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DETECTION PERFORMANCE OF GENERALIZED LIKELIHOOD

RATIO PROCESSORS FOR RANDOM SIGNALS OF UNKNOWN

LOCATION, STRUCTURE, EXTENT, AND STRENGTH

INTRODUCTION

Reliable detection of weak signals in noise is aggravated

when the signal has little or no structure that can be utilized

in processing the received waveform. Yet, this is a problem

frequently encountered in practical applications and which must

be addressed quantitatively in order that attainable performance

levels can be established and realized. If significant gains

relative to simple energy detection are possible, this fact must

be known; also, alternative improved processing techniques must

be discovered. Furthermore, the robustness of the alternative

techniques to lack of knowledge of the detailed signal

characteristics is a critical issue that must be addressed and

quantified.

The problem we consider here is couchea in the frequency

domain, where a known search region of N disjoint bins contain

noise which is uniformly distributed over that entire frequency

region. In addition, either a signal is present in M of those

frequency bins, or the signal is absent from all bins. The

processing problem is to maximize the detection probability when

signal is present, while keeping the false alarm probability

fixed at some desirable specified low level.



TR 10739

To complicate the situation, the number of occupied signal

bins M is unknown; that is, the extent of the signal coverage

(total bandwidth) is not known apriori. Furthermore, the M

occupied signal bins need not be adjacent in frequency or have

any discernible pattern in frequency space; that is, the signal

spectrum has no usable structure (such as harmonic lines or

contiguous bins) that might aid in signal processing and

detectability.

Additionally, the actual locations L of the particular M

occupied signal bins (when signal is present) are unknown, except

that they must occur somewhere in the total search space of N

bins. It is assumed that all of the possible occupancy patterns

for the set L of M occupied bins are allowed.

Finally, the actual average signal powers per bin (presumed

equal to a common value S, for the most part here), are not

known; lack of this signal strength information (as well as no

knowledge of M or L) precludes realization of any optimum

processing technique, which would necessarily rely on and use

that information.

The absence of knowledge of these important signal parameters

(M, L, S, structure) causes us to adopt maximum likelihood

estimation procedures and their attendant generalized likelihood

ratio processors. Depending on the particular starting points of

the analyses, namely the initial assumptions about the signal

parameters, different forms of processors result. This leads to

several classes of processors which must be analyzed, either

2
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analytically or by simulation. Then, comparisons of these

processors are possible and required, thereby enabling

establishment of a baseline performance level in this rather

deleterious environment. Some recent work along this line is

available in [1], where a modified generalized likelihood ratio

processor was quantitatively evaluated in terms of its receiver

operating characteristics. Knowledge of those procedures and

results is presumed of the reader here.

The generalized likelihood ratio processor is not necessarily

an optimum procedure for signal detection. Rather, it is an ad

hoc procedure frequently adopted for convenience, rationality,

and for the fact that it generally yields reasonable processing

forms and performance capabilities. However, it must be noted

and cautioned there are cases where the generalized likelihood

ratio test can actually yield poor performance [2; page 96].

Althou..i the present search and detection problem has been

couched in the frequency domain, this is done solely for ease of

discussion. The analyses and results actually apply to any

search domain, such as time, distance, angle, or combinations of

these variables. For example, a typical application could

require a search in a combined time, frequency space, where the

total search region of N bins would be composed of a rectangular

region of size N = Nt Nf. However, it will be necessary to

investigate if the fundamental assumptions utilized in this

study, such as lack of structure, apply in the particular

domain(s) of interest to the user.

3
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This technical report is the second of a series of four NUWC

technical reports by this author, covering the topics:

(a) modified generalized likelihood ratio processors,

(b) generalized likelihood ratio processors,

(c) power-law processors, and

(d) optimum processing,

respectively. Topic (a) was completed in [1], resulting in a

substantial compilation of receiver operating characteristics for

the particular modificatior considered there. Topic (b) will be

addressed in this report. The overall goal of the extended

investigation is to determine classes of processors which perform

at or near optimum levels of performance, and which can be easily

realized and analyzed, even in these situations of scant

knowledge about the detailed signal characteristics.

4
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PROBLEM DEFINITION

The search space consists of N (frequency) bins, each

containing independent identically-distributed noises of unit

power. This is presumed to be accomplished by an earlier

normalization procedure. The number N is under our control and

is always a known quantity. When signal is absent, hypothesis

H0 , the probability density function of each of the bin outputs

is completely known.

When signal is present, hypothesis Hl, the quantity M is the

actual number of bins occupied by signal. When M is unknown, we

will hypothesize that M bins are occupied by signal. (If M is

presumed known, we can take M equal to that presumed known value

if we please.)

The quantity L is the actual set of bins occupied by signal,

when signal is present; for example, if M = 4, then we might have

the set L = 12,3,7,291. When L is unknown, we hypothesize that

L is the occupied set of bins, for the previously hypothesized

value of M. Thus, the size of set L is equal to M. (If L is

presumed known, we can take L equal to that presumed known set if

we please.)

The quantities IS are the actual average signal powers per

bin in occupied set L, when signal is present. When these signal

powers 1SnI are unknown, we hypothesize signal powers ISn or SI

for hypothesized size M and set L, depending on whether we

presume these powers are all different or all equal,

respectively. (These average signal powers ISnI will usually be

5
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unknown in practical applications.)

For these hypothesized quantities M, L, and ISn or S1 of the

unknown parameters, we can determine the likelihood ratio for a

given (random) observation Ix n. Then, since the probability

density function p0 of the observation Ixn} under hypothesis H0

is completely known, we can maximize this likelihood ratio
(instead of maximizing density p, of the observation fxn1 under

hypothesis H1 ) by variation of M, L, and ISn or SI, over all

their allowed values, thereby obtaining maximum likelihood

estimates M, L, and ISn or S1 of the unknown parameters. These

estimates are random variables, because they depend on the

particular observation Ixn 1. Comparison of this maximum

likelihood ratio value, called the generalized likelihood ratio,

with a fixed threshold constitutes the generalized likelihood

ratio test. Simplifications of this test are frequently

possible.

It was mentioned above that when the number of bins M

occupied by signal is presumed known, we could set M equal to

this presumed value, thereby eliminating the search on this

parameter. However, a problem with this approach is that, in

practical applications, the actual number of occupied signal

bins, M, may be different from the number M presumed during the

derivation of the processor. This mismatch between the presumed

and actual numbers can lead to a degradation in performance.

Quantitative evaluation of this degradation is one of the main

topics of this study.

6
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There are three cases that can obtain relative to the

available knowledge about the value of M, the actual number of

occupied signal bins. In the first case, M could be known

exactly; that is, the total signal frequency extent is known

exactly, although the precise bin locations and structure are

not. This might arise in trying to intercept a frequency-dodging

diversity-combining communication message.

In the second case, M might be completely unknown; that is,

the signal frequency extent could be anything, from a very narrow

band (tonals) up to a broad band of frequencies. This situation

could occur when there is no apriori knowledge about the signal

to be detected. It could also occur in the initial stages of

searching for a general signal of unknown center frequency and

extent.

Finally, in the third case, size M might be partially known.

Thus, the signal frequency extent may be known within fairly

broad limits, say, for example, from 50 Hertz to 200 Hertz,

within a total search band of 1000 Hertz. This situation could

obtain when partial information is available about the signal of

interest. The three different cases will naturally lead to

different processors, each of which makes use of the information

available to it.

7/8
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DERIVATION OF GENERALIZED LIKELIHOOD RATIO TESTS

PROBABILITY DENSITY FUNCTIONS FOR KNOWN SIGNAL PARAMETER VALUES

We now specify the detailed character of the probability

density functions p 0 and p1 ' introduced above, under hypotheses

H0 and HI, respectively. In both hypotheses, the bin outputs or

observations Ixn I are taken as the squared envelopes of

outputs of (disjoint) narrowband filters subject to a Gau-,.ian

input random process; alternatively, the observations are the

magnitude-squared outputs of a fast Fourier transform subject to

a Gaussian input process. It is assumed that these outputs Ix.

are statistically independent of each other, which is consistent

with a frequency-disjoint requirement.

Since the bin output noise has been normalized at unit level,

the probability density function of the n-th observation xn is,

under hypothesis H0 , an exponential of the form

q 0 (un) = exp(-un) for un > 0 , 1 • n ! N (1)

When signal is present, with signal power Sn in the n-th bin, the

density of xn is changed in this signal-present hypothesis H1 , to

ql(un) = An exp(-an un) for un > 0 , 1 • n • N , (2)

where we have defined the parameter

1
an <1+ n 1 for 1 • n • N (3)

Observe that actual signal power Sn can also be interpreted as

9
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the actual signal-to-noise power ratio per bin, since the noise

power per bin has been normalized at unity.

The probability density function governing the complete

observation IXn I under H0 follows from (1) and the statistical

independence as

N
PO(ul,...,uN) = T i-exp(-u n) . (4)

n=l

On the other hand, under H1 , the pertinent density is, from (2),

Pl(Ul'''UN)= -T{7an exp(-an un)} F•-exp(-un)} (5)
ncL nnL

where L is the actual occupied set of signal bins.

If L and San) were all known, the likelihood ratio for

observation IXnl would be given by random variable

LR N P0(Xl,...xN) T(a exp([l-a n x n)=
PO(xl'---xN) ncL-n n

= F-T{an expI- wn Xn) (6)
nEL "ncL

where we have defined weights

SS

w =1- a = n for nEL. (7)-n --n 1 + %

Therefore, the likelihood ratio test in this ideal case is given

by the weighted linear sum comparison with fixed threshold v:

>' n v. (8)
nEL 0

10



TR 10739

PROBABILITY DENSITY FUNCTIONS FOR UNKNOWN SIGNAL PARAMETER VALUES

Unfortunately, the optimum test in (8) cannot be realized in

practice, because the occupied set L will not be known and the

signal strengths (Snl in the occupied bins will not be known. To

circumvent these problems, we will now consider employing maximum

likelihood estimates for the unknown parameters.

When signal is present, suppose we hypothesize that:

(1) M bins are occupied by signal,

(2) L is the specific set of M occupied bins, and

(3) ISn I are the signal powers per bin for nEL. (9)

Then, by reference to (5), the probability density function

governing the observations under H is

Pl(ul,...,uN) = FTan exp(-an un)" F7-exp(-u n) , (10)
nEL niL

where we defined parameters

1
an 1 + Sn 1 for 1 • n S N. (11)

On the other hand, under H0 , we simply set all signal powers

ISn I to zero, obtaining probability density function (4) again.

Since this latter function, p0, is independent of all the

parameters hypothesized above in (9), we can obtain the maximum

likelihood estimates by maximizing the likelihood ratio instead

of maximizing probability density function pl. The likelihood

11
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ratio, for given random observation Ixn), parallels (6) and (7),

but using (10) now, namely

PI(xlI'''xN) = T7(an exp([l-an] Xn)) . (12)

P0(Xl~,..,XN) nEL

At this point, in order to make further progress, we have to

consider two different possibilities for the signal strengths;

these are:

(1) all powers equal: Sn = S for nEL; or

(2) all powers different: Sn arbitrary for nEL. (13)

We will derive the generalized likelihood ratios for both

situations, and then extract the corresponding tests for two

different cases of knowledge about M, the actual number of bins

occupied by signal.

The problem we are addressing here is a noise in noise

problem; that is, the filter bank input is a white Gaussian

process under H0 , while it is a colored Gaussian process under

H 1 However, the coloring is not known, nor is the extent or

strength of the coloring known. This lack of information leads

to complications in signal processing and in the subsequent

determination of the detection capability.

12
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ALL SIGNAL POWERS EQUAL

Here, we presume that all the signal powers are equal in the

occupied bins, and we set Sn = S k 0 for all n ir. hypothesized

set L. Then, define parameter

1
a= <1 1. (14)

The likelihood ratio in (12) reduces to

LR = aM exp(l- a)= x n) (15)

where we used the fact that set L is of size M. An important

observation to make immediately from (15) is that the data Ixn}

will be subject to addition of linear quantities in these

observations, regardless of how we choose M and L, at least in

this case of presumed equal signal powers.

The value of parameter a that maximizes LR in (15) is random

variable

a = min(lM/ = xn) ' (16)
nEL

where we satisfied constraint (14). The corresponding signal

power estimate is, from (14),

S = max(0,-1 = (Xn -)) . (17)
n£L

Substitution of estimate (16) in (15) yields the generalized

likelihood ratio

13
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GLR = ex~p IM g (R =Z xn)I (18)
nEL

where monotonically increasing function g is defined by

=x - 1 - ln(x) for x k 1}
g(x) - 0 (19)1 0 for x <1

Now, we must maximize the argument of the monotonically

increasing function exp in (18) by choice of set L and size M.

If the actual set size M is known, then we would take

hypothesized value M equal to known value M; reference to (18)

and (19) reveals that we could then concentrate on maximizing the

sum in (18), where set L is now restricted to be of size M. But,

set L should obviously then be taken to correspond to the M

largest members of observation Ixn}.

At this point, it is expedient to consider ordering the

measured data Ixn 1. Specifically, order the given data IXn I from

largest to smallest according to

xj 2 xi "'" . x . (20)

Thus, xi is the largest element of jxn}, while x' is the smallest

element of I Xnj.

We can now easily achieve the desired maximum of the sum in

(18) in terms of the ordered random variables jx'); namely, the

generalized likelihood ratio test takes the form

M

= v . (21)
n=l 1

14



TR 10739

That is, we must order the data, add the first M ordered

variables, and compare with a fixed threshold v. This is the

generalized likelihood ratio test for equal signal powers and

known occupancy size M.

This test makes a great deal of sense. The only way that a

signal displays its presence in the observed data Ixn I is through

an increase in the means in M bins of unknown location; see (1)

and (2), where the mean increases from 1 to 1+Sn in the n-th bin,

when signal is present. Test (21) says to consider the M largest

data values and see if their sample mean is sufficiently large to

declare that a signal is present.

On the other hand, if the actual set size M is not known, the

generalized likelihood ratio in (18) dictates the test

max M g.1 max xn) = max M g(M M xJfl < v , (22)
M 1MSM2  L nEL M1IMSM2 n=1

where the size of set L is M, and it is presumed that set size M

is known to be within a range of values, [MIM 2 ], which must be

searched. Again, the ordered data must be linearly summed, then

averaged, but now subjected to monotonic transformation g in

(19). Although there is no obvious physical interpretation of

test (22), it is easily realized once the given data Ixn I has

been ordered; the search on M itself is not too time consuming.

Operation (22) is the generalized likelihood ratio test for equal

signal powers and unknown occupancy size M.

15
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ALL SIGNAL POWERS ARBITRARY

Here, we presume that hypothesized signal power Sn Ž 0 for

all n in hypothesized set L of size M. The likelihood ratio was

given in (12) for this case, where parameter an was given by

(11). The value of an that maximizes the n-th term in (12) is

random variable

an = minll,l/xn) for nEL . (23)

The corresponding maximum of (12) is then the generalized

likelihood ratio

GLR = --•exp[g(xn )]I = exp(Z g(xn)) ' (24)
nEL n cnL

where function g was defined in (19). It is important to observe

here, in the case of arbitrary signal powers, that the given data

{Xn} is always transformed according to nonlinearity g, prior to

being summed over hypothesized set L; this is in contrast to the

linear sum (15) for equal signal powers.

Now, we must maximize the argument of the exp function in

(24) by choice of set L and its size M. If the actual set size M

is known, then we would take M equal to M; then, using the

monotonicity of function g, set L in (24) should obviously be

taken to correspond to the M largest members of data {Xn}. This

leads to the test

M

=<g(x') v (25)
n=1

16
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This is the generalized likelihood ratio test for arbitrary

signal powers and known occupancy size M.

On the other hand, if the actual set size M is unknown, the

generalized likelihood ratio in (24) dictates the test

<42 , (26)

n=1

where it is presumed that there is some upper bound, M2, on the

range of values allowed for M. Processor (26) is the generalized

likelihood ratio test for arbitrary signal powers and unknown

occupancy size M.

Both tests, (25) and (26), subject the ordered data {x'J to

a small-signal suppression effect, which is inherent in function

g, prior to summation. That is, from (19), g(x) - ½(x - 1)2 for

x - 1. However, if M or M2 is a small fraction of the total

search size N, the larger data values in the ordered set will

dominate these tests. And since function g in (19) is nearly

linear for larger arguments, the ;ums in (25) and (26) will be

essentially linear sums in this situation of small M/N or M2IN,

respectively.
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SUMMARY OF ANALYTICAL RESULTS FOR ORDERED DATA

The generalized likelihood ratio test for equal signal powers

and known occupancy size M was given in (21) in the form

M

= v , (27)
n=1l

where ix~l is the ordered version of given data 1Xn . However,

when M is unknown, this test cannot be realized. Nevertheless,

it does suggest a closely related alternative; namely, for

hypothesized size M, consider the sum of the M largest random

variables, where M is a best guess or mid-range value of M. That

is, consider the decision variable z given by

M
z1Z vF > (28)

n=l

The performance of this sum-of-M-largest processor will depend

upon both the hypothesized siie M as well the actual size M of

the occupied signal bins, in addition to the actual signal power

per bin, S. Evaluation of the receiver operating characteristics

of this processor will occupy much of the remaining effort here.

Although the original data Ix n ) is independent identically-

distributed exponential random variables under H0, the ordered

data Ix• is not independent, not identically distributed, and

not exponential or Gaussian. Thus, (28) constitutes the

classical problem of finding the statistics of the output of a
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digital filter subject to a non-Gaussian input process with

dependent data values.

The most important analytical problem of interest here is in

finding the first-order statistics of random variable z defined

in (28). This problem is solved in appendix A, in particular in

(A-il), where the characteristic function of z is derived exactly

in closed form for hypothesis H0 , namely independent identically-

distributed exponential random variables for original input Jxn .

At the same time, with the framework already established, a

number of extensions have been analyzed, which could form the

bases for future studies on signal processing involving ordered

data. These results are summarized below.

The characteristic function of the p-th largest random

variable x' is given in (A-23), while the joint characteristic

function of the p-th and v-th largest random variables, x' and

xi, is given in (A-25), and the characteristic function of

difference x' - x' is given in (A-33). The joint characteristic

function of x'',...,xM is given in (A-34), and then specialized

to the joint characteristic function of xji,...,xA in (A-38).

Some more general cases are undertaken in appendix B. The

joint characteristic function of xji ... ,xý for independent but

differently distributed exponential random variables is given in

(B-12), and then specialized in (B-17) to the case where a subset

of M of these variables have one density while the remaining N-M

random variables have a different density. This has obvious

applications to finding the statistics of sum variable z under

20
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hypothesis HI rather than H0 .

The further specialization to all N variables having the same

density leads to (B-18) for the joint characteristic function.

Finally, the characteristic function of a weighted sum of ordered

random variables is given by (B-20). This last investigation is

aimed at trying to improve the performance of test (28) by

replacing M by N, and by weighting the larger data points more

heavily. In particular, in appendix C, the maximum deflection of

the weighted sum of ordered data is solved in (C-9) and (C-10).

However, the deflection is not a complete descriptor of

performance, involving no more than second-order moments. Also,

(C-10) requires extremely accurate calculation of the means [Plnl

and 'P0ni in order to retain any significant digits in the

optimum weights % n].

Finally, in appendix D, an investigation into distortion of

the data, after it has been ordered, is conducted. The

motivation behind this study is again to see if improved

detection performance can be achieved. For independent

identically-distributed random variables with arbitrary

probability density function p and arbitrary distortion function

h, the characteristic function of the sum of the first M

distorted random variables is obtained exactly in (D-10) or

(D-11).

The rest of appendix D is devoted to special cases. In

particular, the characteristic function of the sum of the M

largest random variables in a set of N independent identically-
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distributed exponential random variables is given by (D-23).

On the other hand, when the distorted random variables are

squared prior to summation, the pertinent characteristic function

is given instead by (D-26) and (D-24).

When these latter two problems are reworked for independent

identically-distributed Gaussian random variables rather than

exponential random variables, the characteristic function for the

linear sum is given by (D-28) and (D-27), while the corresponding

result for a sum of squares is given in (D-30) and (D-29).

Finally, if the original random variables jx nI are N

independent identically-distributed chi-squared random variables

with 2K degrees of freedom, the characteristic function of the

sum of the M largest random variables is given by (D-33).
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SUM-OF-M-LARGEST PROCESSOR

This processor is characterized in (28) as the sum of the

first M random variables of the ordered data set Ixý], which is

equivalent to the sum of the M largest random variables of

original set I Xnj of size N. The decision variable is

M v (28)

n=l

CHARACTERISTIC FUNCTION UNDER H0

Under hypothesis H0 , when noise alone is present, and data

I n ) is composed of N independent identically-distributed

exponential random variables, the exact characteristic function

of output z is given by (A-I1) as the compact closed form

f(N) = 1. (29)

(1 - i&)M- r-r['I- iT)
n=M

A couple of checks on this result are possible. First, for

M = N, (29) reduces to (1 - i)-N, which is obviously correct,

since z is then simply the sum of all the original data IXn }. On

the other hand, for M = 1, z is the largest random variable in

set Ixn 1, that is, z = xj = maxlxn 1, and (29) reduces to

f N 1*(30)

n=I2
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To verify this last result, observe that the cumulative
N

distribution function of xi under H0 is [1 - exp(-v)] for

threshold v > 0, since all the exponential random variables Ixni

must stay below v. The corresponding probability density

function is N exp(-u) [1 - exp(-u)]N-1 for u > 0, for which the

characteristic function (Fourier transform) is just (30). Here,

we used result (A-17) with the identifications a = 1, 1 = 1, and

K = N-.

In this special case of M = 1, that is z = maxixn), the

exceedance distribution function of output z under H is also

immediately available in closed form. It is given by

E1 (v) = Pr(z > VJHl) = 1 - [1 - exp(-av)]- [1 - exp(-v) ]N-, (31)

where we have used (1) and (2) with common signal power S and

-1
parameter a a (1 + S)-. M is the actual number of bins occupied

by signal.

Returning now to general results (28) and (29) for arbitrary

N and M, the mean of sum z under H0 is readily found to be

NS= M + (32)

n=M+l n

This result is required when we employ the numerical techniques

in [3] for accurately and efficiently determining the exceedance

distribution function directly from the characteristic function.

In this case of hypothesis H0 , we will obtain the false alarm

probability directly from characteristic function (29), that is,

Pf = Pr(z > v1H0 ), for arbitrary M and N.
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FALSE ALARM PROBABILITY

For M = 1, that is, z = maxix n, the false alarm probability

follows directly from (31) by setting signal power S = 0, that

is, a = 1, thereby getting

Pf(M=l) - Pr(z > vJH0 ) = 1 - [1 - exp(-v)]N for v > 0 . (33)

Since this result is easily evaluated, no plots are presented

here for this special case of M = 1, for the sake of brevity.

However, false alarm probability (33) and detection probability

(31) will be used later to generate some of the tabular results

that follow.

Similarly, for M = N, where z is the sum of all the random

variables Ixn 1, no analyses or plots are given here, because they

have already been given in [1; pages 21 - 22 and 81 - 90]. Thus,

for the most part, attention is confined to 1 < M < N here.

In figure 1, the false alarm probability Pf for M = 2 and for

N = 2k with k = 1(1)10 is plotted versus threshold v over a range

including Pf values down to 1E-6. Similar sets of false alarm

probability plots are presented in figures 2 - 10 as M varies

over the values 3, 4, 8, 16, 32, 64, 128, 256, 512, respectively.

In every case, the smallest value of N considered is M, because

sum z in (28) is only defined for M S N. These results are very

accurate, even at the 1E-6 level, because the efficient fast

Fourier transform procedure in [3] was employed for going

directly from exact characteristic function (29) to the false

alarm probability, with insignificant aliasing error.
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Figure 1. False Alarm Probability for M = 2
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Figure 2. False Alarm Probability for M = 3
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Figure 3. False Alarm Probability for m 4
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Figure 4. False Alarm Probability for M = 8
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Figure 5. False Alarm Probability for M =16

30



TR 10739

I -,

E_4A

I_ - -.

E6I:

0 2c0 40 9o 0 100 120 146 1' CO 1 20(s
V

Figure 6. False Alarm Probability for M = 32
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Figure 7. False Alarm Probability for M = 64
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Figure 8. False Alarm Probability for M = 128
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Figure 9. False Alarm Probability for M = 256
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Figure 10. False Alarm Probability for M = 512
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DETECTION PROBABILITY

In all the numerical results to follow, the total search

space will be taken at the fixed value N = 1024. Then, actual

signal size M will be allowed to vary over the 12 values

!I = 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024, (34)

which allows us to consider signal structures varying all the way

from tonals to very broadband processes. At the same time,

hypothesized signal size M will vary over the 10 values

M = 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, (35)

consistent with the theme above that there is no need to present

the results for M = 1 or M = N. Thus, we have 120 cases to

consider for the detection probability of the sum-of-M-largest

processor. This will allow us to extract extensive quantitative

results on the degradation suffered by mismatching hypothesized

value M to actual (unknown) value M.

Under hypothesis H1 , when signal is present in M bins of the

data Ixn I leading to sum z in (28), the characteristic function

of output z cannot be found in any practically useful closed

form. This is true even if the signal powers are all equal to

a common value S in the M occupied bins. This conclusion is

based on the analytical results presented in appendix B,

especially (B-15) - (B-17) coupled with (B-3) - (B-4). A

numerical example for N = 4 and M = 2 in (B-24) and sequel

illustrates the severe complexity of the general result.
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This inability to analytically obtain the characteristic

function of z under H1 has forced us to simulate the detection

probability results. An example of the resultant receiver

operating characteristics is given in figure 11, where 8300

independent trials were used for the ten different values of

signal power S considered. The abscissa value, false alarm

probability Pf, of each point on these plots is exact, having

been obtained by means of (29). Therefore, we are able to

reliably carry these curves down to the small values for Pf

around lE-6.

However, the ordinate value, detection probability Pd' has

jitter (random perturbations) in it due to the limited number of

independent trials, namely 8300 for this particular example.

Since we are usually interested in Pd values in the neighborhood

of .5 to .9, this number of trials is sufficient to generate an

accurate receiver operating characteristic in the range of

interest. The jitter is most noticeable in the unimportant upper

right-hand corner of the figure where large Pd values near .99

are being estimated, and where Pf is too large to be practically

useful.

The totality of 120 receiver operating characteristics

generated by the cases listed in (34) and (35) are collected

together in appendix E. The number of trials varies widely, from

5600 to 35000 trials, depending upon the time that happened to be

available for the particular run. The signal power per bin, S in

dB, always varies over a range sufficient to cover the useful

values of false alarm and detection probabilities.
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Figure 11. Operating Characteristic for N = 1024, M = 1, M = 2
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REQUIRED SIGNAL-TO-NOISE RATIO

The voluminous compilation (120 plots) of receiver operating

characteristics in appendix E forces us to condense this

information for easier interpretation and accessibility. To

accomplish this, we define a low-quality operating point

Pf = 1E-3, Pd = .5 and a high-quality operating point Pf = 1E-6,

Pd = .9. We then read off the curves in appendix E the values of

signal power S(dB) which are required to realize these two levels

of performance. These results are tabulated in tables 1 and 2

for the low-quality and high-quality operating points,

respectively, for M and M both ranging over the full set of

values 1, 2, 3, 4, 8, 16, 32, 64, 128, 256, 512, 1024.

It is immediately seen that the best value of M, for minimum

S, is not necessarily M, although the discrepancies are small.

For example, if M = 16, the best value for M is smaller than M,

being in the range 4 to 8. On the other hand, if M = 256, the

best M is larger than M, namely 512. The explanation for this

effect is given in appendix F; it has to do with the fact that

the generalized likelihood ratio processor is not necessarily

optimum.

The results in tables 1 and 2, are plotted in figures 12 and

13, respectively, with one modification; the ordinates in the

figures are the total signal power required, M S in dB, rather

than just the bin power, S. The total quantity is more

meaningful and it condenses the range of ordinate values to a

more manageable regime.
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Figure 12. Required Total Signal Power for Pf = IE-3, Pd = .5
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Figure 13. Required Total Signal Po.er for Pf = 1E-6, Pd = .9

43



TR 10739

Numerous observations can be made from these two figures. We

confine the following numerical examples to figure 12. When

M = N = 1024, the optimum value of M is also 1024, although the

loss in using M = 512 is less than .1 dB. However, if we

continue to use M = 1024 when M has been decreased significantly

below 1024, losses around 9 dB, relative to using M = 1, will be

incurred when M = 1 is reached.

On the other hand, suppose we attempt to always use M = 1

regardless of the true value M. Although this selection is

satisfactory for M less than 32 approximately, it will run into

losses greater than 10 dB when the actual value M approaches

1024.

This suggests that if nothing whatsoever is known about M, a

compromise value of M = 32 might be adopted. The loss when M is

actually 1024 is then 2.5 dB, whereas the loss when M is actually

1 is 3.5 dB. For intermediate values of M, say from 16 to 64,

the consistent use of M = 32 is nearly optimum within this class

of processors. Thus, if there is some partial information

available about the range of M values to be encountered, and if

this range is narrow enough, figures 12 and 13 indicate what the

good choices of M are and the degree of loss caused by mismatch.

Figures 12 and 13 bring out one of the significant drawbacks

of the sum-of-M-largest processor, namely that a good choice of

upper limit M in sum (28) cannot be made without some knowledge

about M, the number of bins occupied by signal. It also

indicates that further study into the determination of a more

robust class of processors is warranted and required.
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COMPARISON WITH MODIFIED GENERALIZED LIKELIHOOD RATIO PROCESSOR

The modified generalized likel'hood ratio (MGLR) processor

[1] was derived on the basis of an unknown number of occupied

signal bins, M; in fact, the average signal strength S n was

estimated in each and every one of the N bins. However, during

data processing, if the MGLR processor uses the best value of

its breakpoint x0 for the actual current value of M, the MGLR

processor has effectively been given knowledge of M. Also, since

the best breakpoint value of x is typically large for small M/N,

the small-input square-law suppression of nonlinearity

Ix - 1 - ln(x) for x k xo

go(x) (36)
0 0 for x < x0

is never encountered, since the nonlinearity is virtually linear

for x > x0 in this situation.

Thus, when the MGLR processor is effectively using knowledge

of small values M, it is linearly processing only the largest

members of observation Ixn1. This is exactly what the GLR

processor considered here does, except that the number of

contributors to the GLR processor output is always exactly M

(regardless of M), whereas the MGLR processor output number of

contributors fluctuates, depending on the actual input data Ixnil

N, S, and M.
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This means that we can expect the best performers in the MGLR

class of processors to have comparable performance to the best

performers in the sum-of-M-largest class of processors. This is

borne out by the results in figures 14 and 15, which are

extracted from the receiver operating characteristics for the

MGLR processor in [1]. The lower envelopes of figures 12 and 14

are very close over their common range from M = 8 to M = 256;

similarly, the lower envelopes of figures 13 and 15 are fairly

close to each other.
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SUMMARY

The receiver operating characteristics of the sum-of-M-

largest processor have been determined for a wide variety of

values of M, the number of bins occupied by signal, and M, the

hypothesized number of occupied bins, for total search size

N = 1024. The false alarm probability was very accurately

evaluated by using the exact characteristic function of the

decision variable under H0 ; the detection probability was

determined by simulations, each averaging about 10000 independent

trials.

The amount of loss associated with mismatch between M and M

can be significant. However, for N = 1024, if one compromises on

and uses the intermediate value of M 32, regardless of the true

(unknown) value of M, the loss is no more than about 3 dB. If

some partial knowledge about the range of values of M is

available, a mid-range choice of M can be made, with reduced

losses in mismatch. Quantitative assessment of these losses are

possible from the results given here.

Some new results for the characteristic function of a

weighted sum of ordered data have been derived, and then used for

false alarm probability calculations. Extensions to the

characteristic function of the sum of distorted ordered data, as

well as to some joint characteristic functions, have also been

accomplished, although they were not used to obtain the numerical

results here.
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APPENDIX A. CHARACTERISTIC FUNCTION OF SUM OF M LARGEST

RANDOM VARIABLES OF A SET OF N EXPONENTIAL RANDOM VARIABLES

Consider N independent identically-distributed random

variables (RVs) IXn} with common continuous probability density

function p and cumulative distribution function C. Then, the

probability that the p-th largest random variable x' lies inp

interval u,u+du is given by [4; page 370]

gP (u) du = Pr{N-p RVs < u; p-i RVs > u+du; 1 RV in du) =

= N N-1) C(u)N-P [1 - C(u)]P-I p(u) du . (A-1)

The probability density function of the p-th largest random

variable is gP.

More generally, consider two intervals centered on the values

u and v, where u > v, and let integers p < v. Then, the

probability that the p-th largest random variable x' lies in

u,u+du and that the v-th largest random variable xý lies in

v,v+dv is

g /(u,v) du dv =

= Prip-1 RVs E (u,-); v-p-i RVs c (v,u); N-v RVs c (--,v);

1 RV E (u,u+du); 1 RV £ (v,v+dv)j =

= N (N-i) N-2 (N-p-) [I - C(u)]p- 1 [C(u) - C(v)]v-p-I x

(P-) (N-v

x C(v) N- p(u) p(v) du dv . (A-2)
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The joint probability density function of the p-th and v-th

largest random variables of set IX n is g P.

Continuing in a similar fashion, the joint probability

density function of the M largest random variables, out of the

set of N independent identically-distributed random variables

Ixn), is, for values u1 > u 2 > ... > uM,

M

g(ullu2,...,UM) = N(N-1)-.-(N-M+1) C(UM) N-M T P(Um) . (A-3)
m=l

We are interested in the characteristic function of the sum s of

the M largest random variables in set Ixn 1. Notice that the

components lx'C of this sum consist of M statistically-dependent

non-Gaussian non-identically distributed random variables. The

desired characteristic function is given by

fs(•) = exp(i~s) = exp(i&[xi + --- + xA]) =

= f.--J duI du 2 "-duM g(ul'u 2 ,...,uM) exp(i[[ul + UM])

Gol , UM-I

f f dul exp(i~ul) f du2 exp(i&u2 )--. f duM exp(i~uM) g(ul,...,UM)

-CO -GO -0

- j duM exp(i~uM)''"f du 2 exp(i~u2 ) f du1 exp(i~uI) g(ul,...,uM).

0U 3  U2 (A-4)

The last form in (A-4) is more useful, because of the way that

cumulative C(uM) appears in the density g(ul,...,uM); namely, the

integration on C(uM) is deferred to the last integral in (A-4).
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In general, substitution of (A-3) in (A-4) results in an

intractable multiple integral. However, for the case of an

exponential probability density function for original random

variables Ix nil

p(u) = exp(-u) for n > 0 , (A-5)

all the manipulations can be carried out in closed form. To

demonstrate this, substitute (A-3) and (A-5) into (A-4) to obtain

fs(•) = F f duM exp(-zuM) [1 - exp(-uM)] f du 1 exp(-zuM1)X
0 uM

x .-. f du 2 exp(-zu 2 ) f du1 exp(-zul) , (A-6)
u 3 u 2

where we have defined

F = N(N-1)---(N-M+1) , z = 1 - i& . (A-7)

Denote the integral on general term dum in (A-6 as Im

Then, it is readily verified that

exp(-zu 2 ) exp(-2zu 3) exp(-(M-l)zuM)

z 2 2 z2 M-1 (M-1)! zM-1

(A-8)

Utilization of the last result in (A-8) yields, from (A-6),

f = (M-I)'F zM-1 f duM [1 - exp(-uM)]N-M exp(-MzuM) (A-9)
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At this point, we use the integral result

O 1
Sdu [1 - exp (-u )] K exp (-cu ) = f dt (1 - t )K tc- =

0 0

- r(c) r(K+1) - K! for K integer , Re(c) > 0 , (A-10)
r(c+K+l) (c)K+1

which is available from [5; 8.380 1 and 8.384 1]. Then, (A-9)

takes on the final form for the characteristic function of the

sum s of the M largest random variables of set Ixnx, namely

f S = F (N-M)! -= 1 (A-11)

(M-1)! zM-I (Mz)N-M+I (1 - i&)M- 1[- - i) (Ail
n=M

where we have used (A-7) to simplify the end result. This

compact closed form expression for fs (4) is readily numerically

evaluated and is well suited to the numerical methods in [3]

for accurately and efficiently determining the false alarm

probability of sum random variable s. (More generally, the

characteristic function of an arbitrary weighted sum of ordered

data {x~l is accomplished in (B-20) - (B-21)).

It is also interesting to observe that (A-li) corresponds to

the characteristic function of a sum of N independent exponential

random variables lynI with non-identical probability density

functions

(1 for 1 S n S M

Pn (u) = an exp(-anu) with an = f (A-12)
for M+54I n S N
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The first M random variables of auxiliary set Jyn I have mean

values 1, while the remainder have decreasing mean values M/n for

M+1 I n I N.

The cumulants of the sum random variable s follow upon

expansion of the natural logarithm of (A-li) in a power series in

i&; the k-th cumulant is

Xs(k) = (k-l)! (M + Mk -h) for k k 1 . (A-13)

n-M+l1n

In particular, the mean and variance of sum s are

N N
Xs (l) - M + M i , Xs (2) = M + M2 = 2

n=M+1 n=M+l n

The mean of s tends logarithmically to infinity as N - •, while

the variance and all the other higher-order cumulants of s

saturate at finite values as N increases.

The characteristic function f (s) of sum s in (A-li) can be

written in the form

fs(1 i)M N 1 f a() *) (A-15)

n=M+l

The probability density functions corresponding to these two

factors are expressible in the closed forms

a (u) = u exp(-u) for u > 0 (A-16)
N a(u) (M-1)!

Pb(U) = N__M (NMJ exp(-M --!luj [1 - exp(-u/M)] N-M- for u > 0
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The latter relation can be verified directly by using result

(A-10) with K = N-M-1 and c = M+I-i&M. However, the convolution

of the two density functions pa and Pb in (A-16) has not led to

any useful expressions for the probability density function or

exceedance distribution function of sum s.

More generally, the following are a Fourier transform pair:

Pc (U) = K! exp(-au) [1 - exp(-Au)]K for u > 0K
A K+K

fc(&) . IT KI(i a +Rng; K integer , a > 0 , A > 0 . (A-17)

The k-th cumulant of this pair is

K

Xc (k) = (k-l)! k 1 for k k 1 (A-18)n=0 (a + An)k

which is a finite sum of positive terms. This means that the

corresponding k-th moment,

0 0

can be expressed as a finite collection of positive terms.

Specifically, the k-th moment can be easily and accurately

obtained, to high order, by the recursion [6; page 94, (A-6)]

k-i

PC ) = = (k) Xc(k-m) pc(m) for k k 1 , pc(0) = 1 , (A-20)
m=0

which involves only positive terms. For example,
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c(l) - x (1) P pc(2) = Xc( 2 ) + Xc (1) Pc (1) = x (2) + X2(1)

PC(3) = Xc( 3 ) + 2 Xc( 2 ) pC(1) + Xc(1) PC (2) =

= Xc(3) + 3 Xc(2) xc(1) + X3 (1) .(A-21)

By letting t = exp(-u) in (A-19), we have the ability to

evaluate the following integral in terms of finite sums of

positive quantities:

=j (k) dt [-ln(t)] k ta-1 - .AK (A-22)

The larger k values will require use of positive recursion

(A-20). Parameters k and K are integers, while a and A are

positive real.

As an application of the result in (A-17), the characteristic

function of the p-th largest random variable in (A-i), for

probability density function (A-5), is immediately found to be

f() + n= T - (A-23)

which contains only N+1-p factors. Here, 1 - p • N. The k-th

cumulant of the p-th largest random variable is therefore

x (k) = (k-l)! for k k 1 (A-24)
n=p n

In a similar vein, the joint characteristic function of the

p-th largest random variable x' and the v-th largest random
P
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variable x', with p < v, can be found from (A-2) and (A-5) in

closed form

f (&,7,) - exp(i~xý + i~xD) - [ du dv g (u,v) exp(i~u + itv) -

"dv exp(irv) I du exp(iEu) g •(uv} )

(v-i

= - n n n for 1 -i p < v S N . (A-25)

This form contains a total of N+1-p factors, no matter what value

the integer v has. If t, = 0, (A-25) reduces to (A-23), as

expected. On the other hand, if E = 0, then (A-25) reduces to

(N -1

17 (A-26)

which has a form identical to (A-23), again as expected.

The joint cumulants of the p-th largest random variable x'
P

and the v-th largest random variable xý of set Ixn], with p < v,

can be found from the expansion of (A-25) according to

ln f JV(E,) = k111 I(iE)k= -- + (iE + it') = - . (A-27)k= n=pn n=vn

Thus, we have

N 1 m f1 (A-28)
meanixl n= - , meanx = n -

n=p n=v

and

58



TR 10739

N N 1

varn-- var(xIJ = covix',x (A-29)
n=p n n-=v--

Observe that the covariance between x' and x' is equal to the

variance of x,. Also, the covariance coefficient between x' andS~p

K' is

n1 p <nv IN n(A-30)
n2nnv n~p

Thus, for large N, the two largest random variables of a set of N

exponential random variables have a covariance coefficient of

(n2_ 6)h/n = .626, while the largest and smallest random variables

have a covariance coefficient of V6/(nN) = .780/N.

More generally, the k,tn joint cumulant of x' and x' follows

from (A-27) as

(k-l)! S (k) for m = 0 , k k 1-

I(k+m-l)! S (k+m) for m k 1

where

N

S.(k) = *for 1 S j S N , 1 k. (A-32)
n=j n

The characteristic function of the difference between the

p-th largest and the v-th largest random variables is obtained

directly from (A-25) by setting 1 =-Z:

_-i } -1

f ( = exp[il(x' - x')] [T1 - , (A-33)PV p V n=p n)
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which has v-p factors. Thus, the difference of adjacent ordered

random variables, that is, v = p + 1, has an exponential

probability density function with mean value i/p.

Most generally, it is shown in appendix B that the M-th order

joint characteristic function of the pl-th largest random

variable xýl, the p2-th largest random variable x2,..., and the

PM-th largest random variable x'M of original set (xn}, for

1 Pl < . < pM I N, is

S= exp it ixi, + i 2 xý 2 + ... + i=Mx ) (A-34)

JP _1i 31 ( +2 M .

•n=pI n=P2

P - i+M N
x (-T7-j , (A-35)n=pMl _n T7 n

_p1 1  n~p1

where we have defined

+m =i + t,2 + ".. + rm for 1 • m • M . (A-36)

The characteristic function in (A-35) reduces to first-order

result (A-il) when we set Zi = 72 = ... = ', and set p, = 1,

P2 = 2,..., pM = M. A numerical confirmation of general result

(A-35) was obtained by simulation for the fourth-order example

M = 4, N = 19, p 3, P2 = 6, p3 = 11, P 4 = 16,

Z. = .31, Z2 = _ 3 = .97, ý4 = .77. (A-37)
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The exact result from (A-35) is .71239 + i .65022, whereas the

simulation yielded estimate .71246 + i .65015, based upon

5,000,000 independent trials of ensemble average (A-34).

An application of (A-35) to the M largest random variables of

set Ixn} is afforded by choosing pm = m for 1 • m S M, to obtain

the M-th order joint characteristic function

T7l_ i) N (I )} -1
f&,. M) -_Tn nn=( -

n=l n =M+1

If we set = Z2= i , and use (A-36), this reduces to

(A-11).

The results above can be used to find statistics of some

nonlinear transformations of ordered data {x'1. For example, the

sum of the M largest squares is given by

z= '2 . (A-39)

From (A-24), we know that

x ,= Xp(l) =E • , Var(x') =X (2) N - (A-40)
n=p n n=p n

Therefore, the mean of z is given by
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M (N 2 N
z = Z=Z-I )+~A =

p 1 n n= n

N min(n,m,M) + M N 1M-1 I MY+2 (A-41)m = =-+ 2
n,m=l n=M n n=2

after considerable manipulation, where

1 + 5 1 (A-42)
n=M+1 n
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APPENDIX B. JOINT CHARACTERISTIC FUNCTION

OF N ORDERED INDEPENDENT RANDOM VARIABLES

Let Ix n be a set of N independent random variables, where

the probability density function of the n-th random variable xn

is p(u,n); the variables need not be identically distributed.

Order these random variables into the new set {x•l, where

xi > xi > -.. > x'. We will evaluate the N-th order joint

characteristic function of this ordered set, namely

f(&.,N) = exp(i•Ixi + --- + i&Nxý) I (B-i)

for arbitrary values of I&n1, when probability density functions

{p(u,n)1 of xn} I are exponential. That is, we will consider

p(u,n) = a(n) exp[-u a(n)] for u > 0 , 1 < n • N . (B-2)

The ordered random variables {x'} are highly statistically

dependent on each other and are distinctly non-Gaussian.

Observe that knowledge of (B-1) allows ready evaluation of

the characteristic function of any weighted sum of the ordered

random variables, by simply choosing &n = [ Wn" That is, for the

weighted sum of the ordered variables,

N
s wn x' , (B-3)

n=l

we have characteristic function

fs(•) = exp(i~s) = expi nl Wn = f(&wl,...,&wN) . (B-4)
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Thus, for example, by choosing only the first M weights of

sequence JWn I nonzero, we can investigate the M largest random

variables of original set Ix n of size N. Alternatively, for

example, by taking only & 3 and &5 nonzero in (B-I), we can

investigate the combination of the third-largest and fifth-

largest random variables in set I xni.

Before we begin the derivation of (B-i), we must consider all

possible permutations of the integers 1,2,...,N. For N = 3 for

example, there are the N! = 6 possibilities 123, 132, 213, 231,

312, and 321. We label these six sequences according to

k = , k 1 2 = 2, k 1 3 = 3; k2 1 = 1, k2 2 = 3, k2 3  2;

k31= 2, k 3 2 = 1, k 3 3 = 3; k41= 2, k 4 2 = 3, k 4 3  1;

k = 3, k 5 2 = 1, k 5 3 = 2; k 6 1 = 3, k 6 2 = 2, k 6 3  1.

In general, the j-th permutation out of the total of N! possible

permutations is indicated by the sequence kjJ, kj 2 ,...,kjN. Thus,

we have a matrix of integers lk. I for 1 • j • N!, 1 • n • N.

The joint probability density function of the ordered set of

N random variables |xA| can now be written in the form

N! N
g(ulu2,...,UN) = -- FT p(un,k jn) for u1 > u 2 > ... > uN

j=l n=l
(B-5)

and zero otherwise. The N-th order joint characteristic function

of the ordered random variables |xý] is then given by

f(&l,...," N)= exp(i&1 xi + *-. + i&Nxý) =

= -.-. dul''-duN g(ul,...,uN) exp(i 1luI + ... + i&NuN) =
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N!
= i f duN P(UN'kjN) exp(i NuN) j duN- 1 P(UN-I'kjN-1) xj -cc uN

x exp(i&N-luN-l) x ... x f du 2  P(u 2 ,kj 2) exp(i&2 u 2 ) x

x f du, P(Ul,k jl) exp(i& 1ul) .(B-6)

u 2

The result in (B-6) is general, holding for any probability

density functions jp(u,n)I. However, one of the few cases where

it can actually be evaluated is for the exponential densities

given in (B-2). Substitution yields

N!.

f(&'' N = f I duN a(kjN) exp (-uN ZjN) x
j=1 0

XI du IA(k N) exp (-u N z xN-)• ) x .

uN

XJ du2 A(k 2 ) exp (u 2 u 2) J dul a(k~j) exp (-u1 z i) ,(B-7)

U3  u 2

where we have defined complex quantities

zjn = a(k jn) - i&n for 1 1 n I N , 1 _j 9- N! . (B-8)

The factor involving the product of coefficients is given by
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N
a(kjN) a(kj N-1) x -- ) a(kj 2 ) a(kjl) - -Ta(n) ' A , (B-9)

n=1

regardless of the value of j, the particular permutation.

We denote the integral on un in (B-7) by 'in, and let

e. + ZJ + --. + z for 1 • n < N 1 _ j .N . (B-10)

Then, excluding factor a(kjn), we find, in order,

exp(-u 2 0.l) exp(-u 3 e.2)
j =j , j2 = j 1 e)j2

exp(-uN lj,N-I) 1
1j,N-1 *l -- jN IjN = E1 E 2 ... )N (B-11)

j1 ~j,N-1 j2N

The use of (B-9) and (B-il) in (B-7) finally yields the joint

characteristic function of the ordered random variables {xA in

the form

= A _- e8 --- N! (B-12)
j=l jl j 2 jN

where jen j are given by (B-10) and (B-8). By combining these

latter expressions, we find, for 1 • j • N!, 1 • n • N,

n n
ejn = hjn - i4in 'hjn = = a(kjp) ,1n = &P %p . (B-13)

The major problem with result (B-12) is the impossibility of

evaluating all N! terms, especially for large N. Even if we are

interested only in the sum of the first M terms of ordered

66



TR 10739

sequence ix•l, that is, the sum of the M largest random variables

of original sequence Ix n1 , that only allows for the

simplification of 14s'n in (B-13) to the form

{n= for 1 • n S M

•n M& for M+1 (B-14)

where we have let & n E for 1 S n S M, and zero otherwise, in

(B-i). There is no accompanying simplification in the tedious

calculation of [hjn| in (B-13).

If the exponential probability density functions in (B-2) are

characterized by equal signal components in the first M terms

(without loss of generality) and noise otherwise, then we have

the special case

(a for 1 Sn-KM)
A(n) = 1  otherwise I (B-15)

Now, consider the first n terms of the j-th permutation, namely

kjJ, kj2,.... ki. Let the number of times that any of the

numbers 1, 2,..., M occurs in these first n locations of

permutation j be denoted by L(j,n). Then, from (B-13) and

(B-15), we find

hjn = • L(j,n) + [n - L(j,n)] = b L(j,n) + n , (B-16)

where we have defined b = a - 1. The joint characteristic

function follows from (B-12) as

M N! N 1
f(l,= a TI=nb L(jn) + n - i4n , (B-17)
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where we also used (B-9) to determine A. This result requires

determination of all the integers fL(j,n)1 for its evaluation,

which appears to be a formidable task, in general. Furthermore,

this is the simpler case of equal signal components in the first

M terms.

The special case of no signal in any bins corresponds to

a = 1 in (B-15), thereby giving b = 0. This causes all Lhe

dependence on {L(j,n)f in (B-17) to disappear, thereby yielding

f(& =_ - i )/n I (B-18)
n1n

where sequence J+n} is given by (B-13). This is the joint

characteristic function (B-i) of ordered sequence {xý), when all

the original random variables IXnI have the common probability

density function exp(-u) for u > 0.

As an applicatiox. of (B-18), consider that all the I&nI are

zero, excej,• that [ I 4 0, & # 0,..., & M # 0. Then, (B-13)

yields

14n I= 0 ... 0 & P & PP 1 & Pl + P2  (B-19)

in which case (B-18) reduces to (A-34) - (A-36).

We can also use (B-18) to determine the characteristic

function of the weighted sum s of Ix•l defined in (B-3), for the

case of no signal present. Namely, from (B-4) and (B-13) with

the identification of &p as ý wp, there follows the

cha.•acteristic function of the noise ly sum s as
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fs( I= N 10 - i -Wn)1 (B-20)
•n=l

where the n-th coefficient

n
Wn = • wk for I 1 n i N (B-21)

can be interpreted as the average of the first n weights. The

k-th cumulant of noise-only sum s follows from (B-20) as

Xs(k) = (k-l)! )-• Wk for k k 1 . (B-22)
n=l n

For the special case of all the weights 1w n equal to 1, then

Wn = 1 for all n, and (B-20) reduces to (1 - i&)-N as expected,

since the total sum of the ordered data is equal to the sum of

the original data, and there is no signal present. On the other

hand, if only the first M weights {Wn I are 1, while the remainder

are zero, then Wn = I for 1 1 n S M, and Wn = M/n for M < n S N.

Then, (B-20) immediately reduces to (A-i1), as expected for this

noise-only case.

As a partial check on general result (B-17), let M = N, which

means that all N bins contain equal signal components (when

signal is present). Then, by the definition under (B-15), we

have L(j,n) = n, independent of permutation number j. The

characteristic function in (B-17) then simplifies to

f(& {..,-N - i •-• , (B-23)
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which is an obvious generalization of (B-18).

As an illustration of the type of analysis required to

simplify (B-17) for equal signal components, consider the example

of N = 4, M = 2. Of the N! = 24 possible sequences that IL(j,n)l

can take on, there are only 6 different kinds that can occur;

they are

1 2 2 2, 1 1 2 2, 1 1 1 2, 0 1 2 2, 0 1 1 2, 0 0 1 2.

Furthermore, each type occurs exactly 4 times. Expression

(B-17) then specializes to

f(& = 42(L + "'" + ' (B-24)

where

D1 = (b+1-i~il)(2b+2-iP2 )(2b+3-iP 3 )(2b+4-ip 4 ),

D2 = (b+1-ipl)( b+2-i'42 )(2b+3-i 4 3 )(2b+4-i'+ 4 )

D3 = (b+1-i+l)( b_+2-i'4 2 )( b+3-i4 3 )(2b+4-i 4 )

D4 = ( 1-i~l)( b+2-iW2 )(2b+3-i 4 3 )(2b+4-i"P4 )

D5 = ( 1-ixpl)( b+2-i'4 2 )( b+3-i4' 3 )(2b+4-i' 4 ) )

D6 = ( 1-i*l)( 2-i f 2 )( b+3-i p3 )(2b+4-i4' 4 ) . (B-25)

For the numerical example of & = .31, &2 = -. 53, &3 =97,

&4 = .77, a = .71, the exact answer from (B-24) - (B-25) is

.474694 + i .653188, while a simulation result based on

27,000,000 statistically independent trials yielded estimate

.474647 + i .653168.
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Other numerical examples have indicated that, in general,

there are binomial coefficient (NIM) different possible sequences

for IL(j,n)I. Although this integer (NIM) can be significantly

less than N!, it is still much too large for most practical

situations where N is generally much larger than 1. Application

of general results (B-12) or (B-17) for the joint characteristic

function of the ordered data appears to be limited to very

special cases.
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APPENDIX C. MAXIMUM DEFLECTION OF WEIGHTED SUM OF ORDERED DATA

The random variable of interest here is

N
z= wn , (C-i)

n= 1

where original data IXn I is composed of independent and

identically-distributed exponential random variables. It has

been ordered into descending set {xý}. Under H0 , the

characteristic function of z is, from (B-20) and (B-21),

0 1)(= I - iWn) W = n w for 1 1 n I N . (C-2)
n=1, n p=lP

If we were given coefficients {Wn), we can solve for weights 1wni

according to (with W0 = 0)

wn = n Wn - (n-i) Wn-1 for 1 • n I N. (C-3)

The mean and variance of z under H0 are, directly from (C-2),

N_ 2 N 2N k
"0=•-O - Wn a = , X0 (k) = W- . (C-4)

n=l n=0 n=l n

Now, let the means of the n-th random variable x' under H1

and H0 be P1 n and P0n' respectively. Define

An = Pin - POn for 1 • n S N . (C-5)

Then, the difference of the mean outputs of z is, using (C-3),
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N N
Az n-i Wn(Pln - POn) - ) wn n =

N N

a~ n(n W~ - (n-1) W 1 W n (6~ a n1 (C-6)
n-i n-1

where aN+I - 0. Also, the deflection of z is

N 2

C W2 n n(A n ( - an+l)i
2 N . (C-7)
0O = W2n

ni n

The optimum coefficients JWn) for maximum d 2 follow

immediately from (C-7) as

Wn = a n (An - an+l) for 1 <_ n S N , (a arbitrary) (C-8)

giving

d2 n 2.(a a* (C-9)max n n+l)n=l

The optimum weights for maximum deflection are, from (C-3)

and (C-8) (with A - 0),

Wn = n Wn - (n-i) Wn-I = a(n 2 (An - an+l) - (n 2 (AnI - a n))

a N([n 2 +(n-1) 2 1an - n 2 An+l - (n-1)2 An 1 ) for 1 S n S N. (C-10)

Finally, we can scale everything by choice of a so that q= 1,

without loss of generality; then, W1 = 1.
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APPENDIX D. CHARACTERISTIC FUNCTION OF THE SUM OF THE DISTORTED

M LARGEST RANDOM VARIABLES OF AN INDEPENDENT SET OF SIZE N

Real random variables x n1, 1 • n • N, are independent and

identically distributed, with arbitrary probability density

function p, cumulative distribution function C, and exceedance

distribution function E. We order this original set of random

variables into a new set Ixýl, where

Xi N. (D-1)

This ordered set of random variables is non-Gaussian, heavily

statistically dependent, and not identically distributed.

We select the initial M random variables of the ordered set

fxý), that is, the M largest random variables of original set

Ixn), and subject them to the common arbitrary memoryless

nonlinear transformation h (which could be complex). We then sum

these M distorted random variables, obtaining the output random

variable s of interest:

M
s =Z-- h(x') . (D-2,

n=l n

We are interested in obtaining the exact characteristic function

of s, for general N, M, h, and p, despite the deleterious

statistical properties of the ordered set lxýj, that were noted

under (D-1). In particular, we want the statistical average

fs(.) exp(i~s) = exp(i~h(xi) + -- " + i~h(xA)] . (D-3)

75



TR 10739

From (A-4), the joint probability density function of the M

largest random variables of set Ix nI is given by

g(ul,...,UM) = F p(ul) ... P(UM) C(UM)NM (D-4)

for u1 1 u 2 k 2 UM, where F = N(N-1)-.(N+1-M). Therefore,

average (D-3) can be expressed as the multiple integral

fs(•) s F f duM exp[i~h(uM)] P(UM) C(UM)N-M x

x f duM_1 exp[i~h(uM_l)] P(UMl) x ...

uM

x ... f du2 exp[i~h(u 2 )] P(u 2 ) f du1 expfi~h(ul)] p(ul) . (D-5)

u 3  u 2

In order to simplify this multiple integral, define function

E(u;&) f dx expfi~h(x)] p(x) . (D-6)

u

This integral is presumed convergent for all u where p is non-

zero. Special cases of (D-6) are E(-;&) = 0, and E(u;O) = E(u),

which is the ordinary exceedance distribution function of

original set Ixn 1. Also, E(--,t) is the characteristic function

of the output of nonlinear device h subject to a random input

with probability density function p. Thus, E(u;&) is a mixture

of an exceedance distribution and a characteristic function.
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Holding parameter & fixed, the derivative of E(u;&) with

respect to u is denoted by a prime, getting

dE'(u;[) = - E(U;[) = - exp[iE~h(u)] p(u) . (D-7)

Now, denote the general integral on um in (D-5) as Im. Then, we

immediately have I1 - E(u 2 ;&). Proceeding to the integral on u 2

in (D-5), we can develop it as

12 = f du 2 exp[i~h(u 2 )] p(u 2 ) E(u 2 ;&) =

U3

f d E' ;&E 1 Eu 2 (D-8)_ du 2  E,(u2 ;Z) E(u 2 ;&) = 2 3;&)
u 3

Continuing in this fashion, one integral at a time in (D-5), we

arrive at the result for the UM_1 integral, namely

= 1 ' •M-1

Finally, the last integral on uM in (D-5) can be expressed as

f5 ME = M (N) f du exp[i~h(u)] p(u) C(u) N-M E(u;&) M-1 , (D.-10)

where we have simplified the leading constant F/(M-1)!. This

result in (D-10) holds for N k M. It is a single integral for

the characteristic function of sum random variable s defined in

(D-2). If N > M, we can integrate by parts on (D-10), using

(D-7), to obtain the alternative
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f5(~ (N-M) (N)J f du p(u) C(U)NM E(u;&2) (D-11)

It should be noted that unequal weights Iwn I in sum (D-2) are

strictly disallowed in the current analysis. The simplification

in (D-8) and (D-9) occurs only when exactly the same h function

appears in the successive integrals on u1 through uMI. A

generalization that includes weights in (D-2) is only possible

for very special probability density functions and nonlinear

transformations. One such case is exponential p and linear h.

Several checks on these general results are possible. For

= 0, we have from ,D-11) and (D-6),

f -0 (N-M (N) f du p(u) C(u) N-M-1 Eu

1

(N-M) (N) f dx xN-M- (1 - x) M= 1 , (D-12)

0

using [5; 8.380 1 and 8.384 1].

On the other hand, for M = N, we use (D-10), (D-6), and (D-7)

to obtain

fs •) = N du [-E'(u;&)] E(u;&) = E(-N;-) =

N N
[f dx exp[i~h(x)] p(x)1 = exp[i~h(xn)] . (D-13)
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This latter expression is recognized as the characteristic

function of the sum s, when it is observed that, for M = N,

M=N N
s = =- h(xA) = L-- h(xn) , (D-14)

n=1 n=1

and that original set IXn ) is composed of independent identically

distributed random variables with probability density function p.

Finally, for M = 1, (D-10) and (D-7) yield

f = N du exp[ith(u)] p(u) C(u) N-1

= du exp[ith(u)] _ C(u) = exp[ith(xi)] . (D-15)

The last step in (D-15) is accomplished by observing that the

cumulative distribution function of the maximum, xj, of set Ix ni

Nis just C(u) . And, for M = 1, (D-2) reduces to s = h(xi).

MEAN OF SUM s IN (D-2)

In order to find the mean of the random variable s defined by

(D-2), we begin by expanding (D-6) in a series about • 0:

E(u;&) - E(u) + i& H(u) as • 4 0 , (D-16)

where

H(u) a dx h(x) p(x) . (D-17)

u
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Then, for small t, (D-11) yields

CO0f5 ("),(N-M) (M] f du p(u)•uE(u)M + iM E(u) M--1

1 + &M NM NfdupuCu)NM1E(u) MIH(u) ,(D-18)

upon use of (D-12). Therefore, the mean of sum s is given by the

single integral

Ps= M (Ni-M) (N du p(u) C(u)N-M- E(u)'- H(u) (D-19)

A similar expansion of E(u;&) and fs([) to second order gives the

second moment of s in the form

" (N-M) (N) f du p(u) C(u)N-M-1 E(u)M-2 [E(u) (u) + (M-1) H(u)21

(D-20)

where

_H(u) dx h(x) 2 p(x) (D-21)

u
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EXAMPLE 1: h(x) = x, p(u) = exp(-u) for u > 0.

According to (D-2), this corresponds to

M
S = ( n 'D-22)

n=ln

which is the sum of the M largest exponential random variables.

Then, (D-6) yields E(u;&) = exp(-u(l-i&))/(l-i&) for u > 0, and

(D-11) becomes, for N > M,

1N t N-M-1 Uli)
fs (•) = (N-M) MN i f du e-u (-e-u) eU(-ieM-( l-i&)M 0

1
= (N) -N-M J dx (1-x) N-M-l (1-i&)M

(1-i&)M 0

(1 _ i&))J
[( - nMT7- (D-23)n=M+l n)

upon letting x = e-u, and using [5; 8.380 1 and 8.384 1]. This

result agrees with (A-il).

EXAMPLE 2: h(x) = x 2 , p(u) = exp(-u) for u > 0.

This corresponds to the sum of the squares of the M largest

exponential random variables. Now, (D-6) yields [7; chapter 7]

E(u;&) = J dx exp(ix2- x)2= _H exp~i. + - uj ,;(a + ip)

u
(D-24)
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for u > 0 and [ > 0, where real quantities

It should be observed, that since • > 0 in (D-24), and u > 0 in

integral (D-11) for this example, then A > 0 in (D-25); this

means that the real part of w in (D-24) is always positive

[7; 7.4.13]. This fact can be used to simplify the calculation

of the argument of w, which is needed for (D-11). The final

result for the characteristic function of sum s follows from

(D-11) in the integral form

fs(•) - (N-M) (N) C du e-u 1 - e-U M-1 E(u;)M (D-26)

(i; - I'u)Eu.) , (-6
0

which must be done numerically, by means of (D-24).

EXAMPLE 3: h(x) = x, p(u) = +(u), C(u) = f(u) for all u.

This case corresponds to the sum of the M largest normalized

Gaussian random variables; here, +(u) = (2n)-ý exp(-u 2/2) for all

u. In this case, (D-6) yields, for all u,

E(u;&) = dx exp(i~x) +(x) = . exp i~u - wR 2 . (D-27)
u

The corresponding characteristic function of sum s is, from

(D-11),
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f NM N) dufu ()--'E(u;&)M (D-28)

Extension to a general mean m and standard deviation a for

original set IXn) is easily accomplished; the result is

exp(i~mM) f s(a).

EXAMPLE 4: h(x) = x2 , p(u) = f(u) for all u.

This example corresponds to the sum of the squares of the M

largest normalized Gaussian random variables. Now, (D-6) yields,

for all u,

E(u;&) = dx exp(ix 2) +(x) =

u

2(1 21 exp(- 2 (1 - i&2)) w(u ( (1 - i&2)½) (D-29)
2(l & )h ( -

The characteristic function of sum s is now given by (D-11) as

f (~) (N-M)(N) Go du*u0(u) N-M-1M

(NM LM f u+u E(u;&) . (D-30)

This result is easily extended to a standard deviation a P 1 for

original set {xn1, namely fs (a 2); however, it is not easily

extended to mean m ; 0.
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The last three examples of characteristic functions rely

heavily on an accurate efficient routine for calculating the

error function of complex argument, w; see (D-24), (D-27), and

(D-29). By contrast, the characteristic function result in

(D-23) for the first example is in closed form. The following

example will demonstrate a possible limitation of a different

kind.

EXAMPLE 5: h(x) = x, p(u) = exp(-u) u K-/(K-1)! for u > 0.

As in (D-22), this is the sum of the M largest random

variables but where the original random variables Ix nI are now

chi-squared with 2K degrees of freedom. Then, (D-6) yields

closed form

E(u;) exp(-u(l-i&)) K- (-i) k
E k= U ki for u > 0 (D-31)(1-i&) K k=0 k

The cumulative distribution function is

K-i k
C(u) = 1 - E(u;0) = 1 - exp(-u) = !I- for u > 0 (D-32)

k=0 k!

Substitution of these results in (D-11) yields the characteristic

function of sum s in the form

K- K- N-M-1
f = (N-M) ()fdu e-u uj, I - e-U =-- U. x

S(K-i)! =0
0

I exp(-u(l-i[)) K- u (l-is) (D-33)
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which must be done numerically for each & of interest. (For K=1,

(D-33) reduces to (D-23).) The latter sum on k in (D-33) is an

alternating one, which could be troublesome for large u and/or [.

A possible alternative is to directly evaluate integral (D-6)

numerically; it is a Fourier transform for this example.

MEANS OF SUM s FOR FOUR EXAMPLES

The mean of sum s defined in (D-2) was given generally by

integral (D-19), in conjunction with (D-17). For example 1, we

find H(u) = e-u (l+u) for u > 0, and ps = M yI, where

N

Y 1 + n N. for k k 1 (D-34)
n=M+1 nk

More generally, the k-th cumulant of sum s for this example,

Xs(k), is given in (A-13).

For example 2, there follows H(u) = 2 e-u (1 + u + u2 /2) for

u > 0, and ps = M(y 1 + y2 ), where we used (A-17) - (A-21). The

results for mean ps, in both of these examples, involve only sums

of positive terms; see (D-34).

For example 3, we have

H(u) = f dx x +(x) = +(u) for all u ,(D-35)

u

thereby giving
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p H (N-H) (N) j du +(u)' f(u)N- [1 -[ _(u)]M-, (D-36)

which must be done numerically.

For example 4, H(u) = u *(u) + 1 - f(u), yielding

(-)(N) j duu+ 0)(u)N-M1 [1 - (u)]M-. (D-37)

Finally, for example 5, we have

K k
H(u) = K exp(-u) > -R for u > 0 , (D-38)

k=0

with mean

K M (N-M) [N) JO du exp(-u(M+i)) K u k+K- ) x

0 k=O

K-i k~ N-H-i - j-
x 1 - e-u = k!. • (D-39)

k=O k=O
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APPENDIX E. RECEIVER OPERATING CHARACTERISTICS

FOR SUM-OF-M-LARGEST PROCESSOR

The sum-of-M-largest (SOML) processor is characterized

according to (28) by the summation

M
v> (E-1>

n=l

Here, random variables jx') are the ordered version of given data

IXn Ifor 1 1 n & N. Summation limit M is a hypothesized or

assumed value for the number of bins occupied by signal. The

actual number of occupied bins is M. The following receiver

operating characteristics (ROC) are plotted for N = 1024, and for

M and M taking on the values listed in (34) and (35),

respectively. The quantity S(dB) is the common value of the

signal power per bin in dB. Since the noise power per bin has

been normalized at unity, S is also the signal-to-noise ratio per

bin. The number of trials utilized for the detection probability

in each case is noted on the individual figure. The false alarm

probability was determined exactly from characteristic function

(29). The bottom-most straight line at 450 corresponds to S = 0,

that is, S(dB) = -= dB; it lies along Pd = Pf"
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APPENDIX F. ON THE CHOICE OF M WHEN M IS KNOWN

The total number of search bins is N, and the number of

occupied signal bins (when signal is present) is M, which is

known. However, the locations L of these M bins are totally

unknown. Under both hypotheses H0 and Hl, the average noise

power in all N bins is 1; under HI, the average signal power in

the M occupied signal bins is common value S, which is unknown.

The GLR test is to sum the M largest values of the input data

IXnI and compare the sum with a threshold. This is equivalent to

ordering the input data into the set jx'), where x' Ž x'+1 for

1 • n S N-i, summing the first M values, and comparing the sum

with the same threshold. Although this test appears to agree

with physical intuition, simulations reveal that better

performance, in terms of Pd versus Pf, are obtained if the

largest M bin outputs are summed, where M is sometimes different

from M. This means that the GLR test is not optimum in this

situation; of course, the GLR procedure makes no claim for

optimality, although it frequently leads to a high quality test.

The explanation and remedy to this apparent discrepancy follows.

Under Ho, the average level of xn is 1. On the other hand,

under H1 , the average level of xn is changed to 1+S in the M

occupied signal bins, but only for these M bins which contain

signal. The remaining N-M bins still have average level 1 under

H . Unfortunately, since the information about which particular

bins are occupied is unknown, we are led to consider the ordered

data jx•), which contain identical information to IXn I under this
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situation. Even if we ignore any guidance from the GLR

procedure, a justification for considering ordered data is that

the presence of signal results in M larger data values on

average, and therefore, larger values should get more weight.

For the ordered data {x'I, the situation regarding average
n#

values is somewhat different. Under H0 , the average level of xn
n

decreases monotonically with n. When signal is added to M bins

under H1 and the data {xn I ordered, the average levels of all N

data values x' are increased, not just the first M bins. In

order to demonstrate this claim, let the first M bins contain the

signal; this is no loss of generality, since we are not going to

use this fact in our data processing. Now, under HI, the act of

ordering the measured data Ixn) evicts some of the smaller signal

members from their initial locations in set [1,M] into new

quarters in the set of numbers [M+1,N] in data sequence {x}l.

Thus, when H is prevalent, the signal addition and bin movement

raises the average levels of {x•l, not just for 1 • n S M, but

also for some n values larger than M. Some examples have shown

increases all the way out to n = N.

For improved performance, we must be willing to look for

average deflections in any and all bins. Therefore, even though

we may know that only M bins are occupied by signal, we must

process M bins of the ordered data IVA1 , where M can be larger

(or smaller) than M, due to the spillover effect described above.

In order to settle on near-optimum values of M to use, it is

necessary to conduct simulations of the receiver operating

characteristics for various combinations of N, S, M, and M.
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