and that no effort was made to account for velocity bias(McLaughlin and
Tiederman (1973), Edwards (1987), Gould et al. (1989)).

4. DEFINITIONS OF TURBULENCE PARAMETERS

Two-point axial velocity correlation measurements were made at three locations in the axisymmetric sudden
expansion flow field as shown in Figure 3. The first two spatial correlation measurements were made at an
axial location of ten step heights(z/H = 10) downstream of the sudden expansion plane, one on the centerline
of the flow(r/H = 0) and the other at the same radial location as the step(r/H = 2). The third spatial
correlation measurement was made at an axial location of six step heights and at the same radial location as
the step(z/H = 6, r/H = 2). These locations are where the stationary LDV probe volume remained fixed for
each set of correlation measurements. Spatial correlations were obtained by positioning the movable LDV probe
volume(fiber optic system) at various separation distances from the stationary probe volume.

Longitudinal spatial correlations defined by,

RI(Ax) = f(r) = u'(x)U'(z + Ax) _ (
vluaz) O(Z+ Ax) UV2

were made at two locations in both the plus and minus Ax directions and at one location in the plus Ax direction.
In this equation the prime denotes a fluctuation about the mean(i.e. U, = U1 + uj), the overbar denotes time
averaging, and 1z is the separation distance in the axial direction. The notation used in the right most formula
of Equation (1) shows that the spatially separated velocities are simply two independent measurements(analogous
to the axial and radial velocities obtained with a standard two-component LDV system) and thus standard LDV
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software and existing coincidence timing hardware were used to obtain this correlation coefficient. Lateral spatial
correlations ciefined by.

Ri(a~y) = g(r) u,(Y)U'(y + A10) 2 (2)
VNMYW~~-uw-Y ay) = _7,u1

were made at two of the locations(z/H = 6, r/H = 2 and z/H = 10, r/H = 2) in both the plus and minus
.y(same as .r) directions. Both directions (plus and minus) were considered in this study to determine the
homogeneity of the flow. It should be noted that turbulent flows are three-dimensional and that these measure-
ments give only the one-dimensional correlation coefficient. In addition to these spatial correlation measurements.
autocorrelation measurements were also made at the two x/H = 10 locations.

Longitudinal spatial correlation measurements were made with a minimum separation distance equal to 254
Aim(0.010 in) and a maximum separation distance equal to 101.6 mm(4.0 in). The same minimum separation
distance was used for lateral spatial correlation measurements, but different maximum separation distances.
depending upon whether the direction was toward the wall(where Ay.., = 22.86 rmm(0.9 in)) or toward the
centerline(where Ay,m = -50.8 mm(2.0 in)), were used. The spatial correlation data were fit to a curve having
the form R(r) = C exp(-r/A), where r is the separation distance, using a weighted "least squares" error criteria.
These curve fits are shown on each figure by a solid or dashed line and show that a higher weighting was given to
the data with small separation distance.

The integral length scales defined as,

A= f(,)d or A, j g(y)dy (3)

give a measure of the longest connection, or correlation distance, between velocities at two points in the flow
field. This is because for a given separation distance, r, only eddies larger than r will contribute to the correlation
function while eddies smaller than r will not. If the data can be fitted with the simple exponential function given
above then Equation (3) gives the integral length scale as equal to the coefficient, A, in the exponential curve fit.

Dissipation or Taylor length scales were estimated by performing a Taylor series expansion on the correlation
coefficient curve near zero separation distance(see Hinze, 1975). The dissipation length scales, A1 and As, which
result from fitting a parabola to the appropriate correlation functions near z or y = 0 were obtained from,

2 y 2
o(r) _ I - L o r (y) 1-_ (4)

These length scales give an estimate of the- average dimension of the smallest eddies in the flow which are
responsible for viscous dissipation. The practice of "fitting" a parabola to the discrete spatial correlation functions
involves anchoring the parabola at R11(0) and using the next measurement(i.e. R&(z = Az) or R11(y = Ay)) to
find A! or A,. An estimate of the isotropic turbulent viscous dissipation rate can be made once these microscales
and the turbulence intensity are known(see Hinze, 1975) using:

fi30v-- or e= 1510- 2, (5)

Discrete autocorrelation measuremnts were made using the slotting technique described by Jones (1972)
and Mayo, et al. (1974). The lag time axis was divided into bins of equal width and the exact lag products of all
points up to the maximum lag time were accumulated in appropriate bins. The discrete autocorrelation function,

RE(r) = u'(t)u'(t + -)us( ) (6 )

evaluated at the midpoint of each bin, was found by summing the autoproducts in each bin and dividing each
of these values by the number of autoproducts in each corresponding bin. The data was first filtered using the
previously described method to eliminate noise before the discrete autocorrelation was estimated. Slot width
and segment length were then varied parametrically to study the effect of these parameters on the discrete
autocorrelation function. In addition, the zero-lag autoproducts were not included in the first bin in order
to minimize the ambiguity spectrum due to uncorrelated noise(Gaster and Roberts, (1975), Srikantaiah and
Coleman, (1985), Lau, (1988), Absil, (1988)). The Eulerian integral scale was estimated by finding the area under
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the autocorrelation curve as given by, (7)

The Eulerian dissipation(micro) time scale was estimated by applying a Taylor series expansion to the au-
tocorreiation function near t = 0. The equation for an osculating parabola at the vertex of the REr(t) curve
is,

RE(tj) - --:%g L8)

Here the Eulerian micro time scale, r'E, is a measure of the most rapid changes that occur in the fluctuations of
U(t). Taylor's hypothesis, which is valid only if the flow field has uniform mean velocity, 0, and small turbulence
intensity, gives a relationship between temporal and spatial quantities(i.e. z = Cr't). If Taylor's hypothesis applies
the relations, A! = UOT and Al = Orjr, result. Note that only the longitudinal length scales can be estimated with
Taylor's hypothesis. Taylor's hypothesis was applied to the autocorrelation functions at the z/H = 10, rH = 0
and x/H = 10. r/H = 2 locations. The resulting spatial correlation functions were then compared to the measured
spatial correlation functions.

5. EXPERIMENTAL RESULTS

5.1 Single-Point Turbulence Measurements

Before correlation measurements were made, axial velocity measurements at three axial planes(z/H =
1. 6, 10) were made using the moveable fiber optic LDV system. This was done in an effort to .alidate that the
flow was symmetric and to ensure that the flow was what was expected. Turbulence stati-mccs were calculated
using 5000 samples for each measurement point and the filtering procedure described above. The inlet mean
velocity profile was found to be similar to that of a fully developed turbulent pipe proffi. This data, presented
in Gould et al. (1992), indicated that the spatial correlation measurements made at r/H = 2 were in regions
of large velocity gradient and high turbulence. The turbulence intensities(TI = vý'/(f) at this radial location
and at z/H = 10 and z/H = 6 were found to be 45% and 264%, respectively. The turbulence intensity at
x/H = 10, r/H = 0 was found to be approximately 8%. A more complete experimental mapping of this flow
field is given by Gould et al. (1990).

An estimate of the turbulent kinetic energy(TKE) was made by assuming that k- a + -W + Z % -w
which was found to be a good approximation for this flow field(Gould, et al. (1990)). The Kolmogoroff length scale,
17= (V3/C)'/ 4 , was estimated by assuming that the turbulent viscous dissipation rate, e, equaled three-fourths the
production of TKE(s.e. not quite in local w~.hanical equilibrium). The other one-fourth of the turbulent kinetic
energy produced was assumed to be either convected or diffused in the flow. Gould, et al. (1990) noted that the
production of TKE in this flow field occurs primarily from the -aC8(T/ar term. An estimate of the production
of TKE in this flow was obtained by using Bradshaw et al.'s (1967) model (i.e. W f 0.35k) for the shear stress
and the measured mean velocity gradient in the above equation. Single point turbulence statistics obtained from
direct measurements and these estimates of k, e, and ji are included in Table I below.

Table 1. Single-Point Turbulence Statistics.

Location x/H=10, r/H=0 x/H=10, r/H=2 x/H=-6, r/H=2
U (m/s) 15.69 7.54 1.35

ii (m/s) 1.35 3.36 3.93
TI 0.08 0.45 2.64

m-T/m'7s 1.82 11.29 12.74
C (m1/s)_ 10 740 1340
17 (Am) 200 50 40

5.2 Correlation Measurements

Figures 4 through 8 show the measured spatial correlation coefficients and autocorrelation coefficients trans-
formed to the spatial domain by using Taylor's hypothesis as a function of separation distance at the three
measurement points mentioned above. Figures 4, 5 and 7 show the longitudinal spatial correlations while Figures
6 and 8 show the lateral spatial correlations. Values for the estimated integral length scales based on the spatial
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correlation measurements are summarized in Table 2. Numbers appearing in brackets in this table refer to length
scales obtained with negative separation distances-.

The integral length scales were found to vary between 23 and 35 mm in both separation directions for the
longitudinal spatial scale and were found to vary between approximately 8 and 15 mm for the lateral spatial
scale. These results indicate that the flow appears reasonably homogeneous in the axial flow direction but is non-
homogeneous in the radial direction where the wall influences the flow field. Also, the lateral integral length scales.
A,. were found to be approximately one-half the value of the longitudinal integral length scales, A1 , indicating
strong anisotropy of the large scales.

By definition all correlation coefficients should equal one when the separation distance is zero. However.
when measuring spatial correlations, the signal to noise ratio in the two sampling volumes determines a practical
maximum correlation coefficient less than unity (Morton and Clark, (1971)). So as not to affect the integral and
rnicroscales, all spatial correlation measurements presented here were normalized to unity at zero separation. The
same normalizing factor was then used to correct all measured values for varying separation distance. Actual
measured maximum values for R11•0) varied between 0.92 and 0.98. It should also be noted that low values of
correlation coefficient could occur if the sample were to include measurements of velocities separated by distances
greater than the actual probe volume separation distance. This could occur if seed particles passed through

opposite ends of each probe volume. The effective separation distance could be as large as V/(AZ)2 + t, where I
is the probe volume length and is assumed to be the same for both probe volumes in this simple formula. Note
that the effective probe volume separation approaches the actual probe volume separation as Az or Ay become
large. Placing the photo detectors 900 to the forward direction woul' minimize this spatial integration effect by
making the effective probe volumes smaller.

Dissipation or Taylor length scales were estimated using the method discussed above and are also summarized
in Table 2. The longitudinal and lateral microscale measurements were found to scale according to Equation (5)
(i.e. A, = 0.707A,) reasonably well suggesting that the measurements are self-consistent. However, the dissipation
rates obtained by using these microscales(see Table 2) in Equation (5) were found to be approximately a factor
of 5 lower(for the r/H = 2 cases) when compared to the estimates of dissipation rate obtained by assuming
they equaled three-fourths the production of TKE. The dissipation rates obtained from the turbulent kinetic
energy balance are believed to be more correct as this flow field is not isotropic. The effects of the probe volume
length(giving an erroneous value for Ru(z)) and the practice of fitting a parabola to discrete spatial correlation
data which may not be as highly resolved near Az --. 0 as needed add uncertainty to the estimates of the
microscales. Of course, this is also true when using hot wires. Browne et al. (1991), using a single hot wire probe
and recording du'/dt, showed that the correct viscous dissipation rate can be obtained only if the probe length
is smaller than approximately five times the _Kolmogoroff scale. For the hardware used in this study this limit
requires that the Kolmogoroff scale be greater than 100 jm.

Table 2. Spatial Correlation Results.

F Location x/H=10, r/H=0 x/H=10, r/H=2 x/H=6, r/H=2
,A] (mm) 29.6(29.8) 34.4(32.1) 27.5( -)

(mm) 11.3(14.8) 8.0(11.7)
Al (mm) 7.0 6.9 5.5
A (mm) 4.2 3.7

Figures 4 and 5 also show the autocorrelation functions transformed to spatial correlations using Taylor's
hypothesis(solid symbols). Table 3 gives a sunmnary of the temporal and spatial scales obtained from these auto-
correlation measurements. Comparisons of the integral length scales obtained from autocorrelation measurements
with those obtained directly from spatial correlation measurements show that the autocorrelation method gives
an integral length scale - 17 % too large at the low turbulence location and gives an integral length scale ap-
proximately 20 % too small at the location in the shear layer. Considering the limitations of Taylor's hypothesis
the spatial correlation integral length scale estimates are believed to be more reliable.

The microscales obtained using the autocorrelation measurements along with Taylor's hypothesis gave a value
43 % higher than the spatial correlation microscale estimate at the low turbulence location and gave a value 16
% lower than the spatial correlation microscale estimate in the shear layer. Large values of microscales can result
from poor resolution of transformed autocorrelation functions near zero separation. When using the slotting
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technique of Jones ý 1972) and Mayo (1974) one is free to choose slot widths as small as needed, however, cae
must be used tc assure that each slot contains einough lag products to accurately estimate the autocorrelation
coefficient at tnat !ag time. Thus, there is a compromise between high resolution and statistical accuracy of the
autoproducs.

Table 3. Autocorrelation Results.

Location F x/H=10, r/H=O x/H=10, r/H=2
U (m/s) 15.69 7.54
7, (s) .0022 .0035
r- (s) .00064 .00077
Al (ram) 34.8 26.3
1A (mm) 10.0 5.8

Figures 9 and 10 illustrate one of the concerns associated with decreasing the slot width arbitrarily. Slots
40 ps in width at the low turbulence location each contained approximately 6000 lag products and gave statistical
scatter of * 3 %. In the shear layer, 40 ps slots each contained approximately 3000 lag products giving a statistical
uncertainty at each delay time of ± 6 %. These values of uncertainty are consistent with the uncertainty in
determining the mean of the quantity 77 as estimated from the sample size and standard deviation of the sample
in each slot (Yanta, (1973)). Evidently, an overall sample size of 50,000 at the mean data validation rate present
in the data of this study is insufficient to temporally resolve this flow with an uncertainty less than 3 %. Since the
statistical uncertainty decreases as i//vR, it is recommended that each slot contain 20,000 or more autoproducts.

As the slotting technique is widespread, but often taken for granted, the authors would like to offer some
additional commentary on the method. Often, the suggestion is made that data sets might be broken up into
segments to speed implementation of the slotting algorithm. This practice can be dangerous as the block meas
determined from the individual segments may have large variance as was found in this study. This effect results
in larger uncertainty of the slot autoproduct values. It has long been noted that inclusion of zero lag products
in the first slot leads to a spiking effect in the autocorrelation at zero time. This effect has been attributed
to "uncorrelated" noise in typical LDV data sets (Mayo (1974), Lau (1980)), however, a similar albeit smaller
effect was noticed as the slot width approached zero although autoproducts with zero lag time were excluded
(Figure 11). This may suggest a slight correlation of noise in LDV data. Researchers making multiple sample
measurements per burst should be aware that this tends to amplify this effect. In general, it should be noted that
the slotting technique is a statistical process with inherent subtleties that must be used with caution.

6. CONCLUSIONS

Successful two-point velocity correlation measurements were made in the anisotropic flow field of an axisym-
metric sudden expansion. Both longitudinal and lateral spatial correlations were measured. The integral length
scales and Taylor microscales were estimated and compared with those obtained from autocorrelation measure-
ments in conjunction with Taylor's hypothesis. The agreement of the integral scales was within 20 % and the
values obtained scale well with the flow geometry. Agreement of the microscales was within 45 %, however, the
classical parabolic shape near zero separation was not found in any of the correlations. This may be due to
insufficient resolution of the correlation functions near zero separation and possible spatial integration effects of
the probe volume length.
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Abstract

A theoretical approach is presented for predicting the compress-

ible turbulent fluid flow through labyrinth seals of high speed turbines
and rotary high performance compressors . The treatment is based on the

assumption that adiabatic conditions exist and that the height of the
seal to the radius of the shaft ratio is small as is always the case

in turbomachines . The theoretical work is capable of handling single
or multi-cavity labyrinth seals of arbitrary geometrical configurations
and takes into account the shaft lateral misalignment . The analysis

is restricted to subsonic flow and the proposed theoretical model has

the advantage of being free from any uncertainty associated with assuming
a mean kinetic energy carry -over coefficient for the seal .

Performance curves for single cavity seals are presented for

different height to width ratios , eccentricity ratios and rotational

inlet Mach numbers . Performance curves for multi-cavity seals are

also given

0
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1 .Intr zt; n

Effective sealing in turbomachines is required in order to

minimize tne leakage of high energy working fluid , thus reducing the
adverse effects of seal lea.Kage on overall engine performance. To increase
the sealing effectiveness and to reduce leakage rates it is necessary to

improve and develop the labyrinth seal aesign both from the theoretical

and experimental point of view . Advancement in labyrinth seal design

will lead the turbomachine cycles to continue to advance toward higher

operating temperature and pressure ratios . Some of the early design

methods available in the literature are purely analytical El-31 and others

are analytical-experimental(4-7] . The large differences occured in leakage

predictions using these methods are due to the neglection of the effect of
Kcinetic energy carry over in some cases and the inclusion of uncertain

assumptions concerning its mean value in the overall seal geometry in the

other cases . On the other hand Benvenuti,Ruggeri and TomassiniC8] made

a comparative study of these methods and made some experiments to gain

better knowledge of the flow phenomena in the labyrinth seal . However

StoffC9] reported a theoretical and experimental study of the incompressible
turbulent flow through a labyrinth seal of the straight-through grooved

shaft type and was the first to reliably include the effect of shaft

rotation in the analysis . It was found by Rhode et al[10i that labyrinth

seal solutions using the aifferencing scheme of Stoff(9] may suffer from
the so called false diffusion numerical error depending on the flow field

conditions . They however , presented an approach to overcome the difficult-

ies encountered when using the scheme of Stoff . They also adopted for a

typical cavity configuration a simple stairstep approximation to the curved

solid walls . For the purpose of predicting the stiffness and damping

coefficients for labyrinth seals Wyssmann,Pham and Jennytll] solved the

time averaged Navier Stokes equations employing the k-6 model of turbulence.

The results were used for modeling the flow field for the eccentric seal

and to correlate the turbulence parameters used . An analysis for the

eccentric seal was also presented by Nelson and NguyenE12] and calculated

its dynamic coefficients . They integrated the zeroth-order incompressible

flow momentum equations together with Moody's friction equation in order

to obtain the pressure distribution inside the seal . On the other hand
Rhode and SobolikE13] extended the method presented in Ell] to include the
effect of compressibility on the seal performance . They computed the

pressure across a single cavity at different leakage flow Mach numbers and

then used it to predict the leakage rate . The computer code used in the

analysis of tll! and 113] is quite costly and cannot be applied directly

to multicavity labyrinth seals as a whole . This is because of the unknown

boundary conditions at the inlet of a particular cavity . This has led the
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,resen: izr to treat tne prooiem of the compressiIble turbuient f~ow

tz:rcýug= ezcentric labyrintn seals of arbitrary geometry maxing use of

the smallness of the height of tne seal to shaft raaius ratio as a

simplifying feature to the governing equations . Adiabatic conditions

for tne flow are assumed and a particular toothed labyrinth seal snape

is selected for the numerical computations

2.Analysis

The geometrical configuration of tne laoyrinth seal selected

and the coordinate system usea in the analysis are shown in Fig.1

By making an order of magnitude analysis noting that b/R$<<o(1) the

time averaged momentum and continuity equations may be expressed in
;he following form ,

oy (1)

a(r )+ ÷ a--(iF + ( )
az -by m 8

*EI-*T 7- * 7z- -o
Where the bars denote time averaged dependent variables. Equations 1

are based on the assumption that turbulence is homogeneous and the radial

pressure variation is negligible in comparison to the relatively large

axial and tangential pressure gradients . The turbulence model which

is found suitable for tne present analysis is that described in (14)

The coefficient of eddy viscosity may be expressed as

E , K [ rih* tanh 'I h*/6* (2)

with K-.4 and -10.7_ .n V( o1 dr
where h =(h/j) ljt0 I/F - R --

Substituting from 2 into equs.1 and integrating twice formally with

respect to y we obtain in a dimensionless form the velocity distribution

u'Rh ap• [1(n') - Q1  (1) Q2 ( •) + Q(v))

8A Q( 1 ) 21 M'( 3
w¶.(R,/L) _(_ 1 ('

-* -zR Q20) e

Satisfying the boundary conditions
u*(e,0,z*)-1 , u*(6,1,z*)-0

w*(e,o,z*).w*(e,1,z*)uO 
(4)
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with J __. .. ,1 . dr..o ( 1+ F/6)) o O,-zMtOJ

Substituting for u and w in equ.ld and making a spatial average for
the equation on the grounds that ._..,*O we obtain

00 00

F=1~ 1 )Q1 )]I')bR

HereG
G* g(F)[' h( ta)h2 (()/h*/b/)

Equation 5 is a generalization of tnat devised in [14] and applied to

turbulent fluid flow in journal bearings (15] .The solution to equ.5
for p requires the simultaneous solution of the energy equation

incorporating the evaluation of the time averaged density f* from the
equation of state for the ideal gas and introducing the viscosity temp-

erature power law for the gas (see (16] ) . Assuming adiabatic conditions
to exist we may therefore write in dimensionless form

F*. w T*.r u (eLw avP
av. s av L a.avoz 2 av.)

+(b/Rs(1/RePr BT +(R/L) 2 L(6)

p. [ (Y -1)/.Y]f* T (7)

=T (8)
where cO* is the dimensionless time averaged dissipation function

av.

An expression for a. is given in Appendix 2
Equation 6 is spatially averaged in radial direction and is to be solved
for the time averaged temperature T together with equs. 5 , 7 and 8

It is to be noted that although the order of magnitude analysis snows
that the conduction terms in equ. 6 are small compared to convection

work of compression and dissipation terms they are retained here in order

to keep the nature of the energy equation intact .
Equations 5 and 6 are modified using equs. 7 and 8 in order to speed up
the convergence of the numerical solution using iterative methods . They

may be rewritten in the following forms

-- (k /a Yo(-,Z*) (9)
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2 a z1--.z'Rs/I. -, - Xo(@,z ) (00)

Expressions for Y0 (B,z*) and Xo e,z*) are given in Appendix 2

Equations 9 and ?0 are subject to the boundary conditions
ýp*(Cz) . Lp(2wz). .T(0,z) _To(2Trz% 0

S* * dTp(o -p 1  , p'(9,l) - Pe , T*(9,O,) - 1 d__. .

6z
It remains here to specify the geometry of the seal by providing an*

expression for h For the eccentric toothed straight through seal

selected here tsee Fig. 1) we may write

h 1 - -) cos 2 ÷nz +Ec cos e (ii)

where n and _ are the number of cavities and the eccenticity ratio
respectively . Arbitrary geometrical configurations , however , may be

used but this has to be subject to optimization techniques to search for
the shape leading to minimum leakage rate . A problem wortn considering
in a separate publication .

The dimensionless leakage rate may be calculated from
- m2w h*

f 2 P 1TR b c -ifR) p 1 0 w* dy d@ (12)

Solutions are obtained using mesh sizes of .05 in z and T) and 17/36 in 9

The data for the fluid and conditions of operation are given in Appendix 3.

3. Results and discussion

Figure 2 shows the results obtained for three concentric single

cavity labyrinth seals having height to width ratios b/a-.5 , 1. and 2.

This in fact Implies that for a specific value of the height of the seal

to radius of shaft ratio , taken in the present work equal to .1 , the

corresponding values of the ratio of the shaft radius to the overall

length of the seal R s/L will be equal to 5 , 10 and 20 respectively

The results clearly demonstrate that the smaller the ratio b/a the better
the performance of the seal especially at lower values of the pressure

ratio . Results for concentric seals having b/aul. and with single ,

five and ten cavities are plottec( - Fig.3 . The decrease in leakage rate
when increasing the number of cail vd is more pronounced at lower values

of the pressure ratio . On the other hand for a given pressure ratio the

percentage decrease in leakage rate resulting from increasing the number

of cavities does not increase linearly . That is by doubling the number
of cavities from 5 to 10 the percentage decrease in leakage rate will

not be doubled . Figure 4 shows the effect of shaft eccentricity on the
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performance of a single cavity seal having b/a-i. . The results snow that

increasing the eccentricity ratio increases the leakage rate . This

increase is more pronounced at lower pressure ratios and higher values

of the eccentricity ratio . The plots presented in Figs.2 , 3 and 4

here pertain to inlet Mach number M=.5 . To examine the eftect of changing

M on the performance of the single cavity seal results are obtained for

b/a-i. and for M=.15 , .25 , .35 , .40 , .45 , .50 and .75 . The decrease

in M results in an increase in the leakage rate and this increase becomes

very small as M approaches .15 irrespective of the value of the pressure

ratio .

4. Conclusions

A simple approach to the turbulent compressible flow problem

through labyrinth seals of arbitrary shapes has been developed . The

theoretical model enabled the effect of shaft occentri-ity on the

performance of the seal to be included . It is found that for eccentricity

ratios exceeding .2 the leakage rate is greatly increased . Further ,

the model provided a straight forward treatment of multi-cavity seals

withoat the need to find the unknown inlet conditions for each cavity

in the seal . The effect of the height to width ratio of the seal is

easily demonstrated and found that the smaller the ratio the better the

performance of the seal . It is also found that decreasing the value of

the rotational Mach number increases the leakage rate up to M=.15 where

the variations in it become small
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Appendix 1 : Nomenclature

a Width of the cavity (mm)

b Maximum height of cavity (mm)

c Clearance (mm)
c Dimensionless clearance (c =c/b)
E Eckert number 2 E=2R/cp T0)

h Cavity local height (mm)
h Dimensionless local cavity height kh*uh/b)
ko 0 Fluid thermal conductivity (W m" C-C)

L Length of seal (mm)
m Mass flow rate (kg a)-

m Inlet rotational Mach number ( M-[E/(T-i)I*
n ffumber of cavities

Fluid pressure ( Pa
p Dimensionless pressure k P 0  a 2

Pr Prandtl number k P r FoCp/ko

Rs Shaft radius (mm)

R Rotational Reynolds number ( R P W R b/pO )
_ea e 0 5

T Fluid temperature k C )
T Dimensionless temperature k T% T/T0 )
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,, Time averaged velocity components in 9 , y and z

directions respectively km s"
u ,w Dimensionless time averaged velocity components in e and z

directic Lvely k u m6.,R , w =W/wRs y

yz Radial ara axia± coordinates ( mm

y ,z Dimensionless radial and axial coordinates ( yuyb , z z/L )

/3 Fluid viscosity index

Y Ratio of specific heats (Tc /Cv

E Eccentricity ratio ( E ne/b )

I Dimensionless coordinate (0 my/h

Shaft angular velocity ( sa)
e Tangential coordinate ( rad

Fluid density (kg m3 )

Dimensionless density ( 0*= •/o )
Fluid viscosity ( mPa a

Dimensionless vicosity ( i* i/)

Em Eddy diffusivity ( m s"1 2) 1

Fluid kinematic viscosity ( m

Appendix 2 : Expressions for " , Yo(O,z*) and Xo(e,z*)av. 0 O

T,,(e,•).Y~~~~e,=").,.~ [z(,)+*,)](=-1/er,• •X(e,=")÷x(e,=")
I SZ5 . .

*mv =[tQ3(1)-Q',(1)/Q2(1)j Zo(OzZ)+jl/Q 2 (1)J/h-R (b/aR)

where Yi(@,z*)=ttk[•(8(*h* F*)]/P* h* 
5

a .3
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2 3
r. * vaZ1 -X (GzU) L .•pa * +(Rs/L) Wa : M P r Re Rs/ b

I.p+(.L) w*,

o(O,,.*). Lcop*_I* )2 . (j_• , ,L 2,•h-LP°,,• - )2] Re2 (b/Rs 2

W-I) YJ) dv)
3 0-(7÷%/P)

Appendix 3 : Fluid and seal data

Inlet fluid temperature T0020 C

Fluid density at 206C Po0.123 kg 1"-

Fluid specific heat c -718 J kg CI

Fluid viscosity at 20 C Po-.018 ala a

Fluid viscosity index A -1.

Fluid thermal conductivity kow.025 W m"ICV

Maximum height of cavity bs5 mm

Shaft radius Rs-50 mm

Clearance ca.5 mm

:L Z
I .i
pig.1 The geometrical configuration of the seal and

the coordinate system
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The Formation of Streamwise Vortices Around the Circumference of Underexpanded
Supersonic Axisymmetric Jets

Arnette, S.A., Samimy, M., and Elliott, G.S.
Department of Mechanical Engineering

The Ohio State University
Columbus, Ohio 43210

ABSTRACT

Pitot pressure measurements and flow visualizations were used to investigate streamwise vortices previously

observed in underexpanded jets. A converging nozzle and a converging-diverging nozzle of design Mach number 1.5

were used to generate jet flows of equivalent Mach numbers up to 2.5. By operating the nozzles fully expanded,

overexpanded, and underexpanded, insight was gained into both the occurrence and cause for formation of the

vortices. Spatially-stationary streamwise vortices were found to exist in the near-field region around the circumference

of underexpanded jets in the vicinity of thejet boundary. Short exposure visualizations show the vortices persist much

further downstream without average organization. Visualizations suggest adjacent vortices have streamwise vorticity

of opposite sign, so the action of adjacent vortices is to either pump jet fluid radially outward or entrain ambient fluid

radially inward towards the jet. The downstream extent, strength, and number of vortices around the jet

circumference increase with degree of underexpansion. A large number of vortices is found near the nozzle exit.

Fewer vortices of larger scale are found further downstream, indicative of a merging process. The absence of the

vortices in fully expanded and overexpanded jets suggests the vortices result from a Taylor-Gnrtler instability.

LNTRODUCTION

The shock cell structure of jets operated at underexpanded conditions is well known. Adamson and Nicholls'

found the main characteristics to be those presented in Fig. I. Upon encountering the lower ambient pressure at the

nozzle exit, the gas passes through an expansion fan. The expansion waves reflect from the jet boundary as

compression waves, which coalesce to form the intercepting shock. At low pressure ratios, the intercepting shocks

meet at the jet axis. Fur higher pressure ratios, however, these shocks are connected by a normal shock, or Mach

disk, as shown in Fig. .. InrNoth cases, reflected shocks are formed which intersect the jet boundary and reflect as

expansion waves. The cell structure repeats itself downstream until the flow becomes subsonic everywhere in the jet.

Zapryagaev and Solotchin2 used Schlieren photography and pressure measurements to demonstrate the presence

of stationary streamwise vortices in an underexpanded jet issuing from a conical Mach 1.5 nozzle at a pressure ratio

of 10. The vortices are proposed to be of the Taylor-G6rtler type with adjacent vortices having streamnwise vorticity

of opposite sign. A vortex merging process is suggested by Schlieren images which show the number of vortices to

decrease with increasing downstream distance. Novopashin and Perepelkin' used Rayleigh scattering to generate

average cross-sectional density maps of high' xpanded axisymmetric jets (stagnation-to-ambient pressure ratio

of 100) issuing from a sonic orifice and found a .c departure from axisymmetry. They proposed the lobed nature

of the density maps was a consequence of stationary streamwise vortices. Krothapuui et al.' demonstrated the
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existence of stationary streamwise vortices in a moderately underexpanded axisymmetric jet issuing from a converging

nozzle at a pressure ratio of 5. 1. Pitot pressure measurements show sinuous type variation of the total pressure around

the jet circumference, suggesting streamwise vortices exist and possess significant strength. Laser sheet lighting

visualizations of jet cross-sections were obtained by collecting the scattering from condensed water particles formed

when the water originally present in the ambient air as vapor was entrained and mixed with cold supersonic fluid.

Indentations into the region marked by the condensed water particles support the presence of streamwise vortices.

The main objective of this study was to further investigate streamwise vortices in supersonic jets with methods

similar to those employed by Krothapalli et al.' Jets covering a wide range of pressure ratios were investigated,

issuing from both a converging nozzle and a converging-diverging nozzle of design Mach number 1.5. Unlike the

conical Mach 1.5 nozzle used by Zapryagaev and Solotchin2 , the Mach 1.5 nozzle in this study was designed with

the method of characteristics to generate uniform flow at the nozzle exit. The cited studies indicate streamwise

vortices are important in underexpanded jets. In this work, fully expanded, overexpanded, and underexpanded jets

were studied to draw more general conclusions concerning the relevance of the observed streamwise vortices to

supersonic jets.

EXPERIMENTAL PROCEDURE

The experiments were conducted at The Ohio State University Aeronautical and Astronautical Research

Laboratory. An air storage capacity of 41 m3 at pressures up to 16.5 MPa allows the jet facility to be run

continuously. The stagnation pressure of the jet was maintained to within ± 1% of the set point. This along with

the variation of the ambient pressure led to a small run-to-run variation in the equivalent Mach numbers about the

reported values.

Pitot pressAft measurements and flow visual. ations were performed on sonic and Mach 1.5 nozzles with exit

diameters of : -" ' mrr and 19.05 mm, respectively. Experiments are referred to in terms of equivalent Mach number

(Mi), which is the Mach number that would result in an isentropic expansion from a given stagnation pressure to

ambient pressure. The cases investigated, along with the Reynolds numbers based on throat conditions, are presented

in Table 1.

Pitot pressure data was acquired with a standard probe mounted on a three-axis traversing system. The system

allowed positional accuracy to ± 0.013 mm along each axis. The probe sensing diameter was 0.76 mm. A Bourdon

tube pressure gage capable of measurements to within ± 3.5 kPa was used. Measurements were taken through 180"

of the jet circumference. The number of measurement points was determined by dividing the 1800 arc length for the

given measurement radius by the sensing diameter of the probe. Adjacent measurement points are separated by an

arc length equal to the sensing diameter of the probe. Because of the non-parallel flow in overexpanded and

underexpanded jets, the pitot pressure measurements are not of the true total pressure ahead of the probe. Only the

component of the total pressure corresponding to flow velocity perpendicular to the pitot probe face, which is aligned
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Table 1. Investigated flow conditions.

Nozzle m, pV / Re0 / 10'

Sonic 1.0 1.89 0.375

Sonic 1.25 2.59 0.515

Sonic 1.5 3.67 0.727

Sonic 1.75 5.33 1.05

Sonic 2.0 7.82 1.55

Sonic 2.25 11.6 2.29

Sonic 2.5 17.1 4.26

Mach 1.5 1.5 3.67 1.03

Mach 1.5 2.0 7.82 2.19

Mach 1.5 2.5 17.1 4.79

Mach 1.5 1.3 2.70 0.756

Mach 1.5 1.18 2.36 0.661

parallel to the nozzle exit cross-section, is measured. However, since the interest is in azimuthal variation due to

vortices, the measurements are useful.

Light scattered from condensed moisture in the jet mixing region was used to visualize the jet flow. Sheets

0 parallel to the face of the nozzle were used to obtain jet cross-sections. Some images were recorded with the aid of

a molecular iodine filter. Without the filter, the technique is the commonly employed laser sheet lighting. A Spectra

Physics model 2020 continuous-wave argon-ion laser was used in conjunction with a CCD camera set to a "long"

exposure time to collect average cross-sections. This technique is beset by unwanted reflections from the outer nozzle

surfaces and scattering from stray particles in the ambient fluid outside the jet. For these reasons, the molecular filter

was employed in a filtered Mie/Rayleigh scattering technique for the collection of all instantaneous images. Miles

et al. 3 demonstrated that a molecular filter containing iodine vapor can be used in conjunction with 532 nm Nd: YAG

illumination to eliminate unshifted background light. The illuminating light was provided by a frequency-doubled

Spectra Physics Nd:YAG laser at 532 nm, injection-seeded to provide a narrow linewidth and approximately 50 GHz

tuning capability. The pulse duration was 9 ns, effectively freezing the flow. Images were collected with a CCD

camera. A more complete description of the facility and instrumentation is provided by Arnette6.

Condensed water particles formed around the periphery of the jet when moist ambient air was entrained and

the ambient water vapor encountered the low temperature, high speed jet fluid. The jet air is dried to low moisture

levels. This method of visualizing condensed particles in the mixing region has been used in the investigation of

supersonic jets by many investigators.' Dibble et aL' estimated the condensed particle size as 100 nm in similar

experiments. Taking this value as a characteristic diameter (assuming spherical particles) gives an r/X ratio of 0.094

0 (where r is the panicle radius), which falls in the transitional region between Mie and classical Rayleigh scattering
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theories. This estimate seems reasonable for the current study. A distinct polarization direction effect on the scattered

intensity %as present. but the scattering could not be attenuated to near extinction by varying the polarization direction.

This suggests the scattering was near the transition between Rayleigh and Mie scattering, so the term filtered

Mie/Rayleigh scattering is used. Fourguette et al.' studied a Mach 1.5 air jet with the same method of condensed

water particle formation. Using the results of Samimy and Lele'O, an estimate of 350 nm is found for the maximum

allowable particle size.' Assuming a particle size on the order of 100 nm as suggested previously, the particles should

accurately follow the flow.

RESULTS AND DISCUSSION

Figure 2 presents pitot pressure measurements taken around the circumference of an 1 - 2.0 jet issuing from

the sonic nozzle at XID = 2.00. Measurements are presented at various measurement radii, r (non-dimensionalized

with the nozzle exit radius, R), non-dimensionalized by the average pitot pressure at each radius. More complete

results and discussion can be found in Arnette'".

The axial location of the measurements in Fig. 2 (M, = 2.0) is 5 mm downstream of the Mach disk. Six local

minima are seen in the figure, and the maximum variation level is approximately 230 kPa at r/R - 1.20 (61% of the

average pitot pressure at r/R = 1.20). As proposed previously 2, each of the indentations in the azimuthal pressure

measurements is thought to indicate the presence of two counter-rotating, spatially-stationary, streamwise vortices.

Adjacent counter-rotating vortices gives rise to a pumping action. Depending on the senses of rotation of the adjacent

vortices, either jet fluid is pumped radially outward or ambient fluid is entrained radially inward.

Figures 3 and 4 present azimuthal pitot pressure profiles for the MK = 1.5 and 2.5 cases issuing from the sonic

nozzle at X/D = 2.00, respectively. Strong indentations are located in the 9 = 900 - 110* region. As proposed

previously-, this suggests the departure from axisymmetry results from the amplification of perturbations supplied by

the nozzle. No noticeable imperfections were found in the nozzle. The data of Fig. 4 (X/D = 2.00) was collected

6.5 mm upstream of the Mach disk. The maximum variation level of approximately 360 kPa occurs at r/R - 2.20

(81% of the average pitot pressure at r/R - 2.20), and the profile exhibits approximately 11 local minima.

Azimuthal pitot profiles were collected at several downstream locations. The measurement radius displaying

maximum variation was not the same for all downstream locations. Instead, it varied similarly to the radial distance

between the jet boundary and the jet centerline in the underexpanded jet (see Fig. 1), suggesting the vortex tubes

experience curvature like the flow in the vicinity of the jet boundary. The number of indentations encountered in the

azimuthal profiles decreased with increasing distance from the nozzle exit, suggesting that vortex merging occurs.

The azimuthal pitot pressure profiles for all of the M, cases listed in Table 1 display clear trends (data not

included is presented by Arnette"'). For the jets issuing from the sonic nozzle, M, is a convenient indicator of the

degree of underexpansion (i.e. the degree of underexpansion increases with MK). At a given downstream location,

both the number and dimensional 'strength' of the indentations increase with degree of underexpansion. Each of the
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indentations is believed to result from the presence of two counter-rotating vortices. The vortices persist in an aveage

sense for a greater downstream distance with increasing equivalent Mach number. A model presented by Arnette et

al.", in which the underexpanded jet is surrounded by a hypothetical "vortex sheet* shear layer (infinitesimally thin),

gives the largest possible azimuthal pitot pressure variation that could be caused by the action of counter-rotating

vortices. Variation magnitudes calculated with the model compare favorably to the measurements."

Pitot pressure azimuthal profiles were also generated for the Mach 1.5 nozzle at various Ki. The fully

expanded and overexpanded jets displayed axisymmetry, indicating an absence of vortices. Although the azimuthal

pitot profiles of the underexpanded jets issuing from the Mach 1.5 nozzle displayed variations similar to Fig's. 2-4,

two trends were clear: I) the variations were smaller than those found in jets of the same M, issuing from the sonic

nozzle and 2) the variations in the azimuthal pitot profiles existed further downstream in the jets issuing from the sonic

nozzle. These comparisons indicate the vortices are stronger and persist further downstream with increasing degree

of underexpansion.

Since the flow curvature and radial velocity gradient in the underexpanded jet increase with M, for a given

nozzle, the strength of the vortices would increase with M, for a given nozzle if the vortices result from the Taylor-

Gdrtler instability. This was seen to be the case in the azimuthal pitot profiles. Likewise, since the degree of

underexpansion is much less in a Mach 1.5 nozzle than in a sonic nozzle operated at the same M,, the strength of the

streamwise vortices would be much greater in the plume of the underexpanded sonic nozzle if the vortices are the

Taylor-G6rtler type. Again, this was the case.

To further investigate the flow features discussed above, flow visualizations were performed. Long exposure

laser sheet lighting images are presented in Fig. 5 for the M, = 2.0 jet issuing from the sonic nozzle. All presented

cross-sections are slightly distorted due to the off-axis position of the camera. In all cases, the presented pitot pressure

measurements were taken from the top center of the jet (6 = 90°) to the bottom center (8 = 2700), traversing around

the circumference in a counter-clockwise fashion referenced to the image observer. The different sizes of the

condensation rings in the images is a result of camera positioning only. Indentations in the condensation ring become

more noticeable with increasing equivalent Mach number, similar to the variations in the pitot pressure azimuthal

profiles. Image A at X/D = 1.00 displays many small indentations. The left half of Image B (X/D - 2.00) displays

six well defined indentations, which corresponds exactly to the pitot pressure azimuthal profiles of Fig. 2 for the same

angular region. The center of the condensation ring in Image B is at approximately r/R = 1.50. The indentations

in the condensation rings of Images C and D (X/D = 3.00 and 5.00, respectively) become less noticeable, although

indentations are clearly still present at X/D = 3.00.

Figure 6 presents instantaneous filtered Mie/Rayleigh scattering images of the M• = 2.0 jet issuing from the

sonic nozzle. Images A, B, C, and D were collected at X/D v 1.00, 2.00, 3.00, and 5.00, respectively. While

vortices are clearly present and stationary in an average sense from the azimuthal pitot profiles and long exposure
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images, instantaneous images suggest significant deviation from the average distribution is present at any given instant.

Strong counter-rotating streamwise vortices appear to be present instantaneously at X/D - 5.00, although they have

lost their average spatial organization.

CONCLUSION

The existence and nature of streamwise vortices in high Reynolds number, axisymmetric jets operating in

overexpanded, fully expanded, and underexpanded regimes have been studied. The measurement of the azimuthal

variation of the pitot pressure was used as an indirect measure of the vortices' strength. Long exposure laser sheet

lighting and instantaneous filtered Mie/Rayleigh scattering were used as visualization techniques. The presence of

spatially-stationary, streamwise vortices has been demonstrated indirectly in underexpanded jets issuing from sonic

and Mach 1.5 nozzles. The counter-rotating vortices form indentations in the region between the intercepting shock

and the outer edge of the shear layer surrounding the jet. The downstream development of these vortices for

equivalent Mach numbers from 1.0 to 2.5 was investigated. As reported previously by Zapryagaev and Solotchin2

and Krothapauli et al.4, the vortices exist in the vicinity of the jet boundary and are spatially-stationary for the first

few exit diameters downstream. Good agreement was found between the visualizations and pitot measurements

concerning the number and angular location of the vortices circumference. Visualizations and pitot measurements

indicate significant merging of adjacent vortices occurs, leading to an increase in scale of the vortices with increasing

downstream location. The vortices appear to result from the Taylor-G6rler instability, as originally suggested by

Zapryagaev and Solotchin 2. This is strongly suggested by the absence of the vortices in perfectly expanded jets issuing

from both converging and converging-diverging nozzles and overexpanded jets issuing from a converging-diverging

nozzle. Supporting arguments are: 1) the vortices occur in counter-rotating pairs, 2) the vortices do not exist at the

same radius for all downstream locations, but instead experience curvature with the flow as is typical of Taylor-G6rtler

vortices, and 3) the vortices display the expected trend of increasing strength with increasing curvature and radial

velocity gradient.

The effect of increasing K. is: I) the vortices exist in an average sense further downstream, 2) the vortices

at a given downstream location are increased in strength, and 3) there is a larger number of vortices. The vortices

exist instantaneously downstream of where they cease to be spatially-stationary.
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Fig. I. Shock cell structure in the plume of an underexpanded jet.
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Fig. 5. Long exposure laser sheet lighting images of M, 2.0 jet tssuing from sonic nozzle. Images A.
B, C, and D were collected at X/D - 1.00, 2.00, 3.00, and 5.00, respecuvely.
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Fig. 6. Filtered Mie/lRayleigh scattenng images Of fi. = 2.0 jet issuing from sonic nozzle. Images A. B. C. and D
were collected at X,'D = 1.00. 2.00. 3.00, and 5.00. respectively. No specific time reiationship exists between ihe
individual images.
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Absract

Laser Doppler Velocimetry is used to measure mean flow velocity and turbulence intensity in an

annulus with inner rotating cylinder and a dead end wall. In addition, root mean square values of the velocity

fluctuations are measured. Srell's law is used to predict the measurement volume locations and the angles

between the laser beams in the annulus.

0 The flow Taylor number and Reynolds number are 4.4 X 109 and 3.6 X 1 0, respectively. Flow in the

annulus is three dimensional and turbulent. A toroidal vortex with a centerline passing through the annulus

centerline extends along its length. In this vortex, mean components of the velocity in the radial and axial

directions are small compared with the mean azimuthal component. Flow particles follow helical paths in

the annulus. Mean flow is toward the end wall in the region close to the outer cylinder. The flow particles

occupy the region close to the inner cylinder as they travel toward the annulus throat. There is a constant

flow exchange through the open annulus end.

The axial turbulence intensity is larger in the central region of the annulus flow compared with the

regions close to the annulus walls. For the azimi'thal turbulence intensity component, the largest magnitudes

are obtained near the stationary wall where there is a sharp gradient of the mean azimuthal velocity

component.
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Nomenclature

b Annulus clearance

D Inner cylinder diameter

d Particle mean diameter

f Frequency

n Refractive index

p Pressure

Re Reynolds number

r Radius of the inner cylinder

Ta Taylor number

U Time-mean velocity component

u Velocity component

u Root mean square value of the velocity component fluctuations

X,Y,Z Laboratory coordinate system

K Half angle between laser beams

X Wave length of laser light

AL Dynamic viscosity

v Kinematic viscosity

p Density

T Period of particle fluctuation in a fluid

o Angle between the bisector of the beams and the outer cylinder tangent

(0 Inner cylinder angular speed

S;ubscripts

a Average

D Doppler

g Glass

p Particle

r Radial direction

s Surface of the inner cylinder

f Fluid

x X-direction

6 Azimuthal direction
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I. Introduction

Turbulent annular flow is found in various rotating machinery such as cooling systems ;n gas turbine

rotors, flow passages of turbomachinery, heat exchangers, electric rotating machinery, journal bearings, and

mechanical seals in pumps. Knowledge of the fluid stress distribution, velocity variation with passage length

and radius, turbulence structure, and pressure drop characteristics in a turbulent annular flow with inner

rotating cylinder are important for effective analysis and design. Fluid flow and heat transfer properties of

the flow in this type of geometry are necessary for an optimum performance with regard to the maximum

temperature and power rating.

Oklishi and Serovy' measured the mean velocity distribution in smooth annuli with radius ratios 0.344,

0.531, and 0.781 in the range of Reynolds numbers 12,000 to 100,000. Polkowski2 investigated theoretically

the turbulent flow between coaxial cylinders with the inner cylinder rotating. Yamada 3 measured the torque

between co-axial cylinders with the inner cylinder rotating by the water flow. Morrison, et al.4 measured the

flow field inside an annulus with a 0.00127 m clearance, Reynolds number 27,000, and Taylor number 6,600.

The previous research mostly dealt with either a closed cavity or an annulus having an inlet on one

end and an outlet on the other. The present experimental investigation is performed in an annulus with one

dead end wall and inner cylinder rotating. The open end of the annulus is located in the wake of an impeller.

II. Experimental set-up and procedure

Ila. Operatino Conditions

A Durron Group 11 pump with balance holes (impeller

diameter 25.4 cm), a Plexiglas casing, and an annulus with a I___

Plexiglass wall were used for ease of access by laser beams

for LDV measurements and flow visualization. Schematic of imp U,

the pump with the annulus is shown in Figure 1. The inner

cylinder is set-screwed to the shaft to maintain and provide ----- , 2,,

face loading, axial position, and drive. Figure 1. Schematic of the pump, the

annulus, and a set-up for u, measurements
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The ýnner cylinder rotates at 1,750 RPM and the volumetric flow rate for the pump is 435 litlmin. 0
Water temperature in the recirculating tank was raised 17 *C during the three initial hours of the tests. This

temperature rise was mainly due to the frictional heat at the seal face located at X-0 and the turbulent

viscous dissipation. A 15.24 m long, 1.27 cm copper conduit carrying cool tap water was placed inside the

main water tank to remove the heat. The large flow mixing generated by the pump discharge in the tank

provided adequate conditions for heat transfer. The water temperature remained constant at 20 "C during

the duration of the tests.

The flow Taylor number Ta - ((02 r b 3 )/v 2 for the annulus is 4.25 X 109. The average clearance is

represented by ba = (b, + b2)/2. b, and b2 are shown in Figure 1. The flow Reynolds number is Re a U, D/v

- 3.52 X 105. Experiments were performed under the following conditions:

w - 183 rad/sec

U, - 5.67 m/sec

r a 0.031 m

b, - 0.015 m

b2 - 0.017 m

V- . 10"6 m2/sec at 20 °C.

For LDV measurements, water is seeded with silver coated particles to produce a signal with adequate

signal to noise ratio. This ensures that the particles follow flow fluctuations of highest frequencies existing

in this type of flow5. The silver coated particles have a specific gravity of 2.6 and a mean diameter d - 9 pro.

Calculations based upon f a 11(2Xn), where

T (1)

shc # that in water, these particles follow flow fluctuations which possess frequencies up to 13,603 Hz.

lib. Mean Velocity and Turbulence Intensity Measurements

A dual beam one component LDV system was used for velocity measurements. To measure the

axial component u,, the plane of the two beams is formed in the X-Y plane as shown in Figure 1. By rotating

the plane of the two beams 90 degrees around the optical axis, the azimuthal u, and radial u. componnts
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of velocity are measured as shown in Figure 2. Back

scattering technique is used for mean velocity and turbulence

intensity measurements. BA

The measurement volume location, K, and X change

due to the beam refraction in Plexiglas and water. The half

angle between the beams in water inside the chamber Figure 2. Experimental set-up for

measurement of azimuthal and radial
represented by K, and the radial location of the measurement components

volume with respect to the shaft axis were measured and

predicted using Snell's law by Merati, et al.6 The wave length of laser light in water is V - •Jn1 . Refractive

indices of water n, and Plexiglas ng are measured to be equal to 1.33 and 1.49, respectively.

For Ur measurements, the bisector of the two beams is not tangent to the cylinder as shown in

Figure 2. Thus, the measured component u. is contaminated with the azimuthal component u, according

to the following relationship: Cos0 -,eSinl0 (2)

By photographing the refracted beams, 0 was found to be constant and equal to 0.790 over the annulus

length. Equation (2) is used to obtain U, since U, Sin 0 is not negligible relative to U., . The one component

LDV system and the present experimental set-up is not capable of measuring ur because of the

contaminating effect of the azimuthal velocity component. In addition, u, was not measured in the region

Z739 mm due to the severe beam refraction and reflection near the outer cylinder wall.

I11. Results

Ilia. Velocity and Turbulence Intensity Field

The azimuthal, axial, and radial components of the mean velocity are shown in Figures 3, 4, and 5

respectively. The azimuthal component is dominant with a maximum value near 8 rn/sec and is

approximately equal to 5.67 m/sec on the surface of the inner cylinder. The linear speed of the inner

cylinders surface is 5.67 m/sec. The radial and axial components have maximum values of 0.1 m/sec and -

0.7 m/sec, respectively. The azimuthal velocity component between Y-36-40 mm increases as X decreases,

i.e., as the dead end wall approaches. Conversely, the azimuthal velocity component between Yw40-48 mm
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decreases as X leceases. The dominant terms in the momentum equation for the radial direction simplify

to Equation (3).

lP ( - a (3)
r a

Therefore, the change in U, along the X-axis is driven by the varying pressure gradient aptar as shown in

Figure 6.

Assuming azimuthal symmetry for the axial component of the velocity, continuity of mass is not

satisfied at some of the X-constant planes. This asymmetry is possibly due to the existence of non-

symmetrical inlet conditions at the open end of the annulus.
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The total velocity vectors of Figure 7 show that at X-34 mm, flow enters the annulus near the outer

cylinder wall and leaves the annulus near the inner rotating cylinder. The plane of the velocity vectors

becomes more parallel to the Y-Z plane as the dead end wall is approached. Thus, a fluid particle most

likely enters the chamber near the outer cylindrical wall and follows a helical path until it reaches the dead

end wall. Due to the large pressure field at the comer of the outer cylinder and the dead end wall, the

particle is forced toward the inner rotating cylinder to follow the rest of its helical journey toward the open

end of the annulus. Depending on its proximity to the annulus conical midplane, the particle either leaves

or is directed back into the annulus as shown by flow vectors of Figure 8.

Assuming azimuthal symmetry, velocity vectors of Figures 7 and 8 show a toroidal vortex extending

the length of the inner cylinder with its circular center line approximately passing through the annulus

centerline. The radial velocity component was not measured at the same location as azimuthal and axial

components. However, since the radial components are small compared with the azimuthal components,

the overall flow behavior is adequately represented by the measured flow vectors.

The azimuthal and axial components of the turbulence intensity profiles are shown in Figures 9 and

10, respectively. For the azimuthal turbulence intensity component, the largest magnitudes (2,20%) are

obtained near the stationary annulus wall where there is a sharp gradient of the mean azimuthal velocity

component. The axial turbulence intensity components are higher in the central region of the secondary flow
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compared with the regions near the walls. The large values of u/JU, near the shaft at X=34 mm, which is

slightly downstream of the inner cylinder, are due to the separated flow at the edge of the inner cylinder.

IV. Conclusions

LDV measurements showed that flow in the annulus located downstream of an impeller is three

dimensional and turbulent. A toroidal vortex spans the axial length of the annulus. The cioss section of this

vortex on a constant 8 plane has a center approximately located at the middle of this plane. In this vortex,

mean components of the velocity in the radial and axial directions are small compared with the mean

azimuthal component. The shape of the U, profile is largely determined by the pressure field of the annulus

flow since U, is the dominant component of the mean velocity.

Flow particles follow a helical path as they move toward the dead end wall in a region close to the

outer cylinder and return toward the open throat in a region close to the rotating inner cylinder. There is a

constant flow exchange through the open annulus end.

For the azimuthal turbulence intensity component, the largest magnitudes were obtained near the

stationary wall where there is a sharp gradient of the mean azimuthal velocity component. The axial

turbulence intensity is higher in the central region of the annulus flow compared with the regions close to the

walls.
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INTRODUCTION

The flow of air through curved ducts has been studied experimentally and numerically. This particular area of study

is inspired by problems that require the delivery of a fluid from an inlet to an exit where physical constraints preclude

a straight path. The particular configurations that occur in aircraft inlet ducts have been the studied in the propulsion

laboratory at the National Institute for Aviation Research. Rectangular S-shaped ducts models, twu-dinensional

representations of inlet ducts geometries (found, for example in aircraft such as the Boeing 727 and Lockheed L-101 1)

have been the subject of studies investigating curvature effects, non-constant cross-sectional area and imposed inlet

boundary layers. The purpose of this project was to investigate the effect of boundary layer control, in the form of wall

suction, on the flow through an S-shaped duct with constant cross-sectional area. Suction was obtained by the

obvious method of applying an external vacuum source, and in addition, by forming a by-pass system, wherein the

naturally occuring areas of high and low pressure are used to good advantage in a self contained system. Velocity

profiles and turbulent intensity levels across the duct were measured. These studies were undertaken as fundamental

flow investigations and with the assumed goal that such measures as boundary layer control are intended to influence

a flow for maximum mass flow rate, uniform exit velocity profiles, minimal turbulence levels and stabilization of the

flow against separation at those areas deemed critical.

REVIEW

Several general features of flow through curved channels has been identified through experiment and analysis.

Ramaprian and Shivaprasad(1) have demonstrated that curvature has very definite effects on the turbulent structure.

At the convex wall, turbulence is inhibited; diffusion of turbulent energy from the wall is decreased, integral time scales

are decreased, and the turbulent kinetic energy distribution shifts to higher wave numbers. The opposite situation

occurs at the concave wall, hence, in general, the convex wall is said to *stabilize' turbulence, while the concave wall

is said to 'destabilize' It.
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When a fluid enters an S-shaped duct (see Figure 1), a radial pressure gradient develops, forcing the pressure to

increase outard from the center of curvature, while the velocity decreases. At the transition of the first bend, and the

second, reversed bend, the pressure and velocity field changes are reversed. However, when entering the second

bend, the boundary layer thickness has of course increased. Hence, the thickened boundary layer, when forced to

proceed through the adverse pressure gradient along the concave wall becomes a critical area in the flow, and is

subject to flow separation when the mass flow rate is increased or when the flow is subjected to external disturbances.

If the duct were to be a diffusing duct, rather than constant cross-sectional area, this would be even more critcal.

Butz(2) obtained hot wire anemometer data in rectangular (2-D) S-shaped ducts. His turbulence measurements

supported the convex/concave expectations; centerline velocity measurements clearly showed the distortion of velocity

profiles due to curvature effects. Profiles shown later in this paper in Figures 4-5 are similar.

Experimental work performed at the NIAR propulsion lab includes the investigations in several areas. Reyman(3)

investigated changes in cross-sectional area and curvature in a 2-D rectangular duct, and developed optimization

criteria to design a duct for maximum pressure recovery while avoiding flow separation. Kitchen(4) obtained 2-0 laser

velocimeter data in 2-D rectangular S-shaped ducts of constant cross-sectional area to verify simultaneous

development of computational techniques. Said(5) studied the effect of imposed inlet boundary layer on flow through

a S-shaped duct of constant cross-sectional area. He found very little apparent difference in pressure, velocity or

turbulence data with inlet boundary layer dIIcknesses equal to 3%, 25% and 30% of the duct width. Tohmaz(6)

designed and constructed a set of inlet lips. This design, based on Borda Mouthpiece streamlines, was made to be

used with the 2-D duct rig in order to provide a smooth and uniform inlet flow. The lip design is shown in Figure 2.

These inlet lips were used in this study.

EXPERIMENTAL SET UP AND MEASUREMENTS

The set up for testing engine inlet and nozzle structures consists of the components shown in Figure 3. Velocity

measurements are obtained with a laser velocimeter, whose system components included a 2-W Argon Ion laser,

Oantec 55X optics producing a three-beam system, one photo-multiplier and one Dantec counter processor. Seeding

for velocity measurements was provided by spraying monodisperse polystyrene spheres mixed with ethanol near the

duct inlet. A particle size of 1.2 microns was used. Pressure measurements were made with a Scanivalve system,

S
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and all data collected on a PC in the laboratory. The duct model used in these experiments was a constant cross-

sectional area duct made of two 45-degree circular arcs. The curved top and bottom sidewalls were made of fiber-

composite, the straight vertical side walls were clear acrylic, foe LDV measurements. Static pressure taps were located

on the top and bottom walls along the duct centerline. The inlet lips shown in Figure 2 were attached to the front of

the duct.

Two fan speeds were chosen for study; mean inlet velocities of 73.5 fps (speed 1), and 119 fps (speed 2) with

corresponding Reynolds numbers (based on the duct height) of 1.06 X 10= and 1.73 X 10W. At each speed, velocity

profiles and turbulence measurements were obtained along the traverse lines indicated in Figure 1. Velocity profile

results are presented in Figures 4-5. From these figures the nature of the flow through the S-shaped duct is clearly

indicated. At the inlet, the flow is immediately influenced by the radial acceleration and the uniform inlet flow is

distorted with higher velocities near the top of the duct and lower velocities near the bottom. This trend contines as

the flow proceeds through th curve; the velocity profiles at plane B show an increasing amount of deflection. At the

inflection plane, curvature in the opposite direction begins to straighten the flow, and the distortion of the velocity

profiles is reversed. At plane D the velocity profile was found to be nearly reversed from that found at plane B. At the

0 outlet traverse, the profile appeared to be returning to an undistorted profile.

Turbulence levels were also measured, in the flow direction only. This data is presented in Figures 6-7.

There seems to be little difference in core tubulent intensities. The data does show rather clearly in a qualitative way,

the diffusion of turbulent kinetic energy away from the walls. An inspection of the turbulent energy levels at the

inflection traverses shows that the expected effect of concavity versus convexity on the diffusion of turbulent energy

is verified-turbulence levels are higher nearer the top wall than the bottom wall. Further downstream, at the outlet

traverse, the opposite situation has occured, and here the measurements indicate that the diffusion of turbulent kinetic

energy is more rapid from the bottom wall.

After obtaining these measurements, the duct was modified to allow a study of some flow control schemes. The first

of these was the installation of a wall suction system. At plane D, a series of holes were drilled into the top and bottom

walls, a chamber was constructed over the openings of the holes which was in turn connected to the building vacuum

supply. Since the purpose of Ais flow control measure is intended to produce a more uniform and less turbulent outlet

0
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velocity profile, measurements were taken at the outlet plane. Results are shown in Figure 8-9. The outlet velocity

profiles, compared to those without the suction, are not markedly different. At the higher speed, the outlet turbulent

intensities do Show some variation, with higher turbulent intensities located in the center of the flow with the suction

system operating.

Antoher form of flow control was investigated. Rather than using a vacuum system for suction, the chambers at the

top and bottom of the duct were joined with a vent. The intent was to induce flow from the high pressure region.

Again, outlet velocity profiles and turbulent intensities were obtained, and are shown in Figures 10 and 11.

CONCLUSIONS

The data presented here represents some exploratoryinvestigations into the use of vacuum and by-pass flow control

applied to the S-Shaped duct. No appreciable change in the exit velocity profiles was noted with either method. At

the higher of the two speeds studied, both methods resulted in higher but more uniform turbulent intensity levels

across the center of the duct. The by-pass system was especially effective in producing a fairly uniform turbulent

intensity across a large extent of the duct width.

Many variables remain to be explored in the use of such method, such as the exact placement and area of the porous

surfaces. In a duct with sharper turns, or a diffusing duct, whiere the availalbe speeds in the test rig wout- be high

enough to produce flow separation, removal of the nigh pressure fluid along the upper wall could be significant in

preventing or delaying flow separation.
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ABSTRACT

An experimental and numerical investigation of the turbulence field in a two-dimensional wall-jet has been carmed out in a

well-defined geometry. The measurements were performed using hot-wire technique and the calculations were carried

out with a standard k-e model as well as an algebraic stress model (ASM). using elliptic solvers. For the mean velocity field,

good agreement was found between the measurements and the calculations. The measurements of the turbulence

intensities reveal two maxima in the streamwise and spanwise components, while only one maximum was found in the

normal component. Also in the shear stress two maxima were found. A comparison between calculations and

0 measurements indicates that improved turbulence models are needed.

1. INTRODUCTION

To improve turbulence models, well-defined, simple and fundamental experiments are needed. Together with direct

numerical simulations of turbulence, these experiments yield a good base for the improvement on the modelling of

different terms in the transport equations for the Reynolds tresses. The wall-jet is a fundamental, well-defined and simple

flow case, where an interaction between a wall boundary layer and a free shear layer forms a complex flow field. A

comprehensive survey of the literature on wall-jets has been carried out by Launder and Rodi (1981), who studied a large

number of different, wall-jet experiments. Their main conclusion was that there is a lack of well-defined experiments in

fundamental geometries. It was also pointed out that many of the studied flow cases did not fulfil the basic condition of

two-dimensionality. Although more than ten years have passed since the survey by Launder and Rodi was published,

very few investigations have been reported were wall-jets have been studied.

The purpose of the present work is to measure and compute the turbulence field in a two-dimensional wall jet, in a simple

and also well defined geometry. The geometry of the present work differs slightly from earlier investigations in the sense

that a backwall is employed above the inlet to the wall-jet chamber. However, the present choice of geometry establishes

well defined boundary conditions. Furthermore, the choice of geometry also enables a future comparison with results

obtained in a parallel experiment carried out in water using LDA technique, Karlamon et al. (1992).
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2. EXPERIMENTAL ARRANGEMENT AND MEASURING TECHNIQUE

Wall-Jet Chamber
Settling chamber .oe

Fom Fan Y Down-

Figure 1.: The wall-jet rig. (in)

The wall-jet nig consists of two parts, a settling chamber and a wall-jet chamber, see Figure 1. An ordinary fan blows air into

a settling chamber, and from this chamber outlet, the wall-jet is formed over a horizontal flat plate, which is surrounded by

vertical side walls. To obtain well defined boundary conditions and to be able to compare the present measurements with

a parallel experiment carred out in water using LDA technique, Kailason et al. (1992), the wall-jot rig is equipped with a

roof and a downstream wall.

Figure 2: Configuration and nomenclature for the wall-jet. (1b=0.01 ad, Uo15.2 rns)

To obtain a uniform mean velocity profile, with low turbulence intensity, at the inlet to the wall jet chanber, the outlet of the

settling chamber is equipped with a honeycomb and two screens with different mesh sizes, designed according to Groth

and Johansson (1988). A large contraction with a ratio of 10:1, designed according to Morel (1975), is used between the

settling chamber and the wall jet chamber, see Figure 1. Figure 3a shows the uniform mean velocity profile in the inlet to

the wall jet chamber. Measurements of the turbulence level show a low value, of order 0.4%, over the central part of the

profile, see Figure 3b. The slot aspect ratio is 200, which is sufficient to obtain good two-dimpensionality.

The velocity measurements were performed using a constant temperature anemometer system, Dantec 5600, with

standard single- and cross-wire probes. 55P01 and 55P61, respectively. The output signal of the anemometer was .

digitized, and a computerized evaluation procedure was employed. Siddal and Davies' (1972) calibration law was
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employed for the conversion of the anemometer voltages into velocities. Conventional methods, Perry (1982), were

used for the evaluation of the mean velocities, the Reynolds stress components and the triple correlations. All these

acquisition methods have been tested in a two-dimensional turbulent flat plate boundary layer, see L6fdahl et al. (1992).

In the measurements integration times of up to 300s have been used to achive a good statistical accuracy and the band

width was 0. 1 Hz through 10 kHz in the turbulence measurements.

1 2 0012
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Figure 3a, b: Mean velocity and turbulence profiles in the inlet to the wall jet chamber.

3. MATHEMATICAL MODEL AND NUMERICAL METHOD

3.1 Governing mean flow equations

For a steady and incompressible flow, the conservation equations for mass and mean momentum in Cartesian tensor form

are:

au_ 0 (1)

axi

a ( ui uj) = ± . ,P _L (vaUi - ) (2)
axi P axi ax, axi

For a two-dimensional flow problem, the mass continuity equation (1) arnc the Reynolds-averaged momentum equations

(2) form a set of three partial differential equations with seven unknown variables.

3.2 Turbulence models

Both a standard k-e model and an algebraic stress model (ASM) was used to approximate the correlations of the

fluctuating velocities, UW.

3.2.1 k-E model

In the standard k-E model, the modelling of the Reynolds stresses is based on the eddy-viscosity concept according to

Boussinesq

u- vt (au + auj ) . 38i k (3)

"ax, ax- 3
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where the eddy viscosety, vt, can be wntten

v1 = c.j L (4)

The development of the turbulent kinetic, k, energy is given by a modelled transport equation and its dissipation rate e. is

modelled by a similar equation

a__(Uik) = v 4 .•U + tU1 aUi . e +±(--(' (5)

a;i ax, ax, a;i ax, ax,

2a au* 'u au-(Uj ) = CI e-v, (-•U + -) U C.2 + - ( (6L )
axj k ax- ax, ax, k ax, 0 axj(

Standard values (c%=0.09. ct1 =1.44, c,2=1.92. ok=1.0 and (Y=1.3) of the constants have been used In the calculations.

3.3.2 Algebraic stress model (ASM) closure

To approximate the correlations of the fluctuating velocities in the algebraic stress model, the following coupled set of

algebraic equations are adopted

Uu-'5k=- (I-c)Pk 1 -C2 )P, ij N ) + Oij.w
33 (7)

k r-I) + C

Here. Pij is the production term due to mean shear

au, -au.Pii = -(iuiii• -+ ujuk -, ) (8)
a)Xk

and Pk=Pii /2 denotes the production of turbulent kinetic energy. If the wall correction, Vij,w , is zero, expression (7)

reduces to the ASM-model proposed by Rodi (1976). In the present application, however, pressure reflections from the

walls are important and the wall correction

01. (ci IL (uj85 -3,1 R&i-3-UU 4 ) C2w ( n.2Sij - 3- 41.2 8mi 3 Onj.2) (9
k 2 2 2 2

due to Gibson and Launder (1978) is employed to account for wall effects on the pressure-strain processes. While n

denotes the direction normal to a wall, the wall proximity function

f ( c1
Er (10)

decreases linearly with the distance r from that wall. The function $ij,2 represents the isotropization-of-production model

frequently used to represent the rapid pert of the pressure-strain interactions
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I1j. = 2( ~ - 2-,P~ (1)N
3

It is already obse Ad that the algebraic representation of the Reynolds stresses (7) is related to k and e, which are

obtained from their respective modelled transport equations

a ( U k ) =-L((vS +cL U~__ k)+P,+e(2
ax, a;i + C a)' ie(2

a - U a (v 8& + Cc z- +f-(cPk C E13axi ax ' E uua) i (e Pk -

In the calculations, standard model constants (cl=1.80, C2=0.60. ciw=O.5O. CaN=O.3O, cw=O.4O, ck=0.2 2 . cE=0, 17,

c,1=11.44 and C,2=1.92) have been used.

3.3 Numerical solution method

The numerical method, used in the present study, was an adapted version of the elliptic, finite-difference solvers

TEAM-KE and TEAM-ASM. Huang and Leschziner (1983) and Huang (1986), employing primitive variables U,. P in a

staggered grid. The convective terms were approximated by the Power-Law Differencing Scheme (PLOS). while the

P ~~SIMPLE-algorithm (Semi-Implicit Method for Pressure-Linked Equations) handled the veloit-pressure linkage. The

resulting difference equations were solved by the TDMA-algorithm.

3.4 Computational domain

2.4 ___________________________ 0.6

__________________ L0.54.

0.0 0.5 - -5 2. 7.0.0,54. . 50 550.

1,6 0 0.4 1....5.2.2.5 3 3.5 !0
L~ ( 20, 12

Eiur 1.. L: Stemie0nte.al3tcabran envlct roie txb2

CopttosoLh lwfedi h niewl-e hme aebe are u nodrt e h ublnefedi

Sb.~ ~ ~ igr wha, showsaliesi the k-e-je comutain and themea velocity atpb2 o ifrent fild ies. pat sl assumion i
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that the ASM-calculations achNe grid independence at approximately the same mesh size as the standard k-i model. In

the following figures the computations with the standard k-c model has been camed out with a 100xO00 mesh, and with

60x80 grid cells in the ASM-closure.

4. RESULTS AND DISCUSSION

The here presented measurements were made at an inlet Reynolds number of 104. Measurements of mean velocities.

Reynolds stresses and triple correlations were carried out at several downstream positions (x/b=20. 40, 70, 100, 150.

200, 250 300) in the wall jet region. Spanwise measurements were made at several of the above mentioned positions in

order to verify the two-dimensionality of the wall jet. The flow showed a very good two-dimensionality in the measuring

position on the centre line in the wall jet chamber. In the present paper comparisons between experiments and

calculations are carried out and discussed at 70 and 150 xib, since these positions are typical for the experiment.

4.1 Mean velocities

2 .5 -; - - •2 .5 - - , - - , , - , - -0 Measurement ! 0 Measurement

20- ' -ice 2.0- -ke
0 ...... ASM

000 m 0 . nt0

05 0.5 0 0 0

0 .0 ' , • " ' . .. 0.0 . . . '. . .
0.0 0.2 0.4 U/Ulx 0.8 1.0 1.2 0.0 0.2 0.4 U/U la 0.8 1.0 1.2

Figure Sa, b: Mean velocity profile at 70 and 150 x/b.

The mean velocity profiles at 70 and 150 xlb are shown in Figure 5a and 5b, respectively. All these measurements were

performed using a single hot wire, and up to a distance of approximately Y112 a good agreement between measurem^,r'ts

and calculations can be noted. This region is from an experimental point of view favourable, since the local turbulence

intensities are fairly low, the mean velocities are relatively high and the in"'uence from the outer secondary flow is

negligible. Outside the half width, the uncertainity of the hot-wire measurements increases due to higher local turbulence

intensities. Furthermore, in this region the mean velocity in the normal direction is comparatively high as is shown in Figure

4a. These two effects cause an overpredicted mean velocity in the streamwise direction. Looking at the computed mean

velocity profiles, outside the half width a clear deviation can be noted between the measurements and the two employed

turbulence models. The deviation between the measurements and the k-e model is fairly low, and it seems to be

independent of the position. However, the ASM obtains larger deviations, which increase in the downstream direction.

The explanation of this overprediction can be found in Figure 6, which shows the mean velocity profile in the entire wall jet

chamber. In this figure it is seen that the ASM yields a stronger recirculation, and a larger mean velocity gradient. In Figure
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7. a traditional "ogantmic plot of the mean velocty profile 1s shown In the scaling of this diagram, the fnction velocities was

obtained using Preston tubes It may be observed that the extension of the Iogantmic region is very short, as compared to

a lat plate boundary iayer.

2 4  
' 25

-- ke 20 -244" Y°° 3

16i '"1

10

eOie al jt o, Nb-
01.4 i/=0

00 . . ...... r0. .. . ,. . . " -

0.5~ 0 0.s 1 is 2 1 10 1000 10000
U (MIS) Y

Figure 6 and 7: Mean velocity in the entire wall jet chamber, and a traditional logaritmic plot.

From the mean velocity profiles the growth of the wall-jet is estimated to 8.0 %, see Figure 8. This value is somewhat

higher than the values stated by Launder and Rodi (1983). The explanation of this deviation is due to differences in the

boundary conditions. In the present investigation a negative pressure gradient is prevailing in the outer portion of the

wall-jet, while Launder and Rodi (1981) state a constant or positive pressure gradient in the outer portion of the wall-jet. In

the present investigation a pressure difference might be created perpendicular to the wall, thus enhancing the growth of

the wall-jet. Futhermore, it can also be observed that the growth of the wall-jet is not perfectly linear. This is due to the fact

that the velocity profiles do not exhibit self-preservation, since no characteristic velocity and length could be found due to

the prevailing secondary flow in the wall-jet chamber.

30~ 25 -7

25 0 Measurement 02 0 Measurement

S .........
2 0S20 -- ---- OSF

10 0 _ _ _ _ _

55

0 0
0 50 100 150 200 250 300 0 50 100 150 200 250 300

xlb x/b

Figure 8 and 9: Growth of the wall-jet and decay of maximum velocity.

The decay of the maximum velocity is shown in Figure 9. A good agreement can be observed up to approximately

x/b=100. Further downstream both models overpredict the maximum velocities, due to the momentum in the recirculated

flow, see Figure 6. This effect is prevailing in the entire wall jet chamber, however most accentuated downstream

x/b,,100.
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4.2 Reynolds stresses

Figures 1 a and ' Ob show the normal stress in the streamwise direction. Single and cross wires have been used in the

measurements and ,t an be noted that both probes give an acceptable repeatability. In the measurements two maxima of

the normal stress can be observed and should also be expected since the wall-let is considered to consist of a wall

boundary layer and a free shear layer. The calculations fail to predict the inner maximum, however at both positions the

outer maximum is captured. This maximum is overestimated tor x/b=70, while a correct value is obtained at x/b=1 50. The

high level of the calculated normal stress in the streamwise direction around 0.55 y112 at x/b=70 can be associated with

the production term since the turbulent shear stress (see Fig 13a) is higher than its corresponding experimental value.

0 07 o07 .

006 0 0 Single probe 0006 0 Single probe
0 X-probe (uv) 0 X0Po••b (uV)

0os o X-probe (uwv 0 05 L S X-probe (uw)

60 04 e 004

003 0 03

002 x/b.70 002

0.01 0 0.01

000 00000 0.5 1.0 1s O 'o .o ,ls 2.0 2 5
y/y,' 

12

Figure lOa, b: Normal stress in the streamwise direction at 70 and 150 x/b.

0 025 . ... ... ,.. . 0.025

0

0.015

0010 0 0 0.010

0005 0.005 0xlb=b570oO0

0ý000 Li 0.000 0

00 1 y0 12•,• 2.0 25 0.0 0.5 1.0 Yy,2.5 2.0 2.5

Figure 1 la, b: Normal stress perpendicular to the wall at 70 and 150 x/b.

The normal stress perpendicular to the wall is shown in Figure 1 la and 1 lb. Generally, their level is lower for this

component as compared to the streamwise normal stress. The measurements do not indicate an inner maximum, which

neither should be expected if the wall-jet is viewed as a wall boundary layer and an outer shear layer. The measured

maximum of this component seems to coincide with the outer maxima of the streamwise normal stress and the positive

matxma of the shear stress. In the calculations, it can be observed that the level of this normal stress is underpredicted

while the streamwise normal stress is too high compared to the measurements in the region around 0.5 Y1/2. This

indicates that the wall correction has transfered a too small amount of energy from the streamwise- to the perpendicular

normal stress. In the outer region, the measurements show a too low level which can be explained by the prevailing
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'rntermittency and the high local turbulence intensity Futhermore the ASM overpredicts the level in the outer region, due

to the large gradients preclicted in the secondary flow. A similar observation can be made in the spanwise normal stress as

well as in the shear stress.

Figure 12a and 12b show the normal stress in the spanwise direction. The measurements of this component were

camed out with the wires in a plane parallel to the wall. Although. this wire positioning may cause a lower accuracy due to

mean velocity gradients, the two expected maxima were captured. The calculations are consistent with the

measurements in the central region of the wall-jet.

0.040 , 0,040

0.035 0 Measuroment 0.035 0 Mesuremnt
0030 - ASM 0.030 0000 - ASM

00 .02525 0-05O
0 0

260.020 0 0.020

00t5 0015
0 010 X/.0 00.010
0 005 0oo ^0 0.005 ,0 O 0 . .
0 000 ..... , .... ,... . , . AO. ,b -, .:. 0 .. ... . .. . . .

00 05 1 Oy/y., t1 .5 20 2.5 0.0 0.5 1.0 y/yI,, 1 25 2.0 2.5

Figure 12a, b: Normal stress in the spanwise direction at 70 and 150 x/b.

The shear stress is shown in Figures 13a and 13b. The expected change of signs of the shear stress occurs at

approximately 0.8 Ymax. Hence, the change of signs does not coincide with the position of maximum velocity where the

mean velocity gradient is zero. This observation enhances that all Boussinesq approaches in the turbulence modelling will

fail to predict the present flow case. Both profiles reveal that the positive stress maxima is of larger magnitude than the

negative wall shear stress. Good agreement between calculations and measurements can be found in this component.

The high shear stress level at approxJimately Yl2 is well captured in the calculations.

0020 0.020

0 015 xlb.70 0.015 0 Meauremnt

00100oc 00 10.010S0(
1 , 0 .0 0 0 0 0 0 0 0 0 o o o o . c0o

-.0O005

0 .0 y/y, x.0 25 0.0 05 1.0 1 5 2.0 2.5
1 0.00 0. 010 91 0.0 2.0. l

Figure13e, b: Sheer stress at 70 and 150x/b.
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S. CONCLUSIONS e

Turbulence measurements and calculations of the flow field of a well-defined, fundamental and simple two-dimensional

wall-jet have been carned out. From this investigation, the following main conclusions can be drawn:

" Mean velocity comparisons yield fairly good agreements between measurements and calculations. The growth of the

wall-jet was determined to be 8.0%.

"* Measurements of the normal stress in the streamwise and spanwise directions show two maxima, an inner associated to

the wall layer and an outer in connection with the free shear layer. In the normal direction, only one maximum was found

"* From the shear stress measurements, two maxima were found, a negative inner maximum and a positive outer. The

change of signs does not coincide with the point of maximum velocity.

"• In the comparison between measurements and calculations of the Reynolds stresses, good agreement were obtained

for the normal stresses in the streamwise as well as the spanwise direction and for the shear stress. The normal stress

perpendicular to the wall reveals, however, large deviations.
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THE DEVELOPMENT OF THE
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CIRCULAR JETS AND A NOR.MNAL
CROSSFLOW
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"Fluid Mechankis Research Group. Dept of
Civil Engne. L niv of Surrev. Guildtord. L K
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The present work is an experimental investigation of the interface region between a

twin jet arrangement and a normal crossflow. together with the single jet case. utilising

smoke flow visualisation in association with a quantitative video digital imaging

technique. Measurements involning a single jet. side-bl-side twin jets and in-line twin

jets for a velocity ratio of 8 show that the extent of the mixing region at any

downstream location (defined as the distance between the inner and outer limits of the

fluctuating jet boundary) is similar in magnitude to the jet half-width (as defined by the

mean interface location) at that location. The growth rates in the downstream direction

of both the mi.ing region and the half-width are also similar. The spectra of the lateral

fluctuations of the interface in each downstream plane across the jet show that. in

almost all cases. energy is transferred from lower to higher frequencies with increasing

distance from the wall.

L1._Itrouction

The case of circular jets issuing into a crossflow is of interest in many branches of engineering from V'STOL

aerodynamics and jet steering systems to effluent plume dispersal and combustion chamber mbidn. Whilst there

has been considerable research into the classical configuration of a single jet issuing into a crossflow. the cases of

twin side-by-side or in-line jets have received relatively little attention. Ziegler and Wooler (1973). Schwendemann

(1973 ). Makihata and Mivai (1979). Isaac (1982) and Isaac and Jakubowski (1985). In a recent paper the present
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authors published the findings from an nmestigatLon of twui side-by -side lets issuing into a crossliow. Sasorv and

r -oQ, 1 v i1hr ttle,•t.s of nozzle spacing i S D). Ahich was varied from I to 5. and let velocitv , rosstlow -,eloeit,

ratio (,+ %ancd trom 6 to 10. were examined using a novel technique for real-time video analysis of smoke

%isualLsed lets. roy and Wisby I t988abt. Data were presented in the form of contour maps of intermittency in YZ

planes across the lets trom which the development of the jets in the downstream direction and the oxerall

penetrations and widths were assessed. It was found that the development of the widely spaced iets (such as

S.D=5. where the crossflow passes on both sides of each jet) is fundamentally different from that of closely spaced

jets (such as S,D=1. where there is no crossilow penetration between the jets). In all cases the inner vortices ot

the two counter-ro, ating pairs rapidly disappeared within the first few jet diameters downstream from the nozzles.

such that the two jets combined to form a large jet with single jet characteristics. as noted by Isaac (1982) and

Isaac and Jakubowski (1985).

The present work is an extension of the earlier study in which one jet nozzle spacing. S&D=5. and one typical

velocity ratio. a=8. has been systematically investigated for three different cases. namely the single jet. twin side-

by-side jets and twin in-line (or tandem) jets. The same quantitative image processing apparatus has been utilised

but in the present study time-histories of the jet/crossflow interface location have been obtained at different

downstream locations to permit determination of the interface statistics, notably intermittency. probability density

functions and power spectra. The next section briefly outlines the experimental approach and this is followed by

a discussion of some of the results obtained.

2. Experimental details

The experiments were carried out in a purpose built. open-aircUit. smoke tunnel facility., shown in figure 1.

which has working section dimensions of 0.75 x 0.62m and a turbulence level of 0.2%. High efficiency filters are

installed at the outlet to remove practically all the smoke particles. A Concept Genie generator was used to

produce the smoke. via a small centrifugal fan. and the jets issued from 13.5mm diameter copper nozzles inserted

into a common plenum chamber. The generator and plenums were mounted on the tunnel roof in an arrangement

which allowed variation in the orientation of the jets to the crossflow direction. The experiments were conducted

with a freestream velocity of lm/s. giving a Reynolds number of 9.3x0l based on nozzle diameter. The

approaching roof boundary layer had a thickness of 60mm. that is 4.44D. The jet velocity was 8m/s. which gave

a=8. and measurements were undertaken in lateral YZ planes at downstream locations X/D of 5. 10. 15. 20. 25

and 30 for the single jet case and for twin jets with nozzle spacing S/D=5.
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DeLd,- ot the ct. crossflow intenact: ý&rucrure were obtained at each location by illuminating the flow at a

series of h.wht,. .pacrd 2.5D apart. using a 10mW- He-Ne laser beam directed across the flow. The laser. together

with a monochrome C CD camera for recording the laser-line traces. was attached to a computer-controlled two-

dimensional traversing mechanism, as illustrated in figure 2. The position of the camera and laser Acre tfixd

relative to each other with each digitised pixel representing a flow area of approximately 0.58 x 0.4,Rmm.

Video digitisation and analysis were undertaken by a PDP-11 73 minicomputer-based system using Imaging

Technology boards for analogue processing (AP-512). arithmetic logic operations (ALU-5I2). histogram

computations tHF-512) and frame buffer storage tFB-512). The system is shown as a block diagram in figure 3.

Previous work has demonstrated that the video analysis system can be used to obtain quantitative data. including

interface statistics. by utilising the smoke a.s a turbulent/non-turbulent discriminator. Toy and Wisby (1988a.b). In

the present experiments the fully turbulent lets were seeded with smoke, whilst the crossflow. which was non-

turbulent (outside the wall boundary layer) was unseeded. Hence. when the interaction region was %iewed by the

camera the white portions of each laser illuminated line (smoke present) represented regions of turbulent flow

and the black regions (no smoke) represented non-turbulent flow regions.

Experiments were carried out at each horizontal location to determine the time history of the position of the

intetface between the jet and the crossflow (that is. the edge of the smoke seeded region). In each case a time

series of 50000 points was obtained (requiring a sampling time of 16.7 minutes) and five 10000 point. 250 lag

autocorrelations were then computed and summed. A cosine transform was then carried out to produce the power

spectrum up to the Nyquist frequency of 25Hz (imposed by the image transfer rate of 50Hz) at intervals of 0. 1Hz.

The edge time history was also used to compute the probability density function of the interface location, together

with the mean. variance, skewness and kurtosis. Although the image transfer rate in these experiments was 20msecs

the camera shutter was electronically controlled to give an acquisition time of only 4msecs. thereby mininlising

image blur.

3. Results and discussion

Considering first the probability density functions associated with the interfaces for the different jet

configurations. figure 4 shows typical profiles for the single. in-line and side-by-side jet cases, each taken in the

YZ plane at XD=30 along a Z/D location near the region of maximum jet width. These profiles are Gaussian

in shape and illustrate that the twin jet intertaces are of similar width but about ID broader than the single jet

interface at the same downstream location. The mean interface location shows that the jet half-width is largest (or
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the side-4 hide . Ix-. eing about ID wider than the in-lIne case and 3.;D wider than the single jet configuration.

Hence. it t, .i,.r :h.t the nui.na region assOciated with two jets iu more extensie than that for the single let. the

diIterenc,' in -. ,dth ht.i',een the side-bv-side lets and the other cases may he due. in part. to the "initial" half-width

in the ,ide-by-idc case that is provided by the 5D nozzle spacing. Since the present work has onl., examined the

lateral extents ot the jets it is not possible to precisely compare overall let penetrations between the three cases.

However. from consideration of the vertical height of the maximum half-width positions in each downstream plane.

it would appear that the single and side-by-side jet penetrations are broadly similar whilst the tr-tine combined

jets penetrate further. as noted by Isaac (1982) and Isaac and Jakubowski (1985).

The plots in figures 5. 6 and 7 show the mean lateral locations (defined by the mean of the pd.f) and extents

of the mixing regions idefined by the inner and outer limits of the p.d.f) at X'D= 15 and 30 for the single. in-line

and side-bk-side cases. respectively. The increases, in the downstream direction. of both the mean width and

maximum extent of the interface are evident in all cases. This is further illustrated in figure 8 which shows that

the width of the single jet interface is slightly greater than the mean half-width of the jet and that the former grows

at a slightly greater rate than the latter. In the case of the in-line jets the interface width and mean half-width are

almost identical. with similar growth rates that are close to those of the single jet. The side-by-side jets interface

shows a similar growth rate to that of the in-line jets although in this case the mean half-width is slightly greater

than the lateral extent of the mixing region. The three sets of results suggest that the interface width at any

downstream location is considerably less sensitive to changes in nozzle geometry than the mean width of the jets.

In addition, in all cases there appears to be a rapid growth in the jets Within the first 2D downstream from the

geometrical centre of the nozzle arrangement followed by slower growth rates that are broadly similar in all the

configurations examined.

Typical examples of the energy spectra associated with the interface fluctuations are shown in figures 9. 10

and 11 for the single. in-lne and side-by-side jets. respectively. In each case two spectra are shown at XD=30.

both just within the jets with one near the top and one near the underside. In almost all the cases considered there

is a distinct transfer of energy to the higher frequencies as the point of measurement is moved from the wall side

to the top of the jets. This is indicated in the figures by the extent of the flat portion of the spectra shifting from

a wave number of about 6 to approximately 3 1. together with an increase in the slope of the profiles at the higher

frequency end. These logarithmic spectra profile slopes are summarised in figure 12 which clearly shows the wide

range of the measured results. The present data are not conclusive but the general trend appears to be an increase

in the slope towards the top of the jets and then a smaller decrease as the outer edge of the interface is
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iapproached. Fhi,, tendency is very noticeable tor the bingle and bide bh- side let .ases but less evident for the in line

.,onfiguration A j1,.,ihle explanation tor the c.'hanges in the energy profiles ma', be that the flow near the

underside ,ot the let,. I dominated bw the large-scale. low frequency motion associated with the contrarotating

vortices whilst the interaction in the top region is largely between the two nominally co-flowing regimes of the let

and the crosstlow. None of the measured spectra show any evidence of penodic "vortex shedding" associated with

the let flows which had been notedbv earlier workers investigating the wakes of stinle lets. McMahon et al (19-

%loussa et al (19"'). However. as revealed by Fnic and Roshko (1989). the jet does not itself shed vortices Nit.

rather. it sweeps up vorticity from where the wall boundary laver has separated near the nozzle due to the adverse

pressure gradient in that region. This vorticiw is then incorporated into the jet wake with a penodicity broadly

similar to that associated with a circular cylinder in uniform blow. Since the wall boundar' layer was not seeded

with smoke it is clear that the present experimental technique would not directly detect any such vorticitv.

.. Concluding remarks

The present work has highlighted the relationship between the overall growth of single twin jets in a

crossflow and the growth of the mixing region between the jets and the crossflow. In general the mean half-width.

0 as defined by the p.d.f, of the lateral interface location, and the overall lateral edent of the mixing region are ver-

similar in magnitude. However. the intermittencv data (not presented here). together with the velocity and

turbulence measurements provided by Isaac and Jakubowski (1985). suggest that it is unlikely that any similarity

profiles exist within the jets which could provide a single definition of the three different jet configurations.

Although not a specific aim of the present work. the results confirm that twin in-line jets penetrate further than

either single or side-by-side jets of the same velocity ratio. The spectra associated with the lateral fluctuations of

the interfaces do not indicate any significant differences between the three jet cases. However. there is a trend for

a shift of energy to higher frequences with increasing distance outwards towards the top of the jets. which may

be associated with a change from the contrarotating vortex regime on the lower side of the jet to a nominally co-

flowing mixing laver on the outward side.

;. -Nomenclature

D Jet nozzle diameter
E(F) Energy associated with interface frequency. F
F Frequency. Hz
k Wave number (=2..rFL',). mi
n Slope of logarithmic energy spectrum

B10-5



P Prohol-th'v density ftnction
S Spacing -,etv.een nozzle centres
I ( ro, lAN.A %elocitv. n s
\', VRiani,,. ,t the interface fluctuation amplitude
W Laterai .kidth of interface (distance between inner and outer limits)
W1  Mean half-Aidth of the jet (defined by mean ot p.d.f)
X (artesian coordinate in crosstlow direction. with origin at geometrical centre

of any wiven nozzle arrangement
Y Cartesian coordinate in lateral direction
Z Cartesian coordinate normal to ground plane

i jet velocity crossflow velocity ratio
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Abstract

The scalar mixing field of a turbulent rectangular jet issuing from a sharp-edged orifice
with an aspect ratio of 10 into a cross stream flow in a square duct is investigated using
marker nephelometry. Jet-to-cross stream velocity ratios of 2.0 and 3.4 are examined in this
work. Results include contour plots and transverse profiles of the mean and concentration
fluctuation intensity and jet trajectory paths and half concentration lengths expressed as a
function of downstream position along the jet trajectory.

1. Background
The mixing field arising between a jet and a transverse cross flow has received

considerable attention in the engineering literature. This research arises from a wide
interest in this flow geometry for applications including turbine beat transfer. VTOL
applications. pollutant dispersion and chemical mixing problems. Of particular interest in
this regard is the case of a round jet with an average exit velocity U. mixing with a cross

stream of uniform velocity Uo. The resulting flow patterns including descriptions of the jet
trajectory and complex three-dimensional vortex structure have been investigated for the
single jet 11 - 19] and multiple jets [20 - 27] in cross flows. The scalar mixing field
arising from the round jet in a cross flow also has been examined. [3, 5. 10] and [28 - 301.
Mathematical modelling of this complex flow system has been based on integral methods [31 -
33] and numerical methods [34 - 38).

In the present work, interest was focussed on the mixing field of a rectangular jet in a
transverse flow with particular attention being paid to providing data on the scalar mixing
behaviour of this flow for applications in secondary and tertiary ducts in industrial
boiler/furnace systems. The jet trajectory, Fig. 1, can be described in terms of cartesian
coordinates (X. Y. Z) or an orthogonal system (4 1, C) with the "-axis located on the jet
trajectory. In the industrial applications of interest air is induced into a furnace chamber
under negative pressure (on the order of 0.25 KPa) resulting in velocity ratios, R, typically
in the range of 2 < R < 4. A description of the jet trajectory and cross stream profiles were
of interest for comparison with the larger quantity of literature already available for the
round jet case. The jet nozzle was a sharp edged rectangular orifice with an aspect ratio of
10 - this geometry was chosen for its ease of construction and for comparison with some
properties already published for the free jet behaviour of this jet geometry [39 - 411.

The flow field arising from a sharp-edged rectangular jet has been extensively studied
(described in references (41, 42]). The essential features of this flow include: (i) a
saddle-back profile of the mean velocity and nozzle scalar fluid in the plane or major axis of
the rectangular jet; (ii) transverse jet scales (as measured by the half velocity or
concentration points on the major and minor axes) that are initially smaller along the minor
axis but tend to a similar magnitude farther downstream; and (iii) high entrainment rates as
indicated by the centreline mean concentration decay.

Weston and Thames [431 have studied some features of the flow arising from a rectangular
jet with an aspect ratio of 4 injected into a cross flow. Krothapalli. Lourenco and Buchlin
[441 have also examined the se.parated flow region upstream of rectangular jets in a cross
flow. They found that the normalized separation distance reached a maximum near Uj/Uo a 5 and
subsequently decreased in a linear manner at larger velocity ratios. This phenomena was
attributed to the entrainment characteristics of the jets with a lower entrainment rate likely
occurng for lower velocity ratios.

dimensionless parameters relevant for the jet in a cross flow have been discussed by
Keffer and Baines [11., Pratte and Baines [2] and Rathgeber and Becker [29] - for the present
system, the jet trajectory can be described by the form:
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XIRD. f(Z/RD) ... (,)

or. X/RDj - f(C/RDj) ... (2)

The rectangular jet diameter can also be expressed in terms of the diameter of round jet with
the same cross sectional area. De, (= 3.34 D. in this case) however the correlations presented
in this work are not sensitive to this refinement. The majority of the results presented in
this work are for the near field region where the narrow jet dimension is deemed to be the
most relevant scaling parameter.

The purpose of this paper is to present results of the scalar concentration field of a
sharp-edged rectangular jet injected into a cross stream flow in a square duct. The mean and
concentration fluctuation field were measured by marker nephelometry [45]. The bulk of the
results are presented in the form of contour maps and transverse profiles of the mean and
fluctuation fields at various downstream locations as well as results of the jet spreading
rate.

2. Experimental

A schematic diagram of the flow system used in this work is shown in Fig. 2. The
transverse duct flow originated from a wind tunnel which had a 0.836 m2  (square)
cross-section. At the exit of the wind tunnel the cross section was reduced to a square
working section. 228.6 mm, on each side with Plexiglas walls. This area reduction provided a
contraction ratio of 16:1 with a turbulence intensity of less than 0.1% in the cross stream
flow. The wind tunnel working section had a 1.37 m length with the rectangular jet located
203 mm from the entrance to the working section as shown in Fig. 2. The jet was aligned with
the jet deflection occurring parallel to the major jet axis. An oil condensation smoke [471
was used as a tracer for the marker nephelometry technique to measure the mean and fluctuation
concentration of the jet source fluid.

The jet employed in the present work was a sharp-edged orifice cut from thin aluminum
plate and mounted in the wall of the I xiglas test section in such a way as to be flush with
the inside wall of the wind tunnel. The ctr;ss section of the jet nozzle is shown in Fig. 3.
The orifice was sharp-edged with rounded corners, its length, L. - 63 5 mm and width. D M =

6.35 mm (an aspect ratio of 10) with the jet mounted in the vertical position (the long
dimension of the jet) relative to the jet flow. Pollard and Iwaniw [46] have shown that the
rectangular jet with square and rounded corners has similar characteristics including the
presence of a saddle-back behaviour as noted above. The upstream cross section of the jet
nozzle was a tapered section from a 12.7 mm air supply line to a 63.5 x 94.9 mm rectangular
section at the nozzle exit. Steel wool was used as an upstream flow distributor to produce a
uniform exit velocity profile. A pitot probe traverse at the jet exit confirmed the presence
of a saddle-back behaviour similar to that observed by Quinn, Pollard and Marsters [39 - 40]
and Pollard and Iwaniw [46]. The marker nephelometry system was employed with a 5 mW He-Ne
laser and Philips 150 AVP photo-multiplier tube - the laser and photo-multiplier were mounted
as a solid unit which could be traversed in three dimensions with traversing distances of 1.2
x 0.6 x 0.25 m in the longitudinal, transverse and cross stream directions, respectively. The
laser beam was reflected by a mirror above the working section to provide a3 light source
passing through the flow cross section with a control volume on the order of I mm3 as observed
by the photo-multiplier tube. The photo-multiplier tube voltage was processed by a Princeton
Applied Research model 113 preamplifier with a gain of 100 and high frequency filter of 10
Kaz. The output from the filter was fed to a DISA 55D35 rms meter and TSI model 1076
voltmeter. The data were stored in an Anaouaic Data Precision 6000 digital oscilloscope
(14-bit resolution at 100 KHz). A 50 s sampling time was employed for both mean and
fluctuation concentration measurements. The data obtained in this manner were then
transferred to a microcomputer system for later processing and storage. Appropriate
corrections for the marker nephelometry signals as out.lined by Becker [45] were employed in
the present work.

The experimental flow conditions employed in the presrt work were:
(i) R - 2.0; U. - 8.4 m/s and Uo = 4.1 za/s
(ii) R - 3.4; U. - 8.4 m/s and Uo - 2.5 mls

The jet velocity corresponded to a Reynolds number of 34,000 based on the long dimension of
the nozzle, 3.400 based on the narrow dimension and 11,400 based on the hydraulic diameter ofa round jet with the same area. The Reynolds numbers for the cross stream flow based on the 0dimension of the duct working section were 59,700 for R - 2.0 and 36,400 for R - 3.4.
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3. Results

Contour plots of the mean and fluctuation concentration field for R - 2.0 and 3.4 are
shown in Figs. 4 - 5 respectively for three downstream locations for each velocity ratio
(these plots were typically based on a grid of 200 - 300 measurement points). Humber (48]
provides profiles at more intermediate locations which show the evolution of the jet
concentration field in greater detail. The three contour plots in each of Fig. 4 and 5 show
the concentration and fluctuation field (i) in the near field, (ii) in an intermediate region
where there is deformation of the mean concentration contour field into a kidney shape and
(iii) in a region farther downstream where the concentration contours have evolved to a more
circular shape. After exiting the nozzle, the jet source fluid concentration field exhibits a
horseshoe or kidney shape similar to, but not as extreme as, that noted by Rathgeber and
Becker [29]. In particular, a distinct bifurcation of the jet flow is not indicated for the
present flow system (Kamotani and Greber [5] and Rathgeber and Becker [29] have observed such
a flow structure with R > 4 for round jets in a cross flow). It can also be noted that this
kidney shape occurs at lower values of Z/Dj for the higher velocity ratio, R = 3.4 as shown in

Fig. 5. Further downstream, near Z/Dj a 20, the contours become symmetrical in both cross

stream axes. In general, the concentration fluctuation intensity in the core region of the
jet was small and this is probably attributable to a lower rate of entrainment for this type
of flow. It should be noted that the present work did not extend beyond Z/D. i 20.

corresponding to a region of 6 nozzle diameters if the nozzle dimension is based in terms of a
round jet with the same area.

Estimates of the jet trajectory in the X-Z plane are shown in Fig. 6 and can be described
by the power law form:

X/RDj - 1.91 (Z/RDj) 0 "3 4 2  . (3)

This correlation agrees reasonably well with the correlation of Pratte and Baines [2] for a
round jet in a cross flow but with less deflection near the nozzle and more deflection further
downstream. These data also show less deflection than the rectangular jet with aspect ratio
of 4 and R - 4 reported by Weston and Thames [43] (for telocity field data) - the data shown
by the open squar--.s in Fig. 6 are described by the power law form:

X/RDe = 1.19 (Z/RDe) 0 .266 . . . (4)

The mean concentration trajectory data of Rathgeber and Becker [29] at small values of jet to
pipe diameter gives

XIRD. -i 1.93 (Z/RDi) 0 "2 0  . ( )I (I

and this relation shows close agreement with the present results near Z/RD. a I but less jet

penetration further downstream. Close examination of Fig. 6 reveals that the power-law fit to
the data is marginal, especially for 1 < Z/RD. < 10. It is also apparent from the general

flow structure depicted in Figs. 4 and 5 that the mean concentration contours evolve to a
circular cross section sooner for the case with R - 3.4 - this change occurred beyond Z/D.j a
12 for R - 2 and Z/Dj ai 6 for R - 3.4. This also corresponds to points in Fig. 6 where, for 1

,S Z/RDj :s 20, X/RDj remains about constant for each velocity ratio. However, if the jet

penetration is expressed in terms of the jet trajectory, C, as shown in Fig. 7, these two
regions are more apparent. In this graph, the jet penetration initially follows a single
relation for the initial region for each velocity ratio where X/RDj i a /RDj; however as each

jet approaches a circular cross section the tendency at each R is to follow a power law
relation, where X/RD. a constant as C/RDj increases. These data are described by the

relations:

4/RD. 5: 3.4: XIRD. i (4/RDj)0 *8 15  ... (6)

R - 2, 4/RD. : 3.3: X/RD. 2.21 (4/RD.) 0 "16 7  . .. (7)

0 R - 3.4, C/RDj : 5: X/RD. - 2.90 (4/RD.) 0 "16 9  ( 18)

Keffer and Baines [1] and Pratte and Baines [2] observed that X/RD i a 4/RD. for low

B11-3



values of ' over a wide range of jet penetration values, 0.1 s C/RD. S 1. Following this

initial high penetration rate Pratte and Barnes observed a gradual transition (1 : 4/RD. s 3)

to a lower penetration rate described by a 1/3 power law for 4/RD. > 3. In the present work.

accurate estimates of the jet trajectory could not be made below bRDi a 1.5. but the present

results, equation (6). do not differ significantly from these observations and it is
interesting to note that the power law exponents in equations (7) and (8) are nearly equal for
each velocity ratio. The data of Weston and Thames [43] shown in the top raph of Fig. 7 are
limited to the region 4/RD. < 4 but their results do appear to tend to be of the form of

equation (6) for C/RD. < 1.0 and a power law form similar to equations (7) and (8) farther

downstream.
The jet trajectory can also be described by the relation, Fig. 7 (bottom graph).

4/RD. = 1.32 + 1.03 Z/RDj . . . (9)

in close agreement with the result of Rathgeber and Becker 129], 4/RD. 1 + Z/RD , for the

trajectory of a round jet in a pipe flow.
The concentration half width, defined as that point in the Y or X-plane where F/Finx

0.5, provides a measure of the spreading rate of the jet flow as it proceeds downstream. The
results are presented in Fig. 8 and exhibit good symmetry in the Y-plane (the plane of
bilateral symmetry); however, the results for the X-plane will differ on each side of the jet
trajectory and these values are denoted by +bx and -bx for the upstream and downstream sides

of the jet respectively. Those data for the Y-direction are shown in the top graph of Fig. 8
and are described by linear relations,

R = 2: b y/RD. = 2.28 + 0.109 4/RDj ... (10)

R = 3.4: b y/RDj 1 1.34 + 0.159 V/RDj . .. (11)

The data in the X-direction are shown in the two middle graphs of Fig. 8 and are described by
power law relations,

-b =/RD = 0.871 ( 05RD 7)°,572 . . (12)

+bx/RD. - 0.925 (4/RD.) 0 *4 5 8  . . . (13)

Rathgeber and Becker [29] also observed a power law behaviour and a similar degree of scatter
for the half concentration width in the plane of bilateral symmetry for the round jet in a
cross flow (they did not report measurements comparable to the by data noted above). The

present results for R = 2 indicate that the half concentration width is comparable in both
planes while the results for R - 3.4 indicate a higher spreading rate on the leading edge of
the jet than on the trailing edge in the plane of bilateral symmetry. Further downstream, the
half concentration widths for oth flow conditions appear to tend to similar values in both
planes. From the contour plots obtained in this work it is also possible to define an
equivalent half concentration radius of the form,

bl/2 - (Al/ 2 /,r)1 /2  . . . (14)

where AI/ 2 is the area described by the contour T/ro'X - 0.5 (a length scale proposed by

Kamotani and Greber [5]). The data for this half concentration radius are described by a
linear relation Fig. 8 (lower graph),

bl/ 2 /RDj - 1.41 + 0.162 4/RD . . .(15)

The transverse profiles of the mean concentration are shown in Fig. 9 where the
transverse position is normalized with respect the appropriate half concentration width.
These results exhibited good symmetry within the experimental error expected for these
measurements and the data are presented with the data "folded over" along the jet trajectory.
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The Gaussian type distribution observed in free jets (eg. Becker, Hottel and Williams 149]) is
also shown in these graphs.

Transverse profiles of the concentration fluctuation intensity are shown in Fig. 10 for
both transverse planes and velocity ratios. The data for the plane of bilateral symmetry
(Y-plane} are depicted with an "open" and 'closed* symbol for results on opposite sides of the
jet trajectory (the fluctuation intensity is the most critical test of symmetry for the
measurements in the present work). Within the experimental error expected for these
measurements, the results for the Y-plane exhibit good symmetry and a steep gradient in the
fluctuation intensity for Y/by > 1. The results for the X-plane are not necessarily

symmetrical and these data are shown with an Nopen' symbol to denote the upstream side of the
jet and a *closed' symbol to denote results for the leeward side of the jet. The greatest
difference in these results occurred for R - 2 in the near field, typically Z/RD. - I and 2,

where the results for the upstream side of the jet were higher. These results in Fig. 10
gnerally exhibit the expected behaviour with low values of y,'ir in the core region rising to
higher values near the edge of the jet in both planes. It should be noted that fluctuation

intensities on the order of y 'IF = 0.05 are close to the noise level of the marker
nephelometry technique used in this work and estimates in the core region of the jet are thus
subject to larger experimental error. Generally, the fluctuation intensity rises above this
low core region level near (Y/by or X/bx) a 1.0 and tends to values typical of those found in
a free, round jet [50]. Higher fluctuation intensities were observed in the Y-plane for each
flow condition and these data also exhibited a higher gradient in the cross stream values of

Y,'/F than the X-plane or those of a round jet. The action of the cross stream fluid thus
causes a rapid mixing towards the edge of the jet in the plane of bilateral symmetry. However
in the core of the jet there is less mixing as indicated by the lower fluctuation intensities
for the X-plane and for Y/by < 1 in the Y-plane.

4. Discussion of Results
The contours of the mean and fluctuation concentration fields, Figs. 4 and 5, provide a

clear picture of the development of this type of flow system. At Z/Dj = 2.0, a kidney shaped

profile is clearly evident for R - 3.4 and to a lesser extent for R = 2.0. The greater
penetration of the jet for R = 3.4 is also evident at this downstream location. At the next
downstream location shown in Figs. 4 and 5, (Z/Dj - 12 for R = 2.0 and Z/Dj = 6.0 for R =

3.4), both jets have developed into a kidney shaped contour (typically the maximum jet
deformation observed for each flow condition). At this point, the mean concentration mappings
are quite similar and this indicates that the jet deformation occurs faster for R - 3.4.
These mean concentration contours are also similar to the cross sectional shape observed by
Rathgeber and Becker [29] in the near field of a round jet in a cross flow. At the last
downstream contour profile for each flow condition, the jet cross section approaches a
circular form where the width of the jet in the Y and Z-planes are almost equal in magnitude.
In this region, the rectangular cross flow jet differs from the round jet which forms and
maintains a distinct bifurcated structure as noted by Rathgeber and Becker [29]. Grandmaison
et al [41] also observed that the free, rectangular jet approached a circular cross section
(as indicated by the half concentration widths) beyond X/DC a 30. It is also apparent that

the cross flow has a significant effect on this flow development as the jet with R - 3.4
(greater penetration into the cross flow) tended to a circular cross section faster than the
jet with r - 2.0. It is also likely that the development of the jet with R - 2 is affected by
the closer proximity of the wall boundary - Keffer and Baines [1] first noted a wall hindrance
effect on jet entrainment for R - 2 in a round jet in a cross flow.

It should be noted that the jet trajectory data described by equation (3), Fig. 6,
exhibit scatter similar to previous measurements of this parameter for round jets in a cross
flow. However, there is also a trend in the residuals for each flow condition, with lower
trajectory values predicted at intermediate values of Z/RDj. It is interesting to note that
this region also corresponds to the point where the maximum jet deformation takes place (Z/D1
a 12 for R - 2 and Z/D. a 6 for R - 3.4) and this suggests that a change in trajectory path
occurs as the jet changes from an initial rectangular shape to the circular cross section
observed farther downstream. This effect is confirmed by the correlation shown in Fi 7 with
the jet trajectory expressed in terms of X-4 coordinates. In the initial region, CA s 3,
both jets appear to follow a similar path - this corresponds to the zone of maximum jet
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deflection noted by Keffer and Baines [1] and Pratte and Baines [2]. In these previous
studies a linear relation, X/RD. ia 4/RD., was observed for 4/RD. • 1.5 followed by a

transition region to a power law region (the vortex zone noted by Pratte and Baines 12]).
X/RD. a (4/RD.)I/ 3 , farther downstream, 4/RD. 3. The present data for 4/RD. : 3 appear to
follow a transition behaviour similar to that observed by Pratte and Baines [2] but more data
would be required at lower values of 4 to confirm the linear form noted above. It can also be
noted that the shape of the rectangular jet in the cross flow undergoes some changes in the
nozzle region (the case for R = 3.4, Fig. 5, best demonstrates this behaviour). Farther
downstream the present results also tended to power law forms where 4/RD. a (X/RDi)n with n a
0.17 for each flow rate. The start of this region occurred at 4/RD. a 5 for R = 2 and 4/RD. ia
3 for R = 3.4 and corresponds to the point where there is a large distortion in the jets,
Figs. 4 and 5. leading to a more circular cross section farther downstream. The displacement
of these power law regions for each jet velocity corresponds to a different effective source
for the new jet shape as the flow progresses in the downstream direction. Grandmaison et al
[41] observed that the free rectangular jet tended to a nearly circular cross section (as
indicated by equal half concentration values in the cross stream direction) near X/De a 30 and
this indicates that the effect of the cross flow on the jet is more pronounced than for the
free jet case.

The fluctuation intensity contour plots in Figs. 4 and 5 show a region of relatively low,
constant values in the central core of the jets. These contour plots do not appear to change
significantly as the jet develops, nor do they vary substantially between the two flow
conditions. The low fluctuation intensity values observed in the core region for the
rectangular cross flow jet is significantly different from the round jet case where the

bifurcated flow leads to very high fluctuation intensities, on the order of Y,'IF' a 0.4, along
the jet trajectory [29]. The effect of the cross flow on the rectangular jet with an aspect
ratio of 10 is clearly not sufficient to produce the enhanced mixing observed in a round jet
in a cross flow for R s 3.4 (29].

The concentration half width provides a good parameter with which to measure the
spreading rate of the jets. In the Y-plane, the concentration half width should be equal on
both sides of the jet since this plane defines the plane of bilateral symmetry. In the
X-plane, the concentration half width for a round jet in a cross flow is typically shorter
during early stages of the flow development on the leading edge than on the trailing or
downstream edge [29]. While this behaviour is suggested by the correlations presented in
equations (12) and (13) and the results shown in Fig. 8 (two centre graphs), the effect is not
large and within the scatter of the present data the half concentration width in both the Y
and X-planes appears to be nearly equal farther downstream, near Z/RDj a 10. The half
concentration width expressed in terms of the effective radius of the 50% mean concentrationcontour, b11 2 , exhibited a good linear relation for both flow conditions over the downstream

positions examined in this work. The jet spreading rate, bl/ 2 a 0.162 4, given by equation
(15) is comparable to the spreading rate in the free rectangular jet with the same aspect
ratio, where bz a 0.130 4 and by a 0.152 4 [41].

The transverse profiles of the mean concentration. Fig. 9, indicate a certain amount of
scatter in these data but no distinctive pattern is obvious except that the X-plane data
appear to approach a Gaussian type distribution faster than the Y-plane data for both flow
conditions. Kamotani and Greber [5] and Rathgeber and Becker [29] also observed a Gaussian
type behaviour for the plane of bilateral symmetry for a round jet in a cross flow,
particularly for I Firmax :s 0.5. It is also worth noting that, within the accuracy of the

mean concentration measurements, there is no evidence of the saddle-back behaviour observed in
the free rectangular jet emanating from a sharp edged nozzle [41]. This point is discussed in
more detail later.

Transverse profiles of the concentration fluctuation intensity in the present work showed
good symmetry for the Y-plane while the data for the Z-plane exhibited some asymmetry in the
near field for the case of R = 2.0 where there appeared to be higher values on the leading
edge of the jet. Rathgeber and Becker [29] also observed higher values of the fluctuation
intensity on the upstream side of a round jet in a cross flow. The low values of y,'If in the
core region of the jet indicate a lower level of mixing than is encountered for a round jet ina cross flow. This is consistent with the general shape of the concentration contour diagrams Swhich do not indicate a bifurcated flow pattern. There does, however, appear to be intense

B1 1-6



mixing on the outer edge of the jet. Y a by in the Y-plane. In this region, there is a sharp

increase in the fluctuation intensity due to the interaction with the cross stream flow. The

transverse gradient in the y'ir profiles in the Y-plane for Y/by > 1.0 appear to be higher
than those of a free round jet in quiescent surroundings [49]. This rapid mixing and the
distortion of the jet in the Y-plane due to the cross flow stream also appears to counter the
persistence of the saddle-back behaviour of the mean concentration profiles at a much earlier
stage than observed in the free rectangular jet. This saddle-back phenomena has been observed
in the near field region (X/De S: 10) of jets issuing from a sharp-edged orifice near Y/by a
0.6 - 0.8 (39] - (41] and a wall jet flow issuing from a sharp edged rectangular orifice 142].
The near field contour plots shown in Figs. 4 and 5 do not indicate such behaviour for the
rectangular jet in a cross flow near Z/D. a 2. The transverse mean concentration data. Fig
9, exhibit a mean concentration decay, r/rimnx a 0.8 - 0.85, in the near field near Y/by a 0.6

- 0.8.
The data presented in this paper represent an intermediate range of the velocity ratio,

R. Krothapalli, Lourenco and Buchlin [44] found that the normalized upstream separation
distance increased in the range R :s 5 and decreased for higher velocity ratios. They
attributed the increase at lower R values to a weaker entrainment on the leeward side of the
jet and the present results appear to confirm this hypothesis. The mean and fluctuation field
contour diagrams, Figs. 4 and 5, show that the leeward side of the nozzle fluid field extends
to the wall region (X = 0) and that there is a lower level of mixing in the core region of the
jet compared to the more intense mixing observed in the round jet in a cross flow stream at
larger values of R. Kamotani and Greber [5] have noted that the scalar field exhibited a peak
mean value off the plane of bilateral symmetry for R a 8 but the peak value remained on the
bilateral symmetry plane for R s 4 in the round jet cross flow system. This phenomena was
attributed to more rapid mixing as the jet is able to entrain cross stream fluid more readily
with less wall boundary interference at larger velocity ratios. It thus appears that such a
phenomena may indeed occur with rectangular jets but with a slightly higher critical velocity
ratio, R a 5.

5. Conclusion

The scalar concentration field of a sharp-edged rectangular jet with an aspect ratio of
10 mixing with a cross stream flow has been examined using marker nephelometry. Measurements
include the fields of the mean and fluctuation concentration fields for t/RD. s: 6 for R - 3.4

and 4/RD. S 20 for R = 2.0. The principle findings of this work are:

(1) The jet trajectory follows an initial high penetration region similar to that of a round
jet followed by a power law region further downstream where the jet path is proportional

to ( -/RD.)0" 17
(2) The hali concentration length in the Y and X-planes follow linear and power law forms

respectively as a function of the distance along _the jet trajectory. The half

concentration length based on the effective radius of the r/irmx = 0.5 contour follows a

linear relation with a spreading rate that is slightly larger than the free rectangular
jet.

(3) Transverse profiles of the mean concentration field in the plane of bilateral symmetry
were closer to a Gaussian type behaviour than those data in the Y-plane. The fluctuation
intensity data were significantly lower in the plane of bilateral symmetry than in the
Y-plane.

(4) The jets exhibited a kidney shape similar to a round jet in a cross flow but the
rectangular jet did not exhibit a bifurcated structure for R - 2.0 and 3.4. In the core
region of the jets there was a relatively low fluctuation intensity indicating a lower
mixing intensity than round jets in a cross flow at larger values of the velocity ratio.

(5) The sharp-edged rectangular jet in a cross flow did not exhibit a saddle-back behaviour
in the mean concentration field in the near field region (Z/D a 2). The action of the
cross flow stream thus appears to counter the mechanism for the persistence of this
phenomena more quickly than the free rectangular jet.

0
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LDV MEASUREMENTS OF THE TURBULENT FLOW

IN GAS CYCLONES

T.L. Liem & H.E.A. van den Akker
Kramers Laboratorium voor Fysische Technologie

Delft University of Technology
Prins Bernhardlaan 6

2628 BW Delft, Netherlands

Abstract. Laser Doppler measurements were made of axial and tangential velocities (mean values

and root mean square of the fluctuations) in a model of a reverse flow gas cyclone. The effect

of geometry changes was examined. In the axis region the measured mean velocities and r.m.s.-

values were significantly affected by the precession of the vortex core. A method was devised

to measure the amplitude of the precession and to correct the measured velocity profiles.

I Introduction

Gas cyclones are widely used In industry to separate particles from gas flows. A cyclone Is a

very simple apparatus (Fig. 1): It consists of an oblong cylindrical vessel of typically 0.3

to 1 m diameter. A strongly swirling motion is imparted to the particle laden flow by letting

it enter the cyclone through a tangential inlet. The inlet velocity is typically 15 to 20 i/s.

The particles are 'centrifuged' outward, and travel along the wall to the solids outlet. The

gas leaves the cyclone through the central exit pipe. Depending on the side on which this gas
exit pipe is located the cyclone is described as 'reverse flow' or 'through-flow'.

The separation efficiency depends on the particle diameter: small particles remain in the

gas flow. The particles that have 50 % separation are said to be of 'cut size'. In principle

increasing the inlet velocity lowers the cut size and increases the overall efficiency. At the

same time more turbulence is created, which interferes with the separation process. There is

an optimum inlet velocity (and therefore an optimum cyclone size at a given gas flow rate).

The pressure drop across an industrial cyclone is of the order of 103 Pa, This is seldom a
limiting factor. Running costs of cyclones are low compared to other dust-separation methods;

they are cheap to manufacture, reliable, and suitable for rough conditions such as high tem-

peratures. There is still room for Improvement though, especially in the class of high effi-

ciency cyclones (cut size smaller than 10 ým). Geometrical alterations can for instance signi-

ficantly diminish the reentrainment of particles near the solids outlet. An Improved exit pipe

shape can contribute to a stronger vortex with less turbulence, thus directly influencing the

separation process.

The work presented in this article Is part of a project aimed at Increasing the role of

computational fluid dynamics (CFD) in the process of developing more efficient gas cyclones.

Costly and laborious experiments could be replaced by simulation on a computer. This would

make it far easier to examine the consequences of alterations in the cyclone geometry, but at

the same time it places a considerable emphasis on the understanding of the physics of the

flow, and the way It is modelled In the computer program. The flow in a cyclone is turbulent,

but the strong swirl forces the turbulence to become non-isotropic, which makes it difficult5 to model (Lilley 1976).

In our group the commercial flow simulation program FLUENT is used as a tool in chemical
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engineering research. To be able to judge its performance in. swirling flows it is necessary to

have reliable gas velocity measurements.

Laser Doppler Velocimetry (LDV) in cycl.'nes that are actually separating dust is very dif-

f'cult. because at very low dust loads the flow is already opaque. Besides this it was not

possible with our LDV system to distinguish between the velocities of the various particle

sizes as they are separated, and the velocity of the gas flow (measured with 'seeding' par-

ticles). For this reason only 'seeding' particles were admitted into the gas during this

study.

Related studies found in literature are those of Boysan et al. (1983). Escudler et al.

(1980. not a cyclone but a vortex tube with water as fluid). Reydon & Gauvin (1981. a vortex

chamber), Tryman & Collin (1989, a cyclone combustor) and Hargreaves & Silvester (1990. a

deoiling hydrocyclone).

Depending on the geometry and the flow rate the vortex in a cyclone can be moving around in

a phenomenon called 'vortex precession'. It 'blurs' the velocity profiles and to enhance velo-

city fluctuations. When measuring the velocity field it is necessary to try to correct the

average velocity profiles and to distinguish between the turbulent fluctuations and those of

coherent movements or structures.

2 The flow in a cyclone

The flow in a cyclone can be classified as a swirling flow: an axisymmetric turbulent flow in

which both tangential (rotational) and axial velocity components are important.

The tangential velocity profile of a swirling flow is characterized by an outer 'free vor-

tex' region and an inner 'forced vortex' region. The shape of the profile suggests that in the

outer region fluid going radially inward accelerates according to conservation of angular

momentum (w'r - constant). In reality the relationship is more like w'ra - constant with

S% 0.7 in a cyclone. Near the swirl centre the flow behaves as a solid body, i.e. as a region

dominated by viscosity. Here w/r - constant.

In swirling flows two dimensionless numbers are important:

- the Reynolds number Re - UD/v (The choice made for the velocity U and the characteristic

diameter D is to be specified. v is the kinematic viscosity of the gas.)

- the Swirl number S. a measure of the degree in which the swirl component dominates the flow

Sa axial flux of ansuular momentumM(/2) - axial flux of axial momentum (I)

Neglecting the turbulent and pressure contributions to the fluxes is often possible without

introducing significant errors (Gupta et al. 1984). Then the swirl number can be calculated as

R
f p u w r 2rdJ pur2Zr dr

0
Sm (2)

R

f p Pu 2wr dr
2 

-
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p
•ndicates average axial velocities, w average tangential velocities)

Be:ause the flow pattern in a reverse flow cyclone is complicated it is difficult to define

one characteristic swirl number. S varies with the height in the cyclone, because the axial

flow rate is not constant. In a cyclone the simplified definition of Gupta et al. (1984) is

frequently used as an overall swirl number, which does not take into account local variations

x D D
O C

S . (3)
4 AI

Ai is the inlet surface area, D the exit pipe diameter, Dc the cyclone diameter. This defini-

tion can be understood as a rough estimate of the tangential velocity divided by the axial

velocity.

The shape of the tangential velocity profile of a swirling flow is not very sensitive to

swirl number alterations. In contrast the axial velocity profile can change dramatically. Flow

reversals (gas travelling in the opposing direction to the mean flow) are known to appear

around the flow axis at swirl numbers greater than 0.6 (Schetz 1980). They are caused by the

tendency of high swirl fluid to avoid the central area of the flow. This sets up an adverse

pressure gradient that draws back fluid with less swirl. The flow then becomes sensitive to

changes in the downstream flow conditions, like bends and obstacles, even outside the cyclone.

This flow condition is called 'subcritical'. a term emanating from the theory of free-surface

flows, where it indicates the flow regime whereby surface waves can propagate upstream

(Benjamin 1962). When the swirl number Is large enough the flow becomen virtually two-

dimensional, with no velocity gradients at all In tangential or axial direction.

The turbulent eddies In a swirling flow experience strong Coriolis forces; momentum exchange

is either amplified or attenuated, depending on the local gradient of the swirl velocity

(Leschziner 1990). Moreover swirl causes anisotropy in the levels of the normal stresses

(Lilley 1976). When modelling swirling flows a turbulence model has to be used that calculates

the turbulent stresses from transport equations (a so-called Reynolds stress turbulence

model).

A phenomenon that is still poorly understood hydrodynamically Is 'vortex precession'. The

rotational axis of the flow moves around the geometrical axis of the cyclone, In the direction

of the tangential flow, with a distinct frequency. The vortex Is as it were a selective ampli-

fier of disturbances, I.e. an oscillator. Chanaud described the phenomenon already In 1965. He

found that there was a linear relationship between the frequency emitted by a so-called vortex

whistle and the mean axial velocity. Two dimensionless numbers governed the precession: the

Reynolds number and the Rossby number, which Is closely related to the inverse of the swirl

number. Below a critical Re no precession was found at all, and at any given Re above the

critical there is a Rossby number above which no precession will be present. When the Rossby

number is decreased (increasing swirl) the precession would eventually make way for more and

more Irregular oscillations.

Garg & Leibovich (1979) measured dominant frequencies of around 10 Rz in so-called 'vortex

breakdown' fields. They pointed out that the oscillations can be explained using linearized

inviscid stability analysis of the undisturbed axisymmetrical flow.
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3 Experimental setup

3. 1 The cyclone model

A gas cyclone model 29 cm in diameter and with a height of 1.5 m was used (Fig. 2). It c,nsis-

ted of interchangeable perspex sections. A section made of precision glass was used to measure

through. The air flow rate was 44 I/s. The inlet velocity through the tangential inlet was 3.5

m/s and the Reynolds number 1.3 • 10 4, based on a superficial velocity through the cross-

sectional area of the cyclone body of 0.67 a/s. As mentioned before, no particles were present

in the gas except seeding droplets. There was no 'underflow' through the particle outlet; all

gas left the cyclone upward through the exit pipe.

According to Van den Akker & De Kort (1988, measurements at Shell Amsterdam) fitting a

conical section to the exit pipe brings about an improvement of the separation. The effect

this change had on the velocity field was investigated.

Three exit pipe geometries were used:

A. A straight exit pipe with an inside diameter of 18.8 ca and a length of 30 cm

B. An exit pipe fitted with a conical section of 18.8 cm inside diameter at the top and 11 cm

at the 'mouth' (length of cone 7.5 cm; length overall 33 ca)

C. An exit pipe of type 8 fitted with an additional straight section of 16.1 cm length and

inside diameter of 11 cm

A further geometry change that was studied was the insertion of a so-called stabilizer into

the bottom part of the cyclone. This is simply a disk of 17 ca diameter mounted on a rod of

2.5 cm diameter. The end of the rod Is meant to 'capture' the vortex and stabilize It. The

disk forces the particles to travel to the solids outlet along the wall, inhibiting reentraln-

ment.

Five geometries were studied in total. They will be referred to as A, B, BN, C and CN (N a no

stabilizer).

3.2 The LDV system

The LDV measurements were carried out with a 4 W two-dimensional system (TSI fiber optics.

Spectra Physics 2016 Ar-ion laser). Signal processing was achieved by two TSI IFA 550 'intel-

ligent flow analyzers' (Jenson et al. 1988). The measurements were made In a vertical plane

through the cyclone axis, in full back-scatter mode. The axial and tangential velocity compo-

nents were measured. The measuring volume had a length of 3 am and a width of 0.15 mm. The

Doppler frequency was 192 kHz per m/s (A a 514.5 nm).

3.3 Seeding

Seeding particles were produced by atomizing a 10 % solution of glycerol (trihydroxypropane)

in water with a paint spray gun. By spraying tangentially into a 'knock out vessel' (in fact a

crude cyclone) larger droplets were removed (Durst & Ruck (1987) suggested this as an ef-

fective way of boosting the data rate of the LDV measurement). Stable droplets of approxima-

tely 2 gm diameter were produced in sufficient quantities. The diameter of the droplets was

measured with a Malvern 2600 Particle Sizer.
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The ab'.. cf the particles to follow turbulent fluctuations was checked by calculating

the reaction :f one particle subjected to a sinusoidal air flow (Drain 1980). At a frequency

of 4 kHz the velocity amplitude of a 2 um particle turned out to be 95 % of the driving velo-

city amplitude. The droplets were considered acceptable flow followers.

The centrifugal forces acting on a droplet combined with an assumed Stokes drag force (Durst

et al. 1976) resulted in an estimated radial velocity of approximately 2 cm/s. Measuring the

velocity of one particle takes about 10 ps. The radial displacement of a particle during

measurement is therefore negligible.

4 Data processing

4.1 Spectrum analysis

An LDV measurement consisted of 2000 to 4000 data points. The data rate varied from around

50 Hz near the axis to 300 Hz in the outer vortex. Spectrum analysis is applied to find domi-

nant frequencies in the time-dependent velocity signals. Because the data points in a measure-

ment are not equidistant in time direct application of Fast Fourier Transformation (FFT) is

impossible. Instead a discretized auto-covariance function is calculated first, using the

'slotting method' (Mayo 1978).

4.2 Precession

To be able to correct the measured velocity profiles and to distinguish between turbulence and

the fluctuations caused by vortex precession it is necessary to study the measured time-

dependent velocity. In situations where the movement of a flow feature is exactly periodic it

is generally possible to use 'time slotting', whereby each slot corresponds to an angular

position. In this way it is for instance possible to map the detailed flow around a stirrer

blade In a stirred vessel with respect to a rotating frame of reference. Vortex precession is

not externally synchronized, and after each turbulent perturbation phase information is lost,

so time slotting cannot be applied.

Instead an attempt was made to extract as much information as possible from the average height

and fluctuation of the peaks in the graphs of measured velocity versus time, combined with

knowledge of the general shape of the average velocity profiles. A simple computer program was

written to seek out the peaks. They were defined as those data points that were 'higher' or

l'ower' than Zn neighbours. The optimum n depends on the data rate, the frequency of the pre-

cession and the properties of the turbulence.

5 Results

5.1 Time averaged velocity profiles

The swirl number according to definition (3) is 3.4 for the geometry with exit pipe A and 2.0

for the geometries with exit pipe B or C.

In Fig. 3 the measured average tangential velocity profiles are shown for three geometries:

the wide exit pipe (A) and the lengthened conical exit pipe with and without the stabilizer (C

and CN). These profiles are not corrected for the effect of vortex precession (this correction
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will Ie acc..ed later).

The proflIes shuw the expected shape of a combined vortex. The differences between the

profiles measured on different heights in one geometry were very small, in accordance with the

tendency for 'two-..imensionality' of swirling flows. There is little residual asymmetry of the

single tangential inlet, except for a small shift of the vortex axis in geometry A.

The angular velocity of the vortex core increases by a factor of 5 when the exit pipe is fit-

ted with the 'long' conical section. The maximum tangential velocity only increases by a fac-

tor of about 2.2, from 3.8 m/s (A) to 8.8 n/s (CN). The core is much narrower: 45 mm instead

of 90 mm. The vortex is much more 'concentrated', and all radial gradients are amplified. The

acceleration experienced by particles rotating at the maximum tangential velocity increases

from the order of 40 times earth gravity to 400 times. This explains the improved separation

found by Van den Akker & De Kort (1988). The swir. number is lowered from 3.4 to 2.0 by

narrowing the exit pipe Int,.tion suggests that a higher swirl number enhances separation.

The overall swirl number definition of Gupta et al. (1984) is inadequate here. Local sairl

numbers have to be taken into account.

The results of the geometries B and BN are not shown in Fig. 3. The profiles are similar to

those of geometries C and CN, but the shortening of the exit pipe results in a slight decrease

of the maximum tangential velocity of 15 % . This is probably due to an increase of turbulence

in the region of the 'mouth' of the exit pipe. The stabilizer did not influence the tangential

velocities very much, which was surprising. A slight decrease of the maximum velocity (10 %)

was noted when it was inserted.

In Fig. 4 the measured average axial velocity profiles are shown. As with the tangential

velocity profiles no corrections have been applied here for the effect of vortex precession.

The symmetry in axial and tangential directions already noted in the tangential velocity pro-

files is again present in the outer flow. Along the vortex axis some axial gradients are

visible.

The axial velocities are downward along the cyclone wall and upward nearer the vortex centre,

as was expected. As with the tangential velocities the maximum axial velocities are much

larger with geometry CN (4.9 m/s) than with geometry A (1.6 a/s).

There is a distinct 'dip' or velocity minimum, broadly corresponding to the 'inner' vortex,

in geometries A and CN. In C it is present only near the exit pipe. Clearly the central flow

is decelerated by the already mentioned swirl induced adverse pressure gradient, but no flow

reversals are visible.

The diameter of the 'dip' is approximately 85 - for geometry A and 40 -m for geometry CN.

The presence of the stabilizer Inhibits the occurrence of an axial velocity minimum in the

greater part of the cyclone body. This can be attributed to increased radial velocities,

because the same flow has to travel inward within a reduced effective cyclone height.

The axial velocity profiles of the B and BN geometries are not shown In Fig. 4. Broadly the

same conclusion can be reached here as with the tangential velocities: the lengthening of the

conical exit pipe causes an additional intensification of the vortex.

5.2 Velocity fluctuations

Straightforward calculation of the root mean square (r.m.s.) of the velocity fluctuations
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(utt) - g 1 yields a profile that is similar for axial and tangential velocities: anoverage

almost constant value near the wall, a sharp peak In the centre, and a gentle slope around the

peak up to a radius of about 60 mm (Fig. 5). The peak height varies from 1.5 to 4.0 m/s for

geometries B, BN, C and CN and I m/s for geometry A. The peak width Is directly related to the

width of the vortex core. Near the wall an axial velocity rm.s.-value of 0.4 m/s is found and

a tangential velocity r.m.s.-value of 0.3 a/s.

Leschziner (1990) deduced from turbulence theory that turbulence is attenuated by solid-

body rotation and amplified by free-vortex rotation. When the measured r.m.s.-velocities are

considered as turbulence Intensities there is an apparent contradiction. Either the turbulence

theory is incorrect, or there is a fluctuating velocity component that is not turbulent. The

solution lies in the analysis of the time-dependent velocity signal that will be presented in

the next section.

5.3 Corrections for vortex precession

Analysis of the power spectrum revealed a distinct precession frequency of 7 Hz in the time-

dependent velocity signals of geometries B, BN, C and CN (all with a conical exit pipe). It

was present in both velocity components, in a region of 60 mm radius around the centre of the

flow.

The amplitude of the precession In the centre of the measured vortex was calculated by

averaging the peak heights in the graph of the tangential velocity versus time (Fig. 6). and

dividing this average peak velocity by the slope of the measured tangential velocity profile.

It is assumed that:

the precession amplitude is smaller than the radius of the vortex core without precession

(assuring a linear relationship between radial displacement and velocity shift),

the vortex precession does not alter the slope at the centre of the measured tangential

velocity profile.

The calculated precession amplitude was 5 mm.

The presence of a stabilizer did not influence either the frequency or the amplitude of the

precession. The same could be said of the lengthening of the conical exit pipe.

The precession component in the velocity signals of geometry A (wide exit pipe) was too

indistinct to be measured correctly. A comparison with the precession in the other geometries

was therefore not possible. This problem will probably be solved when more data points per

measurement are used.

Corrections were attempted of the measured average velocity profiles and of the measured

profiles of the turbulence intensity (the r.m.s. of the velocity fluctuations).

It is assumed that precession consists of a circular movement of the whole vortex core and a

region around it. The average velocity profiles are distorted in two ways:

- Maxima and minima are blunted.

- The positions of maxima and minima are shifted in the radial direction away from their

steepest slope.

Maxima In the profiles occur on the rim of the vortex core, and at the centre of the axial

velocity profiles. In geometry CN. when traversing the measuring point radially at an axial

position of 65 cm, a frequency component of 14 Hz was noticeable in both velocity components,
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at radi'a. =:sj.ons 15 and 20 mm from the symmetry axis of the measured flow. The corres-

pcnding time-dependent velocity signals appeared strongly non-sinusoldal. Clearly in these

:ases tfe measuring volume straddled the maximum position (two peaks in the velocity signal

per precession period), or was so close to it that the non-linearity generated harmonics of

the precession frequency.

At a radius of 20 mm the peak height was averaged (bearing in mind the right sign). resulting

in a corrected value for the maximum axial or tangential velocity. For both components the

corrected value was 0,8 r/s higher than the measured value. The corrected maximum axial velo-

city in geometry CN was 5.7 m/s, the corrected maximum tangential velocity 9.6 m/s.

The corrected radius of maximum velocity could not be determined accurately; 15 mm<r <20 mm

remains the best estimate.

The measured minimum at the centre of the axial velocity profiles will be too high due to

vortex precession. Here the negative peak values of the time-dependent velocity signal do not

provide an estimate of the 'true' minimum axial velocity at the vortex axis, because most of

the time the precessing minimum will 'miss' the measuring volume. The 'true' minimum will

always be lower than the average of the negative peaks in the velocity signal.

In geometry C the uncorrected central minimum in the axial velocity profile was 5.0 m/s

(measured at the 65 cm axial position). 'Peak analysis' revealed that the true minimum was at

least 3.4 m/s lower. The corresponding values for geometry CN were 1.7 i/s and 1.8 s/s respec-

tively. This means that there is a central flow reversal of at least 0.1 r/s.

Estimates of the corrected r.m.s.-velocities were obtained by calculating the r.m.s.-value

of the deviations from the average peak height. In the outer vortex (r < 60 mm) the outcome

was in fact no different from the r.m.s.-values near the wall. More surprisingly, the same

result was obtained when correcting the r.m.s.-values measured at a radius of 20 mm, on the

rim of the vortex core. For geometry CN the corrected r.m.s.-values at the centre of the vor-

tex were calculated. The axial r.m.s.-value was 1.0 a/s, the tangential r.m.s.-value 1.3 m/s.

Both are well above the corrected outer vortex values. The apparent contradiction with turbu-

lence theory mentioned before is still not resolved. It has to be borne in mind that the

number of data points is greatly reduced by only using the peaks; typically there are 300

peaks in one measurement.

6 Conclusions

Velocity measurements in a gas cyclone reveal aspects of swirling flows that have to be consi-

dered if a validation of computational fluid flow programs is to be possible: flow reversals,

sharp gradients near the centre and precession of the vortex core.

An overall swirl number is inadequate. The level and the variation of the local swirl

number have to be taken into account to characterize the velocity field.

Modifications in cyclone geometry induce changes in the velocity field. How these changes

influence the separation efficiency is still to be assessed.

The presence of a stabilizer does not influence either the frequency or the amplitude of

the vortex precession. It does inhibit the occurrence of axial flow reversal.

It is possible to correct the measured velocity profiles for the effect of vortex preces-

slon if there is a clear precession frequency in the velocity signal. The corrections apply to

812-8



the value and radial position of the maxima and minima in the profiles of average axial and

tangential velocities. To correct the measured r.a.s. -velocities more data points per measure-

ment are needed.
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Abstract

Top submerged gas injection through a lance is being increasingly used in the metallurgical industry for

smelting operations. Bath mrixing in these processes is mainly controlled by the injection technique.

Swirled gas flow injection through the annular region of the lance is preferred to unswirled flow through a

plain lance as this increases the lance cooling and promotes bath mi ing.

The present work deals with the flow distribution within the bath of a laboratory (air-water) top

submerged gas injection system. A Particle Dynamics Analyser (PDA), which utilises the phase-Doppler

technique, is used for the measurement of velocity components in a vertical plane within the bath.

Experimental measurements of the effect of swirl intensity and Reynolds number on the bath flow field,

bubble size distribution and turbulent intensity are presented and discussed.

List of symbols

Di inner diameter of the annulus (mm) w tangential fluctuating component (m/s)

D, outer diameter of the annulus (mm) Z distance in the axial direction (mm)

DI, hydraulic diameter of the annulus (= Do-Di) (mm) A dynamic viscosity of air (kg/m s)

R distance in the radial direction (mm) p density of air (kg/m3)

Re Reynolds number (= p UDA/) g, swirl angle (deg.)

U a.dal component of mean velocity (m/s)

U axial fluctuating component (mis)

SIW tangential component of mean velocity (m/s)
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1 Introduction

Lances are used in submerged-combustion smelting processes to inject air and fuel into metal baths. Fuel

is passed through the inner pipe of the lance which is made up of two concentric pipes. Air or oxygen

enriched air is passed down the annular gap. The mixing process, which is a function of the dispersion of

air is normally controlled by the rate of injection and the shape of the velocity profile at the exit of the

lance.

The Sirosmelt submerged lancing system, developed at CSIRO in the early 1970's, utilises the

characteristics of swirling flow by introducing a swirler in the annular gap. This system, where air is driven

through the annular gap, has been applied to a wide range of metallurgical operations such as slag

treatment, oxide smelting and sulphide smelting (Floyd and Conochie, 1984). Although gas injection is

widely applied in the smelting and refining of metals, and a number of researchers have investigated the

flow within the bath, little quantitative information is available.

For bottom injection and for top submerged systems without swirl, a number of workers have investigated 0
the bubble formation within the bath (e.g. Castillejos and Brimacombe, 1987 ab and Nilmani and

Robertson, 1979). The regimes of gas discharge (e.g. Hoefele and Brimacombe, 1979) and liquid phase

velocity fields (e.g. Grevet et al. 1982) have also been investigated. The two-phase region, however, is less

well understood due to the analytical and experimental difficulties encountered in the determination of the

flow behaviour of two-phase systems. Only a limited amount of work has been reported on flow

measurements in top submerged gas injection systems..:

Mazumdar and Guthrie (1985) carried out an investigation of the flow in a water model using plain lances

with top submerged injection. Flow visualisation work was carried out using a suspended grid of silken

threads. The results showed the nature of the flow within the bath. Ferimental data on velocity fields

were obtained on the basis of video recordings of the motion of small rectangular cards. They also looked

at the plume geometry at different injection levels. The governing equations of motion were solved using

the finite difference code TEACH-T (Patankar and Spalding, 1972), after neglecting the tangential

component of the velocity.
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In valid.i:;nz numerical predictions from the package PHOENICS, Rankin et al. (1989) compared their

numerical results with flow visualisation work carried out in a 500 mm cylindrical water tank. Again only a

plain lance of outer diameter 37 mm was used in their experiments and velocities were determined using

streak photography. Furthermore, the package was used to validate the data of Mazumdar and Guthrie

(1985) and a reasonably good agreement was found for both cases.

Schwarz and Koh (1986) used PHOENICS to predict the velocity profiles for a top injection lancing

system. No measurements were taken for liquid phase velocity distributions. They compared the results

of the numerical work with void fractions reported by Conchie et al. (1984) and a qualitative agreement

with the predictions was reported. The authors pointed out the necessity for further work on two phase

low modelling in order to predict void fraction accurately, and concluded that, as expected, the swirled jet

ýnetrates less deeply and creates quite a different flow to that obtained from a plain lance.

Nilmani and Conchie (1986) used a laboratory scale gas injection system (tank dimensions: 200 x 200 mm

and liquid depth of 300 mm) with a lance of diameter 6.2 mm, and used an electroresistivity probe to find

the bubble frequency profiles. They found that, in a water model, the swirler improves the radial

dispersion of gases, minimises bath slopping and splashing and helps to create finer bubbles.

Schwarz (1989) used PHOENICS to simulate an experiment carried out by Kawakami et al. (1985) on a

bottom-injected bath. Kawakami et al. (1985) used electroresistivity probes to obtain bubble rise velocity

and bubble frequency.

Electroresistivity probes have been used by several researchers to measure the liquid and gas distribution

in bottom injection systems (e.g. Sheng and Irons, 1991; Castillejos and Brimacombe 1987 a,b and

Kawakami et al. 1985). This method of bubble distribution measurement can be used when the bubble

velocities are predominantly in one direction. Measurements near the lance exit in a top submerged gas

injection system requires more sophisticated techniques because the gas will have significant components

of velocity in all directions. Other widely used methods used to measure the dispersion of gas, as

characterised by the local time averaged gas fraction and bubble frequency, include hot-film anemometers

(e.g. Jones and Zuber, 1978).
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Sheng ami Irons (1991) summarised techniques employed by various workers to distinguish signals

obtained from each phase in order to obtain particle/bubble velocity, size and void fraction. The signal

discrimination, in these techniques, is based on the signal wave form, signal analysis and light blocking or

the velocity distribution.

All the above LDA methods may be used in gas-liquid flows if the flow consists of a low void fraction

chain of small bubbles. Sheng and Irons (1991) proposed a new technique, the combined LDA-

electroresistivity probe technique, which may overcome some of the limitations in other LDA techniques

described above. The main disadvantage of their proposed method is that it is intrusive.

The above literature review clearly indicates that experimental work related to top submerged swirled gas

injection is lacking.

The objective of our ongoing research program is to develop design criteria for top submerged gas

injection systems. Initially, a detailed understanding of the turbulent swirling flow in an annulus has been

gained through comprehensive numerical and experimental investigations of the effect of swirl intensity

and Reynolds number in heated and non-heated flows (e.g. Morsi, 1983, Dave and Gray, 1991, Morsi et

al.. 1992). Currently we are dealing with the experimental aspect of the gas-liquid interaction taking place

in the bath. Emphasis is given to obtaining detailed velocity component measurements in the liquid phase.

A Particle Dynamics Analyser system from Dantec has been used to determine liquid phase point

velocities and bubble size distribution for a given plane within the bath. The performance of various

swirlers, including a plain lance, is evaluated together with the effect of gas flow Reynolds number.

2 Experimental setup

21 The water model

A schematic diagram of the experimental apparatus is shown in Figure 1 The model consists of a 230

mm internal diameter cylindrical perspex vessel, placed inside a square glass tank. The inner cylindrical

tank and the outer square tank were filled with water to minimise distortion of the laser beam due to the

curvature of the inner cylinder. Injection of compressed air was through the annulus of a lance which was

fitted to the vessel lid and positioned at the centre of the vessel.
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S The air t•,ow rate was metered using a standard rotameter. The present results are reported for one level

of submergence and a liquid depth in the vessel of 230 mm. The inside and outside diameters of the

lance annulus are 12.7 and 17.2 mm, respectively. Table I summarises the experimental conditions. The

Reynolds number range (6720 - 8040) used in these experiments was limited by the injection system used

and the difficulties encountered in obtaining sufficient data in high gas fraction flows.

Run Type of Lance Level of Reynolds Swirl Angle

No. Submergence Number (Deg.)

1 Plain 2/3 6720 0

2 Swirl 2/3 6720 57.5

(No. of starts = 2)

Swirl 2/3 8040 57.5

(No. of starts = 2)

I m

Table 1 Experimental conditions of the study

2.2 LDAIPDA equipment

Figure lb shows a schematic representation of the measuring system. A 4W Argon Ion laser was used to

obtain a green beam (wave length of 514.5 nm). The transmitting optics consist of a collimator,

polarisation rotator, a dispersion prism, a beam splitter, a Bragg cell, a beam spacer and a fibre optic

module with a 100 mm focal length lens. In setting up the transmitting optics, attention was paid to such

factors as mode structure, polarisation, optical path length balancing and correct beam waist positioning in

the measurement volume. A frequency shift of 40 MHz was introduced in one of the crossing laser beams

to overcome the sign ambiguity of the velocity measurements.

The standard Dantec Particle Dynamics Analyser (PDA) system was used in the reflection mode as

receiving optics. The PDA simultaneously measures the size and velocity of spherical particles (or

S bubbles) which allow correlation of these two quantities. The velocity is calculated from the frequency of
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the Dopp:er burst and the size measurement is based on the phase difference of signals from two

detectors !ocated at different scattering angles. A scattering angle of 1280 was used in the present

investigation.

In determining the measuring point, the refractive index of both the walls and the water was taken into

account. Particular attention was given to the choice of the seeding particles. After a number of

experimentations using different type of particles, 9 itm metallic coated powder which have small terminal

velocities, were found to give sufficient validated signal. The velocity-diameter correlation for scattering

particles present in the flow was obtained and a typical plot is shown in Figure 2. It can be seen from the

figure that the mean particle velocity remains constant for the size range studied. Measurements were

taken not only from the seeding particles but also from tte small bubbles present in the bath. Data was

acquired for particles in the size range of 0 - 980 um. However, only data corresponding to particle sizes

below 200 jm were processed to ensure that the particles for which the results are reported follow the

flow exactly.

3 Results and discmssion

The results presented here are for different swirl angles and eynolds numbers as summarised in Table 1.

The measurements were taken on the plane X-X shown in Figure la. Instantaneous velocity components

were measured at grid points on a rectangular mesh (spacing 10 mm). Data could not be obtained at

some points either due to the presence of large bubbles or due to a high void fraction.

The axial velocity contours for different swirl intensities (* = 0 and * - 57.50) are shown in Figure 3a

and b, respectively. A higher velocity zone is present in the vicinity of the lance at the top part of the

bath. A similar finding was reported by Schwarz and Koh (1986). These figures also show a high velocity

zone at the exit of the lance, and the velocity vectors tend to increase in magnitude toward the top of the

bath. The effect of the swirl intensity is shown by comparison of Figures 3a and 3b. As expected, the

swirl introduces a large recirculation zone at the top of the bath. The effect of Reynolds number on the

distribution of the flow around the lance appears to be small for the range of Reynolds numbers

investigated. 0
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Figures 4 and 5 show the axial velocity distribution at different bath depths. It is evident that bath mixing

is mainly taking place in the top part of the bath, i.e., the region above the lance exit. These figures also

show that vertical mixing in the region below the lance is minimal in all cases, irrespective of the swirl

angle and the Reynolds number under the conditions employed in this investigation. The tangential

velocity component for a swirled lance is higher than that for plain lance in the region below the lance exit

(see Figure 6).

Furthermore, the measured data indicate a higher axial velocity for a plain lance than a swirled lance.

This finding implies that swirlers help to reduce splashing above the bath. Such reductions in splashing

were clearly observed during the course of experiments. It was also observed that there was a larger

number of fine bubbles in the bath with swirled lances.

3.1 The distribution of turbulence intensity

P There are several definitions of turbulence intensity relating to the fluctuating velocity components,

including root mean square (RMS) values and the ratio of the root mean square value to the

characteristic velocity or its square. For the sake of convenience, here we shall define the turbulence

intensity as the RMS value, i.e., u2, where the overbar denotes a time average. Figures 4 and 5 show the

effect of swirl and Reynolds number on the distribution of turbulence within the bath. The turbulence

intensity is higher in the vicinity of the lance and increases in magnitude vertically upward. The effect of

Reynolds number on the RMS values appears to be small in the range studied.

4 Conclusions

This work has demonstrated that the phase-Doppler technique can be used to gather useful information in

the bath for a top submerged injection air/water system. The model study shows that the momentum

associated with the injected air in the case of a plain lance is mainly transferred to high axial velocities

which could cause high splashing. In the case of swirled lances, the axial velocities in the bath are

significantly less for a given Reynolds number. Swirled gas flow creates more fine bubbles and the high
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liquid-gas J,:n:a,;t area associated with the fine bubbles can lead to high reaction rates in bath smelting

systems. The turbulent intensity is found to be higher in the vicinity of the lance and the effect of

Reynolds number on the turbulent intensity is small in the range studied.

It can be concluded that the performance of swirled lances is better than that of plain lances with regard

to gas dispersion and splashing. The work is being extended to higher Reynolds numbers to more closely

simulate a real top submerged injection system.
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Abstract

Darcy's Law fails to hold for higher flow velocities. Many situations have arisen where a

different relation between head loss and velocity is needed for higher flow velocities. Such a

situation is flow around large diameter rock forming a dike or dam. If pipe and porous media flow

are analogous, the head loss should be proportional to the velocity head. As the velocity of flow

through the porous media increases the Inertial effect gradually increase and at some higher

velocity the onset of turbulence occurs. At the onset of turbulence, the mixing length scale may

become the predominant factor in describing energy dissipation, with the mixing length scale being

a function of the size and gradation of the media. Experimental evidence based on turbulence

measurements and evolved turbulent theory seem to support this view. Turbulence flow was measured

directly via a fast-response, constant temperature, hot-film, anemometer. A two-dimensional finite

element code was modified during this investigation to solve the turbulent flow case. The flow can
be two dimensional pla- or axially symetric, laminar (Darcy's Law) or turbulent flow.

Introduction

Most of the literature on flow through porous media involves "creeping flows.* However, since the

last century it has been realized that Darcy's Law fails to hold for higher flow velocities. Thus,

while many practical problems of flow through porous materials can be correctly solved using the

assumption of Darcy's Law, many situations have arisen where a different relation between head loss

and velocity is needed for higher flow velocities. Such a situation is flow around large diameter

rock forming a dike or dam.

A finite element, mathematical model (SEEP-2Dflt-T) was developed for finding flow through porous

media for turbulent flow. Neither the turbulent mathematical (computer) model nor the physical

evaluation of the energy lose coefficient for turbulent flow for this type of media exists in the

literature. The basic contributions of this research include development of energy dissipation

theory for turbulent flow through porous media, experimental results used to evaluate the energy

loss coefficient and a mathematical model for turbulent flow through porous media.
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Literature

There a&e two approaches to mathematically predicting the turbulent (nonlinear) flow through porous

media. One approach, Forchheimer (19011 suggested replacing Darcy's Law with a nonlinear,

empirical equation in which the negative total head gradient is equal to a constant times the

velocity plus another constant times the velocity head squared. He later added a third order term

of a constant times the velocity cubed. The third order term was added to the original expression

based on experimental evidence.

Many authors have supported the Forchheomer's relationship based on experimental evidence

(Lindquist (1933), Morcom (1946), and Ward (1964)]. The Forchheinmr relationship has also been

derived theoretically for certain flow conditions (Kristianovich (1940), Irmay (1958)]. Stark and

Volker (1967) carried out experimental and analytical investigations of flow through idealized

media. Missbach (1937) postulated an equation of the general form where the negative total head

gradient is a function of a constant times the velocity raised to a variable power. This

relationship is called the empirical-velocity approach. This approach recognized that the head

loss gradient through porous media is proportional to the velocity. Also, the term, empirical-

head-loss equations or empirical-exponential relation may be applied to this approach.

Although the head loss relationships for porous media have been derived on an empirical basis by

Ahmed (1969), Cedergren (1977), Soni (1978), and Volker (1969), most of the resulting equations

is dimensional and have limited applicability. Most workers (Dudgeon (1966), Johnson (1971), Lops

(1973), Perkins (1966), and Wilkins (19S6)] prefer a relationship of the form of the empirical-

velocity approach. The velocity is equal to a variable "a' times the negative total head raised

to a variable "b" power in the empirical-velocity approach. The applicability of this type of

equation is dependent on the units used and the characteristics of the medium.

A non empirical and pipe flow analogous approach has the advantage of not being limited by units

used or the characteristics of the medium. In addition, it seems logical that the value of (b)

in the above empirical-velocity approach should converge toward two for fully developed turbulent

pipe flow where the head loss should be proportional to the velocity head, if the pipe flow and

porous media are analogous. Attempts to correlate head loss with velocity squared have met with

limited success (Ahmed (1969), Dudgeon (1966)]. However, these studies attempted to correlate the

head loss with the real velocity, v/n where n is the porosity of the aquifer (volume of voids per

unit volume of aquifer). By analogy with the flow in conduits, the head loss should be

proportional to real velocity squared divided by the quantity of the gravitational constant times

the hydraulic mean radius. The proportionality constant "C", friction factor, depends on the

Reynolds number. For a large Reynolds number, (C) may be a function of the media size, shape and

roughness.

If pipe and porous media flow are analogous, the head loss should be proportional to the velocity

head. Attempts to correlate head loss with velocity squared have met with limited success (Ahmed

(1969), Dudgeon (1966)]. However, these studies attempted to correlate the head loss with the real

velocity, v/n where n is the porosity of the aquifer (volume of voids per unit volume of aquifer).

By analogy with the flow in conduits, the head loss should be proportional to real velocity squared

divided by the quantity of the gravitational constant times the hydraulic mean radius. The

proportionality constant (C-friction factor) is a function of the Reynolds number. For large

Reynolds Numbers, (C) may be a function of the media size, shape and roughness.

Before modern digital computing systems, analysis of practical problems involving nonlinear flow

equations has been largely neglected probably because the complex differential equations involved

have been too difficult to handle by analytical mathematics. Another difficulty is that most

research of flow through porous media has been conducted at lower Reynolds Numbers (R).

Stephenson, (1979) using the hypothesis that (C) is constant for large (R-greater than ten

thousand), conducted tests at these higher (R).
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0 These tests indicated that these values of (C) become approximately independent of (R) at the

higher values of (R). These tests also suggest that the relationship between (C) and (R) is not

fully understood. It appears that (C) is not just a function of (R) but, may also be a function

of the porosity, aggregate shape, roughness, size and gradation (Dudgenon, 1966). This is due both

to the inertia effect and the onset of turbulence. As the velocity of flow through the porous

media increases the inertial effect gradually increase and at so" higher velocity the onset of

turbulence occurs. A predominate factor that affect. dissaipation of energy, at the onset of

turbulence, is the mixing length scale. The mixing length scale is most likely found by the size

and gradation of the aggregate. Experimental evidence on the dispersion of dye streams seems to

support thls view.

Experimental Model

A saix-inch PVC pipeline was installed in the hydraulic laboratory with a removable, two foot long

test section located near the end of the pipeline. The flow through the pipeline was measured with

a 60 degree v-notch weir at the end of a large tank. The rock was placed and retained in the test

section by a wire mesh (one quarter inch hardware cloth). Manometers were used to measure the

upstream and downstream differential head on the test section. This pipe data is a one-dimensional

measure of the energy loss through the media used to attain the energy loss coefficient.

Porosities of different media size and gradation were found by measuring the volume of the media,

filling the voids between the media with water; removing the media, then measuring the volume of

the remaining water. The volume of the water divided by the volume of the media was used to find

the porosity of the media. The measurements were repeated three times with the average reading

being recorded.

Turbulent Energy Dise.&ation Model

Turbulence is a hierarchy of scales, loosely termed eddies, with transfer of kinetic energy down

the scales from the larger to the smaller. The energy is dissipated, or transferred into heat via

the action of viscosity at the smallest scales, i.e. by the smallest eddies. Small scale

components lose energy via the action of viscosity much faster than the large ones. The action

of the non linear inertia terms in the equations of motion is responsible for the transfer of

energy from the large scale motions, which is extracted from the mean flow, to the small scale

motions where it is dissipated. The energy is extracted from the mean flow by the larger scales

or eddies to maintain an overall constant turbulent structure.

Turbulence may be measured directly via a fast-response, hot-film, velocity anemometer. Because

the root-mean-square value of the turbulence velocity fluctuation (u') is a definite quantity in

a given turbulent motion and represents a suitable statistical measure of the magnitude of the

fluctuations, it is termed the level of the turbulence. A ratio of this value to the mean flow

velocity is termed the intensity. The rate of turbulent energy dissipation is simply related to

quantities already defined. In isotropic (independent of location and direction) turbulence, the

energy of the turbulence is

eta 3 PU

where: p is the mass density of fluid, and rate of dissipation per unit volume (Robertson, 1965)

is found to be

L. is the scale of the dissipating eddies, v kinematic viscosity of fluid, and u' is the turbulent

level.
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Many researchers have searched for a relationship between the charactfri, ice of porous media and

the flow versus energy lose relationship for different media. The selo-:ed approach for analysis

of this relatLonship is analogous to the flow through narrow tubes. The real fluid velocity

through the tubes is the velocity through the media, i.e., the discharge divided by the cross-

sectional area, divided by the porosity where porosity is the volume of voids per unit volume of

the media. In fact, the real velocity will also depend on the pore sixe and shape, and the wetted

surface area of the media per unit volume. Note that Bakhmetoff (1937) expressed real velocity

in the voids as velocity divided by the porosity raised to the two thirds power which is justified

with a cubic model. The real velocity in the voids is therefore, somewhere between the velocity

divided by porosity and the porosity raised to the two thirds power. The flow path is tortuous

and consequently it is probably closer to velocity divided by porosity than to the cubic model of

porosity raised to the two thirds power.

If the rate of dissipation is proportional to the cube of the velocity, as it is where the

Reynolds's stresses are proportional to the squares of the turbulent components of velocity, I "the

average size of the smallest eddies," which are responsible for the dissipation of energy by

viscosity, is proportional to the square root of (Lu/u' (Taylor, 1958)1 where L is some dimension

defining the scale of the system. If the L scale is defined as the mean diameter of the media,

then the variation in turbulent energy dissipation over a flow field is roughly proportional to

:he cube of the turbulent intensity divided by the mean diameter of the media. Thus, the rate of

energy dissipation per unit volume is:

This relationship provides a means of examining the physical effects of different size and

gradation of the media on the head lose and facilitates a more complete understanding of the energy

dissipation process. The ultimate goal is to be able to predict the effect of media size and

gradation on the head loss coefficient so that the head loss through any porous media can be found.

Energy Lose Model

The energy loss coefficient for laminar flow ( R s 0.001 ) is

K1 a 800 / R

where

R = (n u) / (v d)

and n a porosity of the media

U - kinematic viscosity of fluid

v a apparent velocity or Q/A

d a media diameter.

The turbulent head lose coefficient (K ( R > 100,000 )] is independent of (R) is

N- 2.

Both energy loss coefficients (turbulent and laminar) were found empirically. Therefore, in the

transition region the energy loss coefficient "K" In

K- K, +'

Because, the hydraulic gradient is

i a V / k = (V3 K) / g d n3.

Thus, the gradient is related to rate of energy dissipation as followes
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i. - o - u'
3 / L - K Vs / g d ns .

Therefore, te energy lois coefficient is related to rate of energy dissipation as follows:

S- (u'/U)
3 u'.

Turbulence measurements were made using a constant temperature anemometer system (hot-wire or hot-

film anemometer). The hot-film probe is less fragile than its hot-wire counterpart but is not as
sensitive due to a larger surface area. The model anemometer used is the DISA Type 55001 and the

model hot-film probe is the TSI 1219-W.

Correlation Coefficient Squared (R3) for Energy Loss versus Turbulent Energy Dissipation,O

GRAVEL: R2

Sizefrange]:(inches) H, vs. 9

0.50(0.25-0.751 0.962

0.7510.5-1.0] 0.938

1.25(50%0.75-SOl.01 0.980

1.75(1.5-2.01 0.986

SPHEZRS: R3

SLze[rangej:(inches) H, vs 0

0.750 0.975

0.750 0.968

1.000 0.966

1.000 0.988

l.125S50%l.5-S00.7S] 0.978

l.12550%l.5-SO%0.7S] 0.984

1.S00[50%l.0-S0%2.0) 0.991

1.S00 0.977

1.S00 0.969

l.7SO(SOl.S-S0%2.0] 0.990

l.7S0[S0%1.S-SO%2.0j 0.979

1.7S0(50%l.5-SO%2.0] 0.979

2.000 0.973

2.000 0.997

2.000 0.978

2.000 0.984

This shows a high correlation of measured energy loss with measured turbulent energy dissipation.

This result suggests that the primary mode of energy dissipation may be through th generation of

turbulence from the mean flow. The result also suggests that a relationship may be developed that

will predict the K value from measurmnts of the turbulence.

Mathematical Model

(SSZP-2DFl-T) a mathematical model uses a two-dimensional finite element method of solution. This

approach is used because of the complex geometry, material anisotropy, spatial and temporal

variations of the parameters such as the applied heads and fluxes. In the past more general and

simplified approaches were used for solving problems of fluid-flow through porous media.

Analytical closed form solutions, such as the electrical analogy method, Hole-Shaw viscous flow

model and graphical sketching are some commonly used classical procedures. Most of those

procedures can be applied to simplified geometry and linear behavior, which is not the situation

for turbulent flow through porous media.

The program code (SNIP-2DYB-T) is based on the finite element method and is intended for the
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solution of general seepage including such categories as steady confined and unsteady (transient)

unconfined f;ow. The flow can be two dimensional plane or axially symmetric, laminar (Darcy's Law)

or turbulent flow. Finite element equations can be obtained by using a number of different

formulati.on procedures. The reader should consult Desai, (1972, 1975, 1977, and 1978) for further

details of the procedures used in this program code. The origi.ial code (SEZP-2DFl) was obtained

from Drs. T. Kuppusumy and C. S. Desai, (Department of Civil Engineering, Virginia Polytechnic

Institute and State University, Blacksburg, Virginia, July 1978). This code was developed to solve

only laminar or Darcy's Law type flow problems. The original code was modified during this

investigation to solve the turbulent flow case.

A flow domain is divided into several discrete finite elements with the code based on an

isoparametric quadrilateral element using a 4-node element and simple Ruler type integration. The

procedure used to decide the initial free surface, equal potential, and flow lines are the

electrical analogy method, solution of the Laplace equations, or assumed flow net. The initial

free surface, equal potential, and flow lines are input to the program by giving the x-y

coordinates of the nodal intersection of equal potential lines and flow lines. These initial

positions of the free surface and flow lines are subsequently corrected by iterations until they

approximately satisfy the boundary conditions.

The procedure for solving the steady unconfined flow Is based on the inputted free surface

location. This free surface is considered impervious or a "no" flow, boundary condition. Thus,

for the first iteration, values of nodal heads are computed at all nodes including those on the

assumed free surface. If the assumed free surface is indeed the actual free surface, then the

boundary condition, should be identically satisfied. If not, the difference between the computed

head and the free surface or phreatic surface elevation is found. Now the free surface nodes are

shifted by a weighted amount of the differences. This procedure is repeated until an acceptably

small change occurs.

The material parameters required for input to this code are the energy loss coefficient as a

function of Reynolds Number (Reynolds Number is only a function of velocity for a given media) and

porosity. The values of nodal heads and velocities are computed at all nodes. If the assumed

Reynolds number (velocity) and corresponding energy loss coefficient is correct, i.e., the change

in velocity is small then the solution is complete. If not, the new Reynolds Number is used to

find the corresponding energy loss coefficient (K). With this new (K), values of nodal heads and

velocities are computed at all nodes. This procedure is repeated until an acceptably small change

in velocity occurs.

This code can handle most, if not all, of the nonhomogeneous and anisotropic media, and various

categories of seepage. In the case of the phreatic surface, the inclination of the interfaces in

layered media should be vertical or near vertical. If they are horizontal and the phreatic surface

crossed them, the code may involve computational difficulties. The output quantities printed

include the potentials at the nodes, the quantity of flow across a given section and the velocity

through each elinent. Graphical plotting of the results can be obtained by specifying that option.

The program code was verified using measured data published by Volker, 1975. His experimental

results allowed verification of the computed flow net, discharge, velocity distribution for

unconfined non-Darcy turbulent flow.

Results

This mathematical model and these physical modeling results were verified using data measured

during this study and other authors' experimental data. Verification and examination of the

modeling results are congruous.

Volker, (1975) performed two-dimensional flow experiments in an open flume 2 feet wide and 2 feet

deep. The gravel used in the flow experiments was 3/16 inch effective size and no difficulty was
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encountered with surface tension effects. Flow net positions were recorded on the clear side Of

the flume and ieamurement. of piezometric surface were obtained from tapping points on the other

side of the flume. The gravel was retained between two vertical sheets of gauze placed

perpendicular to the direction of flow. The discharge measured experimentally by Volker was 0.052

cfe while the discharge predicted by (SKZP-2DF3-T) using a & value of 2.0 and inputting his

"measured flow net and porosity was 0.0501 cfa.

Results of the physical modeling (one-dimenlional pipe flow model) provided a prediction of the

energy loss coefficient (K) as a function of the nominal media size and gradation. The pipe flow

modeling results were also used to evaluate the ability of the mathematical model to predict two-

dimensional flow through a rock dike in a flume.

Different nominal media sizes and gradations were selected for the rock dike to give a range of

different materials so the data collected could be used to predict the behavior of K, i.e., find

a relationship between the material and the energy loss coefficient. The largest media used was

the nominal aix-inch size. This nominal six-inch size was retained on a five-inch mesh and passed

through a seven-inch mesh. The nominal four-inch size was retained on three inch mesh screen and

passed through a five-inch screen. The nominal two inch media was retained on one inch and passed

through a three-inch screen. The nominal one inch size was retained on a one-half inch screen and

passed through a one and ono-half inch screen, etc.

An extensive investigation was performed to learn the relationship that would best fit the energy

loss coefficient K versus Reynolds Number data. For each size of gravel or sphere a relationship

for laminar energy lose coefficient & was calculated by dividing the Reynolds number into eight

hundred and then using least squared difference to find the K, value. After analysis was

completed, it was decided that the relationship presented in Figure 1 best represents the data.

Both the gravel and sphere data suggest that as the Reynold's Number is increased the K, value

tends to approach two. These results indicate that the shape, gradation, and roughness have little

or no effect on the energy loss coefficient K. These results are shown in Figure 1. However, this

figure shows some scatter in the relationship with nominal size and aggregate gradation, but no

trend is observed. It is hypothesized that the scatter is due mainly to the measured data being

in the transition zone between laminar and turbulent flow. The transition zone Is where values

are uncertain because the flow may be either laminar or turbulent. Secondarily, placement and

shape or packing (arrangement) of the aggregate in the test facility may also cause some scatter

in the data.

The total longitudinal force exerted by a moving fluid upon immrsed media necessarily consists

of the summation of the longitudinal components of all normal and tangential stresses upon the

media surface. Here the reduction of pressure Intensity in the region of discontinuity will so

outweigh the boundary hear so that the drag is almost entirely due to the unbalanced normal forces

on the front and rear of the media. Those forces can only be evaluated by measurement and

integration of the pressure distribution. Within the region of discontinuity downstream from the

point of boundary-layer separation, the mean intensity of pressure ia essentially the same as that

of the surrounding flowi because the separation generally occurs at a point of increased velocity -

and hence of decreased pressure - a low pressure will prevails throughout the region of reverse

flow. Separation is a source of instability, conversion of mean flow energy to turbulent energy.

This leads too fully developed turbulence in the wake of the media. This leads to the occurrence

of energy dissipation through turbulence. In an attempt to separate the effects of boundary shear

or the effects of surface roughness, if any, an analysis similar to that performed on the gravel

was performed on spheres. The results are similar to that for the gravel. Therefore, the

predominate mode of energy diesipitation is through the conversion of mean flow energy to turbulent

flow energy. The result for the spheres is shown in Figure 2.

Verification of the relationship presented in Figure 1 and the mathematical computer model was

accomplished by comparing the computer models' predicted flow rats with the measured flow through
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porous media dxkeg built Lfn the hydraulic flume. Because the computer model is very Sensitive to0

the assumed free surface and flownet for the dike, it was very time consuming to determine the

flownet accurately by an electrical analog model. Initially it is decided to only develop an
average flownst for each head range. Svidently to get bettor predictions of the measured values

require an electrical analog model to be input to the mathematical model. All prototype

predictions should be based on an electrical analog model being input to the mathematical model

before a solution in obtained. The following solutions were obtained by inputting an approximate

flownet and the fitted relationship for K. Some of these results are presented in Table 1.

Table 1 - Some Comparisons of (SEEP-2Dr3-T) Results and Measured Flows

Nominal 6 inch size media: Q(cfs)

RUN Q~measured) Q(predicted) ERROR

6 1.140 1.294 +14%

4 0.801 0.755 -6%

Nominal 4 inch size media: Q(cf a)

RUN Q(measured) Q(predicted) ERROIR

5 0.703 0.602 -14%

6 0.522 0.538 +3%
Nominal 2 Inch size media: Q~cf u)

RUN Q(meaoured) Q(predicted) ERROR

1 1.019 1.034 +1%

4 0.801 0.882 +10%

Nominal 1 inch size media: Q(cf.)

RUN Q(measured) Q(predicted) ERROR

1 0.348 0.358 +3%

2 0.347 0.34S -1%

PLOT OF ENERGY LOSS COEFFICIENT "K

- BO/ft *2.0 00000 Nowninal 1/2 Inch die vow.
£ ~0000 NoeYne 3/4 Inch, S2. Wye

coo mOOe rIYona 1 3/4 minc size gravl

U *coco se.OUDEOWS I [no size groom
0..** 0I.ACCWS 1/2 Inch Ml. gwaro

a 4+005 OUCCEOWS 1 1/2 inch size VOW

0

0

aa

Reynolds ~Number

Figure 1
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figure 2

The energy loss coefficient relationship found from the one-dimension physical model is Input to

the mathematical computer model varying the porosity and aggregate diameter. The porosity for

various size of aggregate approaches S2% for the nominal six inch media.

References

Ahmed, N. and Sunada, D.K., 1969, "Nonlinear Flow in Porous Media", Proc. ASCi, Journal Hyd. Div.
HY6, 6883, Nov.; 1847-1857.

Cedergren, H.R., 1977, "Seepage, Drainage and Flow Nets", J. Wiley and Sons, New York, S34 pp.

Dosai, C. S.: Seepage Analysis of Barth Banks Under Drawdown, J. of S. M.F.Z., ASCE, Vol.98, No.
SMl, November, 1972.

Dosai, C. S. and Able, J. F., Introduct.on to the Finite Elmnt Method: A Numerica Method for
Enaineerina Analysis, Von Nostrand Reinhold Co., New York, 1972.

sai, C. S.: Finite Xlement methods for Flow in Porous Media, Chapter 8 In Gallagherm R. N. at.
.. (ids.), "Finite Elements in Fluids," John Wiley & Sons Limited, London, 1975.

Desai, C. S.: Flow Through Porous Media, Chapter 14, Desai C. S. and Christian, J. T. (ide.),
"Numerical Methods in Geotachnical Engineering," McGraw-Hill look Company, Now York. 1977.

Desai, C. S. and Kuppusumy T., User's Manual and Background for A Computer Code For General Seepage
Analysis (SEZP-2DFE), Department of Civil Engineering, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, 1978.

Dudgeon, C.R., 1966. "An Experimental Study of the Flow of Water Through Coarse , i Media',
Houille Blanche, 7; 765-801.

Penton, J.D., *Hydraulic and Stability Analysis of Rockfill Dme," Department Report, DR 1S,
Department of Civil 2ngineerLng, University of Melbourne, Parkville, Victoria, Australia, July
1968.

Forchheimer, P.M., "Wasserbewegung durch Bodon", Z. Ver. dt. Ing., 1901, p. 1782.

Friedlander, S. K. and Topper, Leonard, (edited by), "Turbulence - Classic Paper* on Statistical
Theory," IntermcLence Publishers, Inc., New York, 1961, pp.34-40.

Hadar, A., "Design of Rockfill lBackwaters," Proceedings, Minnesota International Hydraulic
Convention, September 1953.

Irmay, S., "On the Theoratica.l Derivation of Darcy and Forchheimer Formulae", Transactions,
American Geophysical Union, Vol. 39, 1958 pp. 702-707.

815-9



Johnson, H.A., "Flow Through Rockfill Dams,* Journal of Soil Mechanics and . .indation Enq4fneering
DivLsion. ASCE, Vol. 97, No. S142, February 1971, pp. 329-340.

Kristianovich, S.A., "Movement of Groundwaters Violating Darcy's Law", Journal of Applied Math and
Mach., Vol. 4, 1940, pp. 33-52.

Lawson, J.D. and Curtis, R.P., "Flow Over and Through Rockfill Banks,' Journal of Hydraulic
Division, ASCE, Hyd 5, 1967, pp. 1-22.

Lops, T.M., 1973, "Flow Through Rockfill", In: Hirschfeld, R.C. & Poulos, S. J. (Editors),
Emabankment Dam Engineering, J. Wiley & Sons, New York pp. 87-105.

Lindquist, X., "On the Flow of Water Through Porous Soil", Report to the First Congress on Large
Dame, Vol. 5, Stockholm, 1933, pp. 81-101.

Morcom, A.R., "Fluid Flow Through Granular Materials", Transactions, Instit. of Chem. Engrg., Vol.
24, 1946, pp. 30-43.

Morris, C.D. 1987. "Feasibility study on the use of a porous rock dike as a fish screen at the
Harry S. Trumar Dam and Reservoir". Report submitted to Associated Electric Cooperative, Izc.,
pp. 1-27.

Oliver, H., "Through and Overflow Rockfill Dams - New Design Techniques," Proceedings, Institution
of Civil Engineers, Vol. 36, March 1967, pp. 433-471.

Parkin, A.K., Trollope, D.H. and Lawson, J.P., "Rockfill Structures Subjected to Waterflow,"
Journal of Soil Mechanics and Foundation Engineering Division, ASCE, SM 6, November, 1966, pp. 135-
151.

Parkin, A.K., "Field Solutions for Turbulent Seepage Flow," Journal of Soil Mechanics and
Foundation Engineering Division, ASCE, January 1971, pp. 209-218.

Robertson, James N., "A Turbulence Primer," University of Illinois Engineering Experiment Station
Circular No. 79, Volume 62, Number 71; March 1965, pp. 14-15.

Sonl, J.P., Islam, N. and 3asak, P., 1978, "An Experimental Evaluation of Non-Darcial Flow in
Porous Media", J. Hydro., 38, 3/4, Aug., pp. 231-241.

Volker, R.E., 1969, "Non-linear Flow in Porous Media by Finite Elements", Proc. ASCZ., Journal
Hydraulics. Div., (NY6), Vol. 9S; pp. 2093-2114.

Volker, R.E., 1975, "Solution for Unconfined Non-Darcy Seepage', Proc. ASCE., Journal of the
Irrigation and Drainage Division., (IRl), Vol. 101; 11203, pp 53-65.

Ward, J.C., "Turbulent Flow in Porous Media", Journal of the Hydraulics Division, ASCE, Vol. 90,
No. (HYS), Proc. Paper 4019, Sept. 1964, pp. 1-13.

Wilkins, J.K., 1956, "Flow of Water Through Rockfill and Its Application to the Design of Dams",
Proc. 2nd Australia, NZ, Soils Conference.

Wilkins, J.K., "The Stability of Overtopped Rockfill Dams," Proceedings, 4th Australian - New
Zeala.id Conference on Soil Mechanics and Foundation Engineering, 1963.

B

B15-IO



FLOW REGIRES 11 ALUMINIUM

REDUCTION CELLS

E.E. Khalil and M.F. EI-Demerdash
Cairo University, Faculty of Engineering,

Cairo, Egypt

ABSTRACT

Aluminium reduction technology is a very intensive energy process that re-

quires consumptions of energy (electric) in the order of 14000 Kw hr/ton. Such

energy is used ultimately for the decomposition of the ore and to its reduction

to aluminium. Aluminium Reduction Cells (ARC) normally operate at small DC volt

and high current (may exceed 200 K amp.). Cells of the Hall Herrolt type are

widely used to reduce aluminium through a series of magneto-hydrodynamic and

thermal interacting processes. Flow and beat transfer in the cell cavity that

contains the he3vier molten metal and the electrolytic bath, are important

indicators of cell performance, productivity and cost.

Attempts are made to thoroughly understand the electromagnetic, flow

regimes and turbulence, mixing and interdiffusion as well as thermal balance of

the cell. However earlier attempts made use of simplified modelling assumptions

both for electromagnetics representation of busbar system and cell steel

structure as well as using low order modelling of flow and turbulence.

The present work made use of a full elliptic representation of flow and

turbulence characteristics and took account of ledge formation mechanism and

development of metal topology.

The cell considered in the present work is that of Egyptalum, Egypt

designed as Soderberg with prospects to raise current to 200 K amp., using same

cell cavity, and operating as prebaked cell.

The results presented and discussed in this paper were obtained with the
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aid of a :•:o ~ensional turbulent flow solver, marching in the third direction.

A two e4, ,n turbulence model was incorporated with appropriate modified wall

functi c.s.

The present predictions demonstrate the characteristics of the cell in

terms of melt velocities, turbulence, isopressure and interface contours.

The predicted results show, once more the ability of the present modelling

technique to adequately represent cell characteristics in an actual full scale

production cell.

I. Introduction to Prebaked Cell

I.I. General

Aluminium industry is one of the largest energy consuming sectors, and

with souring energy and raw materials prices, modernization of plants becomes

inevitable. Most of Soderberg Aluminium Reduction Cells "SARC are intensive

energy consumers with energy consumption of the order of 15500 Kwhr/ton with

current officiencies of the order of 88% and current densities about 0.7 A/cm2 .

The corresponding cell voltage drop is 4.46 V and anode paste consumption is

about"490 kg/tons of produced aluminium. New trends suggest the use of the more

efficient multianode prebaked cells to reduce energy consumption and to raise

productivity and production economy.

At Nage Hammady, Egyptalum smelter comprises 460 cells each producing

about i ton/day at current of 155 KA, thus producing 175,000 metric tons/year.

Through a series of energy auditing and management [1], the cell energy

consumption was reduced to about 15,100 Kwhr/ton. It was found inevitable to

change over to prebaked cell technology with optimum utilization of existing

end-to-end facilities.

1.2. Criteria for Proposed Prebaked Aluminium Reduction Cells "PARC"

The proposed PARC were based on the following criteria

Current efficiency not less than 931

Aluminium production per cell 1.479 t/day

Energy consumption 135,000 Kwh/ton

Carbon consumption for anodes 440 kg/ton
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The -ew designs were obtained with the aid of computer program "PACEM2"

designec : 'nat-ematically represent prebaked aluminium cells in end-to-end and

side-by-s':e arrangements under various operating conditions. This is carried

out under the formulation of the governing conservation equations in finite

elements and finite difference techniques and solving these equations in an

iterative manner at a grid mesh superimposed on the cell plane in question.

A multi anode design is proposed with 24 similar anodes with side and

longwise clearances, central channels and overall cavity dimensions of 10 x 4 m.

and depth of 0.30 m between cathode and anode bottom. Figure I shows the general

cell configuration.

In the second section, description of the computational procedure,

equations, model assumption and wall conditions is given. The third section

presents results of computations and discussion is devoted to show merits of

present procedure and its limitations. The paper ends with a brief summary of

conclusions.

II. Computation of Flow Field and Melt Velocities

11.1. General

The current distribution within the aluminium reduction cell was obtained

from the Ohm's law and applying the current conservation equation at all grid

nodes in the cell. The value of the electric conductivity was taken to vary from

one location to other as previously described by El-Maghraby et al . [2] and

Aly [3]. The current density distribution was determined within the cell and

consequently the magnetic field strength and direction at any location in the

cell were determined. This was achieved by the application of the Biot-Savart

law in the integral form. The current densities and magnetic fields being

calculated within the cell, the electromagnetic stirring forces can be readily

obtained from the Lorentz law [2].

Such forces are three dimensional in nature and were calculated at all

preset grid nodes.

11.2. Melt and Electrolyte Velocities

40 In aluminium reduction cells, the electrolyte and molten metal move under

the influence of the prevailing forces. Namely the electromagnetic steering

B17-3



force com."'entsinertia forces, bouyancy forces and turbulent interactions. In

the preser' oori, these forces are considered; it is worthnoting that the first

type of :':es is generally dominant. The general governing equations of mass

and momentum are incorporated in the present analysis. The general form of these

equations are show as;

The above equation is general with P representing any conserved dependent

variable; ý can represent U, V or W velocity components. This yields the three

momentum equations. For t equals unity, equation (1) is then reduced to the

continuity equation. The second term on the left hand side of equation (I)
represents the turbulent flux of the entity t in question due to fluctuations of

velocity component U. and fluctuations of 1.

In turbulent flow analysis, a commonly adopted technique, is to use the

eddy viscosity concept of Launder and Spalding [4], hence the correlation W, can

be represented as;

ou)- _ (2)

where ¢ represents velocity components, then -e is the effective viscosity

defined as;

-: e : Pt + P (3)

and using the two equation k-E model of Launder et al. [4],

t = 0.09 c -(- 4)

where p is Laminar viscosity

k kinetic energy of turbulence

S dissipation rate of kinetic energy of turbulence

o is local average density

The values of k and E at every grid node can be readily obtained from their

respective transport equations expressed in the form (1) with 0 equals to k or c

respectively [5].

The term S denotes the source/sink of the entity €. In momentum

equations, Sup Sv and Sw contains the eectromagnetic force components Fx, Fy and

Fz, respectively. Details of this model and its applications and validation can
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be found - -eference 5, 6, 7 d 8. In the present work, the values of F , Fy

and F •e-e :ýIained from reference (8) and incorporated in the flow predictionz

code.

Ill. Numerical Computations of Flow Characteristics

Results and Discussions

III.1. Predicted Parameters

In numerical procedure outlined in the previous section was applied to the

prebaked cell configuration shown earlier in Figure 1 for side-by-side cell

arrangements. The present demonstrations were carried out for the situation of

24 anode blocks. The numerical procedure utilizes a 24 x 24 grid arrangement

superimposed on the cell horizontal plane at various distances z from bottom of

cathode, for a 200 Ka cell.

Predictions of current density J xy magnetic flux density 8 xy, Bx, By and

B z were obtained with the aid of the electromagnetic model of El-Maghraby et

al. [8] and are shown here in Figures 2a, b, c, d and e for completeness, as the

present contribution is devoted to flow regimes and interface characteristics.

The results of Figure 2 are obtained for z = 0.275 m from cathode bottom.

The corresponding flow field vectors are shown in Figure 3 which sho~s two large

eddies to the upstream eid and smaller eddies near the downstream side. The flow

is not symmetrical along the longitudinal axis of the cell due to effect of the

two neighbouring cell fields upstream and downstream of this cell. The order of

magnitude of the velocities is 4.0 cm/s.

The corresponding pressure distribution in the same horizontal x-y plane

is shown in Figure 4. The pressure distribution is non-symmetrical along the

longitudinal cell axis and larger pressure dop are observed near the upstream

side. The maximum pressure drop is of the order of 40 N/lr.

The corresponding ceil characteristics at z = 0.2 were obtained under the

same operating conditions and are shown in Figures 5, 6 and 7. Figures 5A, B, C,

o and E shows the current density J B xy Bx' By and B Z. The values of Bxy,

Bx9 By, and Bz are near those shown in Figure 2A while the current density

changes due to field changes from electrolyte to molten metal.
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Fiaure shows the velocity vectors in xy plane at z = 0.2, the

velocities ire nigher than those at z - 0.275 m and is attributed to the strong

forces at t-nis plane.

The predicted pressure distribution is shown in Fig. 7 and it shows better

symmetry than that observed in Fig. 4. The maximum pressure drop is 42 N/mm2 .

Figure 8 shows the obtained interface contours and Fig. 9 presents a three

dimensional display of the interface that shows two large troughs in the middle

of cell and larger peaks at the vicinity of the four corners of the cell.

Table 1 shows the maximum values of cell properties at three different

locations of z 0.125 (mid aluminium), z = 0.2 m and z = 0.275 mid electrolyte.

Table 1

Property z=0.125* z = 0.2 z=0.275

Jxy' A/m 2  Max. 1644 2364 444

x 1589 2195 444
J 1133 -1485 130

1z -5161 -5738 -5622

B Gaus 114.3 113.34 118.29xy
B 51.5 54.01 58.3x
By 107.8 105.6 110.17

Bz 40.82 40.81 41.65

U 11.9 13.74 3.916xy
U Abs 11.9 -ve 13.7 -ve 3.89 -ye

Uy Abs ý .1 10.5 2.92 -ye

P 4- +29 44

*See reference [8].

From Table 1, it can be seen that current density increases in the core

of the flow and decreased towards the electrolyte zone. The corresponding

current density in the z-direction J does not change drastically as the other

two components which are affected by the existance of ledge, walls, ... etc. The

magnetic flux density vector B shows minimal changes within 3%, same remarkxy

applies for Bx, By and B . The magnetic force density Fxy is obtained from

current density vector Jxy and magnetic flux density Bxy by equation of Lorentz,

F = J x B. The magnetic forces change in magnitude and direction due to the
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changes 2 '•' and current densities and hence affects the momentum balance. As

expected, ' -s A Id change velocities and pressures, demonstrated in Table 1.

111.2. Discussion

From results described above, one can conclude that the magnetic flux

distribution is almost the same at different z sections. This approximation is

reasonable since the depth of liquid is small compared to cell and busbar

dimensions. On the other hand, flow results show remarkable changes along the

cell depth. In mid electrolyte, the fluid is relatively calm, while in the

metal velocities can reach more than four times those in electrolyte. It seems

that the zone just below the interface suffers the most violent flow.

These results stress the role of current distribution on flow charac-

teristics along cell depth. When the magnetic flux is considered constant along

the depth, then, current distribution is the only factor that affects force

distribution; the basic input of flow equations. This is true as shown in Table

(1) where a good correlation can be held between horizontal currents and flow

values. Flow velocities clearly increases as horizontal currents increase. These

horizontal currents cause the development of forces that disturb the relatively

stable force field caused by vertical current.

Horizontal currents developed in the cell depend upon the geometry of

cell cathode in relation to anode blocks. Also, the thickness of ledge and bottom

ridge affect the geometry of cell where current is forced to fill. In the

electrolyte, the central channel ebtween anodes affects current distribution as

shown in Fig. 2A. The current in the electrolyte does not suffer large divergence

towards cell walls. In the metal, the effect of central channel is screened out

and the current flows towards the walls to fill cell cavity and then converges

back to escape from the cell hearth.

One can stress the geometry effect on flow characteristics of the

prebaked cells.

IV. Summary of Conclusions

The present work addressed the mathematical modelling of flow field,

turbulence and interface topography in Prebaked Aluminium Reduction Cells "PARC"
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under !c -a* operating condition. The following are the more important

conclusi:- :` -nis work :

1. A n.merca, finite difference procedure was developed and utilized to predict

local flow ch aracteristics in "PARC. The procedure solved fully the time

averaged conservation equations of mass, three momentum and energy in the

cell at discretized grid nodes mapping the horizontal and vertical planes.

2. Twenty four prebaked anodes of dimensions 1.65 x 0.72 x 0.6 m were used.

3. The model ability to adequately predict cell properties was demonstrated by

parametric investigations. Model calculations can be readily used to yield

the effect of end and quarter risers and busbar arrangements. The model is a

usefull tool for engineering design.
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AN ANALYSIS OF LIFT FORCES ON
AEROSOLS IN A WALL BOUNDED

TURBULENT SHEAR FLOW

P. Cherukat and J. B. McLaughlin

DOpafnuiotf mCho Engikw
Clsarmon Unmkes, Psdamn, NrY 13sesm50

Abbtract

This paper describes work that will lead to a better understanding of the role of

lift forces in the deposition of aerosols on the walls bounding a turbulent shear

flow. After providing some background information about aerosol trajectories

that has been obtained from computer simulations, new results for the lift

force in the relevant parameter ranges are presented.

1. Introduction

Aerosols follow the streamlines of a turbulent shear flow fairly well except

in the viscous wall region. Although the inertia of the aerosols is small, the
extremely rapid spatial variations of the fluid velocity in the viscous wall
region can cause aerosols that are bigger than about a micron to depart from
the streamlines and travel toward the wall. Computer simulations by Kallio

and Reeks' and McLaughlin' indicate that as they pass through the viscous
wall sublayer, aerosols that deposit on the wall develop Reynolds numbers of
order unity. The cause of the large Reynolds numbers is the large streamwise
slip velocity that develops as the aerosols pass through the viscous sublayer.

Thus, in spite of their small size, it is possible that inertial effects could
play a significant effect in the deposition of aerosols. It has been pointed
out'- that the Saffman lift formula3 would suggest a significant lift force

on the aerosols as they pass through the viscous sublayer. Although the
force predicted by the Saffman formula is small compared to the maximum
normal component of the Stokes drag force, it acts on the aerosol in a region
of nearly stagnant fluid. As a consequence, it can increase the predicted rate
of deposition by an order of magnitude. However, McLaughlin' pointed out

that Saffman's assumptions are not satisfied by the aerosols that deposit as
they move through the viscous sublayer.

Saf•man pointed out that there are two Reynolds numbers that charac-
terize a small, freely-rotating sphere that translates through an unbounded
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0
::ear shear flow. One Reynolds number, fi,, is based on the sphere di-

:,_eter and the velocity of the sphere relative to the surrounding fluid. The

other Reynolds number, Rea, is based on the sphere diameter and fluid shear

rate. He assumed that Re. and Re,; were small compared to unity and that

Re, <«< Ree where Re, = v.d/Y and Rea = Gd2/v; the symbol d denotes

the particle diameter, G denotes the velocity gradient, %ad v. denotes the

magnitude of the particle's slip velocity. However, McLaughlin's l computer

simulations indicate that Rea is of order 10-1 and Re. is of order unity. Thus,

two of Saffman's assumptions are not satisfied for most of the aerosols that

deposit as they pass through the viscous sublayer. In addition, Saffman's

analysis ignores wall effects.

The goal of the work to be discussed has been to obtain a better un-

derstanding of the lift force for the Reynolds number ranges of interest for

aerosol deposition and to include wall effects. In Section I1, asymptotic re-

sults that give the dependence of the lift force on the ratio Re/ 2/Re. and

the distance of the aerosol from the wall wiU be presented. These results

assume that Rea and Re. are small compared to unity and that the distance

of the aerosol from the closest wall is large compared to the aerosol radius.

Since numerical simulatioas indicate that Re. is order unity for most of the

aerosols that deposit as they pass through the viscous sublayer, it is neces-

sary to have results for finite Reynolds numbers. In Section III, the results

of direct numerical simulations of the three-dimensional flow field around a

sphere in an unbounded linear shear flow will be discussed. The results help

to assess the usefulness of the asymptotic results at finite Reynolds numbers.

At the present time, no numerical results are available .hat include both

finite Reynolds number effects and wall effects. In Section IV, some experi-

mental measurements will be presented and compared with the asymptotic

and numerical results. Finally, the new results are summarized in Section V.

I. Asymptotic Results

wall

Figure 1. Sphere translaing in a wall bounded shear flow.

(Reference frame translates with the sphere)
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0
!I his section, results for Lhe lift force on a small sphere in a wall-

.vuiLded linear 4hear llow will be discusseid. Tlhc derivaLious h-ve bcele givel

elsewhere"',. The geometry of interest is shown in Fig. 1. The center of the
sphere is located r-t a distance I from the wall. The problem is formulated in
a frame of reference where the sphere is at rest. The origin of the coordinate
system is at the center of the sphere. The wall is located at z = -1. The

undisturbed fluid velocity is

v = (Gz +v.)e 3 , ()

where e3 is a unit vector in the z-direction. Such a situation could arise, for

example, by the sedimentation of a negatively buoyant sphere in a vertical
channel flow provided that the sphere is clobe enough to one of the channel
walls that the curvature of the undisturbed fluid velocity may be neglected.

Unless an external force constrains the sphere, it will migrate laterally. It
may be verified after the fact that the migration velocity is a small fraction
of v,. Thus, the sit-.ation in Fig. I may be viewed as quasi-steady. An
alternative is to aswune that an external force prevents the sphere from
moving in the x-direction. In either case, it is assumed that the velocity of
the sphere relative to the surrounding fluid is -voe,. In the laboratory frame

of reference, the waU is at rest. In this frame, positive values of G and v,
correspond to a negatively buoyant sphere in an upward flow. If v, < Gi, the
sphere moves upward, but it lags the surrounding fluid. Ar pointed out in
the Section 1, in the motion of aeroscls, the slip velocity arises because of the
aerosols' inertia and the rapid variations in the fluid velocity in the viscous
wall region. However, in discussing the results for the lift force, it will be

convenient to picture the slip velocity as being caused by the sedimentation
of the sphere in a vertical shear flow. The sphere lags the fluid if vt > O,G > 0
or v, < 0,G < 0. The sphere leads the fluid if V, > 0,G < 0 or v. > 0,G < 0.

Considerations of symmetry indicate that the lift force (or migration velocity)
deends only on whether the iphere leads or lags the fluid. Thus, one may

assume that G > 0 and consider the cases v. > 0 or v. < 0.
The results to be discussed are based on the following assumptions:

a << 1 (2)

Rec << 1 (3)

Re, << 1. (4)

No assumption is madet about the ratio e = Rec 2 /Re.. The assumptions
about Rec and Re, imply that, near the sphere, the convective term in the
Navier-Stokes equation is small compared to the viscous term. However, this
assumption is not necessarily valid at large distances from the sphere. In
an unbounded fluid, inertial effects are comparable with viscous effects when
the distance from the sphere, r, satisfies r - min(Lo, L.), where

La = ('t)/3 (5)
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mnay be seen that Lc and L, are both large compared to ( when Rc.
and Re, are small compared to unity. Thus, as pointed out by Saffman 3,
inertial effects must be treated with singular perturbation methods. Saffman
considered the case e = oo and showed that the lift force, FL, was

FL = 6.46a u,(G)'1 2  (7)

where it is assumed that G > 0. To leading order, one may obtain an expres-
sion for the inertial migration velocity by assuming a Stokes drag coefficient:

FLFl. =(8)

where p denotes the dynamic viscosity of the fluid.

McLaughlin' showed that the singular perturbation methods used by

Saffman may be generalized to obtain a result for the lift force in an un-
bounded linear shear flow (I - oo) that is valid for arbitrary values of e:

F& = !-•o u.(2-)1 J. (9)I" /

In Eq.(9), J denotes a dimensionless three-dimensional integral that depends
only on e. As e goes to infinity, J approaches 2.255 and Eq.(9) reduces to
Saffman's formula in Eq.(7). For large but finite values of e, J is given by
the asymptotic form: J2

J =2.2~ -0.6463

=( 1 0 )

while, for small e,
J = -327ri2 1n(l/i 2 ). (II)

to

I.,

Figure 2. J as a function of e.

In Figl. 2, J is plotted as a function of e. When c is smaler than unity, the

Saffmns formula significantly overpredicts the maontude of the lift force.

This raise doubts about the validity of aerosol trajectories computed with

tl., .sirt,t,. toxie~mixii for the lift force.
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iid'.% have a significanit effect on the lift force experienced by aerosols in the

viscous sublayer. This may be seen by considering the relative sizes of a' and

Lý, where the plus sign denotes a value in "wall units" based on the friction

velocity and the kinematic viscosity. Since the friction velocity is based on

the average wall shear rate, one may take L* = 1. Since the lift force is

caused by inertial effects at distances of order L(; from the sphere, it is likely

that the presence of a wall will modify the lift force at most points within the

viscous sublayer. Wall effects will also change the drag coefficient6 , but only

when the sphere is within a few radii from the wall and a+ is typically on

the order of 0.1 for aerosols in the range where lift forces may be important.

Cox and Brenner' developed a theory for the lift force on a sphere that

is close enough to the nearest wall that I << min(Lo,L,.). Under these

conditions, the leading order approximation to the lift force may be calculated

by regular perturbation methods. They also assumed that a << I so that

a non.neutrally buoyant sphere may be treated as a point force to leading

order. Cox and Hsu' used the theory to compute the lift force on a sphere

in a vertical parabolic flow bounded by a planar wall. Close to wall, the

parabolic flow may be linearized. The Cox-Hsu result for a linear flow is

23 av2  1Gavl.

FL = 6fixa(avs + 4-)" (12)
32 v 64 L,

For future reference, it is convenient to express the lift force in Eq.(12) in

terms of the dimensionless "outer" coordinate I. = 11LG:

r p2 1 + 1.). (13)
16 6

Using the dimensionless parameter J defined by Eq. (9), the Cox-Hsu result

is 2 1 11
J = -(- + -. ). (14)

The Cox-Hsu theory is valid when I << min(LG, L.), while the Saffman

and McLaughlin theories are valid for I >> maz(LG, L.). Recently, McLaughlin'

has shown that it is possible to establish a general result for the lift force

that reduces to the above results in the appropriate limits and is also valid

at intermediate values of 1. The general result is

, = FL"+ FL(15)

where FL is the lift force on the sphere in an unbounded, linear shear flow

and Ftý is the correction due to the wall. Both Ft and FL' are obtained

by Fourier transforming an Oseen.like (linear) approximation to the Navier-

Stokes equation and solving an ordinary differential equation for the Fourier

transform of the disturbance flow. The result for FL. is given by Eq.(9) and

Fig. 2. McLaughlins shows that Ft- may be expressed in terms of integrals

of the Airy function, Ai.

In the limit 1. << 1, the result for FL reduces to the Cox-Hsu result

as may be seen in Fig. 3 which shows the dimensionless lift force, J, as a
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Figure 3. J as a function of 1. for e o Co.

function of 1. for e a co. It may be seen that J approaches the Saffman value

(2.255) as 1. goes to inanity. For e -a oo, the lift force points away from the

wall for all values of .. For e - -oo, the lift force points toward the wall

at all distances satisfying I >> a. For positive values of e larger than about

0.22, the lift force points away from the wall at all distances. An example of

the dependence on 1. is shown in Fig. 4 which shows the dimensionless lift
force for c - 1. However, for c = -1, the lift force points toward the wall
for large values of 1. and away from the wall for small values of 1. as may be

seen in Fig. 5. For values of e, that are small in magnitude, the lift force
points away from the wall at all values of 1. satisfying 1. << l/e. The lift
force in this case may be approximated by the Vasaeur-Cox' expression for

the lift on a sphere sedimenting next to a vertical, planar wall in a stagnant

fluid. This may be seen in Fig. 6 which shows results for e = 0.2.

-5

-U 1.0 1-& U ,h Ut4 & ILS &.S U

Figure 4. J as a function of 1. for e 1.

Figure 4. J as a function of 1. for e -1.

B./
Figure 5. J as a function of I, for e = -I.t
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Figure 6. Comparison of J according to McLaughlin's' expression with

Vasseur-Cox 9 expression for e = 0.2.

The asymptotic theory described in this section provides detailed infor-
mation about the dependence of the lift force on aerosol Reynolds numbers
and the distance from the wall. However, before applying the theory to tra-
jectory calculations, it is important to determine whether the theory makes
accurate predictions at finite Reynolds numbers. This issue will be addressed

in Sections III and IV.

Ill. Numerical Simulations

To calculate the lift on a sphere at finite Reynolds numbers, it is necessary to
solve the three-dimensional Navier-Stokes equation for the flow around the

sphere. The governing equations are

v . V = -Vp/p + YV2v (16)

v V = 0 (17)

v = nx r, Irl = a (18)

v = (Gz + v,)e 3 , Irl = R. (19)

In Eqs.(16-19), v denotes the velocity of the fluid, p is the pressure, and p
is the fluid density. In Eq. (18), fl is the angular velocity of the sphere. In

Eq. (19), R is the radius of an imaginary outer boundary. On this artificial
surface, the disturbance created by the sphere is assumed to vanish. Ideally,

R would be infinity. In the work to date, R = 50a. In the limit of vanishing
Reynolds numbers, there is an exact solution for a freely rotating sphere
that translates relative to a linear shear flow' 0 . According to the Stokes flow
solution, the disturbance flow is on the order of two percent at r = 50a.

Furthermore, the effect of inertia is to cause the disturbance flow to decay

more rapidly at large distances'*,.
A hybrid finite volume-spectral method is used to solve Eqs. (16-19). The

equations for the Cartesian components of the fluid velocity are written in a
spherical coordinate system. Spectral methods are applied in the azimuthal

coordinate. The region between r = a and r = R is divided into control
v,)hmuws withi surfaces that are defined by constant values of the spherical
,i u-,dhliL.I-S. "lht 1110114-1 itiam wtaid i'iotttiiety etoeuations are integraLtd over
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.. ~• t i r is k C tl iit a 1cii-inipliciL ,n-mi. The velocity ,ad pres-

,.re at each time step are obtained by solving the discretized momentum

and continuity equations simultaneously. This large system of linear alge-

braic equations (typically about 50,000) is solved by the GMRES"3 method.

The results obtained to date appear to show the same trend with e as

the asymptotic results in Eq.(9) and Fig. 2. In Fig. 7, the dimensionless

lift force, J, is plotted versus e. Also plotted in Fig. 7 is the asymptotic

result for J. The numerical results were obtained for values of Rea ranging

from 0.10 to 3.0. To date, wall effects have been ignored in the numerical

simulations.
30

2.$

2 0 0 0 • o

. 0 :

' 0gfi .. o ... 0, A i ts, L's

Figure 7. J computed by flow simulation as a function of e.

IV. Experiments

To test the asymptotic and numerical results, it is necessary to perform
experimental measurements. Ideally, one would measure the lift force. How.
ever, it is much easier to measure the lateral migration velocity. When the
sphere Reynolds numbers are small compared to unity, one may use the
Stokes drag coefficient to relate the lift force to the migration velocity. At
finite Reynolds numbers, one should use a drag coefficient that is appropriate
to the flow around the sphere. However, at small e (weak shear), it seems
reasonable to use the drag coefficient for axisymmetric flow around a sphere
to approximate the drag coefficient.

The strategy of the experiments is to measure the lateral migration ve-
locity of a sphere sedimenting through a vertical linear shear flow. A homo-
geneous flow apparatus (HFA) (fig. 8) similar to the one used by Graham
and Bird"' is used to produce a linear shear field. The HFA consists of two
timing belts rotating in the same sense in a liquid, the liquid is contained in
the space between two Plexiglas walls in the front and rear and aluminum
blocks at the top, bottom and sides. It has been verified by experiments and
simulation using the CFD software NEKTONt that the flow profile is linear
in the middle 60 percent of tb. region between the Plexiglas walls.

The migration velocities have been measured for polymethylmethacrylate
(pmma) balls (2mm dia.) and polyacetate balls(2mm and 1.5mm di&) in
aqueous solutions of polyalkylene glycol (viscosities between 20cp and 60cp
and specific gravities in the range 1.03 1.05).

t NEKTON s a re•gtemrd trsdamark of NeMlonscs Inc. and M.I.T.
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Figure 8. Homogeneous Flow Apparatus (HFA).
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Figure 9. Experimentally measured values of J as a function of e.

V. Conclusi

The numerical and experimental results are for situations in which wall effects

may be neglected. They show that the asymptotic predictions are robust in

the sense that they make reasonably accurate predictions even when the

slip Reynolds number is of order unity. No numerical results are available

for comparison with the asymptotic results for wall-bounded flows. However,

Cherukat and McLaughlin"5 reported measurements of the inertial migration

velocity of a sphere sedimenting next to a vertical planar wall in a stagnant

liquid. Their results agree well with the small e limit of the asymptotic theory

even though the slip Reynolds numbers were as large as 3.

At the present time, it is not clear what role the lift force plays in inertial

aerosol deposition. For small values of 1. or small values of e, the lift force

points away from the wall. The Saffman formula would indicate that the

lift force points toward the wall. Thus, the actual lift force may introduce

B
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EV.kLUATION OF EJECTION DETECTION SCHEMES IN TURBULENT WALL FLOWS

Renard G. Tubergen and William G. Tiederman
School of Mechanical Engineering

Purdue University
West Lafayette, IN 47907-1288

Velocity techniques for detecting ejections have been systematically examined by separating

the detection schemes into trigger and delimiter algorithms. A new technique for grouping

ejections based on a period of quiesence between bursts was also developed. The

combination of improved ejection detection and the new grouping technique have reduced

the error in the time between bursts from 25% to 10%. There is a similar improvement in

the uncertainty.

1. Introduction

Coherent structures within the turbulent boundary layer have been identified using many different

techniques. Each uses one particular aspect of the structure for detection. This approach often provides

knowledge about the detected feature without providing a complete picture of the structure.

The most complete view of the turbulent boundary layer structure was generated using Spalart's (1988)

full numerical solutions of the boundary layer equations. Robinson et al. (1990), using the Ref = 680

boundary layer from this data base, identified a Reynold Stress Producing Vortical Structure (RSPVS)

containing all previous observations attributed to the wall-layer structure.

The most straightforward method to answer questions about how the RSPVSs are conceived, mature and

die would be to observe a large number of samples from real flows. However, the insitu identification of

RSPVSs is a problem that precludes a straightforward approach. Investigators have often tried to identify the

wall-layer structure by the ejection of low-speed fluid away from the wall. Ejections are the outward

excursions of fluid from a low-speed region near the wall (Kline et al., 1967). Since multiple ejections may

occur within a single event named a burst (Offen & Kline, 1975, Bogard & Tiederman, 1981), ejections were

subsequently grouped into bursts, which were considered to be the event of interest. These ejection/burst

events were identified along the inboard side of the leg and below the neck of the RSPVS.

Techniques that have been used to identify parts of what was believed to be the dominant structure are

summarized in Table 1. U is the instantaneous streamwise velocity and u is the fluctuation about the mean.
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Table I Compar-son of ejection detection techniques

MathemaUcal Descnptbon of Ejection Dewcuon Tclhniques

Techruque Defining Variable Threshold Equasion Ejection CntLra References

^2 1
VITA var(x,,tT) = U (x,,t,T)-(u(x,,t.T)) vau > ku'2 Blackwelder& Kaplan (1976)

I where:

SI, hsl < 0 Chen & Blackwelder (1978)

TT du
Tlm-- < 0  Bogard & Tiderman (1986)
dtu<O Tuberga (1991)

Zaric Z, = u(Lg-), >Z7<0 Zanc(1975)
du d

Z 2 =(d) Zaric (1982)
dt

Z3= U

u(<O 0
uv-Level uv(t) < -hu'v' and Lu & Wilbnarth (1973)

v() > 0 Waflace et aL (1972)

u-Level u(t) < -Lu' Lu & Willmanth (1973)

An overbar denotes the mean value while a prime identifies the root mean square of the fluctuation.

Blackwelder & Kaplan (1976) identified sharp shear layers that occur at the inte'face of burst events (Bogard

& Tiederman, 1987). These sharp shear layers were located at the interface of the streamwise vortex, or 'leg",

and also the transverse vortex , or "head" of the RSPVS. Wallace et al. (1977) used a characteristic velocity

pattern that was postulated to result from the Reynolds stress producing structure. Willmarth & Lu (1973)

and Wallace et al. (1972) used a second quadrant (in u-v coordinates) technique to identify regions of the flow

having low streamwise velocity and a large velocity, v, away from the wall. Zaric (1975) attempted to identify

the RSPVS by searching out the regions in the flow where the streamwise momentum was changing rapidly. In

addition to these techniques, a handful of new schemes created by using the older techniques as building

blocks have also been tested (Aouad & Brodkey, 1990, Mao-Zhang & Bradshaw, 1988, Falco & Gendrich, 1988,

Luchik & Tiederman, 1987).

With each technique identifying a part of the RSPVS, there is a need to determine which technique can

identify the RSPVS most effectively. The question of single point technique performance has been considered

by Bogard & Tiederman (1986), and Luchik & Tiederman (1987). However, new techniques have been

published since the last critical review. One purpose of this study is to develop a systematic approach to

determine which Eulerian, single point technique or combination of techniques performs the best.

A data set containing simultaneous flow visualization and two-component velocity records from the two-
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I dimensional channel flow of Bogard & Tiederman (1986) was used to test the techniques. The flow

visualization tecnnique based on florescent dye seeping through a wall slot was calibrated using a hydrogen

bubble wire. Velocity was measured with a miniature x-wire hot film probe located at y" of 15.

2. Evaluation Procedure

In order to evaluate and to understand newer, compound techniques that use multiple algorithms and

multiple thresholds, it was necessary to separate the components of each compound techniques for analysis. All

the new compound techniques use one characteristic to turn on the detector and a separate characteristic to

turn off the detector. Therefore it was natural to separate the components into a trigger or "on" function and

the delimiter or 'off" function. The trigger is the algorithm used to find an extreme value having a very high

likelihood of being part of a detected ejection. The delimiting function, searching forward and backward from

the trigger detection, determines the beginning and end of an event. Thus, the delimiter yields the amount of

time that the event is taking place.

The trigger functions were evaluated using two variables, P(AT) and P(VT), defined by

P(AT) - NAv/NA and P(VT) - NvA/NV (1)

NA corresponds to the number of events detected with the algorithm, NV corresponds to the number of events

detected visually, NAy is the number of algorithm detected events corresponding to some portion of a visually

detected events, and NvA is the number of visually detected events corresponding to some part of an event

detected with the algorithm. Figure 1 contains plots which demonstrate typical records used to evaluate the

terms in Equation 1. The second line represents the events detected with the VITA algorithm applied to the

uv signal with threshold k = 0.4. For this example NVA is 4, NV is B and P(VT) is 0.67. In a similar fashion,

NAv•=7, and NA-=8 so that P(AT)=0.875.

Figure 2 shows that both P(AT) and P(VT) are functions of the threshold level which is used. An increasing

threshold results in more accurate detections. An increasing threshold also results in fewer detections which

decreases the number of visual events that correspond to the detections. Therefore the increasing threshold

decreases the value of P(VT) which is the probability of a visual event being detected. When P(AT) is plotted

as a function of P(VT) the accuracy of the detector is seen as a function of the probability of a visually

identified ejection being detected by the trigger. This allows direct comparison of different triggers.

The trigger function is required to have a total "on" time that is les, than the "on" time of the visual

detection file. This limit allows the trigger to be used with a separate delimiter. Since the TPAV algorithm

did not satisfy this condition, it was considered to be a complete detection algorithm by itself. Thus TPAV

algorithms are considered when the trigger and delimiter are evaluated as a total scheme.

The delimiter functions were evaluated using two variables similar to those given by Equations 1. These

new variables reflect the amount of time that the functions are correct. The second two variables are:
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OFF *
I I I lI e
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Algorithm detected events which P(AT)

ON correspond to Visually detected events *7F10.7 *
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850 900 950 1000 1050 11I00 1150 0.6 ________________

Time(in wall units) 0.4 0.6 0.8
P(VT)

Figure 1 Example of temporal records of
visual and trigger detections Figure 2 Cross-plot evaluation of VITA(uv)

P(AD) = TAv/*rA and P(VD) TAv/Tv (2)

TA corresponds to the on time of the algorithm detected events, Tv corresponds to the on time of the visually

detected events, and TAV corresponds to those points in time where both detectors are "on'.

Examples of the signals used to determine the quantities used in Equations 2 are demonstrated in Figure 3.

The second line is from a file where VITA applied to uv is the trigger and u-level is the delimiter

(VITA(uv)+u-Level) with k=0.4 and h=0.15, respectively. For the example, the visual detector identifies 124

units of time as active. The detection algorithm yielded 78 units as active, of which 70 units were also detected

by the visual detector. P(AD) for this example is 70/76 = 0.92, and P(VD) is 70/124 = 0.56 These two

variables are also functions of the threshold. As the delimiter threshold increases, the detector becomes more

selective which results in less but more accurate detection of the event. P(AD) is the conditional probability of

the detector being "on" and correct. P(VD) is the conditional probability that the point within a visually

detected ejection was identified by the detector as an ejection. These are cross plotted so that different

delimiters can be compared on the same graph.

By optimizing these four variables, a combination of trigger and delimiter can be found that has not only

the highest percent of accurate detections, but also correctly represents the beginning and end of the event in

time. With this division, the effectiveness of the total algorithm is more dependent upon the trigger function
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Figure 4 Signal Trigger Techniques Comparison
Figure 3 Example of temporal records of visual and of Slope Techniques and Sign as Second

tigger and delimiter algonthm detections Condition with VITA

because the delimiter can not detect ejections missed by the trigger, nor can it reject false trigger detections.

The number of velocity components in the algorithm has obvious consequences. More than one velocity

component increases the experimental difficulty; but, the additional data should yield a better detector.

Therefore it is useful to determine both the best one-component technique, and the best overall technique.

3. Results

A random number generator was used as an ejection detector to provide a basis for comparison. The

effectiveness of any technique had to surpass that of the random number generator in order to be considered.

The random number generator yielded a value of 31% for P(AT) for all values of P(VT). That is, it was 31%

percent accurate regardless of how many of the ejections it had detected.

The VITA technique applied to the u signal has 3 different conditions used to determine whether the

detected event was an ejection or a sweep as shown in Table 1. Figure 4 showe ,hat the Tubergen(1991)

technique performs best so this is the technique used in this paper. A- averaging time of 15 wall units was

chosen for the VITA technique to correspond to Alfredsson & Johansson (1984) and Johansson & Alfredsson

(1982). This was within a range in which the detector showed minimal change about some optimum point.

3.1. Trigger and Delimiter Analysis

The VITA and the Level techniques operate on either the u or uv product signal, while Zaric's technique

functions only on the u signal. Figure 5 shows the accuracy of these techniques used as a trigger. The VITA

detector operating on the uv product is slightly more accurate than the uv-Level and Zaric detectors.
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Figure 5 Comparison among trigger techniques Figure 6 Comparison among delimiting techniques

Figure 6 shows the performance of the techniques used as delimiters. The Level detector schemes are the

most accurate with the only distinction between them being the limited interval over which the uv-Level

works. This limitation is duo to the highly intermittent fluctuations in v causing the uv event to shift into

quadrant IMI which terminates the detection. It is also interesting to note that the Zaric technique, which does

well as a trigger, is the poorest performer as a delimiter.

3.2. Analysis of Compound Techniques

Luchik & Tiederman (1977) compared ache nes at threshuiwi1 where the schemes were detecting the same

number of ejections as detected visually. For a more rigorous comparison, the intent of this study was to

match as closely as possible both the number of detections (164) and the percentage (approximately 31%) of

active time between the detection scheme and the visual detections.

It is not clear whether a comparison based on the number of detections or time of detections is more

appropriate. A perfect detector would match both the number and time. Of the existing techniques, only the

modified u-Level (Luchik & Tiederman, 1987) could match both the time and number of detections. The

remaining techniques were evaluated at two separate sets of thresholds which both appear in Table 2. One set

was used to match the number of detections, while the second was used to match the active time of the flow.

Additional information about the detector is gained by examining both sets of thresholds.

The most recent (Mao-Zhang & Bradshaw, 1988) improvement to detection schemes is an application of

the VITA technique to the uv signal with an additional requirement on the uv level. !n this study, these
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Table 2 E&aiuanon of ejection detection schemes

Evaluation of Ejection Detection Schemes
re.nique Threshold Detections P(AT) P(VT) Time P(AD) P(VD0

Trigger Deluniter
Schemes Tested by Luchik & Tiedermani 1987)

U% 1,21 1.21 163 0.646 0.859
VITA with Slope 0.40 0.40 166 0.579 0.613
u.Unci 1.28 1.28 163 0.634 0.773
mu-Level 1.00 0.25 166 0.756 0.747

Schemes Recently Proposed
TPAV-.u-Level

Brodkey thresholds 1.500 0.400 111 0.390 0.658 11.8 0.249 0.662
Most Detections 1.500 0.100 126 0.433 0.611 14.8 0.285 0.605

VITA(uv)+uv-Level
Match- -etecuons 1.900 0.000 166 0.362 0.869 12.0 0.263 0.696

i Match Acuve Time 0.400 0.000 581 0.773 0.723 31.5 0.545 0.547

TERA
%Match Detections 0.625 0.625 161 0.963 0.665 72.7 0.853 0.372
Match Detections 1.650 1.650 165 0.540 0.776 7.4 0.177 0.760
Match Active Time 0.900 0.900 298 0.847 0.667 30.4 0.534 0.557

nmu-Level
Both Matched 1.000 0.200 165 0.779 0.645 31.2 0.644 0.654

New Schemes Developed as a Result of This Study, Both Detections and Time Matched
VITA(uv)+u-Level 0.400 0.150 167 0.773 0.755 29.3 0.626 0.678
Modified Zaric 1.050 0.150 165 0.791 0.739 30.8 0.642 0.660

concepts were used in a VITA(uv)+uv-Level method where the trigger was based on the uv product. The sign

of the u-signal, as suggested by Figure 4 was used to separate ejections from sweeps and the delimiter was

based on uv-Level. These changes add up to significant increases in the effectiveness of the scheme as shown in

Table 2. The technique cannot simultaneously match the number of bursts and the active time so two

different sets of thresholds were used. The first set matched the number of ejections, and the second matched

the active time of the flow. The scheme cannot match both criteria because the rapid fluctuation in the v

signal turns off the detector. The scheme detects the ejections at their beginning and end, but is dropping out

somewhere in the middle, possibly multiple times. This is because the uv-level is not the best delim~ter. When

detecting the correct number of ejections, the system is very accurate but it detects portions of only 36% of

the ejections. When the time is matched, however, approximately 600 detections are made, giving an

indication of the extent of dropout.

The TERA technique of Falco & Gendrich (1g88) was examined as a function of its one threshold.

Thresholds in the range suggested (kl<0.4) by Falco & Gendrich (1988) were found to be too low. At

kl =0.625, the number of detections was matched. This threshold had smoothed together much of the flow

identifying 70% of it as active. To get a reasonable active time, the threshold was increased which caused

dropout to appear. The system identified 300 ejections when matching the correct active time.

Approximately 100 of these were the second detection of an event. At even higher thresholds the system again

match the correct number of detections by eliminating some of the second detections and incorrect detections.

This reduced the "on time" to 7.4%. This is less than the "on time" for the VITA(uv)+uv-Level technique

showing an even greater problem with dropout. This performance is consistent with the techniques poor
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performance as a delimiter.

The modified u-level thresholds used by Luchik & Tiederman (1987) were very close to the optimum found

by this study when the active time was also considered. Using the time constraint, the delimiter threshold was

lowered to 209c. This yielded a closer match to the active visual time. Note that in this study, the delimiter

is applied both forward and backward in time. With this new delimiter, more detected events were grouped

increasing P(VT), and lowering P(AT). The trigger threshold was not changed.

The mu-level technique has remained the most accurate single component technique of those that had been

tested before. This is due in part to the excellent performance of the delimiter. Based on matching the

number and active time of the visual detector, the mu-level outperformed all other, 1- or 2-component,

techniques which existed prior to this study.

3.3. New Schemes

A new technique which combines the best trigger and delimiter should perform better than previous

techniques. VITA on uv should be the trigger and u-Level the delimiter. This combination yields a slight (3%)

improvement in the accuracy of the detector, P(AT), but a 15% improvement in P(VD) and a 25% increase in

P(AD) compared to Mao-Zhang & Bradshaw (1988). As expected the majority of the gains are made in the

detection of active time due to the change in delimiter.

As suggested by the figures the best single component ejection detector is a combination of the trigger of

Zaric with a u-level delimiter. This simple modification of the Zaric technique was termed the Modified-Zaric

technique. This technique performs approximately as well as the VITA(uv)+u-Level, while not having the

experimental complexity of using two-component velocity data.

4. Bursts

Grouping ejections into bursts yielded a region of thresholds where the average time between burst is

independent of the threshold. As the optimum thresholds for each detector has been set using only one flow, it

is important that this region of threshold independence exist so that the techniques may be applied

successfully to other flows. This region of threshold independence may imply that the grouped events

correspond to the RSPVS.

The grouping of ejections has been done by using a grouping time (rg) which assumes all ejections

separated by less than rg are from the same burst and those with greater spacing are from different bursts.

Ideally, a histogram of the time between ejections would have two separate distributions; one for ejections

from the same burst and one for ejections from different bursts. In reality, the two distributions have some

overlap. Even though the concept of a single grouping time has some inherent error, a single grouping time

can be used to determine a region of threshold independence for the detection techniques. For overlapping

distributions, a grouping time is determined using the histogram of the time between ejections plotted on a

semi-log scale. The distribution of times between ejections within the same burst and the time between
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ejections in different bursts should both decrease exponentially, yielding two linear sections with a region in

between where the distributions overlap. A grouping time is then chosen between ri and r2 which indicate the

extent of the overlap region. White (1989) used an average of r, and -2. The uncertainty in -g was half of the

width between 7- to -2. The propagation of this uncertainty was the major contributor to the uncertainty in

the normalized time between burst events TF.

This technique of grouping shows the VITA(uv)-t-u-Level (Figure 7) technique has a region independent of

both the trigger and the delimiter threshold (0.4 < k < 0.8, 0.1 < hD < 0.2). The Zaric+u-Level technique

does not exhibit a threshold independent region.

In an attempt to reduce the uncertainty and to improve the estimate of TY, velocity signals were

investigated to see if they could be used to determine the division between ejections in the same and different

bursts. It was hypothesized that between ejections from different bursts, there should exist some time in which

the flow is in an quiescent phase. This would not be true of the period of time between ejections from the

same bursts. An additional detector is needed that would detect quiet time instead of active time.

The VITA detector was chosen to detect quiet time because minima in the VITA signal correspond to quiet

time. This appears to be the only detector which would detect quiet time effectively. The other techniques

detect extrema associated with ejections, while the opposite extrema is associated with sweeps. Some average

level occurs during quiet times.

Using the VITA signal to determine quiescent period of flow requires an additional threshold which was set

by using the same probability graph used for the rg technique. Since r1 corresponds to the smallest separation

time between two ejections from different bursts, the VITA(uv) threshold was set so that all ejections with

spacings below r, were grouped. This threshold level varied but was typically in the range of 0.01 <k < 0.10.

Since only approximately 75 bursts exist in Bogard's data file, the semi-log plots of rT are not as smooth as

those from larger data sets. This leads to uncertainty in the value for "lI. This was overcome by choosing two

points which were the upper and lower limits for rl. The lower bound was chosen by being hyper-sensitive in

determining the first deviation from the first linear portion of the graph. The upper bound was established by

requiring an obvious deviation. These values were also used to determine the uncertainty in Ti.

In evaluating the data and the technique, both values were to determine the threshold for the VITA(uv)

grouping. The lower value of 1, yielded a lower threshold and grouped fewer events causing a value for TF

which was too low compared to the visual result. The second value of r, had the opposite effect causing T1 to

be too high. Both choices had a threshold independent region for T1 as shown in Figure 8.

To determine the value of the bursting period for a set of thresholds, the average of the upper and lower

bound of r, was used to yield TI = 186. This value is within 5% of the value obtained by Bogard using
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Figure 8 Dependence of bursting period for the
Figure 7 Dependence of bursting period for the VITA(uv)+u-le.el scheme on both thresholds

VITAiuv)+u-Level scheme on both thresholds grouped with the VITA(uv) grouping technique.

hydrogen bubble flow visualization. The uncertainty in TI was reduced. The previous r. technique had an

uncertainty of about 2576. The VITA(uv) grouping technique has about 15% uncertainty. Table 3 indicates

the improvements which have been made.

Table 3 Comparison of burst detection techniques

Comparison of Eulerian Techniques to Lagrangian Techniques

Technique Time, T* Uncertainty
Lagrangian Techniques

Hydrogen Bubbles 168
Dye-Plane Lighting 172
Dye-Full Lighting 168

Eulerian Techniques

uvf 2 with %,w grouping 212 25
mu-Level with r grouping 225 25
VITA(uv)+u-Level with VITA(uv) grouping 186 15

VITA(u) was investigated to see if it would perform better as a grouping function on the single component

techniques; however, VITA(u) yielded the wrong answer for TJ_ for both mu-Level and Zaric+u-Level

techniques. Once it was determined that it could not produce the correct answer the investigation was

discontinued. Since the other velocity characteristics identify ejections as one extrema and sweeps as the other

extrema, no other systems were investigated for use as a grouping parameter.
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5. Conclusions And Recommendations

The study suggests the use of either a new single-component technique or a new two-component technique.

Using a single component of velocity, the Modified Zaric technique demonstrated better ejection detection but

did not exhibit a region of threshold independence for ejections grouped into bursts. The best single-

component ejection detector with threshold independence for bursts is the modified u-Level technique. The

new two-component system, VITA(uv)-i-u-Level, was the best overall ejection detector and also had a region of

threshold independence for the bursting period.

A new technique requiring a period of quiescent flow between two ejections from different bursts was used

to group ejections into bursts. VITA(uv) was used to determine that the flow was quiescent. The

VITA(uv)-u-Level technique with the VITA(uv) grouping yielded a more accurate time for the bursting

period. The uncertainty in the value of TB was reduced to 15%.

With a single probe, there is no information about which part of the event is being detected. Therefore,

the most logical next step is to use multiple probe techniques. Since each ejection detector looks for a different

characteristic and therefore a different part of the vortical structure, the use of multiple probes would lead to

the ability to determine phase relationship between the different parts of the RSPVS. This type of phase

S relation would make it possible to more accurately detect turbulent structures in the flow.
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Abstract

The behaviour of both hot-film and electrochemical sensor is

similarly described by the thermal or mass balance and the transfer
equation at the wall. In a homogeneous field or for point transducers,

the wall shear can be consistently deduced from the transfer since the
number of signals and unknowns coTncide. Unfortunately, owing to the

finite size of the sensor, if one can no longer consider the wall shear
as independent of space, new unknowns aopear and the measurement method

becomes inconsistent.

The influence of four parameters which characterize the non-unifor-

mity of the velocity field is studied for low and high values of these

variables. The results indicate that the evolution of the wail-shear
field over the transducer introduces an uncertainty on the measurement

position which is smaller than half the sensor length. For highly
inhomogeneous fields, such as the vicinity of a stagnation or a sepa-
ration line, some transducers also give reliable values uo to distances

of half an electrode length.

List of symbols

A total area of the transducer
A. area of the part j of the transducer

C concentration (or temperature)

C. bulk concentration

D diffusion coefficient
K transfer coefficient of the electrode

K. transfer coefficient of the part j of the electrode3
Sx,Sz components of the wall shear
S o'Szo components of the wall shear at the center of the electrode

Sr relative velocity gradient (Sx/S xo)

V velocity

Vx,V y,Vz components of the velocity

Z electrode length

t time

w width of the electrode
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x direction of the flow

y direction normal to the wall

z soanwise direction

,K difference between t'-e transfer coefficients

similarity variable

similarity function

1. Introduction
The behaviour of both the hot-film and the electrochemical sensor is similarly described by

the mass or thermal balance and the transfer equation at the wall:

S+ V.gFad C = D (1)

K . (-K) UydA (2)

i C~ 00XI ay ydo

C is the concentration or the temperature. C is zero on the electrode and C in the bulk of the

solution. V is the velocity, 0 the diffusion coefficient, t the time, A. the area of the part j

of the transducer and A its total area. The transfer coefficient K. is the signal delivered on

the part j of the transducer and y the distance perpendicular to the wall.

In the inverse transfer problem, the velocity field is a oriorn deoendent on a lot of

parameters. One way of making them appear consists in developoing it in a Taylor series. The

origin of the development is taken at the center of the transducer (index o). One takes into

account the continuity equation and the no-slip condition at the wall. The first order development

expresses the field versus the components of the wall velocity gradients Sxo and Szo
avx

Vx(X,y.zt) " y Sx0(t) Sx0t " (a-•)

V (X,y,z,t) = 0 with xo (3)
y av

vz (xy.z.t)- y Szo(t) Szo(t) .

Then, the velocity field is characterized by two time-dependent parameters (only one in two-dimen-

sional flow). The number of signals K.(t) received on a double electrode (simole in two-dimensional

flow) very exactly corresponds to the number of flow parameters. As far as the transducer is point

or the first order development sufficient, no hypothesis about the characteristics of the flow is

necessary and the measurement method is consistent.

Unfortunately, owing to the finite size of the transducer, if one can no longer consider S(t)

as independent of space, the method becomes inconsistent. For example, if we develoo the wall shear

field at the second order:

asxo asxo
V (X,y,z't) 0 YS + xY +5-

x ox o az o

Z " as" +.. ) (4)
V y(x,y,z,t) a 2 ax-~ az

+ X aszo YZas 20
V z(X,y,zt) xy- + yz--
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we make appear four extra unknowns. Two of them induce, by continuity eouation, a significant
velocity normal to the wall (eqs. 4). The only interest of these new oarameters in the measurement

technique, will be an estimation of its limits. For this purpose, we shall successively examine

the influence of every new unknown parameter.

2. Streamwise evolution of the streamwise wall shear field.

2-

d4.

d X+.

07 t, 2VeIo /0rd

agnation
point

Fia. 1 Streamwise evolution of the streamwise wall shear comoonent.

The x axis is chosen in the flow direction. The evolution of the wall shear S over each

point of the transducer exoresses by:

sS 0 
(5)

S is the wall shear value at the center of the electrode and 9So0/x is a constant. In the quasi-

steady state the mass balance (1) is then described by:

ax ax 2 dsy (6)

The following transformation (Py 1973) in which t is the total transducer lenqth:

+ C + X + Z
-C x Z

s + s-2 K + TK t y+ =-+-so1/3 (7)

renders dimensionless the mass balance and the transfer equation

+ 4+ + ++2 +42. +
S + ac as /ax4 Y2  a=

/ax + 2 ;. ay+)

K+" s+1/3 +112 (ac + dx÷
Xo /+ (9)
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By introducing the relative gradient Sr = S+/S+ such as Sr - 1 at the center of the transducer and

;Sr/)X reoresents the variation of the relative wall shear over the electrode (fig. 1), the mass
balance (81 becomes :

+ S + 2 + 2c+
+ + ac+ r S X+

Sr Y - -.; _ 2 TC_+ 7C <(10)
ax ax ay

Equations '9ý and (10) can be solved by introducing the similarity variable - (LOv(que 1928)
+

It results that

ac + dC" + 1Iax

T+ 
+

aC dC 1

2C + d2C+ 1

ay+2  drnl 72

When replacing these values in the mass balance equation (10), one gets
S+ I2 3' +xr 2-+

-+ ) n2 dC( .12)

ax dN =dn-

if the similarity variable is chosen such as

+ ,2 a, + (13)
r ax+

the solution of the mass balance (12) is

f÷ e-n endn (14)

C -0-.89930

Supposing that Sr does not annulate on the electrode (no stagnation ooint on the electrode), the

variables ý and x can be separated in eq. (13)

4 2 dvo _ dx+

as r as:

ax+ 2  ax+
The integration of this equation, taking into account the condition x+ = - 1/2 Tw(x4 ) 0 on the

leading edge of the transducer, allows the determination of the F function

aSr
+x x+ 3r

3xx ax -

It results that the space average which appears in the transfer equation (9), is only a function

of 3 r/.x:
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ýy + - n ay + Y o+

3C + x 1 1 x
/ 2 +1/2

(--1-dx÷

4.1/2.+

0.80ri 

C0

.0.7

0. 5

0.3

0.1 +

-2 -1 0 1

Fig. 2 Space-averaged concentration gradient versus ;Sr/ýX+.

+ +

This space average was tabulated and related on fig. 2 for the values of ýSr/^x to which it

applies ( -2 < ;Sr/3x < +2 ). The result is remarkable. The space-averaged concentration gradientr
is nearly independent of ;S+/;x+ and close to the value 0.807 (Dimopoulos and Hanratty 1968) for

uniform flow. The variation is only 4.5% when ;SP/3x = - 2, thet is to say when a stagnation or
r

a separation line is located on the leading or trailing edge of the transducer. Even in these

border-line cases the sensor indicates the value of the wall shear which prevails at the center

of the transducer.

differential electrodes.

As the single electrode is insensitive to the evolution of the wall shear ( eq. 5 ), the

velocity gradient at the center of the electrode is such as ( eq. 9

KSo. (S),1/3 (16)V_• 0.807 --r--

The upstream electrode constitutes an independent electrode so that we also have from eqs. (5)

and (16) :

2K11/2 [(So , ~ 0) )211/3 (7
S- 0.807 [1J

From the difference between (16) and (17), one calculates the transfer coefficient K-, on the

downstream Dart of the electrode :
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Ks 1/31-r 0.807 ( -1/3 [ _(1)2/3(l -. 'jS-o )

From 217) and 18) we deduce :

(KI - K2 ) S0 2 [1.2601/3 t a 1/3
Th0e807 10edfrniS _.)0/3 (19)

Then the differential electrode is sensitive to the streamwise evolution of the wall shear.

Numerical study of eq. (19) shows that the transducer indicates the value of the wall shear which

prevails on its leading edge for large values of 3S*/?x* v (,So/)X)(t/S ). For smaller values, the
first order development of (19) leads to :

aSoe t_..) 1/3 (20)
AK÷ + 0.807 0.260 (1 - 0.4038 'so ) S 1o

such as the measured wall shear is the wall shear which prevails on a ooint located on the uostrea'
part he electrode. Although the relative error can be important for large values of tS /%x

r
the soattal resolution is always equal or better than half the electrode length for both the simole
and differential sensors.

3. Spanwise evolution of the streamwise wall shear comoonent.

O z e
2

Sa b

Fig. 3 a and b, Spanwise evolution of the streamwise wall shear comoonent.

The wall shear field expresses by

as
Sx - Sxo + z az (21)

and is related on fig. 3 a and b. For a given value of z, the transfer coefficient is (eo. 16)

KW --- 0.807 (Sx° ÷ z SXSo/aZ) t2 1/3
0 V

The first order development leads to
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-XA 0.807 ( 2 )1/ 3  (1 + z - Sx °

If w is the width of the transducer, the space-averaged coefficient exoresses by

K t , 2 1/3 1 f +w/2 +z Sxo 1)dr =0.807 (--f- _/(1 +-f ) dzSw,-w/ 3 z Sxo

which reduces to

K+ - 0.807 S+ 1/3 (22)x0

In the configuration described on fig. 3 a, the sensor is insensitive to a spanwise evolution of the
wall shear. This result also applies to the differential electrodes except in the configuration of

fig. 3 b. Then the response of the element I is

2K+ +w tS 1/3
T " 0.807 ( xo t

= 0.807 S+ 1/3( + W s+

Sxo

The response of element 2 is :

2K2 tw as. 0 S+ X0  1T "0.87 So13 T _-2 Tz- T

Sxo

The differnce expresses then as :
(K1 -K2) ÷ K 0.807S~o/3x 1 a~ 1

a +V " aZ z+ S+o

AK+ K+ 1  w XS 1
5xo+ 

(23)

Then an interference is introduced in the response of the split electrodes. Their advantage is the

possession, in the configuration on fig. 3 b, of a very low aspect ratio w/t which minimizes the

influence of this signal.

4. Streamwise evolution of the spanwise wall shear component.

The evolution of the spanwise wall shear related on fig. 4, is expressed by

as
Sz 0 Szo + ax
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Fig. 4 Streamwise evolution of the spanwise wall shear component.

In the quasi-steady state hypothesis, the mass balance (1) exoresses by

y S -I y ac Szo 2ý . D a2c

Sx°•+ ax zo rz * yx ax -a-' __

3x az

or, introducing the transformation (7) and choosing the mean flow in the x direction

a+ + aSzo 1 aC. a2C+
, ÷ -+ -+ 1K 724)axa+ x + S (4

For orientated electrodes in the flow direction or normal to the flow (fig. 4), C+/Iz+ = 0 exceot

at their extremities. On the other hand (;So /ýx+)(1/S+ ) is a small term of the first order. It

results that the product of these terms is negligib-le. S zo/ýx does not intervene in the signal.

5. Spanwise evolution of the spanwise wall shear component.

S.0 a b
rSxo

Pio. 5 a and b, Soanwise evolution of the soanwise wall shear component.

For a flow in the x direction, the wall shear field related on fig. 5 is described by

-'So

Sz = z - -

For the same reasons as in the above paragraph, the effect of this term would he negligible if the

continuity equation did not impose a velocity comoonent normal to the wall whose value is (eq. 4)

2 1 azo
Vy yy with Y i"az'-

In the quasi-steady state hypothesis, the mass balance (1) expresses as

S 2 a C a 29-
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and can be written in a dimensionless forr by eqs. (7) and (26)

- I1ý e-* (26)

y+ 3C÷ + +_ ++2 ac+ a2c+
+ + Y + 7+ax S aY ay (27)

Introducing as in paragraph 2, the similarity variable = y+I/'(x+), the mass balance (27)

reduces to :

- n2 dC+ ( .2 * Y+ 43) d2C+
Tn + (,2r (28)

Sxo

By putting :

i S•2, S - 3 (29)

xo

one finds again eq. (14) as the solution of the mass balance (28). However, the similarity
function ; is no longer the same. It is now defined by (29) and, with the initial condition

x 0 * ý(0) = 0, integrates on the form

3-,-"1/3
3(e S,0  -_I) (30)

L Y Xc 0(1

As previously, the concentration gradient at the wall expresses by

(_C.) . dC, (22r + a 1 1
ay + Y " '•'n''0 + ýy +Y-0o -W ( (31)

Expanding the exponential, in (30) to the second order allows to calculate the first order

development of the space-averaged concentration gradient

ac + + +J ) dx- 0*807 (1 f (32)
0 ay+ y -0

and then the transfer coefficient (9)

0+ zo 1 ) S÷1/3Ka 0807 ( az+ S xo (33)

x o

The sensor is sensitive to that non-uniformity of the wall shear field.

Differential electrodes.

As in paragraph 2, the upstream part of the electrode (fig. 5 a) behaves as a sinale

electrode with a t/2 length. Then

2K 12 ,07( -'l ~(Sx)2 1/3 (3A)• ----o8o7 (1 - 2i'- (XO )

K2 - K - K, is calculated by the difference between (33) and (34). A first order expansion of
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S(KI - K2L&/D leads to :

AK + 0.807 S÷1/3 0.260 (1 - 0.284 -Sz° (35)
xo 3z+ S +

xo

The signals sum (K+) and difference (:K+) do not oossess the same sensitivity to (-Szo/;Z)(e/S 0o).

A linear combination of the two signals can be performed which is insensitive to this term. This is

oarticularly impurtant in turbulence measurements at the wall because the soanwise length scales are

very small.
The case of the electrode oriented as in fig. 5 b is imoortant. Generally it occurs in

turbulence or when the electrode is over a three-dimensional senaration line where the wall shear

does not annulate. The enlargement or the reduction of the transfer which results from the velocity

component perpendicular to the wall and induced by S zo/nz, is the same over the two Darts of the

electrode. By difference, the errors annulate and aIK is indeoendant of Szo 19z. A more detailed

demonstration was published (Tournier and Py 1973).

6. Conclusion.

__e_______ . ::easure Greatnessnor-ur i formnityI

0 0 -0.403 SO Z

xo

I I

3SSS'
zo 1 1

Z _; 0.84 ZO+0.2 X e1

Fig. 6 Influence of the elementary non-uniformity on the transfer coefficient.

Fig. 6 summarizes the influence, on the transfer coefficients, of the non-uniformity of the

wall shear field. Sixteen cases were studied following the arrangement of the transducer with

respect to the streamlines and the measured greatness K or AK. Except in the case n* 14, where

a signal independent of the measured greatness appears, the other coefficients characterize the

relative error on K or AK.

It must not be forgotten that the introduction of these coefficients. in transfer formulae

does not allow an improvement of the resolution. For the fluid mechanicist these equations possess

then two unknown variables. The introduction of an hypothesis (never invalidated) for solving the

system deprives of value any experimental study. At the best, one car estimate the errors, speak
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of uncertainty on the experimental results, and, esoecially, out oneself in te case where tnev are

low, even if tnis can seem constraining.
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ABSTRACT

An estimate of the low wavenumber component of surface turbulence shear stress has been obtained

through measurements of the correlations of the longitudinal component of turbulent velocity made close

to the surface at y*=7. The data were acquired in a fully-developed turbulent pipe flow at a Reynolds

number (based on centreline velocity and pipe diameter) of 268000, using two single hot-wire

anemometer probes. A novel data analysis procedure has been introduced to establish the accuracy

limits of the low wavenumber turbulent energy estimate for frequencies in the similarity regime of wall

turbulence and the results will be compared with other measurement techniques.

NOMENCLATURE

A area 7i normalized transverse coordinate

f frequency X wavelength

I progressive double integral of the v viscosity

correlation function as defined in 4 normalized longitudinal coordinate

Equation (11) p density

k wavenumber o standard deviation

N number of data points x shear stress

Re Reynolds number 0,1 one sided spectral density

R Normalized correlation function functions

u fluctuating velocity (0 circular frequency (rad/sec)

U, friction velocity Superscripts

x longitudinal coordinate + quantity nondimensionalized

y distance from wall using U, and V.

z transverse coordinate * near zero value

C noise overbar time average
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1. INTRODUCTION

In engineering applications, turbulent shear stress can excite structural resonances, and although as the

wavenumber. k, approaches 0, the power spectral density for these stresses vanish, the low wavenumber shear

stress is still a significant component of the vibrational drive mechanism, Chase (1991). Longitudinal

acceleration measurements in special towed array modules behind submarines have been used to infer the

strength of turbulent shear fluctuations; however these data may be significantly influenced by surface

roughness, Kronauer (1991). Morrison and Kronauer (1969) used longitudinal and transverse correlations of

longitudinal velocity fluctuations (u) to generate u spectra as functions of a) and k, or o) and k., where x and z

are the longitudinal and transverse directions, respectively. Although Lai, Bullock and Kronauer (1989)

reported full 3-dimensional spectra (function of co, It and ki), only the data of Morrison and Kronauer

included locations sufficiently close to the surface such that u could be directly related to the fluctuating shear

stress, T. By assuming that the 3-dimensional spectrum could be represented as the product of the two

2-dimensional spcctra which Morrison and Kronauer reported, and by extrapolating these two functions to very

low k. an estimate of t at near zero k could be formed. These estimates have proven to be typically about 3

to 5 db lower than similar low k spectra deduced from at-sea array acceleration data.

The objective of this study was to provide an estimate of the very low wavenumber turbulent shear stress for

various frequencies from measured two-dimensional correlation functions of the longitudinal turbulent velocity

in fully-developed pipe flow.

2. THEORY

The fluctuating shear stress, t at the surface can be modelled by the gradient of the longitudinal turbulent

velocity, u, and non-dimensionalized by the average shear stress, pU,2, to give

r* -r A(p U)' -(pvzu/y)/(pU.). uly" (1)

From Figure 4 of Morrison and Kronauer (1969), for y÷!7, the turbulence intensity of u fluctuations can be

approximated by:

If (D(ly,kc*÷) is the one-sided shear stress power spectral density function, then from equations (1) and (2),

o 0
where

1(4)

From equation (1), the shear stress spectral density, 0,(Wo) must be identical to the longitudinal velocity

spectral density 0,(o). Also, the normalized correlation function for u, Rk(x÷,z÷Ic ) is identical with the

0
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normalized correlation function for r. Using the conventional transform relationship between the correlation

function and the power spectral density,

ffj k(x "z 1W). I " k e ,, CQ.C). ,(k',ku *d)

where C is a function to be evaluated. Here, x* and z represent the incremental longitudinal and transverse

spacing uespectively) of the two measuring stations. The inverse of this transform is given by:

C if 0: (k,'l• ")e ,''k' I dk "A (2c)9. R.(x ",z (I )6)
0

C can be evaluated from equation (6) by setting x÷=O-z÷ where R• is defined to be 1.

C - 12.(2-x)2/0,(w) (7)

From equation (5), the zero wavenumber spectrum can therefore be estimated from the integral of the two-

dimensional correlation function as given by:

*(0,01 W) - , (8)(*,'w)d~z

For k,'---0=k, this function must equal zero. However, for engineering applications, such as underwater

acoustics, the low wavenumber component is of interest and can be estimated from equation (8) by terminat-

ing the integration process at futite values of x÷ and z÷. If a and b are the limits of the integration process in

the x and z directions respectively, then the average spectral energy over the range of wavenumbers k,----t/2a,

k=---4I2b. can be estimated.

3. APPARATUS AND EXPERIMENTAL CONDITIONS

Experiments at y*=7 were conducted in a smooth steel pipe of internal diameter 254 mm and length 14.675m.

The pipe has a surface roughness of 63CLA and is circular within 0.1 mm and straight within I mm/m of

axial length. The testing section was located downstream at stations between 53.3 and 58.3 pipe diameters.

Air, supplied by a centrifugal fan powered by a shunt wound DC motor, was first passed through a heat

exchanger to keep its temperature constant Swirl and large scale turbulence generated by the fan and

associated diffuser were eliminated by a settling chamber. A wire gauze was placed at the entrance of the

pipe to promote flow development.

The data acquisition system consists of an AT personal computer which scheduled the operations of the

various components, checked the experimental conditions by monitoring the fan speed, the fluid temperature,

longitudinal and transverse separations of the two hot-wire probes which consisted of 5$cn silver plated

tungsten wires with a working length of 0.7 to 0.8 mm and operated at a constant overheat ratio of 1.3. The

signals from the two hot-wire probes were first linearized on an EA1680 analogue computer, then high pass

filtered to yield the fluctuating components and processed by a Bruel and Kjaer (B&K) 2034 dual channel FFT

analyzer to generate cross-power frequency spectra of the longitudinal components of turbulence, u. A

Hanning window with zero overlap and record length of at least 180 seconds were used. The maximum
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longitudinal separation Ax was 18850, while the maximum transverse separation, Az'% was 2000 and a total of

2705 experimental grid points (arranged in an approximately triangular array) were used. The narrow band

cross-power frequency spectra data were transferred from the B&K2034 analyzer to the AT computer for

synthesis into narrow band filters with 7.5% bandwidth centred at selected frequencies between o --0.005 to

0.35, corresponding to 20 and 1340 Hz respectively. The friction velocity used was U, =0.61 m/s which

corresponded to a Reynolds number (based on diameter and centreline velocity) of 268000. There were two

experimental runs utilizing two different frequency ranges for the spectral analysis. In the first experiment, the

frequency range was 1600 Hz giving spectral lines spaced at 2 Hz while in the second, the frequency range

was 400 Hz giving a line spacing of 0.5 Hz. With the 1600 Hz range, 360 spectra were averaged, requiring 3

minutes of data at each grid point for a total of 136 hours for the entire grid array. With the 400 Hz range,

120 spectra were averaged requiring 4 minutes at each point for a total of 180 hours. Data from the two

experiments were averaged to improve noise suppression.

4. DATA ANALYSIS AND RESULTS

4.1 Error Analysis

In estimating the errors associated with representing the double integral by an appropriate sum of the

experimental correlation values, two different sources of error must be distinguished. The first kind of error is

'deterministic'. Such errors can arise from the spatial sampling process (i.e. the discrete and finite nature of

the Ax', Az' grid used). If the grid points are not sufficiently dense, they may not accurately represent the

underlying continuous function while if they do not extend far enough, they may fail to measure the 'tails' of

the decreasing correlation. Although the spatial sampling frequency used is adequate, the finite experimental

grid was found to truncate some of the correlation data at the lower frequencies studied.

Another deterministic error occurs when the two hot-wire probes are physically close (small Ax and Az). For

these small separations, no measurement is possible hence the data must be interpolated between the RI-=l

value at zero separation to the value at the point of closest Ax*, Az. For low frequencies, this interpolation

will make a negligible contribution to the error of the double integral of the correlation because of the large

spatial extent over which the integral must be taken. However, for higher frequencies, interpolation is not

possible because the characteristic wavelength of the correlation function is of the same order of magnitude as

the minimum separation distance. Data outside this region is still useful in estimating the contribution to the

double integral from the 'tails' of the correlation function.

The second kind of error is random. The turbulence field can be considered as a succession of independent

events (a Poisson process) and the variance in any estimate of the field properties is reduced by increasing the

number of events to be averaged. Consider a correlation taken at a reference frequency, f0 (Hz). Since a

bandwidth of 7.5% was adopted in these experiments, the relevant frequency for the averaging process is

0.075f0. Suppose an independent event comprises m radians of this frequency measure, then an independent

B30-4



data sample is obtained every n/2n(0.075f.) seconds and for 240 seconds averaging time (for the 400 Hz

range experiment) there ame 240.27t.(0.075f0 )/m independent samples. The normalized variance of the u

measured at a single point is the reciprocal of this number. Since a two point correlation involves the product

of the two filtered velocity signals, the variance of the correlation is double the reciprocal. Finally, the

standard deviation of each normalized correlation value is:

0o (- J [ t(0O.O751O)jl' (9)

A comparison with experimental correlation data (as in Figure la for example) leads to an estimate for m of

1.6. For most frequencies of interest, this means !hat the standard deviation of the normalized correlation

value lies in the range 0.01 to 0.03. These seemingly modest noise levels have a serious impact on the

assessment of the low wavenumber spectral density and will be discussed below.

4.2 Similarity

For any cW, the full data set is the two-dimensional array of u-u correlations, R.(x÷. zior). However, to

appraise the geometric similarity, it is easier to consider the one-dimensional cuts through this spatial array,

namely &,(x., z*=0to) and R(x*=O, z÷Io') which will be denoted as R, and RP respectively The dominant

spatial scales of these correlations represent the properties of the 'convective ridge' of the wall shear stress. If

the turbulence structures are self-similar, it should be possible to find a spatial scaling parameter at any W

which will cause R, and R, to be identical for all these W. Figure I shows the raw data for R, and R, over a

wide range of co'. It is clear that Rk has the stronger characteristic shape, which includes a well-defined, early

zero crossing and a strong negative extremum. Consequently, it is the shape of R1 which is used for the

similarity criterion. By restricting the negative minimum to lie in the range -0.21 0.06, the similarity regime

is given by 0.005<coW<0.050. The x* value of the first zero crossing (which is denoted as x0÷) is used to

estimate the relative spatial scaling of the Wi in this range.

With the introduction of the scaled coordinates (where k*=4x0+),

t = xIX;, I = Z*A; (10)

the correlation functions 1k(4), Rt(r1), as shown in Figure 2, are almost independent of Wo% thus supporting that

the similarity regime lies in the range 0.005<cd÷<0.050.

4.3 Correlation Field

The data sets for W=0.02 (400 and 1600 Hz ranges) and Wo=0.031 (400 Hz range only) are within the

similarity regime and, by being at the high end of this regime, the scale of the turbulence structures are

sufficiently small so that the overall size of the sampling grid is large by comparison resulting in no truncation

errors.

Using the normalized correlation function R(ý,-r), these three data sets have been averaged and the results for

the one-dimensional cuts in the data field, R,(4) and RP(r), are shown in Figure 3. They have also been
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smoothed by a raised cosine (Hanning) function with bandwidths in the longitudinal and transverse directions

equal to 40 percent of the x" and z° values of the centre of the cosine function. It is clear that the correlations

decay to an insignificant level well within the range of the sampling grid.

The smoothing of the correlations reduces the variance, oa, of the correlation data points. The number of data

points used in the smoothing process varied from 12 to 64 depending on the x÷, z location of the particular

point being smoothed. Using the raised cosine smoothing function, the reduction in 0o varies between 0.33

and 0.14 for the various number of data points used.

By fitting R, and R, with conventional exponential/cosine functions and by assuming product separability, the

corresponding two-dimensional correlation field is shown in Figure 4a. The actual averaged and smoothed

two-dimensional correlation field is shown for the combined data sets in Figure 4b which is different from

Figure 4a in that Run drops off much less rapidly in the transverse direction (Tl direction) for 4>0.25 than it

does for 4<0.25. Thus, the one-dimensional cut at x*=O (which has been referred to as Rd greatly underesti-

mates the extent of the large negative band of R, lying approximately between t=0.25 and 1.

4.4 Integration Limits

Regardless of any method of smoothing or interpolation which may be used, the double integral of the

correlation function consists basically of summing weighted values at individual grid points. In order to

display the effect of the change in the value of the double integral with the number of grid points, the

integration has been performed outward from 440, -q=0 with a fixed ratio of 4 to T1. The result was found to

be independent of the ratio of 4 to rl and a value of 10 was used. Figure 5 shows the change in the value of

the progressive integral versus the limiting value of 4 used in the integration for the average of the three data

sets chosen above (co = 0.02 (400 & 1600 Hz experiments) and 0.31). It can be seen that the progressive

integral has a significant negative region. The progressive integral of the twodimensional correlation modelled

by a product-separable function is also shown in Figure 5. Since the actual integral does not return to positive

values until 4 exceeds 1.1, its asymptotic value depends heavily on the contributions from larger 4 (and larger

ri). Thus, whereas the integral for the analytic product-separable function approaches its asymptotic value at

=I, it is necessary to extend the integral beyond 4=2 (or more than 4 times the integration area) for the

experimental correlation data. The variance of the estimate of the double integral with increase in grid points

included in the summation is examined as follows.

The progressive integral has been evaluated as a simple weighted sum, I(n), of the individual data points, the

weighting factor being the element of area associated with each point. Since the experimental data, R,

consists of the 'true' signal (which we denote by R,) and the 'noise' (es), the progressive sum I(n) of the

correlation data can be expressed as:
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1(N)' P, R~&A.

Since the noise conmbunons at the individual data points are uncorrelated and have uniform variance (which

depends on the frequency and integration time but is independent of the signal),

where oe is the standard deviation of the noise at each point.

This summation of incremental areas can be calculated directly from the experimental grid and can then be

combined with the standard deviations of the smoothed correlations to provide an estimate of the standard

deviation of the summation. The standard deviation of the smoothed correlations is calculated by multiplying

ar, obtained in e 9. by the reduction caused by the smoothing process. For 30 data points in the smoothing

process, which is a typical value for much of the experimental grid, the smoothed standard deviation is 0.21oa

Hence the error estimate, 0, can be calculated for the five relevant data sets (in the similarity regime). as

shown in Figure 6. Although we expect the standard deviation of the sum relative to the signal to decrease as

the number (N) of grid points used in the sum increases, Figure 6 clearly shows that the inclusion of grid

points at large values of k and ri, where the signal is very small may increase the standard deviation by more

(percentage-wise) than it increases the signal (percentagewise). Thus, if we know a priori how large the signal

is at any grid point and have an estimate of the point variance, we can decide how far in ý and 'n the integral

is to be extended. However, since the aim of the experiment is to reveal the signal. the data have to be used

to decide where to terminate the integration process. Generally, as seen from Figure 6, the higher frequencies

have less error at large 4. The greatly reduced variability afforded by averaging the five data sets shows the

importance of including these higher frequencies of the similarity regime.

Since the similarity regime extends down to Wo=0.005, we can consider incorporating data sets taken at

w---0.005 and 0.01. To do so makes no useful conmbution to the accuracy of the asymptotic value of the

double integral because the range of 4 and Tj for which the correlations at WaO.005 and 0.01 were taken limit

the double integral to 4=0.77 and 1.7 respectively and the estimated error corresponding to the average of the

five sets shown in Figure 6 is satisfactory up to these values of k.

The progressive integral of the correlation function for the five data sets that are averaged is shown on Figure

5 and it is seen that the integral does not *settle' to a single asymptotic value and is tending to 0 as predicted

by Chase (1991) however the integral will not reach zero until much larger values of 4. From the data in

Figures 5 and 6, we can estimate the double integral of the normalized correlation function from the smoothed.

averaged data sets as 0.00023-0.00007 at 4=2.5.

B
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4.5 Quantifying the Low Wavenumber Spectral Density

Using this estimate of the double integral of the correlation function, the low wavenumber spectral energy can

now be calculated. The integral estimate has been evaluated in terms of similarity scaled arguments, t and n1.

Equation (8) then becomes:

,(0",0"') 4 (13)

Here, 0" is a small, non-zero value of k,' or k,*. Using values of C calculated from the data from Morrison

and Kronauer (1969), the low wavenumber shear stress can now be calculated in the similarity regime. These

data are shown in Figure 7 and are seen to agree well with the data obtained from Mormson and Kronauer

(1969) calculated using the assumption of product separability. Agreement between the two sets of data is

because the correlations in Morrison and Kronauer (1969) had larger negative values in the transverse direction

than the data obtained here which consequently reduced the final value of the product-separable integral in

equation (13) to agree with the value obtained from the current experiment. The data from the present

experiments represent an estimate of the average spectral energy over a wave size range k,'- 0.000026 to

0.00038 and k,= 0.00026 to 0.0038.

5. CONCLUSIONS

Low wavenumber turbulent energy has been estimated for non-dimensional frequencies Wo-0.005 to 0.05.

corresponding to a wavenumber range of 0.00026 to 0.0039, in the similarity regime of wall turbulence from

measurements of two-dimensional correlations of longitudinal turbulent velocity in fully-developed turbulent

pipe flow at Re=268000. The results fall within the accuracy limits of towed array acceleration data and agree

well with those estimated from longitudinal and transverse correlation data of Morrison and Kronauer (1969).

A novel data analysis procedure has been introduced to establish the confidence limits of this estimate. It has

also been shown that the lowest value of the wavenumber for which the power spectral density can be

estimated cannot by reduced by expanding the experimental grid due to the random noise embedded in the

correlations data. This latter error can only be reduced by a significant increase in the experimental time.
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RELATION BETWEEN SPECTRA OF HOT WIRE ANEMOMETER SIGNALS AND VELOCITY
COMPONENTS IN HIGHLY TURBULENT FLOWS

S. Ramamoorthy"
P. K. Rajan-

S. Munukutlat

Tennessee Technological University
Cookeville, TN 38505, U.S.A.

Abstract

The relationship between the spectrum of fluctuating voltages from a hot wire

anemometer signal and the spectrum of the corresponding fluctuating velocity field is

studied in the case of a jet flow with high turbulence intensity. It is found that the linear

analysis commonly used when converting hot wire signals into turbulence quantities gives

erroneous results when determining the spectrum in high turbulence intensity flows.

Excellent agreement between the spectrum of hot wire fluctuating voltages and that of

the corresponding velocity field has been achieved by considering higher-order terms.

1. Introduction

Spectral analysis of turbulence quantities is performed almost routinely at the present time as pan of

experimental turbulence research. With the advent of modern high speed digital data acquisition systems and

techniques, determination of spectra does not involve extra effort or time. Before the time data acquisition systems

were used widely, analog instrumentation was used for the analysis of turbulence signals. Spectral estimation using

analog instrumentation is very time consuming and, therefore, spectra were taken only when required. There are

several advantages of using digital data acquisition systems. The most important advantage being that the turbulence
I

signals can be digitally sampled and stored initially and then analyzed later using the spectral analysis technique that

is most suited for the particular flow situation. Rajan and Munukutla [1, 2] have recently compared three different

"*Research Assistant, Mechanical Engineering

-Professor and Chairman, Electrical Engineering

tProfessor, Mechanical Engineering
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techniques for estimation of turbulence energy spectrum.

There are two techniques that are currently available for measuring turbulence quantities. Hot wire

anemometry is the earliest and most commonly used technique for turbulence measurements. One of the features of

hot wire anemometry is that the output of the instrument which is in the form of electrical voltage fluctuations is

related to the velocity fluctuations chat are being sensed, via a nonlinear relationship. Care must. thereforc, be

exercised in deducing turbulence quantities from the instrument output.

A given turbulent flow can be thought of as being comprised of a steady mean and a fluctuating component.

Thus, the instantaneous velocity in the x-direction U, can be split into a steady mean component U and a fluctuating

component u,. With a hot wire anemometer, an electrical voltage output Eý is generated which would comprise of a

steady mean component E and a fluctuating component e,. The instantaneous velocity U; and the instantaneous

voltage E, are related by the equation:

E,' = A ,B Ui, (I)

where A and B are two calibration constants for the instrument. The electrical signal E, is the one that is measured

in any turbulence experiment employing hot wire anemometry. The DC component E can be filtered and

measurements can be performed on the AC component e,. Before the advent of digital data acquisition systems. the

AC component e, was used with analog instrumentation to obtain RMS values, correlations and spectrums. The

experimental quantities thus measured were converted to turbulence quantities using appropriate scale factors. All

these scale factors were based on a linearized version of the voltage/velocity relation given in Equation 1.

With digital data acquisition systems, the fluctuating voltage e, would be sampled at a prescribed sampling rate

and stored. Computation of RMS values, correlations and spectrum would then be performed on the stored e data.

Scale factors identical to those used with analog instrumentation would then be used to obtain turbulence quantities.

One of the advantages of obtaining the turbulence data this way is that the noise ordinarily introduced by analog

instruments is avoided. Another advantage is that once the data are stored, the processing can be done after

completing the experiment, thereby reducing the experimental time. This is always advantageous with hot wire

anemometry because it reduces the drift in calibration. Overall, this method of obtaining turbulence quantities is not

superior to that of using analog instruments since the linearized version of the voltage/velocity relation is still being

used.
There is another way of obtaining the turbulence quantities from the voltage signals by reconstructing the
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instantaneous velocity field. To each e,, the E can be added to obtain E, and each E, can then be converted to U,

using Equation (1). Thus, the instantaneous velocity field is obtained. The average U of all the U, can be

subtracted from each U, to obtain u,, thus giving the fluctuating velocity field. RMS values, correlations and spectra

can then be obtained by analyzing the u, data. The biggest advantage of this method is that the non-linearity of the

E, vs. U, relationship is preserved and the results would be more accurate than those obtained by using the linearized

analysis. However, it should be noted that there is an increase in computational time.

The scale factors relating the results for the fluctuating voltages to those of the turbulence quantities are well

known for RMS values and correlations. These are described in standard textbooks [3]. However, the scale factors

relating the spectra are not found in the literature. Ramamoorthy, Rajan and Munukutla have recently presented the

results for a low turbulence intensity flow [4]. The results showed that the scale factors are different for a single wire

and a two wire probe. In the case of the two wire probe, the spectrum of the cross correlation ee 2 assumes a very

important role, particularly in regions of high shear stress. In flows with high turbulent intensities, the nonlinearity

plays an important role in determining the scale factors. A complete analysis of the scale factors in highly turbulent

flows is presented in this paper. The results are also examined in the light of experimental data.

2. Analysis for Single Wire Probe

Substituting U = U + u, and E, = E + e, in Equation (I), we obtain the following

(E + e,)' = A . B • T7 (2)

Rearranging Equation (2), we obtain the following relation for u1,

ui a, + .e+ + a~e, + a~ei + ae," (3)

where a = (E 2 - )' - B2 U a 4(E' - A)E
B2  kB 2

a= 2(3E- A) a4=LE

B2

Retaining terms up to the order of e1
2  only in Equation (3) and taking the Fourier transform of the

autocorrelation, the spectrum of e, is computed as
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Su,(f) = gSe(f) + a;Se,(f) + "a[Seee(f) _ Se,'e,(f)] ÷ K5(O (4)

where K = 2aa#e,2 + az

In Equation (4), for example, Se,2(f) stands for the spectrum of e,' and similarly the other terms. 60)

is the Dirac delta function. It is to be noted that by retaining only the linear terms in e, in Equation (3) the spectrum

of u, will be given by

Su,() = a,2Se(f) (4a)

A comparison of the results obtained by using Equations (4) and (4a) will be presented in the Results section.

3. Analysis for Two Wire Probe

In the case of the two wire x-probe, the relationships between the instantaneous voltage and the instantaneous

velocity for the two wires are

(E, + e,,)2 = A, 4 B/0 I,.v (+)

(E2 + e.) = A2 + B 2  ÷ , v (6)

In the above equations A,, B, and A2, B2 are the calibration constants for wires I and 2, respectively. u, and

v, are the fluctuating components in the x and y direction, respectively. Rearranging Equations (5) and (6) and

retaining terms up to the order of eh and e, , we obtain

u, + v, = bi + 2b 2e,1 + 2b3ei + O(e,) (7)

u1  V, a C, + 2c 2e,, + 2c3e2 ÷ 0(+e?) (8)

where b- = I c1 = 2 %U
B2

2_ _ 2E> )E
2(El - A,)EI, 2•E - A)E

B2

(3E.•- A1 ) 3 - )

b3 = and c3. -

B12 B2

From Equations (7) and (8), we obtain

u, a L÷ (beli + c~e2.) + (Noel l c33e (9)

v, 1 + (be,, - c~e,,), (b+e2 - c4). (10)

where L b 1 Cbi + C1 andL.2  bI -c 1

2 2

B31-4



The spectra of u, and v, are obtained by taking the Fourier transforms of the autocorrelations of Equations (9)

and (10) and are given by
Su,(f
(v(f)) = b•Seh() ÷ cSe,(f) ± b~c,[Sele,,(f) - Se,ej(f)]

+ bs,(tf) ÷ cS.Se4(O ÷ b~b, [Se.,eh(f) + he,,(f)]

± bc 3[Se,,eý(f) Seýe,,(f)J ± b3c,•Se,,e,(f) + Se2e, (f)]

c+c,[Se.,'e(f) Seý.,e,()] ± b3c3[Se',2,(f) +Se.e(f)] (KS) 5(t) (I I)

Note that Equation (01) is a concise form for representing the spectra of u, and v, by one single equation. The

- sign and K2 correspond to the spectrum of v,. In Equation (11)

K, = L(L, + 2bli + 2c3,;) (12)

K, - L4(L. 2b3il - 2c _' (13)

and Of) is the Dirac delta function.

By retaining only the linear terms in e1, and eý, in Equations (9) and (10), the spectra of u, and v, will be given

by

Su(f) = b�Se,,(f) + cSe,(f) + b~cj[Se,,e2,(f) + Se,,e,,(f)] (14)

Sv,(t) = býSe,(f) + CSe,•_() - b2c[Se,,e2,(#) + Se:,e1 ,(f)] (15)

A comparison of the results obtained by using the linear analysis (Equations (14) and (15)) with those obtained

by using the nonlinear analysis (Equation (11)) is given in the results section.

4. Results

Spectra are presented for turbulence data obtained by hot wire anemometer using both single wire and cross

wire probes. Measurements were made in a circular free-air jet, 7/8" diameter at jet exit. The probes were located

8" downstream of the jet exit and 112" off the jet axis. The turbulence level at this location was estimated to be about

44% of the mean velocity. The mean velocity in the core of the jet was nominally 100 ft./sec.

The hot wire anemometer output signals were sampled at 20 kHZ for 2 seconds and stored. The data were

subsequently processed in a Sun sparc workstation. In the case of single wire data and cross wire data, spectra were

estimated by three different ways. First, the velocity field was constructed as explained in the Introduction and the

spectrum was evaluated directly. Next, the spectrum was estimated using the linear version (Equation (4a) for single

wire and Equations (14) and (15) for cross wire). Finally, the spectrum was estimated using the full non-linear

version, as given by Equations (4) and (11).
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The results for the single wire case are shown in Figure 1. It can be seen that the spectra obtained directly

from u and that obtained by non-linear analysis agree well with each other over the entire frequency range. The linear

approximation gives an error which progressively increases with the frequency. The results for the cross wire probe

are shown in Figures 2 and 3. Figure 2 shows the comparison of the spectra of u, and Figure 3 that of v,. It can be

noted that the spectra obtained directly from u, and vi agree very well with the corresponding spectra using non-linear

analysis. However, the linear analysis is in error over the entire frequency range.

5. Conclusions

It can be concluded that the spectra of the velocity fluctuations evaluated directly from the velocity field and

the spectra evaluated by using a non-linear analysis of the voltage signals agree very well with each other. This is

true for single wire, as well as two wire probes. It should, however, be noted that the computations needed for

converting the spectra of the fluctuating voltages to those of the velocity fluctuation are very involved. It would,

therefore, be much easier to convert the voltage fluctuations to velocity fluctuations and then perform spectral analysis

in highly turbulent flows.
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AIN ACOUSTIC DOPPLER VELOCITY

PROFILER FOR TURBULENT FLOW

U. Lemmin, T. Rolland, R. Lhermitte

Laboratoire Recherches Hydrauliques
Ecole Polytechnique Federale

CH- 1015 Lausanne
Switzerland

Abstract. This paper presents an acoustic Doppler velocity profiler (ADVP) for
hydrodynamic research in channels, rivers and lakes. It is non-intrusive and,
different from other existing velocity measuring instruments, it allows to take an
instantaneous velocity profile across the water column in turbulent flow. Extensive
tests of the ADVP system in laboratory open channel flow with optically clean water
have been carried out. Spectral and autocorrelation signal processing algorithms
were evaluated with respect to the extraction of the velocity information. Using a 1
MHz acoustic frequency and a pencil beam (2 degree), complete instantaneous
velocity profiles of up to 128 points are obtained in a continuous mode with a
resolution of 6 mm in the vertical and at a rate of 15 Hz. Profiles of mean velocity,
variance and turbulence scales in uniform flow are presented showing that the
instrument is well-suited for measurements in turbulent flow.

I. Introduction

Velocity and turbulence are important hydrodynamic parameters. Many
instruments, working on a variety of principles, have been developed for their
measurement. These instruments have two major drawbacks: they provide single
point measurements and, except for the Laser Doppler Anemometer (LDA), they are
intrusive, perturbing the flow. Furthermore, to establish a velocity profile either the
instrument has to be displaced or several instruments have to be employed at the
same time. Measurements in non-stationary or non-uniform flow become tedious
and difficult. Thus, an instrument which can take instantaneous velocity profiles
with a resolution in the range of turbulence scales and which at the same time is
non-intrusive will be of advantage in hydrodynamic research.

We are developing such an instrument on the basis of a Doppler sonar. The potential
of ultrasonic waves for the determination of flow speeds was recognized long ago in
medical research. Since blood flow is typically turbulent, much of the experience
gained there can be directly applied to hydraulic research. Different concepts of an
acoustic velocity measuring instrument have been realized. The most versatile for
hydraulic research is the so-called pulse-to-pulse coherent Doppler system

* developed for medical research by Baker and Watkins (1967). Its application in
oceanic research was first described by Lhermitte (1983) and the feasibility for
hydraulic research was tested by Lhermitte and Lemmin (1990). In this paper we
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present an acoustic Doppler velocity profiler (ADVP). Based on results from
measurements in an open laboratory channel we discuss the possibilities and the
limitations of this instrument.

2. -Principle of operation

The principle of operation of the instrument is based on the Doppler effect. The
frequency at the source is fs = C/X, where C is the speed of sound and X. is the
wavelength. A listener moving with the speed vj will experience additional vlT/X
waves during a time T resulting in the frequency fo = (C+vl)/X. The difference
between the two is the Doppler shift frequency

fd = fo - fs = v1 fs/C. (1)

A Doppler frequency for the case in which the source moves at speed vs can be
derived in a similar way. The general Doppler shift frequency becomes

fd = fs (VM + vs)/(C-vs). (2)

Assuming that vs is small compared to C one can write

fd = fs (vl + vs)/C- (2a)

Sonic waves are typically reflected at density interfaces. If the echo is returned 0
from a moving interface, the returning signal receives a Doppler shift. In this case
the interface causing the echo is acting first as a listener and then as a source, thus
v1 = vs - v. The Doppler shift frequency then becomes

fd= fs 2v/C. (3)

In practical applications of this principle, the omnidirectional spherical sound source
is often replaced by a narrowly focused cylindrical transducer which for technical
reasons typically has a conical shaped narrow sound beam. Since only the
component of the velocity directed towards or away from the transducer, called
radial velocity, contributes to the Doppler shift frequency, it must now be scaled by
the cosine of the angle between the velocity vector of a sound scatterer and the line
connecting the axis of the transducer and the scatterer. The Doppler shift frequency
can then be expressed as:

fd = (2 fs v/C) cos 9. (4)

This equation can be inverted to yield the velocity of interest

v = C fd/( 2 fs cos e ). (4a)

The angle between the velocity direction and the sound beam becomes an important
parameter in the application of the ADVP instrument. The smaller this angle, the
less resolution and accuracy in the determination of the velocity can be expected. In
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hydrodynamic research a profile of the horizontal velocity component u along a
vertical axis is frequently sought. However from eq (4a) it is obvious that this
orientation of the transducer cannot provide any information on the horizontal
velocity component. ADVP-profiles will therefore always be taken along a line
inclined to the vertical.

2.1 A pulse-to-pulse coherent ADVP-system

Different system concepts can be applied to provide a Doppler shift frequency. In
the pulse-to-pulse coherent system of the present ADVP a single sonar transducer is
used. The 'pulse' - a short train of several sinusoidal waves with frequency fs- is
emitted from the transducer into the water (Fig. la) at regular intervals, the 'pulse
repetition frequency' (PRF). Between two emissions the transducer serves as a
receiver. A wave of frequency fo is reflected back to the transducer. An electronic
system detects the difference between the two frequencies which is the Doppler
frequency and provides a signal which corresponds to the instant water velocity.

By gating the received signals to correspond to the pulse's time of flight to the point
of interest, a small sampling volume (the 'gate') can be interrogated (Fig. l b) instead
of the entire length of the beam. As the depth to which one wishes to interrogate
the fluid flow increases, the time interval between the emitted pulse and the sample
gate increases. Each echo must be allowed enough time to return from the maximum
depth of interest before the next pulse is emitted to prevent ambiguous range
information. The pulse repetition frequency PRF in turn determines the maximum
Doppler shift frequency that can be detected without aliasing. Since the pulsed
Doppler instrument requires sampling the returning echoes at fixed times after the
pulse emission, it is possible for the higher-frequency Doppler shift to alias to lower
frequencies. As a result a tradeoff between the maximum sampling depth Dmax and
the the maximum unaliased flow velocity vmax exists, called the 'range-gate
ambiguity' (Lhermitte, 1983):

vmax Dmax = C2 1(8 fs cos 0.) (5)

Within these limits any depth can be chosen. The method of interrogation can be
extended if more than one gate is dealt with after each emitted pulse. By sampling
at a certain number of gates in sequence a quasi-simultaneous profile of the velocity
distribution between the transducer and Dmax can be obtained (Fig. Ic). At the
same time the water depth can be determined if Dmax is chosen larger than the
anticipated depth.

2.2 Determination of the velocity

The Doppler shift frequency is typically extracted by mixing the received signal
with the emitted signal. If the received signal is processed in quadrature, the sign of
the Doppler frequency shifts can be distinguished, indicating the direction of the
flow. From the Doppler shift frequency the flow velocity is determined by eq 4a. For
this purpose different methods of signal processing exist; best known are the
spectral analysis and the 'pulse pair' method, an auto-covariance algorithm. Since
the echoes come from turbulent flow, the time series of Doppler shift frequencies at
each gate have a spectrum of finite width. These methods and their errors have
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been discussed by Lhermitte and his co-workers (1983, 1984. 1990, 1991). For
routine data treatment we have found the auto-covariance algorithm (Lhermitte
and Serafin. 1984) to be the most efficient due to its computational simplicity and
the elimination of subjective spectrum's interpretation. For each velocity estimate,
an average over several consecutive measurements is taken in order to augment the
statistical stability of the results.

3 Experimental apparatus and set-up

A pulse-to-pulse coherent ADVP unit operating at I MHz was assembled. The design
allows software selection of number of gates, pulse widths and pulse repetition
frequencies but most of the experiments were conducted with a 8 microsecond
pulse width and a 800 - 1200 Hz PRF. The scattering volume of each of the equally
spaced gates consisted of a cylinder of 20 mm diameter and 6 mm height. The above
conditions are well-adjusted for measurements in the laboratory channel, providing
about 0.75 m unambiguous range, 0.9 ms-I unambiguous velocity (eq. 5; 0 = 150)
and 6 mm vertical resolution. The effects of spurious signals resulting from
reflections on channel walls, bottom, etc., were virtually removed in the system, by
pseudo-random coding of the transmitted signal phase.

The experiments were conducted under uniform flow conditions in an open channel
of 16 m total length. The measurements were made at about 12 m from the channel
entrance, so that the flow profile was well-established at the measuring point. The
channel width is 60 cm between glass walls which is acceptable for the 20 cm water
depth set in most of the experiments. The channel bed is covered with 4 mm mean
diameter gravel glued to the bottom plate.

For the experiments the sonar transducers were first mounted from the top with the
face of the transducer submerged in the flow. Better results were obtained when the
transducers are mounted below the channel bed looking up into the flow through a
small window in the floor which was covered by Mylar film to minimize flow
disturbance. Three transducers pointing in different directions as shown in Fig. 2
were installed. In this configuration the measuring installation produced no
perturbation of the flow. For stationary flow the two velocity vectors u in the
direction of the mean flow and w in the vertical direction can be determined by
trigonometric manipulation (Lhermitte and Lemmin, 1991) from three consecutive
measurements with transducers at different orientation. For this operation the
ADVP system was connected to the transducers following a 1 through 3 sequence.
Each time, the instrument acquired data for up to 1 min at up to 128 gates.

Experiments conducted with the ADVP system were concerned with clear water
(better than 98 percent transmissivity). The water used in the channel and in the
holding tank was continuously filtered to remove any particulates. There was no
seeding by physically defined targets to provide tracers for the water motion. Very
small size particulates (less than 50 micrometer size) could still be seen in the
water. However, calculating the sonar reflectivity expected from these targets as a
function of their estimated size and concentration showed that the reflectivity
expected from their presence was well below (three orders of magnitude) the water
reflectivity actually measured. The experiments conducted have shown that in
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normal distribution. It is systematically negative indicating the probability of
slightly overestimating the true velocities. Similar results with respect to sample
size were obtained for the kurtosis.

4.2 Turbulence paramenters

The data obtained with the ADVP were subsequently analyzed for turbulent flow
characteristics. Particular attention was given to the effect of the limited transversal
resolution of the acoustic beam size in the p resent prototype system. The profile of
the standard deviation (Fig. 7) shows an increase towards the channel bed in the
way reported in the literature. In this case we have investigated the effect of
sample size on the resultant standard deviation. Each individual sample is calculated
from a number data points by a double pulse-pair algorithm. It can be seen that for
a small sample size (16 data points) the slope of the curve is correctly represented
but the actual value is too high and (not shown here) has itself an important
standard deviation. When the sample size is increased to 512, the curve approaches
the theoretical prediction by Nezu and Rodi (1986) and the deviation is greatly
reduced. This sample size represents a measuring period of about 30 seconds at
about 1000 data points per second. Further increase of the sample size does not
change the variance.

Turbulent energy spectra from data taken at different gates show a well-developed
inertial subrange over more than one decade and self-similarity for different layers
in the flow. Spectra calculated from samples which were produced by a running
mean pulse-pair over 82 data points advanced by 6 data points show the -5/3
inertial subrange and also a -3 to -4 diffusive subrange at higher frequencies (Fig.
8). For open.-channel flow a diffusive subrange with a comparable slope in the same
frequency range was already reported by McQuivey and Richardson (1969) and is
close to the -13/3 slope measured by Komatsu et al. (1989).

The spatial autocorrelation function along the profile was calculated. This function
provides an estimate of the eddy size as associated with the turbulent flow. The
area under the curve gives an indication of the mean eddy size in the flow direction,
called macro scale L. We find a distribution of L (Fig. 8) which corresponds to
profiles reported in the literature (McQuivey and Richardson, 1969; Nalluri and
Novak, 1977). However, due to rough bottom and higher Reynolds number (Re - 1.5
* 105), the largest scales are limited to about 30% of the water depth. This limit
corresponds to Kironoto and Graf (1991) who measured in the same flow conditions
in the same channel using hot film instrumentation. The micro scale was also
calculated and is shown in Fig. 9. Again, we find close resemblance with the
literature and results by Kironoto and Graf (1991). Thus, even though the sound
beam diameter of the present instrument is rather large (about 20 mm), turbulence
scales can be well-resolved with this instrumentation, because sonar echoes come
from interfaces which are much smaller than the beam dimensions.

5. Conclusion

The data acquired have been analyzed to evaluate their use for the probing ofboundary layer flow conditions in open channel flow. From the analysis it isapparent that the ADVP hardware and the software algorithms applied to the
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turbulent flow a well-defined spectrum with a nearly Gaussian shape is always
observed from clear water backscattering (Lhermitte and Lemmin, 1990).

4. Results and discussion

4.1 Mean velocity profiles

For verification of the measurements the ADVP is compared with standard
instrumentation: Pitot tube and hot film. While the Doppler measurement of the
ADVP is an absolute measurement and does not require calibration, certain aspects
of the installation of the instrument can influence the result, One of these
parameters is the inclination of the transducer. Tests have shown that the resultant
velocity (eq. 4a) is strongly dependent on this angle. When comparing the ADVP
mean velocity profile with one obtained by a Pitot tube (Fig. 3), it is seen that a
deviation of the transducer angle of less than 20 changes the estimated speed by up
to 10%. In a similar way an observed systematic deviation in the profile of the
vertical mean velocity could be attributed to an angle deviation of 0.10. Thus a
carefully controlled installation of the transducers is an important prerequisite for
good measurements with the ADVP. The shape of the measured mean profile
corresponds to a logarithmic velocity profile, well-established for uniform open-
channel flow.

Since the ADVP measures the radial velocity in the axis of the acoustic beam,
measurements by a single inclined transducer cannot distinguish between
contributions from the horizontal (u) and the vertical (w) components of the velocity
vector. Under stationary flow conditions the two components can be obtained from
measurements with a single transducer at a time if measurements are repeated at
different transducer angles 0. Using the two inclined transducers 2 and 3 (Fig. 2)
two profiles of the mean velocity were obtained (Fig. 4) which due to the transducer
orientation are slightly different. From the two profiles the profile of the 'true'
horizontal velocity vector was calculated (Lhermitte and Lemmin, 1991) and falls in
between the two measured profiles (Fig. 4). The difference between the measured
and the calculated velocities never exceeds 5% and can be attributed to the vertical
velocity w. The w profile is shown in Fig. 5 together with the vertical velocity
measured directly with transducer I. High measured velocities near the bed are due
to the change in bottom roughness caused by the smooth Mylar window of
transducers 2 and 3 which is upstream from the window for transducer 1. One can
see that the general trend of the two w profiles is identical but the actual values of
the rather small velocity may differ. The general trend of w can be explained by a
secondary circulation as suggested by Nezu and Rodi (1985) for channel flows with
small width to depth ratios. Thus profiles of horizontal velocity can be measured by
a single observation if not too high an accuracy is required. The results could be
further improved if the angle (0; Fig. 2) of inclination of the transducer would be
increased.

The effect of the number of data points used to calculate the velocity has been
investigated by calculating higher statistical moments of the time series. The
skewness, shown in Fig. 6, does not change much once the number of data points
exceeds 64. For lower sample lengths a large scatter was observed. For 64 points
and above, the skewness is relatively small implying a small deviation from a
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S extraction of the velocity vector are well suited for the analysis of turbulent flow
characteristics. Without the need for a calibration procedure, mean vertical and
horizontal water velocity is effectively measured by the ADVP, turbulence scales are
well resolved. Measurements can be made to a degree of accuracy better than most
conventional in situ sensors which can also modify the local flow conditions
significantly by intruding into the flow. The ADVP is easier to operate than laser
velocimeters and essentially provides instantaneous velocity profiles instead of
point measurements. Up to 128 points in each ADVP-profile can be resolved. Thus a
higher spatial resolution is achieved. Compared to existing instrumentation, the
ADVP profile measurements take only a small fraction of the time for the same
resolution. Furthermore, since ADVP profile measurements are taken
simultaneously under the same flow conditions, the resultant profiles are found to
be smoother than those taken in sequence by existing instruments.

Our conclusion at this point is that the high frequency ADVP is a valuable tool for
hydraulic research. Turbulent clear water constitutes an appropriate backscattering
medium. The relevance of more sophisticated techniques for beam focalization, data
acquisition and signal processing of the Doppler information may need to be
investigated before the configuration and domain of application of a high frequency
ADVP designed for hydraulic research can be finalized.
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ABSTRACT

The turbulent entry flow in a two-dimensional channel is characterized by

an initial inviscid-core region followed by a profile-development region which

leads to fully-developed turbulent flow. The length at which turbulent bursts

initiate the transition process is very dependent on the Reynolds number.

Previous studies have been carried out for high Reynolds numbers (Re > 105)

0 only so that the transition has been assumed to start from the inlet section. For

flows at low Reynolds numbers (2,000 < Re c 12,000), transition is observed to

occur significantly downstream of the inviscid-core region; for such flows the
flow resembles the laminar flow entry region up to the point of transition so that

the pressure gradient prior to transition is less than that of the fully-developed

turbulent flow. For intermediate Reynolds numbers (12,000 < Re < 20,000),

transition occurs downstream of the inlet section but before the disappearance

of the inviscid core. For such flows, the pressure gradient is near its fully-

developed value throughout the entire entry region.

1. INTRODUCTION

The study of turbulent entry flows is important in many engineering applications, including the designs of

wind and water tunnels, as well as piping and duct systems. Turbulent entry flow is characterized by an initial
inviscid-core region that changes to a profile-development region. This is followed by fully-developed flow

downstream. The location of a transition region in which turbulence initiates is dependent on the Reynolds

number. Although researchers have developed relations for laminar entry flows that satisfactorily predict
experimental findings, similar success has not been achieved for turbulent flow at all Reynolds number ranges.
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Many researchers have studied turbulent entry flows in smooth pipes; these include Ross and Whippany

(1956). Barbin and Jones (1963), Bowlus and Brighton (1968), Klein (1981), and Salami (1986). Wang and

Tullis (1974) provided an analysis for flow in a rough pipe. In all of these studies, the analyses were camed out

for higher-Reynolds-number (Re > 105) flows than studied here. One common conclusion was that the

pressure gradient at the entrance to the pipe was significantly higher than the value for fully-developed flow.

Moreover, it was determined that the pressure gradient reduces to its fully-developed value in less than fifteen

(15) pipe diameters. Barbin and Jones (1963) estimated the entrance length (distance to achieve fully-

developed flow) to be fofty-four (44) pipe diameters at Re a 388.000. Wang and Tullis (1974) estimated the

entrance length to be forty-nine (49) pipe diameters for 10 < Re < 3.7 x 106. In sharp contrast, Klein (1981)

predicted that the entrance length may exceed one hundred forty (140) pipe diameters. Even though the

entrance length was not measured, the distance at which the boundary layer filled the pipe and the inviscid

core disappeared was determined. Barbin and Jones (1963) measured the inviscid-core length to be twenty-

eight (28) diameters, while Wang and Tullis (1974) achieved this at thirty (30) diameters. Bowlus and Brighton

(1968) developed the following equation for the inviscid-core length, Li:

Li- , 6.19 In Re - 46
D

where D is the pipe diameter and Re is the Reynolds number based on D and the uniform velocity at the inlet

section. This equation agrees with experimental data collected by Barbin and Jones (1963) within 10%. The

results of past investigations of turbulent entry flows in pipes indicate a need for further research for flows at

lower Reynolds numbers.

In addition to the studies in pipes, investigations have been conducted for flows in channels and ducts.

Two studies of interest were conducted by Cebeci and Keller (1974) and Shcherbinin and Shklyar (1980). In

these analyses, excellent agreement between predicted and experimental velocity profiles was obtained. Both

studies employed the equations of motion (momentum and continuity) and an eddy-viscosity model for the

turbulent structure to predict velocity profiles. These equations were solved numerically. As with studies in

pipes, values for Reynolds numbers (based on average velocity and channel height) in these studies exceeded

105.

Even though a great deal of research has boen conducted, there appears to be little data at low to

intermediate Reynolds numbers (4,000 ! Re S 18,000) for entry flows. Additionally, data over the entire entry

region to determine the entrance length for fully-developed turbulent flow is lacking. Therefore, the purpose of

this study is to investigate turbulent entry flows for low to intermediate Reynolds numbers in a smooth, two-

dimensional channel, with attention given to the entire entry region.

O
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. 2. FLOW CHARACTERISTICS

Simplified models of turbulent entry flows deoict the flow as a growing turbulent boundary layer that

eventually fills the entire channel. Often, the entrance length is defined as the distance for the inviscid core to

disappear and the flow is considered fully developed beyond that point. However, the flow changes

considerably beyond the disappearance of the inviscid core before reaching its fully-developed velocity profile.

Moreover, this simplified model does not accommodate turbulent entry flows in which turbulent bursting does

not initiate at the channel inlet section. Therefore, to accurately describe flow in the entire region, a more

complex model is required.

To provide a more comprehensive description of developing flow, several lengths have been defined and

are shown in Figure 1. The distance from the channel inlet section to the location where turbulent bursting

initiates is called the turbulence-initiation length, Lt. The turbulence-initiation length is dependent on the

Reynolds number and occurs near the channel inlet section for high Reynolds numbers (Re > 105). As noted

earlier, the inviscid-core length, Li, is the distance from the inlet section to the location where inviscid core

disappears as the viscous wall layer fills the channel. The distance at which the entire flow is turbulent is the

established-turbulence length, L.. The distance at which the pressure gradient achieves its fully-developed

value is denoted LP. Finally, the distance from the channel inlet section to the location where the velocity profile

attains its fully-developed shape is the entrance length, L,. It may be possible that the turbulent structure has

not been completely established at L., as has been suggested. This study did not address that point.

The choice of a velocity profile to represent fully-developed turbulent flow varies between researchers.

For this study, the one-seventh power-law velocity profile

InvlcI~d Core 1/7-th Power law

y, T

STransition Turbulent

1:f&Region :Re=g~fon~xx

LL
L e J

Figure 1. Definition of turbuient entrance lengths.
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has been selected. Here 5 is the mean velocity component in the streamnwise direction, Uo is the average

velocity, y is the transverse coordinate, and H is the channel height.

In addition to studying the development of the velocity profile, the development of the pressure gradient

is also of interest. In earlier studies at higher Reynolds numbers, where turbulent bursts initiate near the inlet

section of the channel, the pressure decreased from a relatively large value near the inlet section to its fully-

developed distribution downstream. However, at lower Reynolds number flows the pressure distribution should

behave quite differently. For steady developed flow, the pressure gradient is directly related to the wall shear

stress, cw, Furthermore, wall shear stress relates to the velocity profile near the wall by

where g is the dynamic viscosity.

The wall velocity gradient for laminar flow is substantially less than that of turbulent flow. For low Reynolds

numbers, the flow is initially laminar and turbulent bursts initiate downstream of the channel inlet section in the

profile-development region. Consequently, the pressure near the inlet section is substantially less than the

pressure associated with the high-Reynolds-number flow, as shown in Figure 2. For the high-Reynolds-

number flow, the pressure approaches its fully-developed value earlier in the flow, as shown. For intermediate-

Reynolds-number flow, the pressure gradient distribution approximates its fulfy-deveGoped value throughout

the entire entry flow, a rather interesting observation.

High-Reynolds-Number Plow
pu"o • IntreltpReynokle.Number Flow

pU2
Low-Reynolde-Number Flow

H

Figure 2. Proposed pressure distributions for different ranges of Reynolds number.
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. 3. EXPERIMENTAL FACILITY

The expenments for this study were conducted in a rectangular, parallel-sided, straight channel. The

channel assembly, shown in Figure 3, consisted of an entrance, a settling chamber, a plenum, a contraction,

and a horizontal parallel-plate test section. A fan was located downstream of the test section to reduce flow

disturbances associated with an otherwise upstream fan location. The channel occupied two rooms so that the

entrance could be in a separate room sealed from the test section. This allowed for a pressurized test section

which prevents highly undesirable leakage into the test section as is found for a single room arrangement with

a downstream fan location.

The entrance and settling chamber consisted of a smooth inlet; a one-inch hog-hair filter; a honeycomb

section filled with 7.5 inch long, 0.25 inch diameter plastic straws; and four stainless steel screens, 8 inches

apart, with screen meshes of 59.5%, 57.8%, 57.4%, and 49.6%, respectively. The plenum was 48 inches long

and made of plywood. The two-dimensional contraction was formed from a styrofoam block and covered with

linoleum. The experimental test section was 16 feet long by 4 feet wide, with a 0.75 ± 0.005 inch wide gap. The

top of the test section was constructed of acrylic sheets. The bottom surface consisted of aluminum plates

covered with a sheet of linoleum, spray painted black and wet sanded smooth. The data was collected with

commercially available instruments.

. 4. RESULTS

To provide a ,-mprehensive description of turbulent flow development, experiments were conducted to

determine the turb. ace-initiation length, the inviscid-core length, the established- turbulence length, the

length at which the pressure gradient achieves its fully-developed distribution, and the entrance length. These

experiments were conducted for Reynolds numbers ranging from 4,000 to 18,000 and are plotted in Figure 4.

Plom uip SUtMti w'ms mt I01)

I .Tr

.. .

5ramsmmm Ii•in - fi1ll

r"1w ,-7

Figure 3. Experimental facility; top view.
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Figure 4. Various turbulent entrance Lengths as functions of the Reynolds number.

The measurements to determine the turbuience-initiation length, Lt, were taken along the channel

centerline. As shown in Figure 4, LI decreases as the Reynolds number increases. Eventually, turbulence will
initiate at the channel inlet section at high Reynolds numbers. The plot of the inviscid-core length shows that
Li gradually decreases as the Reynolds number increases. This indicates that a relation of the form derived by
Bowlus and Brighton (1968) for pipe flow is not applicable for the conditions in this channel flow study at the
Reynolds numbers considered because the eqation they proposed would lead to an increasing Li with
increasing Reynolds number. For Re <12,000, the initiation of turbulent bursts occurs downstream of the
inviscid-core region. Therefore, the velocity profiles and static pressure distributions for Re <c 12,000 should
resemble laminar flow conditions until turbulence initiates downstream.

Measurement of the established-turbulence length indicates that LO decreases with inreasing Reynolds
number. The distance Lp at which the pressure gradient attains its fully-developed value also decreases with
increasing Reynolds number for Re < 16,000. For Re.,* 16,000, LP increases with Reynolds number. This
change is related to the pressure gradient development and will be discussed later. The entrance length was
established by curve fitting the velocity profile to a one-seventh power-law distribution. From the plot of
entrance length it can be seen that unlike the other distances measured, L. gradually increases with Reynolds
number. Moreover, changes in the Reynolds number do not affect values for L as significantly as the other

lengths mewasured. Because L* is in the range of 190 to 215 channel heights, the conclusions of Klein (1981),
that entrance lengths could exceed 140 pipe diameters, would tend to be suppotted over those of Barbin and
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Figure S. Low-Reynolds-number static pressure distribution; Re a 4,000.

Jones (1963) or Wang and Tullis (1974). This would further indicate that some past experiments for fully-.developed turbulent flow were actually conducted on flows that were not yet fully developed.

Experimental streamwise static pressure distributions were measured using taps in the channel side wall.

The results of ton trials at each Reynolds number were averaged. The measured distributions can be divided

into three categories. The first category of static pressure distributions are designated as low-Reynolds-

number distributions. These flows are represented by the curve of Figure 5 and are characterized by the

disappearance of the inviscid core before the first turbulent bursts are detected (i.e., Li < Lt). For this category,

the pressure gradient initially follows a gradient characteristic of laminar floW. After turbulent bursts in•-e, the

pressure gradient deviates from the laminar gradient and approaches the futly.developed turbulent profile.

The second category of static pressure distributions are represented by the curves of Figures 6, 7, and

8, and are designated as intermediate-Reynolds-number distributions. For this case, the turbulent bursts

initiate prior to but near the disappearance of the inviscid core (i.e., Lf s LI). The pressure gradient is near its

fully-developed value throughout the entry region. There is a value for which the pressure distribution remains

at its fully-developed value throughout the entire flow; the available data indicates that it is approximately

around Re - 16,000, as demonstrated in Figure 7.

The final category of pressure distributions is the high-Reynolds-number distributions. For this case, the

pressure at the entrance to the channel is significantly greater than its fully-developed value. This category is. not represented by data collected in this study. However, Figure 8 for flow at Re a 18,000 is a clear indicative

of this trend.
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. 5. CONCLUSIONS
Based on the results of this investigation, the following conclusions can be made for flow in the entry

region of a smooth channel.

1. The inviscid-core length, L1, decreases with increasing Reynolds number. It can be approximated by

the relationship

LiP . -0.00156 Re + 69 Re < 18,000.
H

The Reynolds number is Re a UoH/v, where v is the kinematic viscosity.

2. The turbulence-initiation length, Lt, decreases with increasing Reynolds number. It can be

approximated by the relationship

't .- 0.0072 Re + 140 Re < 18,000.

3. The established-turbulence length, L., decreases with increasing Reynolds number. It can be

approximated by the relationship

L " 6.8 x 10. Re2 
- 0.008 Re + 168 Re < 18,000.

4. The distance from the channel inlet section to the location where the pressure gradient attains its fully-

O developed value, LP, decreases with Reyno.ls number for Re c 16,000. It can be approximated by

the relationship
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L-- -6.9 x 10-8 Re2 - 0.01 Re + 220 Re c 16,000.

For Re > 16,000 the value for Lp increases with increasing Reynolds number.

5. The entrance length, I. for the velocity profile to attain its fully-developed form, increases with

Reynolds number and exceeds 190 channel heights. It can be approximated by the relationship

L,
0.00104 Re+ 190 Re < 18,000.

6. There are three categories of turbulent flows that are designated as follows:

a. Low-Reynolds-number turbulent flow for which Li c Lt. In this category, Re < 10,000 and the

pressure in the entry region is less than the pressure associated with the fully-developed flow

distribution.

b. Intermediate-Reynolds-number turbulent flow for which Lt :5 Li. In this category, 10,000 < Re <

20,000 and the pressure gradient is approximated by its fully-developed turbulent values. This

category includes a flow, at Re - 16,000, for which the pressure gradient retains its fully-developed

value throughout the entire entry region.

c. High-Reynolds-number tlows for which Lt = 0. In this category, Re> 105 and the pressure is above

the pressure value associated with the fully-developed flow distribution and reduces monotonically

to its fully-developed distribution downstream.
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ABSTRACT
From the longitudinal mean velocity profiles in eight decreasing adverse

pressure gradient turbulent diffuser flows, and in similar regions of an

initially increasing adverse pressure gradient diffuser flow, it can be shown

that there are two half-power regions, starting outside of the viscous

sublayer. In these flows, the longitudinal development of the two half-power

regions indicates an entry region and a universal region. The ranges of

applicability of different semi-empirical velocity profiles are also described

in terms of the two half-power coefficients.

I. INTRODUCTION
Mean velocity profiles in wall-bounded turbulent flows with adverse

pressure gradients is a topic which has generated much research due to the
common occurrence of such flows in engineering applications. Although there

is a large volume of literature on the topic, no one theory is wholly
satisfactory, the reason being the high degree of complexity in these types of

flows. Developing a better understanding of the mean velocity behavior in

this class of flows will allow engineers to more effectively design plane or
conical diffusers. In addition, such an understanding of flow development

will also help in practical prediction without having to resort to expensive

experimentation or direct numerical simulation.

In the present work, with the ultimate objective of more accurate

semi-empirical prediction of the mean velocity field in decreasing adverse

pressure gradient turbulent flows, the experimental data from the nine
turbulent diffuser flows listed in Table I are examined. Although this is

certainly not all of the experimental data available in the literature for

this class of flows, it is a representative sample. Only unseparated,

incompressible flows which have no swirling are considered. It has been

observed that there are two half-power regions in all the flows examined. In

fact, the longitudinal development of the mean flow can be described in terms

of the half-power characteristics.

The nine flows listed in Table 1 include four plane diffuser flows.

namely, Flows 1100, 1200, 2900 of the 1968 Stanford Conference (Coles and

Hirst 19681 and Flow 0141 of the 1980-81 Stanford Conference (Kline et al.

1981). In addition. the exoerimental data from five conical diffuser flows of
Address correspondence to this author. Tel. (416) 525 9140 Ext. 7296 or 7321.

Facs. (416) 572 5944.
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ten. six and eight-degree conical angles, have been examined. The ten and

six-degree conical diffuser flows are, Flows 5000 and 5100 (Coles and Hirst),

and Flows 0142 and 0143 (Kline et al.), respectively. The eight-degree conical

diffuser data are from Turan (1988), Kassab (1986) and OzLmek (1985). One of

the plane diffusers, Flow 0141, has an increasing adverse pressure gradient

over much of the length of the flow. The other eight flows have decreasing

adverse pressure gradients, except for a short region at their entrances. All

of the diffusers have either a developing channel (or boundary layer) or pipe

flow at their inlet except for the eight-degree conical diffuser which has a

fully-developed pipe flow at its inlet. The inlet Reynolds numbers of these

flows are also listed in Table 1.

Based on local flow variables, three different distinct length scales can

be developed in a wall-bounded adverse pressure gradient flow (Kader and

Yaglom), such that 6 < 6 << 6, where 6 is the viscous length scale, 6 =
V/u,; 6 is the pressure length scale, 6/ = 2 (r/p) 1/2 is the

P P / U

friction velocity and rw is the wall shear stress). The values of these three

length scales in the eight decreasing adverse pressure gradient flows examined

have been found to differ by at least an order of magnitude at a given

measuring location (Kopp 1991). Therefore, these three length scales can be

distinctly identified. As a result, there should be at least three different

functional forms of the mean velocity at each particular measuring station.

In the following, first, the two half-power regions are discussed in

detail. Subsequently, applicability of the profiles of Coles (1956), Kader and

Yaglom (1978), Perry (1966), Townsend (1961), McDonald (1969), Mellor (1966),

and Nakayama and Koyama (1984) are examined with respect to the development of

the two half-power regions.

II. PREDICTION OF THE MEAN VELOCITY FIELD IN
DECREASING ADVERSE PRESSURE GRADIENT FLOWS

A. THE TWO HALF-POWER REGIONS
It is observed that in turbulent adverse pressure gradient internal flows,

there are two regions at each measuring station where the mean velocity varies

with the square root of the distance from the wall. All of the flows examined

here exhibit a similar development of two half-power regions. Examples of this

progression is shown in Figure 1, for the plane diffuser flows, Flows 2900,

1200 and 0141. Figure 2 shows the same development in the conical diffuser

flows, Flows 5100, 0142 and the eight degree conical diffuser are given as

examples. Here, the inner half-power region is where the mean velocity profile

can be described by,

U/Um = Cil/(yl/) 1/2 + D ilU® (1)

while in the outer half-power region, the mean velocity is given as follows:

S/U® = C0 /U{(y/6) 1/2 + D0 / UZ. (2)

In addition to experimental evidence, the presence of the inner half-power

region can be shown from a dimensional analysis, as done by Kader and Yaglom

(1978) and Perry et al. (1966); or it can be analytically linked to the

presence of an approximately linear turbulent shear stress distribution, as

done by Townsend (1962), Mellor (1966), McDonald (1969) and Nakayama and

Koyama (1984). It has been observed here for the three flows with turbulence
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measurements (Flows 0142. . and the eight-degree conical diffuser) that

outer half-power region occurs atter the peak of the Reynolds shear stress u7,

as uv decreases in an approximately linear manner. The outer half-power

region can hence be related to this linear stress layer, just as the inner

half-power region is.

B. THE CO < CI REGION
Figures 1 and 2 show that early in the development of these flows, the

outer half-power slope, C0 is less than the inner half-power slope. C As

the flows develop, the inner slope decreases while the outer slope increases
until they become approximately the same. The region where C. = C is the

1 0

half-power region discussed by Perry (1966), Samuel and Joubert (1974). and

Kader and Yaglom. As the flows develop, the inner half-power slope becomes

smaller than the outer slope.
When C. > C in all of the diffusers, the blending region between inner1 0

and outer half power regions is small, indeed almost non-existent on

half-power coordinates. At this point there are no substantial linear regions

present in any of the flows examined, as seen in Figures 1 and 2.

C. THE CO > C I REGION
Once C0 exceeds C., the two half-power regions begin to separate and the

blending region becomes linear. Specifically, the linear blending region

begins for approximately 2 < C /Ci < 3 in all of the flows examined here.

Further downstream, the blending region becomes longer and has a 3/2-power
velocity distribution. This occurs when 4 < C 0/C < 5. Examples of this

development can be seen in Figures 3 and 4. Figure 3 shows the linear
blending region at Station 5 (x = 0.382 m) in Flow 0142 on linear coordinates

while Figure 4 shows the 3/2-power blending region at Station 11 of the same

flow (x = 5.92 m) on 3/2-power coordinates. It is observed that the region of

overlap can be quite long.

Trupp et al. (1986) reported the presence of two half-power regions in the

eight-degree conical diffuser examined here. The experimental data examined

in that paper, however, were only for the near wall region, so that towards

the exit, there were no data for the outer half-power regions. Upon further

examination of the experimental data of Turan, Kassab, and Ozimek from the

same diffuzer, it has been observed that there are two half-power regions

present throughout the flow, as mentioned above.

The onl,, exception to the above discussion is Flow 0143. This flow has a

very long entry length caused by the "backward facing step" arrangement just

upstream of the diffuser entrance, which was used to generate high core

turbulence. The development is much slower, and C becomes greater than C.
0 1

only at the last measuring station (the entry length concept is discussed

further in Section El.

Flows 1100 and 1200 developed in much less extreme adverse pressure

gradients. Hence, flow 1100 never develops a 3/2-power region and flow 1200

only barely develops a 3/2-power region. All of the other flows have larger

adverse pressure gradients and the 3/2-power region develops more readily.

The development of the linear regions of this class of flows is related to

the decreasing adverse pressure gradient. Upon examining Samuel and Joubert's

increasing adverse pressure gradient flow, Flow 0141, it can be seen that the
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linear blending regions between the inner and outer half-power regions are

delayed until the adverse pressure gradient starts to decrease. In the other

flows examined, the pressure gradient increases for a short distance from the

inlet. At this point, the ratio of the outer half-power slope to the inner

slope starts to increase rapidly and finally the long linear blending region

between the two 1/2-power regions occurs.

As the 3/2-power blending region begins, the flow has developed

sufficiently so that the pressure gradient. freestream velocity, and the

friction velocity do not decrease as rapidly as upstream. The logarithmic

region begins to return, or becomes longer. As a result, the mean flow field

can be said to be in a moving equilibrium at this stage.

Figure 5 shows how the ratio of C0/Ci changes with u,/U,. The flows

develop as u,/U,, decreases (right to left on this plot), with C /Ci increasing

in this direction. Figure 6 shows that the ratio of the intercepts, D /DI

also correlates well with the ratio of u*/U.. The ratio of the two half-power

slopes seems to be quite important, as discussed in more detail below.

D. ENTRY LENGTH AND COLES' LAW OF THE WAKE IN THE UNIVERSAL REGION
Coles (1956) showed that the mean velocity profile in the outer region is

similar to that for a wake flow. He obtained a velocity profile of the form

U f(y÷) + g(n,y/6) (3)

where f(y+) is the Log Law and g(H,y/5) is the departure from the Log Law in

the outer region. Coles determined that g{f,y/6) = 1(x)w(y/6)/x where w(y/6)

is called the Law of the Wake, which was determined empirically. 1(x) is

determined from 0S1 ur ni
u, . In-- + b + • w(1), (4)

where w(l)?2. Hinze (1975) approximated w(y/6) as follows:

w (C = 1 ÷s in [(2C- 1 },/2 j. (5 )

where C = y/6. There is a small error in this approximation at C f 0.1 and C

f 0.8 to 0.9. In the outer region of the boundary layer, Coles' Law of the

Wake should be valid if a logarithmic velocity profile exists and the adverse

pressure gradient is not severe.

Coles' Law of the Wake fits the experimental data at every station of the

plane diffuser flows examined, as shown in Figure 7a for selective stations in

Flow 1100, Flow 1200 and Flow 2900, although there are a few exceptions where

the agreement is not as good. These minor inaccuracies seem to be due to

inaccuracies in determining the boundary layer thickness, such as in the case

of Flow 2900 in Figure 7a. Sample profiles are presented in Figure 7b from

the six and ten-degree conical diffusers, and in Figure 7c, from the

eight-degree conical diffuser. In Figure 7b, the Log Law intercept is

unirlified. In addition, u, was calculated from the Preston tube

measurements, as opposed to Clauser's method. This figure shows that Coles'

formulation predicts the data reasonably in the outer layer, although the fit

is much better when the Log Law intercept is modified or the Clauser friction
velocity is used.

In the entry region of these flows, Coles' Law of the Wake does not fit

the experimental data, as shown in Figure 7c for the eight-degree conical

diffuser Station 2 (x = 0.18 m). However, because Coles' Law of the Wake
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reasonably fits all of the data sets after an "entry length", it is considered

here to be a universal mean velocity profile. This universal mean velocity

profile depends on two parameters (u* and rl(x). and hence, it does not

collapse onto one line for all flows. This can be seen in Figure 8 which

shows the data for the eight-degree and two six-degree conical diffuser flows

on the usual U÷ versus log y coordinates. For these three flows, the outer

layer occurs at varying distances from the wall.

The entry length is hence defined as the distance to the point where

Coles' Law of the Wake starts to accurately predict the data. After the entry

length, the universal region starts. In the universal region, the local flou

parameters such as the friction velocity, freestream velocity and kinematic

pressure gradient do not change very rapidly in comparison with the entry

region where the gradients are large. There are not enough experimental data

to examine whether the entry length is Reynolds number dependent.

E. ENTRY LENGTH IN TERMS OF THE TWO HALF-POWER REGIONS: Co/CI < 3
Since the ratio of the inner to outer half-power slopes is also related to

the entry length, the mean velocity becomes universal for the flows examined

here specifically in the range 1.1 < Co/Ci < 1.4 for the plane diffusers and
1.2 < Co/Ci < 3.5 for the conical geometries. This criterion is dependent on

initial conditions as can shown with the data from the six-degree conical

diffuser, Flows 0142 and 0143. Flow 0142 develops a universal profile at C /Ci
= 3.2; while in Flow 0143, the mean velocity profile attains the universal

form at Co/Ci = 1.2. Generally, the Law of the Wake predicts the experimental

profile well when Co/Ci > 3. A summary is given in Table 2.

Attempts were made to relate the slope and intercept for the inner

half-power region to the local flow parameters so that Figures 5 and 6 can be
used to evaluate C0 and D . It is observed from examining the experimental

data that the inner half-power region overlaps with the Log Law, especially

when the Log Law is long. Therefore, it seems reasonable to expect C. to be aI

function of the friction velocity just as the Log Law is. The best

non-dimensional correlation of the inner half-power slope is as shown in

Figure 8 in terms of [Ci/(UV 61/2)] versus [x/ 6 inlet * a6/u,]. This plot is

most useful in the entry length region where Coles' profile does not apply and

the Log Law region is small. The Law of the Wake occurs at different

distances from the wall for different flows. This causes difficulty in

correlating the intercepts (or slip velocities) of the two half-power regions.
3The best correlation for Di has been found to be Di/U. versus = a/u*, as1as

shown in Figure 9.

F. TOWNSEND'S AND MCDONALD'S PROFILES
In the region where ColCi < 1, the only mean velocity formulations that

predict the data are those of Townsend and McDonald. Mellor's and Nakayama

and Koyama's models yield profiles similar to Townsend's, as shown by Nakayama

and Koyama. With the stress distribution approximated as, = -14 +v +
p P -

ay. and the same mixing length as used by van Driest (1956), t xy.

Townsend's mean velocity profile is,0 I a + _ a1/2 2(1 - B san(a)) ( + (6)

1/
2• (a +ay)1/ + al/ + xs

where a u* and x is the universal mixing constant. Using the Log Law, the
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half-power law, but do not adequately predict the half-power region, except

for McDonald's profile at a rew stations in the entrance regions. McDonald's

model can be used in the entry region of these flows with the shear stress

gradient approximately 0.6 times the pressure gradient. As summarized in

Table 2, McDonald's formulation works reasonably well for C 0 /C < 3 while

Townsend's model works when C /Ci < 1.2.

For plane diffuser flows there is no entry region data available. where C
> C 0 ; whereas in the conical diffuser flows, the inner half-power law is

easily observed in the entry region since there is a multitude of entry region

data for these flows, and hence, there is less uncertainty.

G. THE PROFILES OF PERRY AND KADER AND YAGLOM

As stated above, when C /C. becomes equal to approximately unity, the
0 i

half-power region described by Perry, Samuel and Joubert and Kader and Yaglom

begins. Perry stated that in the half-power layer, the flow is dependent

primarily on the kinematic pressure gradient and the distance from the wall.

Since there should be a half-power layer in adverse pressure gradient flows,

and if the velocity gradient, obtained from dimensional analysis, is of the
1I t/Z

following form, a = 1 K '* 2 upon integration the half-power velocity

profile is obtained. Perry also pointed out that the universal constant, Ki,

shows reasonable agreement with experimental results when the major portion of

the velocity profile at a particular station varies with the square-root of y.

Perry's half-power equation is as follows:

slip velocity or additive constant, Us can be obtained, and is given by,

Us= (ln( )- 2(1 - B sgn(a)]) + A, (7

where A is the intercept of the Log Law, B w 0.2 is a constant representative
3of the rate of turbulent kinetic energy diffusion, and A =am/u.

With the stress distribution modified as, r/p = a + ray, where a can be

either positive or negative, and I < 1 is empirically determined, McDonald's

profile is given as, follows, for a positive a,

1 11 ( 4 'a2 yay)1/2 a1/2
U =((a -a + A-y In1/ + U11  (r~( u) - 8)

U = a( , 2 l2 . (a2 + ,ay)/2 +a1/2 ) s.
with the slip velocity matched to the velocity at the end of the buffer

region. The resulting expression is similar to Equation 6 with B = 0, and the

linear shear stress gradient is empirically or experimentally determined.

Townsend's model, in general, agrees with the measured profiles at only

the first few axial stations in all of the flows if the slip velocity is

modified. In these locations Townsend's model provides a moderately better

approximation to the data then the Log Law. Further downstream, however, his

model does not predict the mean profiles as significant amounts of advection

of turbulence kinetic energy become apparent. In addition, the predicted slip

velocity also becomes too large for these stations.

At all the axial stations in the entry region, McDonald's formulation is

in good agreement with the six and eight-degree conical diffuser data sets

over a longer region then the Log Law. This is also a substantially longer

range of measuring stations than Townsend's model worked in. Far from the

wall, the models of McDonald and Townsend. mathematically asymptote to the
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w-here K, is a universal constant and K. is a function of 6. The slip velocity

is given as. I = n( C/Al + A, where x and A are the Log Law constants. K,

= 4.16, and C = 0.19 is a universal constant. Because of Perry's definition

of the slip velocity, the half-power region is to follow immediately after the

logarithmic region. Perry, thus, assumed the presence of a logarithmic region

in all unseparated adverse pressure gradient flows. As indicated before, it

has been observed in the present study that this assumption is correct only

after the 3/2-power blending region appears, for 4 < C0/Ci < 5.

Kader and Yaglom's half-power law, after performing a similarity analysis

and obtaining the constants empirically, is as follows:

2 ()12 1/2 K 2L + u , (10)

S1/2 K2 15 6 6ul__
where K = (200u/ 6  

.201/ 2 un r 1 / 2  r, andr 2r 5 + 5Ou*/a6"

Kader and Yaglom's half-power slope is, thus, seen to be a function of a6/u*.2
while the intercept is a function of a6/u* and A.

Following the half-power region (and possibly a small blending region) is

the velocity defect region. Kader and Yaglom use dimensional analysis and

empirical results from a wide range of experiments to obtain their defect law

SL- C (I + J I - ), (11
UU*

where C =9.6 is an empirical constant. A wide degree of scatter in the

experimental data around C = 9.6 is indicated by Kader and Yaglom.

It is observed that Perry's and Kader and Yaglom's half-power laws have

approximately the correct slope where C. I C0 in these flows. Kader and

Yaglom's half-power law gives prediction over a wider range of axial stations

in most of the flows then Perry's half-power law. It should be noted,

however, that Perry's half-power law is designed to predict the half-power

region only when it is the dominant region of the flow. On the other hand,

Kader and Yaglom's defect profile gives better prediction in the plane

diffusers than in the conical ones. These results are summarized in Table 2

(where Equations 9, 10 and 11 are referred to as Perry-1/2, KY-1/2 and

KY-defect, respectively). From the presented results, it can be seen that

these half-power laws work in the region 1 < C /Ci < 2.5 (approximately) and

the Kader and Yaglom defect law in the range around C0 /Ci = 1.5.

III. CONCLUSIONS
It was observed that there are two half-power regions present in the eight

adverse pressure gradient flows examined. The ratios of the inner and outer

half-power slopes and intercepts correlate well with the ratio of the friction

velocity and the freestream velocity. The blending region between the two

1/2-power regions is small when the inner half-power slope is larger then the

outer half-power slope. As the flows develop, the outer half-power slope

* grows larger than the inner half-power slope and the blending region becomes

longer and is linear. Further into the flows, the blending region varies with

the 3/2-power of the distance from the wall.
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It is apparent from the experimental data that there is a universal mean

velocity profile in wall-hounied adverse pressure gradient ftows. This

universal profile, the Log Lau with Coles' Law of the Wake, occurs after the

entry length. Co/C, > 3, and before separation occurs, as the mean field comes

to a moving equilibrium.
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Figure 2. Half power development in conical diffuser flows. Three examples are
given, namely, Flows 5100, 0142 and the eight-degree diffuser, respectively.
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OFigure 3. An example of the linear Figure 4. An example of the 3/2-power
blending region between the inner and blending region between the inner and
outer half-power regions in Flow 0142 outer half-power regions in Flow 0142
at; x = 0.382 m. at x :1.813 m.
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VORTICAL MOTION CONTRIBUTIONS TO STRESS TRANSPORT
IN TURBULENT BOUNDARY LAYERS
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ABSTRACT

Four-wire hot-wire probe measurements are used to examine the relationships between the motions bearing span-
wise vorticity, oi6, and the mechanisms responsible for turbulent strm tansport The measurements wea carried
out in thick zero pressure gradient turbulent boundar layers over the Reynolds number range, 1010 < R9 < 4850.
Because of the scale of the flow, the spatial resolution of the probe was. in general, very good. The capabilities of
the probe allowed all of the terms in the balance equation for <u2>, except die pressure stmin correlatiom o be
direcdy measured. Regarding wall regpon vorticity dynamics. relations between velocity-vortcity corelations mid
gradienw of the turbulent stresses mw established. In particular. vyi, statistics are examined relative to issues cost-
cerning the wall-normal transport of sublayer fluid. Relationships between the motions bearing a and the sweep
and ejection bursting events are examined, and the re.-ts are discussed in connection with the turbulent diffuion
term in the budget for <u½>. The overall results are discussed relative to coherent motion interactions and the
known properties of the inner region vorticity field.

1. Introduction

Numerous results (see, for example. Kline et al.|. Robinson2) indicat that the essential flow field interactions asso-
ciated with the generation and maintenance of turbulent stresses in boundary layers involve motions covering a
range of scales, which interact over extended space/time domains. Qualitative flow visualization as well as quantita-
tive measurements indicate that specific phase relationships between the different scales of modon are of particular
importance regarding the initiation and evolution of the stress producing events. Furthermore, there is in ever ex-
panding body of evidence (see, for example, Wallace3, Kline et all, Robinsn 2, Smith et al.', Falcos ) indicming
that the predominant motions Participating in the stress production mid transport have well defined vortical signa-
tares. In generaL these findings support the assemton that an increased understanding of the relaionships between
the vonicity field and turbulent stresses will lead to new insights pertaining to the underlying physics of boundary
layer turbulence and its effective control. In this study, experimental measrements in zero pressure gradient tur-
bulent boundary layers are examined with the intent of clarifying the roles of velocity-vorticity field interactions re-
garding turbulent stress production and transport.

1.1 Convecting Eddy Induced Sublayer Vortcity Redistribution

Conutined within many physical models describing the turbulence production process are the dynamics associated
with convecting vortical motions. Willmdhr presents numerous results which lend support to the notion that con-
vecting vortices are responsible for the istantaneous charcter of the viscous sublayer. Consistent with this, the
studies of Falco' (also see. Falco', Falco et al.8) indicaam that vortex ring-like motions convecting above and toward
the sublayer are capable of causing sublayer passive contaminant rarrangements in the form of streaks and pockets,
as well as initiating both upstream oriented pocket vortices. and downstrem oriented hairpin vortices.

The generation, evolution, and interaction of hairpin vortices (either symmetric or asyrunetric) in the wall region
finds both experimental and computational support (e.g. Smith et al.&, Robinson et al. 2) as being an integral corn-
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ponent of the processes responsible for sustaining boundary layer turbulence. Particularly detailed results regarding
hairpin vortex dynamics have amerged from the on-going studies at Lehigh University. and are reported in the
comprehensive paper by Smith et al.& In their studies, connections we drawn between the flow fields associated
with hairpin-like vortices convecting within the new-wall region (above the sublayer), and unsteady separation
phenomena leading to rapid eruptions of sublayer fluid away from the surface. This eruptive behavior is generally
preceded by a strong viscous/inviscid interaction between the sublayer fluid and the convecting hairpin vortex. The
interaction then rapidly evolves to a condition of unsteady separation, which, in accord with with the Moore-Ron-
Sears criterion, occurs along a surface of zero vorticity. The culminating eruptive behavior is viewed as both a
mechanism for <uv> production and a source of coherent voricity in the outer layer.

While the studies by Smith et al.& focus primarily on hairpin vortex induced ihenomena, there is also good reason
to expect that the vortex ring-like motion/sublayer interactions revealed by FPlcol lead to variations of generically
the same type of phenomena. In particular, under the most commonly observed of these interactions, the topology
of vorticity field is characterized by the waliward portion of the ring-like motion having spanwise voruticity. t, op-
posite that of the mean, -, ((d. = 4 + tW. Given that for y÷ less than about 12 the instantaneous spanwise vortici-
ry has the same sign (negative) as the mean vorticity over 99% of the time (KIewicki et al') the presence of posi-
Live spanwise vorticity in the buffer region necessarily indicates that a condition of zero di, occurs between the sub-
layer and the wallward lobe of the ring-like eddy. Consistent with this, the two point co. correlations of Klewicki'0

indicate that in the region 10 < y* < 25 1% regularly undergoes an instantaneous change in sign. Thus, the supply
of positive d in the buffer region provided by the ring-like eddies promotes a flow field condition essential for the
onset of unsteady separation of the surface layer, as described by Smith et al.

1,2 Vortical Motions and Stress Transport

Overall, the results reviewed above support the assertion that rapid wall-normal transport from the sublayer is
generically initiated by organized vortical motions convecting above the sublayer. Regarding these motions. the
analysis below gives reason to expect that there exists well defined connections between their velocity and vorticity
signatures and stress transport.

It can be shown (see, for example, Hinze"t ) that the gradients of the turbulent stresses in an incompressible tur-
bulent flow are related to velocihy-vorriciry correlations through the following tensor identity:

cuJuP> <uju_>

axj = • '<U > + N i 1 (1)

where eii is the alternating tensor, and the brackets denote the long time average. For turbulent wall flows,
Klewicki12 demonstrates that the three component equations (i = 1,2. 3) represented in Eq. 1 may also be derived
directly from the momentum equations describing the mean flow. In the context of convecting vortical motions, Eq.
1 describes, in an average sense, how the interaction of these motions and the velocity field results in turbulent
stress gradients. Furthermore, the velocity-vorticity correlations appearing in Eq. I may be interpreted physically in
terms of body forces per unit mass associated with vortical motions (see, for example, Tennekes and Lumley.' 3)

Very few studies have presented data pertinent to the analysis of Eq. 1. Hinze" does, however, utilize the i = I
form.

<-uv> = <v'" > - <Win,> - -(<V2> <u2> _ <W2>), (2)

as a means of more precisely defining the "wtive/inactive" motion decomposition proposed by Townsend."4 (In this
decomposition, the bulk of stress production and transport is attributed to the active motions.) Under Hinze's
interpretation of Eq. 2, the active motion contributions to .<--uv>/oy come from the velocity-vorticity correlation
terms, while the streamwise gradient terms represent the inactive component contributions. For the present flow.
Klewickit0 shows that the <u2>/ax and a<v2>½x terms are approximately two orders of magnitude less than the
<vow> term. Conversely. however, it is also demonstrated that the variances of the strearnwise gradient terms are at
least as large as the variance of vco. The negligible magnitudes of the a<u2>/ax and k<v2>/x terms are consistent
with Townsend's original notion that most of the stress transport is attributable to the active vortical motions. The
larg- variances of the fluctuating streamwise gradient signals indicate, however, that the activefnactive motions
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decomposition is only relevant to time averaged structure -- as first suggested by Bradshaw."

The a/ax terms being very small, is good reason to believe that those motions which persistently produce single-
signed contributions to the Reynolds stress gradient should be identifiable as a subset of velocity-vorticity field
interactions. This point is significant since, while existing evidence indicates that the dynamics associated with
coherent vorticity give rise to stress producing events, not all organized vortical motions are important in this
regard. To illustrate this point, Smith et al.' give non-trivial examples of locally organized vortical motions which.
on average, provide very little contribution to <uv>. They then use these examples to motivate the assertion that
the most relevant flow field interactions are those which have on average asymmetries associated with their spatial
and temporal evolution. This inherent asymmetry property results in persistent and single-signed <uv> production
from these motions. Smith et al. include within this subset of motions the Mechanisms for the generation of
hairpin-like vortices which subsequently move outward from the surface, and the wallward sweep-type motions
which follow the ejection of low momentum sublayer fluid. The results of Falco7P6 also reveal specilic flow fields
associated with the convection of coherent vortical motions (hairpin-like and ring-like) which result in persistent
single-signed contributions to <uv>. An underlying motivation for the present study is based on the belief that flow
field interactions which produce indelible contributions to stress transport are statistically represented in the
velocity-vorticity correlations contained in Eq. 2.

A logical point of departure for the study of turbulent stress transport is an analysis of the associated budget equa-
tions,

0 .\zuiu1> auu> [ aa l< La ul
+ ,ax 1ul 4-<j14>-ýU- + <uiu'> j aF JP !

acuiujul1 > I 1 a<pu1> kpuj> I a2.cu'uj> >__
a p a, + a 34-v aV 2v< L (3)

With regard to the mechanisms involved in the wall-normal transport of low momentum sublayer fluid, of particular
relevance is the budget equation for <u2>. Given that to a very good approximation the present flow exhibits
streamwise homogeneity (see discussion above), this equation becomes,

0 = -2<uv> ' + 2<2 - <uv> + v _ 2v<u -2 2>. (4)
C~y P x 01Y ~ y It,jI

The first term on the right of Eq. 4 is the familiar production term. The second term is the pressure-strain redistri-
bution term, while the last two ternms are the viscous diffusion and dissipation terms respectively. The third term on
the right is a turbulent diffusion term which accounts for the transport of <u2> by v component velocity fluctua-
tions. This term has particular relevance to the present study since its near-wall characteristics should reflect wall-
normal transport of sublayer fluid.

The a<uAv>/ca, term also has a well defined connection with the near-wall motions bearing spanwise vorticity. To
show this connection, it is important to recognize that in the near-wall region the motions bearing &. are much
more apt to be like a shear-layer than having solid body rotation. In an average sense, this fact has been verified
by examining the ratio of the rms gradients (&uiayy to (av/ax)' (not shown), which exceeds a value of 10 for y÷
less than about 12. Furthermore, the conditional averaging results of Eckelmann et al.17 indicate this property also
holds during the bursting phenomena. Expansion of the turbulent diffusion term yields,

a<ulv>. =y -2<uvL> - <u'-!>. (5)

ay C~ay

Or, in light of the near-wall character of a, one may also write,

a<u~v> = 2<uvw0?> - <uI-L>. (6)
ay a
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Thus, near the wall, the turbulent transport ad producton terms from Eq. 4 combine to represent a correlation
between the uv shear product and the total spanwise vorticity, t%. Regarding the mean vorucity (J4 = -- UI/y), the
combination with <uv> always represents a positive cotribution to the time rawe of change to <u½. In the case of
the <uvroe> correlation, however, both positive and negative values may occur.

In the present study, four element hot-wire probe measurements in flat plate turbulent boundary layer are used to
examine relationships between the motions bearing 4, and the mechanisms responsible for turbulent stress transport
as described in Eq.s 2 and 4. In the next section a brief description of the experiments is given, as well as results
pertaining to the spatial resolution of the measurements. In the section following, results are presented relative to
the issues raised above. These results are then discussed in connection with known coherent motion characteristics
and the known structure of the wall region vorticity field.

2. Experimental Procedures and Conditions

The data herein are derived from the measurements of Klewicki.'° Data were taken at the three Reynolds numbers,
Ra = 1010, 2870, and 4850. Because of the low flow speeds and the long flow development length, the boundary
layers at the measurement site were about 0.2m thick. The measurements were obtained using a four-wire spanwise
vorticity probe similar to that developed by Foss et al." The probe is comprised of a parallel-array and an x-array,
which is positioned at the same axial and wall-normal position as the parallel-array, but offset in the spanwise, z.
direction. The individual wires in the probe are 3 mm in length with a center unplated active length of I mm. The
Ay spacing between the parallel-array wires is nominally 1 mnm, as is the spacing between the wires contained in
the x-array. The 4z spacing between the centers of the parallel and x-arrays is nominally 3.4 mnm. For reference I
nun is equal to about 1.85, 4.75 and 7.75 viscous units at Re = 1010, 2870 and 4850 respectively. For further
details concerning the experiments and the accuracy of the measurements see Klewicki and Falco.|s

When discussing vorticity and/or near-wall flow field behavior, issues regarding the spatial resolution of the mess-
urement probe are of particular importance. Fig. 1 presents results concerning the resolution of the probe in the
spanwise direction relevant to the measurement of the <vaoi> and <uvca> correlations. The results in this figure are
derived from the two point ao, probe experiments of Klewicki.° In these experiments, correlations with spanwise
probe separation were performed in the Re = 1010 boundary layer. By correlating the v and uv fluctuations with
the ow fluctuations for different spanwise separations, the effect of the spanwise scale of the probe on the measured
value of <vo)> and <uvo,> can be estimated. The correlation between v and m,, is derived from measurements at
y÷ = 6.7, while the correlation between uv and o), we derived from measurements at y+ = 15.3. These positions
were chosen since they are near the peaks in the <vto)> and <uvto,> distributions shown in Fig.s 3 and 8 respec-
tively, and they are in a region where small scale motions are expected to be significant In each of the curves of
Fig. I the point of closest spanwise separation is derived from a single ai probe. Therefore, a linear extrapolation
to Az = 0 (using the two points of smallest separation) gives an indication of the spatial resolution of the probe
itself -- relevant, of course, to the particular measured quantity. For the <vto> results, this procedure indicates an
attenuation of about 7%. For <uvao3> an attenuation of about 12% is deduced. The spanwise scale of the four-wire
probe is 6.4 viscous units at R9 = 1010. The single probe results from the correlation experiments of Fig. 1 are
also plotted in Fig.s 3 and 8. As can be seen, the results in Fig. I indicate that both <vco>, and especially <uvwo>,
are quite sensitive to probe scale effects.

3. Results and Discussion

A detailed presentation of the present flow field characteristics is given in Klewicki'l and Klewicki and Falco."
Logarithmic mean velocity profiles have been previously shown to follow the law-of-the-wall using Coles 3 parame-
ters, as well as Van Driest's2 ' formula. Many of the other flow field statistics derived from the to3 probe have been
previously examined (see above references), and in general show very good agreement with other studies of corn-
parable spatial resolution. In particular, the inner normalized Reynolds stress profiles of Fig. 2 show the expected
sharp rise through the buffer region and approximate constancy in the log-law region. Furthermore, the data of Fig.
2 also exhibit the recently identified Reynolds number dependencies in both the magnitude and peak position
(Sreenivasan," Klewicki'0 , Falco5). With regard to the present study, much of the attention will focus on velocity-
vorticity interactions which contribute to the large stress gradient starting near the edge of the sublayer.

3.1 Wall-Normal Transport of Spanwise Vorticity

As indicated in Eq. 2, the correlation between v and wo is associated with the gradient of -<uv>. According to this
equation, positive values of <vto,> result in positive contributions to k<-uv>/Iy. Inner normalized profiles of the
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present <vto.,> we given in Fig. 3 for Reynolds numbers Re = 1010, 2870 and 4850. In the region 4 < y" < 20. the
Re = 1010 and 2870 results suggest an approximate Reynolds number independence - although it is clearly recog-
nized that the Re = 2870 data are incomplete. Across the log-law region, however, an appaent Reynolds number
dependence is observed. Of course, in assessing the validity of this observation the effects of finite probe scale
must be considered. Based upon the results of Fig. 1. one would expect the Re = 4850 data (Az = 26.4) to be
atenuated to a magnitude of about 50% of the Re = 1010 data (Az* = 6.4). Near y" = 100,however. the Re = 4850
value is less than 15% of the Re = 1010 value. (Note also, that since the results of Fig. 1 are derived from meas-
urements near the edge of the sublayer, the application of these results at positions farther from the wall is likely to
result in an overestimation of the attenuation.) Thus, it is concluded that between Re = 1010 and 4850 the <vckr
contribution to • - Reynolds number dependent across the log-law region. It less certain, however,
whether the obs ,es between the Re = 2870 and 4850 profiles are predominantly a consequence of spa-
tial averaging effecLs.

In the log-law region, the Reynolds stress is newly consit.L By virtue of Eq. 2, this indicates that the contribu-
tions to the stress gradient from <vow> and <wa),> are approximately equal and opposite. The deduced Reynolds
number dependence indicates that at lower Re the individual contributions from both of these velocity-vorticity
correlations are more significant. Furthermore, given that -<'uv>ftu2 itself has a smaller peak value with decreasing
R, negative contributions from <vaor> in the buffer region must increasingly outweigh the positive <wao> contribu-
tions as the Reynolds number is decreased. These observations may be taken to indicate a Reynolds number depen-
dence in the vortical motion contributions to stress transport near the surface. In connection with the mixing length
based analysis of Tennekes and Lunley,' 3 one concludes that at lower Re the gradient transport of vorticity
becomes increasingly significant in comparison with change-of-scale effects.

The positive values of <vos,> in the region 4 < y÷ < 15 indicate that this correlation has significant contibutions to
the rapid increase in <-uv> shown in Fig 2. (Over this y* range, <-uv> begins near zero and increases to reach
about 60% of its maximum value.) Positive values of yv aris of course, when v and o), are instantanmously of
the same sign. As a result of the no-slip condition. it is expected that u and ea. should be strongly negatively corre-
lated in and near the sublayer. The direct measurements of <uo,> by Klewicki'2 clearly indicate this to be the
case. Because of this, in the sublayer one may associate positive o, fluctuations with low momentum fluid. Thus,
it is seen that [+], [+] combinations of v and w. are consistent with the outward motion of sublayer streaks.
According to Eq. 2. this process alone (i.e. without other associated dynamics) results in a positive gradient of <-
uv>. Contributions to the positive correlation from simultaneously negative v, (o, pairs results from vorticity of the
same sign of the mean, and of greater magnitude than mean, being transported toward the surface. This type of
process may occur when near-wall hairpin and/or shear layer-like motions are convected toward the surface, as a
result of, for example, outer layer influences. This type of process is also more specifically described in the self-
induced motion of pocket vortices toward the surface (see, Falco et al.").

Contributions to the <vea,> correlation may be revealed via two dimensional probability density functions (pdf s).
The v, uos pdf's from the Re = 1010 boundary layer at y* = 5.3. 14.2 and 26.3 are shown in Fig.s 4. 5. and 6
respectively. Fig. 4 indicates that the contributions to the positive correlation at y* = 5.2 are approximately shared
between [+], [.] and [-], [-] combinations -- although examination of a quadrant contribution plot (not shown) indi-
cates that the [+]. [-1 combinations have a slightly greater contribution. Near y÷ =15 the <vya> correlation exhibits
a zero crossing. Given the prevalence of lifting hairpin vortices and shear layer-like motions in this region, one
might expect this zero crossing to result from a shift to the fourth quadrant in the v, wt, plane (i.e. negative ca,,
positive v combinations). Examination of Fig. 5. however, indicates that this is not the case. This figure shows
that second quadrant events (i.e. positive wo,, negative v) are predominantly responsible for the reduction in the posi-
tive correlaion. Examination of the quadrant contribution plot (not shown) confirms this assertion. Farther from
the wall, the <vya,> correlation becomes strongly negative, and the pdf at y* = 26.3 in Fig. 6a indicates that this
occurs through significant quadrant 4 and especially quadrant 2 contributions. The quadrant breakdown (derived by
multiplying the probability and magnitude of vya,) in Fig. 6b shows that at this location the greatest contribution
comes from positive oa, negative v contributions. Furthermore, the absolute spanwise vorticity line indicates that
the largest fraction of the second quadrant events arise from positive total vonticity, t,. Regarding the interpreta-
tion of quadrant 4 events in the context of hairpin vortices and/or lifting shear layers, it is also interesting to note
that the movement of negative vorticity outward from the surface actually serves to reduce the gradient of -<uv>.

The fact that <vya, makes positive contributions to k}<-uv>/ly in the region 5 < y* < 15 and negative contributions
farther from the wall suggests that motions lifting from the sublayer may generate positive and negative contribu-
tions to the stress gradient during the earlier and later phases of their evolution respectively. The likelihood of this
phenomena is made more apparent when it is recognized that the mean vorticity drops to about 30% of its
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maximum value by y÷ = 15. Thus, if one considers a motion lifting from the sublayer with an initial momentun
deficit of 50%. and assunes that the vorticity of this motion remains approximately constnt during this process (i.e.
an initally positive coa fluctuation such that M6 = -0.5 ujtv). then in the region y÷ c 10 this motion will make posi-
tive contributions to ik--uv>/ay as it moves outward. However, nea y* = 10 the 6 associated this motion will
exceed the mean. and its further outward motion from the surface will produce negative contributions to the stress
gradient. Given that <-uv> reaches about 60% of its maximum value by y÷ = 15. the formation processes by which
sublayer vorucity becomes redistributed into more locally organized motions is seen to be of greatest importance
with regard to buffer region stress transport.

32 Vortical Contributiops to <u2> Budget

Wall-normal transport of sublayer fluid should also leave statistical signatures in the balsne for <u2>. The <uZ>
budget (Eq. 4) from the Re = 1010 boundary layer is shown in Fig.s 7a and 7b. In these figures the results of the
computation of Spalarh' (Re = 1410) are also shown. For the turbulent transport and viscous diffusion terms, the
gradients were computed by the differentiation of a moving five-point curve fit of the <u2v> and <ui> profiles
respectively. These curve fits were differentiated at the center point. md thus the first two points in each of the
profiles are omitted in Fig. 7. The dissipation terms were computed directly fronm the fluctuating gradient time
records, and for convenience, the computation of the production term utilized the formula of Van DriesLt. The
pressure strain term was the only unmeasured term, and was obtained by difference.

Comparison with Spalart's results indicates that the dissipation shows best agreement. while the experimental pro-
duction profile is consistently lower. Both the present turbulent transport and viscous diffusion terms peak closer to
the wall than the computational profiles. The deduced pressure-strain profile shows very good agreement umtil y÷ =
10, but then shows a strong positive excursion. This large difference is probably a consequence of the sensitivity of
this deduced profile on the cumulative difference of all of the other terms -- which show large variations in this
region. Overall, however, given the multiple differencing required to obtain the budget, the agreement between the
experiment and computation is felt to be quite good.

Examination of Fig. 7a indicates that the turbulent transport term is positive in the sublayer, and exhibits a negative
excursion in the region 5 < y÷ < 20. Thus, in and near the sublayer. this term contributes to a gain of <u2>, and in
the buffer layer it contributes to a loss of <u2>. The negative values of the turbulent transport term indicate that the
spanwise vorticity term in Eq. 6 is also likely to be negative. Verification of this is provided in Fig. 8, which shows
that the <uvo,> correlation is negative in the buffer layer, and that it reaches a peak magnitude of approximately
the same value and at nearly the same location as the turbulent transport term in Fig. 7a. Fig. 8 also includes the
correlation of -<uv&uiay> at Re = 1010. This profile is nearly identical to the <uvow,> profile, and thus the approx-
imation of Eq. 6 is shown to hold. Based upon the results of Fig. 1, the lower magnitudes of the <uvcoj> correlation
at Re = 2870 and 4850 probably result largely from probe resolution effects. Given the results of Figs 7a and 8.
one may conclude that across the buffer layer the <uvw.> correlation is nearly equal to the <u2dv/oy> correlation in
Eq. 6. (Note that the <uvci> correlation is multiplied by 2 in this equation.) In the sublayer, however, because of
the lack of correlation between u and v (see Fig. 2). the magnitude of <uvoa> is expected to remain small. Thus,
positive turbulent transport predominantly arises from a negative value of <u2dv/3y>. Given that u2 is always a
non-negative quantity, a negative <u2 v/4y> must result from negative ov/4y fluctuations. As a result of the imper-
meability of the wall. wallward flows will, as a result of continuity, give rise to fluctuations of the in-plane velocity
components, IUghthill.24 The present results indicate that with regard to the transport of <u2> these "continuity"
generated motions are predominant only in the sublayer.

In the Introduction it was shown that in the near-wall region the turbulent transport term in Eq. 2 has a vortical
component. Furthermore, by expanding this term it was shown that this vortical conribution could be combined
with the production term to form a total spanwise vorticity Reynolds stress correlation, <uv4> (under the condition
of approximate strearnwise homogeneity). The production term from Fig. 7a indicates that the mean vorticity part
of this total correlation is always positive and peaks near y÷ = 12. The results from Fig. 8, however, indicate that
the contribution from the fluctuating pan is negative in the buffer layer. Based upon the veo, results above, it is
likely that this extraction of <u2> in the buffer layer is associated with the formation of organized vortical motions.
As discussed by Offen and Klinezs and illustrated in detail in the studies of Falco et al.8 and Smith et al.4, vortical
motions formed at an upstream location in the near-wall region are likely to reinitiate stress producing events at
locations farther downstream.
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33 Spanwise Voticity and the Bursing Events

Because of their distinct contributions to <uv>, de sweep (+u. -v) and ejection (-u. +v) bursting events represent a
useful decomposition of the flow conditions associated with the production of new turbulence. With regard to
understwiding the significance of organized vortical motions and stress generation, it is therefore useful to explore
the vorticity characteristics associated with the bursting events.

The data of Fig.s 3 and 4 give clear indications that in the region y÷ < 12, positive c% fluctuations are correlated
with positive v fluctuations. By virtue of the negative correlation between u and w6 in the sublayer, this process
was associated with the lifting of low momentum fluid, and thus is descriptive of ejections. The statistical
significance of this process is reinforced by the increasingly negative value of <uvco,> in this region.

Near the position where vo), crosses zero and becomes negative (y* = 15), <uvoi.> reaches its maximum value (see
Fig.s 3 and 8). Thus, for y÷ > 15, it is expected that the natue of correlation between u and va6 changes. In par-
ticular, it is expected that u will be, on average, positive during those times in which vo1 is negative. Furthermore,
based upon the predominance of [-] v, [+] ao, contributions in Fig. 6b, it is expected that [+J u, [+] c, combinations
are significant. The quadrant contribution plot of u vs mi at y+ = 26.3 in Fig. 9 cleay shows this to be the case.
Furthermore, the zero vorticity line in this figure indicates that the majority of these contributions not only involve
positive w, but positive a,-

Combining the above results, it is concluded that for y÷ < 15 the negative <uvw,> correlation arises primarily from
[-I u, [+] v and [+1 o) combinations, which, by definition are associated with the ejection of low momentum sub-
layer fluid, and by virtue of Eq. 6 are associated with a gain in <u½>. Conversely, for y÷ > 15 the negative <uvoi>
correlation results primarily from [+J u, [-] v, and [+] oq combinations, which, by definition are associated with the
wallward sweep of high momentum fluid, and are associated with an extraction of <u½>.

4. Concluding Remarks

In this study the relationships between spanwise vorticity and near-wall stress transport were examined via experi-
mental measurements in low Reynolds number turbulent boundary layers. Overall, the results point to the impor-
tance of positive vorticity fluctuations. In the region y+ < 15, these fluctuations predominantly have magnitude less
than the mean, and thus represent weak but negative 4%. For y' > 15, however, many of these positive fluctuations
exceed the mean, and thus represent positive 4%. These motions, which were shown to, on average, reduce the
Reynolds stress gradient (see Eq. 2), are believed to have importance regarding the regenerative mechanism of wall
turbulence. In support of this assertion, the motion of positive 6,. toward the surface is explicitly contained in the
physical model of Falco et al. as an initiating mechanism for the generation of new turbulence. Furthermore,
recent results regarding unsteady separation of the surface layer (described in Smith et al.4) indicate the importance
of those motions capable of generating a zero vorticity surface above the sublayer. Positive 4% in the buffer layer
ensures this condition for the z-component by virtue of the single-signed nature of the sublayer vorticity field.'
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Abstract
Chaacteristics of coherent structures in boundary layer flows over smooth and rough walls
have been studied using a scanning LDV capable of measuring essentially instantaneous
velocity profiles. A unique spatial detection technique allowed classification of events in

terms of size and maximum/minimum height from the wall, giving a more resolved
description of the structures. Differences in characteristics of low speed events (bursts) for
flow over smooth and rough walls indicate differences in burst dynamics. Over rough
walls low speed events were larger and independent of high speed events. Burst and

ejection frequencies for smooth and rough walls were found to scale with outer variables

and a combination of a convection velocity and inner variables.

1. Introduction
The presence of coherent structures in turbulent boundary layers has been well established. Although there is

general agreement in turbulence literature about several of the kinematic issues of coherent structures, the dynamics

remain largely unsettled. The extent to which the outer region of the boundary layer interacts with the wall region is also a
subject of controversy in the turbulence community. In the present study boundary layer flows over smooth and rough
walls were studied to determine changes in near wall coherent structures which might give insight to the dynamics of
turbulence. For experiments conducted with smooth and rough walls with nominally the same outer scaling, the inner
scaling will be significantly different because of the much larger wall shear for the rough wall. Therefore finding the
appropriate scaling for the spatial structure and for burst and/or ejection frequencies for the two different wall conditions
would be very informative.

There are relatively few studies of boundary layer turbulence structure over rough surfaces. Grass (1971) used
the hydrogen bubble technique to visualize open-channel turbulent flow over smooth and transitionally and fully rough
surfaces. He found that fluid ejections and sweeps both make strong, intermittent contributions to the Reynolds stress,
irrespective of the change in surface roughness. Sabot, Saleh and Comte-Bellot (1977) studied the effects of roughness
on intermittent maintenance of shear stress in pipe flow. They indicate that the mean shear stress is maintained primarily

by ejection events. They found that compared with smooth wall flows, ejections in rough wall pipe flows at the same
Reynolds number had larger mean periods of occurrence, larger mean time duration and length scale, and larger negative
instantaneous shear stress peaks.

The few studies of the effects of rough wall on ejections have obtained conflicting results on the appropriate
scaling for ejection frequency. Raupach (1981), using quadrant analysis found that using 6 and ut as scaling parameters
collapsed ejection frequencies from a smooth wall and rough surfaces of different concentration. Sabot, Saleh and
Comte-Bellot (1977) using quadrant analysis in smooth and rough pipe flow, found that above a certain threshold,
ejections are the sole contributors to Reynolds stress. They found that the frequency of these 'violent' ejections did not
scale with the generally accepted outer variables (pipe radius and centerline velocity), but did scale with a convective
velocity and length scale derived from space-time correlations. Osaka and Mochizuki (1988) using VITA detection found
that ejection frequencies at y+ = 15 varied slightly over a range of Reynolds numbers for a rough wall when scaled with
inner variables. In a definitive study of ejection frequency for smooth walls over a large range of Reynolds numbers,
Blackwelder and Haritonidis (1983) found that ejection frequencies scale with inner variables.

In this study we use a unique spatial detection technique to study coherent structures using a scanning LDV. The

spatial detection technique, developed by Bolton and Bogard (1992), identifies coherent regions of low or high velocity in
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the flow. Unlike single point detections, the spatial detection was found to be relatively independent of threshold. Using
the spatial detection technique to study flow over a smooth wall, Bolton and Bogard (1992) found that the movement of
low speed structures away from the wall corresponded with the movement of a high speed structures towards the wall. In
this paper we descnbe differences in characteristics in turbulence structnre, educed from spatial detections and single point
detection, for flow over smooth and rough walls.

2. Water channel facility, scanning LDV and analysis procedures
Measurements of boundary layer flows for smooth and rough walls were conducted along the bottom wall a low

speed open water channel facility with a 5 m long and 50 cm wide test section. A schematic of this facility is shown in
Figure 1. Continuous time histories of essentially instantaneous strearnwise velocity measurements were made using a
rapid scanning LDV. A brief description of the flow facility and scanning LDV system is given in this section. Further
details about the channel facility are presented by Bogard and Coughran (1987), details about the scanning LDV are given
by Bolton and Bogard (1992), and details about improvements to the scanning LDV and the rough wall boundary layer
are given by Kohli (1992).

Flow conditions for the smooth wall and rough wall experiments are given in Table I. For the smooth wall flow
the boundary layer was tripped 0.5 m downstream of the channel inlet with a 3 mm diameter rod. Scanning
measurements were made at essentially the same Re& - 14,600 for the smooth and rough wall flows (Reg = 1700 for
the smooth wall and Reg = 2200 for the rough wall). As shown in Figure 1, for the rough wall studies a rough wall
section was installed in the channel 1.7 m downstream of the trip. The rough wall consisted of small vertical cylinders
(of height k = 4.5 mm, and diameter d = 9 mm separated by a distance D - 16rmm) in a square array.
Measurements were made 33 boundary layer thicknesses downstream from the start of the rough wall at which the
boundary layer was proven to be self-preserving by a series of velocity profiles measured from the leading edge to the
measurement location. With a spanwise aspect ratio d/k = 2 for the roughness elements and a normalized roughness
height of k÷ = 65, the rough wall boundary layer was well within the fully rough regime.

Upstream O
stilling tank Downsrream0L.5 mjý,ý--1.7 m __A4,& 1.5 m -.. stilling tank

.Suction line

E 
Pumps

Figure 1 Schematic of water channel facility To storage tanks

The skin fructon coefficient, Cf. for the smooth wall was obtained using a Clauser fit to the log-region of the mean
velocity profiles. For the rough wall, Cf was obtained using the profile matching technique described by Bandyopadhyay
(1987). The accuracy of the profile matching technique was verified by making uv Reynolds stress measurements in the
constant stress region near the wall. Cf for the rough wall obtained from the Reynolds stress measurements was
approximately 10% lower than that obtained with the profile riatching technique. The rough wall flow had a Cf value

twice that of flow over the smooth wall.
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The scan rate of the scanning LDV system was rapid enough to give a contnuous time history of velocity profiles.

Parameters for the scanning LDV are given in Table 2. The single velocity component scanning LDV system was

constructed by adding a stepper motor controlled mirror system to a TSI model 9100-10 backscatter LDV. Signals were

processed using a TSI model 1998 counter, and data were acquired and processed using a Macintosh II computer. Probe

volume position was determined to an accuracy of ± 0.2 mm (4± y* = 2) using a Schaevitz model 500HR LVDT to

monitor the scanning mirror position.
With 40 to 50 measurements per scan the randomly distributed measurements had an average spacing of

Ay* = 6 to 7. To obtain profiles with uniform spacing of velocity data, the randomly placed velocity measurements
were arranged in bins with an interval of Ay+ = 10. When multiple measurements were made within a bin, the

measurements were averaged. When no measurements were made within a bin, the velocity for that bin position was

obtained by linear interpolation with adjacent bins. If no adjacent data were available, the velocity for the bin was left

undetermined. A representative time series of velocity scans obtained following the processing described above is shown

in Figure 2. As is evident from the representative sample shown in Figure 2. the scanning LDV measured essentially

complete velocity profiles from y+ = 25 to y4 = 235; the only gaps in the velocity record occurred intermittently at the

nearest wall position of y* = 25. These scanning measurements were considerably closer to the wall and had a greater

range than our previously published study, Bolton and Bogard (1992).

Table I Flow conditions Table 2 Scanning parameters

Pararne Smoohwll Rouah wall Pararne Smoth wall Rou&h wall
U. 0.192 rris 0.196 m/s Scan velocity 1.5 m/s (7.8 U.) 1.5 m/s

x 3.0 m 3.0 m Scan frequency 28 scans/s 28 scans/s

Reg 1700 (U.,0/v) 2200 (U.0/v) Scan distance 2.3 cm (230 y+) 2.7 cm (370 y+)

Re8 14600 (U.,&v) 14700 (Uo./v) Scan range 15 5 y+ S 235 15 ! y+ S 385

a 63rmm 65nmm Time for one scan 17 ms (1.3 T+) 20 ms (3.6 T+)

v 0.825x 10-6 m 2/s 0.864x10-6 m 2/s Tume between scans 37 ms (2.9 T÷) 37 ms (6.5 T+)

0 0.74 cm 0.98 cm Average data rate 40 points/scan 50 points/scan
ut 0.84 cm/s 1.24 cm/s Velocity uncertainty ± 3% ± 3%

Cf 0.00385 0.00796 Total data acquired 26,500 scans 25,000 scans

Total ume 950s 915s

Note: Measurements on the rough wall were made at the center of
the square area defined by four adjacent roughness elements.

250 o o o oo ,

0 0 000 0g/ 0 i0

20011 000
CO

00

00

00

0 0

150 0 0
00

+io 0~o
0

0 0 0
Y- 0 00 

0Velocity (tm's)

S~Figure 2 Typical velocity scans over the smooth wall; timte between scans is T'" = 2.9.0 Solid lines represent mean profile from 26,300 scans.

B 39-3

-~~ 0 0 0 i • I I i I



Precision error for the scanning measurements. determined as described by Ciancarelli et al. (1988) and by Bolton

and Bogard (1992). was ± 3% for each instantaneous velocity measurement. Accuracy of the scanning measurements

was verified by evaluating the mean velocity profile. Figure 3(a). and the rms velocity profile, Figure 3(b). Essentially

no bias error was evident from the mean velocity profile. The rms velocity profile also showed very good agreement with

stationary measurements and previous data in the literature. The good agreement for the rms velocity profile indicates that

precision error was negligible.

25 3

-- S Pld ng Do
0 Stationary -1

20 ~ & Scanning
tX

2-1

i4
1501

1 Punell et. al (1981) K

o Ga (989)

1 10 y÷ 100 1(000 1 10 y,+ 1030 1(000

Figure 3(a) Scanning mean velocity profle compared Figure 3(b) Scanning rms profile compared with rms
with profile from stationary measurements profiles from stationary measurements.
and Spalding's law. Gan (1989) and Purmll et. al (1981).

Since the time between scans was very short, essentially continuous time records of the velocity profiles were
obtained. The resulting velocity field in the t-y plane was analyzed using conditional sampling based on the U-level point

detection technique described by Bogard and Tiederman (1986) and the spatial detection technique described by Bolton 0
and Bogard (1992). The U-level technique was verified by Bogard and Tiederman (1986) to be a relatively accurate burst
detection technique in the near wall region. This technique detects ejections (identified by low velocities), and combines
them into bursts based on the probability density distribution of the time between ejections. The spatial detection

technique identifies spatially coherent regions of low or high velocity. A region of low velocity is a characteristic
associated with bursts, and a region of high velocity with sweeps. Events identified by spatial detection can be classified
in terms of size and position. Consequently, conditional sampling using spatial detection is more finely resolved by using
using only events of a particular size classification and/or at a particular height from the wall.

3. Spatial structure results
The relative effects of smooth and rough walls on spatial structure was determined using U-level detection of

bursts, and using spatial detection of low speed events (associated with bursts) and high speed events (associated with
sweeps). Conditional sampling using the point detection U-level technique was done for comparison with previous

studies which were limited to point detection, and for comparison with the structure obtained with spatial detection. The
following results show that use of the spatial detection is crucial for determining detailed characteristics of the turbulence

structure.
Figures 4(a) and (b) show the smooth wall ensemble averaged burst structures detected using U-level at detection

heights of y+ = 35 and y+ = 65, respectively. The velocity field measured in the t-y plane was transformed to the x-y
plane using the average convection velocity of bursts and sweeps (Uc+ - 15) over smooth walls determined by Gan and
Bogard (1991). This convection velocity corresponds to the local mean velocity at y+ = 60. For the rough wall, a
convection velocity equal to the local mean at y+ = 60 was used. As expected, the contour levels in Figure 4 show that
at each height the maximum velocity deviation occurs at the point of detection. However, the general shape and scale of

the structure are similar for both detection heights. The general shape and scale of the structure is also similar to that
educed by Gan(1989) using the single point quadrant detection technique. Note in particular that for both heights the

ensemble averaged burst event is not associated with any significant high speed fluid.
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The rough wall ensemble averaged burst structure detected at y+ = 35 is shown in Figure 5. This structure, and
the structure detected at y* = 65 (not shown), were very similar in scale to the burst scructure detected over the smooth
wall. The burst smtcture over the rough wall is slightly larger the structue over the smooth and does not have the distinct
slope along the upstream edge.

Spatial detections of low speed structures were based on identifying coherent regions in the velocity field where
negative velocity deviations were greater than O.7urms. H.;"h speed structures were idtnofied as coherent regions in the
velocity field where the positive velocity deviations were greater than 0.8umls. The detection thresholds were selected to
be in the center of a range of thresholds in which the number of detected events was essentially constant. Conditional
sampling was based on the size of the event and the maximum height of a low speed event or the minimum height of a
high speed event. The size of an event was defined as the number of discrete points grouped in a coherent region of high

or low velocity. Events of different sizes were analyzed in terms of size categories as shown in Table 3. As Table 3
shows, the number of events decreases rapidly as the size of the event increases. Average stmamwlse and wall normal

lengths for each size category are shown in Table 3 for low speed events over smooth and rough walls. In each case the

detected structure is elongated in the streamwise direction, but the structure over the smooth wall tends to be more

elongated than the structure over the rough wall. Of particular interest, although small in number there some very large
events which extend across the full scan range. Although the smooth and rough wall had practically the same number of

events in most of the size categories, the rough wall had over twice as many events in the largest size category.
Characteristics for high speed events were the same as the characteristics for low speed events described above.

23 () mothwal:Detection at y+* = 65 • * • •:.'• :::.......... ouu

.. mooth.. wall:.. ...-... i~ - - 0.3

235 -(a) Smooth wall: Detection at y -5 -1.5

y ,-2.1
..y"!:••:•!•:!~ -2.7

-3.3

S-~'.-3.9

-630 0 + 630
x

Figure 4 Ensemble averaged condition samples using single point U-level detection for the smooth wall at

(a) y+ = 35 (536 events) and (b) y+ = 65 (552 events).

235 Rough wall: Detection at y+ =35
Rou-

-630 0 + 630

x

Figure 5 Ensemble averaged condition sample using single point U-level detection for the rough wall at

35 (459 events). Contour levels are the same as in Figure 4.
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Table 3 Characteristics of smooth and rough wall low speed events at different size categories

SmohWl Rough wall
Size Category N/Nt Avg. Ly Avg. Lx N/Nt Avg. Ly Avg. Lx
(no. of points) (%) (y+) (x*) (%) (y+) (X0)

1 <size52 22.1 10 10 23.7 10 10

2<sizeT.4 20.7 20 30 20.4 20 30

4<sizeS8 16.9 30 70 16.2 40 60

8<size!516 13.1 50 120 12.2 60 100

16<size<32 10.5 80 200 8.8 90 170

32<size•64 7.1 130 300 6.8 140 270

64<size•128 5.1 170 500 5.0 200 420

128<size!5256 3.0 210 830 3.2 280 650

size>256 1.5 - 3.7

where: N/Nt = Number of events in category/Total number of events
Avg. Ly - Average wall normal extent of event
Avg. Lx = Average streamwize extent of event

The following conditional sampling analyses of spatial structures ae based on events with size < 32 points.
which constitute more than 80% of the total number of events. Low speed events, which are associated with bursts.
were further classified in terms of the maximum height of the event. This allowed conditional sampling based on the
height of the low speed event. Since bursts move away from the wall, conditional samples at increasmig heights can be
interpreted as following the development of the burst. High speed events, which may be associated with sweeps, were
classified in terms of the minimum height of the event. All the conditional sampling analyses were phase aligned on the
leading edge of the event.

Figures 6 (a) through (d) show ensemble averages of ±e low speed spatial event at different heights. Results at
higher heights are not shown for sake of brevity. At a height yr g 45 the low speed spatial event is very intense,

becoming less intense and larger at increasing heights. At height 85 • y* g 105 the low speed structure is completely

detached from the wall. Figure 6 also shows movement of a high speed structure associated with the low speed event.
At the lowest height, y+ •45, the high speed structure appears over the low speed event. When the low speed structure
is in the range 45 S y÷ S 65 the high speed structure moves over and downstream of the low speed event. At the
highest height shown in Figure 6, 85 5 y+ g 105, high speed flow occurs above the low speed event and downstream
and below the low speed event. The high speed fluid has also increased in size and extends across the full scan range.

These characteristics of the low speed burst at different heights from the wall are very similar to the results obtained by
Bolton and Bogard (1992).

The ensemble averaged burst structures from single point detection, shown in Figures 4(a) and (b) am bigger than
the low speed spatial events described above. The single point burst detection was done at a higher threshold (1.3 urms)

compared to the spatial detection (0.7urms). To eliminate the effect of the higher threshold, single point burst detection
was done at the threshold used for spatial detection. Even at the same threshold, the structure obtained from single point

detection was larger than the spatial event, and had no high speed fluid associated with it. Thus, the spatial detection

brings out details of the turbulence structure which am not resolved by the single point detection scheme.

Spatial characteristics of low speed events over the rough wall at different heights are shown in Figure 7. The

low speed event is clearly larger and has larger negative velocity deviations over the rough wall, The velocity levels of the
rough wall low speed events -. not change rapidly with increasing height; on the other hand, the smooth wall events
become very weak by height 85 S y* 5 105. Another distinct difference between the rough wall and smooth wall low

speed events is the lack of significant high speed flow surrounding the low speed event with a rough wall.
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Figure 6 Low speed events over smooth wall. Conditional samples based on spatial detection. Indicated heights

are a classification of events in terms of the maximum height of the event.

5 (b) Max. Height: 45 ys < 65 o 5 J85 (d) Max. Height: 85 yT < 105
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y + 0.6 yJ~r
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Figrea u ie 7h Low h speed evnsovere assoughiall.Codwitionaelo saplese aedo spatial densb tspeetion. sndmated honeigtsae

areas. The high speM. events for the rough wall is shown in Figure 9. The rough wall high speed event has velocity

levels and size similar to those over the smooth wall. The presence of the associated low speed fluid in small concentrated
areas andi its relative position with respect to the high speed event is similar to that over the smooth wall.

4. Burst and ejection frequencies
Burst and ejection frequencies were determined from single point U-level detection, to compare with previous

studies, and the burst frequency was also determined from spatial detections. Figure 10 compares the single point
measured burst and ejection frequencies for smooth and rough wall using three different scalings: (a) inner scaling, (b)
outer scaling, and (c) scaling based on a convected velocity. Figures 10(a) shows that inner scaling cannot collapse burst
of ejection frequency data from rough and smnooth walls. Figure 10(b) shows that outer scaling yields good agreement
for ejection and burst frequencies for rough and smooth walls. However, in the near wall region (y÷ < 100) there the
ejection frequency is slightly greater for the smooth wall indicating that bursts over smooth wall tend to have slightly

greater number of ejections.
The frequency of spatially detected low and high speed events for smooth and rough walls an• shown in Table 4.

O The nondimensional frequencies for spatial detected events shows the same trends as the nondimensional burst ar.d
ejection frequencies from single point detection. Inner scaling falls to collapse the data for the rough and smooth walls.
but outer scaling and convected scaring are reasonable.
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Figure 8 High speed events over a smooth wall. Conditional samples based on spatial detection. Indicated heights

am a classification of events in terms of the minimum height of the event.
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Figure 9 High speed events over a rough wall. Conditional samples based on spatial detection. Indicated heights

are a classification of events in terms of the minimum height of the event

Table 4 Frequency of spatial events

Type of event f (s-1) f+ = fv/ur2 fo = f/Ul. fV = fv/UCui

Low speed (smooth) 4.4 0.051 1.44 .0034

High speed (smooth) 4.3 0.050 1.41 .0033

Low speed (rough) 4.3 0.024 1.43 .0037

High speed (rough) 4.2 0.024 1.39 .0037
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Figure 10(a) Burst and ejection frequencies scaled with Figure 10(b) Burst and ejection frequencies scaled with
inner variables, outer variables.
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Figure 10(c) Burst and ejection frequencies scaled with
convection velocity, U. and v.

5. Conclusions
The presence of a high speed structure associated with the conditionally sampled low speed spatial event is a

characteristic of near wall turbulence structure that is revealed by the spatial detection technique. Single point detection
performed on the same data does not show any high speed structure associated with the burst because it groups events of
all sizes and at different heights together. The spatial detection scheme allows classification of events based on their size
and the height at which they occur. This gives a more realistic description of the flow field and can give more insight into
the interaction of coherent structures.

Compared to the smooth wall, the low speed spatial event was bigger and had lower velocity levels over the rough
wall. especially away from the wall. The high speed spatial structure on the other hand, did not undergo any significant
change over the rough surface. The presence of high speed fluid above and in front of the low speed spatial event for the
smooth wall and not for the rough wall indicates a significant difference in the burst dynamics for the two cases. Since
the high speed fluid originates in the outer part of the boundary layer, this suggests that interaction between the inner and
outer structures of the boundary layer is more significant for the smooth wall. Bursting over a rough surface may be
stimulated by the wall roughness.
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At the same Reynolds number, burst and ejection frequencies for the smooth and rough walls scaled with outer
variables and not inner variables, which is contrary to smooth wall results of Blackwelder and Haritonidis (1983).
However, reasonable scaling was also found using a combination of a convection velocity and inner variables. The
frequency of spatial events also collapsed when scaled with outer or convected-inner variables. The convected-inner
scaling is equivalent to conventional inner scaling for flows on smooth walls only, and hence would be consistent with
the results of Blackwelder and Haritonidis (1983).
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TURRULENCE-DRIVEN NEAONDARY FLOW IN A DUCT OF UOUARF CROSF SECTION,
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Detils of an experimental study of the turbulent flow of air in a duct of square cross section are

presented for a Reynolds number of 4900. The objectives of the work were to obtain data suitable for the

validation of numerical predictions of turbulent flow in a duct and to demonstrate the application of a fibre-

optic laser Doppler anemometer for this purpose. Detailed measurements of the first through fourth order

moments of secondary (cross-stream) velocity components are presented and compared to measurements at

substantially higher Reynolds number. A limited survey of primary (strearnwise) velocity component is also

presented.

DH Hydraulic diameter.
H Duct height width.

K Flatness factor (kurtosis).

S Skewness factor.

u', v RMS fluctuating primary and secondary velocity component respectively.

U. V Time-mean primary and secondary velocity component respectively.

x Coordinate in streamwise direction (origin at entrance to duct).

b Bulk value.

0 Centre-line value.

v Secondary velocity component.

The turbulent flow of an incompressible fluid in a duct of non-circular cross section is characterised

phenomenologically by a bulging of primary- (streamwise) velocity contours towards the duct corners. This is

caused by turbulence-driven secondary flow in the plane of the duct cross-section. These secondary velocities

are typically of the order of less than one percent of the characteristic primary flow velocity and yet they

significantly affect the overall pressure drop and heat transfer.
The accurate prediction of these secondary velocities represents an exacting test for turbulence models

which attempt to model the Reynolds-suess tensor. The models are required to either adopt an anisotropic form

of eddy viscosity (Speziale (1987)) or else model the transport of individual Reynolds-stress components using a

model of the form proposed by Launder et al (1975). In order to conclusively differenuate between the physical
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accuracy of the numerous tu- .Aence models. an experimental data set of quantifiable accuracy is required
against which comparison may be made. However, it is noticeable that in the review of numerical predictions
for flow in a duct of non-circular cross section by Demuren and Rodi (1984), the conclusions drawn regarding
the physical accuracy of predictions were limited because the discrepancies between the results of experimental

investigations were so large and were not fully accounted for.
An important additional source of validation data is direct numerical simulation where all of the

turbulence length scales are resolved and, therefore, no turbulence model is required. The results of the

experimental study presented here complement those of a direct numerical simulation of turbulence-driven

secondary flow in a duct of square cross-section (Gavrilakis (1989)) and were intended to provide validation for
these predictions. The simulation was restricted to flows of low Reynolds number in order to enable all the

turbulence length scales to be resolved and was performed for a Reynolds number of 4900 (based on duct
hydraulic diameter and centre-line velocity). This Reynolds number is significant in that it is much lower than
that for which turbulent flow in a duct is believed to have previously been investigated (Table.1). In order to
validate this prediction a separate experiment at an identical Reynolds number was considered necessary as Lhe

characteristics of the flow were believed to be significantly different at low Reynolds numbers to those of
previous experimental investigations reported in the open literature, for reasons outlined below.

A survey by Demuren and Rodi (1984) reported that for fully developed flows at a Reynolds number,

based on bulk velocity, greater than 1.2"105 the ratio of centre-line velocity to bulk velocity was practically
uniform at 1.2. However for Reynolds numbers below this value the ratio of centre-line velocity to bulk velocity

increased, which suggests that the strength of the secondary flow is attenuated for Reb<.12*105. Thus in order

to validate the simulation results of Gavrilakis (1989) a separate experimental study was required. Taken

together, the results of these two studies were intended to provide a 'benchmark' data set which could be used to
verify predictions where the Reynolds-stress tensor was modelled.

Having identified the need for a separate experimental study at low Reynolds number, it remains to
account for the discrepancies in the data from previous experiments in order to understand how these error
sources were avoided in the present study. In particular, two considerations which significantly influence the
usefulness of the data reported by most of the previous investigations are incomplete flow development and

probe interference. These are discussed in turn below as a justification of the choice of experimental method

and test facility for the present study.
Inspection of the development lengths (xIDH)max of previous experimental investigations in Table. 1

suggests that the flow was only approximately fully developed in all cases except for the results reported by

Brundrett and Baires (1964). This conclusion is based on the findings of Klein (1981) who reported that, for
turbulent pipe flow, the length required for fully developed flow may exceed 140 diameters. However for inlet
conditions where turbulence was promoted it was found to be as low as 70 diameters. Since the secondary
motion in a non-circular duct is driven by the turbulence, the development length would be expected to be at
least of the same order of magnitude as for the turbulent flow in a pipe. For this reason the present study was

carried out in a duct which allowed for a development length of approximately 100 hydraulic diameters.

Since the results of this study were required for validation purposes, the data had to be of quantifiable
accuracy. The error due to probe interference is difficult to quantify which made laser-Doppler anemometry
(LDA) the first choice of technique since it is non-inausive. By contrast, in all previous hot-wire studies probe

interference resulted in a serious mass discontinuity in the plane perpendicular to the main flow: ie the mass flow

towards a wall was not equal to that away from the wall (It is difficult to comment on whether the continuity
requirement was satisfied for the published results of Brundrett and Baines (1964)).
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Table. I Details of previous experimental investigations of flow in a duct of s5guare cross-section

Investigator Instrument Reb (xIDH),rnX Uo/Ub

Brundrett & Baines (1964) Single hot wire 8.4*104 260 1.2

Gessner(1964) X-array hot wire 2.5"105 40 1.2

Gessner & Jones (1965) X-array hot wire 7.5* 104 to 3* 105 84 1.2

Launder & Ying (1972) Single hot wire 2.2* 104 & 6.9* 104 69 1.2

Melling(1975) LDA with tracker 4.2"104 36.8 1.2

Present study LDA with counter 3.8*103 100 1.3
(estimate) (estimate)

Where LDA has previously been used, Melling (1975) and Melling and Whitelaw (1976), the
unquantifiable error due to probe interference was eliminated and the most significant source of error was

quantified and attributed to misalignment of the measuring volume. In fact the accuracy of measured

components of secondary mean velocity was critically dependent on the precision of optical alignment such that

a fringe orientation error of as little as 0.3 degrees relative to the duct axis resulted in errors of up to 50%. As a

consequence of this, the reported measurements of secondary velocity did not satisfy continuity and were no

better than those obtained by hot-wire anemometry in the previous studies.

The benefits of non-intrusiveness and of quantifiable error motivated the authors to employ LDA in the

present study and the measurements reported here are believed to be both the first to be made at low Reynolds

number and to closely satisfy continuity.

Test facility andl etnerimentnl tmehniaxi.

The test facility consisted of a duct of 76.2 mm square cross-section. The duct was just over 100
hydraulic diameters, DH, long and air was blown down the duct by a centrifugal fan. Measurements of static

pressure from a series of pressure tappings in the duct revealed that the pressure gradient tended to a constant

upstream of and at the station where secondary flow measurements were taken. This was taken to indicate that

the flow was approximately fully developed.

Velocity measurements were made with a Dantec fibre-optic laser-Doppler anemometer (LDA),

operating in back-scatter mode, fitted with a 35 mW HeNe laser. A frequency shift unit (Dantec 55N 1O) was

used to avoid directional ambiguity and to enhance the data rate for the measurement of secondary velocities.
The Doppler signals were processed by a counter processor (Dantec 55L90a). Joss-stick smoke was used as

seeding and was introduced at the fan inlet to ensure adequate mixing.
For secondary flow measurements (ie flow in the cross-steam plane) the WDA probe head was aligned as

shown in Fig. 1. In order to asses the effect of probe interference, measurements were repeated with a side-

looking probe, representing a significantly greater blockage. These measurements showed negligible difference

to those made with the forward-looking probe (as shown in Fig.l) so that probe interference was estimated to be

negligible in either case.
Secondary flow velocities were typically less than 1% of the primary (streamwise) velocity, therefore

alignment of the fringes parallel to the streamwise axis was critical. Th uncertainty ,n this alignment was
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estimated to be less than ± 0.2 degrees which would represent a systematc error of 35% for V=0.01 m/s. An

absolute error of such a magnitude would be apparent if the continuity requirement was grossly in error for a

secondary flow profile and would be manifested as a shift in the origin of the order of 0.0035 m/s.

Measurements of su'earnwise (primary) velocity component had to be taken with the probe volume

located 6 mm downstream of the duct exit plane because time did not permit the construction of a special

working section which allowed for optical access from the side. This arrangement was felt to yield results

closely representative of the enclosed flow except in the vicinity of the wall. At positions corresponding to the

wall region, the decrease in width of the potential core and the ent'ainment of the stagnant ambient air into the

flow would be expected to produce lower mean velocities and an attenuation of the velocity gradient. However,

within the unmixed flow in the potential core, where most of the measurements were taken, the distibution of

mean velocity would be expected to be almost identical to that just upstream of the exit (ie in the enclosed flow

region).

S•____ .__ ____ N

z

Fi-r'oi

Fig.1 Orientation of fibre-optic probe for secondary flow measurements and definition diagram.

First through fourth order moments of velocity were determined from velocity estimates of 10 000

particles and the error due to this sample size was estimated to be less than 1.5% and 7% for primary and

secondary velocity moments respectively.

Residence-time weighting was applied to the raw velocity data to eliminate velocity bias. However this

is only believed to be equivalent to a time-averaging of the individual particle sample data if the flow is

uniformly seeded (Hoesel and Rodi (1977)). There was no reason to believe that seeding density gradients

existed for the flow in this configuration and the conditions for the residence-time weighting were taken to have

been satisfied.

The scale of this correction was significant for the secondary flow measurements and negligible for the

primary flow measurements. This result is to be expected because the velocity bias becomes increasingly

significant as the particle arrival rate decreases with respect to the turbulence time scale. The data rates for the

primary and secondary flow measurements were typically 50 Hz and 15 Hz respectively and a turbulence time

scale of 13 Hz was calculated (as the ratio of a typical length scale, H, to a typical velocity scale , U0, for both

the primary and secondary flow). The velocity bias might, therefore, be expected to be more significant for
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secondary flow velocity measurements.
Residence time weighting was believed to be an appropriate correction for velocity bias for this flow and

was applied to all velocity data which are presented in this paper.

All measurements were taken at a Reynolds number of 4900, based on the axial centre-line velocity, UO,

and the duct width, H unless otherwise stated. A representative sample of velocity measurements are presented
here, for full details of results the reader is referred to McGrath (1991).

The secondary flow measurements, presented in Fig.2, are consistent with the expected flow pattern,
where the secondary flow is dominated by large-scale counter-rotating vortices, each bounded by a duct wall and
by the normal and diagonal bisectors. The velocity component along a normal bisector is directed away from
the wall associated with it while the opposite is true along a corner (diagonal) bisector in accord with

observations by Brundrett and Baines (1964).

Mass continuity requires that the flow of mass directed towards a wall is equal to that away from it. For
the present study this was satisfied, for all secondary flow profiles, to within an average of 13% net mass flow
(mass discontinuity equals net flow normalised by the mass flow in one direction). There was no directional
trend for a net flow, which indicates that errors were due to misalignment of the probe and not probe
interference. In view of the critical nature of the optical alignment (with a maximum systematic error estimated
to be 35% for a secondary velocity of 0.01 m/s) the accuracy of the secondary velocity measurements was

encouraging.
It should be noted that before each measurement run, a check was made to ensure that measurements of

the secondary velocity component perpendicular to a normal bisector approximated to zero which was a
requirement of flow symmetry and an indication that the probe head was aligned properly. The measured
distribution along the vertical bisector was seen to be less than 0.01% of the axial centre-line velocity increasing
to a maximum of 0.12% near the wall which was a satisfactory result.

The effect of the secondary velocities is manifested in the bulging of the axial velocity (ie primary
velocity) contours towards the duct corner as shown in Fig.3, where comparison is made with the results of
Brundrett and Baines (1964). It is noticeable that the contours for the present work do not exhibit the same
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Fig.2 Profiles of secondary mean velocity Fig.3 Contours of UIU0 . Re=4900.

in a corner of the duct (smooth lines - Present study
drawn through raw data). Re=4900. ----- Brundren and Baines (1964)
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degree of penetraton into the duct corner and similarly the maximum magnitude of secondary velocity is
approximately 7% smaller than that reported by Brundren and Baines, at a Reynolds number of 8.3*104, The
difference in the two sets of results could be explained by either incomplete flow development or a low

Reynolds number effect. If the flow was not fully developed the ratio of the axial centre-line velocity to bulk
velocity UoI/Ub would exceed the asymptotic high-Reynolds number value for fully developed flow of 1.2 (due

to incomplete momentum distribution across the duct flow area). However, the static pressure measurements

taken upstream of the measurement station, indicated that the flow was approximately fully developed. Thus the

attenuated secondary flow, compared to the results of Brundrect and Baines, is attributed to a low-Reynolds
number effect. Indeed the ratio Uo/Ub is estmated to equal 1.3 in the present study (extrapolated from

numerical predictions of Demuren and Rodi (1984)) compared to a value of 1.2 for the flow investigated by

Brundrett and Baines. Attenuated secondary flow is, therefore, expected to occur in the present study. This is

substantiated by the agreement between the predicted and measured values of secondary velocity shown in Fig.4.

Y /H " 0 -42,
0.0. 0

0 . 5.0. 0. -
0.

0o.0

0.0-

-00M4 1

0.5' 0.4. 0.3 0. z 0.1 0

Fig.4 Comparison of secondary velocity measurements with simulation results (Gavrilakds (1989)).
* experiment - simulation

Turbulence intensity (defined, for convenience, as the RMS fluctuating component of velocity

normalised by the axial centre-line velocity) is also affected by the low Reynolds number flow. The profiles of

the primary component of turbulence intensity, shown in Fig.5 (where data are compared with the simulation

results), have significantly higher maxir'um values than those previously reported for high Reynolds numbers.

Values in the core flow region are over 50% greater than values reported by Brundrett and Baines in this region.

This is consistent with the trend reported by Gessner (1964), whereby a 50% decrease in Reynolds number

effected a 20% increase in primary Reynolds-normal-stress component. However the same does not appear to
be true for the measurements of secondary Reynolds-iormal stress (Fig.6) which appear practically equal for
the present study and that of Brundren and Baines.
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Measurements of the secondary component of turbulence intensity indicate that at low Reynolds number
contours of peak values of Reynolds stress would not extend as far into the corner as reported in all previous
studies and is consistent with the relatively attenuated secondary flow in the present study.

The measurements of skewness and flatness factor presented here are believed to be the first for a flow in
a non-circular duct, Profiles of skewness factor for the secondary flow are presented in Fig.7. Inspecuon of the
profiles of mean velocity suggest that for the secondary flow, the relatively high velocity region occurs closest to
a solid boundary such that as one approaches a wall the low speed fluid leaving the core-flow region produces
the large amplitude velocity fluctuations which result in a negative skewness there.

The distrbutions of flatness factor in Fig.8 are seen to be largely invariant about a mean value of 3.5 in
the core-flow region for the secondary component. The profiles all tend to a maximum in the wall region where
the high values are normally taken to indicate that the flow is highly intermittent (Moin and Kim (1982)).

Comparison of the experimental results with the full simulation (Gavrilakis (1989)), for identical flow
conditions show reasonable agreement overall. However, differences between the data sets exceed the errors
estimated due to random error sources and do not exhibit any systematic discrepancy (which might be expected
if probe misalignment was the principal cause of the error). The results do, however, substantiate the
observation that the flow at low Reynolds number was significantly different to that for which all experiments
(and predictions using turbulence models) have previously been conducted.

Detailed measurements of the turbulence-driven secondary velocity have been made in a duct of square
cross-section. These data are the most accurate to date with the mass continuity requirement being satisfied to
within 13 % over all profiles. Measurements of third- and fourth-order moments of velocity have been reported
for the first time.

The measurements were taken at a Reynolds number of 4900 which is substantially less than that for
which measurements or predictions have previously been made. The magnitude of the secondary motion was
seen to be significantly less than for fully developed flow at high Reynolds numbers. Consequently, contours of
axial mean velocity and contours of prmary and secondary flow components of Reynolds-normal stress would
exhibit decreased penetration of the duct comers at this low Reynolds number.
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