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COMPUTAT NAL STUDIES OF LAMINAR TO

TI LENCE TRANSITION

Introduction

The subject of laminar/turbulent transition is of fundamental and practical importance in fluid

mechanics. An indepth knowledge of transition mechanism is needed not only for boundary/shear

layer control but also for understanding of turbulence. Depending upon the state of the boundary

layer, various instability mechanisms such as Tollmien-Schlichting (TS), crossflow and Girtler may

be operative. The present day transition prediction methodology is based upon linear stability theory

in the form of eN method. This technique works well in a specialized parameter space involving

extremely "clean' flows. However, depending upon the flow conditions, various instabilities referred

to above could interact. In case of such wave-interactions, the transition prediction methodology,

based solely upon linear stability theory, would fail. Therefore, it is of interest to study possible

wave interactions and devise new transition prediction criterion under such circumstances.

The early stages of breakdown of Tollmien-Schlichting waves to turbulence in a two-dimensional

flat plate boundary layer are now relatively well understood due to careful laboratory experiments,

(Klebanoff et al. 1962, Nishioka et al. 1980) ingenious numerical simulations (Zang and Hussaini

1985, Hussaini 1987, Spalart and Yang 1987, Fasel et al. 1987), and analytical studies (Herbert

1988, Kachanov 1987). However, our knowledge of transition mechanism in three-dimensional

boundary layers and flow where primary instability mechanism is other than TS is relatively limited.

A swept wing boundary layer or a boundary layer on a body at an angle of attack is F, '.-'

both crossflow and TS type instabilities. While the former results due to inflectional instaw f

the crossflow velocity profiles, the latter is a viscous instability of the streamwise profiles. Another

boundary-layer where two types of instabilities exist is that formed on a concavely curved plate.

Here, counter-rotating steady Grtler vortices form due to centrifugal instability. Given that the

Reynolds number is high enough, TS instability may also be present. Nonlinear development of

Gbrtler vortices and Gortler/TS interaction is again a problem of both fundamental and potentially

practical importance.

The objective of the present study is to understand physical mechanisms leading to transition

and identify any new instability mechanisms involved in these flows. A numerical study is carried

out to investigate how a steady Gdrtler vortex breaks down to turbulence. The study reveals various

stages involved including the nonlinear development of G6rtler vortex, secondary instabilities

leading to the development of unsteadiness and the final breakdown.

In order to investigate crossflow instability, we consider a model swept-wing boundary-layer and

study the development of stationary as well as traveling disturbances and their nonlinear interac-

tion. It is also found that prior to laminar-turbulent transition, the three-dimensional boundary
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layer is subject to a high-frequency secondary instability, which is in agreement with the experi-

ments.

Two approaches have been used in the above studies. For nonlinear evolution and wave-wave

interaction, we utilize parabolized stability equations (PSE). For secondary instability, we employ

two-dimensional (2D) eigenvalue approach.

The final report is divided into three parts:

A. On the Breakdown of Gortler Vortices: Nonlinear Development and Secondary Instabilities

This describes nonlinear evolution of G6rtler vortices and their breakdown via various sec-

ondary instability mechanisms.

B. Crossflow Disturbances in Three-Dimensional Boundary Layers: Nonlinear Development. Wave

Interaction and Secondary Instability

This describes nonlinear evolution of crossflow disturbances, wave-wave interaction and a high-

frequency secondary instability prior to laminar-turbulent breakdown.

C. On the Nature of PSE Anroximation

Since the PSE approach is used in the above physical problems, it is important to investigate

the mathematical nature of the approximation. In this part, we explore the parametric boundaries

within which PSE approximation is valid and results in a stable numerical solution. This knowledge

is used when we employ this approach in the above problems.

References

Fasel, H. F., Rist, U., and Konzelmann, U., 1987 "Numerical Investigation of the Three-Dimensional

Development in Boundary-Layer Transition," AJAA Paper No. 87-1203.

Herbert, T., 1988 "Secondary Instability of Boundary Layers," Ann. Rev. Fluid Mech. 20, pp. 487-526.

Hussaini, M. Y., 1987 "Stability, Transition and Turbulence," Supercomputing in Aerospace, NASA
CP 2454, pp. 211-220.

Kachanov, Y. S., 1987 "On the Resonant Nature of the Breakdown of a Laminar Boundary Layer," J.
Fluid Mech. 184, pp. 43-74.

Klebanoff, P. S., Tidstrom, K. D., and Sargent, L. M., 1962 "The Three-Dimensional Nature of
Boundary-Layer Instability," J. Fluid Mech. 12, pp. 1-34.
Nishioka, M., Asai, M., Iida, S., 1980 "An Experimental Investigation of Secondary Instability,"
Laminar-Turbulent Transition, ed. R. Eppler, H. Fasel, pp. 37-46, Berlin: Springer-Verlag.

Spalart, P. R. and Yang, K. S., 1987 "Numerical Simulation of Ribbon-Induced Transition in Blasius
Flow," J. Fluid Mech. 178, pp. 345-365.

Zang, T. A. and Hussaini, M. Y., 1985 "Numerical Experiments on Subcritical Transition
Mechanisms," AIAA Paper No. 85-0296.

2



PART A.

On the Breakdown of Gortler Vortices: Nonlinear Development
and Secondary Instabilities
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Abstract

Nonlinear development of stationary G6rtler vortices in an incompressible boundary layer is

studied by solving the parabolic partial differential equations. It is found that due to the pumping

action of the steady counter-rotating vortices, wall shear stress decreases rapidly in the peak plane

but, unlike the result of Hall (1990), it does not go to zero and there is no flow reversal. Instead, as

the GCrtler vortex saturates the mean flow correction mode dominates and causes the wall shear in

the peak plane to begin to rise again. A highly distorted mean flow field is set up due to the vortex

action where the streamwise velocity 17 depends strongly not only on y (wall normal) but also on the

z (spanwise) coordinate. The inviscid instability of this flow field is analyzed by solving the two-

dimensional eigenvalue problem associated with the governing partial differential equation. It is

found that the flow field is subject to odd and even (with respect to the G6rtler vortex) unstable

modes. The odd mode which was also found by Hall & Horseman (1991) is initially more unstable.

However, there exists an even mode which has higher growth rate further downstream. The

nonlinear development of these secondary instability modes is studied by solving the (viscous) partial

differential equations under a parabolizing approximation. The odd mode leads to the well-known

sinuous mode of breakdown while the even mode leads to the horse-shoe type vortex structure. This

helps explain experimental observations that G6rtler vortices breakdown sometimes by sinuous

motion and sometime by developing a horse-shoe vortex structure. The details of these breakdown

mechanisms are presented.

1. Introduction

Two-dimensional boundary-layer flow over a concavely curved wall is subject to G6rtler

instability due to the action of centrifugal force and results in the formation of counter-rotating

streamwise vortices. G6rtler vortices play a dominant role in boundary-layer transition in many

aerodynamic flows such as on turbine blades and supersonic nozzle walls (e.g., Beckwith et al. 1984).

Due to their technological importance, Gortler vortices have been the subject of a number of

investigations (for a recent review, see Floryan, 1991). G6rtler vortices are steady and the question

how they might breakdown to turbulent motion is a problem of fundamental interest in fluid

mechanics. This problem may also serve as a model for the longitudinal vortices in turbulent

boundary layers. In this work, we will study the nonlinear development of Gbrtler vortices, their

linear secondary instability characteristics and the nonlinear growth of two important modes of

secondary instability up to the breakdown stage.

Experimental investigations have revealed two distinct types of secondary instabilities when the

primary instability (the G6rtler vortex ) is sufficiently developed. Bippes (1978) made detailed

observations of the Gbrtler vortex breakdown using the hydrogen-bubble visualization technique in
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the G6rtler number (Ge) range of approximately 3 to 9 (based upon momentum thickness 0) where

Ge is defined as

G = o (1.1)

Kt being the surface curvature and R the Reynolds number based upon momentum thickness.

Bippes found that the initial amplification of the GCrtler vortices agreed with linear theory and,

later, sinuous oscillations developed, which ultimately led to turbulence. Aihara & Koyama (1981)

conducted flow visualization studies as well as hot-wire measurements of Gbrtler vortices in Gbrtler

number (G9) range between 7.7 and 15. They found that a different type of secondary instability,

i.e., the horse-shoe vortex type (also called the varicose instability), was responsible for transition.

Ito (1985) also found this symmetric mode of breakdown in his experiment conducted in the G6rtler

number range between 5.5 and 12.4. Swearingen & Blackwelder (1987) (referred to as SB hereafter)

studied the Gdrtler vortices using smoke-wire and hot-wire techniques in the GCrtler number range

between 0.5 and 10. They observed that both the sinuous and the horse-shoe types of secondary

instabilities were present in the transition process and found that the sinuous mode was the stronger

of the two. In their experiment, the unsteady secondary instability fluctuations correlated better

with the spanwise velocity gradients than with the normal velocity gradient. Unsteady motion in

G6rtler vortices was also observed by Peerhossaini & Wesfried (1988).

Numerical simulations were carried out by a number of researchers for Gbrtler vortices under

the same conditions as the experiment of SB. Sabry & Liu (1991) studied the key features of steady

Gdrtler vortex development by using a temporal analogy in which the growth of time-dependent

streamwise vortices are related to the spatial case through a chosen advection velocity. Good

agreements with SB were found before the unsteady oscillations became important. Liu &

Domaradzki (1993) used a similar approach and analyzed the steady and unsteady nonlinear

evolution of G6rtler vortices. Temporal Navier-Stokes approach was earlier used by Malik (1986)

and Malik & Hussaini (1990) to study G6rtler/Tollmien-Schlichting wave interaction. Since the

physical problem is spatial, temporal approach can, at best, provide qualitative results and there is

no a priori justification for this approximation. Spatial simulations of the Grtler vortex were

performed by Hall (1988, 1990) and by Hall & Horseman (1991). Agreement with the experiment of

SB was obtained for the early stages of Gdrtler vortex development. However, Hall (1990) and Hall

& Horseman (1991) found that the wall-shear in the "peak-plane" crossed zero to become negative at

some downstream location, indicating the existence of a region of reverse flow. They attributed the

rise in wall-shear in the experiment of SB to the nonlinear interaction of unsteady oscillations and

the steady Gdrtler vortex. However, spatial calculations carried out by Lee & Liu (1992) did not find

any flow reversal.
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Various theoretical attempts at the secondary instability of the G6rtler vortex illuminated the

important role the sinuous and the varicose modes play in transition to turbulence. Sabry, Yu & Liu

(1990) used 1-dimensional local inflectional velocity profiles to analyze the secondary instability

characteristics of Gbrtler vortices and found that the sinuous type disturbance would prevail over the

varicose type. Hall & Horseman (1991) derived a partial differential equation governing the inviscid

secondary instability for a mean flow which varied strongly in two directions. They identified the 2-

dimensional odd and even eigenfunctions of this equation as representing the sinuous and varicose

types of secondary instability of G6rtler vortex, respectively. They also found that the odd mode

grows faster than the even mode. In the numerical simulation of Liu & Domaradzki (1993), the

sinuous mode was also found to be stronger than the varicose mode. Secondary instability analysis

of Crirtler and crossflow disturbances was made by Malik and Li (1993a).

All these numerical investigations of secondary instability seem to point to one fact, i.e., the

sinuous mode is the dominant mode and is chiefly responsible for the transition to turbulence. Why

do some experiments ( e.g., Aihara & Koyama, 1981) show the presence of only the varicose mode?

Examining the above cited numerical results closely, we find that most of these calculations were

carried out for either a limited range of wavelengths or a limited number of streamwise locations. In

Hall & Horseman (1991), for example, the secondary instability calculations were computed almost

exclusively at x = 100 cm. In Liu & Domaradzki (1993), the computational box had streamwise

dimension of either 2 cm or 2.2 cm, which essentially fixed the streamwise wavelength.

Furthermore, a comparison of the "mushroom" structure obtained by Hall & Horseman (1991) on the

one hand and Lee & Liu (1992) and Liu & Domaradzki (1993) on the other shows that the basic flow

state used for secondary instability computations are different. In the results of Hall & Horseman

(1991), the "mushroom" lacks the very thin "stem" shown in the results of other researchers.

In this paper, we will first study the nonlinear development of the G6rtler vortex and analyze

various modes of secondary instability. Rayleigh's criterion for the inviscid instability of one-

dimensional velocity profile is well-known. However, its extension to two-dimensional flow has not

been considered. We will, therefore, derive a necessary condition for inviscid instability of mean

flows which strongly depend upon two space variables. We also study nonlinear evolution of the

secondary instability modes using parabolized stability equations (PSE). Section 2 describes the

parabolized stability equation formulation which describes all stages of the vortex development.

Section 3 deals with the nonlinear development of steady G~irtler vortices while sections 4 & 5

analyzes the linear secondary instability and its nonlinear evolution, respectively.

2. Problem Formulation for Nonlinear Steady and Unsteadv Disturbances

We consider a two-dimensional zero pressure gradient boundary-layer flow over a concave

surface whose constant radius of curvature re = 1/ict. The streamwise, wall-normal and the

6



spanwise coordinates are denoted as x = X / o, y = Y / to and z = Z / o , respectively (y = 0 denotes

the wall), where the length scale to will be prescribed later.

Let the x, y and z components of the velocity and pressure be given by

( tv ,wt) = U{U(x,y) +u(x,y,z,t),V(x,y) + v(x, y,z,t),0 +w(x,y,z ,)}

Pt = pU,2 (P + p(xy,z,t))

where the superscript t represents a dimensional quantity and Ue is the velocity scale. Here U and

V are mean flow velocity components obtained by solving the Blasius equation whereas u, v, w

represent the perturbation velocity components in x, y, z directions, respectively. Similarly, P and p

represent the mean and perturbation pressures. We assume that Reynolds number, R, is large and

that the radius of curvature is much larger than the boundary-layer thickness, 8 (i.e., kt8 << 1). In

this case, if K = Ktto, the equations governing the perturbation quantities are

du + U du + U V du + + I(UV + VU) + - V2u N (2.1)

-- + -vv-u =2_ N+1

-+U- -+ v-- 2w=V N (2.2)
&d x G dy dR 

+ U±+ +V± v V - K~u+ d V2 N2(2.3)
Y &x Y dzR

du &v oAw
S+ - + w =0 (2.4)

where N 1, N 2 and N 2 represent the nonlinear terms

du du dug =-v - - w - - Kv
& W & - 2U

N2 _ O VO- - W-, ) + KU2

N3 = -u - - - -

and

V2=d2 2 d2

The boundary conditions are

u=v=w=O at y=O and u-O, v V(x), w-*0, as y-oo

7



where Vm signifies a nonzero value. Periodic boundary conditions are imposed in the spanwise

direction. Here, to and U, are constants so as to define Reynolds number R as

R = U .1°

V

where the length scale to = v- X0 being the location (dimensional) of a reference streamwise

Ue
station, and v the kinematic viscosity. Another important parameter which is a measure of the wall

curvature is the Gx6rtler number G defined as G = R* JI. The reason why v does not go to zero

outside the boundary layer is that the vertical velocity vanishes for all Fourier modes (see (2.5)

below) except the mean-flow correction mode.

We use the method of parabolized stability equations (PSE) for our computations. Here, we

follow the formulation of Malik & Li (1993b) (see also Malik et al. (1994)) and let = (u,v,w,p) be the

disturbance vector and assume that the disturbance takes the form

XXn(XY) exp if an.(4)d'+ in/k - imjl (2.5)
Mn n ( :o

where amn and P3 are the x and z wave numbers, o is the perturbation frequency and mn is the

amplitude function for the mode (mw,nfi). Substituting Eq (2.5) into Eqs (2.1) to (2.4), we obtain a

set of equations with v,,n and amn as unknowns. Since, there are now more unknowns (namely,

camn) than the equations, another condition is needed for the closure of the system. Since the basic

flow is slow-varying in the streamwise direction, a condition on mn is imposed such that most of the

waviness and growth of the perturbation is absorbed into the exponential function in Eq (2.5),

making the amplitude function ',n slowly-varying with respect to x. The terms containing d2

can thus be dropped and the only second derivatives left in the governing equations are those with

respect to y. These new stability equations are parabolized in the sense of parabolized Navier-Stokes

(PNS) equation for mean flow computations. The condition for choosing a,,n and minimizing the

streamwise variation of the amplitude function can take several forms. In the present work, we

choose amn to be such that the following integral vanishes.

(1 ,w z X dy = 0 (2.6)

0

where * denotes complex conjugate. The PSE can be written in matrix form as

4 2 ,d +  "o = N., (2.7)
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F(jr,,,a,,,. =O (2.8)

where the coefficient matrices contain the Blasius flow quantities as well as amn, /3 and 6U Eq (2.8) is

a general form of Eq (2.6). The matrix operators Lo - L3 and Nm, are given in Appendix I. The

boundary conditions are

tim = 6.m, = tbm = 0 at y=O (2.9a)

imn,t3mn(except for m=n=O),bmn -40 as y- (2.9b)

No boundary condition is requried for t(oo) when m = n = 0.

We discretize the PSE using discrete Fourier transforms in the spanwise direction and in time.

In the direction normal to the wall, we use the fourth-order compact difference scheme (Malik,

Chuang & Hussaini, 1982) which requires that (2.7) be written as a system of first-order equations.

Numerical computation starts at some streamwise location xo where velocity components are

prescribed for a given wavenumber amn; the velocities and pressure at xo + dx are calculated using

backward Euler discretization. If Eq (2.8) were not satisfied, a new amn would be chosen and the

equations solved again. This iterative process continues until Eq (2.8) is satisfied, and the

computation proceeds to the next streamwise location. During this iterative process, nonlinear terms

are also updated and one makes sure that they are converged before the solution proceeds

downstream.

3. Nonlinear Development of Steady Grtler Vortices

In this section, we analyze the nonlinear development of streamwise stationary Gdrtler vortices

(o = a = 0). In the limit R -- -c, and i -* 0 with G held fixed, and by rescaling the dependent and

independent variables (V = 0(1/R)U, (v,w) = O(1/R)u,y = 0(1/R)x) the parabolic equations derived

by Hall (1983, 1988) can be recovered from (2.1-2.4). In Hall (1988), a further step is taken to

eliminate the spanwise velocity and the pressure from the linear terms in Eq (2.7), resulting in a

coupled system of fourth-order and second-order equations. However, we will solve Eq (2.7) directly

in the primitive (6,6,tb,k) formulation, except that the condition imposed on a (2.8) is not applied

since a is identically 0.

The flow parameters used in the present analysis are taken from the experiment of SB. The

radius of curvature of the concave surface is 320 cm and free stream velocity is 500 cm/s. The

streamwise range of interest in our analysis lies approximately in 10 < X (cm) < 120, in which the

Reynolds number based on the distance from the leading edge (Re = R 2 ) ranges from 3.3 x 104 to

4x 105 and the Gdrtler number Go ranges from 1.3 to 8.3. The Blasius equations are solved to

obtain the basic flow (U,V) for the vortex stability analysis. The calkalation is started at X 0 =10 cm

for the disturbance wavelength A, = 1.8 cm and initial amplitude of d = 0.0187 Ue estimated from

9



the experimental data of SB. At this stage, our aim is to analyze the steady nonlinear Gdrtler

vortices; therefore, we only allow zero-frequency modes to be present. Unsteady modes will be taken

into account later when we compute the development of secondary instabilities. The number of

spanwise Fourier modes used in the z-direction is 11 (i.e., n goes from -10 to 10 in (2.5)), and the

streamwise marching step-size is 0.82158 cm. Therefore, approximately 130 marching steps are

taken in the streamwise direction. The number of wall-normal steps is 121. The solution was tested

by changing the number of grid points and it was found to be grid-independent.

Attempt is made to compare with the experiment of SB in this paper. A few words of

explanation are needed in order to clarify the manner in which comparisons are made. There is

uncertainty in the experiment of SB (and in any experiment, in general) with regards to the

spanwise wavelength of the G6rtler vortices. As noted by SB, this wavelength varies across the span

and its statistical average is 2.3 cm. Th detailed measurements, however, are made for a pair of

vortices with a spanwise wavelength of about 1.8 cm which, in fact, is close to the most amplified

G6rtler vortex according to linear theory. There is also a fa r amount of scatter in the data in the
"peak" region of the vortices for localized quantities such as the wall-shear. Our computation is

performed with a constant spanwise wavelength, which is fixed at 1.8 cm. We could choose different

wavelengths and initial amplitudes to obtain a whole range of results from which the best

comparison with experiment can be found, but we would have little to gain from this. As Hall &

Horseman (1991) pointed out that the inherent non-uniqueness of the G6rtler problem might be

present in the experiment as well and the exact features of the experiment itself might not be

precisely reproducible. Consequently, our comparisons with the experiment are confined to the

qualitative features and trends of the Gdrtler vortex development which are relatively insensitive to

moderate variations in parameters such as wavelengths and initial amplitudes.

The experiment of SB (as well as others) produced "mushroom-like" structures for the

streamwise velocity due to the pumping action of the counter-rotating vortices. The contours of the

streamwise velocity at various downstream locations computed in the present analysis are shown in

Figure 1. In the early stages of the development, the amplitude of u perturbation is small and the

velocity contours show a wavy spanwise structure. As the GCrtler vortices gather strength at

relatively large distances downstream the same "mushroom" structures observed in the experiment

of SB are clearly seen. The regions in the neighborhood of the centerlines of the "mushrooms" are

referred to as "peak" regions where the streamwise velocity is relatively low; and the regions between

the "mushrooms" are referred to as "valley" regions where the streamwise velocity is relatively high.

The streamwise velocity profiles at the peak and the valley are shown in Figure 2. It will be shown

later that the high shear layer region up in the peak plane will become subject to a particular mode

of secondary instability. The spanwise variation of the streamwise velocity component at fixed y is

10



given in Figure 3. Again, the inflected profiles will be subject to another mode of secondary

instability.

The energy in each Fourier mode is shown in Figure 4. Here, energy is defined as

E. f (pn12 +16.12 + lb 12)y (3.1a)

0

where n > 0, and

0

Initially, the Gdrtler vortex (mode 1) develops approximately linearly, but later on it begins to

saturate. Due to ronlinearity, higher harmonics (mode 2,3...) and mean flow distortion mode (mode

0) are generated. Among these, first the mode 0 and 2 have about the same energy, but at

approximately X = 75 cm, the energy in the mean flow correction mode takes over that of the

fundamental, and hence, the mean flow correction mode becomes the dominant mode, as also found

by Hall and Lakin (1988) for the small wavelength Gir1ter vortices. This has important physical

consequences, which will be explained later. Farther downstream, the energy in each mode begins to

level off, approaching saturation. Although the energy in modes 2 and higher remains much lower

than that of the fundamental, they all are important in the development of the narrow neck

structure of the mushroom seen in Figure 1(d).

We now consider the wall shear in the peak and the valley plane. Figure 5 shows the computed

normal wall shear in these regions, together with the experimental data of SB. Initially, the shear at

the peak and at the valley decreases and increases, respectively, due to the slow-down and speed-up

of streamwise velocity at the respective locations. Farther downstream, the shear at the peak turns

around and starts to increase at approximately X = 70. It has been argued by Hall (1990) that the

rise in shear is solely due to nonlinear interaction of steady and unsteady disturbances, without

which the shear would continue to decrease and eventually leads to flow reversal near the wall.

However, in SB, the amplitude of the unsteady fluctuations at this stage is, at least, one order of

magnitude smaller than that of the steady GCrtler vortex and it is unlikely that such drastic change

in flow character is caused by these unsteady fluctuations. The normal wall shear at the peak is

larger compared with the experiment of SB. Using a spanwise wavelength of 2.3 cm instead of 1.8

cm gives a much better comparison. We point out that Lee & Liu (1992) used a lower initial

amplitude for the wavelength for A. = 1.8 cm and showed better agreement with experiment for wall

shear. We point out that in our calculations, the increase in the shear stress is independent of the

initial conditions and the location where they are imposed.
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Now we explore the reason why the wall shear at the peak region turns around and starts to

increase at approximately X = 70 cm for A, = 1.8 cm. This location is very close to the point where

the energy in the mean flow correction mode takes over that of the fundamental (X = 72 cm). Also

plotted in Figure 5 is the streamwise mean wall-shear, which is entirely due to the mean flow

correction to which all the harmonics contribute. The mean wall shear at large distances

downstream has rather large positive amplitude. Therefore, the explanation for the wall shear turn-

around lies in the fact that, while the GCirtler vortices try to slow down the fluid in the peak region,

the mean flow correction tries to accelerate it. As the mean flow correction becomes more and more

significant and eventually dominant, the wall shear has a large contribution from the mean flow

correction mode, which overpowers the other modes to produce an increase in the streamwise

velocity in the peak plane, resulting in the increase in wall shear. Figure 6 shows the computed

streamwise velocity profiles along the peak region at various streamwise locations. It clearly shows

(see also Figure 2) that even though the profiles are highly inflectional, the near wall behavior of the

velocity would not give rise to negative shear. The domination of the mean flow correction mode also

explains why the shear stress cannot go to zero and cause flow reversal.

The evolution of displacement thickness is shown in Figure 7. The computed results agree well

with the experiment of SB up to about X = 100 cm where unsteady oscillations in the experiment

become important. The displacement thickness decreases at the valley because of the high speed

fluid brought down to the region near the wall by the G6rtler vortices. In the peak region, the

displacement thickness increases much faster than the corresponding displacement thickness of the

Blasius boundary layer because of the low speed fluid brought into the upper regions of the boundary

layer.

The present computations showed many of the qualitative features of the experimentally

observed G6rtler vortices. However, for an understanding of the breakdown of these vortices due to

secondary instabilities, we have to consider unsteady modes. We will use the steady G6rtler vortex

flow field generated above as the basic flow state for our secondary instability analysis given in the

next section. Thus, if UG, vg, wo are the perturbation velocities due to the Gbrtler vortex, the new

mean flow whose stability will be analyzed in the next section is

= U + UG (3.2a)

U= V + V (3.2b)

Rl = W + wa (3.2c)
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4. Linear Inviscid Secondary Instability

4.1 Governing equations

We assume that the streamwise variation of the new mean flow (UU,U) is small compared with

the wavelength of the secondary disturbance. This assumption can be justified a posteriori from the

results. Therefore, the linear secondary oscillation can be written as

V(x, y,z,t) = t'(y,z)e'( °= ° ), (4.1)

where V = (uS ,vS, wS,p8) and = (u, 6., 8 , p); a is the wavenumber, o) is the oscillation frequency,

and the subscript s indicates secondary instability. Here, we consider only the temporal instability;

therefore a is real and o is complex. The flow field is unstable to disturbances if oi > 0.

We note that U(yz) and 57(yz) are much smaller than ii(y,z). Then, following Hall &

Horseman (1991), the equations governing the linear secondary instability are

iolis + --+ ° =0 (4.2)
8

y &~

ia(f - c)I. +- V+ --w = -io, (4.3)

ia(U -c CA (4.4)

ia(_ c 01b. = OP. (4.5)

where c = awa is the (complex) disturbance phase velocity. Eliminating u2, b., w8, we obtain the

equation governing the secondary pressure oscillation (after dropping subscript s):

/L32 2)A W~ W = 0 (4.6)
ay 2 z V j- c 17-c

The boundary conditions are

y=O, /y(y,z)=0 (4.7a)

y o, (y,z) - 0 (4.7b)

and

A~y, Z)= A(yz + A.) (4.8)

where Az is the Grtler vortex wavelength.

Equations (4.6-4.8) constitute an eigenvalue problem which is solved by using a Chebyshev

collocation method in the y direction and a Fourier collocation method in the z direction with
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appropriate grid stretchings in both directions to concentrate more collocation points in regions of

high gradients. Furthermore, since the basic flow state is symmetric, the eigenfunctions can be split

into families of even and odd modes. For the even mode, A(y,z) = jy,-z) and for the odd mode,

ji(y,z) = -. (y,-z). Taking advantage of the symmetry conditions, we reduce the size of the resulting

discretized system by approximately half. The discretized system can be represented in the form

Aip = o~q) (4.9)

where B is a diagonal matrix and A is a square matrix of size NY(N / 2 + 1), where NY and N. are

the number of collocation points in y and z directions, respectively. This eigenvalue problem is

solved by the QR method which yields all the eigenvalues of the discretized system (4.9).

Throughout the computations, we use NY = 85 and N, = 32.

4.2 Results of Secondary Instability Calculations

During the early stage of the Gdrtler vortex development, the quantity V2 U is negative

everywhere in the (yz)-plane. At approximatelyX = 40 cm., a region of positive V2 Y begins to appear

near the wall. Therefore, according to the necessary condition for instability ( i.e. V2i = 0

somewhere in the flow field), the (Gdrtler vortex for the initial conditions prescribed in §3 is stable to

secondary disturbances for X < 40 cm. We note that we have not shown whether the above condition

is also a sufficient condition for instability.

We start our 2-D eigenvalue computations at X = 65 cm, where the high frequency oscillations

are moderately unstable. Hence, we avoid the difficulty associated with the singularity due to

neutral disturbances. The growth rate variation with the streamwise wavenumber at various

streamwise locations between X = 65 cm and X =100 cm, normalized with scales at X = 10 cm , is

shown in Figure 8. The general trend is that the secondary oscillations become more unstable as the

G6rtler vortices become stronger downstream. The maximum growth rate at each streamwise

location occurs at streamwise wavenumbers approximately between 0.2 and 0.3, corresponding to

wavelengths between 1.2 and 1.7 cm. The Blasius boundary layer thickness in the absence of the

G6rtler vortices in the range between X = 65 cm and X = 100 cm is approximately between 0.7 and

0.9 cm. This shows that the wavelength of the secondary instabilities is of the order of boundary-

layer thickness. Therefore, our assumption that the basic flow state variation is negligible over the

distance of one wavelength is, indeed, justified. We can visually extrapolate the growth rate curves

and see that, in this streamwise range, the highest wave number where secondary instability occurs

is approximately 0.5, corresponding to a wavelength of 0.69 cm.

We now consider the variation of the maximum growth rate of the secondary instabilities with

streamwise distance. In order to show that the secondary instability grows much faster than the

Gdrtler vortex, we convert the temporal growth rate to the spatial one by using group velocity
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transformation. The use of group velocity to transform temporal growth to spatial growth is well

known for boundary-layer instabilities (Gaster 1962, Nayfeh & Padhye 1979). The value of group

velocity dor /Ida varies with x and lies in the range of 0.6 to 0.72. Figure 9 shows the spatial

maximum growth rate of the most unstable even and odd modes, as well as the spatial growth rate of

the Crirtler vortex. The odd mode begins to become significant from approximately X = 65 cm, and

the even mode roughly from X = 75 cm. An important feature we discover here is that, although the

odd mode is the first to become unstable, the even mode takes over at roughly X = 82 cm to become

the most unstable mode. The growth rate of the secondary instability is an order of magnitude

higher than that of the nonlinear Giirtler vortex.

The frequency and wavenumber of the secondary instability corresponding to the maximum

growth rate at various streamwise locations are given in Table 1. We see that the frequencies vary

greatly from one streamwise station to the next. The experimentally observed frequency of 130 Hz

may not be that of the most unstable wave at large downstream distances. The relatively lower

frequency waves (around 100 Hz) become unstable first. When the region of higher frequency waves

is reached, the laminar basic flow state may have already been destroyed by the nonlinear growth of

secondary instabilities and the higher frequency waves may not have a chance to manifest

themselves. The temporal direct numerical simulation of Liu & Domaradzki (1993) has a

computational box which restricts the maximum wavelength to 2.0 cm. According to Table 1, the

frequency of most amplified disturbance is just above 160 Hz (their calculation gives about 200 Hz).

Table L Frequency and wavelength of the secondary instability modes

Odd Mode Even Mode

X(cm) ftHz) Wavelength X(cm) f(Hz) Wavelength

(cm) (cm)

65.0 67.1 4.59 79.8 181.7 1.66

70.0 87.8 3.57 82.3 194.8 1.56

74.9 108.8 2.93 84.9 210.7 1.47

82.3 141.2 2.38 89.7 243.2 1.34

84.9 161.6 2.07 94.6 271.3 1.27

89.7 202.1 1.70

94.6 243.0 1.47

The calculations of Hall & Horseman (1991) were almost exclusively for the basic flow state at X =

100 cm. They found that the fastest growing wave (odd mode) has a frequency of about 110 Hz and a

wavelength of about 3 cm. This would compare well with our results at about X = 75 cm. This can be
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explained by noting the fact that their disturbed flow state amplitude is apparently lower than ours

at corresponding streamwise locations; at X = 100 cm, our calculation in Figure 1 shows a thin neck

while their Y(y,z) plot does not show this and resembles more with the structure shown in our

Figure 2(b).

We now consider the eigenfunctions of these secondary instability modes at X = 95 cm. The

wavelength chosen here is 1.53 cm, close to the fastest growing odd and even modes at this

downstream location. In addition to the most unstable odd and even modes, a second even mode is

also considered. The contours of velocity eigenfunction P. at X = 95 cm are shown as solid lines in

Figure 10, together with basic flow state i(y,z) as dashed lines in the background. The

eigenfunctions are normalized so that the maximum P.1 has an amplitude of unity. The contours

plotted are from 0.1 to 0.9 in intervals of 0.1, and !i(y,z) contours plotted are from 0.1 to 0.9 in

intervals of 0.1 Ue. One feature to notice is that the phase speeds, cr, of the modes shown in Figure

10 are all close to 0.7 Ue, and the amplitudes of these modes are concentrated in the neighborhood of

the manifold 11(y,z) = 0.7 U. This manifold would be the critical layer in the case of neutral

stability.

The contours shown in Figure 10 bear some similarity to those obtained by Hall & Horseman

(1991) despite the difference between the basic flow states in their work and the present work. The

odd mode has two dominant peaks, one on either side of the peak plane. In the case of the even

modes, the second even mode has three dominant peaks similar to that shown in Figure 6 (a) of Hall

& Horseman (1991) for the only even mode they analyzed in their work. The most unstable single-

peak even mode was not mentioned in Hall & Horseman (1991). Considering the fact that the

growth rate of the first odd mode is about 1.7 times that of the second even mode and that, in the

work of Hall & Horseman (1991), the odd mode grows almost twice as fast as the even mode, we are

led to believe that the three-peak even mode analyzed by Hall & Horseman (1991) was actually the

second unstable even mode, and the first unstable even mode was missed because they used a

shooting technique to compute the eigenvalues. In our study, we use a global method which finds all

the eigenvalues of the discretized problem.

The contours of P.1 for the odd mode bears striking similarity to the streamwise rms

fluctuations shown in Figure 16 of the temporal simulation of Liu & Domaradzki (1993), suggesting

that this mode indeed plays an important role in the break-up of G6rtler vortices.

From the eigenfunctions, we see a definite relationship between instability and inflection in the

velocity profiles. Figure 11 shows contours of vertical and horizontal velocity gradients iy and U.

The inflection in the velocity profiles occurs at points where the velocity gradient is maximum. The

amplitudes of the eigenfunctions concentrate near the regions of maximum velocity gradient.

Furthermore, the most unstable even mode is clearly associated with the vertical velocity gradient,

16



the most unstable odd mode is associated with the horizontal velocity gradient and the second most

unstable even mode is associated with both gradients.

We have analyzed eigenmodes which are unstable at different streamwise locations if the base

flow of Gbrtler vortex is free of unsteady perturbations of large amplitude. It will be shown in the

next section that nonlinearity will cause the rms amplitude of the secondary instability to be

modified.

Finally, we point out that the relative importance of odd and even modes may depend upon the

flow parameters (such as Grtler number, wave number, etc.) which govern the evolution of the

steady vortices. However, the general "shape" of the eigenfunctions and their association with the

vertical or spanwise velocity gradients should remain the same.

5. Nonlinear Develonment of Unsteady Disturbances

We now solve Eqs. (2.7-2.8) to study nonlinear evolution of the steady as well as unsteady

disturbances. The spatial secondary instability computations for the even and odd modes are started

at streamwise locations where the respective modes are moderately unstable. Since exact initial

conditions are difficult to obtain, we use the eigenfunctions obtained from inviscid linear secondary

instability analysis to approximate these conditions. Calculations show that transients decay very

fast. The initial amplitude assigned to these disturbances is small enough (of O(10 -
5) in 4. for both

odd and even modes) to ensure that the initial evolution of the secondary instability is linear.

We first discuss the computations for the odd mode. These calculations are performed in the

following way. We start the calculations at X = 10cm for only the steady disturbances. These

calculations are carried up to X = 75 cm where the unsteady odd mode disturbances are introduced.

The frequency of the fundamental secondary instability is chosen to be 110 Hz, very close to the most

unstable odd mode at that location (109 Hz). The number of Fourier modes is 11 in the spanwise

direction (-10 n _< 10) and 8 in time (-7 < m S 7). Figure 12 shows contours of streamwise rms

fluctuations at four streamwise locations downstream of the starting location. Initially, the shape of

amplitude distribution very much resembles the local eigenfunctions analyzed in the last section.

Later on, at larger x, nonlinearity causes the amplitude distribution to become fatter, beginning to

fill up the y-z plane. The maximum amplitude reaches about 20 percent of the free stream velocity,

U. There are two regions of high amplitude: one near the wall and the other away from the wall.

Initially the region near the boundary-layer edge has higher amplitude, but as the disturbances

evolve downstream the near-wall region attains higher amplitude. The contours of streamwise mean

flow (time averaged flow) at corresponding streamwise locations are shown in Figure 13. The

changes in the "mushroom" structure from that without the high frequency oscillations far

downstream are profound (compare with Figure 1(c)). The top of the "mushroom" becomes flatter

due to the fact that strong unsteady oscillations smear out the differences in velocity gradients. As
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the oscillations get stronger, the "thin neck" region of the "mushroom", where low speed fluid lifts up,

becomes confined to the neighborhood close to the wall. The experiments of SB show similar

structure of the vortices prior to breakdown, except that in their experiment vortices tend tW loose

symmetry about the peak plane. Some of our calculations suggest that such loss of symmetry is

linked to the unsymmetric initial disturbance field.

We now carry out computations for the even mode, which is introduced at the streamwise

location X = 82 cm. The frequency of the fundamental secondary instability is taken to be 195 Hz,

which is the frequency of the most unstable even mode at that location. The number of Fourier

modes is the same as in the odd mode case. In the early linear stage, the distribution of amplitude

of the streamwise rms fluctuation is concentrated in the region away from the wall. Nonlinear

interaction bring the perturbation level near the wall. The rms values of streamwise fluctuations

and the mean flow are shown in Figures 14 and Figure 15, respectively.

In their numerical simulation, Liu & Domaradzki (1993) observed that the oscillation frequency

of the vertical velocity is twice that of the spanwise velocity in the low speed region, while the two

frequencies are the same away from that region. This is also found to be the case in the present

computations for the odd mode. Figure 16 shows-the vertical and spanwise velocity fluctuations at

two fixed locations in space, one in the low speed region, the other away from it. Counting the

number of dominant peaks, we can observe the difference in frequency in the low speed region. This

phenomenon can be explained by considering the spatial symmetry preservation property of the

fundamental secondary instability and its harmonics. Initially, the only mode present is the

fundamental with frequency, say, f. In the odd mode case, the vertical velocity fluctuation for the

fundamental mode is odd with respect to the line of symmetry of the background "mushroom"

structure, while the spanwise velocity fluctuation is even. It can be mathematically verified that the

symmetry properties of the harmonics obey the following rule: for the vertical velocity, modes with

frequencies 2f, 4f, 6f, etc. are even, while modes with frequencies 3f, 5f, 7f, etc. are odd; for the

spanwise velocity, modes with frequencies 2f, 4f, 6f, etc. are odd, while modes with frequencies 3f, 5f,

7f, etc. are even. These symmetry properties are preserved as the flow develops downstream.

Suppose we place a velocity probe somewhere along the line of symmetry of the background
"mushroom" structure, we cannot detect the amplitude of the fundamental mode of the vertical

velocity since it is odd and, therefore, has zero-amplitude there. The lowest frequency mode that can

be detected is the 2f mode of the vertical velocity. The lowest frequency mode of the spanwise

velocity that can be detected is the fundamental mode. Hence, it appears that, in the peak region,

the frequency of the vertical velocity is twice that of the spanwise velocity. Once we move away from

the peak region, the fundamental modes of both the vertical and the spanwise velocities can be

detected, therefore, the same frequencies are observed.
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We define the energy associated with frequency, mf, as

Em_= -(p_ 2 +-pm.I2 + p."m1
2 )dY (5.1a)

for m > 0, and

EO =XJI~n2 +1i30n12 + ti&o.12)dy+i J(aooI12 + 11ooI2 iy (5.1b)2 I".1 2

and plot it in Fig. 17 as a function of down stream distance for both the sinuous and the varicose

secondary instability. The change in the zero-frequency mode is relatively slow. The energy curves

of the fundamental-frequency modes for both type of secondary instabilities are roughly straight

lines over a considerable range of streamwise distance before the energies in the harmonics become

significant, indicating the rapid exponential growth.

We plot the instantaneous streamwise velocity contours in the x-z plane at y = 1.08 cm (Figure

18). We see that the odd mode perturbs the G6rtler vortices in a wavy (or sinuous ) manner, while

the even mode breaks up the otherwise straight contours of Grtler vortices into series of knotty

structures associated with the "horse-shoe" vortex mode of breakdown. At large downstream

distances, more and more small scale structures begin to appear, as the flow heads for transition to

turbulence.

In Fig. 19, we plot the instantaneous streamwise velocity (snapshots at three fixed times) in the

y-z plane at x = 101 cm for the sinuous mode. Comparison with Fig. 1 clearly shows the effect of

unsteady disturbances on the G6rtler vortex. The unsteady motion computed here is qualitatively

similar to that observed in the experiments (e.g., Peerhossaini & Wesfreid (1988).

Finally, we point out that, as in the case of the steady Grtler vortex discussed earlier,

quantitative one-to-one comparison with the experiment of SB is made difficult by the uncertainty in

the initial amplitude of the secondary instability and the spanwise variation of Gdrtler vortex

wavelength in the experiment. For example, the computed isocontours of streamwise velocity for the

odd mode at x = 102.3cm shown in Fig. 13 agree much better with results of SB at 110 cm than at

100 cm.

6. £nnions
Computation of the nonlinear development of steady G6rtler vortices, their stability

characteristics with respect to high frequency secondary disturbances and the nonlinear spatial

development of the secondary instabilities are carried out. Qualitative agreement with the

experiment of Swearingen & Blackwelder (1987) (SB) is obtained. It is found that the wall shear in
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the peak plane begins to increase at a sufficiently large downstream distance due to the nonlinear

interaction of the stationary modes even before the unsteady oscillations become strong. The cause

of this phenomenon is the fact that the mean flow correction mode ultimately becomes the dominant

mode and overcomes the effort of the Gdrtler vortices to slow down the flow in the peak region. The

energy in each stationary mode eventually approaches saturation. The computed "mushroom"

structures bear strong resemblance to those obtained in the experiment of SB.

For this particular basic flow state which is set up due to the Gbrtler vortices, the temporal

secondary instability analysis is carried out using a 2-D eigenvalue approach associated with the

governing partial differential equations. For the conditions of the experiment of SB, the odd mode of

secondary instability begins to show up at approximately X = 60 cm, the even mode becomes

unstable later at approximately 70 cm < X <75 cm. At about X = 82 cm, the even mode becomes more

unstable than the odd mode. Comparisons of the amplitude distributions of eigenfunctions with the

distributions of vertical and spanwise shear gradients clearly indicate the close association of the

most unstable even mode with the vertical shear and the most unstable odd mode with the spanwise

shear.

The nonlinear, spatial development of the odd and even modes of secondary instability is

computed using the PSE method. The odd and even modes give rise to the sinuous instability and

the varicose instability, respectively. Either mode can lead to the breakdown of GArtler vortices.

The two-fold difference between the frequency of the vertical velocity and that of the spanwise

velocity oscillations found by Liu & Domaradzki (1993) is simply due to the fact that the

fundamental mode of the vertical velocity has zero amplitude at the line of symmetry of the

"mushroom" for the sinuous instability and the high frequency in the vertical velocity they detected

was, in fact, for the harmonic. Prior to breakdown to turbulence, the nonlinear interaction among

the steady and unsteady modes eventually make G6rtler vortices to oscillate sinuously in the plane

parallel to the plate or cause them to develop horse-shoe type structures which travel downstream.
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Appendix I
2

a., i damLet A= -im(j + iam,U + R R d, thenR R dx

A+ d+ V -- + K 0 iamn
dy

- 2KU 4+- 0 0

0 0 A in/i

iamn L fl 0
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0 0 0 0

0 0 0 0 1
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Nm, is the Fourier transform of (N 1,N 2 ,Ns,) in Eq. (2.1) to (2.4).
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Fig. 19. Instantaneous streamwise velocity in the y-z plane for the sinuous mode (f= 110 Hz): top,
t = 0; middle, t = 2yr/3oy, bottom, t = 4,-e3.
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PART B

Crossflow Disturbances in Three-Dimensional Boundary
Layers: Nonlinear Development, Wave Interaction and

Secondary Instability
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Abstract

Nonlinear stability of a model swept-wing boundary layer, subject to crossflow instability, is

investigated by numerically solving the governing partial differential equations. The three-

dimensional boundary layer is unstable to both stationary and traveling crossflow disturbances.

Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity

pattern results in streamwise streaks which resemble quite well with the surface oil-flow

visualizations in swept-wing experiments. Other features of the stationary vortex development (half-

mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in these

calculations. Nonlinear interaction of the stationary and traveling waves is also studied. When

initial amplitude of the stationary vortex is large as compared to the traveling mode, the stationary

vortex dominates most of the downstream development. When the two modes have the same initial

amplitude, the traveling mode dominates the downstream development owing to its higher growth

rate. It is also found that, prior to laminar/turbulent transition, the three-dimensional boundary

layer is subject to a high frequency secondary instability which is in agreement with the experiments

of Poll (1985) and Kohama, Saric & Hoos (1991). The frequency of this secondary instability, which

resides on top of the stationary crossflow vortex, is an order of magnitude higher than the frequency

of the most amplified traveling crossflow mode.

1. Introduction

In swept-wing flows, chordwise pressure-gradient near the leading edge causes inviscid stream-

lines to be curved in the planes parallel to the wing surface. Associated with this streamline

curvature is a pressure gradient which acts in a direction normal to the streamlines and introduces a

secondary flow within the boundary-layer. This secondary flow, commonly known as crossflow, is

subject to inviscid instability due to the presence of an inflection point (Gregory, Stuart & Walker

1955) and is the main cause of transition in swept-wing flows. Thus, this problem is not only of

fundamental importance in fluid mechanics but also of prime significance in laminar flow control

(LFC) design of swept-wings.

Crossflow instability often results in the formation of stationary corotating vortices commonly

called crossflow vortices. This phenomenon is observed in swept-wing boundary layers as well as in

other geometries such as rotating disks and cones. How the stationary crossflow vortices lead to

turbulence remains unanswered. Traveling crossflow disturbances are also possible and the role of

traveling vs. stationary disturbances is a question which needs to be investigated. Another problem

which is of interest in swept-wing flows is the possibility of interaction between the inviscid crossflow

disturbances and viscous streamwise instability. Crossflow disturbances are amplified in the

negative pressure rise region near the wing leading edge, while Tollmien-Schlichting (TS) waves
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(viscous instability of streamwise profiles) are amplified in the flat pressure region of the wing

midchord. The possible interaction of these two types of disturbances may be quite significant in the

successful design of LFC wings.

Experimental investigations into the nature of the swept-wing boundary-layer instability, at its

linear and nonlinear stage, have been carried out by Bippes and coworkers (see, Bippes (1991),

Miller & Bippes (1988), Miller (1989)) at DLR, by Saric and coworkers (see, Dagenhart et al. (1989),

Saric, Daganhart & Mousseux (1989), Kohama, Saric & Hoos (1991)) at Arizona State University and

by Arnal and coworkers (see Arnal & Juillen (1987)) at ONERA/CERT. Experiments at DLR were

performed on a swept-plate model with an imposed pressure gradient. A displacement body above

the plate was used to generate the cp distribution which varied almost linearly with chordwise

distance. Saric and Arnal used infinite-swept aerofoils in their low-speed experiments.

Both stationary and traveling crossflow disturbances were observed in these experiments, as

well as in the experiment of Poll (1985) on a swept cylinder. Mller & Bippes (1988) found that the

stationary vortices, as well as traveling disturbances, reached nonlinear saturation in their

experiment. However, they did not notice any explosive secondary instability leading to transition.

On the other hand, Kohama, Saric & Hoos (1991) observed a high frequency secondary instability

prior to transition in their swept-wing experiment where pressure gradient remained favorable

ruling out any possibility of TS wave amplification. The frequency of this secondary instability was

an order of magnitude higher than the frequency of the most amplified traveling disturbance given

by the linear theory. They concluded that, even though the traveling crossflow disturbances are

observed, the transition process in this three-dimensional boundary layer is dominated by the

stationary vortices and the associated secondary instability. Poll (1985) had also observed a high

frequency disturbance in his swept-cylinder experiment.

Mfiller & Bippes (1988) also studied the effect of free-stream turbulence on the instability

behavior in their experiment. They found that at "low" levels (.05 percent) of free stream turbulence,

stationary disturbances amplified to large amplitudes but these large amplitudes of the stationary

vortices did not necessarily lead to early transition. The experiments performed in wind tunnels

with higher turbulence levels (. 15 and .3 percent) showed weaker growth of stationary disturbances

but earlier transition due to stronger traveling disturbances. They concluded that traveling waves,

and not the stationary vortices, play the major role in the transition process. Their experimental

results also seem to suggest an early nonlinear interaction between stationary and traveling

crossflow disturbances.

Theoretical investigations into linear and nonlinear stability of three-dimensional boundary lay-

ers have been carried out by Balachandar, Streett & Malik (1992), Fischer & Dallmann (1991), Malik

(1986), Meyer & Kleiser (1988) and Reed (1987). Fischer and Dallman used secondary instability

theory and Meyer and Kleiser used direct simulation of Navier-Stokes equations to study the swept-
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plate experiment of Muller & Bippes (1988). Fischer and Dallmann argued that the traveling

disturbances observed in the DLR experiment are secondary disturbances of the mean flow modu-

lated by the stationary vortices and should not be thought of as the primary instability of the three-

dimensional boundary-layer flow. Direct numerical simulation of Meyer and Kleiser found nonlinear

equilibrium states for stationary as well as traveling disturbances, in agreement with the DLR

experiment. Similar equilibrium states for stationary vortices were computed by Malik (1986) in

rotating-disk boundary layer. Balachandar, Streett & Malik (1992) performed a secondary

instability analysis of the rotating-disk boundary layer where the stationary vortices constituted the

primary instability. They were able to find a high-frequency secondary instability similar to the one

observed by Kohama (1984,1987) in a rotating-disk boundary layer.

All these experimental and theoretical investigations consider a class of mean flows which is

only unstable to inflectional crossflow disturbances and do not support TS wave amplification.

Results from various experiments appear to suggest that for this class of flow, there are at least two

possible scenarios for transition. If free-stream turbulence level is very small, i.e., the initial

amplitude of the nonstationary disturbances is small relative to the stationary disturbances, which

most certainly are introduced at local surface imperfections, then stationary disturbances dominate

the initial stage of the disturbance growth leading to a high-frequency secondary instability resulting

in final breakdown. When the initial amplitude of the traveling modes is not small, nonlinear

interaction between these traveling modes and stationary vortices is present and the character of the

final breakdown is influenced by the relative amplitudes of the stationary vortices and the traveling

modes. The other class of flow where TS waves could amplify is also of technological importance but

has not been studied either experimentally or theoretically.

The objective of this research is to study various wave-interaction mechanisms and laminar-flow

breakdown in three-dimensional boundary layers. Previous linear and nonlinear theoretical investi-

gations have been performed by using parallel-flow approximation and have been local in nature.

This study includes nonparallel effects and sets up the problem within the framework of nonlinear

parabolized stability equations (PSE). Intermodal interaction and the effect of initial conditions can

also be studied by using this approach. Basic insight into the physical mechanisms involved in

swept-wing flow transition can be achieved by considering simple model flows. One such flow is the

swept Hiemenz flow in which the interaction of stationary and traveling crossflow disturbances can

be studied. In this paper we study linear and nonlinear crossflow disturbances as well as the

interaction between stationary and traveling modes. We also study secondary instability of the

three-dimensional mean flow modulated by the stationary vortices. Section 2 describes the basic

flow for the swept Hiemenz problem and the associated PSE analysis is given in § 3. The results for

linear and nonlinear stability analysis and wave interactions are given in § 4. Section 5 describes the

results from secondary instability analysis and the conclusions are given in § 6.
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2. The Swept Hiemenz Problem

The flow past a circular cylinder, outside the viscous boundary-layer, can be represented as
* 3 .5

U.=cx*+cx +c 2x + . .. (2.1)

where U. is the velocity along the coordinate x* and c,cl, etc. are constants. In the two-dimensional

stagnation-point flow, only the first term in the series (2.1) is retained and, hence, the velocity U.

increases linearly with distance x* , i.e.,

U. = cx* (2.2)

If we consider the Cartesian coordinate system x*, y*, z*, then (2.2) gives the far-field (y - oo)

solution of the impinging flow on a plate along x* which we define here by y* = 0. The associated

visccus problem was first investigated by Hiemenz who found an exact solution which is named after

him. This stagnation flow was found to be stable to infinitesimally small disturbances propagating

along z* by Wilson & Gladwell (1978).

The swept Hiemenz problem is constructed by introducing a velocity component W along the z*

axis which amounts to changing the inclination of the impinging stream with respect to z*. The flow

is symmetric about the line x* = 0 which is called the attachment-line. Linear and nonlinear

stability of the attachment-line boundary-layer has been studied by Hall, Malik & Poll (1984) and

Spalart (1988). In this paper we study the stability of this flow for x* > 0 as was recently done by

Spalart (1989) using full Navier-Stokes equations.

2.1. The basic flow

We consider the flow of a viscous incompressible fluid of kinematic viscosity v. Let I = rv1- be

a typical thickness of the boundary layer which is used here as the length scale. We note that t is

independent of x*. Thus, we have the scaled coordinates x, y, z given as

We also define two Reynolds numbers R and R where

R = Ut (2.3)

V

= W-1 (2.4)
V

From (2.2) and (2.3), it follows that

R = X (2.5)t

The local angle of the inviscid streamline 0, with respect to the x-axis, is given as
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0 = atan(!-) = atan( (2.6)

We now look for a solution to the Navier-Stokes equations which satisfies the following

conditions

u =v =w* =0, y =0 (2.7)

U -W*, y*-)- (2.8)

where u, v, w are velocity components in the x*, y*, z directions, respectively. It is convenient to

define a stream function ; so that

U = , V

and

ci'= x*V--f(y)

If we use W as the velocity scale, then

u" =- -=- fy) (2.9)
W R

V* 1= =- f(y) (2.10)

Similarly,
W*

W= - = g(y) (2.11)

where f and g are governed by the ordinary differential equations

f" + ff" +(1-f' 2 ) = 0 (2.12)

g" + fg' = 0 (2.13)

where primes denote differentiation with respect toy.

The mean flow derivatives needed in the stability analysis below can be written as

p.,,X ,,

iT f~ -, wU=-=J

1 1Ps
SR R

iF, = g U

1
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Numerical solution of (2.12) and (2.13) thus yields the mean flow and its derivatives without any

additional approximation and the boundary-layer thickness does not vary with x.

3. PSE Analysis for 3D Boundary Layers

Parabolized stability equations (PSE) for linear and nonlinear disturbances in two-dimensional

boundary layers have been used by Herbert (1991) and Bertolotti, Herbert & Spalart (1992) for

incompressible flow where they used streamfunction formulation of the governing equations. In the

present three-dimensional (3D) boundary-layer study, we follow the work of Chang et al. (1991) for

compressible flow and formulate the incompressible stability problem using primitive variables in

Cartesian coordinates x, y, and z. The basic flow is perturbed by fluctuations in the flow, i.e., the

total field can be decomposed into a mean value (solution of (2.12-2.13)) and a perturbation quantity

u=U'+6, v=U+O, w=ii+ib, p=g+,b (3.1)

where p is the pressure. Substituting (3.1) into the incompressible Navier-Stokes equations and

subtracting from it the steady mean flow, we obtain the nonlinear disturbance equations as

,+A-+B-O+C, +DO- E- + E !LO + E. _ - F (3.2)
01 ax 0), d X2  0), 1

where the left hand side contains only linear operators operating on the disturbance vector

* = (ii, Y, ibb) and the right-hand-side forcing vector F is due to non-linear interaction and includes

all non-linear terms associated with the disturbances. The right hand side is given as

F = -L d,_L -(3.3)

In the above, Fis the diagonal matrix [1,1,1,01 while A, B, C are given as

11 0 0 1 UY O 0 - T0 0 01
A E7 0 B 0U 0 1 = 0 i 0 0

0 0 " '7 0 0' 0 0 W '

1000 0 100 0 10

and A, B, C are similar to A, B, C except that quantities with over bar are replaced with - and all

ones are dropped. The coefficient matrices D, E , Ey, E. are given as

17 iiy 0 0

iT, UY 0 0
D=

Ri"i w 00

0 0 0 0
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1

0 0 0

R
0 0 0 0]

We assume that the given disturbance is periodic in time and in the spanwise direction; thus,

the disturbance function 0 can be expressed by the following Fourier series

,= ~x,,.(x,y)ei( t -  34
, = =

Here, the frequency w and wave number P are chosen such that the longest period and wave length

are 21da and 2udp in the temporal and spanwise domains, respectively. For most stability problems

of interest, it is sufficient to truncate (3.4) to only a finite number of modes

M-1 N-1 (3.5)

m=-M n=-N

where M and N represent one-half the number of modes kept in the truncated Fourier series.

Substituting (3.5) in (3.2) we obtain governing equations for Z,. which are elliptic. In order to

facilitate the solution of these equations we decompose the disturbance into a fast varying wave-like

part and a slowly varying shape function and write Z. as

Znn (X,Y) = '.n(xy)Alm. (X) (3.6a)

(3.6b)A,. W = e 2o

where W. is the shape function (umn,0 m, etc.) for the Fourier mode (m(gnfi) and am. is the

associated streamwise (complex) wave number. With a proper choice of am. in (3.6b), the

arbitrariness in (3.6a) can be removed and the equations for W.,, can be parabolized. In other words,

am. is chosen such that variation of W. with x is minimized which allows the approximation

d2W.f./&2 = 0. The parabolized stability equations (PSE) for the shape function of a single Fourier

mode (m,n) can be written as

-dI - dw. __y

Gmny'mn+Am. " +B.. i n = E jn+Fmn /mn (3.7)

where matrices Emn, An and Bn are given by

Gm, = -imo)Jr + iamftA + inf3C + D - E,(i damn - anin + nJ 2E
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n =A - 2 ia.mnE

Bmn =B

The non-linear forcing function Fn is the Fourier component of the total forcing, F, and can be

evaluated by the Fourier series expansion

M-I N-I

F(x,y,z,t)= I I Fmn(xy)e(nz-m"). (3.8)
m=-M n=-N

The Fourier decomposition of (3.8) can be done by using the Fast Fourier Transform (FFT) of F,

which is evaluated numerically in the physical space.

The PSE equations (3.7) can be used to study nonlinear interaction of various modes (e.g., cross-

flow/crossflow, crossflow/TS, etc.) or one can study the onset of transition to turbulence provided

appropriate initial conditions are prescribed. For small disturbances, F can be neglected and one

obtains linear PSE equations (after dropping the subscript 11)

G+B-- E, - (3.9)

which can be solved to study the effect of nonparallel flow or that of initial conditions. If nonparallel

effect is ignored, then (3.9) essentially reduces to the Orr-Sommerfeld equation.

The streamwise wavenumber in (3.6b) needs to be determined in order to solve the equations by

a marching scheme. This procedure is given in Chang et al. (1991). Here we briefly describe it for

the linear equation (3.9). In this case, the evolution of the shape function is monitored during the

process of marching and the wavenumber is updated by local iterations at a given x according to the

change in W. At a given location xl, let the streamwise wavenumber be given by al and then express

Oas

O(x,y,z,t) = W(x,y)e {X1 J (3.10)

The change of the shape function T can be approximated by the following Taylor series expansion

truncated to the first order

W(x,y) = 1 +-I(X- Xi)

where W, is the shape function at x = xl. To an accuracy of O(x - xI), the above equation can be

further expressed as

W(x,y) = ieJ, Wd . (3.11)

Substituting (3.11) into (3.10), we have the "effective" wavenumber in the vicinity of x, given by
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a=a 1 d 1  (3.12)

The real part of this effective wavenumber represents the phase change of the disturbance while the

imaginary part gives the growth rate. A disturbance is unstable if the imaginary part is less than

zero. Since the shape function vector W, depends upon y and contains four dependent variables (6,b,

etc.), the value of a computed by (3.12) will be a function of the y coordinate and the selected

dependent variable. One can, for example, use the shape function 12 and the y location where 6

reaches its local maximum to update the wavenumber at any given x station as the disturbance

evolves downstream. An alternative which is used here is to consider the following integral

condition,

a0dif qt idy (.3
anew _= a d f dy (3.13)

f M2dY

which removes the dependence of a on y. If q is a particular component of V then the dependence of

a on W1 is retained in (3.13). For three-dimensional boundary layers we choose q to be a vector with

components (i,&,d). Equation (3.13) is used in the iterative solution of(3.9) until the second term in

(3.13) vanishes to a prescribed tolerance. An additional condition (Chang et al. 1991, Malik & Li

1993) needs to be satisfied in order to obtain solution of(3.7) by the space marching approach.

Numerical solution of the parabolized stability equations requires discretization in both x and y

directions. We discretize the streamwise derivative by a backward Euler step and wall-normal

derivatives by fourth-order accurate compact differences (see, Malik, Chuang & Hussaini (1982)).

Homogeneous boundary conditions at the wall and in the free stream are imposed. The initial

conditions are obtained by a local approximation to (3.9) and by solving the associated eigenvalue

problem. Since the wave information is absorbed in the wavenumber a (3.6b), one needs to use a few

marching steps per wavelength to obtain an accurate solution of the wave evolution. Calculations for

two-dimensional boundary layers show that PSE results with only 3 steps per wave length agree

quite well with very accurate Navier-Stokes computations using 60 grid points per wavelength (see,

Joslin, Streett and Chang 1992).

4. Linear and Nonlinear Stability Analysis and Wave Interaction

4.1 Quasi-parallel linear stability

In order to determine the relevant physical parameter space, it is appropriate to first give some

results from quasi-parallel linear stability theory. We consider two cases: R = 250 and 500. Hall,

Malik & Poll (1984) found that the attachment-line boundary-layer (x = 0) is stable to infinitesimal

disturbances up to R = 583.1. Thus, for the two cases considered here, the attachment-line
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boundary-layer is stable. In the present study, we are interested in the crossflow disturbances which

will become unstable away from the attachment-line (x >> 1). Figure 1 shows the mean velocity

profiles in directions tangential and across the inviscid stream at an R of 500 and R = 500. The

velocity profiles Ut and U, are defined as

Ut = cos0+ Usin 0
U, = Usin 0 - cos 0

where the streamline angle 0 is defined in (2.6). These velocity profiles have been scaled with

spanwise inviscid velocity W.. It is clear from (2.6) that 0 decreases with R or x as the flow turns

away from the attachment-line towards the free-stream direction. This is depicted in figure 2 where

the angle 0, along with the crossflow Reynolds number RCf (defined below), is plotted for both R =

250 and 500.

Crossflow instability is associated with the inflectional velocity profile U, which, for swept

wings, is positive towards the center of curvature of the streamline. The flow becomes unstable

when crossflow Reynolds number Ref 40 where Rf is defined by

Uc¢ 1'1 (4.1)
V

where U,, is the maximum value of the crossfilow velocity U, and 8.1 is the thickness where the cross-

flow velocity has dropped to 10% of U. Distribution of the croessfiow Reynolds number RCf is given

for the two cases in figure 2. The value of RCf exceeds about 50 at R = 200 and, hence, the instability

will onset at R < 200 for both cases. The maximum value of Rcf is about 150 for R = 250 and about

270 for R = 500. In swept-wing flows, transition usually occurs where Rf becomes of 0(200).

Figure 3 presents results for integrated growth,

fn(A/ AO) = IR a PdR (4.2)

using the quasi-parallel growth rate ap = -ai. Calculations are performed for stationary as well as

traveling disturbances with frequency F = .75 x 10-4 (where F = 2W/ W2, f being the frequency in

hertz) at both R. These calculations are performed for a fixed spanwise wavenumber of 0.4 which is

close to, but no quite (see figure 4 below), the most amplified wave number for the flow under study.

It is clear that traveling disturbances amplify more than the stationary disturbances according to

linear theory. However, stationary disturbances are found to dominate when experiments are

performed in low-disturbance wind tunnels. This is due to the lower initial amplitude of traveling

modes (see the work of Choudhari & Streett (1990) on the receptivity of stationary and traveling

disturbances).
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The variation of spatial growth rate with wavenumber P3 is given in figure 4 for the two frequen-

cies. There are two curves associated with F = .75 x 10-4, one with positive 19 and another with

negative j6, the latter with smaller growth rates. The stationary vortex and 1 > 0 traveling

disturbance has peak growth rate at P - .35 as shown in the figure for R = 300. In the downstream,

the peak shifts to higher wavenumbers and lies, for example, at P - .45, R = 650. The two families of

unstable traveling disturbances are further shown in figure 5 where the growth rate of the most

amplified (among various wave orientations) disturbance is plotted as a function of frequency. The

family with high growth rates has its wave vector oriented at positive angles with respect to the

inviscid flow streamline (angles measured from the convex side) while the family with lower growth

rates has its wave vector oriented at negative angles. The relative sense of the two modes depends

upon the direction of the crossflow with the more amplified mode always oriented opposite to the

crossflow direction. In both cases, the direction of the group velocity lies at small angles to the

inviscid streamline direction. Thus, the disturbance energy propagates downstream for both modes

as also noted by Mack (1985). The traveling mode with lower growth rate may be important in the

nonlinear stage and its interaction with the more amplified traveling mode may also induce

stationary crossfiow vortices when other stimuli, e.g., wall roughness, are absent. Furthermore,

these two traveling modes along with stationary vortex mode constitute a possible resonant triad

which may be relevant in the transition process.

4.2 Nonparallel effects

We now compare the quasi-parallel growth rate results with those obtained by solving linear

PSE equations (Eq. (3.9)). Figure 6(a) shows the results for R = 250 for stationary vortices while

figure 6(b) shows the results for a frequency of F = .75 x 10 -4 . In case of PSE, different growth rate

results are obtained for il, 0 and & components of velocity. At low R (between 200 and 400) there is

considerable difference between these growth rates with 6 growth higher than 6 and tb but the

latter two approach the same value at higher Reynolds numbers. Figure 7 shows the growth rate

results for R = 500. In this case the qualitative trends are the same but there is less difference

between the three growth rates. The quasi-parallel growth rate is, in general, close to the growth

rate based upon Lb component, except at lower Reynolds numbers where it lies somewhere in

between the three growth rates. Thus, one can not make a strong statement about nonparallel

effects except that they are more pronounced at lower R and that they are destabilizing if measured

by the chordwise velocity component. The growth rate can also be defined based upon the total

disturbance energy which accounts for all the velocity components and growth rates based upon this

definition suggests that nonparallel effect is usually destabilizing, but there may be some exceptions.

Spalart (1989) pointed out that the growth rates from his simulation were very close to the quasi-

parallel results and that the agreement was better at lower Reynolds numbers (R) than at higher
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Reynolds numbers. Figure 7(a) shows that this is true for the case he ran (R = 500, F = 0), but it is

not a general statement as is evident from the comparison of Figs. 6 and 7.

Our results for 0 = .4 and R = 500 are compared with linearized Navier-Stokes computation of

Streett (1993) in figure 8. Streett performed spatial simulations and solved the full linearized sys-

tem where the disturbances were introduced by spanwise periodic steady suction and blowing. After

the initial transients die out, the agreement between the two calculations is excellent and it remains

so for a large chordwise extent. Good agreement was also found with the results of Spalart (1989)

(Malik & Li (1992)). The agreement with full Navier-Stokes solution shows that PSE approximation

introduces negligible error in our study of the crossflow vortices as disturbance growth rate is a

sensitive quantity and any error would have shown up in growth rate results.

4.3 Nonlinear development of stationary crosslow vortices

Navier-Stokes simulations by Malik (1986) for rotating-disk flow and by Meyer & Kleiser (1988)

for a Falkner-Skan-Cooke boundary layer showed nonlinear saturation of crossflow vortices. Both

these calculations employed temporal approach and, therefore, ignored nonparallel effects. Here we

present spatial nonlinear calculations for R = 500 using PSE. Initial conditions for the stationar)

vortex with P = .4 were prescribed at R = 186. It was assumed that the vortex shape is given by the

linear eigenfunction at that Reynolds number and that the maximum disturbance amplitude

(max(o2 +,b2)1 / 2) is .001 W.. Figure 9 gives the computed total perturbation wall vorticity

distribution( ~~2 + ( )2 _ (.J2 + (~2J

which shows streamwise striations starting at R = 350. The green color indicates negative values

while the red indicates positive. The perturbation wall vorticity values are very small initially and

the signal becomes noticeable (strong) only at R of about 420. As we will show later, the disturbance

amplitude at this location has already reached about 4 percent. Hence, when these vortices are

observed in a flow visualization experiment it is almost certain that they have entered the nonlinear

stage with growth rates somewhat smaller than that given by the linear theory. These striations are

evident in almost all crossflow experiments (Gray (1952), Gregory, Stuart & Walker (1955), Poll

(1985), Saric, Daganhart & Mousseux (1989)) and result due to variation in the wall shear caused by

stationary vortices. These vortices make a small angle (4-5*) with respect to the inviscid free stream.

Figure 10 shows the contours of u velocity in y-z plane at various Reynolds numbers (R = 400,

500, 600 and 650). Two spanwise wavelengths are shown and the y coordinate has been stretched for

clarity. Crossfiow vortices appear to result in a half-mushroom-like structure which is shown
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exaggerated in the figure. The actual structure is much more flat as bhown in figure 11 drawn to

scale. Initially the boundary-layer thickness is constant in z; however, as the crossflow instability

rolls up into vortices, there appear regions of low and high velocity and, therefore, the boundary-

layer thickness varies considerably in the span as, for example, seen for R = 600. In this case the

variation is as much as by a factor of about 4.

There is a region near z = 10 and 25 (for R = 600) where the fluid is pushed towards the wall

while it is pushed away from the wall near z = 5 and 20. It is these low velocity regions at z = 5 and

20 where oil accumulates in a flow visualization experiment resulting in wall streaks such as those

shown in figure 9. The half-mushroom structure observed in figure 10 is the result of the asymmetry

induced by the crosswind. In two-dimensional flow over a concave wall which is subject to

centrifugal instability, a full mushroom structure appears as experimentally observed by Swearingen

& Blackwelder (1987) and Peerhossaini & Wesfreid (1988).

Figure 12 shows a velocity vector plot in the y-z plane at fixed R of 650. The velocities have

been projected onto a cross-section normal to the vortex axis. An insight into the crossflow vortex

structure may be achieved by releasing die particles at some location within the flow field and fol-

lowing their paths as they are carried through the fluid in the y-z plane. Two particles are injected

at about z = 22 but one is released very near the wall while the other is released at y = 1.7. The

latter particle rolls into a big vortex centered at about y = 2.5 and z = 12. This is the primary cross-

flow vortex. There is a second tiny vortex near the wall centered at about y = 1 and z = 8 to which

the particle released near the wall is attracted. This second vortex which was much weaker at R =

600 has also been observed by R.-S. Lin (private communications, 1992) in his Navier-Stokes

simulations of the crossflow vortex on a swept-wing. It should be stressed, however, that the actual

flow is fully three-dimensional and varies along x. Hence, these particle traces do not depict the

three-dimensional physical picture and have been used merely to facilitate the visualization of the

crossflow vortices.

Contours in figure 10(c) show a second low velocity region near z = 15 and 30; a hot wire located

at y = 1, for example, will show two velocity defects per wavelength when traversed in the spanwise

direction. This is depicted in figure 13 which shows that the second defect, caused by the 2P3 mode

and sometimes referred to as vortex doubling, is much smaller than that caused by the main vortex.

In our simulations, the 23 mode is excited through nonlinear interaction and its amplitude remains

smaller than the primary mode with wavenumber 3 as shown in figure 14 where the amplitude

functions for the stationary vortex along with its harmonics and mean flow correction are plotted at

R = 600. In a laboratory experiment, the 23 mode may be excited via surface imperfections and the

relative amplitude of 13 and 23 modes may be different from the present case. The disturbance

amplitude at R = 600 has reached to about 30 percent (when scaled with W_) with the maximum
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meanflow correction of about 15 percent. In a laboratory experiment, this picture will be altered due

to possible secondary instabilities and interaction with traveling modes.

Figure 15 shows the velocity profile along the crossflow vortex at 4 different locations across it

for R = 500. The base flow given by the Hiemenz problem is also included. It can be seen that these

profiles become strongly inflectional due to the motion within the crossflow vortex. Such profiles

were also noted in the swept-wing experiments of Dagenhart et al. (1989) and MdUer & Bippes

(1988). These inflectional profiles as well as the inflectional profiles in z (figure 13) are subject to

inviscid secondary instabilities which are most likely related to the high frequency disturbances

observed by Kohama, Saric & Hoos (1991). We will investigate this aspect of the problem in a later

section. Here, we first consider the interaction of traveling and stationary crossflow disturbances.

4.4 Stationary and traveling wave interaction

It was pointed out that the experiment of MUller & Bippes (1988) suggests an early nonlinear

interaction between stationary and traveling waves. We now consider such interactions in the

swept-Hiemenz flow. Our calculations are performed using 03 = .4 for both the stationary and

traveling (F = .75x10 4 ) disturbances. The initial conditions were imposed atR = 186 and the ampli-

tude of the stationary wave was the same as in § 4.3 above, i.e., .1 percent. For traveling waves, two

different initial amplitudes were considered: .01 percent and .1 percent. Results for both the cases

are discussed below.

Figure 16 gives the results of disturbance energy of various modes denoted as (0,1), (1,1), (2,2),

etc. Here, the first index refers to frequency w and the second index to spanwise wavenumber /P.

Thus, mode (2,2) is the harmonic with twice the frequency and twice the wavenumber of the

traveling mode. For comparison, the case of stationary vortex only is also given. For the stationary

vortex case, shown in figure 16(a), the energy cascades into 2, 3, 4P3... modes as earlier noted in the

simulations by Malik (1986) and Meyer & Kleiser (1988). The energy in the mean flow correction

mode is of the same order as the 2P mode. It is probable that the essential features of the nonlinear

development of the stationary crossflow vortex can be captured by a model which considers 0, P3 and

2P modes.

The interacting case with stationary vortex amplitude 10 times higher than traveling is shown

in figure 16(b). This case is meant to simulate moderately low turbulence conditions where wall

roughness will introduce dominant instability (i.e., stationary vortex) and the weak turbulence will

introduce traveling disturbances with low amplitude. On the other hand, figure 15(a) can be thought

of as the case with ultra-low turbulence with essentially no traveling modes induced. In contrast,

figure 16(c) is the high-turbulence case where the initial amplitude of the traveling mode is equal to

the stationary mode. Admittedly, these are all idealized cases, for in natural environment energy

61



input is into a broad band of frequencies and wavenumbers which we cannot attempt to tackle in the

present framework.

Figure 16(b) shows that the energy in the stationary as well as the traveling mode saturates at

about R = 490, the energy in the latter mode remains smaller except near the very end at about R =

600 where the two become the same. This is also where the energy in mode (1,-1) supersedes the two

primary modes and becomes comparable to the mean flow correction mode. The mode (1,-i) is

generated due to interaction between (1,1) and (0,2) mode and, apparently, the combination of the

amplitudes is just about right to yield a resonance between the three modes as speculated in § 4.1

above.

The situation changes when the initial amplitude of the two waves become the same. The

traveling mode has the higher energy all the way and it tends to suppress the growth of the

stationary modes. Both the primary modes saturate earlier at about R = 430 as compared to 490 in

figure 16(b). The higher modes gaining the dominant energy appear to be (2,2), (3,3), (4,4)... modes

in this case. The suppression (also compare Figs. 17(a) and (c) below) of the stationary vortices by

traveling modes is supported by the observation made in the DLR experiment.

The evolution of the maximum (in y) disturbance amplitude for the three cases is given in figure

17 on a natural log scale. Amplitudes of all the velocity components are given. Initially the spanwise

velocity 6 is higher than the chordwise velocity 6s. Later the magnitude of the two switches as the

inviscid streamline angle decreases (note that 0 = 45 when R = 500). The magnitude of the normal

velocity z3 is much lower than is and &i for both waves at all R. From figure 17(a) for stationary

vortices alone, it is clear that the nonlinear N factors (In A/A o) at R = 650 are 7 and 5 for 11 and Lb.

These are to be contrasted with the value of about 9 given by quasi-parallel linear calculations in

figure 3.

The growth rates of the stationary and traveling waves for the above three cases, along with an

additional case of traveling mode only (initial amplitude of 0.1 percent), are given in figure 18. For

comparison, the growth rate from linear PSE calculations are also given. This plot more clearly

shows the behavior of the two modes discussed with reference to figure 16. The growth rate of the

stationary vortex (curve 2) begins to depart from linear theory at about R = 420. At this location the

disturbance amplitude is only about 4 percent. At R = 450, the growth rate is lower than the linear

theory result by about 9 percent, but it begins to decrease rapidly beyond that. The resulls are

similar for the traveling mode alone (curve 2) with initial amplitude of .1 percent. Since the trav-

eling mode amplifies more rapidly, it reaches saturation earlier and its growth rate begins to depart

from the linear theory results at R = 330. For the wave interaction case with At = .01 percent, the

growth rate of the two waves begins to depart from the linear theory result at about R = 390. At

R = 450 the two growth rates differ from the linear results by about 18 percent. Subsequently, the

two growth rates drop sharply and at R = 500, the stationary and traveling disturbance growth rates
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are lower by about 70 and 76 percents with respect to their linear growth rates. Hence, the results

indicate that even for the case with smaller initial traveling disturbance amplitude there is some

interaction well before R of about 500. This interaction becomes stronger when the initial

amplitudes of the two waves are the same (A. =At =. 1 percent). In this case the growth rates begin

to depart from the linear theory results at R = 330 and by 410 the growth rates have dropped by 68

percent for the stationary vortex and by 39 percent for the traveling mode. A close examination of

the results show that when At = .1%, there is no direct effect of the stationary disturbance on the

traveling wave (curves 3 and 5 collapse) but the growth of the stationary vortex is greatly suppressed

due to the presence of higher amplitude traveling disturbance. It is clear that the two modes do

interact depending upon the initial amplitude, as also inferred by Bippes (1991) from his

experiments. The nonlinear growth rate behavior at large R indicates that the two primary modes

reach a quasi-equilibrium state where the growth rate begins to oscillate around a small value.

In order to shed some more light on the stationary/traveling mode interaction, we consider the

case with A. = .1 percent, At = .01 percent, and plot f,. in the y-z plane at four different Reynolds

numbers (R = 431, 500 and 600). Here iis defined as

k2/a, 1/2
U'.(XV , Z) ' U-'- u(X, Y, Zt)dt -U

The results are shown in figure 19 for the three locations. Due to nonlinearity and interaction

with the stationary mode, traveling disturbances are modulated in the spanwise direction. An

important observation is that the peak rms perturbation is near the wall at y = 1 with a second

maximum (but with much lower amplitude) further away from the wall (see figure 19(b)). A

comparison of Figs. 19(b) and 10(b), at R = 500, shows that the peak ft.. occurs in the spanwise

region where low-velocity fluid is pushed away from the wall. At higher Reynolds number (R = 600),

there are two peaks in i,. near the wall, apparently associated with the emergence of 2P3 harmonic

of the stationary mode. Michel, Arnal & Juillen (1985) also noted two maxima in the root mean-

square value of the streamwise velocity within a spanwise wavelength in the ONERA/CERT swept-

wing experiment. The magnitude of the maximum value was found to be up to about 20 percent of

the resultant inviscid velocity. They also found that most of the turbulence energy is contained in

the frequency range which is unstable according to the linear stability analysis.

Figure 20 is a plot of the stationary as well as rms velocity signal (u component) aty = 1.048.

Modulation of the traveling disturbances due to the presence of stationary vortex is evident. The

peak ii, is in the region where a velocity defect appears in the stationary signal and the minimum

in 4,, occurs where there is a velocity access. However, there is a phase shift of about n4 between

the maximum in i.m and the minimum stationary velocity, as evident from results for R= 500. This
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phase shift decreases at higher Reynolds numbers. Miiller & Bippes (1988) reported experimental

results qualitatively similar to those in figure 20.

We plot the variation of z, with Reynolds number aty = 1.048 in figure 21 which shows the

maximum and minimum d,. as well as i, along the path where stationary u velocity has a

maximum and a minimum. The variation of the stationary u velocity with Reynolds number is also

shown in the figure. The figure clearly shows that in high (stationary) velocity region the 4,.

component gets saturated but it increases to higher amplitudes in the low (stationary) velocity

region. At R - 550, the maximum d.. reaches about 20 percent in the low-velocity region. Such

high levels, although dependent upon the initial disturbance amplitude, are not unexpected in view

of the experimental evidence provided by Michel, Arnal & Juillen (1985). Poll (1985) also observed a

traveling disturbance with frequency close to the most amplified disturbance given by linear theory.

He further noted that close to the surface the amplitude of these disturbances can exceed 20 percent

of the local mean-flow velocity. However, the rms amplitudes measured by Dagenhart et al. (1989)

are much lower which suggests that in their experiment the initial amplitude of traveling modes

relative to the stationary mode was much lower than used here. Choudhari (1993) estimates that

the initial amplitude of the traveling mode could be up to two orders of magnitude lower than the

stationary modes for the receptivity mechanism considered in his study. This may possibly be the

case in the experiment of Dagenhart et al.

4.5 Effect of nonlinear disturbances on skin-friction

Figure 22 gives the chordwise (C&) and spanwise (CA,) skin-friction coefficients for all three

cases. From figure 9 we know that skin-friction varies in the spanwise direction. However, figure 22

gives the spanwise averaged value, i.e., only the contribution from mean flow distortion is consid-

ered. Since UT is independent of R, laminar spanwise skin-friction remains constant. Similarly,

since 9" increases linearly with R, so does the chordwise skin-friction when scaled with W2 . At some

location both Cf and Cfi begin to depart from their respective laminar values. For case (a) and (b)

of figure 16, this location is at about R = 450 and from thereon it rises significantly. The skin friction

rise from stationary vortex alone is about 19 percent for Cf. and 58 percent for Cf. at R = 600. The

skin-friction for case (b) is slightly higher in the beginning but later on it drops below case (a).

Computations for case (a) were made using N = 2, 9 and 16 in (3.5). While there was considerable

difference in the skin-friction distribution for N = 2 and 9, essentially no difference was found

between the two higher resolution cases. For cases (b) and (c) M = N = 9 was used in (3.5).

In case (c), with higher initial amplitude of the traveling mode, skin friction begins to rise much

earlier at about R = 375 as would be expected from the comparison of figure 16(b) and (c) which

shows that the mean flow distortion is higher in the latter case. Hence, a stronger interaction of the

traveling and stationary modes leads to higher skin-friction coefficient. Our results indicate that the
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angle between wall shear and inviscid free strear decreases as the disturbed flow enters highly

nonlinear stage in the three-dimensional boundary layer.

5. High Frequency Secondary Instability

A hot-wire placed in a three-dimensional boundary layer, subject to crossflow instability, sees

two types of unsteady disturbances. First, it captures an unsteady signal with a peak at a frequency

f1 which coincides with the most amplified frequency given by the linear stability theory. In the

present case, e.g., fl = 1.2 x 10-4 at R = 300 (see, figure 5). The dimensional value of this frequency

depends upon the flow parameters (unit Reynolds number, sweep, etc.). Poll (1985), for his swept

cylinder experiment, found fA to be 1500 Hz for the chord Reynolds number of 1.2 x10 6 and sweep

angle of 630. In Kohama, Saric & Hoos (1991), fA was close to 180 Hz and in Michel, Arnal & Juillen

(1985) f, < 200. In these experiments, the hot-wire also captures a second frequency f2 which is an

order of magnitude larger than fl. For example, f2 was 17500 Hz, 3500 Hz and 1000 Hz in the

experiments of Poll (1985), Kohama, Saric & Hoos (1991) and Michel, Arnal & Juillen (1985),

respectively. In this section, we investigate this high frequency instability in the present three-

dimensional boundary layer. The problem is modeled here as the secondary instability of the new

mean flow which is set up by the presence of a large-amplitude stationary crossflow vortex.

We perform secondary instability analysis locally, i.e., at a fixed Reynolds number and perform

temporal stability analysis. In order to perform this analysis, we rotate the x-z coordinates to a new

system, x2, z 2 so that the x2 coordinate aligns with the crossflow vortex. At a streamwise location

designated by the Reynolds number R, we ignore the curvature of the vortex and use the quasi-

parallel approximation (we will provide a posteriori justification for these assumptions later) which

allows us to consider a harmonic disturbance of the type

,Y2, ,t) =0 Z2 t) ) ,(5.1)

where a 2 and 0)2 are the wavenumber and frequency of the secondary disturbance and Y2 = Y. Here,

since we use temporal stability concept, a 2 is real and (1 2 is complex. If 0 2i> 0 ((02i = Imag(0 2 )),

then the secondary instability is present. Temporal stability approach has earlier been used by

Herbert (1983) for secondary instability of TS waves and by Hall and Horseman (1991) for secondary

instability of Gtirtler vortices. This approach can, at least, provide a qualitative picture of the

secondary instability phenomenon.

We superimpose (5.1) on the meanflow computed in § 4.3 above, i.e., the meanflow constitutes

the three-dimensional boundary layer as modulated by the presence of a nonlinear stationary

crossflow vortex with initial amplitude of.1 percent. This meanflow, when represented in (x 2 ,Y2' z2 )

coordinate system, is a strong function of Y2 and z2 but a weak function of x2. Substituting the
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meanflow and the disturbance wave (5.1) in incompressible Navier-Stokes equations, we obtain the

following linearized equations

&U P /- ' w + 2 + W RL,,2 + L2 '2  U2

2 W +Y,2 &2 (5.2)

F v 2&2 o4y2 a-,R v2  d 2
2

22 +a2U2 +2/ R +n 2 W2+V 2 -2+W 2-+- I 2  v 2  (5.3)&22 &~~ y2  d 2 y RL i~'

___ 2 QP 2  0d2w 2 ]
±L2J e z2 22 ±I? [ k' ~ 2  5.4)

+22 + + 0= (5.5)
dY2 dZ2

where U2 , V2 , W2 are the mean velocity components in x2 , Y2, z 2 directions, respectively, and

u2 , v2 , w2 are the corresponding disturbance velocity components and P2 is the pressure. In (5.2,-

(5.4) terms dU,, / x2, dV2 / &2 , dW2 / &2 are small and can be neglected as numerical experiments

indicate that they do not appreciably change the eigenvalue. However, dV2 / Y2 is of the same order

as dW2 / &2 and thus V2 must not be set to zero. Dropping V2 increases the growth rate by about 50

percent. Equations (5.2-5.5) are partial differential equations which are subject to homogeneous

conditions at the wall and free-stream, i.e.,

u2 =v 2 =w 2 =0, Y2 = 0 (5.6a)

u2 -40, v2 -40, w2 - ' 0 as Y2- *O (5.6b)

The computational domain in z 2 direction covers one wavelength of the stationary vortex and

periodic boundary conditions are imposed in the z 2 direction, i.e.,

U2(Z2)=U 2(Z2 + 4) (5.7a)

v2 (z2 )=v 2 (z2 + A.) (5.7b)

w 2 (z2 )=w 2 (z2 + )) , (5.7c)

where .= 21r/(a, + l) 12, a, and fP, being the x and z wavenumbers of the stationary vortex.

Equations (5.2-5.5) along with the boundary conditions (5.6-5.7) constitute an eigenvalue prob-

lem which we solve by using a Chebyshev collocation method in the Y2 direction and a Fourier collo-

cation method in the z 2 direction. The physical domain Y2 E [0,Y2._] is mapped on to a computa-

tional domain 17 E [-1,1] such that the grid points are clustered near the wall and Y2 = Y2i, where Y2,

is the location where the secondary structure is concentrated. Since we do not stagger the mesh in
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Y2 direction, two additional boundary conditions are required which we prescribe by evaluating the

normal momentum equation at Y2 = 0 and Y2 .

The eigenvalue problem can be represented in the form

Aq = %Bi (5.8)

where B is a diagonal matrix and A is a square matrix of size (4Ny - 6)N, where NY and N, are the

number of collocation points in y2 and Z2 directions, respectively. The above eigenvalue problem

(5.8) is solved by the QR method which yields all the eigenvalues of the discretized system. We test

the accuracy of these eigenvalues 6y using inverse Rayleigh iteration method. Among the computed

eigenvalues, only a few have o 2, > 0. Here, we discuss only one of these eigenvalues.

Computations were first performed at R = 450 where the stationary crossflow disturbances had

gained an amplitude of about 8 percent based upon the local inviscid velocity (see, figure 17(a)). No

secondary instability was found, i.e., all wO2, < 0. The analysis was then repeated at R = 500 where

the maximum aI amplitude is about 17 percent and the stationary vortex is on its way to saturation

(compare with figure 18). At this location the secondary instability is found but the growth rate is

about the same as that of the nonlinear crossflow vortex. Finally, calculations were performed at R =

550 where figure 18 shows that the stationary vortex has a growth rate which is close to zero. The

local maximum amplitude of the stationary vortex is about 22 percent. Secondary instability results

for this Reynolds number are discussed next.

The frequency (o.2r) of the secondary instability and temporal growth rate ((%) are plotted in

figure 23. The peak growth rate of w 2 i = .02 occurs at a 2 of about .6. At this location wo2r is about

.75 which amounts to an F2 of 1.5 x 10 - 3. We noted earlier that the most amplified traveling

crossflow disturbance has a frequency of about F = 1.2 x 10 -4 ; hence, F 2 is an order of magnitude

higher than F which is in agreement with the experiments mentioned above. The wavenumber of

the stationary disturbance along z2 coordinate is about .5. Given that a 2 is .6, the angle of the

secondary structure is about 500 with respect to the crossflow vortex. The secondary instability

convects along the stationary vortex with the phase velocity of about 1.25 W.. The relatively high

amplitude of the stationary vortex required for secondary instability is in agreement with the results

of Balachandar, Streett & Malik (1992).

The above calculations were made with NY = 41 and N. = 8. Since 8 collocation points in the

spanwise direction may be too few, we repeated some of the calculations with N. = 16 and NY = 51.

These results are also given in figure 23. We note that although there is some movement in the

eigenvalues, the results given in the figure with the lower resolution are qualitatively correct, at

least at high a2. At lower values of the wavenumber a 2, there appears to be an intricate mode

structure which for its investigation would require the development of more efficient means of

computing eigenvalues of very large matrices so that these calculations can be readily performed.
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The quasi-parallel approximation used in the above analysis can be justified since our results

show that, in the rotated coordinate system, variations of U2,V 2 ,W 2 along x2 is much smaller than

the variation in Y2, z2 and the x2 -wavelength of the secondary instability is only about 3 times the

boundary-layer thickness. In the nondimensional units, this wavelength for the most amplified

secondary wave is about 10. The secondary instability analysis shown in Fig. 23 is performed at R =

550. It is clear from Fig. 9 that the curvature of the vortex in the range of R = 550 ± 5 can be

ignored.

The structure of the secondary instability is presented in figure 24 where the kl eigenfunction

is plotted along with the U2 component of the meanflow in Y2 - = = 550. It is clear that

this high-frequency instability resides on top of the stationary vortex with the maximum in kI

located near Y2 - 2.8. In contrast, the lower frequency traveling crossflow disturbance is

concentrated near the wall at Y2 - 1 (see figure 19). The high frequency instability is inviscid in

nature and it can be captured by dropping viscous terms in (5.2-5.4); however, since the basic flow is

three-dimensional and varies with Y2 and z2 it is not possible to reduce the problem to a single

partial differential equation. However, numerical experiments suggest that some qualitative

features of the instability can be captured by considering just the U2 component of the mean flow in

which case a single partial differential equation can be used resulting in substantial savings in

computer time.

The top view of the flow field that results by superimposing the secondary eigenstructure (with

an amplitude of 5%) on the meanflow (U 2 , V2 , W2 ) is depicted in figure 25 where the x2-velocity

component is plotted at Y2 = 2.82. Two periods in both x2 and z2 directions are shown. The dark

patches in the picture correspond to the corotating structures which move in the x2 direction. A hot

wire placed near the boundary-layer edge will detect this high-frequency disturbance but if the hot-

wire is located in the region between z2 = 5 and 10, for example, this instability will not be captured.

Therefore, extreme care is needed in order to detect this secondary structure in an experiment.

6. Conclusions

We have investigated crossflow instability in a model three-dimensional boundary layer which

has an exact solution to the incompressible Navier-Stokes equations. This consists of the swept-

Hiemenz flow which forms near an attachment-line. This flow is subject to Tollmien-Schlichting

instability for small x, where x is the chordwise distance, provided the spanwise Reynolds number R

> 583.1. However, this boundary-layer becomes unstable to crossflow instability for x >> 1 even for

R < 583.1. Here, we have considered R = 250 and 500 for the linear stability and R = 500 for the

nonlinear case. Both the linear and nonlinear stability as well as the wave-interaction in this three-

dimensional boundary layer is studied using parabolized stability equations (PSE). We also study
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secondary instability in this boundary layer. We find that the various features of the swept-wing

boundary-layer transition are captured in the study of this model boundary layer.

Our linear results show that nonparallel effects are destabilizing for crossflow disturbances.

However, the magnitude of the effect depends upon R (more destabilization at lower k?). Growth

rate of stationary crossflow vortices computed from linear PSE are in agreement with the results

obtained from Navier-Stokes simulation.

Nonlinear development of stationary crossflow vortex is also investigated for an initial

amplitude of 0.1 percent. The computed wall vorticity distribution shows the familiar streamwise

streaks, in agreement with the surface oil-flow visualizations in swept-wing experiments. Other

features of the stationary vortex development observed in the experiments (half-mushroom

structure, highly inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear

PSE computations.

Nonlinear interaction of stationary and traveling crossflow modes is also studied. When the

initial amplitude of stationary vortex is large as compared to the traveling mode, the stationary

vortex dominates most of the downstream development. Eventually, however, the traveling mode

becomes of the same order as stationary mode. Interaction of the traveling mode with the harmonic

of the stationary mode gives rise to another traveling mode with same frequency but negative

spanwise wavenumber. Apparently, a triad resonance is set up at this stage. The situation changes

when the initial amplitude of the traveling and stationary modes are the same. Owing to its higher

growth rate, traveling mode dominates most of the downstream development and the growth of the

stationary mode is suppressed. In this case, energy cascades into (2,2), (3,3) etc., modes which are

harmonics of the primary (1,1) traveling mode.

Growth rates of the stationary and traveling modes begin to depart from their linear values

when the disturbance amplitude reaches about 4 percent. As the amplitude increases, the primary

modes reach quasi-equilibrium states. Large mean flow distortion caused by the nonlinear

disturbances yields a skin-friction value which is significantly above the laminar value.

Finally, we use the two-dimensional eigenvalue approach to perform a secondary instability

analysis of the three-dimensional boundary-layer flow modulated by the presence of a nonlinear

stationary crossflow vortex. We find that this meanflow is subject to an instability whose frequency

is an order of magnitude higher than the frequency of the most amplified traveling mode given by

linear stability analysis of the boundary-layer profiles. A similar high frequency disturbance was

also observed in the experiments of Poll (1985) and Kohama, Saric & Hoos (1991).
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I3=.4,R = 500.
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Abstract

The recently developed method of Parabolized Stability Equations (PSE) offers a fast and

efficient way of analyzing the spatial growth of linear and nonlinear (convective) disturbances in

shear layers. For incompressible flows, the governing equations may be represented either in

primitive variables or by using other formulations obtained by eliminating the pressure gradient

(e.g., vorticity/stream-function formulation). On the other hand, for compressible flows, primitive

variables offer a natural and the only choice. We show that the primitive-variable f, ,ilation is not

well-posed due to the ellipticity introduced by d.4 / x term and marching solution aally blows

up for sufficiently small step size. However, it is shown that this difficulty can be overcome if the

minimum step size is greater than the inverse of the real part of the streamwise wavenumber, a,.

An alternative is to drop the I/ /& term, in which case the residual ellipticity is of no consequence

for marching computations with much smaller step sizes.

1. Introduction

The laminar-turbulent transition process in a boundary layer is of great fundamental and

practical interest in fluid mechanics. In many cases, transition occurs via the destabilization and

subsequent growth of wave structures in the boundary layer. Classical theories concerning the

amplification of these waves use quasi-parallel assumption and ignore the growth of the boundary

layer. Other theories (Gaster 1974), including the multiple-scales method (Saric & Nayfeh 1975),

can deal with the boundary-layer growth locally for given problems. Direct Navier-Stokes solutions

(Fasel & Konzelmann 1990) could give very satisfactory results but at the cost of much more CPU

time and larger memory size. The recently developed method of parabolized stability equations

(PSE) (Herbert 1991, Chang et al. 1991, Bertolotti et al. 1992) offers a fast and efficient way to

analyze the spatial growth of instabilities in the boundary layer. In order to briefly describe the PSE

method, let us first consider linearized Navier-Stokes equations in primitive variable form:

d- + is + ,-- + ,,, + +.- + ,U + w d-j + [d2 . + A_] (1a)
~ xdx dy'~ d z & x & -R-:;-g 2d2J

Jdv iv dW ^d2wd2Wd2W

.'+U +U !L+ !E- = _Iu (1d)at dx &x dY 0-Y d ,ZRd

dui dvdw-v (1d)

where x, y and z are the streamwise, wall-normal and spanwise coordinates, respectively, and U, V,

W are the corresponding mean velocity components while u, v, w are the disturbance velocity
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components. Furthermore, p is the pressure and R is the Reynolds number, R = U_.L / v, where U.,

L are the reference scales for velocity and length and v is the kinematic viscosity.

In the linear PSE method, a wave-like disturbance, 0, representing velocity, pressure or

vorticity, etc., is assumed to be of the form

O*(x,y,z,t) = $(x,y)E (2a)

E = ex {{I a )d4 + Pz - at)) (2b)

Here a and fl are the x and z wave numbers, ais the disturbance frequency and (x,y) is the shape

function. The physical quantities (u,v, etc.) can be obtained by adding the complex conjugate

component. In the above decomposition it has been assumed that the mean flow is independent of

the spanwise coordinate z. The first and second derivatives of 0 can be written as

Ox (i 4 + i,,E (26)

=iE (2e)

Oyy = YYE (20

Substituting (2 and 3) into the linearized Navier-Stokes equations, which could be in primitive

variable form, stream-function/vorticity form or other forms, we obtain a set of equations with the

*(x,y)'s and a as unknowns. Since there is now one more unknown (namely, a(x)) than the

equations, another condition is needed for the closure of the system. We take advantage of the slow

variation of the mean flow in the streamwise direction and impose a condition on a(x) such that
"most" of the waviness and growth of the disturbance are absorbed into the exponential function E,

making the shape function (xy) slowly varying with x. Hence, the term containing 0^ (in (3b))

can be dropped and we arrive at a set of new equations in which the only second-order derivatives

are those with respect to y. We will call these equations parabolized stability equations (PSE) and

ask the question whether these equations are indeed parabolic, i.e., given appropriate initial data

can one find a solution by marching along the streamwise direction?

When the basic flow is two-dimensional, the pressure term can be eliminated and the

governing equations can be represented in stream function and normal vorticity formulations. When

the basic flow is three-dimensional it becomes difficult, particularly for nonlinear disturbances, to

reduce the equations to a form other than primitive variable form. In any case, for compressible

flows, primitive variables offer a natural and the only choice. Since our ultimate goal is to study the
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stability of compressible flow, we can learn about the low Mach number behavior of the compressible

PSE equations by studying the numerical stability of incompressible PSE equations in primitive

variable formulation. These equations can be derived by using (1) and (2) and can be written in the

following form

+ - + do =0 (3a)

where = A(,h,,/)T and Lo-L 4 are square matrices given in Appendix I. Equation (3a) is to be

solved subject to the constraint (imposing the condition that the shape function varies slowly with x )

F(a, j) = 0 (3b)

We will show that when the primitive-variables are used, the equations are only partially

parabolized. The gradient o / & represents the dominant part of the residual ellipticity. For easy

reference, we call this term as the pressure gradient. (We should stress here that o /d& represents

only a small part of the physical pressure gradient op/&d. Most of the physical pressure gradient is

carried by the term ico, see Eq. (2c)). This ellipticity will cause the marching procedure to fail. The

same difficulties are encountered in the Parabolized Navier-Stokes equations (PNS) (Rubin, 1981).

By suitable substitutions, the PSE can also be written in the form of a set of first-order partial

differential equations and an additional functional F as

Aji +Bi-+I--=0 (4a)

F(a,ij) = 0 (4b)

where A = A(x~y,a) and B = B(xy, a) are square matrices, I is the identity matrix and lk is a vector. If

quasi-parallel flow is assumed, then (4) can be reduced to the well-known Orr-Sommerfeld equation.

Equation (4a) is solved numerically by marching from the initial station at x = xO with some initial

condition, '(xo,y). The solution at x=xo+& is computed with a(xo+&)=a(xo) as a first

approximation, then a new a is calculated using Eq. (4b). Equation (4a) is solved again with the new

value of a. This process continues until the solution converges. The marching is then carried to the

next x-station. The stability of the marching procedure depends on the discretization scheme, the

iterative process for evaluating a and, most importantly, the mathematical nature of PSE.

In the primitive-variable form, the matrices in Eq. (4a) for a flat geometry are given as follows
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0 0 0 0 -1 0

ia 0 ip 0 0 0

o 0 0 0 0 -1
-iaV + Vx A + VY -ifPV 0 -a -(

-(A+U)R UYR 0 -oaR -VI 0

-WR -WR -AR -ifiR 0 -VR

a2 + P2 .da
where A =-io) + iaU + ifW+ R

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0
B = 01 (6)

R

-MR 0 0 -R 0 0

0 0 1R 0 0 0

where F = U - , U, V and W are the three velocity components of the basic flow, a and flare the

wave numbers in the x and y - directions respectively, and

= (a, , d , f, o2 /Iy, J /dy)T (7)

The functional F(a, v)= 0, can be chosen in several ways. For example, we can impose the

condition that the maximum of the velocity component, 6, is constant or that

0 =0 (8)

f M 2dY
0

where q = (4,b,) and * represents the complex conjugate. An iterative procedure for a based on Eq.

(8) is given as follows,
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fTq dy
0 _(9)

J .12dy
0

We note that, since a is complex, Eq. (9) represents a two-dimensional iterative map.

2. Mathematical Nature of PSE

For an initial value problem

= A- Vu (10)

u(0,y) = f(y) (11)

where f,u E C, A,BeC "xn and y : 9t, the solutions can be obtained by Fourier transform. In

Fourier space, Eq. (10) and (11) become

dz ~(12)

a ( ) (13)

where 4 and f are Fourier transforms of u and f, respectively, and '7 is the wavenumber in y-

direction. The solution to (12) and (13) is of the form

= g()ez (14)

where g(i) e C'. Substitution of (14) into (12) yields an algebraic equation for the eigenvalue A =
A01),

V? A+B-41=0 (15)

Assuming that all n eigenvalues of Eq. (15) have distinct corresponding eigenvectors, gj(q), then

n

d 1: Ajgj (,)e-'j

j=1

The constants Aj E 9t can be determined by solving the nxn linear system

gj(1)Aj = h7)
j=1

Hence, we obtain the solution to Eq. (10) and (11)
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u(x,y) =I 1 f Ajeiqygj ()e-,x d . (16)

If ejal is unbounded for H cc, the integral in Eq. (16) may not exist, and the initial value problem

defined by Eqs. (10) and (11) are said to be ill-posed (Kreiss & Lorenz (1989)).

In finding the eigenvalues Aj(7), both matrices A and B are used in Eq. (15). In fact, subject to

the condition that the eigenvalues of A are non-zero and distinct, the well-posedness of Eq. (10) is

determined by the eigenvalues of A only. This can be easily verified. We decompose A such that

A = PAP- ', where P is a matrix whose columns consist of the eigenvectors of A, and A is a diagonal

matrix whose elements are eigenvalues of A. Multiplying Eq. (15) by IP-'PII we obtain

H1A + P"BP -A1 = 0

As + -- c, the matrix i17A + P-1 BP becomes diagonally-dominant. Applying the Gershgorin Circle

Theorem (see Golub & Van Loan, 1983), we find that the eigenvalue, Aj, approaches naj, where a,

is the jth eigenvalue of A. Therefore, the eigenvalues of A determine the well-posedness of Eq. (10).

This is reminiscent of the classification of partial differential equations with one dependent variable

where only the "principal part" is required. However, we must stress that, if some of the eigenvalues

of A are zero, then all matrices in Eq. (15) must be used to obtain the correct result.

For various PSE formulations, the equations cannot always be written in the form of Eq. (10),

e.g., when matrix B in Eq. (4) is singular. Here, we adopt the approach whereby Eq. (14) is

substituted into the given form of PSE and all matrices are kept for determining the well-posedness.

We now consider and analyze the well-posedness of the initial value problem associated with

the PSE equations. The system consisting of Eqs. (3a) and (3b) (or the corresponding system 4(a)

and 4(b)) is nonlinear since a appears in the coefficient matrices. In order to simplify the numerical

stability analysis of the marching procedure, we will assume that a is known a priori. We choose a

simple two-dimensional basic flow (W = 0, d/& = 0) with constant velocity-components and apply

Fourier transform in y-direction, i.e., let r(x,y) = ii(x)exp(i 7y). After some algebra, we can write Eq.

(3a) as follows,

-ta -i7 0

1]15~a qD..i~
whee CiaUiiL-V + - and D = U-2i-. The three eigenvalues of the matrix in

Eq. (17) are given by

C
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For a well-posed initial value problem, it is required that Real 4j < 0 for M - o. Since 77 can take

any value for general initial conditions, A, and A2 have positive real parts for some T1. Therefore, Eq.

(17) is not well-posed for initial value problem and some approximation must be made for a stable

marching solution. We will discuss it in the next section.

Due to the complicated nature of 4, it is not easy to find the sign of its real part. However, in

order to determine the well-posedness, we only need to know the behavior of A3 as 1rj -. -, provided

that the coefficient of the highest order term in 1 is not purely imaginary. In this limit, we have

A 17 2 1 -=-?I2 (U+2ai/R)+2ia,/R (9R (U-2ia/R) R (U+2ai/R)S+4a2R (19)

Therefore,

Real(AS) n 7/2 U+2ai/R

R (U + 2ajI / R)2 +4a 2 /R2

Hence, for growing waves (aj < 0), real A3 > 0 for sufficiently small U, i.e.,

U < -2ai (21)
R

For large Reynolds number and small a, (typically 0(102) and 0(10-2), respectively), condition (21) is

satisfied only in a very small neighborhood of the wall. As we will show later, difficulties in

numerical solution never arise from A3.

3. Stability of the Marching Procedure

We will now show that marching procedure can be made stable by using a sufficiently large

step size, &, as in PNS for mean flow, and we will derive a condition for stability. We note that,

since the eigenvalues are distinct, the matrix in Eq. (12) is diagonalizable, and therefore, Eq. (17) can

be written as

do = A2 0(22)

where 0 is a vector whose components are linear combinations of ii, i and b. These are three

decoupled equations, each of which is of the form

d -p = AO (23)dx

If this equation is solved with backward difference with step-size &, von Neumann analysis leads to

an amplification factor given by
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y = 1 (24)

Numerical stability requires 4A< 1, which can be satisfied if (IA,&r) 2 + 2 & 2 > 1 and hence,

&> 2A,. /(A + 4.). Since A depends on il, then minimum step size is given by

&min= sup( 2Ar, (25)tA!+ 42.

Equation (25) implies that there is no step-size restriction if A, < , otherwise the step size has to be

greater than some finite value if the marching is to be stable. For example, von Neumann analysis

of, say, the equation associated with 4 leads to an amplification factor given by

1 (26)
Y2 = (1-(T-a)+ia 

(2

Numerical stability requires IY21 < 1 for all 17. This can be achieved only if & > - For smaller &,

numerical instability occurs for Iaj

2-a&2  -a+ 2~&2J

17 E ai J1 a
& , -'i+,

This is graphically depicted in Fig. 1 for real &_

If Eq. (4a) is discretized directly by using backward difference for x-derivatives and central

difference for the y-derivatives, then Von Neumann analysis of numerical stability leads to the

following

o'A 0 0 0 -A 0
ji GA iflA 0 0 0
0 0 aA 0 0 -A

-Vp C -iWAP ia = 0 (27)
R R

-,? 0 0 -uR (a- VR)A 0
0 0 -xR -iiRA 0 (a -VR),

where y is the amplification factor, A=-, a= isin(Y), _I. ] +AA and

4= 1+ iaA. The six roots of Eq. (27) are

A 1 = 4 = 0 (28)

UR- 2ia (9
A3 = A4 = 2 _R a (29)

and
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a 
(30)

- a 2 _ p 2

The amplification factor associated with 4 is given by

1

p2 +.sin 2J +ai +ia,&

which, again, leads to

an =  (32)

for numerical stability. The minimum step size as given by Eq. (32) implies that a maximum of 2n

steps per disturbance wavelength are allowed for the marching. This is consistent with the behavior

of the numerical solution first reported by Chang et al. (1991). We should note that, in PSE, we solve

for the slow varying shape functions and so this step-size restriction does not cause problems in

terms of accuracy; indeed, the numerical examples given in Joslin et al. (1993) show that the PSE

solution obtained with 3 steps per wavelength for Tollmien-Schlichting waves in a Blasius boundary

layer is in excellent agreement with very accurate direct simulation of Navier-Stokes equations using

60 grid points per TS wavelength.

When step-size smaller than &,in = 1/1al is required for either higher resolution or for the

convergence of nonlinear terms in an implicit numerical scheme, a further approximation is

sometimes made, i.e., dropping the pressure gradient term O/I/x (see Chang et al. 1991). We point

out, however, that most of the physical pressure gradient is absorbed into the term io4, and that

J /& is very small in comparison (refer to Ea. 2(c)). After j// & is dropped, Eq. (17) can be reduced

to a set of 2 equations by eliminating P. Carrying out the well-posedness analysis, we obtain two

eigenvalues

where C and D are the same as those in Eq. (18). Here, A2 gives rise to ill-posedness due to

viscosity, which is insignificant as explained before. We note that A, represents ill-posedness if c <

0 (i.e., for growing waves). Using Eq. (25), we obtain the minimum step-size required for a stable

marching scheme,
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min [ 17~i/a1) 2a2c 24a a,]22

[II_
i (I_ 112(/M222arI)2]

In a typical problem, ai is an order of magnitude smaller than a. Therefore,

& =i - . - + ai' (33)

For a problem in which ai/ is small, we see that the restriction on step-size is relaxed by at least

an order of magnitude in comparison with Eq. (32).

4. Application to Blasius Boundary Layer

The above analysis was simplified in that the mean flow (U,V) was considered constant. We

now apply the results of the above analysis to a realistic problem, i.e., the boundary-layer flow on a

flat-plate. The mean flow in this case is governed by the Blasius equation

d3 f 1If d 2f =0

f(O)=f'(0)=Q f'(4)-+1 as -

U=f"

1 U, df

2 xo d

where v is the kinematic viscosity, Ue the boundary-layer edge velocity and 4 the similarity variable

=YOo Ue

and x0 and Yo being the dimensional values of x andy.

The Blasius boundary-layer is subject to Tollmien-Schlichting (TS) instability. We consider a

disturbance of fixed frequency F = 0.7 x 10 -4 where

F 2,rv
2-

being the dimensional frequency. For this disturbance, the initial wavenumber at R = 500 is a, =

.106. As the wave travels downstream, the wavenumber gradually changes to approximately a, =

.103.
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Calculations were started at R = UeL / v = 500, where L = izo / U,. According to Eq. (32), the

minimum step-size is Axin = 9.5 based upon the length scale at R = 500. The fourth-order accurate

compact difference scheme of Malik et al. (1982) was used for wall normal discretization and one step

backward Euler discretization was employed in the streamwise direction. We ran our PSE code with

jI/&q term included and Ax = 11 (greater than Axi,). The growth rate plotted in Figure 2(a) shows

a smooth solution. The growth rate in this figure has been made nondimensional with local length

scale which varies with x; however, a constant length scale was used in the marching computations.

Next we use Ax = 8 (smaller than Axwin), the solution blows up shortly after the marching starts.

Now, we drop qii / x and further reduce the step-size to 5, a smooth solution is again obtained.

These calculations confirm the estimate for the minimum step-size and show that the dropping of

- /& relaxed the step-size restriction. We present additional calculations in Figure 2(b) where Ax

=10 is used with dp/dx * 0 and the solution is smooth. However, with Ax = 9, the solution blows up

towards the end of the computation. This shows that the stability condition derived in the previous

section provides a remarkably good prediction of the behavior of the PSE solution. With op /& = 0,

stable solution can be obtained for smaller Ax. The comparison of the solution with Ax = 5 and 10

shows that the approximation Op / &r = 0 does not introduce any error, at least in this case.

Figure 3 shows the growth rate results for the same frequency disturbance and di l &x =0.

Three different step sizes were chosen: Ax = .3, .25 and .2. With Ax = .3, the solution is generally

smooth but appears to develop some very slight wiggles near the end. However, with Ax = .25 and .2

solution blows up. The numerical instability occurs earlier for the smaller step size.

The Ax = .2 calculation is repeated with icyR dropped to eliminate elliptic effect due to

viscosity. The behavior of the solution is unaffected. This indicates that these oscillations are not

caused by ellipticity due to the viscous terms. Finally, we eliminate the iteration for a, and do the

calculation with fixed real a(the value at R = 500). The growth rate shown in Figure 3 is inaccurate,

but the growth rate curve is smooth. This suggests that the oscillations may have been caused by

the nonlinear iterative process for determination of a. However, one cannot be absolutely sure in

view of the stability condition (33). For the present case of (-ai). = .0055 and ar =.1, it follows

from (33) that Amw = .13 which is not far from the value of .25 or .2 used in Figs. 3(b) and (c),

respectively. The fact that smooth solution was obtained in Fig. 3(c) with a fixed does not

necessarily suggest that (33) is not operative since real (a) was used and with ai = 0 Eq. (33) gives

Ar n= 0.

In order to clarify whether (33) is operative, we perform additional computations and report

the results in Fig. 3(d) which contains the correct solution from Fig. 2(a) as well as the smooth

solution from Fig. 3(c) with a = 0 and Ax = .2. Also included are solutions using fixed a = .104 - i

.001 and a = .104 - i .004 (,6., and i tR have been dropped). Equation (33) for ai = 0, ai = -. 001 and

-. 004 yield minimum step size of 0, .023 and .092, respectively. In the first two cases, the step size of
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Ax = .2 used in the computation is much larger than the critical value given by (33) and therefore the

solution is smooth. Since initially the value of ao is close to the correct solution given by (4b), the

computed growth rate is close to the correct growth rate. However, further downstream the

computed growth rate is in error since (4b) is not satisfied. With ai = -. 004, the computational step

size is not very far from the critical value and, therefore, solution becomes oscillatory and eventually

blows up. In this case, since initially ai = -. 004 is not close to the solution of (4b) the growth rate is

in error at small Reynolds numbers. However, as the correct growth rate approaches the value of

-. 004, the solution with Ax = .2 and without imposition of 4(b) approaches the correct solution even

though it is oscillatory due to the numerical instability. This example clearly suggests that

numerical instability observed with Ax = .2 is associated with the condition given by (33).

We point out that the values of Ax = .3 and .2 correspond to about 200 to 300 marching steps

per TS wavelength. Clearly, in no linear or nonlinear applications one needs to take such a small

step and, therefore, Eq. (33) is of no significance for most practical computations.

5. Conclusions

The mathematical nature of parabolized stability equations (PSE) is studied. It is shown that

the primitive variable formulation is mathematically ill-posed due to the pressure-gradient term.

The condition for the stable marching solution is derived. Examples from the linear stability of two-

dimensional Blasius boundary-layer are given to show that this condition gives reasonable estimates

of the numerical behavior of the parabolized equations. The results also show that the ellipticity

associated with the viscous term is insignificant.

References

Bertolotti, F. P., Herbert, Th. and Spalart, P. R., 1992 "Linear and Nonlinear Stability of the Blasius
Boundary Layer," J. Fluid Mech., Vol. 242, pp. 441-474.

Chang, C.-L., Malik, M. R., Erlebacher, G. and Hussaini, M. Y., 1991 "Compressible Stability of
Growing Boundary Layers Using Parabolized Stability Equations," AIAA Paper 91-1636.

Fasel, H. F. and Konzelmann, U., 1990 "Non-parallel Stability of a Flat Plate Boundary Layer using
the Complete Navier-Stokes Equations," J. Fluid Mech., Vol. 221, pp. 311-347.

Gaster, M., 1974 "On the Effects of Boundary Layer Growth on Flow Stability," J. Fluid Mech., Vol.
66, pp. 465-480.

Golub, G. H. and VanLoan, C. F., 1983 "Matrix Computations," The Johns Hopkins University Press,
pp. 200.

Herbert, Th., 1991 "Boundary-Layer Transition -- Analysis and Prediction Revisited," AIAA Paper
91-0737.

121



Joslin, R. D., Streett, C. L., and Chang, C.-L., 1992 "3-D Incompressible Spatial Direct Numerical
Simulation Code Validation Study - A Comparison with Linear Stability & Parabolic Stability
Equation Theories for Boundary-Layer Transition on a Flat Plate," NASA TP-3205.

Kreiss, H.-O. and Lorenz, J., 1989 "Initial-Boundary Value Problems and the Navier-Stokes
Equations," Academic Press.

Malik, M. R., Chuang, S., and Hussaini, M. Y., 1982 "Accurate Numerical Solution of Compressible
Stability Equations," ZAMP, Vol. 33, pp. 189-201.

Rubin, S. G., 1981 "A Review of Marching Procedures for Parabolized Navier-Stokes Equations,"
Proceedings of Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Springer-
Verlag, New York, pp. 171-186.

Saric, W. S. and Nayfeh, A. H., 1975 "Non-Parallel Stability of Boundary Layer Flows," Phys. Fluids,
Vol. 18, pp. 945-950.

122



Appendix I

A+U, U 0 ia

V, 4+ V 0 0
LO

w4 w, A ip

ia 0 io 0

D 0 0 1

0 D 0 0
L1 =

0 0 D 0

1 0 0 0

"v o o 0o

0 V 0 1

0 0 V 0

0 1 0 0-

1 0 0 0

0 - 0 0L3= R 11O?

0 0 0
R

L0 0 0 0j

where

a2 p2 _da

A =-io+iaU+iW+ R -

and

D=U- 2ia

R
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