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COMPUTAT  YNAL STUDIES OF LAMINAR TO
TU 'LENCE TRANSITION

Introduction

The subject of laminar/turbulent transition is of fundamental and practical importance in fluid
mechanics. An indepth knowledge of transition mechanism is needed not only for boundary/shear
layer control but also for understanding of turbulence. Depending upon the state of the boundary
layer, various instability mechanisms such as Tolimien-Schlichting (T'S), crossflow and Gértler may
be operative. The present day transition prediction methodology is based upon linear stability theory
in the form of e method. This technique works well in a specialized parameter space involving
extremely “clean” flows. However, depending upon the flow conditions, various instabilities referred
to above could interact. In case of such wave-interactions, the transition prediction methodology,
based solely upon linear stability theory, would fail. Therefore, it is of interest to study possible
wave interactions and devise new transition prediction criterion under such circumstances.

The early stages of breakdown of Tollmien-Schlichting waves to turbulence in a two-dimensional
flat plate boﬁndary layer are now relatively well understood due to careful laboratory experiments,
(Klebanoff et al. 1962, Nishioka et al. 1980) ingenious numerical simulations (Zang and Hussaini
1985, Hussaini 1987, Spalart and Yang 1987, Fasel et al. 1987), and analytical studies (Herbert
1988, Kachanov 1987). However, our knowledge of transition mechanism in three-dimensional
boundary layers and flow where primary instability mechanism is other than TS is relatively limited.

A swept wing boundary layer or a boundary layer on a body at an angle of attack is g-:-.= ¢ :»
both crossflow and TS type instabilities. While the former results due to inflectional instai.< .- .f
the crossflow velocity profiles, the latter is a viscous instability of the streamwise profiles. Another
boundary-layer where two types of instabilities exist is that formed on a concavely curved plate.
Here, counter-rotating steady Goértler vortices form due to centrifugal instability. Given that the
Reynolds number is high enough, TS instability inay also be present. Nonlinear development of
Gértler vortices and Gortler/TS interaction is again a problem of both fundamental and potentially
practical importance.

The objective of the present study is to understand physical mechanisms leading to transition
and identify any new instability mechanisms involved in these flows. A numerical study is carried
out to investigate how a steady Gértler vortex breaks down to turbulence. The study reveals various
stages involved including the nonlinear development of Goértler vortex, secondary instabilities
leading to the development of unsteadiness and the final breakdown.

In order to investigate crossflow instability, we consider a model swept-wing boundary-layer and
study the development of stationary as well as traveling disturbances and their nonlinear interac-

tion. It is also found that prior to laminar-turbulent transition, the three-dimensional boundary
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layer is subject to a high-frequency secondary instability, which is in agreement with the experi-
ments.
Two approaches have been used in the above studies. For nonlinear evolution and wave-wave

interaction, we utilize parabolized stability equations (PSE). For secondary instability, we employ

two-dimensional (2D) eigenvalue approach.
The final report is divided into three parts:

This describes nonlinear evolution of Goértler vortices and their breakdown via various sec-

ondary instability mechanisms.

This describes nonlinear evolution of crossflow disturbances, wave-wave interaction and a high-

frequency secondary instability prior to laminar-turbulent breakdown.

C. On the Nature of PSE Approximation

Since the PSE approach is used in the above physical problems, it is important to investigate
the mathematical nature of the approximation. In this part, we explore the parametric boundaries
within which PSE approximation is valid and results in a stable numerical solution. This knowledge

is used when we employ this approach in the above problems.
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PART A.

On the Breakdown of Gortler Vortices: Nonlinear Development
and Secondary Instabilities




Abstract

Nonlinear development of stationary Gértler vortices in an incompressible boundary layer is
studied by solving the parabolic partial differential equations. It is found that due to the pumping
action of the steady counter-rotating vortices, wall shear stress decreases rapidly in the peak plane
but, unlike the result of Hall (1990), it does not go to zero and there is no flow reversal. Instead, as
the Gortler vortex saturates the mean flow correction mode dominates and causes the wall shear in
the peak plane to begin to rise again. A highly distorted mean flow field is set up due to the vortex
action where the streamwise velocity Z depends strongly not only on y (wall normal) but also on the
z (spanwise) coordinate. The inviscid instability of this flow field is analyzed by solving the two-
dimensional eigenvalue problem associated with the governing partial differential equation. It is
found that the flow field is subject to odd and even (with respect to the Gértler vortex) unstable
modes. The odd mode which was also found by Hall & Horseman (1991) is initially more unstable.
However, there exists an even mode which has higher growth rate further downstream. The
nonlinear development of these secondary instability modes is studied by solving the (viscous) partial
differential equations under a parabolizing approximation. The odd mode leads to the well-known
sinuous mode of breakdown while the even mode leads to the horse-shoe type vortex structure. This
helps explain experimental observations that Gortler vortices breakdown sometimes by sinuous
motion and sometime by developing a horse-shoe vortex structure. The details of these breakdown

mechanisms are presented.

1. Introduction

Two-dimensional boundary-layer flow over a concavely curved wall is subject to Gértler
instability due to the action of centrifugal force and results in the formation of counter-rotating
streamwise vortices. Gortler vortices play a dominant role in boundary-layer transition in many
aerodynamic flows such as on turbine blades and supersonic nozzle walls (e.g., Beckwith et al. 1984).
Due to their technological importance, Gortler vortices have been the subject of a number of
investigations (for a recent review, see Floryan, 1991). Gértler vortices are steady and the question
how they might breakdown to turbulent motion is a problem of fundamental interest in fluid
mechanics. This problem may also serve as a model for the longitudinal vortices in turbulent
boundary layers. In this work, we will study the nonlinear development of Gortler vortices, their
linear secondary instability characteristics and the nonlinear growth of two important modes of
secondary instability up to the breakdown stage.

Experimental investigations have revealed two distinct types of secondary instabilities when the
primary instability (the Gértler vortex ) is sufficiently developed. Bippes (1978) made detailed

observations of the Gortler vortex breakdown using the hydrogen-bubble visualization technique in




the Gortler number (G,) range of approximately 3 to 9 (based upon momentum thickness 6) where
G, is defined as

G = Ryy|tlc]. (1.1)

! being the surface curvature and R, the Reynolds number based upon momentum thickness.
Bippes found that the initial amplification of the Gortler vortices agreed with linear theory and,
later, sinuous oscillations developed, which ultimately led to turbulence. Aihara & Koyama (1981)
conducted flow visualization studies as well as hot-wire measurements of Gortler vortices in Gortler
number (Gy) range between 7.7 and 15. They found that a different type of secondary instability,
i.e., the horse-shoe vortex type (also called the varicose instability), was responsible for transition.
Ito (1985) also found this symmetric mode of breakdown in his experiment conducted in the Gértler
number range between 5.5 and 12.4. Swearingen & Blackwelder (1987) (referred to as SB hereafter)
studied the Goértler vortices using smoke-wire and hot-wire techniques in the Gértler number range
between 0.5 and 10. They observed that both the sinuous and the horse-shoe types of secondary
instabilities were present in the transition process and found that the sinuous mode was the stronger
of the two. In their experiment, the unsteady secondary instability fluctuations correlated better
with the spanwise velocity gradients than with the normal velocity gradient. Unsteady motion in
Gértler vortices was also observed by Peerhossaini & Wesfried (1988).

Numerical simulations were carried out by a number of researchers for Gortler vortices under
the same conditions as the experiment of SB. Sabry & Liu (1991) studied the key features of steady
Gortler vortex development by using a temporal analogy in which the growth of time-dependent
streamwise vortices are related to the spatial case through a chosen advection velocity. Good
agreements with SB were found before the unsteady oscillations became important. Liu &
Domaradzki (1993) used a similar approach and analyzed the steady and unsteady nonlinear
evolution of Gortler vortices. Temporal Navier-Stokes approach was earlier used by Malik (1986)
and Malik & Hussaini (1990) to study Gértler/Tollmien-Schlichting wave interaction. Since the
physical problem is spatial, temporal approach can, at best, provide qualitative results and there is
no a priori justification for this approximation. Spatial simulations of the Gortler vortex were
performed by Hall (1988, 1990) and by Hall & Horseman (1991). Agreement with the experiment of
SB was obtained for the early stages of Gortler vortex development. However, Hall (1990) and Hall
& Horseman (1991) found that the wall-shear in the "peak-plane” crossed zero to become negative at
some downstream location, indicating the existence of a region of reverse flow. They attributed the
rise in wall-shear in the experiment of SB to the nonlinear interaction of unsteady oscillations and
the steady Gortler vortex. However, spatial calculations carried out by Lee & Liu (1992) did not find

any flow reversal.




Various theoretical attempts at the secondary instability of the Gortler vortex illuminated the
important role the sinuous and the varicose modes play in transition to turbulence. Sabry, Yu & Liu
(1990) used 1l-dimensional local inflectional velocity profiles to analyze the secondary instability
characteristics of Gortler vortices and found that the sinuous type disturbance would prevail over the
varicose type. Hall & Horseman (1991) derived a partial differential equation governing the inviscid
secondary instability for a mean flow which varied strongly in two directions. They identified the 2-
dimensional odd and even eigenfunctions of this equation as representing the sinuous and varicose
types of secondary instability of Gértler vortex, respectively. They also found that the odd mode
grows faster than the even mode. In the numerical simulation of Liu & Domaradzki (1993), the
sinuous mode was also found to be stronger than the varicose mode. Secondary instability analysis
of Gortler and crossflow disturbances was made by Malik and Li (1993a).

All these numerical investigations of secondary instability seem to point to one fact, i.e., the
sinuous mode is the dominant mode and is chiefly responsible for the transition to turbulence. Why
do some experiments ( e.g., Aihara & Koyama, 1981) show the presence of only the varicose mode?
Examining the above cited numerical results closely, we find that most of these calculations were
carried out for either a limited range of wavelengths or a limited number of streamwise locations. In
Hall & Horseman (1991), for example, the secondary instability calculations were computed almost
exclusively at x = 100 cm. In Liu & Domaradzki (1993), the computational box had streamwise
dimension of either 2 ¢cm or 2.2 e¢m, which essentially fixed the streamwise wavelength.
Furthermore, a comparison of the "mushroom"” structure obtained by Hall & Horseman (1991) on the
one hand and Lee & Liu (1992) and Liu & Domaradzki (1993) on the other shows that the basic flow
state used for secondary instability computations are different. In the results of Hall & Horseman
(1991), the "mushroom” lacks the very thin "stem” shown in the results of other researchers.

In this paper, we will first study the nonlinear development of the Gértler vortex and analyze
various modes of secondary instability. Rayleigh's criterion for the inviscid instability of one-
dimensional velocity profile is well-known. However, its extension to two-dimensional flow has not
been considered. We will, therefore, derive a necessary condition for inviscid instability of mean
flows which strongly depend upon two space variables. We also study nonlinear evolution of the
secondary instability modes using parabolized stability equations (PSE). Section 2 describes the
parabolized stability equation formulation which describes all stages of the vortex development.
Section 3 deals with the nonlinear development of steady Gértler vortices while sections 4 & 5

analyzes the linear secondary instability and its nonlinear evolution, respectively.

We consider a two-dimensional zero pressure gradient boundary-layer flow over a concave

surface whose constant radius of curvature r'=1/x'. The streamwise, wall-normal and the




spanwise coordinates are denoted as x=X/{,, y=Y /¢, and z=2Z/¢,, respectively (y = 0 denotes

the wall), where the length scale ¢, will be prescribed later.

Let the x, y and z components of the velocity and pressure be given by

(ut,v',w") =U {U(x,y) +u(x,5,2,t), V(x,y) +x,5,2,t),0 + w(x, y,2 t)}

p' =pUZ(P+ p(x,y,2,t))

where the superscript T represents a dimensional quantity and U, is the velocity scale. Here U and

V are mean flow velocity components obtained by solving the Blasius equation whereas u, v, w

represent the perturbation velocity components in x, y, z directions, respectively. Similarly, P and p

represent the mean and perturbation pressures. We assume that Reynolds number, R, is large and

that the radius of curvature is much larger than the boundary-layer thickness, & (i.e., k'6<<1). In

this case, if x = Ktt’o, the equations governing the perturbation quantities are

LT aU+Vﬁa—‘—+v%]+x(Uv+Vu)+§xe—%V2u=N1
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where N;, N, and N, represent the nonlinear terms
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The boundary conditions are

u=v=w=0 at y=0 and u—-0,v->V,(x), wo0, as y-—oe

(2.1

(2.2)

(2.3)

(2.4)




where V,, signifies a nonzero value. Periodic boundary conditions are imposed in the spanwise

direction. Here, ¢, and U, are constants so as to define Reynolds number R as

R= Ue[ 0
v
where the length scale ¢, = Xﬁ{o_’ X, being the location (dimensional) of a reference streamwise

station, and v the kinematic viscasity. Another important parameter which is a measure of the wall
curvature is the Gortler number G defined as G = R,/H . The reason why v does not go to zero
outside the boundary layer is that the vertical velocity vanishes for all Fourier modes (see (2.5)
below) except the mean-flow correction mode.

We use the method of parabolized stability equations (PSE) for our computations. Here, we
follow the formulation of Malik & Li (1993b) (see also Malik et al. (1994)) and let ¢ = (u,v,w, p) be the

disturbance vector and assume that the disturbance takes the form

0= 22$mn(x,y)exp{ijgmn(§wi+inﬂz —imat (2.5)

where ¢,,, and B are the x and z wave numbers, ® is the perturbation frequency and ¢,,, is the
amplitude function for the mode (mw,npB). Substituting Eq (2.5) into Eqs (2.1) to (2.4), we obtain a
set of equations with ¢,, and a,,, as unknowns. Since, there are now more unknowns (namely,
o,.,) than the equations, another condition is needed for the closure of the system. Since the basic
flow is slow-varying in the streamwise direction, a condition on ¢,,, is imposed such that most of the
waviness and growth of the perturbation is absorbed into the exponential function in Eq (22;5),
making the amplitude function (ﬁm,, slowly-varying with respect to x . The terms containing 57}?2&
can thus be dropped and the only second derivatives left in the governing equations are those with
respect to y. These new stability equations are parabolized in the sense of parabolized Navier-Stokes
(PNS) equation for mean flow computations. The condition for choesing «,,, and minimizing the
streamwise variation of the amplitude function can take several forms. In the present work, we

choose «,,, to be such that the following integral vanishes.

(ﬁ',ﬁ',w‘)—a— dy =0 (2.6)

& O 8

0

where * denotes complex conjugate. The PSE can be written in matrix form as

Lo + Ly g 1, on 1 W oy, @7




F(rns Cma ) =0 (2.8)

where the coefficient matrices contain the Blasius flow quantities as well as «,,,, #and w. Eq(2.8) is
a general form of Eq (2.6). The matrix operators Ly — L; and N, are given in Appendix . The

boundary conditions are

~

Upp =0pp =Wy =0  at  y¥=0 (2.9a)
Upp>Omn(except for m=n=0),w,, 20 as y-— e (2.9b)

No boundary condition is requried for (=) when m =n = 0.

We discretize the PSE using discrete Fourier transforms in the spanwise direction and in time.
In the direction normal to the wall, we use the fourth-order compact difference scheme (Malik,
Chuang & Hussaini, 1982) which requires that (2.7) be written as a system of first-order equations.
Numerical computation starts at some streamwise location x, where velocity components are
prescribed for a given wavenumber ¢,,,; the velocities and pressure at x, + dx are calculated using
backward Euler discretization. If Eq (2.8) were not satisfied, a new a,,, would be chosen and the
equations solved again. This iterative process continues until Eq (2.8) is satisfied, and the
computation proceeds to the next streamwise location. During this iterative process, nonlinear terms
are also updated and one makes sure that they are converged before the solution proceeds

downstream.

3. Nonli Devel ¢ of Steady Gortler Vorti

In this section, we analyze the nonlinear development of streamwise stationary Gortler vortices
(w=a=0). Inthelimit R— -, and x > 0 with G held fixed, and by rescaling the dependent and
independent variables (V =01/ R)U,(v,w) =0(1/ R)u,y = O(1/ R)x ) the parabolic equations derived
by Hall (1983, 1988) can be recovered from (2.1-2.4). In Hall (1988), a further step is taken to
eliminate the spanwise velocity and the pressure from the linear terms in Eq (2.7), resulting in a
coupled system of fourth-order and second-order equations. However, we will solve Eq (2.7) directly
in the primitive (&,0,w, p) formulation, except that the condition imposed on « (2.8) is not applied
since a is identically 0.

The flow parameters used in the present analysis are taken from the experiment of SB. The
radius of curvature of the concave surface is 320 cm and free stream velocity is 500 em/s. The
streamwise range of interest in our analysis lies approximately in 10 < X (¢cm) < 120, in which the
Reynolds number based on the distance from the leading edge (Re = R?) ranges from 3.3x 10* to
4x10°% and the Gortler number G, ranges from 1.3 to 8.3. The Blasius equations are solved to
obtain the basic flow (U,V) for the vortex stability analysis. The calcalation is started at X, =10 cm

for the disturbance wavelength 4, = 1.8 ¢cm and initial amplitude of & = 0.0187 U, estimated from




the experimental data of SB. At this stage, our aim is to analyze the steady nonlinear Gértler
vortices; therefore, we only allow zero-frequency modes to be present. Unsteady modes will be taken
into account later when we compute the development of secondary instabilities. The number of
spanwise Fourier modes used in the z-direction is 11 (i.e., n goes from —10 to 10 in (2.5)), and the
streamwise marching step-size is 0.82158 cm. Therefore, approximately 130 marching steps are
taken in the streamwise direction. The number of wall-normal steps is 121. The solution was tested
by changing the number of grid points and it was found to be grid-independent.

Attempt is made to compare with the experiment of SB in this paper. A few words of
explanation are needed in order to clarify the manner in which comparisons are made. There is
uncertainty in the experiment of SB (and in any experiment, in general) with regards to the
spanwise wavelength of the Gértler vortices. As noted by SB, this wavelength varies across the span
and its statistical average is 2.3 cm. Th detailed measurements, however, are made for a pair of
vortices with a spanwise wavelength of about 1.8 cm which, in fact, is close to the most amplified
Gortler vortex according to linear theory. There is also a fa r amount of scatter in the data in the
"peak” region of the vortices for localized quantities such as the wall-shear. Qur computation is
performed with a constant spanwise wavelength, which is fixed at 1.8 cm. We could choose different
wavelengths and initial amplitudes to obtain a whole range of results from which the best
comparison with experiment can be found, but we would have little to gain from this. As Hall &
Horseman (1991) pointed out that the inherent non-uniqueness of the Gortler problem might be
present in the experiment as well and the exact features of the experiment itself might not be
precisely reproducible. Consequently, our comparisons with the experiment are confined to the
qualitative features and trends of the Gértler vortex development which are relatively insensitive to
moderate variations in parameters such as wavelengths and initial amplitudes.

The experiment of SB (as well as others) produced "mushroom-like" structures for the
streamwise velocity due to the pumping action of the counter-rotating vortices. The contours of the
streamwise velocity at various downstream locations computed in the present analysis are shown in
Figure 1. In the early stages of the development, the amplitude of u perturbation is small and the
velocity contours show a wavy spanwise structure. As the Gdortler vortices gather strength at
relatively large distances downstream the same "mushroom” structures observed in the experiment
of SB are clearly seen. The regions in the neighborhood of the centerlines of the "mushrooms" are
referred to as "peak” regions where the streamwise velocity is relatively low; and the regions between
the "mushrooms” are referred to as "valley" regions where the streamwise velocity is relatively high.
The streamwise velocity profiles at the peak and the valley are shown in Figure 2. It will be shown
later that the high shear layer region up in the peak plane will become subject to a particular mode

of secondary instability. The spanwise variation of the streamwise velocity component at fixed y is
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given in Figure 3. Again, the inflected profiles will be subject to another mode of secondary
instability.

The energy in each Fourier mode is shown in Figure 4. Here, energy is defined as

By = | (af*+ i 1o i @12
0

where n > 0, and

1 P
Eo=§'J(|uo| +|wo|2) (3.1b)
0

Initially, the Gortler vortex (mode 1) develops approximately linearly, but later on it begins to
saturate. Due to ronlinearity, higher harmonics (mode 2,3...) and mean flow distortion mode (mode
0) are generated. Among these, first the mode 0 and 2 have about the same energy, but at
approximately X = 75 cm, the energy in the mean flow correction mode takes over that of the
fundamental, and hence, the mean flow correction mode becomes the dominant mode, as also found
by Hall and Lakin (1988) for the small wavelength Gorlter vortices. This has important physical
consequences, which will be explained later. Farther downstream, the energy in each mode begins to
level off, approaching saturation. Although the energy in modes 2 and higher remains much lower
than that of the fundamental, they all are important in the development of the narrow neck
structure of the mushroom seen in Figure 1(d).

We now consider the wall shear in the peak and the valley plane. Figure 5 shows the computed
normal wall shear in these regions, together with the experimental data of SB. Initially, the shear at
the peak and at the valley decreases and increases, respectively, due to the slow-down and speed-up
of streamwise velocity at the respective locations. Farther downstream, the shear at the peak turns
around and starts to increase at approximately X = 70. It has been argued by Hall (1990) that the
rise in shear is solely due to nonlinear interaction of steady and unsteady disturbances, without
which the shear would continue to decrease and eventually leads to flow reversal near the wall.
However, in SB, the amplitude of the unsteady fluctuations at this stage is, at least, one order of
magnitude smaller than that of the steady Gortler vortex and it is unlikely that such drastic change
in flow character is caused by these unsteady fluctuations. The normal wall shear at the peak is
larger compared with the experiment of SB. Using a spanwise wavelength of 2.3 cm instead of 1.8
cm gives a much better comparison. We point out that Lee & Liu (1992) used a lower initial
amplitude for the wavelength for 1, = 1.8 cm and showed better agreement with experiment for wall
shear. We point out that in our calculations, the increase in the shear stress is independent of the

initial conditions and the location where they are imposed.
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Now we explore the reason why the wall shear at the peak region turns around and starts to
increase at approximately X = 70 cm for A, = 1.8 cm. This location is very close to the point where
the energy in the mean flow correction mode takes over that of the fundamental (X = 72 cm). Also
plotted in Figure 5 is the streamwise mean wall-shear, which is entirely due to the mean flow
correction to which all the harmonics contribute. The mean wall shear at large distances
downstream has rather large positive amplitude. Therefore, the explanation for the wall shear turn-
around lies in the fact that, while the Gortler vortices try to slow down the fluid in the peak region,
the mean flow correction tries to accelerate it. As the mean flow correction becomes more and more
significant and eventually dominant, the wall sheér has a large contribution from the mean flow
correction mode, which overpowers the other modes to produce an increase in the streamwise
velocity in the peak plane, resulting in the increase in wall shear. Figure 6 shows the computed
streamwise velocity profiles along the peak region at various streamwise locations. It clearly shows
(see also Figure 2) that even though the profiles are highly inflectional, the near wall behavior of the
velocity would not give rise to negative shear. The domination of the mean flow correction mode also
explains why the shear stress cannot go to zero and cause flow reversal.

The evolution of displacement thickness is shown in Figure 7. The computed results agree well
with the experiment of SB up to about X = 100 cm where unsteady oscillations in the experiment
become important. The displacement thickness decreases at the valley because of the high speed
fluid brought down to the region near the wall by the Gortler vortices. In the peak region, the
displacement thickness increases much faster than the corresponding displacement thickness of the
Blasius boundary layer because of the low speed fluid brought into the upper regions of the boundary
layer.

The present computations showed many of the qualitative features of the experimentally
observed Gortler vortices. However, for an understanding of the breakdown of these vortices due to
secondary instabilities, we have to consider unsteady modes. We will use the steady Gortler vortex
flow field generated above as the basic flow state for our secondary instability analysis given in the
next section. Thus, if ug, vg, we are the perturbation velocities due to the Gortler vortex, the new

mean flow whose stability will be analyzed in the next section is

u=U+ Ug (3.2a)

T=V+ug (3.2b)

@ =W +wg (3.2¢)
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4 Li Inviscid S lary Instabilit
4.1 Governing equations

We assume that the streamwise variation of the new mean flow (Z,0,w) is small compared with
the wavelength of the secondary disturbance. This assumption can be justified a posteriori from the

results. Therefore, the linear secondary oscillation can be written as

w(x,y,2.t) = @y, 2)et{="), 4.1)

where y =(u,,v,,w,,p,) and ¥ =(d,,0,,1,, b, ); & is the wavenumber, w is the oscillation frequency,
and the subscript s indicates secondary instability. Here, we consider only the temporal instability;
therefore a is real and wis complex. The flow field is unstable to disturbances if ®; > 0.

We note that (y2) and w(y,2) are much smaller than #(y,z). Then, following Hall &

Horseman (1991), the equations governing the linear secondary instability are

wais+%+%=0 (4.2)
i@ - c), + %‘j-a, . %‘}w, - —idp, 4.3)
ia(z -c)j, = —%byi (4.4)
R ‘?; (4.5)

where ¢ = w/a is the (complex) disturbance phase velocity. Eliminating &,, 0,, &,, we obtain the

equation governing the secondary pressure oscillation (after dropping subscript s):

The boundary conditions are
y=0, p,(y2)=0 (4.72)
y—o, p(y,z)-0 (4.7b)
and
B(y,2)=py,z+4,) (4.8)

where 4, is the Gortler vortex wavelength.
Equations (4.6-4.8) constitute an eigenvalue problem which is solved by using a Chebyshev

collocation method in the y direction and a Fourier collocation method in the z direction with
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appropriate grid stretchings in both directions to concentrate more collocation points in regions of
high gradients. Furthermore, since the basic flow state is symmetric, the eigenfunctions can be split
into families of even and odd modes. For the even mode, p(y,z)= p{y,-z) and for the odd mode,
B(y,z)=~p(y,~2). Taking advantage of the symmetry conditions, we reduce the size of the resulting
discretized system by approximately half. The discretized system can be represented in the form

Ap=wBop (4.9)

where B is a diagonal matrix and A is a square matrix of size N (N,/2+1), where N ,and N, are
the number of collocation points in y and z directions, respectively. This eigenvalue problem is
solved by the QR method which yields all the eigenvalues of the discretized system (4.9).
Throughout the computations, we use N, =85 and N, = 32.

4.2 Results of Secondary Instability Calculations

During the early stage of the Gortler vortex development, the quantity V2& is negative
everywhere in the (y,z)-plane. At approximately X = 40 cm, a region of positive V2Z begins to appear
near the wall. Therefore, according to the necessary condition for instability ( i.e. V& = 0
somewhere in the flow field), the Gortler vortex for the initial conditions prescribed in §3 is stable to
secondary disturbances for X < 40 cm. We note that we have not shown whether the above condition
is also a sufficient condition for instability.

We start our 2-D eigenvalue computations at X = 65 cm, where the high frequency oscillations
are moderately unstable. Hence, we avoid the difficulty associated with the singularity due to
neutral disturbances. The growth rate variation with the streamwise wavenumber at various
streamwise locations between X = 65 cm and X =100 ¢cm, normalized with scales at X = 10 ¢cm , is
shown in Figure 8. The general trend is that the secondary oscillations become more unstable as the
Géortler vortices become stronger downstream. The maximum growth rate at each streamwise
location occurs at streamwise wavenumbers approximately between 0.2 and 0.3, corresponding to
wavelengths between 1.2 and 1.7 cm. The Blasius boundary layer thickness in the absence of the
Gértler vortices in the range between X = 65 cm and X = 100 ¢m is approximately between 0.7 and
0.9 cm. This shows that the wavelength of the secondary instabilities is of the order of boundary-
layer thickness. Therefore, our assumption that the basic flow state variation is negligible over the
distance of one wavelength is, indeed, justified. We can visually extrapolate the growth rate curves
and see that, in this streamwise range, the highest wave number where secondary instability occurs
is approximately 0.5, corresponding to a wavelength of 0.69 e¢m.

We now consider the variation of the maximum growth rate of the secondary instabilities with
streamwise distance. In order to show that the secondary instability grows much faster than the

Gortler vortex, we convert the temporal growth rate to the spatial one by using group velocity
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transformation. The use of group velocity to transform temporal growth to spatial growth is well
known for boundary-layer instabilities (Gaster 1962, Nayfeh & Padhye 1979). The value of group
velocity dw, /da varies with x and lies in the range of 0.6 to 0.72. Figure 9 shows the spatial
maximum growth rate of the most unstable even and odd modes, as well as the spatial growth rate of
the Gortler vortex. The odd mode begins to become significant from approximately X = 65 cm, and
the even mode roughly from X = 75 cm. An important feature we discover here is that, although the
odd mode is the first to become unstable, the even mode takes over at roughly X = 82 cm to become
the most unstable mode. The growth rate of the secondary instability is an order of magnitude
higher than that of the nonlinear Gértler vortex.

The frequency and wavenumber of the secondary instability corresponding to the maximum
growth rate at various streamwise locations are given in Table 1. We see that the frequencies vary
greatly from one streamwise station to the next. The experimentally observed frequency of 130 Hz
may not be that of the most unstable wave at large downstream distances. The relatively lower
frequency waves (around 100 Hz) become unstable first. When the region of higher frequency waves
is reached, the laminar basic flow state may have already been destroyed by the nonlinear growth of
secondary instabilities and the higher frequency waves may not have a chance to manifest
themselves. The temporal direct numerical simulation of Liu & Domaradzki (1993) has a
computational box which restricts the maximum wavelength to 2.0 cm. According to Table 1, the
frequency of most amplified disturbance is just above 160 Hz (their calculation gives about 200 Hz).

Table 1. Frequency and wavelength of the secondary instability modes

0dd Mode Even Mode
X(cm) fHz) Wavelength X(cm) f(Hz) Wavelength

(cm) (cm)

65.0 67.1 4.59 79.8 181.7 1.66

70.0 87.8 3.57 82.3 194.8 1.56

74.9 108.8 2.93 84.9 210.7 1.47

82.3 141.2 2.38 89.7 243.2 1.34

84.9 161.6 2.07 94.6 271.3 1.27

89.7 202.1 1.70

94.6 243.0 1.47

The calculations of Hall & Horseman (1991) were almost exclusively for the basic flow state at X =
100 cm. They found that the fastest growing wave (odd mode) has a frequency of about 110 Hz and a

wavelength of about 3 cm. This would compare well with our results at about X = 75 cm. This can be
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explained by noting the fact that their disturbed flow state amplitude is apparently lower than ours
at corresponding streamwise locations; at X = 100 cm, our calculation in Figure 1 shows a thin neck
while their #(y,z) plot does not show this and resembles more with the structure shown in our
Figure 2(b).

We now consider the eigenfunctions of these secondary instability modes at X = 95 cm. The
wavelength chosen here is 1.53 cm, close to the fastest growing odd and even modes at this
downstream location. In addition to the most unstable odd and even modes, a second even mode is
also considered. The contours of velocity eigenfunction |ﬁ,| at X = 95 cm are shown as soiid lines in
Figure 10, together with basic flow state #(y,z) as dashed lines in the background. The
eigenfunctions are normalized so that the maximum [:2,| has an amplitude of unity. The contours
plotted are from 0.1 to 0.9 in intervals of 0.1, and #(y,z) contours plotted are from 0.1 to 0.9 in
intervals of 0.1 U,. One feature to notice is that the phase speeds, c,, of the modes shown in Figure
10 are all close to 0.7 U,, and the amplitudes of these modes are concentrated in the neighborhood of
the manifold #(y,z) = 0.7 U,. This manifold would be the critical layer in the case of neutral
stability.

The contours shown in Figure 10 bear some similarity to those obtained by Hall & Horseman
(1991) despite the difference between the basic flow states in their work and the present work. The
odd mode has two dominant peaks, one on either side of the peak plane. In the case of the even
modes, the second even mode has three dominant peaks similar to that shown in Figure 6 (a) of Hall
& Horseman (1991) for the only even mode they analyzed in their work. The most unstable single-
peak even mode was not mentioned in Hall & Horseman (1991). Considering the fact that the
growth rate of the first odd mode is about 1.7 times that of the second even mode and that, in the
work of Hall & Horseman (1991), the odd mode grows almost twice as fast as the even mode, we are
led to believe that the three-peak even mode analyzed by Hall & Horseman (1991) was actually the
second unstable even mode, and the first unstable even mode was missed because they used a
shooting technique to compute the eigenvalues. In our study, we use a global method which finds all
the eigenvalues of the discretized problem.

The contours of [i,| for the odd mode bears striking similarity to the streamwise rms
fluctuations shown in Figure 16 of the temporal simulation of Liu & Domaradzki (1993), suggesting
that this mode indeed plays an important role in the break-up of Gortler vortices.

From the eigenfunctions, we see a definite relationship between instability and inflection in the
velocity profiles. Figure 11 shows contours of vertical and horizontal velocity gradients #, and ,.
The inflection in the velocity profiles occurs at points where the velocity gradient is maximum. The
amplitudes of the eigenfunctions concentrate near the regions of maximum velocity gradient.

Furthermore, the most unstable even mode is clearly associated with the vertical velocity gradient,
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the most unstable odd mode is associated with the horizontal velocity gradient and the second most
unstable even mode is associated with both gradients.

We have analyzed eigenmodes which are unstable at different streamwise locations if the base
flow of Gortler vortex is free of unsteady perturbations of large amplitude. It will be shown in the
next section that nonlinearity will cause the rms amplitude of the secondary instability to be
modified.

Finally, we point out that the relative importance of odd and even modes may depend upon the
flow parameters (such as Gortler number, wave number, etc.) which govern the evolution of the
steady vortices. However, the general "shape” of the eigenfunctions and their association with the

vertical or spanwise velocity gradients should remain the same.

5. Nonlinear Development of Unsteady Disturbances

We now solve Egs. (2.7-2.8) to study nonlinear evolution of the steady as well as unsteady
disturbances. The spatial secondary instability computations for the even and odd modes are started
at streamwise locations where the respective modes are moderately unstable. Since exact initial
conditions are difficult to obtain, we use the eigenfunctions obtained from inviscid linear secondary
instability analysis to approximate these conditions. Calculations show that transients decay very
fast. The initial amplitude assigned to these disturbances is small enough (of 0( 10‘5) in &, for both
odd and even modes) to ensure that the initial evolution of the secondary instability is linear.

We first discuss the computations for the odd mode. These calculations are performed in the
following way. We start the calculations at X = 10cm for only the steady disturbances. These
calculations are carried up to X = 75 cm where the unsteady odd mode disturbances are introduced.
The frequency of the fundamental secondary instability is chosen to be 110 Hz, very close to the most
unstable odd mode at that location (109 Hz). The number of Fourier modes is 11 in the spanwise
direction (-10 < n < 10) and 8 in time (-7 < m < 7). Figure 12 shows contours of streamwise rms
fluctuations at four streamwise locations downstream of the starting location. Initially, the shape of
amplitude distribution very much resembles the local eigenfunctions analyzed in the last section.
Later on, at larger x, nonlinearity causes the amplitude distribution to become fatter, beginning to
fill up the y~z plane. The maximum amplitude reaches about 20 percent of the free stream velocity,
U,. There are two regions of high amplitude: one near the wall and the other away from the wall.
Initially the region near the boundary-layer edge has higher amplitude, but as the disturbances
evolve downstream the near-wall region attains higher amplitude. The contours of streamwise mean
flow (time averaged flow) at corresponding streamwise locations are shown in Figure 13. The
changes in the "mushroom” structure from that without the high frequency oscillations far
downstream are profound (compare with Figure 1(c)). The top of the "mushroom” becomes flatter

due to the fact that strong unsteady oscillations smear out the differences in velocity gradients. As
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the oscillations get stronger, the "thin neck” region of the "mushroom”, where low speed fluid lifts up,
becomes confined to the neighborhood close to the wall. The experiments of SB show similar
structure of the vortices prior to breakdown, except that in their experiment vortices tend to loose
symmetry about the peak plane. Some of our calculations suggest that such loss of symmetry is
linked to the unsymmetric initial disturbance field.

We now carry out computations for the even mode, which is introduced at the streamwise
location X = 82 ¢cm. The frequency of the fundamental secondary instability is taken to be 195 Hz,
which is the frequency of the most unstable even mode at that location. The number of Fourier
modes is the same as in the odd mode case. In the early linear stage, the distribution of amplitude
of the streamwise rms fluctuation is concentrated in the region away from the wall. Nonlinear
interaction bring the perturbation level near the wall. The rms values of streamwise fluctuations
and the mean flow are shown in Figures 14 and Figure 15, respectively.

In their numerical simulation, Liu & Domaradzki (1993) observed that the oscillation frequency
of the vertical velocity is twice that of the spanwise velocity in the low speed region, while the two
frequencies are the same away from that region. This is also found to be the case in the present
computations for the odd mode. Figure 16 shows the vertical and spanwise velocity fluctuations at
two fixed locations in space, one in the low speed region, the other away from it. Counting the
number of dominant peaks, we can observe the difference in frequency in the low speed region. This
phenomenon can be explained by considering the spatial symmetry preservation property of the
fundamental secondary instability and its harmonics. Initially, the only mode present is the
fundamental with frequency, say, f. In the odd mode case, the vertical velocity fluctuation for the
fundamental mode is odd with respect to the line of symmetry of the background "mushroom”
structure, while the spanwise velocity fluctuation is even. It can be mathematically verified that the
symmetry properties of the harmonics obey the following rule: for the vertical velocity, modes with
frequencies 2f, 4f, 6f, etc. are even, while modes with frequencies 3f, 5f, 7f, etc. are odd; for the
spanwise velocity, modes with frequencies 2f, 4f, 6f, etc. are odd, while modes with frequencies 3f, 5f,
7f, etc. are even. These symmetry properties are preserved as the flow develops downstream.
Suppose we place a velocity probe somewhere along the line of symmetry of the background
"mushroom” structure, we cannot detect the amplitude of the fundamental mode of the vertical
velocity since it is odd and, therefore, has zero-amplitude there. The lowest frequency mode that can
be detected is the 2f mode of the vertical velocity. The lowest frequency mode of the spanwise
velocity that can be detected is the fundamental mode. Hence, it appears that, in the peak region,
the frequency of the vertical velocity is twice that of the spanwise velocity. Once we move away from
the peak region, the fundamental modes of both the vertical and the spanwise velocities can be

detected, therefore, the same frequencies are observed.

18




We define the energy associated with frequency, mf, as

2 I(lumn|2 +|l;lm||2 +|me,.|2)dy (5.1a)

n=-—()
for m > 0, and

2 I( ol +onl" + o )dy *3 [(I“OO| + [l )dy (5.1b)

n=1

and plot it in Fig. 17 as a function of down stream distance for both the sinuous and the varicose
secondary instability. The change in the zero-frequency mode is relatively slow. The energy curves
of the fundamental-frequency modes for both type of secondary instabilities are roughly straight
lines over a considerable range of streamwise distance before the energies in the harmonics become
significant, indicating the rapid exponential growth.

We plot the instantaneous streamwise velocity contours in the x—z plane at y = 1.08 cm (Figure
18). We see that the odd mode perturbs the Gértler vortices in a wavy (or sinuous ) manner, while
the even mode breaks up the otherwise straight contours of Gértler vortices into series of knotty
structures associated with the "horse-shoe” vortex mode of breakdown. At large downstream
distances, more and more small scale structures begin to appear, as the flow heads for transition to
turbulence.

In Fig. 19, we plot the instantaneous streamwise velocity (snapshots at three fixed times) in the
y-z plane at x = 101 cm for the sinuous mode. Comparison with Fig. 1 clearly shows the effect of
unsteady disturbances on the Gértler vortex. The unsteady motion computed here is qualitatively
similar to that observed in the experiments (e.g., Peerhossaini & Wesfreid (1988).

Finally, we point out that, as in the case of the steady Gértler vortex discussed earlier,
quantitative one-to-one comparison with the experiment of SB is made difficult by the uncertainty in
the initial amplitude of the secondary instability and the spanwise variation of Gortler vortex
wavelength in the experiment. For example, the computed isocontours of streamwise velocity for the
odd mode at x = 102.3cm shown in Fig. 13 agree much better with results of SB at 110 cm than at
100 cm.

6. Conclusions

Computation of the nonlinear development of steady Gortler vortices, their stability
characteristics with respect to high frequency secondary disturbances and the nonlinear spatial
development of the secondary instabilities are carried out. Qualitative agreement with the

experiment of Swearingen & Blackwelder (1987) (SB) is obtained. It is found that the wall shear in

19




the peak plane begins to increase at a sufficiently large downstream distance due to the nonlinear
interaction of the stationary modes even before the unsteady oscillations become strong. The cause
of this phenomenon is the fact that the mean flow correction mode ultimately becomes the dominant
mode and overcomes the effort of the Gértler vortices to slow down the flow in the peak region. The
energy in each stationary mode eventually approaches saturation. The computed "mushroom”
structures bear strong resemblance to those obtained in the experiment of SB.

For this particular basic flow state which is set up due to the Gortler vortices, the temporal
secondary instability analysis is carried out using a 2-D eigenvalue approach associated with the
governing partial differential equations. For the conditions of the experiment of SB, the odd mode of
secondary instability begins to show up at approximately X = 60 c¢m, the even mode becomes
unstable later at approximately 70 cm < X <75 cm. At about X = 82 c¢m, the even mode becomes more
unstable than the odd mode. Comparisons of the amplitude distributions of eigenfunctions with the
distributions of vertical and spanwise shear gradients clearly indicate the close association of the
most unstable even mode with the vertical shear and the most unstable odd mode with the spanwise
shear.

The nonlinear, spatial development of the odd and even modes of secondary instability is
computed using the PSE method. The odd and even modes give rise to the sinuous instability and
the varicose instability, respectively. Either mode can lead to the breakdown of Gortler vortices.
The two-fold difference between the frequency of the vertical velocity and that of the spanwise
velocity oscillations found by Liu & Domaradzki (1993) is simply due to the fact that the
fundamental mode of the vertical velocity has zero amplitude at the line of symmetry of the
"mushroom"” for the sinuous instability and the high frequency in the vertical velocity they detected
was, in fact, for the harmonic. Prior to breakdown to turbulence, the nonlinear interaction among
the steady and unsteady modes eventually make Gortler vortices to oscillate sinuously in the plane

parallel to the plate or cause them to develop horse-shoe type structures which travel downstream.
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Appendix I
Let A=-imw+ia U+gf"‘-’i—idi"l‘- then
mn R R dx '’
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N,,, is the Fourier transform of (N, N,,N3,0)" in Eq. (2.1) to (2.4).
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Fig. 1. Variation of streamwise velocity in the Y-Z plane due w the presence of Gortler vortices at
(a) X = 60.1, (b) 79.8, (¢) 100.4 and (d) 120.1 cm. Two spanwise wavelengths are shown and
contours range from u/v, = 0.1 to 0.9 in increments of 0.1.

23




-aus|d £a[[eA 9y} pue yead oy ut sa[yoad £}100aA sstmwBANG ‘g 31

e Ty

v

T

L“ g2

Wwo Z£°00L =X ‘Wo gL =% ]

R »L.+_...k_>L.%_>...PFL.pm.mu

(wo) A

24




"SUOIJBI0] ISIMWIBAIIS 93IYJ PUB [ PIXY I8 AJI00[oA 9SIMUIBDI)S JO UOIJBLIBA 9smueds g 31

n/n
o't S0 00 00
\ —10 0 .
! ; l I
= 1 - 1 -
H U ”
] 0S50 | i ]
| \.\P_.O IN - N —
i wo) A ! i
! N I N |
() S
L ,(W\ L m L
- - (o - € -
ﬁ wd 0g1=X - , , Wo 6'6.=X 1
. — M P N

25




"sapout Jaumo asmueds snoLrea 10§ A310us 3dueqINISIp Jo UON[oAY ‘¥ 314

oSt

T

00}-

26

0'G-

(“3)6o
se

00




'gS Jo ejep [BjusdwLadxd ay3 Juasaidas sjoquikg £a[eA ay) pue yead ayj 18 IBIYS [[EM [BULION G "3

(wa) X

oSt G2l1 001 7 0S S2 0
U A e e e e L B B e A e O
g @) 1
- © 4 oos
- H o001
m sniselg " ]
u 4 oos1
s J
- 4 oooe
m o O ]
- a Joosz
X ] c
9 E Q)
- -{o00e =
. Joose @
A . ]
. WOEg="Ymemun ] o,
. wogh =% ——— Jooor
” | } ] | | u

e " L 1 2 1.1 1 2 1 U 1 L L _l 1 L 1 i 4 S 1 oomv

27




"SUOT)BIO] ISIMWIBAILYS SNoLIeA 18 Yead ayy Suore safyosd £3wo[aA asmwreang ‘9 "1

'l

LA S B

LA AL N B AL A RN S SRS SN A BB R NN AN

MU G U T

S |

¢o0

LAY

90

80

(wo) A

o'l

c'h

vi

28




‘dS Jo ejep rejuawLiadxa ayj juasardas sjoquAg “A3[[ea ayj pue yBad ayj 9B SSow{dIY] Juswade[dsip Jo uonnjoay L ‘314

(wo) X
Gcl 001 SL 0s 1°14 0 .

T T T e [ T = 00
” |||D| b
! AslleA 0O 1
- 120
[ a i
[ O 1
s O SR u
= 4 Vv0
i @) ]
— 490
[ 1 (wod)e
i I i .
- ¥ead woeg=Y -----  Jgq
! wogL="% ]
[ g 4. ... .1 ., 4 ., .|, ., . Jq ., ., ., | ., ., ] O—v

29




‘SUOI}BI0] ISIMUIBAI}S SOLIBA 18 J9QUINU ABM 9SIMUBdS YJ1M UOT)BLIBA 981 Y3moud [etodwa) AJIIqe)sul £18puoddg ‘g "814

9pOI PPO (®)

S0 vo €0 c0 10 00
.4.4~+_wﬁ_..<<_...._....408.o

| N

[ 8'6. ]

L -1 6000

| 6'v8 0'0L w

”l 6L 1 0100

i ,'68 1

i 9'v6 ~\\\ ] 5100

” u

[ wo 400t =X ]

- -1 0200

I ] '®

n 416200

I 8pow ppO 1

N T S S 0800

30




‘papupuoy ‘g ‘Sid
POy usAg (q)

S0 0 o °  zo 10 00
T T ety 0000
ﬁ svg €8 o, |
B 86L S~~~ 4 so000
5 doi00
” L'68 .
i d5100
” ]
. Joz00
 wogvE=X “
i 45200
[ apoW usAg |
N T T T Lo ] 0£0°0

31




ay3 Jo et Yimoa3 ayj y3im pasedwiod ‘SUOIIBIO] ISTMUIBAIIS SNOLIBA 8 SOPOW UIAI PUB PpO Y3 JO 9ea Yjmoid [erjeds wnwixely 6 S

oo}

S6

(wo) X

06 S8

08 SL 0. S9

T

L

LANELALA B AL S A B B A

LA SN N S SN AN HL S RN ALY LN SN RELGNLENLENAINS B L ANLARM

-
.
b

sanem Auepuooes

P

P T B

Frrrrgp ey T

XOUOA J18[HOYD)

|

PPO

PES BTSN

Pl IFEPE A S BT SN A

3

L

1 ol 1,

Lot

10

co

€0

0

S0

90

L0

"X9}J0A II[}IQN)

(W) sjes ymorn

32




"un Gg = X 18 £J1[1qeIsur £1epuodas jo suorjounjuadie £3100[0A astMwedlg ‘01 ‘314

3POIN PPO d1q8IsU[] IS0 (8)

(wo) Z
8’1 9t vl A ol 80 90 0
- bl J -h\fhlrWﬂuHrLl'l

- =zzZT<e==2
To===

-

2 g

LEN B AL L A N
L DT PR

-

T

1 (o)

L4

v

v

neLo=" ;
[ ZHpez=4 1t
i WOESL=Y |
= wo g =X mv.—

VSRS I SO U ST B W S | IRV BEURS U Y UV UNT SN U TENTUNY S Y SRV ST AT GOSN

33




"ponunjuo) ‘0T ‘814
9PO UaAT d[qeIsu[) ISO (q)
(wo) Z

't 0t 80 90 ¥0 0

TR Y PLaF A A -
SOSON NS L e e I el
N N Y \\\\\ PR P2 .
AN RN e Pid 1420
NNy ALre S s P
LY L) -
\ AN N s s i
A v 1+t 1 ¢ \ i
Vo A N
O O I ~ i
’ LIS ¢ 1t . N ]
Pl HEE A -~ N
-7 L N B S~y “ dv0
| I B} ~ \
[V I | \ \ -
PN \. ! ! 4 —/ - ® \ .
’ -~ -~ .7 [} [} .+ N / \
i \
] ]
] [}
] [}
! )

- -
——————
- -
-
-~
-
-
e R
L

‘nego=" |
ZHGez=} 2}t
WOESL=Y |
wo 56

R BT DR AP AT S S I Gl SIT ST A U T GNP S S

T

Tr=r
i
x
L

Vi

L

(wo) A

34




‘papnpuoy 0T S1g
3POJN URAY [qBISu[] ISOJ\ Pu0d3g (9)

(wo) Z

i 'l ot 80 90

e REE REROR N
- {90
: SR T
:
” NeLo=" |
N zHeez=4 1%t
! wogsL=Y |
[ woge=X v
ﬁ-’- 2o L — T S —,L S L _ S _’- 1 _— — 20 -t — VS S h 4 L - — I~ _—] -4

(wo) A

35




L20°0
$00°0
9€0°0
£90°0
8600
0elo
l9i’0
260
1£{14Y
§S¢°0
9682°0
8i€0
6’0
08e’0
civo

LWoOoOOOnm oM O DT O N -

‘W) G§ = X I8 SjudIpels £190[3A asmueds pus [BII11I9A JO suoBLIBA TT 314

Xe/ne (8)

(wo) Z
gL 9l 0L 80

LR S

[ L B o s o e ey e e e e e

| SN PP AP EFUTEPIT SR

-h-—h--—--—r-—\_r-.-—--——F--—!hnbh—--

36




"papnpou0) ‘T1 aandiy
"zZe[ne (q)

(wo) Z
81 9’1 7'l ¢t o't 80 90 0 o0 00

.
T ¥ F T —1-\ L. L d‘ L) -‘ Ll \-‘LIH'-'“'-'F“'-‘ LJ L — Ll 1 L] A —‘—\ T L] JTI ° o
- -~
L \\\;m.llll O~ “a E
17 S ~ N
L 12 T v ' J
Nl S B /
o ' oaN 4 1 b
k" Ve ) s / .
= g -1 s o / 120
s .....: e o \la 1 .
e .....\\\ AV AR RN
3 G L S | N 1
13ttt -, ’
i —'"“_t \ :~. o7 —. K \N. h
- el S PN J+0
5 ',/ :.\.. L N ' 4
s Y B S N
F o €/ T EPAN N i
L ~ W it ! 7 AN w ' o
1~ " ] [ RO
L ¢0 we sl H R N N T
[ AP AN SR T 1A
- ! N ..__\xN vl '\ Ve ! ~-4 90
. L W 11 ' i
s 1 [ W\ vl AoV
[ Vo AR .
. i ’
0tL’0 c ¥ [ o 19l Vv E
. L __ ' %4 ::#.\ H .. v i
soL'o €L - \\.m\C H T 180
‘A 1 Ve, y 1 4
1800 vy /! \\ \\ ] sV\ )l E
§90°0- s | \\\ \\ \\\ !/ ]
- ’, \\ \s td ’ U -
. ’ ’ ’ 4
€90°0- 9 r \\\\\\\ n ‘ \\%\ \ h
| L (8 R ) - O.P
2200 JA LS Rt rdrd
- 2%, 4 [y EIR AV 1
g 4 AN 4
NNOO m | .~ ~\ ~l I\.\\\\\\\\\ -
- - -
€900 6 [ g AN ]
L - .
\ - 15
> - ~ -
§900 vV Rt 172}
L J
2800 g8 t p
801°0 (oI | 1
L 4
. .
oeto a } 1yl
. o b
esio 3 b

37




LD
261910

WO OUOBCOOr®Nen N~
”

esWOOO<Coasrdawen N~

FEFIVE BT Erare e

)

1 dode L

THOLL =) 'wo e =X (Q)

(wo) A

2008510
[4Y1x4

gt

"W GOT = X (P) ‘W
€201 = X (9) ‘U0 ¢'T6 = X () ‘W $°08 = X (8) 9pows ppo ayj 10§ due[d Z-X 9Y} Ul SUOHEBNIINY AJII0[OA dSTMUIEIIIS SULI JO UonjeLep "1 ‘81

e

LWAOODCO OOV e MmN~

90

80
(wo) A

3

ZHOLL =) 'wo oL =X (0)

(wo) z

9l vl Tl o't 80 9'0 +'0 [4Y) 00

BWOOUOBACOOrON @ N -

i | v 1 L l i 1

80
(wo) A
oL

Tl

ri

ZHOLL ='W pog =X (8)

38




‘opow ppO "W £'ZOT = X 18 aus[d Z-X 33 Ul AJ1DO[9A ISLMWET}S PaFBIDAB-OWN) JO UOBLIEA €T 31]

(wo)Zz
g8l 9l i FAl oL 80 90 ¥'0 20 00
e e - Y | I S ags R o > o.o
e ——— ==
2

u-ll}@ .

- j q\\\\lﬂm.o

- -

- Jvo

- 490

[ ]

- 1

- l.w.o
ve L F 1.
zo 2z [ 10°4
€o ¢ f 1 oA
e ¢ } i_
so s [ 1¢t
0 M [ /ldl‘\ #
Lo ¢ 1
80 8 | 1V
o 6 [0t ol

wo €20k =X 11N

39




‘wo £90T = X (P)

‘WO €201 = X (9) ‘W0 $°00T = X (q) ‘uwd §'L8 = X (B) 9pouWl UdA3 ayj 10§ dus|d Z-L UI SUOHBNIINY £J100[2A ISLMWIBDIJS SULI JO UOIBLIBA “HT St

LWOOUODCOoOrNONe N~

-
:
°
wNOOUOCOeB ROV v N~
f T T T

ZH GG =) "Wo $'00L = X (q)

wWOOUOCoOr OV T N~
T

Je0
(wo) A
o't

42

1V

ZHSEL =i ‘w0 gL =X (v)

40




"3poW udA?d 3Y) 0] WO °ZOT = X 38 dueld z—£ u1 £}100[oA aSIMWIBAI]S poSetaAe-awn) 3Y) JO UOTjBLIBA ‘GT Si

1’0
c0
€0
0
S0
90
L0
80
60

D DO O T ON

(wo) z
8t 9l vl FAl 8 ol 8’0

T

LA N B B B B S S S I B S IR S S e S NN S B e o

~L|P.P...;_.-h_L@Vr.~L|.__._...

PN I SEUT SUT S U WY WU VN O WY ST WY SN0 N O ST S N ST AT U U TSNS S WA

[T BT SRS

wogzoL=X®e'n

v0
90
80
(wo) A
ol
Sl

i

41




“yead ay) wouj £8MB §/°y = Z 18 suonBnIn[ 10} ydead semo]
-yead ayj 38 suorpenjony 1o ydeid soddn -wo 627 = £ Pus W GOT = X 38 W )M suohendny £y0[eA asimueds pue [eonnaep 9T 314




‘sorouanboiy snoLrBA Yjwm pajerdosse L3reuy LT g

(PPo) 9pOJy STONUIS (B)
{(wo) X

0kl SOl 004 6 06 8 08 5L
e mamama e ] 2}-

s 4
- Jo1-
”,

! ]
- .L@n

I ]
3 1"
:
3 - — 0

! 4 _

- ZHOLL="d;
P PRI U BT SR ORI N P YINT GRS U T Y P O T N

(3)60

43




Okt

‘papnpuo) L1 ‘84

'(U3AD) DpoWl ISOILIBA (q)

(wo) X

SOl 00t G6 06

A ARERAE B

L BN BN SR AL SN

LA L

L I AR L R

P O

¢

PORPSY I N RN |

PR B

ZH 561 = ‘4

[ 1

(3)6oj




*(u2Al) apow
3S0JLIEA — j[eY Jomo] ‘(Ppo) opow snonuls — jey Jeddn "wd 80’1 = X 8 due[d Z—Y 9Y) UI £}100[0A ISIMWBALS SNOIUBIUEISU] "8I 8y

(wo) X
Y01 2ol 004 86 96 6

T T ¥

S IR
NGRS - .

GO o (e

Y

e

.vv. a—— e e
oo

, _q

T L4 L

L — -

(wo)z

45




R LT

ey T T o

Instantaneous streamwise velocity in the y—z plane for the sinuous mode (f = 110 Hz): top,

t = 0; middle, ¢ = 27/3w; bottom, ¢t = 473 w.




PART B

Crossflow Disturbances in Three-Dimensional Boundary
Layers: Nonlinear Development, Wave Interaction and
Secondary Instability
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Abstract

Nonlinear stability of a model swept-wing boundary layer, subject to crossflow instability, is
investigated by numerically solving the governing partial differential equations. The three-
dimensional boundary layer is unstable to both stationary and traveling crossflow disturbances.
Nonlinear calculations have been carried out for stationary vortices and the computed wall vorticity
pattern results in streamwise streaks which resemble quite well with the surface oil-flow
visualizations in swept-wing experiments. Other features of the stationary vortex development (half-
mushroom structure, inflected velocity profiles, vortex doubling, etc.) are also captured in these
calculations. Nonlinear interaction of the stationary and traveling waves is also studied. When
initial amplitude of the stationary vortex is large as compared to the traveling mode, the stationary
vortex dominates most of the downstream development. When the two modes have the same initial
amplitude, the traveling mode dominates the downstream development owing to its higher growth
rate. It is also found that, prior to laminar/turbulent transition, the three-dimensional boundary
layer is subject to a high frequency secondary instability which is in agreement with the experiments
of Poll (1985) and Kohama, Saric & Hoos (1991). The frequency of this secondary instability, which
resides on top of the stationary crossflow vortex, is an order of magnitude higher than the frequency
of the most amplified traveling crossflow mode.

1. Introduction

In swept-wing flows, chordwise pressure-gradient near the leading edge causes inviscid stream-
lines to be curved in the planes parallel to the wing surface. Associated with this streamline
curvature is a pressure gradient which acts in a direction normal to the streamlines and introduces a
secondary flow within the boundary-layer. This secondary flow, commonly known as crossflow, is
subject to inviscid instability due to the presence of an inflection point (Gregory, Stuart & Walker
1955) and is the main cause of transition in swept-wing flows. Thus, this problem is not only of
fundamental importance in fluid mechanics but also of prime significance in laminar flow control
(LFC) design of swept-wings.

Crossflow instability often results in the formation of stationary corotating vortices commonly
called crossflow vortices. This phenomenon is observed in swept-wing boundary layers as well as in
other geometries such as rotating disks and cones. How the stationary crossflow vortices lead to
turbulence remains unanswered. Traveling crossflow disturbances are also possible and the role of
traveling vs. stationary disturbances is a question which needs to be investigated. Another problem
which is of interest in swept-wing flows is the possibility of interaction between the inviscid crossflow
disturbances and viscous streamwise instability. Crossflow disturbances are amplified in the

negative pressure rise region near the wing leading edge, while Tollmien-Schlichting (TS) waves
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(viscous instability of streamwise profiles) are amplified in the flat pressure region of the wing
midchord. The possible interaction of these two types of disturbances may be quite significant in the
successful design of LFC wings.

Experimental investigations into the nature of the swept-wing boundary-layer instability, at its
linear and nonlinear stage, have been carried out by Bippes and coworkers (see, Bippes (1991),
Miiller & Bippes (1988), Miiller (1989)) at DLR, by Saric and coworkers (see, Dagenhart et al. (1989),
Saric, Daganhart & Mousseux (1989), Kohama, Saric & Hoos (1991)) at Arizona State University and
by Arnal and coworkers (see Arnal & Juillen (1987)) at ONERA/CERT. Experiments at DLR were
performed on a swept-plate model with an imposed pressure gradient. A displacement body above
the plate was used to generate the c, distribution which varied almost linearly with chordwise
distance. Saric and Arnal used infinite-swept aerofoils in their low-speed experiments.

Both stationary and traveling crossflow disturbances were observed in these experiments, as
well as in the experiment of Poll (1985) on a swept cylinder. Miiller & Bippes (1988) found that the
stationary vortices, as well as traveling disturbances, reached nonlinear saturation in their
experiment. However, they did not notice any explosive secondary instability leading to transition.
On the other hand, Kohama, Saric & Hoos (1991) observed a high frequency secondary instability
prior to transition in their swept-wing experiment where pressure gradient remained favorable
ruling out any possibility of TS wave amplification. The frequency of this secondary instability was
an order of magnitude higher than the frequency of the most amplified traveling disturbance given
by the linear theory. They concluded that, even though the traveling crossflow disturbances are
observed, the transition process in this three-dimensional boundary layer is dominated by the
stationary vortices and the associated secondary instability. Poll (1985) had also observed a high
frequency disturbance in his swept-cylinder experiment.

Miiller & Bippes (1988) also studied the effect of free-stream turbulence on the instability
behavior in their experiment. They found that at "low" levels (.05 percent) of free stream turbulence,
stationary disturbances amplified to large amplitudes but these large amplitudes of the stationary
vortices did not necessarily lead to early transition. The experiments performed in wind tunnels
with higher turbulence levels (.15 and .3 percent) showed weaker growth of stationary disturbances
but earlier transition due to stronger traveling disturbances. They concluded that traveling waves,
and not the stationary vortices, play the major role in the transition process. Their experimental
results also seem to suggest an early nonlinear interaction between stationary and traveling
crossflow disturbances.

Theoretical investigations into linear and nonlinear stability of three-dimensional boundary lay-
ers have been carried out by Balachandar, Streett & Malik (1992), Fischer & Dallmann (1991), Malik
(1986), Meyer & Kleiser (1988) and Reed (1987). Fischer and Dallman used secondary instability
theory and Meyer and Kleiser used direct simulation of Navier-Stokes equations to study the swept-
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plate experiment of Miiller & Bippes (1988). Fischer and Dallmann argued that the traveling
disturbances observed in the DLR experiment are secondary disturbances of the mean flow modu-
lated by the stationary vortices and should not be thought of as the primary instability of the three-
dimensional boundary-layer flow. Direct numerical simulation of Meyer and Kleiser found nonlinear
equilibrium states for stationary as well as traveling disturbances, in agreement with the DLR
experiment. Similar equilibrium states for stationary vortices were computed by Malik (1986) in
rotating-disk boundary layer. Balachandar, Streett & Malik (1992) performed a secondary
instability analysis of the rotating-disk boundary layer where the stationary vortices constituted the
primary instability. They were able to find a high-frequency secondary instability similar to the one
observed by Kohama (1984,1987) in a rotating-disk boundary layer.

Al] these experimental and theoretical investigations consider a class of mean flows which is
only unstable to inflectional crossflow disturbances and do not support TS wave amplification.
Results from various experiments appear to suggest that for this class of flow, there are at least two
possible scenarios for transition. If free-stream turbulence level is very small, i.e., the initial
amplitude of the nonstationary disturbances is small relative to the stationary disturbances, which
most certainly are introduced at local surface imperfections, then stationary disturbances dominate
the initial stage of the disturbance growth leading to a high-frequency secondary instability resulting
in final breakdown. When the initial amplitude of the traveling modes is not small, nonlinear
interaction between these traveling modes and stationary vortices is present and the character of the
final breakdown is influenced by the relative amplitudes of the stationary vortices and the traveling
modes. The other class of flow where TS waves could amplify is also of technological importance but
has not been studied either experimentally or theoretically.

The objective of this research is to study various wave-interaction mechanisms and laminar-flow
breakdown in three-dimensional boundary layers. Previous linear and nonlinear theoretical investi-
gations have been performed by using parallel-flow approximation and have been local in nature.
This study includes nonparallel effects and sets up the problem within the framework of nonlinear
parabolized stability equations (PSE). Intermodal interaction and the effect of initial conditions can
also be studied by using this approach. Basic insight into the physical mechanisms involved in
swept-wing flow transition can be achieved by considering simple model flows. One such flow is the
swept Hiemenz flow in which the interaction of stationary and traveling crossflow disturbances can
be studied. In this paper we study linear and nonlinear crossflow disturbances as well as the
interaction between stationary and traveling modes. We also study secondary instability of the
three-dimensional mean flow modulated by the stationary vortices. Section 2 describes the basic
flow for the swept Hiemenz problem and the associated PSE analysis is given in § 3. The results for
linear and nonlinear stability analysis and wave interactions are given in § 4. Section 5 describes the

results from secondary instability analysis and the conclusions are given in § 6.
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2. The Swept Hiemenz Problem
The flow past a circular cylinder, outside the viscous boundary-layer, can be represented as
U,=cx +c1x'3 +(-2x'5 + ... (2.1
where U, is the velocity along the coordinate x* and c,cy, etc. are constants. In the two-dimensional
stagnation-point flow, only the first term in the series (2.1) is retained and, hence, the velocity U/,

increases linearly with distance x* , i.e.,
U, =cx (2.2)

If we consider the Cartesian coordinate system x*, y*, 2", then (2.2) gives the far-field (y~ — o)
solution of the impinging flow on a plate along x* which we define here by y* = 0. The associated
visccus problem was first investigated by Hiemenz who found an exact solution which is named after
him. This stagnation flow was found to be stable to infinitesimally small disturbances propagating
along z* by Wilson & Gladwell (1978).

The swept Hiemenz problem is constructed by introducing a velccity component W_ along the z*
axis which amounts to changing the inclination of the impinging stream with respect to z*. The flow
is symmetric about the line x* = 0 which is called the attachment-line. Linear and nonlinear
stability of the attachmeni-line boundary-layer has been studied by Hall, Malik & Poll (1984) and
Spalart (1988). In this paper we study the stability of this flow for x* > 0 as was recently done by
Spalart (1989) using full Navier-Stokes equations.

2.1. The basic flow
We consider the flow of a viscous incompressible fluid of kinematic viscosity v. Let £=+v/c be
a typical thickness of the boundary layer which is used here as the length scale. We note that ¢ is

independent of x*. Thus, we have the scaled coordinates x, y, z given as

*

(x,3,2) = (&

LA
e’e’ e

We also define two Reynolds numbers R and R where

r=Ut (2.3)
v
Rt (2.4)
v
From (2.2) and (2.3), it follows that
R = f— =X (2.5)
V4

The local angle of the inviscid streamline 8, with respect to the x-axis, is given as




W) oionf E
0= aMn(I) = at,an( B ] (2.6)

We now look for a solution to the Navier-Stokes equations which satisfies the following

conditions
u =v =w =0, y =0 (2.7)

W oU,, w oW, y oo (2.8)

* * * . . * * * 4. . . . .
whereu , v, w are velocity components in the x', y, z° directions, respectively. It is convenient to

define a stream function @ so that

and
@ =x"Vevf(y) .

If we use W_ as the velocity scale, then

gl Xp
= WO R 'y (2.9)
-~ v 1
v= -—: = ff(y) (2.10)
Similarly, .
—_ W _
w _—VV—,‘ g(y) (2.11)

where f and g are governed by the ordinary differential equations
f+ff"+Q1-f*=0 (2.12)
g"+fg'=0 (2.13)

where primes denote differentiation with respect to y.

The mean flow derivatives needed in the stability analysis below can be written as

_x [ —d __x_ ”»
iy=5f" ty=5f
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Numerical solution of (2.12) and (2.13) thus yields the mean flow and its derivatives without any

additional approximation and the boundary-layer thickness does not vary with x.

3. PSE Analysis for 3D Boundary Layers

Parabolized stability equations (PSE) for linear and nonlinear disturbances in two-dimensional
boundary layers have been used by Herbert (1991) and Bertolotti, Herbert & Spalart (1992) for
incompressible flow where they used streamfunction formulation of the governing equations. In the
present three-dimensional (3D) boundary-layer study, we follow the work of Chang et al. (1991) for
compressible flow and formulate the incompressible stability problem using primitive variables in
Cartesian coordinates x, y, and z. The basic flow is perturbed by fluctuations in the flow, i.e., the
total field can be decomposed into a mean value (golution of (2.12-2.13)) and a perturbation quantity

u=T+d, V=U+D, w=W+W, p=p+p 3.1)

where p is the pressure. Substituting (3.1) into the incompressible Navier-Stokes equations and

subtracting from it the steady mean flow, we obtain the nonlinear disturbance equations as

[0, 4%, pd o3 g, p 9%, P
at Aax+B¢9y+C&z D¢ - ax2 +E’3y2 +E, 157 =F 3.2)
where the left hand side contains only linear operators operating on the disturbance vector
o= (u u,w, p ) and the right-hand-side forcing vector F is due to non-linear interaction and includes

all non-linear terms associated with the disturbances. The right hand side is given as

-0p =09 09
F=-A—X-B—-C—. 3.3
> > > (3.3)
In the above, I'is the diagonal matrix [1,1,1,0] while A, B, C are given as
z 0 0 1 v 0 00 w 0 0 O
A=0u?_0,B=0091,C=0w__0_0,
0 07 O 00D O 0 0 w 1
10 00 0100 0 0 10

and A, B, C are similar to A, B, C except that quantities with over bar are replaced with ~ and all

ones are dropped. The coefficient matrices D, E., E,, E, are given as

Z, @, 0 0]
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1
= 0 00
R
E,:E,:E,:O'ﬁ(io
0 0 = 0
R
(0 0 0 o

We assume that the given disturbance is periodic in time and in the spanwise direction; thus,

the disturbance function ¢ can be expressed by the following Fourier series

$= i i Loy (1, y)ei(RE—mat) (3.4)

m=-oo g=—o

Here, the frequency ® and wave number B are chosen such that the longest period and wave length
are 2n/w and 27/8 in the temporal and spanwise domains, respectively. For most stability problems
of interest, it is sufficient to truncate (3.4) to only a finite number of modes

M-1 N-1 ‘ (3.5)
o= z 2 Z,,m(x,y)e'("&-m“)

m=-M n=-N
where M and N represent one-half the number of modes kept in the truncated Fourier series.
Substituting (3.5) in (3.2) we obtain governing equations for y,,, which are elliptic. In order to
facilitate the solution of these equations we decompose the disturbance into a fast varying wave-like
part and a slowly varying shape function and write z,,, as

Zmn(%,¥) = ¥ (2,5) 4, () (3.6a)
iI%“)‘“
A,,(x)=e = (3.6b)

where ¥, is the shape function (&,,,,0,,,, etc.) for the Fourier mode (manp) and «,,, is the
associated streamwise (complex) wave number. With a proper choice of «,, in (3.6b), the
arbitrariness in (3.6a) can be removed and the equations for ‘¥,,, can be parabolized. In other words,
@, is chosen such that variation of ¥, with x is minimized which allows the approximation
9*¥,,, /&% =0. The parabolized stability equations (PSE) for the shape function of a single Fourier

mode (m,n) can be written as

P — —_— 2
Gonn ¥ +A,,,,,‘9—'g;"n-+13m,, 3:’;". -E, a;’;" +Fo /4, 3.7

where matrices E,,,, A,,, and B, are given by

Gy = —im@l +i04, A +infC+D - E,(i da

e -a,z,m)+n2ﬁ2E,




Amn =A- 2iamnEx
B, =B
The non-linear forcing function F,,, is the Fourier component of the total forcing, F, and can be
evaluated by the Fourier series expansion
M-1 N-1 .
F,y,zt)= Y Y, Fuulx,y)eeme, (3.8)
m=-M n=~N
The Fourier decomposition of (3.8) can be done by using the Fast Fourier Transform (FFT) of F,
which is evaluated numerically in the physical space.
The PSE equations (3.7) can be used to study nonlinear interaction of various modes (e.g., cross-
flow/crossflow, crossflow/TS, etc.) or one can study the onset of transition to turbulence provided
appropriate initial conditions are prescribed. For small disturbances, F can be neglected and one

obtains linear PSE equations (after dropping the subscript 11)

EW+Z%+E%"—'=E,‘§—Z' (3.9)
which can be solved to study the effect of nonparallel flow or that of initial conditions. If nonparallel
effect is ignored, then (3.9) essentially reduces to the Orr-Sommerfeld equation.

The streamwise wavenumber in (3.6b) needs to be determined in order to solve the equations by
a marching scheme. This procedure is given in Chang et al. (1991). Here we briefly describe it for
the linear equation (3.9). In this case, the evolution of the shape function is monitored during the
process of marching and the wavenumber is updated by local iterations at a given x according to the
change in ¥. At a given location x,, let the streamwise wavenumber be given by o; and then express
das

.{ ]:1a1d§+ﬁz—atJ

0(x,y,2,t) =¥(x,y)e (3.10)

The change of the shape function ¥ can be approximated by the following Taylor series expansion
truncated to the first order

oY,
¥, y)=¥, +§—x~1—(x-x1)+...
where ¥, is the shape function at x = x;. To an accuracy of O(x - x;), the above equation can be
further expressed as
J" iﬁdé
Y(x,y)=Wel va®. (38.11)

Substituting (3.11) into (3.10), we have the "effective” wavenumber in the vicinity of x; given by

55




a=oy—i—t (3.12)

The real part of this effective wavenumber represents the phase change of the disturbance while the
imaginary part gives the growth rate. A disturbance is unstable if the imaginary part is less than
zero. Since the shape function vector ¥; depends upon y and contains four dependent variables (a,0,
etc.), the value of a computed by (3.12) will be a function of the y coordinate and the selected
dependent variable. One can, for example, use the shape function Z and the y location where
reaches its local maximum to update the wavenumber at any given x station as the disturbance
evolves downstream. An alternative which is used here is to consider the following integral
condition,

(o.M
tfq axdy

Apew = Xogld -_2_
[

which removes the dependence of aony. If ¢ is a particular component of ¥, then the dependence of

(3.13)

aon YV, is retained in (3.13). For three-dimensional boundary layers we choose g to be a vector with
components ( Z,5,w). Equation (3.13) is used in the iterative solution of (3.9) until the second term in
(3.13) vanishes to a prescribed tolerance. An additional condition (Chang et al. 1991, Malik & Li
1993) needs to be satisfied in order to obtain solution of (3.7) by the space marching approach.

Numerical solution of the parabolized stability equations requires discretization in both x and y
directions. We discretize the streamwise derivative by a backward Euler step and wall-normal
derivatives by fourth-order accurate compact differences (see, Malik, Chuang & Hussaini (1982)).
Homogeneous boundary conditions at the wall and in the free stream are imposed. The initial
conditions are obtained by a local approximation to (3.9) and by solving the associated eigenvalue
problem. Since the wave information is absorbed in the wavenumber « (3.6b), one needs to use a few
marching steps per wavelength to obtain an accurate solution of the wave evolution. Calculations for
two-dimensional boundary layers show that PSE results with only 3 steps per wave length agree
quite well with very accurate Navier-Stokes computations using 60 grid pcints per wavelength (see,
Joslin, Streett and Chang 1992).

4. Linear and Nonlinear Stability Analysis and Wave Interaction
4.1 Quasi-parallel linear stability
In order to determine the relevant physical parameter space, it is appropriate to first give some
results from quasi-parallel linear stability theory. We consider two cases: R = 250 and 500. Hall,
Malik & Poll (1984) found that the attachment-line boundary-layer (x = 0) is stable to infinitesimal

disturbances up to R = 583.1. Thus, for the two cases considered here, the attachment-line
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boundary-layer is stable. In the present study, we are interested in the crossflow disturbances which
will become unstable away from the attachment-line (x >> 1). Figure 1 shows the mean velocity
profiles in directions tangential and across the inviscid stream at an R of 500 and R = 500. The
velocity profiles U, and U, are defined as

U,=ucos0+wsin

U,.=&sin 8- cos 8

where the streamline angle 6 is defined in (2.6). These velocity profiles have been scaled with
spanwise inviscid velocity W... It is clear from (2.6) that 0 decreases with R or x as the flow turns
away from the attachment-line towards the free-stream direction. This is depicted in figure 2 where
the angle 6, along with the crossflow Reynolds number R, y (defined below), is plotted for both R =
250 and 500.

Crossflow instability is associated with the inflectional velocity profile U, which, for swept
wings, is positive towards the center of curvature of the streamline. The flow becomes unstable
when crossflow Reynolds number R, f2 40 where R, y is defined by

n U5,

Y = 4.1)

where U, is the maximum value of the crossflow velocity U, and & , is the thickness where the cross-
flow velocity has dropped to 10% of l_]: Distribution of the crossflow Reynolds number R, ’ is given
for the two cases in figure 2. The value of R, , exceeds about 50 at R = 200 and, hence, the instability
will onset at R < 200 for both cases. The maximum value of R, ¢ is about 150 for R =250 and about
270 for R = 500. In swept-wing flows, transition usually occurs where R, ’ becomes of 0(200).

Figure 3 presents results for integrated growth,

JR o,dR 4.2)

(Al &)= o,

using the quasi-parallel growth rate o, =-~a;. Calculations are performed for stationary as well as
traveling disturbances with frequency F =.75x10™* (where F = 2mvf/ W2, f being the frequency in
hertz) at both B. These calculations are performed for a fixed spanwise wavenumber of 0.4 which is
close to, but no quite (see figure 4 below), the most amplified wave number for the flow under study.
It is clear that traveling disturbances amplify more than the stationary disturbances according to
linear theory. However, stationary disturbances are found to dominate when experiments are
performed in low-disturbance wind tunnels. This is due to the lower initial amplitude of traveling
modes (see the work of Choudhari & Streett (1990) on the receptivity of stationary and traveling

disturbances).
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The variation of spatial growth rate with wavenumber 8 is given in figure 4 for the two frequen-
cies. There are two curves associated with F =.75x10™*, one with positive S and another with
negative B, the latter with smaller growth rates. The stationary vortex and 8 > 0 traveling
disturbance has peak growth rate at § = .35 as shown in the figure for R = 300. In the downstream,
the peak shifts to higher wavenumbers and lies, for example, at 8 = .45, R = 650. The two families of
unstable traveling disturbances are further shown in figure 5 where the growth rate of the most
amplified (among various wave orientations) disturbance is plotted as a function of frequency. The
family with high growth rates has its wave vector oriented at positive angles with respect to the
inviscid flow streamline (angles measured from the convex side) while the family with lower growth
rates has its wave vector oriented at negative angles. The relative sense of the two modes depends
upon the direction of the crossflow with the more amplified mode always oriented opposite to the
crossflow direction. In both cases, the direction of the group velocity lies at small angles to the
inviscid streamline direction. Thus, the disturbance energy propagates downstream for both modes
as also noted by Mack (1985). The traveling mode with lower growth rate may be important in the
nonlinear stage and its interaction with the more amplified traveling mode may also induce
stationary crossflow vortices when other stimuli, e.g., wall roughness, are absent. Furthermore,
these two traveling modes along with stationary vortex mode constitute a possible resonant triad

which may be relevant in the transition process.

4.2 Nonparallel effects

We now compare the quasi-parallel growth rate results with those obtained by solving linear
PSE equations (Eq. (3.9)). Figure 6(a) shows the results for R = 250 for stationary vortices while
figure 6(b) shows the results for a frequency of F =.75x107*. In case of PSE, different growth rate
results are obtained for &, o and w components of velocity. At low R (between 200 and 400) there is
considerable difference between these growth rates with & growth higher than § and & but the
latter two approach the same value at higher Reynolds numbers. Figure 7 shows the growth rate
results for R = 500. In this case the qualitative trends are the same but there is less difference
between the three growth rates. The quasi-parallel growth rate is, in general, close to the growth
rate based upon w component, except at lower Reynolds numbers where it lies somewhere in
between the three growth rates. Thus, one can not make a strong statement about nonparallel
effects except that they are more pronounced at lower R and that they are destabilizing if measured
by the chordwise velocity component. The growth rate can also be defined based upon the total
disturbance energy which accounts for all the velocity components and growth rates based upon this
definition suggests that nonparallel effect is usually destabilizing, but there may be some exceptions.
Spalart (1989) pointed out that the growth rates from his simulation were very close to the quasi-
paralle] results and that the agreement was better at lower Reynolds numbers (R) than at higher
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Reynolds numbers. Figure 7(a) shows that this is true for the case he ran (R = 500, F = 0), but it is
not a general statement as is evident from the comparison of Figs. 6 and 7.

Our results for 8= .4 and R = 500 are compared with linearized Navier-Stokes computation of
Streett (1993) in figure 8. Streett performed spatial simulations and solved the full linearized sys-
tem where the disturbances were introduced by spanwise periodic steady suction and blowing. After
the initial transients die out, the agreement between the two calculations is excellent and it remains
so for a large chordwise extent. Good agreement was also found with the results of Spalart (1989)
(Malik & Li (1992)). The agreement with full Navier-Stokes solution shows that PSE approximation
introduces negligible error in our study of the crossflow vortices as disturbance growth rate is a

sensitive quantity and any error would have shown up in growth rate results.

4.3 Nonlinear development of stationary crossflow vortices

Navier-Stokes simulations by Malik (1986) for rotating-disk flow and by Meyer & Kleiser (1988)
for a Falkner-Skan-Cooke boundary layer showed nonlinear saturation of crossflow vortices. Both
these calculations employed temporal approach and, therefore, ignored nonparallel effects. Here we
present spatial nonlinear calculations for B = 500 using PSE. Initial conditions for the stationar)
vortex with 8 = .4 were prescribed at R = 186. It was assumed that the vortex shape is given by the
linear eigenfunction at that Reynolds number and that the maximum disturbance amplitude
(max(@® +%%)"?) is .001 W. Figure 9 gives the computed total perturbation wall vorticity
distribution

(CREREEE)

which shows streamwise striations starting at R = 350. The green color indicates negative values

while the red indicates positive. The perturbation wall vorticity values are very small initially and
the signal becomes noticeable (strong) only at R of about 420. As we will show later, the disturbance
amplitude at this location has already reached about 4 percent. Hence, when these vortices are
observed in a flow visualization experiment it is almost certain that they have entered the nonlinear
stage with growth rates somewhat smaller than that given by the linear theory. These striations are
evident in almost all crossflow experiments (Gray (1952), Gregory, Stuart & Walker (1955), Poll
(1985), Saric, Daganhart & Mousseux (1989)) and result due to variation in the wall shear caused by
stationary vortices. These vortices make a small angle (4-5°) with respect to the inviscid free stream.

Figure 10 shows the contours of u velocity in y-z plane at various Reynolds numbers (R = 400,
500, 600 and 650). Two spanwise wavelengths are shown and the y coordinate has been stretched for

clarity. Crossflow vortices appear to result in a half-mushroom-like structure which is shown
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exaggerated in the figure. The actual structure is much more flat as shown in figure 11 drawn to
scale. Initially the boundary-layer thickness is constant in z; however, as the crossflow instability
rolls up into vortices, there appear regions of low and high velocity and, therefore, the boundary-
layer thickness varies considerably in the span as, for example, seen for R = 600. In this case the
variation is as much as by a factor of about 4.

There is a region near z = 10 and 25 (for R = 600) where the fluid is pushed towards the wall
while it is pushed away from the wall near z = 5 and 20. It is these low velocity regions at z = 5 and
20 where oil accumulates in a flow visualization experiment resulting in wall streaks such as those
shown in figure 9. The half-mushroom structure observed in figure 10 is the result of the asymmetry
induced by the crosswind. In two-dimensional flow over a concave wall which is subject to
centrifugal instability, a full mushroom structure appears as experimentally observed by Swearingen
& Blackwelder (1987) and Peerhossaini & Wesfreid (1988).

Figure 12 shows a velocity vector plot in the y-z plane at fixed R of 650. The velocities have
been projected onto a cross-section normal to the vortex axis. An insight into the crossflow vortex
structure may be achieved by releasing die particles at some location within the flow field and fol-
lowing their paths as they are carried through the fluid in the y-z plane. Two particles are injected
at about z = 22 but one is released very near the wall while the other is released at y = 1.7. The
latter particle rolls into a big vortex centered at about y = 2.5 and z = 12. This is the primary cross-
flow vortex. There is a second tiny vortex near the wall centered at about y = 1 and z = 8 to which
the particle released near the wall is attracted. This second vortex which was much weaker at R =
600 has also been observed by R.-S. Lin (private communications, 1992) in his Navier-Stokes
simulations of the crossflow vortex on a swept-wing. It should be stressed, however, that the actual
flow is fully three-dimensional and varies along x. Hence, these particle traces do not depict the
three-dimensional physical picture and have been used merely to facilitate the visualization of the
crossflow vortices.

Contours in figure 10(c) show a second low velocity region near z = 15 and 30; a hot wire located
at y = 1, for example, will show two velocity defects per wavelength when traversed in the spanwise
direction. This is depicted in figure 13 which shows that the second defect, caused by the 28 mode
and sometimes referred to as vortex doubling, is much smaller than that caused by the main vortex.
In our simulations, the 28 mode is excited through nonlinear interaction and its amplitude remains
smaller than the primary mode with wavenumber B as shown in figure 14 where the amplitude
functions for the stationary vortex along with its harmonics and mean flow correction are plotted at
R = 600. In a laboratory experiment, the 28 mode may be excited via surface imperfections and the
relative amplitude of 18 and 28 modes may be different from the present case. The disturbance
amplitude at R = 600 has reached to about 30 percent (when scaled with W) with the maximum
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meanflow correction of about 15 percent. In a laboratory experiment, this picture will be altered due
to possible secondary instabilities and interaction with traveling modes.

Figure 15 shows the velocity profile along the crossflow vortex at 4 different locations across it
for R = 500. The base flow given by the Hiemenz problem is also included. It can be seen that these
profiles become strongly inflectional due to the motion within the crossflow vortex. Such profiles
were also noted in the swept-wing experiments of Dagenhart et al. (1989) and Miiller & Bippes
(1988). These inflectional profiles as well as the inflectional profiles in z (figure 13) are subject to
inviscid secondary instabilities which are most likely related to the high frequency disturbances
observed by Kohama, Saric & Hoos (1991). We will investigate this aspect of the problem in a later

section. Here, we first consider the interaction of traveling and stationary crossflow disturbances.

4.4 Stationary and traveling wave interaction

It was pointed out that the experiment of Miiller & Bippes (1988) suggests an early nonlinear
interaction between stationary and traveling waves. We now consider such interactions in the
swept-Hiemenz flow. Our calculations are performed using 8 = .4 for both the stationary and
traveling (F = .76x104) disturbances. The initial conditions were imposed at R = 186 and the ampli-
tude of the stationary wave was the same as in § 4.3 above, i.e,, .1 percent. For traveling waves, two
different initial amplitudes were considered: .01 percent and .1 percent. Results for both the cases
are discussed below.

Figure 16 gives the results of disturbance energy of various modes denoted as (0,1), (1,1), (2,2),
etc. Here, the first index refers to frequency w and the second index to spanwise wavenumber .
Thus, mode (2,2) is the harmonic with twice the frequency and twice the wavenumber of the
traveling mode. For comparison, the case of stationary vortex only is also given. For the stationary
vortex case, shown in figure 16(a), the energy cascades into 28, 38, 483 ... modes as earlier noted in the
simulations by Malik (1986) and Meyer & Kleiser (1988). The energy in the mean flow correction
mode is of the same order as the 28 mode. It is probable that the essential features of the nonlinear
development of the stationary crossflow vortex can be captured by a model which considers 0, 8 and
28 modes.

The interacting case with stationary vortex amplitude 10 times higher than traveling is shown
in figure 16(b). This case is meant to simulate moderately low turbulence conditions where wall
roughness will introduce dominant instability (i.e., stationary vortex) and the weak turbulence will
introduce traveling disturbances with low amplitude. On the other hand, figure 15(a) can be thought
of as the case with ultra-low turbulence with essentially no traveling modes induced. In contrast,
figure 16(c) is the high-turbulence case where the initial amplitude of the traveling mode is equal to

the stationary mode. Admittedly, these are all idealized cases, for in natural environment energy
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input is into a broad band of frequencies and wavenumbers which we cannot attempt to tackle in the
present framework.

Figure 16(b) shows that the energy in the stationary as well as the traveling mode saturates at
about R = 490, the energy in the latter mode remains smaller except near the very end at about R =
600 where the two become the same. This is also where the energy in mode (1,-1) supersedes the two
primary modes and becomes comparable to the mean flow correction mode. The mode (1,-1) is
generated due to interaction between (1,1) and (0,2) mode and, apparently, the combination of the
amplitudes is just about right to yield a resonance between the three modes as speculated in § 4.1
above.

The situation changes when the initial amplitude of the two waves become the same. The
traveling mode has the higher energy all the way and it tends to suppress the growth of the
stationary modes. Both the primary modes saturate earlier at about R = 430 as compared to 490 in
figure 16(b). The higher modes gaining the dominant energy appear to be (2,2), (3,3), (4,4)... modes
in this case. The suppression (also compare Figs. 17(a) and (c) below) of the stationary vortices by
traveling modes is supported by the observation made in the DLR experiment.

The evolution of the maximum (in y) disturbance amplitude for the three cases is given in figure
17 on a natural log scale. Amplitudes of all the velocity components are given. Initially the spanwise
velocity w is higher than the chordwise velocity &. Later the magnitude of the two switches as the
inviscid streamline angle decreases (note that 8 = 45° when R = 500). The magnitude of the normal
velocity © is much lower than & and @ for both waves at all R. From figure 17(a) for stationary
vortices alone, it is clear that the nonlinear N factors ({n A/ A;) at R = 650 are 7 and 5 for 4 and .
These are to be contrasted with the value of about 9 given by quasi-parallel linear calculations in
figure 3.

The growth rates of the stationary and traveling waves for the above three cases, along with an
additional case of traveling mode only (initial amplitude of 0.1 percent), are given in figure 18. For
comparison, the growth rate from linear PSE calculations are also given. This plot more clearly
shows the behavior of the two modes discussed with reference to figure 16. The growth rate of the
stationary vortex (curve 2) begins to depart from linear theory at about R = 420. At this location the
disturbance amplitude is only about 4 percent. At R = 450, the growth rate is lower than the linear
theory result by about 9 percent, but it begins to decrease rapidly beyond that. The resulls are
similar for the traveling mode alone (curve 2) with initial amplitude of .1 percent. Since the trav-
eling mode amplifies more rapidly, it reaches saturation earlier and its growth rate begins to depart
from the linear theory results at R = 330. For the wave interaction case with A, = .01 percent, the
growth rate of the two waves begins to depart from the linear theory result at about R = 390. At
R = 450 the two growth rates differ from the linear results by about 18 percent . Subsequently, the
two growth rates drop sharply and at R = 500, the stationary and traveling disturbance growth rates
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are lower by about 70 and 76 percents with respect to their linear growth rates. Hence, the results
indicate that even for the case with smaller initial traveling disturbance amplitude there is some
interaction well before R of about 500. This interaction becomes stronger when the initial
amplitudes of the two waves are the same (4, = A, = .1 percent). In this case the growth rates begin
to depart from the linear theory results at R = 330 and by 410 the growth rates have dropped by 68
percent for the stationary vortex and by 39 percent for the traveling mode. A close examination of
the results show that when A, = .1%, there is no direct effect of the stationary disturbance on the
traveling wave (curves 3 and 5 collapse) but the growth of the stationary vortex is greatly suppressed
due to the presence of higher amplitude traveling disturbance. It is clear that the two modes do
interact depending upon the initial amplitude, as also inferred by Bippes (1991) from his
experiments. The nonlinear growth rate behavior at large R indicates that the two primary modes
reach a quasi-equilibrium state where the growth rate begins to oscillate around a small value.

In order to shed some more light on the stationary/traveling mode interaction, we consider the
case with A, = .1 percent, A, = .01 percent, and plot &,,, in the y-z plane at four different Reynolds
numbers (R = 431, 500 and 600). Here &,,,,is defined as

2z/@ vz
u,,,.,(x,y,z):[—z%J uz(x,y,z,t)dt—ug] .
0

The results are shown in figure 19 for the three locations. Due to nonlinearity and interaction
with the stationary mode, traveling disturbances are modulated in the spanwise direction. An
important observation is that the peak rms perturbation is near the wall at y =1 with a second
maximum (but with much lower amplitude) further away from the wall (see figure 19(b)). A
comparison of Figs. 1%b) and 10(b), at R = 500, shows that the peak &,,, occurs in the spanwise
region where low-velocity fluid is pushed away from the wall. At higher Reynolds number (R = 600),
there are two peaks in #,,, near the wall, apparently associated with the emergence of 28 harmonic
of the stationary mode. Michel, Arnal & Juillen (1985) also noted two maxima in the root mean-
square value of the streamwise velocity within a spanwise wavelength in the ONERA/CERT swept-
wing experiment. The magnitude of the maximum value was found to be up to about 20 percent of
the resultant inviscid velocity. They also found that most of the turbulence energy is contained in
the frequency range which is unstable according to the linear stability analysis.

Figure 20 is a plot of the stationary as well as rms velocity signal (¢ component) aty = 1.048.
Modulation of the traveling disturbances due to the presence of stationary vortex is evident. The
peak #,,, is in the region where a velocity defect appears in the stationary signal and the minimum
in &,,, occurs where there is a velocity access. However, there is a phase shift of about /4 between

the maximum in #,,, and the minimum stationary velocity, as evident from results for R= 500. This
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phase shift decreases at higher Reynolds numbers. Miiller & Bippes (1988) reported experimental
results qualitatively similar to those in figure 20.

We plot the variation of #,,, with Reynolds number at y = 1.048 in figure 21 which shows the
maximum and minimum #,,, as well as &, along the path where stationary u velocity has a
maximum and a minimum. The variation of the stationary u velocity with Reynolds number is also
shown in the figure. The figure clearly shows that in high (stationary) velocity region the i,
component gets saturated but it increases to higher amplitudes in the low (stationary) velocity
region. At R =550, the maximum &,,, reaches about 20 percent in the low-velocity region. Such
high levels, although dependent upon the initial disturbance amplitude, are not unexpected in view
of the experimental evidence provided by Michel, Arnal & Juillen (1985). Poll (1985) also observed a
traveling disturbance with frequency close to the most amplified disturbance given by linear theory.
He further noted that close to the surface the amplitude of these disturbances can exceed 20 percent
of the local mean-flow velocity. However, the rms amplitudes measured by Dagenhart et al. (1989)
are much lower which suggests that in their experiment the initial amplitude of traveling modes
relative to the stationary mode was much lower than used here. Choudhari (1993) estimates that
the initial amplitude of the traveling mode could be up to two orders of magnitude lower than the
stationary modes for the receptivity mechanism considered in his study. This may possibly be the
case in the experiment of Dagenhart et al.

4.5 Effect of nonlinear disturbances on skin-friction

Figure 22 gives the chordwise (C,,) and spanwise (Cy,) skin-friction coefficients for all three
cases. From figure 9 we know that skin-friction varies in the spanwise direction. However, figure 22
gives the spanwise averaged value, i.e., only the contribution from mean flow distortion is consid-
ered. Since @ is independent of R, laminar spanwise skin-friction remains constant. Similarly,
since # increases linearly with R, so does the chordwise skin-friction when scaled with W2. At some
location both Cj, and Cj, begin to depart from their respective laminar values. For case (a) and (b)
of figure 16, this location is at about R = 450 and from thereon it rises significantly. The skin friction
rise from stationary vortex alone is about 19 percent for Cj, and 58 percent for Cy, at R = 600. The
skin-friction for case (b) is slightly higher in the beginning but later on it drops below case (a).
Computations for case (a) were made using N = 2, 9 and 16 in (3.5). While there was considerable
difference in the skin-friction distribution for N = 2 and 9, essentially no difference was found
between the two higher resolution cases. For cases (b) and (¢) M = N = 9 was used in (3.5).

In case (c), with higher initial amplitude of the traveling mode, skin friction begins to rise much
earlier at about R = 375 as would be expected from the comparison of figure 16(b) and (¢) which
shows that the mean flow distortion is higher in the latter case. Hence, a stronger interaction of the

traveling and stationary modes leads to higher skin-friction coefficient. Our results indicate that the
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angle between wall shear and inviscid free strearn decreases as the disturbed flow enters highly

nonlinear stage in the three-dimensional boundary layer.

5. High Frequency Secondary Instability

A hot-wire placed in a three-dimensional boundary layer, subject to crossflow instability, sees
two types of unsteady disturbances. First, it captures an unsteady signal with a peak at a frequency
f1 which coincides with the most amplified frequency given by the linear stability theory. In the
present case, e.g., f; = 1.2x107* at R = 300 (see, figure 5). The dimensional value of this frequency
depends upon the flow parameters (unit Reynolds number, sweep, etc.). Poll (1985), for his swept
cylinder experiment, found f, to be 1500 Hz for the chord Reynolds number of 1.2x10° and sweep
angle of 63°. In Kohama, Saric & Hoos (1991), f, was close to 180 Hz and in Michel, Arnal & Juillen
(1985) £, < 200. In these experiments, the hot-wire also captures a second frequency f, which is an
order of magnitude larger than f,. For example, f, was 17500 Hz, 3500 Hz and 1000 Hz in the
experiments of Poll (1985), Kohama, Saric & Hoos (1991) and Michel, Arnal & Juillen (1985),
respectively. In this section, we investigate this high frequency instability in the present three-
dimensional boundary layer. The problem is modeled here as the secondary instability of the new
mean flow which is set up by the presence of a large-amplitude stationary crossflow vortex.

We perform secondary instability analysis locally, i.e., at a fixed Reynolds number and perform
temporal stability analysis. In order to perform this analysis, we rotate the x-z coordinates to a new
system, x5, 2, s0 that the xy coordinate aligns with the crossflow vortex. At a streamwise location
designated by the Reynolds number R, we ignore the curvature of the vortex and use the quasi-
parallel approximation (we will provide a posteriori justification for these assumptions later) which

allows us to consider a harmonic disturbance of the type

¢(x2’y2122:t)=¢2(y2’227t)ei(%—m2‘) ’ (51)

where a, and w, are the wavenumber and frequency of the secondary disturbance and y; =y. Here,
since we use temporal stability concept, «, is real and ®, is complex. If w,; >0 (w,; =Imag(w,)),
then the secondary instability is present. Temporal stability approach has earlier been used by
Herbert (1983) for secondary instability of TS waves and by Hall and Horseman (1991) for secondary
instability of Gortler vortices. This approach can, at least, provide a qualitative picture of the
secondary instability phenomenon.

We superimpose (5.1) on the meanflow computed in § 4.3 above, i.e., the meanflow constitutes
the three-dimensional boundary layer as modulated by the presence of a nonlinear stationary
crossflow vortex with initial amplitude of .1 percent. This meanflow, when represented in (x5, y3,25)

coordinate system, is a strong function of y, and 2, but a weak function of x,. Substituting the
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meanflow and the disturbance wave (5.1) in incompressible Navier-Stokes equations, we obtain the

following linearized equations

. aU. JU U, du, 1(d%, % .
Upy+al/R+ =2 2y, +—2w, +io,p, +V, Ky oy, P L|Oup Uy | 5.2
[‘az 2 + 0 > 22 2, 2 2Pp +Vy ., P R[ 57 &2 twu, (5.2)
v, [ } v, v, 2 [3202 a%z} .
24, +lio,U, +a2/R+—2 v, + =2 w +V, =24+ W, =2 —=+—=I1=iwyv, (5.3)
5!2“2 2U2 2 ¥, 2 22 222 22 23 o'k% 2U2

W, W, 2 awz]m Jw, LIy L[ Pw, FPuwy]_. .
2y, +—2y, +{ia,U, +oi /R+—2 +V. +W +—=% | = {wow 5.4)
&, U X 2 [ 2U 2 2 2, g * Vo0 YN 2 5 - 822 &2 3y§ 3222 Wy

3wz

Logu, +é)~—+ =0 (5.5)

Yy
where Uj, V,, W, are the mean velocity components in x,, y,, 2, directions, respectively, and
uy, Uy, Wy are the corresponding disturbance velocity components and p, is the pressure. In (5.2)-
(5.4) terms JU,/oxy, dV,/adxy, dW,/adx, are small and can be neglected as numerical experiments
indicate that they do not appreciably change the eigenvalue. However, dV,/dy, is of the same order
as dW, /dz; and thus V, must not be set to zero. Dropping V, increases the growth rate by about 50
percent. Equations (5.2-5.5) are partial differential equations which are subject to homogeneous

conditions at the wall and free-stream, i.e.,

U2 = U2 = w2 = 0, y2 = O (5.63)
U 50, v 90, wy, 50 as y, > (5.6b)

The computational domain in 2, direction covers one wavelength of the stationary vortex and

periodic boundary conditions are imposed in the 2, direction, i.e.,

ug(z)=uy(z, +2,) (5.7a)
02(22) = v2 (22 + lz) (5.7b)
Wy (22) = w2 (22 + 2’2) , (5.70)

where A, =2n/(a? + BZ)"%, &, and B, being the x and z wavenumbers of the stationary vortex.
Equations (5.2-5.5) along with the boundary conditions (5.6-5.7) constitute an eigenvalue prob-
lem which we solve by using a Chebyshev collocation method in the y, direction and a Fourier collo-
cation method in the 2, direction. The physical domain y, €[0, ¥z, 1 is mapped on to a computa-
tional domain 7 € (-1, 1] such that the grid points are clustered near the wall and y, = y,;, where ¥z,

is the location where the secondary structure is concentrated. Since we do not stagger the mesh in
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¥, direction, two additional boundary conditions are required which we prescribe by evaluating the
normal momentum equation at y, =0 and y,__ .

The eigenvalue problem can be represented in the form

A(p = szlp (5.8)

where B is a diagonal matrix and A is a square matrix of size (4N, -6)N, where N, and N, are the
number of collocation points in y, and 2, directions, respectively. The above eigenvalue problem
(5.8) is solved by the QR method which yields all the eigenvalues of the discretized system. We test
the accuracy of these eigenvalues ny using inverse Rayleigh iteration method. Among the computed
eigenvalues, only a few have w, >0. Here, we discuss only one of these eigenvalues.

Computations were first performed at R = 450 where the stationary crossflow disturbances had
gained an amplitude of about 8 percent based upon the local inviscid velocity (see, figure 17(a)). No
secondary instability was found, i.e., all @,, <0. The analysis was then repeated at R = 500 where
the maximum # amplitude is about 17 percent and the stationary vortex is on its way to saturation
(compare with figure 18). At this location the secondary instability is found but the growth rate is
about the same as that of the nonlinear crossflow vortex. Finally, calculations were performed atR =
550 where figure 18 shows that the stationary vortex has a growth rate which is close to zero. The
local maximum amplitude of the stationary vortex is about 22 percent. Secondary instability results
for this Reynolds number are discussed next.

The frequency (@,,) of the secondary instability and temporal growth rate (w,;) are plotted in
figure 23. The peak growth rate of w,; = .02 occurs at o, of about .6. At this location w,, is about
.75 which amounts to an F, of 1.5x10°. We noted earlier that the most amplified traveling
crossflow disturbance has a frequency of about F; = 1.2x 107*; hence, F, is an order of magnitude
higher than F; which is in agreement with the experiments mentioned above. The wavenumber of
the stationary disturbance along 2z, coordinate is about .5. Given that a, is .6, the angle of the
secondary structure is about 50° with respect to the crossflow vortex. The secondary instability
convects along the stationary vortex with the phase velocity of about 1.25 W... The relatively high
amplitude of the stationary vortex required for secondary instability is in agreement with the results
of Balachandar, Streett & Malik (1992).

The above calculations were made with N, =41 and N, = 8. Since 8 collocation points in the
spanwise direction may be too few, we repeated some of the calculations with N, = 16 and N, = 51.
These results are also given in figure 23. We note that although there is some movement in the
eigenvalues, the results given in the figure with the lower resolution are qualitatively correct, at
least at high as. At lower values of the wavenumber o5, there appears to be an intricate mode
structure which for its investigation would require the development of more efficient means of

computing eigenvalues of very large matrices so that these calculations can be readily performed.
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The quasi-parallel approximation used in the above analysis can be justified since our results
show that, in the rotated coordinate system, variations of U,,V,,W, along x, is much smaller than
the variation in y,, 2, and the x,-wavelength of the secondary instability is only about 3 times the
boundary-layer thickness. In the nondimensional units, this wavelength for the most amplified
secondary wave is about 10. The secondary instability analysis shown in Fig. 23 is performed at R =
550. It is clear from Fig. 9 that the curvature of the vortex in the range of R = 550 £ 5 can be
ignored.

The structure of the secondary instability is presented in figure 24 where the |u,| eigenfunction
is plotted along with the U, component of the meanflow in y, - ¢ = 550. It is clear that
this high-frequency instability resides on top of the stationary vortex with the maximum in |uz|
located near y,=28. In contrast, the lower frequency traveling crossflow disturbance is
concentrated near the wall at y, ~ 1 (see figure 19). The high frequency instability is inviscid in
nature and it can be captured by dropping viscous terms in (5.2-5.4); however, since the basic flow is
three-dimensional and varies with y, and 2z, it is not possible to reduce the problem to a single
partial differential equation. However, numerical experiments suggest that some qualitative
features of the instability can be captured by considering just the U, component of the mean flow in
which case a single partial differential equation can be used resulting in substantial savings in
computer time.

The top view of the flow field that results by superimposing the secondary eigenstructure (with
an amplitude of 5%) on the meanflow (U,,V,,W,) is depicted in figure 25 where the x,-velocity
component is plotted at y, = 2.82. Two periods in both x, and 2, directions are shown. The dark
patches in the picture correspond to the corotating structures which move in the x, direction. A hot
wire placed near the boundary-layer edge will detect this high-frequency disturbance but if the hot-
wire is located in the region between z, = 5 and 10, for example, this instability will not be captured.

Therefore, extreme care is needed in order to detect this secondary structure in an experiment.

6. Conclusions

We have investigated crossflow instability in a model three-dimensional boundary layer which
has an exact solution to the incompressible Navier-Stokes equations. This consists of the swept-
Hiemenz flow which forms near an attachment-line. This flow is subject to Tollmien-Schlichting
instability for small x, where x is the chordwise distance, provided the spanwise Reynolds number R
> 583.1. However, this boundary-layer becomes unstable to crossflow instability for x >> 1 even for
R <583.1. Here, we have considered B = 250 and 500 for the linear stability and R =500 for the
nonlinear case. Both the linear and nonlinear stability as well as the wave-interaction in this three-

dimensional boundary layer is studied using parabolized stability equations (PSE). We also study
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secondary instability in this boundary layer. We find that the various features of the swept-wing
boundary-layer transition are captured in the study of this model boundary layer.

Our linear results show that nonparallel effects are destabilizing for crossflow disturbances.
However, the magnitude of the effect depends upon R (more destabilization at lower R). Growth
rate of stationary crossflow vortices computed from linear PSE are in agreement with the results
obtained from Navier-Stokes simulation.

Nonlinear development of stationary crossflow vortex is also investigated for an initial
amplitude of 0.1 percent. The computed wall vorticity distribution shows the familiar streamwise
streaks, in agreement with the surface oil-flow visualizations in swept-wing experiments. Other
features of the stationary vortex development observed in the experiments (half-mushroom
structure, highly inflected velocity profiles, vortex doubling, etc.) are also captured in our nonlinear
PSE computations.

Nonlinear interaction of stationary and traveling crossflow modes is also studied. When the
initial amplitude of stationary vortex is large as compared to the traveling mode, the stationary
vortex dominates most of the downstream development. Eventually, however, the traveling mode
becomes of the same order as stationary mode. Interaction of the traveling mode with the harmonic
of the stationary mode gives rise to another traveling mode with same frequency but negative
spanwise wavenumber. Apparently, a triad resonance is set up at this stage. The situation changes
when the initial amplitude of the traveling and stationary modes are the same. Owing to its higher
growth rate, traveling mode dominates most of the downstream development and the growth of the
stationary mode is suppressed. In this case, energy cascades into (2,2), (3,3) etc., modes which are
harmonics of the primary (1,1) traveling mode.

Growth rates of the stationary and traveling modes begin to depart from their linear values
when the disturbance amplitude reaches about 4 percent. As the amplitude increases, the primary
modes reach quasi-equilibrium states. Large mean flow distortion caused by the nonlinear
disturbances yields a skin-friction value which is significantly above the laminar value.

Finally, we use the two-dimensional eigenvalue approach to perform a secondary instability
analysis of the three-dimensional boundary-layer flow modulated by the presence of a nonlinear
stationary crossflow vortex. We find that this meanflow is subject to an instability whose frequency
is an order of magnitude higher than the frequency of the most amplified traveling mode given by
linear stability analysis of the boundary-layer profiles. A similar high frequency disturbance was
also observed in the experiments of Poll (1985) and Kohama, Saric & Hoos (1991).
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Figure9. Computed wall vorticity distribution in the presence of nonlinear stationary vortices,
B=.4, R =500.
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Figure 11. The structure of crossflow vortex as viewed from upstream.

87




"SIXE X104 943} 0} JTemotpuadiad sus(d & ojuo pajosload 0G9 = Y 18 101d 109094 £JO[PA "G 2InS1y

ot S¢ 0¢ St ] S 0

- AR} o OVO
IR __.;i
| \N ‘ . 0’}
ER
\HWHW m. ﬂ /,IW O.N
B g RN [NANEN
. -~ LN
Q 1ol ””u,
z “mmnuuul \mmuuu/ o€
ZEENNN I
\ N/ EA AN EASIENNNNN
08 4

NN , 2NN\
//M.l(l\\“\\ \WW““H\I//”NNM” \\\““Ha\l SN\ ///A
- // -
\\\ Y1 /N/////// V22NN

7
/NN A

/(

\

NNNNEr777/75508NNX\\
/////(HH \“wwun\\'r/////////////////ffﬂﬂ \“w“mn\\..://////////x 0's

NN\, ey \\\lll////////////////»‘l.d\ PP \\.\lll//////////,_
NN NNNNS—— . \\.\\ll/////////////////?llll\.\ o s SSNNNANANAY
SN SRR a0

SIS OO A A R T OO Y

-0'8

88




‘009 = ¥ 1€ UOT}03IIp 3s1mueds ayj Ul £J100[3A [BIXE X3}10A JO UOTJBLIBA €T N3y

Z

o€ S¢ 0¢ Si ol S 0

LA G S S N S | Y Y Y LA I S S AL SN (L AN S LA (RS R R AR | LN s ¢ 4

02 0=A

16°2=A

)

000

G¢0

0s0

SL0

00t

G’

0s’t

S}

N

89




X104 9Y3 3uore (8)

(,n) uonounjedeys

‘009 = Y 1€ ‘SdruouLIBY §31 pUe (T IPOW) X33J0A AIBUOIIBYS 9] JoJ sSuoTjouny apnyrdwe adueqin)syy 1 aandry

00¥y0 0SE0 00€0 0S¢0 0020 OSL0 O00LO0 0SO0 0000

T Ty yTTTTYTTTrTT T T T

€
N -4
}

o

SapOW #

00

ot

0¢

0¢

oy

0's

09

90




Modes
0
1
2
3

et e

e

, e
| Ao “.IJ|";-;-'-"'H"’]"."x"1-3"1'".'"4 R . S

]
0.050 0.075 0.100

Shapefunction (w')

0.025

iy it TPPR, ' I
4 TGV i - ‘s,
Nt 1, o %
,' ™~ .’ .'. K
seseeetrea, WS K

o o o
<© [Te} <t

I
:
0.000

|
o o o o
[op) o — (@]

>

91

(b) across the vortex

Figure 14. Concluded.
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PART C

On the Nature of PSE Approximation
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Abstract

The recently developed method of Parabolized Stability Equations (PSE) offers a fast and
efficient way of analyzing the spatial growth of linear and nonlinear (convective) disturbances in
shear layers. For incompressible flows, the governing equations may be represented either in
primitive variables or by using other formulations obtained by eliminating the pressure gradient
(e.g., vorticity/stream-function formulation). On the other hand, for compressible flows, primitive
variables offer a natural and the only choice. We show that the primitive-variable fr nlation is not
well-posed due to the ellipticity introduced by dp/dx term and marching solution aally blows
up for sufficiently small step size. However, it is shown that this difficulty can be overcome if the
minimum step size is greater than the inverse of the real part of the streamwise wavenumber, a,.
An alternative is to drop the dp/dx term, in which case the residual ellipticity is of no consequence

for marching computations with much smaller step sizes.

1. Introduction

The laminar-turbulent transition process in a boundary layer is of great fundamental and
practical interest in fluid mechanics. In many cases, transition occurs via the destabilization and
subsequent growth of wave structures in the boundary layer. Classical theories concerning the
amplification of these waves use quasi-parallel assumption and ignore the growth of the boundary
layer. Other theories (Gaster 1974), including the multiple-scales method (Saric & Nayfeh 1975),
can deal with the boundary-layer growth locally for given problems. Direct Navier-Stokes solutions
(Fasel & Konzelmann 1990) could give very satisfactory resulits but at the cost of much more CPU
time and larger memory size. The recently developed method of parabolized stability equations
(PSE) (Herbert 1991, Chang et al. 1991, Bertolotti et al. 1992) offers a fast and efficient way to
analyze the spatial growth of instabilities in the boundary layer. In order to briefly describe the PSE

method, let us first consider linearized Navier-Stokes equations in primitive variable form:

%—+U%+u%+V?; v%lyi+W%-+ %—+%=%[% ‘;21; i;‘] (1a)
%+U%+u%+vg v%+W%+w%+%=%[§+%+%} §1))
%+U%+u%+V%+v%—+W%+w%+%=%[3i§'+f;:+(ZL2”] (1c)
%+%+%= (1d)

where x, y and 2 are the streamwise, wall-normal and spanwise coordinates, respectively, and U, V,

W are the corresponding mean velocity components while «, v, w are the disturbance velocity
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components. Furthermore, p is the pressure and R is the Reynolds number, R=U_L/v, where U_,
L are the reference scales for velocity and length and v is the kinematic viscosity.
In the linear PSE method, a wave-like disturbance, ¢, representing velocity, pressure or

vorticity, etc., is assumed to be of the form

#(x,y,2,t) = §(x,y)E (2a)

x

E=exp|i [a(§)d¢+ﬂz-a (2b)
X

Here o and B are the x and z wave numbers, wis the disturbance frequency and ¢(x,y) is the shape
function. The physical quantities (x,v, etc.) can be obtained by adding the complex conjugate
component. In the above decomposition it has been assumed that the mean flow is independent of

the spanwise coordinate 2. The first and second derivatives of ¢ can be written as

0. =(ich+4,)E 20)
9. =(-a?+ic,$+ 2k, +4.. )E (2d)
¢, =¢,E (2e)
byy =y E 20

Substituting (2 and 3) into the linearized Navier-Stokes equations, which could be in primitive
variable form, stream-function/vorticity form or other forms, we obtain a set of equations with the
6( x,y)'s and a as unknowns. Since there is now one more unknown (namely, a{x)) than the
equations, another condition is needed for the closure of the system. We take advantage of the slow
variation of the mean flow in the streamwise direction and impose a condition on ox) such that
"most” of the waviness and growth of the disturbance are absorbed into the exponential function E,
making the shape function ¢(x,y) slowly varying with x. Hence, the term containing [),, (in (3b))
can be dropped and we arrive at a set of new equations in which the only second-order derivatives
are those with respect to y. We will call these equations parabolized stability equations (PSE) and
ask the question whether these equations are indeed parabolic, i.e., given appropriate initial data
can one find a solution by marching along the streamwise direction?

When the basic flow is two-dimensional, the pressure term can be eliminated and the
governing equations can be represented in stream function and normal vorticity formulations. When
the basic flow is three-dimensional it becomes difficult, particularly for nonlinear disturbances, to
reduce the equations to a form other than primitive variable form. In any case, for compressible

flows, primitive variables offer a natural and the only choice. Since our ultimate goal is to study the
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stability of compressible flow, we can learn about the low Mach number behavior of the compressible
PSE equations by studying the numerical stability of incompressible PSE equations in primitive
variable formulation. These equations can be derived by using (1) and (2) and can be written in the
following form
~ 9. . 3 , 3%
L —+L, ZL+L,—=0 3

‘L0¢+ 1 & L2 @ L3 @2 ( a)

where $=(12,6,u“1, ﬁ)T and L,-L, are square matrices given in Appendix I. Equation (3a) is to be

solved subject to the constraint (imposing the condition that the shape function varies slowly with x )
F(e,$)=0 (3b)

We will show that when the primitive-variables are used, the equations are only partially
parabolized. The gradient dp/odx represents the dominant part of the residual ellipticity. For easy
reference, we call this term as the pressure gradient. (We should stress here that dp/dx represents
only a small part of the physical pressure gradient dp/dx. Most of the physical pressure gradient is
carried by the term igp, see Eq. (2¢)). This ellipticity will cause the marching procedure to fail. The
same difficulties are encountered in the Parabolized Navier-Stokes equations (PNS) (Rubin, 1981).

By suitable substitutions, the PSE can also be written in the form of a set of first-order partial
differential equations and an additional functional F as

T LA LA A
ay +B > +1 Y =0 (4a)
F(a,y)=0 (4b)

where 4 = Axy,a) and B = Blxy,0) are square matrices, I is the identity matrix and y is a vector. If
quasi-parallel flow is assumed, then (4) can be reduced to the well-known Orr-Sommerfeld equation.
Equation (4a) is solved numerically by marching from the initial station at x = x, with some initial
condition, Y(x,,y). The solution at x=x,+& is computed with a(x, +&)=a(x,) as a first
approximation, then a new « is calculated using Eq. (4b). Equation (4a) is solved again with the new
value of . This process continues until the solution converges. The marching is then carried to the
next x-station. The stability of the marching procedure depends on the discretization scheme, the
iterative process for evaluating o and, most importantly, the mathematical nature of PSE.

In the primitive-variable form, the matrices in Eq. (4a) for a flat geometry are given as follows
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0 0 0 0 -1 0
ia 0 if 0 0 0
0 0 0 0 0 -1

A= . i« if (5)

-iaV+Vx A+V, iV 0 — -

-(4+U)R UR 0 -ieR -VR 0

| -W.R -W,R -AR -ifR 0 -VR

0 0 0 0 0 0]
1 0 0 0 0 0
0 0 0 0 0 O
2 v r o o X o ®
- R
IR 0 0 -R 0 0
0 0 IR 0 0 o0

where '=U —-2—ZRE, U,V and W are the three velocity components of the basic flow, a and 8 are the

wave numbers in the x and y - directions respectively, and
¥ =(8,6,, b,/ 3,00 | )" )

The functional F(a,¥)=0, can be chosen in several ways. For example, we can impose the

condition that the maximum of the velocity component, &, is constant or that

Iq'%dy

fire

0

=0 (8)

where g =(i,0,w) and * represents the complex conjugate. An iterative procedure for o based on Eq.

(8) is given as follows,
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T g
A 4
Jit

Opyy =0y -i 9)

jlqulzdy

We note that, since a is complex, Eq. (9) represents a two-dimensional iterative map.

2. Mathematical Nature of PSE

For an initial value problem

o, ou

5;=A-@—+Bu (10)
«(0,y)=f(y) (11)

where f,ueC", A,BeC™" and ye<RX, the solutions can be obtained by Fourier transform. In

Fourier space, Eq. (10) and (11) become

da _,. .
-Ex—-(lT)A'f'B)u (12)
i(0) = f(n) (13)

where & and f are Fourier transforms of « and f, respectively, and 7 is the wavenumber in y-
direction. The solution to (12) and (13) is of the form

i = g(n)e™ (14)

where g(n)eC". Substitution of (14) into (12) yields an algebraic equation for the eigenvalue A =
M),

knd+B-All=0 (15)
Assuming that all n eigenvalues of Eq. (15) have distinct corresponding eigenvectors, g;(n), then
i Ak me
i=1

The constants A; € R can be determined by solving the nxn linear system

Y g;mA; =fm)

J=1

Hence, we obtain the solution to Eq. (10) and (11)
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SERW .
u(n9)= Y 3= [ Ajema e dn. 16)
j=1 el
If le"f‘ is unbounded for | - =, the integral in Eq. (16) may not exist, and the initial value problem

defined by Egs. (10) and (11) are said to be ill-posed (Kreiss & Lorenz (1989)).

In finding the eigenvalues 2;(17), both matrices A and B are used in Eq. (15). In fact, subject to
the condition that the eigenvalues of A are non-zero and distinct, the well-posedness of Eq. (10) is
determined by the eigenvalues of A only. This can be easily verified. We decompose A such that
A =PAP™!, where P is a matrix whose columns consist of the eigenvectors of A, and A is a diagonal
matrix whose elements are eigenvalues of A. Multiplying Eq. (15) by iP’I'PI , we obtain

lina +P“BP-AI|=0

As |p} > =, the matrix inA + P"'BP becomes diagonally-dominant. Applying the Gershgorin Circle
Theorem (see Golub & Van Loan, 1983), we find that the eigenvalue, 1 j» approaches 70, where o
is the jth eigenvalue of A. Therefore, the eigenvalues of A determine the well-posedness of Eq. (10).
This is reminiscent of the classification of partial differential equations with one dependent variable
where only the "principal part” is required. However, we must stress that, if some of the eigenvalues
of A are zero, then all matrices in Eq. (15) must be used to obtain the correct result.

For various PSE formulations, the equations cannot always be written in the form of Eq. (10),
e.g., when matrix B in Eq. (4) is singular. Here, we adopt the approach whereby Eq. (14) is
substituted into the given form of PSE and all matrices are kept for determining the well-posedness.

We now consider and analyze the well-posedness of the initial value problem associated with
the PSE equations. The system consisting of Egs. (3a) and (3b) (or the corresponding system 4(a)
and 4(b)) is nonlinear since o appears in the coefficient matrices. In order to simplify the numerical
stability analysis of the marching procedure, we will assume that « is known a priori. We choose a
simple two-dimensional basic flow (W = 0, d/dz = 0) with constant velocity-components and apply
Fourier transform in y-direction, i.e., let i(x,y) = é(x)exp(iny). After some algebra, we can write Eq.

(3a) as follows,

4 i -ic -in 0 Vg
- cC .71-
fhadl = 0 -— L 17
dx| Y ) 'f} D
P} i~-C+icD inD -ia \pP
. . .da o? . n? .o . ..
where C =LaU—zm—z(—i-x—+-§-+znV+—§ and D =U—ZzE. The three eigenvalues of the matrix in

Eq. (17) are given by

Cc

AM=n-ia, h=-n-ia, 113:——5, (18)
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For a well-posed initial value problem, it is required that Real ; < O for |] - «. Since 7 can take
any value for general initial conditions, A, and A, have positive real parts for some 7. Therefore, Eq.
(17) is not well-posed for initial value problem and some approximation must be made for a stable
marching solution. We will discuss it in the next section.

Due to the complicated nature of 43, it is not easy to find the sign of its real part. However, in
order to determine the well-posedness, we only need to know the behavior of 23 as |rj — e, provided
that the coefficient of the highest order term in 7 is not purely imaginary. In this limit, we have

2 2 ;
n 1 n* (U+20;/R)+2ia, /R
—--— - =—— (19)
Bo-g (U-2i2/R) R (U+2a;/R)’ +4a?/R?
Therefore,
2
n U+2a;/R
Real - —— : (20)
()% (U +20;/R)® + 402/ R?
Hence, for growing waves (¢; < 0), real 4; > 0 for sufficiently small U, i.e.,
20,
U (]
< 7 (21)

For large Reynolds number and small ¢; (typically O(10%) and O(10-2), respectively), condition (21) is
satisfied only in a very small neighborhood of the wall. As we will show later, difficulties in

numerical solution never arise from 23.

3. Stability of the Marching Procedure

We will now show that marching procedure can be made stable by using a sufficiently large
step size, &, as in PNS for mean flow, and we will derive a condition for stability. We note that,
since the eigenvalues are distinct, the matrix in Eq. (12) is diagonalizable, and therefore, Eq. (17) can
be written as

4

B8
(=R

(22)

=]

0
Ay
0

&S oo

where § is a vector whose components are linear combinations of %, v and p. These are three

decoupled equations, each of which is of the form

do _
= Ap (23)

If this equation is solved with backward difference with step-size éx, von Neumann analysis leads to

an amplification factor given by
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_ 1
T 1-&A

4 (24)

Numerical stability requires [y]<1, which can be satisfied if (1-2,8)" +A2&%>1 and hence,
& >2A, /(23 + /13) Since A depends on 7, then minimum step size is given by

22,
&nin = St;p(m) (25)

Equation (25) implies that there is no step-size restriction if A, <0, otherwise the step size has to be
greater than some finite value if the marching is to be stable. For example, von Neumann analysis

of, say, the equation associated with A, leads to an amplification factor given by

¥, = ! (26)

(1—(n—a‘.)&x)+iar&x

Numerical stability requires [y,|{< 1 for all 7. This can be achieved only if & >

1 . For smaller &,

kz"!

numerical instability occurs for

1 J1-o282 1 1/1—0:,2&2
® % & YT & |

775&

This is graphically depicted in Fig. 1 for real a.
If Eq. (4a) is discretized directly by using backward difference for x-derivatives and central

difference for the y-derivatives, then Von Neumann analysis of numerical stability leads to the

following
oA O 0 0 -A 0
[T 7 1 7} 0 0 0
0 0 oA 0 0 —A
Vi x VA od £ i%l =0 (27
xR O 0 -uR (0c-VR)A 0
0 0 -xR -iBRA 0 (6-VR)AI
where 7y is the amplification factor, A =_&_xy_1’ o= Es_u;(yéy_n_)’ n e[—%,gy—] ,Kx=I+14 and
p=1+icd. The six roots of Eq. (27) are
A=Ay =0 (28)
UR-2io
=y ——— 29)
As = A4 o’ -6VR+ AR (
and
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iy f 2_ 2
et -0 (30)

ol -o-p°

A, As =

The amplification factor associated with A is given by
1

Ye = — (31)
1—&5( p? +Elﬂsy@ +ai}+ia,&x
which, again, leads to
1
& i & (32)

for numerical stability. The minimum step size as given by Eq. (32) implies that a maximum of 2n
steps per disturbance wavelength are allowed for the marching. This is consistent with the behavior
of the numerical solution first reported by Chang et al. (1991). We should note that, in PSE, we solve
for the slow varying shape functions and so this step-size restriction does not cause problems in
terms of accuracy; indeed, the numerical examples given in Joslin et al. (1993) show that the PSE
solution obtained with 3 steps per wavelength for Tollmien-Schlichting waves in a Blasius boundary
layer is in excellent agreement with very accurate direct simulation of Navier-Stokes equations using
60 grid points per TS wavelength.

When step-size smaller than &, = 1/j,| is required for either higher resolution or for the
convergence of nonlinear terms in an implicit numerical scheme, a further approximation is
sometimes made, i.e., dropping the pressure gradient term dp/dx (see Chang et al. 1991). We point
out, however, that most of the physical pressure gradient is absorbed into the term iap, and that
dp/ adx is very small in comparison (refer to Eq. 2(c)). After db/ox is dropped, Eq. (17) can be reduced
to a set of 2 equations by eliminating p. Carrying out the well-posedness analysis, we obtain two

eigenvalues

where C and D are the same as those in Eq. (18). Here, A, gives rise to ill-posedness due to
viscosity, which is insignificant as explained before. We note that A, represents ill-posedness if o; <
0 (i.e., for growing waves). Using Eq. (25), we obtain the minimum step-size required for a stable

marching scheme,
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In a typical problem, ¢; is an order of magnitude smaller than a,. Therefore,

- 1 ol
&x s + L (33)
" el O(ai’ ]
For a problem in which ¢; /jof is small, we see that the restriction on step-size is relaxed by at least

an order of magnitude in comparison with Eq. (32).

4. Application to Blasius Boundary Layer
The above analysis was simplified in that the mean flow (U,V) was considered constant. We
now apply the results of the above analysis to a realistic problem, i.e., the boundary-layer flow on a
flat-plate. The mean flow in this case is governed by the Blasius equation
3 2
_d_é + l fé—/i:
d&® 2" dé&
fO)=f(0)=0; f(€)>1 as £

=0

U=f

_1 U (. df _
V—2Jxo(§d€ f)

where v is the kinematic viscosity, U, the boundary-layer edge velocity and £ the similarity variable

§=y0 on ’

and x, and y, being the dimensional values of x and y.

The Blasius boundary-layer is subject to Tollmien-Schlichting (TS) instability. We consider a
disturbance of fixed frequency F =0.7x10™* where

_2nv
=

F="%f

[}

f being the dimensional frequency. For this disturbance, the initial wavenumber at R = 500 is a,

.106. As the wave travels downstream, the wavenumber gradually changes to approximately o,
.103.
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Calculations were started at R=U,L/v =500, where L =./vx,/U,. According to Eq. (32), the
minimum step-size is Ax,;, =9.5 based upon the length scale at R = 500. The fourth-order accurate
compact difference scheme of Malik et al. (1982) was used for wall normal discretization and one step
backward Euler discretization was employed in the streamwise direction. We ran our PSE code with
ap/ax term included and Ax = 11 (greater than Ax.;,). The growth rate plotted in Figure 2(a) shows
a smooth solution. The growth rate in this figure has been made nondimensional with local length
scale which varies with x; however, a constant length scale was used in the marching computations.
Next we use Ax = 8 (smaller than Ax,;;), the solution blows up shortly after the marching starts.
Now, we drop dp/ox and further reduce the step-size to 5, a smooth solution is again obtained.
These calculations confirm the estimate for the minimum step-size and show that the dropping of
dp/ ax relaxed the step-size restriction. We present additional calculations in Figure 2(b) where Ax
=10 is used with gp/dx #0 and the solution is smooth. However, with Ax = 9, the solution blows up
towards the end of the computation. This shows that the stability condition derived in the previous
section provides a remarkably good prediciion of the behavior of the PSE solution. With dp/ax =0,
stable solution can be obtained for smaller Ax. The comparison of the solution with Ax = 5 and 10
shows that the approximation dp/dx =0 does not introduce any error, at least in this case.

Figure 3 shows the growth rate results for the same frequency disturbance and dp/adx =0.
Three different step sizes were chosen: Ax = .3, .25 and .2. With Ax = .3, the solution is generally
smooth but appears to develop some very slight wiggles near the end. However, with Ax = .25 and .2
solution blows up. The numerical instability occurs earlier for the smaller step size.

The Ax = .2 calculation is repeated with ia/R dropped to eliminate elliptic effect due to
viscosity. The behavior of the solution is unaffected. This indicates that these oscillations are not
caused by ellipticity due to the viscous terms. Finally, we eliminate the iteration for «, and do the
calculation with fixed real az(the value at R = 500). The growth rate shown in Figure 3 is inaccurate,
but the growth rate curve is smooth. This suggests that the oscillations may have been caused by
the nonlinear iterative process for determination of a. However, one cannot be absolutely sure in
view of the stability condition (33). For the present case of (~;)  _=.0055 and @, =.1, it follows
from (33) that Ax,;, =.13 which is not far from the value of .25 or .2 used in Figs. 3(b) and (c),
respectively. The fact that smooth solution was obtained in Fig. 3(c) with « fixed does not
necessarily suggest that (33) is not operative since real () was used and with a; =0 Eq. (33) gives
Ay = 0.

In order to clarify whether (33) is operative, we perform additional computations and report
the results in Fig. 3(d) which contains the correct solution from Fig. 2(a) as well as the smooth
solution from Fig. 3(c) with a; = 0 and Ax = .2. Also included are solutions using fixed o = .104 —i
.001 and a = .104 —i .004 ( p, and io/R have been dropped). Equation (33) for o;; = 0, ; =-.001 and
~.004 yield minimum step size of 0, .023 and .092, respectively. In the first two cases, the step size of
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Ax = .2 used in the computation is much larger than the critical value given by (33) and therefore the
solution is smooth. Since initially the value of o; is close to the correct solution given by (4b), the
computed growth rate is close to the correct growth rate. However, further downstream the
computed growth rate is in error since (4b) is not satisfied. With a; = ~.004, the computational step
size is not very far from the critical value and, therefore, solution becomes oscillatory and eventually
blows up. In this case, since initially a; = —.004 is not close to the solution of (4b) the growth rate is
in error at small Reynolds numbers. However, as the correct growth rate approaches the value of
—.004, the solution with Ax = .2 and without imposition of 4(b) approaches the correct solution even
though it is oscillatory due to the numerical instability. This example clearly suggests that
numerical instability observed with Ax = .2 is associated with the condition given by (33).

We point out that the values of Ax = .3 and .2 correspond to about 200 to 300 marching steps
per TS wavelength. Clearly, in no linear or nonlinear applications one needs to take such a small

step and, therefore, Eq. (33) is of no significance for most practical computations.

6. Conclusions

The mathematical nature of parabolized stability equations (PSE) is studied. It is shown that
the primitive variable formulation is mathematically ill-posed due to the pressure-gradient term.
The condition for the stable marching solution is derived. Examples from the linear stability of two-
dimensional Blasius boundary-layer are given to show that this condition gives reasonable estimates
of the numerical behavior of the parabolized equations. The results also show that the ellipticity

associated with the viscous term is insignificant.
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Appendix I
a+U, U, 0 o]
V, 4+V, 0 0
L°=
W, w, 4 f
| ix 0 i 0
D 0 1
0 D 0
Ll=
0 0 D o
(1 0 0 O
[V 0 O]
0O V 0 1
L=
0 0 V o0
0 1 0 o0
-1 -
- 0 0 0
R 1
0 — 0 0
L= B ‘
0 0 -= 0
R
(o o o o]
where
az2+/i2—i£i—oi
A=im+iol +ipW + = dx
and
2o
D=U-==
R
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