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Phase Plane Analysis of Dynamically
Loaded Journal Bearings H. T. ALBACHTEN

NOMENCLATURE motion that included certain previously neglected

second-order terms. In 1949 Shaw and Macks (5)
c = radial clearance, in. gave a rather complete up-to-date summary of the

e = eccentricity, in. subject, as well as an extensive bibliography.

fl,£2 = nonlinear perturbations The purpose of this paper is to analyze

J = a constant, 121rn4r
3 L, sec, Harrison's equations by using phase-plane methods

Wc2  (resulting in velocity versus displacement plots

(J "l = 12 iT
2 S) of the journal eccentricity) and by this treat-

L = axial length of the journal, in. ment acquire greater insight into journal-bearing

p = fluid pressure psi behavior. It is believed that this type of anal-

r = journal radius, in. ysis exhibits previously known journal-bearing

ro = (i 2 + 2 )1/2 characteristics more clearly and introauces an

R = bearing radius, in. explanation of certain other characteristics

S = Sommerfeld number, utr 3 Lwl which were previously obscure.

irWc
2  For example, all possible motions of the

t=time, sec ofjournal that can result from varying such param-

eters as journal rotational speed, load, eccen-
lb. mtricity, and so on, are clearly shown. Thus, the
lbs.

sensitivity of the journal to the half-frequencyx = phase plane co-ordinate =
de instability is bbought out by the insight gainedy = phase plane co-ordinate = J
dt in studying the effects on the phase-plane plots

x,y = co-ordinates to a point in phase plane of varying these parameters.

measured from singular point
x*,y* = phase plane co-ordinates of a singular

point
X(x,y) = denominator of right-hand side of dif-

ferential equation for integral curves //

Y(x,y) = numerator of right-hand side of differ-

ential equation for integral curves

Z = X*
2

,A= fluid viscosity, lb sec/in. 2

0 = attitude angle, rad

= rotational speed of journal, rad/sec

"'2 = rotational speed of the load, rad/sec \
,= Gd1 - 2 W2 , rad/sec Fig. 1 Journal bearing configuration relative

= eccentricity ratio, e/c to fixed point in space

o = subscript denoting initial value

* = differentiation with respect to time

In 1920, Harrison (1)2 made the first dynamic DESCRIPTION OF GEERAL PROBLEM

analysis of the journal under the influence of
external load and fluid pressure forces. His Equations of MotionThe system considered in this paper is Ii- 0S
classical work results in two well-known equa- lustrated in Fig.l. The dynamic equivalent of
tions of motion [(refer to equations (1) and (2)1 this system, shown in F3g.2, regards the load as

from which important fundamental information has

been derived. Swift (2) and Burwell (3) applied ti nda

Harrison's results to several important examples, T....
and n 133 oberson(4)derved quaion ofThe perfectly aligned, infinitely long, mass-

less journal rotating in a complete bearing while
2 Underlined numbers in parentheses designate under the influence of fluid pressure and exter- Jes

References at the end of the paper. nal load forces was analyzed by Harrison who de- ar



rived the equations (reference 5, p. 226) gain important information about the complete

d a system by examining the behavior of the deriva-

Codt tives dO/dt and d 2o/dt 2 at those points. As will
. a Z3/Z be seen later, this general approach is simple to

4 d -2 d( carry out for this particular system.
• .•= *.(-z•-) (2)

( 2 + 2 2) F1 - Singular, Critical, and Equilibrium Points
where the eccentricity ratio & = e/c, $ is the Since the procedure followed here will be to

attitude angle measured between the load and ec- describe the journal motion from concurrent in-
centricity vectors, -If = -• " 2 " 2 and J is the vestigations of the t phase plane and equations

constant (1) and (2), It is essential to distinguish be-

tween a mathematical singular point, a critical
12 p JL( point, and a journal equilibrium point. This is

because neither a singular point nor a critical

J = 12 iT2 S where S is the Sommerfeld number, point for the one-degree-of-freedom ý phase plane

When $ varies with time, d$/dt is the whirl speed is necessarily an equilibrium point for the two-

(see Nomenclature for the definition of other degz-ee-of-freedom journal motion. For other phe-

terms), nomenon completely describable by one-degree-of-

If equations (1) and (2) could be solved si- freedom, critical points are equilibrium points.

multaneously, the journal motion would be deter- Possible indefiniteness can also occur if it

mined by the solution functions 0(t) and 6 (t). is not realized that although insight useful for

Since this does not seem possible, two alterna- sketching the phase plane "integral curves" (geo-

tive procedures would be to either consider the metrical configurations) may be achieved by in-
four-dimensional phase space in the displacements vestigating the mathematical singular points of
and velocities of the two variables, or to con- the phase-plane equation written as

sider simultaneously two separate phase planes. = ( Y) (4)
As the first step towards the latter approach, dx X (X, y)

equations (1) and (2) may be combined and $ elim-

some of these points may not even be critical

points of the system written asd x (5)
S1 = - Y

which define the phase-plane "trajectories." In

this terminology the integral curves of equation

(4) are the same as the trajectories of equation

(5) but lack their "time sense" (reference 6, p.
116). The term "singular point" will be used to
designate a nonordinary point on an integral
curve while "critical point" will refer to such

a point on a trajectory. Each critical point of
equation (5) is usually a singular point of equa-

Fig. 2 Journal bearing configuration relative tion (4). In all cases the journal's equilibrium
to fixed point on the load vector points are only at the locations where

d' /dt-- d2 /dt2 = d6/dt = d2o/d t2

inated to make possible the derivation of the If the following derivative expressions are

phase plane equations for the e variable (see formed from equations (1) and (2), the exact lo-

Appendix 1), but it does not seem possible to cation of the equilibrium points will be made

eliminate & between equations (1) and (2) in or- clear:

der to form the phase-plane equations for the $ d I cos
variable. However the solution% = 0(t) may be =t 2)

d 6• -sin t•( +tz ~ -•-E
obtained by eliminating dt between equations (1) d t z z
and (2) (reference 5, P. 358), which would make

possible a point-by-point construction of the 0 d2 4 2) d3/2

phase plane from the f phase plane. 1
In general, if the 6 phase-plane nonordinary + 3 4 (1 - 2)'2 C dr

points are first determined, it is possible to dtc

2



d Zi 1 (2+ 47S= 2-'- - o - -•-

(264 -62÷ dC 1

2 ( a + Z i2~ sin (d 6

Equations (6) show that only the point located [ 9

at = Tr/2, and the particular value of 6 which --

makes d$/dt = o is an equilibrium point for the 0.8 -

system. At 42 = 1 all derivatives are zero ex- -

cept d$/dt, which is then equal to J)-/2. This is 0.7 -

the half-frequency whirl phenomena which will be

the instability encountered at that t phase plane \

critical point. I_

Phase-Plane Equations 0.5

The differential equation defining the radial -

motion of the Journal center is o.4_-- -

d2' (7a2+ 2) 2
dtZ 26(1-6)(7) '0.3-

+ al V( 2 3 de 2 1 .2)2 2 )
- _--- o 0.2

2'JZ

where, in accordance with the notation introduced 0 _

in Appendix 1, 0 t 0 i: and E is positive when

the Journal center is to the right of the fixed

vertical reference in Fig.2, and negative when 0

the Journal center is to the left of the vertical

reference line. It is understood that this nota- Fig. 3 Ph D1ot forJ1 = 0

tion is a mathematical convenience only, since a

negative e has no physical meaning.

Equation (7) may be put in conventional, non- (8). The singular point& of the integral curves

dimensional phase-plane notation and form by let- are at the locations which simultaneously make

ting E = x where -1 5-ý x t= +1 and J d6/dt = y. X(x,y) and Y(x,y) = 0 in equation (9). The co-

The equations defining the E phase-plane trajec- ordinates of either type of point are denoted by

tories are then (x*,y*). The co-ordinates measured from such a

point are distinguished by a bar. Thus,
-=dx I

xdt =J X= -X (10)
d y -(7Z +Z) Y y- y*

d t 2 X (I - x ) (8)
A procedure (outlined below, but which is ex-

- Vh I - X - y + (I - A? (Z + plained in detail by Coddington and Levinson,

2 x J reference 7) for determining the nature of a cri-

and the equation defining the 6 phase-plane inte-

gral curves may be put in the following form:

Y_. -7x+ )y 2-n JO X- X) 2 4 - z7), !+( 3(z+ Z') (.)
d x 2xy (I - x ) X(x y)

All integral curves in the phase plane as defined

by equation (9) will be symmetrical about the x-

axis, but the x in the term containing the square tical point is to first transform the phase-plane

root destroys the symmetry about the y-axis. equations into those whose co-ordinates are mea-

sured from the critical point (x*,y*) by using

Evaluation of Nonordina.ry Points equations (10). The system then considered is

Critical points in the & phase plane are val- one where this transformation results in expres-

ues of (x,y) that make ;i = = o in equations sions of the form
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Fig. 4 Configurations forfl =

c 7+ d 7+f 2 (i MR _) !!y~. (7x2 +2) Y2 +(1x2 ) 3(2 + X ) y (x, y) (14)

dt (11) dx Zxy(l 0x ) X (xy)

d a - + b V + f y) where now the phase-plane portrait is symmetrical
d t

where a,b,c,d are real constants, ad - bc •e0 and about both the x and y-axes.

fl, f are real continuous functions defined The singular points in equation (14) are at

within some circle about (x*,y*) with radius r. the four locations (± 1, 0) and (0, + 1). Al-

> 0. The functions f, and f 2 are called er_•tur- though, for completeness, a brief discussion of

bations and the nonlinear system described by these singular points will be given in the next

equation (11) is referred to as the system per- section, their evaluation is not necessary in or-

turbed from the linear system given by der to obtain the phase-plane portrait. This is
because equation (13) may be integrated once to

_+= c+d yield an explicit equation for the integral
dt (12) curves and, when the constant of integration isdx -

- = ax+by zero (xo = 0), it may be integrated again to give
dt x as a function of time. The result of the first

After the conversion of f, and f 2 into polar co- integration (see Appendix 2) is

ordinates, if fl 1/ro and f 2 /ro approach zero as Z )

re--i 0+ the perturbations are then guaranteed y x X Ye - (I Mxu0 )3 j (1 - x)) 3/5

to tend to zero faster than the linear terms in (I -X z) 9/2 x 2

equation (11). Under these conditions the behav-

ior of the trajectories of equation (11) near the Fromequation (15) it is seen that the integral

critical point are very similar to the behavior c m t xi 3il bgv b

of the trajectories of equation (12). For the Y = ÷ ( - XZ) 3/2 (16)
two cases considered, the theorems given in (I) Equation (16) defines the boundary of a closed

are referenced freely in describing the journal area. Each boundary arc connects singular points

bearing's phase plane portraits, and is called a separatrix arc. It is easily

seen that all physically meaningful integral

THE CASE OF O = 0 curves must lie inside the boundarl defined by

equatio 2 (16), for if y > (l-x2) 3 /2 or y < -

Phase Plane Portraits (l-x2)3 , then equation (1) would imply cos 0>

For the special case of the load rotating at 1 or cos < - 1. Moreover, the difference be-

one half the journal speed (11 = -l -2 ('2 = 0) or, tween the ordinate of an integral curve beginning

equivalently, the case of a nonrotating journal inside the separatrices and the ordinate of a

acted upon by a nonrotating load, equation (7) separatrix itself remains finite and tends to

reduces to the following: zero only at the singular points (+ l, 0). The

-+ 74?+2 ( d )Z (1 Z2) 2z+ )2 (13) integral curves are tangent to the separatrixes

dt z .•)zd )2= 0 at (±. 1, 0), but they do not touch them at any
other point. Fig.3 shows integral curves plotted

For this case, it is more meaningful to investi- from equation (15).

gate the equation for the integral curves which, Under zero initial conditions the solution
from equation (13), becomes of equation (16) is

4



X t t (i7)
VY2 r+ T2

which gives the change in 6 with time along a

separatrix arc (trajectory). 0.9-

Examination of equations (1) and (2) reveals

how 0 varies with time along a separatrix arc.

For convenience express equation (1) and (2) in 0.8-

phase-plane notation, thus

coo = Y (18)(z -x2 3/z\. ...2-
d6A 0.6-

@in6, 1 x(a-2U) (19) \
(2 +Xz )vi- __XT0.5-

When ( W =0 and w equation (18) reduces to equa-

tion (16). When $ = 0 or 7T equation (19) re- 0.4- -

quires dO/dt = 0 for A= 0 and 0 < x <l. The

separatrix arc between (0, +1) and (+l, 0) is the 0.3- -

integral curve along which $ = 0 and d$/dt = 0. ....

while the path between (1,0) and 0, -1) requires 0.2-

$ = n and d$/dt = 0. Similar statements apply to

the negative half plane.

The physical interpretation of journal behav-
ior can be most easily explained by referring to

Fig.4. As trajectory A,B,C,D in Fig.4(a) is tra-

versed in the phase plane, tne journal travels 0 4 8 12 16 20 24 28

vertically down from wall contact at $ = w to A

wall contact at $ = 0. For other trajectories Fig. 5 Center singularity location versus J

such as A,J,K,D, the journal motion is to the

right of the vertical reference as indicated in

Fig.4(b). Paths are to the left of the vertical THE CASE OF Ai.7L 0

reference for trajectories such as E,M,N,H. This

type of journal behavior has been previously com- Singular Points in the Phase Plane

puted and sketched by Swift (reference 5, p. 222). Ingular Points in t he PneIn general, At 0 and the in~tegral curves are

- defined by

dV _ (7x+2)y 2  x ) i x) - y + (1 - x) 3 (2+x) Y(xy) (9)
2 xy ( 1 - x2x) X(x, y)

which has singular points at (0, + 1) and at the
Phase-Plane Nonordinary Points

points along the x-axis where
Among the four nonordinary points of equation p a + (x wher(

(14), only those at (+ 1, 0) are critical points (1 -x z 51 _ 0Tx* + 0 - X.2) 1/2 (Z + x*Z) o (20)

and, from equation (6), these points are equilib-

rium points for the system. The theorems of Equation (20) yields the singular points at (+ 1,

Coddington and Levinson (1) indicate unstable 0), and a fifth singularity whose x* location is

"node-like" critical points at (+ 1, 0) and "sad- contained in the solution of the cubic equation

die like" singularities at (0, + 1). z3+ 3z2+ J2 (21)
The case of fL- 0 is, by itself, of only az - 4 = 0

slight interest, but it does serve as a founda- where z = x* 2 . Consideration of equation (21) in

tion for the more involved case of flA- 0. In ad- the root locus form

dition, it gives an indication of the journal be- +2 a 2 z - 4

havior as it slows down for stopping (if w2 = 0), z z 3 ) (22)
or as the load rotational speed approaches one

half the journal rotational speed, shows that it will always have a positive z root

5
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Fig. 6 Configurations for large values of J 11

located between z = 0 and z = 4/J2 11.2. For val- the half-frequency whirl phenomenon.

ues of JfL _6, x* is closely approximated by 2 The singularities at (0, + 1) are the

x = f/JQ for JQ -l 6. (23) "saddle like" type identical to those at the same

where only the positive sign resulting from Z1/2 locations for the case of fl.= 0.
3 The new critical point (also the equilib-

satisfies equation (20).3 The values of x* sat- rium point ats oatceterufr ith

isfying equation (20) are plotted in Fig.5 which lin a caset a nd is e it a spi r p or ce

is the familiar Sommerfeld eccentricity curve de- ter for the nonlinear case (reference 7, p. 382,

fining the equilibrium position. Thus the singu- teore 4.) line e (9) is Pymeria

larpoits or lL-?L 0 nclde hoe fr _L =0 pus Theorem 4.1). Since equation (9) is symmetrical
lar points for Bo include those foref-= 0 plus about the x-axis, this critical point must be a
af fthese pint.lar Borets, in tigatsinte nturex center for the nonlinear case also. A center is
of these singular points, it is desirable to ex- smercl- prlpiti o.Coe

amine equations (18) and (19) under conditions trajetries indicating int sta wll
when l. 0trajectories indicating neutral stability will

when f #= 0 surround this center in the phase plane. Thus,

coo 6 = y23 (18) if the journal were disturbed slightly, fhe re-

S-2sulting motion would be continuously oscillatory,

d,• corresponding to the case in a linear system of
sinS = J x (0 - 2 at) (19) conjugate complex roots on the imaginary axis.

(2 + X2) V4j__jX
Journal Behavior for Various Values of J•l.

For • = 0 and n equation (18) reduces to equation J f eqation (19 is Vided by JA

(16), which from equation (9), is also an inte-
is considered large, the conclusion is that x

gral curve of the E phase plane as in the case of
must be small in order to satisfy the resultingfl= 0. The right side of equation (19) can then

only be zero when d$/dt = a/2 (for x--# 0 andfA equation, provided (2/A) (d%/dt) may be neglected
in comparison with one. For small values of x,*•0), which implies % changing 'rith time. There-

fore, the separatrix arc defined by equation (16) equation (9) becomes

is no longer a physically possible continuous !y _ - 2Y -JOx Vi + 2 (24)

trajectory as in the case offl = 0, but only dx 2 x y
points along it are possible instantaneously when
d/dtEquation (24) has singular points at (0, + ) and

(2/JJIl 0), which agrees with the results found

Determination of the Type of Singular Points previously near x = 0. Moreover, the singularity

The application of thetechniques described at x = 2/Jis a center, and trajectories around

q(8) the center reach their absolute y value when dy/
byveas dithoanlewing n tdx = 0 in equation (24). This occurs at y = + 1.reveals the following:

1 The critical points at (± 1,0) are of

higher order as was true in the case f = 0, but 3 If S1 were negative, only the negative x* would
after dividing by 7 the perturbations fl, f 2 fail satisfy equation (20), but only positimves-values

to approach zero in the required manner. There- are considered in this analysis. If the effec-
fore, the existing theory cannot explain their tive rotational speed of the journal were in the

type. However, it is known from equation (6) opposite direction, the results would be symmet-
that these 6 phase-plane critical points define rical.

6



(a) Pha s Plane (b) Journal Motion

Fig. 7 Configurations for small values of J S1

Near y = + 1, $ is near 0 and vr, respectively. SUMMARY AND CONCLUSIONS

For high values of JJI-the journal, if disturbed,

whirls at very small eccentricity ratios with at- On the basis of the assumptions made in this

titude angles continuously changing and approach- analysis, it appears possible to conclude the

ing very close to zero and ir. following:
Fig. 6 (a) shows a sketch of the phase-plane 1 Complete journal bearings with continuous

portrait taken from IBM 650 computer solutions films subjected only to external load and fluid

of equation (9). The left half plane of Fig.6(a) pressure forces are at best neutrally stable.

is similar to that for the case of i = 0. As 2 For journal bearings operating at high ef-

trajectory A,B,C,D,E,F is traversed in Fig. 6 (a), fective rotational speeds or large values of J

the corresponding physical journal motion is pic- (light loadings), the likelihood of unstable mo-

tured in Fig.6(b). When the journal is located tion appears strong if the journal is acted upon

at either B or E, any slight disturbance due to by a sudden disturbance. This is especially true

forces not considered in this analysis could when the combination of both high speed and large

cause the journal to jump into a trajectory lead- J-values exist.

ing toward the half-frequency whirl singularity 3 Unstable motion of the journal bearing can

at G. also occur at very low values of J11.

Possible confusion as to the interaction of

the negative and positive half-phase planes in ACKNOWLEDGMENTS
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where trajectories pass close to (+1, 0) due to, work.

for example, low values of jAL. Pig.7 is similar

in interpretation to Fig.6 with the exception REFERENCES

that the possibility of travel to the unstable

singularity occurs at an eccentricity ratio near 1 W.J. Harrison, "The Hydrodynamical Theory

1. of the Lubrication of a Cylindrical Bearing Under

With the aid of equation (3), it is seen that Variable Load, and of a Pivot Bearing," Transac-

large values of JAL may occur because of high ef- tions of the Cambridge Philosophical Society,

fective journal speeds and/or light journal loads. vol. 22, 1920, pp. 373-388.

Other factors influence J, such as viscosity, 2 H.W. Swift, "Fluctuating Loads in Sleeve

c/r, and so on. It is also worth while to note 3earings," Journal of the Institution of Civil

that since the journal attitude angle must reach Engineers, vol. 5, 1937, PP. 161-195.

0 or n for the journal to pass into the unstable 3 J.T. Burwell, "The Calculated Performance

left half-phase region, a journal that possesses of Dynamically Loaded Sleeve Bearings," Journal

both large J (light loading) and high-SL is in a of Applied Mechanics, Trans. ASME, vol. 69, 1947,

particularly vulnerable position. This is be- pp. A231-A245.

cause 0 = 0, n at y J(de/dt) = ± 1, and for 4 D. Robertson, "Whirling of a Journal in a

high J the eccentricity velocity necessary for Sleeve Bearing," Philosophical Magazine, vol. 15,

S - 0, w is small. This deduction gives impor- January 1933, pp. 113-130.

tant insight into journal bearing stability. 5 M.C. Shaw and E.F. Macks, "Analysis and

7



lubrication of Bearings," McGraw-Hill Book Co., right triangle which gives

Inc., New York, N.Y., 1949. = s$ -( 2]1/2 (27)
6 E. Leimanis and N. Minorsky, "Dynamics dtJ

and Nonlinear Mechanics," John Wiley & Sons, New If equation (25) is differentiated with re-
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Substitution of equation (27) and (28) into equa-

APPENDIX 1 tion (29) and rearranging terms gives
d2. d f d• .Zd

Equations (1) and (2) are of the form: kf d24 +kdf d + fz(dt 30dt t dt dt (30)

d (25) 21) 1i0
COS = - + g \1 - ý(; )z

dt dt

sin = g4-k (26) After the indicated differentiation and substitu-
tions are performed, equation (30) reduces to

where f, g, and k are functions of & and con-
stants. Before combining equations (25) and (26)
and eliminating 0, it is convenient to restrict
0 to the interval 0 !s $ -Sr and allow ( to take APPENDIX 2
on any of the values in the interval - 1 !_ x t-Sl.

To show that equations (1) and (2) are unchanged Equation (13) is
by this restriction, define d2, +(7 2 + 2) (d, 2  (13)

= 4 when O - 64w dt2 Zt ( "1-2" (dt 2

= -wwhen v 4 26 w _ (12 2) (Z+ ) =f
2 2Jz

R when 0 4 6 4 , Let
-a wheni 4 2vd

where 0:!!E _ 21r and 0 ---. If 0 i ri iT, Then dt d I d v
equations (1) and (2) are clearly unchanged. If - - - z

iT4_ 0 1_2n, then cos - cos 0, sin 0'= - sin

0, dC'/dt = - df/dt, do'/dt = d$/dt, and 6'= -E . Equation (13) becomes
Substitution of these into equations (1) and (2) dv + (2 -7 ))2 (2+' (31)
yields equations in 0' and k' which are of the d V )( -) 23 +

same form. The advantage of this transformation

is that sin 0' = + (1 - Oos 2 01)l/2 and the am- which is a linear differential equation in v
biguous minus sign is eliminated, whose solution, placea in plase-plane notation,

From equation (25) sin $ is derived from the reduces to equation (15).
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