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1. INTRODUCTION

One of the standard approaches for calculating electromagnetic
scattering from inhomogeneous bodies involves using the method of
moments applied to the volume integral equation [1]-[3]. During the
past decades, numerous researchers have been unsuccessful in their
efforts to obtain an accurate solution, in particular, for problems that
involve large bodies with large dielectric constants. In recent years,
some researchers have been able to obtain an accurate solution with
somewhat sophisticated basis functions - such as rooftop, tetrahedral
and polygonal functions [4]-[7] - instead of the traditional simple pulse
basis functions. However, the program becomes more complex and
the number of cells required per wavelength remains large.

In this report, we propose an alternative formulation for the
volume integral equation [8]. This new formulation involves both the
volume and surface integrals but unlike Jin, Liepa and Tai's volume-
surface integral equation [9], it is applicable to three dimensional
problems. There is no double derivative operating on the kernel inside
this new volume-surface integral equation so that it is less singular
than the volume integral equation. In addition, it can be solved using
simple pulse basis functions and point matching. Numerically, it is
more efficient than the original volume integral equation [10]-[ 11 ].

We began the task by applying the newly derived volume-
surface integral equation to the computation of electromagnetic
scattering from dielectric cylinders. We formulated the new volume-
surface integral equation numerically, and tested the validity of the
new computer code by comparing with the results of both the original
volume integral equation and a surface integral equation.



Initially, the volume-surface integral equation was discretized as
follows. The volume integral was divided into small square cells (in
the case of cylinder) with the equivalent current assumed constant
throughout each cell. The surface integral in the equation was divided
into small segments with the current assumed constant within each
segment. When a segment was also part of a cell, the current was
assumed to be the same in the cell as well as in the segment.
However, this procedure produced inaccurate results. We then
allowed the currents in the cells and in the segment to have
independent values. This numerical scheme proved more accurate for
the bistatic scattering from square cylinders. Point matching was used
throughout.

Our next step involved the special treatment of the bordering
cells. Specifically, when the source point is in the cell and the
observation points are in the bordering segment within the same cell,
the Green's function in the volume integral term was integrated
analytically. In addition, we integrated the volume integral term for all
the cells quite precisely. Instead of approximating the Green's
function by its value at the center of each cell, we integrated the
Green's function accurately by converting the volume integral into a
surface integral over each cell. With this special treatment of the
bordering cells and the accurate integration of the volume integral
terms, we hoped to achieve higher accuracy. We then compared the
computed bistatic scattering for the dielectric square cylinder to that
obtained from the surface integral method by using the program
CICERO from McDonnell Douglas Corporation. Results indicated
that there is negligible difference in performance between using this
more sophisticated numerical treatment and the volume-surface
integral equation method with no treatment (see Fig. 1). The two
methods agreed favorably with the results of the CICERO program for
all frequencies.
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Fig. 1 Forward scattering from a dielectric square cylinder with
relative permittivity Er = 4, n/• = 10, TE polarization.
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To test the validity of the new volume-surface integral equation
program, extensive numerical experimentation was done. As a
preliminary step, we compared our computed bistatic scattering for the
dielectric lossy square cylinder with the scattering computed from the
CICERO program for different relative permittivities and cylinder
sizes. Unlike the initial volume integral equation, this alternate
equation gave results that coincided with those of the CICERO
program. These consistent results indicate that the new volume-
surface integral equation performs much better than the original
volume integral equation.

Our final test involved the computation of scattering from
dielectric cylinders with large relative permittivity. We solved our
volume-surface integral equation for the case of the square cylinder
with a complex relative permittivity (er = 72 + il 61.85248) in order to
compare with the results of Borup, Sullivan and Gandhi [12], who
used the traditional volume integral equation. Our results attained
greater accuracy with 12 cells per dielectric wavelength than Gandhi's
method with 28 cells per dielectric wavelength. The wavelength in the

dielectric was computed as X,,/ .Fir Unfortunately, the results

indicated that there is still about a 2 dB difference for forward and
back scattering from square cylinders when compared with the surface
integral equation method (see Fig. 14).

The transverse currents (J, and Jy ) along the edges change very

rapidly. We thought that this may be an indication that our
assumption of constant current along the segments is not a good
approximation. We tried the revised approach of using a linear
approximation for currents along the segments, and integrating along
the transverse self-segment more accurately. Nevertheless, even with
this more accurate formulation, the results remained the same.

4



One of the more ir:.portant factors that influence the original
volume integral equation is the edge current effect for high dielectric,
small bodies. Consider the case of electromagnetic scattering from a
small rectangular dielectric cylinder of relative permittivity F, = 72,
and kob = nr/10 (ko is the free space wave number, and b is one half
side length of the square cylinder). Our results show that the currents
near the edges change very rapidly. Even if the cylinder's size may be
small, the rapid changes of the currents around the edges cannot be
detected unless we use very fine cell sizes on the order of n/Xd = 30,
where nl•/d is the number of cells per Jielectric wavelength. The
coarse discretization of the edge currents may be the reason why there
is a 2 dB difference in Fig. 14 between the results of the new volume-
surface integral equation and the results of the surface integral
equation. In order to minimize the dimension of the cells, our new
scheme involves maintaining the same cell size throughout the center
of the body while discretizing the cells more finely near the edges for
small bodies with high dielectric constants. This procedure produced
higher accuracy than the volume-surface integral equation without
finer discretization near the boundary cells. With finer discretization
near the border of the scatterer, much fewer cells per wavelength were
needed overall to achieve much greater accuracy than with the original
volume integral equation (using pulse basis functions and point
matching).

5



2. VOLUME-SURFACE INTEGRAL EQUATION

2.1 Three-Dimensional Volume-Surface Integral Equation

Consider electromagnetic wave scattering from an
inhomogeneous scatterer with complex relative permittivity er (see

Fig. 2). The electric-field volume integral equation can be written in
the form [13]

EinC(r)= Et°Oa(r)+ k lim r J(r').'Ge(rr')dv' ,.J(r) (1)
0 V-V0

where

J ="E4 = [a- i0(- e.o)]E°'Ofd (2)

etikor-r'l

ko= co•,i•LoF wave number in free space (4)

o =24f angular frequency. (5)

The permittivity in free space is denoted as Co. r and r' are the source

and observation position vectors. 7 is the unit dyadic and L8 is the

source dyadic which depends on the geometry of the principal volume

V8 which becomes infinitesimally small as the chord length 8

approaches zero, and finally, V denotes the volume of the scatterer.

6



The procedure in this formulation is based on volume
discretizations of the volume integral equation with pulse basis
functions and point matching. However, for 3-D problems as well as
2-D problems for TE polarization of bistatic scattering from high
dielectric bodies, substantial inaccuracies are observed. Recently,
Zwamborn and van den Berg [14]-[15] have been successful in
obtaining an accurate solution using different testing and expansion
functions instead of the simpler basis functions. However, the
program becomes more complex and the number of cells required
remains large.

Volume-surface integral equations for inhomogeneous cylinders
were first presented by Jin, Liepa and Tai. In their paper, they were
successful in obtaining an accurate solution using simple pulse basis
functions and point matching. However, their formulation cannot be
applied to three dimensional problems. Recently, Wust et al. [16]
have developed a new volume-surface integral equation for the
calculation of 3-dimensional ele..-.tromagnetic fields problems.
However, their formulation is not applicable to continuously varying
inhomogeneous bodies or to observation points that approach the
surface. For these reasons, we develop an alternative volume-surface
integral equation for three dimensional inhomogeneous bodies.

Let us begin with an alternative form of the volume-surface
integral equation

E"'c(r) =E '+ JJJ[koj(r')Wv(r-r')- V'.J(r')'V'xy(r,r')]dv'. (6)

By using the relation between the divergence of the polarization
current and the gradient of the relative permittivity as derived in [8],

7
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Fig. 2 Electromagnetic scattering from a dielectric body.
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V. J r) = io .V-r J(r) (7)

and by evaluating both the volume integral and the surface integral
just inside the dielectric interface of the body, a new formulation of
the volume-surface integral equation is obtained:

EIIW(r)= J(r)+ jjj[kJ(r'),V(r,r')+ iOxO V' Fr .J(r' )V'# (r,r')]dv'T iOXo v- "T Er

+ i-(OC fS_ n .J (r' )V'(r,r' )ds' (8)

xV(r ,r') =,eir-l for three dimensions (9)4ntlr - r'l

where Er is the relative permittivity of the body, and n^ is the unit
normal. V and s- denotes the volume and surface just inside the
dielectric interface.

The application of the method of moments to Eq. 8 involves
evaluating both the volume integral and the surface integrals just
inside the dielectric interface of the body. Using pulse basis functions
and point matching, thie source and observation points are chosen to be
inside the volume as well on the surface just inside the dielectric
interface. However, by letting the observation point approach the
surface from the inside of the dielectric, the surface integral in the
volume-surface integral equation can be computed very accurately
[17] by transforming it into a surface principal value integral of
Eq. 10. The last term of this integral equation is the term that arises
by letting the observation point approach the source point in the
surface integral. Eq. 8 is valid for both the observation point inside

9



the volume and as the observation point approaches the surface.
However, Eq. 10 is valid and preferable to Eq. 8 for an observation
point on the surface.

Ee(r)=--J(r) + _1•J[k°J(r')W(rr')+ ioeo T'Fr.. J(r')V'1(r.r')]dv'
T iOXo V_ T Er

+ 1 _-_. , J(r')V'xV(r,r')ds, (J1(r)

iO s 2icoe . (10)

The kernels of these new volume-surface integral equations are
less singular than the original integral equation because they do not
require the computation of the double derivative (VVN,) in the highly
singular dyadic Green's function of the original equation (Eq. 1).
Moreover, when applying the MOM with pulse basis functions and
point matching to the original volume integral equation, as discussed
by Peterson [18], the treatment of surface charge densities is not
properly addressed, and as a result, fictitious charge layers are present
at every cell boundary leading to inaccurate results. Our new volume-
surface integral equations involve only the scalar free-space Green's
function and its gradient which are less singular than the dyadic
Green's function of the original volume-surface integral equation
(Eq. 1). It, therefore, does not encounter these fictitious charge layers.

10



2.2 Two-Dimensional Volume-Surface Integral Equation

For two dimensional problems, the volume-surface integral
equation has the same form, except the volume integral becomes a
surface integral and the surface integral becomes a line integral. In
addition, the free space Green's function now becomes a Hankel
function. The two-dimensional form of the volume-surface integral
equation corresponding to Eq.(8) can be written as

= -- 1 !k

E'ne J(t) +1 2E•,C~~t) Jk) -- J(t')W(t,t')ds'

T iOeo _

+ff V'Fr JW)t')V'W(t,,t,)ds,0s- £

+• c • .Ji(t' )V' (t,t' )dt'. (11)
ioxe0

Similarly, for observation points approaching the dielectric boundary,
from the inside of the scatterers, Eq. 11 becomes

E'nc J(t) + -fk~o j(t,)W(t,,t,)ds,

S-+ffj V'F-r JWt)V#AV(t,t,)ds,

s- Cr 1

1 A J(t')V'(t,t')dt' Jn(t)h (12)

io)oC 2ioxo

where

i H(')(kk-t'I) for two dimensions (13)
4 1



and H•0) is the zeroth order Hankel function of the first kind, t and t'
are the source and observation position vectors for two dimensional
problems.

For homogeneous cylinders, the third term on the right side of
Eq. 11 vanishes and it simplifies to

EMIC ~~~+ 0 f i')()( ')s

+ fc_ n. J(t')V' Hol)(kolt - t'j)dt'. (14)

Similarly, for homogeneous cylinders, the third term on the right side
of Eq. 12 vanishes, and we have

EWC (t) + L_+! ff J(t,)Ho')(t,t')ds'
t 4

+ 1 ffiJ(t1)V'H)')(k0 It-I)dtP

•.n - (~ (15)
2iwco

Using Eqs. (14)-(15), we are able to compute the bistatic
scattering problems for two-dimensional homogeneous problems using
pulse basis functions and point matching. Eqs. (11)-(12) and
Eqs.(14)-(15) are valid for both TE and TM polarizations. In the TM
case, the current density J has only a z component and thus the ^- J
terms all disappear in these equations leaving a TM equation identical
to the original TM volume integral equation. An additional line
integral in Eqs. (11)-(12) and Eqs. (14)-(15) replaces the highly
singular part of the original volume integral equation making this new
volume-surface integral equation much better conditioned.

12



2.3 Scattering from Dielectric Cylinders

In applying the MOM to the volume-surface integral equation
using simple pulse basis functions and point matching, we assumed
that both the electric field and the dielectric properties are constant in
each cell. Commonly, the Green's function is evaluated at the center
of each cell. In other words, there is one center point for each non-self
cell calculation.

For two-dimensional electromagnetic scattering from dielectric
cylinders, we divided the cylinder into small square cells for the
surface and small line segments for the edges. Currents are assumed
to be constant within each cell as well as within each segment. Both
the currents in the cells as well as in the segments are assumed to have
independent values even though the segments are also part of the cells.

Consider the problem of scattering from a square dielectric
cylinder (Fig. 3). The square dielectric cylinder is divided into equal
size square cells with the bordering segment the same length as the
length of each cell. Suppose the dielectric square cylinder is
illuminated by a time-harmonic electromagnetic field with time
dependence e-i". Using the pulse basis functions and point matching
method, the incident field for observation points in the surface
becomes

Einc J(i) J1, ) + , XJ(tj)H')(k0I(t,-tjl)As, -4 j=l,j~i

+ _00J(ti) 0 As + O J(t) )4kor" Woo

I M+- Y n-J(tl)V' H(') (ko (ti - t11)AI
3(16)

13
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Fig. 3 Scattering from dielectric square cylinder.
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where r"= (17)

As denotes the. area of the cells, and Al denotes the length of the
segment of the body. The subscripts i, j and I denote the observation
point, the source point in the cell and the source point in the segment,
respectively.

For observation points on the boundary we have

(t) J(tj+)H( (ko(ti -t)
t 4 j=1

l M
E " J(tl)V' 'I(kol(ti - tjI)A1

4oo1=1,I*i
n0d^

-At A~) (18)
2ico 0

The x component of the incident field when the observation
point is in the surface is given by

N

inc(ti) - Jx(ti) + "oXJ0(tj)H4)(kI(t -tjI)As4T (tx) +t:
t 4 jf=l,ji

cop.0  2H~')(kor'') i

+Co JX(ti) k" As + - JX(ti)4 kor" (OXo

4

+ 40 1=1n (x.i _ X1) H5,)(kol(ti _tj )l.(14ko 't=,•" Jtt"Iti - til

15



Using Eq. 18, when the observation point is in the boundary, the
x component of the incident field is

N

E, (ti) - + JtH ti-"It -4 Y,.= jHO'~~~j j)&

l Jlloe "x H()( -t t

40 .=,* Jkt )(fa 1 0

A J(t)i) (20)
2iMo

Similarly, the y components of the incident fields when the
observation points are in the surface and in the segment are shown in
Eqs. 21 and 22 respectively.

N
Eyinc tit Jy (t!)oA-

._i)= - Jy (tj ) H(o')(ko I(ti -tj I)As
"[ --4 j=],j~ei

2H,(')(kor"'), _
+0°*t Jy(ti) As+ y(ti)

4 kor" OX0

+O)t° .•Jutl)(,i-)Hj(')(kOj(ti -tjj)Al (21)

4k1

16



and

J((t,)= N

4 j=4

40t (O M (yi __tl_

S.n J(ti)(^ .• (22)

2ioeo

This new volume-surface integral equation can be written in
terms of two separate matrix equations, to evaluate the polarization
current J on the surface as well as on the segment.

E,'c surface = [Znn ][Jn, ]surface + [Zm ][Jm ],segment (23)

[E ic segment = [Zm, ][Jmn ]surfae + [Zirj]mm ],ement (24)

Separating the x and y components of the incident field
(see Eqs. 20-22), the matrix equation can be rewritten as

Eawfce Inc Zw Zij+N ZJ+2N ZJ+2N+M J•=c

EI + . Zi+N,j Zi+NJ+N Zi+NJ+2N Zi+NJ+2N+M Yjy+Ne
Exl 1'"0 zI+2N.j zI+2N.J+N zi+2N.•÷ Zi+2N+.,J+2N+M JgN

in Zj 70segmentL+2N+M aZ+2N+M,J Zi+2N+MJ+N Zi+2N+M,J+*2N+M eYj÷2N.•

(25)

17



where n =1, 2 .... N, and m= 1, 2 ..... ,M9

N = total number of cells on the surface,
M = total number of divisions on the line segment,
i = source point,
j = observation point on the body.

The evaluation of the polarization currents in the volume-surface
integral equation can now be performed by solving this matrix
equation using Gaussian elimination techniques.

18



3. NUMERICAL RESULTS

Extensive numerical experimentation was performed to
determine the accuracy of this new volume-surface integral equation.
The results of far field scattering from homogeneous dielectric square
cylinders are compared first with the results from the original volume
integral equation, and then with those obtained by a surface integral
equation. The dielectric square cylinders were tested with different
dielectric constants, varying sizes, and for cases when losses were
present.

Fig. 4 shows the back scattering from a dielectric square cylinder
versus kob where k0 is the wave number in free space, and b is half the
side of the square cylinder. The relative permittivity er is 10 and the
number of cells per dielectric wavelength n/Xkd is 12, for TE
polarization. We set the relative permittivity to be 10 in order to
examine if the revised volume-surface integral works well for large
values of kob. From the figure, it can be observed that the volume
integral equation curve corresponds well with the surface integral
equation curve for values of kob less than 1.7. Beyond kob = 1.7, the
volume integral curve diverges from the other two curves. On the
other hand, our newly formulated volume-surface integral curve
matches closely with the surface integral curve for all values of kob.
This preliminary result has demonstrated that the volume-surface
integral equation gives improved results over the original volume
integral equation for larger values of kb.

At kob= 2, the behavior of the volume integral equation is
compared with that of the new volume-surface integral equation and
the surface integral equation by plotting the bistatic scattering from a
dielectric square cylinder of relative permittivity 10 for TE

19
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Fig. 4 Back scattering from a long dielectric square cylinder with
relative permittivity Fr = 10, n/Xkd = 12, TE polarization.
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Fig. 5 Bistatic scattering from a long dielectric square cylinder
with relative permittivity er =10, nl/Xd =12, kob =2,
TE polarization.
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polarization. Looking at Fig. 5, it is observed that even though the
volume integral equation curve matched closely the two other curves
at 0° back scattering, and 1800 forward scattering, it is still appreciably
different from the other two curves at all other angles. This confirms
that the volume integral equation does not work for large values of
kob. The volume-surface integi~d curve matched closely with the
surface integral equation curve for all angles. This excellent
performance is again strong indication that the volume-surface integral
equation is superior to the original volume integral equation.

Our next step involved testing dielectric lossy square cylinders
to ensure that the volume-surface integral equation worked for both
lossless and lossy cases. Shown in Figs. 6-9 are the results of bistatic
scattering from a dielectric lossy square cylinder versus the amount of
loss in terms of (ia/c0,,) for TE polarization, with the relative
permittivity set to 10 and the cylinder's size (kob) set equal to 1 and 2,
respectively. The results from our revised volume-surface integral
equation method compared favorably with the results of the surface
integral equation method (program Cicero from McDonnell Douglas
Corporation).

We also tested the validity of the volume-surface integral
equation by setting the losses on the cylinder constant and varying the
values of kob which may be accomplished by either keeping the
frequency constant and varying the size of the cylinder or by varying
the frequency applied and keeping the size of the cylinder constant.
We chose two values for the relative permittivity, er = 10+ il.0 and

Er = 10 + i2.0, for our test. The bistatic scattering from the dielectric
lossly square cylinder versus the values of kob for TE polarization are
shown in Figs 10-13. The results obtained from the volume-surface
integral equation agree excellently with the curve from the surface
integral equation method. The forward scattering from the dielectric
lossly square cylinders is shown in Figs. 10- 11, and the back scattering
is shown in Figs. 12 -13.

22
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Fig. 6 Forward scattering from a long dielectric square cylinder
versus (ia/ox.), with relative permittivity Er = 10,
kob =1, n[/d = 12, TE polarization.
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Fig. 7 Back scattering from a long dielectric square cylinder
versus (iaT/oeo), with relative permittivity F, =10,
k0b = 1, nflkd = 12, TE polarization.
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Fig. 8 Forward scattering from a long dielectric square cylinder
versus (id/lexo), with relative permittivity e, =10,
kob = 2, nlXd = 12, TE polarization.
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Fig. 9 Back scattering from a long dielectric square cylinder
versus (ia/oxe0 ), with relative permittivity E,. =10,
kob = 2, n/¼d = 12, TE polarization.
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Fig. 10. Forward scattering from a long dielectric square cylinder
versus kob with relative permittivity er = 10+ il.0,
nflkd = 12, TE polarization.
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Fig. 11. Forward Scattering from a long dielectric square cylinder
versus kob with relative permittivity e,.=10+i2.0,
n/lXd = 12, TE polarization.
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Fig. 12. Back scattering from a long dielectric square cylinder
versus kob with relative permittivity F-,= 10+ il.0,
n/,d = 12, TE polarization.
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Fig. 13. Back scattering from a long dielectric square cylinder
versus kob with relative permittivity cr,=10+i2.0,
n/Xd = 12, TE polarization.
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Finally, the volume-surface integral equation and the original
volume integral equation are compared with the surface integral
equation for tests on dielectric square cylinders with large values
(E r=72). Referring to Fig. 14 the top two curves represent the solution
from the original volume integral equation with n/•Id = 10 and 12. It
can be seen that these two curves do not correspond to the other
curves. The third curve from the top of the graph represents the
solution from the surface integral equation from program CICERO,
and the bottom set of curves represent the solution from the volume-
surface integral equation with nl/?.d = 10, 12, 20 and 35 respectively.
Figure 14 shows that the solutions from the volume integral equation
behave erratically, they do not at all match the solutions from the
surface integral equation. The bottom curve represents the solution
from the newly formulated volume-surface integral equation with
nnld = 10. Even though there is about a 4 dB difference at forward
and back scatterer between this curve and the surface integral equation
curve, with an increased number of cells the curves from the volume-
surface integral equation converge to the surface integral equation
curve. This is a good indication that for dielectric cylinders with large
relative permittivity, the volume integral equation obviously does not
work whereas the results from volume-surface integral equation clearly
matches those obtained from the surface integral equation.

In order to examine why there is a still some discrepancy
between the volume-surface integral and the surface integral equation
method, the currents in the cylinder are examined to see if they show
any unusual behavior. Figs. 15-22 represent the current densities on
the cylinder versus distances along the cylinder. The relative
permittivity is set to e. = 72, the size of the dielectric square cylinder
is 0.30 m for TE polarization. Located exactly on the center of the
dielectric square cylinder is the origin (see Fig. 15). The current
density Jx versus distance on the x axis (y =0) and on the y axis
(x =0) is plotted on Figs. 15-16. The current density J, versus
distance on the edges (y=0.15 m and x=0.15 m) is shown in

31



VIE -A
0.

SIEVI

-10 SI

VSIE

.20

.30

-180 -120 -60 0 60 120 180

angle (degrees)

--- VIE (,A=0)

- VIE (n-= 12)
- -$SIE
- -- VSIE ("4=35)

S- -- VSIE (nA=20)
- - - - VSIE ("=)2)

- • .VSIE (RA=1O)

Ft,. 14 Bistatic scattering from a long dielectric square cylinder
versus angle, with relative permittivity ,. = 72,

side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 15 Current density J, versus distance on y=0, on the
dielectric square cylinder, relative permittivity e, = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 16 Current density J, versus distance on x =0, on the
dielectric square cylinder, relative permittivity er = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Figs. 17-18. Similarly, the current density Jy versus distance is

plotted on Figs. 19-22.

The current densities on the x axis and on the y axis do not show
any abnormal behavior. However, this is not the case for the current
densities along the edges as illustrated in Fig. 17. The current
densities experience a sudden drop at a distance of 0.125 m from the
center of the cylinder. This can also be seen in Fig. 18 as well as
Figs. 21-22, where the current densities either increased or decreased
rapidly. The current densities close to the comer of the edges behaved
exceptionally erratically [19]. Even though in our computer
simulation our cell size is very small (n/ld is about 36), the extremely
sharp jump of the currents around the edges cannot be detected unless
we use an extremely fine cell size. This inadequate discretization of
the edge current is the explanation of the remaining differences
between the volume-surface integral equation and the surface integral
equation for results of the large relative permittivity and small bodies.

Fig. 23 shows the results from a modified numerical technique:
namely, we kept the same cell size constant throughout the cylinder
and discretized the cell around the edges more finely in order to
minimize the total number of the cells required for the computation.
The bistatic scattering from the square dielectric cylinder (with
relative permittivity e, = 72, TE polarization), using the volume-
surface integral equation (with and without finer edge cells) is
compared with the results of the surface integral equation. The
number of cells per dielectric wavelength is 20. The finer
discretization around the edges was made by dividing each cell
adjacent to the boundary into four smaller cells (giving 40 cells per
linear dielectric wavelength around the edges). Without finer
discretization near the border, there is about a 2 dB average difference
with the scattering computed from the surface integral equation; with
finer discretization, the difference is much smaller. Specifically,
Fig. 23 shows that appreciably better performance is obtained with
finer discretization around the edges with 20 cells per dielectric
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Fig. 17 Current density J., versus distance on y =0.15 m, on the
dielectric square cylindei, relative permittivity F,. = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.

36



0.10

I

0.08 I E

0 .06 .30 I

0.04

Q))

0.02 - -

01"

-0.2 -0.1 0 0.1 0.2

distance (m)

Fig. 18 Current density J, versus distance on x = -0.15 m, on the
dielectric square cylinder, relative permittivity c, = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 19 Current density JY versus distance on y=0, on the
dielectric square cylinder, relative permittivity e, = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 20 Current density JY versus distance on x =0, on the
dielectric square cylinder, relative permittivity e, = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 21 Current density Jy versus distance on y = 0.15 m, on the
dielectric square cylinder, relative permittivity er = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 22 Current density Jy versus distance on x = -0.15 m, on the

dielectric square cylinder, relative permittivity Sr 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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Fig. 23 Bistatic scattering from a long dielectric square cylinder
dielectric square cylinder, relative permittivity cr = 72,
side = 0.30 m, frequency = 100 MHz, TE polarization.
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wavelength interior to the scatterer than with 36 cells per dielectric
wavelength throughout.
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4. CONCLUSION

In this report, a new volume-surface integral equation used to
evaluate the bistatic scattering from large, high-dielectric cylinders
using pulse basis functions and point matching is presented.
Numerical results indicate that this new integral equation is far
superior in performance to the original volume integral equation which
gives highly inaccurate results with pulse basis-functions and point
matching for large values of kob as well as large relative permittivities.
Finer discretization of cells along the edges significantly enhances the
accuracy for small bodies with very high relative permittivities since
there is a rapid change of current near the edges. This new volume-
surface integral equation has been applied to 2-D scatterers, and has
pi ,.iced results that compared remarkably well with those of a
surface integral equation. Finally, unlike previous volume-surface
integral equations, it can be extended to 3-D scatterers and to obtain
benchmark solutions for inhomogenous scatterers.
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