
RL-TR-94-98
Final Technical Report
July 1994

SOFTWARE TECHNIQUES FOR
BALANCING COMPUTATION &
COMMUNICATION IN PARALLEL SYSTEMS

13urdue University

John K. Antonio

DTIC
ELECTEOCT 1419941

01 •---a-
U1U

__ APPROVED F'•RAPUBLIC RLEASE," D/S TRISU TICON UNLIMITED.

00

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York
- (f94-32 184

•4 ?~7 \ul\\u/u1//\Uhfl1\\i/I/!!l~

¶his report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RL-TR-94-98 has been reviewed and is approved for publication.

APPROVED: 72L&ko (" ,b 9
RICHARD C. METZGER
Proj ect Engineer

FOR THE COMMANDER: e•

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3CB) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

Form ApprovedREPORT DOCUMENTATION PAGE O o 01
P•:c tIP tkrd bzi• u t tl " 1 1,din tno is ab to wiUU9 I hxx pw fUmUSv fnLv.* the Wris fa rtwwirg ta u smdrig nl s'g date soices.
gINIwVI "d f mo lU nmcd, r• €-ig wd rwmiw- Wu t 6 d drarrmikr Swr w .. tw rugmrt w t&rs tbudmes . @r Wiw aspect a tros

cA mlu' dO oh t kckxk ugg u ta r ieda t•. t.wn, to Wa *r Hg•~tus SwvAr ; Ok.sura 1w ktonfm OpwU1n ancReports. 1215 .Jefferson

Owe HoW SL** I 20ik "aVwto VA 2204 and to toofice d~ MNUwwgI wd SuBi. Pqpw*~cr Rindx Pr~d (0704.01 44, Wai*iVtm DC 20503

1. AGENCY USE ONLY (Leave BIn) 2. REPORT DATE 36 REPORT TYPE AND DATES COVERED
July 1994 Final Aug 92 - Dec 93

4. TITLE AND SUBTITLE 5AUNDIrJfflf TJC-0108
SOFTWARE TECHNIQUES FOR BALANCING COMPUTATION & PE - 62702F
COMMUNICATION IN PARALLEL SYSTEMS PR - 5581

6. AUTHOR(S) TA - 18

John K. Antonio
WU- P5

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a PERFORMING ORGANIZATION

Purdue University REPORT NUMBER

School of Electrical Engineering N/A
1285 Electrical Engineering Building

West Lafayette IN 49707-1285

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING

Rome Laboratory (CJCB) AGENCY REPORT NUMBER

525 Brooks Road RL-TR-94-98
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Richard C. Metzger/C3CB/(315) 330-7650

12a. DISTRIBUTIONWAVALABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(wruiY 2 200 wwW)
The work presented in this report is the result of collaboration between Rome

Laboratory and Purdue University. The work is divided into two main parts. The first
part describes a new mapping technique developed under this effort called the
hypersphere mapper, for the hypercube embedding problem. Solving the hypercube

embedding problem involves finding the best mapping (i.e., assignment) of software
tasks onto the processing elements of a parallel computer having a hypercube inter-

connection network. The second part of the work describes a new software engineering
tool called OMARS (Optimal Mapping Alternate Routing System). OMARS is an interactive

tool that aids the software engineer in deciding how to best map multiple software

tasks onto the processors of message passing parallel architectures. Hypersphere

mapper is one of several mapping algorithms that is integrated into OMARS.

14. SUBJECT TERMS is NUMBER OF PAGES56
Static Task Allocation, Hypercube, Mapping, Scheduling, 56

Objective Functi nCn

17. SECURITY CLASSIFICATION I aSECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC-[

UW9IED OFYM FIED OMM% IIED Un

NSN 7540-01 -2•-5W0 Stadwd Foin, AA 'ev c

2W-I 02

Final Report

for

Software Techniques for Balancing
Computation & Communication in Parallel Systems

Contents

Executive Summary 3

1 Overview and Rationale of the Effort 4

1.1 The Mapping Problem 4

1.2 O M A R S . 5
1.3 The Routing Problem 8

2 Hypersphere Mapper: A Nonlinear Programming Approach to the Hy-

percube Embedding Problem 10

2.1 Introduction . 10

2.1.1 M otivation . 10

2.1.2 Related W ork 11
2.1.3 Overview of the Section 11

2.2 The Hypercube Embedding Problem 12

2.3 Overview of Hypersphere Mapper 12

2.4 The Gradient Projection Method 13

2.5 Detailed Description of Hypersphere Mapper 14

2.5.1 Formulating the Constrained Optimization Problem 15

2.5.2 Application of the Gradient Projection Method 16

2.5.3 An Illustrative Example 17

2.5.4 Converting Hypersphere Mapper Solutions into Uniform Mappings.. 20

2.6 Evaluation of Hypersphere Mapper 21

2.6.1 Comparison with Other Hypercube Embedding Heuristics 21

2.6.2 The Case of Having More Tasks than PEs 23

2.7 Conclusions 24

2.7.1 Summary 24

2.7.2 Ongoing and Future Work 25

1

3 OMARS: Optimal Mapping Alternate Routing System 26

3.1 Introduction . 26

3.1.1 Background . 26

3.1.2 Motivation for OMARS 28

3.1.3 Organization of the Section 29

3.2 Description of OMARS 29

3.2.1 Overview of OMARS 29

3.2.2 The Tracefile Generator 30

3.2.3 The Mapping Subsystem 33

3.2.4 The Routing Subsystem 34

3.2.5 The Graphical Displays 36

3.2.6 The Taskfile Generator 36

3.3 Example User Session of OMARS 36

3.4 Configuration Management for OMARS 42

3.4.1 Responsibilities of the Software Developers 43

3.4.2 Initial Library Files 43

3.4.3 Commands for Accessing the SCCS Library 44

3.4.4 Benefits of the Configuration Management Process 45

3.5 Conclusions and Future Work 45

Special Note Regarding Figures in Section 3 45

4 Future Research and Development Directions 46

References 47

Accesion For

NTIS CRA&M
DTIC TAB
Unannounced 13
Justification

By.. _.

Dist; ibution I

Availability Codes

Avail and I or
Dist Special

L2

Executive Summary

The work presented in this report is the result of collaboration between Rome Laboratory

and Purdue University. The work is divided into two main parts. The first part describes

a new mapping technique developed under this effort, called hypersphere mapper, for the

hypercube embedding problem. Solving the hypercube embedding problem involves finding

the best mapping (i.e., assignment) of multiple software tasks onto the processing elements

of a parallel computer having a hypercube interconnection network. The second part of the
work describes a new software engineering tool called OMARS (Optimal Mapping Alternate

Routing System). OMARS is an interactive tool that aids the software engineer in deciding

how to best map multiple software tasks onto the processors of message passing paiallel

architectures. Hypersphere mapper is one of several mapping algorithms that is integrated

into OMARS.

3

1 Overview and Rationale of the Effort

1.1 The Mapping Problem

The specific motivation for investigating the mapping problem is rooted in a need to aid the

parallel software engineer in developing and/or managing extremely complex, large-scale,

and dynamic parallel software. Of particular concern is the development, management,

and effective execution of large software applications that are truly functionally parallel in

nature. Although the concept of functional parallelism has existed since the beginning of the

parallel processing era, most of the existing parallel applications to date are based on the

data parallel programming model (and not the functionally parallel programming model). It

is believed that the next generation C31 systems will comprise large-scale and functionally

parallel applications, some of which may only be well-suited for execution under the MIMD

(multiple instruction stream - multiple data stream) programming model, which can support

multiple independent threads of control.

A survey of the literature was performed in the area of automated techniques for mapping

software tasks onto MIMD architectures. From the survey, a number of proposed techniques

for architectures having a wide range of structures (e.g., hypercube-based versus mesh-based

architectures) were found. One of the most popular mapping formulations, from those found

in tile literature, is the so-called hypercube embedding problem, which involves mapping

tasks onto processors interconnected with the hypercube interconnection network. Because

of the popularity of the hypercube embedding problem within the technical literature and

because we had access to a hypercube-based machine (the nCUBE 2 located at Purdue

University), we decided to further investigate the hypercube embedding problem. This

investigation resulted in the development of a new hypercube embedding heuristic called

hypersphere mapper, which is the topic of Section 2 of this report. Also, a technical paper (co-

authored with Richard C. Metzger of Rome Laboratory) entitled "Hypersphere Mapper: A

Nonlinear Programming Approach to the Hypercube Embedding Problem," was published in

the Proceedings of the 7th International Parallel Processing Symposium, April 1993, pp. 538-

547 and in the Journal of Parallel and Distributed Computing, Vol. 19, No. 3, November 1993,

pp. 262-270.

One of the novel features of the hypersphere mapper technique is that it can accommodate
the problem of mapping more that N software tasks onto a hypercube having N processing

elements (PEs). This is in contrast to other approaches found in the literature that typically

assume N or fewer tasks are to be mapped onto an N PE hypercube. Another novel feature

of hypersphere mapper is that it does not necessarily produce a one-to-one mapping, even

for the case where there are N or fewer tasks to be mapped onto N PEs. This feature

4

(of producing mappings that are not necessarily one-to-one) is consistent with experience on

actual systems, i.e., utilizing all available PEs does not necessarily decrease overall execution

time. For example, if the volume of communication between two tasks is sufficiently high, it

may be more effective to place (i.e., map) these two tasks onto the same PE in order to avoid
delays associated with accessing the interconnection network for intertask communication.

After gaining an understanding and appreciation for the theoretical issues and difficulties

of the hypercube embedding problem (both from the literature survey and the development

of the hypersphere mapper technique) our next task involved the practical application of

this understanding to a real system. It was decided to evaluate the merit of various hyper-

cube embedding heuristics (including our proposed hypersphere mapper technique) based

on performance from an actual MIMD hypercube (the nCUBE 2). Surprisingly, none of the
papers in the literature that we found make comparisons among various techniques based

on measured execution times from actual hypercube-based machines. Instead, competing

mapping heuristics are typically compared based on the time complexity of the mapping

heuristic themselves and/or the value of a simple mapping metric. An example of a mapping

metric that is often used as a basis for evaluating mapping heuristics is the "average distance

between pairs of communicating tasks," where the distance between a pair of mapped tasks

is defined as the number of communication links between them. Although such a metric is

convenient to define and use as a theoretical basis for optimization, from a practical point of

view, actual performance (e.g., execution time) does not generally correlate perfectly with

such a simple measure of mapping quality.

1.2 OMARS

OMARS (Optimal Mapping Alternate Routing System) is a prototype tool to aid in the eval-

uation of various mapping techniques on an actual system. The current version of OMARS

is for operation with the nCUBE 2 hypercube-based architecture. The addition of other ar-

chitectures (and supporting mapping algorithms) could, conceptually, be made in the future.

The motivation for OMARS and an overview of its functionality are presented in the

present subsection; a detailed description of OMARS is given in Section 3. Also, a technical

paper (co-authored with Richard C. Metzger, Loretta S. Auvil, and Chester A. Wright

of Rome Laboratory and Yan Alexander Li, Olivia K. Wu, and Eduardo Asbun of Purdue

University) was published entitled "OMARS: Optimal Mapping Alternate Routing System,"

in the Proceedings of the Parallel Systems Fair of the 8th International Parallel Processing

Symposium, April 1994 (to appear).

One basic question that must be addressed in order to justify (if not motivate) a tool

such as OMARS is "Why change the mapping?" There are at least two answers to this

question. First, it is known that the way in which software tasks are mapped onto paral-

lel architectures can have a significant impact on delivered performance. This interaction

between software and hardware, while nonexistent for sequential platforms, is one of the

most basic problems to be addressed for effective execution on parallel computing platforms.

Second, real software systems evolve over time. Thus, the issue of how to best map new

and/or evolving multiple tasks must be addressed periodically. So, while the issue of having

to address the mapping problem is nonexistent for sequential platforms, the need to do so

not only once, but periodically, for parallel platforms introduces new software management

problems for the case of parallel platforms.

Having acknowledged the importance of the mapping problem, one may be inclined to

ask "Why not completely automate the mapping process (i.e., Why not hide it from the

software engineer)?" While complete automation of the mapping process is, of course, an

ideal goal; existing automatic mapping techniques fall short of this ideal. In particular,

existing techniques generally attempt to optimize a simplified measure of mapping quality.

Such simplified metrics for mapping quality typically ignore many important salient features

associated with the assumed parallel platform. The problem is further exasperated by the

reality that current parallel processing technology is not stabilizing. Thus, by the time ef-

fective automated mapping techniques could be developed for an existing parallel system

technology, that technology may no longer be in use! Therefore, until parallel processing

technology begins to stabilize, it is unlikely that completely automated techniques will de-

liver the best possible performance. We believe that tools such as OMARS can provide a

"link" between users and parallel system developers that will expedite the convergence to

stable parallel processing system technologies (and/or standards), thus enabling effective

automated mapping techniques to be developed sooner.

The basic mapping problem is depicted in Figure 1. From the user's point of view, the

mapping problem is a question of how to modify the task-to-PE map file in order to improve

performance. To make use of OMARS as an aid for deciding how to best modify the task-

to-PE mapping, the user must provide OMARS with the intertask communication pattern

among the tasks. To assist the user in obtaining the intertask communication pattern, a

tracing facility is provided for the user. Figure 2 shows that the user's multiple software tasks

can be automatically instrumented to produce a trace file upon termination of execution

of the multiple tasks on the parallel architecture. The trace file contains the intertask

communication pattern. On-line documeatation and support for the tracing facility are

included with OMARS.

Once the trace file is obtained, the user can run OMARS. Figure 3 highlights the various

interactions and options of OMARS. Note that the trace file serves as inp,'t to OMARS

6

Task#1 e program output

task-o-Pltperformance

A/

how to modify?

Figure 1: Illustration of the mapping problem. From the user's point of view, the mapping
problem is a question of how to modify the task-to-PE map file to improve performance.

source code

Figure 2: Tracing instrumentation is provided to capture the intertask communication pat-

tern of the user's application.

Instumetati Tak:#Z.. 7

sorc code
trace file
(Intefleak commTsk#

Figure 3: Overview of the interactions and options for OMARS.

and that the user provides interactive input to OMARS. The user has two sources of input:

one is the output displays of OMARS and the other is the actual measured performance

from the parallel architecture. Typically, the user will utilize the output from OMARS

to screen-out unlikely mapping options based on the graphics, metrics, and performance

estimations provided by OMARS. However, because these estimates provided by OMARS

do not always perfectly predict actual performance from the parallel machine, the user can

also execute the parallel tasks using selected task-to-PE map files (produced by OMARS)

as a means of correlating OMARS performance estimates/metrics with actual performance.

As stated earlier, this feedback to the user will enhance the user's understanding of what

metrics provided by OMARS are most important for the user's particular application tasks.

1.3 The Routing Problem

Once a set of software tasks are mapped onto a parallel system, it is possible to enhance
performance by altering the routes taken through the interconnection network of the parallel
machine (assuming multiple routes exist). The alternate routing portion of OMARS has
not been fully implemented for the nCUBE 2. The idea of implementing alternate routes is
to give the user another parameter to vary in order to improve performance. The current
version of OMARS supports two static routing algorithms: default and modified multiflo.
The default routing scheme is the one implemented by the nCUBE 2. The modified multiflo

as ameas ofcorelatng MASperormace stiae/mtiswt culpromne

selects alternate routes through the hypercube (based on the given intertask communication

pattern) in order to minimize contention for common network resources. In order to imple-

ment alternate routes, the operating system (OS) of the nCUBE must be modified. A license

agreement has been secured with nCUBE Corporation and we are currently modifying the

OS to allow for the implementation of alternate routes. With alternate routing in place,
the user will be able to experiment with various mapping/routing combinations. This is

interesting because the implemented mapping techniques and the multiflo routing technique

aim to optimize objective functions that can be competing. Currently, the user can see the
effect that alternate routing has on the performance estimates provided by OMARS; but

because alternate routing is not yet implemented on the nCUBE 2, the actual (measured)

effect on performance cannot be determined.

9

2 Hypersphere Mapper: A Nonlinear Programming
Approach to the Hypercube Embedding Problem

2.1 Introduction

2.1.1 Motivation

The hypercube structure has been a popular choice for interconnecting large numbers of

processing elements in parallel processing systems. Examples of commercially available par-

allel machines that utilize a hypercube interconnection topology include nCUBE's nCUBE

2, Connection Machine's CM2, and Intel's iPSC2.

An n-dimensional hypercube has two connected PEs along each of n dimensions for a

total of N = 2n PEs. Some of the attractive features of the hypercube are: a relatively low

number of incident links at each PE (PE degree = n = log 2 N), a small hop distance between

PEs (network diameter = n = log2 N), and a large number of alternate paths between PE

pairs.

The problem addressed here is how to map a given collection of tasks onto the PEs

(i.e., processing elements) of the hypercube topology so that the available communication

resources are effectively utilized. The specific objective of interest is to map the tasks so

that the average Hamming distance (i.e., path length), between those pairs of tasks that

require communication, is minimized. This objective is certainly desirable for hypercube

structures where routing is handled in a store-and-forward message passing fashion because

the total delay in sending a message from source to destination is proportional to the number

of links traversed. For the case of circuit-switched and virtual cut-through routing schemes,

minimizing the average distance between communicating task pairs reduces the total num-

ber of communication links needed to establish all required connections and can therefore

potentially reduce the latency caused by contention for a limited number of communication

resources.

Effectively mapping a collection of tasks onto the PEs of a massively parallel computer is

especially important when considering problem domains where the intertask communication

pattern is inherently irregular and/or data dependent. For example, in the general area

of computational fluid dynamics, certain applications require that the solution of a partial

differential equation be approximated over an irregular grid of discrete points [12].

In other applications, where the tasks are functionally independent, the associated in-

tertask communication pattern may also be irregular and possibly data dependent. For

example. consider a large embedded information processing system (e.g., a data fusion sys-

10

tem) in which the input data comes from a collection of distributed sensors. The processing

of the sensor data could be done using functional parallelism, i.e., one task (or perhaps a

collection of subtasks) may be performing FFTs, while other tasks are involved in solving

systems of linear equations, sorting integers, etc. In such a system, it is likely that the com-

munication patterns between the functionally independent tasks will be irregular and also

depend on the values of the input data supplied by the sensors.

2.1.2 Related Work

The hypercube embedding problem has been studied extensively in the past and variety of

mapping heuristics and theoretical results have been reported in the literature. In reference

[9], twelve hypercube mapping heuristics are evaluated in terms of mapping quality and

running time (of the mapping algorithms themselves) for several classes of intertask com-

munication patterns. In other papers, fundamental theoretical results have been established

for the case where the communication patterns are assumed to have regular structures such

as grids [5], trees [23], binary trees [22], and hypercubes [6].

One potential drawback of previous embedding heuristics is that they produce one-to-

one mappings. In practical applications, the requirement may arise to map T tasks onto

N PEs, where T > N; thus, many-to-one mappings are generally required. It appears that

all of the known mapping heuristics (including the twelve evaluated in reference [9]) assume

T < N. One way to overcome the one-to-one limitation of these mapping heuristics is to

initially cluster the T tasks into N (or fewer) clusters and then execute the mapping heuristic

based on the intercluster communication pattern. However, because the clustering problem is

generally NP-complete, an additional heuristic would be required to do the initial clustering

before actually executing the mapping heuristic. One of the advantages of the algorithm

proposed here is that the case of T > N is handled directly because the produced mapping

solution is not limited to the class of one-to-one functions.

2.1.3 Overview of the Section

In Subsection 2.2, the general hypercube embedding problem is formulated in mathematical

terms. A brief overview of the proposed algorithm, called hypersphere mapper, is given in

Subsection 2.3. Because hypersphere mapper utilizes an iterative gradient descent technique

known as the gradient projection method, a general overview of the gradient projection

method is provided in Subsection 2.4. Subsection 2.5 contains the detailed description of

hypersphere mapper. In Subsection 2.6, extensive simulation studies for hypersphere mapper

are conducted for the case of randomly generated task communication patterns.

11

2.2 The Hypercube Embedding Problem

Mapping a set of T tasks, denoted T = {0,1,...,T- 1}, onto an N = 29 PE (i.e., n-

dimensional) hypercube is viewed as a problem of determining a collection of T binary n-

vectors, zi E {z : z E {0, 1}1'}, i E T, where the components of zi comprise the binary address

of the PE that task i is to be mapped to. For instance, for the case n = 4, zo = [1 1 0 0]'

indicates that task 0 is to be mapped onto PE 3.

Let dH(zi, zi) denote the Hamming distance between PEs with addresses z, and zi, where

the Hamming distance equals the number of differing binary components associated with the

vectors zi and zj. For example, dH([1 0 1 0]',[1 1 0 0]') - 2. Let W denote the

set of pairs of tasks that require communication. Thus, W = {(i,j) : i,j E T & task i

communicates with task j}.

Therefore, for a given set W (i.e., a given communication pattern), the hypercube embed-

ding problem involves finding T binary n-vectors, denoted by zO, z 1, ZT-1, that minimize

fH(W = 1 E dH(zi, zj). (1)fH~z) "- I-I (,.•)•W

The standard hypercube embedding formulation assumes that T < N and that the mapping

is a one-to-one function, i.e., zi 0 zj, for all i,j e T, with i 3 j. T' has been proven in

reference [10] that the standard embedding problem is NP-hard.

2.3 Overview of Hypersphere Mapper

The main premise of the hypersphere mapper approach is to approximate the discrete space

of the hypercube, i.e., {z : z'E {0, 1}n}, with a continuous n-dimensional (unit radius) hy-

persphere, i.e., {x : x E R" & IIXI12 = 1}. The mapping problem in the continuous domain

is to determine a collection of T real n-vectors, xi E {x : x E S" & I1xI12 = 1}, i E T.

The advantage of the continuous domain is that techniques from nonlinear programming

can be employed to solve a constrained optimization problem. In particular, by defining a

continuously differentiable objective function, the values of xi are updated in an iterative

fashion by using the gradient projection technique. Geometrically, the vectors xi are points

that reside on the surface of a hypersphere in the continuous domain of R". The application

of the iterative gradient projection technique acts to migrate these points around the surface

of the hypersphere so as to minimize a desired objective function.

The objective function used by hypersphere mapper comprises two components: the first

component is the average squared Euclidean distance between communicating pairs of tasks,

the second component is the average of the inverted squared Euclidean distance between

every pair of tasks. The first component acts to bring pairs of communicating tasks close

12

.......

Figure 4: A geometric view of how points from the surface of a continuous hypersphere
are discretized onto the PEs of a discrete hypercube. All continuous points belonging to
the same sector are discretized onto the corresponding PE. For the three dimensional case
shown, note that there are eight sectors and eight PEs. In the general n-dimensional case,
there are 2' sectors and and 2' PEs.

together; the second component acts to "spread-out" the task locations (and prevent any

pair of tasks from residing at the same point on the continuous hypersphere).

Once a solution is obtained on the continuous hypersphere, the solution vectors, denoted

by x!, are discretized onto the n-dimensional binary hypercube according to the sign of each

component. For example, in three dimensions, the continuous vector x; = [0.4000 -

0.5000 0.7681 1' discretizes to z; = [1 0 1], which indicates that task 0 is to be mapped

onto PE 5. Figure 4 depicts a geometric interpretation of how points on the surface of the

continuous hypersphere are discretized onto the underlying hypercube.

2.4 The Gradient Projection Method

The gradient projection method is a iterative gradient descent technique for solving con-

strained optimization problems. Each iteration of the gradient projection method comprises

two parts: (1) updating the values of the variables by moving in the direction of the negative

gradient of the objective function and (2) orthogonally projecting the values of the variables

onto the constraint space.

Consider the following general constrained optimization problem:

minimize f(x) (2)

subject to g(x) = 0. (3)

13

f(z) . C f(l) C

.. "O< Ca.:'

.

Figure 5: A geometric view of an iteration of the gradient projection method being applied
to a general constrained optimization problem. The dashed lines represent constant value
contours for the objective function f (x), i.e., f (x) =C, and f (X) = 02. The value of P) is
initially updated by moving in the direction of the negative gradient, i.e., x(' is updated to
the point P~) - ctVf (x)Ik. Then, the updated value is projected back to the constraint
surface g(x) = 0.

The first part of the gradient projection method is to update x by moving in the direction

of the negative gradient of f. Thus, letting P~) denote the value of the vector x at iteration

k, the first part of the gradient projection method is given by
.(k+) (k)

Cf~f 1.=(k),(4)

where a is a positive scalar called the stepsize.

The second part of the gradient projection method is to orthogonally project x(k+1) onto

the constraint space g(x) = 0. This projection operation is denoted by

The mathematical description of precisely how to do the projection for general constraint

surfaces shall not be included here. The interested reader is referred to [3]. A geometric

view of an iteration from the gradient projection method is depicted in Figure 5.

2.5 Detailed Description of Hypersphere Mapper

The detailed description of hypersphere mapper is divided into three main parts. First, a

constrained optimization problem is formulated for the problem of mapping tasks onto the

surface of a continuous n-dimensional hypersphere. Second, the gradient projection technique

is applied as a means of solving the proposed constrained optimization problem. Finally, the

14

method of discretizing the continuous task "locations" (from the solution of the constrained
optimization problem) is described. After presenting the detailed description of hypersphere
mapper, an illustrative example application is given. The final subsection describes a simple
technique for incrementally spreading-out the hypersphere mapper solution so as to obtain

more uniform mappings.

2.5.1 Formulating the Constrained Optimization Problem

In the domain of the continuous hypersphere, the underlying objective is to minimize the
average squared Euclidean distance between pairs of communicating tasks, where the tasks
are located on the surface of an n-dimensional hypersphere in R". Thus, given W (i.e., the

set of pairs of tasks that require communication), the problem is to find T real n-vectors,

x, E {x: x E •R' & 11xI12 = 1}, i E T, that minimize

1 1x, _- xjI2, (6)IW l •.I

where xi = (x, xi,0 ... Xi,,-1)' and Ixi - x 2 ,=- x

It is also desirable to enforce that xi 5 x,, for all i,j E T, with i # j. To enforce this
constraint, the following penalty term is proposed:

9 T-2 T-11x E 1 (7)

--1)i=0 =,+l Ixi- xjlI '
which is the average of the inverted squared Euclidean distance between all pairs of tasks.

The desired objective function comes by adding Equations 6 and 7:

I1x j 1 2 T-2 T-1 1(8T(T - 1) 1 E "(

(i~j)EW i=O j=S+1 Itlx - xj 2 (

The first term in Equation 8 acts to bring the communicating pairs of tasks close together
while the second terms ensures that no two tasks reside at the same position.

Combining the objective function of Equation 8 with the constraint that the tasks must
be located on the surface of an n-dimensional hypersphere results in the following constrained

optimization problem:

minimize { (11x 1 - x,112 + T(T- 1) T-1 I - 12 (9)
IW i~j)Ew TT-1 i=0 j=i+ 1 [xi -xj[

subject to IxI, 2 = 1, for all i E T. (10)

15

2.5.2 Application of the Gradient Projection Method

Note that the constrained optimization problem of Equations 9 and 10 can be expressed as:

minimize f(x) (11)

subject to g(x) = 0, (12)

where

f(x) = -I , + I, (13)
(i,.)EW 2=,+l i - xil

(IIXO112 -1

g()) (14)

IIXT-_11 2 1

and

Xo
=(15)

XT-1

Derivation of the gradient

Recall from Equation 4 that the first part of each iteration of the gradient projection

method requires the gradient of f(x), i.e., Vf(x). By differentiating terms from f(x), it can

be verified that

a f I1Ixi- xjlIlI} = 2(xj,- xi),

0 {lz,-xJI 2 _ 2(Xj - xi),

O,q i I zi- X•jll2 IIXi - Xj114(i)

and 01 1 2 x)
2 _(Xi Xl).9xj IIx - Xjll2 = I1:,- Xjl"4

Define W(i) = E j E T & task i and task j communicate }. Also, define T(i) = T - {i}.

With these definitions, the gradient of f(x) is expressed as

IW.W(O)(O -- Xj) T(T-1) jEE() (:_, o-, 114
2 ,)4 (Z,-XI)

Vf(x) I iljEW(,l)(X Xj) + T(T-,)jET(1) IiX-xIIJ . (16)

~jEW,(TI)(T-1 -- XI) T(T-1) jET(T-1) IXrT-i--111"4

16

Thus. the first part of the iteration for the gradient projection method (i.e., moving in the

direction of the negative gradient) is given by

X(k+l) +-- x(k) _ aV f(X =) .k(17)

where Vf(x)I.==k) is computed according to Equation 16.

Derivation of the projection

After the update of Equation 17 is computed, the second part of the gradient projection

method requires that the resultant X(k+) be projected back to the surface g(x) = 0. This

amounts to simply normalizing each xi to be unit length (in the Euclidean sense). Thus, the

projection operator is defined by

[-. (17" (18)

"T-I

So, the second part of the iteration for the gradient projection method is given by

x(k+l) _[Xk+1..g(x)=0, (19)

where [x (k+i)19(x)=o is computed according to Equation 18.

After a sufficient number of iterations, the gradient projection method converges to a

fixed-point, i.e., the vector x(k) converges to a fixed point x* as k increases.

Discretizing onto the hypercube

The final part of hypersphere mapper is to convert the solution vector zx, which has

continuous real components, to z*, which has discrete components in the set {0, 1}. The

conversion is done by simply discretizing each component of x (to either zero or one) accord-

ing to their signs. Formally, for any t E R, the unit step function is defined as

) 1 ift>0u~t)=0 if t<O0

Therefore, the discretization is defined by

z- =U(-),

where it is understood that u(.) is applied to each component of x*.

2.5.3 An Illustrative Example

The goal here is to illustrate how the task locations move around the surface of the hyper-

sphere from one iteration to the next. Of particular interest is to show how the relative

17

Figure 6: Graphical view of the example task communication pattern W = {(0, 4), (0, 7),
(1, 7), (1,6), (2, 4), (2, 5), (3, 5), (3, 6)}.

locations of the task (for a given communication pattern, W) affect the iterative migration

to the fixed point.

Consider the problem of mapping eight tasks, T = {0, 1,..., 7}, onto the PEs of a 3-

dimensional hypercube. Assume the communication pattern is W = {(0, 4), (0,7), (1, 7),

(1,6), (2,4), (2.5). (3,5), (3,6)}. A graphical view of the assumed task communication pat-

tern, i.e., W, is shown in Figure 6. The resulting iteration data from hypersphere mapper is

given in Table I.

From Table I. note that the initial values of the continuous location vectors (i.e., the

values of xi°, i = 0,1,..., 7) were selected so that task i is (initially) mapped to PE i,

i = 0, 1,..., 7. After each iteration k, the resulting values of the continuous location vectors,

I), and the associated discretized location vectors, z~k), are given. Also, the corresponding

values of the continuous objective function, f(x(k)) (refer to Equation 13), and the associated

average Hamming distance, fg(z(k)) (refer to Equation 1), are given. The fact that the value

of fHt(xk)) decreases as k increases indicates that the continuous objective function does

indeed capture the essence of the discrete mapping problem.

Note that the task to PE mapping produced by hypersphere mapper (taken from iteration

k = 10 of Table I) is:
task 0 - PE 4
task 1 -. PE 7
task 2 -PE 0
task 3 PE 3
task 4 - PE 4
task 5 -PE 1
task 6 -PE 7
task 7 PE 5,

which is not a one-to-one mapping because two tasks are mapped to PE 4 and two tasks

are mapped to PE 7 (and no tasks are mapped to PE 2 nor PE 6). The average Hamming

distance between communicating tasks for this mapping is 0.75.

18

Table 1: Iterations from hypersphere mapper.
X2 xXk x x k x• k f(X k)

f72 1[~ I T IV I"u.-j41 1 [z• "j " ". 1z41 jfH(zk) j

-086 0.61 -0.34 0.66 -0.03 0.09 -0.45 0.61
-0.56 -0.75 0.07 0.55 -0.80 -0.91 0.6
-0.50 -0.26 -0.94 -0.50 0.59 0.41 0.65 0.57

0 1 1 0 0 1 1-. 2-•.25r-

0 00 00 0 1 _1

-0.66 0.78 -0.36 0.69 -0.51 0.46 -0.33 0,73
-0.68 -0.61 -0.16 0.59 0.15 -0.62 0.70 041
S -0.32 -0.614 -0.92 -0.40 0.84 -0.63 0.63 0.4

0 _ 0 I0 1 0 1_ ______,__0 0 0 11 0 1 1 20
0 0 0 0 1 0 1 1

0.730.88 -0.38 0.68 -0.71 0.35 -0.07 081
-0.68 -0.42 -0.17 0.61 -0.15 -0.47 0.87 021..q1
-0.05 0.22 -0.91 -0.42 0.69 -0.81 0.48 05

0 0 0 1 0 0 1 1
0 I 0 1 0 0 I 1.I

01 0 0 1 0

:0.72 0.89 -0.46 0.64 -0.82 0.38 0.14 0.76
-0.69 -0.2 0.19 0.63 -0.24 -0.36 0.69 0.11 2.06

3 0.13 0.31 -0.87 -0.45 0.53 -0.85 0.44 0.61

10 0 0 1 0 1.00""
I 1 0 0 1 1 1 1 _

-0.39 0.91 -0.62 0.57 -0.94 0.19 0.66 0.33

-0.70 -0.01 -0.27 0.59 -0.33 -0.05 0.72 _0
9 0.60 0.42 -0.74 -0.58 0.07 -0.98 0.20 081

0 1 0 1 0 1 1 1 0 v.'75
0 0 0 1 0 0 1 0

I ? 0 _ _ 0 1 0 1 1

-0.39 0.89 -0.62 0.56 -0.93 0.16 0.68 0.32

-- 0.66 0.01 -0.27 0.5: 0.33 -0.03 0.71 -0.36 1.37
0.61 0.45 -0.74 -0.59 0.05 -0.99 0.18 08.8:
0 10 1 0 1 1 0 07
__ I 0 0 _ 0 _ _

19

It can be verified (through an exhaustive search, for example) that an optimal one-to-one

mapping is given by:
task 0 -- PE 5
task 1 - PE 6
task 2 -- PE 0
task 3 -* PE 3
task 4 -- PE 4
task 5 - PE 1
task 6 -- PE 2
task 7 -PE 7.

The above optimal one-to-one mapping has an associated average Hamming distance of 1.00.

Thus, for this example, the solution from hypersphere mapper produces a mapping that is

superior, in terms of the average Hamming distance, to the best possible one-to-one mapping

(i.e., 0.75 versus 1.00) at the "expense" of not being one-to-one.

2.5.4 Converting Hypersphere Mapper Solutions into Uniform Mappings

An intuitive approach is introduced here for modifying the continuous solution produced by

hypersphere mapper so that after discretization, the resulting mapping will be uniform (or

to within a specified degree of closeness to being uniform). The basic idea of the approach

is the incrementally spread continuous task locations out of "over-populated" sectors and

into nearby "under-populated" sectors. The detailed description of the approach requires

the following definition.

In the space of a continuous n-dimensional hypersphere, let ci - (ci,0 cj ... ci,- 1)' E

{x : x E 3R" & IxI112 -= 1} denote the center of sector i, which is defined for all i = 0, 1,... 2,n_

1 as follows:

1 n ' if bit j of i is unity
cij - 7 , if bit ji is zero.

)- 1 - 1)'.c= (
For instance, for the 3-dimensional case, co = (- --73- 7 3) and c7 = (-3 : :

The center vectors define the geometric centers for each of the 2 n sectors associated with an

n-dimensional hypersphere.

The algorithm for incrementally spreading out the continuous solution from hypersphere

mapper operates as follows. First, those sectors having strictly more than T1j tasks residing

in them are flagged as being "over-populated" and those having no more than [TJ tasks

residing in them are flagged as being "under-populated." The spreading procedure takes

place in n consecutive phases, denoted by phase 1 through phase n. During phase i, those

position vectors residing in over-populated sectors that are within a Euclidean distance

of 2 V from the center of an under-populated sector are moved to that under-populated

sector. Immediately after a position vector is moved from an over-populated sector to an

20

oio3) t o, o
II0 -- II -- I i llt~ *

(2)) 1 '(21 _
see

Its 101 SL1
(o.4) (7) (0) (7)

hJ ma3 inpper a.•b bypeoph mappir -a-
wit ono- opadial; .6 plin I spoo din

Ii

J3. (4 101.

,(21 0O (-2)...L

(0) (7) (Oi) (7)
hyp lm q pM w tim myppwaperpe m~pW uoluti,,

,,6 pill= 2 -mat wt phami 3 ,pif

Figure 7: Applying the spreading procedure to convert the solution from hypersphere mapper
into a uniform (in this case, one-to-one) function. The notation "{A, B}" beside PE address
"abc" means that tasks A and B are mapped onto the PE labeled abc.

under-populated sector, the status of the associated sectors' population is updated. Because

the diameter of the continuous hypersphere is 2 (in the Euclidean sense), after phase n of

the procedure, it is clear that there will be no over-populated nor under-populated sectors.

Also, the mapping associated with phase j of the spreading procedure is generically a more

uniform mapping than the one associated with with phase i, for all j > i.

The spreading procedure was applied to the illustrative example of the previous subsec-

tion (i.e., the problem of mapping 8 tasks onto 8 PEs assuming the communication pattern

W of Figure 6). The results of applying the spreading procedure are depicted in Figure 7.

Without application of the spreading procedure, note that tasks 0 and 4 are both mapped

to PE 4, tasks 1 and 6 are both mapped to PE 7, and no tasks are mapped to either PE

2 nor 6. Phase 1 of spreading moves task 4 from the over-populated PE 4 onto the under-

populated PE 6. Phase 2 of spreading moves task 6 from the over-populated PE 7 onto the

under-populated PE 2.

2.6 Evaluation of Hypersphere Mapper

2.6.1 Comparison with Other Hypercube Embedding Heuristics

In reference [GSG89], evaluations and comparisons (based on simulation studies) are reported

for twelve hypercube embedding heuristics. Several classes of task communication patterns

21

are assumed, including random patterns, permuted hypercube patterns, and tree patterns.

Of the heuristics evaluated (and for all of the assumed task communication patterns), the

simulated annealing heuristic developed in [9] produced mappings with the smallest average

Hamming distance.1 In contrast, a greedy algorithm of [8] generally produced the poorest

mappings (excluding the so-called default or random mapping schemes, which map tasks
to PEs independent of the given task communication pattern). It is also reported that

the (typical) running time for the simulated annealing algorithm is around four orders of

magnitude larger than that of the greedy algorithm. Both the quality of the mappings

and the running times associated with the other ten heuristics were shown to lie within the
bounds defined by the simulated annealing and greedy algorithms. For a detailed description,

evaluation, and comparison of the twelve heuristics, refer to (91.
In the present study, simulation studies are used to provide an indication of how the

quality of mappings produced by hypersphere mapper compare to the quality of mappings

produced by the other known embedding heuristics. The simulation study carried out in this

subsection involves mapping 128 tasks onto the 128 PEs of a 7-dimensional hypercube. The

assumed communication pattern is generated by selecting task source-destination pairs at

random. The expected number of randomly selected source-destination pairs is set at 448.

i.e., E[IWI] = 448. This exact same simulation study was one of the experiments used in

evaluating the heuristics in [9].

The results of simulation studies for the hypersphere mapper, simulated annealing, greedy,

and default algorithms (averaged over 100 runs) are summarized in Table II. The column

labeled f-(z) denotes the average Hamming distance between mapped communicating tasks.

The column labeled 2 denotes the sample variance of the number of processes mapped

to each node, which is defined by

&rpm2= 1 (pmn(i) -T) 2

where pmn(i) denotes the number of tasks mapped to PE i. The term T represents the

average number of PEs mapped to each PE, which equals unity for the simulation of this

subsection because there are T = 128 tasks being mapped onto N = 128 PEs. (In general,

the average number of tasks mapped onto each PE equals T. regardless of the mapping).

From Table II, note that the value ofPmn is nonzero only for the hypersphere mapper

because the mappings produced by hypersphere mapper are not (generically) one-to-one.

On the other hand, the competing algorithms always produce one-to-one mappings and thus

have zero values for&Pm n (i.e., exactly one task is mapped to each PE, thus the variance of

'Refer to [18] for general background material on the simulated annealing approach.

22

Table 2: Comaprison Atween hypersphere mapper and other heuristics: 128 tasks onto 128
PEs with E[IWII = 448.

lI Algorithm fH(Z) I II
Hypersphere Mapper 1.889 1.68
Simulated Annealing 2.042 0.00
Greedy 2.867 0.00
Default 3.503 0.00

the number of tasks mapped to each PE is zero). The results tabulated for the simulated

annealing and greedy algorithms were taken from reference [9].2 The last row of Table II

gives the results of the default mapping algorithm, which simply maps task i to PE i, for all

i = 0, 1,..., 127.
With regard to average Hamming distance, the mappings produced by hypersphere map-

per are indeed superior to those produced by the simulated annealing algorithm (i.e., 1.889
versus 2.042). However, the mappings produced by hypersphere mapper are not generically

one-to-one; thus, the corresponding value of 6 is not equal to zero.

Table III shows the effect of applying the spreading procedure to the hypersphere mapper

solution. The average Hamming distance of the mapping produced after spreading phase 1

is slightly better than that of the simulated annealing algorithm (i.e., 2.020 versus 2.042)

and the value of the variance of the number of tasks mapped to each PE, relative to the

hypersphere mapper solution with no spreading, is reduced by around 60% (i.e., from 1.68

down to 1.07). It is also noted that the one-to-one mapping produced after spreading phase 7

is significantly better than the mapping produced by the greedy algorithm (i.e., 2.587 versus

2.867).

2.6.2 The Case of Having More Tasks than PEs

A primary attribute of hypersphere mapper is that problems involving more tasks than PEs

(i.e., T > N) can be solved directly. In contrast, the competing hypercube embedding

heuristics (including the twelve evaluated in [9]) require T < N.

Simulation results are reported here for the case of mapping 256 tasks onto 64 PEs. The

assumed task communication patterns are randomly generated (with a specified expected

number of source-destination pairs). Simulation studies are conducted for cases where the

expected number of source-destination pairs is 128 256, 512, and 1024. Table IV shows
2The greedy algorithm was coded and simulated using our randomly generated communication patterns.

The value of average Hamming distance produced by our simulation of the greedy algorithm was within 2%
of the value reported in [9].

23

Table 3: Application of the spreading procedure to hypersphere mapper: 128 tasks onto 128
PEs with E[IWI] = 448.

I spreading jf(z)[mn

none 1.889 1.68
phase 1 2.020 1.07
phase 2 2.283 0.40
phase 3 2.440 0.15
phase 4 2.524 0.06
phase 5 2.558 0.03
phase 6 2.580 0.01
phase 7 2.587 0.00

Table 4: Hypersphere mapper results: 256 tasks onto 64 PEs.

spreading E[IWI] = 128 E[I-YVI] =256 E11[WI] = 512 E[IWI] = 1024

Dspreding_ &2 fH () I&2mn fH(z) l I .
none 0.619 3.06 0.852 4.10 1.340 4.16 1.763 7.73
phase 1 0.850 0.45 1.000 0.87 1.433 1.28 1.850 4.05

phas 11 #phase 6 0.973 0.00 1.168 0.00 1.598 0.00 2.110 0.00

the results of the simulation studies in terms of average Hamming distance, fh(z), and the

sample variance of the number of tasks mapped onto each PE, b2 . As would be expected,

the average Hamming distance increases as the expected number of source-destination pairs

increases. Also, for a fixed value of the expected number of source-destination pairs, the

average Hamming distance increases with successive applications of the spreading procedure.

Simulations for a simple default mapper were also conducted, where the default mapper

simply mapped task i onto PE j, where j is defined by masking (to zero) all but lower six

bits of i. The simulations results for the default mapper were fH-(z) 3.00 and &P'. = 0.00,

for all cases.

2.7 Conclusions

2.7.1 Summary

A new hypercube embedding algorithm called hypersphere mapper was introduced. The

hypersphere mapper approach is novel in that it utilizes techniques from nonlinear pro-

gramming as a means of solving the mapping problem. In contrast, competing mapping

algorithms are based on combinatoric heuristics. An important advantage of hypersphere

mapper over existing mapping heuristics is that the case of mapping more that N tasks onto

24

N PEs is solved directly. In contrast, the competing heuristics are limited to problems where

the number of tasks is no larger than the number of PEs.

The variance of the number of tasks mapped to each PE is introduced as a means of

quantifying the measure of "computational load balance" associated with a particular map-

ping. The average distance between mapped communicating tasks is used to measure the

communication load requirement on the interconnection network. Experiences with exist-

ing hypercube multiprocessors have indicated that latencies caused by contention for the

communication resources are often more of a throughput bottleneck than the uniformity of

the computational load balance. Hypersphere mapper offers a means of striking a practical

balance between these two competing factors.

2.7.2 Ongoing and Future Work

By altering, slightly, the proposed objective function for hypersphere mapper, the resultant

mappings can be tuned to have desired characteristics. For instance, by simply multiplying

the average Euclidean distance component of the objective function (refer to Equation 9)

by a scalar weighting factor, say 7, the nature of the resultant mappings can be changed.

In particular, the mappings produced with -y > 1 tend to have smaller values of fIf(z) and

larger values of &.mn (with no spreading), than the mappings produced with -y < 1. Also,

the objective function can easily be adopted to accommodate a weight associated with each

element in W, which corresponds to the frequency with which the associated pair of tasks

request communication. Thus, placing an increased penalty on separating those task pairs

that communicate frequently. Work is currently underway in evaluating a variety of different

objective functions.

For cases where T 2 is large relative to IWI, the dominant computational time associated

with each of the gradient projection iterations comes in computing the component of the gra-

dient associated with the average inverted Euclidean distance between all pairs of tasks (refer

to Equations 9 and 16). Instead of averaging the inverted Euclidean distance over all pairs of

tasks, an average could be taken over a smaller set of pairs of tasks. The set W appears to be

a natural candidate. Another possibility is to average over a randomly generated collection

of task pairs. Some preliminary studies along these lines are currently underway. Work is

also currently underway in integrating hypersphere mapper into a software engineering tool

for high-performance computing systems.

25

3 OMARS: Optimal Mapping Alternate Routing Sys-
tem

3.1 Introduction

3.1.1 Background

With rapid advances being made in technology for information acquisition and processing,

the Department of Defense has recognized the potential benefit in shifting certain compu-

tationally intensive applications from sequential to parallel platforms [19]. However, the

potential performance gains associated with using parallel machines may be offset by the

generic difficulty (i.e., extensive time and effort) required to effectively port applications onto

current high-performance parallel architectures. Unlike the hardware and software technolo-

gies associated with sequential platforms, which are becoming more standardized and appear

to be stablizing, the status of hardware and software technology for parallel systems is rapidly

changing.

When executing code on sequential computers, performance is relatively independent of

where in memory the software tasks (i.e., code and/or data blocks) are initially stored.3

However, the specific mapping used to assign multiple tasks onto the processing elements

of a distributed memory parallel machine can have a significant impact on performance. A

poor mapping of tasks onto the processing elements of a parallel machine may, for example,

result in excessive contention for some of the communication links of the interconnection

network. Such contention can cause some messages to experience substantial delays as they

are transmitted through the network, which in turn may cause excessive idle times for the as-

sociated destination processors. When processors spend an excessive amount of time waiting

for messages from other processors (instead of doing useful computation), then the overall

performance of the system can be degraded. Therefore, while the overall performance of exe-

cuting large software systems on sequential machines depends primarily on the characteristic

speed of the underlying hardware, the performance of executing computationally intensive

applications on parallel platforms generally depends on how well the software application

and parallel hardware are "matched."

Large software systems, such as those that exist in complex military systems, are often

conceptualized, designed, and coded as a collection of interdependent computational tasks.

A natural architectural choice for executing a collection of tasks in parallel-where the

'Technically, sequential machines with cache memory do improve performance by moving active/inactive
code blocks into/out of a high-speed cache memory space, but this is generally done dynamically and is not
controlled directly by the programmer.

26

functionalities of the tasks may be mutually independent-is to execute the tasks on the

processors of an MIMD (multiple instruction stream - multiple data stream) machine [11].

MIMD systems, by definition, are capable of executing multiple independent threads of

control, one or more on each processor. Knowledge of the communication pattern among

the tasks can be used to decide to which processor each of the tasks should be mapped.

For example, for the case where there are more tasks than processors, it may be beneficial

to map clusters of tasks that communicate frequently onto a common processor in order to

reduce traffic on the interconnection network and minimize the effect of latency associated

with passing messages through the network. An effective mapping of tasks to processors may

also account for other aspects such as balancing the computational load assigned to each

processor and minimizing network contention for those pairs of tasks that do communicate

through the interconnection network.

Because the interconnection networks employed by different parallel machines have a wide

range of characteristics and properties [21], the best mapping strategy (for a given applica-

tion) onto a particular architecture may not be the best strategy for another architecture.

Formal methodologies have been proposed for automating the process of mapping tasks onto

the processors of various classes of parallel architectures. For example, the so-called hy-

percube embedding problem (which involves mapping software tasks onto the processors of

architectures with a hypercube topology) has been studied extensively in the literature [9].

Mapping problems are usually formulated as combinatoric optimization problems, and often

these formulations are NP-Hard, for example see [10].

A common objective used for mapping tasks onto architectures that have point-to-point

network topologies, such as hypercubes and meshes, is the minimization of the average

distance between pairs of communicating tasks (where the distance is defined as the minimum

number of network links that must be traversed to send messages between a communicating

pair of tasks). While this objective makes intuitive sense under the assumption of store-

and-forward switching [7], in which the delay of a message is proportional to the number

of traversed links, it may or may not be an important measure under the assumption of

virtual cut-through switching [17]. For the case of virtual cut-through switching, a more

fundamental concern may be to minimize link contention, which is more accurately gauged by

the maximum link usage factor (defined to be the maximum number of times any single link

is traversed). There is generally some degree of overlap between various objective functions.

For instance, minimizing the average distance between communicating tasks also minimizes

the total number of links needed for all required processor-to-processor connections, which

in turn may tend to decrease the maximum link usage factor. That is, if less links are used

for all required connections, then (intuitively) link contention is less likely.

27

Judging the merit of a mapping heuristic by only examining the associated values of the

underlying objective function (e.g., average and/or worst case objective function values) does

not necessarily provide accurate insight into how well the mappings produced by the heuristic
will perform when implemented on a real parallel machine. This is because the objective

functions that heuristics aim to minimize typically do not fully capture the complexity and

interdependence of the many factors that must be considered in order to accurately measure

the quality of a mapping. One of the important features of OMARS is that it allows the

user to experiment with various mapping strategies in order to quickly determine a mapping

that will perform well when actually implemented on a specified parallel machine.

3.1.2 Motivation for OMARS

In military systems, the software development process for sequential platforms is a well-

defined and standardized process. This process, defined in MIL-STD2167A, is based on the

waterfall lifecycle model and consists of several major phases including requirements analysis,

specification, design, coding, testing, integration, and maintenance. Because the operating

systems, languages, compilers, and architectures for sequential systems are becoming more

standardized, the porting of application software from one sequential platform to another is

usually not a major issue.

In contrast to sequential software development, a standardized process for developing

parallel software does not yet exist. It is difficult to directly apply the sequential model

for software development to parallel systems because there are certain issues in developing

parallel software that do not arise when developing sequential software. One important

aspect of software development for parallel systems during the integration phase, is the

notion of how to map multiple tasks of parallel software onto the processors of a parallel

architecture.

The theoretical and technical difficulties associated with understanding, modeling, and

accounting for the many interdependent factors that influence how to best map a given set of

computational tasks onto the processors of a given parallel machine are compounded by the

fact that real software systems evolve over time, and thus the issue of how to best map new

and/or evolved multiple tasks onto a given machine must be addressed periodically. Also,

hardware technology for parallel processing systems is rapidly changing, which often makes

the network characteristics of newly introduced machines substantially different from their

predecessors. The rapid changes in technology for parallel processing (i.e., lack of a standard)

have made it very difficult for the research community to develop systematic and provably

sound techniques for automating the mapping of software tasks onto parallel architectures.

The following points represent key factors that initially motivated (and continue to in-

28

fluence) the development of OMARS: (1) the mapping strategy used to assign tasks to the

processors of distributed memory architectures can have a significant impact on delivered

performance, (2) systematic techniques for mapping tasks onto parallel architectures are of-

ten based on optimizing a simplified metric associated with the assumed architecture, and

thus actual performance from the parallel machine may not correlate perfectly with optimized

values from the assumed objective function, (3) until the technology for parallel processing

begins to stabilize, it is unlikely that completely automated techniques for mapping will be

able to provide mappings that always deliver the best possible performance, (4) the problem

of mapping will introduce new organizational and/or software management burdens when

large evolving software systems are targeted to parallel platforms, and (5) a need for an

environment to make currently available mapping heuristics more accessible, practical, and

easier to evaluate and compare.

3.1.3 Organization of the Section

This section is organized in the following manner. Subsection 3.2 includes an overview of

OMARS and descriptions of its main subsystems. Subsection 3.3 goes through an example

user session of OMARS. Subsection 3.4 gives a brief description of a successfully imple-

mented and very effective distributed configuration management scheme that was used to

develop the software for OMARS (software development for OMARS was divided between

two geographically distributed sites). Subsection 3.5 reviews the current status of OMARS

and outlines ideas for future versions.

3.2 Description of OMARS

3.2.1 Overview of OMARS

OMARS is a prototype tool designed to aid the software engineer during various phases of the

development of parallel software. The tool is especially well-suited for large software appli-

cations where functional parallelism is employed to parallelize computations. The OMARS

tool is designed to alleviate some of the organizational problems associated with assigning

computational tasks onto the processors of a parallel machine, and to provide the user with

easy to understand graphical interfaces. The OMARS tool provides a "plug-and-fit" envi-

ronment for executing and evaluating sophisticated mapping algorithms for solving various

formulations of the mapping problem. On platforms where the interconnection network has

multiple paths between processor pairs, the tool also provides routing solutions (from an

optimal routing algorithm) that could be used to implement alternate routes through the

interconnection network of the assumed parallel architecture.

29

The input to OMARS is a weighted intertask communication graph. A tracing facility is

provided for capturing the intertask communication graph for parallel programs written in

either the MIMD or SPMD (single program - multiple data) modes of parallelism. For a given

intertask communication graph, the user can interactively experiment with various combi-

nations of mapping and routing strategies by selecting algorithms from the mapping and

routing subsystem menus of OMARS. For each mapping/routing combination selected by

the user, the tool generates a window containing a graphical view of the machine's architec-

ture providing the user with an overall visual perception of how effectively the architecture's

resources are utilized. Numerically-based metrics are also displayed within the window of

each architecture graph.

OMARS currently runs on a Sun 4 workstation. The OMARS graphical displays are
written with the X-windows system software to provide the greatest possible portability

across today's popular workstations. It currently provides graphical displays of architectures

having up to 64 processing nodes and can provide general mapping and routing support for

systems having up to 1024 processing nodes.

The functionality of the OMARS tool is divided into five parts: the tracefile generator,

the mapping subsystem, the routing subsystem, the graphical displays, and the taskfile

generator. These subsystems are described in greater detail in the following subsections.

The relationships and flow of information among these subsystems are shown in Figure 8.

3.2.2 The Tracefile Generator

In order to determine the communication pattern among software tasks, parallel code can be

instrumented to capture (i.e., trace) the intertask communication during execution. Because

the intertask communication pattern is independent of the task-to-processor mapping, the

initial mapping used for the purpose of tracing the intertask communication pattern from the

parallel architecture can be arbitrary. After execution, the intertask communication pattern

is written to a file, which is called a tracefile. Given the traced intertask communication

information contained in the tracefile, OMARS can provide a graphical view of the com-

munication pattern among the tasks in a task graph. Also, this intertask communication

pattern is used as input information to the mapping subsystem.

The information recorded in the tracefile includes: the number of tasks, the number of

processors, the processor to which each task was initially assigned (for the purposes of the

trace), and the set of tasks to which each task sends messages. The intertask communication

data is gathered by monitoring all messages sent by all tasks during execution of the parallel

program on the parallel machine. Once the parallel program has completed execution, the

traced information (which is stored in processor memory) is written to the tracefile. This

30

Sun Workstation
I Grahica DislaysMapping Subsystem

Graphica Diaplay

Tracefile I

Tasfil Geeraor outnguubsste

Figure 8: System overview of OMARS.

31

tracing procedure introduces very little intrusiveness to the execution, however, the scala-

bility of such an approach is obviously limited by the amount of memory available to each

processor. This type of memory storing approach for tracing has also been used in PICL

[13, 14] producing information that can be used with the ParaGraph visualization tool [15].

The current version of the tracing facility was developed to support the nCUBE 2 parallel

processing system [20]. Both the MIMD and SPMD modes of programming for the nCUBE

2 are supported.

In the MIMD mode of programming on the nCUBE, each of say T tasks are coded as

T independent programs. These T programs are compiled and mapped onto the processors

of the nCUBE using a user specified mapfile. The mapfile defines to which processor each

program (i.e., task) is to be mapped. Sending a message from one task to another is ac-

complished by executing the communication construct nwrite() at the sending task and

nread() at the receiving task. The arguments of the nurite() function include the proces-

sor/process number to which the message being sent and the number of bytes in the message.

The arguments of the nreado function include the processor/process number from which

the message being received and the number of bytes in the message.

In order to make the tracing scheme easy to use, a utility is provided that automatically

replaces all calls to nwrite() and nread() (in the user's parallel program) with instrumented

versions, which are named twrite() and tread 0. The utility also inserts the source as-

sociated with these instrumented functions by inserting "include" statements in the source.

The twrite() and tread() functions use the task number instead of the processor/process

number for identifying the destinations and sources of messages. This allows the user to

view communication in terms of logical intertask communication instead of communication

between physical processors.

The function twrite() first records that communication has been requested to the des-

tination task number, then converts the destination task number (which is passed as an

argument of twrite() to a processor/process number and calls nwrite() using this pro-

cessor/process number. The conversion between task number and processor/process number

is uniquely defined by the mapfile. The function tread() simply converts the task number

(passed as an argument of treado) to a processor/process number and calls nreado.

In the SPMD mode of programming on the nCUBE. a single program is mapped onto

every processor. Functionally distinct tasks can still be executed among the processors

in SPMD mode by conditioning the execution of code segments (i.e., tasks) of the single

program according to the IDs of the processors. Assume the first instruction in the program

is the assignment of the processor ID to a local variable, say pid, which can be determined

from a function called whoami(). Once the processor ID is stored in the local variable pid.

32

then case statements can be used to partition the execution of the program into segments.
where each segment is executed by a particular (set of) processor(s). The communication

constructs for sending messages (and tracing) in SPMD mode are similar to those described

earlier for the MIMD mode.

3.2.3 The Mapping Subsystem

The mapping subsystem in OMARS currently allows the user to select either the initial

mapping (used during generation of the tracefile) or mappings produced by one of three

mapping algorithms. The currently implemented mapping algorithms are for architectures

with hypercube-based interconnection networks. These three mapping algorithms are called

the default mapper, the hypersphere mapper, and the greedy search mapper.

The default mapper is a straightforward mapper that does not utilize the intertask com-

munication pattern in deciding the mapping. This algorithm simply maps task number i
onto processor number i mod N, where N is the number of processors. The default mapper

provides a very simple solution to the mapping problem that can be a useful baseline for

comparing other more sophisticated mappers.

The hypersphere mapper [1 employs a nonlinear programming approach for solving the
hypercube embedding problem. The basic idea of the approach is to approximate the discrete

space of an n-dimensional hypercube, i.e., {z : z E {0, 1}1}, with the contin-uous space of an
n-dimensional hypersphere, i.e., {x : x E g & IIx112 = 1}. The mapping problem is

initially solved in the continuous domain by employing the gradient projection technique to a

continuously differentiable objective function. The optimal task "locations" from the solution

of the continuous hypersphere mapping problem are then discretized onto the n-dimensional

hypercube. The hypersphere approach can directly solve the problem of mapping T tasks

onto N nodes for the general case where T > N. In contrast, many of the competing

embedding heuristics from the literature only produce one-to-one mappings and can only be

directly applied when T < N. Refer to [11 for a more detailed description and for performance

evaluation studies of hypersphere mapper.

The greedy search algorithm [81 maps the set of tasks onto the set of processors by

considering tasks one at a time. To determine which task to consider next, the algorithm

selects the task that has a maximum number of neighbors from the task graph already

mapped. The algorithm then assigns the task to the next processor, where the processors
are traversed in gray-code order. This heuristic is relatively fast, however, its performance in

terms of typical objective function values is substantially lower than other more sophisticated

approaches.

Other mapping algorithms that will be implemented in future versions of OMARS are

33

the local search mapper, the mincut bipartitioning mapper, and the simulated annealing

mapper. Descriptions of these algorithms are contained in [9] and the references therein.

3.2.4 The Routing Subsystem

The routing subsystem in OMARS currently has two processor-to-processor routing schemes

implemented; both of these schemes assume hypercube-based architectures. These routers

are called default router and modified multiflo router. Like the mapping subsystem, the

routing subsystem provides a "plug-and-fit" framework for implementing and evaluating new

and existing routing algorithms. The input to the routing algorithms is the interprocessor

communication traffic. These interprocessor demands can only be determined after the task-

to-processor mapping is defined. Thus, the output of the mapping subsystem, which is

a task-to-processor mapping, is used with the intertask communication pattern (from the

tracefile) to determine the interprocessor traffic. Given the interprocessor traffic demands,

the routing algorithms determine the paths through the interconnection network to be used

for making the required processor-to-processor connections.

The default router is the routing scheme that is commonly implemented in commercial

hypercube systems. This is a static routing scheme, which is independent of the assumed

interprocessor traffic pattern. To describe the default routing scheme, the topology of the

hypercube is first reviewed. In an n-dimensional hypercube, the processors are numbered

from 0 to 2'n - 1 using n-bit binary labels. Two processors in a hypercube are directly

connected with a communication link if and only if their binary addresses differ in exactly

one bit position. For instance, in a 3-dimensional hypercube processor 2 (010) is directly

connected to processors 3 (011), 0 (000), and 6 (110).

To illustrate the default path connecting two processors, consider the generic address

labels S = s,,-... so and D = d,,-" ... do, which represent the addresses of a source and

destination, respectively. Assume S and D differ in exactly 1 < k < n bit positions and let bi,

i = 1,... k, denote the ith lowest bit position where the labels S and D differ. The first link

in the default path from S to D is the direct link that connects S = sn-1 ... Sb, Sb-1 ... SO =

S,-*'" Sb, d6, -1... do to ,n-1 db.db, d -I"" . do. In general. the ith link in the path is the

link that connects processor sn,-1 .Sbidb,-l ... do to S,-1 ... d, db-1 ... do. Thus, at each

processor along the path, a single bit of the source address is "corrected," until the path

terminates at the destination. As an example, the path connecting processor 0 (000) to

processor 5 (101) consists of the direct link from processor 0 to processor 1 and the direct

link from processor 1 to processor 5. For further information on default routing and how it

is commonly implemented, the reader is directed to [16, 20].

The underlying objective of an optimal routing algorithm is to determine a set of paths,

:34

one for each pair of communicating processors, so that some measure of network contention

is minimized. The optimal routing algorithm implemented in OMARS is based on a multi-

commodity network flow algorithm called multiflo [4]. Multiflo uses a path flow formulation

and a gradient projection method to minimize an objective function of the form

FijD(F) = E C-ii

where £ denotes the set of all network links, C is a constant, and the variable Fij denotes the

"flow" on link (i, 3). The theoretical foundation of the particular objective function given in

the equation above is rooted in queuing theory, and the interested reader is referred to [2]

for a more detailed development and explanation.

For the purposes of explanation here, and to provide some intuitive perspective, note

that each term in the sum of the objective function is a nonlinear and increasing function

of Fij, for 0 < Fij < C. Realizing that Fij is a measure of the traffic that is routed through

link (i,j), note that as a particular Fij is increased, the corresponding term in the objective

function sharply rises. The values of Fj depend on how the routes between communicating

processors are selected. In particular, the value of F2j is equal to the sum of all path flows

that utilize link (i,j). So, any candidate technique for solving the optimal routing problem,
which is to determine paths for communicating processors so the above objective function

is minimized, should tend to select paths so that the values of the link flows (i.e., F23's) are

relatively uniform. A routing solution where even one link flow value is close to the value of

the constant C causes a sharp increase in the value of the objective function.

Routing solutions produced by the multiflo algorithm of [4] generally utilize more than

one path to route the traffic between each pair of communicating processors. That is,

the algorithm is formulated to allow the total demand between each pair of communicat-

ing processors to be split and routed along several distinct paths that connect the source

and destination processor. By allowing a continuous splitting of source-destination demand

among distinct paths, the routing provided by the multiflo algorithm is provably guaranteed

to be optimal (in the sense of achieving a minimum value of the objective function). For

practical reasons, the optimal routing solution from the multiflo algorithm is modified by

OMARS so only one path is used for each pair of communicating processors. This is accom-

plished by simply selecting the single path, for each communicating pair of processors, that

has the maximum amount of demand routed through it. In practice, the solutions provided

by multiflo typicaiiy do not have more than three or four "active" paths for each pair of

communicating processors. Through experimentation, it has been observed that while the

modified version (i.e., single path approximation) of the multiflo routing solution generally

35

has a corresponding objective value function that is larger than the optimal value, its value

is typically much smaller than that associated with the default routing.

3.2.5 The Graphical Displays

Two important objectives that influenced the implementation of OMARS were: (1) to make

it easy to use and (2) to present the results from the mapping and routing algorithms in

an intuitive and easy to understand manner. These objectives were achieved by making

extensive use of graphical displays. The interactive portions of OMARS are completely

menu-driven and the user is typically only required to "point and click" the mouse to make

selections from the menu items. All of the graphical displays are generated using X-windows

system software. The various interactive menus and displays associated with OMARS are

highlighted in Section III by "walking through" an example user session.

3.2.6 The Taskfile Generator

The taskfile generator is essentially an output file generator for OMARS. A taskfile contains

the mapping and routing information associated with a selected architecture window. The

taskfile enables the user to implement the mapping and routing information provided by

OMARS on the target parallel machine. Recall that an architecture window is generated

each time the user specifies a mapping/routing combination from the mapping and routing

subsystem menus. To generate a taskfile, the user selects the "Generate Taskfile" item from

the main menu and then selects an architecture window using the mouse. The taskfile is

formatted in a way that makes it easy to implement the mapping and routing information on

the assumed parallel platform. Current taskfiles are formatted to be used with the nCUBE

2, although formats are planned for Intel's i860 and Paragon machines.

3.3 Example User Session of OMARS

The objective of this subsection is to walk through a typical user session of the OMARS tool

as a means of illustrating its "ease of use" and to demonstrate the potential advantage of

using the mapping and routing information provided by the tool. Because of space limitation,

the process of instrumenting the parallel code for the purposes of tracing is not included here.

The displays for the session are based on a tracefile named trace. 16, which was generated

by tracing the execution of a SPMD program executing on a 4-dimensional subcube of the

nCUBE 2.

To start the example user session, the command omars trace. 16 was executed, which

generated the two windows shown in Figure 9. The window on the left side of the figure

36

SOMA4S "4OMARS Message Window

WItN nEM1STAMK a]MMJICqTION M

AMl ITECTLIE W The Oia.l HappIng • L trrV•A•, 'Ains Sw*ut kOWMS...

CO NTRIOLS

OMA SU.E

MIT

Figure 9: Initial windows generated by executing OMARS.

has two parts: the main menu and the controls; the window on the right side is called the

message window. The message window is used by OMARS to convey useful information

and/or instructions at various stages of interaction with the user.

The functions associated with the three buttons within the main menu will now be

illustrated. By selecting the task communication graph button, the intertask communication

pattern among the tasks is displayed graphically, as shown in Figure 10. When the task

communication graph is initially displayed, only the nodes of the graph are drawn (one for

each task). To determine which tasks a particular task sends messages to, the user selects the

desired origin task and OMARS draws arcs from this origin task to all associated destination

tasks. Shown in Figure 10 is the result of the user selecting tasks 3, 6, and 12. The color of

each arc corresponds to the number of messages transmitted to the associated destination.

The color scale, which is displayed on the upper left side of the window, is shown in gray-

scale here. To erase all arcs in the task communication graph, the user can select the clear

button located above the color scale. To display all arcs of a particular color (i.e., traffic

level), the user can press the associated button of the color scale and all arcs of that color

will be displayed.

By selecting the architecture graph button, a menu of mapping choices is generated as

shown in Figure 11. After selecting a mapping algorithm from the mapping menu, a menu of

routing choices is displayed, as shown in Figure 12. For each mapping/routing combination

selected by the user, an architecture graph window is generated. Figure 13 shows the result

of selecting four distinct combinations of mapping and routing choices: (1) greedy search

mapping with default routing, (2) greedy search mapping with modified multiflo routing,

(3) hypersphere mapping with default routing, and (4) hypersphere mapping with modified

multiflo routing. The nodes of an architecture graph represent the processing elements (PEs)

37

0 MA RS TASK COMMUNICATION GRAPH

~MIN Wl] loIv ti p~m .
(!J OWMA M2.a0 ina

Thi3. 2stuTs o~ctm h~u

OMM Ii MPPN

alca ... s
OMARSu message Window

~~Figure 1 0: Afterul o selecting the architecturetio graph button,.h sri rmpe oslc

mappmitiimw Wul ing es elcaMAPN algorithm.fo.hem pin.eu

6AM 3038

(!3 ONARS ROUTING r (D ONA eS Uosage Widuw

MIN Wo gaut %in9in4

TW CONICATIS W" if ie tiflo Comdltw Plem aelect a MOUDG aI•with...

IGilt 9SOJ

UTI

Figure 12: After selecting the architecture graph button and selecting a mapping algorithm
from the mapping menu, the user is prompted to select a routing algorithm from the routing
menu.

of the parallel architecture and the edges represent the interconnecting communication links.

The color of each communication link corresponds to the link usage factor, which is the

number of message that use the link. The nodes are colored based on the number of tasks

mapped to each PE. Also displayed in each architecture window is some textual information

that includes the name of the tracefile used and some numerical metrics.

The numerical metric labeled PE load variance indicates the variance in the number of

tasks mapped to each PE. If the same number of tasks are mapped to each PE, then the value

of this metric is zero, otherwise it is a positive number; larger values imply more variation

in the number of tasks mapped to each node. The inter-task communication metric is the

total number of messages sent between all tasks. The network traffic is the total number

of message that are sent through the interconnection network. The average distance is

the average number of links used to establish paths for all communicating tasks. Most of

the mapping algorithms are based on minimizing this metric. The maximum link usage is

the maximum number of messages sent across any communication link. Optimal routing

techniques will typically decrease the value of this metric.

From the four architecture graphs shown in Figure 13, the choice of hypersphere mapping

with modified multiflo routing has the best overall metric values. To generate a taskfile for

this mapping/routing combination, the user selects the generate taskfile button, which causes

a pop-up window to be generated prompting the user to select an architecture window. The

user then selects any portion of the desired architecture window, and another pop-up window

is generated that includes a proposed name for the taskfile to be generated, as shown in Figure

14. At this point, the user can either accept the proposed taskfile name, type another name,

39

COLOR CALE ~ Greedy Search mapping and Default Rn HIypersphere Mapping aad Deftaul as

0 %.W FOse.. a Link A1

U Leas Uwm 2.2 mae

U L~an tha 4.4 mae

Lam then 6.7 maneW

Lous U~m 8.3 amminus

Loom then 11.1 mse.

U L~at thin 23.3 .m9.

U Loss than 15.6 aessage

Loss than ±7.8 messages P

2 20.0 alossm nmesages
Greatr tha 20.0Trace File: tracee. S Tram File: trace.IS

Uber f Taks: 6 Ub of Tasks: 16
ME P Lod Vaiane: OOOMPE Load Vartarc: 0.00W0

Inter ask Cm: IInto -Cm Cam: 116
PELWI Ntwor traffic: LR% Ne~tuwor traffic: 195

kwag 01 : 227WeU AWO Dtsice: 1.65M2QUIT WINUC Maimaju Link Usage: 20 WI IDM Maxima Link Usae.: 24

SGedy Search Mapping and Modified 2, Hypersphere Mapping and Modified Mun

Trame File: trace.16 Trace File: trace.1S
bunbr ofTans: 1 boer of Tasks: 15

PE Loand Yaltanc: 0.0000 K] PE Loed Ya tance: 0.0000
Into-Tas Com: LInter-Task Com: 116

Ntwok traffic: ±16 PE LAYMT 1, Networkc Traffic: 195
kwage Iht - : 2.2=39 Auas Dstancs: 1.6512

lilT hiN~u Maimm Link Wsage: 16 (QIT W1NS lxm ikUae .

Figure 13: After selecting the architecture graph button and selecting a mapping algorithm
and a routing algorithm, an associated architecture graph is displayed. Shown in the figure
are four distinct architecture windows associated with various mapping/routing combina-
tions.

40

(] COLOR SCALE Greedy Search mapping and Default ftg H Sypowsphere Mapping and Default Roe

FE None P..au 0.Wk E CI~V u~ .0

Lose thinam 2.27 meiag itac:1.62

Fiues 14:n To4 gesslnert akie h srslcstegnrt kiebtote eet

deieds arhiect56 sure wno.OASte rmt h se onm h soitdtsf
tou bea crete .8msasM TsflRa OWeyino

20.0 r Louwes41

PM H[LP ME-NU iq Help Indem Window

vif ARS figessteg resut o nd

Figure 5: SeletingTCj CAW" hel butt n generatios aChlpomen taid hmsri nes dn
varius pect o CONTROS. Shown Dntefgr stefaeult mapping g h ide uto

from within the help menu.

or cancel the generation of a taskfile.

An important feature of OMARS is that on-line help is implemented. From the control
menu the user can select the help button, which generates a help menu as shown in Figure

15. In this figure. the index button within the help menu was selected, which generated a
help index window. The help index window contains definitions and descriptions of virtually

every aspect of OMARS.
Because of space limitation, detailed performance evaluations associated with incorpo-

rating taskfiles generated by OMARS for nCUBE programs are not included here. A general

trend, however, is that execution time tends to be strongly correlated (typically) with the

value of the maximum link usage factor. This is not surprising as the switching methodology

used by the nCUBE 2 is essentially a variant of virtual cut-through. refer to [20] for more

details.

3.4 Configuration Management for OMARS

The software development for OMARS took place at two different locations. The graphical

displays and user interfaces for the tool were developed primarily at Rome Laboratory, Rome,

New York. The data structure development and algorithm research and implementation was

done primarily at Purdue University, West Lafayettev Indiana. In this distributed software

development environment, the importance of having systematic procedures and guidelines

for version control and configuration management were realized early-on.

42

A configuration management process was implemented using the UNIX SCCS (source

code control system) tool. A description of the configuration management process used to

develop software for OMARS is outlined in this subsection.

3.4.1 Responsibilities of the Software Developers

Individual software developers were able to electronically check items in and out of a central

SCCS library, which was stored on a hard-disk at Rome Laboratory. Each software developer

was required to adhere to the following guidelines and responsibilities.

"* Use only those commands provided by the configuration manager (via linking to an

alias file) when accessing files kept in the SCCS library.

"* Provide comments upon returning edited files to the library. These comments are

incorporated in change records kept for each file in the library.

"* Add a standard header to new files that are created for the library.

"* Submit change proposals for the system Makefile. (This was implemented by sending

proposed changes via email to the configuration manager.)

3.4.2 Initial Library Files

To give an indication of the number and types of files managed by the SCCS library, listed

below are the files associated with version 1.1 (initial version) of the OMARS tool.

HEADER FILES
defaults.h defs.h I globaldef.h trace.spmd.h
defines.h global.h trace.h

C FILES
bitinv.c drawinit.c multi-out.toJlink.c
button.c eval-costl.c netfile-gen.c
callmappers.c eval-gradl.c norm-2.c
callUrouters.c expose.c r-spread.x.out.c
compute.avg.dist.c gen-trace.c readtrace.c
compute-max-util.c greedy.mapper.c route-parse.c
compute.net -traffic.c hypersphere.mapper.g.c sim-anneal-mapper.c
compute-variance.c init-positions.c table-output.c
convert.c local-search..mapper.c trace.c
convert toP E-odpairs.c main.c trace-mimd.c
default -mapper.c map.x-onto-hypercube.c traf-file.gen.c
draw.c mincut-bipart-mapper.c

43

FORTRAN FILES
dcal.f driver.f prsumm.f shorpape.f
delay.f load.f round.multiflo.f

OTHER FILES

Makefile netwrk.prm paths.blk tracejile
convrg.prm oconfig.tex round-comp
hyper-default param.dim round-multi

3.4.3 Commands for Accessing the SCCS Library

Each user set up a personal working directory in his/her local workstation for the purpose

of software development. Software developers used the following commands, provided by

the configuration manager, in order to check out, edit, test, debug, check in, and check the

status of items kept in the SCCS library.

oclean : removes all files from the current directory that can be retrieved from the library.

It does not remove any files currently checked out for editing.

ocmds : gives a summary of the OMARS library commands.

ocreate filename : creates a new library file by renaming filename to ,filename, places a

copy of filename into the library, and gets a copy of filename from the library.

odone filename : checks in a file that has been checked out for editing and prompts the user

for comments, which are placed in the history for documenting changes to filename.

oedit filename checks out a file for editing, and locks it against concurrent changes.

oget filename gets a read-only copy of a file from the library; changes to this file are not

tracked because it is not checked out to be edited.

ohelp errno : gives detailed information about error codes returned by the SCCS tool.

orpt filename : reports on the history of filename.

ostat : lists the files being edited, the old and new version numbers, the user(s) that checked

out the file(s), and the time and date the file(s) was (were) checked out.

ounedit filename : returns filename to its previous condition by removing all changes made

to filhname since it was checked out.

44

3.4.4 Benefits of the Configuration Management Process

The configuration management process allowed multiple software developers to simultane-

ously design, code, and test new functionalities for OMARS with very little contention
and/or confusion. Because past versions for all files were saved and documented within

SCCS, software developers were able to roll back to various combinations of file versions

for the purposes of recreating executables from the past. The history kept for each file was
especially useful in tracking changes and finding bugs. Perhaps the most important aspect

of the process was that each file could only be checked out (for the purposes of editing) to
one person at a time. This serialization eliminated the possibility that two programmers

might, unknowingly, attempt to make modifications to the same file at the same time.

3.5 Conclusions and Future Work

The development of OMARS is an ongoing effort. The current version of OMARS is about
12,500 lines of code (about 11,000 lines in C and the remaining in FORTRAN). This does

not include the modifications and additions (for alternate routing) that have been made on
the OS source code for the nCUBE 2, which is written in assembly language.

The primary goal of OMARS is to provide software engineers with some tools for ad-

dressing relatively low-level issues (i.e., mapping and routing) that arise when developing

large software applications on parallel processing platforms. Future work will include the
implementation of other mapping and routing schemes for various types of architectures.

Plans are currently being made to introduce OMARS, on an experimental basis, to students

in a parallel programming class; as a means of getting user feedback. Plans beyond this
initial release are to eventually make the tool available to the general public.

Special Note Regarding Figures in Section 3

The graphical lisplays for OMARS are implemented in color for viewing on a color monitor.

The screen dumps from OMARS shown in this section are in black & white, and thus the

effect of having color for the arcs, nodes, and color scale is not shown. The color component
is an especially important factor for the displays associated with Figures 10, 13, and 14.

45

4 Future Research and Development Directions

The following is a list of directions/tasks that we would like to pursue in the future.

"* completion of alternate routing implementation for OMARS

"* OMARS display research and development

- develop new aggregate and/or more user friendly metrics

- color scale experiments

- grey scale experiments

- average distance normalization

- average distance display

- network traffic normalization

- network traffic display

- maximum link utilization normalization

- maximum link utilization display

- PE load variance normalization

- PE load variance display

- 32 PE display

- 64 PE display

"* basic mapping research

- minimize maximum link utilization

- for mesh interconnection networks

"* experiments using OMARS output on simulated program behaviors

"* OMARS with real applications

46

References

[1] J. K. Antonio and R. C. Metzger, "Hypersphere mapper: a nonlinear programming

approach to the hypercube embedding problem," Proc. 7th Intl' Parallel Processing

Symposium, Apr. 1993, pp. 538-547.

[2] J. K. Antonio, W. K. Tsai, and G. M. Huang, "Time complexity of a path formulated

optimal routing algorithm," IEEE Trans. Automatic Control, scheduled for publication,

Dec. 1993.

[3] M. S. Bazaraa and C. M. Shetty, Nonlinear Programming: Theory and Applications,

John Wiley & Sons, NY, NY, 1979.

[4] D. P. Bertsekas, B. Gendron, and W. K. Tsai, "Implementation of an optimal multi-

commodity network flow algorithm based on gradient projection and a path flow for-

mulation," MIT, Cambridge, MA, LIDS Rep. No. LIDS-P-1364, Feb. 1984.

[5] S. Bettayeb, Z. Miller, and I. Sudborough, "Embedding grids into hypercubes," VLSI

Algorithms and Architectures: 3rd Aegean Workshop on Computing, Lecture Notes in

Computer Science, Springer Verlag, 319, pp. 201-211, 1988.

[6) K. Bhat, "On the complexity of testing a graph for N-cube," Information Processing

Letters, 11, pp. 16-19, 1980.

[7] L. N. Bhuyan, "Interconnection networks for parallel and distributed processing," Com-

puter, vol. 20, no. 6, June 1987, pp. 9-12.

[81 W.-K. Chen and E. Gehringer, "A graph oriented mapping strategy for a hypercube,"

Proc. Third Conference on Hypercube Concurrent Computers and Applications, 1988,

pp. 200-209.

[91 W. K. Chen, M. F. M. Stallman, and E. F. Gehringer, "Hypercube embedding heuristics:

an evaluation," Int'l J. Parallel Programming, vol. 18, no. 6, 1989, pp. 505-549.

[101 G. Cybenko, D. Krumme, and K. Venkataraman, "Fixed hypercube embedding," In-

formation Processing Letters, 25, 1987, pp. 35-39.

[11] M. J. Flynn, "Very high-speed computer systems," Proceedings of the IEEE, vol. 54,

no. 12, Dec. 1966, pp. 1901-1909.

47

[121 G. Fox, "A graphical approach to load balancing and sparse matrix vector multiplication

on the hypercube," The IMA Volumes in Mathematics and its Applications, Volume 13.

Martin Schults, editor, Springer Verlag, 1988.

[131 G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, "PICL: a portable instru-

mented communication library, C reference manual," Technical Report ORNL/TM-

11130, Oak Ridge National Laboratory, Oak Ridge, TN, July 1990.

[141 G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley, "A user's guide to PICL,

a portable instrumented communication library," Technical Report ORNL/TM-11616,

Oak Ridge National Laboratory, Oak Ridge, TN, Oct. 1990.

[15] M. T. Heath and J. A. Etheridge, "Visualizing the performance of parallel programs,"

IEEE Software, vol. 8, no. 5, Sept. 1991.

[16] K. Hwang, Computer Architecture and Parallel Processing, McGraw-Hill, New York,

NY, 1984, pp. 339-340.

[171 P. Kermani and L. Kleinrock, "A tradeoff study of switching systems in computer com-

munications networks," IEEE Trans. Computers, vol. C-29, no. 12, Dec. 1980, pp. 1052-

1060.

[18] S. Kirkpatrick, C. Gelatt, Jr., and M. Vecchi, "Optimization by simulated annealing,"

Science, pp. 671-680, 1983.

[19] R. C. Metzger and J. K. Antonio, "Research issues for executing real-time C3 applica-

tions on parallel processing systems," Proc. IEEE Workshop on Real- Time Applications,

May 1993, pp. 81-86.

[201 nCUBE Corporation, nCUBE 2 Processor Manual, Order # 101636, nCUBE Corpora-

tion, Dec. 1990.

[21] H. J. Siegel, J. K. Antonio, and K. J. Liszka "Metrics for metrics: why it is difficult

to compare interconnection networks OR how would you compare an alligator to an

armadillo?," Proc. The New Frontiers: A Workshop on Future Directions of Massively

Parallel Processing, Oct. 1992.

[22] A. Wagner, "Embedding arbitrary binary trees in a hypercube," Journal of Parallel and

Distributed Computing, 7, pp. 503-520, 1989.

[23] A. Wu, "Embedding of tree networks into hypercubes," International Journal of Parallel

and Distributed Computing, 2, pp. 238-249, 1985.

OtiS. GOVERNMENT PRINTING OFFICE: 1994-510-117-50011

48

MISSION

OF

ROME LABORA TORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

