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1. Abstract

A new formulation for chamber flow dynamics in a model of solid rocket engine
shows that vorticity generation and convection are prominent physical features of
the flow field. Analytical and fully computational methods are employed to describe
a basically inviscid interaction between acoustic disturbances arising from specified
boundary disturbances and a sidewall injected flow field which simulates propellant
burning. The mathematical model, based on the Navier-Stokes equations, is devel-
oped in terms of an initial value problem in order to describe the complete, natural
chamber flow evolution arising from boundary driven disturbances. The approach
is analogous to a direct numerical simulation, although con' porary perturbation
methods are employed to extract specific spatial and temporal scales from the equa-
tions and boundary conditions. The results show that large unsteady vorticity is
created at the injected surface (sidewall) and convects into the cylinder with the ra-
dial component of the injection flow velocity. Eventually, the entire chamber is filled
with an intense, rotational flow field containing relatively large velocity gradients.
The presence of significant distributed vorticity calls into question the predictions of
traditional acoustic stability theory, based on a fundamentally irrotational concept.
The flow field predicted by the present theory includes an essentially acoustic pres-
sure distribution, and a velocity distribution composed of a weakly rotational steady
component, an irrotational acoustic component and a strongly rotational, weakly non-
linear and viscous component. The high Reynolds number, low Mach number flow
field has many similarities to a conventionally defined internal turbulent flow.
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2. Project Objectives, Status
and Accomplishments

Our research program is concerned with modelling transient flow dynamics in
a solid rocket engine chamber. Gaseous mass addition from propellant burning is
simulated by fluid injection through the internal wall of a cylinder with one closed end.
The impact of spatially distributed burning rate transients and/or igniter processes on
the evolving chamber flow is assessed from the perspective of an initial value problem.
In particular, chamber flow disturbances are created by specifically defined, spatially
distributed, time dependent variations of injection velocity or pressure on boundary
surfaces. Solution development is based on analytical and computational methods,
using a route analogous to direct numerical simulation (DNS), where the entire natural
evolution of the chamber dynamics is described. This paradigm shift from more
familiar acoustic stability theory has enabled us to recognize the presence of new and
pertinent physical phenomena in the chamber flow. In particular, we demonstrate that
vorticity is generated near the injection (burning propellant) surface and transported
into the entire chamber by the injected flow field. The presence of significant levels
of time-dependent vorticity in the chamber has three important consequences. First,
traditional acoustic stability theory, involving a primarily irrotational disturbance
flow field, cannot describe the rotational fields found in our analysis. Secondly, the
shear stress near the propellant surface is relatively large (compared with that for a
time averaged mean flow) and may be an important source of scouring of the 6cposed,
degraded propellant surface. Finally, the time-dependent rotational flow field in our
high Reynolds number, low Mach number chamber has similarities to turbulent flow
as traditionally conceived.

During the project period, our own research progress enabled us to create very
specific programmatic objectives:

1. Employ the complete equations of motion in an initial value analysis to study
the evolution of chamber flow transients initiated by specified boundary driven
disturbances.

2. Use perturbation methods, based on viable parameter extremes (large Reynolds
number, small Mach number), to prove that; (1) unsteady vorticity is created

4



on the injection surface by an inviscid interaction between acoustic waves and
the injected velocity field, and (2) the vorticity is convected into the chamber
by the radial component of the injected velocity.

3. Demonstrate the impact of relatively weak nonlinearity and viscous effects on
the spatial distribution of the transient vorticity.

4. Relate the present modelling approach for solid rocket engine chamber dynamics
to the traditional acoustic stability theory.

The present modelling effort is used to demonstrate how and where unsteady
vorticity is created by an interaction between axially propagating acoustic waves
and a flow field caused by steady sidewall mass injection in a finite length cylinder.
Additionally, the formulation and analysis describes the transport and time-history of
the spatial distribution of vorticity within the cylinder. Finally, the results show that
transient rotational flow effects are crucial to the evolution and stability of internal
fluid dynamics when the characteristic cylinder Reynolds number (Re) and Mach
number (M) are very large and small, respectively.

The mathematical model first describes a steady flow field in a cylinder with one
closed end, induced by strong normal, steady sidewall injection. In particular, the
injected flow is characterized by a radial speed much larger than the ratio of the char-
acteristic axial speed to Re 1/ 2. Following Taylor (1956), Culick (1966) shows that
the steady flow is described in a first approximation by an inviscid, rotational equa-
tion system. Axial acoustic disturbances of O(M) are created by either a prescribed
time-dependent axial velocity variation at the closed end of the cylinder or a similar
pressure variation on an exit boundary upstream of the chamber nozzle. They prop-
agate through the basic inviscid shear flow field, and perhaps unexpectedly, create
significant unsteady vorticity at the surface of the porous cylinder. The radial com-
ponent of the steady injected flow field carries the vorticity into the entire cylinder.
Earlier related work (Wang and Kassoy, 1992 a,b) demonstrates that refraction of the
primary axial waves can generate oblique and even transverse wave disturbances that
propagate through the shear flow.

Predictions of flow dynamics in closely related systems have been obtained in
the past from traditional acoustic stability theory as formulated and described by
Grad (1949). Culick and co-workers, (See Culick (1990) for a comprehensive review)
in particular, have developed since the mid-1970's an increasingly sophisticated lin-
ear and weakly nonlinear stability theory to describe disturbance behavior observed
in laboratory experiments and practical systems like solid rocket engine chambers.
Comparisons with experiments appear to be reasonably good, although the theory as
formulated cannot describe the generation and evolution of vorticity.
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Recent experimental (Brown et al. 1986a,b, Brown and Shaeffer, 1992) and com-
putational (Vuillot and Avalon,1991; Vuillot,1991) studies include definitive evidence
of significant transient rotational flow structures distributed throughout the injected
cylinder flow. In addition, Price and Flandro (1993) and Flandro and Roach (1992)
have formulated approximate mathematical models for describing the generation and

Vevolution of vorticity in an injected cylinder flow field. These contributions provide
the motivation for developing a comprehensive flow dynamics model which includes
both the irrotational acoustical phenomena of traditional stability theory and impor-
tant rotational flow effects.

Stability predictions for these flow systems are usually obtained from mathemat-
ical models that reflect linear and weakly nonlinear, inviscid, irrotational acoustic
concepts (see Culick, 1990, Williams,1985, Price and Flandro, 1993, Jahnke and
Culick, 1993). The basic acoustic waves propagate through a fluid at rest, in the
first approximation, and are described in terms of Fourier series of eigenfunctions
that satisfy , -tally impermeable boundary conditions. Strictly speaking , these so-
lutions do not accomodate sidewall injection nor exit plane flow at the downstream
end of the cylinder. As a result the model cannot account for an interaction between
the acoustic signals and a sidewall injected cylinder flow, now known to be a source
of vorticity generation ( Flandro and Roach,1992).

Flandro (1974) recognized that rotational flow effects play a role in relatively thin
acoustic boundary layers where viscosity is of significance. Related studies for inert
flows iave been carried out by Tien (1972), Flandro (1986), Hegde et al.(1986) and
Price and Flandro (1993). Chemically and thermally active acoustic boundary layer
flows are described by Hegde and Zinn (1986), Sankar et al.(1988a,b), Chen et al.
(1990) and Matta and Zinn (1993). In these studies the boundary layer responds
passively to externally imposed disturbances. The investigations are motivated by
a need to understand how energy is exchanged between the acoustic disturbances
and mean flow as fluid injected normally from the wall is turned towards the axial
direction. Until recently, conceptual understanding of this flow turning process has
been based largely on the viscous properties of the thin acoustic boundary layer.

Significant efforts have been made to develop computational models for acoustic
boundary layer processes. Baum and Levine(1987), Baum (1990), Vuillot and Avalon
(1991) and Vuillot (1991) have employed complete Navier-Stokes solvers to evaluate
the general cylinder flow response to imposed disturbances. The last two cited works
in particular demonstrate that rotational disturbances can exist in a substantial por-
tion of the cylinder for appropriate values of Re and M. In other words, the vorticity
distribution is not always confined to the traditional, viscous acoustic boundary layer
adjacent to the cylinder wall. Rather, for appropriate parameter ranges it appears to
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be convected from the wall, out into the main portion of the basically inviscid cylin-
der flow by the mean injected flow field. Clearly, the pervasive presence of vortical
structures in the internal flow field has significant consequences for the conceptual
validity of traditional irrotational acoustic stability models.

The presence of rotational inviscid "acoustic" disturbances in a laboratory flow
field was first implied by the experiments of Brown et al. (1986a,b) and Brown and
Shaeffer (1992). The book r anuscript of Price and Flandro (1993) contains an im-
portant discussion of these issues, and several idealized mathematical models are used
to predict the structure of basically inviscid , but weakly viscous, vortical flow struc-
tures. More recently, Flandro and Roach (1992) have extended the theoretical effort
to generate a purely inviscid model for boundary generated rotational disturbances
that arise from an inviscid interaction between an injected flow field and axial, planar
pressure waves propagating in the cylinder. Here again the vortical structures are
convected out into the cylinder by the radial component of the injected velocity field.
The length scale of the local vorticity variation is O(M) smaller than the cylinder
radius, implying that viscous shear stress may be important on the local level. This
work suggests that the interaction of "acoustic disturbances" with a strongly injected
flow field leads to the presence of important vortical structure in the entire flow field.

Zhao and Kassoy (1994) and Zhao et al. (1994) (see Appendices (a) and (b))
provide an initial step in formulating a rational mathematical model for internal flow
dynamics which incorporates both acoustic phenomena and vorticity distributions.
Perturbation methods are used to derive systematic approximations to the complete
compressible Navier-Stokes equations. An initial-boundary value approach is used
to formulate a generalized unsteady mathematical model capable of describing both
non-resonant and resonant time history of solutions. The boundary disturbance is an
O(M) axial, harmonic velocity variation on the closed end wall. The complete axial
velocity is found from a superposition of three components of equal magnituide. First,
the steady component arises from a solution to inviscid, rotational Euler equations
known by Culick (1966). Secondly, there is a planar irrotational acoustic field, derived
from a traditional linear wave equation which satisfies boundary conditions at the
closed and open ends of the cylinder. Finally, the rotational, weakly nonlinear viscous
component varies on two disparate length scales. The global spatial distribution
occurs on the radial length scale, while locally there are velocity gradients on a scale
O(M) smaller. As a result the vorticity of the transient field is O(M - 1) larger than
that in the steady field. The convection of the vorticity is found to be described by
a linear equation. Most significantly, the diffusion of vorticity on the shorter length
scale is described by a nonlinear diffusion equation. Solutions are found numerically
by using a finite difference method, as well as semi-analytically with a Galerkin-like
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method developed by Wang and Kassoy (1990a,b.c, 1992a,b, 1993).
Evaluation and interpretation of the full results show that rather complex vorticity

distributions are present throughout the cylinder. Initially, the vorticity is confined
to a growing region between the sidewall and a well defined front propagating toward
the cylinder axis with the local radial steady speed. The region between the front and
the axis contains the weakly vortical steady flow along with the irrotational acoustic
solution. Eventually. the entire chamber flow is filled with vorticity which vanishes
only on the axis.

Fully computational methods are used by Kirkkopru et al.(1994) (see Appendix c)
to provide qualitative supporting evidence for the solutions described in Appendices
a and b. In this case the driving disturbance is a harmonic pressure transient applied
on the downstream exit plane of the cylinder. Grid size and spatial distribution are
chosen to accomodate the multiple lengthscale structure known from the formulation
exercise. The unsteady rotational component of the axial velocity is extracted from
the total value found from a MacCormack scheme. Solution properties and charac-
teristics are identical to those found previously and support the basic concepts of
vorticity generation and transport.

Results obtained to date are associated with single frequency harmonic boundary
forcing. Even then the time response curves for the total axial velocity are surprisingly
complex, resulting from a combination of the expected acoustic response and the
newly described rotational component. One may speculate that multiple frequency
drivers, and/or those with greater complexity of spatial distribution will generate
pointwise time response curves with considerable irregu'uarity, perhaps reminiscent of
a turbulent flow. In fact, it should be recognized that the calculated or computed
rotational velocity field has certain characteristics and properties that are similar to
those of a turbulent flow.

One is observing the evolution of a primarily inviscid, rotational, unsteady flow
associatad with a large Reynolds number. The weakly viscous effect has an impact
on the shorter length scale, and the rotational flow distribution is weakly nonlinear.
Given that the results are obtained from a quasi-analytical initial value analysis,
the evolving flow field is described much like that in a direct numerical simulation.
The front separates a strongly rotational flow from one that is characterized by an
irrotational acoustic field. Although not shown in the present work, we now know
that if disturbances are generated directly by sidewall injection transients of sufficient
spatial complexity, the front morphology can be quite corrugated. As a result, one
can find intermittent regions of strongly rotational unsteady flow on an axial traverse
at a fixed radial distance from the wall. In the present theoretical framework the
front configuration can actually be described analytically
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The Generation and Evolution of Unsteady Vorticity in a Model of

a Solid Rocket Engine Chamber *

Q. Zhao and D. R. Kassoyt
Mechanical Engineering Department; Center for Combustion Research

University of Colorado at Boulder; Boulder,CO 80309-04 2 7 1

Abstract a given location shows that the complete axial veloc-
ity field can be quite irregular, particularly if the end

A mathematicai znodel is formulated to describe the wall driving frequency is high. The formulation and
initiation and evolution of vorticity in a low Mach results provide a conceptual framwork for the study
number (M), weakly viscous internal flow sustained of solid rocket engine chamber flow dynamics which
by mass addition through the side wall of a long, nar- supplements traditional acoustic stability theory by
row cylinder. An O(M) acoustical disturbance, gen- providing information about the generation and evo-
erated by a prescribed harmonic transient endwall ve- lution of vortical structures.
locity, interacts with the basically inviscid rotational
steady injected flow to generate time dependent vor-
ticity at the wall. The steady radial velocity com- 1 Introduction
ponent convects the vorticity into the chamber. The
axial velocity associated with the vorticity field varies Predictions of flow dynamics in solid rocket engine
across the cylinder radius and in particular has an chambers have been obtained in the past from acous-
instantaneous oscillatory spatial distribution with a tic stability theory, first formulated and described by
characteristic wave length 0()smaller than the ra- Grad'. Culick and co-workers, (See Culick 2 for a
dius. As the spatial structures are convected from the comprehensive review) in particular, have developed
wall toward the axis, weak viscous effects cause the since mid-1970's an increasingly sophisticated linear
vorticity to diffuse. The magnitude of the vorticity and weakly nonlinear stability theory to describe dis-
distribution in the transient field is much larger than turbance behavior observed in laboratory and full-
that in the steady flow because the velocity gradi- scale engines. Comparisons of predicted pressure
ents associated with the former occur on the smaller transients with those in experiments appear to be
length scale. reasonably good.

An initial-boundary value formulation is employed Recent experimental measurements (Brown et
and a finite difference scheme is used to find the non- a 3- 4., Brown and Shaeffer3,) and computational pre-
linear unsteady solutions when a pressure node exists dictions (Vuillot and Avalon6; Vuillot7) of velocity
at the downstream exit of the cylinder. The complete profiles show definitive evidence of significant rota-
velocity consists of a superposition of the steady flow, tional flow structures distributed throughout the en-
an acousti (irrotational) field and the vortical com- gine chamber. In addition, Price and Flandro' and
ponent, iAl of the same magnitude. Results for the Flandro and Roach 9 have formulated approximate
velocity solutions are given when the endwall driving mathematical models for describing the generation
frequency is nonresonant. Time response output at and evolution of vorticity in analogies of solid rocket

engine chamber. These contributions provide the mo-
•Research is suported by the Air Force OSRce of Senti tivation for developing a comprehensive chamber flow

PResearch through AFOSR 69-O023
t-lin address: Graduate School B-26; Uuveity of Col- dynamics model which includes both the irrotational

orado at Boulder; Boulder, CO 80309 acoustical phenomena of traditional stability theory
$Copyrightg)1994 by the American Institute of Aeronautics and important rotational flow structure.

and Astranautics. All rights reserved. Solid rocket engine stability predictions are usdally

--I ' nmm m mmmm u u m nnumumnn
n m l u m

nn nnmn



1b

obtained from mathematical models that reflect lin- Price and Flandro s contain. an important discussion
ear and weakly nonlinear, inviscid, irrotational acous- of these issues, and several mathematical models are
tic concepts (Culick 1°-1 9 ; William20 ; Price and Flan- used to predict the structure of basically inviscid ,
dro 6). The basic acoustic waves propagate through but weakly viscous, vortical flow structures. More
a fluid at rest, in the first approximation, and are recently, Flandro and Roach 9 have extended the the-
described in terms of Fourier series of eigenfunc- oretical effort to generate a purely inviscid model
tions that satisfy totally impermeable boundary con- for boundary generated rotational disturbances that
ditions. Strictly speaking, these eigenfunctions do arise from an inviscid interaction between an injected
not accomodate side wall injection (propellant gasifi- flow field and axial, planar pressure waves propagat-
cation) nor chamber exit plane flow (upstream of the ing in the chamber. Here again the vortical structures
nozzle). As a result the model cannot account for an are convected out into the chamber by the radial corn-
interaction between the acoustic signals and a side- ponent of the injected velocity field. The length scale
wall injected chamber flow, now known to be a source of the local vorticity variation is O(M) smaller than
of vorticity generation (Flandro and Roachg). the chamber radius. This work suggests that the in-

Flandro2 ' recognised that rotational flow effects teraction of "acoustic disturbances" with a strongly
play a role in acoustic boundary layers where viscosity injected flow field leads to the presence of important
is of some significance. Related studies for inert flows vortical structure in the entire flow field of a model
have been carried out by Tien2 2, Flandro23 , Hegde solid rocket engine.
et a 24 . and Price and Flandrol. Chemically and These rotational flow models also demonstrate un-
thermally active acoustic boundary layer flows are equivocally that the velocity field near the wall is
described by Hegde and Zinn25, Sankar et al26 - 27 ., a composite of an axial planar, irrotational acous-
Chen et al.2s and Matta and Zinn 29. In these studies tic flow and a rotational flow. The short wave length
the boundary layer responds passively to externally transverse spatial oscillations of the axial disturbance
imposed disturbances. The investigation are moti- velocity, seen in the numerical results of Vuillot and
vated by a need to understand the energy exchange Avalon 6 as well as more clearly in the theory of Flan-
between acoustic disturbances and the mean flow as dro and Roach 9 provide a transition between the wall
the normally injected fluid is turned towards the axial and a traditional planar, axial acoustic driving distur-
direction. Until recently, conceptual understanding bance present near the axis. This suggests that the
of flow turning has been based largely on the viscous concept of velocity coupling should be reconsidered,
properties of the thin acoustic boundary layer. or perhaps replaced by an improved understanding

Significant efforts have been made to develop com- of rotational, basically inviscid disturbance processes
putational models for acoustic boundary processes. adjacent to a burning propellant surface.
Baum and Levine 1 , Baum3 l , Vuillot and Avalon6  The present study is an initial step in formulating
and Vuillot 7 have employed complete Navier-Stokes a mathematical model for solid rocket engine chain-
solvers to evaluate the general chamber flow response ber flow dynamics which incorporates both acous-
to imposed disturbances. The last two cited works in tic phenomena and vortical flow structures. A low
particular demonstrate that rotational disturbances Mach number (M), large Reynolds number (Re) in-
exist in a substantial portion of the chamber flow. In ternal flow, sustained by constant steady mass addi-
other words, vorticity distributions are not confined tion through the wall of a long narrow cylinder, is
to traditional, viscous acoustic boundary layers ad- disturbed by an O(M) harmonic, transient endwall
jacent to the chamber wall. Rather, they appear to velocity. Acoustic waves created by the boundary
be convected by the mean injected flow field from the disturbance interact with the basically inviscid rota-
wall out'into the main portion of the basically invis- tional injected flow field to create vorticity on the
cid chamber flow. Clearly, the pervasive presence of wall. The vorticity is convected into the cylinder by
vortical structures in the chamber flow field has sig- the radial component of the steady iajected flow field
nificant consequences for the conceptual validity of although the flow structure is altered locally by non-
traditional irrotational acoustic stability models, linear and viscous effects.

The presence of rotational inviscid "acoustic" dis- Perturbation methods are used to derive system-
turbances in a model (cold flow) chamber flow was atic approximations to the complete compressible
first inferred from the experiments of Brown et al.3 - 4  Navier-Stokes equations. An initial-boundary value
and Shaeder and Brown s . The book manuscript of approach is used to formulate a generalized unsteady
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mather'ftica model capable of describing the corn- D' = 2R'. The complete non-dimensional equations
plete time history of solutions. Fourier series repre- describing the fluid dynamics and acoustics for an
sentations of the velocity and pressure are obtained in axisymmetric system can be written in the form
terms of eigenfunctions that satisfy all the prescribed
boundary conditions. The complete axial velocity is +M B(prV,) +(pV 5 ) + 0, (1)
found from a superposition of three components of I Or az j
comparable magnituide. First, the steady component
arises from a solution to inviscid, rotational Euler DV, _2 1 8P
equations known by Culickl ° . Secondly, there is a '"= M " r
planar irrotational acoustic field, derived from a tra-
ditional linear wave equation. Finally, there is a rota- +62 ?k ( I l A av,  avK
tional, weakly viscous component which varies on two Lz I _ W "r J
distinctly different length scales. The global spatial a rUe[V, 1/i(rV'7 ) aV.
distribution occurs on the radial length scale, while +2 (- a-" +
locally there are velocity gradients on a scale O(M) 3 z
smaller. As a result the vorticity of the transient field 2"
is O(M - 1 ) larger than that in the steady field. The +- - , (2)
convection of the vorticity is found to be described
by a linear equation. Most significantly, the diffusion DV, 1 8P
of vorticity on the shorter length scale is described 0 D
by a nonlinear equation. It is demonstrated that the

global spatial distribution on the radial length scale +6 t! [- - + ±-
arises from the interaction between the "acoustic dis- Re 1762 +: -r
turbance" and the strongly injected flow field present
in the solid rocket chamber. The nonlinear and vis- a r 1 By, av, 112M a
cous effects are of quantitative importance,but do not + +Br[72 e z
have much impact on the overall low structure.

Solutions are found by invoking a direct finite dif- a'- 3 r - ) + !r-V )' (3)
ference scheme and a Galerkin-like method used by a 3 r - j (

Wang and Kassoy 33-39. In the latter case, a cou- DT F1
pled, infinite system of ordinary differential equations pC, -= -(- 1)MP + '

for Fourier coefficients is truncated systematically to

find solutions in terms of a finite mode representa- M 1 rIa ( 'B T)
tion. The two different approaches enable us to com- +RP z a
pare results for the same cases, providing a means by
which one can verify the results. + /1 k-aT-) +0, (4)

Evaluation and interpretation of the full results
show that rather complex vortical structures are
present throughtout the cylinder sufficiently long - P=pT (5)
ter the disturbance is initiated at the end wall. When where
the input from several different Fourier modes is im-
portant, the time response curves are quite irregular D = +M (+ + .i
and could be mistaken for "turbulent" response. Dt = '

and f is the viscous dissipation function. The non-
2 Mathematical Formulation dimensional variables are defined in'terms of dimen-

sional quantities (with a prime) by
The geometrical configuration for a cylindrical cham- ,1
ber with side wall injection is shown schematically p-- 4, P , T v,
in Figure 1. in which L' is the axial length and D' P -

is the diameter. The radius R' is related to D' by , - ,= r t 7
Tr
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k~,= . ,. $. 6) The injection rate is characteristic of the gasili-
, C" cation velocity created by solid propellant burning.

The reference value P0 measures the basic static pres- Large injection prevails, in the sense that V,"o > v.Rel
sure in the chamber, while the analogous density (Cole and Aroesty3 g), which implies that Re > 62,

and temperature values Po, To, respectively, repre- where 6 > i is used to describe a long, narrow chain-
sent properties of the fluid injected from the walls. ber.
The characteristic injection speed Vr.,o is related to
the characteristic axial speed V '0 by the approximate
mass conservation relationship V o = 6V'o where the 3 Steady State Flow
aspect ratio 6 = -k. Characteristic length scales for The steady state flow generated by time independent
the axial and radial dimensions are defined by L' andR repecivey. Tme s nndiensinalzed~th mass addition on the side wall can be described inR' respectively. Time is nondimensionalized withtemofhevralsterms of the variables:
respect to the axial acoustic time t. ' where

Co = (-yR'T) is the characteristic sound speed. (P'pT) - 1 + M 2 (Po,,po,,To,) +
The reference material properties ko, lA and Co are (V, (Vo., VTo,) +-.. (11)
defined at temperature To. The parameter Y is the
ratio of specific heats and Equation (11) can be used in (1)-(6) to find the

I I I I I I leading order equations valid for the limit M-0, de-
Re = °° Pr - CPO M ='O (7) scribing an inviscid rotational flow that satisfies-o

1 8(rVo,) B Vo,
where typically the Prandtl number Pr= 0(I), the I 89 " + =z 0 (12)
axial Mach number M < I and axial Reynolds num- Z

ber Re > I in the chamber. P. = Po.(z) (13)
Initially, the steady flow in the system is driven by c. V. 0. !Vzo. I 8PO,

a spatially distributed normal injection from the wall V,'o - + .o.- z - - - (14)
where the no-slip condition is satisfied. Symmetry v Bz
prevails along the axis at the cylinder. The closed and boundary conditions in (8)-(9). The transport
end of the cylinder is impermeable, and the exit is terms are excluded from the leading order equations
assumed to be a pressure node. The latter assump- because P> 1. Equation (13) arises because the
tion is a mathematical modelling convenience. The aspect ratio 6 > 1. The solutions for the radial and
boundary conditions may be written as axial velocity, as well as the pressure distribution can

r = 0; V, = =o 0, be written in the form

= 1; ,= =V,(z), V. 0,T = 1 (8) 0 =

z = 0; V. = 0, z = 1; P = 1. (9) V50o = (rfo' V,,(r)dt) cos(-7 2 ), (15)

Flow disturbances are created at z =0 by imposing PO, = - r 2 f- [V,(i) fo' V,(,r)dr] di, (16)
a harmonic end wall disturbance in the axial velocity
which is independent of the radial coordinate; where -V,, (z) is an arbitary time-independent side

Z= 0; V = Asinwt,t > 0; 0 < r < 1, (10) wall injection distribution. Related solutions can be
found in Culick1 ° , Price and Flandro' and Flandro

where the amplitude A=O(1). and Roach9 .
It should be noted that the imposed disturbance on

the left end wall is comparable in magnitude to that of
the steady axial speed. As a result this fluid system
will be weakly nonlinear, and the theory developed
here differs from traditional linear small disturbance
theory.
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4 Rotational Flow Across the M -- 0. First, the spatially homogeneous boundary
forcing in (10) and the condition 6 > I imply that

Cylinder Vo = 0. Then,

4.1 Problem statement OR Ro aV - I Ml (23)

The objective now is to develop a mathematical

model for the disturbance evolution when weak rota- aV,0  8V o I BP)(o
tional effects are significant across the entire cylinder. 8r + V = -y (24)
The asymptotic expansions for the velocity compo- OF' i'o
nents and thermodynamic variables are -=0, (25)

V- V.o(z,r) + E MV,.(z,r,t) (17)
A=0 + ! - M

v -- Vo (Z'r) + E Mg" V, (z,,r, 0) (18) 2a
1 =o Po =RO + 0 . (27)
(p) 1 E M(pP, ,,,) (19) Following a procedure related to that described by

(P,, T) -I+ M (1)Lagerstrom4° , and similar to that employed by Price
Ii-Oat and Flandro' and Flandro and Roach9, the variables,

It is recognised that two disparate length scales are except for PO, are divided into irrotational planar and
important; the tube radius and a much shorter length rotational nonplanar parts,
associated with the radial distance traveled by a fluid
particle on the acoustic timescale. A multiple scale V4o Wo(z, t) + Ar,(,, t, ri, r2), (28)
analysis will be carried out in terms of the variables = R t) + 4(Z, t, r, 2), (29)
r, and r 2 defined by

=I -1r; r2 d. (20) 90o = o,(, t) + 9o(Z, t, rl, r2). (30)
1o -MtO°(O)' " When (28)-(30) are used in (23)--(27), the planar

The second transformation includes an integral of the equations are found to be in the form
steady radial velocity field for the case of constant Ro - 8Wo0 ,
steady wall injection V,, = 1. The integral trans- = (31)
formation simplifies the describing equations consid-
erably. It is noted that when the center line is ap- 8Wop 1 8Po
proached, 1 -- 1, the integral diverges and r2 -- -o. 00 - (32)

The partial derivatives with respect to r in equa-
tions (l)-(5) must be replaced by mop - - 1 po(33)= (3=3)l ~ , 21

) - + Po = R, + op (34)

() = 82 ( 2 The initial/boundary conditions are given by:

t =0, Wo 0, = O,= 0, (35)

+( ) z 0, Wo, = sin wt; (36)

18Vo, (22) = 1, W- = 0 . (37)
The nonresonant acoustic solution for the planar

4.2 Lowest order mathematical model contribution is

The relations (7)-(19) can be substituted into (I)- Wop(t, z) = -- a ." sin(wt)
(5) to find the leading order equations in the limit =
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- sin(At)) sin(A,,z), A n w, (38) a o0Cz = 1; 69Z -0, (52)

Po(t, Z) = E an (- cos(wt)

+ Co,(Ant)) COS( ,,), An,, ,(39) a'= 1, o; - o a,' o,(2

Po = -,Ro, (40)
2, r 1 .= r2 o; Wo r - (t, Z), 4o = -Oo,(t. ) (54)

where a. 4 = - and An = (n - )r. The first
terms in the sums of (38) and (39) arise from the forc- Equation (54) corresponds to the no-slip condition
ing at frequency w, and the second terms describes and isothermal flow injection. Equations (42), (43)
the eigenfunction response. Only the nonresonant and (45) show that ,o, io and A0 are invariant ca a
case will be considered in the present work. characteristic line defined by

The equations for the rotational components are

aizo aoR0  ao /1 77 = t - r2 , (55)

-t 8a2 =v(-L) "-' (41) but vary across the rl lines. The r, = 0 line entersthe chamber at t = 0 through side wall (r, = 0) and
8wo ao42 subsequently, at t = c, 17 = c appears at r = 0. At a

-+ ar 0, (42) particular time T, constant Ti lines, which range from

0 to T, are transported toward the axis by convection
_o !0 at the local radial steady velocity.

+a2 0 (43) The inviscid equation in (42) can be combined with
the first of (54) to show that the wall is a source of

Ao +o = 0. (44) vorticity because

Equations (43) and (44) can be combined to show 8wo(t', z, 0, 0) - 8Wo 8W0 ,(t, z) (56)
that the leading order vortical flow is incompressible: 82 L - (56)

ro aAo
+ - = 0 (45) where W 0p is known from (38). It is noted that

Ot 8t3 the largest unsteady nondimensional vorticity term

Therefore, equation (41)--(44) can be rewritten in is given by 0# = (4-) -. The parameter, ',
simpler forms arises from large gradients occuring in the spatially

oscillatory velocity profile on the short length scale8W0 / 1 SV,1
z + !- 0, (46) r 2 - Equation (47) also shows that the vorticity gen-

8erated at the wall is convected into the cylinder by
the steady radial velocity field Vo, (r).

wo = 0, (47) In general solutions to the inviscid first order hy-

t2 perbolic equations in (47)-(49) can be written sym-
bolically as,N o + !0 0o(8

a r8 Wo = Wo(,7, , , z), 17 = t - 2 (57)

+ io = 0. (49) o = io(,ri, z) =-A, (58)

and must be solved with respect to the initial and In order to derive the explicit functional dependence
boundary conditions: of the variables, higher order equations need to be in-

vestigated. Once 1#0 is found, then the mass conser.
t = 0; Wo = 0, !Wvo = 0, (50) vation equation (46) can be integrated with respect

to r2 to find the radial velocity V7 . The vortical tem-
perature and density fields can be found using related

z = 0; WC, 0 : 0, (51) methods.
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4.3 Higher order consideration If the transformation of the coordinate system from

Equations (17)-(19) can be combined with (1)--(5) (t,rir 2 ,z) to (, rl, r2 , z) is made, then the derivatives

to find the O(M) equation set. The same procedure with respect to t and r2 must be replaced by

used to find the leading order solution is employed (67 ()= (67)
so that the variables, except for P1, are divided into ,= i
irrotational planar and rotational nonplanar parts,

V,1 = Wi,(z,t) + W1 (z,t,ri,'r2), (59) = - , (68)

R -Rlp(z, t) + R1 (z, t, ri1 , r2 ), (60) It follows that (66) can be written as

0=1 G(z,t) + l(z,t,ri,,r2 ). (61) 8*W 1 a82ao Vo(V0. + WO)

The planar, acoustic equations, .r2 VA' z

aR1, +(RoWop) - wip (62) r*o 1 (Vo) _i WO) 3( )1

9+ a= - -Wo - - Iaz Vo. 8r2 ,

awl, OWo, _ "va0 4, OW= -o, -V 0.- - o

z I - +Vo, + aP° (69)

861e p -1 OP0 (-y - 1)aw An integration of (69) with respect to r2, holding j7,
S& a8z r, and z fixed will generate secular growth in r2 un-

op__ less certain terms are suppressed. In considering the
-Po(_' - 14 , (64) impact of each term, it is important to remember that

the harmonic t-dependence of the planar acoustic so-
P, = Rp + 8, + RopOop (65) lutions in (38)-(40) must be rewritten in terms of j7

are not considered further here. and r2 by using the transformation 17 = t - r2 in (55).
The largest possible viscous effect occurs when When written in the coordinate system (z, t, ri, r2)

62 /ReaM 2 and leads to the higher order rotational the suppressed terms take the form;

equation for axial momentum I8 2 o 0 -8o

O*l +* 1 a 2 to 1-Opo 2 
°  -

at a 0r2 - + -R0  Or V 00 .-. - O. = 0, (70)

-(Vo. + O which is a nonlinear diffusion equation for the rota-

tional axial velocity *o with a time-like variable rl.
+. o, + oa The solution for Wo must satisfy an"initial" condi-

Or Or tion:

+V,o., 8( °' + VW) *o(t, z,"r = 0. r 2) = -Wo,(, Z) ,7 > 0

(V. ( av, 0~o = ,1 a,. , sin(il)

\V,.o, I O - sin(A,'7)) sin(wz), A3  w,

-V .. 0. (66) *o(t, z,r,' = 0,r2) 0 17< 0 (71)
ar, and a boundary condition at the center line:

It is (66) that will give us information about the
behaviour of the leading order axial speed solution. r2 ----oo, - 0. (72)
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In addition a condition must be specified on r, > where
0."2 = 0 which is compatable with (71) at the point
r, = r2 = 0. This is necessary because r, and r2 Gnn = 2Xnf sin, 1 z)cos(Xnz)sin(Xz)dz (79)
are treated as independent variables in (70). The J
reasonable choice is given by =Z

Tko(t, z, r1, r 2 = 0) = -W 0 p(t, z). (73) = , 0 zos(Uz)sin(A,,z)dz(80)

The nonlinear term in (70), WoW4ro is present in our Equation (75) is a coupled system of quasi-linear dif-
problem because the O(M) boundary disturbance fusion equations with a time like variable ri, and non-
is larger than that used in earlier, basically linear linear source terms. The physical time t is a parame-
studies (Flandro and Roach'). Its presence suggests ter of the differential equations, appearing explicitly
that wave steepening, acoustic streaming and other only in the boundary conditions. Solutions to (75)-
forms of instability may occur in the evolving flow (80) are described in Section 6, based on a system
field. If the imposed piston driven disturbance is truncation approach to find a finite number of A,,'s.
smaller,and/or axial variations are ignored, then a A second solution approach is based on a fi-
linear, viscous diffusion equation is derived, which is nite difference approximation to (70)-(73). Solu-
related to that used by Price and Flandrog. tions for *0(z, t, r1 , r2) are found by employing a sec-

Given the forcing condition in (71), one approach ond order accurate Adam-Bashforth/Crank-Nicolson
to finding the solution to (70) is based on using the scheme. It is relatively easy to implement and can be
eigenfunction set {sin(Anz)},n = 1, 2,...; used to test the accuracy of the truncated mode so-

lution. Most of the results presented here have been
o found in this way.

=z, ri, r2) An(t, r1, r2) sin(AnZ) (74)
n=1

Coupled partial differential equations for the 5 Finite Difference Solutions
Fourier coefficients A., are found by using (74) in for the Nonlinear System
(70) and invoking orthogonality conditions for the
eigenfunction set on the interval [0,1]. The results Solutions to (70)-(73) for *o(z, tri,r2) have been
are; found by using a finite difference method based

12 on the second order accurate O(6ij, br2) Adam-
A - - - V - An Bashforth/Crank-Nicoson scheme. The real solution

V +9 n1 o B A - ,=1 lies on the locus defined by (20) relating ri and r2.
In general this curve does not coincide with the com-

a , A,nAA,+ b,,, A = 0 (75) putational grid points. Hence cubic spline interpola-

tions in r2 are employed at every chosen r, value to
obtain the desired real solution. The far end bound-

and are subject to; ary condition for r2 - oo is implemented by pro-
(a) Initial Condition: viding a sufficiently large number of grid points be-

tween the convected outer edge of the rotational layer
An(t, r, = 0, r 2) a . sin w(t - r2) and the finite location of the computational bound-

ary with respect to r2 . A total of 1000 grid points
-sin Xn(t - r2)) 0 < r2 __ t in the r2 direction with 6r2=0.I is chosen. The func-

= 0 r2 > t (76) tion and derivatives must remain sero at a significant
number of nodes in order to ensure that conditions

(b) Boundary Conditions: at the computational boundary do not constrain the
solution.

r2 - 00, U =' 0 (77) At each value of the "parameter" t, the integration
Br 2  is initiated with the initial conditions in (71), subject

I Ato the boundary conditions in (72) and (73) . The
An(t, ri, = 0)= -an (- sin(wt) - sin(Ant)) (78) spatial distribution of the solution with respect to r2
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evolves as the "time-like" variable ri increases. Inte- (15). Fluid particles injected normally from the wall
gration is carried out to a sufficiently large value of r, with V, = I at a specified z-location experience an
to ensure that adequate data fields Wo(z, t, r, r2) are approximately harmonic variation in the local pres-
available on the locus curve relating r, and r2 defined sure gradient given by (39). During periods of neg-
by (20). Then the actual solution is found from the ative (positive)gradients the particles are accelerated
intersection of the surface defined by WO(z, t,r1 , r2) downstream (upstream). As a result, near the wall
and the vertical plane from the locus curve relating one will observe alternating periods of positive and
ri and r2. negative axial velocity. The steady radial velocity

The first test case studied is for w = 1.0, which is a field carries these alternating regions of forward and
noresonant frequency smaller than the first natural reverse flow away from the wall toward the axis. Part
frequency A, = -. This particular case allows us of the fluid particle response is purely acoustic. The
to develop a relatively simple solution with minimal remainder is given by Wo. In this sense the spatial
computational time. pattern of the rotational axial velocity at fixed s as

It is important to resolve the solution in the axial shown in Figures 2,3 and 4b reflects the historical
direction by choosing a sufficiently large number of behaviour of the local pressure gradient at the axial
grid points in the s-direction, K,,.. Solution com- location. The O(M) length scale of the transverse
parisons for K,. = 9, 21 and 37 at t = 40, M=0.01 spatial oscillations can now be explained easily since
and Z=0.25, 0.5 and 0.75 show considerable differ- the approximately harmonic pressure gradient varia-
ence for the smallest number. Excellent comparisons tion occurs on the acoustic time scale tt (for w=O(1))
for K,., = 21 and 37 suggest that the former is ad- during which only limited radial motion is possible.
equate for w = 1.0. Two additional results should be noted. The wave

Figures 2,3 and 4b give results for the rotational ax- length of the spatial oscillations decrease as rl in-
ial velocity W0 as a function of r, at s=0.5 when t= creases toward the axis. This occurs because the
20,30 and 40. At each time, the solution consists of virticity front speed (the steady radial velocity) de-
several spatial oscillations and a thin region of expo- dines as 1 increases. Finally, a comparison of Fig-
nential damping near a specific radial location r".(t) ures 4a,b,c demonstrates that the rotaional axial ve-
beyond which vorticity is exponentially small. For a locity dependes on the axial location as well as the
given value of t, one first finds P2e from 77 = 0 = t- rae radial location.
and then uses the inverse of (20) to determine ie. It Figures 6 shows a "linear" solution for the rota-
should also be noted from the definition of j7 in (55) tional axial velocity IWo as a function of r, at t=40,
and the second of (20) that the front moves at the M=0.01 and s=0.5 obtained by solving (70) with
nondimensional speed ( r, = -MV,.o,(r) which nonlinear term Wo&" reduced by a factor of 10- .
corresponds to the steady radial speed in dimensional K,. = 21 is used in the calculation. This calcu-
terms. The front speed vanishes as the cylinder axis lation is done to assess the impact of the nonlinear
is approached. At t = 40 the rotational flow distri- convection term on the spatial structure of the so-
bution in Figure 4b extends out about 44% of the lution in Figure 4b. A comparison shows that the
cylinder radius. nonlinear term has a quantitative effect on the spa-

The corresponding scaled vorticity distribution, tial distribution of W~rO, but does not fundamentally
calculated from v i a is given in Figure 5. The control the qualitative spatial oscillations.
dimensionless vorticity $I#, defined below (56) is Figure 7 is the counterpart to Figure 4b with a
O(M-1). One should note the significant magnitude reduced viscous effect. In this case (70) is solved with
of the spatial variations in vorticity given the scaling the viscous term, multiplied by a factor of
factor I The large amplitude is associated with 0.5. The basic patterns of the complete solution in
the O(M;Tength scale of the axial speed gradient and Figure 4 persist. There exist some differences in the
the factor M- 1 . amplitudes of the curves in these figires that can be

The spatial distribution of the axial rotational ye- attributed to the viscosity reduction.
locity at each time can be explained in physical terms Figure 8 and Figure 9 are the counterparts of the
by considering the interaction between the propa- nonlinear result in Figure 4b with M=0.05 and 0.1 re-
gating planar acoustic wave solution, described by spectively, and t=40. These Mach numbers are more
(38) and (39), and the steady injected flow field in reflective of the flow conditions in a rocket engine.
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One can see that the larger Mach number (stronger ing many Fourier modes, the vortical time-response
blowing) is associated with a thicker unsteady vorti- might be quite irregular. In this sense, one could
cal region. The vorticity has filled the entire chamber ask whether "turbulent" responses observed in solid
for M=0.05 and for M=0.I at t=40 while only 44% of rocket chamber models are caused by wall generated
the chamber is filled in Figure 4 with M=0.01. This is vorticity that is convected into the chamber by the
expected because of faster radial convection of vortic- injected field.
ity by the steady radial velocity. It should be noted
that the local velocity gradients are smaller in Fig-
ures 8 and 9 so that the magnitude of the unsteady 6 Modal Solutions to the Non-
vorticity is similarly reduced for higher Mach number linear System
systems. Larger velocity gradients can be obtained at
a given Mach number for larger forcing frequency w. Solutions found from (74)-(80) enable one to demon-

Figure 10 provides results at r1 = 0.2 for the time- strate how the energy is distributed among different
variation of the planar acoustic axial speed Wop, the Fourier modes. The coefficients AL(ri, '2), n=l-N
rotational axial speed W0 and their sum 1'so, defined for specified N, have been found by using a finite dif-
in (28), at s=0.5 with K,, = 31 and M=0.01. It ference method based on the same second order ac-
can be seen from Figure 10b that the curve for the curate O(6r 2, 6r2 ) Adam-Bashforth/Crank-Nicolson
rotational solution resembles the planar acoustic re- scheme. The same procedure applied in finding the
sponse in Figure 10a but differs in amplitude and solution of *o on the real locus is applied to each one
phase. At r, = 0.2 the rotational response appears of the A(rl, 2) to find the solution of 4s on the
after a delay of almost 18 axial acoustic time units, real locus. Once the A's are known, the solution for
the time needed for the vorticity wave front initiated TWo is found by summing up N modal contributions
at the wall to travel out to the specified radial loca- according to (74). Careful attention must be given to
tion. It is noted that the amplitude of the rotational the value of N in order to assure that the solutions
response is a little smaller than that of the acoustic are sufficiently accurate. In particular, solutions for
solution. At the location ri = 0.2, phase differences *o based on N and N + L modes, L > 0, are com-
are relatively small and the sum in Figure 10c shows pared until the results exhibit no appreciable change
a total response of significant amplitude. This am- for an incremental L value. In Figures 13 and 14, 6
plitude will actually increase as ri decreases until lo- and 10 mode solutions for *o vs r, at M=0.01,z=0.5
cations very close to the wall are reached, then the and t=40 for w = 1.0 have been compared with each
no-slip conditions prevails as r, " 0. other to ascertain that the former are sufficiently re-

The smaller amplitude vortical radial velocity can solved, implying that energy are concentrated in the
be calculated by integrating equation (46). Figure first 6 modes. The comparison of Figures 13 and
11 describes the rotational radial velocity V 1 as a 14 with Figure 9b reveals that there is little differ-
function of r, at t=40, M=0.01 and s= 0.5. Beyond ence between the spatial distribution curve from the
the vorticity front the transient radial velocity dis- 6 mode solution and that from the direct finite differ-
tribution is a known constant multiplying the steady ence solution of nonlinear equation with K,.,, = 21.
radial velocity. This is no coincidence because the grid size in the ax-

The second case studied is for a driving frequency ial direction for K..=21 is 0.05 which is just small
W = 2.5. The solution for W'o at t=40, M=0.01 and enough to resolve the first six Fourier modes in ax-
z=0.5 is given in Figure 12 for K,.. = 21 . The ial direction according to (Az),,,. = i , where
absolute maximum amplitude of the w = I solution 7 = n - )

at s=0.25 is about 4. In comparison, the analogous The satisfying comparison between the finite differ-
quantity is a quarter as large for the case w0 = 2.5. ene an osuion p eten cnfidec

The graphs show that the spatial distribution and nthe characteristic solution properties. Solutions to

the time-response curves for w = 1.0 and 2.5 have the former system are less expensive in terms of CPU

similar characteristics. The curves for w = 2.5 are time and more complete ifa sufficient number of grid

more irregular than their w = 1.0 counterparts be- tind re omlet i sicin number o ghi

cause the driving frequency is higher. The relative points are provided in s direction. Solutions to the

complexity for w = 2.5 suggests that if a multidimen- latter system are able to demonstrate the energy dis-

sional irrotational acoustic field were present, involv- tribution among different modes.
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7 Conclusions frequencies w = 1.0 and w = 2.5. These cases are
chosen because the first several modes dominate the

Systematic mathematical methods have been em- solution and only the first six modes are needed to
ployed to formulate a mathematical model for the resolve the flow field in the former case. At w = 2.5,
creation and evolution of rotational flow in an ideal- the energy is more equally distributed among several
ised solid rocket engine chamber. Boundary driven modes, sc that the time response curves (not shown
axial, planar acoustic waves interact with an invis- here) are more irregular. This suggests that quite
cid, rotational , injection induced steady flow to pro- complex time response curves are likely to be found
duce time dependent vorticity at the sidewall of the in systems containing complex acoustic wave fields.
cylinder. The vorticity is convected into the entire The conceptual approach used here can be ex-
chamber by the steady radial velocity field. tended to disturbances driven by sidewall injection

In contrast to traditional acoustic stability theory, transients, reminiscent of burning rate variation in
solutions are developed in the context of an initial- real systems. Further, it is likely that the formula-
boundary value problem, in order to study the nat- tion will be useful for a reconsideration of flow turning
ural evolution of the flow disturbances arising from and velocity coupling concepts. Finally, the variable
specified boundary forcing. This study parallels typi- scaling reported here will enable the development of
cal computational studies of similar problems (Baum more accurate numerical methods.
and Levine 2g; Vuillot and Avalon6; Vuillot7 ). The
solutions found in this work describe nonresonant
boundary driven disturbances on the axial acoustic 8 Acknowledgement
time scale of the chamber.
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Nonlinear Vorticity Generation by Acoustic
Wave Interaction with an Injected Gas Velocity

Field in a Cylinder*

Q. Zhao, D. R. Kassoytand K. Kirkkopru

Mechanical Engineering Department;

Center for Combustion Research

University of Colorado at Boulder; Boulder,CO 80309-0427

Abstract

A mathematical model is formulated to describe the initiation and evolution
of unsteady vorticity in a low Mach number (M), weakly viscous internal flow
sustained by mass addition through the side wall of a long, narrow cylinder.

An O(M) acoustical disturbance, generated by a prescribed harmonic transient
endwall velocity, interacts with the basically inviscid rotational steady injected

flow to generate time dependent vorticity at the side wall. The steady radial
velocity component convects the vorticity into the flow. The axial velocity asso-
ciated with the vorticity field varies across the cylinder radius and in particular
has an instantaneous oscillatory spatial distribution with a characteristic wave

length O(M) smaller than the radius. Weak viscous effects cause the vorticity
to diffuse, as the spatial structures are convected from the wall toward the axis.

The magnitude of the transient vorticity field is larger by O(M -1) than that
in the steady flow.

An initial-boundary value formulation is employed to find nonlinear un-
steady solutions when a pressure node exists at the downstream exit of the
cylinder. The complete velocity consists of a superposition of the steady flow,

an acoustic (irrotational) field and the vortical component, all of the same

magnitude. The formulation and results provide a conceptual framwork for the
study of injected cylinder flow dynamics which supplements traditional acoustic

stability theory by providing information about the generation and evolution
of vortical structures.

*Research is supported by the Air Force Office of Scientific Research through AFOSR 89-0023
t Mailing address: Graduate School B-26; University of Colorado at Boulder; Boulder, CO 80309
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1 Introduction
The objective of this study is to demonstrate how and where unsteady vorticity is
created by an interaction between axially propagating acoustic waves and a flow field
caused by steady sidewall mass injection in a finite length cylinder. Additionally,
the formulation and analysis describes the transport and time-history of the spatial
distribution of vorticity within the cylinder. Finally, the results show that transient
rotational flow effects are crucial to the evolution and stability of internal fluid dy-
namics when the characteristic cylinder Reynolds number (Re) and Mach number
(M) are very large and small, respectively.

The mathematical model describes the transient response of a flow field in a
cylinder with one closed end, induced by strong normal, steady sidewall injection. In
particular the injected flow is characterized by a radial speed much larger than the ra-
tio of the characteristic axial speed to Re' /2 . Following Taylor (1956), Culick (1966a)
shows that the steady flow is described in a first approximation by an inviscid, rota-
tional equation system. Acoustic disturbances of O(M) are created by a prescribed
time-dependent axial velocity variation at the closed end of the cylinder. They prop-
agate through the basic inviscid shear flow field, and perhaps unexpectedly, create
significant vorticity at the surface of the porous cylinder. The radial component of
the steady injected flow field carries the vorticity into the entire cylinder.

Predictions of flow dynamics in closely related systems have been obtained in
the past from traditional acoustic stability theory as formulated and described by
Grad (1949). Culick and co-workers, (See Culick (1990) for a comprehensive review)
in particular, have developed since the mid-1970's an increasingly sophisticated lin-
ear and weakly nonlinear stability theory to describe disturbance behavior observed
in laboratory experiments and practical systems like solid rocket engine chambers.
Comparisons with experiments appear to be reasonably good, although the theory as
formulated cannot describe the generation and evolution of vorticity.

Recent experimental (Brown et al. 1986a,b, Brown and Shaeffer, 1992) and com-
putational (Vuillot and Avalon,1991; Vuillot,1991) studies include definitive evidence
of significant transient rotational flow structures distributed throughout the injected
cylinder flow. In addition, Price and Flandro (1993) and Flandro and Roach (1992)
have formulated approximate mathematical models for describing the generation and
evolution of vorticity in an injected cylinder flow field. These contributions provide
the motivation for developing a comprehensive flow dynamics model which includes
both the irrotational acoustical phenomena of traditional stability theory and impor-
tant rotational flow effects.

Stability predictions for these flow systems are usually obtained from mathemati-
cal models that reflect linear and weakly nonlinear, inviscid, irrotational acoustic con-
cepts (Culick, 1966a,1966b, 1967,1968,1970,1971,1973,1975,1976,1988,1990; Williams,
1985; Price and Flandro, 1993; Jahnke and Culick, 1993). The basic acoustic waves
propag.te through a fluid at rest, in the first approximation, and are described in
terms of Fourier series of eigenfunctions that satisfy totally impermeable boundary
conditions. Strictly speaking , these solutions do not accomodate sidewall injection
nor exit plane flow at the downstream end of the cylinder. As a result the model
cannot account for an interaction between the acoustic signals and a sidewall in-
jected cylinder flow, now known to be a source of vorticity generation ( Flandro and
Roach,1992).

Flandro (1974) recognized that rotational flow effects play a role in relatively thin
acoustic boundary layers where viscosity is of significance. Related studies for inert
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flows have been carried out by Tien (1972), Flandro (1986), Hegde et al.(1986) and
Price and Flandro (1993). Chemically and thermally active acoustic boundary layer
flows are described by Hegde and Zinn (1986), Sankar et al.(1988a,b), Chen et al.
(1990) and Matta and Zinn (1993). In these studies the boundary layer responds
passively to externally imposed disturbances. The investigations are motivated by
a need to understand how energy is exchanged between the acoustic disturbances
and mean flow as fluid injected normally from the wall is turned towards the axial
direction. Until recently, conceptual understanding of this flow turning process has
been based largely on the viscous properties of the thin acoustic boundary layer.

Significant efforts have been made to develop computational models for acoustic
boundary layer processes. Baum and Levine(1987), Baum (1990), Vuillot and Avalon
(1991) and Vuillot (1991) have employed complete Navier-Stokes solvers to evaluate
the general cylinder flow response to imposed disturbances. The last two cited works
in particular demonstrate that rotational disturbances can exist in a substantial por-
tion of the cylinder for appropriate values of Re and M. In other words, the vorticity
distribution is not always confined to the traditional, viscous acoustic boundary layer
adjacent to the cylinder wall. Rather, for appropriate parameter ranges it appears to
be convected from the wall, out into the main portion of the basically inviscid cylin-
der flow by the mean injected flow field. Clearly, the pervasive presence of vortical
structures in the internal flow field has significant consequences for the conceptual
validity of traditional irrotational acoustic stability models.

The presence of rotational inviscid "acoustic" disturbances in a laboratory flow
field was first implied by the experiments of Brown et al. (1986a,b) and Brown and
Shaeffer (1992). The book manuscript of Price and Flandro (1993) contains an im-
portant discussion of these issues, and several idealized mathematical models are used
to predict the structure of basically inviscid , but weakly viscous, vortical flow struc-
tures. More recently, Flandro and Roach (1992) have extended the theoretical effort
to generate a purely inviscid model for boundary generated rotational disturbances
that arise from an inviscid interaction between an injected flow field and axial, planar
pressure waves propagating in the cylinder. Here again the vortical structures are
convected out into the cylinder by the radial component of the injected velocity field.
The length scale of the local vorticity variation is O(M) smaller than the cylinder
radius, implying that viscous shear stress may be important on the local level. This
work suggests that the interaction of "acoustic disturbances" with a strongly injected
flow field leads to the presence of important vortical structure in the entire flow field.

The present study is an initial step in formulating a rational mathematical model
for internal flow dynamics which incorporates both acoustic phenomena and vortical
flow structures. Perturbation methods are used to derive systematic approximations
to the complete compressible Navier-Stokes equations. An initial-boundary value
approach is used to formulate a generalized unsteady mathematical model capable of
describing both non-resonant and resonant time history of solutions. Fourier series
representations of the velocity and pressure are obtained in terms of eigenfunctions
that satisfy all the prescribed boundary conditions. The complete axial velocity is
found from a superposition of three components of equal magnituide. First, the steady
component arises from a solution to inviscid, rotational Euler equations known by
Culick (1966a). Secondly, there is a planar irrotational acoustic field, derived from a
traditional linear wave equation which satisfies boundary conditions at the closed and
open ends of the cylinder. Finally, there is a rotational, weakly viscous component
which varies on two distinctly different length scales. The global spatial distribution
occurs on the radial length scale, while locally there are velocity gradients on a scale
O(M) smaller. As a result the vorticity of the transient field is O(M -') larger than
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that in the steady field. The convection of the orticity is found to be describea by
a linear equation. Most significantly, the diffusion of vorticity on the shorter length
scale is described by a nonlinear diffusion equation. Solutions are found numerically
by using a finite difference method, as well as semi-analytically with a Galerkin-like
method developed by Wang and Kassoy (1990a,b,c, 1992a,b, 1993).

Evaluation and interpretation of the full results show that rather complex vortical
structures are present throughtout the cylinder sufficiently long after the disturbance
is initiated at the end wall. When the input from several different Fourier modes is
important, the time response curves are quite irregular and may be mistaken for a
"turbulent" response.

Fully computational methods are used by Kirkkopru et al.(1994) to provide sup-
porting evidence for the solutions found here by quasianalytical means.

2 Mathematical Formulation
A cylindrical tube with side wall injection is shown schematically in Figure 1. in
which L' is the axial length and D' is the diameter. The radius is R' = D'/2. The
complete non-dimensional equations describing the fluid dynamics and acoustics for
an axisymmetric system can be written in the form
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and I is the viscous dissipation function. The non-dimensional variables are defined
in terms of dimensional quantities (with a prime) by
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r = -=,r = k-,co . (6)

The reference value Po measures the basic static pressure in the cylinder, while the
analogous density and temperature valuc. P0, TO respectiv,,y represent properties
of the injected fluid. The known characteristic injection speed ,',o is related to the
derived characteristic axial speed V1'o by the approximate mass conservation relation-

ship V'0 = 6Vo where the aspect ratio 6 = ,. Characteristic length scales for the

axial and radial dimensions are defined by L' and R' respectively. Time is nondimen-
sionalized with respect to the axial acoustic time t, = , where Co = (tR'To)2 is

the characteristic sound speed. The reference material properties ko, js0 and C0'o are
defined at temperature T'. The parameter -t is the ratio of specific heat and

,).I y 
4

e

Re PO rL = OPc M (7)I~o ko ' -C; T

where typically the Prandtl number Pr= 0(1), the axial Mach number M < 1 and
axial Reynolds number Re > 1.

Init:ally, a steady flow exists in the system, driven by spatially distributed normal
injection from the wall where the no-slip condition is satisfied. Symmetry prevails
along the axis at the cylinder. The closed end of the cylinder is impermeable and for
simplicity the exit is assumed to be a pressure node. The mathematical form of the
boundary conditions may be written as

r=0; V = E"-" = 0, r=l1; V=-V..(z), V. =0, T=I1 (8)
Or

z=0; 1,=0, z=1; P=1. (9)

The steady flow is disturbed at z = 0 by imposing a harmonic end wall axial
velocity variation that is independent of the radial coordinate;

z = 0; V = Asinwt, t > 0; 0 < r <1, (10)

where the amplitude A=O(1).
It should be noted that the imposed end wall disturbance, of the same order

of magnitude as that of the steady axial speed, induces both mechanical and ther-
modynamical disturbances of similar magnitude into the gas. These relatively large
variations cannot be described by linear theory alone. Therefore, the weakly nonlinear
theory developed '.are differs from traditional small disturbance theory.

Strong injection prevails, in the sense that V, >> (Cole and Aroesty 1967),

which implies that Re > 68 2. Also note that in this modelling effort it is assumed
that 6 : 1, to describe a long, narrow cylinder.

3 Steady State Flow
The steady state flow generated by time independent mass addition on the side wall
can be described in terms of the variables:

(P,p,T)-.-1 + M+(Poo,poeTo,)+..., (V,V,.) -(V~o.,0V.o)+ ...; (11)
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valid for the asymptotic limit Al - 0. Equation (11) can be used in (1)-(5) to find
the leading order equations describing an incompressible, inviscid, rotational flow that
satisfies the no-slip and injection boundary conditions on the side wall and symmetry
conditions on the axis, given in (8) and (9)

1 a(rVo.) V.o.
+ =0 (12)r Or tOz

PO' = Po,(z) (13)
9V o. OV av o 1 8 Po°

V-.- -0 -' (14)

The transport terms are excluded from the leading order equations because A > 1.
Equation (13) arises because the aspect ratio 6 > 1. The solutions for the radial and
axial velocity, as well as the pressure distribution can be written in the form

Vrof - I sin(rr) Vzo° = r V,.(r)dT cos((r7), (15)
' 2 \o/ 2

POO = Ifr2 fl [ Vrw(i) I1 Vw (r) dT] di, (16)

where -Vr,,(z) is an arbitary time-independent side wall injection distribution. Re-
lated solutions can be found in Culick (1966a), Price and Flandro (1993) and Flandro
and Roach(1992). It should be noted that recently Balakrishnan et al.(1991) derived
a related solution valid for M = 0(1) < 1.

4 Core/Boundary Layer Solutions

For certain parameter values the flow response to the endwall driven disturbance in
(10) can be described in terms of an irrotational acoustical core and a relative thinner
weakly viscous, rotational boundary layer adjacent to the cylinder wall. Aspects of
this traditional model have been described by Wang and Kassoy(1992a). Here, the
objective is to use the solutions themselves to determine the conditions for which the
core-boundary layer structure is valid.

The asymptotic expansions for the unsteady core flow can be written as

(P, p, T) P.. 1 + M Tn M(P.,p,,T), (Vi, V) - j Md (Vn, V4n); (17)
n=O n=O

in the limit M --* 0. Equation (17) can be used in (1)-(5) to derive the lowest order
acoustic system valid in the limit M - 0, Re -+ oc, 6M = 0(1);

1p oa(,.Vo) o(V.o)
+ + = 0; (18)

a-"T 1 a 0 O Po = Po(z, t); (19)

OTo _ .0po (20)a--T- = ( -Y - i)-8 . (20
at at (-,

Po = P - To. (21)
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The velocity components consist in general of both a steady state part and an
unsteady part respectively; (Vo, Vo) = (Vo, V,.) + (V .o, ',.o) . It follows that the
unsteady flow equations can be derived by substracting the steady state equations
(12)-(14) from (18)-(21). Given the boundary condition in (10) the lowest order
radial speed V. = 0.

4.1 Linear Planar Solution
The unsteady part of the leading order equations can be combined into a planar wave
equation in terms of the axial velocity component:

aV .o a2o
820  .2t0 (22)

at2 - 8z2

The corresponding initial and boundary conditions are given by

t=0, V=0 -0=0, (23)

z = 0, 14o = sin wt; (24)

z =1, a = 0. (25)

The simplicity of the equation can be attributed to the large aspect ratio condition
6 > 1 . The boundary condition at the exit is derived from the pressure node
condition in (9).

The general solution for 14o is

V..o(z,t) = sinwt

CO 2
- i!)sin(bn. t) + t cos(bn. t)}I sin(bn. z), (26)

where b,, = (n + 1)7r, and the last set of terms represents a resonant effect presentonly when w - b,.. A careful look into the solution provides us with some insight

into the properties of the acoustical flow.

" The first term itself and the second part of the nonresonant Fourier series repre-
sent quasi-steady motion oscillating at the driving frequency. The other Fourier
series terms can be decomposed into two counter-propagating planar travelling
waves.

* If the driving frequency w is not equal to one of the natural frequencies bn, the
solution is bounded. If w is very close to one of these natural frequencies, then
beats will appear due to the interaction between the quasi-steady motion and
one pair of travelling waves.
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* Resonance occurs when w = b,, and the amplitude of one mode grows linearly
with time.

Table 1 contains results for a system where tA = 10' s so that dimensional
frequencies can be considered. When w' z 159 Hz, the response shown in Figure 2
for V 0 at z = 0.5 is bounded and the contributions are mainly from the first harmonic
oscillation term, the first few axial modes and quasi-steady modes in (26). Beats are
observed in Figure 3 when w' ; 238 Hz. The period of the beat is about 90s. due
to the interaction between the quasi-steady modes and the first axial mode. Linear
monotonic amplitude growth seen in Figure 4 is primarily from the resonant axial
mode in (26) when w' = 250 Hz.

The pressure solution Po(z, t) can be obtained from a first integral of the unsteady
part of (18) and the isentropic relationship P0 = -yp0.

4.2 Boundary Layer Correction
The leading order core acoustic solution does not satisfy the no-slip boundary con-
dition. Under certain conditions to be defined quantitatively, the transition to zero
axial velocity at the wall occurs in a relatively thin boundary layer which has a multi-
ple scale structure. In particular the overall radial thickness of the layer is defined by
viscous considerations. But within it there is a smaller length scale associated with
the distance traveled by an injected fluid particle on the time scale t = '. Due

to the relatively large injection condition V10 >> V~o/Ret the boundary layer flow
is inviscid and rotational in the first approximation. Viscous stresses appear in the
second order description, but are essential to finding the complete solution, as might
be expected in a multiple scale analysis.

The multiple scale structure is defined in terms of the variables;

1 -r 1-r = r--- (27)

where3 - ReM 2/S 2 and M </8 < 1 when the core/boundary layer concept is valid.
The partial derivatives with respect to r must be replaced by

jW) N 128)(31r =_ 0 -1( ),
(O2 2 1( 2 MO (82 11 O2

The variables are expanded as

(P,p,T)- 1 + E M+'(P,,p,,,T), (30)
n. O

M
V -, V0 + - 1 + " V, - -;(z) + .,(31)
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The lowest order boundary layer equations are;

aV. + a9so I aPo (32)O- V + 1', O -Y a z'

Po = Po(z,t). (33)

Equation (32) is an inviscid rotational equation which can satisfy the no-slip boundary
conditions on 4 = 1/= 0. Vorticity transport can be described by the first derivative
of (33) with respect to 4, keeping in mind that V, and - are independent of the
short length scale variable. The resulting equation shows that vorticity is convected
invariantly by the radial wall injection velocity into the boundary layer along well
defined characteristic lines, o = t -

The second order momentum equation is obtained from terms of O(M);

a-. + V,8 V4, + - '--, (34)

where a viscous stress term is present and the pressure gradient term is absent since
M >M.

The acoustic solution in the core provides an outer boundary condition and the no-
slip condition on the side wall provides an inner boundary condition for (32) and (34).
The leading order acoustic core solution shows that all the terms can be classified into
the following two forms: ,o(z)eifl with f = w or b, and -t cos(b,,.t) sin(b,,.z). Thus
the boundary conditions are

4= =0, V 0 = 0; (35)

,r7 00; Vo 0 Vo(z,t). (36)

Equations (32)-(34) and (35)-(36) are used to find quasi-steady solutions to
every driving frequency in the core solution. For any of the nonresonant modes
f/= w or b,, but w 3 b,, for any integer n, the boundary layer solutions can be written
as

Vso = F(, 7, z)efl; V, = G(, 1, z)e ra . (37)

These solution forms can be substituted into (32) and (34) to determine F and G.
The former found from (32) , (35) and (36), is

=MF( , = v-e ( + V.0  (38)

where the undetermined coefficient function C(i1 , z) must satisfy the conditions

r7= 0; C = -Pso(z), (39)

S--.00; C = 0. (40)

Equation (34) can then be rewritten in terms of G and C as

-aG ifl GM )l [aC Q2'-G+ G )J%' + V C (41)
84 V,.m I V NI I I
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In order to avoid secular growth of G with respect to the variable , the quantities in
the square bracket must be set to zero. Therefore,

a + II C = 0 (42)8i9 V3

together with boundary conditions (39)-(40) are solved to find

C (77, z) V .0 exp(-'12 77)) (43)
PV

The multiple scale solution for a given single frequency 0 has the form:
V~(, ,t)=_ ,~) {exp '2 in ] en

0 -140(Z {exp [-v) .- __- -7- -} e; (44)

where -V.(z) is the steady side wall injection velocity. The exponential term rep-
resents the vortical part of the axial unsteady flow in the boundary layer. The com-
bination of this vortical component and elft term can be written as:

--P [/_ i fl 2 in
n  Q 2

exp ) V,(z + int = exp ( ) 1) e (45)

where o = t - .- is the constant phase line or characteristic line for the unsteady
axial vortical velocity. The radial traveling speed for constant (P line can be therefore
described by:

ar = - MV,(z) (46)

This shows explicitly that the vorticity is convected by the steady injected fluid
velocity in the boundary layer.

The first part of the exponential term in (45) describes amplitude damping arising
from viscous effects because the ii-variable defined in (27) is scaled with respect to
Re, in part. The second part describes harmonic spatial oscillations.

When resonant driving is present 0 = w = b,., and V.0 has the form

V.o(f, , z, t) = -t sin(b,.z) sin(b.t)
+ {t sin(k4) sin(b. t) + bL. t cos(k4) cos(bt)

11 + b cos(k() + b sin(k )] sin(b,,.t)--(1 + b..) 2k2(1 + b,,.)

w [2(1 + b,,.) Acos(k4) - ( 1 + b,,.

cos(b.t)} 1 sin(b., z) exp(- b. (47

10



where k = b.

When ( = 7 = 0, the solutions satisfy the no-slip boundary condition on the wall.
On the other hand, when and 77 -- oo, the core solution is recovered in an oscillatory
manner since the amplitude of the exponential term goes to zero harmonically. The
effective thickness of the boundary layer depends strongly on 11 and V,,. A large valuc
of 11 promotes relatively rapid exponential decay, implying that a high frequency
disturbance is associated with a thinner transition boundary layer. Alternatively, low
frequency forcing fosters thick boundary layers. Thus, higher order modes tend to
be associated with effectively thinner boundary layers. The same type of argument
demonstrates that increasing the value of V(z) enhances the overall boundary layer
thickness.

A complete solution for the axial velocity in the boundary layer consists of an
infinite sum of terms obtained from (44) and (47) ; one for each frequency w and
b, in (26). The spatial structure of such a solution will be quite complex, given the
oscillatory dependence on the value of 12. It is perhaps more illustrative to look at
the results for a single frequency.

The reduced axial velocity inside the vortical layer, v., is plotted against

in Figure 5 with M = 0.01,0 = 0.1 and V, = 1 for 12 = 2.5 and 12 = 3.0. The core
solution is recovered at about = 10 for 02 = 2.5 which correspondes to r = 0.9 .
In contrast, the boundary layer thickness is a little smaller for the higher frequency
2 = 3.0. Of course the overall boundary thickness is determined by the lowest mode

in the system. The core/boundary layer structure is valid only when V 3 /f22 is
sufficiently small, where 8 < 1, to permit exponential decay in (45) to occur close to
the cylinder wall (say r > 0.9). If 0 = 0(1), and V,. is sufficiently large and/or 0 is
sufficiently small, then a new multiple scale perturbation technique is needed to find
solutions where rotational effects fill the entire chamber.

5 Rotational Flow Across the Cylinder

5.1 Problem statement
The objective now is to develop a mathematical model for the disturbance evolution
when rotational effects are significant across the entire cylinder. The asymptotic
expansions for the velocity components and thermodynamic variables in the limit
M - 0 are

V - Vzo(Z,r) + _ M"V.(z,r,t) (48)

V, -. Vo.(z, r) + M"V ,(z, r, t) (49)
% . n=o

(P,p,T) -1 + ) M'(Pn,p, On) (50)

It is recognized that two disparate length scales are important; the tube radius
and a much shorter length associated with the radial distance traveled by a fluid
particle on the acoustic timescale. A multiple scale analysis will be carried out in

11
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terms of the variables ri and r 2 defined by

r= 1 -r; r2 d. (51)

The second transformation includes an integral of the steady radial velocity field for
the case of constant steady wall injection V,, = I which simplifies the describing
equations considerably. It is noted that when the center line is approached ri -- 1
the integral diverges and r2 - 00.

Each of the dependent variables is written in terms of ri and r 2 instead of r alone.
The partial derivatives with respect to r in equations (1)-(5) must be replaced by

( ) = - + 1 ' (52)

(i M , (Ml0 or.r2)
+( 2 + MVo 8rl . (53)

5.2 Lowest order mathematical model
The relations (48)-(50) can be substituted into (1)-(5) to find the leading order
equations in the limit M --* 0. First, the spatially homogeneous boundary forcing in
(10) and the condition 6 > 1 imply that Vo = 0. Then,

aRo + ORo  8V'o (1 O(V54
, (54)

at r2 OZ )V.* i
OVV O lOP0av.o O V opo (55)

OPo 0>o PO a o, (56)

0e0 +o (y- 1)OPo (57)

Po = Ro + Oo. (58)

Following a procedure related to that described by Lagerstrom(1964), and similar
to that employed by Price and Flandro (1993) and Flandro and Roach (1992), the
variablis except for Po, are divided into irrotational planar and rotational nonplanar
parts,

V,o = Wo,(z, t) + Wo(z, t, rl, r2 ), (59)

R= Rp(z, t) + Ro(z, t,r1 ,r 2 ), (60)
6o = Oo(Zt) + 0o(Z,t, ri,r 2 ). (61)
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Equations (59)-(61) can be used in (54)-(58) to show that the planar functions are
described by

0 Rop a09op 62_t az'(2

awop 1 O Po
Po Po(z, t), (63)

O~op _t y- 10Poaotp i O '(64)

Po = P + 0op, (65)

a system nearly identical to (18)-(21). The initial/boundary conditions are:

t = 0, Wop = O, WOP =0 , (66)at

z = 0, W = sinwt; (67)
O , Wo, = 0. (68)

in analogy to (23)-(25).

The nonresonant acoustic solution for the planar contribution is

WoP(t,z) = - a,n sin(wt) - sin(At) sin(Az), An # w, (69)
7 n=i

00

Po(t,z) - a, (- cos(wt) + cos(Ant))cos(Az), A, 0 w, (70)
n=1

Po =-yRo,  (71)

where an = - and An = (n - -)r. Equation (69) is equivalent to (26) for the

nonresonant case. The first term in the sums of (69) and (70) arises from forcing
at frequency w, and the secoDd term describes the eigenfunction response. Only the
nonresonant case wili be considered in the present work.

The equations for the rotational components are

-~ +- a-=- Wo 1y0 ) 82' (72)

+-=0, (73)

+ -O =0, (74)

Ao + o = 0. (75)

Equations (74)and (75) can be combined to show that the leading order vortical flow
is incompressible:

O +o 0 (76)

13



Therefore, (72) can be rewritten as

-± - - 0, (77)
5T+ V,.0o, 8T2

which can be used to find V,1 once W0 is known.
The relevant initial and boundary conditions are

t=0; Wo=O, o=-0, (78)at

z=0; WO=O,' (79)

z =1; z = 0, (80)

r, r2 00;_ao _ 90 (81)
r,= ,r3-, -r = O, r2 0

,i = r2 0; = -0 wo(t, z),o = -o(,,tz) (82)

The first of (81) can be combined with (73) and the initial condition (78) to prove
that W = 0 on the axis r, = 0 for all t. Equation (82) corresponds to the no-slip
condition and isothermal flow injection. Equations (73), (74) and (76) show that WO,
6o and Ro are invariant on a characteristic line defined by

1= t - r2, (83)

but vary across the 97 lines. The 7 = 0 line enters the cylinder at t = 0 through side
wall (r2 = 0) and subsequently, at t = c, i = c appears at r3 = 0. At a particular
time T, constant 1? lines, which range from 0 to T, are transported toward the axis
by convection at the local radial steady velocity, as found from a time derivative of
(83) after using (51).

The inviscid equation in (73) can be combined with the first of (82) to show that
the wall is a source of vorticity because

ooO(t,z,0,0) _ Wo aWO,(t,Z) (84)ig2- = --§ = t4

where Wop is known from (69). It is noted that the largest unsteady nondimensional

vorticity term is given by fl, = ( . The parameter, -L arises from large
gradients occuring in the spatially oscillatory velocity profile on the short length scale
r2. Equation (73) also shows that the vorticity generated at the wall is convected into
the cylinder by the steady radial velocity field Vo.(r).

14



In general, solutions to the inviscid first order hyperbolic equations in (73)-(75)
can be written symbolically as,

Wo = Wo(i, ri, z), 77 = t - r2 (85)

Oo = o q, r1,z) - , (86)

Explicit functional dependence of the variables can be found from consideration of the
higher order equations, as is typical in a muitivariable study. Once W0 is found, then
the mass conservation equation (77) can be integrated with respect to r 2 to find the
radial velocity V4 i. The vortical temperature and density fields can be found using
related methods.

5.3 Higher order consideration
Equations (48)-(50) can be combined with (l)-(5) to find the O(M) equation set
in the limit M --. 0. The same procedure used to find the leading order solution is
employed so that the variables, except for P1, are divided into irrotational planar and
rotational nonplanar parts,

V., = w 1p(z, t) + Wl,(Z, t, ri, r2), (87)

R,= Rp(z, t) + R(z, t, ri, r2), (88)

81 -91(z, t)" + 1(Z, t, ri,r 2 ). (89)

The planar, acoustic equations,

oR1 p = _o [wip + RoWo, (90)
at - Z

at = a - (P- Po)+2 ' (91
LF -[ 2 -9 1 )

'P = a -1)RI+ 2f 1)2 (92)

P, = Rip, + 81p + Rp~eop (93)

containing quadratic driving terms associated with lower order acoustics are not con-
sidered further here, although they may be important for studying acoustic streaming
effects.

The largest possible viscous effect occurs when 6 2/Re=M 2, in which case the
higher order axial momentum equation for Wi has the form

T2 a.v - o2V + -f A - (V.0. + 1"0) ( .°.+  zo)

at ar2- '5ij +R 0.T 9 z o+ ) az
V. V.0. _W op a(V.0. + V.0)

+z' 5z + O z +V O' r1
_ (V,. OVz.o O o 0VoA(4

-'- n' 
(9 4 )
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the analogue to (73). It is (94) that will give us information about the behaviour of
the leading order axial speed solution.

The corresponding energy equation for 9z analogous to (74) contains a conduction
term. Thus, transport effects are important conceptually in the distribution and
evolution of the rotational variables.

If the transformation of the coordinate system from (t,ri,r 2 ,z) to (ni, r, r 2 , z) is
made, then the derivatives with respect to t and r2 must be replaced by

S(( ) (95)
LP2 )1 )12

It follows that (94) can be written as

awl 1 a2Wo o(V0o. + W )= V2 .0 - z

_ OWo 1 8(-,V1 Wo) )8(V'W0)1

az Vo. Or2 871

V.O. V,0.8 -h--,1k _P (96)
Oz Oz a, -

An integration of (96) with respect to r2 , holding q7, rl and z fixed will generate
secular growth in r2 unless certain terms are suppressed. In considering the impact of
each term, it is important to remember that the harmonic t-dependence of the planar
acoustic solutions in (69)-(71) must be rewritten in terms of '9 and r2 by using the
transformation 17 = t - r2 in (83). When written in the coordinate system (z, t, ri, r 2)
the suppressed terms take the form;

1 82 Wo OW9 .Wo _-0V owo+ VO Oo 2Mo - - Wo - V o . =0, (97)
8i'10 Or 28z (9z

which is a nonlinear diffusion equation for the rotational axial velocity Wko with a
time-like variable rl. The solution for Wro must satisfy an"initial" condition from
(82)

Wot,Z,ri = 0,r 2 ) = -Wo,(,Z) 7 >

,- , sin(w.7) - sin(A,,1) sin(AZ),A,, 9,
n=1wk~t ,,ri = 0, r2) =0 ,7 < 0 (98)

and a boundary condition at the center line from (81)

r2  00, 8r= 0. (99)

In addition a condition must be specified on r, > 0,r2 = 0 which is compatable with
(98) at the point ri = r2 = 0. This is necessary because r, and r2 are treated as
independent variables in (102). The reasonable choice is given by

Wo(t, z, ri, r = 0) -Wo(t, z). (100)
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The nonlinear term in (97), 2W0W0 , i pjresent in our problem because the O(M)
boundary disturbance is larger than that used in earlier, basically linear studies (Flan-
dro and Roach,1993). Its presence suggests that wave steepening and other forms of
instability may occur in the evolving flow field. If the imposed endwall disturbance is
smaller,and/or axial variations are ignored, then a linear, viscous diffusion equation
is derived, which is related to that used by Price and Flandro (1992).

One solution approach is based on a finite difference approximation to (97)-(100).
Solutions for Wo(z, t, ri, r2) can be found by employing a second order accurate Adam-
Bashforth/Crank-Nicolson scheme. Most of the results presented here (see section 6)
have been found in this way.

Given the forcing condition in (98), it is also possible to find solutions in terms of
the eigenfunction set {sin(Anz)},n = 1, 2,.

Wo(t,, ,i,rr 2 ) = E An(t,,r,,r2 ))sin(Atz) (101)
n='

Coupled partial differential equations for the Fourier coefficients An, are found by
using (101) in (97) and invoking orthogonality conditions for the eigenfunction set on
the interval [0,1]. The results are;

1 82A A 1 4vo. 2
V,30, &i r Vo. 9z V.ok, n=1

[ann~n2AtlA 2 + ( 140. ) bnn, Anj), 0 (102)

and are subject to conditions obtained from (98) and (99).

(a) Initial Condition:

An(tri=0,r2 ) = 1an(nsinw(t-r 2)-sinAn(t-r 2 ) 0<r2<t

= 0 r 2 >t (103)
(b) Boundary Conditions:

r2 --- 0,-=~n0 (104)
82A.(t rl,, 0 1 IA

A(t, rir 2 = 0)= -an sin(wt) - sin(Ant) (105)

where

anni = 2A, f sin(An1 z) cos(A. 2 z) sin(An.z)dz (106)

bnn, A = fAI z cos(An z) sin(Anz)dz (107)

Equation (102) is a coupled system of quasi-linear diffusion equations with a time like
variable rl, and nonlinear source terms. The physical time t is a parameter of the
differential equations, appearing explicitly only in the boundary conditions. Solutions
to (102)-(107) are described in Section 7. A system truncation approach is used to
find a finite number of A's.
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6 Finite Difference Solutions for the Nonlinear

System

Solutions to (97)-(100) for Wko(z,t,rl,r 2 ) have been found by using a finite differ-
ence method based on the second order accurate 0(6b", Sr2) Adam-Bashforth/Crank-
Nicolson scheme. This scheme is a semi-implicit and neutrally unstable in the sense
that it works well if the nonlinear effect is moderate in comparison with the viscous
effect. For example, instability results if the amplitude of the initial condition for a
given w is larger than a threshold value. The real solution lies on the locus defined
by (51) relating rl and ?2. In general this curve does not coincide with the compu-
tational grid points. Hence cubic spline interpolations in r2 are employed at every
chosen r, value to obtain the desired real solution. The far end boundary condition
for r2 -- oo is implemented by providing a sufficiently large number of grid points
between the convected outer edge of the rotational layer and the finite location of
the computational boundary with respect to r2. A total of 1000 grid points in the r2
direction with 6r2=0.1 is chosen. The function and derivatives must remain zero at a
significant number of nodes in order to ensure that conditions at the computational
boundary do not constrain the solution.

At each value of the "parameter" t, the integration is initiated with the initial
conditions in (98), subject to the boundary conditions in (99) The spatial distribu-
tion of the solution with respect to r2 evolves as the "time-like" variable r, increases.
Integration is carried out to a sufficiently large value of r, to ensure that adequate
data fields Wo(z, t, rl, r2) are available on the locus curve relating r, and r2 defined
by (51). Then the actual solution is found from the intersection of the surface defined
by Wo(z, t, ri, r2 ) and the vertical plane from the locus curve relating r, and r.

The first test case studied is for w - 1.0, which is a nonresonant frequency smaller
than the first natural frequency A, = E. This particular case allows us to develop
a relatively simple solution with minimal computational time. The initial condition
was obtained from (98) by using the first 20 Fourier modes.

It is important to resolve the solution in the axial direction by choosing a suffi-
ciently large number of grid points in the z-direction, K,,,. Solution comparisons for
K.. = 9, 21 and 28 at t = 40, M=0.01 and Z=0.25, 0.5 and 0.75 show considerable
difference for the smallest number. Excellent comparisons for K,,,.. = 21 and 28
suggest that the former is adequate for w = 1.0 .

Figures 6,7 and 8b give results for the rotational axial velocity WO as a function
of ri at z=0.5 when t= 20,30 and 40. At each time, the solution consists of several
spatial oscillations and a thin region of exponential damping near a specific radial
location rt ,(t) beyond which vorticity is exponentially small. For a given value of t,
one first finds r2. from 1 = 0 = t - r2. and then uses the inverse of (51) to determine
ri.. It s hould also be noted from the definition of q in (86) and the second of (51) that
the front moves at the nondimensional speed 2 I=0 = -MVo,0(r) which corresponds
to the steady radial speed in dimensional terms. The front speed vanishes& as the
cylinder axis is approached. At t = 40 the rotational flow distribution in Figure 4b
extends out about 44% of the cylinder radius.

The corresponding scaled vorticity distribution, calculated from I is given
in Figure 9. The dimensionless vorticity f1s, defined below (84) is O(M-'). One
should note the significant magnitude of the spatial variations in vorticity given the
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scaling factor -L. The large amplitude is associated with the O(M) length scale of
the axial speed gradient and the factor M-'

The spatial distribution of the axial rotational velocity at each time can be ex-
plained in physical terms by considering the interaction between the propagating
planar acoustic wave solution, described by (69) and (70), and the steady injected
flow field in (15). Fluid particles injected nurmally from the wall with 1. 1, at
a specified z-location experience an approximately harmonic variation in the local
pressure gradient given by (70). During periods of negative (positive)gradients the
particles are accelerated downstream (upstream). As a result, near the wall one will
observe alternating periods of positive and negative axial velocity. The steady radial
velocity field carries these alternating regions of forward and reverse flow away from
the wall toward the axis. Part of the fluid particle response is purely acoustic. The
remainder is given by W0 . In this sense the spatial pattern of the rotational axial ve-
locity at fixed z as shown in Figures 6,7 and 8b reflects the historical behaviour of the
local pressure gradient at the axial location. The O(M) length scale of the transverse
spatial oscillations can now be explained easily since the approximately harmonic
pressure gradient variation occurs on the acoustic time scale tA (for w=0(1)) during
which only limited radial motion is possible.

Three additional results should be noted. First, the amplitude of a given oscillation
in the vortical velocity component becomes smaller as is convected deeper into the
cylinder. Local viscous and nonlinear effects have some influence on the amplitude
reduction which must occur because the vorticity vanishes near the front and certainly
at the axis r, = 1. Second, the wave length of the spatial oscillations decrease as
ri increases toward the axis. This occurs because the vorticity front speed (the
steady radial velocity) declines as ri increases. Finally, a comparison of Figures
8a,b,c demonstrates that the rotaional axial velocity varies with the axial as well as
the radial variables.

Figures 10a-c show a "linear" solution for the rotational axial velocity W4'O as a
function of r, at t=40, M=0.01 and z=0.25, 0.5 and 0.75 obtained by solving (97)
with nonlinear term Ik 0 -on reduced by a factor of I0-s. K,.. = 21 is used in the
calculation. This calculation is done to assess the impact of the nonlinear convection
term on the spatial structure of the solution in Figures 8a-c. A comparison shows
that the nonlinear term has a quantitative effect on the spatial distribution of k/0 ,
but does not fundamentally control the qualitative spatial oscillations. The nonlinear
effect is more important in the fore end at z = 0.25 than in the rear end at z = 0.75
near the the exit where nonlinear effect disappears due to the pressure node.

Figures 11a, c are the counterparts to Figures 8a, c with a reduced viscous effect.
In this case (97) is solved with the viscous term, -- 2- , multiplied by a factor of
0.25. The basic patterns of the complete solution in Figure 8 persist. One notes that
oscillation peak amplitude in Figure 7a,c are considerably large: than their analogues
in Figure 8a, c, particularly away from the wall. Smaller differences are seen in
Figure 7b. In general, the impact of viscosity is greater at an axial location where
the maximum oscillation amplitudes are relatively large.

Figure 12 and Figure 13 are the counterpuits of the nonlinear result in Figure
8b with larger axial Mach numbers M- "0.05 and 0.1 respectively, and t=40. One
can see that the larger Mach numbers (stronger wall injection) are associated with
a thicker unsteady vortical region. The vorticity has filled the entire cylinder for
M=0.05 and for M=0.1 at t=40 while only 44% of the chamber is filled in Figure
8 with M=0.01. This is expected because radial convection of vorticity occurs more
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quickly for a relatively larger steady radial velocity. Although vorticity is present
everywhere in the cylinder, the value at the axis is zero, as explained below (82). It
should be noted that the local velocity gradients are smaller in Figures 12 and 13
so that the magnitude of the unsteady vorticity is similarly reduced for higher Mach
number systems. Larger velocity gradients can be obtained at a given Mach number
for larger forcing frequency w.

Figure 14 provides results at ri = 0.2 for the time-variation of the planar acoustic
axial speed Wop, the rotational axial speed WO and their sum VO, defined in (59), at
z=0.5 with K,,.. = 21 and M=0.01. It can be seen from Figure 14b that the curve
for the rotational solution resembles the planar acoustic response in Figure 14a but
differs in amplitude and phase. At r, = 0.2 the rotational response appears after a
delay of almost 18 axial acoustic time units, the time needed for the vorticity wave
front initiated at the wall to travel out to the specified radial location. At the location
r, = 0.2, phase differences are relatively small and the sum in Figure 14c shows a total
response of significant amplitude. This amplitude actually increases as r, decreases
until locations very close to the wall are reached, where the impact of the no-slip
condition at r, = r2 = 0 forces V 0 -* 0.

The second case studied is for a driving frequency w = 2.5 with the initial condition
for W/0 in (98) half the magnitude of the previous calculation. The solution for iVo
at t=40, M=0.01 is given in Figures 15a-c for K,. = 21 . The results show that the
spatial distribution curves for w = 1.0 and 2.5 have similar characteristics. However,
the latter have more oscillation cycles because the driving frequency is higher. One
should note that the axial variation of WI0 is quite different from the lower frequency
analogue in Figure 8a-c.

The relative solution complexity for w = 2.5 suggests that a less restricted acoustic
field, arising from multiple driving frequencies or perhaps sidewall injection oscilla-
tions, may initiate a relatively irregular vortical time-response. In this sense, one
could ask whether "turbulent" responses observed in similar situations such as solid
rocket chamber models are caused in part by wall generated vorticity that is convected
into the chamber by the injected field.

7 Modal Solutions to the Nonlinear System
Solutions found from (101)-(107) enable one to demonstrate how the energy is dis-
tributed among the spectrum of Fourier modes. The coefficients A,,(r 1 ,r2), n=1-N
for specified N, have been found by using a finite difference method based on the
Adam-Bashforth/Crank-Nicolson scheme described in Section 6. The procedure used
previously to find 4' 0 on the real locus is applied to each A,,(rl, r2). Once the A's are
known, the solution for '0 is found by summing up N modal contributions according
t . (101)': Careful attention must be given to the value of N in order to assure that
the solutions are sufficiently accurate. In particular, solutions for W based on N and
N + L modes, L > 0, are compared until the results exhibit little appreciable change
for an incremental L value. Valuable insights into the solution development for this
problem have been found from the transient solution to a Fisher equation (Fisher,
1936) in terms of a Galerkin expansion. Details are given in Appendix A.

Figures 16-18 show IW0 results at t=40 for N = 6,8, 10 respectively for the case
M=0.01,z=0.5 and w = 1.0. Each figure includes partial sums of even numbers of
modes up to the complete finite summation. A comparison of partial sum results
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implies that the energy is concentrated primarily in the first two modes for w = 1. A
comparison of results in Figures 16-18 with those in Figure 8b rveals that there is
little difference between the modal solutions and that from a direct finite difference
solution with K,,.. = 21. It is noted that the grid size in the axial direction for
Ka-=2 1 is 0.05, just small enough to resolve the first six axial Fourier modes ac-
cording to (Az),.. = l-'" , where Ae = 11r. Hence the most meaningful comparisons
should be carried out with N = 6.

It has been found that the 6 mode partial sum from the 10 mode computation
is closer to the finite difference result than the 6 mode summation from the 6 mode
computation. A reasonable explanation of this observation may be based on the
restricted energy transfer for modes near the truncation limit. Adding a few more
modes permits realistic exchange between the lower modes. Hence a 6 mode partial
sum from an N = 10 calculation provides better results than the N = 6 calculation
alone. This effect occurs in a related work by Wang and Kassoy (1993).

Similar modal computations done for w = 2.5 with the initial mode amplitude
reduced by 50% are shown in Figure 18 for N = 6. Reasonably good comparisons are
found from a six mode summation. Partial sum comparisons suggest that the energyis again concentrated in the first few modes.

The smaller amplitude vortical radial velocity can be calculated by integrating
equation (77). Figure 19 describes the rotational radial velocity V4. as a function of
r, at t=40, M=0.01 and z= 0.5 with a 6 mode partial sum from a 8 mode computa-
tion. Beyond the vorticity front the transient radial velocity distribution is a known
constant multiplying the steady radial velocity.

The satisfying comparison between finite difference and modal solutions provides
strong confidence in the characteristic solution properties. It is noted that CPU
time requirement for direct finite diffence computations is considerably less than that
for modal solutions, given equivalent resolution requirements. However, the modal
solutions can be used to obtain insights to the energy distribution at various length
scales, not easy to find from finite difference calculations.

8 Conclusions
Systematic methods have been employed to formulate a mathematical model to de-
scribe the creation and evolution of unsteady rotational flow in a long, narrow cylin-
der. Boundary driven axial, planar acoustic waves interact with an inviscid, weakly
rotational, injection induced steady flow to produce time dependent vorticity at the
sidewall of the cylinder. The relatively intense vorticity is convected into the en-
tire chamber by the steady radial velocity field for appropriate ranges of Reynolds
and Mach number and frequency. The amplitude and distribution of the vorticity is
impacted by viscous and nonlinear effects.

It isslso demonstrated that there are parameter ranges of Mach number (injection
rate), driving frequency and Reynolds number for which vorticity is really confined to
thin, classical, but injected acoustic boundary layers like those discussed by Flandro
(1974), Baum and Levine (1987) . These structures can appear for relatively small
injection rates, relatively high driving frequency and low Reynolds numbers, so that
viscous damping of the vorticity amplitude is profound. Then, the cylinder core
will contain the relatively weak vorticity of the steady Culick (1966a) solution and
irrotational acoustic waves driven by the boundary forcing.

There is now a considerable body of evidence in support of the presence of an
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unsteady vorticity distribution within an appropriately high Reynolds number wall
injected flow in a cylinder. The experiments of Brown et al.(1986a,1986b), the quasi-
analytical modeling of Flandro and Roach (1993) and the computational solutions
of Vuillot and Avalon (1991),Flandro and Roach (1993), and that of Kirkkopru et
al. (1994) as well as the current work show unequivocally that unsteady vorticity
is generated at the cylindrical surface and is convected away by the injected fluid.
The core of the cylinder is free of vorticity only during the very early phases of the
transient process, prior to the arrival of a well defined unsteady vorticity front.

The amplitude of the transient vorticity distributions described by Kirkkopru et
al.(1994), and in the present work are O(M- 1 ) larger than that of the Culick(1966a)
steady solution. It follows that there will be a relatively large axial shear stress on the
cylinder surface,which can be calculated from equation (84), particularly for smaller
M values. This result is important for applications of the theory to solid rocket
engines.

One can speculate that the large transient shear stresses will impact the burning
rate of a propellant which is the source of the "injected" fluid used in the present
model. Perhaps there is a direct relationship between the effect of surface shear stress
transients, predicted in the present work, and erosive burning concepts used in the
solid rocket engineering literature (Williams,1985).

One may reasonably conclude from the results of the aforementioned studies that
the classical acoustic stability predictions used for scientific and engineering pur-
poses(e.g. Culick,1990) should be reassessed to determine the prediction reliability.
It is conceivable that the acoustic pressure predictions are reasonable because the
presence of vorticity does not impact the primary acoustic pressure transient found
in the current theory. However, it is unlikely that velocity and shear stress predictions
are accurate, given the irrotational basis of the acoustic stability analysis.

The conceptual approach used here can be extended to disturbances driven by
sidewall injection transients, rather than those applied at the closed endwall. The
former type of disturbance emulates the effects of propellant burning rate variations
in solid rocket engines. Additionally it is noted that the variable scaling reported here
will enable the development of more accurate numerical methods like those described
in Kirkkopru et al.(1994).
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Appendix A: Solution to a Related Model Problem

The nonlinear coupled system in (102) is sufficiently complex to require a computa-
tional solution. In order to develop an effective numerical approach, it is desirable
to consider the solution to an elementary model problem with related properties. A
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simple Fisher equation (Fisher,1936) with appropriate periodic initial and boundary
conditions can be used:

au = vU U 2  0, t >0 (A- 1)

Initial Condition:

U(0, y)= -sin(t-y) for 0<y t; (A-2)
U(O,y) = 0 for y > t (A- 3)

Boundary Condition:

U(y = 0) = -sin(t) (A - 4)

When the parameter t is increased, the nonzero portion of the initial condition is
spread farther into the y-domain. In the spirit of (102), the multiple scale independent
variables are related by y = 2.9 and f2 > 1.

An analytical solution for linear diffusion (v = 0) is constructed for the odd ex-
tension of (A-2) and (A-3) for the domain 0 < y < oo:

1 t l al+I2
U(.,,y) 2 2V/f-= sin(t- y') [e - -e- . dy'

Y fsin(t) I - Yd', >0 (A-5)
(0 (-s')31

A quasi-steady solution form U(s, y) = - sin(t - y)e - ', y > 0 can be recovered by
taking the limits ( ) --+ ±0o and a - 0+ simultanously. Physically, this means
that -the solution has a quasi-steady form at a specific value of t if y lies between y=0
and the inner edge of a diffusive boundary layer centered at y = t which is needed
to smooth the discontinuous slope of the initial condition (A-2) and (A-3) at that
location. Inside the diffusive layer, the solution is given by the full form of (A-5).
The diffusive layer thickness is 6 - O(V ).

The solution to (A-1)-(A-4) along the locus y = l1', for v = 1 and f/2 2 66,has
been found from a computational analysis based on an elementary explicit finite
different method. The boundary condition (A-4) is enforced at y = 0 for each in-
tegration step in a direction. The integration of U with respect to a is carried out
for 0 < a _< 2.25 with step size 6, = 0.0015. The far end boundary condition is
implemented in such a way that there are a sufficient number of grid points with zero
value lying between the furthest grid point with nonzero value and the finite location
of the computational boundary with respect to y after each integration in a direction.
The dashed line in Figure 20 describes the linear solution when t = 100 obtained from
(A-5). An analogous numerical result (v = 0) is indistinguishable from the analytical
solution on the scale of the graph, thus verifying the numerical code. The linear solu-
tion shows regular, nearly harmonic spatial oscillations that decay until the diffusive
layer is reached near a - 1.5. There the solution makes a rapid transition to a van-
ishingly small value for a > 1.5. In comparison the solid line represents the nonlinear
numerical solution for v = 1. The frequency is nearly identical to the linear solution.
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However, the drift of the solution toward positive values of U is due to the positive
definite source effect, vU 2. Again the deviation from the pattern of oscillations near

za- 1.5 is associated with the diffusive layer behavior. Given the parameters used in
the calculation, the diffusive layer thickness with respect to the s coordinate is about
0.1. The analogous results for v = -1, corresponding to a nonlinear sink, are given
in Figure 21. There is no expectation of symmetry.

The basic properties of the model problem solution can be used to develop an
effective numerical method for (102).
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Table 1: Acoustic Response Properties for Several
Driving Frequencies

W w'(Hz) Properties Primary Response

1 159 stable axial + quasi-steady modes

1.5 238 beats quasi-steady modes
with axial wave modulation

zr/2 250 axial amplification linear growth
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9 CAPTIONS

Figure 1: The cylindrical rocket engime chamber model of length L', diameter D',
with endwall oscillations of frequency w.

Figure 2: The time response of the axial acoustic velocity V1 0 at z=0.5 and w = 1.0.

Figure 3: The time response (beats) of the axial acoustic velocity f7o/30 at z=0.5
and w = 1.5.

Figure 4: The time response of the axial acoustic velocity V0 at z=0.5 and w =
ir/2,1inear growth.

Figure 5: The axial velocity in the boundary layer as a function of the variable of
4 fo M=0.01,3 = 0.1 when 11 = 2.5 and 3.0 . The boundary layer is thicker for the
smaller frequency value.

Figure 6: The spatial variation of the rotational axial velocity component W0 with
the radial variable r, at t=20. It can be seen that the front is about 23% of the way
to the centerline and nearly 4 spatial oscillations have entered the cylinder.

Figure 7a,b,c: The spatial variation of the rotational axial velocity component iW0 at
t=30 for (a)z=0.25,(b)z=0.5 (c)z=0.75 with the radial variablerl. The front is about
35% of the way to the centerline and nearly 5.5 spatial oscillations have entered the
cylinder. The amplitude of the oscillations near the front at this moment is noticably
smaller those at t=20, an accumulative effect of viscosity on M scale.

Figure 8a: The spatial variation of the rotational axial velocity component W0 with
the radial variable r, at t=40, z=0.25. The front is about 45% of the way to the cen-
terline and nearly 7.5 spatial oscillations have entered the cylinder. Strong nonlinear
effects alter the overall pattern.
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Figure 8b: The spatial variation of the rotational axial velocity component i-o with
the radial variable r, at t=40, z=0.5. The front is about 45% of the way to the
centerline and nearly 7.5 spatial oscillations have entered the cylinder. The amplitude
of the oscillations near the front at this moment is substantially smaller those at t=20,
an accumulative effect of viscosity on Al scale.

Figure 8c: The spatial variation of the rotational axial velocity component l470 with
the radial variable r, at t=40, z=0.75 . It has the generic features as in Figure 8b.

Figure 9: The spatial variation of unsteady vorticity flo/100, with the radial variable
r, . The magnitude of f11 is O(1/M) bigger than the steady vorticity and therefore
dominant in the cylinder. The shear stress on the wall imposed by the unsteady
vorticity is significant.

Figure 10a,b,c: The spatial variation of the rotational axial velocity component iW0 at
t=40 for (a)z=0.25,(b)z=0.5,(c)z=0.75, with the radial variable r, when the nonlinear
term is suppressed. A comparison of these with Figures 8a,b,c demonstrates nonlinear
effects are strong near the fore end, moderate at the middle, small at the rear end.

Figure 1la,b,c: The spatial variation of the rotational axial velocity component W(, at
t=40 for (a)z=0.25,(b)z=0.5,(c)z=0.75, with the radial variable r, with the viscous
term reduced by 50%. A comparison with Figures 8a,b,c demonstrates that local
structure is altered by the reduction of viscosity.

Figure 12: The spatial variation of the rotational axial velocity component W0 with
the radial variable ri at M=0.05, z=0.5, w=1.0 and t=40. The larger M corresponds
to stronger injection rate on the cylinder wall. As a result, almost all the cylinder
has been filled with the rotational flow compared to only 45% in the case of M=0.01
in Figure 8c.

Figure 13: The spatial variation of the rotational axial velocity component WO with
the radial variable r, at M=0.1, z=0.5, w=1.0 and t=40. The larger M corresponds
to a stronger injection rate on the cylinder wall.

Figure 14 a,b,c (from top to buttom): The time response of; (a) the axial acoustic
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speed W0o,(b) the rotational axial speed liO and (c) the complete axial speed t 0 -

(Wo, + W0 ) for r1 =0.2,z=0.5, M=0.01 and w = 1.0.

Figure 15a,b,c: The spatial variation of the rotational axial velocity component W0V
with the radial variable r, at w = 2.5,t=40 for (a)z=0.25,(b)z=0.5, (c)z=0.75 with
the amplitude of the disturbance reduced by a half. More spatial oscillations are
present in the structure due to the higher driving frequency, in comparison Figures
8a,bc.

Figure 16: The spatial variation of the rotational axial velocity component k' with
the radial variable r, based on a 6 mode summation from a 6 mode, nonlinear com-
putation (N=6).

Figure 17: The spatial variation of the rotational axial velocity component WO with
the radial variable ri based on a 6 mode partial summation from an 8 mode, nonlinear
computation (N=8).

Figure 18: The spatial variation of the rotational axial velocity component W/0 with
the radial variable r based on a 6 mode partial summation from a 10 mode, nonlinear
computation (N=10).

Figure 19: The spatial variation of the rotational radial velocity component V 1 with
the radial variable r, based on the 6 mode partial summation from an 8 mode com-
putation.

Figure 20: Solution U vs z for the nonlinear model problem on the locus curve y = 02z
with fQ2 .t 66 and P = 1 The dashed line is the plot of U vs z from (A-5) on the same
locus curve.

Figure 21: Solution U vs z for the nonlinear model problem on the locus curve y = 1 2Z
with Q2 ; 66 and v = -1 The dashed line is the plot of U vs z from (A-5) on the
same locus curve.
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ABSTRACT

Two dimensional, axisymmetric Navier-Stokes equations are solved numerically to

study the unsteady, nonlinear vortical field generation and evolution by an acoustic

wave interaction with a sidewall injected flow in a cylindrical tube, that mimics the

solid propellant surface burning in a rocket engine. The steady flow field, sustained

by the sidewall injection, is perturbed by imposing a sinusoidal component on the exit

plane static pressure. Amplitudes of the oscillatory pressure disturbances are chosen

accordingly for different injection/ mean axial flow Mach numbers so that nonlinear

processes affect the evolution of the vortical field. In the spirit of the study by Zhao

et al.2, the unsteady vortical part of the total velocity field is extracted from the

numerical solutions to show explicitly the vorticity generation at the injecting side

wall and evolution in time. Present results show that 'he unsteady vorticity eventually

fills the entire chamber unlike that confined into traditional acoustic viscous layers

adjacent to the sidewall.

I. INTRODUCTION

Transient flow dynamics in a solid rocket engine chamber are strongly coupled to

propellant combustion processes and related directly to overall rocket motor stability.

Traditionally, prediction models have been formulated in terms of acoustic stability

theory. The earliest study was devised by Grad'. Subsequently, Culick and co-

workers 2-11 developed linear and weakly nonlinear stability theories to describe the

response :of model systems to assumed acoustic disturbances. At about the same time,

Hart and McClure"2 proposed a theory based on the acoustic balance approach for

prediction of the flow stability in the rocket engine chamber. This theory, based on

linearized inviscid equations, has been employed to evaluate laboratory and full-size

rocket engine performance. Prediction of pressure responses compares well with those

measured in experiments.

Recently, Brown et al.13 ,14 conducted laboratory experiments in a cold flow rocket



engine chamber analogue. Velocity measurements taken along and across the cylin-

drical chamber show that there is a significant unsteady rotational flow component

present everywhere. This type of vorticity is seen also in the study by Vuillot and

Avalon1 5 who used computational methods to solve the compressible Navier-Stokes

equations in a channel with side wall mass injection. These experimental and numeri-

cal results suggest that stability predictions based on the traditional acoustic analysis

should be reexamined.

Traditionally, stability predictions are based on mathematical models formulated

in terms of linear or weakly nonlinear, inviscid, irrotational acoustic concepts.

( Culick2 -1 1 ,WiliaMs 16 ). In these models, acoustic waves propagate through a quies-

cent chamber, and do not interact with side wall gas injection that mimics mass input

to the chamber by solid propellant burning. These mathematical models cannot de-

scribe the vorticity distributions observed in laboratory and numerical experiments,

which are discussed in a limited way by investigators concerned with classical acoustic

boundary layers. ( for example, Flandro1 7, Wang and Kassoy 27 ).

Flandro17 demonstrated that rotational flow effects are of considerable importance

in acoustic boundary layers where viscosity is significant. Vuillot and Kuentzman'8

employed Flandro's analysis to evaluate a laboratory scale rocket engine , and ob-

tained good comparisons between theory and experiment. The main objective of these

studies was to understand energy exchange between acoustic disturbances and the

mean flow as the normally injected fluid is turned toward the axial direction. Baum

and Levinel and Baum2 0 numerically solved the complete Navier-Stokes equations in

order to study energy exchange mechanisms in thin, viscous acoustic bourdary layers.

The numerical results of Vuillot and Avalon"5 demonstrate that unsteady vorticity

is not always confined to thin viscous acoustic boundary layers adjacent to the in-

jecting wall. Instead, the unsteady vorticity generated at the wall is convected away

from the wall into the chamber, and persists over a significant part of the chamber

for appropriate parameter values. The presence of vorticity in the chamber must be
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accounted for in an accurate and reliable theory of engine stability.

Flandro and Roach 2 ' developed an approximate model and an analytical solution

to describe vorticity generation at the injecting wall due to an interaction of axial

acoustic waves and the injected flow. The model is based on purely inviscid equations.

An effort was also made to simulate numerically the Brown et al.13,14 laboratory

experiments by solving the Navier-Stokes equations. This work implies that there

are two important length scales for rotational effects; the tube radius and an O(M)

smaller length where significant local velocity variations are present.

Recently, Zhao and Kassoy22 as well as Zhao et al.28 used systematic asymptotic

methods to formulate an initial boundary value problem that includes rotational flow

effects. In particular, the theory describes the generation and evolution of unsteady

vorticity produced at the cylinder wall by an interaction between the injected fluid

and the propagating planar acoustic disturbances. It is demonstrated analytically,

to a first order approximation for a large Re and low M flow, that the interaction

between the acoustic disturbance and the injecting fluid is purely in~iscid. Analysis

is also used to show that the vorticity generated at the wall is convected out into

the primarily inviscid core flow by the radial component of the injection-induced flow

field. This asymptotic model formally incorporates two distinct length scales, similar

to those described in the study by Flandro and Roach21 , in a multiple scale analysis

which includes weak viscous and nonlinear effects.

The objective of the present study is to compute unsteady vorticity production and

evolutionin a finite cylinder with steady wall injection and an imposed disturbance on

a downstream exit plane. Having invaluable information about the existence of two

disparate length scales and their relationship to Mach number, enables grid size and

spatial distribution to be chosen carefully in order to describe the flow dynamics accu-

rately. Compressible Navier-Stokes equations are solved by utilizing the MacCormack

explicit, predictor-corrector method 23 . A low Mach number, M = 0(10-2 - 10-'),

high Reynolds number Re = 0(104 - 101), steady gas flow arising from constant side-
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wall injection in a long, narrow cylindrical chamber is disturbed at the eXIt plane by a

sinusoidally fluctuating planar pressure variation. Following the approach of Flandro

and Roach21 . Zhao and Kassoy22 and Zhao et al.2s, the rotational component of the

velocity field is extracted from the numerical solutions for the total velocity. The

computational results show that unsteady vorticity generated at the wall by an in-

teraction between -he injected fluid and planar propagating acoustic pressure waves

is convected away from the wall towards the mainly inviscid core flow by the mean

radial flow velocity field. Eventually, unsteady vorticity fills the entire chamber. The

presence of rotational flow features imply that traditional acoustic balance theories,

used widely to predict solid rocket engine chamber stability, must be reevaluated.

II. COMPUTATIONAL MODEL

A primary goal of the present numerical effort is to complement the analytical

study by Zhao et 81.28 describing the unsteady nonlinear vorticity generation and

evolution by acoustic wave interaction in a model of a solid propellant rocket en-

gine chamber. For computational convenience a cylindrical geometry is chosen. The

flow inside the chamber is sustained by constant velocity fluid injection through the

sidewall of long, narrow cylindrical tube with one end closed.

The flow field is described by axisymmetric, two-dimensional, laminar, compress-

ible Navier-Stokes equations that are wntten in nondimensional conservative form as

follows:
h

q,t +e,x +f,r +- = 0 (1)
r

where

p Mpu
Et M[Et + (-y - 1)p]u

q pu MpU2 + _- p

pv Mpuv
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Mpv
M[Et + (7 - 1)pjv - T,,. "

f =Pr

Mpuv - WU,,

MP v2 + -2

Mpv

M[Et( 1)p]v - M62T(2
AAUwh M62

Mpuv - -- U,r

Mpv 2 )

The equation of state for a perfect gas is

p = pT (3)

Nondimensional variables, defined in terms of dimensional quantities denoted by a

prime, are given by

= =r '/R' U = U'lU v =v'lV

P = P'IPo P = P'/P'o T = T'To' t =t'l/t

/ = (4)

Characteristic length scales for the &xial and radial directions are chosen to be the

length of the tube L' and the radius of the tube R', respectively. The characteristic

sidewall ikjection speed of the fluid VA is related to the characteristic mean axial speed

U through the global mass conservation relationship Ut = 6V where 6 = L'/R' is

the aspect ratio of the tube. Pressure is nondimensionalized with respect to the

static pressure at the open end (outlet) of the cylindrical chamber. Characteristic

values for temperature and density, T. and p' respectively, represent the injected

fluid properties. Time is nondimensionalized with respect to the tube axial acoustic

time t' = L'/a' where a' = (Tp'/po')/1 is the characteristic speed of sound. Here,
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the ratio of specific heats - = 1.4 is used in the present computations. The viscosity.

specific heats and conductivity are treated as constants in this calculations because

temperature variations are very small.

The following expressions

Re = p° ULC Pr Mi= (5)

AO k" a,

define the Reynolds number, the Prandtl number and the mean axial flow Mach

number, respectively. In a typical solid rocket engine chamber Re >> 1, Pr = 0(1)

and M = 0(10-2 - 10-1).

Finally,

Et = pC.T +7(- 1)M 2 I + (V/)2 
(6)

2

represents the nondimensional form of the total energy of the fluid.

The Navier-Stokes equations are simplified by ignoring the axial transport terms.

Justification for the reduction is based on the asymptotic analysis in Zhao and

Kassoy 2 and Zhao et al.28 valid for large aspect ratio 5 >> 1 and the large Reynolds

number Re >> 1 provided that 62/Re << 1. The computation time for the simplified

equations is reduced drastically without sacrificing the flow physics. Furthermore, the

dissipative effects of the remaining transport terms are sufficient to avoid artificial

damping terms needed in other similar computations 12 4 .

The Navier-Stokes equations are solved by using the MacCormack explicit, predictor-

corrector scheme:

At At At
j - T- (' j 0 ) - -f'~- f', - h7

At"+ 1Atj At- (7)
=j j [ I~ +i O,- (i 3 - - At(-~ - 7ia..) h,Az -A r r

Here, the overbar denotes the predictor stage, while the superscripts n and n + 1

represent the known and unknown time levels, respectively, separated by At. The

subscripts i and j refer to axial and radial directions, respectively.
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The upper half of the cylindrical chamber is taken as the computational domain

because the flow is assumed axisymmetric.(see Fig. 1) A constant speed fluid is

injected into the cylinder through the upper wall. The left side of the chamber is a

closed rigid wall (head end) and the right side of the chamber is a flow exit where a

specific transient pressure variation is assumed to exist.

The aspect ratio 6 = 20 for the present computations. Grid points are equally

spaced in each direction. Radial grid size is dependent on the value of M for reasons

that will be discussed in Section III.

II.a. Steady State Computations

A steady state flow solution is required as an initial condition for the transient flow

computation. Boundary conditions include an impermeable wall at z = 0 (u = 0),

a static pressure condition at the open end x = 1 (p = 1), a specified injection

velocity (V = -1), temperature (T = 1) and no slip condition for the axial flow speed

(U = 0) on the injecting upper sidewall at r = 1 and symmetry conditions on the

lower (centerline) boundary, r = 0.

Two approaches have been used to compute the steady state flow configuration.

In the first, the sidewall injection is initiated at t = 0, and the internal flow is started.

Numerical integration is carried out until a specified convergence criterium assures

a steady state. For example, the injected total mess flow rate must equal the total

exiting mass flow rate and the sum of changes in axial and radial velocity components

after each time step, E u(t + At) - u(t)I and SJv(t + At) - v(t)1, must be less than a

specified small number. This approach, employed for a range of Mach numbers and

Reynolds numbers with satisfactory results, requires large computation times.

The second approach is to use the analytically calculated velocity profiles for

incompressible, inviscid flow in a long, narrow cylindrical tube (Culick 2 ) as start-

ing profiles for the steady, compressible, viscous flow computations. This approach

reduces the computation time required to reach the final converged steady flow
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configuration. Results given in Figs. 2a and 2b show the steady normalized axial.

us(z, r)!us(x, r = 0), and radial velocity vs(Z. r) profiles at different axial locations.

z = 0.025,0.5 and 1.0, when M = 0.05 and Re = 3.10' , respectively. In these graphs,

Culick2 profiles are indistinguishable from the computed profiles.

The mean axial flow Mach number is small, M = 0(10-2 - 10-1), which implies

O(M 2 ) differences between the Culick2 solution for 8 >> 1 and the computational

result. Nonetheless, it is useful to compute a steady state flow solution for each Mach

number and Reynolds number. This prevents introducing unwanted noise into the

unsteady computations.

Although the flow in the chamber , to a first order approximation, is basically

inviscid in character as a result of large Reynolds number, it is useful to retain the

radial transport terms in the Navier-Stokes equations. The steady flow solution is

obtained faster and, at the same time, the largest important viscous effects in radial

direction are responsible for physically meaningful damping, similar to the artificial

damping terms that have been introduced in some earlier studies21 2 4. For the present

computations Re number based on the characteristic mean axial flow speed is between
3.104-3.10 s1.

II.b. Unsteady Flow Computations

Once a converged steady flow configuration for certain M and Re is obtained, the

flow is disturbed by imposing a sinusoidally fluctuating component on the exit plane

static pressure, a procedure similar to that of Vuillot and Avalon"5 . Therefore, the

the static' boundary condition at the exit plane is changed to

X = i p = 1 + Asinwt (8)

where w is the dimensionless angular frequency and A is the amplitude of the pressure

oscillation. The other boundary conditions are the same as those for steady flow

computations.

The weakly nonlinear theory of Zhao and Kassoy2 2 and Zhao et al.2 s demonstrates

8



that when .4 = O(M) changes in the axial velocity field are 0(1), e.g. Au = 0(1).

As a result, the amplitudes of the pressure oscillations in the present computations

are chosen to be A = M. Therefore, nonlinear processes affect the evolution of the

unsteady flow field.

With reference to the analytical study by Zhao et al.2 s, it may be shown that the

resonant frequencies of the planar part of the acoustical phenomenan described in this

study are w,, = (n - 1/2) r where n = 1, 2, .... Unsteady computations are carried

for several different angular frequencies including those for near-resonant cases.

III. RESULTS and DISCUSSION

Following a procedure described by Lagerstrom25 , and similar to that employed

by Price and Flandro 6 , Zhao and Kassoy22 and Zhao et al. 28 , the total unsteady axial

flow speed may be divided into three parts

u(x, r, t' = us(x, r) + up(x, t) + uv(x, r, t) (9)

where us denotes the steady flow field which is known as an initial condition for

unsteady computations, up represents the irrotational planar part of the flow field

which can be computed as the difference between the unsteady axial speed and the

steady axial speed on the centerline of the tube. The remaining part uv is defined as

the vortical (rotational, nonplanar) part of the unsteady axial flow speed. It is used to

describe the generation and evolution of the nonlinear unsteady vorticity field in the

cylinder. Following the asymptotic analysis described by Zhao et al.28 , one can show

that the Vortical part of the unsteady axial flow speed uv vanishes at the centerline

at all times.

It is noted that, for all eases to be discussed below, the pressure solution has

been found to be purely planar (z-dependent), with no detectable ',ansverse (radial)

variation within computational accuracy. For example, Fig. 3 shows the axial pressure

variation at three radial locations (r = 0., 0.5 and 1) for t = 29.37, M = 0.1, Re =

3.10", w = 1 and A = 0.1 . In this figure, numerical pressure values, at z 1/2 , for

9



three radial locations, r = 0,0.5 and 1 are 0.97071351, 0.97070410 and 0.97069881.,

respectively. This is a consequence of the large aspect ratio, 6 = 20.

Figures 4a-4c show the radial variation of the unsteady axial vortical flow speed

at midchamber (z = 1/2) at three time values after the planar pressure disturbance

is initiated at the exit plane. The flow parameters are M = 0.1 and Re = 3.10'. The

corresponding injection Mach number Mi = MIS = 0.005. The distu-bance frequency

is w = 1.0 , a non-resonant frequency smaller than the first natural frequency of the

tube, w, = r/2.

In the first of this sequence of graphs, Fig. 4a, o .e observes a strong radial velocity

gradient extending out about 0.15 units from the wall at t = 1.48. This is the

approximate radial distance travelled by the injected fluid during the time interval

t = 1.48 to be discussed at the end of this section.

Figure 4b shows 'hat the unsteady vortical axial velocity field extends out to 0.85

radial units from the injecting wall when t = 11.81 . At time t = 29.37 the rotational

flow field as seen in Fig. 4c is all over the entire chamber.

The spatial distribution of the vortical part of the unsteady axial flow velocity at

each time may be explained in physical terms by considering an interaction be, ween

the steady injected flow field and the propagating planar acoustic disturbances orig-

inated and sustained at the exit plane of the tube. The motion of a fluid particle

injected radially into the tube from the upper wall at a specified location is affected

by the harmonic variation with time of the local axial planar pressure gradient. For

instance,..Fig. 5 shows the time variation of the axial pressure gradient,8p/'9, at a

point where z = 1/2 and r = 0.9 for the case being discussed above, where the high

frequency response in the first cycle, probably due to a start-up process, diseappears

quickly. As a result, a given fluid particle emanating from the wall will be accelerated

alternately in the positive and negative axial directions as it is convected toward the

axis of the cylinder by the steady radial flow field. Part of the fluid particle response

is associated with irrotational acoustic effects. The rest is rotational, resulting from

10



vorticity generation at the wall.

Figure 6a shows the time history of the planar part of the unsteady axial flow

speed at ruidchamber when the flow parameters are M = 0.1, Re = 3.10', w = 1 and

A = 0.1. The time history of the unsteady vortical axial flow speed at the injecting

wall, r = 1, when z = 1/2 is shown in Fig. 6b. It is noted from this figure that,

before t = 0.5, there is no spatial variation of the unsteady axial vortical speed with

the radius r because the signal originated at the exit plane has not yet reached the

midchamber. Once the signal arrives, unsteady vorticity is generated at the wall

by the interaction of the acoustic disturbance and the injected gas, as seen by the

behavior of uv in Fig. 6b. Subsequently, the unsteady vorticity is convected towards

the axis of the tube by the mean radial flow field, shown in Fig. 2b. There is also an

associated pressure field which has the characteristics of a traditional planar acoustic

wave system. This pressure field, as demonstrated in the asymptotic analysis of

Zhao and Kassoy22 and Zhao et al.2s, is not affected by the unsteady vorticity field

generation and evolution, so that traditional acoustic theory yields transient pressure

estimates that compare well with those found experimentally.

Figure 7 shows the radial variation of the difference between the unsteady radial

flow speed v and the steady radial flow speed vs in Fig. 2b, at z = 0.5 when t = 29.37

for the same parameter values above. The difference is used because the asymptotic

formulation in Zhao and Kassoy22 and Zhao et al.28 demonstrates that the transient

response to the boundary disturbance is O(M) smaller than vs itself. The maximum

absolute.yalue of the difference in Fig. 7, approximately 0.085, varifies this prediction.

Figures 8a-8c show the spatial oscillation of vortical axial velocity at midchamber

with respect to the radius when t = 1.488,11.834 and 29.54 for a smaller axial Mach

number M = 0.05 (corresponding to the weaker injection, Mij = 0.0025) and for a

higher Re = 3.10 s . The forcing frequency w = 1.0 is the same as for the previous

case. The amplitude of the nonresonant exit plane pressure disturbance is 5 percent.

The sharply defined region of large velocity gradient is seen in Fig. 8a at 0.07 units
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from the wall at t = 1.48 . One notes that at t = 11.834 the wavelength of the

spatial oscillation of the vortical axial velocity field is smaller than that for the case

when M = 0.1. This is an expected result because the mean radial velocity field for

M = 0.05, which transports the fluid particles into the cylinder, is characterized by

a relatively lower speed than that for the M = 0.1 case. Therefore, injected fluid

particles are carried a shorter distance away from the sidewall towards the axis of the

chamber in the same time interval, compared to that for the stronger injection speed

case, M = 0.1. At t = 29.54 one notes spatial oscillations throughout the cylinder.

It is also observed that the wavelength of the oscillatory structure decreases as the

centerline is approached. This occurs basically because the mean radial flow speed

vanishes as the centerline is approached.

Solution resolution requires 41 grid points in the axial direction and 101 grid points

in the radial direction. Figure 8c shows that near the injecting wall one wavelength of

the spatial oscillation of the vortical axial velocity is represented by approximately 35

radial grid points. In contrast, near the centerline, where the wavelength is smaller,

approximately 10-15 grid points are available to resolve the velocity gradients.

The axial spatial variations in uv do not have steep gradients, so that 41 equally

spaced grid points have been found to give adequate resolution. For example, Fig. 9

shows the axial variation of the unsteady vortical axial velocity, uv, at 3 radial lo-

cations, r = 1.,0.9 and 0.7 when t = 29.37 for M = 0.1, Re = 3.104, w = 1. and

A = 0.1. In fact, from Zhao and Kassoy2 2 and Zhao et al.28 one can show that the

linear eigenfunctions for the finite cylinder with a pressure node exit plane can be

written as .in [(2n - 1)/41 2wz, n = 1, 2,..... Thus even for n=9, where 4.25 harmonic

waves are present in the cylinder, there are nearly 10 grid points per wave length.

The third case studied is for a smaller mean axial flow Mach number M = 0.02

(Mi, = 0.001), Reynolds number Re = 3.10 and the forcing frequency w = 1.0.

The results for the previous cases, M = 0.1 and M = 0.05, imply that the number

of radial grid points should be doubled for this weak injection case. There are 201
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equally spaced grid points in the radial direction in order to represent the spatial

variation of unsteady vortical axial velocity accurately. Figures 10a-10c show the

unsteady vortical axial velocity variation with respect to the radius at z = 0.5 when

t = 3.00, 15.00 and 30.00, somewhat different from the previuos cases. It can be seen

from these figures that axial velocity gradients are larger than those for larger Mach

number cases presented previously, as predicted by Zhao and Kassoy 22 and Zhao et

al. 2s This implies that the absolute magnitude of the unsteady vorticity generated at

the wall is much larger than that of the higher Mach number flows. This unsteady

vorticity field is convected away from the wall towards the center of the chamber by

a relatively slower steady radial velocity component. Therefore, at t = 30.00 only

about 60 percent of the chamber is filled with the unsteady vorticity. Larger time

computations for this case have not been carried out. However, one can conclude on

the basis of the previous results and the work of Zhao and Kassoy22 and Zhao et al. 28

that the vorticity field will spread out towards the axis as time increases. One should

note that the convection process slows down near the axis because the radial velocity

component becomes vanishingly small.

Figures 11a and lb present the spatial variation of the unsteady vortical axial

velocity with radius at two different axial locations z = 1/4 and z = 3/4 when t = 30

for M = 0.02. The corresponding result at z = 1/2 is given in Fig. 10c. It can be

seen that the amplitudes of the oscillations at a given radial location decrease as the

distance from the source of disturbance at z = 1 increases. The local peaks occur at

the same radial location for each axial position.

Figures 12a-12c present the radial variation of unsteady vorticity at midchamber

length for three cases, M = 0.1,0.05 and 0.02, discussed above, respectively. Cbrre-

sponding times are t = 29.37,29.54 and 30., respectively. The unsteady vorticity is

computed from the following expression

O[v 1 a (V - VS) (10)
Or 62 8: I

The nondimensional vorticity is defined as 0 = Z'/ (UR'/R) where 0' is the dimen-
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sional vorticity. As analysis of the present numerical results and the a ymptotic

analysis of Zhao et al.2s show, the main contribution to the unsteady vorticity is

brought by the first term in (10). It is seen from Figs. 12a-12c that the magnitude of

the unsteady vorticity increases with decreasing mean flow Mach number. One should

notice that scales are different in each of Figs. 12a-c. An accompanying plot, Fig. 12d,

shows the variation of the unsteady vorticity throughout the cylindrical chamber for

the M = 0.02 case at t = 30, discussed above. The axial variation of the vorticity at

each radial location is of the shape of the eigenfunction sin([(2n - 1)/412irz for n = 1,

mentioned previously.

Figures 13a, 13b and 13c describe the effects of forcing frequency on the oscillatory

spatial structure of the vortical axial speed at times close to t = 17.5 when M = 0.1

,Re = 3.10" and A = 0.1. The chosen frequencies are w = 1.0, w = 1.5 (a near-

resonant case) and w = 2.5. The scale in Fig. 13b for w = 1.5 is different from the

others. It can be seen from these plots that the wavelength of the oscillatory spatial

structure decreases when the forcing frequency increases. Were this done for smaller

M the required number of radial grid points would have to be significantly larger

to resolve the growing number of spatial oscillations at a given value of time. In

addition, larger amounts of computer time are required because the incompressibility

limit is approached when M is lowered.

It is noted from Figs. 13a-13c that the local spatial gradients of vortical velocity in-

crease for larger forcing frequencies. This implies that the magnitude of the unsteady

vorticity field increases for higher frequencies. One should notice the near-resonant

forcing frequency effect on the increasing magnitude of the unsteady vortical axial

speed.

The radial location of the front of the spatially oscillatory vortical part of the

unsteady axial speed varies with time. Close to the sidewall the front location may

be computed approximately from

1r = 1 -Mt (11)
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where the mean radial convection speed is nearly one in nondimensional terms. Equa-

tion (11) yields reasonable results for rF > 0.5, as shown in Table I. A more accurate

expression that defines the location of the front may be obtained by employing the

Culick2 steady radial speed, vs(r) = -(l/r)sin [(r/2) r ]l in the integration of the

differential form of time-distance relation, dr' = v' (r')dt', where a prime denotes a

dimensional quantity. This yields the radial location time variation,

r = [4 tan-' (erMe'1/ (12)

Table I shows the radial locations estimated from (11) and ( 12 ) and from numer-

ical computations for the three mean axial flow Mach numbers discussed previously.

There is an excellent agreement between estimated radial locations of the front from

(12) and from numerical results. Although (11) gives good estimates near the wall, it

yields unreasonable values for r > 0.5. This is a result of the vanishing steady radial

velocity as r --+ 0.

IV. SUMMARY and CONCLUSIONS

There is now a considerable body of evidence in support of the presence of an

unsteady vorticity distribution within a physically reasonable model of a solid rocket

engine chamber. The experiments of Brown et al.13 ,14 , the quasi-analytical modeling

of Flandro and Roach 21 , Zhao and Kassoy22 , Zhao et al.28 as well as the computational

solutions of Vuillot and Avalon', Flandro and Roach 21 and of the present work show

unequivocally that unsteady vorticity is generated near the cylindrical surface and

is convected into the chamber by the injected fluid. The core of the chamber is free

of vorticity only during the very early phases of the transient process, prior tb the

arrival of a well defined unsteady vorticity front.(see, for example, Figs. 4a, 8a and

10a). The arrival times found from the present computational solution agree quite

well with predictions found from generally valid concepts developed in the analytical

problem formulation in Zhao and Kassoy , and Zhao et al.2 . (Table I).

The computations in the present work are probably more accurate than those of
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Vuillot and Avalon"5 because the analytically derived scaling is used to determine

grid size and distribution. Unlike the former work, where grid points were concen-

trated near the sidewall to resolve an expected traditional acoustic boundary layer,

the present choices assure that the short wavelength processes in the radial spatial

distributions, predicted by the analysis, are adequately resolved. The time-averaged

axial velocity variation with radius predicted by Vuillot and Avalon"s (see their Fig. 7)

is qualitatively similar to the instantaneous distributions for the vortical axial velocity

described here.

One may reasonably conclude from the results of the aforementioned studies that

the classical acoustic stability predictions used for scientific and engineering purposes

should be reassessed to determine the prediction reliability. It is conceivable that the

acoustic pressure predictions are reasonable because the presence of vorticity does not

impact the primary acoustic pressure transient found in the Zhao and Kassoy2 and

Zhao et al.25 theory. However, it is unlikely that velocity and shear stress predictions

are accurate, given the irrotational basis of the acoustic stability analysis.

It is also conceivable that there are parameter ranges of Mach number (injection

rate) and Reynolds number for which vorticity is really confined to thin, classical,

but injected acoustic boundary layers like those discussed by Flandro 7 , Baum and

Levine 0 and more recently by Zhao et al.28 . These structures can appear for relatively

small injection rates and low Reynolds numbers, so that viscous damping of the

vorticity amplitude is profound. Then, the cylinder core will contain the relatively

weak vorticity of the steady Culick2 solution and irrotational acoustic waves driven

by the boundary forcing.

The amplitude of the transient vorticity distributions described by Zhao and

Kassoy 22 and Zhao et al. 28, and in the present work (see Figs. 12a-c) are O(M -')

larger than that of the Culick2 steady solution. This implies that there will be a

relatively large axial shear stress on the cylinder surface, particularly for smaller M

values. One can speculate that these transient shear stresses will impact the burning

16



rate of an actual propellant which is the source of the "injected" fluid used in the

present model. Perhaps there is a direct relationship between the effect of surface

shear stress transients, predicted in the present work, and erosive burning concepts

used in the solid rocket engineering literature6 .
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TABLE CAPTION

Table I: The radial locations of the unsteady vortical axial velocity front at

different time levels for M = 0.02, 0.05 and 0.1 . The second and third columns

present the estimates from (11) and (12), respectively. Results in the last column

have been found from Figs. 4, 8 and 10.
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FIGURE CAPTIONS

Fig. 1: Computational domain and boundary conditions.

Fig. 2a: Normalized steady axial velocity profiles at x = 0.025, 0.5 and I for

M = 0.05 and Re = 3.105 .

Fig. 2b: Steady radial velocity profiles at axial locations z = 0.025 (solid line), 0.5

(dotted line) and 1 (dashed line) for M = 0.05 and Re = 3.10'.

Fig. 3: The axial unsteady pressure variation at r = 0, 0.5 and 1 when t = 29.37

for M = 0.1, Re = 3.104, w = 1 and A = M.

Fig. 4a: The radial variation of the unsteady axial flow speed,uv, at x = 0.5 when

t = 1.48 for M = 0.1, Re = 3.104, w= land A=M.

Fig. 4b: As Fig. 4a but when t = 11.81.

Fig. 4c: As Fig. 4a but when t = 29.37.

Fig. 5: The time history of axial pressure gradient, 8 p/Ox, at z - 0.5, r = 0.9 for

M = 0.1, Re =3.104 , w = 1 and A = M.
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Fig. 6a: The time history of the planar part of the unsteady axial flow speed, up,

at x = 0.5 for M = 0.1, Re =3.10, w = 1 and A= M.

Fig. 6b: The time history of the unsteady vortical axial speed, uv at z = 0.5,

r = 1 for the same flow parameters as those in Fig. 6a.

Fig. 7: The radial variation of (v - vs) at z = 0.5 when t = 29.37 for the same flow

parameters as those in Fig. 4c.

Fig. 8a: The radial variation of uv at z = 0.5 when t = 1.488 for M = 0.05,

Re=3.10 , ,w = 1 and A=M.

Fig. 8b: As Fig. 8a but for t = 11.834.

Fig. 8c: As Fig. 8a but for t = 29.54.

Fig. 9: The axial variation of uv at r = 1 (solid line), r = 0.9 (dotted line) and

r = 0.7 (.dashed line) when t = 29.37 for M = 0.1, Re = 3.104, w = 1 and A = M.

Fig. 10a: The radial variation of uv at z = 0.5 when t = 3 for M = 0.02,

Re = 3.10 s ,w = 1 and A= M.

Fig. 10b: As Fig. 10a but when t = 15.
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Fig. 10c: As Fig 10a but when t = 30.

Fig. 11a: As Fig. 10c but at z 0.25.

Fig. 11b: As Fig. 11a but at z 0.75.

Fig. 12a: The radial variation of unsteady vorticity, 11, defined in (10) at x = 0.5

when t = 29.37 for M = 0.1

Fig. 12b: As Fig. 12a but for M = 0.05, when t = 29.54.

Fig. 12c: As Fig. 12a but for M = 0.02, when t = 30.

Fig. 12d: Spatial unsteady -'orticity variation 1t throughout the cylinder at t = 30

for M = 0.02.

Fig. 13a: The radial variation of uv at x = 0.5 when t = 17.71 for M = 0.1,

Re = 3.104; A = M and w = 1.

Fig. 13b: As Fig. 13a but at t = 17.38 and for w = 1.5.

Fig. 13c: As Fig. 13a but at t = 17.77 and for w = 2.5.
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Time Front Locations

t 1-Mt I FNumerical

M=0.02

3. 0.94 0.94 0.93

15. j.70 0.69 0.67

30. 0.40 0.44 0.44

M=0.05

1.48 0.93 0.92 0.92

11.83 0.41. 0.44 0.45

29.54 -0.481 0.11 0

M=O.1

1.48 0.85 0.85 0.85

11.81 -0.18 0.18 0.15

29.37 1-1.94 0.01 1 0

Table I
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