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1 Introduction and Overview

In this final report, we summarize the research performed under Advanced Research Projects
Agency (ARPA) contract F30602-90-C-0119, Flexible Coordination in Resource-Constrained
Multi-Agent Domains. The broad goal of this research, which was carried out as part
of ARPA/Rome Laboratories Planning Initiative (PI), has been to investigate the use of
constraint-based scheduling frameworks and techniques as a basis for more accurate and more
flexible decision support at various stages of the military crisis-action planning, deployment
and employment process.

The scheduling problems faced in the crisis-action planning domain present significant tech-
nical challenges. The problems are large-scale, the planning and execution environment is
dynamically changing, and solutions must integrate the actions of multiple decision-makers.
Coordinated decision-making about resource apportionment and allocation is required at
different levels of detail over different time scales, including (1) the ability to assess deploy-
ment transportation feasibility at early stages in the mission planning process and determine
overall transportation asset requirements, (2) the ability to generate increasingly detailed
deployment schedules that satisfy operational constraints, make efficient use of transporta-
tion assets and balance conflicting mission objectives, and (3) the ability to rapidly adapt
schedules in light of changing (or evolving) circumstances. Existing transportation plan-
ning/scheduling systems and mobility analysis models generally operate with models that
simplify important domain constraints (limiting the confidence that can be placed in results),
inadequately manage problem complexity (sacrificing optimality), provide only limited sup-
port for many planning tasks (forcing extensive manual analysis and manipulation of system
inputs and outputs), are inflexible in reactive decision making contexts (limiting respon-
siveness to change), and provide no support for coordination of different planning tasks
(increasing overall planning time).

Toward the development and demonstration of constraint-based scheduling technologies that
overcome these limitations, our research objectives have been two-fold:

1. to extend and generalize previously developed theories and techniques for constraint-
directed scheduling for application to the military crisis-action logistics domain, and
to evaluate their effectiveness in various decision-support contexts, and

2. to augment this constraint-directed scheduling methodology with protocols and coor-
dination strategies to support integrated decision-making by multiple transportation
scheduling agents.

We have taken a specific constraint-based scheduling technology, the OPIS manufacturing
scheduling system, as our starting point and have focused on generalization and applica-
tion of its multi-perspective scheduling technology to the deployment scheduling problem.
These investigations have led to the development of DITOPS, a constraint-based, transporta-
tion scheduling prototype with facilities to support problem decomposition and distributed
decision-making (DITOPS stands for Distributed Transportation Scheduling in OPIS). In
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parallel, we have also conducted more basic research into new constraint-based scheduling
procedures and into mechanisms for coordinating the scheduling actions of multiple agents.

Methodologically, our goal has been to demonstrate the feasibility and potential of constraint-
based scheduling technologies under realistic crisis-action planning assumptions. Qur aug-
mentation and generalization of the capabilities defined in the underlying OPIS scheduler
have been focused by detailed analysis of the military crisis-action planning process, the char-
acteristics and scheduling requirements in this domain, and the capabilities of current trans-
portation scheduling tools. We have experimentally evaluated the resulting DITOPS system
on large scale transportation scheduling problems defined within the ARPA PI Common
Prototyping Environment (CPE), and additional functional capabilities have been demon-
strated through the conduct of Technology Integration Experiments (TIEs) with planning
technologies developed at both BBN (FMERG) and SRI (SOCAP). We have also exported
scheduling support capabilities provided by DITOPS for use within the TARGET Integrated
Feasibility Demonstration system (IFD 3).

1.1 The DITOPS Transportation Scheduler

The constraint-based scheduling concepts and techniques implemented and demonstrated in
the DITOPS scheduler offer several sources of leverage in addressing crisis-action deployment
problems:

e incorporation of additional deployment constraints - One basic pre-requisite for devel-
opment of realistic deployment schedules is an ability to accurately model and account
for all important domain and problem constraints. DITOPS is able to generate trans-
portation schedules that take into account important classes of constraints that are
not currently modeled in current transportation planning practice (e.g., the temporal
precedence and synchronization constraints between “TPFDD” movement records). It
is also capable of enforcing other classes of constraints that are modeled in practice
but are typically ignored by other transportation scheduling tools (e.g., enforcement
of “earliest arrival date” (EAD) constraints).

¢ higher quality schedules - Through reliance on techniques that use information about
constraint interactions to guide the scheduling process, DITOPS is able to produce
schedules that better optimize transportation objectives than schedulers that operate
with conventional, simulation-based procedures. Dramatic improvements to deploy-
ment “closure profiles” have been demonstrated, for example, in comparative analysis
experiments with other representative TPFDD scheduling approaches at comparable
computational cost.

e incrementality and reactive capabilities - The constraint-based scheduling procedures
utilized to generate schedules in DITOPS are incremental in nature and thus equally
applicable to the problem of incrementally revising a schedule in response to change.
DITOPS provides a variety of rescheduling methods, each designed to locally revise




specific decisions in the schedule while emphasizing specific reoptimization objectives.
Through use of constraint propagation and analysis methods, DITOPS provides guid-
ance as to what decisions in the schedule must be revised in a given reactive context,
what opportunities exist for non-disruptive change, and what reoptimization objectives
should be emphasized, all of which can be used to direct the schedule revision process.

e Flexibility to support different planning tasks - DITOPS provides scheduling proce-
dures that can be flexibly adapted to obtain different functional capabilities. One level
of flexibility is provided by the ability to selectively specify “relaxable” constraints and
overlay preference structures (in the form of a utility function) on their satisfaction.
This enables the scheduler to be configured to address qualitatively different deploy-
ment questions. For example, arrival dates can be specified as relaxable to perform
closure analyses under specific asset apportionment assumptions. (This is the specific
task for which most current transportation analysis tools are designed.) It is also
possible to instead designate asset capacity constraints as relaxable to estimate the
resources required to achieve mission closure dates. (This is a task that is typically
not addressable with current tools.)

Another level of flexibility stems from the extensibility of the underlying modeling
framework and scheduling infra-structure. Exploiting object-based representation tech-
niques and an object-oriented programming methodology, the DITOPS scheduler is ex-
plicitly designed for extension/customization of modeling capabilities (to effectively in-
corporate the important idiosynchracies of a given planning domain) and reuse of com-
ponent constraint management and scheduling techniques (to rapidly adapt scheduling
support capabilities to fit the requirements of different decision-support tasks and ap-
plications).

1.2 The Larger Vision

From a broader perspective, the constraint-based scheduling capabilities demonstrated in
the DITOPS scheduler point the way toward a different paradigm for decision support than
is provided in current transportation and mobility analysis tools; a paradigm that more
directly matches the requirements and characteristics of the transportation planning and
scheduling process. Construction of transportation schedules in practice is an iterative reac-
tive process. An initial schedule is built, problematic or unsatisfactory aspects of the result
are identified, requirements are relaxed or strengthened (typically through negotiation with
other planning agents), schedule modifications are made and so on. Throughout this process,
the current schedule provides the planner(s) with an important nominal reference for iden-
tifying, specifying and communicating changes, and there is considerable pragmatic value in
an ability to retain continuity (or localize change) in the solutions that are produced across
iterations. Such an ability allows the planner to impose structure on an otherwise overwhelm-
ingly complex search process and to converge in a more focused fashion to an acceptable
overall solution. Likewise, as unexpected events occur in the execution environment (e.g.,
changes to mission requirements, unexpected unavailability of lift capacity), it is important




to preserve continuity in domain activity while making thuse schedule changes necessary to
restore feasibility and insure continued attendance to overall mission performance objectives.
Both of these aspects of the scheduling process place a premium on incremental, reactive
scheduling capabilities.

In contrast to these decision support requirements, current transportation scheduling tools
are typically batch-oriented solution generators. In commonly used simulation-based tech-
nologies, for example, problem input parameters and constraints are specified, the system
is run to produce a schedule, and the result is examined for acceptability. In reacting to ei-
ther unsatisfactory properties of the generated schedule (e.g., unacceptable late closures) or
changing circumstances in the world (e.g., the unexpected loss of port capacity), the human
planner is forced to hypothesize how changes to system inputs might affect the solution that
is produced, and has no control over what aspects of the solution actually will change when
the system is rerun with specified input parameter changes. Consequently, there can be con-
siderable “thrashing” in the solutions generated from run to run, and it is quite cumbersome
to enforce commitment to specific aspects of any given solution.

Constraint-based scheduling procedures, alternatively, by virtuc of their inherently incre-
mental and decomposable nature, enable an interactive decision-support paradigm based
directly on focused, incremental change to the current solution. Constraint-based schedul-
ing procedures manipulate schedules “from the side” (i.e., placing and rearranging activities
on a time line in accordance with resource and process constraints, as opposed to simulating
execution forward in time and recording the activity time and resource assignments that
result as a by-product), providing a natural framework for selective user exploration and
comparison of alternative assumptions, and for direct, controlled convergence to an accept-
able solution. It is possible to incrementally commit to subsets of decisions in the current
solution (e.g., “locking down” decisions associa.ed with particular forces or transportation
resources), to likewise designate sets of activities or regions of the time line that require
change/improvement, and to specify constraint changes (e.g., addition of lift capacity, rout-
ing changes) to be taken into account as the schedule is revised. The (reactive) scheduling
methods implemented in the DITOPS scheduler provide the types of functionality required
to support this interactive decision-making model.

Our vision of transportation scheduling tools of the future are decision-support environments
similar in spirit to current day spreadsheet programs; sets of scheduling decisions and solution
constraints are interactively manipulated by the user at levels consistent with user-task
models, with the system applying appropriate (re)scheduling procedures to implement user
actions (i.e., manage the details) and provide immediate, localized consequences of each
change. Constraint analysis techniques will contribute additional leverage to this incremental
scheduling process, providing guidance to users in identifying the principal causes of observed
solution deficiencies (e.g., resource bottlenecks) and in analyzing various decision-making
options.

The decision-support capabilities we envision are illustrated by the the following interactive
“TPFDD” generation scenario:



. Evaluate initial schedule

Starting with a set of deployment requirements and initial estimates as to apporticned
transportation resources, a USTRANSCOM planner invokes the system to generate
an initial schedule that satisfies stated resource capacity and utilization constraints
and minimizes late closures. Upon inspection of the resrlts too many late closures are
discovered.

. Identify principal bottleneck

System analysis of the constraints contributing to these results indicates the principal
source of lateness to be insufficient throughput capacity at the designated final port of

debarkation, POD1.

. Propose a solution

The planner responds to this information by introducing a second port of debarkation,
POD?2, into the scenario and indicating that POD1 arrivals be rescheduled to exploit
the additional capacity provided by POD2. The number of late closures is substantially
reduced by this action.

. Identify next bottleneck

Analysis of the resulting schedule now indicates that the remaining late closures stem
from inadequate sea lift capacity during week 2 of the deployment.

. Engage in clarification dialog

Severa.l “what-if” actions are carried out to determine additional resource requirements
q
and to clarify a.lternatl ve OpthIlS for ehminating late closures:

(a) Late movements are rescheduled with the specification that lift capacity con-
straints may be relaxed (i.e., additional assets may be added), which indicates
that two additional transports are needed to meet all specified arrival dates.

(b) The sea mode assignment associated with the remaining late arrivals is elimi-
nated to determine whether excess air lift capacity can be utilized to resolve the
problem. Results of this action indicate that only 50% of the late cargo can be
accommodated by available air capacity (due in part to capacity limitations and
in part to the cargo carrying restrictions of available aircraft types).

. Locate additional resources

At this point, the user decides that acquisition of additional sea assets is the best
option and proceeds to obtain use of two commercial transports during the 2nd week
of the mission.

. Propose a solution

The additional lift capacity is added to the model and late movements are rescheduled
to complete by their requested arrival dates.




Given the complexity and scale of transportation scheduling problems, a crucial component
of such an environment is a framework for interaction that enables the user to visualize.
analyze and manipulate solutions at multiple, aggregate levels. The current DITOPS user
interface has taken some initial steps in this direction, providing facilities for graphically
visualizing and manipulating resource schedules and capacity constraints at different levels
of aggregation. But significant challenges remain in effectively bridging the gap between
user and system models of transportation schedules; this constitutes a major focus of our
current research.

1.3 Organization of the Report

In Section 2, we summarize the major accomplishments and contributions of the research
effort. In Section 3, we summarize the concepts and techniques underlying the current DI-
TOPS transportation scheduler, the experimental results obtained in the context of TPFDD
scheduling, the interactive, reactive capabilities for what-if exploration and incremental
schedule revision that have been demonstrated, and the extended distributed scheduling
prototype implemented. In Section 4, we summarize the additional capabilities and results
obtained through participation in various Technology Integration Experiments with other
PI sponsored organizations. Finally in Sections 5, 6 and 7, we provide summaries of our sup-
porting basic research in constraint posting scheduling, distributed constraint satisfaction
and multi-specialist problem solving respectively.




2 Summary of Accomplishments

Our research has produced the following major accomplishments:

e Ontological primitives for modeling transportation scheduling problems - We have de-
veloped a general scheduling ontology (in the form of an exportable class library) that
enables specification of tran,portation domain models that incorporate all important
constraints in any given transportation scheduling context. The ontology is explicitly
designed to support:

— Realistic models of resource allocation constraints, objectives and preferences - The
ontology provides primitives for differentially modeling a wide range of resource
types (resuable, consumable, shared, atomic, composite, mobile, stationary, etc.)
and allocation constraints (capacity limits, cargo compatibility restrictions and
preferences, mobility and availability constraints, allocation preferences, etc.).
Likewise, primitives are defined for modeling the component activities of trans-
portation plans (e.g., transporting, loading, unloading, processing, etc.), the tem-
poral relationships that exist among them (e.g., multi-leg plans, synchronized
air/sea movements, etc.), absolute timing constraints and preferences on their
execution, and their resource requirements.

— Multi-level models - The ontology provides structures and protocols for construct-
ing hierarchical descriptions of transportation processes and required resources,
allowing the level of detail at which allocation decisions are considered to be se-
lectively and dynamically varied according to planning context (e.g., high-le\el
course of action analysis, tpfdd-level feasibility anelysis, detailed port scheduling)
and domain characteristics (e.g., the criticality of various constraints).

— FExtensibility and reuse - The ontology provides general protocols for combination
and extension/customization of concepts to capture the important idiosynchracies
of a given transportation scheduling application.

o Constraint-based techniques for trarspor*ation scheduling - We have extended and
adapted the multi-perspective scheduling techniques of OPIS to incorporate the domi-
nant characteristics of transportation scheduling problems and enable multi-perspective
construction and revision of transportation schedules. At the infra-structure level, we
have developed constraint management techniques to enforce cargo “batching” con-
straints, to enable “splitting” of move requirements too large to be accommodated
by a given asset, to incorporate capacity requirements that involve multiple resources
(e.g., lift asset and port capacity), and to account for resvurce location constraints.
We have developed two general scheduling (or rescheduling) procedures that localize
decision-making along two distinct foci: A “resource scheduler”, which «2nstructs (or
revises) some portion of the schedule of a designate transportation asset (or set of
assets), and a “movement scheduler”, which constructs (or revises) the schedule of
a designated set of temporally connected move requirements (e.g., a multi-leg trip).
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More specialized reactive methods for shifting movement schedules and redirecting
movements to nearby destinations have also been developed to provide capabilities for
qualitatively different types of reactive change.

Demonstration and analysis of capabilities in the domain of “TPFDD” scheduling - In
collaboration with BBN (Cambridge), a comparative analysis of TPFDD level deploy-
ment scheduling capabilities was carried out with respect to PFE. On the “MEDCOM
problem scenario” that was utilized in IFD2, the DITOPS scheduler was shown to (1)
to produce deployment schedules for various sea and air assets with 25-50% reduction in
movement tardiness over PFE (assuming comparable constraints), and (2) provide an
ability to enforce important constraints (e.g., earliest arrival dates) that are currently
not handled within PFE. In this latter case, a 6% reduction in movement tardiness over
the PFE schedule was still obtained for sea cargo movements (i.e., even when addi-
tional, more restrictive constraints were enforced). Another TIE experiment with BBN
demonstrated the use of DITOPS scheduling capabilities in support of decisions earlier
in the TPFDD generation process, specifically the ability to make transport mode as-
signments that take better advantage of the capabilities of apportioned transportation
assets through generation of aggregate level deployment scheuales. Capabilities for
incrementally revising deployment schedules to account for changes in problem con-
straints (e.g., the unexpected unavailability of a POE, a reduction in lift capacity)
have also been developed and demonstrated, supporting both reactive management
of deployment schedules as well as a basis for pro-actively evaluating the impact of
various possible scenarios.

Re-engineering and porting of OPIS/DITOPS modeling and scheduling infrastructure
into a Pl-compatible software/hardware environment - As part of this project, we
have ported the underlying OPIS scheduler from a TI Explorer environment includ-
ing KnowledgeCraft to CommonLisp/CLOS/CLIM on a Sun Workstation. The new
software architecture is heavily based on object-oriented representation and program-
ming techniques, and is organized to promote rapid a-laptation and configuration of
component scheduling functionality (or tools) into new scheduling services that fit
the requirements of specific client applications. The modeling and scheduling infra-
structure is defined according to a layered system semantics (which is implemented
in the form of class libraries). At the base of the system is an extended object sys-
tem which adds necessary “frame-like” representation capabilities. Using these basic
capabilities, basic kernel scheduling components are the.. defined (e.g., constraint prop-
agation techniques, general purpose modeling primitives, capacity analysis techniques).
More specialized system components (e.g., the transportation scheduling methods and
heuristics of DITOPS) are in turn defined by composing relevant kernel scheduling
services, and finally, those capabilities specific to a particular application domain are
configured (in our work thus far, relating primarily to the joint strategic deployment
scheduling domain).

Interactive Transportation Scheduling - We have integrated the ported infra-structure
with graphical schedule visualization and manipulation capabilities to provide a flexible




interactive environment for construction and management of transportation schedules.
Utilizing the system’s hierarchical domain model, the user interface promotes interac-
tion at aggregate levels. The user can view resource schedules, presented graphically
as usage profiles over time, at different levels of detail (e.g., for an individual ship, for
the cargo ship fleet, for all transportation lift assets). Building in part on capabilities
provided by the CPE SciGraph package, activity-centered views (e.g., movement clo-
sure profiles) can also be examined for a graphically selected portion of any resource
schedule. Changes in availability of various resources (e.g., indicating port closures,
addition or loss of transportation assets) can be graphically communicated, utilizing
the reactive scheduler to examine effects. Users may also specify changes to various
scheduling preferences and objectives utilized by the system (e.g., preferring use of
large ships to small ships) to explore the consequences of various tradeoffs.

Integration of resource analysis capabilities into higher-level deployment plonning pro-
cesses - Using the ported infra-structure, we have configured and exported an employ-
ment plan constraint checking/scheduling module for integration by BBN/San Diego
into the TARGET IFD-3 system. Also, in collaboration with SRI, we developed and
provided a resource capacity analysis capability to support plan evaluation within

SRI's SOCAP course of action (COA) plan generator.

Development and demonstration of distributed, multi-level deployment scheduling -
Through analysis of current transportation planning practice, criteria for problem de-
composition (scope, granularity, types of decisions) were identified, leading to the
definition of a multi-level model and organizational structure for distributed trans-
portation scheduling and control. We developed and implemented a communication
and coordination infra-structure to support this distributed model, and demonstrated
its use in integrating the scheduling activities of a global (e.g., “transcom” level) agent
and multiple port schedulers.

Development and validation of new “constraint-posting” scheduling techniques - We
have developed new procedures for constructing schedules which, in contrast to con-
ventional approaches to scheduling, operate with the more general representational as-
sumptions of contemporary temporal planning frameworks, and thus provide natural
opportunities for tighter integration of planning and scheduling processes. Experimen-
tal work thus far has concentrated on calibrating performance leverage with respect
to classical scheduling approaches on published benchmark problems, and the results
obtained thus far are quite impressive. We have demonstrated (1) an ability to pro-
duce solutions comparable to micro-opportunistic, “bottleneck-based” approaches on
constraint satisfaction problems with orders of magnitude speedup, and (2) an ability
to outperform the best known approximation algorithms developed in the Operation
Research community in various schedule optimization contexts.

Development and analysis of frameworks for cooperative, multi-agent decision-making
- We have developed an approach for distributed constraint satisfaction based on (1)
partitioning the set of constraints into subsets of different types and (2) associating
responsibility for enforcing constraints of each type with different sets of specialized
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agents. Variable instantiation is the joint responsibility of different teams of these spe-
cialized agents, and the final solution emerges through incremental local revisions of an
initial, possibly inconsistent, instantiation of all variables. Experimental evaluation of
the approach on constraint satisfaction scheduling problems has shown this distributed
approach to also perform comparably to micro-opportunistic, bottleneck-based proce-
dures with much greater computational efficiency.

We have also developed a model for collaborative decision-making by teams of special-
ists, each with unique areas of expertise and limited understanding of the expertise
of other agents. The approach is based on a partitioning of agent knowledge into ex-
pert and naive models. The naive portion of agents’ models provides both a common
language and the inferential skeleton needed for the development of shared models.
Model refinement occurs when problem solving reaches an impass; structured com-
munications among agents are tied to model manipulations, which dynamically alter
agents’ evaluations and justifications, and results in more precisely directed overall
search.

Contributions to PI integration and infra-structure activities - We have been active
in supporting numerous joint activities of the PI: serving as co-chair of the working
group responsible for developing the PI’s overall vision or “Technical Roadmap” for
planning and scheduling technology development and identifying critical experiments,
and serving as co-chair of the Scheduling Technology Working Group. We have also
made contributions to the knowledge representation working group (included in the
Knowledge Representation Specification Language (KSRL) decument) and to the de-
velopment of the Common Plan Representation (CPR). We have supported BBN in
its development of the Common Prototyping Environment (CPE), including insertion
of the DITOPS scheduler into the CPE and development of the interface modules to
make the system accessible as a knowledge server through the CRONUS inter-module
communication infra-structure.
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3 Technical Overview of DITOPS

DITOPS is an advanced tool for generation, analysis and revision of crisis-action logistics
schedules. The system incorporates concepts of constraint-directed scheduling developed
within the OPIS manufacturing scheduling system at CMU, together with extensions to
address the specific characteristics of transportation scheduling problems. Using DITOPS,
we have demonstrated an ability to efficiently generate higher quality schedules than con-
ventionally used simulation approaches on large-scale deployment scheduling problems while
simultaneously satisfying a wider range of deployment constraints. Just as important, DI-
TOPS also provides flexible capabilities for incrementally revising schedules in response to
changed constraints. These capabilities allow schedules to be reactively updated to reflect
unexpected events that occur during schedule execution (e.g., the closing of a port due to
bad weather) while preserving continuity in scheduled activities wherever feasible. They
also allow for efficient, controlled convergence to acceptable (or improved) solutions during
advanced planning; as adjustments to various scheduling constraints and preferences are
made by human planners in response to observed solution deficiencies (e.g., too many late
closures), DITOPS can provide immediate, localized feedback of the effects of these changes
on the current schedule. DITOPS is implemented using object-oriented representation and
programming techniques, providing an extensible modeling and scheduling framework that
enables straightforward system customization to account for the principal constraints and
objectives of different scheduling domains.

The DITOPS scheduling framework is founded on three basic principles:

1. decision-making must be rooted in a representational framework sufficient to « ture
important domain constraints and scheduling preferences - DITOPS provides a gen-
eral framework for modeling transportation processes, required resources, movement
requirements and shipments, which can be instantiated in any specific problem domain
to encode all relevant temporal synchronization and resource utilization constraints on
solution feasibility. Specific types of constraints (e.g., deadlines) can be selectively
modeled as relaxable preferences, and domain models are defined hierarchically to en-
able different levels of constraint specificity (e.g., to match their relative importance
in a given problem context).

2. dynamic look-ahead analysis of the structure of problem constraints is the key to
efficient and effective scheduling - At the core of DITOPS is an incremental, reactive
framework for generating and revising schedules [Smith 93], which relies on repeated
analyses of current problem constraints (e.g. projected resource contention, current
scheduling conflicts) to focus attention toward most critical decisions and tradeoffs,
and to select appropriate decision-making (or decision revision) procedures.

3. large-scale problem solving invariably involves multiple decision-makers and distributed
decision-making - The DITOPS scheduler has been augmented with mechanisms for
inter-agent coordination, and initial protocols and interaction strategies consistent with
military transportation planning and control requirements have been implemented.
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In the subsections below we first summarize the technical approach taken to representation
and decision-making within the DITOPS transportation scheduler. We then summarize the
performance and interactive/reactive capabilities of the core scheduler. This is followed by
an overview of the extended prototype developed for distributed multi-level transportation
scheduling. A summary of additional functionality that was configured using components of
the scheduler to support various course of action planning processes is presented in Section

4.

3.1 Modeling Transportation Scheduling Constraints

The DITOPS scheduler operates with respect to a hierarchical model of the resources and
resource allocation constraints of a given application domain. The use of a hierarchical model
serves three basic purposes. First, it enables decision-making at different levels of abstraction
to support different stages of the overall planning process (e.g. high level capacity analysis,
determination of transport modes, detailed asset assignments and movement schedules).
Second, it provides a basis for focusing the scheduler’s search process when scheduling (or
rescheduling) at a specific level of detail. Finally, it provides a structure for decomposing
and distributing a transportation scheduling problem among multiple agents, and a basis
for coordinating multi-agent decision-making across different levels.

A DITOPS model of a given application domain is composed from from an extensible set
of pre-defined primitives, which provide object structures (i.e., a class library) for specifying
various transportation scheduling constraints and associating an appropriate operational
semantics. A transportation scheduling model is specified as a relational configuration of
five basic types of “building blocks”:

e Resources - Resource objects represent the various assets, equipment, and facilities
required to carry out deployment requests. A variety of specialized resource classes are
defined to support specification of different types of resources. These resource types
include unit capacity resources, which must be allocated exclusively to a single request
(e.g., a loading/unloading crane), batch capacity resources, which can simultaneously
accommodate multiple requests over the same interval (e.g., a sea barge or tanker
ship), and a variety of disjunctive and conjunctive aggregate capacity resources, where
capacity can be simultaneously allocated to multiple requests without temporal syn-
chronization (e.g., a C-5 plane fleet, a tanker ship fleet, a seaport). Atomic resources
can be grouped through the definition of composite resources (e.g. individual tankers
into a tanker fleet into an overall sea fleet; unloading equipment, storage capacity,
parking places, etc, into a port) to provide consistent descriptions of resources and
utilization constraints at multiple levels of abstraction. Such resource models provide
the basis for hierarchical specification of transportation processes.

A central component of each resource class specialization is a set of methods for man-
aging and querying a representation of available capacity over time. These methods
define the resource class’s allocation semantics from the standpoint of scheduling and
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control decision-making. Resources can also be distinguished as mobile (a ship) or
stationary (a port); the former case implying the representation (and management)
of a second dynamically changing property, location. Other utilization constraints
associated with resource descriptions and enforced by allocation methods include con-
straints on capabilities (e.g., subset of commodity types that can be moved by a given
type of transport asset), resource capacity constraints, and batching constraints (e.g.,
incompatibilities among commodity types that might be carried simultaneously).

Operations - Operation objects are used to represent the constituent actions of trans-
portation processes (or plans). Generally speaking, an operation specifies the set of
constraints and effects that define a particular activity (resource requirements, dura-
tion constraints, temporal relations relative to other activities, cargo involved). Like
resources, a taxonomy of specializations are defined to characterize different activity
types. For example “transport operations” specify an origin (POE) and destination
(POD), which imposes a setup requirement that the allocated transportation asset be
at the origin at the start of the operation and an effect that leaves the allocated asset at
the destination location. “Load” and “unload” operations, alternatively, do not change
asset location. Through association of temporal relationships and/or synchronization
constraints to other operations, operation descriptions can be composed into larger
transportation processes. Operations can also be organized hierarchically to provide
descriptions of transportation processes at different levels of resource specificity.

Move Requirements - Move requirement objects represent the input requests that the
scheduler must attend to. These descriptions specify cargo characteristics (e.g., cargo
and commodity types), quantities, origin and destination of the movement (e.g., POE
and POD), and relevant absolute time constraints (e.g., ALD, EAD, LAD, etc.), as
well as any temporal relations and/or synchronization constraints with other move
requirements (e.g., that two movements must arrive within a day of each other). In the
context of deployment scheduling, move requirements correspond directly to individual

TPFDD records.

Shipments - Shipment objects represent the actual cargo entities (or “packages”) that
are associated with individual transport operations (e.g., the 25th infantry division,
1000 CBarrels of POL, etc.). Shipments are created in response to the cargo specifica-
tions given in move requirements. Generally speaking, accomplishment of a given move
requirement may necessitate the transport of several shipments (i.e., require multiple
trips), since a move requirement’s lift requirements may exceed the capacity of any
available transportation asset.

Missions - Mission objects provide a specification of a plan template (or basic plan
class) for instantiating the transport plans that must be scheduled. In the strategic
deployment domain, for example, the basic plan class corresponding to an individual
TPFDD record is specified as an aggregate transport operation (at some level of pre-
cision with respect to required asset capacity), which decomposes into a load, travel,
unload operation sequence.
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Through definition of more specialized object classes, the constraints specified by any of
these modeling primitives can be straightforwardly customized. For example, in modeling
the IFD2 MEDCOM scenario in terms consistent with PFE (see discussion of experiments
below), a specialization of transport operation was defined to incorporate the PFE definition
of required capacity as a function of both commodity and asset type. The current DITOPS
library of modeling primitives consists of 80 core (i.e., domain independent) classes and 40
additional specializations defined for specific application to military transportation planning
domains. Full details of these primitives and their protocols may be found in [LSS*93].
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Figure 1: Hierarchical domain models

To give a flavor of the modeling capabilities provided by the DITOPS class library, we con-
sider aspects of the domain model that was constructed for MEDCOM strategic deployment
scenario just mentioned. Figure 1 graphically illustrates the defined hierarchical models of
required resources and transportation processes.

In the resource model depicted, individual transportation assets are first composed into dis-
junctive aggregate resources (or resource pools) representing fleets of specific craft types.
These descriptions, in turn, are aggregated into larger disjunctive aggregates representing
higher-level pools of allocation alternatives (e.g., cargo/pol sea lift capacity, air/sea lift ca-
pacity). In this case, capacity constraints are straightforward mapped by summing the unit
capacities of individual resources’. Representations of port resources are specified similarly.

1Mapping of other constraints (e.g., operating speeds, allowable cargo types) is accomplished by various
approximation methods (e.g., weighted averaging, set union).
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However, in this case the individual resources associated with a given port (e.g., loading
unloading equipment, cargo storage space, etc.) are composed into a conjunctive aggregate
resource, which provides a single, higher-level estimate of overall port capacity? On one
hand, these levels of resource description define multiple levels of possible scheduling preci-
sion. For example, in computing transport mode assignments relative to an apportioned set
of resources, there is likely little leverage to be gained by computing schedules at the level
of individual resources. Alternatively, a level of scheduling precision appropriate for trans-
portation feasibility analysis at the level of USTRANSCOM would include individual craft
assignments but only aggregate accounting of port capacity constraints. Detailed models of
atomic port resources would, however, become necessary at the stage of detailed execution
planning. Having fixed a given level of scheduling precision (say individual craft assignments
and aggregate accounting of port capacity), the hierarchical model additionally provides a
structure for elaborating the search for a schedule. Summarized allocation constraints and
preferences associated with aggregate resources (e.g., current available capacity, usage re-
strictions, preferred sub-resources) provide a basis for restricting and biasing consideration
of resource alternatives.

movement
batching constraints

BreakBulk 1

location:

Figure 2: Allocation constraints in “MEDCOM” model

Figure 2 graphically illustrates the range of allocation constraints incorporated within the

2Several alternative mappings of capacity are possible here. The mapping might omit all but the most
constraining atomic capacity; alternatively, the mapping might compute an overall throughput summary
estimate. In some problem contexts, it may not be necessary, desirable or feasible to account for and model
individual port capacity constraints, in which cases, aggregate port descriptions simply constitute the most
detailed level of the model.
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MEDCOM domain model. The figure centers around a particular scheduled transport ac-
tivity, cargo-mv-1. It depicts the available capacity over time of two ships, breakbulk-1
and breakbulk-2, and two seaports, POE-1 and POD-1, as well as the current location of
breakbulk-1 over time. The “box” labeled with cargo-mv-1 within the available capacity
profile of breakbulk-1 represents the interval over which cargo-mv-1 is scheduled to occur;
since breakbulk-1 is required and the quantity of cargo-mv-1 fully consumes the capacity of
the ship, it is unavailable for other use over this period (according to the depicted profile,
it 1s currently available both before and after this scheduled trip). The activity cargo-muv-1
abstracts a more detailed sequence of load-cm!, transport-cm1 and unload-cm! operations.
Both the load-cm1 and unload-cm1 operations additionally require port capacity at POE1
and PODI respectively. According to the defined hierarchical model, load-cm1 is constrained
to commence at the beginning of the overall cargo-mv-1 operation (i.e. at the same point
that breakbulk-1 is first allocated to cargo-mv-1), and, conversely unload-cm! is constrained
to end coincident with the “release” of breakbulk-1 by cargo-mv-1. During the scheduled
interval of both load-cm1 and unload-cm1, the required amount of port capacity (in this
case a function of the cargo quantity) is designated as allocated to these operations and oth-
erwise unavailable. Execution of either load-cm1 or unload-cm! also requires the transport
resource to be physically present at the port. These constraints are specified in the model as
operation “setup” constraints that must be satisfied, and are enforced by ensuring that the
resource is at the designated POE at the scheduled start of any load operation. If |, during
scheduling of a load operation the assigned transport resource is not at the load site, checks
are made to ensure that the resource is available sufficiently earlier than the scheduled start
to enable it to travel to the load site.

The example depicted in Figr = 2 also illustrates three other types of allocation constraints
that are specified in the MEYCOM model and taken into account when scheduling trans-
portation activities. In this example, cargo-mv-1 actually moves only a portion of the cargo
designated in its associated move requirement (i.e., the TPFDD record that led to creation
of cargo-mv-1 in the first place). Since the maxiiiwm carrying capacity of breakbulk-1 is
not sufficient to accommodate the entire input requirement, the load has been dynamically
“split” into two loads. A second cargo-mv-1-overflow activity has been created and scheduled
on a different resource breakbulk-2. In this case, both cargo-mv-1 and cargo-muv-1I-overflow
share the common ALD (available to load) and EAD (earliest arrival date) constraints on
scheduled start and end times that are specified in the associated move requirement. When-
ever the cargo associated with a given move requirement must be split across multiple trips,
a default constraint on their relative timing is also imposed. In this example, the two trans-
port activities are constrained to finish within one day of each other. Finally, it is often
the case that the capacity of a given transportation resource is sufficient to simultaneously
support multiple transport activities, transporting their respective cargos as a “batch” on
the same trip. This is the case for the breakbulk-2 trip that is depicted in Figure 2 where
cargo-muv-1-overflow has been batched with second transport activity cargo-muv-2. For trans-
port activities to be batched, several constraints may have to be satisfied. Minimally, the
activities must have the same designated POEs and PODs. Although not specified in the
MEDCOM model, additional constraints relating to the compatibility of different cargo types
might also be defined and enforced.
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3.2 Building and Managing Transportation Schedules

Scheduling in DITOPS is formulated as a reactive process, reflecting the fact that a sched-
ule at any level or stage of the deployment planning process is a dynamic evolving cntity.
and is continuously influenced by changing mission requirements, conflicting decision-making
perspectives/goals and changing executional circumstances. This problem solving perspec-
tive in large part motivates the above illustrated representations of changing resource state
over time (i.e., available capacity, location). These representations are pre-requisite to the
specification of procedures for reflecting the consequences of changed constraints and for
incrementally managing schedules in response to such changes. These representations also
enable use of schedule building and revision procedures other than time-forward simulation,
which is inherently myopic and susceptible to sub-optimal decision-making.

Most generally, the DITOPS scheduling model can be seen as a constraint-based scheduling
model; instantiated movement plans define sets of start/end time and transport resource
decision variables, and decision-making is concerned with establishing (or restoring) an as-
signment of times and resources to all variables that is consistent with specified temporal
synchronization and resource utilization constraints. A constraint-based scheduling model
is broadly characterized as an iterative procedure that combines three basic elements:

1. deductive constraint propagation techniques, which are applied to incrementally up-
date the domains of decision variables in an underlying solution constraint graph as
changes (or extensions) are made to the schedule and recognize inconsistencies,

2. look-ahead analysis techniques, which estimate the critical tradeoffs (decisions) and
opportunities (flexibilities) implied by current solution constraints for purposes of de-
termining which decision (or set of decisions) should be considered next, and

3. a decision procedure, or set of procedures, for carrying out specific solution changes or
extensions.

In fine granularity scheduling models (e.g., [Sad94]), the look-ahead analysis and decision
procedures map directly to the variable and value ordering heuristics of traditional constraint
satisfaction problem solving procedures. DITOPS, alternatively, implements a “coarser gran-
ularity” model [Smi94]. Look-ahead analysis is instead used as a basis for heuristic problem
structuring and subproblem formulation, which involves selection of a particular set of de-
cision variables to focus on (i.e., assign or revise) and selection of a particular decision (or
local search) procedure to apply to this set of decisions. In either type of model, preference
or utility structures (e.g., reflecting objective criteria and preferences) can be associated
with decision variable values to bias the overall search process. In the case of DITOPS,
alternative decision-making procedures are specifically designed to provide differential opti-
mization and conflict resolution capabilities. In the absence of explicit user guidance, control
heuristics which map analyses of the current solution state to important optimization (or
reoptimization) needs and opportunities are used to opportunistically select the most appro-
priate decision procedure on each control cycle. For example, suppose a capacity conflict has
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been introduced into the schedule of a particular cargo ship due to it having been temporarily
disabled. Activities scheduled over the expected period of unavailability must now be reas-
signed to other ships and loss of transport capacity implies the need to (re)optimize existing
ship capacity to maximize utilization; a decision procedure with this optimizing property
is the preferred procedure to apply. At the same time, reconsideration of the schedules of
other ships capable of carrying the now stranded cargo should take into account current
flexibilities in the solution. If in examining the available capacity of the fleet to which the
failed ship belongs it is estimated that sufficient extra capacity to resolve the problem, there
is no reason to consider any other viable resource alternatives; the scope of the change is
restricted to this smaller set of resources. Within DITOPS, this subproblem formulation
activity is carried out by a designated procedure referred to as the top-level manager. The
underlying system control architecture is graphically shown in Figure 3.

subtask assignment

N LU ¥ %

Schedule Maint. Subsystem
- -—

subtask assignment

Figure 3: The DITOPS Scheduling Architecture

Two constraint analysis procedures are available within the DITOPS scheduler to support the
control decisions of the top-level manager. In situations where scheduling decisions remain
to be made, a capacity analysis procedure provides estimations of likely resource bottlenecks.
In situations of detected constraint conflicts, a conflict analysis procedure computes a set of
metrics, some of which estimate the severity of the problem and some of which characterize
the looseness or tightness of time and capacity constraints in the local “neighborhood” of
the schedule that contains the conflict.

A number of decision-making procedures are available for application in different schedul-
ing or rescheduling contexts. Local search methods are defined for both "resource” and
"movement” centered scheduling, providing capabilities, respectively, for manipulating (i.e.,
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revising or extending) the schedules associated with particular sets of resources (e.g., the
cargo ship fleet) or particular sets of temporally related movements (e.g., the movements
associated with a particular force module). By virtue of search orientation, each of these
methods emphasizes specific optimization biases; resource scheduling promotes efficient use
of available transport capacity while attempting to minimize the tardiness of scheduled move-
ments. Movement scheduling, alternatively, promotes enforcement of arrival constraints and
efficient synchronization of dependent movements, while attempting to minimize asset ca-
pacity requirements. Both of these methods share a common search infra-structure that

¢ incorporates machinery for incrementally propagating consequences of scheduling de-
cisions and detecting constraint conflicts (referred to as the “schedule maintenance
subsystem” in Figure 3),

e provides primitives for generating feasible decision alternatives (based on the use of
aggregate resource and activity descriptions defined in the underlying domain model),
and

e allows incorporation of additional allocation preferences, which are expressed in the
domain model as utility functions over the possible values of decision variables (e.g.,
possible resource assignments, possible activity start times) and integrated as terms of
the search procedures’ evaluation function.

A number of more specialized revision procedures have also been defined, providing addi-
tional capabilities to shift the scheduled interval of scheduled “trips”, to swap scheduled
batches of particular transportation assets, and to balance cargo load to exploit increases
in port capacity. The search infra-structure and decision procedures are defined and imple-
mented compositionally using object-oriented techniques, providing a functional “tool box”
for constructing additional decision-making procedures.[SL93]

3.3 Experimentation and Performance Analysis

In demonstrating and evaluating the capabilities of the DITOPS transportation scheduler, we
have focused principally on the strategic deployment planning task addressed by the US Joint
Transportation Command (USTRANSCOM). At this level of the logistics planning process,
planning is concerned with the development, analysis and management of a Time-Phased
Force Deployment Database (or TPFDD), which specifies the complete set of personnel and
cargo movements required to support a given employment plan and all associated deployment
constraints (e.g., earliest/latest departure and arrival dates, transport modes, origins and
destinations, etc.). We have utilized a representative TPFDD provided within the ARPA
PI CPE (referred to as the MEDCOM scenario) to demonstrate a range of decision support
and decision making capabilities provided by the DITOPS transportation scheduler. We
summarize this work in the subsections below.
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Item Description

POE Port of embarkation (origin)

POD Port of debarkation (destination)

ALD Available to load date

EAD Earliest arrival date

LAD Latest arrival date

cargo-type categorization of type of cargo used to formulate usage (or carrying)

constraints for different resource types. One of: ‘bulk
outsize, oversize, pax, nat, pol, container, roro, breakbulk’
commodity-type | finer categorization of cargo type used to determine capacity
requirements on feasible asset types. One of: ‘airborne,
air-cavalry, air-mobile, armored, infantry, mechanized,
combat-support, combat-service-support, navy, air-force,
marines, resupply, ammunition, pol, pax’

MTONS sea cargo quantity in metric tons (weight)
STONS air cargo quantity in short tons (volume)
PAX quantity for PAX cargo - number of passengers

CBARRELS quantity of POL cargo - number of 100 barrels

Figure 4: TPFDD Record Information

3.3.1 Generating TPFDD level schedules

The principal task supported by current scheduling tools at USTRANSCOM is transporta-
tion feasibility analysis: given a fully specified TPFDD and a profile of apportioned sea
and air lift assets, generate a deployment schedule that assigns personnel and cargo to be
moved to specific lift assets over time in accordance with specified constraints. To assess
the capabilities of DITOPS in this capacity, we conducted a comparative experiment with
a BBN developed feasibility estimator called PFE. PFE is a simulation-based technology
based directly on the now operational DART simulation tool, and is quite representative of
the tools currently in use at USTRANSCOM.[SMS+91]

The experimental comparison was carried out using the MEDCOM TPFDD that was gen-
erated during the course of the 2nd PI Integrated Feasibility Demonstration (IFD2). This
TPFDD contains a total of 3001 movement requirements, of which 1187 are pre-designated
as air movements and 1814 are pre-designated as sea movements. The information provided
with each movement requirement is listed in Figure 4. Sea movements can be further de-
composed into 1323 sea cargo movements (requiring capacity on some subset of five different
types of cargo carrying vessels) and POL movements (requiring capacity on oil tankers).
Given the pre-assignment of transport mode and the absence of temporal constraints on the
relative timings of various sea cargo, air, and pol movements in this scenario, the problem
is decomposable into 3 mutually exclusive subproblems. Air and sea assets apportioned to
support the deployment consisted of 369 aircraft, 36 cargo ships, and 4 tankers, with initial
locations and staged availability as indicated in Figure 5.
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Craft Type Total Initial Availability
Number | Location | CO [C1 [C21C3|C4 | C5 | CT7|Cl0
Air
C5 56 TMKH | 56
C130 128 TMKH | 128
Cl141B 185 TMKH | 185
Sea Cargo -
FBB 20 BBNV 6
DKSD 8 | 3 1 2
FLASH 6 BBNV 2
DKSD 3 1
FRORO 6 BBNV 1 1
DKSD 1 1 2
FSSC 3 DKSD 2 1
FSEAB 2 DKSD 1 1
Sea POL
SMTNK 2 DKSD 1 |
MDTNK 1 DKSD
LGTNK 1 DKSD 1

Figure 5: MEDCOM scenario lift assets and availability

In collaboration with BBN, a model of scenario resources and resource utilization/allocation
constraints equivalent to that employed in PFE was configured and instantiated. In partic-
ular, asset usage constraints were defined by associating a specific subset of allowable cargo
types with each type of craft (e.g., C141Bs can only carry ‘bulk’ cargo). Asset capacity con-
straints were specified for each asset type as a vector of (commodity type quantity) pairs,
over which capacity requirements for a movement of a specific commodity type on a specific
type of resource were formulated as a function of the percentage of the resource required.
Availability and locations of specific transportation assets were initialized according to the
constraints in Figure 5, and travel times were based on identical models of resource operat-
ing speeds and inter-port distances. Equivalent port throughput capacity constraints were
specified, including a reduced throughput capacity of 50,000 Mtons/day at one POD (Tunis)
which was called for in the scenario to introduce greater congestion. There was one point of
difference between the PFE and DITOPS models with respect to modeling both port and
air-lift capacity. In DITOPS, capacity constraints were defined with respect to continuous
time (i.e., how much capacity is available at any point in time), while PFE relies on less
precise “capacity per day” models. In this regard, load and unload durations were assumed
to be one day each for sea movements (consistent with PFE) and one hour each for air
movements (below the granularity of the PFE simulation). Complete details of all port and
asset capacity constraints can be found in the CPE description of the MEDCOM scenario.

In conducting the experiment, we focused on three dimensions of system performance

1. the ability to enforce important deployment constraints - this dimension concerns the
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System/Config. Air Movements | Sea Cargo Mvmts. | POL Movements
(1187 total) (1323 total) (491 total)
PFE
w/o EAD enforc: % tardy: 0 % tardy: 84 % tardy: 59
DITOPS
w/o EAD enforc: % tardy: 0 % tardy: 58 % tardy: 1
w/ EAD enforc: % tardy: 0 % tardy: 78 % tardy: 90

Figure 6: Comparative performance of DITOPS and PFE

reliability of the schedule as an indicator of deployment feasibility. In the case of
the MEDCOM scenario, earliest arrival date constraints (EADs) were intended to
be enforced as hard constraints (to preserve the element of surprise), but this was
not possible withing PFE. We conducted runs with DITOPS with and without the
assumption that EADs should be enforced as hard constraints, to demonstrate the
potential variance in results.3

2. ability to optimize with respect to important deployment objectives - this dimension
measures the system ability to produce better quality schedules, and hence better
guidance to more detailed (e.g., component command) planning processes. Here our
principal measure of performance was level of tardiness observed in the ‘closure’ of var-
ious movements under both generated schedules. We also tracked resource utilization
over time, but due to the nature of the PFE simulation (as run by BBN), comparison
was not possible along this dimension.

3. the computational cost of the scheduling process - the issue here is system efficiency
and scalability.

Comparative results with respect to tardiness on the IFD2 problem are given in Table 6.
As can be seen, there is sufficient air lift capacity to meet movement delivery dates (LADs)
and the deployment schedules of both PFE and DITOPS show no tardiness. The situation
is different with respect to the sea transport portion of the problem. With respect to sea
cargo, for example, DITOPS produced a deployment schedule with a 6% reduction in late
closures over the PFE schedule. Average resource utilization by resource type ranged from
51% to 100%, with an overall average utilization of 85%. It was not possible to compute and
compare average tardiness figures, since the PFE simulation . pparently terminates after 70
days (in this case, failing to schedule 32% of the movements).

This reduction in tardiness is significant for a couple of reasons. First, it was achieved while
enforcing EAD constraints that were ignored by PFE and adversely affect the scheduler’s
ability to minimize late closures. A run of DITOPS where these constraints were also
ignored (also included in Table 1) yielded a 26% reduction in tardiness. The results are even
more dramatic in the case of POL movements, where, without EAD constraint enforcement,

3In actuality, it is not the case in this scenario that all EADs are in fact hard constraints; however, since
information needed to differentiate was not available we assumed the worst case.
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DITOPS produces a schedule with only 1% of the movements tardy as compared to PFE’s
schedule with 59% of the movements tardy. Second, these initial results were obtained with
fairly generic scheduling methods. We expect even better results as heuristics that further
exploit the structure of the problem are incorporated.

Using the ported CommonLisp/CLOS system, the schedules reported above are generated
in just over 10 minutes on a SUN Sparcstation 10, indicating the ability of the DITOPS
scheduler to scale to realistically sized problems. Experiments have also been performed un-
der assumptions that port capacity constraints are not limiting and can therefore be ignored
(which, for example, matches the modeling assumptions of the Kestrel scheduler[Smi92)).
If the port capacity constraints specified for the MEDCOM problem are ignored, schedule
generation time is reduced to about 7 minutes.

3.3.2 TPFDD Mode Assignment

We have also conducted experiments to demonstrate capabilities in support of decisions
made earlier in the deployment planning process that in current practice are made without
consideration of resource capacity constraints. We have performed preliminary experiments
using (a variant of the IFD2 scenario) that demonstrate the potential impact of basing
“transport mode” decisions on resource capacity information. Specifically, the mode deci-
sions designated in the input IFD2 TPFDD were stripped off, and, using the constraints
relating to various asset capabilities and cargo commodity types, aggregate level schedules
were generated which assigned either air or sea lift capacity to specific move requirements.
The results obtained varied considerably from the original mode assignments, exploiting the
excess air lift capacity implied by the detailed TPFDD scheduling experiments described
above. Although it is not clear whether represented resource usage and ca.go commodity
constraints are sufficient alone to determine feasible air and sea assignments, in this case,
the redistribution of mode assignments resulted in better closure profiles.

3.4 Interactive/Reactive Schedule Revision

The reactive scheduling framework of DITOPS provides equally important capabilities for
incrementally revising schedules, either in response to changes in external circumstances
(e.g., the unexpected fog-in of a port or the receipt of additional deployment requirements)
or for purposes of improving a schedule with observed deficiencies (e.g., by apportioning ad-
ditional transport resources). From a mixed-initiative scheduling perspective, this reactive
framework promotes a default style of interaction grounded in user manipulation of problem
constraints (e.g., resource capacity and availability, activity deadlines, etc.) and system de-
termination of consequences (using internal strategies for reconciling conflict resolution and
solution improvement possibilities with the desire to minimize schedule disruption). Though
this division of responsibility may match user decision-making goals in some cases, it will
more frequently be the case that realization of system activity consistent with user expec-
tations will necessitate greater user involvement in the system’s subproblem formulation
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of aggregation. This allows the user to examine either individual craft assets, fleets or
ports. The resource capacity views support zooming and scrolling for localizing attention
on particular resources and/or regions of the overall schedule horizon. The user can select
temporal intervals by “boxing” the area of interest with the mouse. Any querying and
manipulation of schedules and solution constraints is based on these uniform time selections;
once a selection has been made a variety of actions is possible through a menu associated
with the resource in question.

Given a selected interval of time, the user may choose to examine properties of the delineated
portion of the resource schedule. If the resource is an individual craft asset, for example, the
transport activities supported by scheduled trips are accessible. At aggregate resource levels,
graphical displays of various properties of the solution can be retrieved (e.g., movement clo-
sure profiles, accumulated cargo tonnage over time*). This provides a basis for identification
of solution deficiencies.

User manipulation of problem constraints and schedules also centers around a selected re-
source profile interval. A transport or port resource can be made unavailable over a selected
interval. In this case, any inconsistencies in the schedule that result are highlighted. Con-
versely, resource capacity of a given fleet can be increased for a specified interval by moving
to the appropriate aggregate resource display (this translates to adding craft to the fleet).
As indicated earlier, such a “relaxation” of capacity constraints should generally be accom-
panied by an indication of the action focus and scope (reflecting the specific rescheduling
goal that motivates the change). Within the current implementation, only fixed choices
relating to activities that are currently late and resource usage restrictions are available for
narrowing system focus and scope. The “current time” indicator at the top of the resource
displays can be moved along the schedule horizon to simulate states during the execution
of the schedule. Default rescheduling biases are adjustable through a “slider” display which
represents the relative importance to be attributed to each system known preference. In im-
posing any given change to the current schedule, there is no obligation to the user to provide
additional revision constraints and guidance; generally speaking, user decisions along these
lines are considered to be defaults until they are changed.

Overall system activity is managed through a “control panel” (upper left corner of Figure 7),
which provides capabilities for creating various displays, loading scenario descriptions and
deployment problems (sets of move requirements), saving and reloading generated schedules,
and adjusting global system parameters and preferences (e.g., level of scheduling precision,
automatic or selectable system response to changes, etc.).

3.5 Multi-Level, Distributed Scheduling

Transportation scheduling is inherently a distributed problem. Given its overall size and
complexity, as well as the component structure of the military command, responsibility for
different parts of the problem at different stages of the process are distributed among many

4In part, these capabilities draw on the SciGraph package.
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planning agents. In current military transportation practice, schedules are produced by
different agents along different lines of decomposition. For example, (a) different agents
(e.g., CENTCOM, PACOM) produce schedules at the same level of aggregation for differ-
.ent military operations (e.g., multiple simultaneous crises), (b) different agents (e.g., US-
TRANSCOM, MAC, MITMIC) produce schedules for the same operational scenario at dif-
ferent levels of aggregation, or (c) different agents produce schedules for different resources
(e.g., tankers, crews, cargo-handling equipment at a port). In all cases, resolution of con-
flicts is an integral issue. Although decomposition is an effective means of reducing problem
complexity, effective and efficient decision-making requires mechanisms for coordinated in-
teraction.

To support investigation into and experimentation with protocols and strategies for coordi-
nating multiple scheduling agents, the DITOPS infra-structure also incorporates primitives
for asynchronous communication. These primitives allow easy impleinentation of agents,
their control architectures and inter-agent messages. In addition, some of the basic services
utilized within the DITOPS scheduler (e.g., time serviccs) are designed to allow experimenta-
tion in a distributed, asynchronous environment. The design of the DITOPS communication
substrate, like the rest of the DITOPS system, relies heavily on object-oriented programming
concepts, and is influenced by earlier work reported in [LT91].

This system base has been used to define and implement an initial prototype system for dis-
tributed, multi-agent scheduling. We summarize the basic properties of the model underlying
the prototype and the demonstration experiment that was performed below.

3.5.1 Decomposition and Interaction Assumptions

The hierarchical descriptions of resources and resource constraints advocated by the DITOPS
modeling framework provide a natural basis for decomposing and structuring solutions to the
overall transportation planning/scheduling problem. As previously observed, they provide
a basis for specifying schedules at different levels to support decision-making at different
stages of the planning/scheduling process. They likewise provide a structure for decompos-
ing and distributing problem solving responsibility, where different agents are responsible
for allocation/apportionment of specific sets of resources at a given level of detail (e.g.
overall transport capacity, sea/air transport assets, port resources). Building from this ba-
sic problem decomposition perspective, we have developed a specific model for distributed,
multi-level generation and management of transportation schedules. The model assumes
a hierarchical organization of scheduling sgents, with each agent having access to specific
levels of underlying hierarchical domain model (in effect, the “full” hierarchical model is
distributed among scheduling agents). Thus, there is heterogeneity in the portion and level
of description of the overall problem accessible to each agent.

Given the scale of the overall problem and the use of abstractions of resource allocation
constraints as a basis for specifying problems and solutions at different levels, two further
decomposition assumptions follow directly:
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¢ Decision-making scope and granularity - The portion of overall problem that is
visible and of concern to the decision-maker and correspondingly the level of detail of
supporting models can be seen in relation to particular stages of the overall process.
For example, transportation feasibility analysis during course of action development
requires a global (and necessarily coarse) view of the whole problem. Management
of day to day activities at a port, alternatively, requires much more detailed models
of temporal process constraints and resource constraints, but only with respect to
activities surrounding the use of the port.

o Hcrizon of decision-making - Corresponding to decreasing scope and increasing
model detail is a decrease in the temporal horizon of decision-making. This assump-
tion is supported by two considerations: problem scale and presence of environmental
uncertainty. The problem solver’s computational burden can remain almost invariant
at each level by balancing decreasing scope and increasing model detail. The extent
of uncertainty in the operating environment makes the executability of more detailed
models more suspect further into the future. Thus a given decision-maker’s horizon
must balance the computational burden of maintaining the solution over time (or
equivalently the extent to which it really provides a useful projection of future events)

These collective assumptions lead to a distributed model that resembles the organization and
roles of current transportation planning command and control structures. This is illustrated
in Figure 8.

.‘\Qsibih'ty analysis/
high-leuet\‘ e conflicts

lans/schedules

z,
-

execution results

detailed schedules
(execution constraints)

Figure 8: Distributed, multi-level transportation scheduling

Within this model there are two basic types of agent interactions:
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e Vertical: The results of a given agent’s scheduling (or rescheduling) actions are com-
municated downward as scheduling constraints/objectives; an agent’s ability to satisfy
imposed constraints/objectives, or responses to lower-level results are communicated
upward. At each level of abstraction, an agent produces the best solution it can, given
currently imposed global/constraints and objectives and the currently known results
communicated from lower level agent results (or the execution environment)

e Lateral: Agents at the same level communicate to resolve local conflicts and produce
solutions within bounds of constraints that have been imposed through downward
constraint communication.

Coordination of the overall organization of agents is achieved by the following “interaction
policies”:

e Each agent is responsible for generating scheduling constraints for the agents directly
under it (in the subtree of which it is the root). At the same time, since a lower level
agent has a more detailed model of its own activities than a higher level agent has
of it, the lower level agent can react more effectively to schedule deviations that are
encountered at its level. Hence reaction starts at the level where the schedule deviation
occurs and its effects are propagated both downwards (in terms of new constraints)
and upwards (in terms of violations of imposed constraints that may result in potential
rescheduling decisions at a higher level).

e Deviations will always be responded to locally to the extent possible (engaging other
local agents as necessary) - i.e. there must always be the ability to drive execution
without communication to the “superior” agent,

e (re)scheduling results produced in response to deviations are always communicated
upward if previously imposed guidelines (constraints) have been broken (and of course
always propagated downward). If it can be recognized without local schedule revision
that the deviation will break imposed constraints (e.g. a port fogin), then the deviation
can be communicated upward immediately. In this case, a local agent must still try to
make do (resolve problems) until its superior agent responds,

e If it becomes time to act (either in response to execution demands or to respond to
lower level agents), then whatever current local solution exists is followed.

e If a superior agent, in response to either deviation or revised solution received from
below, revises its more global solution, then revised constraints/guidelines are com-
municated downward to its inferior agents. Assuming a cooperative framework, these
new constraints are given priority in resolving conflicts (i.e. if the revised constraints
are inconsistent with current inferior agent schedules, then the inferior agent is obliged
to revise). One issue that arises in this protocol is the detail/granularity of the supe-
rior agent’s model (and the possible mismatch with the inferior agent’s more detailed
model). However, if this is ultimately the reason to prefer an inferior agent’s solution,

29




then that will subsequently be discovered by its inability to meet the newly imposed
constraints - in which case the best solution that the agent can produce is communi-
cated upward.

3.5.2 Distributed Experiments

To demonstrate the above framework for multi-level transportation scheduling, a simple sys-
tem configuration consisting of a single high-level (i.e., TRANSCOM-level) agent and two
more detailed port scheduling agents was implemented and tested. The high-level agent
was responsible of generating a deployment schedule for movements from port A to port B
(under the aggregate port capacity models utilized in the DITOPS TPFDD scheduling exper-
iments). Both port A and port B were assumed to have their own scheduling agents, whose
responsibility was to develop more detailed schedules, involving allocation of constituent
port resources (docking berths, loading equipment, etc). The high level agent operated with
an overall horizon matching the total duration of the deployment at a temporal granularity
of days, while the low-level port agents scheduled over a shorter horizon, defined relative
to the travel time required for transport assets to move from port A to port B, and and
produced hourly schedules.

In the scenario demonstrated, the high-level agent would generate an initial deployment
schedule and communicate these results “downward” to port agents, requesting them each
to generate a port schedule for the designated movements, given arrival and departure dates
based on the high-level agent’s schedule. The port agents would then generate a schedule
for their own resources. Finding this impossible, the port agents would communicate with
each other, possibly requesting arrival and departure dates to be shifted to arrive in a
feasible solution. Once feasible detailed schedules were obtained, the port agents would then
communicate their results “upwards” to the high-level agent.

Initially this scenario was simulated in a simple single-process environment. After develop-
ing an understanding of the necessary message types required for this type of distributed
scheduling, the scenario was converted to function in a multi-process, multi-agent environ-
ment. This work has led to the design and implementation of a class library for asynchronous
agents, providing primitives for the construction of the internal structure of agents (mes-
sages, message queues), agent control architectures (event processing mechanisms, tasks)
and low-level services (network communication services, time and synchronization services).
Further details of these mechanisms can be found in [LSS*93].
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4 Additional Technology Integration Experiments and
Support Services

In addition to the tpfdd-level scheduling capabilities summarized above, component schedul-
ing “services” were also configured to provide constraint analysis support for higher-level
course of action (COA) development:

e In collaboration with SRI, the resource capacity analysis capability used within the
DITOPS scheduler was adapted for integration with the SOCAP planning system to
provide feedback on transportation feasibility during generation of the deployment
actions required to support the COA.

e Adapting component constraint propagation and conflict analysis techniques utilized
within the DITOPS scheduler, a COA feasibility checker was developed and exported
for incorporation into the TARGET IFD3 planning system. designed to verify consis-
tency of the temporal constraints and force assignments in a given employment plan,
and identify the set of conflicting constraints in inconsistent situations.

These auxiliary subsystems are summarized in the following two subsections. Complete
details may be found in the DITOPS Design Reference Manual [LSS+93].

4.1 Integrating Capacity Analysis into SOCAP

The DITOPS capacity analysis service was developed to show (in collaboration with SRI)
the utility of integrating resource contention analysis into higher level COA planning and
was demonstrated within the SOCAP planner. It was constructed as a direct extension of
the capacity analysis procedure utilized within the DITOPS scheduler itself. In brief, this
base procedure operates by first computing an infinite capacity schedule (i.e., a schedule
in which all temporal constraints are satisfied) at some specified level of time and resource
granularity, and then relating the resource capacity required by the schedule to the amount of
resource capacity that is actually available over time. Subintervals of the scheduling horizon
in which the demand for capacity on some resource (or set of resources) exceeds the available
supply are then identified and returned as likely scheduling bottlenecks. For use within
SOCAP, a protocol for mapping COA plan nets into the DITOPS schedule representation
(and likewise for communicating results back) was developed and integrated with the base
capacity analysis procedure.

The capacity analyzer was incorporated into SOCAP as an additional “plan critic” for use
after completion of the deployment planning phase of its overall COA generation process.
Its use was demonstrated in the context of the original IFD2 (MEDCOM) problem scenario;
upon generation of a deployment plan which assumed only a single in-theater POD, applica-
tion of capacity analyzer was found to (correctly) identify the insufficiency of this one port
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assumption from the standpoint of required port throughput capacity. Information relating
to this detected port capacity bottleneck subsequently resulted in the triggering of a plan
revision process in SOCAP, wherein a second in-theater POD was added to the plan. The
overall point illustrated in this technology integration experiment was that consideration of
capacity constraints early on in the planning process can lead to early detection of problems

that, in current planning practices, might only be discovered after the initial deployment
plan had been “exploded” to the detailed TPFDD level.

The DITOPS capacity analysis service is currently installed as a CPE knowledge service. In
brief, it accepts a (typically high level) deployment plan along with a specification of available
resources and resource capacity (i.e., ship, plane, port) identified as required in the plan. It
returns as output, a set of any "bottleneck” resource intervals, and a resource usage profile
for each resource over the plan horizon. The plan is communicated as a list of activities
and temporal constraints. Each input activity description (corresponding to a node in the
SOCAP plan net) contains the transport resource or resource type it requires, its POE, its
POD, its cargo quantities (in terms of stons, mtons and/or pax), and any current bounds
on its start time, end time, and duration. Each temporal constraint description identifies
a binary temporal relation (e.g., before, same-start), the two activities that are constrained
by the relation, and any quantitative bounds on the relation. Available transport resources
are also communicated, with each resource description designating both an asset type (e.g.,
tairlift) and a set of instances (e.g., (1st-C130 2nd-C130 ...)). An additional set of inputs
corresponds to periods of reduced available capacity for a given resource (transport asset or
port), with each description indicating a specific resource, the amount of capacity lost, and
the start and end time of the reduced capacity interval. Finally, parameters which establish
the desired temporal granularity of the analysis and the threshold to be used in detecting
bottlenecks are passed. The usage (or capacity) profile that is computed for each resource is
returned as an ordered list of capacity intervals of the specified granularity (e.g., 24 hours),
each of which specifies a start time, an end time, the projected demand for capacity over
the interval, the available supply of capacity over the interval, and the demand/supply ratio.
Any subsequence of intervals with a demand/supply ratio greater than the specified threshold
is returned as an identified bottleneck.

4.2 COA Feasibility Checker

The COA Feasibility Checker subsystem was developed for use within the IFD3 TARGET
system, and is currently a functioning component of this system. Similar in spirit to the
capacity analyzer integrated into the SOCAP system, it performs feasibility checks on COA
plans that are developed interactively within TARGET. However, there are important func-
tional differences. First, the problem context is employment planning as opposed to deploy-
ment planning. In employment planning, forces are interpreted as the resources required
by plan activities and whose availability must checked. Second, the qualitative temporal
constraints on plan activities provided to the feasibility checker were not assumed to be
consistent (as was the case with communicated SOCAP constraints); one objective of the
feasibility checker is to provide guidance to the human planner in generating these temporal
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constraints. Third, the objective is not to estimate resource contention per se, but to instead
identify and isolate sets of conflicting constraints.

The COA Feasibility Checker integrates time bound propagation techniques defined within
the kernel DITOPS infra-structure with newly developed extensions to recognize and diag-
nose specific types of constraint conflicts. When provided with an input plan from TARGET,
a topological sorting procedure is used in conjunction with time bound propagation to first
check the plan for the presence of cycles. Detection of a cycle in this case implies the exis-
tence of some set of inconsistent temporal relations (e.g., A before B, B before C, C before
A). If detected, a characterization of this constraint conflict, including the set of temporal
relations that are involved, are returned for use in highlighting to the user which constraints
must be changed to achieve a feasible plan. In cases of a cycle-free plan, checks are also
performed to detect time bound violations, which indicate that the metric constraints im-
posed on the plan (e.g., mission start and end dates, activity durations) are not feasible,
and resource availability violations, which indicate situations where the resources required
by an activity (in this case, forces) are not available during the activity’s inferred time win-
dow. Upon detection of either type of conflict, a description identifying the activities and
resources involved in the conflict is returned, again to provide guidance in directing the plan
change process. If an input employment plan is found to be conflict free, then the inferred
time bounds for each constituent activity are returned as output.
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5 Scheduling by Precedence Constraint Posting

In this section we summarize our research into the development of a novel approach to
scheduling - scheduling by precedence constraint posting, as Smith and Cheng (1993) have
termed it - demonstrate the power of the approach through development and experimental
analysis of several scheduling algorithms based on this constraint posting concept. The
scheduling algorithms based on this concept construct schedules by establishing processing
orderings between pairs of operations on each machine, as opposed to more traditional
algorithms which construct schedules by repeatedly searching for the best start time for each
operation. Earlier indications (Smith and Cheng 1993) in this work appeared to lend weight
to our supposition that by approaching a scheduling problem as one to establish processing
orderings, flexibility and deferred commitments with respect to resource allocation decisions
can be maintained so that it is more likely that simple, local heuristics can yield scheduling
performance which is more competitive than the current dominating techniques.

To demonstrate the power of the constraint posting scheduling concept, we’ll address two
scheduling problems in this section: (1) job-shop makespan scheduling; (2) job-shop weighted-
tardiness scheduling. These problems are chosen mainly because they have been extensively
studied in prior literature and there exist several very best procedures, which can be severed
as evaluation benchmarks to our new developments.

In very general terms, the approximation algorithm based on this scheduling concept contains
two major steps. In step I, we select one pair of operations which are to be processed on the
same machine. Then, we determine their processing ordering or sequencing constraint in step
II. We call this step “precedence constraint posting”. After the posting of one precedence
constraint, the current search space gets pruned and we continue to search for the best
solution on the new space. Repeating these two steps alternately, accompanied with the
cycle prevention mechanisms, finally, we can determine the processing orderings for all pairs
of operations on every machine and, thereby generate a complete schedule for the problem.
Given below is the algorithmic description of the concept:

Step 0. Initialization.

Step 1. If all pairs of operations are ordered, stop. Otherwise,
Step 2. Pick one unordered pair.

Step 3. Post the proper precedence constraint between this pair.
Step 4. Update the current search space.

Step 5. Go to Step 1.

The rest of the section is organized as follows. In Section 2, we formally define the notations
and scheduling problems which are to be used and studied throughout the section. Then,
we briefly review the PCP algorithm previously developed by Smith and Cheng (1993) in
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Table 1: Notations used in the study

n = number of jobs
m = number of machines
r; = ready time or release date for job 2
d; = due date or deadline for job 2
D = acommon deadline
w; = weight for job 1
n; = total number of operations required for job :
0;; = operation j for job :
pij = processing time of operation o;;
m,; = machine requested by operation o;;
est;; = earliest start time of operation o;;
Ift;; = latest finish time of operation o;;
zt = max{0,z}

Section 3. Based on the PCP algorithm, we present a new approximation algorithm, called
MULTIPCP, for the makespan problem. Performance study by comparing MULTIPCP and
Shifting Bottleneck on two sets of problems is also given in Section 4. Section 5 presents
another new approximation algorithm, called WTPCP, for the weighted-tardiness problem.
To evaluate the effectiveness of this new algorithm, we conduct computational experiments
and compare it with several best-known dispatching rules on a set of problems randomly
generated for a simulated shop with 10 machines and 200 jobs. Finally, conclusions are given
in Section 6.

5.1 Notations and Problems

Table 1 lists the notations to be used in this section.

In a job-shop problem, n job are to be processed by m machines with the following assump-
tions: (1) the sequence of machines for each job is prescribed; (2) every job can be processed
by only one machine and every machine can process at most one job at a time; (3) machine
setup times are not considered; (4) once a machine starts to process a job, no interruption is
allowed. Given these assumptions, the objective is to generate scnedules which satisfy some
constraints or which minimize some functions of the completion times of the jobs.

In the minimum makespan problem, the objective is to find a schedule which minimizes the
makespai:, the total elapsed time needed to process all jobs. The makespan, Cpyq., of a

schedule can be defined as
Cma:t: = ma»X{Ci},
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where C; is the completion time for job :.

In the minimum weighted-tardiness problem, the objective is to generate a schedule which
minimizes the mean weighted-tardiness of the problem. Although there does not exist an uni-
versally accepted criterion for due-based performance in job-shop scheduling, mean weighted
tardiness (MWT) has been one of the most often-used in literature. MWT of a schedule can
be defined as
1 n
- Z w,—max(O, C,‘ - d,’),

nix
where n is the total number of jobs; w; is the weight, d; the due date, and C; the completion
time for job iz, respectively.

5.2 A Review of The PCP Algorithm

Given the problem data of processing times, job routings, ready times, and deadlines, PCP
first initializes the earliest start time est;; and latest finish time {ft,; for any operation o;;

by the expressions:
j-1

esti; =Ti+ Y Pik; (1)
k=1
lft,'j =d; — Z Pik- (2)
k=j+1

After the initialization of earliest start and latest finish times for all operations, PCP, then,
applies a procedure previously developed by Erschler et al. (1976), referred to as Constraint-
Based Analysis (CBA), to exploit dominance conditions and prune the infeasible regions on
the current search space. To summarize their basic idea, assume that est;; and [ ft;; designate
the current earliest start and latest finish time respectively of a given operation o;;. Then,
for any unordered pair of operations, o;; and oy, wheire m;; = my, we can distinguish four
different cases:

1. If Ift;; — estiq < pij + pt < Ifti — est;; then o;; must be scheduled before o4 in any
feasible extension of the current ordering decisions. (case 1)

2. If Ifty — esty; < pij + p < Ifti; — estiy then oy must be scheduled before o;; in any
feasible extension of the current ordering decisions. (case 2)

3. If p;; + piy > Ifti— esti; and pij + pr > [fti; — esty then there is no feasible schedule.
(case 3)

4. If pij + pu < Ift — esty; and pij + pu < Ifti; — esty then either ordering decision is
still possible. (case 4)
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Whenever a new precedence constraint is posted, say we sequence operation o;; before op-
eration oy, then esty; and [ft;; are updated by

esty = max{esty,est;; + p;;} and (3)

[fti; = min{lft;j,{fti — pu}, (4)

and these new values are then propagated forward or backward respectively through all
precedence constraints which are pre-specified or previously posted. We call the above
process “constraint propagation”.

The dominance conditions in CBA, of course, provide only necessary conditions for determin-
ing a set of feasible schedules, and, thus, the interleaved application of CBA and const; int
propagation yields an incomplete search procedure. What is needed to generate a complete
schedule is some heuristics for resolving the undecided states specified by CBA in case 4.

In such situations where CBA leaves the search in a state with several unordered pairs of
operations, PCP focuses its attention on the pair whose temporal slacks are currently most
constrained. Since the posting of any precedence constraint is only likely to further constrain
the temporal slacks of other unordered pairs, delaying the ordering decision for the currently
most constrained pair will greatly increases the chances of generating an infeasible schedule.

To estimate the constrainedness for any unordered pair of operations (o;;, o), where m;; =
mu, PCP first defines the projected temporal slack, if o;; is sequenced before oy, as

.S'lack(o,-j — OH) =Ifty — esti; — (p,'j + prt)- (5)
Similarly the projected temporal slack, if oy is sequenced before o;;, can be defined as

Slack(op — 0;5) = Uftij — estu — (pij + pri)- (6)

Intuitively, the unordered pair which is currently most constrained can be defined as the
one which has the minimum slack among all unordered pairs. However, PCP defines an-
other metric, referred to as biased slack (Bslack), in determining the most constrained pair.
The motivation behind the creation of Bslack is primarily for dealing with the problem in
which we can not distinguish the most constrained pair by relying on the minimum slack
as the only criterion. Instead, for any unordered pair (0;;, o), the value of max{Slack(o;; —

o), Slack{o, — 0;;)} should also be used to bias the value of min{Slack(o;; — o), Slack(ox —

0ij)}-
Based on Slack(o;; — ox) and Slack(ox — 0i;), the biased slacks for any unordered pair of
operations (0;;, 0k ), where m;; = my,, are given by the expressions

l i
Bslack(o;; — oxi) = 5 a(:k(:)/%—) Okl),ana’ (7

Bslack(og — 0i5) = Slack(\o/klg—) Oij)’ (8)
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where
_ min{Slack(o;; —= o), Slack(ow — 0;;)}

~ maz{Slack(o;; — o), Slack(oy — 0;;)}

(9)

estimates the degree of “similarity” between the value of Slack(o;; — ox) and Slack(ox —
0;j) respectively.

Given the metric of Bslack, for any unordered pair of operations (0;;,0k1), where m;; = my,
its degree of constrainedness or ’criticality’ is determined by the expression

C R(0;j, 0x1) = — min{Bslack(o;; — ox), Bslack(ox — 0i5)} (10)

Once PCP has determined the most constrained pair, say (o;;,04), which has the maxi-
mum CR(o0;j,0x), it posts the precedence constraint (0;; — ow) if Bslack(o;; — ox) >
Bslack(ox — 0;5). Otherwise, PCP posts the precedence constraint (o — 0;;). A tie is
broken arbitrarily. Given in Figure 9 is the whole PCP algorithm.

5.3 Job-shop Makespan Scheduling
5.3.1 The proposed method

It is not hard to see that, for any job-shop makespan problem, we can reduce it to a job-
shop problem with ready times and deadlines, in which every job has zero ready time and a
common deadline which is equal to the minimum makespan of the problem. The objective
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of the problem is to generate, if there is, a feasible schedule which satisfies the condition that
every job is started after its ready time and completed before its deadline. The schedule
which minimizes the makespan for the former will be a feasible schedule for the latter. In
some sense, there is a dual relationship between the makespan problem and the problem with
ready times and deadlines. The common deadline which equals to the minimum makespan
is also the least common deadline so that the problem can still find some feasible schedules.
We call it the “least feasible common deadline”. Based on this relationship, the makespan
problem can be viewed as finding the least feasible common deadlire for the problem with
ready times and deadlines.

If we have a procedure for optimally solving the constraint satisfaction scheduling prob-
lem, we could use it within a binary search procedure to obtain an optimal solution for
the makespan problem. A natural extension of this would be to obtain an approximation
algorithm for the makespan problem by using an approximation algorithm for the constraint
satisfaction scheduling problem within the binary search. Thus, we may propose an ap-
proximate algorithm by using PCP within a binary search procedure. We start with known
upper and lower bounds on the common deadline D, and at each step run PCP for a value
of D midway between the current upper and lower bounds. If PCP generates any feasible
schedule, D becomes the new lower bound and we continue; if PCP doesn’t generate any
feasible schedule, D becomes the new upper bound. By the binary search, we can converge
to the solution very rapidly.

Unfortunately, binary search will guarantee to give the least feasible common deadline only
if PCP holds the monotonicity property. This property states that if for D;, PCP can not
find any feasible schedule, then for any smaller D;(< D), it should not find any feasible
schedule, or vice versa. Since PCP is an approximation algorithm, it normally does not hold
the monotonicity property. Without the general monotonicity property, using PCP within
the binary search sometimes will not guarantee to deliver the best solution.

Instead, we use a k-iteration search procedure. Within this search procedure, we repeatedly
try PCP k times with different common deadlines which are evenly selected between the
known upper and lower bounds on D. The main reason of using the k-iteration search
procedure is not to solve the non-monotonicity problem in PCP, but to reduce the chances
of missing the best solution. The disadvantage of the k-iteration search procedure is the
need to determine a proper value for k. With a large k, we can generate better solutions but
the computation time becomes higher. In our experience, the k-iteration search performs
very well and better than the binary search when k is equal to or greater than 8. Thus, in
the final implementation we choose k equal to 8.

In the k-iteration search procedure, the upper bound Dy is determined by running a dispatch
procedure with six different priority rules - SPT, LPT, LFT, EFT, MOR, and LOR, and
taking the best makespan generated. For generating the lower bound D;, we apply the
procedure previously proposed by Florian, Trepant, and McMahon (1971). This lower bound
is obtained by sequencing each machine without regard to the other machines using the
earliest start time as the priority rule, and then choosing the maximum completion time
among all jobs.

40




r
3 i
tLd
o2 N2
r L)
— I
-l mn
r 1
3 et
b'L"‘—".'
o2 /[
I 1
= 2
e im
! S
IO o
= s
-l in
r 1
ext | ne
AT )
3 i
-2 n2
r
] —fa

Figure 10: Modified PCP Search Procedure

Notice that for a problem with a common deadline D, if PCP can find a feasible schedule,
then the makespan C,;, is less than or equal to D. Thus, when PCP can find a feasible
schedule, Cy.:n is what we want, not D. Although our approximation procedure is motivated
by searching for the least feasible common deadline for the problem, what we are most
interested in is the various values of the makespan associated with the feasible schedules
generated during the search. Within the k-iteration search procedure, what we really do is
use PCP to generate k schedules for the problem with k different common deadlines evenly
selected between the upper and lower bounds. The feasible schedule which has the minimum
makespan will be our final solution.

In PCP, the search for feasible schedules is terminated whenever an infeasible state (case
3 in CBA) is reached. In such a situation, rather than just stopping the whole procedure,
we might like to continue and generate a complete schedule. The motivation behind this is
based on an observation that for certain common deadlines PCP only generates very few
number of infeasible states, say one or two. For these common deadlines, if we continue
the procedure and construct complete schedules, the values of the final makespan should be
very close to the given common deadlines. Therefore, we slightly modify the original PCP
procedure, shown in Figure 2, to always generate a complete schedule. Moreover, with the
modification new PCP guarantees to always produce better solutions than before, since it
includes both feasible and infeasible schedules to search for the best solutions.

Below, we give the description of the algorithm in detail. The algorithm, which is called
MULTIPCP, takes as input sets of processing times and routings of jobs and a bound k on
the desired number of iterations. Then it goes as follows:
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1. Compute upper bound Cy and lower bound Cy.
Set Best_Makespan = oo.
Set I = 0.

2. If I > k, stop.
Otherwise, set common deadline D = Cy — I(Cy — Cp)/k.

3. Run PCP and compute the makespan M.
If M < Best_Makespan, set Best_Makespan = M.
If Best_Makespan = CL, stop because we have the optimal
solution. Otherwise, set I = I + 1. and go to 2.

5.3.2 Performance Study
5.3.3 Generation of test problems

In this section we evaluate the performance of MULTIPCP with one well-known procedure,
Shifting Bottleneck (SB) developed by Adams, Balas, and Zawack (1988). Shifting Bottle-
neck has reported superb performance on job-shop makespan problems in terms of solution
quality and computation time used. The implementation of the SB we used in this study
was kindly provided to us by Applegate and Cook. For details of this implementation please
see Applegate and Cook (1991).

We test both our procedure MULTIPCP and Shifting Bottleneck on two sets of problems
previously published in the literature. The first set contains some small problems with size
from 6-job and 6-machine to 15- job and 15-machine. The first three problems, Mt06, Mt10,
and Mt20, are those notorious problems originally posed by Fisher and Thompson in 1966.
The rest of the first set is taken from 40 problems created by Lawrence (1984). Since only
36 problems have reported optimal solutions so far, we just included those problems in the
set.

The second set of the problems were generated by Taillard (1993). This set contains several
large job-shop makespan problems with size from 15-job and 15-machine to 50-job and 20-
machine. One random number generator and several procedures for generating problem
data were also provided by Taillard. For each problem, Taillard gave both time seed and
machine seed to generate the required random numbers and he also reported the best solution
obtained through a Taboo search using very extensive computational resource. The problems
reported by Taillard were the most difficult ones among several hundreds which were also
generated and solved by him. Thus, these problems should be described as hard problems.

To measure the quality of the solutions generated by both MULTIPCP and SB, we calculate
percentage deviation from the optimal solution for the first set of problems and percentage
deviation from the best solution for the second set respectively. In addition to the quality
of the solutions, we also report how many CPU seconds are used by each procedure to
solve each problem. To achieve a fair comparison for the computational performance, both
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MULTIPCP and SB were written in C and implemented on a Sun IPX. For MULTIPCP,
the bound k on the number of iterations was chosen to be 8. The experimental results on
the first set of problems appear in Table 2. In Table 3, we give the average performance
respectively for SB and MULTIPCP, and also for two new versions of Shifting Bottleneck
(SBIII and SBIV), recently developed by Balas, Lenstra, and Vazacopoulos (1993), on the
set of small problems. For SBIII and SBIV, the values for the percentage deviation from
the optimal solution and the CPU second are computed based on the results reported by
Balas et al. (1993), and we fairly adjust the running times for SBIII and SBIV, since they
correspond to a SUN SPARC330. Then, in Table 4 and 5 we give the results for MULTIPCP
and SB on the second set of large problems. Finally, the average performance for SB and
MULTIPCP on the set of large problems is shown in Table 6.

5.3.4 Discussion

The results indicate that, on average, MULTIPCP performs slightly better than SB for
both the small and large problems. For the set of small problems, the average percentage
deviation from the optimal solution generated by SB is 3.0% versus 1.7% by MULTIPCP.
Moreover, for this set of small problems, MULTIPCP can also generate very comparable
results with two new versions of Shifting Bottleneck, SBIII and SBIV. These results indicate
that for small problems MULTIPCP can produce near-optimal solutions. For the set of large
problems, both SB and MULTIPCP moderately deteriorate their performance. The average
percentage deviation from the best solution by SBI is 9.31% versus 8.34% by MULTIPCP.
On this set of problems, MULTIPCP still generates very competitive performance to the SB
procedure.

For the computational performance, MULTIPCP needs a little more CPU time than SB on
the set of small problems, but the difference is just a second. However, when running SB and
MULTIPCP on the set of large problems, we realize that MULTIPCP uses much less CPU
time than SB. To illustrate, on the problems with the largest size (50 jobs and 20 machines),
the average CPU time used by MULTIPCP is 242.64 seconds versus 414.08 seconds by SB.

By no means, we can conclude that MULTIPCP is better than SB or vice versa. From the
testing results we can see that SB performs better than MULTIPCP on the problems in
which we have high ratio of number of jobs to number of machines such as the problems of
30-job and 10-machine and also those of 50-job and 20-machine. Except for these problems,
MULTIPCP has better performance than SB. Based on these observations, we recommend
that in a situation in which the problems has high job-machine ratio, SB could be used.
Otherwise, MULTIPCP could be used for the problems in which the job-machine ratio is
low or the problem size is so large that the computational cost becomes more important.
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Table 2: % from optimal solution and computation time for SB and MULTIPCP on small

problems
Job x | Optimal SB MULTIPCP
Problem | Machine Value | Value % CPU sec | Value % CPU sec
mt06 6x6 55 59 7.273 0.12 55 0 0.13
mtl0 | 10 x 10 930 952  2.366 1.08 949 2.043 1.10
mt20 [ 20x 5 1165 | 1228 5.408 0.63 1192 2.318 4.22
lal 666 666 0 0.10 666 0 0.10
la2 655 684 4427 0.13 670 2.290 0.48
1a3 10x5 597 605 1.340 0.12 617 3.350 0.47
la4 590 603 2.203 0.18 600 1.695 0.47
lab 593 593 0 0.12 593 0 0.03
laé 326 926 0 0.20 926 0 0.05
la7 890 890 0 0.23 890 0 1.52
1a8 15x5 863 863 0 0.25 878 1.738 1.42
la9 951 951 0 0.17 951 0 0.05
lal0 958 958 0 0.20 958 0 0.05
lalt 1222 1222 0 0.25 1222 0 0.05
lal2 1039 1039 0 0.18 1039 0 0.05
lal3 | 20x5 1150 | 1150 0 0.25 1150 0 0.05
lal4 1292 | 1292 0 0.22 1292 0 0.07
lal5 1207 1207 0 0.25 1207 0 0.50
lal6 945 | 1076 13.862 0.62 982 3.915 0.73
lal7 784 829 5.740 0.85 787 0.383 0.63
lal8 | 10x 10 848 855 0.824 1.00 886 4.481 0.65
lal9 842 863 2.494 1.03 852 1.188 0.62
1a20 902 918 1.774 1.05 922 2.217 0.62
1a22 927 068 4.423 1.87 965 4.099 2.82
1la23 | 15x 10 1032 1071 3.779 248 1041 0.872 2.72
la24 935 | 1015 8.556 2.07 983 5.134 2.42
1a25 977 | 1061  8.598 1.60 1026 5.015 2.63
1a26 1218 | 1393 14.368 2.27 1272 4.433 7.05
Ia28 | 20 x 10 1216 1281 5.345 2.98 1275 4.852 6.58
1a30 1355 | 1355 0 3.45 1356 0.074 7.32
lad1 1784 1784 0 7.42 1784 0 15.92
1a32 1850 | 1850 0 473 1850 0 0.15
1a33 | 30 x 10 1719 1719 0 3.63 1722 0.175 23.65
la34 1721 1721 0 5.28 1744 1.336 24.77
1a35 1888 | 1888 0 4.80 1888 0 3.26
1a36 1268 1326 4.574 4.93 1321 4.180 2.97
1a37 | 15x 15 1397 1471 5.297 3.25 1446 3.508 3.57
1a39 1233 1301 5.515 6.45 1286 4.298 3.92
1a40 1233 1347  9.246 6.48 1272 3.163 3.72
Average 3.011 1.712
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Table 3: Average % from optimal solution and computation time for SB, MULTIPCP, SBIII,
and SBIV on small problems

SB | MULTIPCP | SBIII | SBIV
% | 3.0 1.7 1.5 1.3
CPU sec | 1.9 3.2 4.1 6.6

Table 4: % from best solution and computation time for SB and MULTIPC on large problems

Job x Best SB MULTIPCP
Machine | Value | Value % CPU sec | Value % CPU sec
1231 1360 10.48 6.28 | 1280 3.98 3.25
1252 1367 9.19 9.25 | 1308 4.47 3.60
1223 1352 10.55 963 | 1288 5.31 3.53
1181 1289 9.15 6.73 | 1253 6.10 3.40
15x 15 1234 1359 10.13 492 ] 1306 5.83 3.72
1243 1314 5.71 742 1320 6.19 3.55
1228 | 1322 7.65 5.07 | 1307 6.43 3.18
1221 1345 10.16 857 | 1289 5.57 3.52
1289 | 1437 11.48 8.10 | 1366 5.97 3.85
1261 1331 5.55 6.83 | 1334 5.79 3.50
1376 1481 7.63 15.10 | 1488 8.14 10.13
1381 1503 8.83 17.23 | 1495 8.25 8.37
1367 1521 11.27 12.37 | 1478 8.12 8.97
1355 1540 13.65 10.83 | 1452 17.16 8.72
20x 15 1366 1532 12.15 17.60 | 1486 8.78 10.22
1371 1511 10.21 12.90 | 1478 9.99 9.05
1480 | 1605 8.45 13.93 | 1609 8.72 9.85
1432 1532 6.98 14.52 | 1503 4.96 10.80
1361 1504 10.51 16.35 | 1440 5.80 9.63
1373 1535 11.80 11.87 | 1441 4.95 8.73

1663 | 1814  9.08 2222 | 1764 6.07 10.20
1626 | 1776  9.23 35.65 | 1739 6.95 11.17
1574 | 1726  9.59 29.65 | 1687 7.18 10.55
1660 | 1822  9.76 25.73 | 1773 6.81 10.33
20x 20 | 1598 | 1847 15.58 2478 | 1742 9.01 11.07
1679 | 1861 10.84 25.17 | 1759 4.76 10.87
1704 | 1857  8.98 29.00 | 1862 9.27 11.62
1626 | 1809 11.25 34.02 | 1749 17.56 10.97
1635 | 1771  8.32 40.43 | 1761 17.71 9.40
1614 | 1729  7.13 38.77 | 1743 7.99 11.27
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Table 5: % from best solution and computation time for SB and MULTIPC on large problems
(continued)

Job x Best SBI MULTIPCP
Machine | Value | Value 7%(PDB) CPU sec | Value %(PDB) CPU sec
1770 | 2017 13.95 27.32 | 2001 13.05 36.45
1853 | 2061 11.23 38.83 | 2019 8.96 34.75
1855 | 1987 7.12 33.55 | 2053 10.67 32.00
1851 | 1996 7.83 28.67 | 2071 11.89 34.63
30x 15 | 2007 | 2140 6.63 32.18 | 2106 4.93 32.35
1844 | 1965 6.56 36.65 | 2016 9.33 36.27
1822 | 1976 8.45 36.25 | 1954 7.25 32.13
1714 | 1915 11.73 40.07 | 1853 8.11 34.70
1824 | 1890 3.62 32.92 | 2010 10.20 35.88
1723 | 1838 6.67 33.43 | 1931 12.07 33.57
2064 | 2343 13.52 67.32 | 2323 12.55 41.05
1983 | 2199 10.89 77.68 | 2205 11.20 38.90
1896 | 2123 11.97 79.28 | 2165 14.20 42.97
2031 |} 2392 17.77 62.58 | 2252 10.88 44 .37
30x20 | 2032 | 2262 11.32 72.83 | 2215 9.01 41.53
20567 | 2329 13.22 80.13 | 2269 10.31 45.88
1947 | 2202 13.10 80.25 | 2104 8.06 41.62
2005 | 2191 9.28 67.38 | 2277 13.57 43.52
2013 | 2270 12.77 60.88 | 2330 15.75 45.12
1973 | 2301 16.62 57.15 | 2188 10.90 40.35
2921 | 3098 6.06 337.05 | 3177 8.76 247.83
3002 | 3237 7.83 404.93 | 3244 8.06 244 .87
2835 | 2976 4.97 762.60 | 3047 7.48 238.00
2775 | 2879 3.75 259.63 | 2951 6.34 234.97
50 x 20 | 2800 | 2978 6.36 663.48 | 3061 9.32 245.95
2014 | 3089 6.01 241.07 | 3196 9.68 234.37
2895 | 3105 7.25 248.12 | 3165 9.33 244.10
2835 | 2918 2.93 408.33 | 3048 7.51 235.37
3097 | unkn unkn unkn | 3419 10.40 255.62
3075 | 3163 2.80 401.53 | 3349 8.91 245.27
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Table 6: Average % from best solution and computation time for SB and MULTIPCP on
large problems

Job x SB MULTIPCP
Machine % CPU sec % CPU sec
15x 15 9.01 7.28 5.56 3.51
20 x 15 | 10.15 14.27 7.49 9.45

20x20 [ 9.98 30.54 | 7.33 10.75
30x 15 [ 8.38 33.99 | 9.65 34.27
30 x 20 | 13.056 70.55 | 11.64 42.53
50x 20 | 5.33 414.08 | 8.38 242.64

Overall | 9.31 | 8.34

5.4 Job-Shop Weighted-Tardiness Scheduling

To adapt PCP to the weighted-tardiness problem, two basic issues must be addressed. The
first issue concerns the inappropriateness of using temporal slack as the only basis for esti-
mating the criticality of various unordered pairs. Second, since CBA depends on the assump-
tion that deadlines are non-relaxable, its advantage as a search-space pruning mechanism is
completely lost for the weighted-tardiness problem.

5.4.1 The metric for measuring criticality

To address the first issue, along with the temporal slack, we define another metric, which
is referred to as Tard, to serve the purpose of estimating the criticality of unordered pair
of operations. This metric is defined by computing the increase in tardiness cost resulting
from alternative ordering decisions for a given pair of operations. For any unordered pair of
operations (0;;,0r) the 'projected job tardiness after sequencing o;; before oy’, Tard(o;; —
0k1), can be obtained by the following procedure:

1. Set esty = max{esty,est;; + pi;}.
Propagate esty forward through all
precedence constraints which are pre-specified
and previously posted on the current search space.

2. Compute the increase in job tardiness.

3. Undo step 1.

The projected job tardiness T'ard(oy — o0i;), if we sequence oy before oy, can be computed
by the similar manner.
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In case that both Tard(o;; — ox) and Tard(ox — 0;;) equal to zero, we defines the projected
temporal slack, if we sequence o;; before ok, as

Slack(0i; — on) = Iftu — estij — (pij + pr)s (11)
and similarly the projected temporal slack, if we sequence oy before o;;, as

Slack(okl hand 0,']') = lft,'j - estkl e (p,']' + Pkl)- (12)

Given Tard and Slack, for any unordered pair of operations (o,;,0x), where m;; = my, its
criticality is estimated by the expression

CR(0;j,0r) = Tard(oi;; = ox) + Tard(on — o), (13)

or

CR(O,‘J',OH) = —(Slack(o;j — Okl) -+ Slack(okl — 0,‘]‘)), (14)
if all unordered pairs have zero look-ahead job tardiness, i.e. no precedence constraint
posting will increase the job tardiness.

With CR, we can propose a general procedure, referred to as G1, as follows:

Step 1. Initialization.
1. Initialize the earliest start time est;; and
the latest finish time (ft;; for every operation o;;.

2. For any pair, compute Tard, Slack and CR.
Step 2. If all pairs are ordered, stop. Otherwise,
Step 3. Pick the unordered pair whose C' R value is maximum.
Step 4. Post the proper precedence constraint.
Step 5. Propagate the earliest start and latest finish times.
Step 6. For remaining pairs, update Tard, Slack, and CR. Go to Step 2.

In Step 4, once we have determined the most critical pair, say (oi;,0k), which has the
maximum CR value, we post the precedence constraint (0;; — ox) if Tard(o;; — on) <
Tard(ok — 0;;), or if Slack(oij — on) > Slack(o — 0;;) in case that Tard(o;; — ox;) =
Tard(oy — 0;;) = 0. Otherwise, we post the precedence constraint (ox — 0;;). A tie is
broken arbitrarily.

One major reason why PCP performs so well for the problem with deadlines is because it
incorporates a powerful mechanism to prune infeasible regions on the search space, a mecha-
nism provided by Constraint-Based Analysis (CBA). Since CBA depends on the assumption
that deadlines are non-relaxable, it provides no leverage it in the weighted-tardiness prob-
lem. In the next section, we’ll propose an alternative mechanism, which uses a dispatching
rule to guide the proper posting of precedence constraints.
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5.4.2 Using a dispatching rule to guide posting

Image that after we determine the unordered pair which has the maximum CR value, we
use a dispatching rule to generate two schedules, one that assumes each of the possible
precedence constraints associated with these two operations. For example, suppose that the
unordered pair (o;;,0x) is the one whose CR value is maximum. Then we generate two
dispatching schedules for the original problem with the precedence constraints posted so far
and also the precedence constraints (0;; — or) and (ox — 0i;) respectively. If the schedule
associated with the precedence constraint (o;; — ok) is better than the other one, then we
post (0;; — om). Otherwise, we post the precedence constraint (ox — o;;).

Now, if we also keep the best schedule after we post the proper precedence constraint, then,
when we go on to the next step, we only need to generate one dispatch schedule. Let’s take an
example. Suppose that the unordered pair (o;;, 0x) has now the maximum CR value. Then,
in the current best schedule, either o;; is sequenced before oy or ok is sequenced before o;;. If
0;; is sequenced before oy in the current best schedule, then we generate a dispatch schedule
for the precedence constraint (ox — 0;;). Otherwise, we generate a dispatch schedule for
the precedence constraint (o;; — ox). Therefore, we only need to generate one dispatch
schedule for the precedence constraint which is not in the current best schedule. After we
generate the new schedule, we compare it with the current best schedule. If the new one
is better, we retain it and post the precedence constraint associated with it. Otherwise, we
post the other precedence constraint and discard the new schedule,

We can further reduce the computational cost by introducing a heuristic assumption that
distinguishes between ’easy’ and ’hard’ ordering decisions. To explain this scheme, suppose
that we have selected the most critical pair. Then, we first use Step 4 in the general
procedure G1 to decide which precedence constraint should be posted. If the precedence
constraint suggested by Step 4 is already in the current best schedule, then we can skip the
generation of a new dispatch schedule and continue to the next step. With this scheme, we
generate a new dispatch schedule only when the precedence constraint suggested by Step
4 is not in the current best schedule. The supposition underlying this scheme is based on
the observation that examining all ordering decisions that must be made during the overall
schedule-generation process, we can identify some ’easy’ and ’hard’ ones. The ’easy’ decisions
are those that different methods or priority rules will give the same answers. On the other
hand, the ’hard’ decisions are those that are difficult to make such that different methods or
rules will give different answers. If we assume that the answers for easy decisions correspond
to those precedence constraints which are suggested by Step 4 and are also in the current
best schedule, then we can accept these answers without generating any new schedule.

Now, we present the final procedure, referred to as Weighted-Tardiness Version of Precedence
Constraint Posting (WTPCP). Given the problem data of processing times, job routings,
job release dates, job due dates and job weights, WTPCP proceeds as following:
Step 1. Initialize:
e Set Si=¢and S; = ¢.
o Generate a dispatch schedule by a dispatching rule.
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o For each operation o;;, compute the earliest start time est;;
and the latest finish time [ft;;.

® Y(0ij,0or1) € S, where S is the set of all pair of operations,
compute Tard(o;j; — or) and Tard(oy — o),
IF Tard(oi; — or) > 0 or Tard(ox — 0;;) > 0 THEN add (0ij,0u) to S1
ELSE compute Slack(o;; — ow), and Slack(op; — 0;5) and add (o;;,041) to S.

Step 2. If 51 = ¢ and 52 = ¢, stop.

Step 3. Choose the pair with the highest criticality:
IFS #¢
THEN VY(oi;,0k1) € 51, choose the pair (05, 0k1),
such that CR(0};, 0;) is maximum. Break ties arbitrarily.
ELSE Y(0ij,0u1) € Sz, choose the pair (05; - 0%1)s
such that CR(o};, 0};) is maximum. Break ties arbitrarily.

Step 4. Post tie proper precedence constraint:
IF (ij,oh) E Sl

IF Tard(o}; — oy;) < Tard(oy; — of;),

check the precedence constraint ('o:j — 0}).

ELSE check the precedence constraint (o}, — oj;) .

Delete (o};,0};) from Si.
IF (0};,0}) € 52
IF Slack(o}; — oy;) > Slack(o}; — of;)
check the precedence constraint (o]; — o},).
ELSE check the precedence constraint (o}; — o;;) .

ij
Delete (o};, 0t;) from S,.
15 Ykl

Step 5. Propagate earliest start and latest finish times.

Step 6. Update Tard and Slack:
V(O.'j, OH) € ?1' update Tard(o,-j — OH) and Tard(ou — 0,']').
Y(0ij,on) € S, compute Tard(oi; — oni) and Tard(ox — 0;j).
IF Tard(oi; — or1) > 0 or Tard(op — 0i5) > 0
THEN delete (0i;,04:) from S, and add to S;.
ELSE update Slack(oij — ow), and Slack(ox: — o;;).
Go to step 2.

And the procedure to check any given precedence constraint (o;; — o) is given by:

Check (0,',' —_ OH):
IF (0i; — ow) is in the current schedule, post (0;; — o) .
ELSE Generate a new dispatch schedule with the precedence
constraints posted so far and (0;; — o).
IF the new schedule is better, retain it and post (0;; — o) .
ELSE discard the new schedule and post (og — 0;5) .

5.4.3 WTPCP as a schedule improvement procedure

Although the original motive behind the use of a dispatching rule is to guide the general
procedure G1 in properly posting precedence constraints, from the view point of the rule,
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G1 acts like a knowledge source, which continuously provides valuable information about
where we should interchange pair of operations, generate a new neighborhood, and search for
the better schedules. Whenever G1 suggests for a pair of operations a precedence constraint
which is not consistent with the current schedule, we interchange this pair and generate a new
schedule. If the new schedule is better, we retain it; otherwise, we keep the current schedule.
Based on this description, WTPCP can also be characterized as a ’schedule improvement
procedure, which continuously improve the solutions generated by the simple dispatching
rules.

One attribute of WTPCP is that we don’t have to randomly interchange any pair of oper-
ations when searching for better schedules. Instead, we limit the interchanges considered
to those seemingly promising pairs, based on one-step look-ahead information about the
projected increase in tardiness cost.

5.4.4 Computational Study
5.4.5 Data generation

In this set of experiments we randomly generate data for a 10-machine job shop. Jobs arrive
continuously with inter-arrival times taken from an exponential distribution, which means
that the number of jobs arriving within an interval of given length is Poisson-distributed.
The arrival rate is determined by the queueing expression, A = Umg, where X is the arrival
rate, U the utilization of the shop, m the number of machines, and p the average processing
rate. Each job has 1 to 10 operations, and no two consecutive operations require the same
machine. The actual number of operations is a random variable, drawn from the uniforin
distribution U[1,10]. Totally, we generate 200 jobs. The process routings are randomly
generated such that each machine is equally likely to perform a job’s next operation. The
processing times are from a uniform distribution, p; ~ U[1,30]. Job weights are also drawn
from the same uniform distribution, w; ~ U[1,30).

In the study by Kanet and Hayya (1982), the average utilization of actual shops were found
between €0% and 90%. Thus, in these experiments the arrival rates are generated in such a
manner to yield two approximate utilization levels of 80% and 90%. Due dates of the arriving
jobs are set by the total work content (TWK) rule suggested by Baker (1984), such that the
flow allowance of a job is proportional to the total work of that job, i.e., d; = r; + a ;% pik,
where a is the flow allowance factor. In order to examine the performance of WTPCP
across a range of shop conditions, we chcase three flow allowance factors, which are 2, 3 and
4, to generate different scenarios with vary tight due-date, loose due-date, and very loose
due-date jobs. For each combination of shop utilization and due-date tightness, we generate
10 random problems and the same set of job arrival times, job routings, job weights, and
processing times is used for each dispatching rule. In total, therefore, 60 problems are solved
by the integrated method of WTPCP with different rules respectively.

Our main concern in this study is to investigate the effectiveness of WTPCP in improving
the solutions generated by dispatching rules. Mean weighted-tardiness is our major criterion.
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Two other criteria are also investigated in this study. They are mean weighted flowtime and
proportion of tardy jobs.

5.4.6 Dispatching rules

We select some best-known dispatching rules in this computational study. Some of them
were originally developed for unweighted-tardiness problems and others were for weighted
tardiness. The rules are selected primarily based on their popularity and reported good
performance in the earlier literature of job-shop scheduling.

WSPT represents a simple, popular, widely used rule in most prior scheduling research and
in real-world applications. WSPT has been confirmed by many studies to be effective at
recacing the mean weighted tardiness when shop utilization is high and job due dates are
very tight.

Since Carroll first proposed COVERT (Cost Over Time) in 1965, many researchers have
extensively investigated and tested this rule on problems under different shop conditions.
Even though there have been many new rules developed since then, COVERT is still pro-
ducing very effective and robust performance in minimizing mean tardiness as observed by
Blackstone et al. (1982) and Russell et al. (1987). The modified rule, called WCOVERT,
that we used in the study is a weighted version of COVERT extended by taking job weights
into account. This modification on COVERT was suggested by Vepsalainen and Morton
(1987). For setting the best values for the slack parameter b and the look-ahead parameter
k used in WCOVERT, we run a preliminary parameter tuning test and choose b = 2 and
k = 2 to be used in the subsequent experiments.

Recently, Baker and Kanet (1983) developed a dispatching rule known as the modified
operation due date (MOD) rule, which has been shown to provide outstanding performance
in minimizing mean tardiness, as reported by Baker (1984). WMOD is a weighted version
of MOD, which has the form, w;/mod;;, where w; is the weight of job j and mod;; is the
modified operation due date of operation ¢ in job j. For setting the operational due-dates
or milestones, we use the TWK rule which normally gives the very best performance, as
suggested by Baker and Kanet (1983).

Closely related to the modified operation due date (MOD) rule, Anderson and Nyirenda
(1990) developec two new rules which are the extended versions of MOD, by introducing the
notion of dynamic operation due date. The new rule are called CR+SPT and S/RPT+SPT.
CR+SPT is the rule which combines the shortest processing time (SPT) rule and critical
ratio (CR) rule in a natural way, and S/RPT+SPT is the rule which combines the slack per
remaining work (S/RPT) rule and the shortest processing time (SPT) rule. The basic idea
behind the development of these rules is that every time after we dispatch one operation of
a job, we need to modify the operation due dates for the remaining operations of the same
job, because the remaining flow allowance within the job has been changed. Hence, the op-
eration due dates should be dynamic rather than static. Like MOD rule, rules CR+SPT and
S/RPT+SPT do not require any parameter estimation and they have been shown superior
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Table 7: Mean weighted tardiness (MWT) and % improvement

Utilization = 80% Utilization = 90%
Priority | initial  final initial  final
a Rule | MWT MWT % impv. | MWT MWT % impv.

WSPT | 268.62 229.53 14.55 | 317.96 276.74 12.96
WCOVERT | 227.37 185.88  18.25 | 268.04 230.68 13.94
ATC | 241.90 209.92 13.22 | 302.65 265.23 12.36

2 WMOD | 205.21 177.21 13.69 | 263.42 23159  12.08
CR+SPT | 205.30 180.99 11.84 | 259.96 229.64 11.66
S/RPT+SPT | 234.51 20146 14.10 [ 290.75 251.20 13.60

WSPT | 85.71  60.70 29.18 | 110.41 86.63 21.54
WCOVERT | 36.53 24.04 34.19 58.67 44.56 24.04
ATC | 29.38 22.33 23.98 53.58 42.03 21.56

3 WMOD | 31.56 21.26 32.63 53.56 41.71 22.12
CR+SPT | 35.97 27.12 24.60 46.54 35.87 22.93
S/RPT+SPT | 44.38 30.94 30.29 58.35 41.90 28.19

WSPT | 3239 23.17 28.47 93.70 73.41 21.65
WCOVERT | 3.80 1.20 68.33 30.32 2241 26.09
ATC | 6.21 3.37 45.73 33.57 25.73 23.37

4 WMOD | 5.86 3.15 46.31 41.17  29.71 27.84
CR+SPT | 8.83 6.56 25.72 31.78  24.97 21.41
S/RPT+SPT | 12.73  7.82 38.63 35.50 27.84 21.57

performance in comparison with rules MOD and COVERT.

The development of the rule ATC has evolved from the R&M rule developed by Rachamadugu
and Morton (1981) for the single-machine tardiness problem. Vepsalainen and Morton (1987)
modified the R&M rule for the job-shop weighted-tardiness problem and called the apparent
tardiness cost (ATC) rule. ATC was reported to outperform EDD, S/RPT, WSPT, and
COVERT for mean weighted tardiness and proportion of tardy jobs. Since ACT is a param-
eterized rule, the values of parameters b and k are very sensitive to its overall performance.
To set the best values for these parameters, we run a preliminary parameter tuning test and
choose b = 1 and k = 2 to be used in the subsequent experiments.

5.4.7 Results and discussion

Table 7 summarize results with respect to mean weighted tardiness (MWT) performance at
different levels of due-date tightness across a range of shop utilization. For each dispatching
rule we first give the initial solution in terms of MWT and then the final improved one
generated by our new procedure, WTPCP. These values of MWT are based on averages over
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ten sample replications for each problem setting. To demonstrate the amount of improvement
produced by WTPCP, we compute the percentage of improvement (% impv.) by the formula,

Aﬂ%w;ﬂ—w}&“ x 100, for each dispatching rule.

Results in Table 7 indicate that significant improvement over local dispatching rules can be
achieved through the coordination of the global precedence-constraint information. Exam-
ining the results shown in Table 7, we can realize that WTPCP has performed remarkably
well at reducing the mean weighted tardiness of the schedules generated by dispatching rules.
The typical percentage of the improvement for a particular rule ranges from 10% to 30%.
In one extreme case WTPCP can even produce 68.33% improvement for rule WCOVERT
in the group of problems with shop utilization 80% and flow allowance factor 4. For the
group of problems with very loose due dates and very low shop utilization, we observe the
greatest improvement that is from 26% for rule CR+SPT to 68% for rule WCOVERT. Then
the amount of improvement decreases when job due dates becomes more tight and the shop
becomes more congested. This phenomena may imply that most of the dispatching rules can
perform quite well on the problems with very tight due dates and very high shop utilization,
in which dispatching rules leave very little room to WTPCP for further improvement. Even
so, WTPCP ran still generate average improvement from 12% for rule S/RPT+SPT to 14%
for rule CR+SPT in the group with the tightest due dates and the highest shop utilization.
Finally, with respect to the concerns of computational cost, WTPCP implemented in C took
about 80 seconds to solve each problem on a SUN IPX machine.

In applying the dispatching rules to real applications, people have often experienced the
“crossover” phenomenon identified by Baker (1984). This phenomenon describes the situa-
tions that some rules performs very well in shops with low utilization and loose due dates
but may deteriorate in congested ones with tight due dates, or vice versa. Because of this
crossover phenomenon, there does not exist a universally-accepted rule which can dominate
others for any performance criterion under different shop conditions. In order to reduce
the impact of this phenomenon, we can apply several dispatching rules simultaneously and
choose the best one. We call this the ’best-rule’ strategy.

Based on the best-rule strategy, in Table 8 we present the relative performance of WTPCP
to the best rule. The relative performance is computed by the expression, %:VV; LIECE, where
MW Tyest_rute is the mean weighted tardiness generated by the best rule and M Vi/T_WTpc p the
improved value by WTPCP. We also give the relative performance of each dispatching rule to
the best rule using the same expression. Finally, for demonstrating the overall performance
of WTPCP and each rule with respect to the best rule, on the bottom of Table 8 we compute
the average relative performance over a range of shop utilization for each group of problems

with different due-date tightness.

As Table 8 indicates, based on the best-rule strategy WTPCP can improve the MWT per-
formance of the best rule, on average, by about 12% when due dates are very tight, 24%
when due dates are loose, and 43% when due dates are very loose.

Although the main objective of these computational experiments is to study the performance
improvement produced by WTPCP, some insights can be provided on the MWT performance
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Table 8: Relative performance of mean weighted tardiness with respect to the best rule

Flow Allowance Factor

a=2 a=3 a=14

Shop Priority Relative Relative Relative

Utilization Rule | Performance | Performance | Performance

WTPCP 0.883 0.750 0.345
WSPT 1.394 3.277 10.482
WCOVERT 1.180 1.397 1.230
80% ATC 1.255 1.124 2.010
WMOD 1.065 1.207 1.896
CR4SPT 1.065 1.376 2.858
S/RPT+SPT 1.217 1.697 4.106
WTPCP 0.880 0.776 0.803
WSPT 1.289 2.590 3.686
WCOVERT 1.095 1.376 1.193
90% ATC 1.236 1.257 1.321
WMOD 1.076 1.256 1.620
CR+SPT 1.062 1.092 1.250
S/RPT+SPT 1.188 1.369 1.397
WTPCP 0.882 0.763 0.574
WSPT 1.342 3.549 7.084
WCOVERT 1.138 1.387 1.212
Average ATC 1.246 1.191 1.665
WMOD 1.071 1.232 1.758
CR+SPT 1.064 1.234 2.054
S/RPT+SPT 1.203 1.533 2.752
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Table 9: Percentage of tardy jobs (PT)

Utilization = 80% | Utilization = 90%
Priority | initial final initial final
a Rule | PT PT PT PT

WSPT | 38.6 36.5 4.3 41.0
WCOVERT | 39.2 35.2 45.3 41.3
ATC | 46.5 42.0 55.0 51.8

2 WMOD | 39.2 35.2 46.0 42.7
CR+SPT | 40.2 36.8 46.9 44.2
S/RPT+SPT | 38.1 35.5 42.8 41.5

WSPT | 16.7 13.8 18.6 16.1

WCOVERT | 12.6 8.7 15.8 12.0

ATC | 170 14.3 21.2 18.2

3 WMOD | 11.9 9.2 14.3 10.6
CR+SPT | 12.5 9.8 15.8 12.5
S/RPT+SPT | 12.0 9.3 13.8 10.7
WSPT | 7.9 5.8 12.7 10.4
WCOVERT | 28 0.9 7.2 48
ATC | 5.2 3.7 12.2 10.1

4 WMOD | 38 2.3 7.7 5.3
CR+SPT | 5.6 44 8.9 6.6
S/RPT+SPT | 5.1 3.5 7.8 6.5

of the selected rules. In this set of experiments we do not find an overall winer among all
rules with respect to the MWT criterion. It seems that rules WMOD and CR+SPT perform
quite well on the group of problems with very tight due dates. However, rules WCOVERT
and ATC perform much better when the due dates are very loose. With regard to the rule
S/RPT+SPT, we only find out that it is a mediocre performer on the MWT criterion and
it performs relatively poor when the due dates are very loose. As to WSPT rule, it finishes
last in all three groups of problems.

Finally Tables 9 and 10 refer to the results with respect to the criteria of percentage of tardy
jobs (PT) and mean weighted flowtime (MWFT). We can see from Table 9 that WTPCP is
also very effective at reducing the percentage of tardy jobs at all levels of due-date tightness
under different shop utilization. However, for the MWFT criterion WTPCP sometimes
produces larger values than the dispatching rules when job due dates become very loose and
shop utilization still remains very low, which can be seen in Table 10. It seems that in order
for WTPCP to reduce the mean weighted tardiness some idleness has been inserted in the
schedule so that the final job flowtimes become increased.
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Table 10: Mean weighted flowtime (MWFT)

Priority
Rule

Utilization = 80%

Utilization = 90%

initial

final

MWFT MWFT

initial
MWFT

final
MWFT

WSPT
WCOVERT
ATC

WMOD
CR+SPT
S/RPT+SPT

2316.42
2367.73
2456.20
2399.56
2337.35
2363.64

2209.30
2228.84
2304.62
2251.35
2229.93
2244.58

2274.11
2337.36
2434.72
2394.73
2329.40
2338.11

2177.30
2216.07
2282.50
2250.95
2203.72
2210.20

WSPT
WCOVERT
ATC

WMOD
CR+SPT
S/RPT+SPT

2254.54
2727.31
2564.14
2563.71
2409.50
2466.06

2260.11
2592.26
2480.55
2517.14
2370.35
2410.22

2251.04
2729.23
2558.27
2609.77
2421.75
2463.66

2234.70
25673.43
2474.80
2507.80
2368.38
2386.53

WSPT
WCOVERT
ATC
WMOD
CR+SPT
S/RPT+SPT

2128.72
2843.91
2389.79
2473.87
2329.03
2367.50

2241.03
2865.37
2338.61
2562.83
2460.30
2469.92

2335.81
3262.29
2760.31
2858.42
2622.19
2693.79

2390.62
3145.73
2688.10
2860.01
2652.83
2713.51
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5.5 Conclusions

In the first part of this section we presented a new approximation algorithm, MULTIPCP, for
the job-shop makespan problem. The key idea is, instead of solving the makespan problem
directly, we repeatedly solve its dual problems with ready times and deadlines. By using
Shifting Bottleneck as a comparison base, we have shown very competitive performance with
MULTIPCP on two sets of problems previously published in the literature.

Since PCP is also fairly effective for the job-shop problems with nonzero ready times, general
deadlines, and sequence-dependent setups, the approximation algorithm MULTIPCP can
also be applied to the makespan problems with such kinds of structure with little difficulty.
This can be considered as another advantage provided by the MULTIPCP algorithm.

We have also proposed and developed another new approximation algorithm for improving
the mean weighted-tardiness performance for dispatching rules. The algorithm is base on
the framework provided by the PCP procedure and is integrated with simple dispatching
rules. This integration has proved to be able to provide global, useful information about the
most promising precedence constraints whose interchanges will most likely generate better
solutions.

The proposed procedure, referred to as WTPCP, was not only effective at reducing mean
weighted tardiness but could also achieve significant reduction in number of tardy jobs under
a variety of shop conditions.

Future research will focus on the investigation of more sophisticated Tard and Slack metrics
and the development of new criticality indices. Possible extensions of WTPCP to problems
with different objective functions or problems with different configurations like parallel ma-
chines or sequence-dependent setups will also be addressed.
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6. Distributed Constraint Satisfaction through Constraint Partition and
Coordinated Reaction

Many problems of theoretical and practical interest (e.g., parametric design, resource
allocation, time-dependent scheduling) can be formulated as constraint satisfaction problems.
Informally, a constraint satisfaction problem (CSP) is defined by a set of variables, each of
which takes its value (is instantiated) from a given domain, and a set of constraints that restrict
the admissible variable instantiations. To find a solution to a CSP means to find an assignment of
values (an instantiation) for all variables, such that all constraints are satisfied. Recent work in
DAI has considered the distributed constraint satisfaction problem (DCSP) [15, 6, 13] in which
variables of a CSP are distributed among agents. Each agent has a subset of the variables and
tries to instantiate their values. Constraints may exist between variables of different agents and
the instantiations of the variables must satisfy these inter-agent constraints. Different models of
assigning variables to agents have been investigated. In [15] each agent is responsible for
instantiating a single variable, while in [13], each agent is responsible for a subset of variables,
In these approaches, each agent was responsible for checking that all constraints involving the
values of variables under its jurisdiction were satisfied, or identifying and resolving any
constraint conflicts through asynchronous backtracking. Variables were instantiated in some
order, according to a static ( [15]) or dynamic ( [13]) variable and value ordering, and the final
solution was generated by merging partial instantiations that satisfied the problem constraints.

In this paper, we present an approach, called Constraint Partition and Coordinated Reaction
(CP&CR), in which the set of agents is partitioned into agent subsets according to the types of
constraints present in the DCSP. The fundamental characteristics of CP&CR are: (1) divide-and-
conquer with effective coordination (2) avoid sophisticated inter-agent interactions and rely on
collective simple local reactions. CP&CR divides a Constraint Satisfaction Problem into several
subproblems, each of which concerns the satisfaction of constraints of a particular type.
Enforcement of constraints on variables within a subproblem is assigned to a dedicated local
problem solving agent which revises variable instantiations so that its own constraint type is
satisfied. Since each variable may be restricted by more than one constraint, this means that the
instantiation of a variable may be changed by different local problem solving agents. Each agent
is iteratively activated and examines local views of a current solution. If it does not find any
conflicts in the current iteration, it leaves the current solution unchanged anc terminates its own
activation. If it does find local constraint violations, it changes the instantiation of one or more
variables. A final solution is an instantiation of all variables that all agents agree on, i.e. it does
not violate any constraints.

The agents are unaware of each other’s presence and constraints. Since constraint
enforcement (change in the instantiation of certain variables) by a local problem solver may
result in violations of constraints of other agents, the effectiveness of our approach requires
coordination between local problem solvers on how they instantiate and revise the instantiation
of variables to satisfy their own constraints. The exchange of coordination information helps the
agents hedge against the myopia that is implied by the local nature of their problem solving.
Experimental results reported in section 5 show the effectiveness and utility of various types of
coordination information.

The domain of application of the methodology is job shop scheduling, one of the difficult
constraint satisfaction problems. Job shop scheduling deals with allocating a limited set of
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resources to a number of activities (operations) associated with a set of orders (jobs). Job shop
scheduling is a well-known NP-complete problem [7, 5]. Constraint-based approaches have
been applied to the scheduling problem with very good results [4, 12, 11]. CP&CR views each
activity as a variable. A variable’s value corresponds to a reservation for an activity. A
reservation consists of a start time and the set of resources needed by the activity. The dominant
constraints in job shop scheduling are temporal activity precedence and resource capacity
constraints. The temporal precedence constraints along with a job’s release date, due date and
activity durations restrict the set of acceptable start times for each activity. The capacity
constraints restrict the number of activities that can use a resource at any particular point in time
and create conflicts among activities that are competing for the use of the same resource at
overlapping time intervals. The goal of a scheduling system is to produce schedules that respect
the problem constraints, i.e. release and due dates, as well as temporal relations and resource
capacity constraints.

In contrast to approaches [12, 11] that utilize incremental construction of partial schedules to
produce a complete schedule, our approach first builds an initial schedule that possibly contains
constraint violations and incrementally revises it to produce a conflict-free schedule. The
revisions are made by specialized agents, each of which has a local view of a variable and can
change the value (the start time) of the variables under its jurisdiction. Agents are of two types:
Resource Agents that are responsible for enforcing resource capacity constraints and Order
Agents, responsible for enforcing temporal precedence constraints. In this way, each variable is
manipulated by a Resource Agent and an Order Agent. Schedule revision is the result of
coordinated local reactions of the specialized constraint agents. The approach has been
implemented in a system called CORA (COordinated Reactive Agents). Experimental results,
presented in section 5 on a set of benchmark problems attest to the effectiveness of the approach
as compared with other constraint-based scheduling methods.

6.1. Related Work

Approaches based on opportunistic heuristic search [4, 12, 11] generate schedules by
opportunistically focusing attention to promising parts of the search space (e.g. bottleneck
resources) and assigning one value to a variable at a time. Typically, they analyze the current
situation, determine which is the next variable they should focus on, and then decide what is the
best value to assign taking into consideration all involved constraints. After a variable has been
instantiated, constraint propagation is performed to identify constraint violations that get
resolved either by backtracking or by constraint relaxation. These approaches usually suffer
intensive computational overhead. Constraint-posting approaches [2, 1, 10] generally do not
commit to value assignments at the beginning but analyze the current situation, post additional
constraints to exclude capacity conflicts, and then deduce variable assignments from the
resulting network of constraints. CP&CR differs from the above approaches in that (a) it builds
an initial, possibly flawed schedule and incrementally revises it, and (b) it does not perform
global constraint analysis. Each constraint is locally enforced by coordinated reactions of the
constraint specialists.

Iterative schedule repair [8, 16] is similar to CP&CR in that the solution is generated by
iterative revision of an initial rough solution. However, in these approaches, conflicts are
reduced by global evaluation of current conflicts and centralized decisions on which conflict to
resolve next are made. The work of [9] is closer to CP&CR in that revision heuristics that have
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been acquired through case-based learning are used for incremental local patching of an initial
schedule. Each revision locally enforces all constraints. After each local repair, constraint
propagation identifies constraint conflicts caused by the repair. CP&CR differs from this
approach in that it reduces conflicts by distributed local conflict resolution where each type of
constraint is considered and resolved separately.

Similar to the decentralized character of CP&CR, [13] reported a distributed scheduling
system where each agent has many variables under its jurisdiction and is responsible for
resolving both capacity and precedence constraints associated with those variables. In[3] a
Distributed Asynchronous Scheduler (DAS) is reported which consists of a number of
reactive/opportunistic agents in a hierarchical organization. Unlike CP&CR, local problem
solvers in these systems are all sophisticated agents and they perform intensive computation for
their interactions.

6.2. Distributed Scheduling by Constraint Partition & Coordinated Reaction

Scheduling constraints are partitioned into two categories: temporal precedence and resource
capacity constraints. Within each constraint type, subproblems are formulated. Each subproblem
is assigned to a separate agent. In particular, enforcing capacity constraints on a given resource is
a subproblem that is under the responsibility of a Resource Agent; enforcing temporal
precedence constraints within an order is a subproblem that is assigned to an Order Agent.
Therefore, for a given scheduling problem, the number of subproblems (and the number of
agents) is equal to the sum of the number of orders plus the number of resources.

Resource Agent X
@
Op Resource agent Y
Order Agent A @ Oc ?d >
Order Agent B @ O O

Legend: () temporal constraint
O capacity constraint

O activity

Figure 6-1: Constraint partition of a scheduling problem

(O O {0]\9))

Figure 3-1 shows a partial picture of the problem partition. Order Agent A is responsible for
the satisfaction of temporal constraints on activities (a, b, c, d, €). Resource Agent X is dedicated
to enforcing capacity constraints on activities (o, p, ¢, q). When these agents are activated, they
can change instantiations of activities under their jurisdictions to satisfy their own constraints.
Therefore, each activity (e.g. activity ¢) can be manipulated by both an Order Agent (e.g. Order
Agent A) and a Resource Agent (e.g. Resource Agent X). Manipulation of activities by Order
Agents may result in constraint violations for Resource Agents and vice-versa. Therefore,
coordination between agents is crucial for prompt convergence on a final solution.
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Figure 6-2: Control flow of CORA

In addition to the Order Agents and Resource Agents, the system includes a Manager agent.
The Manager is a simple controller who performs the following tasks: (1) decomposition of the
input scheduling problem according to resource and order constraints, (2) creation of the
corresponding resource and order :gents, (3) activation of the agents, and (4) outputting of the
final solution when the system reaches quiescence, i.e. when no agent reacts to the current
solution any more.

At system initialization, all order agents are activated first, followed by activation of all
resource agents. At each subsequent iteration, the manager activates all order agents and all
resource agents in turn. When an agent is activated, it revises the current values of the activities
under its jurisdiction according to its local view. Processing stops when no agent has any
constraint violations left. Figure 3-2 depicts the control flow of the system. Order agents are
activated first because they calculate the time boundary for each activity under their jurisdiction
(see figure 3-3). Time boundary information is associated with each activity and is used by the
corresponding resource agent in instantiating or revising the activity’s start time. The time
boundary of an activity is defined as the interval between its earliest possible start time and its
latest possible finish time. The boundary information for each activity is calculated only once
during the initial activation of Order Agents and gets associated with the activity.

The initial solution, that is subsequently revised, is generated by the Resource Agents. The
Resource Agents are activated after boundaries of all activities have been defined by the Order
Agents. Each Resource Agent calculates the contention ratio for its resource by summing the
durations of activities on the resource and dividing by the interval length between the earliest and
latest time boundary among the activities. If this ratio is larger than a certain threshold, a
Resource Agent announces itself as a Bottleneck Resource Agent. Activities under the
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Figure 6-3: Calculation of temporal boundaries by Order Agent
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Figure 6-4: Initial allocation of resource intervals by Resource Agent

Each Resource Agent allocates resource intervals to activities under its jurisdiction
according to their boundaries. Figure. 3-4 depicts different conditions of allocation of resource
intervals based or. sequence of activity boundaries. A Resource Agent allocates to each activity
the earliest free interval on the resource. For example, activity o in figure 3-4 is allocated first
because it has the earliest left boundary, and it gets the earliest interval. The next allocation
depends on the next available start time (finish time of activity o) and the boundaries of
remaining activities. If there are more than one activity eligible for allocation (left boundary is
earlier than the next available start time), the next resource interval is allocated to the activity
who has the earliest right boundary, such as activity q in Case 1. If there is only one activity
eligible, the resource interval is allocated to that activity at the next available start time. If there
is no activity eligible, then the activity with the earliest left boundary is allocated to its earliest
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possible interval, such as activity p in Case II.

When there are multiple Resource Agents identifying themselves as Bottleneck Resource
Agents, the Manager intervenes to choose the one with the highest resource contention ratio as
the Primary Bottleneck Resource Agent and tells the others that they are Secondary Bottleneck
Resource Agents. Secondary Bottleneck Resource Agents are the. initiated again and re-allocate
resource intervals according to a sequence of activities with order-correspondence to the
sequence of activities used by the Primary Bottleneck Resource Agent (see Figure 3-5). This
represents a coordination between Bottleneck Resource Agents and it plays an important role for
solving scheduling problems with multiple bottleneck resources. Note that after this initial
information exchange, the agents coordinate strictly according to local views.

Resource X (Primary bottleneck)  allocation

[02] 22 Te2[ 32 [ 72T 92] 12 T 52 [42] 82]

Resource Y (Secondary bottleneck) allocation

Before coordination [14a] 34 044 74 ] 94 Jaa] 84 [ 24 | 64 |

After coordination [ 04T 24 ] 64 [ 34] 74 ] 94 J14]54a4] 84 |

Activity 02 and Activity 04 are of the same order.
Activity 52 and Activity 54 are of the same order.  etc.
Activity ij and Activity ik have order-correspondence .

Figure 6-5: Coordination between Bottleneck Resource Agents

After the initial activation of Resource Agents, all activities are instantiated with a start time.
This instantiation is the initial schedule that may subsequently be revised. The initial schedule
does not cortain resource capacity conflicts but it may contain temporal precedence constraint
conflicts. Order Agents and Resource Agents coordinate through local reactions to the current
solution so that their collective behavior results in a conflict-free final solution.

6.2.1. Agent Coordination

When activated, each agent reacts to the current instantiation of activities under its
responsibility by going through an Examine-Resolve-Encode cycle (Figure 3-6). It first
examines its local view of current solution, i.e. the values of the variables under its jurisdiction.
If there are constraint violations, it changes activity instantiations to resolve conflicts (section
3.2). Since instantiation of an activity may be changed by an Order Agent and a Resource Agent
back and forth, it is very important that they coordinate with each other in making changes to the
current solution.

Since agents have no awareness of the existence of others, they do not communicate with
each other directly. Instead, they coordinate by reading and writing coordination information on
activities. Coordination information represents an agent’s "view" on the partial current solution
and is consulted when the agent needs to change the current instantiation to resolve its conflicts.
After resolving conflicts, an agent writes down its views on current instantiations on each activity
as coordination information. Coordination information written by an Order Agent on an activity
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Activated

Examine Local View ]

[ Resolve Conflicts

Reaction of Agent r Encode Information ]

Idle

Figure 6-6: Agent reaction to current solution
is referenced by a Resource Agent, and vice-versa.

Coordination information provided by Order Agents (for Resource
Agents)

Boundary: the interval between the earliest start time and latest finish time of an activity (as
described in Figure 3-7). It represents the overall temporal flexibility of an activity. If a
Resource Agent moves the activity outside this range, it will cause constraint violation for the
Order Agent responsible for the activity. Activity boundaries are calculated only once during
initial activation of Order Agents.

Teinporal Slack: an interval between the current finish time of the previous activity and
current start time of the next activity (see Figure. 3-7). It indicates the temporal range within
which an activity may be scheduled without causing temporal constraint violations. (This is not
guaranteed since temporal slacks of adjacent activities are overlapping with each other.)

Due date Rolease date Due date

.|

(length of L - length of N - length of 0)
(length of L)

{length of N)

(length of M)

+W2

Weight of activity-p > Weight of activity-s

Figure 6-7: Temporal slack and weight determination

Weight: the weighted sum of relative temporal slack with respect to activity boundary and
relative temporal slack with respect to the interval bound by the closet Bottleneck activities. It is
a measure of the likelihood of the activity "bumping" into an adjacent activity, if it gets
rescheduled. The higher the weight, the more likely it is that rescheduling the activity will cause
conflicts. Therefore, a high weight represents a preference for not moving the activity (Figure
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3-7N.

Extra-weight: an additional measure of the importance of not moving the activity. There
are three conditions for an activity to have extra-weight: (1) when an activity has bumped into a
bottleneck activity and is moved to a new location, (2) when the number of times an activity has
moved reaches a certain threshold, and (3) when a bottleneck activity is moved to a new
location. At each of the three conditions, the extra-weight of this activity is set to a
predetermined number.

Coordinated information provided by Resource Agents (for Order
Agents)
Bottleneck Tag: a tag which marks that this activity uses a resource. This tag is

put by a Bottleneck Resource Agent on all activities under its junsdiction. It implies that the
responsible Order Agent should treat this activity differently.

slack of activity-a slack of sctivity-p

Figure 6-8: Resource slack

Resource Slack: an interval between the current finish time of the previous activity and the
current start time of the next activity on the resource timeline (see Figure 3-8). It indicates the
range of activity locations to which an activity can be moved without causing capacity constraint
violations. (There is no guarantee on this since resource slacks of adjacent activities are
overlapping with each other.)

Location Change: an index of whether the location on the timeline of this activity, set by an
Order Agent, has been changed by a Resource Agent.

Change Frequency: a counter of how frequently the location of this activity set by an Order
Agent is changed by a Resource Agent. It reveals a brief history of activity moves since agents
do not keep track of previous locations of activities. High change frequency indicates that the
locations where the Order Agent has moved the activity in the past caused capacity constraint
violations which could not be resolved by continuing to move the activity. Therefore, the Order
Agent should change locations of other activities (including bottleneck activity) to satisfy its
constraints.

Figure 3-9 shows two groups of coordination information encoded on an activity.
Coordination information encoded by an Order Agent is consulted by the corresponding
Resource Agent, while an Order Agent consults coordination information encoded by the
corresponding Resource Agent.

6.2.2. Reaction Heuristics

When an agent finds a constraint violation in an activity under its jurisdiction, it employs
local reaction heuristics to resolve the violation. The reaction heuristics attempt to minimize the
ripple effects of causing conflicts to other agents as a result of fixing the current constraint
violation. Conflict minimization is achieved by minimizing the number and distance of activity
moves.
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Eode

Boundary Bottleneck Tag
Temporal Slack Resource Slack
Weight Location Change
Extra-Weight Change Frequency

Figure 6-9: Coordination information

Order Agent
An Order Agent considers conflict resolution in the context of conflict pairs. A conflict pair
involves two adjacent activities whose current locations violate the precedent constraint between
them (see Figure 3-10). Associated with each activity is the distance it needs to be moved to
resolve the conflict. If either one of the two activities is a bottleneck activity, the conflict pair is
categorized as a bottleneck conflict pair, and is given a higher conflict resolution priority. An
Order Agent treats a bottleneck activity as somewhat anchored. Since moving bottleneck
activities causes severe conflict ripple effects, a bottleneck activity is moved only as a last resort.

Order AgontA_ move

Bottloneck Conflict Pair:  oCtivity 02+ D2

|Q| I | 00 | IQJ H_ll 02 sctiviy 03 -D2
)

D1 Ordinary Conflict Pair : activity 00 +D1
D3 activity 01 ~-D1

Ordinary Conflict Pair : activity 03 +D3
activity 04 -D3

Figure 6-10: Conflict identification by Order Agent

Conflict pairs are resolved one by one. To resolve a conflict pair, an Order Agent essentially
determines which activity to move according to the distance associated with each activity. For a
bottleneck conflict pair, if the change frequency of the non-bottleneck activity is below a
threshold, it is the one to be moved. Otherwise, the bottleneck activity will be moved. To decide
which activity to move in an ordinary (non-bottleneck) conflict pair, an Order Agent takes into
consideration additional factors, such as moving feasibility of each activity, change frequency,
resource slack and location change.

A Resource Agent is concerned with enforcing resource capacity constraints. If a capacity
constraint is violated, the Resource Agent completely re-allocates the overallocated resource
interval to the competing activities in such a way as to resolve the conflict and, at the same time,
keep the location changes to each activity to a minimum.

Ordinary Resource Agent
An Ordinary Resource Agent re-allocates a resource interval to activities based on their weights.




Activities with higher weights get allocated first. When allocating a resource interval to an
activity, an Ordinary Resource Agent tries the activity’s current location first. If it has been
preempted by another activity, an Ordinary Resource Agent looks for the two most adjacent
intervals available (one left, one right) and chooses one for the activity according to its boundary
and temporal slack. Since an activity’s weight is a measure of the desire of the corresponding
Order Agent to keep the activity at its current location, activity location decisions based on
weight reflect group coordination. Figure 3-11 depicts how an Ordinary Resource Agent
resolves conflicts. For example, the current location of activity 21 was preempted by activity 81
which has higher weight. Therefore, activity 21 gets an immediately adjacent interval.

Besource Agent X
Before conftict resolution
Sequence of Allocation:
W sctivity 81 -> activity 81 -> activity 53 -> activity 84 -> sctivity 21
' -> activity 14 > activity 40 -> activity 70 -> activity 01 -> activity 34
Aftar confiict resciution

(activity 61 has the highest weight, activity 34 has the loweet weight)
ol fulailol ol [Tl (el (ol

Figure 6-11: Conflict resolution of Ordinary Resource Agent

Bottleneck Resource Agent

A Bottleneck Resource Agent has high resource contention ratio. This means that most of the
time a Bottleneck Resource Agent does not allow resource slack between resource intervals (all
resource intervals are immediately adjacent with each other). When activity moves occur,
capacity constraint violations are very likely to occur. A Bottleneck Resource Agent considers
the conflict size of capacity violations. The conflict size is the amount of overlap of activity
reservations on the resource. If the conflict size is small and if right-shifting activities on the time
line does not cause violations, then right shifting is performed (see Figure 3-12 (i)). Otherwise, it
re-sequences activities according to their current locations, and then re-allocate resource
intervals according to the new sequence of activities with no slack between each activity (see
Figure 3-12 (ii)).

Resource Agent Y Resource Agent Y
iatest finished time latest 1. ished time
Before conflict resolution Before conflict resolution

JI.LELLJLLL_E_I._]zLLALLzz.ImJ_u_Lﬂ_]__ %

latest finighedt time Intest finished
After conflict resolution After confiict resolution
Ielelae 1Tl «alnlelelelsy 92

(i) conflict size is small and push operation is feasible (i) conflict size is not small or push operstion is infeasible

Figure 6-12: conflict resolution of Bottleneck Resource Agent

6.3. Solution Evolution

Figure. 4-1 shows a solution evolution process for a relatively simple problem. In cycle 1,
when Order Agents are first presented with the initial solution, there are totally 24 activities
involved in temporal conflicts. After each Order Agent reacts to the current solution, Resource
Agents find a total of 19 capacity constraint conflicts. Each Resource Agent reacts to the current
solution. In the beginning of cycle 2, Order Agents only find 2 activities involved in conflicts.
After the Order Agents’ reactions, the Resource Agents again find 2 activities in conflicts. In
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Figure 6-13: Solution evolution for a simple problem

cycle 3, both Order Agents and Resource Agents find no activity in conflict. A conflict-free
solution has evolved.

number of activities A
involved i fli number of activities
"‘;’ ved in contlicts involved in conflicts

(from Order Agents’

point of views) (from Resource Agents’

point of views)

Q powa
=TSR N-J

1 2345678 21011121314 15161713 Cycle I 234567 891011121314 15|6l7l§ Cycle

Figui'e 6-14: Solution evolution for a more difficult problem

Figure. 4-2 shows a s»lution evolution process for a more difficult problem. In the begianing
of cycle 1, Order Agents 1°nd 26 act.vities involved in conflicts. After coordinated reactions of
all agents, the number of activities involved in conflicts is reduced to 2 when Order Agents are
activated in cycle 3. Howewvtr, from cycle 3 to cycle 9 the solution evolution process is trapped
in an oscillation. The number of activities involved in conflicts oscillates between 2 or 3 for
Order Agents and 4 for Resource Agents. This indicates that activity values got switched back
and forth by the respective agents because the agents could not find common ground for
satisfying their respective constraints. However, since Order Agents and Resource Agents, have
only local views, they are not aware of the situation. The crucial piece of coordination
information that allows the agents to escape from the oscillation is the change frequency of
activity location which serves as a history of activity moves. When the change frequency
exceeds a heuristically determined threshold the Order Agent responsible for the variable
instantiation moves a bottleneck activity. This initially increases the number of conflicts (as can
be seen in the figure) but very soon it allows convergence to a conflict-free solution.

6.4. Experimental Results

We conducted two sets of experiments with CORA. At first, we compared CORA with three
other state-of-the-art schedu‘'ing methods on a benchmark suite of schedu’ “blems. The
results show that CORA outperformed the other methods in terms of number ‘lems solved
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and computational efficiency (CPU time). We also investigated the effects of coordination
information in the system. We compared system performances on a set of coordination
configurations ranging from no information to some information to adequate information. The
results confirmed that coordination information facilitates successful and fast solution evolution.

The experiments were conducted on the suit of benchmark constraint satisfaction scheduling
problems proposed in [11]. The benchmark consists of 6 groups of 10 problems, each of which
has 10 jobs of 5 activities and 5 resources. Each job has a linear process routing which visits
each one of the five resources. Activity sequences in the process routing are generated randomly,
while bottleneck resources are visited after a fixed number of activities to further increase
resource contention. Each group of problems differs in two respects: (1) spread of the release and
due dates among jobs; (2) number of a-priori bottlenecks. The spread is controlled by varying
the amplitute of the intervals within which release and due dates are generated. Three spread
levels are introduced: wide (w), narrow (n), and null (0), i.e., both release and due date intervals
are collapsed to single points. Aside from different spread levels of release and due dates, the
benchmark also considered 1 and 2 a-priori bottlenecks conditions.

6.4.1. Comparison with other scheduling methods

Three other heuristic scheduling methods are compared with CORA on the benchmark: (1)
Constraint Partition Scheduling [10], (2) Min-Conflict Iterative Repair [8], and (3) Micro-
Opportunistic Search [11].

Constraint Partition Scheduling (CPS) constructs solutions by repeatedly identifying
bottleneck conflicts and posting constraints to resolve them [10]. Analysis of resource capacity is
based on a stochastic simulation. The final solution is deduced from the resulting constraint
network.

Min-Conflict Iterative Repair (MIN-CONF) starts from an initial inconsistent solution and
iteratively repairs it until a conflict-free solution is found. The initial solution is generated based
on stochastic simulation. At each repair iteration, a variable is selected and a value is assigned to
it based on the criterion of minimizing the number of remaining conflicts. If a solution is not
found after a fixed number of iterations. a new initiai solution is generated and the cycle repeats.
Since MIN-CONF can run for a very long time if contlicts still exist. the maximum number of
iterations allowed in the experiments was set to 5000.

Micro-Opportunistic Search (MICRO OPP) employs heuristic search with dynamic variable
and value orderings. A solution is constructed by incremental extension of consistent partial
value assignments. At each cycle, a variable is selected and assigned a value based on the
heuristic orderings. Consistency is then enforced through the constraint network. The search
backtracks when dead ends occur, e.g. the domain of the possible values of a variable becomes
empty. MICRO OPP was run with two benchmark configurations - CHRON BKTRK,
chronological backtracking and INTEL BKTRK, intelligent backtracking [14].

The performance results of CPS and MIN-CONF were reported in (10] in which these
algorithms were each run 5 times for each problem because of their intrinsic random nature.
CPU times for CPS and MIN-CONF were not available in [10]. However, we show CPU times
based on unpublished recent work by Muscettola as their optimistic estimates. The performance
results of MICRO OPP have been reported in [14].
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CORA | cps | MIN. | MICRO oOpP
CONF | cHrON | INTEL
BKTRK | BKTRK
wil 10 10 (0.96) | 10 (036)| 10 10
wi2 10 9 (0.89)| 3 (033)[ 10 10
wl 10 10 (0.94) | 5 (0.44) 8 10
n/2 10 10 (0.92) | 1 (0.40) 9 10
o 10 10 (0.82)| 4 (0.25) 7 10
1Y) 10 9 (091)| © 8 10
Total | 60 58 23 52 60
AVG. 29 78.43 | 29842 | 23472 | 12878
E,l:lg seconds | seconds | seconds seconds | seconds

The above Table reports the number of problems solved and the average CPU time needed
over all the benchmark problems for each technique. Each row represents different groups of the
benchmark. For example, n/2 represents the group of problem with narrow spread and two a-
priori bottlenecks. The numbers in the parentheses are the repeatability measures for CPS and
MIN-CONF. Since CORA and MICRO OPP are deterministic, they don’t have repeatability
measures. Among all techniques, only CORA and MICRO OPP with INTEL BKTRK were able
to solve all 60 problems.

The last row of the table shows the average CPU time over the entire benchmark for each
technique. Note that the CPU times of CPS, MIN-CONF, and MICRO OPP are obtained from
implementations in Common Lisp on a DEC 5000/200 workstation, while CORA is
implemented in Allegro Common Lisp with CLOS on a SPARC IPX workstation. A DEC
5000/200 workstation runs feaster than a SPARC IPX workstation.

6.4.2. Comparison on Coordination Configurations
In order to investigate the effects of coordination information on the system’s performance,
we constructed a set of five coordination configurations.

e CO represents a configuration in which the system ran with no coordination
information at all. Without boundary information, when initially activated, the
Resource Agents allocate resource intervals according to random sequences. When
the Order Agents are activated, they resolve conflicts by randomly changing the
instantiation of one of the two activities in each conflict pair. Similarly, the
Resource Agents resolve conflicts based on random priority sequences.

¢ C1 represents a configuration in which only boundary information is available. The
Resource Agents use this information for heuristic initial allocation of resource
intervals. After the initial schedule is generated, no other information is available
for conflict resolutions.

¢ C2 represents a configuration in which boundary and bottleneck tag information is
available. The Resource Agents use the boundary information for heuristic initial
allocation of resource intervals. The Order Agents use the bottleneck tag
information to bias resolution of conflict pairs.
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¢ C3 represents a near-complete configuration in which all coordination information is
provided for the Resource Agents and Order Agents except coordination between
Bottleneck Resource Agents on the initial allocation of resource intervals.

e C4 represents a complete configuration including initial coordination between
Bottleneck Resource Agents.

00 No coordination information 60 D Number of Cycles 1o Solve a Problem

Cl1 : Boundary (heuristic initial allocation)
C2: Boundary + Bottlenck tag 50
C3 : Boundary + Temporal slack + Weight + Extra weight

+ Bottleneck tag + Resource slack + Location change

+ Change frequency 40

C4 : Boundary + Temporal slack + Weight + Extra weight — [
+ Bottleneck tag + Resource slack + Location change :
+ Change frequency 30
+ Coordination between Bottleneck Resource Agents

D Number of Problems Solved

20
Overall Coordination configuration

Performance| CO| C1 | C2| C3 | C4

| No. of Porb) 4 ;
Solved(Ave,| 30| 15:8) 363/ 59 | 60 ,

Avg. Cycle | 33.3]| 34.8( 24.7] 66| 5.8 ' : ~]
o Cl C2  C3  C4  Coordination
configuration

Table 5-2 Figure 5-1.
Comparative performance between coordination configurations Comparative performance graph between coordination configurations

The above Table and Figure show the comparative performance of different configurations
on the suite of benchmark problems. In the table, the additional coordination information for
each configuration is underlined. The number of cycles that the system was allowed was limited
to 100. If there were still conflicts at cycle 100, the system gave up solving the problem. Since
system operations in CO, Cl1, and C2 have random nature, they were ran on each problem 10
times. The numbers reported are the average number, e.g. 15.8 out of 60 problems were solved
means that there were 158 successful runs among 60C (10 runs for each problem). C3 and C4 are
deterministic and for these each problem was tried only once. The results show that more
coordination information enables the system to solve more problems within fewer cycles. CO
was only able to solve 8 problems with an average of 33 3 cycles for solution evolution (4.7 CPU
seconds), while C4 was able to solve all 60 problems with an average of 5.8 cycles (2.9 CPU
seconds). A slight increase in the average cycles in C1 (compared to CO) stems from the fact
that while C1 was able to solve twice the number of problems than CO due to boundary
information during initial allocation, it had no other advantages over CO to resolve subsequent
conflicts. With additional information, C2 was able to solve double the number of problems
solved in C1 in fewer cycles. C3 solved almost all 60 problems in consigerably fewer (6.6)
cycles than C2. Only one problem, which is a 2-bottleneck problem, was unsolved by C3 within
100 cycles. By adding initial coordination between Bottleneck Resource Agents, C4 solved all
60 problems in 5.8 cycles. The results show the utility of coordination information.

As shown in Figures 4-1 and 4-2, the number of activities involved in conflicts in each cycle
typically drops very fast within the first few cycles. After the drop, the problem solving process
either solves the problem immediately or encounters a number of oscillations before finally
solving the problem. Figure S-1 shows, for different coordination configurations, the overall
problem solving processes in terms of the number of activities involved in conflicts at each
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cycle. As the coordination information increases, the shape of the curve indicates a steeper drop
in the number of conflicts in fewer cycles. Curves for deterministic C3 and C4 have peaks at
cycle 5. This reveals that when the problem was not solved within the first few cycles, an escape
from oscillation typically occurred.

Number of activity in conflicts

28

s 10 18 20 23 0 s
Cycle

Figure 6-15: Comparison of successful solution evolution among
different coordination configurations

6.5. Conclusions

We have presented an approach to distributed constraint satisfaction based on partitioning
the problem constraints into constraint types. Responsibility for enforcing constraints of a
particular type is given to specialist agents. The agents coordinate to iteratively change the
instantiation of variables under their jurisdiction according to their specialized perspective. We
demonstrated the effectiveness of the approach in the domain of job shop scheduling.
Experimental results on a suite of benchmark problems showed that the approach outperformed
other methods. The power of our approach stems from the types of coordination information that
the agents utilize.

References

1] J. Adams, E. Balas, and D. Zawack.
The Shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34, 1988.

2] D. Applegate and W. Cook.
A Computational Study of Job-Shop Scheduling.
Technical Report CMU-CS-90-145, School of Comoputer Science, Carnegie-Mellon
University, 1990.

75




3]

[4]

&)

(6]

(71

(8]

9]

[10]

(11]

[12)

(13]

(14]

Peter Burke and Patrick Prosser.

A Distributed Asynchronous System for Predictive and Reactive Scheduling.

Technical Report AISL-42, Department of Computer Science, University of Strathclyde,
October, 1989.

M.S. Fox and S.F. Smith.
ISIS: A Knowledge-Based System for Factory Scheduling.
Expert Systems 1(1):25-49, 1984.

M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., 1979.

Huhns, M., Bridgeland, D.
Distributed Truth Maintenance.
In Proceedings of the 10th International Workshop on DAI. Bandera, Texas, 1990.

E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan.

Recent Developments in Deterministic Sequencing and Scheduling: A Survey.

In M.A.H. Dempster, J.K. Lenstra, and A.H.G. Rinnooy Kan (editor), Deterministc and
Stochastic Scheduling. Reidel, 1982.

S. Minton, M.D. Johnston, A.B. Philips, and P. Laird.

Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a Heuristic
Repair Method.

In Proceedings of the Eigth National Conference on Artificial Intelligence. 1990.

Kazuo Miyashita and Katia Sycara.

Case-Based Incremental Schedule Revision.

In M. Fox and M. Zweben (editor), Knowledge-Based Scheduling. Morgan Kaufmann,
1993.

Nicola Muscettloa.

Scheduling by Iterative Partition of Bottleneck Conflicts.

Technical Report CMU-RI-TR-92-05, Robotics Institute, Carnegie-Mellon University,
1992.

Norman Sadeh.

Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.

Technical Report CMU-CS-91-102, School of Computer Science, Carnegie-Mellon
University, 1991.

Stephen F. Smith, Peng Si Ow, Claude Lepape, Bruce Mclaren, Nicola Muscettola.
Integrating Multiple Scheduling Perspectives to Generate Detailed Production Plans.
In Proceedings 1986 SME Conference on Al in Manufacturing, pages 123-137. 1986.

Sycara, K., Roth, S., Sadeh, N., and Fox, M.
Distributed Constrained Heuristic Search.
IEEE Transactions on System, Man and Cybernetics 21(6):1446-1461, 1991.

Yalin Xiong, Norman Sadeh, and Katia Sycara.

Intelligent Backtracking Techniques for Job Shop Scheduling.

In Proceedings of the Third International Conference on Principles of Knowledge
Representation and Reasoning, pages 14-23. 1992.

76




[15] M. Yokoo, T. Ishida, and K. Kuwabara.
Distributed Constraint Satisfaction for DAI Problems.
In Proceedings of the 10th Intemational Workshop on DAI. 1990.

[16] M. Zweben, M. Deale and R. Gargan.
Anytime Rescheduling.
In Proceedings of the DARPA Workshop on Innovative Approaches to Planning,
Scheduling and Control. 1990.

77




7. Reaching Informed Agreement in Multi-Specialist Cooperation

Advances in information technology and Artificial Intelligence have resulted in (1) the
widespread use of knowledge-based systems in increasingly complex domains, (2) using several
small systems in concert when their application domains overlap, and (3) integrating human and
machine agents in cooperative problem solving. These trends argue for the development of
knowledge-based systems in a distributed fashion where modules are constructed to interact
intelligently and productively. The interconnected agents can solve problems cooperatively,
work in parallel on common problems, increase the system’s fault tolerance through redundancy,
represent multiple viewpoints and share expertise. Thus, the focus of research in distributed
knowledge-based systems and distributed Al has shified from homogeneous to heterogeneous
agents. Agents can vary along a variety of dimensions, such as capabilities, representation, and
problem solving methods. Our current focus is the investigation of problem solving by
cooperating specialists. Our approach is identifying variables and features that characterize
cognitive processes and using them to create computational models. We believe that this
methodology is useful in that (1) it can form the basis for designing machine aids to group
decision making, (2) can guide the design of autonomous machine agents that are capable of
effective coordination, and (3) by being based on investigations of human cognitive processes,
the methodology could be a suitable tool for investigating the coordination and interface between
human and machine agents in cooperative problem solving tasks.

Decision making in a team of specialists is fraught with difficulties [1, 11]. A major difficulty
is that different specialists lack (1) a shared language for communication and (2) shared
perceptions of the task. Evidence supporting this assumption comes from a variety of sources.
Case studies of decision making in organizations (e.g., Bond’s [3] Lockheed study of aircraft
design) have found that specialists do not understand the details of each other’s models and
language, but through cooperation and interaction are somehow able to produce designs of very
complex artifacts, such as aircraft. Bond [4] describes such organizational cooperation as
occurring through a series of commitments. Our interest lies in investigating the process through
which these commitments are formed.

Research in group decision making has found that the variability of approaches to decision
making across groups appears to be even greater than across individuals [S]. The only
consistently reported difference between successful and unsuccessful problem-solving groups
has been that successful groups devote adequate time to problem formulation and planning of
meeting strategy, whereas unsuccessful groups immediately begin to search for alternative
solutions [9, 8]. In other words, successful groups spend adequate time to build shared
vocabulary and mental models of the nature of the decision problem, strategies, significance ot
information, and participants’ roles. Shared mental models have also been hypothesized by
[2] and [7]. The importance of the formation of shared mental models has also been
experimentally observed in time critical high-stress decisions such as the air crew emergencies
studied by [15].

In DAI the problem of coordinating heterogeneous agents is receiving increased attention. A
subset of approaches considers agents communicating through a common data structure, a
blackboard, with restrictions in the overlap of the knowledge of each agent (e.g.,[11]).
Werkman’s work [20] considers negotiation as the methodology for heterogeneous agents to
arrive at agreement about a good design. In his approach, the agents reason monotonically to
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arrive at an acceptable compromise (through interactions or through a central arbitrator that
resolves conflicts). Work on Distributed Truth Maintenance (13, 10] shares many of our
concerns in belief revision of heterogeneous agents, but the emphasis is somewhat different. In
Distributed Truth Maintenance models. the primary goal is maintaining forms of inter-agent
consistency [10] rather than arriving at the highest payoff agreement through evaluation of
alternatives. The focus of our model is to take advantage of the expertise available to the group
in evaluating a decision without having to explicitly see or communicate that knowledge. This is
similar to communicating meta-level control information in cooperative problem solving [6, 12].
In our model, the implicit hypothesis is that it is more efficient to share knowledge via evaluation
than share the knowledge itself. Issues of consistency, and resolution of factuality are focused on
the decision at hand rather than on the logical consistency of the agents’ knowledge. Agreement
on the ordering of the most favored alternative provides sufficient inter-agent consistency for the
model to proceed.

Although evidence exists that the formation of shared mental models is a major factor in
successful group decision making by humans, little has been done to characterize what "shared
mental models" may be, the processes by which they are formed, or their role in group decision
making. We argue that a computational model of the process of formation of mental models can
become the basis for coordinating heterogeneous machine agents. In this paper, we focus on the
characterization of the types of mental models that are active during cooperative decision making
by heterogenieous agents, their role, and communications by which shared mental models of the
task and the needed decisions are formed during problem solving.

The rest of the paper is organized as follows. Section 2 presents characteristics of shared
mental models. The role of shared models in multispecialist cooperation is presented in section
3. Section 4 introduces the categories of mental models that form the building blocks of the
architecture for fusing multiple expertise in evaluative decision making. Detailed presentation of
the architecture is provided in section 5, and the interactions and model refinements are
presented in section 6. Section 7 presents an illustrative example, and section 8 concluding
remarks and the research evaluation methodology.

7.1. Characteristics of Shared Models

In the team of specialists situation, the agents are by definition heterogeneous, they do not
share a common perception of the problem, or each others’ expertise. Yet they have to make
highly interdependent decisions with uncertain outcomes. A prerequisite to coordinating their
actions is to coordinate their thoughts through the formation of shared mental models.

In particular, we present the following characteristics of shared models:
» Shared models act as a basis for inferring opportunities for cooperation

e Shared models form the basis for identifying another’s needs resulting in helpful
intervention

e Shared models act as a basis for inferring another agent’s capabilities (resulting in
the agent asking for help) and limitations, and taking them into consideration in
communicating with other agents

e Shared models serve as a basis for knowing what to communicate (i.e. what will be
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understood)
o Shared models act as basis for conflict resolution

¢ Shared models act as basis for optimal solution integration

The formation of shared mental models is an incremental process consisting primarily of
information communication and successive updating and refinement of a sketchy understanding
of the ramifications of the problem that the team is solving. The refinement process can be
viewed as a kind of Kalman filtering, where both the predictive model and the observations are
noisy. Various mental models are active during group decision making and interact to form
shared mental models.

7.2. Problem Solving by Cooperating Specialists

The present model of decision making by a team of specialists extends earlier work
[16, 17, 18, 19] characterizing group decision making as a negotiation and refinement process.
A team of specialists is considered to be a group of individuals with common goals, each with
highly specialized knowledge in a particular area but with less precise knowledge of other areas.
The group’s decision problem is to arrive at the best decision alternative that their joint expertise
allows for a particular amount of communication. A normative group decision, therefore, is one
which integrates relevant portions of this specialized knowledge within a common model. The
key to this definition lies in the determination of relevance. We presume that in a group decision
process of this sort, whether the agents are human or machine, it is neither feasible nor desirable
to form a common model incorporating all of the group’s expertise. Instead, a normative group
decision is one generated by a process that efficiently elicits some small subset of the group’s
expertise which determines a decision as good or better than other possible interactions of
comparable length. When sufficient behavioral data become available to characterize the
departure of human agents from this normative standard we hope to incorporate it within a
normative-descriptive model [14].

Group decision making by cooperating specialists can be viewed as a multi-agent task where
each agent has (a) incomplete knowledge of the environment, (b) limited knowledge of the
constraints and intentions of other agents, and (c) limited number and amount of resources that
are required to produce a system solution. When these agents cooperate, they bring together
multiple viewpoints and diverse knowledge on a single problem. Bringing together diverse
knowledge is a source of robustness and balance. The team can solve problems that are beyond
the scope of any of the individual members. Furthermore, the solutions are generated from a rich
and varied body of knowledge which could provide a bigger set of good solutions to choose from
and the potential for creativity. On the other hand, there are difficulties with resolving the
conflicts that arise when trying to merge multiple goals, priorities, and evaluation criteria that are
the resuits of individual expertise. This may result in misunderstandings, conflicts and solution
suboptimalities. Because of the lack of appropriate expertise in all areas needed to solve the
problem, and because of the presence of conflicting constraints, goals and possibly evaluation
criteria, it is impossible for each agent to reach an optimal solution using only local information.
Typically the decisions of one agent impact the decisions of another and vice versa. Thus, a
computational model of cooperating specialists cannot simply model each agent. Rather it must
augment an agent’s problem solving process by including yet another model, the "shared model"
that captures interactions and decision-coordination with the other agents.
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Hypothesizing the existence of more than one agent model, gives rise to a variety of questions.
How many agents models are active during problem solving? What is suitable information
aggregation for inclusion in the "shared models"? How does a "shared model" interact with
individual specialized knowledge? What is a suitable representation of individual expertise and
“shared models"? What are the variables used for communication among group members?

7.3. Agent Models
Our hypothesis is that each agent:

e Has a model of his individual unique expertise, called the "expert model”,
characterized by detailed knowledge about some particular aspect of the task.

¢ Has a naive understanding of aspects of the problem outside of his area of expertise,
called the "naive model”. The naive model characterizes weak commonly held
beliefs such as, "the more expensive a material is, the more durable it will be."

¢ Develops through interaction with other agents a more comprehensive model of the
problem at hand, called the "shared model”, which incorporates elements of others’
expertise. The "shared model" between two agents also defines a common
vocabulary that the two agents can use to communicate in an intelligible way.

In general, shared models need not be identical across agents. For the group to make a
common decision, the potentially different shared models that have been formed through
interactions of subsets of agents must converge to a coherent! view of the global problem which
captures the important variables and decisions that must be coordinated. Shared models evolve
from the naive models by incremental modifications which make them conform to justifications
and evaluations supplied by other agents. Agreement, however, is limited to those alternatives
which have been considered. The naive model supplies both communication and inference
capabilities by providing a common language, an inference mechanism for underdetermined
evaluations, and an initial model for modification through communications. For modeling
purposes we presume that a single naive model can be used to characterize the nonexpert
knowledge of the agents. Pairwise commonalities will therefore decrease over the course of
negotiation while agreement among evaluations will converge. The modified naive models
which provide this convergence are what we refer to as shared models.

An agent’s expertise consists of facts, constraints, their relations and utilities that lie in his
specialty. The relations connecting the variables of his expertise can be arbitrarily complex.
Figures 7-1 and 7-2 present a partial view of the expert models of the structural and aerodynamic
perspectives in a turbine blade design task expressed in terms of a simplified model of relations
and qualitative influences. For visual simplicity we have indicated in the figure only the edges
connecting particular nodes, and the appropriate sign.

A path from node X to node Y in a qualitative influence graph constitutes a causal/justification
chain that provides an explanation of the change in Y in terms of the change in X, assuming no

ICoherence requires consistency in private knowledge among agents. If our experts included both Keynesian and
supply side economists, for example, a decision on tax policy in accord with the full expertise of the group would be
incoherent and agent evaluations could not be expected to converge.
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Figure 7-1: Partial expert model of structural engineering
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Figure 7-2: Partial expert mode! of aerodynamics

other change has occurred in the rest of the graph. For example, from the point of view of
structural engineering, decreasing the length of the blade, Blade-Length(-), decreases tensile
stresses. Tensile-Stress(-), which results in structural soundness, Structural-Soundness(+). In
turn, an increase in structural soundness increases reliability. resulting in increased safety and
contributing to increased marketability of the blade. By traversing its own graph an agent can
tind out which goals are supported bv a set of design decisions. the utlities associated with
particular design decisions and the justifications for the design decisions. This enables an agent




to generate and/or select favorable design proposals, and generate justifications during problem
solving.

At the beginning of problem solving, an agent’s mental model consists of his expertise and a
naive understanding of other specialties. In contrast to our earlier approach [16] where each
agent has a model of the other agents, in this research the aim is for the agents to arrive at
evaluative consensus without the burden of developing detailed models of other agents. Agents
have minimal models of each other only in terms of knowledge of the kind of expertise that other
agents have.

An agent’s naive model consists of a set of decision variables and relations among them.
These relations are at an aggregate level and are therefore only approximately accurate. For
example, the naive model may say that production quality is proportional to production costs,
unit sales inversely proportional to price, and willingness to pay (saleability) proportional to
quality. As a result, the naive model predicts that saleability will be independent of design
decisions balancing cost and quality. In other words the naive model is indifferent among design
options. This evaluation made by the naive model is not accurate since it does not take into
consideration precise relations between variables of the problem.

The naive model and an agent’s expertise are connected through a set of relations that map
variables within an agent’s domain of expertise and those outside the domain of expertise. These
mappings contain both accurate and approximate knowledge. The accurate knowledge is the set
of relationships that map variables in the expert space to mediating aggregate (decision)
variables that are within the area of agent expertise. For example, the structural engineering
variables, such as tensile-stress and stress-concentration, constraints among them, their utilities
and interrelationships are mapped into decision variables cost, price, and quality through
mediating variables, such as structural soundness and reliability (see figure 7-1). These
intermediate variables map to marketability, (see figure 7-5) which is an aggregate variable that
is in the naive model of structural engineering but in the expert model of marketing.

The set of intermediate relationships that map the variables within an agent’s specialty to the
naive model (e.g., the set of relationships that map tensile-stress and stress-concentration to
structural-soundness in figure 7-1) is available only to the particular agent and is not used for
intra-group communication. On the other hand, although decision variables are used for
communication, the relations between decision variables, within and outside the domain of
expertise of an agent are incompletely known to him. For example the relation between
structural-soundness (an aggregate variable within the domain of a structural engineer’s
expertise) and marketability is only approximately known to the structural engineer, since
marketability is not one of the decision variables in his domain of expertise. This interaction of
accurate and inaccurate knowledge may lead the agent to incorrect inferences.

Expert team decision making solves this problem through iteratively updating the naive
models via the communication of the group members’ expertise. During decision making, agent
models appropriate for the task are composed by substituting parts of an expert model for
relevant parts of the naive model. Therefore, an agent’s evaluation of an alternative reflects both
components. As group problem solving progresses, agent models are modified to incorporate
expertise imparted by other agents. These modifications lead to the incremental building of
shared models among sets of agents.
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7.4. Representation of Agent Models

In this section we detail the representations that allow the expression of the expert, naive and
shared agent models in a way amenable to computation. The overall model of an agent consists
of a public description space used to characterize decision alternatives, a public decision space
containing evaluative variables, and naive or private mappings linking descriptions to decisions.
Examples of a decision alternative is a vector of description variables that have been instantiated
to particular values in their domain. Decision variables are "aggregate" variables in that they
refer to a decision alternative rather than a description variable (attribute). Agents are assumed
to have a single naive common sense model of relations among decision variables, such as
“‘selling price, manufacturing cost, and quality covary’’, which are represented in the decision
space.

In more detail, the basic parts of the model are as follows:

1. public and well defined description space that consists of attributes of a decision alternative
described in the public language l;. In design, these attributes are attributes of the artifact, such
as its dimensions, material, components, connections among components etc. Each description
variable has a domain of values that respect appropriate constraints. For a turbine blade, a
description consists of the vector of attributes/variables [root-radius, blade-length], and a design
alternative could be [root-radius=35 in, blade-length=76 in].

2. public and well defined decision space modeled by influences among the decision variables
represented as a directed acyclic graph. The language that describes the decision space is L,
Edges of the graph linking two decision variables represent the relationship between them in
terms of how one affects (positively or negatively) the achievement of the other. For example, in
aircraft design, aerodynamic efficiency positively affects lower operation costs.

An influence V; (‘“—Vj means that V, increases with increasing Vj. V) ¢—V, means that V,
increases with decreasing V,. Examples of influences are reliability «—— structural-soundness,

or saleability «——price. In the current model we assume that relations among decision variables
are directly proportional in their ranges so that a change in one will effect an increase or decrease
of a corresponding size in another. As agent models are refined the (naive) influence of direct
relations among decision variables decreases and is replaced by indirect relations through the
joint influence of attributes in determining their values. For example, if quality and price were
initially related only through the decision space they might later come to be partially related
through the attribute "material” which has direct relations to both quality and cost. This phasing
out of initial naive approximations in favor of more precise determination by attributes is what
we mean by refinement. The model requires that values of decision variables be completely
determined and that determination by attributes take precedence over determination by other
decision variables. This allows the influences represented in the decision space to serve as an
error term to the refinement process adjusting their weights as needed to preserve full
determination. In a refined agent model in which no direct influences are left in the decision
space, these effects could only be recovered as a relation among descriptions. Refinement
involving closer approximation of v; j and Bi,j may continue even after every influence has been
eliminated from the decision space.

In the current model, we assume that the relations among decision variables are linear with 45




degree slopes. This assumption simplifies propagation of new decision variable values and
estimation of whether or not a new proposal increases profits. Figure 7-3 shows three such naive
relations, production-cost «——quality, unit-sales «—quality and unit-sales «<—unit-cost. For
example, if a new proposal increases the product’s quality by x%, then (assuming the relations in
figure 7-3 and unit-cost «——production-cost) unit-cost must also increase by x% and unit-sales
must also decrease by the same percentage. Since profit «——unit-sales, in this naive estimation,
the new proposal leaves profits the same as the previous proposal. The initial naive relations are
refined and updated as a result of the group’s interactions. For example, the quality agent may
say that while the change from stamping to machining increases quality by x%, unit-cost will
decrease only by (x/2}%. This statement establishes a new relation between the attribute,
manufacturing process, and the decision variables quality and production-cost replacing the
previous naive relation between the two decision variables. The value of a decision variable is a
function of one or more attributes in the description space and the influences of other decision
variables. For example structural-soundness{root-radius=35, blade-length=76] = 8.5 (on an
arbitrary scale 0 to 10).

. unit sales
quality unit sales

production cost quality unit cost

Figure 7-3: Naive relations

In the current version of the model, we make the assumption that the value of a decision
variable represents the utility of the decision alternative with respect to the particular decision
variable. The value that an agent assigns to a decision variable for a particular alternative may
depend on its private knowledge. This representation provides both the multi-attribute utility
values used to evaluate alternatives and a public representation relating decision variables used
to determine the naive inferences needed to refine agent models.

3. specialized/expert "black-box" knowledge modeled as private functions of arbitrary
complexity relating attributes to decision variables. The private knowledge of each agent a; is
expressed in its private language A;. In engineering design, specialized knowledge can be
represented in terms of qualitative and quantitative relations and equations. This choice allows
multiple attributes to jointly influence multiple decision variables creating "hidden paths" not
represented in the public influence diagram.
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4. naive mappings between description and decision variables modeled as publically defined
functions v, , (relating attribute a, to decision variable V; ) and expressed in the language A, €

"k for non-expert agents. An attribute can be of relevance to more than one decision variable
« ! the domain of a decision variable is a vector of more than one attributes. The relevance of
ar  tribute a; to a decision variable V, is its "contribution" and is expressed by a weight
coe “ient B,.. Shared models are formed through the refinement of this naive knowledge.
Refi.  -ents are plausible inferences defined as changes to naive portions of an agent’s model.
Refine. ‘nts could change the coefficients B, ;, the functions v; , and through them the decision
variable. 7 which an attribute "contributes".

5. expert mappings between description and decision variables. The form of these mappings is
determined by the agent’s expert knowledge and is expressed in the agent’s private language A;.

Figure 7-4 shows the architecture of the mental model of an agent. To calculate the value of a
decision variable that is not within its area of expertise, an agent uses the publically known
weighted sum of the functions v; . Since refinements are limited to the naive portions of agents’
models and result from public communications, these relations remain public under refinement.
To calculate a decision variable within its domain of expertise, an agent uses its private expert
knowledge. In the figure, the function ¢ expresses the expert mapping of the agent’s private
knowledge to decision variable V5. Each agent’s model is similar to that shown in figure 7-4,
except that the "black-box" private knowledge would involve different attributes and decision
variables.

Therefore, an agent’s expert model consists of (a) the collection of qualitative and quantitative
relations within its "black-box" along with (b) functions, such as ¢ that allow expert mappings
between the "black-box" and decision variables. An agent’s naive model consists of (a) the
decision and description variables, (b) naive mappings within the decision space, and (c) naive
mappings between description and decision variables.

In naive models, relations and contributions may be either indifferent (same contribution
across attributes or same relation across attribute values) or ordered with respect to their
contribution or relation to the decision variables. For example, in a naive model of the turbine
blade root-radius and blade-length contribute equally to all decision variables, such as structural-
soundness, cost etc. As another example, a naive model might hold unit sales which contributes
to profit to be proportional to quality and inversely proportional to price with price proportional
to quality in its decision space. If two materials, plastic and steel, were ordered with respect to
quality, then this model would be indifferent to the choice because the contribution to profit of
choosing steel (via quality and unit sales) is balanced by the adverse impact of quality (via price
and unit sales) on profit. This sketchy knowledge of alternatives and their evaluation is shared
(outside of individual areas of specialization) by all members of the group. The indifference of
the naive model expresses the uncertainty of agents outside of their areas of expertise while still
characterizing the common sense world knowledge they bring to the situation regardless of their
spec:alization.
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Figure 7-4: Agent Models

7.5. Communications

Each agent uses its private language A, to generate or evaluate proposals. However,
communication among agents is restricted to the public languages Ly, 1y, and Ay. This restriction
allows agents to communicate their expertise only within the context of the group’s problem and
in terms that are intelligible to other agents in the group. So, although each agent’s expertise is
private to it, the common vocabulary is the medium for making public relevant portions or
results of the expertise in the form of suggestions, justifications, and objections. In the turbine
blade design exainple, terms such as Swirl-Coefficient and Axial-Velocity (see Figure 7-1) are
private to the structural engineering agent. Terms such as Structural-Soundness and Blade-
Efficiency belong to the common public vocabulary and are used for intelligible communication
among the design agents. For example, the marketing agent understands the concepts of Blade-
Efficiency and Structural-Soundness and how they relate to marketability, a decision variable
within his area of expertise. In Figure 7-5, the shaded portions indicate the private expertise of
the aerodynamics and structural agents, whereas the unshaded portion indicates terms to express
goals and issues in the public vocabulary.

Communications are the means by which various parts of an agent’s model get updated. A
structural engineer justifying a proposal to thicken the turbine blade, for example, might report
that increasing the root radius of a turbine blade by S inches would double its structural
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Figure 7-5: Partial view of private expertise and shared communication vocabulary

soundness. The engineering models behind this observation would remain private but the entire
group could now benefit from his more valid estimate of the relation between a description
variable, root radius, and a decision variable, structural soundness. Because other agents lack an
understanding of the engineering judgement which underlies this pronouncement, they must
continue to rely on naive inference (proportionality) to evaluate other alternatives. For example,
another agent might infer that "if five inches doubles structural soundness then ten inches should
quadruple it." Because a blade is a relatively uniform solid object, however, structural soundness
is more closely proportional to cross sectional area (the square of its radius) making this an
underestimate. This new misconception could only be rectified by further communications from
the structural engineer. Because all agents’ judgements are flawed in this way, they can only
arrive at decisions reflecting their joint expertise through cycles of communication and updates
to their individual naive models.

Information communicated by agents is classified as evaluation or justification. An expression
of preference among alternatives is an evaluation. An expression relating attribute values to
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decision variables is a justification. Communications will often contain information of both
sorts. The statement: "We should not change from alloy to composite materials because the
manufacturing cost would be too high," for example, consists of the evaluation: profit(design-
composite) < profit(design-alloy)? and the justification: manufacturing-cost(design-composite) >
manufacturing-cost(design-alloy). Note that the evaluation is re-expressed in terms of the
implicit and publically known relation between manufacturing cost and profit. This is done to
clarify the status of evaluation as an ordering of alternatives with respect to the decision criterion
rather than a relation between attributes and a particular decision variable. As suggested by the
example, the distinction between these forms of information lies in the relation referenced rather
than the apparent phrasing. The statement: "We should choose the highest quality design
because profits depend on quality" contains no justification because it does not relate attributes
to decision variables. This communication conveys, instead, the agent’s "evaluation" of the
contribution of quality to profits. In our model, the assumption of a common naive model makes
this statement vacuous (devoid of information) since the "evaluation” is already known to other
agents.

Factual statements such as: "Selection of steel instead of plastic would increase material costs
by 30%" are justifications because they relate attribute and decision variable values even though
they lack an evaluation to be "justified". To make an evaluation between the alternatives design-
steel and design-plastic, as a result of hearing this statement, an agent must perform the inference
material-cost(steel) > material-cost(plastic), material-cost and manufacturing-cost are related in a
positive manner (+), manufacturing-cost and profits are related in an inverse (-) manner, hence
profit(design-steel) < profit(design-plastic).

Justifications may be expressed in any of four forms, each of which conveys a different type of
information about the relation between attributes, private knowledge, and decision variables.
These forms are:

1. value ordering- The communication expresses an ordering on values of a decision variable
as a function of attribute values. Value orderings have the form:
relation(attribute_value-1,attribute_value-2) -> Order(v(attribute_value-1),v(attribute_value-2)),
where v, . is the function relating values of attribute a; to decision variable V.. The earlier
statement: "We should not change from alloy to composite materials because the manufacturing
cost would be too high," is an instance of value ordering because it orders the nominal values
"alloy” and "composite” of the attribute, material, by their relation to the decision variable,
manufacturing cost. Value ordering communications refine agent models by modifying function

2. contribution d~termining- The communication expresses the contribution of an attribute to a
decision variable. Contribution statements may be either absolute or relative. The most
common absolute contribution statements assert that for values under consideration an attribute
makes no contribution to a particular decision variable. A statement of this sort would be: "The
choice between composite and alloy materials will not affect reliability.” An example of a
relative contribution justification would be: "Choice of wheel attachments is more important to

2Note that since profit is the decision criterion, the statement profit(design-composite) > profit(design-alloy) is
equivalent to utility(design-composite)> utility(design-alloy).
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the reliability of a tricycle than choice of frame material." Contribution justifications do not
provide information about the relation between values of attributes and decision variables but
instead characterize the extent of the attribute’s contribution. Contribution determining
Justifications refine agent models by modifying the weight B; ; Wthh determines the contribution
of attribute variable, a;, to decision variable, V;.

3. value detenaining- The communication expresses both the contribution and the relation
between attribute values and values of a decision variable. Value determining expressions have
the form: relation(attribute_value-1,attribute_value-2) ->
V(attribute_value-1)=KV(attribute_value-2) where K is the ratio between the two aggregate
values. The earlier statement: "Selection of steel instead of plastic would increase material costs
by 30%" is an example of a value determining communication: material-cost(steel)=1.3material-
cost(plastic). Value determining communications may affect either the function, v ij its weight,
B; ;. or both. The refinement which occurs depends on the prior values of B, ;, the range of v; ;,
and the range and weights of other attributes with non-zero contributions to V.. These
adjustments are made according to the calculus of propagating values of decision variables based
on the linearity relations and their refinements, subject to the constraints:

max(Vj)= 2.B, fnax(v; (ap))
C=Y,B, j Where C is a constant reflecting the relative scaling of weights

4. conjunct labeling - Justifications may involve terms from an agent’s private language. In
these situations the public version of the term from the private language serves to "label" a
relation involving multiple attributes and decision variables expressed in the public language. A
communication of this sort about a proposed tricycle design might be: “We should change to a
ball-bearing and race for the headset (attribute-1) if the frame is plastic (attribute-2) and the
bearing is metal (attribute-3) because otherwise torsion will cause the bearing to slip and weaken
the frame (private knowledge) making the tricycle unreliable (decision variable)". The
justification in this case is the public expression: reliability(headset=ball-bearing-and-race &
frame=plastic & bearing=metal) < reliability(headset=bearing & frame=plastic & bearing=metal)
which is labeled by the private term "torsion". Labeled justifications are consistent with our
contention that it is neither feasible nor desirable for specialists to develop detailed models of
one another’s expertise. In this example the technical meaning of the word "torsion" and its use
to describe forces affecting mechanical devices remains private to the communicating agent. In
the public communication the term "torsion" serves only to label a public expression relating
these three attribute values to the decision variable, reliability. Conjunct labeling reifies private
knowledge by expressing relations between multiple attributes/decision variables in public form
for the values of some particular alternative. Agent models are refined by adding this new
composite attribute to their description space.

Justifications are further classified as expert or naive. An expert justification is a justification
which involves decision variables within an agent’s domain of expertise. A rejection of a
proposed turbine blade design by the structural engineer which referenced a change in the
decision variable, structural soundness, for example, would be classified as an expert
justification. If the structural engineer’s justification for rejection had involved the decision
variable, manufacturing cost, instead, it would have been classified as a naive justification.




Refinements are naive in much the same way as the influences in the decision space they
replace. The model again assumes proportionality in the absence of more precise specification
and uses the determination of weights and values in previously considered alternatives to anchor
the evolving model. Functions vij and labeled conjuncts are learned in a piece-wise linear
fashion and are revised to maintain fit to previous alternatives when contribution weights are
adjusted. Orderings of alternatives enter the model as constraints which are converted to values
in accordance with the proportionality and indifference assumptions of the model. These values,
like the naive ones they replace, are treated as "second class citizens" by the refinement which
anchors the evolving inodel to directly determined values. Because values of decision variables
are computable as weighted sums of functions of attributes, evaluation of alternatives is always
possible.

The decision making process can be seen as hill-climbing where the group starts with an
initially proposed (perhaps randomly generated) decision alternative and iteratively adapts it to
arrive at an improving best decision. This search is satisficing rather than optimizing. Because
the distributed evaluation function is not fixed, both the evaluation of alternatives and the choice
of alternatives to evaluate are determined by the history of interactions. Whether or not
justifications are exhaustively exchanged (full expertise), evaluation depends jointly on
alternatives already considered, degree of refinement of shared models, and the alternative itself.
Within the model it is possible for a shallowly explored alternative to resurface later for
evaluation at greater depth. This sort of behavior is not backtracking in a strict sense because the
alternative has changed with respect to the agents’ evaluations. As a conventional search
problem, the model would require the power set of possible histories and alternatives as its
search space. There is no guarantee that a group would not stop at a local maxima or even stop
short of it if evaluation were sufficiently favorable. The problem addressed by this model is not
how to escape local maxima but how to detect the hills which may be invisible to individual
agents.

In our model, we assume that maximizing profits is the decision criterion. Each current
decision alternative is taken as a baseline that must be improved by the next acceptable proposal
(i.e. inferior proposals will be rejected). Each new proposed decision alternative contains at least
one change in an attribute value, and possibly results in new values for a subset of the decision
variables, or possible update of various mappings between variables in the description and
decision space.

Under the restriction that only expert justifications lead to refinement, communications of
sufficient length will cause all agent models to converge to a single evaluation for any particular
alternative. Convergence follows from the anchoring of refinements to attribute and decision
variable values associated with an alternative. Model refinement with respect to this alternative
is simply an inefficient mechanism for exchanging these values. Even absolute convergence for
a single alternative contributes little to improving decision making which requires agreement in
the ordering of alternatives rather than precise agreement on the utility of any particular
alternative. Our focus is not on the role of communication per se in providing accurate
evaluations of particular alternatives but rather on the role model revision plays in directing
search. As agent models are refined, their evaluative ordering on alternatives will change
causing alternatives previously dismissed as infeasible to become practical while causing
undesirable ones to become newly attractive, thus allowing proposing new alternatives which
increase the value of the decision criterion. These revisions and reevaluations occur within

91




individual agent models taking advantage of individual expertise and an improving
approximation of problem relevant aspects of other agents’ models. An exact control procedure
for using agent models to direct search is not dictated by our model. Plausible choices include
bidding among agents for proposing the next alternative (if private reevaluation results in many
agents’ estimation of differential increases in the value of the decision criterion), round robin
selection of the next proposer, or joint partial specification of the next alternative by multiple
agents, each of which specifies values for a subset of description variables.

7.6. An Example

Consider the decision situation for a team of specialists in a manufacturing enterprise tasked
with concurrently engineering the design of a tricycle. The team objective is to arrive at a
tricycle design that will maximize profits, under certain assumptions relating design attributes to
cost, price, and ease of selling the tricycle. The group’s goal may be expressed as:

profit = unit_sales x (unit_price - unit_cost)

Tricycle sales, price and cost can be expressed as functions of high level attributes, such as
tricycle, performance, style, durability, ease of use, reliability, structural soundness etc. Since
there is no precise mathematical model of design evaluation (there are too many variables that
interact in non-linear and unpredictable ways) or design saleability, the group’s goal of
"optimizing the design" gets operationalized to "using profits as a decision criterion, find a
design acceptable to all concerned agents”. This is as optimal a decision as the group can give
since it is a decision that takes into consideration the fused expertise of the group. The decision
problem then is to evaluate alternative designs, negotiate on suggestions for design modifications
and arrive at a design agreeable to all.

Let us suppose that there are three agents involved: a designer, a manufacturing agent and a
sales agent. In his expert model, the designer knows the precise (true) relations among design
attributes and decision variables such as performance, durability etc. For example, a designer’s
expert model predicts that high grade plastic makes the tricycle lighter thus leading to higher
performa~ce, whereas heavy steel tubing leads to lower performance. In terms of strength of the
tricycle frame, braced and welded frame leads to higher frame strength, bolted the next highest,
and integral the lowest. In terms of reliability, using cotter pins and caps to hold the rear wheels
and pedals of a tricycle together results in much higher reliability (the designer’s model may
include precise equations or empirical results from which precise numbers could be derived),
than using press-on caps, since press on caps are likely to start falling off after a short time of
tricycle use.

Let us concentrate on the design choice of cotter pins versus press on caps. Before the group
meeting, each agent has different evaluations of the two designs. Suppose that the designer’s
expert knowledge rates the cotter pin design twice as reliable as the press-on caps design. On the
other hand, the precise relations between cost and other decision variables are not in the expert
model of the designer. The designer’s naive model considers that sales and cost are linear with
reliability. This leads him to infer: (1) the cost of a cotter pin design will be double the cost of a
press-on cap design, (?) the sales for a cotter pin design will be double the sales for a press-on
design, and (3) he should be indifferent to the design choice. Similarly, the manufacturing
engineer knows (from his expert knowledge) that drilling round stock to make the hole for the

92




cotter pins is 3% more expensive than fitting the press-on caps. The expert model of the
manufacturing agent does not contain precise knowledge of the relation between press on caps
(or cotter pins) and reliability (or other high level design attributes). His naive model considers
cost and sales linear with reliability. This leads him to infer: (1) a cotter design is 3% more
expensive than a press-on design, (2) a cotter design will sell 3% more than a press on design
and (3) he should be indifferent to the choice. The expert model of the sales agent predicts that
appearance of ruggedness (for a device used by children, and which will suffer a lot of wear and
tear) muliiplies sales by a factor of three. The sales agent has no expert knowledge about either
the relative cost for manufacturing cotter pins versus press-on caps or about relative reliability of
the two designs. Thus, he is initially indifferent to the choice.

The group meets. Drawings for the two designs are displayed and discussed. The group
interaction over the design choice of press-on caps versus cotters may proceed as follows:

Manufacturing Agent: Do we want to use press-on caps or cotters for the wheels and pedals?
The drill press operations will add another 3% to manufacturing costs. (This is a value
determining communication). [The design agent learns that cotter pin cost is only 3% more
rather than double. He, therefore, updates the (naive) relations between fasteners (attribute
relevant to decision variables), cost and reliability. On the other hand, the naive relation of
linearity between reliability and sales predicts that the cotter design should almost double profits,
thus furthering the group’s goal of profit maximization and making the design agent strongly
prefer the cotter design. The sales agent learns the relative cost of cotters,
cost(cotters)=1.03cost(press-ons) and updates the cost decision variable].

Design Agent: In that case, I think we should use cotters. The press-on caps are likely to start
falling off after 6 months to a year while the cotter pins will hold the wheels on for 10 years.
[The manufacturing agent now learns that the cotter design is much more reliable,
reliability(cotters)>10reliability(press-ons), and updates his model so that cost is now indirectly
related to reliability through the fastener attribute. The sales agent learns that cotter design is
much more reliable than press-on design and updates the relevant part of his naive model.
However, his expert model tells him that it is the appearance of ruggedness that sells the product.
By looking at the designs, the sales agent finds out that a buyer cannot see whether a cotter or a
press-on has been used].

Sales Agent: I don’t think we should use cotters. A buyer can’t see that there is a cotter under
the cap and therefore it has no effect on appearance. On the other hand, cotters are 3% more
expensive.

The design and manufacturing agents substitute this direct relation between the fastener
attribute and sales for the previous relation between decision variables and now agree because
with this modification, their shared model predicts that the increased production cost associated
with cotters will be detrimental to the goal of increasing profits because there is no offsetting
influence of this form of reliability on unit sales.
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7.7. Concluding Remarks

The importance of shared mental models has been recognized in the cognitive decision making
literature [2, 7] but no investigation as to the process of forming shared mental models has been
proposed to date. We have proposed the existence of a variety of mental models (the expert
model, the naive model, shared models and a potentially common model) during group decision
making and presented their interactions during the problem solving process. In addition, we
have presented an initial approach to describing those models and the process by which tiey are
formed. The shared mental models discussed in this paper define the nature and level of
aggregation of the information necessary to be common knowledge to agents so that suitably
coordinated decisions can be made.

The model presented in this paper is intended as a research tool for the study of group decision
making by people and machines. To evaluate the research, we have planned a three stage
approach. First, the multi-agent model will be implemented as a DAI system consisting of
machine agents. We have planned a number of experiments of the system’s performance under a
variety of conditions (e.g. various restrictions on what gets communicated, differential
sophistication of the models of others that each agent possesses, differential forms of the naive
model). Second, controlled experiments with human subjects will be performed to compare the
predictions of the model (as embodied in the behavior of the DAI system) with decisions made
by the subject group in concurrent design tasks of simple artifacts, such as a children’s tricycle.
Each subject will be given a "cover story” including his/her naive and expert model, and
experiments will be controlled by restricting the form and contents of communications. Third,
based on the subject group’s observed decision biases, a decision aid will be developed that
compensates for the biases by referencing them to a progressively refined version of the naive
model. The goal is to develop a domain independent decision aid that has knowledge about the
refinement process rather than domain expertise. The aid uses knowledge about the refinement
process to evaluate group communications that fall outside its model, provide suggestions, and
make queries to point out the group’s misconceptions.
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
compu.ational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.




