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The dynamic behavior of a perfectly aligned, infinitely long, massiess
\iournal is investigated while it is rotating in a complete bearing under
he influence of external load and fluid pressure forces. Harrison's
classical nonlinear equations describing this condition are analyzed
by phase-plane techniques which result in velocity versus displacement
lots of the journal eccentricity. It is found that the journal is normaily
vtrally stable as exhibited by a center singularity in the phase plane.

n
wuided by the phase-plane analysis, it also seems possible to explain
: the erratic or unstable journal behavior frequently found in journal bear-

ings operating at high rotational speeds and/or light loadings. It is
shown that this instability is also possible at slow speeds and/or heavy

Noading. Examples of phase-plane portraits are presenterd ~- ' these are
orrelated with the physical journal mati~-
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Phase Plane Analysis of Dynamically
Loaded Journal Bearings

NOMENC LATURE
¢ = radial clearance, in.
e = eccentriclty, in.
f£1,f, = nonlinear perturbagions
=a ¢ l2nmur-L
J = a constant, __;f%___, sec,
(J wy = 12 7%s)
L = axial length of the journal, in.
p = fluld pressure psi
r = journal radius, in.
r, = (;2 +3’.2)1/2
R = bearing radlus, 1in.
S = Sommerfeld number, /‘r3 Lay
mc2
t = time, sec
W = magnitude of the load on the journal,
1bs.
X = phase plane co-ordinate = ¢ qe
y = phase plane co-ordinate = J azf
X,y = coe=ordinates to a point in phase plane
measured from singular point
x*,y® - phase plane co-ordinates of a singular
point
X(x,y) = denominator of right-hand side of dif-
ferential equation for integral curves
Y(x,y) = numerator of right-hand side of differ-
entlal equatlon for integral curves
z=x*2
M= fluid viscosity, 1b sec/in.2
g = attitude angle, rad
«w, = rotational speed of jJournal, rad/sec
«, = rotational speed of the load, rad/sec
fl = @ - 2wy, rad/sec
¢ = eccentricity ratio, e/c
0 = subscript denoting initial value

= differentiation with respect to time

In 1920, Harrison (1)° made the first dynamic
analysis of the Jjournal under the influence of
external load and fluild pressure forces. His
classical work results in two well-known equa-
tions of motion [(refer to equations (1) and (2)]
from which important fundamental information has
been derived. Swift (2) and Burwell (3) applied
Harrison's results to several important examples,
and in 1933 Robertson (U4) derived equations of

2 ynderiined numbers in parentheses designate
References at the end of the paper.
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motion that included certain previously neglected
second-order terms. In 1949 Shaw and Macks (5)
gave a rather complete up-to-date summary of the
subject, as well as an extenslve bibllography.

The purpose of this paper 1s to analyze
Harrison's equations by using phase-plane methods
{(resulting in veloclty versus displacement plots
of the Jjournal eccentricity) and by thils treat-
ment acquire greater insight into Journal-bearing
behavior. It 1s belleved that this type of anal-
ysis exhibits previously known Journal-bearing
characteristics more clearly and introauces an
explanation of certain other characteristics
which were previously obscure.

For example, all possible motions of the
Journal that can result from varying such param-
eters as journal rotational speed, load, eccen-
tricity, and so on, are clearly shown. Thus, the
sensitivity of the Journal to the half-frequency
instability 1s bfought out by the insight galned
in studying the effects on the phase-plane plots
of varying these parameters.

ger i N
Fig.1 Journal bearing configuration relative
to fixed point in space

DESCRIPTION OF GENERAL PROBLEM

Equations of Motion

The system considered in this paper is 1i1-
lustrated in Fig.l. The dynamlc equivalent of
this system, shown in Fig.2, regards the load as
fixed and both the bearing and journal as rota-
ting.

The perfectly aligned, infinitely long, mass-
less Journal rotating in a complete bearing while
under the influence of fluld pressure and exter-
nal load forces was analyzed by Harrlson who de-
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rived the equations (reference 5, p. 226)

de 1
cos ¢ = I dt (1)
(1-¢ 2)3/2
dé
in ¢ = 200290 (2)
t2+¢?) V1< 2

where the eccentricity ratlo ¢ = e/c, # is the
attitude angle measured between the load and ec-
centricity vectors, Nl = @) = 2@, and J 1s the
constant

;o lzepriL (3)

W ¢l

Jwy = 12 7°S where S is the Sommerfeld number.
When @ varles with time, df/dt 1s the whirl speed
(see Nomenclature for the definition of other
terms).

If equations (1) and (2) could be solved si-
multaneously, the Jjournal motion would be deter-
mined by the solution functions @(t) and ¢ (t).
Since this does not seem possible, two alterna-
tive procedures would be to either consider the
four-dimensional phase space in the dlsplacements
and velocltles of the two varlables, or to con-
sider simultaneously two separate phase planes.

As the first step towards the latter approach,
equations (1) and (2) may be combined and § elim-

Yerticel Aplorance "

Fig.2 Journal bearing configuration relative
to fixed point on the load vector

inated to make possible the derivation of the
phase plane equations for the ¢ variable (see
Appendix 1), but it does not seem possible to
eliminate € between equations (1) and (2) in or-
der to form the phase-plane equations for the g
variable, However the solution § = #(¢) may be
obtained by elimlnating dt between equations (1)
and (2) (reference 5, p. 358), which would make
possible a point-by-point construction of the f
phase plane from the € phase plane.

In general, 1f the € phase-plane nonordinary
points are first determined, it 1s possible to

2

gain important information about the complete
system by examining the behavior of the deriva-
tives dg/dt and d°g/dt? at those polnts. As will
be seen later, this general approach is simple to
carry out for thils particular system.

Singular, Critical, and Equilibrium Points

Since the procedure followed here will be to
describe the Journal motion from concurrent in-
vestigations of the é phase plane and equations
(1) and (2), it is essentlal to distingulsh be-
tween a mathematical singular point, a critical
point, and a Jjournal equilibrium polint. This 1s
because neilther a singular polnt nor a critical
point for the one-degree-of-freedom & phase plane
is necessarily an equilibrium point for the two-
degree-of -freedom Jjournal motion, For other phe-
nomenon completely describable by one-degree-of-
freedom, critical points are equilibrium points.

Possible indefinitencss can also occur if it
is not realized that although insight useful for
sketching the phase plane "integral curves" (geo-
metrical configurations) may be achieved by in-
vestigating the mathematical singular points of
the phase=-plane equation written as

gx: Y (x, Y) (L")
dx X (%, y)

some of these polnts may not even be critical
polnts of the system written as

¥ T = ixoy)

which define the phase~plane "trajectories." 1In
thls terminology the integral curves of equation
(4) are the same as the trajectories of equation
(5) but lack theilr "time sense" (reference 6, p.
116). The term "singular point" will be used to
designate a nonordinary point on an integral
curve while "critical point" will refer to such
a point on a trajJectory. Each critical point of
equation (5) 1s usually a singular point of equa-
tion (4). 1In all cases the Journal's equilibrium
points are only at the locaticns where

(5)

. dx _
*=4gr -y

de/dt=d?c/dti=dg /dt=d’4/dtd =2
If the following derivative expressions are
formed from equations (1) and (2), the exact lo-
cation of the equilibrium points will be made

clear:
de 1

& =T("‘2)3/2 cos &
dé . Q _gin b (2+¢2) 1.e¢2
dt 3 T3¢
d2e¢ _ _1 2y 3/2 dé
= ¥ [(1-( ) sin ¢ I
1
+3€(1 -¢ )2 cosdg—:]




2
) - . 1 2 dé
av TJ‘[(“‘ — cosé 5T
- 2(4-!2+Z R de
(_-‘-z_(—l-Tmz) sin ¢ (—d—t——’] (6)

Equations (6) show that only the point located

at #§ = n/2, and the particular value of € which
makes df/dt = o 1s an equilibrium point for the
system, At €2 = 1 all derivatives are zero ex-
cept dg/dt, which 1is then equal to §}/2, This is
the half-frequency whirl phenomena which will be
the instabillity encountered at that ¢ phase plane
critical point.

Phase-Plane Equations
The differentlal equatlion defining the radial
motlon of the Journal center 1s

t_‘&+ (7¢242) @s )2
dt2 2e(1-e%) at (7)

23 d 2.2 2
+ ..g.. V(l-e) -(Jd—:—)z_(l-t) (2+¢)=0
2¢€J

where, in accordance wilth the notation introduced
in Appendix 1, 0 =g = 7 and € is positive when
the Jjournal center 1s to the right of the fixed
vertical reference in Fig.2, and negative when
the Journal center 1s to the left of the vertical
reference line. It is understood that this nota-
tion is a mathematlcal convenience only, since a
negative € has no physical meaning.

Equation {(7) may be put in conventional, non-
dimensional phase-plane notatlion and form by let-
ting € = x where -1 < x £ +1 and J d¢/dt = y.
The equations defining the € phase-plane trajec-
torles are then

s-9x 1

Ta 77

s _dy _ -(71x2+2) z
dt 2x (1 -x%) (8)
. R (l-xz)a'-y2 + (1-xz)2£+x2)

2xJ

and the equation defining the £ phase-plane inte-
gral curves may be put 1in the following form:

dy . @ x2+2)y2 - 1axa - N - 2 -y2+(l-x2)3(2+xz)= Y(x y)
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Fig.3 Pk plot forfl = 0

(8). The singular points of the integral curves
are at the locatlons whlch simultaneously make

X(x,y) and ¥(x,y) = 0 1in equation (9). The co-
ordinates of elther type of point are denoted by

(x*,y*). The co-ordinates measured from such a
point are distinguished by a bar. Thus,
R=x-x (10)
— *
Y=y-y

A procedure (outlined below, but which is ex=
plained in detall by Coddington and Levinson,
reference 7) for determining the nature of a cri-

d x ny(l-xz)

All integral curves in the phase plane as defined
by equation (9) will be symmetrical about the x-

axis, but the x in the term contalning the square
root destroys the symmetry about the y-axis.

Evaluation of Nonordinary Points
Critical points in the & phase plane are val-
ues of {x,y) that make X = ¥y = o in equations

X({x, y) (9)

tical point is to filrst transform the phase-plane
equations into those whose co-ordinates are mea-
sured from the critical point (x*,y*) by using
equations (10). The system then considered is
one where thls transformation results in expres-
sions of the form
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Zjz
-

H 4]

(b) Journal Motion

Fig.4 Configurations for{l =n

d
—Zdt = eX+dT+ 1, & T)
(11)
dX _ .= - -
d—t— —ax+by+fl (5'(', Y)

where a,b,c,d are real constants, ad - bc #0 and
£, f2 are real continuous functions deflned
within some circle about (x*,y*) with radius r,
> 0. The furctions f] and f, are called pertur-
bations and the nonlinear system described by
equation (11) is referred to as the system per-
turbed from the linear system given by

d

€Y = ¢xX+4dy

dt (12)
dX - ax+by

dt

After the converslon of f; and f, into polar co-
ordinates, if fi/ro, and f,/r, approach zero as
ro—>0 + the perturbatlons are then guaranteed

to tend to zZero faster than the linear terms in
equation (11). Under these conditlions the behav-
ior of the trajectories of equation (11) near the
critical point are very similar to the behavior
of the trajectories of equation (12). For the
two cases consldered, the theorems given in (7)
are referenced freely in describing the Journal
bearing's phase plane portralts.

THE CASE OF 0} = 0

Phase Plane Portrailts

For the speclal case of the load rotating at
one half the journal speed (N = w, =2w, = 0) or,
equivalently, the case of a nonrotating Journal
acted upon by a nonrotating load, equatilon (7)
reduces to the followlng:

o, 14242 (at)z_u-uz)z @2+ <% _ 4 (13)
at® e -H\at 2e3%

For this case, 1t 1s more meaningful to investi-
gate the equation for the integral curves which,
from equation (13), becomes

ay _-~0xl+2)yir - @ty

= Y by (14)
d x ny(l—'xz)

X (x,y)

where now the phase-plane portralt 1s symmetrical
about both the x and y-axes.

The singular points in equation (14) are at
the four locations (+ 1, 0) and (0, + 1). Al-
though, for completeness, a brief discussion of
these singular points will be given in the next
sectlion, thelr evaluation 1s not necessary in or-
der to obtain the phase=-plane portrait. This is
because equatlion (13) may be integrated once to
yield an explicit equation for the integral
curves and, when the constant of integration 1is
zero (x, = 0), 1t may be integrated agaln to give
X as a function of time., The result of the first
integration (see Appendix 2) is

2 2,3 2,9/2
2. X [Yoz . “"‘o)] U X 0 -x33(15)
1 -x2 92 3
- xg

x

Yy

From equation (15) 1t is seen that the integral
curves meeting the y-axis will be given by

y=‘:(l-xz)3/z (16)

Equatlon (16) defines the boundary of a closed
area. Each boundary arc connects singular points
and 1s called a separatrix arc. It 1s easily
seen that all physically meaningful integral
curves must lie 1nside the bounda7¥ defined by
equat107 (16), for if y > (1-x2)3 or y< =
(l-xz)3 2. then equation (1) would imply cos g>
1 or cos < =1. Moreover, the difference be-
tween the ordinate of an integral curve beglinning
inside the separatrices and the ordinate of a
separatrix itself remains finite and tends to
zero only at the singular points (+ 1, O). The
integral curves are tangent to the separatrilxes
at (+ 1, 0), but they do not touch them at any
other point. Fig.3 shows integral curves plotted
from equation (15).

Under zero initial condltions the solution
of equation (16) is




x= ——t_— (17)

which gives the change in € with time along a
separatrix arc (trajectory).

Examination of equations (1) and (2) reveals
how # variles with time along a separatrix arc,
For convenlence express equation (1) and (2) in
phase=plane notation, thus

= (18)
cos ¢ 7;7{?737?
dé
Ix (8- 23¢7) (19)
@+ x2)\ - x%

When § = 0 and 7 equation (18) reduces to equa-
tion (16). When # = 0 or m equation (19) re-
quires dg/dt = 0 for fi= 0 and ¥ < x < 1. The
separatrix arc between (0, +1) and (+1, 0) is the
integral curve along which @ = 0 and dg/dt = 0
while the path between (1,0) and 0, -1) requires
# = m and d@/dt = 0. Similar statements apply to
the negative half plane.

The physical interpretation of Jjournal behav-
lor can be most easily explained by referring to
Fig.4. As trajectory A,B,C,D in PFig.4(a) is tra-
versed in the phase plane, tihe Journal travels
vertically down from wall contact at @ = 7 to
wall contact at # = 0. For other trajectories
such as A,J,K,D, the journal motlion is to the
right of the vertical reference as indicated in
Fig.4(b). Paths are to the left of the vertical
reference for trajectories such as E,M,N,H. This
type of Journal behavior has been previously com-
puted and sketched by Swift (reference 5, p. 222).

oin ¢

dy _ - (x2+2)y% - 3ax(1 - x) M1 - x
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Fig.5 Center singularity location versus J {3

THE CASE OF L 7# 0

Singular Points in the Phase Plane
In general, £ # 0 and the integral curves are
defined by .

-y" s -x®32ex?) _ Yixy)

dx 2xy {1l -x

Phase-Plane Nonordinary Points

Among the four nonordinary points of equatlon
{14), only those at (+ 1, 0) are critical points
and, from equation (6), these points are equilib-
rium points for the system. The theorems of
Coddington and Levinson (1) indicate unstable
"node-like" critical points at (+ 1, 0) and "sad-
dle like" singularities at (0, + 1).

The case of fl= 0 is, by 1tself, of only
slight Interest, but 1t does serve as a founda=-
tion for the more involved case of 1 # 0. In ad-
dition, it gives an 1ndication of the Journal be-
havior as 1t slows down for stopping (irw2 = 0),
or as the load rotational speed approaches one
half the Journal rotational speed.

2)

T X, y)

which has singular points at (0, + 1) and at the
points along the x-axis where

2 5/2
1-x) [..mx* voa-

2
<z+x*)]= 0 (20)
Equatlon (20) yields the singular points at (+ 1,
0), and a fifth singularity whose x¥* locatilon 1s
contalned in the solution of the cubic equation
21
234322432922 - 4=0 (21)
where z = x%2, C(Consideration of equation (21) in
the root locus form

2 A2
1+ Jzn LI S (22)
z {(z+ 3)

shows that it will always have a positive z root

5
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(a) Phase Plane
Fig. 6 Configurations for large values of J 4’1

located between z = 0 and z = 4/J2 02, For val~
ues of JSL>6, x* is closely approximated by
x*=2/JQ for JQ) > 6, {23)

where only the positive sign resulting from Zl/2

satisfies equation (20).” The values of x¥* sate
i1sfying equation (20) are plotted in Fig.5 which
is the familliar Sommerfeld eccentricity curve de-
fining the equilibrium position. Thus the singu-
lar points for SL 70 include those for fL.= 0 plus
a fifth point. Before investigating the nature
of these singular points, it is deslrable to ex-
amine equations {18) and (19) under conditions
when Q%= 0

cos b = Y (18)
(l _x2)3/2
sin § = Jx(ﬂ-zg-té) (19)

(2+x2) Vl --x2

For § = 0 and n equation {18) reduces to equation
(16), which from equation (9), is also an inte-
gral curve of the € phase plane as in the case of
fl = 0. The right side of equation (19) can then
only be zero when df/dt = /2 (for x 0 and £
#0), which implies £ changing ith time. There-
fore, the separatrix arc defined by equation (16)
1s no longer a physically possible continuous
trajectory as in the case of Sk = 0, but only
points along 1t are possible instantaneously when
dg/dt passes through /2.

Determination of the Type of Singular Points

The application of the techniques described
by Coddington and Levinson (7) to equatilons (8)
reveals the following:

1 The critical points at (+ 1,0) are of
higher order as was true in the case £ = 0, but
after dividing by y the perturbations fy, f, fail
to approach zero in the required manner. There-
fore, the exlsting theory cannot explain theilr
type. However, it is known from equation (6)
that these € phase-plane critical points define

6
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(b) Journal Motion

the half-frequency whirl phenomenon.

2 The singularities at (0, 4+ 1) are the
"saddle like" type identical to those at the same
locatlons for the case of S = 0,

3 The new critical point (also the equilib-
rium point) at x*¥ = 2/3 1 is a center for the
linear case, and 1s elther a spiral point or cen-
ter for the nonlinear case (reference 7, p. 382,
Theorem 4.1). Since equation (9) 1is symmetrical
about the x~axls, thls critical point must be a
center for the nonlinear case also. A center 1s
symmetrical -- a spiral point 1s not. Closed
trajectories indicating neutral stability will
surround this center in the phase plane. Thus,
if the journal were disturbed slightly, The re-
sulting motion would be continuously oscillatory,
corresponding to the case in a linear system of
conjugate complex roots on the imaginary axis.

Journal Behavlor for Varilous Values of JJSL

If equation (19) 1s divided by JN, and Jit
1s considered large, the conclusion is that x
must be small in order to satisfy the resulting
equatlon, provided (2/) (df/dt) may be neglected
in comparison with one. For small values of x,
equation (9) becomes

dy . -Zyz-JQx Vl-yz +2
dx 2xy

(24)

Equation (24) has singular points at (0, + 1) and
(2/39 0), which agrees with the results found

previously near x = 0. Moreover, the singularity
at x = 2/JfL1s a center, and trajectorles around
the center reach their absolute y value when dy/
dx = 0 in equation (24). This occurs at y = + 1.

5 If £ were negatlve, only the negative x¥* would

satlsfy equation {(20), but only positiveSl-values
are consldered in this analysis. If the effec-
tlve rotational speed of the Journal were in the
opposlte direction, the results would be symmet-
rical.




(a) Phase Plane
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(b) Journal Motion

Fig.7 Configurations for small values of ] £

Near y = + 1, # is near O and m, respectively.
For high values of JJLthe Jjournal, if disturbed,
whirls at very small eccentricity ratios with at-
titude angles continuously changing and approach-
ing very close to gero and 7.

Fig.6(a) shows a sketch of the phase=plane
portralt taken from IBM 650 computer solutions
of equation (9). The left half plane of Fig.6(a)
is similar to that for the case of L = 0. As
trajectory A,B,C,D,E,F is traversed in Fig.6(a),
the corresponding physical Jjournal motlon 1s pic-
tured in Fig.6(b). When the Journal is located
at elther B or E, any slight disturbance due to
forces not consldered in this analysis could
cause the Journal to Jump into a trajectory lead-
ing toward the half-frequency whirl singularity
at G.

Possible confusion as to the Interactlon of
the negative and positive half-phase planes 1n
Fig.6(a) may be clarified by visualizing the neg-
ative half-plane folded about the vertical y-axils
onto the positive half-plane. This type of men-
tal image 1s important when considering cases
where trajJectories pass close to (+1, 0) due to,
for example, low values of Jil, Fig.7 1s similar
in interpretation to Fig.6 with the exception
that the possibllity of travel to the unstable
singularity occurs at an eccentricity ratio near
1.

With the aid of equation (3), it 1s seen that
large values of JJSL may occur because of high ef-
fective journal speeds and/or light journal loads.
Other factors influence J, such as viscosity,
c/r, and so on. It 1s also worth while to note
that since the Journal attitude angle must reach
0 or w for the Journal to pass lnto the unstable
left half=-phase region, a Journal that possesses
both large J (light loading) and highf--1s in a
particularly vulnerable posltion. This 1s be=-
cause § = 0, 7 at y = J(de/dt) = 4 1, and for
high J the eccentricity veloclty necessary for
g =0, 7 1s small. This deduction gives impor-
tant insight into Journal bearing stabllity.

SUMMARY AND CONCLUSIONS

On the basis of the assumptions made in this
analysls, 1t appears possible to conclude the
following:

1 Complete Jjournal bearings with continuous
films subjected only to external load and fluld
pressure forces are at best neutrally stable.

2 For Jjournal bearlngs operating at high ef-
fective rotational speeds or large values of J
(1ight loadings), the likelihood of unstable mo~
tion appears strong if the journal 1s acted upon
by a sudden disturbance. Thils 15 especlally true
when the comblnation of both high speed and large
J=values exist.

3 Unstable motion of the journal bearing can
also occur at very low values of J11,
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APPENDIX 1
Equations (1) and (2) are of the form:

. (25)
t

[o ¥

f

|

cos &

Q.

dg (26)
dt

where f, g, and k are functions of é¢ and con-
stants. Before combining equations (25) and (26)
and eliminating @, it 1s convenient to restrict
¢ to the interval O = g =m and allow € to take
on any of the values in the interval - 1< x <1,

To show that equations (1) and (2) are unchanged
by thils restriction, defilne

sin £ =

[’}
|
~

4 = % when0 < ¢ n
g -~-wwhenx ¢ g2

¢’ = € whenO0&gim
-« whenw £ 4 £ 2«

where 0= f =27 and 0=€ <1, If 0=g =7,
equations (1) and {2) are clearly unchanged. If
n< f <27, then cos = = cos @, sin #’= - sin
g, a€’/at = - defdt, dg’/dt = dg/dt, and €= -& .,
Substitution of these into equations (1) and (2)
ylelds equations in #’ and &/ which are of the
same form. The advantage of this transformation
1s that sin §/ = + (1 - cos2 $”)/2 and the am-
biguous minus sign is eliminated.

From equation (25) sin # 1s derived from the

right triangle which gives
sing = [1-ag?] 2

Ir equation (25) 1is differentiated with re-
spect to time, there results

2
S R R

d t

(27

(28)

Multiplying both sides of equation (26) by sin ¢
glves 4
sind = gsing - ksing gté (29)

Substitution of equation (27) and (28) into equa-
tion (29) and rearranging terms gives

2

d®e d d e
kf + ko— =

aez "*ae d

+8 \/"‘7"::” -1=0

After the indicated differentiation and substitu-
tions are performed, equation {30) reduces to
equation (7).

Laad

r4
2, d.
vy (30)

APPENDIX 2

Equation (13) 1is

a2 4 (1¢%42) (Lef (13)
at?  2e€{1-¢2 \ay
(-3 (el Ly
2 eJ2
Let .
(d‘ = !z=v,
Then dt .
a2¢ _ 1 d¢” _ 1 dv
Qi T2 qe 2 d
Equation (13) becomes
dv + ef+2) . . (1-¢3? (2+¢} (31)
rpt v e A 72

which 1s a linear differential equation in v
whose solution, placed in phase-plane notation,
reduces to equation (15).




