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Preface

This report discusses research performed by the RAND Advanced Simulation
Language (“RASL") project. This research was conducted for the Transportation
Planning and Scheduling Initiative of the DoD’s Advanced Research Projects
Agency (ARPA) within the Applied Science and Technology Program of RAND's
National Defense Research Institute (NDRI), a federally funded research and
development center sponsored by the Office of the Secretary of Defense, the Joint
Staff, and the defense agencies.

The objective of the RASL project has been to develop techniques to answer
questions that go beyond the “What if. . . ?” capabilities of traditional simulation:
questions such as “Can a given event ever happen?” “Under what conditions will
an cvent happen?” or “How can a desired result be achieved?” In particular, the
project is attempting to integrate knowledge-based simulation and planning to
answer such questions in the strategic mobility domain. This report should be of
interest to transportation planners, modelers, and researchers investigating new
approaches to simulation and modeling. The discussion of strategic mobility is
intended to introduce modelers to the broad outlines of this domain, while the
discussion of modeling techniques (particularly the “logic programming”
foundations of the modeling approach being pursued by the RASL project) is
intended to introduce domain specialists to this technology. The technical details
of the discussion will be of interest primarily to modeling methodologists with a
background in logic programming,
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Summary

This report discusses research by the RAND Advanced Simulation Language
(“RASL”) project. The objective of this research project has been to develop
knowledge-based techniques that integrate simulation and planning to answer
strategic mobility questions that go beyond the “What if ... ?” capabilities of
traditional simulation: questions such as “Can a given event ever happen?”
“Under what conditions will an event happen?” or “H » cana desired result be
achieved?”

The strategic mobility planning problem encompasses a wide range of isaues
concerning which transportation assets (ships, planes, etc.) to acquire and how to
use them to transport personnel and materiel to satisfy mission objectives. The
RASL project is researching new modeling techniques that will allow simulation
and planning to be performed in an integrated fashion, using a single,
underlying model of the strategic mobility domain. This project has developed a
new declarative modeling formalism (DMOD) for modeling and reasoning about
dynamic systems. DMOD has four main features: First, it is based on the
causality relation between events; the intuitive nature of this relation provides
good heuristics both for structuring models and for proving their properties.
Second, it can be used to model continuous as well as discrete time, eliminating
logical errors that arise from the inappropriate choice of a discrete time step;
similarly, DMOD can nr.odel continuous or discrete changes in state. Third,
DMOD can be used to model situations in which the effects of an event depend
notonly on its past but also on its future; this not only simplifies the modeling of
discrete systems but also allows the modeling of hybrid systems, i.e., those
whose state contains both discrete and continuous parameters, Finally, the view
of causality introduced by DMOD allows a wide range of intuitions about
causality to be formalized using definite clauses (i.e., logic programs). This
allows the expressive power and simple proof theory of definite clauses to be
exploited to simplify both model development and proofs of the properties of
models. DMOD can be thought of as an attemr-. to formulate a logical
description of the event-scheduling view of discrete-event modeling.




1. Introduction

This report discusses research by the RAND Advanced Simulation Language
(RASL) project. The objective of this research project has been to develop
knowledge-based techniques that integrate simulation and planning to answer
strategic mobility questions that go beyond the “What if ... ?” capabilities of
traditional simulation: questions such as “Can a given event ever happen?”
“Under what conditions will an event happen?” or “How can a desired result be
achieved?”

After providing background on strategic mobility planning and the RASL
project, we present a revised descriptici of the declarative modeling formalism
(DMOD) that has been developed by this project. DMOD is a new, declarative
framework for modeling and reasoning about dynamic systems, which can be
thought of as an attempt tc formulate a logical description of the event-
scheduling view of discrete-event modeling (as, for example, discussed in
Fishman [1973] and in Zeigler [1984]).

DMOD has four main features. First, it is based on the causality relation between
events, The intuitive nature of this relation provides good heuristics both for
structuring models and for proving their properties, Second, DMOD can model
continuous as well as discrete time, eliminating the possibility of logical errors
arising from an inappropriate choice of discrete time step as well as the need to
manage the ticking of a simulation clock. In addition, it can be used to model
continuous changes in state, as well as discrete changes. Third, DMOD can be
used to model situations in which the effects of an event depend not only on its
past but also on its future. This not only simplifies modeling of discrete systems
but also allows the modeling of hybrid systems, i.e., systems whose state contains
both discrete and continuous parameters, as will be made clear below. Most
temporal calculi are intended only for modeling discrete systems, e.g., Petri Nets
[Peterson, 1977], Temporal Logic [Pnueli, 1977; Manna & Pnueli, 1981}, finitely
recursive processes [Inan & Varaiya, 1987], finite automata [Kurshan, 1992}, Real-
Time Logic [Jahanian & Mok, 1986), or L.0 [Cameron et al., 1990; Ness, 1990].
Finally, DMOD allows a wide range of intuitions about causality to be formalized
using definite clauses (i.e., logic programs). This allows the expressive power
and simple proof theory of definite clauses to be exploited to simplify both model
development and proofs of the properties of models.




The next section provides background on the RASL project and its problem
domain, strategic mobility. Section 3 introduces DMOD and its view of causality.
Section 4 presents examples of DMOD programs. Section 5 presents two
algorithms for computing event occurrences. Section 6 outlines an approach for
formally proving temporal properties of domains modeled using DMOD.

Section 7 discusses the relationship of DMOD to previous work. Section 8
outlines the status of this research and future directions.




2. The RASL Project and Strategic Mobility
Planning

Computer simulation is used throughout the Department of Defense (DoD) for
analysis, training, and decision support; yet traditional simulation can answer
only “What if . .. ?" questions (i.e., “"What would happenif ... ?"). In particular,
most existing transportation models for strategic mobility analysis can answer
only questions such as: “What would happen if we attempted to transport a
given set of movement requirements using a given set of lift assets?” Yet many
important questions go beyond “What if . . . ?” such as “Can unit X ever arrive
before unit Y?” “Under what conditions will unit Y be late?” or “How cana
desired closure profile be achieved?” (i.e., goal-oriented or planning questions).
Such questions compose the bulk of the analyses that are performed by strategic
mobility planners in organizations such as the Logistics Directorate of the Joint
Staff. Answering such questions requires reasoning about models themselves,
which is all but imposgible for traditional simulations.

The limitations of most existing strategic mobility models (Schank et al., 1991)
derive from limitations in their underlying modeling technology. With few
exceptions, the transportation community has adopted simulation as the
modeling method of choice for analyzing strategic mobility questions. This
choice is largely due to the fact that traditional goal-oriented optimization
techniques (such as mathematical programming) are generally unable to handle
the huge data sets that are typically involved in mobility analyses since they
must consider all of the data at once. Simulations, on the other hand, since they
work iteratively, can handle arbitrarily large data sets,

Since the only transportation questions that are directly addressed by traditional
mobility simulation models are essentially feasibility questions (i.e., “Can the
available lift deliver the given movement requirements on time?”), these models
do not serve the needs of many mobility planners. Many of these models do not
even directly address scheduling questions, such as “How should a set of
available vehicles be used to move a given set of movement requirements?” Yet
studies such as the CMMS (Congressionally Mandated Mobility Study) and its
replacement, the MRS (Mobiiity Requirements Study), are concerned with
questions such as what future mixes of lift to acquire and how best to preposition
materiel to address future threats. In an attempt to answer such questions,
existing mobility models are often run hundreds of times, in effect searching for




answers; yet such blind search techniques are highly ineffective and rarely yield
satisfactory answers. Moreover, much of long-range planning (as discussed in
dv+ail below) involves building and analyzing plans, rather than simply testing
their feasibility. Finally, mobility analysis must include an assessment of how
close real-world methods and procedures can come to achieving theoretically
optimum performance, in order to develop plans that are realistically executable.

In summary, strategic mobility planning involves much more than simply
answering feasibility (“What if . . . 7"} questions. In addition, it goes beyond
simply building schedules or even plans: It is concerned with analyzing
alternatives, evaluating trade-offs, understanding the realistic constraints on
optimality, and constructing plans that are robust under uncertainty across a
range of scenarios. None of the existing modeling and analysis techniques come
close to addressing these needs, It has been the intent of the RASL project to
explote and develop new techniques to help overcome this shortfall in modeling
technology.

Overview of Strategic Mobility

Strategic mobility provides the United States with leverage for meeting a wide
range of threats around the world. The changing world situation is rapidly
transforming these threats, resulting in increasing emphasis on the need for fast,
flexible response to a wide range of unpredictable, low- to medium-intensity
conflicts, There are also indications that the military may increasingly be called
upon to provide humanitarian relief support in addition to meeting traditional
threats. At the same time, budget reductions and evolving political constraints
are expected to make it increasingly difficult for the United States to preposition
significant forces and equipment in close proximity to many areas of expected
need. These conditions imply that strategic mobility-~defined broadly as the
ability to move forces and equipment in a timely and cost-effective manner to
wherever they are needed—will become an increasingly important factor.

Although better ships and planes (generically called “lift”) and supporting
facilities might theoretically increase strategic mobility capacity, developing and
maintaining such capital-intensive systems is very expensive. Improving the
planning and management of strategic mobility, on the other hand, can greatly
improve the ability to respond effectively to unpredictable needs, with relatively
low capital investment. Furthermore, the resulting technology should transfer
readily to other domains, both military and commercial. The planning and
management of strategic mobility is therefore a promising area for research,




offering a high degree of leverage for meeting evolving requirements in a 7
changing world.

The Dimensions of Strategic Mobility Planning

Strategic mobility is an important aspect of virtually every military plan. The
formation of a concept of operations or the elaboration of a specific course of
action must always be conditioned and constrained by the availability of suitable
transportation assets. Although the operational aspects of a plan are often
thought of as quite separate from its transportation aspects, the two are
intimately telated. The transportation requirements of a plan are derived from
its operational requirements, while the operational aspects of the plan are
constrained by the feasibility of its transportation requirements. In this sense,
strategic mobility planning is always “situated” in the context of operational
planning,

At one extreme, the U.S, Transportation Command (USTRANSCOM) or one of
the Transportation Component Commands (TCCs), such as the Air Mobility
Command (AMC), may be concerned with the specific loading and scheduling of
cargo on aircraft or ships to fulfill the mobility requirements of a specific
operations plan (OPLAN). At the other end of the spectrum, the Joint Staff (JS) or
the Office of the Secretary of Defense (OSD) may be concerned with specifying
and procuring a collection of transportation assets that satisfy a range of
scenarios, corresponding to a range of expected needs; in such cases, strategic
mobility planning is situated in the context of this range of scenarios rather than
in that of a single, specific plan. In between these extremes lies the complex
process of developing transportationally feasible OPLANS. This entire range of
activities is included in the term “strategic mobility planning” as it is commonly
used.

It is useful to distinguish several specific types of strategic mobility planning,
each of which normally occurs at a different level [Schank et al,, 1991]. Resource
planning, as performed at the JS or OSD level, is concerned with the long-range
planning and procurement of transportation assets. Deliberate planning,
performed well in advance by the Commanders in Chief (CINCs) with input
from USTRANSCOM, the TCCs, and the JS, produces OPLANS to meet specific
expected threats. Crisis action planning is analogous to deliberate planning but
is performed under the time constraint of an evolving crisis situation—~which
may or may not already have been anticipated by deliberate planning—and leads
into execution planning and execution. Execution planning produces a detailed,
executable plan for how to move the cargoes required by a specified OPLAN.




Note that execution planning includes both the initial planning performed before
execution is begun (sometimes immediately before) and dynamic replanning for
each period as execution proceeds. The latter implies that execution planning is
not really distinct from execution: The need to replan in a “situated” and
“reactive” mode requires real-time access to operational information as execution
proceeds.

Strategic Mobility Planning Questions

At each of the levels at which strategic mobility planning is performed, various
questions may be asked. These can be divided roughly into two categories:
requirements questions and assessment questions. Requizer mts questions are of
the form “What transportation assets are needed todoa  en job?” ie, “What
transportation assets are required to deliver a particulay se. of cargoes by a
particular set of delivery dates, given a particular set of scenario assumptions?”
In addressing these questions, movernent requirements—the set of cargoes to be
moved, along with their required delivery dates—are taken as given, Since there
is often a choice of various combinations of lift (e.g,, different numbers and kinds
of ships or planes), requirements questions may include a cost function that
constrains the optimum 1aix of assets. Whether or not such a cost function can be
defined, requirements questions involve continual trade-offs among assets and
capabilities. These questions are asked at high levels (by )5 or OSD), in the
course of procuring transportation assets and configuring the overall strategic
mobility system, and at lower levels (such as USTRANSCOM or AMC), when
specifying the lift assets needed to carry out a particular operation.

Assessment questions, on the other hand, are of the form “Given a set of
movement requirements, a set of available transportation assets, and a set of
scenario assumptions, what is the earliest that the various cargoes can be
delivered?” i.e., “What can be done with the transportation that is available?”
The resulting set of delivery dates is referred to as a “closure profile,” so the
assessment question can be rephrased as “What closure profile will result from
using the available transportation assets to transport the given movement
requirements?” One variant of an assessment question is a feasibility question,
stated in terms of a required closure profile: In this case the question is “Given a
set of movement requirements, a set of available transportation assets, and a set
of scenario assumptions, is it feasible to achieve a given, desired closure profile?”
The answer to a feasibility question is strictly “yes” or “no” although it is
generally also important to provide insight into which constraints are critical.




In the process of answering assessment questions, it may also be necessary to
answer scheduling questions of the form “Given a set of movement requirements,
a set of available transportation assets, a set of scenario assumptions, and a
required closure profile, how should the transportation assets best be used to
deliver the cargo?” Scheduling can be thought of as a specific kind of planning,
in which the activities to be performed (i.e., assigning cargoes to vehicles) are
known in advance from the movement requirements. In the simplest case,
scheduling simply assigns an ordering to these activities along with starting
times for each one. Assessment questions are often answered by constructing a
schedule (thereby answering a scheduling question at the same time). However,
answering an assessment question does not necessarily involve answering a
scheduling question: The feasibility of a plan can often be determined without
constructing a schedule at all, for example, by using aggregate measures (such as
tons or passengers per day, week, or month) to compare required lift to available
lift. Nevertheless, most of the questions addressed by USTRANSCOM and the
TCCs require the construction of detailed schedules.

Impact of Recent World Events

There is widespread recognition that recent changes in the world are making
strategic mobility increasingly important, as standing forces are reduced and
threats and other demands become more diverse. Strategic lift itself will come
under increased scrutiny as budgets are reduced, making strategic mobility
planning even more important. USTRANSCOM, JS, OSD, and others will be
increasingly pressured to make effective and efficient acquisition, allocation, and
planning decisions. The RASL project is directly concerned with producing the
kind of planning technology that is required for longer-range planning efforts
such as requirements planning; we believe this emphasis has been unique within
the ARPA planning and scheduling community, which has focused primarily on
scheduling and short-range planning.

Much of traditional artificial intelligence planning research has been oriented
toward developing plans for use by robots, i.e., plans that are intended to be put
to immediate use (this includes “deliberative” planning systems whose results
are intended for immediate execution). In contrast, long-range mobility planning
is required to produce plans for people, i.e,, plans that are to be used for analysis,
modification, and insight as much as for eventual execution. This requires a
shifting of focus away from detailed, highly optimized plans toward higher-
level, realistic, and robust plans whose underlying assumptions and
dependencies are explicit and easily comprehended. The future appears likely to
ve characterized by multiple, diverse, small-scale threats and other demands;




whereas these will require fast, responsive planning prior to execution, their
diversity and uncertainty will require longer-range planning that is increasingly
broad and robust.

The RASL project’s goal has been to develop modeling methods that can answer
precisely the kinds of questions that are increasingly being asked by mobility
planaers.

The Strategic Mobility Planning Problem

The strategic mobility planning problem can be stated in terms of a lack of
technology support. Better tools are needed to help strategic mobility planners at
all levels answer requirements, assessment, feasibility, and scheduling questions to
improve resource planning, deliberate planning, and crisis action/execution
planning,

The actual generation of plans or schedules is only one aspect of strategic
mobility planning. It is equally important to be able to analyze plans and their
consequences, make trade-offs among alternatives, evaluate the transportational
feasibility of proposed courses of action, and configure mixes of transportation
assets that are most likely to satisfy an expected range of scenarios. Furthermore,
the incremental improvement and modification of plans to adapt to evolving
threats and operational circumstances is of paramount importance; it is probably
fair to say that, throughout much of the strategic mobility domain, planning is
replanning.

Tools for strategic mobility planners should help them perform all of these
activities in a coordinated way. This implies the need for a true synthesis of
planning and simulation. This synthesis must first help generate plans and
schedules and answer straightforward “What if ... #” questions, but it should
also help answer a wide range of other questions that go beyond "What if ... ?”
(such as why a proposed plan is infeasible, which constraints are the most
limiting ones in a given situation, what trade-offs might be made to improve a
plan, or what transportation assets are needed to do a given job).

Answering planning questions that go beyond “What if . .. ?” requires reasoning
about ¢ plan and the reality within which it is situated. Simulation alone cannot
answer such questions because the number of cases to be examined may be large
or infinite. For example. a requirements question such as “What transportation
assets are needed to do a given job?” cannot be answered effectively by
simulation. Planning, constraint satisfaction, optimization, and simulation all
play a part in answering such questions, but they must be part of an integrated




reasoning capability based on a model of the strategic mobility planning
environment.

To further motivate the need for such modeling capabilities, the next subsection
discusses the technology that has heretofore been used in strategic mobility
planning,.

Existing Technology for Strategic Mobility Planning

Many strategic mobility models have been built—and are being built—to help
the various organizations perform the strategic mobility planning tasks described
above. However, neither resource planning nor requirements questions ir:
general are fully supported by existing or planned strategic mobility models.
Furthermore, only certain aspects of the deliberate planning process are
supported by existing models, and crisis action planning is neither fully
supported in its own right nor by carryover from deliberate planning [Schank et
al,, 1991]. (It is also widely acknowledged that appropriate and reliable data are
lacking in many areas of strategic mobility, particularly for crisis action and
execution planning.)

Strategic mobility models have generally been designed according to one of two
approaches: optimization techniques or simulation. Over the years, various
mathematical programming models have been bullt in an attempt to provide
optimal answers to requirements and assessment questions. These efforts have
suffered from a variety of limitations, including: (1) the difficulty of representing
complex closure profile requirements (e.g., involving time windows) and
mixtures of linear and integer constraints in a mathematical programming
formalism, (2) the lack of transparency and explanatory capability of such
models, und (3) the computational intractability of mathematical programs
representing realistically large strategic mobility problems. Nevertheless, new
algorithms (i.e., Karmarkar) and hardware (i.e,, KORBX [Carolan, 1990),
supercomputers, multiprocessors, etc.) have revived interest in this approach,
Related techniques for constraint satisfaction [Fox et al., 1989; Sadeh & Fox, 1989)
also appear promising,

The bulk of recent strategic mobility models, however, have been simulations.
These models generally attempt to produce a constructive answer to an
assessment question by producing a “good” schedule (thereby also answering
the corresponding scheduling question). Given a set of cargoes, a set of
transportation assets, and a desired delivery profile, these models attempt to
construct a schedule that meets the desired profiie by (roughly speaking)
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simulating the heuristics that human scheduicrs use. For example, such models
may try to assign the cargo with the earliest required delivery date to the fastest
readily available vehicle and to assign the cargo with the next required delivery
date to the next-available, next-fastest vehicle, etc. In general, these models start
with an initial set of conditions and assumptions and answer the question “What
would happen if the transportation system were faced with this situation?” Like
most simulations, these models do not attempt to go beyond such “What if ... ?”
questions: They simply trace one path of the behavior of the (simulated) world
for each set of initial conditions.

The main attraction of these simulation models is that they proceed iteratively,
scheduling one cargo at a time, which allows them to handle very large sets of
movement requirements. Since they simulate the behavior of the transportation
system in some detail, they achieve credibility (or “face validity”) to the extent
that their behavior appears reasonably close to the way strategic mobility
planners expect the real world to behave. However, these simulations work in
only one direction: That is, they can directly answer only “What if . .. ?”
questions. Using such models to answer requirements questions, for example
(such as “What mix of lift assets would best satisfy a given closure profile?”),
often requires many iterations and still cannot guarantee finding an answer.

In addition, the complexity and nondeclarative nature of these programs makes
them hard to understand and validate. In particular, it is often difficult to
ascertain whether their heuristics truly model the way real-world schedulers
behave or whether they have been chosen simply for reasons of programming
convenience.

To summarize, neither traditional optimization nor simulation fully answer the
needs of strategic mobility planning. Optimization works backward to produce a
plan (or at least a solution) from a goal, but it provides little insight into the
feasibility of a preexisting, proposed plan, and it has little explanatory or
predictive power. Furthermore, when optimization fails to find a solution, it
merely concludes that the problem is infeasible, without explaining why.
Simulation works forward from an initial state but can only grope toward a
desired goal, let alone optimality. The next section elaborates the notion of an
integrated simulation and planning environment that would answer a much
larger subset of the questions posed by strategic mobility.

The ARPA/Rome Laboratory Transportation Planning and Scheduling Initiative
focuses on a subset of the strategic mobility problem to stimulate research that
can improve scheduling in execution planning. It emphasizes the production of
schedules and transportation plans but implicitly also calls for new technology to
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support the entire planning process discussed above. This requires the close
integration of simulation and planning.

To significantly affect strategic mobility planning, any new technology should
aid planners in answering both requirements questions and assessment questions
(including feasibility and scheduling questions), and it should provide insights
into trade-offs, constraints, and the overall behavior of the strategic mobility
system. This requires a synthesis of planning and simulation that can help
generate plans and schedules, answer “What if .. . ?” questions, and answer a
wide range of other questions that go beyond “"What if... ?” Many of these
questions can be answered only by reasoning about a plan and the reality within
which it is situated. The next section discusses the details of the RASL project’s
DMOD formalism, which is an attempt to provide such capabilities.
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3. Declarative Modeling to Integrate
Simulation and Planning

Recent work in simulation at RAND has evolved from a long history of research
in the methodology of modeling. One of the first object-oriented simulation
languages (ROSS) was developed at RAND in the early 1980s [McArthur et al.,
1984; McArthur et al., 1985; Klahr, 1985]. A number of application models were
subsequently built using ROSS, and it was extended in a number of ways, both at
RAND and elsewhere [Klahr et al., 1982; Klahr et al., 1984; Callero et al,, 1985;
Nugent, 1983; Nugent & Wong, 1986; Hilton, 1987]. This experience led to the
recognition of a number of major shortcomings in the object-oriented simulation
paradigm [Rothenberg, 1986; Cammarata et al., 1988], As a result of this work,
the Knowledge-Based Simulation project (KBSim) was created to explote a
number of extensions and alternatives to object-oriented simulation [Rothenberg
etal., 1989], This led to the development of DMOD.

DMOD is essentially a rule-based modeling formalism in which a model is
represented by a causality relation among events. Causality goes beyond simply
defining temporal relations and constraints: It models the intuitive notion that
events have causes and effects within a given context. The representation of
causality in DMOD has been developed to serve the needs of simulation, in
contrast to related methods of temporal reasoning [Allen, 1984; Hanks &
McDermott, 1987; Shoham, 1987]; the DMOD representation of causality appears
to be an effective way to build a large class of models while providing a formal
basis for discrete-event simulation. Using this representation, simulation in
DMOD consists of computing a history of those events that actually occur,
starting from a set of initial events and state values. This approach overcomes
many fundamental shortcomings of traditional discrete-event simulation, notably
the problem of event cancellation, which requires the undisciplined deletion of
events that have been scheduled on an event queue when subsequent events
preempt them.

DMOD is event oriented, which eliminates a number of artifacts of the object-
oriented paradigm, such as the need to model all actions as being intentionally
caused by specific, single objects. However, DMOD incorporates many of the
key advantages of object-oriented modeling as well, including encapsulation and
the ability to represent inheritance hierarchies.
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Unlike most simulation methodologies, DMOD does not represent state variables
by explicit storage cells, but instead expresses each state value as a function of
time and the events in the history. In this way, state is considered to be
piecewise continuous: The history of events serves as an efficient representation
of discontinuous state changes, whereas state changes in between events are
represented by continuous functions of time, This approach unifies the treatment
of discrete and continuous state and time and allows state to be computed on
demand since it can always be derived from the event history. This enables new
state variables and ad hoc queries to be defined dynamically—even after running
a simulation—without rewriting, reinstrumenting, or even rerunning the model.
It also eliminates many errors that arise from the failure to maintain the
consistency of stored state in traditional simulations. In practice, state is cached
to improve performance while retaining these advantages.

DMOD separates causality from its enforcement by stating causal rules
declaratively: Allsuch rules are processed by a formal interpreter rather than
specifying their own behavior. This separation eliminates the ad hoc causality
that appears in most object-oriented and traditional simulations. In addition, it
facilitates reasoning about the causality relationships in a model.

One of the major functional advantages of DMOD over other simulation
methodologies is its potential to support reasoning in order to answer questions
that go beyond “What if . . . ?” This has allowed us to implement novel analytic
capabilities in a logistics model of the Wartime Theater Ammunition Distribution
System (WTADS) [Schank et al., 1990) and a prototype strategic mobility model
(SMM). For example, these models can trace the progress of a simulation in
terms of causal chains, showing which events directly or ultimately caused (or
were caused by) which other events. With some restrictions, causal chains can
also be traced in the abstract, analyzing the model itself to see which events can
ever (or must always) cause which other events, This can be used to prove
“liveness” properties (such as the fact that a ship must eventually reach its
destination, despite rerouting) or “safety” properties (such as the fact that no
cargo will be delivered late), as discussed below. Similarly, one can ask why a
simulation diverged from an expected course of behavior: With some guidance
from the modeler, DMOD can determine what factors would have caused the
expected behavior to occur. Finally, DMOD facilitates exploring various
strategies for answering goal-directed questions, such as “How fast must a
convoy move to guarantee that it cannot be intercepted?” or “How should a
given lift asset be utilized to achieve a desired closure profile?”

The next subsections present the formal basis for reasoning about DMOD models
and proving interesting and useful properties about them. The examples
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developed are very simple abstractions of problems from the transportation
domain. These examples are intended to clarify DMOD's capabilities by
avoiding unnecessary detail.

Declarative Modeling of Dynamic Systems

When modeling dynamic systems, it is useful (and not unreasonable) to make the
following fundamental assumption [Misra, 1986], which can be thought of as
defining the relationships among the intuitive concepts behavior, history, and
event:

Fundamental assumption: The behavior of a system up to time T can be
computed from its History up to T, i.e., a complete record of all event
occurrences in the system up to T,

This says that the behavior of a system is completely characterized by its history,
i.e., by the events that occur in the system. (The definitions of behavior, history,
and event are closely intertwined in this statement: A system'’s behavior consists
of the history of events that occur in the system, whereas the events in the system
are simply those occurrences that we consider to define its behavior.) Given this
assumption, a model of a system, i.e,, a formal description of the system sufficient
for computing its behavior, need describe only how events occur in the system,
Simulation of the system then consists of using this model to compute a history
of the events that occur in the system under a given set of circumstances. Note
that although the concept of “state” does not appear explicitly here, it is implicit
in this fundamental assumption that the entire state of a system (that is, anything
of interest about the system) is completely characterized by its history.

There are many ways of describing how events occur in a system, but one of the
most intuitive—and useful—is to define a causality relation between events.
Informally, the proposition causes(A,B) means that event A is responsible for, or
brings about, event B, (For convenience we read causes(A,B) as “A causes B.”) If
the proposition occurs(X) means that event X actually occurs, and the proposition
initial(X) means that event X is an initial event that has occurred before we begin
modeling the system, then event occurrences can be computed by repeatedly
applying the following rule:

occurs(B) iff initial(3) v [3A | occurs(A) A causes(A,B) |

This states that event B occurs if and only if either B is an initial event or there
exists an event A such that A occurs and A causes B. A definition of the relation
causes(X,Y) for every pair of events X and Y in a system, therefore, constitutes a
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model of that system. For any domain in which we have good intuition about
causality, it is straightforward to develop such a model by defining the causality
relation among the events in that domain. In fact, the widely used event-
scheduling view of the discrete-event modeling technique [Evans, 1988; Zeigler,
1984] can be regarded as being based on a similar, though less formal, notion of
causality. DMOD can be viewed as an attempt to formalize the discrete-event
modeling technique (see Section 7).

The above rule also yields a simple basis for answering questions about event
occurrences, For example, to show that a (noninitial) event occurs, it is sufficient
to show that at least one of its causes occurs. Similarly, to show that a (noninitial)
event does not occur, it is sufficient to show that none of its causes occur, More
general temporal properties can be proved if they can be expressed in terms of
questions about event occurrences (see Section 6 for examples).

Central to the success of the above approach for computing event occurrences
and proving temporal properties of systems is the simplicity of performing
inference using the causality relation. Unfortunately, such inference can be quite
difficult when modeling situations in which the effect of an event can depend not
only on its past but also on its future: An important instance of this phenomenon
is event preemption, in which an event is expected to occur at some future time
but does not occur because some preemption condition is satisfied in the interim.
For example, if at time T an alarm clock is set to ring after time Delay, then it is
expected to ring at T+Delay; but if it is reset during the interval (T, T+Delay), then
the ringing event is preempted.

Event preemption also arises in hybrid systems, i.e., those whose state contains
both discrete and continuous parameters. Event occurrences initiate periods of
continuous change; events are the boundaries between such periods. When such
a period begins, the time at which it should end can be predicted, based on
current information; however, if this information changes during the period, then
this prediction can be invalidated. For example, suppose an aircraft A begins
flight with constant velocity toward a fixed radar R. Then, based on the initial
velocity and position of A, it can be predicted that R will detect A at some future
point of time; however, if the velocity of A subsequently changes, then this
prediction may be invalidated.

Modeling such phenomena using causality results in statements that contain
conditions involving the time intervals between the causing and caused events.
For example, for the alarm clock we have:
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causes(set_alarm(T+Delay,T), alarm_sounds(T+Delay))
if  =3x3Y | [T <X < T+Delay  occurs(set_alarm(Y,X))].

Here set_alarm(Future,Now) denotes an evznt of setting the alarm at time Now to
ring at time Future. (In this example, the alarm is set at time T to ring at time
(T+Delay). Events can have arbitrarily many parameters specifying the
characteristics of the event; we follow the co:ivention that the time at which the
event occurs, l.e., its time stamp—"Now" in this example—always appears as its
last parameter.) Similarly, alarm_sounds(T) denotes an event of the alarm ringing
at time T. The rule says that set_alarm will cause alarm_sounds if it is not
preempted, i.e, if there is no time X in the interval (T, T+Delay) at which the alarm
is reset to ring at some other time Y (even if Y happens to be equal to T+Delay, in
which case this particular instance of the event alarm_sounds(T+Delay) will not
occur, although a distinct, identical instance may occur). We say that the
“preemption condition” for this rule is that set_alarm occurs again between T and
T+Delay. The rule, therefore, says that setting the alarm at time T will cause it to
ring at time T+Delay if the preemption condition is false.

Similarly, a causality rule for the aircraft/radar examplec would be:

causes(flies_toward(Aircraft,Radar,T), detects(Radar,Aircraft, T+TravelTime))
if travel_time(Aircraft,Radar,TravelTime,T)
A =3X | [T < X < T+TravelTime
A velocity(Aircraft,X) » velocity(Aircraft,T)).

Here flies_toward(Aircraft,Radar,T) denotes the event of Aircraft beginning to fly
toward Radlar at time T, whereas detects(Radar,Alrcraft, T+TravelTime) denotes
the event of Radar detecting Aircraft at time T+TravelTime. The relation
travel_time(Aircraft,Radar, TravelTime,T) is true if Aircraft, starting at time T and
traveling at a fixed velocity, reaches Radar after TravelTime (this can be thought
of as a function that computes TravelTime). The preemption condition is that at
some time X in the interval (T, T+TravelTime) the velocity of Aircraft is different
from its value at time T. (Logically, this condition is necessary but not sufficient,
since the velocity may vary within this interval while still averaging out to the
initial value; however, again, the particular instance of the detection event will be
preempted if this preemption condition is true, even though a distinct, identical
instance may occur.)

The difficulty of inferring causality from such statements is that preemption
conditions are negative and occur in the antecedent of causality rules, so that the
resulting rules are in full first-order logic. In general, it is difficult to control
proof procedures for this logic. For example, the programming language Prolog,
extended with “negation-as-failure,” would go into an infinite loop if the alarm
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clock rule were submitted to it because of the mutual recursion between rules for
occurs and causes: Ringing will occur if it is caused by setting, but setting causes
ringing only if setting does not occur again in the interim; that is, occurs depends
on causes, but causes depends on occurs.

To exercise greater control over the inference procedure we can interpret rules in
a top-down manner. However, this leads to a difficult recursion. Suppose that
we generate events in increasing order of time stamps and that for the alarm, the
event set_alarm(T+Delay,T) has occurred. Then to determine whether
alarm_sounds(T+Delay) occurs we have to evaluate the preemption condition,
i.e,, determine whether the alarm is reset in the time period (T, T+Delay). Since
we have information only up to T, we can suspend the evaluation of this
condition, generate information beyond T, and then resume. But this would call
the inference procedure recursively. Exactly how is this suspension-recursion-
resumption to be implemented—and proved correct-—especially when
preemption conditions can be arbitrarily complex? Note that if time is
continuous, we cannot simply iterate over each point of time, since there are
infinitely many such points.

One major contribution of DMOD is a way of reformulating causality rules so
that conditions on time intervals have direct access to the sequence of events that
occur in those intervals, This is made possible by a new view of causality. The
resulting extra information allows considerable control over how efficiently
preemption conditions are evaluated, This formulation allows a wide range of
causality riles to be expressed using definite clauses, i.e., logic programs in a
programming language such as Prolog. The expressive power of such programs
can then be utilized to provide a wide range of other capabilities for modeling
dynamic systems, such as rule-based inference or the solution of differential
equations. Furthermore, the proof theory for definite clauses is considerably
simpler than that for full first-order logic; this can be exploited to simplify proofs
of various properties of models, as illustrated below.

DMOD: A New Technique for Modeling Dynamic
Systems

We assume the usual first-order logic alphabet, consisting of an enumerably
infinite list of variables, function and predicate symbols of all “arities” (number
of arguments), and the logical connectives [Lloyd, 1984]. In addition, we make
use of standard notational shorthands such as “w.r.t.” for “with respect to.”
(While the development here is intended to be independent of any particular
implementation, since DMOD has initially been implemented in the Prolog
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programming language, we retain consistency with Prolog syntax where feasible
to avoid confusion. Furthermore, Prolog is used to provide concrete examples of
how various required constructs can be implemented in a logic program.) The
following definitions establish our terminology.

Dfn: A constant is a symbol denoting a specific entity; we always write
constants as beginning with a lowercase letter or as a number (e.g,, x,
positionOfX, 3.14159, 17).

Dfn: A variable is a symbol that stands for an unspecified but single entity;
we always write variables as beginning with an uppetcase letter (e.g., X,
Radar, Position).

Dfn: A term is either a constant, a variable, or a structure of the form £(X;,
+++ . Xn), where f is a (constant) n-ary function symbol and X;, . . . , X, are
(recursively) terms.

Dfn: A ground term is a term in which no variables occur.

Din: An event is a ground term of the form f(ay, . .. ,a,,t) where fisa
function symbol of arity n + 1 (referred to as an “event-defining” function
symbol), the ay, . . . ,a, are ground terms denoting arbitrary entities, and t
is a ground term denoting a numeric time instant, interpreted as the time
stamp of the event.

An event may denote an action. For example, the event sends(sender,message,
receiver,t) denotes the action of sender sending message to receiver at time t. An
event may also denote the act of a proposition becoming true. For example, the
event touching(a,b,t) can denote the proposition that the distance between two
objects a and b at time t is zero; when this proposition becomes true, a collision
between a and b can be said to occur at t.

Note that although the definition of an event requires it to be ground, we can
define the related notion of an “event-type” in which variables take the place of
ground entities, thereby defining a class of events:

Dfn: An event-type is a nonground term having the same form as an
event, i.e., f(Xy, ..., XnT), where f is an event-defining function symbol,
but the X, . .. X, may be variables, and T may be a variable, This
denotes a class of events involving the entities denoted by the Xj,...,Xy
and occurring at the time denoted by T. For convenience, we may even
substitute an expression for T (such as T+Delay), to constrain the allowed
times of occurrence of events of this event-type,

For convenience, we will use the term “event” to mean either a specific event or
an event-type, using the term event-type only when necessary to avoid
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confusion. In addition, we will conventionally denote the time stamp of any
event E by TE.

Note that the event-defining function symbols must be chosen in such a way that
the fundamental assumption (p. 14) is satisfied. Informally, this simply says that
we must define all events that are of interest (to completely characterize the
behavior of the system). For example, to compute the positions and velocities of
a set of pool balls on an infinite pool table, the event function symbol touching
might be sufficient; that is, this might be the only event-type of interest. Other
possible conditions, such as equilateral [where equilateral(a,b,c,t) means that the
positions of balls a, b, and c at time t are on the vertices of an equilateral triangle],
might not be regarded as events of interest.

Dfn: A logic program Ord defines a linear ordering between time stamps if
it defines the binary relations time_less_than and time_equal between
time stamps, satisfying the following:

Linear ordering restrictions:

(1)  Effectiveness of time stamp ordering: In the presence of Ord, for
any time stamps X and Y it is always possible to determine, in finite
time, whether time_less_than(X,Y) succeeds. Similarly for
time_equal(X,Y).

(2) Inthe presence of Ord, for any time stamps X and Y, one and only
one of time_less_than(X,Y), time_less_than(Y,X), or time_equal(X,Y)
succeeds.

(3) In the presence of Ord, for any time stamps X and Y, if
time_less_than(X,Y) succeeds and time_less_than(Y,Z) succeeds
then time_less_than(X,Z) succeeds.

(4) In the presence of Ord, time_equal(X,X) succeeds. Also, if
time_equal(X,Y) succeeds then time_equal(Y,X) succeeds. Finally, if
time_equal(X,Y) succeeds and time_equal(Y,Z) succeeds then
time_equal(X,Z) succeeds.

Restriction (1) constrains Ord to be effective by requiring time_less_than and
time_equal to be decidable. Restriction (2) is the standard trichotomy law;
restrictions (2) through (4) ensure that any set of time stamps can be linearly
ordered. For simplicity, we will normally omit the word “linear” and simply say
that a logic program defines an “ordering,” implying a linear ordering.

A concrete definition of time_less_than and time_equal can be developed in
Prolog as follows: Let time stamps be only those Prolog terms denoting
numbers. Then the standard “<” and “=" operations of Prulog satisfy (2)
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through (4). Since these operations as implemented in Prolog are also effective,
they can be defined using logic programs and made to satisfy (1).

Dfn: If Ord is a logic program defining an ordering between time stamps,
and E and F arc two events, then E is strictly earlier than F w.r.t. Ord if
time_less_than(TE, TF) succeeds in the presence of Ord, where TE is the
time stamp of E and TF is the time stamp of F. (When applying this and
the following two definitions, Ord will not be denoted explicitly if it is
clear from the context.)

Dfn: If Ord is a logic program defining an ordering between time stamps,
and E and F are two events, then E is concurrent with F w.r.t. Ord if
time_equal(TE, TF) succeeds in the presence of Ord, where TE and TF are
as above.

Dfn: If Ord is a logic program defining an ordering between time stamps,
then a finite or infinite sequence of events S = Eg,E, .. . is said to be
temporally ordered w.r.t. Ord if for each i, 0 i, either E; is strictly earlier
than Ej41 or Ejis concurrent with E;+; (whenever Ej,1 exists).

As discussed on p. 14, defining a causality relation provides a convenient way of
computing event occurrences; yet, if statements about causality are written in the
obvious way, causality can be quite difficult to infer. We now show a way of
viewing causality that allows such statements to be reformulated using definite
clauses. To do this, we regard causality not as a binary relation but as a ternary
relation between two events and a context. The context is a temporally ordered
sequence of events (w.r.t. some fixed-ordering Ord). We call the new relation
causal_connection. If it holds for two events, they are said to be causally
connected in the context. Causal connectedness is similar to connectedness
between nodes in a network. The same two events may be causally connected in
one context but not in another. For example, consider the following events
concerning a ball dropped from a height (the numeric arguments represent time
stamps, in arbitrary units):

Ej=ball_dropped(0)

Ey=ball_caught(5)
Es=ball_thrown_down(6)
E4=ball_velocity_becomes_high(7)

Es=ball_hits_ground(10)
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Consider the two contexts Cy = [Ey,Es) and C3 = [Ey,E,E3,E4,Es]. E; can be said
to be causally connected to E5 in context C;, where dropping the ball causes it to
hit the ground. But in context Cy, the potential causal connection between E; and
Es is terminated by the appearance of E;. Since the ball is caught (E;), dropping
it (E;) is not what causes it to hit the ground (Es). It is more natural to say that
throwing the ball down (E3) is what causes it to hit the ground in this case, i.e,,
that Ej3 is causally connected to Es in context C;.

Another way to understand causal connection is the following: LetCbea
temporally ordered sequence of events. Pick out E and F in C sich that E
appears before F. If all events in C were to occur, then would E be said tobe a
cause of F? If so, then E is said to be causally connected to F in C. In general, the
context C represents a history of events that actually occur.

For convenience, we actually define causal_connection as a four-ary relation
(rather than ternary), involving two events E and F, and dividing the context into
two pieces, HE and HEF, representing the history up to event E and the history
between event E and event F, respectively (see Figure 1). (For convenience, when
speaking of sequences of events, we will use the phrase “up to” to mean “up to
but not including” whereas “through” will mean “up to and including,” and we
will use “between” to mean “not including either end point” whereas “from A
through B” will mean “including both end points”.)

We define causal_connection(E,HE,F, HEF) with arguments related as follows:

S is a finite context, i.e., a temporally ordered sequence of events through F. E
appears before F in S, HE is the sequence of all events in S up to E, and HEF is the
sequence of all events in S between E and F (using the above definitions of “up
to” and “between”).

If the condition causal_connection(E,HE,F,HEF) holds, E is said to be causally
connected to F in context S.
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Figure 1—A History of Events




We next introduce several useful notational conventions:

Notation conventions: As in Prolog, we use “[a,b.c]” to denote a list of items
a, b, and c; “[x]” to denote a singleton list consisting of just the item x; “{}" to
denote the empty list; and “[A | B]” to denote a list whose first item (or
“head”) is A and the remainder (or “tail”) of which is the list B, Extending
Prolog notation for convenience, we use “A®B" to denote the result of
appending a list B to a list A, The operator “®" is associetive. (Since an event
E is not a list, we must write “HE®[E]” to denote the list consisting of HE
followed by E.) Note also that the scope of a variable name is limited to the
clause it appears in: Two occurrences of the same name (e.g,, “E") in
different clauses do not in general denote the same antity.

Let S represent the history of the system through F. Then, by the fundamental
assumption above, HE®[E]®HEF is a complete record of all states and events in
the past of F. HEF provides a way of resolving references to the future of E, up to
F. For example, the aircraft/radar causality rule on p. 16 can be expressed using
definite clauses as follows:

causal_connection(E,HE,F,HEF)
if E=flies_toward(Aircraft,Radar,T),
Fadetects(Radar,Aircraft, T+TravelTime),
travel_time(Aircraft, Radar, TravelTime HEO[E)),
velocity(Aircraft,CurrentVelocity HE®[E)),
velocity_unchanged(Aircraft,CurrentVelocity, HE®[E), HEF).

where:

velocity_unchanged(Aircraft,CurrentVelocity,PastHist,[]).

velocity_unchanged(Aircraft,CurrentVelocity,PastHist,[X | RestOfFuture])
if velocity(Aircraft,Velocity AtX,PastHist®[X]),
Velocity AtX = CurrentVelocity,
velocity_unchanged(Aircraft,CurrentVelocity PastHist®[X],RestOfFuture).

The first rule states that E is causally connected to F in the context
HE®[E]®HEF®[F] if E is the event flies_toward(Aircraft,Radar,T), F is the event
detects(Radar,Alrcraft, T+TravelTime), TravelTime is determined by the relation
travel_time, the velocity of Aircraft immediately after E has occurred is
CurrentVelocity, and the velocity of Aircraft at any time during HEF (which is
the future of E up to F) is unchanged from CurrentVelocity, Note that by the
fundamental assumption, HE®(E] reptresents the state of the system at T (the time
stamp of E), after E has occurred; therefore, the condition:




travel_time(Aircraft,Radar, TravelTime,T)
from the original causality rule (p. 16) can be replaced here by:
travel_time(Aircraft,Radar, Travel Time HE ®(E]).

Since we assume that velocity can change only at event boundaries, the first
clause of the rule for velocity_unchanged says that if the list of future events is
empty, then the Aircraft’s velocity does not change. The second clause of this
rule says that the Aircraft’s velocity does not change over the list of future events,
provided its velocity after the first such event (X) is the same as CurrentVelocity
and the velocity does not change over the rest of the future events.

Of crucial importance here is that the condition from the original causality rule
(p. 16):

-3X | [T < X < T+TravelTime A velocity (Aircraft,X) » velocity (Aircraft,T))
is replaced by:

velocity_unchanged(Aircraft,CurrentVelocity, HE®[E], HEF).

This is advantageous since the first of these forms represents a search over a
potentially continuous interval of time, whereas the second is a computationally
much simpler iteration over a finite sequence of events.

We are now in a position to define a DMOD program:

Dfn: A logic program P is a DMOD program if it defines
causal_connection, defines an ordering between time stamps, and satisfies
the following restriction:

DMOD effectiveness: For any ground terms E,HE HEF, it is
always possible to determine, in finite time, the set of ground
terms F such that causal_connection(E,HE,F,HEF) succeeds in the
presence of P. Furthermore, this set is always finite.

This restuiction is needed to ensure the effectiveness of the algorithm for
computing a history from a DMOD program. It can be satisfied by writing
terminating logic programs (which, it must be admitted, is sometimes easier said
than done),
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4. Examples of DMOD Programs

This section shows examples of actual DMOD programs. These are presented in
pseudo-Prolog for concreteness. In the following, we assume that a fixed
ordering between time stamps has been supplied. The definition of
causal_connection can refer to this as needed. We also assume that when ground
terms X and Y denote numbers, the following two clauses are present in the
ordering:

time_less_than({X,Y)if X< Y,
time_equal(X,X).

where “<” has the obvious meaning. The DMOD effectiveness restriction
(above) is satisfied by ensuring that each DMOD program terminates. (DMOD
programs rely on the logic of definite clauses and SLD-resolution,! which is
described in Hill [1974] and in Lloyd [1984]. Formally, ensuring DMOD
effectiveness requires ensuring that for any ground terms E,HE,HEF and for
variable F, all SLD-derivations starting with the goal:

Gucausal_connection(EHE,F, HEF)

and using the “leftmost computation rule” are finite. This in turn guarantees that
the set of all F such that the goal G succeeds can be obtained from the successful
SLD-derivations in finite time,)

Reference to the Past

In causal _connection(E,HE,F,HEF), the term HE represents the past of E, the
history of all events that have occurred up to E. By the fundamental assumption,
this provides a complete characterization of the behavior of the system up to E.
This allows causal_connection to refer to any required state in the past of E, by
using HE. In contrast, traditional, state-oriented simulation approaches can refer
to the past only by making the required history an explicit part of the current
state; this makes their representation of current state large, unwieldy, and
difficult to keep up to date. The following example shows how HE provides

1SLD isan acronym meaning selecting a literal, using a linear strategy restricted to definite
clauses,




access to the past in a DMOD rule to make an answering machine answer after
four rings.

causal_connecton(E,HE,F,HEF)
if E=rings(T),
F = answer(T),
member(rings(T - 1), HE),
member(rings(T - 2),HE),
member(rings(T - 3), HE).

Where member has the obvious meaning: member(Item,List) is true if Item is a
member of List. This can be defined recursively as:

member(A,[A | B]).
member(A,[U | V]) if member(A,V).

Here the delay between two rings is arbitrarily modeled as one time unit. The
causal_connection rule states that a ringing event at time T causes an answering
event at time T, if previous ringing events at times T-1, T=2, and T -3 are all
members of the history HE of E. -

An Alarm Clock Example

In Section 3, we presented a model of an alarm clock. We now show a DMOD
rule that expresses the fact that setting an alarm clock at time T to ring at time
T+Delay causes it to ring at time T+Delay, provided no subsequent resetting
event occurs in between. This example illustrates DMOD's ability to model event
preemption. The ruleis:

causal_connection(E,HE F,HEF)
if  Ewset_alarm(T+Delay,T),
F = alarm_sounds(T+Delay),
non_member(set_alarm(?,?),HEF).

As discussed previously (Section 3, p. 22), HEF provides access to the future of E,
up to F. Preemption becomes a simple matter of checking whether any
subsequent set_alarm event occurs in HEF. [The notation “?” here stands for an
arbitrary term: It is analogous to the unnamed variable “_" (underscore) in
Prolog; the term set_alarm(?,?) can be thought of as a template that will match
any set_alarm event. Informally, non_member(X,L) is true if there is no instance
of the event-type X in the list L, where occurrences of “?” in X are allowed to
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match corresponding terms in L in the obvious way. Developing a logic program
for non_member is straightforward.)

A Communication Protocol

We now model a simple communication protocol in which a Sender sends a
sequence of packets to a Receiver over an unreliable communication channel.
Upon receipt of a Packet, Receiver sends an acknowledgment to Sender. If
Sender does not receive acknowledgment for a Packet within a fixed amount of
time, timeout, it sends a new copy of Packet. In DMOD we can write:

causal_connection(E,HE,F, HEF)
if E =send(Sender Packet,Receiver,T),
F = receive(Receiver,Packet,Sender,T+Delay),
expected,_time_to_arrive(Delay),
not_lost(Packet, HE ¢{E]®HEF).

Where expected_time_to_arrive can be defined as:

expected_time_to_arrive(Delay)
if lower_bound_for_arrival(L),
upper_bound_for_arrival(U),

random(L,U,Delay).

The first rule states that if Sencler sends a Packet to Receiver at time T, then
Packet is received by Receiver after some Delay, provided it is not lost in
between. The relation expected_time_to_arrive computes a random time
between the lower and upper bound for Packet to arrive. The relation not_lost
determines whether Packet is lost, given the history HE®[E]®HEF up to F.
Information about the reliability of the channel can be encoded in the definition
of not_lost. To retain information about how many times a particular packet has
been resent before it is received, we represent each packet as a structured term
packet(Pkt,N), where Pkt is the actual contents of the packet (which we will call
the packet “body”) and N is a “repeat-count” of how many times this same
packet body has been sent [in the rule above, the variable Packet would be bound
to an instance of the structured term packet(Pkt,N)]. Whenever Receiver receives
a packet, it acknowledges it by sending an ack reply:

causal_connection(E HE,F,HEF)
if  E = receive(Receiver,packet(Pkt,N),Sender,T),
F = send(Receiver,ack(Pkt,N),Sender,T).
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This states that if Receiver receives packet(Pkt,N) from Sender, it sends a reply
ack(Pkt,N) to Sender immediately. However, since the channel is unreliable, the
sender must resend a packet if it does not receive an acknowledgment within a
specified “timeout":

causal_connection(E,HE,F,HEF)
if  E = send(Sender,packet(Pkt,N),Receiver,T),
F = send(Sender,packet(Pkt,N+1),Receiver, T+Delay),
timeout_delay(Delay),
non_member(receive(Sender,ack(Pkt,N),Receiver,?), HEF).

This rule states that if a packet of the form packet(Pkt,N) is sent by Sender to
Receiver at time T and no acknowledgment of the form ack(Pkt,N) is received by
Sender before time T+Delay (where Delay is the amount of timeout), then a
repeat packet—packet(Pkt,N + 1)—is sent by Sender to Receiver at time T+Delay.
The repeat-count (N + 1) in the new packet keeps track of how many times this
packet has been resent. (Note: An embedded arithmetic expression such as

“N +1,” representing the value of an argument in a relation, is not allowed in
Prolog, but its effect is easily obtained, and the notation used here is more natural
than that required by Prolog.)

In the case where an acknowledgment is received by Sender, the next packet is
sent with an initial repeat-count of zero:

causal_connection(E,HE,F,HEF)
if E = receive(Sender,ack(Pkt,N) Receiver,T),
F = send (Sender,packet(NextPkt,0),Receiver,T),
waiting _for_ack(Sender,Pkt, HE®(E)),
buffer(Sender, [NextPkt | RmndrOfBuifer] HE®[E]).

This states that when Sender receives an acknowledgment ack(Pkt,N) from
Receiver and Sender was waiting for acknowledgment of this packet, it
immediately sends to Receiver the Oth copy of the next packet in its buffer. We
represent the sender’s buffer as a list of packet bodies, the first (leftmost) of
which is the next packet to be sent (since [NextPkt | RmndrOfBuffer] represents a
list whose first element is NextPkt and whose remainder is the list
RmndrOfBuffer). We define the relation buffer(Sender,Bufr,H) in such a way
that the buffer of Sender is the list Bufr immediately after the last event in a
history H:
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buffer(Sender,NewBuffer, HE®[E])
if  E =request_to_send(Pkt,Sender,T),
buffer(Sender,OldBuffer,HE),
wizwBuffer = OldBuffer®[Pkt).
buffer(Sen:1::r, NewBuffer, HE®[E))
if E =send(Senderpacket(Pkt,0),Receiver,T),
buffer(Sender,(Pkt | NewBuffer), HE).

buffer(Sender,NewBuffer, HE®(E))
if non_member2(E,[request_to_send(Sender,?,?),send(Sender,?,?,?))),
buffer(Sender,NewBuffer, HE),

These rules define how the buffer of a sender changes with event occurrences for
a history HE®[E]. The first rule says that if event E consists of a request (from
some unnamed agent) asking Sender to send the packet body Pkt, then the new
buffer (NewBuffer) immediately after E consists of Pkt appended to the end of
whatever the old buffer (OldBuffer) was prior to E (immediately after HE). The
second rule says that if event E consists of the Sender sending the Oth copy of the
packet body Pkt, then the new buffer (NewBuffer) immediately after E consists of
the buffer immediately after HE with the packet body Pkt removed from its head
(that is, the old buffer was [Pkt | NewBuffer]). The third rule says that if E is
neither of the above two kinds of events (that is, E is not a member of a list
consisting of templates for request_to_send and send events), then the new
buffer (NewBuffer) immediately after E is the same as that after HE. (The
relation non_member2 is analogous to non_member, introduced above (see

p. 25), except that instead of matching a single event-type template against a list
of events, it matches a single event against a list of event-type templates; if both
relations are interpreted as Prolog code, this distinction vanishes, since
occurrences of “?” become unnamed Prolog variables, which match in either
order by unification. In the following, this distinction is therefore ignored, and
non_member is used in both cases.)

Finally, waiting_for_ack models the way Sender waits for an acknowledgment:

walting_for_ack(Sender,Pkt, HE®(E])
if E =gend(Sender,packet(Pkt,?),?,?).

waiting_for_ack(Sender,Pkt, HE®(E])
if non_member(E [send(Sender,?,2,7)),
waiting_for_ack(Sender,Pkt,HE).
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The fiist rule says that after Sender sends packet body Pkt, it is considered to be
waiting for an acknowledgment for Pkt. The second rule says that if Sender is
already waiting for an acknowledgment for Pkt after HE and if the next event E
is not a send avent, then Sender is still waiting for an acknowledgment for Pkt
after event E has occurred.

A Hybrid System: A Railroad Crossing

One significant advantage of DMOD over many other temporal calculi is that jt
can be used to model hybrid systems, i.e., those whose state contains both
discrete and continuous parameters. A convenient way of viewing hybrid
systems is that they exist in phases. Each phase is modeled by well-behaved
expressions in continuous mathematics, such as linear or differential equations.
However, these expressions change when phase transitions occur, so that no
single such expression describes behavior over the entire time line. Given the
sequence of all phase transitions, it is possible to write down rules for recovering
the phase that governs system behavior at any point in time. Assuming that such
rules are easily expressed using definite clauses, we find that the crucial issue
becomes computing the sequence of all phase transitions.

Phase transitions can be thought of as being caused by event occurrences. As
discussed in Section 3, an event can denote an action, or it can denote the act of a
proposition becoming true, For example, the phase transition that occurs when
two billiards balls balll and ball2 collide at time T can be represented as the
occurrence of the event distance_between(balll,ball2,2+R,T). This denotes the
proposition that the distance between the center of masses of balll and ball2 at
time T is 2#R, where R is the (presumed identical) 1adius of each of the two balls.
Such an event can be regarded as occurring at T when the proposition it denotes
becomes true, i.e,, it is true at T, but false immediately before T.

Since DMOD offers a way of specifying event occurrences, it can be employed for
specifying how phase transitions occur. As noted in Section 3, DMOD's ability to
model event preemption in hybrid systems is particularly useful. Rules for
computing phases, given a history, can also be expressed using definite clauses,
as shown above and elaborated below.

As an example of using DMOD to model phase transitions, we model a railroad
crossing (Figure 2). This example is adapted from Ostroff [1989]; in particular,
continuous time and position have been added. The model’s discrete parameters
are barrier and engine velocity, which change abruptly,
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Figure 2—=Railroad Crossing Model

In Pigure 2, an engine moves on a track from left to right with a fixed velocity Ve,
The track is crossed by a road between positions bl and b2. A barrier slides back
and forth to close or open the crossing, When an engine reaches position s1,
sensor(1) detects the engine and starts to close the barrier. When an engine
reaches position s2, sensor(2) detects the engine and starts to open the barrier.
The barrier opens and closes at a finite speed Vb, Values for the positions of the
sensors and the barrier are shown under their labels in parentheses (in arbitrary
units),

Preemption arises in the system because closing or opening the barrier can be
interrupted. For example, an engine arriving at s1 will start to close the barrier,
but the engine may move so fast that before the barrier has fully closed, the
engine arrives at 82 and starts to open the barrier again.

Notation convention: We use time(H,T) to denote the relationship
between a history H and the time stamp T of the last event in H (this can-
be thought of as a function that computes the time T of the last eventin a
history H).

Each event is of one of the following forms, with meanings given below:
start(engine(X),Velocity,Position,T)
sensed(engine(X),Sensor,T)

start(barrier,close,T)

end(barrier,close,T)
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start(barrier,open,T)
end(barrier,open,T)

start(0).

The event start(engine(X), Velocity,Position, T) says that engine(X) starts to move
with Velocity, from Position, at time T; sensed(engine(X),Sensor,T) says that
engine(X) is sensed by Sensor at T; start(barrier,close,T) says that the barrier
starts to close at T; end(barrier,close,T) says that the barrier finishes closing at T;
start(barrier,open,T) and end(barrier,open,T) have the obvious analogous
meanings; and start(0) represents the initial event in the system (with time stamp
0).

This model makes use of the relation travel_time, which can be defined as
follows (using Prolog’s arithmelic assignment operator “is”) and which uses the
simple relation absval to compute the absolute value of Speed:

travel_time(PrevPos,NewPos,Speed, TravelTime)
if  absval(Speed,AbsSpeed),
TravelTime is (NewPos ~ PrevPos) / AbsSpeed.

absval(X,X)
if Xz0.

absval(X,-X)
if  X<O.

Given these definitions, the rules for the model (labeled rail-1 through rail-v10)
are as follows:

rail-1 causal_connection(start(0),?,start(engine(1),ve,pe,t1),?).

The initial start(0) event causes the event of engine(1) starting to move (to the
right), from a specific position pe, with a specific velocity ve, at time t1 (the last
parameter, which represents the history between these two events, is a “don’t
care” in this case, written as “?").

rail-2a causal_connection(E,HE,F,HEF)
if E = start(engine(X),Velocity,Position,T),
P = sensed(engine(X),sensor(1), T+TravelTime),
travel_time(Position,s1,Velocity, TravelTime).




32

rail-2b causal_connection(E,HE,F HEF)
if E = start(engine(X),Velocity,Position,T),
P = sensed(engine(X),sensor(2), T+TravelTime),
travel_time(Position,s2, Velocity, TravelTime).

If engine(X) starts to move at time T with Velocity, from Position, then it is
sensed by sensor(1) after the time taken to travel the distance between Position
and s1 at Velocity. Its velocity always remains constant. The situation is similar
for sensor(2).

rail-3 causal_connection(E,HE,F,HEF)
if E = sensed(engine(X),sensor(1),T),
F = start(barrier,close,T).

If engine(X) reaches sensor(1), then the barrier starts to close immediately.

rail-4 causal_connection(E,HE,F,HEF)
if E =sensed(engine(X),sensor(2),T),
F = start(barrier,open,T).

If engine(X) reaches sensor(2), then the barrier starts to open immediately.

rail-5 causal_connection(E,HE,F,HEF)
if E = start(barrier,close,T),
F = end(barrier,close, T+TravelTime),
position(barrier,Position HE®[E]),
velocity(barrier,Velocity, HE®[E)),
travel_time(Position,b2,Velocity, TravelTime),
non_member(sensed(engine(?),sensor(2),?), HEF).

If the barrier starts to close, then it ends closing after the time needed for it to
reach its fully closed position (b2) at its current velocity, provided no engine is
sensed by sensor(2) before it finishes closing.

rall-6 causal_connection(E,HE,F,HEF)
if E = start(barrier,open,T),
F = end(barrier,open, T+TravelTime),
position(barrier,Position HE®([E]),
velocity(barrier,Velocity, HE®[E)),
travel_time(Position,b1,Velocity, TravelTime),
non_member(sensed(engine(?),sensor(1),?), HEF).
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If the barrier starts to open, then it ends opening after the time needed for it to
reach its fully open position (b1) at its current velocity, provided no engine is
sensed by sensor(1) before it finishes opening. (Note that although the sign of the
velocity of the barrier reflects its direction of motion and the opening velocity is
arbitrarily taken to be negative, the computation in travel_time uses absval to
produce a positive value for TravelTime in all cases.)

The following “value” rules compute various state parameters, such as the
position and velocity of engines or barriers. Note the use of the Prolog arithmetic
assignment operator “is” and of the continuous functions +, - and * on the right
hand side of this operator. More complex functions can similarly be used. The
first value rule (rail-v1) specifies the value of position under continuous
conditions:

rajl-vl position(Object,NewPos, HE®[E])
if position(Object,OldPos,HE),
velocity(Object, Velocity HE),
time(E,TE),
time(HE, THE),
NewPos is OldPos + Velocity * (TE - THE).

This rule says that the position of any Object in the model (i.e,, an engine or the
barrier) is NewPos immediately after the last event E in a history HE®[E] if its
position immediately after (the last event in) HE was OldPos, its velocity after
HE was Velocity, and the change in its position is equal to the time between E
and HE (which is TE - THE) multiplied by Velocity (which must have remained
constant since no events can occur between HE and E). Since this rule computes
position recursively, it must find an initial value from rules rail-v3 and rail-v5
below.

Ir. addition to computing the position of an object after a given event, the model
can also determine the position of an object at a certain time:

rail-v2 position_at(Object, T,NewPos,Hist_Thru_T)
if position(Object,OldPos,Hist_Thru_T),
velocity(Object, Velocity,Hist_Thru_T),
time(Hist_Thru_T,TH),
NewPos = OldPos + Velocity * (T - TH).

This rule is similar to the previous one, but it finds the position of any Object at a
given time T, provided that Hist_Thru_T is the sequence of all events that have




occurred whose time stamps are less than or'equal to T. (The sequence
Hist_Thru_T is easily constructed from any history by deleting all events after
the first one whose time stamp is greater than T.)

Additional rules are required to specify the initial position and velocity of an
engine after it starts since starting is a “phase transition” event that affects these
values discontinuously:

raii-v3 position(engine(X),Position,H®[start(engine(X), Velocity,
Position, T)}).

rail-v4 velocity(engine(X), Velocity, H®[start(engine(X), Velocity,
Position,T))).

The first (second) of these rules says that the position (velocity) of engine(X)
immediately after an event of the form start(engine(X), Velocity,Position,T) is
equal to the value of the Position (Velocity) parameter that appears in the start
event itself,

Similar rules are needed for the position and velocity of the batrier after each of
the phase transition events that affect these values discontinuously:

rall-v5 position(barrier,b1,[utart(0)]).

rail-vée velociiy(barrier,0,[start(0)]).

Rules rail-v5 and rail-v6 specify the initial position (bl) and velocity (0) of the
barrier,

rail-v7 velocity(barrier,-Vb,H®[start(barrier,open,?)]).
rail-v8 velocity(barrier,+Vb,H®[start(barrier,close,?)]).
rajl-v9 velocity(barrier,0, H®[end(barrier,?,;,).

Rules rail-v7 and rail-v8 specify the discontinuous change of velocity of the
barrier immediately after it starts to open or close: These velocities have the
same magnitude, Vb, but with opposite signs to reflect opposite directions of
motion. Rule rail-v9 says that the velocity of the barrier becomes = ro after any
end event (whether it ends opening or ends clusing).
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Finally, if none of these phase transition events have just occurred, the velocity of
the barrier remains unchanged from whatever its last phase transition made it:

rail-v10 velocity(barrier,Velocity HE®[E])
if non_member(E,[start(barrier,?,?),end(barrier,?,?)]),
velocity(barrier,Velocity, HE).

This rule says that the velocity of the barrier immediately after the last event E in
a history H is the same as that immediately after the previous event in H (which
is the last event in HE), if E is neither a start nor an end event involving the
barrier.
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5. Computing History from a DMOD
Model

DMOD has been developed as an alternative to the discrete-event modeling
technique to produce a formalism that allows reasoning about models.
However, before showing how to reason about DMOD models, we must first
show that DMOD provides at least as much functional power as the discrete-
event modeling approach that it is intended to replace. In particular, we must
show that DMOD can simulate the behavior of a system in something anelogous
to discrete-event simulation. In this section, we show two procedures for
performing simulation with DMOD. The first of these is conceptually simple but
relatively inefficient, while the second procedure is quite efficient.

The fundamental assumption (as discussed above in Section 3) implies that
computing a history is the same as simulation. Therefore, to show how DMOD
can perform simulation, we must show how to compute a history from a DMOD
model. Intuitively, a history contains all—and only-—those events whose
occurrence is implied by the occurrence of the initial event and the causality
rules. More formally:

Dfn: 1f P is a DMOD program and S = Ep,Ey,Ep, . . . is a temporally ordered
sequence of events in which any given event appears at most once, then S is
causally sound (w.r.t. P) if every noninitial event in S has at least one cause in S,
ie, foranyj>0:

3ilic j A causal_connection(Ej, [Ep, ... ,Ej~1L.Ej[Ejst, . - .E 1))

Of course, a causally sound sequence may not contain all of the everus that
should intuitively nccur (for example, the sequence [Eg] is trivially causally
sound from the definition, since E; is not required to have a cause, forj = 0). Fora
sequence to satisfy the intuitive notion of a history, it must satisfy a causal-
completeness property in addition:

Dfn: 1f P is a DMOD program and S = Eg,Ey,Ey, .. . is a temporally ordered
sequence of events in which any given event appears at most once, then S is
said to be causally complete (w.r.t. P) if both of the following conditions are
satisfied:

(a) Forany i}, 0<1,0sj, there is no event F such that:
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(1) causal_connection(E; [Eg, ..., Ei-1]F/[Ei+1, . . ., Ej) succeeds, and
(2) [EjFEjs1]is temporally ordered, with F strictly earlier than Ej,y, and
(3) Fdoesnotoccurin [Eg, ..., Ej]

(b) If S is finite (so that there is some k such that § = [Eq,Ey, . . ., Ex]), then for
any event G that does not occur in S, there is no i, 0 €1 S k such that:

(1) [Ex,G] is temporally ordered, and
(2) causal_connection(E;[Eq, . .., Ej-1],G/[Ei+1, . . ., Ek]) succeeds.

Informally, condition (a) states that no new event F can be caused after E; but
strictly before Ej,;, for any j [note that in (al), the last event in HEF is Ej, which is
therefore the event just prior to F]. Condition (b) says that S must not be
extendable at the end, i.e,, it must already contain all events that are caused by
the events in 5. Note that the sequence [Eg) always trivially satisfies (a) but not
necessarily (b).

Finally, we can define a history, as follows:

Dfn: If P is a DMOD program and E; is a unique initial event, then a
history is a sequence of events starting at Eg, which is both causally sound
and causally complete.

Note that a single initial event is sufficient: Multiple initial events can always be
preceded by a new, unique initial event that causes them all. Note also that this
definition does not require that a history be finite.

A Simple Procedure for Computing History

For a DMOD program I’ with initial event Ej, we now develop a procedure for
computing histories for P. This provides a simulation procedure for DMOD
models.

Dfn: If S is a set of events, then E is the earliest event in 8 provided that for
each event F in S, [E,F] is temporally ordered. Note that if S contains
events concurrent with each other, there can be more than one earliest
aventin S,

Note 5.1 The effectiveness restriction on the ordering between time
stamps discussed in Section 3 implies that a nonempty, finite set of events
S has an eatliest event that can be computed effectively.

Procedure 1; Enter Eg as the initial event. Suppose the history EoEy, .. .,
Epm, m 20, has been computed so far, We need to compute the next event
Em+1. Foreachi, 0 sism, let Effects(i) be the set of events:
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{F | causal_connecton(Ey,[Ey, ..., Ei-1},F| [Ej41, . .., Ep)) succeeds in
the presence of P},

For any i, 0 i < m, let new_Effects(i) be the set of those events € in
Effects(i) such that:

1) ¢ isnotalready in [Eg,Ey, ..., Ep), and
(2) [Em, £]is temporally ordered.

Let Sm be the union of new_Effects(l), 0 €1 S m. Take the next event Ep, 4 to be
the earliest event in Sy, If Sy is empty, halt.

Intuitively, given a partial history H, this procedure determines the set Sy, of all
the events E, not in H, that are caused by an event E; in H, in the temporally
ordered context HO[E). We pick as Ep4j the earliest event in Sp,. Note that since
Sm can contain more than one earliest event, this procedure is nondeterministic:
A different history would be computed for each choice of Ep.1.

Theorem 8.1. Procedute 1 is effective.

Proof: Given [Ep,Eq, . .., Ep), and E;, 0 $1 s m, Effects(i) can be computed
effectively, This follows directly from the DMOD effectiveness restriction
(Section 3, p. 23). By the same restriction, Effects(i) is finite, so it is possible to
effectively determine whether each event E in Effects(i) already occurs in [Ey, .. .,
Em]. By the effectiveness restriction on the ordering between time stamps
(Section 3, Linear Ordering Restriction 1, p. 19), it is also possible to effectively
determine whether [Ep,E] is temporally ordered. Therefore, new_Effects(i) can
be computed effectively, The union of finite sets Sy, can be formed effectively.

By Note 5.1 above, if S, is nonempty, an earliest event in Sy, exists and can be
computed effectively.

Theotem 5.2, Soundness and completeness of Procedure 1: If P is a DMOD
program and Ej is an initial event, then a sequence of events [Ey,Ey,...]is
computed by Procedure 1 if and only if it is a history.

Proof: by contradiction, in two parts (“if” and “only if"):

“If” part: Suppose [EgEy, .. .] has been computed. Then, by the statement of the
procedure above, an event appears at most once in the sequence. Furthermore,
the sequence is temporally ordered.

Suppose that the sequence I8 not causally sound. Since [Eq] is causally sound,
there exists some k, O < k such that [E(,Ey, .. ., Ex.;) Is causally sound, but [Eg,E;,
«++» Ex-1.Ek] is not. Then there is no j, 0 S j S k - 1 such that causal_connection(E,,
(LA E,-ﬂ,Ek,lEjH,. .+ » Ex=1)) succeeds. Since Ey has been computed as the




next event after Ey_j, it must belong to the set Sk in the procedure. But by the
definition of Si.1, there must exist an E; as above. (Contradiction.)

Suppose that the sequence is not causally complete. Then either condition (a) or
(b) of the definition of causal completeness (see above) must be violated.
Suppose condition (a) is violated. Then there existij, 051, 0<j, and event F
such that:

(i) causal_connection(Ey(Ey, ..., Ei).E[Ejs1, . . ., Ej]), succeeds
(ii) [E,,F,E,+1] is temporally ordered, with F strictly earlier than Ej41, and
(iii) P does not occur in [EpEy, ..., Ejl.

Then F belongs to the set §; in the procedure, Since Ej, is computed as the next
event after Ej, it also belongs to S; and is an earliest event in it. Therefore, [Ej4,,F]
must be temporally ordered. However, by (ii) above and the trichotomy
restriction on the ordering between time stamps (Section 3, Linear Ordering
Restriction 2), [Ej41,F] cannot be temporally ordered. (Contradiction,)

Suppose condition (b) is violated. Then, there exists some k such that the
computed sequence is [Eg,Ey, .. ., Exl. Also, there exists an event G not occurring
in [Eg,Ey, . . ., Exl, and |, 0 $1 £k, such that [Ex,G] is temporelly ordered, and
causal_connection(Ey[Eg, . . .  Ei<1)G,[Ei41, . . . , Ex]) succeeds. Then, the set Sy is
notempty. Therefore, the termination condition of Procedure 1 is violated.
{Contradiction,)

“Only if” part: Suppose [Eq,Ey, . . ] is a history that is not computed by
Procedure 1. Since Ej is computed, there exists some j, 0 < | such that [Ep,Ey, . . .,
Ej-1] is computed but E) is not. Butsince [Ey,Ey, . .., Ej] is causally sound, there
must also exist some i, 0 $1 £ j~ 1 such that causal_connection(E;[Eq, .. .,
Ei1}.EjlEj41, . .+, Bjq]) succeeds, Since [Eq,Ey, .. ] is a history, no event can
occur more than once in it, so E; cannot occur in (Eg,Ey, . .., Epq). In addition,
[E,..l,'E,] Is temporally ordered, so Ej belongs to the set S;.; in the procedure.

Since Sjis nonempty and E; is not computed (by assumption), there must be
another event F in S such that F is strictly earlier than E;. Since F belongs to
Sj-1, there must exist some m, 0 $ m <j such that:

(iv) causal_ connection(Em,[Eq, ... Em-1LF.[Em+1,. . ., Ej1]) succeeds,
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(v) [E,_l,F,EJ] is temporally ordered, with F strictly earlier than E;, and
(vi) F does not occur in [Ep, . . ., Ej].

However, this contradicts condition (a) for causal completeness of the history
EOIEII Ve (SeCtiO!'\ 5)1

Simulating the Railroad Crossing

We illustrate the above simulation procedure using the rail example from Section
4. We assume a velocity for the barrier of Vb = 10 (which was unspecified in
Section 4),

Let Eg=: start(0) occur as the inital event, Rule rail-1 matches Ep, producing the
set:

Zo = | start(engine(1),40,0,0) }

where the initial velocity of the engine (ve) is 40 and its initlal position (pe) i8 0.
The next event is therefore:

Ey= start(engine(1),40,0,0).

Now rules rail-2a and rail-2b each match E,, producing two sensed events. The
first of these, in which sensor(1) senses engine(1), will occur after engine(1) has
traveled from its starting position (which is 0) to the position 81 of sensor(1) at
the engine’s velocity (ve): It will, therefore, occur at time T = (81 -~ 0)/ve = 10/40
= 0.25. The second sensed event will occur when engine(1) reaches the position
52 of sensor(2), which will occur at T = (s2 - 0)/ ve = 40/40 = 1.0, producing:

3| = { sensed(engine(1),sensor(1),0.25), sensed(engine(1),sensor(2),1.0) .

Note that although causal_connection(Ey,(},E{,[E1]) succeeds by rule rail-1, Eq is
not a member of L) since it has already occurred. Therefore, the next event is:

E; = sensed(engine(1),sensor(1),0.25),

Proceeding in this way, we produce the following history (with comments in
italics):
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EO = start(0)

E1 = start(engine(1),40,0,0)

E2 = sensed(engine(1),sensor(1),0.25) (0.25 = (s1 - 0)/40)
E3 = start(barrier,close,0.25)

E4 = sensed(engine(1),sensor(2),1.0) (1.0 = (52 - 0)/40)
E5 = start(barrier,open,1.0)

E6 = end(barrier,open,1.75).

Note that at time 0.25, the barrier starts to close at velocity Vb = 10 (as specified
above); this should cause it to end closing at time 1.25, but the engine reaches the
position of the second sensor (s2) at time 1.0 before the barrier has fully closed.
Therefore, even though the event G = end(barrier,close,1.25) is potentially caused
by Es, its occurrence is preempted by E; = sensed(engine(1),sensor(2),1.0). That
is, causal_connection(E3,|Ep E1,Ba],G/[Eq)) does not succeed, since the presence of
E4 makes the last condition in the body of rule rail-5 false. Therefore G is not in
24 (or Zgor 2.g). Even though G is in 2y, it does not appear in the history
because E4 als»» appears in Z;, and since the time stamp of Ey is earlier than that
of G, it preemp:ta G,

Note that this aigorithm makes no use of devices such as event queues or
scheduling and unscheduling, which are the basis of the event-scheduling view
of the discrete-event tochnique [Evans, 1988]. The resulting simplification makes
reasoning about models considerably easier.

An Improved Procedure to Compute History

The above procedure is simple but quite inefficient. To compute the set Zi,, we
need to determine for each E; whether there exists F; such that
causal_connection(E,HE F|,HEF) succeeds. After E;,1 has been computed we
repeat this computation for all i, except i = m + 1, to determine Zm+1. [nother
words, we do not incrementally derive Zms1 from Zm.

This section develops an improved procedure that avoids such recomputation, It
maintains a queue of items, each of which consists of a potentially caused event,
E, with an associated “guard” condition: this guard condition applies to the time
period starting at the causing event and ending at the caused event (E). Itis
evaluated when the history up to the time stamp of E has been computed. If the
guard condition is true, the event E is recorded in the history, otherwise it is
discarded. This scheme allows the queue for the next cycle of this procedure to
be computed incrementally from the current queue.
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This procedure is similar in spirit to the traditional discrete-event simulation
procedure, which schedules and unschedules events on an event queue.
However, there are two fundamental differences. First, DMOD programs do not
manipulate the event queue at all, and (more generally) the simulation procedure
is invisible to the programmer, which eliminates large classes of potential bugs
(including explicit mismanagement of the event queue). Sccond, in the discrete-
event procedure, an event is unscheduled as soon as it is determined that it
cannot occur, In DMOD, unscheduling occurs only when the history up to the
time stamp on the event has been accumulated and the assoclated condition is
found to be false, The difference is between “looking forward” in the traditional
discrete-event procedure versus “looking backward” in DMOD, which is far
simpler,

The procedure is restricted to DMOD programs in which each causality rule can
be expressed in the form:

causal_connection(E,HE,R, HEF)
if connection_predicted(E,HEF),
prediction_unfalsified(E,HE,F,HEF),

This restriction does not lead to much loss of expressiveness. The rule states that
if, from the information up to E, a causal connection between E and F is predicted
and this prediction is unfalsified by information in HEF, then E is causally
connected to F in the context HE®[E]®HEF®[F]. This effectively divides the body
of a causal_connection rule into two parts, one to be evaluated from the past of E
and the other from the future of E.

Let P be a DMOD program in which each causal_connection rule can be
expressed in the above form. Then the following are both true:

(1) For any ground terms E and HE, the set of all ground terms F such that
connection_predicted(E,HE,F) succeeds is finite and can be computed in
finite time,

(2) For any ground terms E,HE,F,HEF, it is always possible to determine, in
finite time, whether prediction_unfalsified(E,HE,F,HEF) succeeds.

Using this approach requires retormulating the rules in the DMOD models
above. For example, rule rail-6 from the railroad crossing model above:




rail-6 causal_connection(E,HE,F,HEF)
if E = start(barrier,open,T),
F = end(barrier,open, T+TravelTime),
position(barrier,Position, HE®[E]),
velocity(barrier, Velocity, HES[L ),
travel_time(Position,bl,Velocity, TravelTime),
non_member(sensed(engine(?),sensor(1),?), HEF).

can be reformulated as:

causal_connection(E,HE,F, HEF)
if connection_predicted(E,HE,F),
prediction_unfalsified(E,HE,F,HEF).

connection_predicted(E,HE,F)
if E = start(barrier,open,T),
F w end(barrier,open, T+TravelTime),
position(barrier,Position, HE®[E}),
velocity(barrier, Velocity, HE®[E]),
travel_time(Position,bl,Velocity, TravelTime).

prediction_unfalsified(E,HE,F,HEF)
if Ewstart(barrier,oper,T),
F = end(barrier,open, T-+TravelTime),
non_member(sensed(engine(?),sensor(1),?), HEF),

We also assume that every DMOD program contains the “detault” rule:

default-rule causal_connection(E,HE,F,HEF)
if connection_predicted(E,HE,F),
prediction_unfalsified(8,HE,F,HEF).

Thia rule is needed because in the procedure below we would lLike to be able to
infer that for every E,HE,F,HEF, {f connection_predicted (E,HE,F) and
prediction_unfalsified(E,HE,F,HEF) both succeed, then causal_connection
(E,HE,F,HEF) succeeds. Without this default rule, we cannot always infer this,
even if all rules for causal_cunnection are of this form.

Notation convention: We use the lambda-notation for representing functions,
/in expression of the form Ax.E, where x is a variable and E is an expression,
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denotes a function of one argument. The result of applying it to a ground
expression arg, is the expression obtained by replacing x by arg in E. For
example, Ax.x > 0 denotes the function “is a positive number.” The result of
applying it to 1is 1> 0, which yields the value frue.

Procedure 2: For a DMOD program P with initial event Ej, first enter Eyin the
history. Let [Eg, ..., Ey] be the history computed up to some point of time. Let
Qm be a set of functions of the form M-IEF.prediction_unfalsiﬁed(E,HE,F,HEF)
where E,HE F arc all ground, but HEF is a variable. An item
AHEF.prediction_unfalsified(E,HE F,HEF) is in Qy if and only if there existsa i, 0 g
i S msuch that:

(a) E=Ejand HE = EgEy, ..., B\, and

(b) connection_predicted(E,HE,F) succeeds, and
(c) (EqvF] is temporally ordered, and

(d)  FdoesnotappearinEy,...,Eny,

Let Ry be the set of all events F such that AHEF prediction_unfalsified (E,HE,F,HEP) is in
Qm and succeeds with HEF m B}, .. ., Ep], where for some{,0<iSm, Em E, and HE
w (B ..., Ejv1]. Take Eqai to be an earliest event in Rpp. If Ry is empty, the algorithm
halts.

To compute Qm41, delete from Qp, the function from which Emq1 was derived, as
well as all functions AHEF.prediction_unfalsified (E,HE,F,HEF) such that
(Em«1,F1 is not temporally ordered, 'Then add to Qm all items
AHEF.prediction_unfalsified(Em.1,HEm41,Fms 1, HEF) where HEpmi1 =

(Eg, ., Eml, such that:

(h connection_predicted(Ey+1,HEm+1,Fm+1) succeeds, and
{if) (Em+1.Fm+1] is temporally ordered, and
(i) Pm4q does not appear in Ey By, . . ., Em«+1,

Note that connection_predicted is evaluated only for Emsy. All functions
contributed by Eqg, . . ., Eq, are already in Qp. 1, if not deleted above. Condition
(d) is enforced in two steps. Fisst, the function from which Em+1 I8 derived is
deleted, Second, no function generated by Ey.1 In which the caused event
already occurs in Ey, .. . , Epyq I8 included in Quyq. Therefore, Qm+) satisfles
conditions (a) through (d) above, Moreover, it is derived incrementally from Qp,
as we had desired.

The effectiveness of Procedure 2 can be proved in the same way as for Procedure
1. We now state and prove its correctness.
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Theorem 5.3, Soundness and completeness of improved procedure, IfPisa
DMOD program and Eg is an initial event, then a sequence of events [Ej,Ey, .. .]
is computed by Procedure 2 if and only if it is a history.

Proof: Suppose [Ep, . .., Em], m 2 0 has been computed. We show that the set
2 of Procedure 1 above is identical to the set Ry of Procedure 2. In both cases,
an earliest next event is computed as Ep41.

Let F; belong to Ry, Then by condition (d) above, F; is notequal to any E;, 0<i s
tn, and there exist |, { £ m and AHER.prediction_unfalsified (E),[Eg, . ..,
Ej-1),F,HEF) in Qm such that prediction_unfalsified (E;,(Ep, . .. , Eia)Fi [Eje1s .« o
Em]) succeeds. The membership of this function in Qy, implies that
connection_predicted(E; HE,,F)) also succeeds, and that [Ey,Fj is temporally
ordered. Therefore, by the default-rule for causal_connection (defined above,

p. 43), causal_connection(E, HE, F;,HEF) also succeeds, 8o F; belongs to X,

Let F; belong to zm Then it Is not equal to any E;, 0 £{ S m. Also [Ey, Fj]is
temporally ordered. Finally, there exist E;, HE; such that
causal_connection(E;,HE,F,HEF) succeeds where HE, = [Ey, .. ., E,.] and HEF
= [Ei41, .+ Em). Then connection_predicted (E; HE, F;) succeeds, by the
definition of causal_connection. Therefore, the function
AH.prediction_unfalsified(E, HE,F|,H) is in Qp. Again, by definition of
causal_connection, prediction_unfalsified(E; HE, B, [E};1, . . ., E,]) succeeds.
Therefore, F; belongs to Ry,
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6. Reasoning About DMOD Models

One of the main motivations for developing DMOD was to be able to reason
about models developed using the discrete-event technique. In this section we
present the general framework in which propositions about DMOD programs
can be expressed and proved, Although such propositions are in general
undecidable, we present two heuristics for guiding the search for proofs.

Properties of DMOD programs are expressed and proved at the “metalevel” of
DMOD, as will become apparent below. While one could prove arbitrary
properties about such programs, a natural class of properties is about their
histories. Let P be a DMOD program, and Ej a special initial event, Let
history(X) be an abbreviation for the conjunction of the following conditions:

(a) Xis a finite, or infinite, sequence of events with Eg as the first event
(b) Xis temporally ordered

(¢) Xis causally sound

(d) Xis causally complete.

Let r be a condition on sequences of events. Examples of r are “safety” and
“liveness” properties: Proving a safety property involves proving that some
undesirable condition can never occur in a system, whereas proving a liveness
property involves proving that some desirable condition will eventually occur
[Lamport, 1983).

To show that every history for P satisfies r, we would prove the metalevel
proposition:

VX [ history(X) = r(X) ]
whereas to show that some history satisfies r, we would prove:

3X | history(X) A r(X).

Despite the effectiveness restrictions on DMOD programs, such propositions are,
in general, undecidable, It is easy to model “terms” as events, “rewrite rules”
[O'Donnell, 1985] as causality rules, and “rewriting” as computation of histories.
Rewrite rules can model a Turing Machine, but the halting problem places limits
on what can be proved in this way.
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The ease with which such propositions can be proved depends, of course, on
theorem provers for the metalanguage of P in which these propositions are
formulated. However, we now show how the intuitive nature of causality and
the logic of definite clauses and SLD-resolution can be used to greatly simplify
the search for proofs of temporal properties. The fundamentals of SLD-
resolution can be found in Hill [1974] or in Lloyd [1984).

A Heuristic for Proving Properties

We now present a heuristic for proving safety properties, as discussed above,
This heuristic is based on the idea that causality provides a convenient way of
answering two basic questions: whether an event occurs and whether an event
does not occur,

Heurlstic: To show that an event occurs, we need show only that at least one of
its causes occurs; to show that a noninitial event does not occur, we need show
only that none of its causes occur (or, alternatively, that none of the events that
actually occur are its causes).

Since we have defined causality using definite clauses, these questions are
reduced to questions about the existence or nonexistence of successful SLD-
derivations. Such proofs have a simple structure, making it straightforward to
answer many such questions.

If temporal properties can be expressed in terms of questions about event
occurrences, then the above heuristic can be utilized. For example, one safety
property in the context of the railroad crossing model (above) might be “For
every T and X, if start(barrier,close,T) occurs then end(barrier,close,X) occurs,
such that X ~ T is less than some critical amount.” Similarly, the property that
the barrier velocity eventually becomes positive can be expressed as “For some X,
the event start(barrier,close,X) occurs.”

We now formalize this heuristic for our special view of causality,
causal_connection, by means of the following theorems at the metalevel of
DMOD programs.

Theorem 6.1. Every noninitial event has a cause. If P is a DMOD program and
EyEy, ... s a history computed from P, then:

Vk[(k>0o3i | i < k A causal_connection(E;,[Ep,Eq, . . ., B Ex[Eists + -+ + + Exetl)
succeeds).
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Proof: Direct, from causal soundness of history.

Theorem 6.2, If an event does not occur, then it must not have a cause. IfPisa
DMOD program and H = E,Ey, . . . is a history computed from P, F is an event
not occurring in H, and Ey is the last event in H such that (Ey F] is temporally
ordered. Then:

—-31|0 <1 Sk A causal_connection(Ey, [Eg,E1, . . ., Eci). BAEi+1, . - -, Exl)
succeeds.

Proof: Direct, from causal-completeness of history.

To show that an event F does not occur in a history, assume that it does, Then,
by Theorem 6.1, there must be an event E prior to F in the history such that it is
possible to show, by SLD-resolution, that E is causally connected to F, Again,
Theorem 6.1 can be applied to infer the existence of an event G, prior to E, such
that it is possible to show by SLD-resolution that G is causally connected to E. In
this way, generate a “backward causality chain” untii a contradiction is derived.

Second, to show that an event F occurs in a history, assume it does not. Then, hy
Theorem 6.2, there can be no event E strictly earlier than F in the history, for
which it is possible to show (by SLD-resolution) that E is causally connected to F.
Show that at least one such event exists, thereby deriving a contradiction.

Example 1

In the railroad crossing example of Section 5, suppose the engine were to send a
signal to a satellite every microsecond reporting its position. This could be
represented by the following causality rules:

causal_connection(start(0),?,tell_satellite(engine(1),Position,0),?)
if  position(engine(1),Position,[start(0)]).

causal_connection(E,HE,I HEF)
if  E = tell_satellite(engine(X),?,T),
F = tell_satellite(engine(X),Position, T+Delay),
position(engine(X),Position, HE®[E]® HEF®([F]),
loop_delay(Delay).

loop_delay(10” - 6).
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The first rule says that the initial event causes engine(1) to tell the satellite its
position immediately after the initial event. The second rule says that when
engine(X) tells its position at T, it tells its position again at T+Delay. The third
clause fixes Delay to be 1 microsecond.

Now, suppose we wanted to show that the event sensed(engine(1),sensor(2),1.0)
occurs in each history of the system. We could, of course, generate all histories of
the system up to time 1.0 and check whether this event occurs, but every such
history would contain a million events of the engine transmitting its position to
the satellite, and each of these events is irrelevant to the sensing of engiiie(1) by
sensor(2),

We now show huw the occurrence of this event can be proved, quite succinctly,
using the above heuristic. Basically, we show that sensing is caused by an engine
starting to move. In turn this is caused by the Initial event. No consideration is
given to communication events,

Notation convention. When we say an event E occurs, we mean that E occurs in
every history of the model with initial event start(0). (The model here consists of
the DMOD program for the railroad crossing presented in Section 4, augmented
with the above three clauses to represent engine-to-satellite communication.)

Lemma 6.1. The event E = st::i(engine(1),40,0,0) occurs.

Proof: Suppose E does not occur. Let Eq = start(0), H = [Eq, . . ., E,;] be a history
for P, and Fy the last ¢vent in H such that [Ey,E] is temporally ordered. By
Theorem 6.2, there does not exist i, i < k such that causal_connection(E;,[Eo.Ey, ...,
Ej-1)JE/(Ei+1, . . ., EK]) succeeds. However, by rule rail-1, we have the successful
SLD-derivation:

{causal_connection(start(0),[] start(engine(1),40,0,0),[e2, . . ., ek])).

(Contradiction.)
Proposition 6.1. The event E = sensed(engine(1) ~2nsor(2),1.0) occurs.

Proof: Supposc E does not occur. Let Eg = start(0), H = [Ep, . . ., Ey] be a history
for P, and Ej the last event in H such that [Ey,E] is temporally ordered. By
Theorem 6.2, there does not @ ti,i < k such that causal_connection(E;,[Eg.Ey, . . .,
Ei-1)lE/[Ew1. .., Ex]) succeeds.

By Lemma 6.1, we infer that start(engine(1),40,0,0) occurs. Let this be E;.
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Since E; is strictly earlier than E, there is no successful SLD-derivation starting at
causal_connection (E,[EqEy, . .., Ei-1], EAEis1, .. ., Ek]). However, this matches
rule rail-2b to yield the successful SLD-derivation:

{start(engine(1),40,0,0) = start(engine(X),Velocity,Position,T),
sensed(engine(1),sensor(2),1.0) =
sensed(engine(1),sensor(2), T+TravelTime),

TravelTime = (40 ~ Position)/Velocity}

{sensed(engine(1),sensor(2),1.0) = sensed(engine(1),sensor(2),TravelTime),
TravelTime = (40 - 0)/40}

{1.0 = (40 - 0)/40}
(Contradiction.)

This proves the desired result, i.e., that the event sensed(engine(1),sensor(2),1.0)
occurs.

Example 2

We now prove that the event end(barrier,close,1.25) does not occur. Thisis
somewhat trickier than the previous example since it involves event preemption.

Lemma 6.2, The event sensed(engine(1),sensor(1),0.25) occurs.
Froof: Identical to that of Lemma 6.1, but using rule rail-2a.

Lemma 6.3. The event start(barrier,close,0.25) occurs.

Proof: Similar to that of Lemma 6.1 but usiny rule rail-3.

Lemma 6.4. If the event E = start(engine(1),40,0,X) occurs then X = 0.

Proof: Suppose E occurs. If Ey = start(0) and H = [Ey, . . ., E] is a history for P,
let E = Ey. Then, by Theorem 6.1, there must exist some i, 0< i < k such that
causal_connection(E;,[Ey, . . ., Ei<1).Ex[Eis1, + . - , Ek-1]) succeeds. Because of the
form of Ex and of rules in P, the only successful derivation can be obtained from
rule rail-1. There is one such successful derivation, which ylelds X = 0.

Lemma 6.5. If the event E = start(barrier,close,X) occurs then X = ().25.
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Proof: Analogous to Lemma 6.4: Using rule rail-2a, first show that if
sensed(engine(1),sensor(1),X) occurs then X = 0.25. Then using rule rail-3
similarly proves the lemma.

Proposition 6.2. The event E = end(barrier,close,1.25) does not occur,

Proof: Suppose E occurs. Let Eq = start(0), H = [Ey, ..., Ep] be a history for P
and let E = Ey, Then by Theorem 6.1, there must exist some i, 0 i < k such that
causal_connection(Ey[Eq, . . . , Ei<1)Ex[Ei+1/ + + + » Ex~1]) succeeds.

Because of the form of Ey and of rules in P, the only successful derivation can be
obtained from rule rail-5, Therefore, there must be a successful SLD-derivation
starting at:

{E; = start(barrier,close,T),
end(barrier,close,1,25) = end(barrier close, T+Travel Tims),
position(barrier,Position,[Ey, . . ., E{l),
velocity(barrier,Velocity,[Eg, . . ., Ej),
TravelTime = (b2 -~ Position)/Velocity,
non_member(sensed(engine(?),sensor(2),?),HEF)}

By Lemma 6.5, T = 0.25. HEF is a sequence of events in the history whose first
event has time stamp greater than or equal to 0.25 and whose last event has time
stamp less than or equal to 1.25. By Proposition 6.1 sensed(engine(1),sensor(2),1.0)
is in the history. Since 0.25 £ 1.0 £ 1.25, this event is in HEP. However, now, the
last condition in the goal cannot succeed, producing a contradiction that proves
Proposition 6.2.
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7. Relationship with Previous Work

Event Scheduling View of the Discrete-Event
Technique

DMOD was the result of an attempt to provide a logical basis for the widely used
event-scheduling view of the discrete-event modeling technique (Fishman, 1973;
Zeigler, 1984; Evans, 1988; IEEE, 1989). Without such a basis, it is quite difficult
to reason about discrete-event models,

The event-scheduling approach to discrete-event modeling maintains a clock and
a central queue of time-stamped events, When an event occurs, the clock time iy
advanced to be the time atamp on this event, and the system state is updated to
correspond to this time. All events that the occurring event can possibly cause
are then scheduled (inserted) into an event queue. All events in the queue that
the occurring event precludes are unscheduled (deleted) from the event queue.
The next occurring event is taken to be the one with the earliest time stamp. A
discrete-event model specifies the scheduling and unscheduling relationships
between events as well as how state is updated when events occur.

The logical meaning of scheduling and unscheduling is, however, far from
obvious. “E schedules F” cannot be taken to mean “E causes F.” If this were so,
then if E occurred, so would F. There would be no possibility of unscheduling F.
Therefore, “E schedules F” and “G unschedules F” can be taken to mean “E
causes F provided G does not occur in between.” The attempt to formalize this
idea led us to the difficulties discussed in Section 3, whereas the attempt to solve
these difficulties led to the concept of causal connection presented above.

Other Work

Many temporal formalisms view systems as transitioning from one discrete state
to another. This view can be inappropriate when continuous parameters are
involved. For example, it is impossible to write a state-transition function
defining the next position of a moving object. One approach would be to regard
the phases of a hybrid systein as higher-level states, and thereby still regard these
as state-transition systems. But if it is natural to regard continuous parameters as
part of the state, then this would require distinguishing between parameters for
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which state-transition functions can and cannot be written. This would be quite
awkward in practice.

DMOD adopts the “event-occurrence” view of systems. It assumes that the
behavior of a system can be recovered from its history. It provides a way of
expressing how events occur by means of causality and definite clauses, Perhaps
the most important feature of DMOD is its ability to model-—in a logical but
computationally tractable manner—the way the effects of events depend on their
future, in continuous time. A special case of this phenomenon is event
preemption, which has been discussed above: It is useful for modeling hybrid as
well as discrete systems,

There appear to be few systems in which event preemption is modeled in a
formal way. One example is Petri Nets [Peterson, 1977] with inhibitor arcs.
DMOD is, perhaps, more expressive due to its basis in definite clauses. Another
example is the L.0 language [Cameron et al.,, 1990; Ness, 1990}, in which cause-
effect rules using the “until” operator can be utilized. However, unlike DMOD,
only discrete time is modeled in L.0. This allows the L.0 interpreter to iterate
over each point of time in an interval to check whether a preemption condition is
satisfied in it. As discussed above, this approach does not work when time is
continuous,

Temporal Logic [Pnueli, 1977; Manna & Pnueli, 1981) is derived from full first-
order logic by disallowing explicit mention of time. This simplifies the logic but
keeps it expressive enough for stucdying a wide range of systems, such as non-
real-time concurrent programs. Of course, it is not possible to use it to model
systems such as those we considered, in which precise timing information needs
to be expressed. Attempts to introduce explicit time into Temporal Logic are
described in Ostroff [1989] and Alur et al. [1990). The first two of these attempts
are intended only for discrete time, so they cannot be used for hybrid systems;
the last is interpreted over continuous time, but it is still restricted to specifying
only fixed temporal bounds.

DMOD suggests an alternative way to avoid the use of full first-order logic to
model temporal knowledge. It shows how to do this using a relatively tractable
subset of full first-order logic, namely, the logic of definite clauses.

The event occurrence view is also taken by Inan & Varaiya [1987]. Processes are
described by means of recursion equations, and an algebra of processes is
presented. However, event preemption does not seem to be discussed.
Sandewall [1989] models hybrid systems using full first-order logic, and
McDermott [1982] presents a logic for reasoning about hybrid systems. Many
axioms about causality are presented in the literature, but there {s not much
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discussion of the computational issue of how causality is to be inferred from
these axioms. DMOD has attempted to resolve these issues.

Kowalski & Sergot [1986] and Kowalski [1986] have proposed a definite clause-
based event calculus for the purpose of assimilating narratives. Given an account
of what events occurred, it can be employed to determine what relationships
hold over what periods of time. Therefore, their ideas can be employed for
analyzing DMOD histories. However, the calculus does not discuss event
preemption. The logic of Allen [1984] also does not discuss such a mechanism,

Qualitative Reasoning [Kuipers, 1986; de Kleer & Brown, 1984; Forbus, 1984)
proposes qualitative discretization of real-valued spaces over which continuous
parameters normally range, For example, temperature may range over the set
{low, medium, high}. It further proposes reconstruction of tools of traditional
mathematics, such as differential equations for discrete spaces. However, by its
very nature, it does not seem appropriate when exact predictions need to be
made.
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8. Current Status and Future Directions

As discussed above, the DMOD formalism is an alternative to the object-oriented
simulation approach pioneered at RAND and elsewhere. DMOD facilitates
building models that answer questions beyond “What if .. 7" The feasibility of
this approach was initially demonstrated by building a logistics model that
reproduced the important features of an existing object-oriented simulation of a
corps-sized distribution environment (the Wartime Theater Ammunition
Distribution System, WTADS [Schank et al., 1990]).

The DMOD formalism has subsequently been refined and extended in a number
of ways and has been used to produce an initial prototype strategic mobility
model (SMM) with a number of novel properties, This initial version of SMM
consists of a basic model of the physical aspects of a strategic mobility
environment plus an embryonic model of management policies. This model is
designed as an integrated simulation and planning model that facilitates the use
of simulatior: in plan evaluation, construction, and modification and supports a
number of “Beyond What if . .. 7” cupabilities. All aspects of the model are
defined declaratively in terms of causal relationships among events and the
objects that participate in those events. The management policy submodel, while
relatively minimal, is appropriately encapsulated to distinguish between physical
causes and causes resulting from human decisionmaking,

The DMOD models implemented to date allow tracing causal chains, both
forward and backward, both in a concrete history (i.e,, finding which events
actually caused which others in a given simulation run) and (with some
restrictions) in the abstract (i.e,, finding which events can cause which others in a
model). DMOD also provides a novel analytic capability for answering
unanticipated (ad hoc) queries without reinstrumenting or rerunning a
simulation. That Is, questions can be asked about state parameters that were not
even defined when a simulation was run; such questions can be anawered on the
order of 60 times faster than rerunning the simulation after reinstrumenting it. In
addition, DMOD provides a novel capability for direct, interactive validation, in
which the user witnesses causal relationships and their effects directly as a mode!
rung, rather than having to infer them from the model’s behavior. This helps
domain experts and analysts understand the behavior of the model without
having to understand its implementation.
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A number of heuristics have been developed for reasoning about DMOD models,
as required to answer questions “Beyond What if. .. ?” The most promising of
these have been implemented in the evolving SMM prototype to produce and
analyze abstract causal chains end plans; the SMM protolype is capable of
producing simple, partially instantiated plans. This work is open-ended and
ongoing; it promises to be highly relevant to the kinds of long-range questions
asked by strategic mobility planners. In conjunction with other projects at
RAND, the RASL project has brought this work to the attention of the Logistics
Directorate of the Joint Staff, which has expressed considerable interest in the
potential use of these techniques In studies such as the Mobility Requirements

Study.
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