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Abstract

This final report is a summary of all of the research performed on the project entitled
Termolecular Association of Ions in Gases under AFOSR Grant no. AFOSR-89-0426 for the
period 7/1/89-6/30/94. Theoretical research was completed and published on the following

projects:

(A) Termolecular Recombination

A+B+M—~AB+ M

(B) Laser-Assisted Electron-Excited Atom Collisions

e +A+Nhw e +A° 4+ Mo

(C) Electron-Excited Atom Collisions

e +A—e + 4 A=H, He

(D) Atom-Excited Atom Collisions

A+B(r)~A+B*+¢

A total of 23 publications were obtained together with four Ph.D theses during the
period of the Grant. Full reference to this work is provided. In addition, new theories of
Ion-Molecule Collisions (E) and Dissociative Recombination (F) have also been developed
and are provided in this report as well. Full details of the theory of ion-molecule collisions
are provided in an accompanying Organization Report GIT-89-023.
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I. lnttoduction._

This final report summarises all of the research performed oa the project catitled ZTermolecular 4210
cistion of Ions in Gases during the period of July 1, 1989 through June 30, 1994. The present theoretical
research was performed under the auspices of AFOSR Grant no. AFOSR-88-0428.

The objectives of the research program was to formulate, develop and implement new theoretical de-
scriptions of various atomic and molecular processes of importance in various situations of interest to the

II. Research Completed

Theoretical research was completed oa the following projects:
(A) Termolecular Recombination
A+B+M —+AB+ M

(B) Laser-Assisted Electron-Excited Atom Collisions

e+ A+ NAw — e + A4° + MAw

(C) Atom-Excited Atom Collisions

A+B(n)~A+B* +¢=

(D) Ion-Molecule Collisions

Xt 4+ AB — (XAB*)® — products

X* 4+ ABC — (XABC*)® ~ products

(E) Elsctroa-Excited Atom Collisions

e +A—e + 4, A=H,He

(F) Empirical and Semiempirical Representations of Ion-Atom and Atom-Atom Interaction
Potentials
(G) Electron-lon Dissociative Recombination

e +AB* - A+ B
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Each of the Topics (A)-(D) wers the subjects of fous Ph.D thesis performed wader the suspices of APOSR
during the grant period. The research was written up and published in various referred journals. Repriats
and Annual Reports were sent routinely o AFOSR under report nos. GIT-89-001 through GIT-89-015. In
addition to this present report (0. GIT-89-024), the reports (GIT-89-016) through (GIT-89-023), contain
a copy of the most recent Ph.D thesis and the remaining reprints of published research are attachments to

I11. Published Research
A. Publication in Reviewed Journals:

Preprints of the following research were submitted to the APOSR under the GIT Reports specified
below.

1. Maasky E. J. and Flannery M. R., The lssue of Besis Set Sixe in ¢~ + H(1s — 24, 2p)

Collisions, J. Phys. B: At. Mol. Opt. Phys. 28 501-7 (1990) (Report GIT-80-004).

2. Mansky E. J. and Flannery M. R., Polarization Fractions for the 2' P, 31 P end 3! D States of Helivm,
J. Phys. B: At. Mol. Opt. Phys. 38 3987-92 (1990) (Report GIT-80-005).

3. Mansky E. J. aad Flannery M. R., The Multichannel Bikonal Theory of Electron-Hydrogen Collisions
1. Ezcitation of H(1s), J. Phys. B: At. Mol. Opt. Phys. 33 4549-T3 (1990) (Report GIT-89-006).

4. Mansky E. J. and Plannery M. R., The Multichenne! Bikonal Theory of Blectron-Helinm Collisions
1. Bscitation of He(1S), J. Phys. B: At. Mol. Opt. Phys. 33 4573-4604 (1990) (Report GIT-89-007).

5. Smith P. H. G. and Plannery M. R., Bleciron-Atom Collisions in ¢ Laser Field, Nucl. Instr. Meth.
Phys. Res. B 56/47 166-9 (1991) (Report GIT-89-011).

6. Smith P. H. G. and Flaasery M. R., Blectron-Hydrogen Collisions in & Laser Field, J. Phys. B: At.
Mol. Opt. Phys. 24 L489-94 (1991) (Report GIT-89-010).

7. Mansky E. J. and Flannery M. R., Indirect Coupling Mechanisme and Stokes Paremeters for Electron-
Atom Scattering, J. Phys. B: At. Mol. Opt. Phys. 24 L551-6 (1991) (Report GIT-89-013).

8. Flannery M. R., Trensport-Collisionsl Master Equstions for Termolecslsr Recombination as & Punc-
tion of Ges Density, J. Chem. Phys. 95 8205-26 (1991) (Report GIT-89-012).

9. Smith, P. H. G. and Plannery M. R., Flectron-Hydrogen Collisions with Dressed Turget

and Volkow Projectile Sistes in & Laser Field, J. Phys. B: At. Mol. Opt. Phys. 25 1021-49 (1992)
(Report GIT-89-009).

10. Mansky E. J. and Flannery M. R., Blectron-Metastable Helivm Differential and Integral Cross
Sections, J. Phys. B: At. Mol. Opt. Phys. 35 1591-7 (1992) (Report GIT-89-018).

11. Flannery M. R., Termoleculsr Jon-Jon Recombination, Acta Physica Universitatis Comenianal 33
119-32 (1992) (Report GIT-89-017). :
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12. Mansky E. I aad Plasnery M. R., Bmpiricel and Semiempirical Intevaction Potentisls for Rere
Ges-Rere Gas and Rare Gas-Halide Systems, ). Chem. Phys. 99 1963-T7 (1993) (Report GIT-89-018).

13. Haffad A. aad Flaanery M. R., Angulan-Momentum Transfer in Collisional Ionisation, Phys. Rev.
A 50 429-39 (1994) (Report GIT-89-019).

B. Chapters Published in Books during Grant Period:

14. Flanaery M. R., Recombination Processes, in Molecular Procssses in Space T- Watanabe, I. Shima-
mura, M. Shimise asd Y. Itikawa (eds.), Pleaum Press (1990) (Report GIT-88-002).

15. Mansky E. J., Blectron Collision Cross Sections Involving Bacited States, in Nonegquilibrism Pro-
cesses in Partially Ionised Gases, NATO ASI series B 320 349-55, M. Capitelli aad J. N. Bardsley (eds.),
Plenum Press (1990) (Report GIT-89-003).

16. Flannery M. R., Microscopic end Macroscopic Theories of Termolecular Recombination between
Atomic Ions, in Dissociative Recombination: Theory, Eeperiment end Applicstions, NATO-ASI series B 313
205-19, B. R. Rowe and J. B. A. Mitchell (eds.), Plenum Press, NY. (1093) (Report GIT-89-020).

17. Flanaery M. R., Bleciron-lon end Ion-Ion Recombingtion Processes, Advances in At. Mol. Opt.
Phys. 33 117-47, Academic Press (1994) (Report GIT-89-021).

18. McDaniel E. W. and Mansky E. J., Guide to Bibliographies, Books, Reviews and Compendis of
Data on Atomic Collisions, Advances in At. Mol. Opt. Phys. Special Issue: Cross Section Deta 33 389-463,
Academic Press (1994) (Report GIT-89-022).

C. Book Reviews Published during Grant Period:

1. Mansky E. )., Charge Bxchange and the Theory of Jon Atom Collisions by B. H. Bransden and M.
R. C. McDowell, Oxford U. Press (1992), reviewed in Physics Today 46 124-25, October 1993.

D. Personnel Involved during the Grant Period:

¢ Graduate Students awarded Ph.D degrees during Grant Period

1. Dr. M. S. Keenan, Ph.D thesis: Termoleculsr Ion-Atom Associstion, awarded 3-17-90, US citisen.

2. Dr. Phillip H. G. Smith, Ph. thesis: A Semiclassical Treatment of Laser Assisted

Collisions in ¢ Soft-photon Weak-field Regime, awarded 6-3-91, non-US citisen.

3. Dr. A..w. PL.D thesis: Angulsr Momentsm Trensfer in Electron-Atom and Atom-Atom Colls-
sional Jonization, awarded 8-16-91, non-US citisen.

4. Dr. X. Qi, Ph.D thesis: Jon-Molecule Spiraling Collisions end Termolecular Recombination (Report
GIT-89-023), awarded 6-16-94, non-US citisen.

o Senior Research Scientists

1. Dr. E. J. Mansky II, Senior Research Scientist, US citisen.




(A) Termolecular Recombination

A+B+M —AB+ M

Scientific Objectives

(1) Develop the first fandamental compreheasive microscopic theory of this simplest three-body chemics!

(2) The theory to serve as a case study or proto-type for more complex three-body transport-influenced
reactions.
(3) The zate of the reaction must be furnished as a function of the gas (atomic or molecular) species
M and must {llustrate the non-linear variation of the rate between the reaction Limited regime at low gas
densities and the transport limited regime in the limit of high gas deasities.

Approach:

(s) Develop sets of transport-collisional master equations which govera the bebavior of the microscopic
distribution n(R, E, L) of (A~ B) pairs in the gas M over their internal separation R, relative eaargy £ and
relative angular momentam L.

(b) The set of equations incorporate a blend of statistical mechanics and theories 10 deaczibe the trans-
port of A towards B through the gas A, and atomic and molecular scattering theory to describe the reactive
and non-reactive collisions betweea the pairs (4 ~ B) with gas species M.

Accomplishments:

A major paper on the construction, development and solution of the required equations has been pub-
lished in J. Chem. Phys. 95 (1991) 8205-26. Publication mo. 5 of §111. Reprints seat to AFOSR as Report
GIT-89-012. Additional papers on Recombination which have been published are nos. 11, 16 and 17 of §III.
The latter three papers have also been sent to AFOSR as Reports GIT-89-017, -020 and -021, respectively.

Fundamental Interest:

This development has served as a textbook study of the most basic three body chemical reaction from a
microscopic viswpoint. It provides quantitive and physical foundations for various macroscopic treatments.
It illustrates how reaction and transort are coupled in transport-influenced reactions.

Applications:

The termoleculaz process is key to the basic understanding of :

o Rare gas - halide (exciplex) lasers and rare gas excimer lasers,

o combustion and rocket plumes,

¢ various low tempezature plasmas, plasma etching and plasma decomposition processes, etc.
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~ (B) Laser-assisted Electron-Hydrogen Collisions

e +A+nhy—e¢ +4°+mhv

Scientifiz: Objectives:

(a) To develop the first comprehensive theory of the collision in which the states of the atom A are dressed
(modified) by the laser and are thea closely coupled by the elactron-atom interaction. The projectile electron
is also affected by the field of the laser.

(b) To investigate to what extent the presence of the laser enhances and cas control the degree of excitation
in electron atom collisions.

Approach:

A semiclassical Floquet approach is used to find the dressed states of the atom in the laser field.
Volkov states are the states of the electron in the laser field. A semiclassical multichannel eikonal treatment,
previcusly developed for electron-atom collisions, thea uses the Floquet and Volkov states in a closely coupled
calculation to produce the cross sections for electron-atom collisions in a laser field.

Accomplishments:

Such a theory was developed and applied to electron-hydrogea collisions in the field of a COj laser.

e” + H(1s) 4+ nhv ~ e~ + H(2s,2p) + mhv

The three papers (nos. 5, 6 and 9 of §III) were published and repriats seat to AFOSR as Reports
GIT-89-019, -010 and -011, respectively. A Ph.D. thesis entitled 4 Semiclassical Trestment of Laser-assisted
Collisions in & Sofi-photon Weah-field Regime was awarded to P. H. G. Smith in 1991 under the supervision
of M. R. Flannery.

(C) Atom-Excited Atom Collisions

Research has been completed on computing the cross sections for angular momentum changes,

A+B(nl) = A+ Bt +e (¢,0)

in beavy-particle and electron-atom (e~ — B) collisions where the target atom is initially in highly excited
states (n > 10). :




The research has shown that the croes sections for af — nf collisional traasitions increases as £ is
increased uatil s maximum £, is attained after which the cross sections decrease piacipitously. This effect
aot only caa be explained by & quantum description bat as shown hers by clamsical scattering. A paper
describing this research was published in Phys. Rev. A 80 428-39 (1994) (mo. 12 of §III). A Ph.D. thesis
entitled Angular Momentum Transfer in Electron-Atom and Atom-Afom Coliisional Jonizstion was awarded
to A. Haffad in 1991 under the supervision of M. R. Flaunery. The above paper and thesis have beea sent
to AFOSR as Report GIT-89-019.

(D) Ion-Molecule Collisions

In the course of research on recombination it was realised that cross sections were required for spiralling
collisions between ions and meutral molecules with permaneat dipols moments such as HCI (linear) and
N H; (symmetric top). The ion-molecule interaction is no longer spherical but is orientation dependent eg.
at long range the interaction is,

V(R,O)=-;%+-£,—m0 )

where a is the polarisability of the molecule with permaneat dipole moment D, and # is the angle between
the R-axis joining the ion to the center-of-mass of the molecule.

The main problem in these ion-molecule collisions is how to address the rotation of the molecule during
the course of the collision. During the past decade there have boen several approaches advocated.

o Semiclassical *

(a) The Lock-in Dipole Approximation

(b) The Frosea Rotor Approximation

(c) The Average Dipole Orientation Theory (ADO)
(d) The Free Energy Average Angular Motion Theory
(e) The Adiabatic Invaziance Theory (ADIA)

» Quantum Mechanicsl

(a) The Pertwxbed Rotational State Theory
(b) The Adiabatic Capture and Centifrugal Sudden Approximation (ACCSA)

One of the results of the present research has been the modification of the adiabatic invariance theory,
to account for the coupling between the internal angular momentum of the target molecule and the orbital
angular momentum of the projectile about the target, in the computation of the rate & of spiralling collisions
in systems as Hy — HCI, a rate analogous to the Langevin temperature-independent rate,




by =2.34-10~° (-:-‘-)"' om®s-? 0]

for spiralling colliions wader the polarisation attractios aloas je. the first term of (3). Is (4) a is the
polarisability in wnits of A® and the ion-molecule reduced mass M is in amu. Recest experiment (D. C.
Clary, D. Smith aad N. G. Adams Chem. Phys. Lett. 119 (1985) 320) has shown that there is & large
difference between k(T) which varies with isothermal temperature T and the Langevia rate k; which is
temperature independent. Calculation of the rate k is quite complicated even for systems as He* - HCI
and B} - HC! by eb-initio quantum mechanical theoriss. A Ph.D thesis, entitled Jon-Molacule Spiraling
Collisions end Termolecular Recombination, was awarded to X. Qi in 1994, and has been sent to AFOSR as
Report GIT-89-023.

(E) Electron-Excited Atom Collisions

Ia the development of semiclassical theories for collision processes, ¢~ + A] — ¢~ + A, where i and j
are both excited or metastable electronic states of the atom A, the practical implementation of fully quantal
theories even if desired is unfeasible with modern supercomputers. Somebow the physics esseatial ia collisions
with excited atoms is ineficiently described by modera quantal methods in the sense that in order to obtain
results considered to be accurate, tour-de-force evaulation of a whole host of small terms is required. In fully
quantal calculations, largs amounts of computer tims are spent evaluating terms which ultimately provide
insignificant contribution to the cross sectioa. In fully quantal approaches there is 5o &-priori method of
isolating the region which effectively controls the cross section. Semiclassical techniques therefore have been
developed and used to track the essential physics much more efficeatly and effectively. Case studies for the
targets hydrogea and helium have beea carried out.

This work has published (mos. 1-4, 7, 10 and 15 in §III) and reprints have been sent to AFOSR as
Reports GIT-89-004, -005, -008, -007, -013, -016 and -003, respectively.

(F) Empirical and Semiempirical Representations of Ion-Atom
and Atom-Atom Interaction Potentials

The Tang-Toennies (TT) semi-empirical model potentials for ion-atom systems is applied to the rare
gas—halide negative ion exciplexes. The coeflicients defining the repulsive Born-Mayer term in the TT semi-
empirical potentials are determined from the equilibrium bond length, R,, and dissociation energy, D,, taken
from eb-initio calculations and from transport studies of these molecular ions. The damped dispersion and
induction energy terms in the TT potentials are obtained from coupled Hartree-Fock calculations for the
neutral rare gas atoms and F~, Cl~ ions. The multipole polarisabilities for the heavier balogen atomic nega-
tive ions are estimated from a knowledge of polarisability ratios across isoelectronic sequences. The resultant
semi-empirical ionic potentials are compared to available ab-initio calculations and the results of inversion




of transport theory. To facilitate the comparison of the (sparse) ab-initio dats with the semi-empirical po-
tentials, a simple fitting procedurs is preseated for determining empirical potestials for diatomic molecules
from & set of three constraint squations. The fittiag procedure is applied to a total of 22 sare gas excimers
and rare gas—halide exciplexes (both neutral and ioaic) of interest to a variety of applications in gaseons
discharges and excimer lasers. A 3-term representation of the empirical potentials generated is accomplished
with the use of a minimal data set which include the ‘geometric’ parameters { Ry, R,, D,} aad the additional
parameters {ay,I.P., F.A.} needed for the dispersion and induction energy terms. A novel feature of the
empirical procedure is the formulation of the constraint squations at twe aucleas displacements (1 coastraint
at Ro wherein the potential passes through sero, aad 2 coastraints at R,, the equilibriam separation) which
yields an accurate it to available ed-initio data and greatly extends the range of internuclear separations
R for which an accurate piecswise amalytical empirical poteatial cas be geserated. To test the relative
importance of the different terms in the Rtted 3-term empirical representations, the classical orbiting cross
section Qersis(E) in computoed using the full empirical poteatial aand compared against the standard Langevia
orbiting cross sectioa Qpei (E) for & pure polarisatioa interaction.

This work has been published in J. Chem. Phys. (mo. 11 of §III) aad repriats have beea sent to
AFOSR as Report GIT-88-018.

(G) Dissociative Recombination

Although all the modera quastum (scattering and chemistry) technology has beea brought to bear oa
dissociative recombination,

¢ +AB* <A+ B (2)

for the simpler diatomics, there remains several inconsistencies with observational data

A 3ew class of dissociative recombination (DR) is emerging. In contrast to aormal DR, characterised
by rates apa(T) ~ 2-10-7(300/T)'/? as for OF (v} = 0) and NO+ with large dissociative energies Df ~ 7
eV and 11 ¢V, a class characterised by super rates of 3 - 10~° are being discovered.

Therefore & noed to investigate dissociative recombinatioa for varions complex systems by the develop-
ment of physical theories which will farnish insight into the various mechanisms is warranted by the ongoing
inconsistencies with experimental data. The sb-initio calculations are having a tough enough time even for
the simpler species H}, N}, 0%, ete., and are totally impractical for more complicated systems of interest.

A review of electron-ion and jon-ion recombination processes has recently been published (mo. 17 of
$II1). A reprint of this review has been sent to AFOSR as Report GIT-89-021. Among the topics covered
are the new class of dissociative recombination reactions mentioned above. Progress made towards the
development of & new theory is presented in §V of this report.
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¥.Classical Path Theory of Direct Electron-lon Dissociative Recombination
and Associative Ionisation

¥.1 Background

In 1950 Bates [1] postulated that, dissociative recombination (DR) for diatomic ions can occur vis &
crossing at Ry between the bound and repulsive potential energy curres V*(R) and V**(R) for AB* snd
AB**, respectively. Here, DR involves the two-stage sequence, S

A, Vi

¢ +AB*(w) w (AB**)y — A+B° — A+B+hv (1)

Vs
The first etage is dislectronic capture whereby the free electron of energy ¢« = V*°(R) - V*(R) excites
an clectron of the diatomic ion AB* with internal separation R and is then resonantly captured by the
ion at rate A, to form a repulsive state ¢ of the doubly excited molecule AB**, which in turn can either
autoionise at probability frequency »,, or else in the second stage predimsociate into various channels at
probability frequency v4. This competition continues until the (electronically excited) neutral fragments
accelerate past the crossing at Rx. Beyond Ry the increasing energy of relative separation has reduced the
total electronic energy to such an extent that autoionisation is essentially precluded and the neutralisstion
is then rendered permanent past the stabilisation point Rx. Bates’ interpretaticn has remained intact
and robust in the current light of eb-initio quantum chemistry and quantal scattering calculations for the
d{hpkdhtomiu(O,".N,“,Nc{.ctc.). Obeervation of emitted radiation Av yields information on the excited »
products. Mechanism (1) is termed the direct process.

In 1968 Bardsley [2] pointed out the possiblity that a three-stage sequence,

¢ + AB*(%) — [AB*(v))—¢"] — (AB*)¢ = A+ B (2)

the so-called indirect process, might contribute. Here the accelerating eloectron loses energy by vibrational
excitation (% — w;) of the ion and is then rescnantly captured into a Rydberg orbital of the bound molecule
AB* which then interacts one way (via configurstion mixing) with the doubly excited repulsive molecule
AB°**. The capture initially procesds via a small effect - vibronic coupling (the matrix element of the nuclear
kinetic energy) induced by the breakdown of the Born-Oppenheimer approximation - at cerlain resonance
energies ¢, = E(v;) ~ E(v}) and, in the absence of the diract channel (1), would therefore be manifest by
a series of characteristic very narrow Lorents profiles in the cross section. Uncoupled from (1) the indirect
process would augment the rate. Vibronic capture proceeds more easily when vy = % + 1 so that Rydberg
states with n & 7 — 9 would be involved (for H; (v = 0)) so that the resulting longer periods of the Rydberg
slectron would permit changes in nuclear motion to compete with the slectronic dissociation. Recombination
then proceeds as in the second stage of (1) ie. by electronic coupl 1g to the dissociative state d as the crossing

1

———




hj

point. Giusti {3] has provided « unified account of the direct and indirect processes.
O'Malley [4] later noted that the process,
k. va
e + AB*(x) = (AB*)y — A4 B )
Ve

Vad Tl van
[AB*(v) - e~),

procesds via the first (dielectronic capture) stage of (1) followed by & two-way electronié transitions with
frequency vy and ¥ug between the d and n states. All (n,v) Rydberg states can be populated, particularly
those in low n and high v since the electronic d—n ateraction varies as n=2® with broad structure. Although
the dissociation process proceeds here via a second order effect (vg, and #nq) the electronic coupling may
dominate the indirect vibronic capture and will interupt the recombination in contrast to (2a) which as
written in the one-way direction feeds the recombination. Such dip-structure has been observed. Guberman
and Giusti-Susor [5] bave assessed the effect of each contribution of (1), (2a) and (2b) to the resonance shape
and integral cross section.

There exist two sd-initio quantal treatments for dissociative recombination - one (CM) based on con-
figuration mixing [2-4,8] , and the other (MQDT) based on multichannel quantum defect theory [3]. CM
has been applied [6-9] to HF ; MQDT has been applied [10-12] to Ay, , to NO* (18], to OF [5] , to N}
(14] and to CH* [15). These eb-initio treatments [10-12,15] have shown that the indirect process interferes
destructively with the direct process. The cross sections exhibit an overall preponderance of destructive
interference via a series of dips falling below the E—2/2 continuous variation for the direct process. Here
the direct - indirect coupling interrupts the recombination at specified energies. The quantal theory for
diatomic ions is considered to be essentially complete for cases involving favorable crossings between the ion
and doubly excited neutral states. The HeH* case which does not involve curve crossing has been treated
recently by Guberman {16] and by Sarpal ¢t el  {17). Although the crossing at ~ 8 eV for Hy has been
explored by Kulander and Orel [18], the large cross section bebavior [19] at low energies (where there is no
curve crossing) remains unresolved.

Chris Bottcher [6]) in 1976 developed a rather nice semiclassical theory of dissociative recombination.
The theory is semiclassical in that JWKB wavefunctions for nuclear motion were used in this stationary
state quantum treatment. Miller {20] has examined sssociative ionnisation - the inverse of (1) - within a
classical, semiclassical and quantal framework. In this paper a different semiclassical theory of dissociative
recombination is developed from a time dependent theory based on a classical trajectory R = R(t) for the
relative motion of the dissociating neutral heavy particles.
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A. Motivation: wn; Another Theory ?

When the two diabatic potential energy curves V*(R) and Vy(R) cross at Ry, the rate for dissociative
recombination given by a first-order treatment (2,21) is,

(1] 4 ’
apa(T) = (2,,:;;):75' (;,,4-) zh' Vau(REP R ] { 'r:v(:;:l)t' |:-T} “

where V(R) is the electronic energy, ($4(R,r) | Hu(R;x) | ¢,(R,r)), coupling the electronic wavefunction
¢4 for the doubly excited repulsive (AB);* intermediate state to the electronic wavefunction ¢, for the
scattering system ¢ ~ AB*. The molecular functions ¢4, are diabatic in that they are net pure cigenstates
of the full electronic fixed-nuclei Hamiltonian H,;(R,r), and the continuum functions are energy-normalised
(é¢ | #¢)e = (e — €) with consequent unit density p(e) of states for the scattered electron of energy ¢. The
bound vibrational wavefunction for the original ion state is ¥ (R).

Although all the modern quantum (scattering and chemistry) technology has been brought to bear
for the simpler diatomics in a way considered in general correct, simple expressions as (4) are invaluable
in that they reveal tremendous insight into the essential physics, general characteristics and workings of
recombination for various distinct systems. Bates [21] has demonstrated how expressions as (4) may be
utilised very effectively to promote new insight for recombination involving more complex ions.

Since Bates’ deductions, particularly his discovery of the new class of super dimsociative recombination,
characterised by raies as large as 2 - 10~%cm®s™1, in contrast to 2 - 10~Tem®s~? for normal DR, rely on
the gradient dV;/dR of the doubly excited repulsive state, it is now of interest to see whether (a) simple
expressions as (4) but more accurate can be derived without recourse to the full numerical approach of eb-
initio treatments, and (b) if the shape of the ion potential V* enters as directly as does Vj in (4) over that
implicitly contained in ¥} (Rx). Apart from the first-order treatment (4) and the full quantal trestments
(CM, MQDT) above, there appears to be no intermediate simplified description. There are also no analytical
results such as (4), appropriate to the case when V+ and V; do not cross.

The purpose of this paper is to provide such a method wherein a two state semiclassical treatment of
the direct process (1) will effectively yield an expression for the rate in a form similar to but more accurate
than (4).

¥.2 Classical Path Theory
A. Basic Equations

In the field of the ion AB*, the recombining electron is captured at time ¢ = ¢; into an electronically
doubly-excited molecular state ¢,4(r, R) whose variation with R is provided by the classical trajectory R(t).
Competition between autoionisation to the combined state ¢,(r, R) of the emitted electron of energy ¢ and the
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MMABf(w)_;g&wumnuddminMaoummmwR(t)mocishd
with the potential V4(R). The system wavefunction satisfies,

Halr, RO = ) (5)

where the time dependence in the electronic Hamiltonian M (r, R(t)) = H~(A/2M45)V} for frosen nuclei in
terms of the total system Hamiltonian 1, is generated by the classical trajectory K(t) for atomic dissociation.
Expand -

v.0= 1 a0t Re[-3 [ wako) & (®
in terms of some basis set ¢; where W;; are diagonal elements of,

Wo(R(t) = (&R B) | Hat | 457 B)), @)

Inurt(B)into(s),pxojaetontothm<¢4|uulun(kl-'ﬁi)’=§-(¢¢lvné,)nutoownth
set of coupled equations,

e =Y o [%‘,;—M‘:)l] wr (-3 [ Putden-wuiin] &) @
inf

for the transition amplitudes ¢; in this classical path representation. When ¢; are identified with the adiabatic
(molecular) functions x; which satisfy,

Healf, By (7, B) = M) + VU7 B)] 247, B) = By(Rxs 7, ) (%)

then Wi;(R) = E;(R)&;; in (8), curves Wi;(R) and Wj;(R) of the same symmetry do not cross and the
¢ — j electronic transition occurs via the non-adiabatic dynamic coupling elements (x; | Vax;). When
¢; are taken as (atomic) eigenfunctions of the internal electronic Hamiltonian 7;a¢ at infinite separation
R, then these dynamic coupling terms vanish and the transition occurs via the potential coupling terms
Wis = (¢ | V(F,R) | ¢;). When ¢; are taken eigenfunctions of some Hamiltonian o intermediate between
u..udﬁm,pntnchmutomidy.

($ | Har | §j)r DaDw (10)
Re(|Vn|dy)e ~0
where Hy = Ho + M’ with M’ € Mo, then ¢; form a diabatic basis set since the dynamic couplings are
small. A complete atomic baais set ¢i(r4,75, R — 00) = ¢4(r)¢s(r) centered on each nuclei 4 and B (ie.
Mo = Wing, H' = V) constitutes the simplest diabatic basis, eigenfunctions of‘)'t‘.. of (9). Application of (8)
to the electronic continuum is obtained by expanding,
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-cwm .

¥(7,1) = ca(t)du(r, R) ep [—-;- [: Eq4(t) a] + -/o. co(t)é«(r, R) ezp [—--;- /“ ‘B" (e,2) dl] de (lla)

in terms of the diabatic orthogonal basis set ¢¢(, R) of energy normalised functions (¢, | ¢¢)s = 6(¢ ~ ¢)
for the continuum electron-ion system ¢~ — AB*(R), and of ¢, for the molecular system AB**(R) in a
vibrational continuum. The energies W;; are the electronic potential energy surfaces,

Et(e,t) = (b | Har | $e) = VH(R(t)) + ¢ - (118)

and,

E(t) = (s | MHai | #4) = Va(t) (11¢)

within which nuclear motion proceeds. Assume now that all continuum states are all uncoupled ie. (¢, |
M | ) = §(e — €). In this diabatic representation (11a-c), then (8) yields,

A ét) = /o " Vaelt)e(t) esprricit) de (124)

s A &,(t) = Vi(t)eu(t) ezp[-nr(c;t)]. (128)
. The bound-continuum electronic coupling matrix elements ars,

Vau(t) = (2| Ha(r, R(t)) | $e(r, R))r,s = Vio(t) (12¢)

where the integration is over the electronic coordinates ¥ and the direction & of the ejected electron. The
phase is,

vat) = [ ) - (V@) + )] & (12d)
The above classical path formulation (12) is now applied to the forward direction of,

Ar
A+B* m ABt 4e” (13)
DR

since the relative A — B* motion can be described by the classical path R(t) and the electronic motion by
quantum mechanics. The strategy is therefore to solve (12a) for ca(t) subject to c4(tx) = 1 ie. the reaction
does not begin to occur until the A — B° separation is Rx at tx. Solution of (12b) then provides the
probability for electron ejection within the reaction sone R < Ry ie. for the decay probability of a discrete
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electronic state AB*° moving via the classical path R(t) through az embedded electronic continuum. The
cross section 04; for the forward channel (associative ionisstion) of (13) can then be obtained. Detailed
balance then provides the cross section opp for the reverse channel (dissociative recombination) of (13) ie.
for the transition involving molecular states initially in an electronic continuum and finally in & vibrational

continuum.

B. Formal Solutions

With (12b) inserted, the formal solution of (12a), subject to the initial condition c{e,tx) = 0, -

“2eet)= [ & [ Ao titledt) eprbrieit) - ) (14
at time t. This depends on the previous history of the system between tx and ¢ via the non-local interaction,
T 6#) = 2eValVE(E) (15)

and on the phase difference,
Aet) =) =3 [ Va- O+ +0] & 19)

at different times. This difference can be expanded to yield,

et — v t) ~ (g,).(:-s'n ;(g:,-})'(c-v)u...
= 2{[Vel®) - V* @) -} (8- ) + Pt - ¥) an
= 2 W) - d(t~¢) + F(s-¢)

where F is ¢~independent, being a function only of the difference (t ~t'), and where,

W(t) = Va(t) - V*(1) (18)

is the energy for vertical transitions at time t. Equation (14) with (17) therefore reduces to,

-21&’.“—(!) = ‘[ : expiF(t —t') dt’ /o. de {P(c. t;¢)ca(t’) up% (W(t) —e)(t - t')} (19)

which is in a form suitable for further approximation. The following analysis is valid for the case Vy(t) >
V+(t) for R < Rx appropriate to curve-crossing between the ion and neutral states at Ry ie. for W(t) > 0.
The separation Rx can bowever tead to infinity so that Vi(R) > V*(R) everywhere.
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C. Local Approximation

The ¢— integration in (19) involves the product of I' - ¢4 which is now assumed to vary elowly with ¢,
(ie. T has a large width A in its variation with ¢), and an exponential which oscillates over ¢ with period
§ = 2xA/(t—¢'). The e-integral is then negligible within the (t —#’)-range which satisfies § € A ie. fort > ¢t'.
The remaining range 0 < (¢t — t') < 2¢A/A will therefore provide the main contribution to the e-integral.
Henac‘(t)of(lﬂ)hnonlyalhmmmoryofthepmunlu-de‘bctmkmdtnddepndsonly
on ¢’ immediately before $. Thus,

t-tx) s

—2xh%ey(t) = cu(t) [ T(e,t)de /0( esp [-‘-(W(*) - G)'] dr (20)

for all t. As t — o0, or more precisely for t > 2xA/A when the width A/t € A, then
/( ‘-u)up [-(c ~¢jrjdr=A [I"(( - €) + P —— ] (21)

° ‘ ! («—¢)
The e~ integration therefore yields,
eult) = ~gedt) [§F0t) + 9EL0)] (22
where the energy width,

Mof) =20 Va@), «=W() (23)

is due to coupling between ¢4 and one continuum state ¢, with energy W(t) and where,

SEd) =" 0" [Vae(R())I R(t) de (20)

[ " §
is the second-order energy shift in state ¢4 due to the coupling with all other continuum states ¢,(, R) with
energy ¢ # W (t); since the principal value part P involves the contribution from states just below W (t) to
be balanced by states just above W(t). The solution of (22) is,

calt) = eap [-% /; 1) a'] esp [-i. /; SEH) a'] (25)

The probability c4|? for remaining on the V; curve at time ¢ is,

Puf) = eap [} /. ) de| = exp -3 / V(RO Riee] = eop [~ / vid] (20

which is the probabilitiy for survival at time ¢ against accumulated sutoionisation at frequency v, between
tx and ¢t. The effect of the continuum state ¢,(r, R) on the dissociating systein is therefore realised by
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assigning the eomphum‘gy Eo(R) = V4(R) + §E4(R) - §T(R) to state ¢4 whose occupation probability
then decays with time as Py(t). The solutioa of (12b) is therefore,

aeet)= [ et Vi) emplmice)] & (27s)
with the phase,
ran =} [ we)-de S (am)

expressed in terms of the positive energy

W(t) = Vy(t) - V*(¢) (27¢)

When the local solution (25) for cy(t) is inserted into (27s), the amplitude c,(t) can therefore be
determined by direct numerical integration. Initially at time tx, the nuclei 4 - B* enter the (autoionisation)
reaction sone at Rx. They continue their relative motion inward until they reverss their motion at R,, the
distance of closest approach, at time 1,, move outward and then leave the reaction sone with a diminished
amplitude at time tx + rx with separation Rx. On taking tx = 0 and t = rx in (27a), the amplitude c,(t)
{or electron emission after the time interval rx following some rearrangement is given by,

el = [ edVa@) eoplrictl]l & +leop-rrire)] [ wOViO)eplemict] & (2ta)

where,

calt) = eap (--;K _A *re) a) (285)
is the amplitude for survival of travel from Ry to R(t) on the inward leg (¢ < ¢;), and

ault) = calrx — 1) = cap[ i/ ) a] osp (+% /o ") a) (28¢)
is the amplitudse for survival during the sequence Rx 3 R, 2% R(rx — t) = R(t) on the outward leg and,

rre)=3 [ WO)-d d=nn) (284)
is the total phase accumulated within the full reaction some. Note that ca(t)es(t) = cu(rx) = c3(t.) is the
survival amplitude for the round trip Rx 3 R, ™' Rx. The above form (28a) is useful in that it tracks the
increasing accumulation of phase v(t) which in (27b) is measured from the time tx of entry to the reaction
sone. An equivalent but symmetrical form of (28s) follows by taking ¢ = 0 at R.cudltln“x = —t, and
t = rx = 41, in (27a). The result is,
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N = emplratl] [ Vi@t enp(HA®) +allemp{-a0N & (280)
where the new phase,
s=3 [ We-d & (20)
is sero at R, = R(t = 0). SinaW(t)inm,theoldudmphmmMnlﬁgi‘by. _
Alt)-a%), ¢ '
w={a 80 e (29¢)

The first and second terms in each of (28a) and (29a) are the respective contributions to the amplitude
¢(¢) from the inward and outward legs of the classical trajectory R(t). Each form is useful for correspondence
with the stationary-state quantal transition amplitudes when JWKB bound vibrational wavefunctions are
taken relative to the left-band or right-band turning points, respectively (cf. §VI).

The basic classical path theory is represented by either the amplitudes (28s) or (20a) with any known
solution of (12a) for c4(t), and a4(t) = c4(rx —1). Analytical expressions for c(e) can be obtained using the
local analytical solutions (28b,c) in (28a) or (29a) which can then be determined by the method of stationary
phase.

¥.3 Cross Sections from Classical Theory

A clagsical theory —in the sense of summation over probabilities rather than of amplitudes so that inter-
ference effects are ignored— is readily deduced from the local approximation (26) without direct evaluation
of ¢(¢) from (28a). The theory follows from (26) with conservation of probability imposed ie. from the
requirement that,

t

P+ [ POy &= (30)

where P, is the probability jcs|* of survival on V; from tx = 0 to t and where P(t)d! is the probability for

autoionisation within the time interval [t, ¢ + d¢). Thus,

- P() = -% = Lg)-P‘(t) (31)

Within this time interval [t, t+dt] or range [R, R+dR] of internuclear separations, an electron is emitted
with energy in the range [¢, ¢ + de] about ¢(t) = W(t) = V; — V* with probability,

P(t) & = P(R)dR = P(e)de = |e(¢)| de (32)

The probability densitiss per unit interval dR or de are then,
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' c I(R) Az I(R)
AR)= a-(n) ( u/ R ) i (330)
or,

dP,

P(e)= )l = P(t) (5| =PR)IW'(R)™" = -= (338)

respectively, where the radial speed w(R) = R, W = de/dt and W/(R) = dW/dR. The cross section for
disposal of all possible energies ¢ in A — B* collisions at energy E is then,

&

os(E) = 2% /° “1a [ “P) & (34a)
bz Ry
=2 jo ' b fm) P(R)dR (34)

where the maximum impact pazameter bx which just penetrates the reaction sons is given by,
(8= 5 [1 - X)) (34¢)

This cross section is for the full reaction involving all ¢ and all ion states, ie. for both Associative and
Penning Ionisation processes. Upon R-integration (34b) with (33a) reduces to,

wnen[afom(GL )]

which is the standard classical result for any abeorptive reaction. For small autoionisation widths I’ which
are only weakly dependent on b (or L) then,

"“"’"”f f. [a) (34¢)

where dx is an element of the trajectory & = o(E, ) traced in time dt = ds/u(R) = dR/v(R) in terms of
the radial and local speeds, ¥(R) = R and w(R) = (2/M)3[E — V4(R)]*/?, respectively. Since,

. zr['mf:'f(n)a=«['n'[1-5'7(;52];'(3)43 (341)
the cross section (34¢) reduces to,
or(E) =22 (35)‘ : [ rae (-4 " ar (349)

in agreement with the resulis of Miller. When the path length A, = hv(R)/I‘(R) towards autoionisation is
independent of R then (34d) reduces to,
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ou(B)= /‘ (1-—) ar 2% 152 (34)
a result reminiscent of Thomeon's for termolecular ion-ion recombination.

Electrons of a given energy ¢ can be emitted at different times ¢, and ¢, o the incoming leg and again
at rx —t, and Tx — ¢3 on the outgoing leg. Thus, W(t) = ¢ bas four roots (see Pigure 1) for ¢ in the range
(0,7x). The total probability density from (33b) for electron emission is then the sum of the individual
probabilities, -

3 _ 3
Pl = T P(ets) = 3 3 Vel RN Re[ (R PotR) = 3 b (W(R) ™ Pa(R)  (356)
3 i=1 =1

where the total probability of survival on the incoming and outgoing legs at R is,

Ps(R) = Pu(t) + Pu(rx — 1) = lea(R)® + lsa(R))® (358)
* I(R) ' I(R) Rx p(
“”[ f. (n)‘“]“ [ -(R)’"’] [ +/, TR%‘“] (38)
Rz 1 I(R)
= 2o [“ "®) “’] [ L& ] -

The cross section for (A — B*) collisions for disposal (via autoionisation and vibrational excitation of
AB%) of energy ¢ in the range ¢, ¢ + de is o(E, ¢) de where the differential cross section is,

% =oy(B,e)=2x /: - P(e,b)d &b (36)

and P(e,d) is given by (35) which implicitly depends on the impact parameter b via the classical orbit
R = R(E,L) where the relative angular momentum L? = (2ME)}. Not only is ¢ the vertical energy
separating V(R) and V+(R) at R, but it is also (cf. §V) the vertical separation between E and the energy
of the vibrational level v of AB* (cf. Figure 2). The probability that AB* is left in a vibrational level v,
assumed to form a quasi-continuum is therefore,

de
. P(v,b) = P(e,}) zl (37)
Since the ndill‘u:tion,
szp...(R)dR: (.+%)h (38)
is quantised for bound vibrational motion with local momenta p,(R) between the classical turning points,
de dedJ )
il el hy L (39)
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whare v is the frequency for vibrational motion in level v within the potential V+(R). The probability for
autoionisation with AB* left in level v is then,

3
Py = 4 3 ValRO R (R () PatRa} (40)
i=)

which is dimensionless. The corresponding cross section for associative ionisation into AB*(v) is then,

dx - -
car(E,v) = 2% / P(v, )b & (41)
°
The angular momenta L? = (2M E)b* = (£+1/2)3A* and (7 +1/2)?A? of relative nuclear motion before
and after autoionisation are so large in comparison with the angular momenta of the ejected electron that
£ ~ J. The cross section for associative ionisation with AB* left in vibrational-rotational level (v, J) is
simply,

oar(Biv,J) = ;;’;m +1)P(s,KJ)) (42)

The transition (T)-matrix element is therefore given by P1/%(s, b) of (40) in this classical theory. The term in
braces in (40) is a classical representation (ie. excluding pbases) of the Pranck-Condon Pactor for bound-free
vibrational transitions (cf. Appendix).

From detailed balance,

Woaphipoar(B;v,J) = (2wt)(2J + 1)blopn(ev,T) 49)

where w3y and w are the electronic statistical weights of AB* and AB* and 2 is the spin-statistical weight
of the incident electron, the cross section for ¢~ — AB*(v, J) dissociative recombination (ie. for the reverse
reaction in (13)) is then,

conin )= (5) S wairon’ m { [womi () mmw]} o

- (E)om [ () 2], | o

where the total survival probability P,(R) on the incoming and outgoing legs at R is given by (35b). It
will be shown (cf. §VI) that the summation in {44b) is a representation of the quantal matrix element for
the molecular autoionisation frequency, evaluated by the method of stationary phase and summed over the
probabilities (rather than the amplitudes) of the contributions from the various regions of stationary phase
at R;. The term in braces in (44b) is the contribution at R; to the Franck-Condon overlap between the
bound and continuum vibrational wavefunctions. '




Moreover, @u&aq(t)a(m)wmm«mmmmwmm
matrix, agp(c) = (Av)e,(t). Negloct of interference effects between the various contributions ¢ to the
amplitude ¢ from each region i of stationary phase yields the classical probability,

Pwid) = ()Y jal’. (48)
;

given by (40). thydcdhﬁ;h‘hbthmﬁsﬁnioniuﬁon/w“wmm
(13) and simplified expressions for the respective cross sections with interference effacts included are now
obtained by evaluating the integral (28a) directly by the stationary phase approximation.

7.4 Stationary Phase Amplitudes

The main contributions to the integral (29a) arise from those time intervals surrounding points &; of
stationary phase given by 4 = dv(¢;t)/dt = 0. The phase variation outside these regions of stationary phase
is then sufficiently rapid to justify extension of both integration limits in (20a) to infinity. For one region
around ¢, (say) the upper and lower limits, on the change of variable to 8 = (t—t,) become s, = (t—¢;) — o
and 8¢ = —(t; — tx) — —oo, respectively. The integrals in (20a) for the amplitudes are of the form,

A¥(e) = | _sat)esplinict)] & (46)

For cases involving at most two stationary points ¢; and ¢; which correspond to phase minima (with
F(€:t1) > 0) and phase maxima (with (¢;t3) < 0), respectively, insert in (46) the expansions,

2E) = 7(8) + (ke - 1) + FHE)E - 1) (47a)
and,
o(t) = g(k) + §(L)(¢ ~ &) (479)
about each isolated stationary point & given by 7 = dy(¢;¢)/dt = 0. The integral,
1/3
[: ezp (:t%s lal a’) ds= ['2‘_1" ezp (:h-:-) (47¢)
then provides the Stationary Phase Evaluation of the integrals (46) as the linear expansions,
A%(e) = ay(e) ezp [:h(‘n + ;)] +as(¢) ezp [tt(-n - ;)] (48a)
or equivalently,
A*(e) = fos(c) Fr0a(e) esp(nrar ) eap [a(m + )] - (4s8)
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of the individual amplitudes with magnitudes,

«()= [/ a0 i=13 (48¢)

and phase differences,

T =N-nErh)-7t) o (48d)

at each phase point #; treated in isolation.

Note that the relative phase 33 of the amplituds @3 to e, in the term A* is reduced by v/2 to give
the factor of —s in (48b). The phase change from 1 — 2 in general, is givem by }[signy — signir.
These expressions are valid for well-separated regions of Stationary Phase ie. for 73; > 1. In the present
application (¢, t) is given by (27b) such that §(¢, t) = [W(t) — ¢]/A is the caly derivative of v that depends
on ¢. Expreasions (48) are therefore appropriate cnly for that energy which satisfies ¥ = 0. When 5; = W/A
vanishes, as for an extremum value ¢° in W(2) at time ¢° when the two points ¢33 of stationary phass coslesce
at ¢ (as for a caustic or rainbow), then expression (48¢c) diverges. On extending the expansion (47a) for v to
include the next non-vanishing term, W(t°*) < 0, since §(t*) = 0, and on recognising that (¢, 2*) = (¢ —¢)/A
in the neighborhood of the caustic at ¢* evaluation of (48) then yields the finite amplitudes,

3/3
4*(-)=z-[ = ] o6, ') Ai{ 1) exp Emr{ct”) (490)
(t°)
in terms of the Airy function Ai of argument,
o= b ] (55) ()

Expressions (49a) are in theory valid only in the ¢—range surrounding the caustic at ¢* but, in practice, only

at e*.

The analysis above is formally identical to the well established analysis of classical rainbow scattering;
where y(t), W(t),t and ¢ above are analogous to the phase shift n(£), deflection function x(£) = dn/d¢,
angular momentum £ and scattering angle #, respectively, in elastic scattering. The "transitional® Airy
approximation (49) does not uniformly connect with the "primitive” result (48). By mapping the phase
v(e; t) onto the integrand of the Airy function, a Uniform Airy Approximation which uniformly connects
(48) and (49) at ¢* is well known from previous work. The result is written here in compact form as the
linear combination,

A*() = ar(¢)ezp [stva + 7)) F*(ra) + aa(e) exp [l - 3] Plra) (s0a)
= [0:(6)° (11) - wa(e) eap(vr ) F(32:)] e2p [s(ms + J)] (508)
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A7() = a(e)emp [-sm + J)] Flru) + aale) eap [-s(m - 3)] F*(rm) (s0¢)
= [01(6)P(721) + 103(¢) emp( =723 )F*(721) e2p [~ + J)] (s0d)

where the complex function F is defined in terms of the Airy function Ai(s) and its s—derivative A¥(s) by,

Fiva(d)) = [r" 351/4 pi(—3) + x?/ 'a""Ai'(—s)] esp—3 (l;-‘- - %) ; ;l:l"' =y >0 (51)

for y31 = 73 = 1 < 0. Since 73; is the area enclosed by the W(t) curve and the straight line W = ¢ (cf.
Figurs 1) it is always positive, except when it is sero at ¢ = ¢* = W(t°). It is shown below (§V) that the
divergencs in the constructive interference term (83 + 3) at the caustic (% = 0) is exactly balanced by the
vanishing of the coeflicient 51/¢ of As ; also the divergencs in the coefficient 5~2/4 of Ai'(~3) at the caustic
is offeet by the destructive interference term (a; ~ a;) which vanishes more rapidly. In the limit of high
3> 1, ot for well scparated regions 73, > 1, P(731) — 1, with unit amplitude and sero pbase such that (50)
tends to the primitive form (48). The Uniform Airy result (50) is general in that it continuously connects
the Caustic (113 = 0,7 = 0) result (49) at ¢’ with the result (48) for well separated regions.

Autolonisation Amplitude and Interference Patterns

Application of the above Stationary Phase Prescription (50) to the integrals (28a) for the autoionisation
amplitude c(¢) yields after some rearrangment,

w(e) = [”:I'(‘Vn + 3P}/ () 75, eap(—vm1) + P}/ () 40y eap(~vra1) + P2 () P, eap(~mras )] esp [--(11 + _‘4[)]
(52a)

which form illustrates bow the progressive contributions are sdded as time evoules. An equivalent form is,

() = [P:I’(c) {1 Fay + 1 F}y ezp(—v1a1)} + 1Po/3(€) ezp(~vrar ) {ca Fy — s Py cap(-m,))] ezp [-.(.n + .})]
(525)

which illustrates the addition of the inward-outward contributions at each R. The probability densities in
(52b) for autoionisation at the isolated poiuts R; are,

WI(R)|™ _ D(R:)
w(R) | - w(R)A
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In (52a), the probabilities,

Py = Aicd(Ry3); Ps = Bci(R)

(52d)
Ps = Ps}(Ry); Py = Pisi(Ry)
already incorporates the amplitudes,
3 RdR lx
e ([ ) ([0
and,

fonurvivdfromlixtohonthemeom‘le‘orhomxx-o&-oRonthcoutgom‘le‘.mpectinly. The
indices § = 1 — 4inP; are associated with quantities calculated at times 8),45,t3 =rx —tzand ty =rx - ¢
which correspond to R; % R; 2% R, ™ R; on the incoming and outgoing legs of the classical path as ¢
progresses. The phase differences in (52a) for times on the same leg are,

1 [%
weg [ ?O-d & (529)
and for times ¢t; >  on different legs are,

weg [ WO-da+i [ we-da (528)
where ¢, is the time of closest approach. Thus (52) is the classical result (35) fully generalised by this
classical psth theory to incorporate relstive phases. The sutoionisation probability density P(e) = |c./t)]
will therefore exhibit various interference effects arising from the phase differences between the amplitudes
contributing at the same R; on the incoming-outgoing legs and at the differeat R, and R; on either the
incoming and/or outgoing legs. For well separated regions 733 3> 1 and (52s) tends to,

c(e) = P}/*(e) + P3/*(e) exp(—v1n1) + P /*(¢) ezp(=vm) + P}/ (¢) exp(-mva1) (83a)
where the (redundant) multiplicative phase factor {~sezp—y(71 + §)] of (52a) bas been neglected on the
RHS. Tbe full interference pattern exhibited by the probability density is then,

P(e) = [c(e)l* = Py + P3 + Py + Py + 2(PyP3)V/? sin s — 2(PyPy) /3 sin s
+2(P1Pe)Y? sinqa + 2APyPs)? sin v + 2(P1Ps) Y cosyas + 2(PyPs) 2 cos v (54)
= IPx‘ 30) e + s exp(—rvaa)} + $P}/(e) {2 empl=rra) = g emp{—vm1)}|

——————————————




This illustrates various interfarence effects arising (s) from different R, and Rj oo the same log,

Py = P1 + Py + AP1Py) 2 sinm, (s8a)

Pae = Pa+ Po+ 2PsPy) 2 sinve (55%)

(b) from the in-out contributions at a given R;,

Pi¢ = Py + P + 2AP1Pe)? sinyey (56a)

Py = P3 + Py = 2(PsP3) 2 sin g (565)
and (c) from different R; and R; on different legs,

Piy =Py +Ps+ 2(P1P3)/? cos sy (57a)

Pse = Pa + Py + 3(PsPy)"/? cos s (57%)

Al of the above interfarence patterns Py(e) oscillate with ¢ about the classical mesn [Pi(¢) + P;(¢)]
between the envelopes [P}/?(¢) £ P}/%(¢)]* with frequency 2/7yi(¢). Since (€ §) is also & function of the
impact parameter b or angular momentum L = J, the interference patterns will be effectively washed out
in the b—integration for croas sections such as Penning lonisation in (34). For crom sections as associative
ionisation or dissociative recombination involving AB+ with specified rotational state J (ie. at a selected im-
pact parameter b) the above interference patterns will persist. The Uniform expansion for the autoionisation
probability density, provided by the present theory (52s) is,

P(0) = | [P/ + )Py exp(=rms) + B3 P ewpl—rms) + P () P empl -y (500)

= |[P76) ferFus + 1P empl—rria)} + 1B () fea P empl—wm) = s Fas empl—om)} | (5)

Here in addition to the (rapid) y;;—oscillations which vary with ¢ and b, broader oscillations due to
the Airy functions within F3; will appear in the vicinity of the caustic at ¢ = ¢*. These oscillations are
independent of .
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V.5 Classical Path Cross Sections for Ionisation/Recombination

In the reaction,

A*+B e ABY 4o~ (59)
the energy ¢ = V4 — V* of disposal is distributed between the energy ¢, of the ejected electron and the
energy ¢n¢ absorbed by the molecular ion AB* in vibrational-rotational level (n,£). “The square of the
angular momentum of the A° — B orbital motion, with impact parameter bis I? = (3M3 B)0® = {{0+1)A?,
and is conserved throughout. The integral cross section for associative ionisation for disposal of all ¢ is
therefore,

o1(E) = 2x /: o /o“ P(c E,b)de (60)
where P = |a(¢)}® is given by (58), and where bx, the maximum impact parameter which results in the
distance Rx of orbital clossst approach is given by,

"x:R}[l-—d—)'v :x] (e1)

The e—integration is over all (single valued) energies ¢ between 0 and the maximum possible ¢, for a specified
separation Ry = R{em) (cf. Fig. 1). The cross section (60) for population of all accessible (n, £) states of
AB? including the vibrational continuum ie. for both Penning and Associative Ionisation is then,

i LI -
OI(S) = (—m/o dL’/o P(C; ,. L)‘C (02¢)
L g
= -.1; L-o (2t+1)de L P(E;n,l)dn (62b)
.
sp:-;g(mnx P& (2¢)

The probability for ejection of an electron with energy ¢, = F — ¢a¢ and with the ion AB* left in
vibrational-rotational level (n, £) is,

P(E;n,0)= P(c E,L)E- (63)

where the vibzational energy spacing (39) is,

(e4)

&l
4 S
0
F

de _
dn




in terms of the qu_nti;;l__;:'ﬁuls]pndlls(n-& 1/2)h. Hencs,

P(E;n,0) = |c{es, t)[* (home) = la(m, & o)) (e8)

with ¢, = 5 - ¢as. The amplitude or the clamsical path transition matrix [Top|® obtained from (58) is
therefore,

P(n) = [Tes®
= la(m)i* = [P1/* (%) Far + 1P}/ (m) P, cop(=oma) + P}/ (n) Fas emp(—vmas) + @3 (W) Py emp( 10 )|
(s8)

= [P s + Py eop(—onaa)l + 4P (m) sp—rm) (o5, ~ P sop(-ma)]|  (e8b)

The probabilities P; and P; are related by (52d) and,

B(w) = (W)A(en) = 4r° W) B { w0 () }- (o7
is dimensionless. The cross section for autoionisation and population of AB* in level (n, £) is therefore,

oar(Bin,O) = ;,:-;(m 1) la(m & &) = ,—:—;(m 1) Torl® (68)

where a(n, £ ¢,) defines the classical path T-matrix Top. From the detailed balance relation (43) the cross
section for dissociative recombination, the inverse of (59) is,

conler) = ($42) g lalm e (o9)
Since,
T Va(RE) R = 2 [X8)] (m0)

Mmmme-wmtpAtﬁdmmtion,

ot = s (528) [F2] {remn (35)} (1e)

for capture at the stationary-phase point R, the cross section can now be expressed as,

opr(e;n) = Ic}’ P+ w1 F3; e2p(—vya)) + w:’ 3 ezp(—vra1) [ F5; ~ wy Iy up(-vm)]r (718)




whmq=o(&):q§'egl})udq=u(x.-)d(52e.f). This is the basic expression for the cross section
for dissociative recombination in the present classical path theory. Por one point of stationary phase then
F3 =1 and 03 = 0 in (71b) which reduces to,

ooa(€;n) = o(R) [3(R) + #3(R) - 2c4( R)au(R) #inva1) (T1¢)

and which exhibits the expected in-out interference at R. In (71b) and in the key results (52b). (58b) and
(66b) above the phase-differences given formally by, -

weg [ (0= +d) & )
where R; = R(t;,ts) and Ry = R(t3,t3) are determined in practice as follows. Since,
-u.’ AR) = —-*—-“ :‘:R) =E-[VH(R)+ - ——z: 7 (72)
and
Luim = YO - p_vm- L ()
where the nuclear angular momentum J ~ L remains conserved, then,
W(R)~e¢ = Vi(R) - [V*(R) + 4] (740)
3
= 557 (R - k(R )
= A[ks(R) - k(R)]® (740)
where an averaged (common trajectory) radial speed is,
he+h dR
=M. (r4d)

The stationary phase condition, ¢ = W(R;), therefore demands the conservation of kinetic energy of
the nuclei (ie. he(R;) = ky(R;)). Both the angular momentum (L,J) and kinetic energy of nuclear relative
motion are therefore conserved in the CP-theory. In terma of the pbase,

R
AR) = L [4(R) - ki(R)] dR (75)
measured relative to that at R,, the distance of closest approach, the phase 7,

w0 =3 [ W@ - & (8)
is expressed as,




{ A(Rx)-A(R) t<t,
= (768)

A(Rx)+A(R) t>¢,
The phase differences in all the previous expressions (62b), (58b) and (66b) are calculated in practice
by,

T=4,~-4:% 4y o (T7a)
m=4;+4; (7T7)
T3 = 24, (M)
T4 =24, (T7d)

where A; = A(R;). The classical path amplitude,

acr(n) = y(hv)*?c(c) (78a)

where c(¢) is given by (52a) is therefore,

acr(n) = {P}/*(n) le1 s + 0 75, eop (~2181)] + 1P} (n) emp (~1A1s)
[es 751 ~ w3 Fay emp(-213)]} exp [¥As - 7)) emp(~1a(R1)) (785)

where F;(n) are given by (67). This expression (78b) is also confirmed by s stationary-phase evaluation of
(29a), since the phases (29b) and (75) are identical.
For one region of stationary phase (78b) reduces to,

1/3
cor(n) = 2Va(R) [ IWR) (25) ) eal )+ wal By eap(~2a () (7o)
which is in agreement with the semiclassical result of Miller.
The present classical path theory (71b) and (78b) therefore furnishes quite naturally the uniform gen-
eralisation to two _regionl of stationary phase including the caustic region.

Special Cases: Turning Point and Caustic

Two cases of special interest arise. One is when Ry = R(t;) and R¢ = R(ty) coalesce at the turning
point R, where the radial speed v(R) vanishes and the cross section (71a) diverges. The other case is when
R; and R; coalesce at the caustic wherein ¢* = W(R) is maximum (cf. Figure 1) so that W'(R; ;) vanishes
and (71a) again diverges.
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Turning Point Divergence: The divergencs at R, can be avoided by adopting in (71a) the speed,

a= ['ﬂ-i- —u(-fz] — [-ji—)-] (80)
in the presence of autoionisation, rather than wg — 0 as with Miller []. A present proposal for dealing with’
the divergence at the turning point is based on the recognition that an average over the quantal distribution,

3, 2 IR
WA dR = 7 = 2edt . (s1)
can be replaced by the corresponding classical average over the period T, for vibrational motion in level

n =¥ 50 that 2uas/vp in (71a,c) is simply |$¢ (R)|*. Then (71c) with c(R,) = ag(R.) and 7¢3 = 0, yields
the finite result,

oonter) = [o ) (342 )| {IW‘(&)I" v (2] ..,[ L ]} (s22)
= 04(Re)Pu(Re, Rx) (823)

This naturally decomposes into a cross section o, for capture at R, and the probability P, for survival
to the point Ry of stabilisation. This simple result then represents a first improvement over that of Bardsley
(cf. equation (4)) in that it includes W'(R) = & [Vs — V*] rather that V] alone. The original result (4) is
therefore valid (a) when one region of stationary phase at R, is assumed, (b) when V* is so shallow that
by (R,) = 0 and (c) when Vj is o0 steep that the Winans-Stueckelberg wavefunction |v'(n.)r"'c(x -R,)
can be used (see Appendix) for the continuum vibrational state.

The divergence at R, in general originates from the normalisation of the JWKB wavefunctions implicit
in the vibrational overlap S in the absence of autoionisation. The term in braces in (71a) is a JWKB ap-
proximation to this overlap. This divergence is eliminated when Airy functions rather than JWKB functions
are used — even when the effect of autoionisation on the normalisation is ignored. See the Appendix for
further discussion.

Caustic: The divergence in (71a) or in (87a) due to the sero in W'(R) at the caustic R(2;,) = R(t3) is exactly
balanced by the bebavior of the function F(v,;) in (66a) as 433 — 0. This becomes apparent by rewriting

the contribution, ~ ~

a(e) = P} *(n)F(va1) + P23 (n)F*(v21) ezp(—v1a1) (83)

to the amplitude (66a) from the incoming leg in the alternate form,

o(e) = [P}*(m) + P}/*(n)] A1) + 3 [P}/ *(n) = P}(m)] A'Cvm) (84)
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where,

Alyn) = #V/331/4 pi(-3); s =[S/ (5)
A () = /33~ Y 44 (~3) (se)

The equivalent forms (83) and (84) for a are useful for probing the separate limits 735 > 1 and 73; — 0
, respectively. In the neighborhood of the caustic at ¢t°, where ¢ = W(t°) is maximum and W(t*) = 0 then,

W)= - -,HW(:' |e-ep? (87)

so that ¢ = W(t) at the two times,

ta= 2 o -/ e (39)
The derivative W(t) therefore tends to sero at 3 as,

w(:;,) = [z(¢° ) |W(z°)|] va (89)

The phase is expanded consistent with (87) as,

70 =) +ieKe-2)+ 5 (GF) - (900)
=)+ 3 - At - £) - g [P e~ ) " (o)

since §(t) = (W(t) - ¢]/A and since 5(t*) vanishes. The phase difference at t3,, is therefore,

28/3 (¢ — €)3/3
male) = 1(ta) - 7itr) = ;,—‘-'-;(—})]— (51)

The argument of the Airy functions in (84) is,

7,
s(e) = Ir’(".) €-9 =
The (¢* - ¢)‘/‘.-d.ep~ondnm of 53/4 in (85) is exactly balanced in (84) by the (¢* — ¢)~/*—dependence of
|w|" * in (67) of PM3(e). Also [P0 - p,‘”(.)] tends to sero faster with ¢ than s~/4. The classical

path cross section (71b) for dissociative recombination then reduces to,

(92)

oor(¢) = o(R) [c3(R) + £3(R) ~ 2c4(R)ss(R) #in 2A(R)] (93a)
where,




; M fula\ [P(R)) fax| 2

ot = g2 (e (2] {3 |

which is finite at the caustic. The term in braces represents the dominant coatribution from the caustic to
the Franck-Condon Factor |SI* —in effect replacing the corresponding (divergent) term in (71a).

3/3

vAi’(—:)} (93%)

7.8 Correspondance between Classical Path, Semiclassical and Quantal Theories of
Dissociative Recombination _T

In order to probe with the quantal result, correspondance the symmetrical form (28a) of the basic
classical path result is useful. On making the substitution (74), the classical path amplitude agp(n) =
§(hv)3c(e) where c is given by (29a) is therefore,

ecr(n) = 3r esp[~ta(Rx)] [ VA(RN(o/M)' 0" leeR) ewp +1A(R) + we(R) op—1A(R)} 4B (34)

The term in beaces in (94) is essentially the product of the bound and continuum vibrational wavefunctions
(vee below). Stationary-Phase Evaluation of (94) yields (78b), as it should.

Quanial: The quantal expression for the autoionisation frequency, with electron energy ¢ in the range ¢, e+de
and with the ion left in state (v, J) is,

J
Tu=T X (i metdinate,m 0 oo )

where the system wavefunction for A — B* collisions at energy K is,

(7 B) = 2HdE, R e R (P, B) (98)

the product of the Born-Oppenheimer electronic wavefunction ¢4 the actual continuum (radial) vibrational
wavefunction g in the presence of sutoionisation and the rotational wavefunction Y;ar(R). The rovibrational
wavefunction for AB*(v, J) is,

¥ (B) = 298 (RYsn(R) (97)

Both h(&i) and the continuum electronic function ¢ for the (¢~ — AB*) system are energy nor-
malised with unit densities oK), p(¢) of states, respectively. The incident current (dj/dE)dE integrated for
all directions of £ is therefore (8xM E/A*)dE = (h%,/25°A)dE. The associative ionisation cross section
(dve/dy) is then,

oui(E) = g=(2] +1)Po(B,c ,9) _ (98)

M




where the quantal autolonisation amplituds or transition matrix element is,

soe) =3¢ [ Va(R) (¥ (Ra(R)] 4R (%9)
By detailed balance, the dissociative recombination cross section is,

oonle) = (3a0) ol = (o ) (M) L2~ (100
which is dimensionless. o

Reduction of Quantal to Semiclassicel: The product of the semiclassical JWKB vibrational wavefunctions,

1/3
¢:(x)=z[:—:‘-] n’n[ f‘: b,,(x)au-:-] (101)

for the discrete levels with inner (left-hand) turning point Ry and,

] 4 R ¢
f‘(ﬂ) = W [C((R)up—t (/:bda-f' ;) - s4(R)esp+s (/.. hedR + ‘;)] (102)

for the continuum levels subject to autoionisation is,

VW (RIWu(R) = (wnt/R) /(94 92) /2 [c4( R) esp +1A(R) + s¢(R) esp —1A(R)] (103)

where the phass diffsvence is,

R
A(R) = /: A, (R)dR - j& ky(R)dR (104)

The highly oscillatory exponentials of the phase sums have boen neglected since they provide little relative
coatribution to (99). The quantal amplituds (99) with the semiclassical (103) is then,

aql¢) = 2x(v/A)*/? /: (v490)"2V5(R) [ca(R) e3p+1A(R) + sa(R)esp—sA(R) dR  (105)

The stationary phase condition yields k,(R) = ky(R) so that the arithmetic mean #(R) and geometric
mean [v,(R)va(R)}!7? are identical at the points of stationary phase and (105) is identical to the classical
path amplitude. Stationary phase evaluation of but (105) and (94) confirms that,

ag(n) = acp(n) esp +1A(Rx) (106)

where acp is given by (78b). The classical path amplitude (94) is therefore the quantal amplitude (99) with
the JWKB vibrational product (103), thereby establishing the equivalence between the matrix element (105)




and its Pourier Component Representation (28a) or (20a). This equivalencs for vibrational transitions is
somewhat akis to the Heisenberg Correspondance Principle for electronic transitions.

When the bound vibrational JWKB wavefunction ¢} is taken with respect to its right-hand turning
point R, then the analysis is as above but with A replaced by,

A(R)= /: by (R)dR - f: hy(R)dR (107)
which reduces with the aid of, -
uf:n,,(a)m= (.+ -;-)u
to
R
AR)=(v+ ;). - [ /: b (R)dR+ /& ky(R) a] (108)

The smaller of A and A in practice would be adopted in the general result (78b).
¥.7 Rate of Direct Dissociative Recombination

For a Maxwellian distribution of electron energies ¢ = ¢(AT') at temperature T, the DR-rate is,

oT)=¥ /: oon(e) esp(—¢ de' = (opn(T)) (100)

where ¥ is the mean electron speed (847/xM43)/? and oi5n is a mean cross section at temperature T.
An energy threshold ¢g = Vy(Ry) — Vo.(Ry) > 0 pertains for the case when the energy Vy(Rx) at the
crossing exceeds the original vibrational energy of AB*(v). In terms of the probability (68) for dissociative
recombination,

o) = (528 [ lotm ) eapt—e/aT) d (110)

is the basic expression for the rate which includes all the phase information in (66). In order to obtain
s simplified analytical rate, assume that there is only one region of stationary phase at R, #0 that ¢ =
Vi(R,) — V4 (R,) and that the in-out interference effect can be ignored. The probability is then,

o) = [ PRI e [0 + (R (111a)

which with (35) is,

hv(R) (R)

ot = [0 (R 2hon {.,,[ "ﬂ—am] [ / fe dn]} (1118

==,




where the term in braces is the average probability for survival from R, = Ry asd R, = R, ™ Ry ca
Via(R). Adoption of (111) in (110) therefors demands the location R, which depends in turn on the energy,

3
E= L;l‘?ll +Ve(R) + e uLa' (112)

of relative motion under V;. From ¢ = Vy(R,) — V,(R,) and the vibrational- rotational level (v, L) of 4B,

ky(R;) ~ hy(R,) and E can then be determined to provide R. as & function of ¢. thudutnad(uo)

with (lllh)uthudouutpodbh without additional assumptions. T
(n)hthbwwhmtc—oo,(k..n.)-okgnd.

folme — 0 = 2eT(Re) () { | 3255 w om0’} (113)
such that (110) reduces at low T to,
o1 = s (12) 52 {lo2 Re)'ar (o)) (119

The term in braces is an effective Franck-Condon factor for bound-fres transitions. This analytical result
is & generalised version of the original result of Bates in that it include W'(R) = (Vi — V) rather than
V; alone. It therefore allows for & distinction to be made between crossings on either side of the potential

(b) Assume cither that V* is so shallow that &, (R,) ~ 0 or that V; is so stesp. Then R, = R, which
is given universally by ¢ = Vy(R,) — V,(R,). The recombination of electrons of energy ¢ originates at the
distance of closest approach so that the cross section (82a) can be used directly in (109) to give,

1) = G (342 ) asudk?) [ Ple)eapi—) &4 (118)
where P(¢) is the probability density (33b) given by,
Pl)=2t K.L(i)i'"'(""-“” (-l /' fi(-g-ax) (116)

where ¢ = W(R). For constant drainage dP;/de is constant R, and Rx and (114) is recovered.
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Appendix: Franck-Condon Overlap for Bound-Free Vibrational Transitions with and without
Autolonisation

1. JWKB Franck-Condon Overlap without Autolonisation

The JWKB normalised semiclassical wavefunctions for the bound vibrational level (n, £) of AB* with
vibrational frequency v is,

1/3 R -
"*(R’”[ﬁﬁ] ““[/..h(n)a'f-:-]. R> R (41)
where Av = dey7/dv is the level spacing, and Ry is the classical turning point given by the innermost sero of

313
-;-m;(a) = “_'z_'i_;fl =E-(V*(R)+¢) - 51%5 (42)

the radial speed v, (R) of relative motion of ensrgy (£ - ¢) in potential V*+(R). The JIWKB wavefunction
energy normalised to §(B — E') for the vibrational continuum of AB* without autoionisation is,

Yo(R) = ﬁ;a(—;)l_‘”"' [/:n.(n)a+§]. R>R, (A3)
where R, is determined by the innermost sero of,
3
Mel(R) = "_:illﬂ = E-Vi(R)- 5‘%7,- (44)

for the radial speed w4(R) of relative motion in the dissociative potential V4(R). Angular momentum of
relative nuclear motion is conserved (J = L). The Franck-Condon amplitude,

s= [" VBB R (45)
is then written with (A1) and (A3) as,
vne\ 33 [ /3
5= (5" [ (o RIva(RY" lezp+48(8) + exp—sa(R)) dR (48)
where the phgt,
R R
A(R) = /& ky(R)dR ~ /& k(R)dR (A7)

has a stationary point where A’(R) = dA/dR = 0 ie. where ky(R,) = h4(R,). The previous condition
(equation (38)),

Vi(R,) = V*(R) + ¢ - (48)
. "
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hsmﬁdMﬁadnﬂRs&-t&um The (1) terms esp(+14) in (AS) provide the
untﬂbutwubsmmimm.(-)udwt(m(ﬂwdﬁ On expanding,

A(R) = A(R) + 8'(R) (R - R) + 38%(R) (R~ R.)! (49)

and on changing the integration variable to 8 = R ~ R, with lipnits (+00) then (A6) can be evaluated with
the aid of,

/_: ep (1]ajs?) da = [M]l ? (h') . (410)
The Stationary-Phase Vibrational Overlap is therefore,

1/3

s= ()" '(1‘!‘) IA"(R.)I] {mpri[am)2] +ems[amy£l]}  (am)

where the constant phases (+w/4) pertain to positive or negative values of A*(R,) = b.(R,) - kj(R,),
respectively ie. to either minims or maxima in A st R,. From (A2) and (A4),

A*(R,) = M&) 75 (V‘ V)a = T R.) e W'(R,) (A12)
where W = V;(R) — V+(R). The Franck-Condon Puctor is then,
st = ey ] W@ in? [aRy = 5] (a13)
which oscillates (rapidly for A large) about its average value,
=[5t e (A14)
For one root R, of (A8) when W’ = dW/dR < 0, the (+) sign in (A13) is appropriate. Several variations

of (A13) can be constructed.
() In classical mechanics the quantal probability,
PR dR= 3 = e (a15)

is replaced by the corresponding classical average over the period T for vibrational motion, the factor of 2
arising from inward and outward radial motion ie. |¢¢(R)|® = 2v/%(R). This also follows from the JWKB
function (A1). Use of this correspondence in (A14) therefore yields the Franck-Condon Factor,

-1
ISi2 = 2w (R’ lé(v. -V ain?
R,

[ar) = 3l (A16)

which is advantageous in that it circumvents the divergence in the overlap (A13) at the classical turning
point R, common to all JWKB-based approximations. Then -
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-1
112 = R 500 - v

which is finite.
(b) The simplest energy normalised continuum wavefunction is the Winans-Stueckslberg function,

~1/2
Mx):l%f. §(R- R.) N (A17)

where R, is the classical turning point. The Franck-Condon overlap is then,

(A18)

‘SI’ = I’c

to be compared with the more accurete expression (A16) or (A14). It s tharefore valid when, |G| > |Gy |
ie. the potential V; is so steep and strongly repulsive relative to V*(R). The Franck-Condon overlap (A18)
is that used by Bardsley to provide the cross section (4) for dissociative recombination.

(c) Airy Function Remedy

In order to remedy the well-known breakdown of the JWKB functions (A1) and (A3) close to the
classical turning points, the JWKB functions can be replaced by their Airy function counterparts,

R - 2 R
sin ( / hdR+ -;) = w3514 4i(-3), 5:’” = / bdR (419)
Re R,
in (A1) and (A3). The stationary phase result (A18) is then replaced by,

15 =[] R [t asm)] T (am
for the resulting overlap, where the argument of the Airy function Ai in terms of the phase difference (A7)
is,

/3

w&) = [$aR)] . (421)
For large arguments 1), ie. for R, well removed from the classical turning points R, and Ry, then,

AT ,,)2%..".(1;4- ) R.> R, (422)

so that (A13) is ucont«l (for the case W'(R,) < 0). The overlap (A20) uniformly connects the classical
assessible and inaccessible regions and does not diverge when R, is located at the classical turning point R..

2. Franck-Condon Overlap with Autoionisation

As noted in §IIC, the effect of autoionisation on the dissociating 4 — B‘lythnundnodbyun'mn;
thccomplapmtulmugl




ER) = Vu(B) - 3T(R) (423)

to the decaying dissociative state. The JWKB solution of,

£Y4E) . 2 [5- v + 3 (R) = (Rl (420
wmm-m»mmmmmmqumwnmuugm Ry is,

“‘R’ﬂ‘,;;;(%)wi‘”{ /"%—i))-a} {f:[b‘(xn-;i%%a]-p;} (425)

where,

Ti(R) = M(R) + 33 T(R) (4280)
~ ha(R) + ,ﬁ(%l I(R) < B - Vi(R) (A268)

The autoionisation is in effect within the reaction sone between the crossing point Rx, where Vz; = V+
and the distance R, of closest approach at energy E. The physics within ¥4 above becomes apparent by
rewriting (A25) as,

erx R
ViR = ﬂ“’( B ;(j‘_'%“)“'[—'( "‘“:)]
T '"(f JA )-(a)"']“"(/‘ bRy )H e
zl-h'—‘é-n—,,;[e.(x)m-'(/: n‘m+;)-~(n)m:( &ua+§)] (427)

where,

Rx
ci(R) = e2p [ ™ Ja !'%-1%1 JR] (428)

is the survival amplitude from Ry to R on the incoming leg and,

_ 1 (R 1 = (R

#(R) = esp [-;,- f mlan] esp [+-,; [ «m] (429)
is the amplitude for ip-out survival for the sequence Rx ot R, ™ R;. The statiopary-pbase determination
of,
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S= j ¥ (R)Wu(R)dR (430)
with two pointa of wall separated stationary phase whers hy(R.) = bo(R.) st Ry 3 yields,

S = (S1 {c1 + w1 e3p(~2144)} + 153 ezp (—1A13) {3 — 103 e2p(-214,)} empy(A, - -:') (4s1a)

where,
) » _ 3/3
= [FET W'(Ro)] ] (A31)
where ¢; = cy(R;), & = s4(R;) and,
Ay = A(R) - A(Ry) = A - 4y (431¢)

in terms of A given by (A7). The notation is such that R; > R; whers W/(R;) < 0 and W/(R;) > 0,
respectively. When autoionisation is neglected, c¢ = 1 = &4, then (AS1) reduces to (A13).
For two general regions of stationary phase then the Stationary-Phase Uniform Prescription (50) yields,

§ = (51 {e1Faa +w, Fy enp(~2144)} + 15 ep(—1813) {2 F5; — waFx e3p(~21a) ) empa( 81— 7) (432)

for the Franck-Condoa overlap, and where,

Flau) = [f5144-s) + wilisoar(s) emp—s (B2 - T)i GuPP=su>0  (am)

is the function introduced previously in (51). The above results (A31) and (A32) for the vibrational overlap,
with and without (¢4 = 1 = &) sutoionisation for two general regions of stationary phase appesr new to the
literature, and help establish the correspondence between the present classical path theory and the quantal
result.
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Abstract

The semiclassical adiabatic invariance method (AIM) is used to compute thermal energy rate coeficients
for capture of various atomic and molecular ions by distomic and tristomic molecules with permanent dipole
moments. Particular ion-molecule systems studied in this paper include He*, C*, and Hy* ions reacting
with polar HC! molecules; and B+, C*+, O+, HCO*, and H;* ions with HCN molecules. In addition,
a new modification of the adiabatic invariance method is presented in this paper, which accounts for the
coupling of the internal rotational angular momentum (5) of the target molecule to the orbital angular
momentum (£) of the projectile ion about the center of mass of the target molecule. Comparison of the AIM
results with the present modifications to the adiabatic invariance method, and with available experimental
data and extent theory, for the above ion-molecule reactions, indicate that the inclusion of j — £ coupling
within the AIM is most important in the limit of light ion mass or weak ion-molecule interactions.
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Preferred Section in Journsl Molecular Interactions and Reactions, Scattering, Photochemistry.




-— -

'I.tlntrodneﬁgn

The semiclassical adiabatic invariance method (AIM) was first proposedi!! for ion-molecule collisions
where the interaction potential energy is an adiabatic invariant about the rotational angle of the target
molecule, and has been applied to ion-molecule collisions with linear{?) and symmetric top™ molecules with
permenant dipole moments and ion-quadrupole moleculel¥) collisions. However, at present no account has
Mm&ht&s&nﬂcﬂcﬂnﬁouiuﬁcmpﬁub«mmwwbﬁ@uﬂhrmtm
j of the target molacule, and the relative angular momentum £ of the projectile about the center-of-mass of
the projectils ion-target molecule system. In this paper a modification of the adiabatic invariance method
is proposed which takes into account the coupling between j and ¢ in ion-moleculs collisions.

An outline of the remainder of the paper is as follows. In §1I1.4.1 the modifications to the AIM are
presented (bereafter denoted AIM(j,£)), while in I1.A.2 an overview of the original AIM is given in the
notation of this papes. The details of the computation of the capture cross sections and rate coefficients into
specific and quantal states of the target molecule are given in §I1.5. A discussion of the present results
with available theory and experimental data is provided in §I1I, while a summary of the paper is given in
§IV. Unless otherwise noted, all quantities are in atomic units.

V1.2 Theory
2.4.1 Modified Adiabatic Invariance Method

The Hamiltonian,, describing the reactions

Xt 4+ AB ~ (XAB*)® — products ‘ (1a)

X+ 4+ ABC — (XABC*)® — products (18)

of an ion X* with diatomic (4B) or triatomic (ABC) target molecules with permanent dipole moment D,
in the body-fixed CM frams, is

gy (J=32 a¢ Dcosh
=8B+ Y] 2'.4-7— (2
where B and aq are the rotational constant and dipole polarisability of the molecule respectively, and with
r, 0 representing the intermolecular distance and angle between the dipole moment D and the intermolecular
axis of AB, respectively. The interaction potential for the ion-molecule reactions (1) is,
ayg  Dcosb

V(r, 0) = —;;7 + T (3)

S‘uwelhaeoucndqmtityinthcollision(l),wcmwritc(f—})’inhrmoftbeprojocﬁonm
(2) of J onto the intermolecular axis,
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(F-F=@+3+P -2 @

The Hamiltonian 7 can then be written,

1!=8?+;‘-:-;[(J+§)'+3"-m’]-$+9:,"—'. (8)
The adiabatic potential is defined for fixed » by -
«(r)=(B+ —‘;‘r)’ D“' (®)

where ;2 = py? + p,?/sin? 6. Since  is cyclic, p, = m, the integration of py over & complete cycle (range)
of angle # is an adiabatic invariant,

2l'(ﬂ+%)= f Podf. (7

To determine ti:: adiabatic potential ¢(r) from the quantisation condition (7) on py, an expression

relating py to ¢ is needed. Such an expression is obtained from the definition of j? (given above) in terms of
Pe and p, and making use of the fact that g is a cyclic variable and results in,

L]

m= (o) 0= 20 (34 ) 2]

Substituting (8) into (7), and defining the dimensionless variables, p = cos# and 3 = r/B/D, and with
u(2) = ¢/B, equation (T) can be rewritten as,

. 1, (D)} o dp
w-imi+ )=t [V 12 ®

where we have replaced n on the left-band side of (7) with j— | m | due to the invariance of the integral of
po. Note that when the limit r — oo is taken, the integral in (9) can be done analytically with the result,
n+1/2= \/w(oo)- | m = (j + 1/2)- [ m|. The function f in the integrand of equation (9) is given by,

md
f2)=p -3 - p+ ((u m?)z? ~ -2—3) (10)
=(p—a)p-¥)(p-¢)
where the ryots {a, b, c} of the cubic polynomial are ordered such that @ > b > c. After some algebra, the
integral equation (9) can be rewritten as a transcendental equation for the dimensionless adiabatic potential

“f"‘(’)s




—em e

t
G- |m4+-)-[ 455 | (a= O = 2uym(e)e? - )K(0) + 2 - )B(0)

(1)
~mi(s? + [_(&_'2 M]

l4e¢
where K, E, and II represent the complete elliptic integral of first, second, and third kinds®!, respectively,
with moduli defined as, ¢ = (- c)/(s -¢), m=(b-c)/(1-c)and m=(c-B)/(1+¢)

The adiabatic potential ujm(s) is then obtained from (11) once the roots of the cubic polynomial (10)
are determined. In addition, to determine the capture cross section in §II.8, an expression is required for
the firet derivative of ujm(3) with respect to s. By applying Leibaits’s rule to (9), the required expression
for the first derivative is obtained,

2.4.2 Adiabatic Invariance Method

In this section we provide a short overview of the original adiabatic invariance method!*~¥ using the
present notation for completeness. In collisions of ions with molecules with permanent dipole moments, the
adiabatic potential is defined for fixed » by,

Deu!

or) =B+ (13)

mmblmkmummmpmwmmmmmmm Ne-
glecting the coupling between j and £, the analog of (8) is,

b
raii-tmi+3)= [ VI 125 (14
with the function f in the integrand of (14) given by,

H(z) = 2* - 3%up® — p+ (v~ m?)a?
o =(p=a)(p-d)p-c)
where the roots are ordered a > b > ¢, and the remaining terms in (14) and (15) are the same as in (9) and
(10). Equation (14) can be converted from an integral equation to a transcendental equation in u with the
result,

(15)

G~ Il + 3)ra(a = )} = Hujm(s)s - a)K(g) + 2(a — )B(g) -~ m [M %:'l] (16)
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where K, B, 1L, ¢, 21, J?;iuhn the same meaning as in §II.4.1. The derivative of w;u(s) is obtained
via Leibaits’s rule in exactly the same mansner as equation (12) was obtained above, with the result,

ﬁ"-é-'l =2a"[(‘-¢);{%" ] (1)

In comparing the AIM(j,f) and AIM, it is found that the 1/2uD term has the effect of coupling the
rotational angular momentum £ with the orbital angular momentum j. In the limit as (1/2uD) — 0,
equations (9), (11-12) reduce to (14), (16-17), respectively. Clearly, the inclusion of the coupling between j
Mlumwhmwtahghtmmuwnkmmw(uwu
the magnitude of D, the dipole moment).

2.3 Computation of the Capture Cross Sections and Rate Coefficients:

The effective potential is given by,

3

Uuts = 53 = 305 + 64m(r) - B+ 377 (1s)

where L? = 2Eub?, and with b and B the classical impact parameter and ion energy in the CM frame,
respectively. In the modified AIM the angular momentum is expressed,

I.’:(J+%)’-(j+§)’-m’=um'. (19)
The capture cross section is determined by the conditions,

Uess(re) = B, (20a)

[%U.u] =o. (200)

In order to solve the above equations, the derivative of ujm(s) with respect to » is needed. The required
expression for du;m(s)/ds is given in equation (12) above. Once the above equations have been solved for
ro, the cross section for capture into a specific atate of the target molecule is,

ojm(E) = vbo? (21)
Thctotdcm-mnforaptmutcsgim state of the target molecule summed over all possibie
25 4+ 1 magnetic substates is,

( eresi] f:’ ojm(E) fE>B (22)

oi(E) = ==

, w3 f: o (B) HE<B ' (22b)
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'Iun.intluau._vl&"lf-s'lthnptmmmiuc,-'unpludwiththcmd—adcsurkm-

sectioa®®!,

Sierh) B\ [2a4him b

- =r D 3 (28)
where the terms Ajm are oqual to & — Cym if & > Cjm and sero otherwise. The constants Cjm above are

_equal to —~1/3if j = 0 and / if § > 0, while x = agB/D3.
The rate coefBcient for capture into the state of the moleculs is then given by, . = -

t
8w .
b,m=“—.(;;‘;-,-) /: Eezp~2/*T o;(B)E (20)
Upon averaging over an assumed Maxwell-Boltsmann thermal distribution, sn averaged rate coefficient
for capture at temperature 7' is,

,}::(31' + 1)i(T) enp~2U I AT

305 + ) eap-rosiiarir
j=0

where the sums over j range from 5620 £0 jmee Wwhich is the maximum orbital angular momentumn of the
target molecule which still supports an angular momentum barrier in the effective potential.

(26)

(a(T) =

V1.3 Results and Discussion

The molecular parameters of HCI for ay, D and B used in the present calculations were 2.63 (A?),
1.08 (Debye),and 10.59 (cm~?), respectively, while for HCN the corresponding values used were 2.59 (A%),
2.98 (Debye), and 1.48 (cre~1). The adiabatic potential energy for the present modified AIM results were
determined from equation (11), while the original AIM results shown were obtained from equation (16).
The complete elliptic integrals of the first and second kind were computed from standard codes, while the
complete elliptic integral of the third kind was computed by the method given by Carlson ["]. The capture
croes sections o;(5) were calculated from (22) over an energy range E from 0 to 3000B. The averaged rate
coeflicients for capture were calculated from equation (25) with jmee equal to 20 for HCl and 40 for ACN.
The weighted error in the rate coefficient for HCI for jmes = 20 at 1000 °K is less than 0.2 percent, while
the erzor for FCN for jues = 40 at 1000 °K is less than 3%.

Table 1 gives the comparison of the rate coefficients of the AIM(j,£) and the AIM to experimental
dats and other theories for capture for B+, C*t, O*, and HCO* ions reacting with HCN molecule at
temperature 205, 300, 440, and 540 °X. Table 2 and 3 present the rate coeflicients for H ion reacting with
HCN and HC! molecule at temperature of 205, 300, 440, and 540 °X. The experimental data shown in
tables 1-3 were taken from reference [8). Table 4 shows the rate refficients of He* and C* ions reacting
with HCI molecules at 27, 68, and 300 °X with the experimental data taken from reference [9].

49

A=




Foe the reaction H¥ 4+ HCN, the rate coeflicients computed from the AIM(j,£) and AIM are significantly
differant (ses figurs 1). It indicates that the rotational snd orbital angular momentum coupling ( j— coupling
) bas significant effect during the recombination procsss. The AIM(j,£) results are close to the results of
the adiabatic capture and centrifugal sudden approximation (ACCSA).1*) The results of both AIM(j.f) and
the ACCSA agree well with experimental data except at 205 *X. The cause of the overestimatation by the
theories is still not clear.

The rate coeflicients of reaction of Hy ion with HCN and HCl molecules ars well predicted by the
AIM(j,£) and AIM as shown in figures 2 and S, respectively. The small difference betwesn the results of the
AIM(j,£) and AIM indicates that the j — ¢ coupling does not play an important role during the collision. In
Tables 3 and 4 excellent agreemant of the AIM(5,£) and AIM results can be sesn with the classsical trajectory
method (CT) [33-33], gtatistical method - probability weighted effective potential method (PWEPM), flux
weighted effective potential method (FWEPM) (111418, quantum mechanical method - statistical adiabatic
channel model (SACM) 11837 gnd ACCSA at temperstures above 20 °X.

Por the reaction Het + HCI, table 4 and figure ¢ show that there is virtually no difference between
the rate coefficients computed by the AIM(j,f) and the AIM. The j — £ coupling in this case is entirely
negligible - thereby confirming that the § — £ coupling is important oaly for very light ion or weak ion-
molecule interactions. The results of both the AIM(j£) and the AIM show excellent agreement with the
ACCSA and the SACM results. All theories agres with the measured data to within the experimental error.

Por the reaction of C* with HCN and HCI molecules, the AIM results, along with other theories, over
estimate the rate coeflicients when compared with experimental data. Studies by Clary ot el, %) indicate
that the overestimation is due to the open shell nature of the carbon ion C* in the collidon. With eb-initio
calculations, they suggested that for C* the final results should be multiplied by a factor of 2/3. Hence, in
this papez, the present modified AIM resuits for the case of C*+ have been multiplied by the factor of 2/3.

A similiar situation exists in the case of the reaction Ot + HCN. The overestimation of extant theories
in the case of reactions of oxygen ions O+ may again be due to the open shell nature of O* as was indicated
by sb-initio calculations for the case of C* jons. At present, no comparable gb-initio calculations have been
done for the case of axygen ions reacting with HCN.

The rate coeflicients for the reaction HCOt + HCN computed by the present AIM calculations agree
with the sxperimental data and the ACCSA. At 205 and 300 *X the present AIM results are about 25
percent above the eXperimental data, which is within the experimental error bars of the STPT technique.

V1.4 Summary

A new modification to the adiabatic invariance method (AIM(j,£)) bas been presented and shown to be
important for thermal ion-molecule reactions. The principal feature of the modification to the AIM theory
is the inclusion of the coupling between the internal rotation angular momentum of the target molecule with




the orbital angular momentum of the projectile ion about the CM of the target molecule.
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Tubles

Table 1. Comparison of rate coefiicients for capture for the reaction X*+HCN (X = H,C,0, HCO)

Temperature (°K)
205 300 4“0 500
reaction method® k (x10-%cm?s~1)
H*+ HCN AIM (j)) 16. 18. 10. 02
(present work)
AIM 17. 18. 12. 11.
(preseat work)
ACCSA 16. 18. 1. 1.
experiment 1. 1. 10. .7
ct+ HCNt AIM 3.9 33 2.8 2.6
(peesent work)
ACCSA 8.7 3.1 2.7 25
experiment 34 8.1 3.0 2.9
o+ + BCN AIM 5.4 45 38 35
(present work)
ACCSA 5.0 42 3. 3.4
experiment 8.7 35 3 s
HCO* + HCN AIM 46 s 3.2 3.0
(preseat wock)
ACCSA 42 35 s.1 2.9
experiment 8.7 s.1 2.9 28

(a) for definitions of the symbols see table 2. The experiment and ACCSA data were from [8).
(t) the AIM and ACCSA results have all been multipiied by 2/3. [18]




Table 3. Comparison of rate coeficients for capture for the Hy* + HCN reaction

Temperature (°K)
18 80 100 150 208 220 2060 280 300 320 330 440 500 540
method k (10-%cm?®s—1)

AIM(G1)* 355 190.7 140 115 99 96 88 85 82 80 T4 69 65 6.2

AIM? 368 202 144 110 103 100 93 90 87 84 783 T3 70 6.7
CT*(A) 316 205 5.3 6.7
(B) 22.0 13.0 9.2 7.3
PTRATY 328 186 136 11.3 99 06 890 87 84 82 76 73 8.8
CVTST* 535 204 209 172 148 143 132 128 124 120 11.1 10.4 9.4

ADO/ 8.5 6.6 54
PWEPM? 36.1 144 102 85 75 72 68 66 64 632 58 55 5.1
FWEPM* 310 170 119 99 86 84 78 76 74 73 6.7 63 5.8
ACCSA’ 54.0 240 12.0 9.8 8.3 7.3 8.9
SACMW/ 18.0 11.0 8.7 7.2
axpt.? 9.5 8.1 7.1 8.7
Present Work:

(s) AIM(j,£): Modified Adiabatic Invariance Method

(b) AIM: Adiabatic Invariance Method
Classical Theories:

(¢) CT: Classical Trajectory (A) {11] and (B) [19]
(d) PTRAT: Parametrised Trajectory [12), [19]
(¢) CVTST: Canonical Variational Transition State Theory (11}
Statistical Theovies:
(f) ADO: Average Dipole Orientation (8], [16], (17]
(5) PWEPM: Probability Weighted Effactive Potential Metbod [11), [14], [15]
(b) FWEPM: Flux Weighted Effective Potential Method [11), [14], [15)
Quantum Theories:
(i) ACCSA: Adiabatic Capture and Centrifugal Sudr n Approximation [8]
() SACM: Statistical Adiabatic Channel Model [16], [17]
(k) expt: Experiment [8]

. — - —
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Table 8. cmpnrhﬁ'efim”cﬂehnuforuptmhthl."+lmmtbn

Temperature (*X)
15 50 100 150 205 220 260 3280 300 320 380 440 500 540 600
method! k (10-%cm?s~1)

AIM(G,)) 132 74 56 48 43 42 40 39 38 37 35 34 33 32 il

AIM 185 78 5.7 49 44 43 40 40 39 38 36 35 . 34 83 32
CT? 126 68 54 44 39 40 39 40 40 38 34 35 3.2
PTRAT 126 76 658 80 44 43 41 40 39 38 3¢ 35 3.3
CVTST 194 109 80 68 60 59 85 54 53 52 49 47 44
ADO 34

PWEPM 99 59 45 40 36 35 34 33 33 32 31 30 29
FWEPM 117 68 5651 44 40 39 37 37 36 35 34 33 3.1
ACCSA 160 7.6 45 4.1 3.6 3.3 3.2

SACM 128 76 5.7

xpt. 43 3.8 35 3.4

(1) for definitions and references of the symbols see table 2. .

(3) CT: Classical Trajectory (11]
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Table 4. Comparison of rate cosfficients for capture for the reaction X+ + HC! (X = He,C)

Temperature (*K)
27 o8 300
reaction , method® k (10~%cm®s~?)
Het + HCI AIM (j)1) 8.7 8.7 34
(present work) =T
A 8.9 58 34
(present work)
ACCSA 8.4 5.5 3.2
SACM s 58 3.0
experiment 11.£30 46x14 33105
ct+mcit AIM 8.7 2.5 1.5
(present work)
ACCSA 3.5 2.3 1.6
SACM 3.6 2.8 1.3
experiment 38411 1906  1.0+02

(a) for definitions of the symbols see table 2. The experiment, ACCSA, and SACM data weze from [9).
() the AIM, ACCSA, and SACM results have all been multiplied by 2/3. [18]




