REPORT DOCUMENTATION PAGEDIST

Acproved SMB No 3704-0188

A

white -

AD-A285 649

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE	3. REPORT TYPE AND DATES COVERED
A. TITLE AND SUBTITLE	ANNUAL 01 Jul 93 TO 30 Jun 94
GRADIENT INDEX LENSES FROM SOL-GEL	
GRADIENT INDEX LENSES FROM SOL-GEL	
5. AUTHOR(S)	3484-XS
	61103D
Dr John D. Mackenzie	· · · · · · · · · · · · · · · · · · ·
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) BUPERFOURTING ORGANIZATION REPORT NUMBER
Dept of Materials	
Science and Engineering	
University of California, Los Angel	
405 Hilgard, Axe, BooltersHall 5713	AEUSA-TR- 3-4 065
. SPONSORING, MONITORING AGENCY NAME(S) AND AD	DRESS(ES) 10. SPONSORING/ MONITORING AGENCY REPORT NUMBER
AFOSR/NL	
110 Duncan Ave Suite Bl15	
Bolling AFB DC 20332-0001	
Maj Erstfeld	
11. SUPPLEMENTARY NOTES	ELECIE
	OCT 2 0 1994
12a. DISTRIBUTION , AVAILABILITY STATEMENT	12 DISTRIBUTION CODE
This document has been approve	
for public release and sale; its distribution is unlimited.	Suriginar contains coror ~
distribution is unlimited.	plates: All DTIC reproduct-

The research proposed here is based on the principle of the density gradient cloumn. 1 A liquid (A) of low density is continuously mixed into a liquid (B) of higher density while B is allowed to flow slowly down the wall of a glass cylinder. The feed rate of A is equal to the flow rate of mixture. Thus, a gradient density column is formed. Such columns have been used to measure the density of semiconductors to five (5) significant figures. The gradient is stable is stable for many months at room temperature. We proposed to use this method to prepare gradient index (GRIN) lenses from gels with large axial gradients. The chemical compositions of two sols are selected based on considerations of solubility between the sols; differences in refractive index, density, expansion coefficient and densification temperatures between resulting oxides.

14. SUBJECT TEPMS			· · · · · · · · · · · · · · · · · · ·	15. NUMBER OF PAGES
				16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLA		19. SECURITY CLASSIFICATIO OF ABSTRACT	N 20. LIMITATION OF ABSTRACT
. (U)		· (U)	(U)	(Ŭ)
NSN 7540-01-280-5500		· <u>·····</u> ····	· ·	Standard Form 298 (Pev. 2-39) Prescional by ANSI Stall 239 16 238-152

^{13.} ABSTRACT (Maximum 200 words

Best Available Copy

ANNUAL TIECHINICAL REPORT

to Air Force Office of Scientific Research

for project entitled

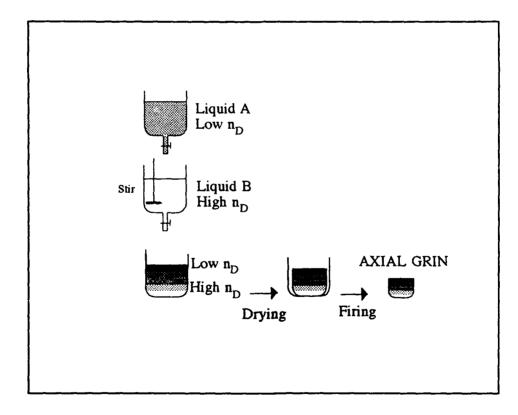
GRADIENT INDEX LENSES FROM SOL-GEL LAYERING (AN AASERT AWARD)

Grant No.: F49620-93-1-0364 Inclusive Dates: 1 July 1993 to 30 June 1994

PRINCIPAL INVESTIGATOR

John D. Mackenzie, Professor Department of Materials Science and Engineering University of California, Los Angeles Phone: (310) 825-3539 FAX: (310) 206-7353

Ô



DTIC QUI I THE THE S

1. Introduction and Background

This is an AASERT grant award with an official starting date of July 1, 1993. One female graduate student, Miss Tammy Chau, who is a U.S. citizen is being supported by this grant.

The research proposed here is based on the principle of the density gradient column.¹ A liquid (A) of low density is continuously mixed into a liquid (B) of higher density while B is allowed to flow slowly down the wall of a glass cylinder. The feed rate of A is equal to the flow rate of the mixture (Figure 1). Thus, a gradient density column is formed. Such columns have been used to measure the density of semiconductors to five (5) significant figures. The gradient is stable for many months at room temperature. We proposed to use this method to prepare gradient index (GRIN) lenses from gels with large axial gradients. The chemical compositions of two sols are selected based on considerations of solubility between the sols; differences in refractive index, density, expansion coefficient and densification temperatures between resulting oxides.

1

2. Research Performed

A- The TiO₂-SiO₂ system.

Initial experiments were carried out on the TiO_2 -SiO_2 binary system. Pure SiO_2 has a refractive index of 1.46, and a 15%TiO_2-85%SiO_2 composition would have a theoretical refractive index of 1.56, giving a Δn of 0.1 from end to end of a rod. Two solutions, one of pure tetraethyl orthosilicate (TEOS) and one containing titanium isopropoxide (0.9 TEOS - 0.1 titanium isopropoxide), were prepared (Figure 2). The solutions were gradient-cast according to the process described in Figure 1. After careful drying and firing (up to 900°C) at the process described in Figure 1. After careful drying and firing (up to 900°C) at the process described in refractive index of a 5.62 mole% TiO_2 fired gel. Gels containing up to 15% TiO_2 have been prepared with this process. However, they did not retain their transparency as TiO_2 crystals formed during heat treatment. It was therefore decided that an alternate system, which could give a large Δn without risk of precipitation of a second phase, be investigated.

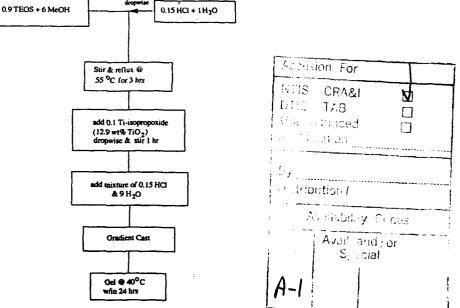


Figure 2- Flow-chart for the preparation of TiO₂-SiO₂ gels

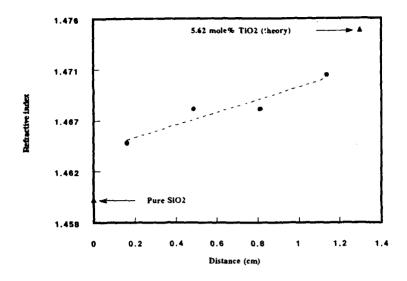


Figure 3 - Gradient in TiO2-SiO2 gel-derived axial GRIN rod

B- The TiO₂-PbO system

TiO₂-PbO monoliths have recently been fabricated by the sol-gel technique². Although these materials were initially investigated for their high non-linear optical coefficients, they are of great relevance to our study because they also exhibit a large variation in refractive index with composition. Transparent glasses have been fabricated over a wide compositional range (Figure 4). The refractive index of a 60% mole TiO₂-40% mole PbO is 2.030, and that of a 80% TiO₂-20% PbO is 2.268.

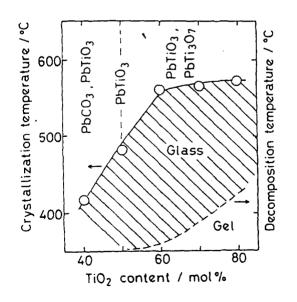
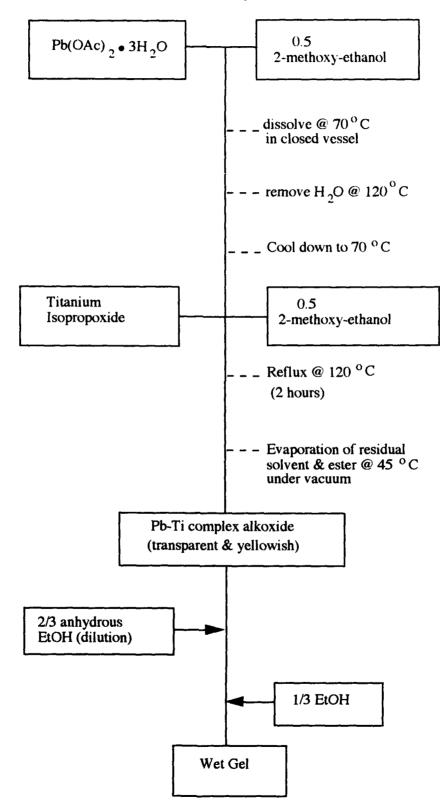



Figure 4 - Glass forming region of TiO₂-PbO gels²

3

Figure 5- Flow chart for the synthesis of PbO-TiO 2

(1 mole alkoxide : 4 moles 2-methoxy ethanol : 6 moles ethanol)

Two solution compositions were prepared, one containing 80% TiO₂ (solution A), the other 60% TiO₂ (solution B), were prepared according to the flow-chart in Figure 5. Using the set-up previously described, a gradient gel was cast in polypropylene containers. The refractive indices of gels of both extreme compositions are presented in Table 1. These values were obtained by ellipsometry on thin films (0.2-0.4 µm) deposited on silicon substrates by spin-coating. The maximum Δn measured was 0.38 for a gel dried at room temperature and 0.28 for a gel fired at 500°C for 1/2 hour.

	80TiO ₂ -20PbO	60ТіО ₂ -40РЬО	Δn
n _D (gel)	1.77	2.15	0.38
n _D (500°C)	2.84	2.56	0.28

Table 1- Refractive indices of PbO-TiO₂ gels

The Δn value of the fired gels are in agreement with that reported by Nasu et al. The existence of an axial gradient has been demonstrated by observing the path of a laser beam through a wet gel. As one can see from Figure 6, the laser beam is bent in passing through the gradient gel.

Figure 6 - Photograph of light bending in a PbO-TiO₂ GRIN gel

FUTURE WORK

The feasibility of an axial gradient index material by the sol-gel technique has been demonstrated for the first time. Future work will be aimed at drying and firing gel to obtain a GRIN glass. Some important parameters involved in fabrication such as solution concentration and viscosity, will be investigated. The gradient index in the glass will be optimized through appropriate modification of the starting solution. Based on the promising results of the PbO-TiO₂ system, we also intend to investigate the PbO-SiO₂ system which would exhibit many advantages over the PbO-TiO₂ system.

REFERENCES

1. F. H. Horn, Phys. Rev. 97, 1521 (1955)

2. H. Nasu, K. Kamiya, Y. Katagiri, S. Makino and J. Matsuoka, Sol-gel Optics III, SPIE Proc. Vol 2288 (1994), in print