
REPORT DOCUMENTATION PAGE Form Approved IT

IOPM No.AoAD A 8t7 imated to average I hour per reqwone, Including the drne for reviewng Insitdos. sarcin ... = 1,nqclAD - 285 574 viewing the collection of informiation. S"n commentsl regadlng tis1 burden, to Watshlngton Headquarters

Agn DDA 28555711111111li JIIll I11111 lii!!Ill I" -c • o .'- - • • = .= , . . . • . .
"' .REPORT 3. REPORT TYPE AND DATES

4. TITLE AND: Alsys Corporation, Comrpler: AlsyCOMP_17 Version 5.4.10 5. FUNDING
Host: VAXstation 4000 Model 60 (under VAX/VMS V 5.5-2)
Target: INMOS T9000 transputer Gamma D02 installed on an INMOS VME
TestBoard (Bare), VC#: 940826N1.11375

6. Authors: The Naitonal Computing Centre, Ltd.

7. PERFORMING ORGANIZATION NAME (S) AND: 4 . PERFORMING
The National Computing Centre, Ltd. RGANIZAT"ON
Oxford Road
Manchester M1 7ED
England

9. SPONSORING/MONITORING AGENCY NAME(S) AND: 10. SPONSORING/MONITORING
Ada Joint Program Office, Defense Information Systems Agency AGENCY
Code TXEA, 701 S. Courthouse Rd.
Arlington, VA 22204-2199

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY: Approved for Public Release; distribution 12b. DRISTRIBUTION
unlimited

13. (Maximum 200:

14. SUBJECT: Ada Programming Language, Ada Compiler Validation Summary 115. NUMBER OF
Report, Ada Compiler Validation Capability Validation Testing, Ada Validation Office,
Ada Validation Facility, ANSI/MIL-STD-1815A, AJPO 16. PRICE

17 SECURITY 18. SECURITY 19. SECURITY 120. LIMITATION OF

CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN

AVF Control Number: AVFVSR_05401/87-940831

Ada COMPILER Accesion For
VALIDATION SUMMARY REPORT: NTIS CRA&, 1 k
Certificate Number: #940826N1.1 1375 DTIC TAB

ALSYS LIMITED Unannounced EJ
AlsyCOMP_017 Version 5.4.10 Justification

VAXstation 4000 Model 60 Host and .----.................
INMOS T9000 transputer Gamma D02 on

an INMOS VME TestBoard Target By
Dist,'ibtioan i

Availabciity CojTes

Avail C.or
Dist S)Uia

Testing Services
The National Computing Centre Limited

Oxford Road
Manchester

M1 7ED
England

Template Version 94-05-11 D'rlc QUALI.'7 • T1TW('T., 2

94-32008

Validation Summary Report AVFVSR05401/87-940831

Alsys Limited AlsyCONP_017 Version 5.4.10

TABLE OF CONTENTS

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT I
1.2 REFERENCES .. I

1.3 ACVC TEST CLASSES ... 2
1.4 DEFINITION OF TERMS ... 3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 W ITHDRAWN TESTS .. 1
2.2 INAPPLICABLE TESTS ... 1
2.3 TEST MODIFICATIONS . .. 4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT .. 1
3.2 SUMMARY OF TEST RESULTS 2
3.3 TEST EXECUTION ... 2

APPENDIX A MACRO PARAMETERS ... I

APPENDIX B COMPILATION SYSTEM OPTIONS I

APPENDIX C APPENDIX F OF THE Ada STANDARD 1

Validation Summary Report AVFVSR054O1/87-940831

Alsys Limited AlsyCOIPO17 Version 5.4.10

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1. 11. Testing was completed on
24 August 1994.

Compiler Name and Version: AlsyCOMP_017 Version 5.4.10

Host Computer System: VAXstation 4000 Model 60 (under VAYIVMS V 5.5-2)

Target Computer System: INMOS T9000 transputer Gamma D02 installed on an INMOS
VME TestBoard (Bare)

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate #940826N1.11375 is awarded to Alsys Limited. This
certificate expires 2 years after ANSI/MIL-STD- 181 5B is approved by ANSI.

This report has been reviewed and is approved.

Jon Leigh
Manager, System Software Testing
The National Computing Centre Limited
Oxford Road
Manchester
MI 7ED
England

A A Vzi fn ganization
Director, Coituter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

D~onald J R'efer/e
Director, A4~n ro ramOfce

Defense Information Systems Agency
Centre for Information Management
Washington DC 20301

Validation Summary Report AVFVSR05401/87-940831

Alsys Limited AlsyCOMP 017 Version 5.4.10

DECLARATION OF CONFORMANCE

DECLARATION OF CONFORMANCE

The following declaration of conformance was supplied by the customer.

Declaration of Conformance

Customer: ALSYS LIMITED

Ada Validation Facility: The National Computing Centre Limited

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: AlsyCOMPO 17 Version 5.4.10

Host Computer System: VAXstation 4000 Model 60 (under VAX/VMS V 5.5-2)

Target Computer System: INMOS T9000 transputer Gamma D02 installed on an INMOS
VME Testboard (Bare)

Declaration:

I, the undersigned, declare that [I/we] have no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A, ISO 8652-1987, FIPS 119 as tested in this validation and documented in the
Validation Summary Report.

Customer Signature Date

Validation Summary Report AVFVSR05401/87-940815

Alsys Limited A1syCOIP_017 Version 5.4.10

TABLE OF CONTENTS

INTRODUCTION 1

1 Implementation-Dependent Pragmas 3

1.1 INLINE 3
1.2 INLINE GENERIC 3
1.3 INTERIFACE 5
1.3.1 Calling Conventions 5
1.3.2 Parameter-Passing Conventions 6
1.3.3 Parameter Representations 7
1.3.4 Restrictions on Interfaced Subprograms 9
1.4 INTERFACE NAME 11
1.5 NO IMAGE 12
1.6 INDENT 12
1.7 Other Pragmas 13

2 Implementation-Dependent Attributes 15

3 Specification of the Package SYSTEM 17

4 Restrictions on Representation Clauses 21

4.1 Enumeration Types 22
4.2 Integer Types 25
4.3 Floating Point Types 28
4.4 Fixed Point Types 30
4.5 Access Types 33
4.6 Task Types 34
4.7 Array Types 36
4.8 Record Types 40

Table of Contents iii

5 Conventions for Implementation-Generated Names 51

6 Address Clauses 53

6.1 Address Clauses for Objects 53
6.2 Address Clauses for Program Units 53
6.3 Address Clauses for Entries 53

7 Restrictions on Unchecked Conversions 55

8 Input-Output Packages 57

8.1 NAME Parameter 57
8.2 FORM Parameter 57
8.2.1 File Sharing 58
8.2.2 Binary Files 59
8.2.3 Buffering 60
8.2.4 Appending 61
8.3 USE ERROR 61

9 Characteristics of Numeric Types 63

9.1 Integer Types 63
9.2 Floating Point Type Attributes 64
9.3 Attributes of Type DURATION 65

REFERENCES 67

INDEX 69

iv Als.s Ada for die Transputer, Appen1dix F, v5.4

INTRODUCTION

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys Ada
Compilers for INMOS transputers. This document should be considered as the Appendix
F to the Reference Manual for the Ada Programming Language ANSI/MIL-STD 1815A,

January 1983, as appropriate to the Alsys Ada implementation for the transputer.

Sections I to 8 of this appendix correspond to the various items of information required in
Appendix F [F]*; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SYsTEM [13.71.

4. The list of all restrictions on representation clauses [13.1].

5. The conventions used for any implementation-generated names denoting
implementation-dependent components [13.41.

6. The interpretation of expressions that appear in address clauses.

7. Any restrictions on unchecked conversions 113.10.21.

8. Any implementation-dependent characteristics of the input-output packages [141.

9. Characteristics of numeric types.

* Throughout this manual, citations in square brackets refer to the Reference Manual

for the Ada Prograninhing Language, ANSI/MIL-STD-1815A, January 1983.

ItflJ)leenteilation-Dep)eK'dent ChIaracteristics

Throughout this appendix, the name Ada Run-Tmne Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, 1/0, and other utility functions.

2 Alsys Ada for the Transputer, Appendix F, vS.4

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE
Pragma INLINE is fully supported, except for the fact that it is not possible to inline a
function call in a declarative part.

1.2 INLINEGENERIC

The pragma INLINEGENERIC takes the name of a generic unit or of an instance of a
generic unit as argument.

When the argument is the name of a generic unit, pragma INLINEGENERIC specifies that
all the instances of the generic unit will be generated in line (and not in a subunit)
regardless of the value of the option GENERICS of the command COMPILE.

When the argument is the name of an instance of a generic unit, pragma INLINE GENERIC
specifies that this instance will be generated in line (and not in a subunit) regardless of the
value of the option GENERICS of the command COMPILE.

pragma INLINEGENERIC (Ada-designzalor {,AdadesA• orator })

Example:

procedure MY PROCEDURE is

type MY TYPE is (...);

generic
procedure MYFIRSTGENERIC;

generic
type T is (< >);

function MYSECONDGENERIC(L,R: T) return T;

Impleineniation-Delpendent Pragmas 3

function MYSECONDGENERIC(L,R: T) return T is
begin

end;

function "+" is new MY SECOND GENERIC(MYTYPE);

pragma INLINE GENERIC(MY FIRSTGENERIC,"÷");

procedure MY FIRST GENERIC is
begin

end;

end MY PROCEDURE;

Limitations on the use of pragma INLINEGENERIC

"This pragma is only alowed at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation but before any
subsequent compilation unit. If the pragma appears at the place of a declarative
item, each argument must denote a generic unit, or an instance of a generic unit,
declared by an earlier declarative item of the same declarative part or package
specification. If several (overloaded) subprograms satisfy this requirement, the
pragma applies to all of them. If the pragma appears after a given library unit, the
only name allowed is the name of this unit, which must be a generic unit.

" If an instance cannot be generated in line, in spite of a valid pragma
INLINE GENERIC, a warning will be emitted and the instance will be generated in a
subunit. This will occur in particular when the body of the generic unit has not been
compiled at the point of instantiation. This will also happen on instances appearing
within the specification of a generic package (due to a restriction of the Alsys
implementation).

4 Alsvs Ada for the Trunspiter, Appendir F, v0.4

1.3 INTERFACE

Ada programs can interface to subprograms written in occam through the use of the
predefined pragma INTERFACE (13.91 and the implementation-defined pragma
INTERFACE NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of the
programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (language2lame, subprogram name);

where:

"* language2wiae is the name of the other language whose calling and parameter
passing conventions are to be used.

"* subprogram. name is the name used within the Ada program to refer to the
interfaced subprogram.

The language names currently accepted by pragma INTERFACE are OCCAM and
OCCAM HIGH.

The language name used in the pragma INTERFACE does not necessarily correspond to the
language used to write the interfaced subprogram. It is used only to tell the Compiler how
to genera; subprogram calls, that is, which calling conventions and parameter passing
techniques to use.

The language name OCCAM is used to refer to the standard occam calling and parameter
passing conventions for the transputer (Ref. 4, Section 5.10). The programmer can use
the language name OCCAM to interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

The programmer can use the language name OCCAM HIGH to run the interfaced
subroutine as a high priority process instead of a low priority process. The
OCCAM HIGH interface is otherwise identical to the OCCAM interface.

1.3.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
pragma INTERFACE.

linplenicntation-Dcpcndeitz Pragnias 5

On entry to the subprogram, the registers A, B and C are undefined. For the T8 and
T9000, the floating point registers FA, FB and FC are similarly undefined. The return
address and any parameters are accessed relative to the workspace pointer, W, by the
subprogram.

There are no assumptions concerning the contents of the register stacks (A, B, C and FA,
FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,
should contain the same address upon return from the interfaced subprogram as it
contained before the call.

On the T4 and T8 the setting of the error flag is ignored on return.

1.3.2 Parameter-Passing Conventions

On entry to the subprogram, the word at offset 0 from the transputer workspace (W)
pointer contains the return address of the called subprogram. Subsequent workspace
locations (from W -1 to W + n, where n is the number of parameters) contain the
subprogram parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by the
occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in which are access values or scalars of one machine word or
less in size are passed by copy. If such a parameter is less that one machine word in
length it is sign extended to a full word. For all other parameters of mode in, and all
parameters of mode in owt or out, the value passed is the address of +he actual parameter
itself.

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may bc formally declared to be of mode in. It is the
programmer's responsibility to ensure that the semantics of the Ada parameter modes are
honoured in these cases.

If the interfaced subprogram is a function, the result is returned as follows:

A floating point resuli is returned in register FPA.

6 AIsi's Ada for the Transputer, Appenadix F, v5.4

Any other result is returned by value in register A if its size is at most one machine
word and by address in register A otherwise.

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

1.3.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved. Chapter
4 describes the effect of representation clauses on the representation of values.

Integer Types [3.5.4]

Ada integer types are represented in two's complement form and occupy a byte
(SHORTINTEGER) or a word (INTEGER).

Parameters to interfaced subprograms of type SHORT INTEGER are passed by copy with
the value sign extended to a full machine word. Values of type INTEGER are always passed
by copy. The predefined type LONG-INTEGER is not available.

Enumeration Types [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. All other
enumeration types are represented in 32 bits.

Consequently, the Ada predefined type CHARACTER [3.5.21 is represented in 8 bits, using
the standard ASCII codes [C] and the Ada predefined type BOOLEAN [3.5.3] is represented
in 8 bits, with FALSE represented by the value 0 and TRUE represented by the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Inipleinentation-Dependeni Pragmas 7

Floating Point Types [3.5.7,3.5.81

Ada floating-point values occupy 32 (FLOAT) or 64 (LONGFLOAT) bits, and are held in
ANSI/IEEE 754 floating point format.

Parameters to interfaced subprograms of type FLOAT are always passed by copy.
Parameters of type LONG-FLOAT are passed by address.

Fixed Point Types [3.5.9, 3.5.101

Ada fixed-point types are managed by the Compiler as the product of a signed mantissa
and a constant small. The mantissa is implemented as an S or 32 bit integer value. Small
is a compile-time quantity which is the power of two equal or immediately inferior to the
delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its mantissa.
This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA > = max (abs (upper-bound), abs (lowerbound)) / small

The size of a fixed point type is:

MANTISSA Size
1..7 8 bits
8..31 32 bits

Fixed point types requiring a MANTISSA greater than 31 are not supported.

Access Types [3.8]

Values of access types are represented internally by the address of the designated object
held in single word. The value MIN _NTw (the smallest integer that can be represented in a
machine word) is used to represent mnll.

Array Types [3.61

Ada arrays are passed by address; the value passed is the address of the first element of
the first dimension of the array. The elements of the array are allocated by row. When an
array is passed as a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling and the called subprogram is
not enforced. It is the programmer's responsibility to ensure that the subprogram does
not violate the bounds of the array.

8 Alsys Ada for the Transpuiter, Appendir F, v5.4

When passing arrays to occam, it may be the case that some of its bounds are undefined in
the source of the interfaced subprogram. If this is true, the missing bounds should be
passed as extra integer value parameters to the subprogram. These parameters should be
placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING 13.6.31 are arrays, and are passed in the same way.
the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy consecutive locations in memory.

Record Types [3.7]

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler so
as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added to
the record. Thus the default layout of the internal structure of the record may not be
inferred directly from its Ada declaration. The use of a representation clause to control
the layout of any record type whose values are to be passed to interfaced subprograms is
recommended.

1.3.4 Restrictions on Interfaced Subprograms

Interfaced subprograms must be compiled using an error mode compatible with that used
by the Ada runtime system to avoid errors when linking. For T4 and T8 mode S (STOP)
or X (UNIVERSAL) should be used and for T9000 mode H (HALT) or X
(UNIVERSAL) should be used.

There is no mechanism to allow runtime errors in interfaced subprograms to
automatically raise an Ada exception. Interfaced subprograms should be written to
explicitly deal with any errors likely to occur at runtime and return an error indication to
the Ada program using an out parameter or a function result.

On T4 and T8, if the interfaced subprogram causes a process halt as a result of executing a
STOPP or STOPERR instruction, the calling Ada task will become permanently blocked
and will never terminate. On T9000 an interfaced subprogram is called with a uull trap
handler, so unless the subprogram installs its own handler any errors resulting in a trap
will cause a process halt and will permanently block the calling Ada task.

Implementation-Dependent Praginas 9

In view of this, the use of runtime checking code added by the occam compiler is limited,
and it is often convenient to suppress it using option U.

Parameters which are of a task or private type, or are access values not of mode in, should
not be passed to interfaced subprograms.

It is not possible to interface to occam functions which have more that one return val,
Unconstrained records and arrays cannot be returned from interfaced subprogram,

10 Alsys Ada for the Transpiaer, Appendix F, v5.4

1.4 INTERFACE NAME

Pragma INTERFACE-NAME associates the name of an interfaced subprogram, as declared
in Ada, with its name in the language of origin. If pragma INTERFACE NAME is not used
the Ada name in uppercase is used as its name in the interfaced language.

This pragma takes the form:

pragma INTERFACE-NAME (subprogram name, stringliteral);

where:

" subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

" stringjliteral is the name by which the interfaced subprogram is referred to at link-
time.

The use of INTERFACENAME is optional and is not needed if a subprogram has the same
name in Ada as in the language of origin. It is necessary, for example, if the name of the
subprogram in its original language contains characters that are not permitted in Ada
identifiers or contains lowercase letters. Ada identifiers can contain only letters, digits and
underscores, whereas the INMOS linker allows external names to contain other characters,
for example full stops. These characters can be specified in the stringjliteral argument of
the pragma INTERFACE NAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program as the
pragma INTERFACE 113.91. However, the pragma INTERFACE-NAME must always occur
after the pragma INTERFACE declaration for the interfaced subprogram.

Example

package SAMPLE DATA is
function SAMPLE DEVICE (X : INTEGER) return INTEGER;
function PROCESS_SAMPLE (X : INTEGER) return INTEGER;

private
pragma INTERFACE (OCCAM, SAMPLEDEVICE);
pragma INTERFACE (OCCAM, PROCESS SAMPLE);
pragma INTERFACE-NAME (PROCESSSAMPLE, "process.sample");

end SAMPLEDATA;

Implemnentation-Dependent Pragnas 1)

1.5 NOIMAGE

The pragma NO IMAGE takes the name of an enumeration type as argument. This
pragma specifies to the compiler that the attributes 'IMAGE, 'VALUE or WIDTH will never
be used for this type, and that in consequence, no image table should be generated for this
enumeration type. Any compilation unit containing an attribute 'IMAGE, 'VALUE or
'WIDTH for a type on which a pragma NO-IMAGE was applied, will be rejected by the
compiler.

The exception to this rule is that in the case where 'WIDTII can be determined at compile-
time (i.e. it is not applied to an enumeration subtype with dynamic bounds) its use is
allowed with the pragma NOIMAGE..

Example:

package MYPACKAGE is

type ENUM is (FIRST, SECOND, THIRD);
pragma NOIMAGE(ENUM);

end MY-PACKAGE;

Limitations on the use of pragma NO IMAGE

* This pragma must occur in a declarative part and can be applied only to types
declared in this same declarative part.

1.6 INDENT

This pragma is only used with the Alsys Reformatter (AdaRefonnat); this tool offers the
functionalities of a source reformattcr in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.

pragma INDENT(ON)

12 Alsys Ada for the TranspuIler, Appendix F, v5.4

The Reformatter resumes its action after the ON pragma INDENT. Therefore any source
lines that are bracketed by the OFF and ON pragma INDENTs are not modified by the Alsys
Reformatter.

1.7 Other Pragmas
Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGESIZi:_RATI) and FAST" PRIMARY which are applicable only to task
types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from I to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.
In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation by

the use of the Compiler option CHECKS.

The following language defined pragmas have no effect.

CONTROLLED

MEMORY SIZE

OPTIMIZE

STORAGE UNIT
SYSTEM NAME

Note that all access types are implemented by default as controlled collections as
described in 14.81.

Imple'nentationt-Dependenl Pragmas 13

14 Alsys Ada for the Transputer, Appendix F, v5.4

TABLE OF CONTENTS

INTRODUCTION I

I Implementation-Depen dent Pragmas 3

1.1 INLINE 3
1.2 INLINE-GENERIC 3
1.3 INTERFACE 5
1.3.1 Calling Conventions 5
1.3.2 Parameter-Passing Conventions 6
1.3.3 Parameter Representations 7
1.3.4 Restrictions on Interfaced Subprograms 9
1.4 INTERFACE NAME 11
1.5 NO IMAGE 12
1.6 IN15ENT 12
1.7 Other Pragmas 13

2 Implementation-Dependent Attributes is

3 Specification of the Package SYSTEM 17

4 Restrictions on Representation Clauses 21

4.1 Enumeration Types 22
4.2 Integer Types 25
4.3 Floating Point Types 28
4.4 Fixed Point Types 30
4.5 Access Types 33
4.6 Task Types 34
4.7 Array Types 36
4.8 Record Types 40

Table of Contents

5 Conventions for Implementation-Generated Names 51

6 Address Clauses 53

6.1 Address Clauses for Objects 53
6.2 Address Clauses for Program Units 53
6.3 Address Clauses for Entries 53

7 Restrictions on Unchecked Conversions 55

8 Input-Output Packages 57

8.1 NAME Parameter 57
8.2 FORM Parameter 57
8.2.1 File Sharing 58
8.2.2 Binary Files 59
8.2.3 Buffering 60
8.2.4 Appending 61
8.3 USE ERROR 61

9 Characteristics of Numeric Types 63

9.1 Integer Types 63
9.2 Floating Point Type Attributes 64
9.3 Attributes of Type DURATION 65

REFERENCES 67

INDEX 69

iv Alsys Ada for the Transputer, Appendix F, v5.4

INTRODUCTION

Implementation-Dependent Characteristics

This appendix summarizes the implementation-dependent characteristics of the Alsys Ada
Compilers for INMOS transputers. This document should be considered as the Appendix
F to the Reference Manual for the Ada Programming Language ANSI/MIL-STD 1815A,
January 1983, as appropriate to the Alsys Ada implementation for the transputer.

Sections 1 to 8 of this appendix correspond to the various items of information required in
Appendix F [F]*; sections 9 and 10 provide other information relevant to the Alsys
implementation. The contents of these sections is described below:.

1. The form, allowed places, and effect of every implementation-dependent pragma.

2. The name and type of every implementation-dependent attribute.

3. The specification of the package SvsrEM [13.7].

4. The list of all restrictions on representation clauses [13.11.

5. The conventions used for any implementation-generated names denoting
implementation-dependent components 113.41.

6. The interpretation of expressions that appear in address clauses.

7. Any restrictions on unchecked conversions [13.10.21.

8. Any implementation-dependent characteristics of the input-output packages [14].

9. Characteristics of numeric types.

* Throughout this manual, citations in square brackets refer to the Reference Manual
for the Ada Programming Language, ANSI/MIL-STD-1815A, January 1983.

linpleenntaiioni-Dependnei, Claaracleristics

Throughout this appendix, the name Ada Run-Tiue Executive refers to the run-time
library routines provided for all Ada programs. These routines implement the Ada heap,
exceptions, tasking control, I/0, and other utility functions.

2 Aisys Ada for ithe Transptcer, Appendix F, v5.4

CHAPTER 1

Implementation-Dependent Pragmas

1.1 INLINE
Pragma INLINE is fully supported, except for the fact that it is not possible to inline a
function call in a declarative part.

1.2 INLINEGENERIC

The pragma INLINE GENERIC takes the name of a generic unit or of an instance of a
generic unit as argument.

When the argument is the name of a generic unit, pragma INLINE GENERIC specifies that
all the instances of the generic unit will be generated in line (and not in a subunit)
regardless of the value of the option GENERICS of the command COMPILE.

When the argument is ,he name of an instance of a generic unit, pragma INLINE GENERIC
specifies that this instance will be generated in line (and not in a subunit) regardless of the
value of the option GENERICS of the command COMPILE.

pragma INLINE GENERIC (Ada-de.ignator {, Ada desiglator })

Example:

procedure MYPROCEDURE is

type MY-TYPE is

generic
procedure MYFIRSTGENERIC;

generic
type T is (< >);

function MYSECONDGENERIC(L,R: T) return T;

Iinpleimentation-Dependent Pragnias 3

function MYSECONDGENERIC(L,R: T) return T is
begin

end;

function "+" is new MY SECONDGENERIC(MYTYPE);

pragma INLINEGENERIC(MYFIRSTGENERIC, "+");

procedure MY FIRST-GENERIC is
begin

end;

end MYPROCEDURE;

Limitations on the use of pragma INLINE GENERIC

"This pragma is only allowed at the place of a declarative item in a declarative part or
package specification, or after a library unit in a compilation but before any
subsequent compilation unit. If the pragma appears at the place of a declarative
item, each argument must denote a generic unit, or an instance ol a generic unit,
declared by an earlier declarative item of the same declarative part or package
specification. If several (overloaded) subprograms sdiisfy this requirement, the
pragma applies to all of them. If the pragma appears after a given library unit, the
only name allowed is the name of this unit, which must be a generic unit.

" If an instance cannot be generated in line, in spite of a valid pragma
INLINE GENERIC, a warning will be emitted and the instance will be generated in a
subunit. This will occur in particular when the body of the generic unit has not been
compiled at the point of instantiation. This will also happen on instances appearing
within the specification of a generic package (due to a restriction of the Alsys
implementation).

4 Alss Ada for the Transputer, Appendix F, v5.4

1.3 INTERFACE

Ada programs can interface to subprograms written in occam through the use of the
predefined pragma INTERFACE [13.91 and the implementation-defined pragma
INTERFACE NAME.

Pragma INTERFACE specifies the name of an interfaced subprogram and the name of the
programming language for which calling and parameter passing conventions will be
generated. Pragma INTERFACE takes the form specified in the Reference Manual:

pragma INTERFACE (language name, subprogram name);

where:

a languagenanje is the name of the other language whose calling and parameter
passing conventions are to be used.

a subprogram name is the name used within the Ada program to refer to the
interfaced subprogram.

The language names currently accepted by pragma INTERFACE are OCCAM and
OCCAM HIGH.

The language name used in the pragma INTERFACE does not necessarily correspond to the
language used to write the interfaced subprogram. It is used only to tell the Compiler how
to generate subprogram calls, that is, which calling conventions and parameter passing
techniques to use.

The language name OCCAM is used to refer to the standard occam calling and parameter
passing conventions for the transputer (Ref. 4, Section 5.10). The programmer can use
the language name OCCAM to interface Ada subprograms to subroutines written in any
language that follows the standard occam calling conventions.

The programmer can use the language name OCCAM HIGH to run the interfaced
subroutine as a high priority process instead of a low priority process. The
OCCAM HIGH interface is otherwise identical to the OCCAM interface.

1.3.1 Calling Conventions

The following calling conventions are required for code to be called from Ada by use of
pragma INTERFACE.

IJnplementation-Dependent Praginas 5

On entry to the subprogram, the registers A, B and C are undefined. For the T8 and
T9000, the floating point registers FA, FB and FC are similarly undefined. The return
address and any parameters are accessed relative to the workspace pointer, W, by the
subprogram.

There are no assumptions concerning the contents of the register stacks (A, B, C and FA,
FB, FC) upon return from the interfaced subprogram, other than for interfaced
subprograms which are functions (see below). However, the workspace pointer, W,
should contain the same address upon return from the interfaced subprogram as it
contained before the call.

On the T4 and T8 the setting of the error flag is ignored on return.

1.3.2 Parameter-Passing Conventions

On entry to the subprogram, the word at offset 0 from the transputer workspace (W)
pointer contains the return address of the called subprogram. Subsequent workspace
locations (from W + 1 to W + n, whcre n is the number of parameters) contain the
subprogram parameters, which are all one word in length.

There is always an implicit vector space parameter passed as the last parameter to all
interfaced subprograms. This points to an area of free memory which can be used by the
occam compiler to allocate arrays declared in the interfaced subprogram.

Actual parameters of mode in which are access values or scalars of one machine word or
less in size are passed by copy. If such a parameter is less that one machine word in
length it is sign extended to a full word. For all other parameters of mode in, and all
parameters of mode in out or out, the value passed is the address of the actual parameter
itself.

Since all large scalar, non-scalar and non-access parameters to interfaced subprograms
are passed by address, they cannot be protected from modification by the called
subprogram even though they may be formally declared to be of mode in. It is the
programmer's responsibility to ensure that the semantics of the Ada parameter modes are
honoured in these cases.

If the interfaced subprogram is a function, the result is returned as follows:

A floating point result is returned in register FPA.

6 A/ss Ada for i/e Transuler, Appendix F, v5.4

Any other result is returned by value in register A if its size is at most one machine
word and by address in register A otherwise.

No consistency checking is performed between the subprogram parameters declared in
Ada and the corresponding parameters of the interfaced subprogram. It is the
programmer's responsibility to ensure correct access to the parameters.

1.3.3 Parameter Representations

This section describes the representation of values of the types that can be passed as
parameters to an interfaced subprogram. The discussion assumes no representation
clauses have been used to alter the default representations of the types involved. Chapter
4 describes the effect of representation clauses on the representation of values.

Integer Types [3.5.41

Ada integer types are represented in two's complement form and occupy a byte
(SHORT-INTEGER) or a word (INTEGER).

Parameters to interfaced subprograms of type SHORT INTEGER are passed by copy with
the value sign extended to a full machine word. Values of type INTEGER are always passed
by copy. The predefined type LONG INTEGER is not available.

Enumeration Types [3.5.1]

Values of an Ada enumeration type are represented internally as unsigned values
representing their position in the list of enumeration literals defining the type. The first
literal in the list corresponds to a value of zero.

Enumeration types with 256 elements or fewer are represented in 8 bits. All other
enumeration types are represented in 32 bits.

Consequently, the Ada predefined type CHARACTER [3.5.2] is represented in 8 bits, using
the standard ASCII codes [C] and the Ada predefined type BOOLEAN [3.5.31 is represented
in 8 bits, with FALSE represented by the value 0 and TRUE represented by the value 1.

As the representation of enumeration types is basically the same as that of integers, the
same parameter passing conventions apply.

Inplemenntation-Dependeni Pragmias 7

Floating Point Types [3.5.7, 3.5.81

Ada floating-point values occupy 32 (FLOAT) or 64 (LONGFLOAT) bits, and are held in
ANSI/IEEE 754 floating point format.

Parameters to interfaced subprograms of type FLOAT are always passed by copy.
Parameters of type LONGFLOAT are passed by address.

Fixed Point Types [3.5.9,3.5.10)

Ada fixed-point types are managed by the Compiler as the product of a signed manlissa
and a constant small. The mantissa is implemented as an 8 or 32 bit integer value. Small
is a compile-time quantity which is the power of two equal or immediately inferior to the
delta specified in the declaration of the type.

The representation of an actual parameter of a fixed point type is the value of its mantissa.
This is passed using the same rules as for integer types.

The attribute MANTISSA is defined as the smallest number such that:

2 ** MANTISSA > = max (abs (upper-bound), abs (lower-bound)) / small

The size of a fixed point type is:

MANTISSA I
1..7 8 bits
8..31 32 bits

Fixed point types requiring a MANrISSA greater than 31 are not supported.

Access Types [3.81

Values of access types are represented internally by the address of the designated object
held in single word. The value MIN I'NT (the smallest integer that can be represented in a
machine word) is used to represent nu//.

Array Types [3.6]

Ada arrays are passed by address; the value passed is the address of the first element of
the first dimension of the array. The elements of the array are allocated by row. When an
array is passed as a parameter to an interfaced subprogram, the usual consistency
checking between the array bounds declared in the calling and the called subprogram is
not enforced. It is the programmer's responsibility to ensure that the subprogram does
not violate the bounds of the array.

8 Alsys Ada for the Transputer, Appendir F, v5.4

When passing arrays to occam, it may be the case that some of its bounds are undefined in
the source of the interfaced subprogram. If this is true, the missing bounds should be
passed as extra integer value parameters to the subprogram. These parameters should be
placed immediately following the array parameter itself and in the same order as the
missing strides appear in the occam source.

Values of the predefined type STRING 13.6.31 are arrays, and are passed in the same way:
the address of the first character in the string is passed. Elements of a string are
represented in 8 bits, using the standard ASCII codes. The elements are packed into one
or more words and occupy consecutive locations in memory.

Record Types [3.7]

Ada records are passed by address; the value passed is the address of the first component
of the record. Components of a record are aligned on their natural boundaries (e.g.
INTEGER on a word boundary) and the components may be re-ordered by the Compiler so
as to minimize the total size of objects of the record type. If a record contains
discriminants or components having a dynamic size, implicit components may be added to
the record. Thus the default layout of the internal structure of the record may not be
inferred directly from its Ada declaration. The use of a representation clause to control
the layout of any record type whose values are to be passed to interfaced subprograms is
recommended.

1.3.4 Restrictions on Interfaced Subprograms

Interfaced subprograms must be compiled using an error mode compatible with that used
by the Ada runtime system to avoid errors when linking. For T4 and T8 mode S (STOP)
or X (UNIVERSAL) should be used and for T9000 mode H (HALT) or X
(UNIVERSAL) should be used.

There is no mechanism to allow runtime errors in interfaced subprograms to
automatically raise an Ada exception. Interfaced subprograms should be written to
explicitly deal with any errors likely to occur at runtime and return an error indication to
the Ada program using an out parameter or a function result.

On T4 and T8, if the interfaced subprogram causes a process halt as a result of executing a
STOPP or STOPERR instruction, the calling Ada task will become permanently blocked
and will never terminate. On T9000 an interfaced subprogram is called with a null trap
handler, so unless the subprogram installs its own handler any errors resulting in a trap
will cause a process halt and will permanently block the calling Ada task.

Impleenitiation-Dependeti Pragmas 9

In view of this, the use of runtime checking code added by the occam compiler is limited,
and it is often convenient to suppress it using option U.

Parameters which are of a task or private type, or are access values not of mode in, should
not be passed to interfaced subprograms.

It is not possible to interface to occam functions which have more that one return value.
Unconstrained records and arrays cannot be returned from interfaced subprograms.

10 Alsys Ada for the Transplier, Appendix F, v5.4

1.4 INTERFACENAME
Pragma INTERFACE-NAME associates the name of an interfaced subprogram, as declared
in Ada, with its name in the language of origin. If pragma INTERFACE -NAME is not used
the Ada name in uppercase is used as its name in the interfaced language.

This pragma takes the form:

pragmna INTERFACENAME (subprogram name, stringliteral);

where:

a subprogramnname is the name used within the Ada program to refer to the
interfaced subprogram.

w stringjliteral is the name by which the interfaced subprogram is referred to at link-
time.

The use of INTERFACE NAME is optional and is not needed if a subprogram has the same
name in Ada as in the language of origin. It is necessary, for example, if the name of the
subprogram in its original language contains characters that are not permitted in Ada
identifiers or contains lowercase letters. Ada identifiers can contain only letters, digits and
underscores, whereas the INMOS linker allows external names to contain other characters,
for example full stops. These characters can be specified in the string literal argument of
the pragma INTERFACENAME.

The pragma INTERFACE NAME is allowed at the same places of an Ada program as the
pragma INTERFACE 113.91. However, the pragma INTERFACE NAME must always occur
after the pragma INTERFACE declaration for the interfaced subprogram.

Example

package SAMPLE DATA is
function SAMJPLE DEVICE (X : INTEGER) return INTEGER;
function PROCESSSAMPLE (X : INTEGER) return INTEGER;

private
pragma INTERFACE (OCCAM, SAMPLE DEVICE);
pragma INTERFACE (OCCAM, PROCESS SAMPLE);
pragma INTERFACE-NAME (PROCESSSAMPLE, "process.sample");

end SAMPLEDATA,

Implementation-Dependent Pragmas 1)

1.5 NOIMAGE

The pragma NO IMAGE takes the name of an enumeration type as argument. This
pragma specifies to the compilcr that the attributes 'IMAGE, 'VALUE or 'WIDTH will never
be used for this type, and that in consequence, no image table should be generated for this
enumeration type. Any compilation unit containing an attribute 'IMAGE, *VALUE or
'WIDT1i for a type on which a pragma NO-IMAGE was applied, will bc rejected by the
compiler.

The exception to this rule is that in the case where 'WIDTII can be detcrmined at compile-
time (i.e. it is not applied to an enumeration subtype with dynamic bounds) its use is
allowed with the pragma NOIMAGE.

Example:

package MY PACKAGE is

type ENUM is (FIRST, SECOND, THIRD);
pragma NOIMAGE(ENUM);

end MY-PACKAGE;

Umitations on the use of pragma NO-IMAGE

This pragma must occur in a declarative part and can be applied only to types
declared in this same declarative part.

1.6 INDENT

This pragma is only used with the Alsys Reformatter (AdaRefonnal); this tool offers the
functionalities of a source reformaitcr in an Ada environment.

The pragma is placed in the source file and interpreted by the Reformatter.

pragma INDENT(OFF)

The Reformatter does not modify the source lines after the OFF pragma INDENT.

pragma INDENT(ON)

12 Als's Ada for tike Transputer, Appendix F, v5.4

The Reformatter resumes its action aftcr the ON pragma INDENT. Therefore any source
lines that are bracketed by the OFF and ON pragma INDENTs are not modified by the Alsys
Reformatter.

1.7 Other Pragmas
Pragmas IMPROVE and PACK are discussed in detail in the section on representation
clauses (Chapter 4).

Pragmas STORAGESIZI'_RATIO and FA;T PRIMARY which are applicable only to task
types are discussed in detail in section 4.6.

Pragma PRIORITY is accepted with the range of priorities running from 1 to 10 (see the
definition of the predefined package SYSTEM in Chapter 3). The undefined priority (no
pragma PRIORITY) is treated as though it were less than any defined priority value.

In addition to pragma SUPPRESS, it is possible to suppress checks in a given compilation by
the use of the Compiler option CHECKS.

The following language defined pragmas have no effect.

CONTROLLED
MEMORY SIZE
OPTIMIZE
STORAGE UNIT

SYSTEM NAME

Note that all access types are implemented by default as controlled collections as
described in [4.81.

Jmnpleinentation-Dependenti Pragnias 13

14 Alsys Ada for the Transputer, Appendix F, v5.4

CHAPTER 2

Implementation-Dependent Attributes

In addition to the Representation Attributes of 113.7.21 and [13.7.31, the attributes listed in
section 5 (Conventions for Implementation-Generated Names), for use in record
representation clauses, and the attributes described below are provided:

"TDESCRIPTOR SIZI- For a prefix T that denotes a type or subtype, this
attribute yields the size (in bits) required to hold a
descriptor for an object of the type T, allocated on
the heap or written to a file. If T is constrained,
T'DFSCRIPTOR SIZE will yield the value 0.

T'IS ARRAY For a prefix T that denotes a type or subtype, this
attribute yields the value TRUE if T denotes an array
type or an array subtype; otherwise, it yields the
value FAL•SE.

Limitations on the use or the attribute ADDRESS

The attribute ADDRESS is implemented for all prefixes that have meaningful addresses.
The following entities do not have meaningful addresses. The attribute ADDRESS will
deliver the value SYrEM.NULL ADDRESS if applied to such prefixes and a compilation
warning will be issued.

"* A constant or named number that is implemented as an immediate value (i.e. does
not have any space allocated for it).

"* A package specification that is not a library unit

"* A package body that is not a library unit or subunit.

"* A function that renames an enumeration literal.

If the attribute ADDRESS is applied to a named number, a compilation error will be
produced.

Inipleaentiatioia-Dependeni A ilibuutes 15

16 Alsys Ada for 1he Transputer, Appendix F, v5.4

CHAPTER 3

Specification of the Package SYSTEM

package SYSTEM is

type NAME is (180X86,
180386,
MC680XO,
S370,
TRANSPUTER,
VAX,
RS_6000,
MIPS,
HP900OPA -RISC,
SPARC);

SYSTEM NAME : constant NAME TRANSPUTER;

STORAGE UNIT : constant := 8;
MAXINT : constant :a 2"'31 - 1;
MININT : constant := - (2*"31);
MAX MANTISSA : constant :x 31;
FINE DELTA : constant :z 2#1.0#E-31;
MAX DIGITS : constant := 15;
MEMORYSIZE : constant : 2**32;
TICK : constant := 1.OE-6;

subtype PRIORITY is INTEGER range 1 .. 10;

type ADDRESS is private;
NULL-ADDRESS : constant ADDRESS;

function VALUE (LEFT : in STRING) return ADDRESS;

subtype ADDRESS STRING is STRING(1..8);

function IMAGE - EFT : in ADDRESS) return ADDRESSSTRING;

type OFFSET is range -(2**31) .. 2*"31-1;

-- This type is used to measure a number of storage units (bytes).

function SAME-SEGMENT (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

ADDRESS-ERROR : exception;

Specification of the Package SYSTEM 17

function " (" CLEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;
function "+" (LEFT : in OFFSET; RIGHT : in ADDRESS) return ADDRESS;
function "-" (LEFT : in ADDRESS; RIGHT : in OFFSET) return ADDRESS;

function "-" (LEFT : in ADDRESS; RIGHT : in ADDRESS) return OFFSET;

function "=" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function "'' (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ->" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : in ADDRESS) return BOOLEAN;

function "mod" (LEFT : in ADDRESS; RIGHT : in POSITIVE) return NATURAL;

type ROUNDDIRECTION is (DOWN, UP);

function ROUND (VALUE in ADDRESS;
DIRECTION in ROUND DIRECTION;
MODULUS in POSITIVE) return ADDRESS;

generic
type TARGET is private;

function FETCH FROMADDRESS (A : in ADDRESS) return TARGET;
generic

type TARGET is private;
procedure ASSIGNTOADDRESS (A : in ADDRESS; T : in TARGET);
-- These routines are provided to perform READ/WRITE operations in memory.

type OBJECTLENGTH is range 0 .. 2**31 -1;
-- This type is used to designate the size of an object in storage units.

procedure MOVE (TO : in ADDRESS;
FROM : in ADDRESS;
LENGTH : in OBJECTLENGTH);

end SYSTEM;

The function VALUE may be used to convert a string into an address. The string is a
sequence of up to eight hexadecimal characters (digits or letters in upper or lower case in
the range A..F) representing the address. The exception CONSTRAINT-ERROR is raised if
the string does not have the proper syntax.

The function IMAGE may be used to convert an address to a string which is a sequence of
exactly eight hexadecimal digits.

18 Alsys Ada for the Transputer, Appendix F, v5.4

ii ~Alsjs Ada for the Transpunecr, Appendix F, vS.4

INTRODUCTION

CHAPTER I INTRODUCTION

The Ada implementation described above was tested according to the Ada Validation Procedures [Pro92] against
the Ada Standard [Ada83] using the current Ada Compiler Validation Capability (ACVC). This Validation
Summary Report (VSR) gives an account of the testing of this Ada implementation. For any technical terms used
in this report, the reader is referred to [Pro92]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada Certification Body may make full and free
public disclosure of this report. In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report do not represent or warrant that all statements
set forth in this report are accurate and complete, or that the subject implementation has no nonconformities to
the Ada Standard other than those presented. Copies of this report are available to the public from the AVF
which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be directed to the AVF which performed this
validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures,
Version 3.1, Ada Joint Program Office, August 1992.

[UG891 Ada Compiler Validation Canability User's Guide,
21 June 1989.

Validation Summary Report AVFVSRO5401/87-940831

Alsys Limited Chapter 1 - Page 1 of 4 AlsyCOMP_017 Version 5.4.10

INTRODUCTION

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC contains a collection of test
programs structured into six test classes: A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B and class L tests are expected to produce
errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and produce a PASSED, FAILED, or NOT
APPLICABLE message indicating the result when they are executed. Three Ada library units, the packages
REPORT and SPPRTI 3, and the procedure CHECKFILE are used for this purpose. The package REPORT also
provides a set of identity functions used to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The package SPPRT13 is used by many tests for Chapter 13 of the Ada
Standard. The procedure CHECKFILE is used to check the contents of text files written by some of the Class
C tests for Chapter 14 of the Ada Standard. The operation of REPORT and CHECKFILE is checked by a set
of executable tests. If these units are not operating correctly, validation testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class B tests are not executable. Each test in
.this class is compiled and the resulting compilation listing is examined to verify that all violations of the Ada
Standard are detected. Some of the class B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behaviour is also verified.

Class L tests check that an Ada implementation correctly detects violation of the Ada Standard involving
multiple, separately compiled units. Errors are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by implementation-specific values -- for
example, the largest integer. A list of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be required to remove unforeseen

conflicts between the tests and implementation-dependent characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the AVF. This customization consists of
making the modifications described in the preceding paragraph, removing withdrawn tests (see section 2. 1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of the customized test suite accoruing
to the Ada Standard.

Validation Summary Report AVFVSR05401/87-940831

Alsys Limited Chapter 1 - Page 2 of 4 A1syCOMP_017 Version 5.4.10

INTRODUCTION

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added to a given host and
target computer system to allow transformation of Ada programs into executable
form and execution thereof.

Nda Compiler Validation The means for testing compliance of Ada implementations, consisting of the test
apability (ACVC) suite, the support programs, the ACVC user's guide and the template for the

validation summary report.

Ada Implementation An Ada compiler with its host computer system and its target computer system.

Ada Joint Program Office The part of the certification body which provides policy and guidance for the
(AJPO) Ada certification system.

Ada Validation Facility The part of the certification body which carries out the procedures required to
(AVF) establish the compliance of an Ada implementation.

A d a V a I i d a t i o n The part of the certification body that provides technical guidance for operations
Organization (AVO) of the Ada certification system.

Compliance of an Ada The ability of the implementation to pass an ACVC version.
Implementation

Computer System A functional unit, consisting of one or more computers and associated software,
that uses common storage for all or part of a program and also for all or part of
the data necessary for the execution of the program; executes user-written or
user-designated programs; performs user-designated date manipulation, including
arithmetic operations and logic operations; and that can execute programs that
modify themselves during execution. A computer system may be a stand-alone
unit or may consist of several inter-connected units.

Conformity Fulfilment of a product, process or service of all requirements specified.

Customer An individual or corporate entity who enters into an agreement with an AVF
which specifies the terms and conditions for AVF services (of any kind) to be
performed.

D e c I a r a t i o n o f A formal statement from a customer assuring that conformity is realized or
Conformance attainable on the Ada implementation for which validation status is realized.

Host Computer System A computer system where Ada source programs are transformed into executable
form.

Inapplicable test A test that contains one or more test objectives found to be irrelevant for the
given Ada implementation.

ISO International Organization for Standardization.

Validation Summary Report AVFVSR_05401/87-940831

Alsys Limited Chapter 1 - Page 3 of 4 AlsyCOMP_017 Version 5.4.10

INTRODUCTION

LRM The Ada standard, or Language Reference Manual, published as ANSI/MIL-STD-
1815A-1983 AND ISO 8652-1987. Citations from the LRM take the form
"<section>.<subsection>:<paragraph>."

Operating System Software that controls the execution of programs and that provides services such
as resource allocation, scheduling, input/output control and data management.
Usually, operating systems are predominantly software, but partial or complete
hardware implementations are possible.

Target Computer System A computer system where the executable form of Ada programs are executed.

Validated Ada Compiler The compiler of a validated Ada implementation.

Validated Ada An Ada implementation that has been validated successfully either by AVF
Implementation testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to the Ada
programming language and of issuing a certificate for this implementation.

Withdrawn test A test found to be incorrect and not used in conformity testing. A test may be
incorrect because it has an invalid test objective, fails to meet its test objective,
or contains erroneous or illegal use of the Ada programming language.

Validation Summary Report AVFVSR05401/87-940831

Alsys Limited Chapter 1 - Page 4 of 4 AlsyCO4P_017 Version 5.4.10

IMPLEMENTATION DEPENDENCIES

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for withdrawing each test is available from
either the AVO or the AVF. The publication date for this list of withdrawn tests is 22 November 1993.

B27005A E28005C B28006C C32203A C34006D C35507K
C35507L C35507N C355070 C35507P C355081 C35508J
C35508M C35508N C35702A C35702B C37310A B41308B
C43004A C45114A C45346A C45612A C45612B C45612C
C45651A C46022A B49008A B49008B A54B02A C55BO6A
A74006A C74308A B83022B B83022H B83025B B83025D
C83026A B83026B C83041A B85001L C8600 I F C9402 I A
C97116A C98003B BA201IA CB7001A CB7001B CB7004A
CC1223A BC1226A CC1226B BC3009B BDIB02B BDIB06A
ADIB08A BD2AO2A CD2A21E CD2A23E CD2A32A CD2A41A
CD2A41E CD2A87A CD2B I 5C BD3006A BD4008A CD4022A
CD4022D CD4024B CD4024C CD4024D CD4031A CD4051D
CD51 I IA CD7004C ED7005D CD7005E AD7006A CD7006E
AD7201A AD7201E CD7204B AD7206A BD8002A BD8004C
CD9005A CD9005B CDA201E CE21071 CE2117A CE2117B
CE2i19B CE2205B CE2405A CE3!11C CE3116A CE31I8A
CE341 lB CE3412B CE3607B CE3607C CE3607D CE3g12A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for a given Ada implementation. Reasons
for a test's inapplicability may be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format Al-ddddd. For this implementation, the following tests
were determined to be inapplicable for the reasons indicated; references to Ada Commentaries are included as
appropriate.

The following 201 tests have floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L.2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L.2 (15 tests)
C45524L.Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

Validation Summary Report AVFVSR05401/87-940831

Alsys Limited Chapter 2 - Page 1 of 4 Alsy(0P_017 Version 5.4.10

For example:

type COLOR is (GREEN. BIACK. WIl ITE. RED. BLUE. YELLOW);
-- The minimum size of COLOR is 3 bits.

subtype BLACKANDWHITE is COLOR range BLACK .. WIT-fE;
-- The minimum size of BIACK AND WIIliE- is 2 bits.

subtype BLACKOR_WilITE is BLACK ANI) WIIITE range X .. X;
-- Assuming that X is not static, the minimum size of BLACK OR WirTE is
-- 2 bits (the same as the minimum size of the static type mark
-- BLACKANDWIm-ii).

Size: When no size specification is applied to an enumeration type or first named subtype
(if any), the size of that type or first named subtype is the smallest of 32, 8, 4, 2 or I bit
which is equal to or greater than the minimum size for the type or first named type.

When a size specification is applied to an enumeration type, this enumeration type and
each of its subtypes has the size specified by the length clause. The same rule applies to a
first named subtype. The size specification must of course specify a value greater than or
equal to the minimum size of the type or subtype to which it applies.

For example:

type EXTENDED is
(-- The usual American ASCII characters.

NUL SOIl. MFX. ETX. EOT. ENQ. ACK. BEL,

BS. iTrr. LF. VW. FF. CR. SO. SL,
DLE. DCI. DC2. D(3. DC4. NAK. SYN. ETB.
CAN. EM. SUB. ESSC. FS. GS. RS. US.

T..
*('.").+ ,... "/-.

".". 1.

"1.. "A'. "13". "C'. "D'. "E'. 'F', *G'.

"*H'. T. "J'. "K'. "L. "M. 'N'. 'O'.
• ~ ~ ~ ~ ~ ~ r V' o. "' S, T U. V. W.

• x. "'. z'. T- "V. T....
"a'. Vb'. Vc'. Vd. "e. 'r, 'g'.
Th'. 'i. j. "k'. T. m*. In'.

"p*. "q'. "r. " T'. Vu. "V. 'W.

"y'. Z'. T. I". T'. "-'. DEL.

Restictions on Representation Clauses 23

-- Extended characters
LEFT ARROW.

RIGHT ARROW.

UPPER ARROW.

LOWER ARROW.

UPPER LEFT CORNER.

UPPER RIGHTCORNER.

LOWER RIGIHT CORNER.

LOWER LEFT CORNER.

for EXTENDED'SIZE use •;
-- The size of type JIXTENDEI) will be one byie. Its objects will be represented
-- as unsigned 8 bit integers.

The Alsys Compiler fully implements size specifications. Nevertheless, as enumeration
values are coded using integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, the size of an object of an enumeration subtype is determined as follows:

When no size specification is applied to the enumeration type or its first named subtype (if
any), the objects of that type or first named subtype are represented as either unsigned
bytes or signed words. The compiler selects automatically the smallest such object
which can hold each of the internal codes of the enumeration type (or subtype). The size
of objects of the enumeration type, and of any of its subtypes, is thus 8 bits in the case of
an unsigned byte, or the machine size (32 bits) in the case of signed word.

When a size specification is applied to an enumeration type or its first named subtype,
objects of this enumeration type, or of any of its subtypes, have the size specified by the
length clause.

Alignment: An enumeration subtype is byte aligned if the size of the subtype is less than
or equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an enumeration subtype is a multiple
of the alignment of the corresponding subtype.

24 Alsvs Ada for the Transpuiter, Appendix F, v5.4

4.2 Integer Types

Predefined integer types

In the Alsys Ada implementation for the transputer the following predefined integer types
are available:

type SHORT INTEGER is range -2*07 .. 2**07-1;
type INTEGER is range -2*"31 .. 2"*31-1;

Selection or the parent or an integer type

An integer type declared by a declaration of the form:

type T is range L.. R;

is implicitly derived from one of the predefined integer types. The compiler automatically
selects the predefined integer type whose range is the shortest that contains the values L
to R inclusive.

Encoding of integer values

Binary code is used to represent integer values, using a conventional two's complement
representation.

Integer subtypes

Minimum size: The minimum size of an integer subtype is the minimum number of bits
that is necessary for representing the internal codes of the subtype values in normal binary
form (that is to say, in an unbiased form which includes a sign bit only if the range of the
subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, if m and M are
the lower and upper bounds of the subtype, then its minimum size L is determined as
follows. For m > = 0, L is the smallest positive integer such that M < = 2 1--1. For m <
0, L is the smallest positive integer such that -2 1- < = m and M < = 21-1-1.

Restrictions on Represemation Clauses 25

For example:

subtype S is INTEGER range 0.. 7;
-- The minimum size of S is 3 bits.

subtype D is S range X .. Y;
Assuming that X and Y are not static, the minimum size of

-- D is 3 bits (the same as the minimum size of the static type mark S).

Size: The sizes of the predcfined U.tcgcr types SHORTINtIlGER and INTEGER are
respectively 8 and 32 bits.

When no size specification is applied to an integer type or to its first named subtype (if
any), its size and the size of any subtypes is the smallest of 32, 8, 4, 2 or I bit which is
equal to or greater than the minimum size for the type or first named type.

For example:

type S is range 80 .. 100;
-- S is derived from sl ORTINuI'EGER, its size is 8 bits.

type J is range 0 .. 65535;
-- J is derived from IN'TEGER, its size is 32 bits.

type N is new J range 80.. 100;
-- N is indirectly derived from INTIiEGI'R, its size is 32 bits.

When a size specification is applied to an integer type, this integer type and each of its
subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or equal
to the minimum size of the type or subtype to which it applies.

For example:

type S is range 80 .. 100;
for S'SIZE use 32;
-- S is derived from SlORTINVII"GER, but its size is 32 bits
-- because of the size specification.

type J is range 0 .. 255;
for J'SIZE use 8;

J is derived from IN'rEGI-R, but its size is 8 bits because
-- of the size specification.

26 AIs.s Ada for the Transpuier, Appendix F, v0.4

type N is new J range 80 .. 100;
-- N is indirectly derived from In.iGER, but its size is 8 bits
-- because N inherits the size specification of J.

The Alsys Compiler implements size specifications. Nevertheless, as integers are
implemented using machine integers, the specified length cannot be greater than 32 bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, the size of an object of an integer subtype is determined as follows:

When no size specification is applied to the integer type or its first named subtype (if any),
the objects this type, or any of its subtypes, have the size of the predefined type from
which it derives directly or indirectly.

When a size specification is applied to an integer type or its first named subtype, objects of
this integer type, or of any of its subtypes, have the size specified by the length clause.

Alignment: An integer subtype is byte aligned if the size of the subtype is less than or
equal to 8 bits, word aligned otherwise.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an integer subtype is a multiple of
the alignment of the corresponding subtype.

Restrictions on Representation Clauses 27

4.3 Floating Point Types

Predefined floating point types

There are two predefined floating point types in the Alsys implementation for transputers:

Their characteristics are:

FLOAT:
FLOAT'DIGITS = 6
FLOAT'FIRST = -(2.0 - 2.0"*(-23))*2.C*"127
FLOAT'LAST = (2.0 - 2.0**(-23))*2.0"'127
FLOAT'MACHINE MANTISSA = 24

LONG FLOAT:
LONGFLOAT'DIGITS = 15
LONGFLOAT'FIRST = -(2.0 - 2.0**(-52))*2.0**1023
LONGFLOAT'LAST = (2.0 - 2.0"*(-52))*2.0"'1023
LONG-FLOAT'MACHINEMANTISSA = 53

Selection of the parent of a floating point type

A floating point type declared by a declaration of the form:

type T is digits D [range L.. RI;

is implicitly derived from a predefined floating point type. The Compiler automatically
selects the smallest predefined floating point type whose number of digits is greater than
or equal to D and which contains the values L and R.

Encoding or floating point values

In the program generated by the Compiler, floating point values are represented using the
xNSI/IEEE 754 standard 32-bit and 64-bit floating point formats as appropriate.

Values of the predefined type FLOAT are represented using the 32-bit floating point
format and values of the predefined type LONG FLOAT are represented using the 64-bit
floating point format as defined by the standard. The values of any other floating point
type are represented in the same way as the values of the predefined type from which it
derives, directly or indirectly.

28 Als),s Ada for the Transplier, Appendix F, i05.4

Floating point subtypes

Minimum size: The minimum size of a floating point subtype is 32 bits if its base type is
FLOAT or a type derived from FLOAT and 64 bits if i:s base type is LONGFILO)A I or a type
derived from LONG FLOAT.

Size: The sizes of the predefined floating point types FLOAT and LONG [[-OAT are
respectively 32 and 64 bits.

The size of a floating point type and the size of any of its subtypes is the size of the
predefined type from which it derives directly or indirectly.

The only size that can be specificd for a floating point type or first named subtype using a
size specification is its usual size (32, or 64 bits).

Object size: An object of a floating point subtype has the same size as its subtype.

Alignment: A floating point subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a floating point subtype is a multiple
of the alignment of the corresponding subtype.

Restrictions on Representation Clauses 29

4.4 Fixed Point Types

Small of a fixed point type

If no specification of small applies to a fixed point type, then the valuc of small is
determined by the value of delta as defined by [3.5.9].

A specification of small can be used to impose a value of small. The value of small is
required to be a power of two.

Predefined fixed point types

To implement fixed point types, the Alsys Compiler for the transputer uses a set of
anonymous predefined types. These are:

type SHORT FIXED is delta D range -2**7*S .. (2"*7-1)*S;
for SHORT FIX ED'SMALL use S;

type FIXED is delta D range -2**31 *S .. (2**31-1)*S;
for FIXED'SMALL use S;

where D is any real value and S any power of two less than or equal to D.

Selection of the parent of a fixed point type

A fixed point type declared by a declaration of the form:

type T is delta D range L .. R;

possibly with a small specification:

for T'SMALL use S;

is implicitly derived from a predefined fixed point type. The Compiler automatically
selects the predefined fixed point type whose small and delta are the same as the small
and delta of T and whose range is the shortest that includes the values L and R.

Encoding of fixed point values

In the program generated by the Compiler, a safe value V of a fixed point subtype F is
represented as the integer:

V / F'BASE'SMALL

30 Als.s Ada for the Transpulter, A1ppcndi. F, v5.4

Fixed point subtypes

Minimum size: The minimum size of a fixed point subtype is the minimum number of
binary digits that is necessary for representing the values of the range of the subtype using
the small of the base type (that is to say, in an unbiased form which includes a sign bit only
if the range of the subtype includes negative values).

For a static subtype, if it has a null range its minimum size is 1. Otherwise, s and S being
the bounds of the subtype, if i and I are the integer representations of m and M, the
smallest and the greatest model numbers of the base type such that s < m and M < S,
then the minimum size L is determined as follows. For i > = 0, L is the smallest positive
integer such that I < = 2l-1. For i < 0, L is the smallest positive integer such that -

2 l-- < = i and I < = 21-1.

For example:

type F is delta 2.0 range 0.0 .. 500.0;
-- The minimum size of F is 8 bits.

subtype S is F delta 16.0 range 0.0 .. 250.0;
-- The minimum size of S is 7 bits.

subtype D is S range X .. Y;
-- Assuming that X and Y are not static, the minimum size of D is 7 bits
-- (the same as the minimum size of its type mark S).

Size: The sizes of the sets of predefined fixed point types SHORTFIXED, and FIXED are 8
and 32 bits respectively.

When no size specification is applied to an fixed point type or to its first named subtype (if
any), its size and the size of any subtypes is the smallest of 32, 8, 4, 2 or I bit which is
equal to or greater than the minimum size for the type or first named type.

For example:

type F is delta 0.01 range 0.0 .. 1.0;
-- F is derived from a 8 bit predefined fixed type, its size is 8 bits.

type L is delta 0.01 range 0.0 .. 300.0;
-- L is derived from a 32 bit predefined fixed type, its size is 32 bits.

type N is new L range 0.0.. 2.0;
-- N is indirectly derived from a 32 hit predefined fixed type. Its sivc is 32 bits.

Restrictions on Represeniation Clauses 31

When a size specification is applied to a fixed point type, this fixed point type and each of
its subtypes has the size specified by the length clause. The same rule applies to a first
named subtype. The size specification must of course specify a value greater than or equal
to the minimum size of the type or subtype to which it applies.

For example:

type F is delta 0.01 range 0.0 .. 1.0;
for F'SIZE use 32;
-- F is derived from a 8 bit predefined fixed type, but its size is 32 bits
-- because of the size specification.

type L is delta 0.01 range 0.0 .. 300.0;
for F'SIZE use 16;
-- F is derived from a 32 bit prcdcfined fixed type, but its size is 16 bits
-- because of the size specification.
-- The size specification is legal since the range contains no negative values
-- and therefore no sign bit is required.

type N is new F range 0.8 .. 1.0;
-- N is indirectly derived from a 16 bit predefined fixed type, but its size is
-- 32 bits because N inherits the size specification of F.

The Alsys Compiler implements size specifications. Nevertheless, as fixed point objects
are represented using machine integers, the specified length cannot be greater than 32
bits.

Object size: Provided its size is not constrained by a record component clause or a
pragma PACK, the size of an object of a fixed point subtype is determined as follows:

When no size specification is applied to the fixed point type or its first named subtype (if
any), the objects this type, or any of its subtypes, have the size of the predefined type from
which it derives directly or indirectly.

When a size specification is applied to an fixed point type or its first named subtype,
objects of this integer type, or of any of its subtypes, have the size specified by the length
clause.

Alignment: A fixed point subtype is byte aligned if its size is less than or equal to 8 bits,
word aligned otherwise.

32 Alsys Ada for the Transputer, Appendix F, v5.4

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of a fixed point subtype is a multiple of
the alignment of the corresponding subtype.

4.5 Access Types

Collection Size

When no specification of collection size applies to an access type, no storage space is
reserved for its collection, and the value of the attribute STORAGESIZE is then 0.

As described in [13.21, a specification of collection size can be provided in order to reserve
storage space for the collection of an access type. The Alsys Compiler fully implements
this kind of specification.

Encoding of access values

Access values are machine addresses represented as machine word - sized values (i.e. 32
bits).

Access subtypes
Minimum size: The minimum size of an access subtype is that of the word size of the

target transputer.

Size: The size of an access subtype is the same as its minimum size.

The only size that can be specified for an access type using a size specification is its usual
size.
Object size: An object of an access subtype has the same size as its subtype, thus an
object of an access subtype is always one machine word long.

Alignment: An access subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause or a pragma PACK, the address of an object of an access subtype is always on a
word boundary, since its subtype is word aligned.

Restrictions on Representation Clauses 33

4.6 Task Types

Storage for a task activation

When no length clause is used to specify the storage space to be reserved for a task
activation, the storage space indicated at bind time is used for this activation.

As described in [13.21, a length clause can be used to specify the storage space for the
activation of each of the tasks of a given type. In this case the value indicated at bind time
is ignored for this task type, and the length clause is obeyed.

Both the length clause and the bind time parameter specify the combined size of the task's
primary and auxiliary stacks. Further bind time parameters specify the percentage of this
storage size to be allocated to the primary stack and indicate whether or not to attempt to
allocate the primary stack in fast internal memory. These bind time parameters indicate
the default action and can be overridden using the implementation defined pragmas
STORAGE SIZE RATIO and FAST PRIMARY.

pragma STORAGESIZERATIO (task_namne, integer literal);

pragma FAST-PRIMARY (taskname , YES I NO);

These two pragmas are not allowed for derived types. They apply to the task type
task name. For each pragma, the pragma and the declaration of the task type to which it
applies must both occur within the same declarative part or package specification,
although the declaration of the task type must precede the pragma.

Pragma STORAGE SIZE RATIO specifies the percentage of the total storage size reserved
for the activation of the task to be used as the task's primary stack. Any remaining storage
space will be used as the task's auxiliary stack. In the absence of the pragma the default
ratio specified at bind time is used for the activation.

Pragma FAST PRIMARY specifies whether or not an attempt should be made to allocate
the task's primary stack in fast internal memory. In the absence of the pragma the default
indication specified at bind time is used for the activation.

Encoding of task values

Task values are represented as machine word sized values.

34 Alsys Ado for the Transpuiter, Appendix F, v5.4

Task subtypes

Minimum size: The minimum size of a task subtype is 32 bits.

Size: The size of a task subtype is the same as its minimum size.

The only size that can be specified for a task type using a size specification is its usual size.

Object size: An object of a task subtype has the same size as its subtype. Thus an object
of a task subtype is always 32 bits long.

Alignment- A task subtype is always word aligned.

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of a task subtype is always on a word boundary, since its
subtype is word aligned.

Restrictions on Representation Clauses 35

4.7 Array Types

Layout of an array

Each array is allocated in a contiguous area of storage units. All the components have the
same size. A gap may exist between two consecutive components (and after the last one).
All the gaps have the same size.

Component Gap Component Gap Component Gap

Components

If the array is not packed, the size of the components is the size of any object of the

subtype of the components.

For example:

type A is array (1 .. 8) of BOOLFAN;

-- The size of the components of A is the size of any object of the type BOOLEAN:

-- 8 bits.

type DECIMAL DIGIT is range 0.. 9;
for DECIMAL DIGIrSIZE use 4;
type BINARY CODEDDECIMAL is

array (INTEGER range < >) of DECIMAL DIGIT;
-- The size of the type DECIMAL DIGIT is 4 bits. Thus in an array of
-- type BINARY CODED DECIMAL each component will be represented in
-- 4 bits as in the usual BCD representation.

If the array is packed and its components are neither records nor arrays, the size of the
components is the size of the subtype of the components.

36 Alsys Ada for the Transputer, AppendLi F, v5.4

For example:

typeA Is array (1 .. 8) of BOOLEAN;
pragma PACK(A);
-- The size of the components of A is the size of the type BOOLEAN: 1 bit.

type DECIMALDIGIT is range 0.. 9;
type BINARYCODEDDECIMAL Is

array (INTEGER range < >) of DECIMAL-DIGrT;
pragma PACK(BINARYCODED DECIMAL);
-- The size of the type DECIMAL DIGIT is 4 bits.

BINARY CODED DECIMAL is packed, each component of an array of this
-- type will be represented in 4 bits as in the usual BCD representation.

Packing the array has no effect on the size of the components when the components are
records or arrays.

Gaps

If the components are recefis or arrays, no size specification applies to the subtype of the
components and the array is not packed, then the Compiler may choose a representation
with a gap after each component; the aim of the insertion of such gaps is to optimize
access to the array components z-d to their subcomponents. The size of the gap is chosen
so that the relative displacement of consecutive components is a multiple of the alignment
of the subtype of the components. This strategy allows each component and
subcomponent to have an address consistent with the alignment of its subtype

For example:

type R is
record

K: INTEGER; -- IN'TEGER is word aligned.
B: BOOLEAN; -- BOOLEAN is byte aligned.

end record;
-- Record type R is word aligned. Its size is 40 bits.

typeA is array (1 .. 10) of R;
-- A gap of three bytes is inserted after each component in order to respect the
-- alignment of type R. The size of an array of type A will be 640 bits.

Restrictions on Representation Clauses 37

Component Gap Component Gap Component Gap

Array of type A: each subconmponent Khas a word offset.

If a size specification applies to the subtype of the components or if the array is packed, no

gaps are inserted.

For example:

type R is
record

K: INTEGER;

B: BOOLEAN;
end record;

typeA is array (1 .. 10) of R;
pragma PACK(A);
-- There is no gap in an array of type A because A is packed.
-- The size of an object of type A will be 400 bits.

type NR is new R;

for NR'SIZE use 40;

type B is array (1 .. 10) of NR;

-- There is no gap in an array of type B because NR has a size specification.
-- The size of an object of type B will be 400 bits.

Component Component Component

Array of type A or B: a subcomponent K can have any byte offset.

38 Alss Ada for the Transitter, Appendix F, v5.4

Array subtypes

Size: The size of an array subtype is obtained by multiplying the number of its
components by the sum of the size of the components and the size of the gaps (if any). If
the subtype is unconstrained, the maximum number of components is considered.

The size of an array subtype cannot be computed at compile time

"* if it has non-static constraints or is an unconstrained array type with non-static index
subtypes (because the number of components can then only be determined at run
time).

"* if the components are records or arrays and their constraints or the constraints of
their subcomponents (if any) are not static (because the size of the components and
the size of the gaps can then only be determined at run time).

As has been indicated above, the effect of a pragma PACK on an array type is to suppress
the gaps and to reduce the size of the components. The consequence of packing an array
type is thus to reduce its size.

If the components of an array are records or arrays and their constraints or the constraints
of their subcomponents (if any) are not static, the Compiler ignores any pragma PACK
applied to the array type but issues a warning message. Apart from this limitation, array
packing is fully implemented by the Alsys Compiler.

The only size that can be specified for an array type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of an array is as expected by the application.

Object size: The size of an object of an array subtype is always equal to the size of the
subtype of the object.

Alignment: If no pragma PACK applies to an array subtype and no size specification
applies to its components, the array subtype has the same alignment as the subtype of its
components.

If a pragma PACK applies to an array subtype or if a size specification applies to its
components (so that there are no gaps), the alignment of the array subtype is the lesser of
the alignment of the subtype of its components and the relative displacement of the
components.

Resirictions on Representalion Clauses 39

Object address: Provided its alignment is not constrained by a record representation
clause, the address of an object of an array subtype is a multiple of the alignment of the
corresponding subtype.

4.8 Record Types

Layout of a record

Each record is allocated in a contiguous area of storage units. The size of a record
component depends on its type. Gaps may exist between some components.

The positions and the sizes of the components of a record type object can be controlled
using a record representation clause as described in [13.41. In the Alsys implementation
for transputer targets there is no restriction on the position that can be specified for a
component of a record. If a component is not a record or an array, its size can be any size
from the minimum size to the size of its subtype. If a component is a record or an array,
its size must be the size of its subtype.

In a record representation clause, the first storage unit (that is, a byte) and the first bit
position within a storage unit are numbered zero. Bits are ordered, and thus numbered,
least significant bit first within a storage unit. Storage units are numbered such that lower
numbers have the least significance in a machine word.

A component clause may be specified such that the component overlaps a storage unit
boundary. In this case, the bits are numbered in sequence from the least significant bit of
the first storage unit to the most significant bit of the last storage unit occupied by the
component. For example:

type BIT 3 is range 0 .. 7;
for BIT YSIZE use 3;

type BITS. is range 0 .. 31;
for Brr 5'SIZE use 5;

type BIT_8 is range 0 .. 255;
for BIT 8'SIZE use 8;

40 Alss Ada for the Tratisluter, Appendix F, v5.4

type R is
record

FIRST: BIT 3:
SECOND: BITS.
THIRD: BIT 5:

end record;
for R use

record
FIRST at 0 range 0 2;
SECOND at 0 range 3 .. 10;
-- Component SECOND overlaps a storage Unit boundary.
THIRD at 1 range 3 .. 7;

end record;
for R'SIZE use 16;

1 0 Storage unit number

Most Significant [SSEO Least Significant
B it (MSB) [iJ I ~j [~ Sit (LSB)

7 3 2 0 7 3 2 0 Bit number within
storage unit

Representation of a Record of type R

A record representation clause need not specify the position and the size for every
component.

If no component clause applies to a component of a record, its size is the size of objects of
its subtype. Its position is chosen by the Compiler so as to optimize access to the
components of the record: the offset of the component is chosen as a multiple of the
alignment of the component subtype. Moreover, the Compiler chooses the position of the
component so as to reduce the number of gaps and thus the size of the record objects.

Because of these optimisations, there is no connection between the order of the
components in a record type declaration and the positions chosen by the Compiler for the
components in a record object.

Restrictions on Representation Clauses 41

Indirect components

If the offset of a component cannot be computed at compile time, this offset is stored in
the record objects at run time and used to access the component. Such a component is
said to be indirect while other components are aid to be direct:

Beginning of the record

Coenpite time offset
DIRECT

CoMpite time offset
OFFSET

Run time offset

I ND! RECT

A direct and an indirect component

If a record component is a record or an array, the size of its subtype may be evaluated at
run time and may even depend on the discriminants of the record. We will call these
components dynamic components.

42 Alsys Ada for the Transputer, Appendix" F, v5.4

For example:

ty DEVICE is (SCREEN " :. fER);

type COLOR Is (GREEN", RED, BLUE);

type SEMIES is array (POSITIVE range < >) of INTEGER;

type GRAPH (L: NATURAL) is
record

X: SERIES(I .. L); -- The size of x depends on L
Y : SERIES(1 .. L); -- The size of Y depends on L

end record;

Q: POSITIVE;

type PICTURE (N: NATURAL; I) : DEVICE) is
record

F: GRAPII(N); -- The size of F depends on N
S : GRAPH(Q); -- The size of S depends on Q
case D is

when SCREEN = >
C: COLOR;

when PRINTER = >
null;

end case;
end record;

Any component placed after a dynamic component has an offset which cannot be
evaluated at compile time and is thus indirect. In order to minimize the number of
indirect components, the Compiler groups the dynamic components together and places
them at the end of the record:

Restictions on Rel-reseniation Clauses 43

D SCREEN D =PRINTER
N=2 N=I

Beginning of the record

S OFFSET S OFFSET
Compite time offsets

F OFFSET F OFFSET

N [N

D

Run time offsets F

- S -

- S

77Te record type PICTURE: F and S are placed at the end of the record

Thanks to this strategy, the only indirect components are dynamic components. But not
all dynamic components are necessarily indrect: if there are dynamic components in a
component list which is not followed by a variant part, then exactly one dynamic
component of this list is a direct component because its offset can be computed at
compilation time.

44 Alsys Ada for the Transputer, Appendix F, v5.4

For example:

Beginning of the record
Y OFFSET

CompiLe time offset
L

Compite time offset

X Size dependent on discriminant L

S-ze Run time offset

Y Size dependent on discriminant L

77Te record type GRAPH: the dynamic component X is a direct component.

The offset of an indirect component is always expressed in storage units.

The space reserved for the offset of an indirect component must be large enough to store
the size of any value of the record type (the maximum potential offset). The Compiler
evaluates an upper bound MS of this size and treats an offset as a component having an
anonymous integer type whose range is 0 .. MS.

If C is the name of an indirect component, then the offset of this component can be
denoted in a component clause by the implementation generated name COFFSEI.

Implicit components

In some circumstances, access to an object of a record type or to its components involves
computing information which only depends on the discriminant values. To avoid
unnecessary recomputation, the Compiler stores this information in the record objects,
updates it when the values of the discriminants are modified and uses it when the objects
or their components are accessed. This information is stored in special components called
implicit components.

Restrictions on Representation Clauses 45

An implicit component may contain information which is used when the record object or
several of its components are accessed. In this case the component will be included in any
record object (the implicit component is considered to be declared before any variant part
in the record type declaration). There can be two components of this kind; one is called
RECORD SIZE and the other VARIANv I',,'FX

On the other hand an implicit cu, ,ay be used to access a given record
component. In this case the implicit component exists whenever the record component
exists (the implicit component is considered to be declared at the same place as the record
component). Components of this kind are called ARRAY DESCRIPTORS or
RECORD DESCRII TIORs.

RECORD SIZE

This implicit component is created by the Compiler when the record type has a variant
part and its discriminants are defaultcd. It contains the size of the storage space necessary
to store the currcn value of the record object (note that the storage effectively allocated
for the record object may be more than this).

The value of a RECORD SIZE component may denote a number of bits or a number of
storage units. In general it denotes a number of storage units, but if any component
clause specifies that a compon.,nt of the record type has an offset or a size which cannot
be expressed using storage units, then the value designates a number of bits.

The implicit component RECORD SIZE must be large enough to store the maximum size of
any value of the record type. The Compiler evaluates an upper bound MS of this size and
then considers the implicit component as having an anonymous integer type whose range
is 0 .. MS.

If R is the name of the record type, this implicit component can be denoted in a

component clause by the implementation generated name R'RECORDSIZE.

VARIANT INDEX

This implicit component is created by the Compiler when the record type has a variant
part. It indicates the set of components that are present in a record value, It is used when
a discriminant check is to be done.

Component lists that do not contain a variant part are numbered. These numbers are the
possible values of the implicit component VARIANrrINDEX.

46 Alsys Ada for tlhe Transputer; Appendix F, v5.4

For example:

type VEHICLE is (AIRCRAFT. ROCKErI', BOAT. CAR);

type DESCRIPTION (KIND : VEHICLE := CAR) is

record

SPEED: INT1EGER;

case KIND Is
when AIRCRAFT I CAR = >

WHEELS: INT17EGER;

case KIND is
when AIRCRAFr = > -- I

WINGSPAN : IN-rEGER;
when others = > -- 2

null;
end case;

when BOAT = > -- 3

STEAM : BOOLEAN;
when ROCKET = > -- 4

SI'AGES: INTrEGER;

end case;
end record;

The value of the variant index indicates the set of components that are present in a record
value:

Variant Index Set

1 (KIND, SPEED, WHEELS, WINGSPAN)
2 (KIND, SPEED, WHEELS)
3 (KIND, SPEED, STEAM)
4 (KIND, SPEED, STAGES)

A comparison between the variant index of a record value and the bounds of an interval is
enough to check that a given component is present in the value:

Restrictions on Representation Clauses 47

Coqwonent Interval.

KIND --
SPEED
WHEELS 1 .. 2
WINGSPAN 1 .. 1
STEAM 3 .. 3
STAGES 4 .. 4

The implicit component VARIANTrl INDEX must be large enough to store the number V of
component lists that don't contain variant parts. The Compiler treats this implicit
component as having an anonymous integer type whose range is I .. V.

If R is the name of the record type, this implicit component can be denoted in a
component clause by the implementation generated name R'VARIANrT _INDEX.

ARRAY DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous array subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind ARRAYDESCRIPTOR is not described in
this documentation. Nevertheless, if a programmer is interested in specifying the location
of a component of this kind using a component clause, he can obtain the size of the
component using the ASSEMBLY parameter in the COMPILE command.

The Compiler treats an implicit component of the kind ARRAYDESCRIPTOR as having an
anonymous record type. If C is the name of the record component whose subtype is
described by the array descriptor, then this implicit component can be denoted in a
component clause by the implcmentation generated name C-ARRAYDESCRIPTOR.

RECORD DESCRIPTOR

An implicit component of this kind is associated by the Compiler with each record
component whose subtype is an anonymous record subtype that depends on a discriminant
of the record. It contains information about the component subtype.

The structure of an implicit component of kind RECORD DESCRIPTOR is not described in
this documentation. Neverthelcss, if a programmer is interested in specifying the location
of a component of this kind using a component clause, he can obtain the size of the
component using the ASSEMBLY parameter in the COMPILE command.

48 Alsys Ada for the TransTuter, Appendix F, v5.4

The Compiler treats an implicit component of the kind REcORD DESCRJITrOR as having
an anonymous record type. If C is the name of the record component whose subtype is
described by the record descriptor, then this implicit component can be denoted in a
component clause by the implementation generated name CRECORDIDtSCRIPTOR.

Suppression of implicit components

The Alsys implementation provides the capability of suppressing the implicit components
RECORD-SIZE and/or VARIANT INDEX from a record type. This can be done using an
implementation defined pragma called IMPROVE. The syntax of this pragma is as follows:

pragma IMPROVE (TIME I SPACE, ION = >1 sihapleiaame);

The first argument specifies whether TIME or SPACE is the primary criterion for the choice
of the representation of the record type that is denoted by the second argument.

If TIME is specified, the Compiler inserts implicit components as described above. If on
the other hand SPACE is specified, the Compiler only inserts a VARIAN, -INDEX or a
RECORD SIZE component if this component appears in a record representation clause that
applies to the record type. A record representation clause can thus be used to keep one
implicit component while suppressing the other.

A pragma IMPROVE that applies to a given record type can occur anywhere that a
representation clause is allowed for this type.

Rec.ord svbtypes

Size: UnLss a compoeni clause specifies that a component of a record type has an offset
or a size which cannot be expressed using storage units, the size of a record subtype is
rounded up to a whole number of storage units.

The size of a constrained record subtype is obtained by adding the sizes of itE components
and the sizes oc1 its gaps (if any). This size is not computed at compile time

"* when the record subtype has non-static constraints,

"* when a component is an array or a record and its size is not computed at compile
time.

The size of an unconstrained record subtype is obtained by adding the sizes of the
components and the sizes of the gaps (if any) of its largest variant. If the size of a

Restfictions on Represenitation Cl.auses 49

component or of a gap cannot be evaluated exactly at compile time, an upper bound of
this size is used by the Compiler to compute the subtype size.

The only size that can be specified for a record type or first named subtype using a size
specification is its usual size. Nevertheless, such a length clause can be useful to verify
that the layout of a record is as expected by the application.

Object size: An object of a constrained record subtype has the same size as its subtype.

An object of an unconstrained record subtype has the same size as its subtype if this size is
less than or equal to 4 Kbyte. If the size of the subtype is greater than this, the object has
the size necessary to store its current value; storage space is allocated and released as the
discriminants of the record change.

Alignment: When no record representation clause applies to its base type, a record
subtype has the same alignment as the component with the highest alignment
requirement.

When a record representation clause that does not contain an alignment clause applies to
its base type, a record subtype has the same alignment as the component with the highest
alignment requirement which has not been overridden by its component clause.

When a record representation clause that contains an alignment clause applies to its base
type, a record subtype has an alignment that obeys the alignment clause.

Object address: Provided its alignment is not constrained by a representation clause, the
address of an object of a record subtype is a multiple of the alignment of the
corresponding subtype.

50 Alsvý Ada for the Transplter, Appendix F, v5.4

CHAPTER 5

Conventions for Implementation-Generated Names

Special record components are introduced by the Compiler for certain record type
definitions. Such record components are implementation-dependent; they are used by the
Compiler to improve the quality of the generated code for certain operations on the
record types. The existence of these components is established by the Compiler
depending on implementation-dependent criteria. Attributes are defined for referring to
them in record representation clauses. An error message is issued by the Compiler if the
user refers to an implemcntation-dependent component that does not exist. If the
implementation-dependent component exists, the Compiler checks that the storage
location specified in the component clause is compatible with the treatment of this
component and the storage locations of other components. An error message is issued if
this check fails.

There are five such attributes described below (also see section 4.8):

T'RECORD SIZE For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to store the size of the record object. This
component exists for objects of a record type with defaulted
discriminants when the sizes of the record objects depend
on the values of the discriminants.

T'VARIANT INDEX For a prefix T that denotes a record type. This attribute
refers to the record component introduced by the Compiler
in a record to assist in the efficient implementation of
discriminant checks. This component exists for objects of a
record type with variant type.

C'ARRAYDESCRIPTOR For a prefix C that denotes a record component of an array
type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

Conventions for Implementation Generated Names 51

CRECORDDESCRIPTOR For a prefix C that denotes a record component of a record
type whose component subtype definition depends on
discriminants. This attribute refers to the record
component introduced by the Compiler in a record to store
information on subtypes of components that depend on
discriminants.

COFMET For a prefix C that denotes an indirect component of a
record type. This attribute refers to the offset component
introduced by the Compiler in a record to store the offset of
C.

52 Alsys Ada for the Transputei; Appendix F, v5.4

CHAPTER 6

Address Clauses

6.1 Address Clauses for Objects

An address clause can be used to specify an address for an object as described in [13.51.
When such a clause applies to an object no storage is allocated for it in the program
generated by the Compiler. The program accesses the object using the address specified
in the clause.

An address clause is not allowed for task objects, nor for unconstrained records whose
maximum possible size is greater than 4 Kbytes. or for a constant.

6.2 Address Clauses for Program Units

Address clauses for program units arc not implcmented.

6.3 Address Clauses for Entries

Address clauses for entries are not implemented.

Address Clauses 53

54 Alsi's Ada for the Transpitter, Appendix F, 0..4

CHAPTER 7

Restrictions on Unchecked Conversions

Unconstrained arrays are not allowed as target types.

Unconstrained record types without defaulted discriminants are not allowed as target
types.

If the source and the target types are each scalar or access types, the sizes of the objects of
the source and target types must be equal. If a composite type is used either as the source
type or as the target type this restriction on the size does not apply.

If the source and the target types are each of scalar or access type or if they are both of
composite type, the effect of the function is to return the operand.

In other cases the effect of unchecked conversion can be considered as a copy:

"* if an unchecked conversion is achieved of a scalar or access source type to a
composite target type, the result of the function is a copy of the source operand: the
result has the size of the source.

"* if an unchecked conversion is achieved of a composite source type to a scalar or
access target type, the result of the function is a copy of the source operand: the
result has the size of the target.

Resticlions on Unchecked conversions 55

56 Alsvs Ada for the Transmiter, Appendix F, v5.4

CHAPTER 8

Input-Output Packages

The predefined input-output packages SEQUENTIAL 10 [14.2.31, DIRECT 1o [14.2.51,
TEXT I10 14.3.101 and IO EXCE TrIoNs 114.51 are implemented as described in the
Language Reference Manual.

It should be noted that, in order to generate output, calls to PUT procedures should be
followed by a call to either PUT LINE or NEW-LINE.

The package LOW LEVEl. IO 1[14.61, which is concerned with low-level machine-dependent
input-output, is not implemented.

All access to the services of the host system are provided through the INMOS supplied
server (e.g. iser'er Ref.3), so much of Ada input-output is host independent. Any
restrictions that apply to the server will also apply to the Ada input-output.

8.1 NAME Parameter

No special treatment is applied to the NAME parameter supplied to the Ada procedures
CREATE or OPEN 114.2.11. This parameter is passed immediately on to the INMOS server
and from there to the host operating system. The file name can thus be in any format
acceptable to the host system.

8.2 FORM Parameter

The FORM parameter comprises a set of attributes formulated according to the lexical
rules of [21, separated by commas. The FORM parameter may be given as a null string
except when DIRECT 10 is instantiated with an unconstrained type; in this case the record
size attribute must be provided. Attributes are comma-separated; blanks may be inserted
between lexical elements as desircd. In the descriptions below the meanings of natural,
positive, etc., are as in Ada; attribute keywords (represented in upper case) are identifiers
[2.3] and as such may be specified without regard to case.

USE ERROR is raised if the FORM parameter does not conform to these rules.

Input-Outiptr Packages 57

The attributes are as follows:

8.2.1 File Sharing

This attribute allows control over the sharing of one external file between several internal
files within a single program. In effect it establishes rules for subsequent OPEN and
CREATE calls which specify the same external file. If such rules are violated or if a
different file sharing attribute is specified in a later OPEN or CREATE call, USE-ERROR will
be raised. The syntax is as follows:

NOT SHARED I

SHARED = > access mode

where

access__mode ::= READERS I SINGLE-WRITER I ANY:

A file sharing attribute of:

NOT-SHARED implies only one internal file may access the
external file.

SHARED => READERS imposes no restrictions on internal files of
mode INFILE, but prevents any internal files of
mode OUT FILE or INOUT FILE being
associated with the external file.

SHARED = > SINGLE WRITER is as SHARED = > READERS, but in addition
allows a single int:ý,nal file of mode OUT FILE
or INOUT FILE.

SHARED => ANY places no restriction on external file string.

If a file of the same name has previously been opened or created, the default is taken from
that file's sharing attributc, otherwise the default depends on the mode of the file: for
mode IN FILi.F_ the default is SHIAMIAI) = > READIERS, for modes INOUT FILL and OU7' FILE

the default is NOT SI IARIU).

58 Als.ys Ada for lhe Transpuler, Apiendi. F, t-5.4

8.2.2 Binary Files

Two FORM attributes, RECORDSIZE and RECORDUNIT, control the structure of binary
files.

A binary file can be viewed as a sequence (sequential access) or a set (direct access) of
consecutive RECORDS.

The structure of such a record is:

I HEADER I OBJECT [UNUSEDPART1

and it is formed from up to three items:

"* an OBJECr with the exact binary representation of the Ada object in the executable
program, possibly including an object descriptor

"* a HEADER consisting of two word sized fields:

- the length of the object in bytes

- the length of the descriptor in bytes

"* an UNUSED PART of variable size to permit full control of the record's size

The HEADER is implemented only if the actual parameter of the instantiation of the 10
package is unconstrained.

The file structure attributes take the form:

RECORD SIZE => sizein_bytes
RECORD UNIT => size in bytes

Their meaning depends on the object's type (constrained or not) and the file access mode
(sequential or direct access):

a) If the object's type is constrained:

. The RECORDUNIT attribute is illegal

- If the RECORDI SIZE attribute is omitted, no UNUSEDI PART will be
implemented: the default REC)IoRDSIZE is the object's size

Input-Output Packages 59

If present, the RECORD SIZE attribute must specify a record size greater than or
equal to the object's size, otherwise the exception USEERROR will be raised

b) If the object's type is unconstrained and the file access mode is direct:

- The RECORDUNIT attribute is illegal

- The RECORI) SIZE attribute has no default value, and if it is not specified, a
USE ERROR will be raised

- An attempt to input or output an object larger than the given RECORD-SIZE will
raise the exception DATAERROR

c) If the object's type is unconstrained and the file access mode is sequential:

- The RECORD SIZE attribute is illegal

- The default value of the RECORDUNIT attribute is I (byte)

- The record size will be the smallest multiple of the specified (or default)
RECORD UNIT that holds the object and its header. This is the only case where
records of a file may have different sizes.

In all cases the value given must not be smaller than a minimum size. For constrained
types, this minimum size is ELEMENT TYPE'SIZE / SYSTEM.STORAGE UNIT; USE ERROR
will be raised if this rule is violated. For unconstrained types, the minimum size is
ELEMEN'T" TYPE'DESCRIlrOR SIZE / SYSE:M.STORAGE UNrr plus the size of the largest
record which is to be read or written. If a larger record is processed, DATAERROR will be
raised by the RElAD or WRITE.

8.2.3 Buffering

This attribute controls the size of the buffer used as a cache for input-output operations:

BUFFER-SIZE = > size in_bytes

The default value for BUFFER SIZE is 0; which means no buffering.

60 Alsvs Ada for the Transutter, Appetndir F, v5.4

8.2.4 Appending

This attribute may only be used in the FORM parameter of the OPEN command. If used in
the FORM parameter of the CREA'rE command, USE-ERROR will be raised.

The affect of this attribute is to cause writing to commence at the end of the existing file.

The syntax of the APPEND attribute is simply:

APPEND

The default is APPENi) -> FALSE, but this is overridden if this attribute is specified.

In normal circumstances, when an external file is ope,:ed, an index is set which points to
the beginning of the file. If the APPEND attribute is present for a sequential or for a text
file, then data transfer will commence at the end of the file. For a direct access file, the
value of the index is set to one more than the number of records in the external file.

This attribute is not applicable to terminal devices.

8.3 USEERROR
The following conditions will cause USE-ERROR to be raised:

"* Specifying a FORM parameter whose syntax does not conform to the rules given
above.

" Specifying the RECORDSIZE FORM parameter attribute to have a value of zero, or
failing to specify RECORD SIZE for instantiations of DIRECT 1O for unconstrained
types.

" Specifying a RECORI) SIZE FORM parameter attribute to have a value less than that
required to hold the element for instantiations of DIREC1-_O and SFzQUENTIAL 10 for
constrained types.

"* Violating the file sharing rules stated above.

"* Attempting to perform an input - output operation which is not supported by the
INMOS iserver due to restrictions of the host operating system.

" Errors detected whilst reading or writing (e.g. writing to a file on a read-only disk).

flnpLt-OutJut Packages 61

62 A Isys Ada for the Transpitter, App)Cfdiv F, vS. 4

CHAPTER 9

Characteristics of Numeric Types

9.1 Integer Types

The ranges of values for integer types declared in package STANDARD are as follows:

SHORTINTEGER -128.. 127 -- 2**7 - I

INTEGER -2147483648 .. 2147483647 -- 2**31 - I

Other Integer Types

For the packages DIREzcr".O and TEXT.10, the ranges of values for types COUNTr and
POSITIVE COUNT are as follows:

COUNT 0..2147483647 -2**31 -1

POSITIVE COUNT I .. 2147483647 -- 2**31 - i

For the package TEXT 1)0, the range of values for the type FIELD is as follows:

FIELD 0.. 255 -- 2**8 - 1

Characteristics of Nuneuic Types 63

9.2 Floating Point Type Attributes

FLOAT
Approximate
value

DIGITS 6
MANTISSA 21
EMAX 84
EPSILON 2.0 * -20 9.54E-7
SMALL 2.0 ** -85 2.58E-26
LARGE 2.0 ** 84 * (1.0 - 2.0 * -21) 1.93E+ 25
SAFE EMAX 125
SAFE SMALL 2.0 ** -126 1.18E-38
SAFE LARGE 2.0 * 125 * (1.0 - 2.0 ** -21) 4.25E+37
FIRST -2.0 ** 127 * (2.0 - 2.0 ** -23) -3.40E+ 38
LAST 2.0 ** 127 * (2.0 -2.0 * -23) 3.40E+ 38
MACHINE RADIX 2
MACHINE-MANTISSA 24
MACHINE-EMAX 128
MACHINE-EMIN -125
MACHINE-ROUNDS TRUE
MACHINE-OVERFLOWS TRUE
SIZE 32

64 Alsys Ada for the Transplter, Appendir F, v5.4

LONG FLOAT
Approximate
value

DIGITS 15
MANTISSA 51
EMAX 204
EPSILON 2.0 * -50 8.88E-16
SMALL 2.0 * -205 1.94E-62
LARGE 2.0 ** 204 * (1.0 - 2.0 * -51) 2.57E+61
SAFE EMAX 1021
SAFE SMALL 2.0 * -1022 2.22E-308
SAFE LARGE 2.0 * 1021 * (1.0 - 2.0 --51) 2.25E+ 307
FIRST -2.0 * 1023 * (2.0 - 2.0 * -52) -1.79E+ 308
LAST 2.0 * 1023 * (2.0 - 2.0 -52) 1.79E+ 308
MACHINE RADIX 2
MACHINE-MANTISSA 53
MACHINE-EMAX 1024
MACHINE-EMIN -1021
MACHINE-ROUNDS TRUE
MACHINE-OVERFLOWS TRUE
SIZE 64

9.3 Attributes of Type DURATION
Approximate

value

DURATION'DELTA 2.0 -14
DURATION'SMALL 2.0 -14
DURATION'LARGE 2.0**17-2.0**-14 131072
DURATION'FIRST -131072.0
DURATION'LAST 2.0"*17-2.0"*-14 131072

Characteristics of Numeric Types 65

66 Alsys Ada for the Transmiter, Appendix F, v5.4

REFERENCES

[1] Reference Manual for the Ada Programming Language

(ANSI/MIL-STD-1815A-1983).

[21 Occam2 Reference Manual.
INMOS Limited
Prentice Hall, 1988.

[31 Occam2 Toolset User Manual.

INMOS Limited.
See release notes for version number.

[4] Transputer Instruction Set - A Compiler Writer's Guide
INMOS Limited
Prentice Hall, 1988

[51 The T9000 Transputer Instruction Set Manual
INMOS Limited

References 67

68 Alsys Ada for the Transpu'er, Appendix F. v5.4

INDEX

Ada designator 3 append 61
ADDRESS attribute 15 file sharing attribute 58

restrictions 15 record size attribute 61
Append attribute 61 Implementation-dependent attributes
ARRAY DESCRIPTOR attribute 51 15
ASCII 7, 9 Implementation-dependent pragma 5
Attributes 15 Implementation-generated names 51

ARRAY DESCRIPTOR 51 IMPROVE 13
DESCRIPTOR SIZE 15 INDENT 12
IS ARRAY 15 INLINE 3
OBJECT 52 INLINE GENERIC 3
RECORD DESCRIPTOR 52 Input-Output packages 57
RECORD SIZE 51,57 DIRECT 10 57
representation attributes 15 10 EXCIEPTIONS 57
VARIANT INDEX 51 LOW LEVEL 10 57

BOOLEAN 7 SEQU1ENTIAL 10 57
C'OFFSET attribute 52 TEXT IC 57
CHARACTER 7 INTEGEIR 7,63
COUNT 63 Integer types 7, 63
DESCRIPTOR SIZE attribute 15,60 COUNT 63
DIRECT 10 57,63 FIELD 63
DURATION INTEGER 7,63

attributes 65 POSITIVE COUNT 63
Enumeration types 7 SHORT INlTEGER 7, 63

BOOLEAN 7 INTERFACE 5
CHARACTER 7 INTERFACE NAME 5, 11

FAST PRIMARY 13,34 10 EXCEPTIONS 57
FIELD 63 1S ARRAY attribute 15
File sharing attribute 58 Languagename 5
Fixed point types 8 LONG FLOAT 8, 28, 65

DURATION 65 LOW LEVEL 10 57
FLOAT 8, 28, 64 NO IMIAGE 12
Floating point types 8 NOT SHARED 58

FLOAT 8, 64 Numeric types
LONG FLOAT 8, 65 characteristics 63

FORM parameter 57 Fixed point types 65
FORM parameter attributes integer types 63

Jndex 69

OCCAM 5 SHARED 58
OCCAM HIGH 5 SHORT INTEGER 7,63
PACK 13 STORAGESIZERATIO 13,34
Parameter representations 7 STRING 9

Access types 8 String literal 11
Array types 8 Subprogram_name 5, 11
Enumeration types 7 SUPPRESS 13
Fixed point types 8 SYSTEM package 17
Floating point types 8 TEXT 10 57, 63
Integer types 7 Unchecked conversions 55
Record types 9 restrictions 55

Parameter-passing conventions 6 USE ERROR 57, 61
POSITIVE COUNT 63 VARIANT INDEX attribute 51
Pragma INLINE 3
Pragma INLINE GENERIC 3
Pragma INTERF7ACE 5

language name 5
OCCAM 5
subprogramname 5

Pragma INTERFACE NAME 5
string literal 11
subprogramname 11

Pragma NO IMAGE 12
Pragmas

FAST PRIMARY 13,34
IMPROVE 13
INDENT 12
INTERFACE 5
INTERFACE NAME 11
PACK 13
PRIORITY 13
STORAGE SIZE RATIO 13,34
SUPPRESS- 13 -

PRIORITY 13
RECORD DESCRIPTOR attribute 52
RECORDSIZE attribute 51, 57, 61
Representation attributes 15
Representation clauses 21

restrictions 21
SEQUENTIAL 10 57

70 Alsys Ada for the Transputer, Appcendix F, v5.4

