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Abstract

In the report we describe work done in the application of case-based reasoning (CBR) tech-
niques to large scale planning problems. Our work has resulted in a set of systems that demon-
strate the role of CBR in four. areas of planning:

"* CBR as Gatekeeper. The core idea of case-'-ased reasoning is the re-use of plans by relating
past experience to present problems. This makes CBR ideal as the "gatekeeper" between
users and specialized problem solvers in two ways: the retrieval of past solutions, and the
retrieval of past solution strategies.
This is demonstrated in the ROENTGEN system.

"• CBR as Guide. With the complex constellation of problem solvers and information sources
available in large-scale planning, guiding users among available resources becomes of crucial
importance. By retrieving solution strategies, case-based reasoning can provide structure
even in the absence of acceptable past solutions.

This is demonstrated in the IoPs and ROENTGEN systems.

"* CBR as Editor. Specialized problem solvers make use of specialized problem represen-
tations, incomprehensible to those unfamiliar with the technology. With its traditional
focus on higher-level abstractions, case-based reasoning can serve as an "editor" of this
specialized "jargon," presenting results and options in terms that are clear and useful to
users.

This is demonstrated in the DMAP system.

"* CBR as Opportunist. It is an axiom of large-scale planning that solutions must always
be partial and approximate, to be further developed over time. Case-based reasoning's
focus on anticipation, expectation, and repair make it well-suited to organizing the incom-
plete work of specialized problem solvers and recognizing when new data is relevant to a
particular computation.
This is demonstrated in the RUNNER and SHOPPER systems.

The fundamental conclusion we have arrived at as a result of our research on deployment
transport planning is that Case-Based Reasoning (CBR) offers a viable lingua franca for large-
scale planning.

User a * * Scheduler * Database r
User ft * Non-Linear Planner # Database 0
User y Case-Based Reasoner * Bayesian Network * Database E

User w 1 Reason Maintenance * Database e

Occupying a place between groups of users and the many specialized planning and decision-
making systems and databases, the case-based reasoner provides the best interface for coordi-
nating large-scale planning efforts. Our final report is organized around this central idea.

,w , m.• mli nto lm R~m 1



1 Introduction

Large-scale planning must employ many disparate planning and decision-making systems, operating
over disparate databases to solve many disparate problems. The problem of coordinating so many
systems and so many users over so many different sites is immense.

The fundamental conclusion we have arrived at as a result of our research on deployment transport
planning is that Case-Based Reasoning (CBR) offers a viable lingua franca for large-scale planning.

User a * Scheduler e Database r
User 0 e Non-Linear Planner 9 Database t
User -t Case-Based Reasoner e Bayesian Network * Database E

User w J Reason Maintenance * Database 0

Occupying a place between groups of users and the many specialized planning and decision-making
systems and databases, the case-based reasoner provides the best interface for coordinating large-
scale planning efforts. Our final report is organized around this central idea.

There are a number of broad aspects unique to case-based reasoning that make it a desirable lingua
franca for large-scale planning:

" CBR as Gatekeeper. The core idea of case-based reasoning is the re-use of plans by relating
past experience to present problems. This makes CBR ideal as the "gatekeeper" between
users and specialized problem solvers in two ways: the retrieval of past solutions, and the
retrievaL of past solution strategies.

"* CBR as Guide. With the complex constellation of problem solvers and information sources
available in large-scale planning, guiding users among available resources becomes of crucial
importance. By retrieving solution strate, ýes, case-based reasoning can provide structure even
in the absence of acceptable past solutions.

"* CBR as Editor. Specialized problem solvers make use of specialized problem representations,
incomprehensible to those unfamiliar with the technology. With its traditional focus on
higher-level abstractions, case-based reasoning can serve as an "editor" of this specialized
"jargon," presenting results and options in terms that are clear and useful to users.

"* CBR as Opportunist. It is an axiom of large-scale planning that solutions must always be
partial and approximate, to be further developed over time. Case-based reasoning's focus
on anticipation, expectation, and repair make it well-suited to organizing the incomplete
work of specialized problem solvers and recognizing when new data is relevant to a particular
computation.

These aspects are the organizing points of this report. As we discuss individual research projects,
we will relate them to these aspects and point out how the research contributes to our overall
understanding of CBR as lingua franca for large-scale planning.

2



1.1 Background: Large-Scale Planning

Large-scale ',,wning, including deployment transport planning, has certain characteristics which
pose cha" ages and opportunities for traditional Al planning and decision-making approaches.

"* Scale. The size of large-scale plans are many orders of magnitude larger than those dealt with
historically by traditional Al techniques.

"* Similarity. The broad outlines of large-scale planning problems are highly similar to previous
and prototypical situations.

"* Difference. The specific details of large-scale planning problems are radically different from
previous and prototypical situations.

"* Timeliness. Solutions to large-scale planning problems must often be presented within a
specific window of response time.

"o Uncertainty and Failure. In large-scale planning there is always uncertainty about the world
and always failures in execution.

"* Dependencies. Operations of large-scale plans typically contain mutual dependencies and
cannot be decomposed into independent subgoals.

"* Historicity. Solutions to large-scale planning problems must be consistent with the standard
operating procedure of the planning organization and individuals within it.

"* Opacity. Users of large-scale planning systems cannot be aware of all the details that go into
particular scheduling decisions.

"* Clarity. Despite the opacity of large-scale planning systems, they must be able to clearly
explain their decisions to their users.

"* Interactivity. Large-scale planning systems must be responsive to user input, modifying plans
and schedules to meet user-defined criteria.

These characteristics of large-scale planning define the requirements of large-scale planning systems.
In the main part of this report, we will point out how these projects address these considerations.

1.2 Background: Case-Based Reasoning

The fundamental insight of case-based reasoning is that reasoning about new problems can make
use of past solutions. In case-based planning, this insight is used to address traditional problems
of plan generation, projection, and optimization. Case-based planners have the following basic
features:

e New plans are built from old plans.

3



" Old plans are selected on the basis of the goals that they satisfy, the problems that they
avoid, and the features in the world that have been associated with them in the past.

" Planning operators are used, not to build plans, but to explain plans that fail so that failures
can be anticipated and avoided in the future.

"* Old plans are modified to deal with conjunctive goals.

"* Problems that arise due to modification are repaired, and the repairs are themselves used in
later retrieval of old plans.

These features motivate a seven-module planning architecture that 's the foundation of case-based
reasoning.

1. Anticipator. Past failures due to goal interactions are used to predict planning problems in
advance. Often the -anticipation" is used in retrieval by associating features predictive of a
problem with a plan that avoids it.

2. Retriever. Searches plan memory for a plan that satisfies as many of the current goals as
possible while avoiding predicted problems.

3. Modifier. Alters the plan to achieve additional goals from the input that the old plan did not
satisfy.

4. Projector. Uses cases indexed by solutions rather than problems to predict outcomes.

5. Storer. Indexes new plans in memory by the goals that they satisfy and the problems that
they avoid.

6. Repawrer. Explains execution failures and alters plans to avoid the failure in the future.

7. Assigner.. Uses the explanation of a failure to index the problem for later anticipation and
avoidance.

The flow of control through these modules is depicted in Figure 1.

In the most basic case, goals enter the case-based planner through the Anticipator, which tries to
predict any problems that might occur as a result of planning for them. If a problem is predicted,
a goal to avoid it is added to the set of goals.

The goals now pass to the Retriever, which searches for a plan that satisfies as many of the planner's
goals as possible, including any goals to avoid the problems predicted by the Anticipator. In order
to do this, the Retriever makes use of a memory of plans indexed by the goals they satisfy and the
problems they solve.

Once an old plan is found, the Modifier alters it to satisfy any unsatisfied goals. Modification uses
modification rules indexed by the goal to be added and the type of plan being altered. It also uses
a set of critics for domain-specific modifications.

Case-based reasoning is the foundation for the work described in this report, and for our vision of
large-scale planning systems.

4
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Figure 1: Case-Based Planning

1.3 A Vision of Large-Scale Planning

It is self-evident tlhat there can be no single all-purpose panacea for large-scale planning. Instead,
a host of planning and decision-making techniques from artifical intelligence and operations re-
search must be brought to bear where they are most applicable. Some problems are the province
of scheduling algorithms, while others may be most amenable to linear programming, Bayesian
network analysis or non-linear planning.

Each such technique poses its own requirements on the structure of inputs and outputs; each solves
"a different kind of problem. Even within one paradigm, there may be many different applications of
"a technology, each requiring different databases, each with its own format and structure. In effect,
they all speak different languages.

These techniques and applications can be brought together to build large-scale planning systems,
but they require a common language, a lingua franca, to avoid a "Tower of Babel" problem. We
believe that case-based reasoning can provide such a common language.

5



1.3.1 A lingua franca for large-scale planning

Proposals for common languages and environments have a poor history of acceptance. For example,
the Knowledge Interchange Format proposal of a few years ago failed miserably, and the Common
Prototyping Environment has had only lukewarm support from the research teams of the ARPI
community.

This should not be unexpected. Forcing technologies to adopt a specific representation paradigm
can only hamstring the advantages that technology has to offer. In some cases, the representation
paradigm is the technology in question.

Our vision of case-based reasoning as a lingua franca is quite different. We propose that CBR be
considered as a technology that stands between the users of large-scale planning systems and the
host of technologies used in specific applications.

User~ a Scheduler * Database r
Users 1 Non-Linear Planner * Database
User y Case-Based Reasoner * Bayesian Network * Database E

User w J Reason Maintenance * Database E

Here we outline the broad architectural aspects of this view:

* Specific technologies are "black boxes," and do not change.

No requirements are put on the representations, algorithms, and implementations used for
specific technologies (e.g., scheduling, non-linear planning). These are simply "black boxes"
from the point of view of the case-based reasoning system.

e Each technology defines its interface with the main system.

For each specific technology, there must be a specific input and output format. Again, no
specific requirements are imposed from the point of view of the case-based reasoning system.

* Interfaces are mapped into case-based representations.

For each technology, the interface imposed by that technology must be mapped into the
knowledge structures used by the case-based reasoning system. This will usually require new
CBR representations for each specific technology.

* The case-based interfaces are integrated with memory.

This is the primary representational task. Given the representation of a specific technology's
interface, the knowledge engineer must evolve specific case-based representations and abstract
cases that allow the technology to be integrated into the larger case-based system.

6



1.3.2 An example: CBR and specific technologies

The ROENTGEN project described in the main body of this report provides a succinct example of
the application of CBR as a lingua franca for specific technologies. ROENTGEN is a case-based
system for planning radiation therapy in the treatment of cancer.

The dose calculator. The ROENTGEN system relies on the dose calculator as a separate technol-
ogy. The dose calculator computes the degree to which tissue has been irradiated, given a specific
radiation treatment plan. It is implemented in a different programming language, its internal work-
ings are a mystery, it has idiosyncratic input and output formats, and it must be called as a "black
box" from ROENTGEN.

To make use of this technology, the ROENTGEN system has case representations that are specific
to the dose calculator. These represent the input, the output. and the use of the dose calculator.
With these representations, the case-based ROENTGEN system is capable of making use of the dose
calculator.

Case-based reasoning as user interface. By doing so, ROENTGEN effectively supplies a smart
user interface to the dose calculator in the form of the entire case-based system. It is possible for
radiation dosimetrists to make use of the dose calculator directly-but highly unlikely, given the
difficulty of creating, modifying, and interpreting the input and output of the dose calculator.

Instead, the user interacts with the case-based ROENTGEN system, which makes use of the dose
calculator whenever required. This is much more effective for the user. One of case-based reason-
ing's great strengths is the intuitive nature of its operations; users find the basic Retriever/Modifier
cycle to be clear and intelligible.

1.3.3 Prospects for large-scale planning

Our hope is that case-based reasoning can serve the same role in the larger task of large-scale
planning. When able to reason about all the specific technologies that make up the large-scale
planning system, the central case-based reasoning system will present a umfied, intuitive, powerful
system for organizing the large-scale planning task.

1.4 Guide to the report

The report is organized around three research paths towards this goal:

"* Airline Irregular Operations. To develop an understanding of the requirements of large-scale
planning, we examined how schedulers for United Airlines identify and repair scheduling
problems in real time.

"* Case-Based Interfaces. To develop an understanding of how case-based reasoning can provide
a unified, powerful, and intuitive interface, we examined the problem of using CBR to integrate
natural language with specialized systems for planning and vision.

7



* Planning and Execution. To develop case- based reasoning along the lines required by large-
scale planning, we examined the problems of case-based reasoning in a number of dynamic
environments with real-time plan execution, failure and repair, information gathering, and
opportunism.

In the sections that follow we will describe the results from each of these research paths.

2 Airline Irregular Operations

2.1 Summary

The Chicago research group identified airline irregular operations (or lOPS) as a domain that shares
many significant features with deployment transport planning. In order to exploit this similarity,
we formed a cooperative research relationship with United Airlines. Owens, assisted by John Borse,
a graduate student on leave at the time from the Operations Research group at United, spent time
at United's operations center studying the techniques used by experienced schedulers to identify,
diagnose and repair schedule problems triggered by bad weather, equipment breakdown, traffic
congestion and similar inevitable but unpredictable occurrences(Borse and Owens, 1992). They
also built software to allow operating data from the airline to be incorporated into a planning
testbed.

The primary scientific focus of this work is on representation(Owens, 1991; Owens, 1990)

Specifically, we are determining how to represent schedules, schedule failures, and repair strategies
so as to enable the IOPS advisor to:

" Identify and characterize schedule problems so as to determine the applicability of prior
solutions or specific quantitative techniques.

" Acquire new descriptive features as they become necessary to discriminate among otherwise
indistinguishable situations.

" Compare the applicability of multiple, competing solutions to the same problem.

The results of this work were threefold:

"* An analysis of failure and dynamic repair in a complex transportation planning environment.
The analysis is based on real-world failures and repairs as diagnosed and implemented by
skilled experts. The analysis contributes to a machine-manipulable vocabulary for represent-
ing failures and repair strategies.

"• Software that makes it possible to capture real operating data from the airline, to represent
and reason about the downstream consequences of schedule modifications, and, in limited
measure, to graphically display and interactively manipulate scheduling information'.

'Because the University of Chicago's software has fallen out of synchronization with ongoing work at the airline,
additional engineering effort will be needed to restore the software to proper operation for any future use.

8



* A research relationship with an organization that has demonstrated expertise in solving com-
plex dynamic rescheduling problems every day. Such a source of real-world (as opposed to
realistic but simulated) data is critically important to the Chicago group's theoretical ap-
proach to learning from experience.

2.2 The problem domain

An operating schedule for an airline the size of United involves roughl aircraft making approxi-
mately 2000 flight operations per day. The individual components of Jle (i.e. flight segments)
are densely interconnected by a network of dependencies. An outbo ,light may depend upon
the arrival of a prior inbound flight because the outbound flight may use the same aircraft, because
it may use the same cockpit or cabin crew, because there may be connecting passengers or argo,
or because the inbound flight may be carrying necessary repair parts for the aircraft to be used on
the outbound flight.

Because of this densely interconnected nature, airline operating schedules a highly sensitive to
perturbation. Even a single point failure, such as an aircraft delayed for 30 minutes due to a flat
tire, can cause a cascade of downstream problems.

Although the static schedule (the one the airline would fly if everything worked perfectly according
to plan) is carefuly optimized in advance using well-understood quantitative techniques, controllers
must take reactive steps (i.e. by cancelling, rerouting, or rescheduling flights, swapping aircraft and
crews, etc) to counteract the effects of inevitable, but individually unpredictable, disruptions. The
goal is to contain (or to repair, if possible) the damage to the schedule, minimizing passenger delay
and costs.

It is this dynamic repair that is of relevance to the task domain of the Planning Initiative. In a large-
scale deployment transport environment, uncertainty is high, and dynamic recovery from failure is
essential. Assets may become temporarily or permanently unavailable due to weather or military
action, requirements may change, and scheduling errors born of inexperience with the particular
routes being flown are likely. Scientific knowledge gained by studying the irregular operations
problem in civilian air transport is very likely to be useful in building systems to support dynamic
rescheduling and replanning in the large-scale military deployment transport domain.

2.3 Irregular Operations Scheduling (IOPS)

Airline schedules are highly complex, structured objects, with large numbers of internal interde-
pendencies. Airlines must confront the consequences of uncertainty in the execution of their daily
schedules - uncertainty stemming from inclement weather, sick calls from crew members, mechan-
ical problems with aircraft, constraints on airport resources, and other problems. A snowstorm at a
key airport, for example, can have devastating consequences on the operations of an airline, effects
from which it may take days to recover. The interdependencies among factors like crew scheduling,
maintenance routing, and congestion at airports add further complication to the daily planning
problem. Because of these interdependencies, even a single disruption and the consequent attempts
at recovery typically involve widespread and long-lasting downstream effects. The search space of
possible recoveries to a schedule disruption is enormous.

9



Airlines employ schedule planners who attempt to mitigate the effects of schedule disruptions.
Their main goals are to minimize both passenger inconvenience and the cost of implementing the
repair, while accounting for crew work rules, aircraft maintenance schedules, and other factors. An
additional goal is to minimize the overall complexity of a repair.

Controllers attempt to balance the trade-offs and uncertainties of irregular events, typically using
information provided by various decision support systems such as real-time scheduling displays
and passenger booking data. However, very few, if any, of these systems provide the planner with
decision-making advice in the form of strategies or specific recommendations to counteract the
adversity of a particular event. The goal of our research is to develop the scientific foundations for
a new class of decision support tool to address this probleni(Owens, 1992a).

From the viewpoint of Artificial Intelligence planning and decision support, the key features of the
irregular operations planning task are:

"* Airline schedules are large, complex, and highly interdependent.

"* Solving schedule problems by exhaustive search is generally infeasible.

"* Current situations typically share more with past situations than they differ from them.

"* While they may be similar. no two situations are ever entirely identical. This means that
simply storing and reusing a "library" of solutions will not suffice.

The size of the search space, together with the recurring nature of typical problems, suggests a
solution based on the re-use of plans. But re-using plans means more than just retrieving and
replaying old solutions. Because the details of situations change over time, the system will need to
be able to notice that a retrieved plan does not exactly fit the current situation, therefore it will
need to modify its retrieved plans to fit new situations.

Our approach to plan repair is to provide qualitative expertise in the form of a case library link-
ing descriptions of stereotypical problems with appropriate recovery strategies, and quantitative
expertise in the form of optimization techniques drawn from the Operations Research (OR) com-
munity. The goal of our research is to develop the scientific foundations for a new class of decision
support tool. The IOPS Advisor, currently under development, couples the experiential knowledge
of schedulers, which is essential in generating strategies for solving a schedule problem, with the
quantitative power of operations research techniques, which are effective in comparing the costs and
effectiveness of the potential solutions generated by those strategies. Furthermore, the quantitative
models may be responsible for optimizing the details missing from a sketchy solution suggested by
a qualitative strategy. For example, if a strategy is "stop to refuel", a quantitative analysis may
indicate where to stop and how much fuel to take on.

The IOPS Advisor is intended to represent schedules, failures, and repairs so that both sets of
techniques can cooperate using the same representational constructs.

2.4 Field study

Real data (as opposed to realistic but simulated data) are essential to building systems that reason
from experience. A key theoretical aspect of the Chicago approach is that a system should reduce
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the otherwise intractable complexity of plan repair by representing and reasoning about some core
set of stereotypical plan failures and corresponding repairs, with the core set chosen to cover the
plan failures that typically occur in real situations, as opposed to attempting to cover the entire
distribution of theoretically possible failures.

Accordingly, an important part of the work was to study experienced operations controllers as they
solved real schedule problems as encountered in the day-to-day operation of the airline.

The space of planning operators available to schedule controllers is limited. They can cancel,
reschedule, or reroute flights. They can skip or add intermediate stops. They can substitute one
aircraft or crew for another. It is these operators that would form the basis of a simple generative
planner operating in the domain of airline irregular operations.

From our study, however, it appears that controllers consciously and deliberately use abstract
problem solving strategies built up out of the primitives to, for example:

* Distribute the effects of a problem over a broad geographic area so that no one point in the
route system suffers severely, for example by introducing minor delays in a large number of
incoming flights to prevent major congestion at a hub.

* Localize a problem to prevent it from propagating to other portions of the route system.
For example, if an airport is expected to be closed due to bad weather, route aircraft around
it to prevent them from being stranded there and delaying their future assignments.

* Defer the effect of a problem in the expectation that an opportunistic or cheap solution
will ultimately present itself. For example, if an aircraft is late arriving at a hub, cover the
outbound flight to which that aircraft had been assigned by borrowing an aircraft from a later
flight, which can in turn be covered by borrowing from a still later flight, by which time the
original aircraft will have arrived and can be re-introduced into the schedule. This strategy is
interesting because, while often suboptimal, it is perceived as valuable because of the degree
to which it reduces the cognitive complexity of plan repairs.

It is also clear that the applicability of these strategies depends upon the presence of abstract
features that characterize situations. Certain strategies, for example, might be applicable at hub
airports during-peak travel times. Other strategies might be applicable to infrequently-flown routes
to remote cities at the end of the day. These features, while not explicitly present in the schedule
data, can in general be inferred from it.

These higher level strategies, and the mechanisms for detecting their applicability and utility, would
form the core of a planner built upon the results of this study.

A further observation is that experienced controllers use specific experience to rapidly prune the
search space of possible solutions to a problem, for example:

"I won't even look at Westbound flights out of this city right now as possible places
to borrow an airplane, because I know from experience that those flights will be fully
booked."

or
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"I know, almost without checking, that I'll be able to cover these .5 stranded passengers
quickly because there is hourly service between those two cities, and we're still in the
middle of the day."

The abstract characterizations of situations and problems that we learn by observing controllers
solving real problems, becomes the core of a machine-manipulable representation vocabulary useable
for building plan repair systems.

2.4.1 Knowledge Representation Issues:

The main knowledge representation issue, and the primary focus of our current activity, is to
categorize and represent the heuristic knowledge used by controllers and Operations Research
analysts, specifically:

"* How problems are detected and described.

"* What problem-solving strategies exist.

"* What aspects of a problem indicate the applicability of one strategy over another.

In order to gather a realistic set of failures and repairs. we have been observing controllers as they
detect, diagnose, and repair schedule problems. Our initial study has suggested to us that controllers
build and use sophisticated, high-level repairs from a small number of primitive operators. The
primitives form the basic representation vocabulary used to describe actions, and it is anticipated
that the list will be stable over time. The higher-level strategies, on the other hand, are more
dynamic, and one of our tasks is to model the acquisition of new high-level strategies.

Typical primitive operators represent concrete actions like:

"• Cancel a segment

"* Delay a segment

"* Divert a flight to a different airport

"* Substitute one aircraft for another

"* Substitute one crew for another

"* Ferry an empty aircraft from one airport to another

Higher-level strategies, on the other hand, may involve both primary actions and secondary actions
designed to mitigate the side-effects of the primary actions. Or, they might involve a series of steps
taken to defer the impact of a problem, in the expectation that an opportunistic solution may
present itself in the intervening time. Other high-level strategies include geographically localizing
the impact of a problem or, conversely, diluting the impact of a problem by spreading a minor delay
across several geographic points.
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As we gather more high-level strategies from our observation of controllers and from our encoding
of quantitative techniques, our plan is to encapsulate the strategies in knowledge structures that
also include descriptions of appropriate situations for the st:ategies. The IOPS advisor will extract
from the user a description of the current situation, propose Lepair strategies based upon the match
between the current situation and the stored descriptions, and quantitatively evaluate the utility of
situations generated by competing strategies. As it performs this selection and comparison, it can
acquire, from the user, information about features of the world that determine the applicability of
one strategy over another. These newly-acquired features can then become part of the selection
criteria encoded with the strategies in memory.

2.5 Software development

We have developed a set of software tools that allow us to:

* Copy electronic operating and schedule data from the airline to our own systems.

* Translate the data into a representation language enabling automated reasoning about depen-
dencies, temporal constraints, and the downstream consequences of schedule perturbations
and attempts at repair.

* Graphically display various aspects of the data, including calculated dependencies and con-
straints.

This suite of software tools exists as a potential building block of future systems. Unfortunately,
due in part to personnel changes, it is no longer synchronized with changes in the way United
represents its internal data, so additional engineering effort is required in this area.

We have also conducted a preliminary study of the applicability of the Honeywell implementation
of Dean's Time Map Manager (Boddy and Dean, 1989) as a platform for temporal inference.

2.5.1 Knowledge acquisition

While the list of primitives is expected to remain relatively static, an important aspect of the IOPS
Advisor is that it will be able to acquire new descriptive features as it is used. If the system
erroneously suggests a prior case as being a good match to the current situation, the user can
correct this by supplying a descriptive feature that would differentiate the current situation from
the case stored in memory. The error might have occurred either because the discriminating feature
was not mentioned in the description of the current situation, or because it was not mentioned in
the stored case. In the latter scenario, it can be added.

In general, a longer-range goal for the IOPS advisor is that, ip having a human user interact with
a planning tool, we have an opportunity to record information about plan accessing strategies,
modification techniques and typical failures that can, in turn, become the heuristics used by a
more autonomous system. A system that observed human schedulers in action and recorded their
responses to specific planning problems, and which indexed those responses in memory using the
functional criteria discussed above, would become a powerful expert assistant - an assistant with
a good memory for what worked and what didn't in the past.
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2.5.2 Case-Based Planning Issues

While case-based planning addresses many of the qualitative problems in the irregular scheduling
domain, much work must be done before a practical system could be put in the hands of a human
scheduler. Fortunately, the core idea in case-based planning, that of incremental modification, is
one aspect of the technology that could be usefully applied in the near term as a way to deal with
the type of changes that have to be made to schedules during execution.

One of the recurring problems of automated planning is the issue of the repairs that have to be made
during execution as a result of unforeseen circumstances. There are always unexpected problems
that arise. Weather, crew sickness, and equipment failures cannot be predicted. Bottlenecks show

up where none was suspected. Each of these classes of problems can be recognized using a specific
set of symptoms, and each requires a specific type of repair.

Run-time repair and optimization, while useful, has to be traded-off against the overall stability of

an existing plan. If a single aircraft is unexpectedly grounded, one form of optimization might be
to rebuild the entire system schedule, minus that aircraft. But even if such a repair were compu-
tationally feasible, implementing it would be preposterous. A planner that deals with unexpected
changes in the state of the world by completely replanning will be constantly creating new plans
that will do little more than confuse the people that are using them. What is needed instead is

incremental, local plan repair, coupled with local optimization. One wants to perturb the schedule
as little as possible in the achievement of an acceptable response to an unexpected occurrence.

Much of the emphasis of CBR research to date has been on issues of plan indexing, retrieval and
modification. While these issues are clearly present in this domain, our emphasis is primarily on
plan evaluation through objective analytical (e.g., OR) tools which are also under development.

Specifically, we are focusing on how to direct the search for relevant cases based on the OR model's
assessment of the feasibility or "utility" of previously proposed solutions. Because the two sets of
techniques tend to characterize the problems differently, integrating them is a challenge.

2.5.3 Operations Research Issues

Operations research analysts tend to think in terms of opportunities for optimization. One of our
preliminary findings is that schedule planners do not readily identify these opportunities. Accord-
ingly, an important aspect of the integrative research is to identify classes of situations in which

particular optimization techniques are appropriate, and to select descriptive features that allow the
system or planners to differentiate among these classes. We intend to codify this knowledge in the

form of cases which couple the relevant optimization techniques with characteristic features of the
appropriate class of situation.

2.6 Case Study

The following hypothetical case study is based on observations of airline planners. The case illus-
trates the interplay between qualitative and quantitative reasoning tha was the focus of our work.
Airports are designated by the following three letter codes: SFO = San Francisco, EUG = Eugene,
and MED = Medford.
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A runway construction project at EUG has imposed a weight restriction on departing
flights. A departing flight EUG-SFO is over the weight limitation by approximately 20
passengers. The flight is scheduled to depart on time. however, inbound flow control
is in effect at SFO (due to fog) and is imposing a .53 minute pre-takeoff delay on the
EUG-SFO flight.

The planner generates some alternative solutions:

1. Move the excess passengers to a later EUG-SFO flight.

2. Have a flight enroute to SFO passing nearby EUG stop to pick up the excess passengers.

3. Remove enough fuel to carry the excess passengers, and stop at an intermediate point to
refuel.

At this stage. the alternatives are qualitative: they simply match a problem with a strategy.
Although in many cases this step of the solution process is trivial (e.g., weather-related IOP forces
cancellations), we believe that in general this step is non-trivial and it is one aspect of the planner's
job which distinguishes an experienced planner from an inexperienced one.

The next step of the planning process involves evaluating the relative merits of each proposed strat-
egy with respect to the planner's goals. In this case the planner chose not to solve the problem using
strategy (1) because pushing the problem to a later flight would most likely cause weight restric-
tion problems downline and would disservice the excess passengers. Strategy (2) was not chosen
since it would involve delaying a large number of passengers on a different flight to accommodate
a relatively small number of connecting passengers on the EUG-SFO flight. On further analysis of
strategy (3), the controller determined that. since SFO air traffic control had already imposed a
53-minute delay on the inbound flight for reasons of airspace crowding, the flight could in fact refuel
at MED and carry all passengers to SFO as planned without incurring additional delays. The cost
of landing and departing at MED was considered negligible in comparison to the alternative costs
of delaying passengers and causing misconnections of aircraft and people (although this calculation
was not performed explicitly).

Notice that the_planner's analysis in choosing among alternatives remains highly qualitative. The
planner uses various sources of information to determine the viability of each approach, however,
he rarely explicitly calculates the cost impact of various strategies. We believe that at this stage
the planner could be greatly aided by OR models which:

"* provide an objective analysis of the relative merits of each strategy based on utility measures.

"* determine optimal implementations of high-level strategies, for example, given strategy (2),
choosing an appropriate flight, or, given strategy (3), choosing an appropriate airport.

2.6.1 Evaluation

The bases against which we can evaluate the IOPS advisor project are:
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* Does the system enable a controller to produce good schedule repairs? In particular, can a
controller use the system's prepackaged strategies and OR evaluation methods to improve
upon solutions produced using the controller's own judgment?

* How good are the high-level strategies that the experienced planners employ? How often do
controllers choose the best strategy? While the strategies obviously work, are they applied
inappropriately? Does post-facto analysis repeatedly indicate that some other strategy might
have been preferable?

* Are individuals able to make use of the canned strategies? Can one individual recognize and
re-use canned strategies? Is there any transfer across individuals, such that one individual
can use strategies developed by another? If so. how should the strategies be presented to the
user?

* Can novices use the strategies and optimizations from the LOPS advisor to generate expert-like
repairs? In general, how do solutions built by novices differ from solutions built by experts?
Does the availability of a library of expert solutions improve a novice's performance?

* Does the integrative AI/OR approach provide a better method than either technique applied
alone? Is it even possible to model the LOPS problem using either technique alone? What
form would these models take (e.g. large scale linear programming, expert-system)? How
would each of these approaches compare to the integrative approach?

2.7 Future directions

This work has established several building blocks usable in future work on planning systems:

* A taxonomy of stereotypical, recurring failure types, (e.g. single-aircraft delay during peak
hour at a hub airport or weather delay at non-hub airport at the end of the day) and associated
repair strategies (e.g. borrow aircraft on a rolling basis from later scheduled flights)

* Major building blocks of a software environment for representing, displaying, and manipulat-
ing complex schedules and for inferring the consequences of perturbations.

These failure types and repair strategies will constitute the high-level operators of an automated
plan repair system. Initially, the system would need to ask the user for assistance with the task
of diagnosing the failure (i.e. by selecting the appropriate failure categorization from a displayed
list). Future research will identify a set of diagnostic features that make it possible for the system
to autonomously identify the applicable failure type in many cases.

The software enviroment brings in house a rich repository of real-world data, which can be used as
a testbed for a variety of planning tasks.

2.8 Large Scale Transportation Planning

A key aspect of the Chicago approach is the use of real data, as opposed to randomly-generated
test cases or data that is merely realistic. This is because our approach gains leverage on the
intractability of planning by addressing the expected case rather than the general case.
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Planning and scheduling, as has been argued in (CHAPMAN, 1985) and elsewhere, are, in the
general case, computationally intractable. Given a representation language rich enough to capture
the PI's task domain, the space of syntactically valid plans that could be generated is enormous.

Fortunately. the space of plans likely to occur in the real world, while still large, represents a tiny
fraction of this space of possible plans. Our approach depends upon capturing these likely and
commonly-recurring situations as cases or stereotypes. and thereby avoiding the need to resort to
the kind of bottom-up plan construction or repair that the general case requires.

Accordingly, we set out to find a set of task domains that shared enough with the Planning Initia-
tive's task domain to be a reasonable match, but that represented opportunities for us to capture
data about real-world plan failure repair. One such opportunity came in the form of the Irregular
Operations problem at United Airlines.

Airline scheduling and schedule repair is, obviously, a task with many parallels to deployment
transport. The scale of operations at United (approximately 400 aircraft making 2000 flight oper-
ations per day) yields a level of complexity and plan element interdependency sufficient to make
the problem comparable to the scale of a deployment plan. And we had the advantage of being
to study human experts diagnosing plan failures and making repairs every day, in an unclassified
setting.

Of course there are important differences between an airline schedule and a deployment transport
plan. Most importantly, an airline schedule is a continuous operation, cycling approximately daily.
A deployment transport plan is much more of a one-shot nature. Whereas the entire deployment
plan is dynamic, a routine schedule is dynamic only to the extent that weather, equipment failure
or unexpected demand for irregular service causes it to deviate from the norm. Nevertheless, we
believe that the lessons learned about plan failure and repair in the latter domain are applicable
to the former.

3 Case-Based Interfaces

The research on case-based iDterfaces has been directly aimed at examining how case-based rea-
soning systems can provide the interface between users and specialized technologies for large-scale
planning. There are two types of interfaces required:

"* The user interface, for which we have concentrated on natural language as the most general
(and difficult) user interface modality.

"* The system interface to specialized technologies, for which we have used reactive planning
and active vision as test cases.

In both cases, the research has addressed three characteristics of large-scale planning:

* Opacity. Users of large-scale planning systems cannot be aware of all the details that go into
particular scheduling decisions.
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* Clarity. Despite the opacity of large-scale planning systems, they must be able to clearly
explain their decisions to their users.

* Interactivity. Large-scale planning systems must be responsive to user input, modifying plans
and schedules to meet user-defined criteria.

Since natural language has been the focus of the user interface, the research in case-based interfaces
is based on a case-based parsing technology called Direct Memory Access Parsing (DMAP) and a
specialized technology for reactive execution called Reactive Action Packages (RAP).

The DMAP system is designed to function within a large body of already-represented knowledge;
rather than determine the meaning of a text. it uses the text to recognize relevant existing knowledge
structures and modify them to represent what is unique about a particular communicative act. It is
fundamentally case-based in its theoretical design. though its implementation differs dramatically
from traditional case-based systems( Martini. 1990).

The RAP system provides a coherent means of representing planning and execution knowledge;
its semantics of interpretation are simple and do not require maintainiuig complex dependency
structures. For these reasons, it provides an ideal framework upon which to build a DMAP-style
natural language system(Firby, 1989).

We have developed a hybrid system in which the structures and algorithms of DMAP are used to
represent the model of planning and execution expressed in the RAP system. In addition, the system
represents the knowledge of how to talk about its own model of planning aid execution, allowing
the system to learn by taking advice(Martin and Firby, 1991a).

The resulting system is capable of effective real-time response due to the underlying reactive system,
but is capable of reasoning about and modifying the reactive system in response to natural language
input(M.'rtin and Firby, 1991b; Martin and Firby, 1991c; Martin and Firby, 1992).

3.1 Challenges

In large-scale planning, specialized technologies play a critical role in integrating the disparate
elements of large plans. These technologies, such as scheduling, non-linear planning, and others,
are akin to the "primitive actions" of the overall planner. They are separate, each with its own
purpose and ability, and together they enable large-scale planning.

Unfortunately, the interaction of users with large-scale planning systems will bear little resemblance
to the the requirements of such specialized technologies. User interact~on is, in general, defined by
more global concerns that focus on critical objectives rather than minute details.

Once these objectives pass to the large-scale planner, they must be represented in exactly that
minute detail so that specialized technologies can be brought to bear on the objectives. The
challenge is to determine how the high-level objectives that characterize users' interactions with
the case-based reasoner can be mapped into the detailed specifications that characterize specialized
technologies. The remainder of this section of the report details our work on exactly this problem.

In the remainder of this section, we first present background on the specialized RAP technology,
background on the DMAP case-based parsing technology, and then an detailed explication of how
the case-based reasoner can interface to the specialized system through uniform representations.
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3.2 Background: Reactive Action Packages

The RAP situation-driven plan execution system (Firby. 1989) uses Reactive Action Packages, or
RAPS, as the basic mechanism for packaging methods. A RAP groups together and describes all of
the known ways to carry out a task in different situations. When a task is generated, its goal is used
as an index to select a RAP, and when the task is selected for execution, the situation surrounding
the robot is used to index into that RAP and select the most appropriate method it packages. A
RAP includes the methods for a task and the contexts in which they are appropriate in a single
package, so there needs to be only one RAP for every task type. However, there may be many
independent instantiated tasks using the same RAP definition.

A RAP also includes a description of the situations in which its task is satisfied. A task has two
parts: a goal, or index, and a test that defines when the task should be active. The activation test
itself consists of two parts: a satisfaction test. The satisfaction test tells whether or not the task's
goal is satisfied in a given situation. If a task's goal is not satisfied, the task should be an active
candidate for execution, A satisfaction test is the property of a particular task but since there is
only one RAP for each task, the satisfaction test is described in the RAP. Thus, a RAP is a complete
description for the execution of a task. It contains the task's goal satisfaction test and all of the
methods to achieve the task's goal in different situations.

(DEFINE-RAP
(INDEX (arm-pickup ?arm ?object))
(SUCCESS (arm-holding ?arm ?object))
(METHOD

(CONTEXT (location ?object tool-caddy))
(TASK-NET

(tl (arm-move-to-caddy ?arm)
((at ?arm tool-caddy) for t2))

(t2 (arm-grasp ?arm ?object))))
(METHOD

(CONTEXT (not (location ?object tool-caddy)))
(TASK-NET

(ti (locate ?object)
((location ?object ?place) for t2))

(t2 (arm-move-to ?arm ?place)
((at ?arm ?place) for t3))

(t3 (arm-grasp ?arm ?object)))))

A simple RAP is shown above. Its definition is split into three major sections: the INDEX which
corresponds to the task-goal that the RAP is to satisfy, the SUCCESS clause which describes a test on
the memory to determine if the goal is satisfied in the current situation, and any number of METHOD
clauses that describe possible ways of carrying out the behavior under different circumstances.

Each method within a RAP is further broken down into two sections: the CONTEXT which describes
a test on the memory that can be used to determine whether this is an appropriate way to achieve
the desired behavior, and a TASK-NET which contains the detailed steps involved in the behavior.
Task net steps may be primitive actions to be executed directly, calls to other RAPS to perform
some behavior, or constructs that allow loops and conditionals.
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In this example, the RAP defines a task to pickup a given object. This RAP is used for tasks with
index (arm-pickup ?arm ?object) and will be satisfied when (arm-holding ?arm ?object) is
true in the memory. There are two different ways of actually picking up the object and the one
chosen depends on whether the object is in the robot's tool caddy. Special operations are required
to move the arm into the tool caddy and additional sensing operations are required to locate the
object if it is not known to be in the caddy.

3.3 Background: Direct Memory Access Parsing

The implementation of the DMAP case-based parsing technology is critical to the success of case-
based reasoning as a lingua franca for specialized technologies. Since the DMAP algorithm does not
have provisions for traditional Al concepts such as -plans," "goals," or "syntactic rules," all such
knowledge must be explicitly represented in the uniform memory format of the DMAP system.

The fundamental processing of the DMAP technology is consistent with traditional case-based rea-
soning, although the approach is somewhat different. Inputs to the system are used to recognize
existing knowledge structures and modify them to represent what is unique about the current
situation. At a high level, the algorithm may be expressed as two coroutines:

coroutine PROMOTE concept
if concept is a primitive operation P1

then apply it and INTERPRET input P2
else for each index of concept P3

do PROMOTE the first item of the index P4
coroutine INTERPRET item
for each concept index item that matches item 11

do begin
refine the concept based on the item 12
if the concept index is complete 13

then INTERPRET concept 14
else PROMOTE the next concept index itemI5

The basic algorithm may be compared with the basic cycle of case-based reasoning (Sectior, 1.2).

In DMAP, concepts are retrieved at statements 13-14. Prior to this point, they have been anticipated
through the cumulative promotion and intepretation of their indices (statements P3-P4 and 15).
Modification of concepts due to differences between past experience and the present situation occurs
at statement 12.

Three aspects of the DMAP architecture important to understanding how case-based reasoning
interfaces with users and specialized technologies are further explained with respect to examples
drawn from the DMAP/RAP agent %rchitecture project.
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3.3.1 Primitive operations and input

For the high-level agent, primitive operations are interactions with the lower-levei RAP interpreter;
many of these ultimately result in changes to the underlying control routines, while others commu-
nicate information back to the high-level agent.

This is critical for the success tests. The indices for rap both have a reference to the-success
specified; since the concept referenced by this relation will always be a state structure, some means
must exist for entering the INTERPRET coroutine with a state as input.

The communication is handled by primitives whose effect is to establish a monitor condition in
the lower-level RAP interpreter. For example, if the success test of a hypothetical rap were that
there was a blue object in front of the robot, the primitive would establish a monitor condition in
the RAP interpreter that, in turn, sent a particular color historgram to the vision processor. When
the vision processor signalled successful recognition of the histogram, the RAP interpreter would
respond by resuming the INTERPRET coroutine with the appropriate the-success state structure
as as input.

As another example, here are some of the definitions for fold-arm:

(DEFINE-NODE fold-arm (ISA rap)
(SLOTS (the-arm arm)

(the-success arm-folded
(WHERE (the-arm = the-arm)))))

(DEFINE-NODE arm-folded (ISA state)
(SLOTS (the-arm arm))
(INDEX (MONITOR (folded-p the-arm))))

Where "folded-p" is a predicate in the world-model of the lower-level RAP interpreter. Note that no
the-method relation appears in fold-arm; as with move-arm, they would appear as specializations.

3.3.2 Gathering indices

This step updates indices that can refer to a node. By doing this dynamically, the state of promoted
nodes is constantly changing to reflect the current state of the DMAP system. This is crucial for
resolving ambiguity of reference.

As an example, consider the previous reference to part of the m/rap/prog2 structure: "moving it
inside the bay." "It" in this case refers to the arm, but how is that reference established? Recall
the move-arm definition:

(DEFINE-NODE m/move-anm (ISA mtrans)
(SLOTS (the-info move-arm))
(MTRANS move

(the-info the-arm)
(the-info the-destination)))
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After the recognition of the lexical item "move," the memory reference to the arm causes the
promotion of the node representing that arm. The lexical item "it" is associated with the general
communication of nouns; although there are many nouns, the recent promotion of the arm node
disambiguates the lexical item.

3.3.3 Refining concepts

Refining concepts implements a core part of the case-based reasoning theory, in which specific prior
instances are used to guide the current interpretation. This allows the system to make use of more
specific knowledge as soon as possible in the interpretation process.

For example, an index used to recognize move-arm may be adjusted after the relation the-destination
is found to refer to an internal location. Since the more specific arm-move-internal represents this
more specific information, the system will adjust the node from arm-move to arm-move-internal.
This means that immediately, the additional information represented at arm-move-internal is
available. In this case, the knowledge that arm-move-internal requires that the arm be folded
may prove to be relevant.

The more specific node also results in updates to the node promotions described above. This usually
proves useful in disambiguation. Ease of disambiguation may result in further specialization of the
associated node, and the two processes may feed back and forth in this manner many times during
PROMOTE-INTERPRET interactions.

3.4 The dmap/rap agent architecture

The lowest-level of the agent architecture is a reactive planner based on the RAP model of Firby
(1989). The RAP model assumes that there is a prescribed method for carrying out every task in
every situation. Each method is a set of actions that will accomplish the task in a given situation.
Execution consists of choosing a task to work on, assessing the current situation, choosing an
appropriate method, and carrying it out. The assumption of known methods makes task execution
very much like hierarclical plan-expansion except that it takes place at execution time rather
than being done in advance, and is done with reference to states of the world model that can be
determined without inference. This assures real- time behavior.

The low-level reactive system is somewhat simpler than the original RAP system, since many of the
memory issues are the responsibility of the high-level agent. In particular, the ability to connect
sensor readings with previously-identified objects is now the responsibility of the high-level system.

Although the RAP system is capable of real-time response to its environment, it cannot cope with
fundamental changes in that environment. This is the role of the high-level agent, and constitutes
the primary focus of this research.

The fundamental idea is to create a high-level representation of the reactive system. This repre-
sentation will include both the data structures and algorithms of the reactive system, and will be
directly manipulable by the algorithms of the high-level agent. In particular, the high-level agent
can build new reactive planning data structures to be subsequently incorporated into the low-level
reactive system. Agency thus arises out of the interaction between the reactive system and the
high-level agent:

22



"* The reactive planning system provides continuous real-time response to the environment.

"* The high-level agent responds to environmental changes by creating new reactive planning
structures.

The DMAP/RAP agent architecture project is being implemented in two domains: the simulated
TruckWorld environment (Firby and Hanks. 1987), and the University of Chicago robotic platform.

3.4.1 The TruckWorld domain

The TruckWorld domain is a simulated delivery domain, in which a series of transport goals are
generated during runtime. The agent must coordinate the achievement of these transport goals
while dealing with contingencies of the world; for example, a bridge may be out, it may run low on
fuel, or other malevolent actors may appear to damage the delivery vehicle or steal objects while
in transport.

The level of knowledge and decision making is that of control routines, low-level behaviors, and
the underlying RAP architecture. These procedures are inaccessible to the user, comprising as they
do the "basic competence" of the system. The following low-level transcript demonstrates the
overwhelming detail that the user would have to confront without the case-based intermediary. In
this example, the delivery vehicle (truck) receives a new delivery order while trying to move down
the road:

New top level goal: DELIVER-ROCKS :: #{Goal 19}
Adding goal to agenda: DELIVER-ROCKS :: #{Goal 19}
Data+: (ROAD-SEEN W ROAD-136)
Data+: (ROAD-SEEN E ROAD-140)
Data+: (ROAD-SEEN S ROAD-139)
Data+: (OBJECT-SEEN EXTERNAL USER-3 ROCK-CONSUMER)
Event+: (:EVEIT-667 OKAY) - SUCCEED :: #{Goal 26}
Disabling event :EVENT-568
Disabling event :EVENT-667
Disabling skill: EYE-SCAN

Goal accomplished: (EYE-SCAN-P EXTERNAL) :: #{Goal 26}
with result: SUCCEED OKAY

Removing goal: #{Goal 26}
Goal accomplished: (TRUCK-MOVE-DOWN-ONE-ROAD ROAD-136 NODE-96) :: #{Goal 15}

with result: SUCCEED OKAY
Removing goal: #{Goal 15}

Considering goal (TRUCK-MOVE-DOWN-ONE-ROAD ROAD-139 NODE-104) :: *{Goal 20} :NEW
Instantiating METHOD - METHOD-139
Adding goal to agenda: PULL-IN-ARM :: #{Goal 15}
Adding goal to agenda: PULL-IN-ARM :: #{Goal 26}
Adding goal to agenda: TRUCK-SET-SPEED :: #{Goal 27}
Adding goal to agenda: TRUCK-SET-HEADING :: #{Goal 14}
Adding goal to agenda: TRUCK-MOVE-P :: *{Goal 8}
Adding goal to agenda: EYE-SCAN-P :: #{Goal 29}
Suspending goal: TRUCK-MOVE-DOWN-ONE-ROAD :: #{Goal 20}
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Considering goal (PULL-IN-ARM ARJi) :: #{Goal 161 :NEW
Goal accomplished: (PULL-Il-ARM ARNi) :: #{Goal 15)
with result: SUCCEED 0)

Removing goal: *{Goal 161
Considering goal (TRUCK-SET-HEADIIG S) #{Goal 14} :NEW
Instantiating METHOD - RETHOD-136
Adding goal to agenda: TRUCK-TURN-P :: #{Goal 15}
Suspending goal: TRUCK-SET-HEADING :: #{Goal 14)

Considering goal (TRUCK-TURN-P S) :: #{Goal 151 :NEW
Instantiating METHOD - PRIKITIVE-1O
Enabling skill: (TRUCK-TURN S) - #{Goal 15}
Enabling event :EVENT-669 : (SUCCEEDED TRUCK-TURN)
Enabling event :EVENT-570 : (FAILED TRUCK-TURN)

Blocking on events: TRUCK-TURN-P :: #{Goal 151
Processing event queue ...
Data+: (CURRENT-TIME 186)
Data+: (CURRENT-STATUS HAPPY)
Data+: (CURRENT-SPEED FAST)
Data+: (CURRENT-HEADING S)
Data+: (CURRENT-FUEL 11.405333333333335)
Event+: (:EVENT-669 OKAY) - SUCCEED :: #{Goal 15}
Disabling event :EVENT-570
Disabling event :EVENT-569
Disabling skill: TRUCK-TURN

Goal accomplished: (TRUCK-TURN-P S) :: #{Goal 15}
with result: SUCCEED OKAY

Removing goal: #{Goal 151
Goal accomplished: (TRUCK-SET-HEADING s) :: #{Goal 141

with result: SUCCEED OKAY
Removing goal: #{Goal 14)

Considering goal (PULL-Il-ARM ARM2) :: #{Goal 26} :NEW

Goal accomplished: (PULL-Il-ARM ARM2) :: *{Goal 26)
with result: SUCCEED ()

Removing goal: #{Goal 261

3.4.2 The University of Chicago robotic platform

The agent architecture is currently being tested on the University of Chicago Animate Agent
robotic platform. This testbed provides for many of the same considerations as the overall logistics
project: the need for flexible, real-time response, and the need to adjust to longer-term changes in
the operating environment.

There are four hardware and software levels to this platform:

1. High-level agency software.

2. Low-level reactive planning software.

3. Control firmware.
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4. Sensor and effector hardware.

Robot sensors include a color camera, microphone, and multiple infrared and sonar sensors. Effec-
tors include a mobile base, pan and tilt camera controls, swivel motors for the sonars, and a speech
synthesizer. We hope to add a robotic arm in the near future. Direct control of the hardware
is handled by real-time control procedures. Vision processing requirements are met by additional
hardware and software: visual results are sent to the low-level reactive planning software.

The University of Chicago robotic platform has taken part in AAAI Robot Competitions, and
appeared on the cover of A.4 agazine.

3.4.3 Uniform representation

The central issue in using case-based reasoning as a lingua franca is the uniform representation of
case-based knowledge and the information necessary for specialized technologies.

In the case of the DMAP/RAP agent architecture, that specialized technology is the RAP system.
This section presents a catalog of some of our "cases" of providing such an interface.

Here, for example, is a DMAP representation of the move-arm RAP. 2

(DEFIlE-NODE move-arm (ISA rap)
(SLOTS (the-arm arm)

(the-destination location)
(the-success at-location

(WHERE (the-object = the-arm)
(the-location =

the-destination)))))

Note that this definition of move-arm does not include context checks or method descriptions.
Instead, the DMAP representation makes use of the hierarchical structure of memory to establish
more specific instances of move-arm with the appropriate information.'

(DEFINE-lODE move-arm-internal (ISA move-arm)
(SLOTS (the-destination location/truck-internal)

(the-method prog2
(SLOTS (the-Ist told-arm

(WHERE (the-arm = the-arm)))
(the-2nd primitive-move-arm

(WHERE (the-arm = the-arm)
(the-destination =
the-destination)))))))

'The system uses a hierarchical representation of memory. For clarity, all keywords are in uppercase, and all
relations are of the form "the-". All other symbols are memory node names. The appearance of ""' indicates a
variable binding constraint.

'The following definition omits some aspects of move-arm, i.e., the-arm and the-success. Constraints and
relationships are inherited, so there is no need to respecify identical information.
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This more specific version of move-arm represents the fact that the arm must first be folded before
it can be moved inside the truck. The memory nodes fold-arm and primitive-move-arm are other
raps, siblings of move-arn.

(DEFIlE-NOD ftold-arm (ISA rap) ... )

(DEFUIE-lODE primitive-move-arm
(ISA primitive-rap) ... )

(DEFINE-NODS primitive-rap (USA rap) ... )

(Primitive raps invoke the true low-level RAP interpreter, usually resulting in subsequent changes
to the robot control routines and possible sensor or effector actions.)

Method specifications. The method specification for move-arm-internal was done by specifying
constraints on the prog2 memory structure. This general structure represents the concept of taking
two successive actions.

(DEFINE-SODS prog2 (ISA method)
(SLOTS (the-lIst rap)

(the-2nd rap))
(INDEX (the-lst) (the-2nd)))

The structure of prog2 is very simple, having as it does two substructures, both of which are raps.
The fact that the first rap should come before the second rap is indicated by the presence of an
index annotation to the DMAP node description.

The index annotation tells the OMAP system how it can recognize that the method has been
achieved. The elements of the index indicate that the DMAP system must first recognize that
"the-lit" has been achieved, and then recognize that "the-2nd" has been achieved. At that
point, the DMAP system will be able to conclude, by virtue of the index annotation, that the prog2
has been achieved.

Context checks. Note that move-arm-internal still does not specify a context check. This is
because context checks as implemented in the RAP system are not necessary. The DMAP system
relies on the structure of memory to perform context checks automatically. In this case, it is
the specification of location/truck-internal as the-destination for move-arm-internal that
results in the correct choice of method. The general transformation of RAP methods to DMAP
memory structures is illustrated below.

RLAP representation

(dot inu-rap name
(success juccess)

(method ; method-1
(context contest-1)
(task-net t4sk-aet-I))
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(method-2
(contoxt conttst-2)

(task-net task-net -2)))

D NAP representation

(DEFINE-NODE name (ISA rap)
(SLOTS (the-success success)))

(DEFINE-NODE method-1 (ISA name)
(SLOTS centext-I

(the-method task-net-I )))

(DEFIlE-lODE metdod-2 (ISA name)

(SLOTS contaet-2
(the-method task-net-2)))

The role played by the context checks in the RAP system is now performed by specialization in the
hierarchical memory of the DMAP system. The context checks of the RAP system are translated

into slot specification in the DMAP system; for example, in move-arm-internal, the RAP context
check (internal ?loc) becomes a more specific filler for the relation the-destination. Multiple

methods become multiple sibling descendants of the more general rap structure. The DMAP system
relies upon its algorithm for concept refinement within the memory hierarchy to perform method
disambiguation.

Success tests. The definition of move-arm specified a the-success relation, which was subse-

quently inherited by move-arm-internal. These relations correspond directly to the success checks
of the original RAP system. At the highest level, every rap memory structure has a success test
and a method specification.

(DEFIlE-lODE rap (ISA .object)
(SLOTS (the-success state)

(the-method method))

(INDEI (the-success))
(INDEX (the-sethod) (the-success)))

(The mobj ect node is the highest level of the memory hierarchy, and exists primarily as a reference
point for the general specification of communicative acts.)

The general rap node serves as a reference point for two important indices. These represent how
the successful execution of a rap can be recognized, as in the previously described annotation of
aethod achievement. The RAP system specifies that execution is complete when the success test is

satisfied; even when the methods are executed, the success test must still be checked upon method
completion to determine successful execution.

Similarly, in the DMAP system these two indices represent rap success. There are two possibilities:

1. the success condition of the rap (the state that exists in the the-success relation) is rec-

ognized, or
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2. achievement of the method associated with the rap (the method that exists in the the-method
relation) is recognized, followed by recognition of the success condition as in (1).

In either case, the success condition must be successfully recognized in order to qualify as successful
execution of the rap.

These two indices are inherited by all descendants in the hierarchy: for example, move-arm- internal
can be recognized by its success condition (inherited from move-arm), or by its method followed by
its success condition.

Taking action. Although the previous discussion has been in terms of recognition, it is in at-
tempting to recognize the successful achievement of methods that the DMAP system ends up taking
action. One way to think about this is to take the prescriptive statement, "DMAP should now
do a move-arm-internal." and recast it as a description of a state of affairs that DMAP should
recognize, that is, "try to recognize the successful achievement of move-arm- internal."

How can that recognition be achieved? One way is by doing (recognizing) the achievement of
the-method. Ultimately. the decomposition of tasks will be grounded in the attempt to recognize
a primitive action such as primit ive-move-arm. These recognition attempts result in calls to the
lower-level RAP interpreter.

The second of the two indices associated with the general rap structure, then, is exactly that used
to prompt task decomposition and the ultimate execution of primitive tasks in lower levels of the
overall robotic platform.

3.4.4 Uniform representation for natural language

Once planning knowledge has been encoded in DMAP memory structures, it is straightforward to
extend the natural language capacities in order to enable hurran users to interact with the system.
For details about natural language understanding in DMAP, see (Martin, 1990). Here we will only
demonstrate how references to planning structures can be recognized and disambiguated.

The same memory hierarchy used to represent planning knowledge is also used to represent the
knowledge necessary for language understanding. This is necessary since it is exactly this planning
knowledge which turns out to be essential to understanding many natural language references. For
example, the-communication "don't do that" can only be understood in reference to the current
planning tasks of the robot.

3.4.5 Communicative actions

The highest level of the language hierarchy in the DMAP system consists of the mtrans marker for
communicative actions (Schank and Abelson, 1977).

(DMNINU-IODS rtrans (ISA action)
(SLOTS (the-into mobject)))
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This structure has many descendents. since it is the attachment point for the linguistic knowledge
associated with memory structures. For example. the move-arm rap might be referred to using the
following structure.

(DEFIlE-NODS an/uove-arm (ISA trans)
(SLOTS (the-into move-arm))
(INDEX move (the-info the-arm)

to (the-into the-destination)))

In this example, the the-info relation has been specialized the move-arm structure, and the struc-
ture as an index that gives a linguistic pattern that may refer to move-arm. The linguistic infor-
mation is specified in a form much like that of a phrasal lexicon; a kind of template in which the
variable elements are composed of memory relations.

In this case, the index begins with the word -move." followed by a memory reference to the the-arm
of the the-info of the current structure. Chasing the relationships in the memory hierarchy, this
reference results in the identification of the arm structure associated with the particular move-arm.

The situation is considerably more complex than we have indicated here, since the reference to the
arm structure must also be by way of a communicative act. The definition of m/move-arm given
above is therefore incorrect; a more correct version is the following:

(DEFIIE-lODS rn/move-arm (ISA mtrans)
(SLOTS (the-into move-arn)

(n-arm mrtrans
(VMME (the-info = the-info the-arm)))

(C-loc atrans
(V'EEi (the-info =

the-into the-destination))))
(INDEX move (a-arm) to (r-ioc)))

Careful examination of this definition will reveal that it specified two sub-communicative acts as
part of u/move-arm, each concerned with communicating a sub-structure of the move-arn structure.
This allows the DMAP system to correctly resolve these sub-communciative acts with other antrans
structures, such as the following which specifies that the word 'arm" may be used to refer to a
robot arm.

(DIFINE-NOIM W/arm (ISA atrans)
(SLOTS (the-into arm))
(INDEX arm))

If there is more than one arm, of course, the OMAP algorithm will have to disambiguate between
them.

The second specification of u/move-arm is correct, but is for many reasons not the best choice of
representation. Efficiently handling issues such as syntax require more complex solutions, none
of which are directly relevant to the subject of this paper. In fact, for simplicity we will specify
atrans structures as in the first (incorrect) definition of u/move-arm, but use the keyword "KTRAIS"
instead of "INDEX" as syntactic sugaring. In this paper we will not attempt to describe how syntactic
concerns (subject-verb agreement, number agreement, etc.) are taken into account.
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3.4.6 Referring to methods

The kind of interactions we would like to have with our robotic assistants include instructions
such as -fold your arm before moving it inside the bay." This might be used to teach the robot
the move-arm-internal structure. The previous rap definitions impose the following abstraction
structure:

(DIFIUI-IODE rap (ISA mobject)

(SLOTS (the-method method) ... ) ... )

(DEFINE-NODE move-arm (ISA rap) ... )

(DEFIIE-NODE movo-arm-intirnal (ISA move-arm)
(SLOTS (the-method prog2 ... ) ... ) ... )

In order to be instructed in move-arm-internal, the system must already know about the successive
execution of two tasks. That is, it must know about rap structures whose methods are prog2
structures:

(DEFVIlE-ODE rap/prog2 (ISA rap)
(SLOTS (the-method prog2)))

This structure is more general than move-arm- internal, unrelated (but compatible) with move-arm,
and more specific that rap. The addition of this structure turns the above abstraction structure
into a lattice, since move-arm-internal will inherit from both move-arm and rap/prog2. Multiple
inheritance is a critical aspect of the DMAP implementation.

The rap/prog2 structure is the correct referent for the above human-robot interaction. We can
define a communicative act to make that reference explicit in the DMAP memory.

(DVFINE-IODE m/rap/prog2 (ISA irans)
(SLOTS (the-info rap/prog2))
(NTRANS (the-info the-method the-lst)

before
(she-info the-msethod the-2nd)))

The instruction "fold your arm before moving it inside the bay" has thus been reduced to the
phrasal pattern "action-i before action-2." Recognition of "fold your arm" and "moving it in-
side the bay" must be the responsibility of the mtrans structures associated with fold-arm and
prilitive-.ove-arw

3.5 Case-based interfaces for large-scale planning

This part of the report has presented many details of the interaction between a case-based reasoner
and a specialized technology. We think this was important in order to communicate our vision of
case-based reasoning as the lingua franca of large-scale planning.
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What we have shown is that it is possible to take a technology-reactive execution, in this case-
which is unrelated to case-based reasoning in many fundamental ways. and map it into the knowl-
edge structures of a case-based reasoner.

We believe the same can be done for the many technologies that make up the large-scale planning
initiative. When brought together under the aegis of case-based reasoning, these technologies can
present a common. intuitive. cai.-bw.,td face to the user while maintaining their own efficient.
special-purpose technological advantages.

4 Planning and Execution

Our work in planning and execution is based primarily in CBR (1), but also incorporates ideas from
relatively new areas of Al such as active vision and situated activity as well as more established
technologies associated with non-linear planning and reason maintenance. In all of the systems that
follow, the CBR core is used as the lingua franca that allows the collections of somewhat disparate
planning and execution components to to be used together within complete systems.

"* In ROENTGEN. the CBR system acts as a intelligent buffer between the user and the de-
tails of dose distributions, data retrieval, and plan modification. This project examines the
development of new indexing and repair techniques for traditional planners.

" In RUNNER, the CBR architecture enables the integration of high-level declarative plans with
low-level reactive opportunism. This project examines the development of execution, modifi-
cation, and repair techniques for real-time planning and execution systems.

"• In SHOPPER, the same architecture coordinates the abstract search plans of the agent with a
variety of knowledge sources, both internal and external to the system. This project examines
the development of an integrated model of planning and sensing for real-time execution.

All of these systems are hybrids in which the technologies best suited for specific tasks are integrated
by the CBR architectures at their cores. The following three sections detail each research project
in turn.

4.1 Roentgen

ROENGTEN is a case-based system for planning radiation therapy in the treatment of cancer. The
system supports treatment planning by retrieving and suggesting relevant plans from memory,
adapting them to fit the details of new cases. and evaluating potential solutions and then repairing
any problems that are discovered.

The basic architecture of our earlier work on CHEF(Hammond, 1989a) is now being applied in
the ROENTGEN project to the more demanding domain of planning radiation therapy for cancer.
As with cHEF, ROENTGEN plans from a memory of actual cames-past successes and failures in
treatment planning-to develop plans for new cases. As new problems are presented to it (Figure
2), ROENTGEN retrieves similar, successful cases from memory and then uses them as suggestions
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Figure 2: A Roentgen Problem Descriptior. and Resufting Plan

to help formulate its first attempt at a plan. It performs standard modifications and then uses a
radiation dose calculator to compute the dose distribution over an entire body cross section (Figure
2). One of the innovations in ROENTGEN is our development of an abstracted visual vocabulary for
use in indexing and retrieval of existing cases (Figure 3).

0 0

Figure 3: Visual representations of retrieved cases

For the past three years, we have been working on ROENTGEN, a demonstration of the feasi-
bility of case-based radiation therapy planning(Berger et aL, 1990; Berger and Hammond, 1991;
Berger, 1992; Berger, 1993; Berger, 1994). ROENTGEN can support a human therapy planner (a
dosimetrist) or autonomously design therapy plans for cancer patients. The system can suggest
first-approximation therapy plans for new patients, detect and suggest repairs, and produce finished
plans subject to human evaluation, all for patients with cancer of the thorax.

4.1.1 Planning Radiation Therapy for Cancer Patients

Dosimetrists in oncology clinics are responsible for designing satisfactory therapy plans for cancer
patients. In external photon beam therapy, their job is to find an arrangement of high energy
photon beams which delivers a prescribed dose to a "target" region in the patient's body while
ensuring that the doses to radiation-sensitive tissues in the tiody are below those tissues' tolerances
and while sparing unnecessary dose to other healthy tissue generally. They must take into account
any previous doses to normal tissue that have been delivered by earlier stages in radiotherapy when
constructing the therapy plan. The important elements in the definition of the problem they are to
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solve consist of a two-dimensional geometric cross section of the patient passing through the center
of the target (see Figure 4), the dose prescribed by the physician, and any previous doses that have
been administered to the target and normal tissues by previous stages.

Figure 4: A treatment cross section in the upper thorax with target shaded.
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Figure 5: The plan for the patient JESSE93053-1 from the RT plan case-base.

Based on this information, dosimetrists develop therapy plans using a two step process. The
first step is to arrive at a first-approximation therapy plan for the patient. This plan is a rough
attempt to satisfy the treatment goals. When the dosimetrist looks at the simulated results of the
first-approximation plan, she is almost certain to find flaws: underdosed target tissue; overdosed
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Figure 6: The results of the plan for the patient JESSE93053-1 from the RT plan case-base. Nested
isodose contours show the level of dose delivered by the plan.

sensitive tissues; or other problems. This fact of therapy planning life naturally leads to the second
stage of plan development, the iterative repair of the first-approximation plan. (Figures 5 and 6
illustrate a got : plan and its resulting dose distribution.)

To help them carry out the first step in therapy planning, clinic dosimetrists frequently maintain
notebooks that contain past therapy cases they have planned. When designing a plan for a new
patient, the dosimetrist will often look in the notebook in order to find suggestions for a first-
approximation plan for a new patient. She will seek a past case that is similar to the new patient in
terms of the geometry of the patient cross section and the dose requirements (the prescribed dose
to the target and dose limits to the sensitive tissues). In general, the closer the similarity, the fewer
flaws the first-approximation plan is likely to exhibit; since, for a given therapy plan, the patient
geometry absolutely determines the resulting dose distribution. The dosimetrist then uses the dose
requirements to see how well the plan performs. Hence, both geometry and dose requirements are
important in finding a good match to the current case.

4.1.2 Case-Based Therapy Planning

The naturally ocurring cue-based reasoning of the dosimetrists provided part of the impetus for
attempting to build RODNTGIN, a case-based reasoning program for therapy planning. ROENTGEN

also employs the two-stage process used by the dosimetrists. It has a case-base of past therapy plans
from which it develops its first-approximation therapy plan for a new patient. And, it has a second
case-base of repair episodes that record the corrections made to past therapy plans to eliminate or
reduce unwanted conditions in plan results. ROENTGEN uses the second case-base to support the
repair of plans currently being developed. Figure 7 gives a system diagram for ROENTGEN. The
Retriever and Adapter together are responsible for producing the first-approximation plan. The
Evaluator and Repairer for repairing the suggested plan to produce an acceptable result.
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Figure 7: The ROENTGEN System

4.1.3 The Retriever

The Retriever is the ROENTGEN module that is responsible for finding past cases in case-memory
that can be used as the basis for first-approximation therapy plans. Like the dosimetrist, the
Retriever looks for cases that are geometrically similar to the current patient while keeping in mind
the current dose requirements. The Retriever compares a description of the important geometric
features of the new patient with descriptions of the important geometric features of the cases in
case-memory and returns the cases that match the best and which do the best job of achieving the
dose requirements of the current patient.

To carry out geometric matching, we have developed a vocabulary of features based on elliptical
approximations to the tissue shapes in the cross section of the patient. For each of the tissues of
interest-target, spinal cord, lungs-the system approximates the tissue and then computes the
following associated parameters:

"* area. The area of the polygon/ellipse. For the body outline, this is the absolute area in
square centimeters; for the other tissues it is the area as a proportion of the total body area.

"* eccentricity. This feature parallels the subjective perception of how "elongated" the corre-
sponding tissue is. Ellipses with an eccentricity of 0 are circles; those with an eccentricity of
I are line segments.

* orientation. This feature is associated with the subjective perception of the direction in
which a tissue points. It is the angle formed by the major axis of the approximating ellipse
with the X-axis in radians.
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"* rho. The distance from the target centroid (center of gravity) to the centroid of the poly-
gon/ellipse of the tissue. This is also the first polar coordinate of the tissue centroid. This
distance is normalized by the posterior to anterior extent of the body outline.

"* theta. The angle formed by the vector from the target centroid to the tissue centroid with
the positive X-axis (radians). This is the second polar coordinate of the tissue centroid.

The Retriever uses these features to find geometric matches to the current patient among its past
cases. Among those cases which match geometrically, the Retriever seeks cases whose plans are
likely to satisfy the dose reqirements-the prescribed dose to the target, and the limiting doses
permitted to sensitive vital tissues--of the current patient.

The Retriever estimates how well plans in its memory are likely to satisfy these limits by looking
at information stored with each case that summarizes the dose distribution in the case. This
summary information is in the form of dose-area histograms for each important tissue in the cross
section. For example, if the current requirement is that the lung be kept below 50 percent of
the current dose prescribed for the target, the Retriever, when considering a case from memory
checks to see what fraction of the lung was at or below that level when the plan from the case
was applied. The fractions for each tissue are added to give an overall "satisfaction" score for
the case. This satisfaction score provides an estimate of how well the plan from the case under
consideration satisfies the current requirements. The higher the score, the better the requirements
are (theoretically) met. The Retriever favors cases which are geometrically similar to the current
patient and which have a high satisfaction score.

4.1.4 The Adapter

The Adapter takes the case returned by the Retriever and tailors the therapy plan it contains to
the basic geometric facts of the current patient. No two patients are exactly alike. The location
and size of the target in one may differ by only a couple of centimeters from the location and size
in another, but the plan from the first will have to be adjusted to account for those centimeters if
it is to be used on the second.

The Adapter also takes account of symmetry when tailoring plans. If the targets in the retrieved
case and the current patient are on different sides, the Adapter will correct the retrieved plan
accordingly. It will also adjust the retrieved plan for a prone patient to one that can be used on a
supine patient and vice versa.

The Adapter adjusts five types of plan parameters when tailoring a retrieved plan for a new patient:
1) the coordinates of the isocenter; 2) the coordinates of the reference point; 3) the gantry angles
for the beams in the plan; 4) the collimator jaw settings for each beam; and 5) the orientation of
any wedges used in the plan.

Thus the Adapter tailors the output of the Retriever to produce a first-approximation plan for a
new patient.
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4.1.5 The Evaluator

The Evaluator has the job of detecting flaws in the results of the proposed RT plan. The module
produces a list of flaws (and possibly relevant facts about the plan) that can be used by the
Repairer or dosimetrist as problems to overcome through RT plan repair. The Evaluator can detect
the following sorts of flaws:

"* Underdosed target tissue. Some area of the target may be receiving less than the prescribed
dose. This is a serious flaw especially if the degree of underdose or the area of underdose are
significant.

" Overdosed vital tissue. A plan should not dose a tissue that is vital to the life or well-being
of the patient beyond its dose tolerance. In the thorax, the lungs and the spinal cord are
radiation-sensitive. Overdosing the lungs can lead to a loss of pulmonary capacity. Serious loss
can lead to death. Overdosing the spinal cord will cause the nerve fibers to stop functioning
resulting in motor and sensory deficits below the point of injury.

" High or unnecessary dose to normal tissue. All tissues in the body suffer damage and some
loss of function if subject to high enough levels of radiation. Tissue should not be dosed
unless necessary.

" High dose close to a sensitive structure. If an area of high dose lies within a centimeter or
two of the spinal cord, a small error in positioning the patient on the treatment table can
result in accidentally delivering a damaging dose to it.

" Uneven dose to the target. A rule of thumb in the clinic is that the dose in the target region
should not vary by more than 10%.

" High dose maximum. It is desirable that the dose not exceed 110% of the prescription
anywhere in the cross section. The absolute limit is often set at 115%.

"* Significant dose to normal tissue. Since radiation is potentially harmful to normal tissue,
significant dose to any structure-even though it is below the tissue's tolerance-should be
noticed so it can be avoided when possible.

In addition to describing the nature of the flaw, the Evaluator also specifies its location. For
example, "Overdosed2 Cord PA-beam cord-side-outershoulder-entry" indical that a part of the
pinal cord has been dosed at between 110 and 140 percent of its tolerance. - overdosed region

lies in the entry portion of the outer-shoulder of the Posterior to Anterior beam.

4.1.6 The Repairer

The Repairer uses the list of flaws produced by the Evaluator (and possibly modified by the
dosimetrist) to transform the first-approximation therapy plan into an acceptable one for treat-
ment. It is a case-based system in its own right and finds the closest match between the current
situation and past situations for which it has repair plans in its memory. Current and past sit-
uations are characterized by: 1) the flaws of concern; 2) the type of RT plan in use; and 3) the
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patient geometry and dose requirements of the patient. During retrieval, the Repairer measures
the suitability of each past repair episode in its memory by considering:

* The match between the set of flaws of current concern and the set of flaws which the past
repair episode aimed at correcting.

* The match between the current RT plan and the RT plan of the repair episode it is considering.

* The similarity between the patient geometries and dose requirements of the current and past
situations.

The Repairer applies the best match from the past episodes to the current flawed RT plan. It does
this by executing each step in the retrieved repair plan. Each step is a "tweak" that performs an
adjustment to the therapy plan like raising or lowering beam energy, rotating a beam source to a
slightly differnt position, opening or closing the collimator jaws which control the size of the beam
cross section. More complex tweaks can be constucted by the user by combining predefined pred-
icates which test for the existence of important conditions in the dose distribution and previously
defined tweaks using four standard programming constructs: IF, UNLESS, BLOCK, and UNTIL.
These more complex tweaks can perform higher level repair actions like rotating a beam until it no
longer impacts the spinal cord.

Tweaks are the building blocks for the repair plans which make up the Repairer's memory. And
this memory is the key to the Repairer's ability to create acceptable RT plans from the first-
approximation plans produced by the Retriever and Adapter.

4.1.7 Status of ROENTGEN

ROENTGEN consists of code and data. The code for the system includes that for the four modules
described in the previous section. The data represents the system's knowledge in the form of case
memories.

ROENTGEN is built around an existing archive of 165 therapy plans created by dosimetrists at a
hospital oncology clinic for treating patients with thoracic lesions. These plans and the patients for
whom they were designed comprise the case-base used by the Retriever as described above. The
existing archive also provided a development problem set. We chose 15 cases from the archive by
an arbitrary process (the first 15 in alphabetical order of patient name for whom we could find the
hard-copy clinic records) that should give us a representative sample. This set of problems was
used to tune the Retriever so it produced reasonable first-approximation plans for the patients in
it. In addition, as therapy plans were produced for the problems in the development problem set,
the repair episodes necessary to correct the flaws in the first-approximation plans were stored in
the repair plan case-base for future use.

Both the code and data portions of ROENTGEN are complete. The current focus of work on the
project is producing an account of the research in the form of a Phd dissertation by Jeff Berger.
This is to be completed by August, 1994.
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4.1.8 Evaluation

ROENTGEN clearly demonstrates the feasibility of case-based radiation therapy planning. While
we have not performed a formal clinical evaluation of its capabilities, it gives every indication of
being up to the task of supporting the efforts of human dosimetrists and of designing reasonable
therapy plans on its own. We are planning to do a formal evaluation in the future. The evaluation
will involve submitting a representative set of new (to ROENTGEN) therapy problems to: 1) clinic
dosimetrists, both expert and novice; 2) to RoENTGEN; and 3) clinic dosimetrists who use ROENT-

GEN as an aide to the planning process. A physician will evaluate the plans produced, without
knowledge of the source of the plans. We will compare the performance of ROENTGEN to aided and
unaided human dosimetrists of different levels of experience.

4.2 Large Scale Transportation Planning

While ROENTGEN is not a transportation planning system, the overall design of the system and
the leasons learned are directly applicable to crucial aspects of the transportation problem. In
particular, the issues of integration dealt with by ROENTGEN are the same issues that are faced in
transportation planning when using tools such as DART, where the feedback to a user is primarily
numeric. As in ioPsthe ROENTGEN solution of using qualitative descriptions of known configuations
of problems as indicies to known solutions, is exactly what is needed in the transportation planning
domain. Likewise, the integrated use of specific cases along side more general repair rules is also
applicable to the transportation planning domain.

In general, the ROENTGEN research stands as an example of how CBR can be used as a lingua
franca for large-scale planning.

4.3 Runner

RUNNER is a system that uses plans in a commonsense domain (a simulated kitchen). As a research
project it lies between traditional planning research and more recent work on situated and reactive
systems, and draws from both areas.

Traditional planning systems construct action sequences (plans) that, when executed, will satisfy
the goals given to the system. These systems need complete symbolic descriptions of the state of
the world in order to construct the plans, and generally assume an exact model of the effects of
actions. This sort of plan construction can be very computationally expensive, and is probably of
limited utility in uncertain worlds.

More recent work (by Brooks, Chapman and Agre, and Rosenschein and Kaelbling) responds to
the uncertainty of execution and the cost of plan construction by tying current action as directly as
possible to current perception, maintaining little state over time(Agre, 1988; Agre and Chapman,
1987). While they avoid the intractabilities of planning, these systems rely on delicate charac-
terizations of agent-environment interactions by the designer, as well as on the assumption that
everything needed to determine action is perceptually immediate. While robust to environmental
uncertainty, these systems are brittle to patterns of interaction with the environment that have not
been explicitly anticipated by the designer (e.g. problems such as looping, or becoming trapped
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in local maxima). Finally, since there is little declarative representation of knowledge in these
architectures, it is difficult to see how to integrate anything but the most knowledge-poor kinds of
learning within them. Reinforcement learning is the main technique that has been looked at within
this framework (e.g. Brooks and Maes, Chapman and Kaelbling, Sutton), but there is good reason
to believe that pure reinforcement learning suffers from combinatoric problems analogous to those
that make classical planning intractable.

We draw from both traditions in the RuNN ER project: We agree with the "situated" camp that
it is not reasonable to assume that an action system has a complete symbolic model of the world
before any action takes place. or that the behavior of agents can be well characterized without some
characterization of the environments they are to inhabit. We also agree that traditional planning is
too expensive to be invoked every time an agent wants to achieve a goal. But we argue for the utility
of explicit symbolic representations of plans, largely because this sort of representation provides
the information necessary for run-time recovery and repair, as well as for learning by incremental
modification of those plans. These plans should be re-used as much as possible (thereby amortizing
the cost of planning over time), so that routine action is computationally cheap.(Converse and
Hammond, 1992) Nevertheless, the structure and causal dependencies of plans should be represented
explicitly, so that problems can be diagnosed and repaired.

4.3.1 Research issues

The central research issues in the RUNNEER project are:

"* Flexible plan execution, with learning from execution-time failures and unexpected opportu-
nities.

"* "Extrinsic" planning-recognizing in the midst of activity when it is appropriate to use a
stored plan (as opposed to reasoning about the internals of the plan).

"* The representation of plans to permit effective reuse in a changing environment.

"* Stabilization of the environment by the enforcement of policies.

Of these, probably only the last requires explanation: the idea here is that plans to be reused need
certain preconditions to be re-established, and also that the problem of plan reuse is simplified
by ensuring that certain of these preconditions are "always true". This is an abstract phrasing
of a simple idea: for example, the fact that most people make sure that they always have clean
drinking glasses in a particular kitchen cupboard probably makes it much easier for them to decide
what to to do when they decide they want to have a drink of water. This sort of "stabilization"
of the immediate environment trades off with the need for flexible plan representation-the more
standardized an environment is with respect to the preconditions of a plan, the less flexibility is
needed in the plan's execution(see (Hammond and Converse, 1991; Hammond et al., 1994).
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4.3.2 Project domain

The RUNNER program interacts with a simulator, which provides for it the illusion of inhabiting
a conventional kitchen. Although a simulation, it is a fine-grained one-the RuNNER program
controls a "head" with a visual focus and a limited field of view, and "hands" which must be
directed by visual attention to manipulate objects in the field of view. We hope to make the
simulator available to other research labs soon.

I Breakfast world (sloth) _ _

TOP WfINDOW ON: BREAKFhST-WORLD 7:00:01 Y.x
ORIGIN: (0 0) Day #1

C1

I~Front viewi

Figure 8: Runner's World

In this simulated world, Ru N N ER must perform simple tasks like making coffee and breakfast cereal.
RUNNER starts out with a small set of hand-coded plans. Its job is to use these plans (and interleave
their actions when necessary) to actually achieve the goals in its world. These plans represent the
causal dependencies of their different parts, but do not completely determine the action of the
agent: ordering of steps can depend on discovered opportunities, steps from different plans can
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be interleaved, and the appropriate times for particular plans must be recognized on the basis of
perceptual cues.

4.3.3 Memory and Agency

Our model of planning and understanding rises out of three pieces of work: Schank's structural
model of memory organization(Schank, 1982), our own work in case-based planning and depen-
dency directed repair (Hammond, 1989a; Hammond, 1990; Hammond and Seifert, 1993; Hammond
and Seifert, 1992; Seifert et al., 1994), and the work of Martin and Riesbeck in Direct Memory
Access Parsing (Martin, 1989). Our model has been articulated in two programs, TRUCKER and
RUNNER(Hammond et al., 1988; Hammond et al., 1990)

The model was first developed to deal with the problem of recognizing execution-time opportunities
in the context of a resource-bound agent that is forced to suspend planning in order to attend to
execution (Hammond, 1989b; Hammond and Seifert, 1994; Hammond et al., 1993b). The goal of
this model was to capture the ability of an agent to suspend goals, yet still recognize execution-time
opportunities to satisfy them.

To accomplish this goal, we use a single set of memory structures both to store suspended goals
and to understand the agent's circumstances in the world. In response to a blocked goal, an agent's
first step is to do a planning-time analysis of the conditions that would favor the satisfaction of the
goal. The agent then suspends the goal in memory, indexed by a description of those conditions.
For example, a goal to buy eggs that was, blocked during planning would be placed in memory
associated with the condition of the agent being at a grocery store.

During execution, the agent performs an ongoing "parse" of the world in order to recognize condi-
tions for action execution. Following DMAP (Martin, 1989), this parse takes the form of passing
markers through an existing episodic memory. Because suspended goals are indexed in the memory
used for understanding the world, the goals are activated when the conditions favoring their exe-
cution are recognized. Once active, the goals are then reevaluated in terms of the new conditions.
Either they fit into the current flow of execution or they are again suspended.

We called the initial model opportunistic memory because the agent's recognition of opportunities
depends on the nature of its episodic memory structures. Having turned to the broader issues of
integrating planning and action, we now refer to our work as the study of agency.

We use the term agency to comprise the spawning of goals, selection of plans, and execution
of actions. Our process model of agency is based on Martin's DMAP understander as well as its
antecedent, Schank's Dynamic Memory. DMAP uses a memory organization defined by part/whole
and abstraction relationships. Activations from environmentally supplied features are passed up
through abstraction links and predictions are passed down through the parts of partially active
concepts. Subject to some constraints, when a concept has only some of its parts active, it sends
predictions down its other parts. When activations meet existing predictions, the node on which
they meet becomes active. Finally, when all of the parts of a concept are activated, the concept
itself is activated.

To accommodate action, we have adued the notion of PERMISSIONS. PERMISSIONS are handed
down the parts of plans to their actions. The only actions that can be executed are those that
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are PERMITTED by the activation of existing plans. Following McDermott (McDermott, 1978), we
have also added POLICIES. POLICIES are statements of ongoing goals of the agent. Sometimes these
take the form of maintenance goals. such as "'Glasses should be in the cupboard." or "Always
have money on hand." The only goals that are actively pursued are those generated out of the
interaction between POLICIES and environmental features. We would argue that this is, in fact, the
only way in which goals can be generated.

Most of the processing takes the form of recognizing circumstances in the external world as well as
the policies, goals and plans of the agent. The recognition is then translated into action through
the mediation of PERMISSIONS that are passed to physical as well as mental actions.

Goals, plans, and actions interact as follows:

" Features in the environment interact with POLICIES to spawn goals.

For example, in RUNNER, the specific goal to HAVE COFFEE is generated when the system
recognizes that it is morning. The goal itself rises out of the recognition of this state of affairs
in combination with the fact that there is a policy in place to have coffee at certain times of
the day.

"* Goals and environmental features combine to activate plans already in memory.

Any new MAKE-COFFEE plan is simply the activation of the sequence of actions associated
with the existing MAKE-COFFEE plan in memory. It is recalled by RUNNER when the HAVE-

COFFEE goal is active and the system recognizes that it is at home.

" Actions are permitted by plans and are associated with the descriptions of the world states
appropriate to their performance. Once a set of features has an action associated with it,
that set of features (in conjunct rather than as individual elements) is now predicted and can
be recognized.

Filling the coffee pot is permitted when the MAKE-COFFEE plan is active; it is associated
with the features of the pot being in view and empty. This means not only that the features
are now predicted but also that their recognition will trigger the action.

" Actions are specialized by features in the environment and by internal states of the system. As
with Firby's RAPs(Firby, 1989), particular states of the world determine particular methods
for each general action.

For example, the specifics of a GRASP would be determined by information taken from the
world about the size, shape and location of the object being grasped.

" Action level conflicts are recognized and mediated using the same mechanism that recognizes
information about the current state of the world.

For example, when two actions are active (such as filling the pot and filling the filter), a
mediation action selects one of them. During the initial phases of learning a plan, this can
in turn be translated into a specialized recognition rule which, in the face of a conflict, will
always determine the ordering of the specific actions.
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* Finally, suspended goals are associated with the descriptions of the states of the world that
are amenable to their satisfaction.

For example, the goal HAVE-ORANGE-JUICE, if blocked, can be placed in memory, associated
with the conjunct of featureb that will allow its satisfaction, such as being at a store, having
money and so forth. Once put into memory, this conjunct of features becomes one of the set
that can now be recognized by the agent.

RUNNER's Representation: The knowledge and memory of the agent is captured in the
conjunction of three types of semantic nets, representing knowledge of goals, plans and states.
Nodes in these networks are linked by abstraction and packaging links, as in DMAP. In addition,
we propose an additional SUSPEND link, which connects suspended goals to state descriptions
that may indicate opportunities for their satisfaction. For example, the goal to have eggs would
be suspended in association with the description of the agent being at a grocery store. In addition
to being passed to abstractions of activated concepts, activation markers are always passed along
SUSPEND links.

In general, the only other way in which these nets are interconnected is via concept sequences. A
node may be activated if all of the nodes in one of its concept sequences is activated - a concept
sequence for a given node can contain nodes from any of the parts of memory. The following is a
partial taxonomy of the types of concept sequences we currently allow:

* Activation of a goal node can activate a node representing a default plan.

# Activation of a plan node and some set of state nodes can activate a further specialization of
the plan.

* Activation of a goal node and some set of state nodes can activate a further specialization of
the goal.

* Activation of any state node that has a SUSPEND link will activate the associated goal.

An Example: Making Coffee The above discussion of representation may make more sense
in the context of an example, currently implemented in RUN N EIR, of how a particular action is
suggested due to conjunction of plan activation and environmental input.

One of the objects in RUNNER'S simulated kitchen is a coffeemaker, and one of the plans it has
available is that of making coffee with this machine. This plan involves a number of subsidiary
steps, some of which need not be ordered with respect to each other. Among the steps that are
explicitly represented in the plan are: fetching unground beans from the refrigerator, putting the
beans in the grinder, grinding the beans, moving a filter from a box of filters to the coffeemaker,
filling the coffeemaker with water from the faucet, moving the ground beans from the grinder to
the coffeemaker, and turning the coffeemaker on.

The subplans of the coffee plan are associated with that plan via packaging links. In this imple-
mented example, the agent starts out with a node activated which represents knowledge that it is
morning. This in turn is sufficient to activate the goal to have coffee (this is as close as the program
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comes to a theory of addiction). This goal in turn activates a generic plan to have coffee. This
turns out to be nothing but an abstraction of several plans to acquire coffee, only one of which is
the plan relevant to our kitchen:

Sending initial activations to memory
"sending activation marker to [morning]
Activating concept: [morning]
concept sequence ([morning])
for node [GOAL: drink-coffee] is completed.
sending activation marker to

[GOAL: drink-coffee]
Activating concept: (GOAL: drink-coffee]
Asserting new goal: [GOAL: drink-coffee]
sending activation marker to

[PLAN: coffee-plan]
lode [PLAY: coffee-plan] has both permission
and activation:

((MARKER [GOAL: drink-coffee]))
(TOP-LEVEL-PLAN)

Activating concept: [PLAN: coffee-plan]
Asserting new plan: [PLAN: coffee-plan]
Plan has no steps -- insufficiently specific

"Visual" input, in terms of atomic descriptions of recognizable objects and their proximities, is
passed to memory. For example, the agent "sees" the following visual types:

countertop, white wall, box of filters

Among sets of possible visually recognized objects are concept sequences sufficient for recognition
that the agent is in the kitchen. The recognition of the white wall and the countertop completes
one of these sequences. The "kitchen" node in turn passes activation markers to its abstractions,
activating the node corresponding to the agent being at home:

Straight ahead I see:
"a countertop, up close;
"a countertop, fairly close;
"a green square filter-box, up close;
"a countertop, fairly close;
"a countertop, far away;
"a white wall, far away;
"a countertop, fairly close;
"a countertop, far away;
"a white wall, far away

To the left is a countertop, up close
To the right, there's a countertop, up close
Straight ahead, there's a countertop, up close

MEMORY:
Active plans: coffee-plan
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sending activation marker to (wall]

Activating concept: (wall]
sending activation marker to [filter-box]

Activating concept: [filter-box]
sendi•lg activation marker to (countertop]
Activating concept: [couatertop]

concept sequence ((wall] (countertop])
for node [in-kitchen) is completed.
sending activation marker to [in-kitchen]
Activating concept: [in-kitchen)
sending activation marker to [at-home]
Activating concept: [at-home]

0 Breakfast world <sloth) go
TOP WINDOW ON: BREAMKFAST-V0RLD 9 i 00W1 3 XI6
ORIGIN: (0 0) Day #1

SFront viewa

0!

Figure 9: The agent's "visual" focus of attention

The activation of this node in cenjunction with the activation of the generic coffee goal completes
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the concept sequence necessary for the goal for making coffee at home, which in turn activates the
default plan for that goal. In this way a specialized plan is chosen in response to a conjunction of
a recognized state and a more generic goal:

MEMORY:
concept sequence

([GOAL: drink-coffee] [at-home])

for node
[GOAL: drink-coffee-at-home) is completed.

sending activation marker to

[GOAL: drink-coffee-at-home)
Activating concept:

[GOAL: drink-coffee-at-home)

Asserting new goal:
[GOAL: drink-coffee-at-home)

sending activation marker to
[PLAN: make-coffee-at-home)

Node [PLAN: make-coffee-at-home)
has both permission and activation:

((MARKER [GOAL: drink-coffee-at-home]))
(TOP-LEVEL-PUAN)

Activating concept:
[PLAN: make-coffee-at-homeJ

The activation of the coffee-plan causes permission markers to be sent down packaging links to
the nodes representing the parts of the plan. The activation of the other object concepts from
the "visual" input in turn have sent activation markers to the actions that contain them in their
concept sequences. Among these is the plan step for taking a filter from the box and installing
it in the coffeemaker, which is activated by seeing box of filters itself. In this way a sub-plan is
suggested by the intersection of permission from its parent plan and cues from the environment
that indicate that it is easily satisfiable:

Asserting new plan:

[PLAN: mako-coffee-at-home)
Sending permissions to steps of plan
Sending permission markers from

[PLAN: make-coffee-at-home]
to steps

FILL-CARAFE
PUT-BEANS-IN-GRINDER
MOVE-GROUNDS-TO-COFFEE-MAKER
TURN-ON-COFFEE-MAKER
GRIND-BEANS
PUT-IN-FILTER
GET-COFFEE-BEANS

concept sequence
((filter-box]

(PLAN: make-coffee-at-home])
for node [PLAN: put-in-filter) is completed.

47



sending activation marker to
[PLAN: put-in-filter)

Node [PLAN: put-in-filter)
has both permission and activation:

((MARKER ((filter-box]
[PLAN: make-coffee-at-home))))

((MARKER [PLAN: make-coffee-at-home]))
Activating concept:

[PLAN: put-in-filter]
Asserting new plan: [PLAN: put-in-filter]
Sending permissions to steps of plan
Sending permission markers from

[PLAN: put-in-filter)
to steps

PUT-FILTER-IN-COFFEEMAKER
GET-FILTER

concept sequence
((filter-box]

[PLAN: put-in-filter])
for node [PLAN: get-filter] is completed.
sending activation marker to

[PLAN: get-filter]
Node [PLAN: get-filter]
has both permission and activation:

((MARKER ([filter-box]
[PLAN: put-in-filter])))

((MARKER [PLAN: put-in-filter]))
Activating concept: [PLAN: get-filter]

After another level of passing permission markers to sub-plans, the process "bottoms out" in the
suggestion of the primitive action of picking up the box of filters. With no suggestions to the
contrary, the action is taken:

Asserting now plan:
[PLAN: get-filter)

Sending permissions to steps of plan
Sending permission markers from

[PLAN: get-filter)
to steps

TAKE-OUT-FILTER
PICK-UP-BOX
LOOK-FOR-FILTER-BOX

concept sequence
([filter-box] [PLAN: get-filter])

for node (PLAN: pick-up-box] is completed.
sending activation marker to

[PLAN: pick-up-box]
Node [PLAN: pick-up-box]
has both permission and activation:

((MARKER ([filter-box] [PLAN: get-filter])))
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((MARKER [PLAN: get-filter]))

Activating concept: [PLAY: pick-up-box]
Suggesting action: (GRASP 'FILTER-BOX)

ACTION:
Performing action: (GRASP 'FILTER-BOX)

To the left is a countertop, up close

To the right, there's a counrertop, up close

Straight ahead, there's a countertop, up close

Result of action: I'm holding on to a filter-box

H] Breakfast world (sloth) go [
TOP WINDOW ON: BREAFIST-WOLD 7:00:23 A.N
ORIGIN: (0 0) Day #1

[9 Front view go

Figure 10: The agent reaches for a box of filters

The final action is chosen both on the basis of active plans and goals, and in response to the
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immediate circumstances in which the agent finds itself. Given a change in either the top-down
guidance or the bottom-up recognition, the selection of plan and action will change in response.

4.3.4 Results

Achievements include:

"* Development and extension of RUNNER'S simulated world. Some features of this simulator
are:

1. A fairly sophisticated "physics", in which unsupported objects fall, struck objects ac-
quire momentum and move independently, and objects approach the temperature of the
surrounding environment.

2. A simulation of visual search, which enables RUNNER's agent to look initially for objects
on the basis of color or texture, and then focus on candidate objects t, see if they are
of the right type.

3. Complete decoupling of the simulator and the AI program; the two programs can now
run on different machines, and communicate over UNIX sockets. Multiple Al programs
(not just RUNNER) in the Chicago AI lab can "attach" to the simulator and inhabit the
same simulated world.

"* Successful use of plans that result in action sequences of four to five hundred steps.

"* Use of more than one plan simultaneously, without the intermediate construction of an inter-
leaved plan.

"* Successful "multiple day" examples, where the program uses the same plan representation to
perform a task even though its own activity has changed the circumstances of the relevant
objects (e.g. an object which was taken from a cabinet is now found left on a counter on the
next run of the plan).

4.3.6 Current work

We are currently performing experiments on learning the appropriateness conditions for using
particular plans-the conditions that should be checked before the plan is committed to(Converse
and Hammond, 1991b) This set of conditions is not the same as the logical preconditions, since
some preconditions are effectively "always true", and others can be addressed and fixed easily
if encountered in the midst of execution. Also, the agent may not know the truth value of all
preconditions in advance, and the effort of physically verifying them may in some cases not be worth
the expected cost of plan failure. Our approach involves two kinds of complementary learning, one
of which learns new preconditions from failure, and the other of which drops preconditions that
turn out persistently to be true.
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4.4 Shopper

Planning and perception have generally been treated as separate topics in the Al literature. How-
ever, recent work has cast many doubts on the practicality of either research track. Planning
researchers have begun to realize that they cannot expect a complete, perfect model of the world
when they begin to plan and, even if they did have such a model, the computational complexity
involved in using all of its detail would be prohibitive. Without a complete world model, future
states of the world cannot be predicted accurately and detailed plans cannot be constructed in
advance.

Similarly, perception researchers are also coming to suspect that it may not be possible to generate
a complete model of the visual world in real time. The amount of detail in a visual scene is enor-
mous and modeling it all in a rapidly changing environment would appear hopeless. Furthermore,
the complete interpretation of a scene is seldom necessary because only a fraction of the total in-
formation available is usually relevant for any given task. Faced with this flood of often irrelevant
data, we are turning to techniques that focus sensing and processing resources on just those aspects
of the world that are important at any given time.

Figure 11: The Shopper selection and search screen

The SHOPPER project considers the planning problems associated with navigation and search in
a virtual world into which an agent is thrust. The world itself is a grocery store through which
an agent must navigate, move, and shop for groceries. Our grocery store simulator, based on
video images, provides a realistic domain in which to explore ideas about navigation, planning, and
opportunism while avoiding the headaches associated with robots (see Figure 11). As in RUNNER
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we are exploring ideas of opportunism in SHOPPER without having to depend on a robot. By using
video images. we raise interesting questions of how one "notices" items in realtime. This project
thus brings together ideas from several areas of Al, including work in case-based reasoning, animate
agency, and active vision(Fu et al., 1994).

Initially with the SHOPPER project, we are examining the types of functional knowledge needed
for an agent to work in a man-made domain as well as the sensing and control mechanisms needed
to use this knowledge. In the remaining sections, we describe the SHOPPER system: an integrated
system incorporating planning and vision techniques for the task of grocery store shopping.

Grocery store shopping is a common task everyone does at least occasionally. Since everybody
is able to accomplish their shopping needs fairly quickly, we are interested in what functional
knowledge people use in order to shop efficiently as possible. Since all grocery store managers
presumably want customers to find items without much trouble, they place and index items in
some consistent manner. They do so according to the features they deem the most functional in
terms of satisfying their customer's needs, and their own needs for selling as much food as possible.

A customer intending to leave in a reasonable time has to know how his food will be used. For
example, suppose a customer who wants to bake a cake needs cake mix and cake frosting. He'll find
the cake frosting nearby the cake mixes. He also might find the cake mixes near the flour, sugar,
and baking tins. This arrangement is anything but accidental: it's intentional. The cake mixes,
as well as the rest of the items in the store, are indexed according to the features most useful in
serving the needs of their customers and their stores.

To a greater and lesser extent, other man-made environments will exhibit regularities of organi-
zation. Examples are ubiquitous: kitchens, offices, bedrooms, stores, streets, cars, etc. In each of
these instances, people can and will use their knowledge of regularities in order to facilitate their
task. Consider a robot whose job is to tidy up several desks in offices. He needs to know where pens,
pencils, papers, and books should go. Placing pens and pencils are simple. Filing papers and books
are much harder because it involves knowledge of a person's method of organizing their literature.
Books can be arranged according to several criteria such as: author, title, subject, shape/size,
frequency of use, etc. We are interested in using knowledge such as this to aid in accomplishing
tasks.

4.4.1 GroceryWorld

The SHOPPER. agent works in a simulated grocery store called GROCERYWORLD. We wanted to
build a world which offers the same challenges and opportunities as a real grocery store. However,
we wish to avoid all the problems associated with real robots - problems like fixing broken hardware,
writing motor driver code, having to transport the robot to an available grocery store, etc.4

The GROCERYWORLD simulator satisfies these design criteria. By using video footage from an
actual store, we are able to base our simulator on real images of a grocery store. The simulator is
complete in that the entire store (excluding checkout counter areas) is modeled by the simulator.
Any object in the image database is accessible by moving through the world.

4We also, for now. axe able to ignore problems such as noise in sonar readings and wheel slippage. However, we
will eventually incorporate similar problems into GRoCERYWORLD.
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In addition, the simulator provides range information on the relative proximity of walls and aisles
with respect to the agent's current location. Sign information is also given. When an agent is at
the end of an aisle and looking down that aisle, he automatically receives the text of those signs.
The signs in GROCERYWORLD are a faithful reproduction of the signs of the specific grocery store
filmed.

The remainder of this section is organized as follows. We first illustrate the kinds of regularities
present in grocery stores. Next, we describe the visual routines implemented in SHOPPER and
how regularities aid in processing visual information. Then we discuss the control mechanism for
execution of plans and visual routines. We later demonstrate a more complicated example of search
which uses a combination of regularities and visual mechanisms. In the final section we relate our
project to similar work, and discuss its implications.

4.4.2 Regularities in grocery stores

Because a moderately-sized grocery store can stock at least 10,000 items, grocery stores need to
organize their food items in consistent ways so customers can easily find them. In this section we
illustrate the different types of knowledge usd for finding goods. In the Raisin Bran example, we
were relying on organization by type. Belov t the regularities we have identified so far:

" Type: The most important strategy for the Raisin Bran example. Typically, items that
either serve nearly the same function, or are very similar are nearby each other. This is a
most basic organization principle under which many items fall under; e.g. McIntosh apples
are near Rome apples; a jar of Gerber baby food will be found with other baby foods; a
tomato clustered with other vegetables; an apple placed with other fruits; coffee is near tea.

"* Brand: Within a section of a specific type, the maker of the food will also be clustered
together. For example, in a typical grocery store aisle, soups of the same brand (e.g. Camp-
bell's, Progresso) will be clustered with each other no matter how similar they. So, Campbell's
vegetable soup is not placed adjacent to Progresso vegetable soup.

"• Counterparts: Items that complement each other. For example., salad and salad dressing,
pancakes and maple syrup, pasta and tomato sauce, etc.

"* Physical Constraints: Perishable or bulky items that require special storage considerations
like orange juice, eggs, frozen entrees, etc.

"* Ethnic foods: For items commonly associated with other countries or cultures: e.g. soy
sauce, curry, matzah, water cress. These foods tend to be placed nearby each other in an
"ethnic" section.'

"* Packaging: Bulk items such as bags of oranges, apples, and potatoes will be placed separate
from their individual versions.

SA point of clarification is needed here. While SHOPPER makes use of the idea of "ethinc foods" we are more
interested in the generalization of the undelying concept. That is, the world is organized around seemly arbitrary
conections that can be exploited by an agent trying to make its way around an environment. In an art museum,
"ethnic foods" would be replaced with "schools of art." No matter what the specifics are, the generalization is to use
the organization that the world gives you.
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These regularities are general rules of thumb - not hard and fast rules. But they provide direction
for finding items. The point is to avoid exhaustive search by using regularities as fixed points from
which we can base the search for an item.

At one time or another, each of these regularities can prove useful. But they can also be wrong.
Since SHOPPER works within the structure of a store organized by someone else, this can lead to
mistaken beliefs about the locations of objects. Eventually, though, an agent can incrementally learn
and optimize its plans of action over several visits. And when new grocery stores are encountered,
the agent can be better prepared since its knowledge of particular grocery stores serves as a field
from which it can reap the benefits of past experience.

4.4.3 Control of action and perception

The planning and acting mechanism is a version of that used in RUNNER (Hammond et al., 1990).
SHOPPER'S control structures are composed of plans. Figure 12 shows the basic algorithm. Initially,
a plan is given a permission to activate. An active plan first checks to see if its objectives (a success
clause) are met. If so, it finishes. If not, it selects a method based on current sensor and state
information. Each method will have a sequence of plans or actions. These plans and actions will
then be permitted (activated) in sequence, as successive pl. - succeed.

procedure permit (plan)
if succeeded(plan) then

return true;
else

pick applicable method m;
for i in m's plan sequence

do if i is an action then
execute action i;

else
permit(i);

Figure 12: A simplified control mechanism for Shopper.

Execution of this control mechanism behaves in a very "depth-first search" manner by permitting
abstract plans which become more and more concrete depending on sensor/state conditions. The
resulting "leaves" are either physical, visual, or mental actions. For example "(align-body-to-head)"
is a physical action which orients the direction of travel to the direction the head is facing.

4.4.4 Example

In this section we illustrate a more involved example of finding an item: looking for pancake mix.
According to the "type" regularity discussed earlier, we should expect that Mrs. Butterworth's
pancake mix be placed near other pancake mixes. However, there's no sign saying "pancake mix".
In that case, we know if other regularities will (or won't) apply:

* counterparts - Maple syrup is often used with pancakes.
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"* physical constraints - Not applicable since neither needs to be refrigerated.

"• packaging - Both are small and can reside near each other.

Because of these regularities a good place to look is nearby the maple syrups. As we will demon-
strate, this belief is correct for this particular example in GROCERYWORLD.

The following is an edited trace of SHOPPER finding a box of pancake mix. Of the 159 primitive
actions done, only illustrative ones are reported here.

Permitting (find-item arsbutterworths)

Permitting (find-sign)
[Action: (turning body left)]

At this point, SHOPPER is looking down an aisle. Sign information is passed from the simulator:

(see sign aisle-I) (see sign bread)
(see sign cracker) (see sign cookie)

(see sign meat) (see sign frozen-entree)
(see sign baked-good)

From here, SHOPPER needs to turn his body toward an open area so he can move across the aisles.
He'll then turn back toward the aisle in order to see signs.

[Action: (turning body left)]
[Action: (turning head to look right)]

Permitting (move-across-aisles-looking-for
mrsbutterworths)

[Action: (moving forward)]

[Action: (moving forward)]

At this point, SHOPPER keeps moving forward until a relevant sign is seen: syrup.

(see sign aisle-5) (see sign syrup)
(see sign oil) (see sign shortening)
(see sign bakery-need) (see sign tea)

(see sign coffee) (see sign sugar)

(see sign flour)

SHOPPER will now use a visual routine we term a type recognizer, a routine which indicates the
type of items in an image without recognizing any single item. Because of the regularity that items
of the same type are grouped together, we sample color histograms from the regions above shelves
and compare them across the color histogram database of items. Active items in the database
keep track of their best match value and then vote for their associated type. If enough responses
are registered for a particular type, we consider the type to be recognized. Because of the sign
information, SHOPPER only considers those histograms directly related to the signs by type. This
constraint improves type recognition by reducing the number of false positives.
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Permitting (move-down-aisle-looking-for

ursbutt erworths)
[Action: (aligning body to head)]
[Action: (disabling items of type all)]
[Action: (enabling items of type syrup

oil shortening bakery-need
coffee sugar flour tea)]

Permitting (look-for-type pancake-mix
syrup mrsbutterworths)

[Action: (turning head to look left)]
[Action: (checking for shelves))
[Action: (checking for type at shelf

position 175)]
[Action: (checking for type at shelf

position 305))
[Action: (moving forward)]
[Action: (moving forward)]
[Action: (turning head to look right)]

Next, SHOPPER processes images on the left and right as it moves down the aisle. Eventually,
shopper will reach the syrup section and then begin a local search routine within the local region
of the aisle.

Permitting (search-vicinity mrsbutterworths)
[Action: (turning body full around)]
[Action: (moving forward)]
[Action: (moving forward)]
[Action: (checking for shelves)]

Now, SHOPPER is looking for Mrs. Butterworth's. It does so using an item recognizer. By taking
color histograms across and above a shelf location, it can quickly tell if the box is not present if all
resulting intersections are low in value. In contrast, if the intersection values are high, we bound
the regions of high response and use Hausdorff distance comparison by first using a precomputed
edge image of Mrs. Butterworth's and computing an edge image of the region of high response. If
the edge images match well, we have verified the location of the item. If not, we consider the item
to be absent from the image and continue on.

(Action: (checking for mrsbutterworths

at height 93))
[Action: (checking for mrsbutterworths

at height 239)]
[Action: (verifying if mrsbutterworths

in boundaries 72 to 113 at height 168))
[Action: (verifying if mrsbutterworths

in boundaries 236 to 339 at height 168)A
[Action: (found mrsbutterworths item)]

In this example, we used regularities of type and counterpart in order to design more complicated
routines. This merging of simpler visual routines into more sophisticated routines results in more
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robust performance at a smaller cost. The color histogram intersection routine could be scanned

across the entire image and produce many possible locations for an object. However, by itself, it is
not enough to reliably verify the existence of the object. The Hausdorff distance between a model

edge image and an entire image yields more accurate results, but at a prohibitive time cost.

The combined routines of shelf detection, color histogramming, and Hausdorff distance not only
lessen computation time, but they also provide more reliable performance as a whole. The regulari-
ties of the domain allow these visual routines to be combined into more complex routines. Thus, an
examination of the task makes SHOPPER not only more reliable, but also permits us to use simpler
machinery (Agre, 1988).

4.4.5 Status of Shopper

SHOPPER currently uses four out of the six regularities outlined earlier: type, counterpart, physical
constraint, and ethnic foods. Of the 825 food items in the database, we initially tested for thirty
items. Out of the thirty, SHOPPER correctly found eighteen items (60 percent found). For all

but one of the trials, a wrong item was picked. Since many of these items were relatively small
(about 40x50 pixels), we then tried twenty-five items of larger sizes (cereals, laundry detergents,
etc.). Of the twenty-five items: twenty were found (80 percent found), one was missed by color
histogramming, one wrong item was picked and the other three didn't match correctly using our
set thresholds for Hausdorff matching. Since we used a wide-angle lens for filming, items appearing
close to the borders of any image will be warped. Larger items' edge models will suffer from this
problem. We believe we can alleviate this matching problem by de-warping the image.

We are also investigating the uses of texture for noticing cans and bottles. Since cans and bottles
can be rotated and stacked in several ways, comparing edge images using Hausdorff distance is
unreliable for both detection and verification. Although the use of color histograms is still robust,
we are still missing a good verifier. By characterizing the textures of items, we believe we can use

texture in anotherroutine together with the other existing routines to find those kinds of items.

4.4.6 Related work

Everyday tasks have been studied before in Al - most recently in the realm of cooking tasks. Agre
and Horswill (Agre and Horswill, 1992) have built a system, TOAST, which specializes in making
breakfast food in a simulated kitchen. They demonstrate how activity in the midst of cultural
artifacts can be improvised to produce nontrivial behavior. They do this by noticing regularities,
or constraints, on cooking tools and materials. Hammond and Converse (Hammond and Converse,

1991) have also noted that our environments are designed to aid activity, rather than hinder.
Regularities, if maintained, can greatly simplify a person's interactions with the world. They

demonstrate the efficacy of this approach for the task of making coffee in a simulated kitchen.

4.4.7 Discussion

SHOPPER, as well as TOAST and RUNNER , are untraditional programs in that they actively par-

ticipate in their domains. These domains have been engineered for human use, and are replete
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with tools for facilitating tasks. As a consequence, an agent's activity cannot be characterized
independent of its relationship to its surroundings.

SHOPPER is differentiated from traditional planning domains since GROCERYWORLD provides real
visual information while still being a controllable simulation. GROCERYWORLD is very unique in
that respect: the richness of visual information provides a testbed to try ideas of planning, vision,
and activity in the context of an everyday task and domain, but without having to maintain a
physical robot and its environment. For the time being, we are not addressing all the problems of
robot sensor/actuator uncertainties. By considering some real sensor problems, we have explored
some ways in which an account of the regularities can help us design reliable visual routines.

SHOPPER also differs from past vision research in that the vision routines are highly task-based.
Every single image is considered in the context of the system's understanding of how the world is
organized. Thus SHOPPER can expect to see shelves, classes of items, an unobstructed aisle, etc.
Using this knowledge results in visual routines which will always compute relevant information.
Moreover, these routines are simple and fast. While not powerful by themselves, a combination of
routines can result in robust performance. Since we are currently working on more routines, we
expect to analyze the relative utility of routines in order to assemble routines, both in design and
at run-time.

Because SHOPPER works in a grocery store, it initially can't know many of the item locations.
Moreover, these items can come and go.6 Since TOAST and RUNNER work in a kitchen, practically
anything can be found immediately since the physical search space is much smaller (and we usually
make breakfast/coffee in the comfort of our own dwellings). So, SHOPPER copes with a world which
is engineered for people, but not specifically for the agent. SHOPPER doesn't control the stocking
or the layout of the store, so it must learn/know the organization as opposed to attempting to
restructure the store to its own liking.

Eventually, we would like SHOPPER to expand its set of regularities by learning the organization of
specific grocery stores. Earlier, we illustrated SHOPPER finding a box of pancake syrup. However,
we did not say why a regularity of counterparts should be preferred over regularity of type. Indeed,
there could have been a "pancake" sign in the next aisle. The detection and relevance of potential
opportunities is the subject of future work.

5 Other Activities

Along with the work done directly on these projects, the Chicago group has also been trying to
transfer the Case-based technology developed under this grant into other, non-academic arenas.
Three such efforts in particular are worth mentioning here.

Dr. Hammond is working with Owen Research in Boulder, CO in the development of a case-based
system for the selection and evaluation of NASA flight crews. The work involves the integration
of our CBR indexing technology with existing databases and a fuzzy logic reasoning system. The
goal of the project is a system that can use existing libraries of "stories" to predict the results of
particular crew pairings. This work is being done by Owen Research under a NASA SBIR.

6We are also preparing GRocERYWoRLD2: the same grocery store filmed one year later.
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Dr. Hammond is also involved with Applied Research Associates in tde development of a case-
based tool for Munitions Effectiveness Assessment. The work includes the development of a system
designed to aid a weaponeer or air campaign planner in the weaponing process. The system is
designed to use case-libraries to aid in the selection and evaluation of both targets and weapons.
This work is being done under a contract with the Defense Nuclear Agency.

Dr. Martin is working with Intell/Agent Systems in the development of autonomous robotic systems
for astronaut assistance. The work requires the integration of the case-based parsing technology
with external planning and scheduling systems. The systems are designed to function both au-
tonomously and in cooperation with astronauts in space environments. This work is being done by
Intel/Agent Systems under a NASA SBIR.

6 Publications

The research reported in this document has resulted in the following publications:

1. J. Berger. "Roentgen: Case-based reasoning and radiation therapy planning." In The Pro-
ceedings of the 16th Annual Symposium on Computer Applications in Medical Care, New
York, 1992. McGraw-Hill.

2. J. Berger. "Knowledge acquisition and design support in a medical domain." In Papers from
the 1993 Workshop on Case-Based Reasoning. AAAI Press, Menlo Park, 1993.

3. J. Berger. "Roentgen: Radiation therapy and case-based reasoning." In The Proceedings of
the 10th Conference on Artificial Intelligence for Applications, Washington, DC, 1994. IEEE,
IEEE Computer Society Press.

4. J. Berger, K. Hammond, and G. T. Y. Chen. "Roentgen: A case-based approach to radiation
therapy planning." In The Proceedings of the 32nd Annual Scientific Meeting of the American
Society for Therapeutic Radiology and Oncology, page 220, New York and Oxford, 1990.
Pergamon Press.

5. Jeffrey Berger and Kristian J. Hammond. "Roentgen: A memory-based approach to radia-
tion therapy treatment design." In Ray Bareiss, editor, Proceedings: Case-Based Reasoning
Workshop, San Mateo, California, May 1991. Morgan Kaufmann Publishers, Inc.

6. John Borse and Christopher Owens. "IOPS Advisor: Knowledge-Intensive Methods for Irreg-
ular Operations Airline Scheduling." AAAI Spring Symposium on Planning and Scheduling.
Palo Alto, CA, March, 1992.

7. Timothy Converse and Kristian Hammond, "Preconditions and appropriateness conditions",
Proceedings of the 1992 Meeting of the Cognitive Science Society. Bloomington, IN: Erlbaum
Associates.

8. Timothy Converse and Kristian Hammond, "Learning to Satisfy Conjunctive Goals', The
Proceedings of the Ninth International Conference on Machine Learning. Aberdeen, Scotland:
Morgan Kaufmann, July 1992.

59



9. Timothy Converse and Kristian Hammond. *'Opportunistic Memory and Visual Search",
Proceedings of the 1991 Meeting of the Cognitive Science Society. Chicago, IL: Erlbaum
Assc ciates.

10. 'rimothy Converse and Kristian Hammond. "'Stabilizing environments to facilitate planning
and activity: An engineering argument". Procecdings of the 1991 National Conference of
Artificial Intelligence. AAAI Press and MIT Press.

11. Daniel Fu, Kristian Hammond. and Michael Swain. (1994). "Vision and navigation in man-
~:- environments: Looking for syrup in all the right places." In Proceedings, Workshop on

Visual Behaviors IEEE Computer Society Press, WVash.'ngton, DC. (to appear)

12. Patricia Goldweic and Kristian J. Hammond. "Multi-Agent interaction: A Vocabulary of
Engagement." In Proceedings of the Fourteenth Annual Conference of the Cognitive Science
Society. Hillsdale, NJ, 1992. Lawrence Earlbaum.

13. Kristian Hammond, Timothy Converse. and Joshua Grass, "The Stabilization of Environ-
ments", Artificial Intelligence Journal. Elsevier Science Publishers, North-Holland, Amster-
dam. In press.

14. Kristian Hammond and Colleen Seifert. "Opportunistic memory." In Beliefs, Reasoning, and
Decision, Making: Psycho-logic in Honor of Robert Abelson. R. C. Schank and E. Langer
(Eds.) Hillsdale, NJ: Erlbaum Asso. 1994.

15. Kristian Hammond, Colleen Seifert, Mitchell Marks, and Timothy Converse, "Opportunism
and Learning", The Journal of Machine Learning. Vol. 10, Number 3, March 1993. (Hammond
et al., 1993b)

16. Kristian Hammond, Timothy Converse and Mitchell Marks. "Towards a Theory of Agency."
Chapter 11 in Machine Learning Methods for Planning. Edited by Steven Minton. Morgan
Kaufmann P-ublishers, Inc., San Mateo, CA. 1993. (Hammond et al., 1993a)

17. Kristian Hammond and Colleen Seifert. "A Cognitive Science Approach to Case-Based Plan-
ning." In Foundations of Knowledge Acquisition: Cognitive Models of Complex Learning.
S. Chipman and A. L. Meyrowitz (Eds.), (pp. 245-267). Norwell, MA: Kluwer Academic
Publishers. 1993. (Hammond and Seifert, 1993)

18. Kristian Hammond and Colleen Seifert. "A Vocabulary for Indexing Plan Interactions and
Repairs." In Proceedings of the 1992 Meeting of the Cognitive Science Society. Erlbaum
Associates. Bloomington, IN. July, 1992. (Hammond and Seifert, 1992)

19. Kristian Hammond and Timothy Converse. "Stabilizing Environments to Facilitate Planning
and Activity: An engineering argument" In The Proceedings of the 1991 National Conference
of Artificial Intelligence. July 1991.

20. Kristian Hammond, Timothy Converse and Charles Martin. "Integrating Planning and Act-
ing in a Case-Based Framework." In The Proceedings of the 1990 National Conference of
Artificial Intelligence. August 1990. (Hammond et al., 1990)

60



21. Charles E. Martin. "Language and Intermediate Vision." In Working Notes of the 1994
AAAI Spring Symposium on Active Natural Language Processing, Stanford, CA. March 1994.

22. Charles E. Martin. "The Representation of Experience for Case-Based Reasoning in Sub-
jective Interpretation." In Proceedings of the AAAI-93 Workshop on Case-Based Reasoning,
Washington, D.C. August 1993.

23. Charles E. Martin and R. James Firby. "An Overview of the Dynamic Predictive Memory
Architecture for Robotic Assistants." In Proceedings of the Third Conference on Cooperative
Intelligent Robotics in Space, Boston, MA. 1992.

24. Charles E. Martin and R. James Firby. "Generating Natural Language Expectations from
a Reactive Execution System." In Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society, Chicago, IL. July 1991.

25. Charles E. Martin and R. James Firby. "'An Integrated Architecture for Planning and Learn-
ing." In Working Notes of the 1991 AAAI Spring Symposium on Integrated Cognitive Archi-
tectures, Palo Alto, CA. Reprinted in ACM SIGART Bulletin 2(4), 125-129. March 1991.

26. Charles E. Martin and R. James Firby. "Advising a Reactive Planner." In First Annual
Workshop on Planning and Learning, Stanford, CA. 1991.

27. Thomas F. McDougal. "Using case-based reasoning and situated activity to write geometry
proofs." In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society,
pages 60-65. MIT Press, 1993.

28. Thomas F. McDougai and Kristian J. Hammond. "Representing and using procedural knowl-
edge to build geometry proofs." In Proceedings of the Eleventh National Conference on Ar-
tificial Intelligence, pages 711-716, Hillsdale, NJ, 1993. Lawrence Earlbaum.

29. Tom McDougal and Kristian Hammcnd. "A recognition model of geometry theorem-proving."
In Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pages
106-111, Hillsdale, NJ, 1992. Lawrence Earlbauta.

30. Christopher Owens. Integrating Feature Extraction and Memory Search. Machine Learning
10, 311-339 (1993).

31. Christoplher Owens. Qualitative Relevance Feedback and Incremental Query Formulation.
AAAI Spring Symposium on Adaptation and Reuse. Palo Alto, CA, March, 1992.

32. Christopher Owens. Problem Solving Stereotypes for an Intelligent Assistant. Proceedings of
the Fourteenth Annual Conference of the Cognitive Science Society. 1026-1031. Cognitive
Science Society. Pittsburgh, PA. (1992)

33. Christopher Owens. A functional taxonomy of abstract plan failures. Proceedings of the
Thirteenth Annual Conference of the Cognitive Science Society. 167-172. Lawrence Erlbaum
Associates, Hillsdale NJ. (1991)

34. Christopher Owens. Representing abstract plan failures. Proceedings of the Twelfth An-
nual Conference of the Cognitive Science Society. 277-284. Lawrence Erlbaum Associates,
Hillsdale NJ. (1990)

61



35. Cofleen Seifert, Kristian Hammond, HoUyn Johnson, Timothy Converse, Thomas McDougal,
and Scott W. Vanderstoep. Case-Based Learning: Predictive features in Indexing. In The
Journal of Machine Learning. In press.

62



References

Agre, P. & Chapman I) (1987). Pengi: An implementation of a theory of activity. In The

Proceedings of the al Conference on Artificial Intelligence, pages 268-72. AAAI.

Agre, P. E. & Horswill, I. (1992). Cultural support for improvisation. In The Proceedings of the
Tenth National Conference on Artificial Intelligence, pages 363-368.

Agre, P. E. (1988). The dynamic structure of everyday life. Technical Report 1085, MIT.

Berger, J. & Hammond, K. J. (1991). Roentgen: A memory-based approach to radiation therapy
treatment design. In Bareiss, R., editor, Proceedings: Case-Based Reasoning Workshop, San
Mateo, California. Morgan Kaufmann Publishers, Inc.

Berger, J., Hammond, K., & Chen, G. T. Y. (1990). Roentgen: A case-based approach to radiation
therapy planning. In The Proceedings of the 32nd Annual Scientific Meeting of the American
Society for Therapeutic Radiology and Oncology, page 220, New York and Oxford. Pergamon
Press.

Berger, J. (1992). Roentgen: Case-based reasoning and radiation therapy planning. In The
Proceedings of the 16th Annual Symposium on Computer Applications in Medical Care, New York.
McGraw-Hill.

Berger, J. (1993). Knowledge acquisition and design support in a medical domain. In Papers from
the 1993 Workshop on Case-Based Reasoning. AAAI Press, Menlo Park.

Berger, J. (1994). Roentgen: Radiation therapy and case-based reasoning. In The Proceedings
of the 10th Conference on Artificial Intelligence for Applications, Washington, DC. IEEE, IEEE
Computer Society Press.

Boddy, M. & Dean, T. (1989). Solving time-dependent planning problems. In Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence. International Joint Conference
on Artificial Intelligence.

Borse, J. & Owens, C. (1992). lops advisor: Knowledge-intensive methods for irregular operations
airline scheduling. In AAAI Spring Symposium on Planning and Scheduling, Stanford, California.
AAAI Press. Menlo Park, California.

CHAPMAN, D. (1985). Planning for conjunctive goals. Memo AI-802, Al Lab, MIT.

Converse, T. M. & Hammond, K. J. (1991a). Opportunistic memory and visual search. In
Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society, pages 97-101.

Converse, T. M. & Hammond, K. J. (1991b). Preconditions and appropriateness conditions. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pages 97-101.

Converse, T. M. & Hammond, K. J. (1992). Learning to satisfy conjunctive goals. In Proceedings
of the Sixth International Workshop on Machine Learning.

63



Firby, R. J. & Hanks, S. (1987). A simulator for mobile robot planning. In Knowledge-Based
Planning Workshop, Austin, TX. DARPA.

Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. Research Report 672, Yale
University Computer Science Department.

Fu, D., Hammond, K., & Swain, M. (1994). Vision and navigation in man-made environments:
Looking for syrup in all the right places. In Proceedings, Workshop on Visual Behaviors, pages
363-368. IEEE Computer Society Press.

Goldweic, P. & Hammond, K. (1992). Multi-agent interaction: A vocabulary of engagement. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ.
Lawrence Erlbaum.

Hammond, K. J. & Converse, T. M. (1991). Stabilizing environments to facilitate planning and
activity: An engineering argument. In The Proceedings of the Ninth National Conference on
Artificial Intelligence, pages 787-793.

Hammond, K. & Seifert, C. (1992). A vocabulary for indexing plan interactions and repairs. In
Proceedings of the 1992 Meeting of the Cognitive Science Society. Erlbaum Associates. Blooming-
ton, IN.

Hammond, K. & Seifert, C. (1993). A cognitive science approach to case-based planning. In
Chipman, S. & Meyrowitz, A. L., editors, Foundations of Knowledge Acquisition: Cognitive Models
of Complex Learning, Norwell, MA. Kluwer Academic Publishers.

Hammond, K. & Seifert, C. (1994). Opportunistic memory. In Schank, R. C. & Langer, E.,
editors, Jkliefs, Reasoning, and Decision Making: Psycho-logic in Honor of Robert Abelson, pages
19-23, Hillsdale, NJ. Erlbaum Associates. Menlo Park, California.

Hammond, K. J., Converse, T., & Marks, M. (1988). Learning from opportunities: Storing and
reusing execution-time optimizations. In The Proceedings of the Seventh National Conference on
Artificial Intelligence, pages 536-40. AAAI.

Hammond, K., Converse, T., & Martin, C. (1990). Integrating planning and acting in a case-based
framework. In The Proceedings of the Eighth National Conference on Artificial Intelligence, pages
292-297.

Hammond, K., Converse, T., & Marks, M. (1993a). Towards a theory of agency. In Minton,
S., editor, Machine Learning Methods for Planning, San Mateo, California. Morgan Kaufman
Publishers.

Hammond, K., Seifert, C., Marks, M., & Converse, T. (1993b). Opportunism and learning. In
The Journal of Machine Learning.

Hammond, K.. Converse, T., & Grass. J. (1994). The stabilization of environments. Artificial
Intelligence. In press.

Hammond, K. (1989a). Case-Based Planning: Viewing Planning as a Memory Task, volume 1 of
Perspectives in Artificial Intelligence. Academic Press, San Diego, CA.

64



Hammond, K. J. (1989b). Opportunistic memory. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence. IJCAI.

Hammond, K. J. (1990). Explaining and repairing plans that fail. Artificial Intelligence Journal.
in press.

Martin, C. & Firby, R. (1991a). Advising a reactive planner. In First Annual Workshop on
Planning and Learning, Stanford, California.

Martin, C. & Firby, R. (1991b). Generating natural language expectations from a reactive execu-
tion system. In Proceedings of the Thirteenth Annual Conference of the Cognitive Science Society.

Chicago, IL.

Martin, C. & Firby, R. (1991c). An integrated architecture for planning and learning. In Work-
ing notes of the 1991 AAAI Spring Symposium on Integrated Cognitive Architectures, Stanford,
California.

Martin, C. & Firby, R. (1992). An overview of the dynamic predictive memory architecture for
robotic assistants. In Proceedings of the Third Conference on Cooperative Intelligent Robotics in
Space. Boston, MA.

Martin, C. E. (1989). Direct Memory Access Parsing. PhD thesis, Yale University Department of
Computer Science.

Martin, C. E. (1990). Direct Memory Access Parsing. PhD thesis, Yale University.

Martin, C. (1993). The representation of experience for case-based reasoning in subjective interpre-
tation. In Proceedings of the AAAI-93 Workshop on Case-based Reasoning, Stanford, California.

Martin, C. (1994). Language and intermediate vision. In Working Notes of the 1994 AAAISpring

Symposium on Active Natural Language Processing, Stanford, California.

McDermott, D. ('1978). Planning and acting. Cognitive Science, 2:71-109.

McDougal, T. & Hammond, K. (1992a). A recognition model of geometry theorem-proving. In
Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, pages 711-716.
Lawrence Erlbaum.

McDougal, T. & Hammond, K. (1992b). Representing and using procedural knowledge to build
geometry proofs. In Proceedings of the Eleventh National Conference on Artificial Intelligence,
pages 106-111. Lawrence Erlbaum.

McDougal, T. (1993). Using case-based reasoning and situated activity to write geometry proofs.
In Proceedings of the Fifteenth Annual Conference of the Cognitive Science Society, pages 60-65.
MIT Press.

Owens, C. (1990). Representing abstract plan failures. In Proceedings of the Twelfth Annual
Conference of the Cognitive Science Society, pages 277-284. Lawrence Erlbaum.

Owens, C. (1991). A functional taxonomy of abstract plan failures. In Prceedings of the Thirteenth
Annual Conference of the Cognitive Science Society, pages 167-172. Lawrence Erlbaum.

65



Owens, C. (1992a). Problem-solving stereotypes for an intelligent assistant. In Proceedings of
the Fourteenth Annual Conference of the Cognitive Science Society, pages 1026-1031. Lawrence
Erlbaum.

Owens, C. (1992b). Qualitative relevance feedback and incremental query formulation. In AAAI
Spring Symposium on Adaptation and Reuse, Palo Alto, CA.

Owens, C. (1993). Integrating feature extraction and memory search. Machine Learning, 10:311-
339.

Schank, R. C. & Abelson, R. (1977). Scripts. Plans, Goals and Understanding. Lawrence Erlbaum
Associates, Hillsdale, New Jersey.

Schank. R. (1982). Dynamic Memory: A Theory of Reminding and Learning in Computers and
People. Cambridge University Press.

Seifert, C., Hammond, K., Johnson, H., Converse, T., McDougal, T., & Vanderstoep, S. (1994).
Case-based learning: Predictive features in indexing. In The Journal of Machine Learning. In
Press.

66



DISTRIBUTION LTST

addresses number
of copies

OR NORTHRUP FOWLER III 10
ROME LABORATQRY/C3C
525 %ROOKS RD
GRIFFISS AFB NY 13441-4S05

THE UNIVERSITY OF CHICAGO 5
DEPARTMENT OF COMPUTER SCIENCE
ATTN: DR kRISTIAN HAMMOND
1100 EAST 58TH STREET
CHICAGO IL 60637

RL/SUL 1
TECHNICAL LIBRARY
26 ELECTRONIC PKY
GRIFFISS AFS NY 13441-4514

ADMINISTRATOR 2
DEFENSE TECHNICAL INFO CFNTER
OTTC-FDAC
CAMERON STATION BUILDING S
ALEXANDRIA VA 22304-6145

ADVANCED RESEARCH PROJECTS AGENCY I
!701 NORTH FAIRFAX DRIVE
.RLINGTON VA 22203-1714

NAVAL WARFARE ASSESSMENT CENTER I
GIDEP OPERATIONS CENTERtCODE QA-SO
ATTN: E RICHAROS
CORONA CA 91718-S000

H9 ACC/DRIY I
ATTN: MAJ. DIVINE
LANGLEY AFB VA 23665-5575

WRIGHT LABORATORY/AAAI-4 1
WRIGHT-PATTERSON AFB OH 45433-6543

OL-1



WRIGHT LA$ORATORY/AAAI-Z
ATTN: MR FRANKLIN HUTSON
WRIGHT-PATTERSON AFB OH 45433-6543

AFIT/LOEE
Z950 P STREET
WRIGMT-PATTERSON AFB OH 45433-6577

WRIGHT LABORATORY/MTEL
WRIGHT-PATTERSON AFB OH 45433

AAMRL/HE
WRIGHT-PATTERSON AFB OH 45433-6573

AUL/LSE
BLOG 1405
MAXWELL AFB AL 36112-5564

US ARMY STRATEGIC DEF
CSSD-IM-PA
Po BOX 1500
HUNTSVILLE AL 35807-3801

COMMANDING OFFICER
NAVAL AVIONICS CENTER
LIBRARY 0/765
INDIANAPOLIS IN 46219-2189

COMMANDING OFFICER
NCCOSC ROTE DIVISION
CODE 02748, TECH LIBRARY
53560 HULL STREET
SAN DIEGO CA 32152-5001

CHOR
NAVAL WEAPONS CENTER
TECHNICAL LIBRARY/C3431
CHINA LAKE CA 93555-6001

DL-2



SPACE E NAVAL WARFARE SYSTEMS COM4 I
WASHINGTON DC 20363-5100

COR* U.S. ARMY MISSILE COMMAND 2
REDSTONE SCIENTIFIC INFO CENTER
AMSMT-RO-CS-R/ILL DOCUMENTS
REOSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES 2
ATTN: DOCUMENTS
2011 CRYSTAL DRIVEOSUITE 307
ARLINGTON VA 22202

LOS ALAMOS NATIONAL LABORATORY 1
REPORT LT3RARY
MS 5000
LOS ALAMOS 4M 87544

AEDC LTBRARY 1
TECH FrLFSfMS-100
ARNOLD AFB TN 37389

COMMANIER/USAISC I
ATTN: ASOP-0O-TL
BLDG 61801
FT HUACHUCA AZ 85613-5000

AIR WEATHER SERVICE TECHNICAL LIB 1
9L 4414
SCOTT AFB TL 62225-5458

AFIWC/MSO 1
102 HALL BLVD STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INST (SEI) I
TECHNICAL LIBRARY
5000 FORSES AVE
PITTSBURGH PA 15213

OL-3



DIRECTOR NSA/CSS

9800 SAVAGE ROAD
FORT MIADE NO 21055-6000

NSA
E323/HC
SAB2 DOR 22
FORT MEADE NO 21055-6000

NSA
ATTN2 0. ALLEY
DIV X911
9800 SAVAGS ROAD
FT MEAOE RD 20755-6000

000
R31

9800 SAVAGF ROAD
FT. MEADE MD 20755-6000

DIRNSA
R509
9800 SAVAGE ROAD
FT MEAOE N' 20775

ESC/IC
50 GRIFFISS STREET
HANSCOM AFP MA 01731-1619

ESC/AV
20 SCHILLING CIRCLE
HANSCOM AFS MA 01731-2816

FL 2807/RESEARCH LIBRARY
OL AA/SULL

'ANSCOM AF9 MA 01731-5000

TECHNICAL REPORTS CENTER
MAIL DROP 0130
RURLINGTON ROAD
REDFORD MA 01731

OL-4



DE=ENSE TECHNOLOGY SEC ADMIN (DTSA)
ATTN: STTD/PATRICK SULLIVAN
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

MS. KAREN ALGUIRE
RL/C3CA
SZ5 BROOKS RD
GRIFFISS AFS NY 13441-4505

JAMES ALLEN
COMPUTER SCIENCE DEPT/3LOG RM 732
UNIV OF ROCHESTER
WILSON BLVD
ROCHESTER NY 14627

MR. ROGER ALEX
DIGITAL SYSTEMS RSCH INC
4301 NORTH FAIRFAX DRIVE
SUITE 725
ARLINGTON VA 22203

VIGAL ARENS
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RAY SAREISS
THE INST. FOR LEARNING SCIENCES
NORTHWESTERN UNIV
1890 MAPLE AVE
EVANSTrlN IL 60201

MR. JEFF BERLINER
SON SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MARIE A. BIENKOWSKI
SRI INTERNATIONAL
333 RAVENSWOOD AVE/EK 337
MENLO PRK CA 94025

DR MARK So SOODY
HONEYWELL SYSTEMS & RSCH CENTED
3660 TECHNOLOGY DRIVE
MINNEAPOLIS MN 55418

OL-5



PIERO P. BONISSONE
GE CORPORATE RESEARCH F. DEVELOPMENT
SLOG K1-RM SC-32A
P. 0. Sax 8
SCHENECTADY MY 12301

MR. DAVID SR13WN
MITRE-
EAGLE CENTER 3, SUITE 8
OFALLON IL 62269

MR. MARK BURSTEIN
BBN SYSTEMS E TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

MR. GREGG COLLINS
INST FOR LEARNING SCIENCES
1890 MAPLE AVE
EVANSTON IL 60201

MR. RANDALL J. CALISTRI-YEH
ORA CORPORATION
301 BATES DRIVE
ITHACA NY 14850-1313

OR STEPHEN Es CROSS
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 15213

MS. JUDITH DALY
ARPA/ASTO
3701 N. FAIRFAX DR., 7TH FLOOR
ARLINGTON VA 22209-1714

THOMAS CHEATHAM
HARVARD UNIVERSITY
DIV OF APPLIED SCIENCE
AIKEN, RM 104
CAMBRIDGE MA 02138

MS. LAURA DAVIS
CODE 5510
NAVY CTR FOR APPLIED RES IN Al
NAVAL RESEARCH LABORATORY
WASH OC 20375-5337

DL-6



MS. GLADYS CHOW
COMPUTER SCIENCE DEPT.
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

THOMAS L. DEAN
BROWN UNIVERSITT
DEPT OF COMPUTER SCIENCE
P.O. SiX 1910
PROVIDENCE RI 02912

WESLEY CHU
COMPUTER SCIENCE DEPT
UNIV OF CALIFORNIA
LOS ANGELES CA 90024

MR. ROSERTO DESIMONE
SRI INTERNATIONAL (EK335)
333 RAVENSOODO AVE
MENLO ORK CA 94025

PAUL R. COHEN
UNmV OF MASSACHUSETTS
COINS DEPT
LEDERLE GRC
AMHERST MA 01003

MS. MA4IE DEJARDINS
SRI INTERNATTONAL
333 RAVENSWOOD AVENUE
MENLO PRK CA 940Z5

JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

OR. BRIAN DRABBLE
Al APPLICATIONS INSTITUTE
UNIV OF EOINSURGH/80 S, PRIDGE
EDINBURGH EHI LHN
UNITED KINGDOM

MR. SCOTT FOUSE
ISX CORPORATION
4353 PARK TERRACE DRIVE
WESTLAKE VILLAGE CA 91361

DL-7



MR, STU DRAPER
MITRE
EAGLE CENTER 3, SUITE 8
OeFALLON IL 62269

MARK FOX
DEPT 0 INDUSTRIAL ENGRG
UNIV OF TORONTO
4 TADDLE CREAK ROAD
TORONTO. ONTARIA, CANADA

MR. GARY EDWARDS
4353 PARK TERRACE DRIVE
WESTLAKE VILLACA 91361

MS. MARTHA FARrNACCI
MITRE
7525 COLSHIRE DRIVE
MCLEAN VA 22101

MR. RUSS FREW
GENERAL ELECTRIC
MOORESTOWN CORPORATE CENTER
SLOG ATK 145-2
MOORESTOWN NJ 08057

MICHAEL FEHLTNG
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD LA 94305

MR. RICH FRITZSON
CENTER OR ADVANCED INFO TECHNOLOGY
UNISYS
P.Oo BOX 517
PAOLI PA 19301

MR KRISTIAN J. HAMMOND
UNIV OF CHICAGO
COMPUTER SCIENCE DEPT/RY1SS
1100 E. 5STH STREET
CHICAGO TL 60637

MR. ROBERT FROST
MITRE CORP
WASHINGTON C3 CENTER9 MS 644
7525 COLSHIER ROAD
MCLEAN VA 22101-3481

DL-8



RICK HAYTS-ROT4
CIMFLEX-TEKNOWL EDGE
1810 EMBARCADERO RD
PALO ALTO CA 94303

RANDY GARRETT
INST FOR DEFENSE ANALYSES (IDA)
1801 N. SEAUREGARD STREET
ALEXANDRA VA 22311-1772

MR. JIM "ENDLER
UNIV OF MARYLAND
DEPT OF COMPUTER SCIENCE
.LLEGE PARK MO 20742

MS. YOLANOS GIL
USC/IS!
4676 ADMIRALTY WAY
MARINA DfL RAY CA 90292

MR.MAX NFRION
ROCKWELL INTERNATIONAL SCIFNCE CTR
444 HIGH STREET
PALO ALTO CA 94301

MR, STFVE GOYA
OISA/JIEO/GSI1
CODE rSO
11440 ISAAC NEWTON SO
RESTON VA 22090

MR. MORTON A. HZRSCHBERG9 DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN; AMSRL-CI-C8
ASEROEEN PROVING GROUND MO
21005-5066

MR, MARK A. HOFFMAN
ISX CORPORATION
1165 NORTHCHASE PARKWAY
MARIETTA GA 30067

MR. RON LARSEN
NAVAL CM09 CONTROL & OCEAN SUR CTR
RESEARCH, DEVELOP, TEST & EVAL DIV
CODE 444
SAN DIEGO CA 92152-5000

DL-9



DR. JAMES JUST
MITRE
DEPT. W032-M/S Z360
T525 COLSHrER RD
MCLEAN VA 22101

MR. CRAIG KNOBLOCK
USC-TSI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MR. RICHARD LOWE CAP-10)
SRA CORP.RATION
2000 1STH STREET NORTH
ARLINGTON VA 22201

MR. TED C. KRAL
3BN SYSTr.MS & TECHNOLOGIES
4015 HANCOCK STREET* SUITEE 101
SAN DIEGO CA 92110

MR. JOHN LOWRENCE
SRI INTERNATIONAL
ART1r1CIAL INTELLIGENCE CENTER
333 RAVENSWOOD AVE
MENLO PARK CA 94025

DR. ALAN MEYROWITZ
NAVAL RESEARCH LABORATORY/COOE 5510
4555 OVERLOOK AVE
WASH DC 20315

ALICE MULVEHILL
MITRE CORPORATION
BURLINGTON RD
M/S K-302
BEDFORD MA 01730

ROBERT MACGREGOR
USC/ISI
4676 ADMIRALTY WAY
MARINA DFL RET CA 90292

WILLIAM S. MARK, MGR Al CENTER
LOCKHEED MISSILES , SPACE CENTER
1801 PAGE MILL RD
PALO ALTO CA 94304-1211

DL-10



RICHARD MARTIN
SOTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIV
PITTSBURGH PA 16213

DREW MCDERMOTT
YALE COMPUTER SCIENCE DEPT
P.O. BOX 21589 VALE STATION
51 PROPSPECT STREET
MEW HAVEN CT 06520

MS. CECILE PARIS
USC/ISt
4676 ADMIRALTY WAY
MARINA DEL RAY CA 40292

DOUGLAS SMITH
KESTREL INSTITUTE
3260 HTLLVIEW AVE
PALO ALTO CA 94304

DR. AUSTIN TArE
Al APPLICATIONS INSTITUTE
UNIV OF EDINBURGH
90 SOUTH BRIDGE
EDINBURGH EH1 IHN - SCOTLAND

MS. REGINA SMITH
MERIDIAN CORPORATION
4001 NORTH FAIRFAX ORIVE
SUITE 200
ARLINGTON VA 2203-1714

EDWARD THOMPSON
ARPA/SISTO
3701 N. FAIRFAX DR., 7TH FL
ARLINGTON VA 22209-1714

MR. STEPHEN F. SMITH
ROBOTICS INSTITUTEfCMU
SCHENLEY PRK
PITTSBURGH PA 15213

LTCOL RAYMOND STACHA
OEPUTY SCIENTIFIC 9 TECHNICAL

ADVISOR
HQ USCTNCPAC/STA
CAMP H. N. SMITH HI 96861

DL-11



DR. ABRAHAM WAKSMAN
AFOSR/NM
110 DUNCAN AVE., SUITE BIS
BOLLING AFB OC Z0331-0001

JONATHAN P.STILLMAN
GENERAL ELECTRIC CRO
1 RIVER RO, RN K1-5C31A
P. 0. BOX 4
SCHENECTADY N4 12345

MR. EDWARD C, T. WALKER
SBN SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIOGf MA 02138

MR. BILL SWARTOUT
USC/ISI
4676 ADMIRALTY WAY
MRINA DEL RAY CA 90292

GIO WIEDERHOLO
PROGRAM MGR FOR KB SYSTEMS
ARPA/SISTO
3701 NORTH AIRFX DRIVE, RM 739
ARLINGTON VA 22203-1714

KATIA SYCARA/THE ROBOTICS INST
SCHOOL OF COMPUTER SCIENCE
CARNEGIE MELLON UNIV
DOHERTY HALL R4 3325
PITTSBURGH PA 15213

MR. DAVID E. WILKINS
SRI INTERNATIONAL
ARTIFICIAL INTELLIGENCE CENTER
333 RAVENSWOOD AVE
MENLO PRK CA 94025

DR. PATRICK WINSTON
MASS INSTITUTE OF TECHNOLOGY
RN NE43-R17
545 TECHNOLOGY SQUARE
CAMBRIOGF MA 02139

HUA YANG
COMPUTER SCIENCE DEPT
UNIV OF CALIORNIA
LOS ANGELES CA 90024

DL-12



LTCOL DAVE NEYLAND
ARPA/ISTO
3701 No FAIRFAX DRIVE, 7TH FLOOR
ARLINGTON VA 22209-1714

MR. RICK SCHANTZ
BSN SYSTFMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02138

LTC FRED N. RAWCLIFFE
USTRANSCO fTCJ5-SC
BLDG 1900
SCOTT AF8 IL 62225-7001

JOHN P. SCHILL
NAVAL COMMAND* CONTROL & OCEAN
SURVEILLANCE CENTER/CODE 423
EVALUATION DIVISION
SAN DIEGO CA 92152-5000

MR. DONALD F. ROBERTS
RLfC3CA
BLDG 3
525 3ROOKS RO
GRIFFISS AF8 NY 13441-4505

MR. DAVE SCHNEEGAS
USPACOM/J3
CAMP SMITH, HI 9686L-S025

ALLEN SEARS
MITRE
7525 COLESHIRE DRIVE# STOP Z289
MCLEAN VA 22101

STEVE ROTH
CENTER FOR INTEGRATED MANUFACTURING
THE ROBOTICS INSTITUTE
CARNEGTE MELLON UNIV
PITTSBURGHJ PA 1Z13-3890

JEFF ROTHENBERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MAT" STREET
SANTA MONICA CA 90407-2138

OL-13



YOAV SH3HAM
STANFORD UNIVERSITY
COMPUTER SCIENCE DEPT
STANFORD CA 94305

MR. DAVID 6. SKALAK
UNIV OF MASSACHUSETTS
DEPT OF COMPUTER SCIENCE
RM 243. LGRC
AMHERST MA 01003

MR. BILL ROUSE
SEARCH TECHNOLOGY
4725 PEACH TREE CORNER CIRCLE
SUITE ZOO
NORCROSS GA 30092

MR. MIKE RIUSE
AFSC
7800 HAMPTON RD
NORFOLD VA 23511-6097

MR. DAVID E. SMITH
ROCKWELL INTERNATIONAL
444 HIGH STRFET
PALO ALTn CA 94301

JEFF ROTHENBERG
SENIOR COMPUTER SCIENTIST
THE RAND CORPORATION
1700 MTN STREET
SANTA MONIA CA 90407-2138

OR LARRY BIRNBAUM
NORTHWESTERN UNIVERSITY
ILS
1890 MAPLE AVE
EVANSTON IL 60201

MR RANDALL J. CALISTRI-YEH
ORA
301 DATES DR
ITHACA NY 14050-1313

MR WESLEY CHU
COMPUTER SCIENCE DEPT
UNIVERSITY OF CALIFORNIA
LOS ANGELES CA 9002

DL-14



MR PAUL R COHEN

UNIVERSITY OF MASSACHUSETTS
COINS DEPTo LEDERLE GRC
ANHERTS MA 01003

MR DON EDOINGTON
NAVAL COMMANOD CONTROL & OCEAN
SURV CENTER
ROT&E DIVISION, CODE 404
SAN DIEGO CA 92152-5000

MR. LEE ERMAN 1

CIMFLEX TECKNOWLEOGE
1810 EMBARCARDERO RO
PALO ALTO CA 94303

MR DICK ESTRADA

SBN SYSTEMS E TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR HARRY FORSDICK
35N SYSTEMS ANO TECHNOLOGIES
10 MOULTON ST
CAMBRIDGE MA 02138

MR MATTHEW L. GINSBERG
CIRL9 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN 1
OPEN SW FOUNDATION RESEARCH INST

ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR NOISES GOLDSZMIDT
INFORMATION AND DECISION SCIENCES
ROCKWELL INTL SCIENCE CENTER
444 HIGH ST9 SUITE 400
PALO ALTO CA 94301

MR JEFF GROSSMAN, CO

NCCOSC ROTE DIV 44
53TO SILVERGATE AVE@ ROOM 1405
SAN DIEGO CA 92152-5146

DL-I1



JAN GUNTHER
ASCENT TECHNOLOGY, INC.
64 SIDNEY ST. SUITE 380
CAMBRIDGE MA 02139

OR LYNETTE HTRSCHMAN
MITRE CORPORATION
202 BURLINGTON RD
REDFORD "A 01733

MS ADELE E. HOWE
COMPUTER SCIENCE DEPT
COLORADO STATE UNIVERSITY
FORT CgLLINS CO 80523

OR LESLIE PACK KAEL8LING
COMPUTER SCIENCE DEPT
BROWN UNIVERSITY
vROVIOENCE RI 02912

SURBARAO KAMBHAMPATI
DEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 85287-5406

MR THOMAS E. KAZMIERCLAK
SR4 CORPORATION
331 SALEM PLACE, SUITE 200
PAIRVIEW HEIGHTS IL 62208

PRADEEP K. K"OSLA

ARPA/SSTO
3701 No FAIRFAX OR
ARLINGTON VA 22203

MR CRAIG KNOBLOCK
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

MRS CARLA LUDLOW
ROME LABORATORY/C3CA
525 BROOKS RD
GRIFFISS AFB NY 13441-4505

OL-16



OR MARK T. MAYBURY
ASSOCIATE OIRECTOR OF Al CENTER
4OVANC'D INFO SYSTEMS TECH G041
MITRE CORP* 3URLINGTON RD. MS K-329
SEOFORn MA 01730

MR DONALD P. MCKAY
PARAMAX/UNISYS
P 0 BOX 517
PAOLI PA 19301

DR KAREN MYERS
Al CENTER
SRI INTERNIIONAL
333 RAVENSWOOD
MENLO PARK CA 94025

OR MARTHA E POLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

RAJ REDDY

SCHOOL OF COMPUTER SCIENCE
CARNEGTE MELLON UNIVERSITY
PITTSBURGH P4 15213

EDWINA RISSLANO
DEPT OF COMPUTER & INFO SCIENCE

UNIVERSITY OF MASSACHUSETTS
AMHERST MA 01003

MR NORMAN SAOEH
CIMDS

THE ROBOTICS INSTITUTE
CARNEGIE MELLON UNIVERSITY
PITTSBURGH PA 13213

MR ERIC TIFFANY
ASCENT TECHNOLOGY INC.
23? LONGVIEW TERRACE
WILLIAMSTOWN MA 01267

MANUELA VELOSJ
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

OL-Il



MR DAN WELD
DEPT OF COMPUTER SCIENCE i ENG
MAIL STOP FR-35
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

MR CRAIG WITER
ARPAJSTSTO
3701 N. FAIRFAX DR
ARLINGTON VA 22203

MR JOE ROBERTS
ISX CORPORATION
2231 CRYSTAL ORIVE, SUITE 500
ARLINGTON VA 22202

COL JOHN A. WARDEN III
ASC/CC
225 CHENNAULT CIRCLE
MAXWELL AF9 AL 36112-6426

DR TOM GARVEY
ARPA/STSTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

MR JOHN N. ENTZMINGERs JR.
ARPA/DIRO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

LT COL ANTHONY WAISANEN, PHO
COMMAND ANALYSIS GROUP
HQ AIR MOBILITY COMAND
402 SCOTT DRIVE, UNIT 3L3
SCOTT AFS IL 62225-5307

DIRECTOR
ARPA/STSTO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

US. GOVERNMENT PRINTING OFFICE: 1994-510-117-50019

OL-I8



MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.


