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1. INTRODUCTION

The United States Marine Corps (USMC) was concemed that the 105-mm gun recoil could have an
adverse effect on thou Light Amored Vehicle (LAV). It was their concem that various vehicle cant
angles, combined with weapon-to-hull offsets, and/or vehicle mnotions could cause the vehicle to overtum.
This effect is obviously undesirable in real world situations. The USMC expressed these concems to the
Anny Materiel Systems Analysis Activity (AMSAA), which requested that the Ballistic Research
Laboratory! (BRL) investigate the potential problem. A computer simulation study was performed by
the BRL to determine the outcome of various firing and nonfiring scenarios.

The USMC LAYV, with a crew of three, is essentially a new two-man turret (weighing 3,697 kg),
installed on an upgraded 8 x 8 chassis. The chassis is very similar to the standard LAV, but contains
additional buoyancy aids. Figure 1 is an artist’s impression of the LAV fitted with a 105-mm rifled tank
gun.

2. MODEL

The engineering simulation HITPRO (hit probability) contains detailed models of the subsystems found
on the HIMAG (high mobility agility) test bed weapon system. Using HITPRO as a base, unique LAV
components were integrated into the basic simulation in order to simulate the USMC LAV. All of the
models’ subroutines were used in the analysis, however, only a description of the main subroutines relative
to this study follow. (See HITPRO User's Manual? for more detail.)

» Hull Motion Generation. In general, the hull is flexibly suspended over two moving tracks which
are driven over a specified terrain. The hull has 5° of freedom with respect to the track, the tracks have
3° of freedom with respect to the earth, and the hull has 6° of freedom with respect to the earth. All of
these calculations are performed in the hull motion section of the program.

l’l'heU.S.AnnyBallinichbwnotywudacﬁvnedonSOSq)mnbu 1992 and subsequently became a part of the U.S. Amy
Research Laboratory (ARL) on 1 October 1992

2 Cushman, P. G, R. R. Duwcher, G. J. Grachis, and P. J. Kester. “HITPRO INI Computer Model Volume II, Model
Development,” Special Publication: ARLCD-SP-81007, prepared by General Electric Company, Piusfield, MA, prepared for:
U.S. Armament Research and Development Command, Dover, NJ, November 1981.
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Figure 1. Light anmored vehicle.

» Cant of the Vehicle: To produce a canted vehicle, a specific terrain profile needed to be chosen.
The cant of a vehicle actually occurred by canting the terrain and having the vehicle move onto this
terrain. This condition was achieved by adding one-half the total desired cant to the right track terrain
data, and subtracting one-half the total desired cant angle from the left track terrain data. After a few

seconds of motion onto the canted terrain, the vehicle became properly canted.

» Chassis/Suspension: The chassis/suspension model utilized in this simulation generated vertical
wheel motions. The position and velocity of each road wheel determine how the suspension forces and
torques are exerted on the hull. These flexible motions were calculated from various components

including terrain data, vertical movements, and hull angular motions.

» Manual Target Tracking: The manual target trackiri, “2 the simulation code contains four important
subroutines, each contributing to the accuracy of the tracking. The reticle to target angles are calculated
in one subroutine, while another subroutine is a model of a representative experienced Army gunner. This
subroutine simulates the behavior of the gunner as he tracks the target, decides when to issue a laser
rangefinder command, and when he beéins the firing process. A third subroutine which simulates the fire




control computer performs coordinate transformations of the gunner’s handle commands. The last
subroutine models the periscope sight and causes the line of sight (LOS) to be held inertia! so the gunner

can accurately place the reticle on the target.

» Sight System: The HIMAG periscope sight, which is a subroutine located within the manual target
tracking model, contains four primary components: 1) a stabilized mirror, 2) a laser range finder, 3) the
day sight optics, and 4) a thermal sight. By removing all vehicle pitch and yaw movements, the two-axis
mirror stabilizes the gunner’s LOS. The laser range finder obtains target ranges between 200 m and
5,000 m, and the day optic sights, which have three magnifications, serve as the primary viewing system.
Finally, the thermal sight contains infrared and far infrared sensors; these images can be viewed on the

binocular eyepiece or on the video monitors.

» Weapon Recoil Force: The main objective of this study was to determine the effects of recoil due
to fire from a heavy gun tube placed on the LAV. When the gun fires, the projectile is propelled to the
target, the gun tube recoils, and the system is subjected to disruptive forces. These recoil forces and
torques were generated using time profiles of specific gun recoil systems. These were computed at the

trunnion at the proper time in the firing sequence.

3. SIMULATION

The simulation employed was quite flexible; it allowed easy parameter changes and, with the aid of
shellscripts, was run in a rather efficient manner. The shellscripts asked for specific scenario conditions,
including recoil system, vehicle speed, cant angle, and weapon-to-hull offset. Using this as input, the

simulation was run, and the data were collected.

The four vehicle motion/vehicle cant conditions simulated in this study were:

(1) Stationary vehicle at 0° cant
(2) Stationary vehicle at -10° cant
(3) Fire-on-the-move at 0° cant

(4) Fire-on-the-move at —10° cant.




r———

These four scenarios were chosen because they were probable scenarios in real world cases. The four
conditions listed were both realistic and properly suited for the simulation.

The fire-on-the-move scenarios were conducted over simulated Terrain 101 (Figure 2), a medium
severity terrain with a root mean square value of 1.5 in (altitude). This microterrain profile was produced
using data points of surveyed terrain profiles located at Aberdeen Proving Ground. All fire-on-the-move
vehicles in this study had a velocity of 20 mph.
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Figure 2. Terrain 101.

The stationary simulation scenarios did not necessarily mean the vehicle was located on a flat surface.
For stationary, ~10° cant cases, the vehicle was maneuvered onto the canted Terrain 101 profile for a few
seconds and then stopped. This enabled the vehicle to achieve the necessary canted condition, while
maintaining its stationary condition during the firing process.




As mentioned earlier, the cant angle was achieved through altering the terrain below the vehicle.
Negative cant angles and positive target offsets were considered worst-case scenarios.

The four vehicle motion/vehicle cant conditions listed were then subjected to further variations.
Specifically, three recoil systems, four different target-to-hull offsets, and a firing/nonfiring state were
considered.

Three different recoil systems were analyzed in this study. The Rheinmetall recoil system produced
a relatively low force and short recoil distance; thus, its torque reflected a very efficient system. The
Rheinmetall will often be referred to as the Low Recoil System—or R105—throughout this report. The
second recoil system used was the M68—or Standard 105 Recoil. It produced a substantially higher recoil
force and its time to complete the recoil cycle was almost twice that of the Rheinmetall recoil. As a
result, its recoil torque responds quicker than the Rheinmetall recoil system, but it takes a longer time to
settle (or reach equilibrium). The third recoil system analyzed in this study was the Benet Super Long
Recoil System—or SLR105. The SLR105’s initial recoil force was slightly hi- "er than the Rheinmetall
recoil system, and its recoil distance was over twice that of the other two systems. As a result, the
SLR105 torque reflects these differences, and, in turn, produces a much different recoil response. Force,
distance, and torque are compared for the three systems in Figures 3, 4, and 5.

Four different target-to-hull offsets were used to adequately represent possible target offsets. When
viewing the vehicle from the rear, the 0° target offset placed the gun over the front of the hull. The
30° offset moved the gun tube 30° to the right, the 60° offset moved the gun an additional 30° to the
right, and finally, the 90° offset placed the gun over the right side of the vehicle.

Both firing and nonfiring cases were considered. The nonfiring case served as the basis for
comparison to the firing case. Similar data from the firing and nonfiring cases were subtracted to obtain
hull roll and hull pitch angles due solely to recoil. It was these data that furnished the major results and
conclusions from this study.

The complete test matrix (Figure 6) therefore contained a total of 96 runs. For each simulated run,
the hull roll and hull pitch angles were analyzed. These particular statistics consumed the majority of the
analysis. The test matrix in table form is provided for easy clarification.
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4. ANALYSIS

There were four plots generated from each scenario run—two for hull roll angles and two for hull
pitch angles. The first hull roll angle chart was a two-signal plot containing hull roll motion during the
recoil cycle in the firing mode and the hull roll motion during the nonfiring mode. This plot included
vehicle cant data (if applicable), the effects due 1o recoil, and any terrain data that may have been
employed in that specific simulation un. The second plot generated for hull roll was derived by
subtracting the nonfiring hull roll angle from the firing hull roll angle. This plot, therefore, contained hull

roll motion solely due to recoil.

Similarly, there were two charts generated to view pitch angle. The first hull pitch angle chart was
a two-signal plot containing hull pitch motion during the recoil cycle in the firing mode and the hull pitch
motion during the nonfiring mode. Just as with the hull roll plot, this hull pitch plot included vehicle cant
data, the effects due to recoil, and any terrain data (if applicable) that may have been employed in that
specific simulation run. The second hull pitch plot generated was derived by subtracting the nonfiring hull
pitch angle from the firing hull pitch angle. As a result, this plot contained hull pitch motion solely due

to recoil.

The major concem of the analysis was the magnitude of the hull roll angle rather than the magnitude
of the hull pitch angle. It was understood that any significant disturbance to the system attributable to
firing would occur in the roll direction rather than the pitch direction. This is due to the vehicle’s basic
design and center of gravity location. The higher disturbance angles occurred in the hull roll signal,
regardless of the weapon-to-target offset. Although a full analysis was performed on the hull pitch as

well, the concentration of the analysis was the hull roll angles.

4.1 Benign Scenario. Figure 7 shows the hull roll motion created during a recoil cycle for a

stationary vehicle at 0° cant with a 30° target offset. This particular plot contains data generated from the
Rheinmetall (R105) recoil data. The firing case is represented by the solid line, while the dashed line,
barely seen at 10 s and 16 s, represents the nonfiring case in which the weapon system is not disturbed.
The solid line actually overlays the dashed line throughout the run, except at the time of fire. At the time
of fire, the dashed line remains constant since it represents the nonfiring case. In Figure 7, motion of the
vehicle and terrain data were not included (due to the stationary condition), so one can barely see the

disturbance in the hull roll angle in the nonfiring case.
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Figure 7. Comparison of stationary roll angles.

The same benign scenario shown in Figure 7 was used to generate Figure 8. This plot was generated
by subtracting the nonfiring hull roll angle from the firing hull roll angle. One can see that at the time
of fire, the hull roll angle is approximately -1.3°. Regardless of the recoil system used in this particular
scenario, firing of the weapon created little disturbance in the hull roll motion.

4.2 Severe Scenarip. As stated earlier, the hull pitch angles did not create a large disturbance on the
system. The scenario shown in Figure 9 contains data using the SLR10S recoil, a cant angle of -10°, a
vehicle traveling 20 mph over Terrain 101 (medium severity), with a target offset of 90°. This was the
worst-case scenario for this investigative study. Again, the firing data are shown with a solid line, and
the nonfiring data are shown with the dashed line. The overlaying of the firing case on top of the
nonfiring case helps reveal the effects due to recoil. Even though the disturbances are relatively small,
one can see that the majority of the pitch disturbances occur because of the terrain and are not due to
firing. This can be seen by viewing the dashed lines at 10, 16, and 22.5 s (time of firings). The highest
value of the hull pitch angle is approximately 4.0°, and that is not due to the recoil effects.
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By subtracting the two signals in Figure 9, we can exactly see the disturbance put on the system due

only to recoil. The pitch chart shown in Figure 10 yeveals that the greatest stress on the hull pitch motion

. due solely to recoil is approximately —0.50°. Regardless of the recoil system cmployed, the hull pitch
angle due solely to recoil was minimal.
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Figure 10. Differenced moving pitch angles.

Figure 11 shows the stress the hull roll angle encountered during the same scenario described earlier.
The time of fire is easily discemed by the three spikes seen on the plot. The first 2 s of the run contain
a rapid change in roll angle as a result of the vehicle approaching the desired cant angle of -10°. As
explained earlier, this is due to the time required for the vehicle to get positioned onto the canted terrain.
The greatest roll angle seen in this run (approximately —15.5°) occurs at the first shot. This value includes
the canted terrain data, along with the recoil disturbance. We can obtain a greater understanding of the
disturbance due only te firing by looking at Figure 12. This chart shows the difference on the firing hull
roll signal and the nonfiring hull roll signal. We can see that the greatest additional disturbance was
encountered at the first shot. The recoil of the Super Long Recoil System produced an additional —4.0°

n
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on the system. This, coupled with the initial -10° cant and specific terrain disturbance occurring at the
time of fire, taxed the system for a total of approximately —15°.

4.3 Bar Chart Descriptions. Sixteen bar charts have been created to summarize all the various data

collected in this study. As mentioned earlier, there were four vehicle motion/vehicle cant conditions
simulated in this study:

(1) Stationary vehicle at 0° cant
(2) Stationary vehicle at —10° cant
(3) Fire-on-the-move at 0° cant

(4) Fire-on-the-move at —10° cant.

For each of these four scenarios, four summary bar charts were created containing the highest value
(disturbance) that the system encountered during the run. All three recoil systems used in the study are
shown for easy comparison. The four summary bar charts simply contain the highest numerical value
encountered as collected from the four main scenarios explained above. The four summary bar charts are
titled as followed:

(1) 0 to —Peak Hull Roll Angle During Recoil Cycle
(2) 0 to —Peak Hull Roll Motion Due Solely to Recoil
(3) 0to —Peak Hull Pitch Angle During Recoil Cycle
(4) 0 to —Peak Hull Pitch Motion Due Solely to Recoil.

In addition to these basic titles, scenario specifications are included for each bar chart. All moving
vehicles were traveling at 20 mph. The only exception to this format is in the stationary, 0° cant scenario.
For these runs, the greatest disturbance occurred in the positive direction for the hull pitch angle; however,
these disturbances are very small.

4.3.1 Stationary Vehicle.

* 0° Cant. The comparative hull roll motion charts obtained from the stationary, 0° cant scenario are
found in Figures 13 and 14. As intuitively expected, the higher the weapon-to-hull offset, the greater the
disturbance in the hull roll angles. Due to this benign scenario, there were minimal vehicle roll angles
occurring, regardless of recoil system or weapon-to-target offset. Note that the M68 - Standard 105 Recoil

13




system and the Rheinmetall - Low Recoil system handled the disturbances better than the Benet - Super
Long Recoil system, regardless of weapon-to-target offset.

Figures 15 and 16 show the hull pitch charts for the stationary 0° cant scenario. Notice the trend that
occurs as weapon-to-hull offset increases: as expected, pitch angles decrease due to the movement away
from the front of the turret, thus less of a disturbance in the pitch angle. In addition, it can be noted that
again the Rheinmetall and the M68 recoil systems handle the disturbances much better than the Benet
recoil system.

» 10° Cant. Figures 17 and 18 show the largest hull roll motions generated during a canting of —10°
for a stationary vehicle firing from Terrain 101. In Figure 17, one can see that the greatest disturbance
occurs at the 60° and 90° weapon-to-hull offset when using the Benet - Super Long Recoil system. By
subtracting out the cant data and other disturbances not involved in firing, we can see from Figure 18 that
an additional —-3.35° is added to the initial ~10° canted vehicle when it fires over the side (90°). The same
trend that was observed in Figures 13 and 14 occurs here, that is, the greater the weapon-to-hull offset,
the greater the vehicle roll angle.

Figures 19 and 20 display the largest hull pitch angles that occurred during a canting of —10° for a
stationary vehicle firing from Terrain 101. There was practically no disturbances brought about by recoil
in any of the cases, regardless of weapon-to-hull offset or recoil system used. This is emphasized by
seeing Figure 20, which reveals the hull motion nonfiring pitch angle subtracted from the hull motion
firing case pitch angle.

4.3.2 Moving Vehicle.

e 0° Cant. Figures 21 and 22 contain hull roll motion data from the 0° cant, fire-on-the-move
scenarios. It can be seen that the same trends occur in the fire-on-the-move-scenarios as in the stationary
scenarios: the larger the weapon-to-hull offset, the larger the hull roll angles. The greatest disturbance
occurs at the 90° weapon-to-target offset using the Benet - Super Long Recoil System. The greatest angle
due solely to recoil is -3.93°. This poses no threat to the vehicle, i.e., overtuming.

The greatest disturbances found in the hull pitch angles for the same scenario as in Figures 21 and 22,
are shown in Figures 23 and 24. Again, the trends remain consistent: the greater the weapon-to-hull
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offset, the less the hull pitch angles. Even when the terrain data is subtracted out, as shown in Figure 24,
there is very little disturbance placed on the system due to firing of the weapon.

¢ 10° Cant. Figures 25 and 26 show the largest hull roll angle found in the most severe case of this
study: fire-on-the-move at -10° cant. The vehicle traveling 20 mph over medium severity terrain,
coupled with the command to fire over the side produced the most significant hull roll angles. Including
terrain data, the roll angle was ~15.3° while using the Benet - Super Long Recoil system and firing over
the side. Figure 26 shows us the disturbance due only to recoil. We can observe that the greatest value
is approximately —4°,

The largest hull pitch angles generated from the same scenario described in Figures 25 and 26 reveal
no threat to the vehicle overturning. Figure 27 shows us the total pitch angle that occurred in the system;
this reveals that the greatest disturbance is ~4.25°. Once the terrain data is subtracted, the pitch angles
due solely to recoil are obviously still small. We can view this in Figure 28; the greatest value of —0.90°
is found in the 0° weapon-to-hull offset when the Benet - Super Long Recoil system was employed.
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5. SUMMARY

Weapon recoil effects on the USMC LAYV have been studied under a variety of conditions using three
different recoil systems. The largest hull roll angle due solely to recoil, -3.94°, occurred when the
scenario employed the Benet - Super Long Recoil, a medium severity terrain, vehicle speed of 20 mph,
and a shot fired over the side of a vehicle canted -10°. The largest hull pitch angle due to recoil, 1.66°,
occurred when the scenario employed the Benet-Super Long Recoil, a weapon-to-target offset of 0°, and
a stationary vehicle with 0° cant. Neither of these angles is severe enough to cause the LAV to

overturn.?

Of the three systems tested, the Benet - Super Long Recoil system had the worst performance. The
other two systems performed about the same, but with a slight advantage to the M68 - Standard 105
Recoil system.

3DidNammfmmAMSMuﬁmuedmmleof40’ammuﬂuovaming angle of the LAV-105 vehicle.
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