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ABSTRACT

The Department of Defense (DoD) possesses tremendous amounts of data stored in

many large databases. Due to the size of these databases, humans are incapable of

efficiently discovering interesting and useful patterns so an automated data-mining tool is

necessary. Output in the form of production rules, ie., "If y Then x," is preferred because

they are understandable by humans and support decision making processes.

This thesis investigates the manner in which data-mining systems discover useful,

interesting, but currently unavailable knowledge. The search and evaluation process,

guided by a knowledge quality function, is the key task of a data-mining system

This thesis evaluates three knowledge quality functions taken from the literature.

Each knowledge quality function discovers new and interesting sets of rules reflecting

different characteristics of knowledge. DoD applications are suggested for each of the

knowledge quality fumctions. Accesion For

NTIS CRA&I _ k

DTIC TAB
U;•annoua~ced [
Justdlic•u,tio

Dist~ibuitioB--------.-.-

Aw-il•,!:ity Codes

Dist Special

111.

m&



TABLE OF CONTENTS

SINTRODUCTION ........................

A. GENERAL DESCRIPTION OF PROBLEM ............................ 1

B. RESEARCH OBJECTIVE ............................................... 1
C. RESEARCH METHODOLOGY ......................................... 2

D. ORGANIZATION OF STUDY ......................................... 2

II. DATA MINING .............................................. 4

A. DATA-MINING SYSTEMS ................................... 4

B. KNOWLEDGE REPRESENTATION ................................... 6

1. D ecision Trees ............................................................ 6

2. Production Rules ......................................................... 7

C. DATA MINING SEARCH TECHNIQUES .............................. 8

1. Traditional Techniques .................................................. 10

2. Genetic Based Learning Techniques ...................................... 1I

D. SUMMARY ............................................................ 13

A. KNOWLEDGE DISCOVERY ............................. 14

A. DNFERENCE ........................................................... 14

2. D eduction ............................................................... 14
2. Induction ................................................................ 15

B. KNOWLEDGE QUAL Y ............................................. 17

C. QUANTIFYING KNOWLEDGE QUALITY ............................ 18

1. Common Terms in Knowledge Quality Functions ......................... 18

2. Principles of Behavior for Knowledge Quality Functions .................. 19

D. KNOWLEDGE QUALITY FUNCTIONS .............................. 19

1. Inform ation Theory ...................................................... 19

2. Rule Interest and 0 ....................................................... 20

3. J-m easure .............................................................. 22

4. Other Knowledge Quality Functions ..................................... 23

E. SUMMARY ............................................................ 26

iv



IV. TESTING QUALITY FUNCTIONS IN A DATA-MINING
SYSTEM .................................................... 27

A. NAVAL POSTGRADUATE SCHOOL GENETIC PROGRAM ....... 27

1. Preparing to Data Mine with NPSGP ..................................... 27

2. Writing Quality Functions in NPSGP Terms .............................. 28

B. DESCRIPTION OF MUSHROOM DATABASE ........................ 30

1. Size and A ttributes ...................................................... .31

2. Necessary Modifications to the Database ................................. .31

3. Rareness of Target Attribute ............................................ 33

C. NPSGP OUTPUT . ....................................

V. EVALUATION OF KNOWLEDGE QUALITY FUNCTIONS . 36

A. CERTAINTY ........................................................... .37

B. RULE INTEREST AND J-MEASURE .................................. .38

VI. CONCLUSIONS AND RECOMMENDATIONS ....... 40

A. CONCLUSIONS .................................................... 40

B. RECOMMENDATIONS FOR FURTHER RESEARCH ................ 41

APPENDIX A: NORMALIZING CONTINUOUS DATA ....... 43

APPENDIX B: NPSGP USERS MANUAL ...................... 44

APPENDIX C: FITNESS FUNCTIONS ......................... 48

APPENDIX D: RULE TRACKING SHEETS ................... 49

REFERENCES .................................................. 53

INITIAL DISTRIBUTION LIST .............................. 56

V



ACKNOWLEDGMENTS

John Walters did an excellent job of editing all the chapters. His help, advice, and

encouragement is much appreciated.

We thank John, Lyn, Andrew and Michael for their wonderful patience and support.

vi



I. INTRODUCTION

A. GENERAL DESCRIPTION OF PROBLEM

The Department of Defense (DoD) possesses tremendous amounts of data stored in

databases: financial information, personnel records, material consumption, transportation

requirements, fuel consumption, flying-hour costs, pharmaceutical usage, aviation safety

incidents, material deficiencies, material casualties, enemy submarine sonar signatures,

travel expenses, etc. Currently, these data are accessed to produce reports, statistics and

answer queries. Managers in many organizations finding themselves in the possession of

large and rapidly growing databases are beginning to suspect the information in their

databases is not used to the fullest potential. For example, if a suitable "data mining" tool

were applied to aviation maintenance data, we might discover that a particular avionics

component unexpectedly develops an unusually high fiilure rate--but only in those aircraft

in which a new type of fuse has been introduced. Humans are unlikely to discover any but

the most obvious and uninteresting patterns in the data. Revolutionary improvements

could be made if the underlying patterns of behavior--hidden in our databases--were

understood better in the areas of intelligence, manufacturing process control,

procurement, inventory management, etc.

B. RESEARCH OBJECTIVE

The primary objective of this thesis is to test the performance of several knowledge

quality functions using the Naval Postgraduate School Genetic Program (NPSGP), a
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knowledge discovery tool. In most data-mining systems the search is guided by an

evaluation function, in our case the knowledge quality fimction. In this thesis we attempt

to show how the knowledge quality function can be constructed to reflect specific

characteristics of knowledge which are likely to be of importance to users of data-mining

systems.

C. RESEARCH METHODOLOGY

In this thesis, we use NPSGP, a prototype data mining system, to study the data

mining performance of three knowledge quality measurement functions found in the

literature. We present the set of best rules discovered from a large database by each of the

three quality functions tested and evaluate the utility of the these functions in the context

of data mining scenarios.

Based on our evaluations, numerous changes have been made to the NPSGP.

Hundreds of hours were spent testing many configurations of program parameters, how to

prepare various types of data for use in NPSGP, learning how to interpret the output, and

verifying the output's validity. We developed protocols for executing NPSGP and

methods for documenting, tracking and interpreting the results. Using four databases held

in the University of California at Irvine's Repository of Machine Learning Databases and

Domain Theories, we tested NPSGPs ability to handle different types of data: all

continuous data, all discrete data, and a mix of continuous and discrete data.

D. ORGANIZATION OF STUDY

Chapter I provides general background for this study. Chapter II discusses the

mechanics of data mining systems: learning strategies, typical applications. types of
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knowledge representation, and search techniques. Chapter III discusses the problem of

deriving knowledge from data and surveys several proposed measures of knowledge

quality content. Chapter WV details how to use NPSGP as a data mining systeni Chapter

V compares the results of three different knowledge quality functions used in NPSGP.

Chapter VI presents conclusions and recommendations for continuing this line of research.



H. DATA MINING

Widespread use of computers in industry and government creates mountains of ra%

data. Buried within these mountains of data are patterns of potentially great value to the

Department of Defense:

"* Patterns of adversary submarine and aircraft behavior

"• Patterns of demand for material stocked in the military supply system

"• Patterns of material failure in equipment and repair parts.

Methods are needed to extract this valuable high-level information (knowledge). The use

of automated systems to find new kncwledge is necessary and worthwhile because no

organization can afford the cost of manually examining and analyzing the typical large

corporate database in this pursuit (Smyth and Goodman, 1991, p. 160). Data mining is

the specialized area of machine learning that uses computers to extract knowledge from

databases.

A. DATA-MINING SYSTEMS

The nature of real world databases presents challenges to the data miner:

"* Databases are rarely designed with data mining in mind.

"* Databases commonly noisy, containing erroneous or missing data.

"• Databases often represent only a small subset of the true population about which
knowledge is desired.

"* Databases are typically very large and constantly changing.

"• Databases often represent behaviors which can not be modeled mathematically.

Data mining systems must be robust enough to deal with these challenges and still produce

useful, interesting knowledge.
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Data-mining systems are primarily concerned with three knowledge problems:

classification, association, and sequencing. Classification involves partitning objects in

the database into groups. Actual applications of classification systems include credit

approval and treatment-appropriateness determination. The problem of association

involves generalizing on interesting patterns discovered in the database. The system

attempts to discover and describe knowledge about a specified (target) database field or

attribute in the terms of other (non-target) attributes. Usually, the user is interested in sets

of rules satisfying some specification. Actual applications of association systems include

detection of faults in a manufacturing process and modeling consumer behavior.

Sequencing involves finding connections among temporally ordered data (Agrawal et at.,

1993, p. 915). Figure 2-1 graphically presents this process of knowledge discovery.

Application

User

Data-Bik

base

Discovery Metho

Search,-4,f - Evaluation Discoveredge
~Knowledge\

Pictionary

Domain Knowledge

Figure 2-1. A Framework for Knowledge Discovery in Databases
(Adapted from Frawley et a[., 1991, p. 61)
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Actual applications of sequencing include modeling stock market movements and weather

forecasting. In all cases, the data mining task is to find the patterns with the greatest

utility to the user. Our research addresses only the problem of association. Hereafter, the

term "data-mining system" is used to refer to an "associative system"

B. KINOWLEDGE REPRESENTATION

Discovered knowledge is represented in most data mining systems by one of two

methods: production rules or decision trees. Other representational formats such as

neural networks, semantic nets, and decision lists are occasionally used by data mining

systems but are beyond the scope of this paper.

1. Decision Trees

Decision trees provide a map of the relations found among the data. Ordinarily,

nodes of decision trees are labeled with attribute names, the edges are labeled with

possible values for this attribute, and the leaves are labeled with the different classes o4 the

target attribute. A class is described by the path of nodes and leaves which lead to it

(Holsheimer, 1994 p. 42). Figure 2-2 illustrates a typical decision tree.

Outlook

Sunny Ove st Rain

Humy Windy

High NoralI True F,,alse I

Don't Play Play Don't Play Play

Figure 2-2. Decision Tree (Holsheimer, 1994, p. 42)
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Systems using decision trees are essentially sequential decision algorithms. Trees

must always begin with the attribute associated with the root node and partition the data

into branches based on values of attributes. Systems which use decision tree

representations are not designed to accommodate missing values (Smyth and Goodman,

1992, p. 303). Decision trees "tend to grow very large for realistic applications and are

thus difficult to interpret by humans" (Holsheimer, 1994, p. 42). Decision trees also grow

excessively complicated in the presence of noisy databases (Dhar and Tuzhilin, 1993, p.

930). Most systems that use decision-tree representations implement a pruning

mechanism to offset this tendency to overfit noisy data (Quinlan, 1986, p. 154). Decision

trees may be appropriate if the reasoning process is complex and it is not necessary to

understand the underlying data relationships in order for the results to be useful. Decision

trees are also at an advantage when the results of the data mining system will be directly

input into other computer programs (Frawley et al., 1991, p. 65).

2. Production Rules

Production rules represent relationships between attributes. Production rules

used by data mining systems appear in the form: "If description y Then target attribute

class x" where y is in terms of the non-target attributes.' A degree of certainty or

confidence (the probability of x given y) is usually associated with production rules.

Production rules have the advantage of being familiar and easily understood by humans

(Holsheimer, 1994 ibid.). For example, the knowledge built into expert systems frequently

takes the form of production rules. In some respects, the rules generated by data mining

'Note: this notation convention is the reverse of the traditional: If x Then y.
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systems can be understood and used as machine generated expertise (Smyth and

Goodman, 1991, p. 168). Because of their inherent clarity, production rules are most

appropriate in decision support systems where human understanding of the underlying

relationships between the attributes is necessary to take appropriate action.

Systems using production rules are data driven in the sense that any set of input

data can potentially be used to begin the inference. In addition, rule-based systems can

accommodate missing attribute information. In general, nile-based systems are more

flexible than systems using decision tree structures (Smyth and Goodman, 1992, p. 303).

The use that will be made of the knowledge found by data mining systems should

determine the way the results are represented. The form the representation takes quite

often drives the logic by which the knowledge is derived. Whatever representation the

knowledge takes--decision trees, "If...Then" rules, etc.--users must remember that aly

descriptions of relationships are expressed; the conditions necessary to support causation

may not be present.

C. DATA MINING SEARCH TECHNIQUES

The primary task of a data-mining system is to search for general patterns that

describe the classes of the designated attribute in terms of the other attributes. If each

non-target attri•ute has the same number of discrete states, the maximum number of

possible descriptions for each target attribute class can be calculated as:

- - (2-1)

where m is the number of discrete states aad r is the number of attributes (Weiss and

Hassett, 1991, p. 217). Table 2-1 shows that the possible number of descriptions for all
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classes in the target attribute increases geometrically with the number of attributes or

discrete states. If attributes are represented by non-discrete (continuous) data, the number

of possible descriptions expands without limit. In non-trivial-sized databases, it is normal

TABLE 2-1. NUMBER OF POSSIBLE DESCRIPTIONS

Number of discrete states Number of Attributes

5 10 15 20

2 40 180 420 760

4 480 20,160 131,040 465,120

6 4,320 907,200 21,621,600 167,443,200

for all instances to represent only a small proportion of the potential descriptions.

Evaluating every existing description in the database is the only way to ensure the best set

of patterns is found. This strategy has the disadvantage of generating too many patterns,

many of which are obvious, redundant, or useless (Piatetsky-Shapiro, 1993, p. 5). An

exhaustive search also leads to slow processing (Holshimer, 1994, p. 33). The actual

application must determine whether speed or solution optimality should be the priority.

For example, in a rapidly evolving battlefield situation, a quick response is more important

than finding the optimal solution. On the other hand, if the objective of the data mining

system is to support staff work, (e.g., model the behavior of salaried military physicians in

order to design an incentive system to encourage seeing more patients), time is less critical

than the optimality of the solution. To cope with these challenges, data mining search

strategies are often guided by statistically-based criteria such as the quality functions to be

discussed in the next chapter. Several types of search techniques have been developed to
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find high-quality descriptions about the target attribute classes while avoiding exhaustive

searches of the description space.

1. Traditional Techniques

The two general systematic search techniques used to find the best descriptions

attempt to simulate human reasoning processes and are called "bottom-up" and

"top-down". In "bottom-up" or data-driven techniques, the set of initial descriptions for a

given class consists of all examples in the database for that class. Commonality among the

attributes is sought across the initial set of descriptions. Where commonality is found,

new, more useful descriptions of the target class are created. In "top-down" or

model-driven techniques, the initial set of descriptions consists of the most general rules

possible. Both specialization and generalization operations are then used to produce new,

more useful descriptions. These systematic techniques are implemented either by

"irrevocable" or "tentative" search strategies. Irrevocable search strategies apply a

selected operation until a terminal result is achieved. This can be viewed as pursuing a

hierarchical path that precludes reconsideration of an alternate path once it has been

rejected. Tentative search strategies allow backtracking and therefore may achieve an

improved description, where an irrevocable path might settle on a local maximum. The

tentative strategy is more flexible but requires more computer memory (Holsheimer, 1994

p. 31). Almost all data mining systems appearing in the knowledge discovery literature

use the traditional "top-down" or "bottom-up" techniques.
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2. Genetic Based Learning Techniques

If the search problem can be seen as an optimization problem, systems using

genetic algorithms and genetic programming have been found to be effective at optimizing

on computationally based functions. Introduced by Holland in the early 1960s, genetic

algorithms (GA) imitate the mechanics of biological natural selection. Genetic algorithms

use operations analogous to crossover and mutation in cell division to propagate

modifications of descriptions across iterations (generations). This process is illustrated in

Figure 2-3.

"Initialize and evaluate the population

Yes Output
Acceptable solution found? SolutionNo 4

Replicate selected members

Crossover and mutate

Evaluate new offspring

- Replace old members with new offspring

Figure 2-3. Paradigm of a Genetic Algorithm (Grefenstette, 1993, p. 6)

In the context of data mining, a descriptive statement in a genetic algorithm

appears as a fixed length string of ones and zeroes, where each position in the string
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corresponds with one attribute (i.e., field of the database). A large number ef strings are

generated at random and evaluated for fitness. The quality of the strings, as measured by

a quality (fitness) function, determines which strings will participate in the crossover and

mutation operations.

In Holland's scheme, crossover allowed important building blocks of high fitness to
carry over into the next generation. These formed a base from which the genome [the
set of characteristics encoded as genes for each species] could more successfully
evolve. As these blocks met up with other successful building blocks, the result could
be new and innovative approaches to the difficulties offered by the environment.
Thus the process delivered what Holland thought of as evolution's greatest virtue: its
perpetual novelty in its approaches to maintaining fitness. (Levy, 1992, p. 169)

Genetic algorithms generate high quality descriptions but have less tendency to terminate

on local optima than traditional techniques. Genetic algorithms "outperform traditional

learning techniques, especially when the descriptions that have to be learned are

complex.. .or when no domain knowledge is available," (Holsheimer, 1994 p. 34) or when

the database is noisy (Goldberg, 1994, p. 114).

Building on the base of genetic algorithms, Koza introduced genetic programming

(GP) in the late 1980's.

[Koza's] breakthrough was deciding to identify the units of crossover not as single
characters, or even as lines in a computer program, but as symbolic expressions
(S-expressions) written in the LISP syntax. Made of mathematical functions and
inputs appropriate to the problem, these S-expressions were essentially subroutines,
which were commonly viewed as tree structures. These subroutines could be
successfully crossed over so that in a reasonable percentage of matings, the offspring
computer program would conform to syntax at least as well as its parents did.
Another way of viewing it was that the S-expressions formed tree-shaped
"chromosomes." Crossover was the equivalent of swapping branches. (Levy, 1992, p.
176)
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While genetic programming has been used successfully in the areas of robotics,

game-playing, and discovering mathematical theorems, its value as a data mining

technique has yet to be thoroughly tested. Later in this paper, we describe a piototype

genetic programming system used for data mining. In this system, each "rule" is treated as

a program. The entire parent rule or parts of it can be paired with another parent rule or

rule fragment to produce offspring rules. The programs retain the positive attributes of

rule-based systems and avoid the negative aspects of the decision trees discussed

previously.

D. SUMMARY

The complexity of the task facing the data miner requires robust systems that can

produce useful and interesting knowledge. Ideally, a knowledge discovery system:

"* can deal with very large databases (potentially of terabyte size)
"* can deal with continuous as well as discrete data (Smyth and Goodman, 1992,

p. 301)
"* can deal with noisy datasets
"* searches throughout the search space for general patterns in the data

"* formulates a statement (individual piece of knowledge)
"* evaluates and orders each statement according to the user's criteria for usefulntess
"* determines if the statement should be retained, modified or rejected in the context of

the other statements (Piatetsky- Shapiro et al., 1993, p. 5)
"* presents the knowledge to the user in an understandable format

"• provides results in a time-frame that is satisfactory to the user
"• has a well-designed user interface.

Effective data mining system design must consider which search technique, guidance

mechanism, and knowledge representation will most appropriately produce the knowledge

needed by the user.
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M. KNOWLEDGE DISCOVERY

Knowledge discovery in databases, also known as data-mining, is one of the fastest

growing areas within the field of artificial intelligence. Knowledge discovery has been

defined as "the nontrivial extraction of implicit, previously unknown, and potentially useful

information from data" (Frawley et al, 1991, p. 3). Zytkow defines knowledge discovery,

as the "acquisition of objective knowledge" as distinct from learningwhich is defined as

acquiring knowledge that is already known. Therefore, discovery must precede learning;

once a piece of knowledge is discovered, it can be learned (Zytkow, 1993, p. 7). In this

chapter we review how knowledge is inferred, characterized and quantified. Finally, we

present and analyze several proposed measures of knowledge quality.

A. INFERENCE

We differentiate between data and knowledge. Data is defined as the facts upon

which a reasoning process is based; knowledge is defined as the logical conclusion of a

reasoning process. Databases are collections of facts about objects found in a common

environment. Two basic processes are used to infer knowledge from raw data: deduction

and induction.

1. Deduction

Deduction is the process of reasoning from the general to the particular; that is,

rationally drawing specific conclusions from more general principles which are assumed to

be true. By Zytkow's definition, deduction is "learning." Deduction allows inference of
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specific knowledge about relationships between data elements in the database, much as a

syllogism is constructed. Statistical knowledge such as averages, ranges, distributions,

etc., can also be produced based on deductive reasoning. Traditional expert systems

attached to databases are good examples of systems based on deductive reasoning. The

human expert knowledge base is assumed to be true. The inference engine draws on the

specific knowledge contained in the database to deduce knowledge. Deductively derived

knowledge is provably correct if the data provided and the general principles are correct.

For example, the following is an excerpt from a report prepared by DRAIR

ADVISER, an expert system used by the U.S. Air Force at Tinker Air Force Base, in

response to a request about the performance of a particular high-cost aviation component:

MAINTENANCE DATA (DO56): A total of 175 inherent failures occurred between
JUL 1991 and JUN 1992, which translates into a Mean Time Between Maintenance
Type-I (MTBF-1) of 162 hours. There were no aborts reported. The MTBM-1 trend
shows a decrease of 4.9 hours per month. A total of 332 maintenance actions resulted
in a MTBM-Total of 85 hours. The percentage of inherent failures to total
maintenance action is 52.7%. The retest OK rate (42%) exceeds 8% (Robey et al.,
1994, p. 68).

The expert system uses the definition of Mean Time Between Failures (MTBF) and actual

data in the 1.6 GB database to calculate an actual MTBF for a specific component (Robey

et al., 1994, p. 69). This is a deductive reasoning process.

2. Induction

Induction is the process of reasoning from the particular to the general; that is,

drawing conclusions based on generalized patterns found in the facts. By Zytkow's

definition, induction is "discovery." Data mining is the process of applying inductive
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reasoning to databases of facts. Each pattern is a piece of knowledge, and taken as a

whole these patterns create a model of the database. Knowledge produced by an

inductive system may be consistent with the environment from which the database was

drawn; that knowledge however is not necessarily logically provable in the same way as

deductive knowledge (Yasdi, 1991, p. 298). Because the process of inference by

induction does not require prior knowledge, it is more independent of the user than

deductive systems and therefore more likely to discover knowledge previously unknown

to the user, which is the essence of data mining.

The induction process can be demonstrated by searching for general patterns in

Table 3-1, a hypothetical database of defective F- 14 repair parts.

TABLE 3-1 SAMPLE F- 14 REPAIR PARTS DATABASE

Part Name Airframe Defect Manufacturer

Flight Computer F14-A Seal Broken ABC

Altimeter F14-C Seal Broken XYZ

Heads-up Display F14-A Cracked XYZ

Fairing F14-C Seal Broken ABC

Flight Computer F14-A Seal Broken ABC

Navigation Computer F14-A Seal Broken ABC

airing F14-C Cracked XYZ

Several patterns are obvious which can be stated in terms of the attributes of the objects in

the database:

* 80% of defective parts with broken seals were manufactured by ABC.

* 100% of defective parts with cracks were manufactured by XYZ.

* 67% of defective parts manufactured by XYZ had cracks.

16



Given a real-world database of defective aviation parts such as the one used by the U.S.

Air Force at Tinker Air Force Base, an inductive data-mining system might have identified

an expensive aviation repair part with a high failure rate but only when used in one model

of aircraft. Inductive systems discover the information that no one knows to ask for,

while deductive systems provide data to support the patterns so obvious that someone

decided to analyze them.

B. KNOWLEDGE QUALITY

High quality knowledge is readily understandable, has importance in the context of

the real world, and most importantly facilitates the goal(s) of the user (Frawley et al.,

1991, p. 4). Researchers suggest operationally desirable characteristics of quality

knowledge patterns in the context of "Ify, then x" rules:

* Past predictive usefulness -- the description (y) is a good predictor of the outcome
(x). In probability terms, this is expressed asp(xLy).

* Simplicity of the pattern (Occam's razor)--simpler patterns are more likely to be
correct for data not represented in the database. p(y) is useful as a surrogate for
simplicity (Smyth and Goodman, 1992, p. 305).

* Novelty -- the pattern is previously unknown to the user (Frawley et aL., 1991, p. 4)

* Uniqueness -- the pattern is not redundant (Major and Mangano, 1993, p. 31).
# Complexity -- the pattern cannot be derived through trivial computations (Frawley

et al., 1992, p. 59) and is well integrated with other relevant data (Inmon, 1993).

* Statistical significance -- with some degree of certainty, the pattern does not occur
by chance.

Not every characteristic listed above is important in every data mining application. In fact,

some of these characteristics (e.g., past predictive usefulness and novelty) appear to be in

conflict. Therefore only the user can determine which characteristics of knowledge are

appropriate to the current application.
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Once the user has determined which characteristics are desirable for a given data

mining application, a way must be found to determine if the knowledge discovered reflects

those desired characteristics. To the extent the desired characteristics can be quantified. a

knowledge quality function Q can be formed and used to measure the quality of each piece

of knowledge discovered by the data mining system As discussed in the last chapter, a

quality function is often used by data mining systems to guide the search for quality

patterns.

C. QUANTIFYING KNOWLEDGE QUALITY

1. Common Terms in Knowledge Quality Functions

Most measures of knowledge quality described in the current knowledge

discovery literature are functions of: the probability of a description, p(y); the probability

of an outcome, p(x); the probability of an outcome given a description, p(xl,); and

description complexity. Relative weights can be introduced to reflect user biases about

the desirability of specific characteristics of knowledge quality (Piatetsky-Shapiro, 1991,

p. 231). Several quality functions have been proposed by researchers in the data mining

field. To simplify the discussion, these functions will be stated in probability-oriented

terms:

"* Xis the attribute which is made up of classes (x).

"* x is the specific class within Xthat is to be described byy, or the right hand side
(RHS) of a rule.

"* y is the description of class x to be evaluated, or the left hand side (LHS) of a rule.

"* n is the total number of examples in the source database.

"* p(y) is the probability of the description (LHS) occurring in the database, sometimes
used as a surrogate for description simplicity (i.e., descriptions with few attributes
are the most likely to occur in a database).
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"* p(x) is the probability that any fact (example) in the database is in the class x, or the
a priori value of any rule.

"* p(xWy) is the conditional pro, ility that x will occur given description y, or the a
posteriori value of the rule.

2. Principles of Behavior for Knowledge Quality Functions

Piatetsky-Shapiro proposes three "intuitively correct" principles for behavior of

knowledge quality functions (Q):

• Ifx andy are independent (i.e., p(x4v) =p(x)) the rule is not interesting, and Q = 0.

* Q monotonically increases when p(xLv) increases and other factors remain equal.
This principle indicates a bias toward the characteristic of past predictive usefulness.

• Q monotonically decreases when p(x) increases and other factors remain equal.
This principle indicates a bias towards "rare" outcomes, i.e., those that occur less
frequently (Piatetsky-Shapiro, 1991, p. 232).

Each of the quality fimctions discussed below will be evaluated for compliance with the

three proposed principles. Piatestsky-Shapiro further conjectures that all measures of rule

quality that satisfy these principles will produce the same rules in approximately the same

order (i-.e, sorted on the quality fimction) (Piatetsky-Shapiro, 1991, p. 246). This

conjecture will be tested later in this thesis.

D. KNOWLEDGE QUALITY FUNCTIONS

1. Information Theory

Information-theoretic approaches to quantifying the quality of knowledge were

discussed as early as 1948, when Wiener defined the information content associated with

an event as the difference between the knowledge value before the event and knowledge

value after the event (Frawley et al., 1991, p. 267). Many knowledge quality functions are

based on information theory, where information content is considered

a measure of the freedom of choice with which a message is selected from the set of
all possible messages. The mathematical expression for infor'ition content closely

19



resembles the expression for entropy in thermodynamics. The greater the information
in a message, the lower its randomness, or "noisiness," and hence the smaller its
entropy. (The Concise Columbia Encyclopedia, 1983, p. 409)

The classic equation for the information content of a single piece of knowledge is:

entropy = -p(xl,) * iog2(p(x4y)) - (1-p(xW)) 0 log2(1-p(x4v)) (3-1)

(Quinlan, 1986, p. 151). Figure 3-1 shows that entropy does not comply with

Piatetsky- Shapiro's three principles for quality function behavior because it:

"* isnot zero whenp(xLy) =p(x),

"* does not increase monotonically with p(x jy), and

"* does not vary with p(x).

pn y I

00.6 00

E 0.4

0.2

Figure 3-1. Entropy as a Function ofp(x.y).

2. Rule Interest and (P

Piatetsky- Shapiro proposes two knowledge quality functions, Rule Interest and

c, that satisfy his criteria for the behavior of knowledge quality fimctions. Rule Interest is

offered as the simplest quality function that satisfies his three intuitive principles:

Rule Interest [p(xjy) - p(x) ]p(y)] (3-2)
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(Smyth and Goodman, 1991, p. 163). Rule Interest measures the difference between the

actual number of instances where both the description (y) and the outcome (x) are true,

and the number expected if the outcome (x) were independent of of the description (y).

The standard statistical measurement for the significance of the correlation between y and

x, 0, is the other fimction offered by Piatetsky-Shapiro that satisfies the three principles:

P (p(xly) - p(x)) 0 p(y) (3-3)
M/p~y) p(x) [ 1 -p(x)] 0 [1 -p(y)]

(Piatetsky-Shapiro, 1991, p. 232). Figures 3-2 and 3-3 illustrate how Rule Interest and

0, respectively, vary with p(x4y) for several values of p(x). Rule Interest and 0P comply

with Piatetsky- Shapiro's three principles for quality function behavior. They:

"* are zero when p(xLy) = p(x), so rules without information gain have a value of zero;
"* increase monotonically with p(xLy); and

"• decrease monotonically with p(x).

0.6 Rule Interest.

0.4 p(x) = 0.05

. -.2 p(x) =0.5

p(x) --0.8

0

E

-0.2

-0.4 I I
0 0.2 0.4 0.6 0.8

Conditional Probability p(xly) Note: ply) 0.4

Figure 3-2. Rule Interest for Several Values ofp(x).

21



10

p(x) 0O.05

5
p(x) =0.J5

M ~p(x) =0.8
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Figure 3-3. OPfor Several Values ofp(x).

3. J-measure

Smyth and Goodman strongly support using information theory concepts to

measure knowledge quality (Smyth and Goodman, 1992, p. 304). Their function,

J-measure, is derived from the classic formula (3-1). Entropy is modified to emphasize the

a priori level of information, p(x). The result is called j-measure:

j-measure = pxfrý) 0 log (.I + (1-PO ' logr I-P(Xly)(34px) ) elgI-pXX) (

Smyth and Goodman hold that j-measure appears in the information theory literature as

"tocross-entropy" or "discrimination." J-measure is the product of j-measure and p(y), the

surrogate for simplicity.

J-measure = p(y) * i-measure or (3-5)

J-measure = p(y) o [fp~tv. * log P.ýJ% + (l-pfxj)) o log p~y (3-6)

(Smyth and Goodman, 199 1, p. 163).

22



In theory, J-measure emphasizes the rare outcome, low p(x) more than either Rule Interest

or P. Figure 3-4 illustrates how J-measure behaves with respect to p(xLy) for several

values ofp(x). J-measure:

"* is zero where p(x4v) = p(x), so rules without information gain have a value of zero;

"* does not increase monotonically with p(x4y) over the full range ofp(xLy), but does so
whenp(xv) >p(x);

"* does not decrease monotonically with p(x) over the full range ofp(x[y), but does so
whenp(xjy) >p(x).

0.6 iJ-measure

p(x) =0.05

S 0.4

0.2

p(x) -0.5

0 p(x) =0.8
0 0.2 0.4 0.6 0.8 1

Conditional Probability p(xly) Note: p(y) = 0.4

Figure 3-4. J-measure for Several Values ofp(x).

4. Other Knowledge Quality Functions

Chan and Wong offer another function W for knowledge quality based on

knowledge theory (Chan and Wong, 1991, p. 117):

W = log p(x-o1y) (37)
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W is interpreted as "a measure of the difference in the gain in knowledge when an object

characterized by y is assigned to x and when it is assigned to other classes" (Chan and

Wong, 1991, p. 112). As can be seen in Figure 3-5, Chan and Wong's W function:

* is zero only whenp(xLy) = 0.5, wherep(xLy) =p(x[ noty), and not wherep(x•') =

p(x), so that rules without knowledge gain may have positive values;

* increases monotonically with p(xLv), other things being equal;

* does not decrease monotonically with p(x) because it is not a function ofp(x), so
rules about rare events will probably not be generated.

3 W function3.

2

6 1-

.2
E

-2

-3
0 0.2 0.4 0.6 0.8

Conditional Probability p(xly)

Figure 3-5. Plot of Was a Function ofp(xLy).

The W function satisfies only one of Piatetsky-Shapiro's principles for knowledge quality

function behavior and appears to be limited to the specific purpose of "acquiring

classificatory knowledge from an imperfect database" (Chan and Wong, 1991, p. 110).

Other measures of knowledge quality not based on information theory have been

used by researchers in the knowlLdge discovery field. An intuitively appealing measure is:

Certainty = p(xly) (3-8)
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This concept is also frequently called "strength" or "confidence." Certainty does not

satisfy the first and third of Piatetsky- Shapiro's principles because it is not a function of

p(x). Certainty can meet the first principle if rules with values at or belowp(x) are

excluded.

Table 3-2 summarizes which of Piatetsky-Shapiro's principles for quality function

behavior are satisfied by each function discussed in this section.

TABLE 3-2 SUMMARY OF KNOWLEDGE QUALITY FUNCTIONS

Piatetsky-Shapiro's Principles for Behavior of
Knowledge Quality Functions

Knowledge Quality Zero when Increases with Decreases
Function p(x) = p(xfty) p(x y) with p(x) or p(y)

Entropy No No No

Rule Interest Yes Yes Yes

0 Yes Yes Yes

J-measure Yes No* Yes

W No Yes No

Certainty No** Yes No
Satisfies principle over range p(xLy) > p(x).

*I Principle is easily enforced by disregarding results where p(xýy) <= p(x).

Entropy does not satisfy any of the proposed principles for the behavior of value

functions, while Piatetsky- Shapiro's Rule Interest and (0 functions satisfy all three. Smyth

and Goodman's J-measure satisfies two of the principles; and all three over the range

p(xLy) > p(x). Over the full range ofp(xLb), Certainty satisfies only one of the principles,

and two over the range p(x4y) > p(x).
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E. SUMMARY

Data-mining systems are based on inductive reasoning. In this way, useful and

previously unknown patterns can be brought to our attention that systems based in

deductive reasoning would never discover. Knowledge discovered by data-mining

systems must reflect the nature of the question that the user is attempting to answer. To

facilitate this, a quality function for knowledge can be developed to reflect desirable and

quantifiable characteristics. Enforcement of Piatetsky-Shapiro's principles insures that

discovered knowledge has positive information content and is biased towards predictive

value and rareness.
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IV. TESTING QUALITY FUNCTIONS IN A DATA-MiNING
SYSTEM

A. NAVAL POSTGRADUATE SCHOOL GENETIC PROGRAM

(NPSGP)

The Naval Postgraduate School Genetic Program (NPSGP) is an adaptation of the

Simple Genetic Program in C (SGPC) written by Tackett and Carmi. SGPC is available

via anonymous ftp from the Santa Fe Institute and the University of Texas and is based on

the original LISP code published by Koza in his book, Genetic Programming. NPSGP

modifies SGPC by adding code that implements data mining. Due to the memory

requirements and CPU-intensive nature of this application, the suggested computing

platform for this application is a SUN SPARC- 10 UNIX workstation.

1. Preparing to Data Mine with NPSGP

Several preparatory steps are necessary before NPSGP can be compiled and

executed. First, if not already in that format, the database in question must be converted

to a tab-delimited ASCII file. NPSGP performs best if

* The target attribute is represented by non-continuous (discrete) data.

* The non-target attributes include some represented by discrete classes and some
represented by continuous data.

* All continuous data representing attributes are scaled to the same range. (Appendix
A describes this process.)
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The second step is to put the knowledge quality function into NPSGP terms. This process

is described in the next section. The third step is to modify the parameters used by the

system (in the default.in file). In this way, the user can influence:

"• the maximum number of attributes that can be included in a rule

"* the size of the initial population

"* growth and selection methods

"* how many rules will be printed from each generation.

The maximum number of attributes that can be included in a rule and the size of tL. initial

population may need to be adjusted downward if the memory of the workstation is

overwhelmed. The rules are printed in order of decreasing quality. The reader is referred

to Koza's book, Genetic Programming, for details of growth and selection methods.

Appendix B explains these steps in detail.

2. Writing Quality Functions in NPSGP Terms

Implementing a knowledge quality function in NPSGP requires translating it into

a "fitness function" in C code. Appendix C includes the fitness functions used in this

research. The first step is to identify the fitness function terms equivalent to the

probability-oriented terms defined in Chapter mII. For each rule evaluated, NPSGP

partitions the examples of a database into one of four possible conditions as shown in

Table 4-1. The terms used to express the components of the

TABLE 4-1. CONTINGENCY TABLE FOR EACH RULE

Target Attribute (RHS) is:

True False

Description (LHS) is True a b

Description (LHS) is False c d
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quality fiuctions in the last chapter can now be expressed in the terms of Table 4-1.

Quality fimction and fitness equivalent expressions are shown in Table 4-2.

TABLE 4-2. QUALITY FUNCTION TERMS RESTATED IN FITNESS
FUNCTION TERMS ____

Terms used NPSGP
in Quality Description Fitness
Functions Function

Terms

y the description of target attribute class x in terms
of the non-target attributes, or the left hand side a-+ b
(LHS) of a rule.

x specific class within X that is to be described by y,
or the right hand side (RHS) of a rule. a + c

n total number of examples in the source database, examples

p(V) probability of the description (LHS) occurring in a + b
the database, sometimes used as a stand-in for examples
description simplicity.

p(x) probability that an example is in the class x, or the a + c
a priori value of any rule. examples

p(x y) probability that x will occur given description y, or a
the a posteriori value of the rule. This is also a + b
known as the conditional probability.

"% •er the quality finctions have been replaced with the equivalent fitness function terms,

the fimction must be checked for behavior that would cause errors, such as taking the

logarithm of zero or a negative number. If necessary, the fitness function is modified or

additional programming statements are added to avoid adverse program behavior. Finally,

the fitness fimction must be expressed so that it approaches zero when optimal, because

NPSGP optimizes by minimizing the fitness finction. Table 4-3 shows the fitness
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fimctions for the three quality functions selected for testing. Some additional code was

added so that only rules with positive information gain would participate in the crossover

and mutation operations when the J-measure and Certainty functions were used.

TABLE 4-3. QUALITY FUNCTIONS REPRESENTED IN FITNESS FUNCTION
TERMS

Quality Representation in Fitness Function Terms
Function

Rule Interest 1 - [(a/examples) - [(a+c)/examples * (a+b)/exanples]]

J-measure 1 - (((a+b)/examples) * ((ai(a+b)) * (logl0(a/(a+b))
- logl0((a+c)/examples)) + ((1-(a/(a+b))) * (logl0(l.00l-(a/(a+b)))
- log l0(1-((a+c)/examples))))))

Certainty I - [a/(a + b)], a+b > 500

B. DESCRIPTION OF MUSHROOM DATABASE

The experiments are performed upon a database obtained from the University of

California at Irvine's Repository of Machine Learning Databases and Domain Theories and

is available via anonymous ftp at ics.uci.edu:pub/machine-learning-databases. Schlimmer

donated the mushroom data set, whose attributes include descriptions of hypothetical

samples corresponding to 23 species of gilled mushrooms in the genera Agaricus and

Lepiota (Schlimmer, 1987). Each species is identified as definitely edible, definitely

poisonous, or of unknown edibility and not recommended. Schlimmer combined the latter

class with the poisonous one. The Audubon Society Field Guide to North American

Mushrooms clearly states that there is no simple rule for determining the edibility of a

mushroom (Lincoff, 1981, p. 871).
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1. Size and Attributes

The mushroom database consists of 8,124 examples. In general, the attributes in

the database deal with the characteristics of mushrooms and their edibility. Table 4-4

shows the 23 attributes with their possible discrete states.

2. Necessary Modifications to the Database

Several modifications were needed to the mushroom database to allow the

prototype NPSGP data-mining system to function. First, the discrete data of two

attributes were reformatted with continuous data. As mentioned in the previous section,

NPSGP requires non-target attributes to include some represented by discrete classes and

some represented by continuous data. With the mushroom dataset, it was essential to

represent at least two non-target attributes with continuous data. The authors speculate

that some continuous data are necessary to insure that some randomly generated

descriptions in the initial population match the examples in the database. Gill Spacing and

Ring Number were chosen for reformatting, as these attributes lend themselves well to

continuous descriptors. Second, Gill Spacing and Ring Number were normalized to

range between 0 and 100. NPSGP works best if all continuous data are normalized to a

uniform range. Appendix A describes the reformatting process.
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TABLE 4-4. MUSHROOM DATABASE ATITRIBUTES WITH DISCRETE STATES

Attributes Possible States

Classes Edible, Poisonous, Z

Cap Shape Bell, Conical, Convex, Flat, Knobbed, Sunken

Cap Surface Fibrous, Grooved, Scaly, Smooth

Cap Color Brown, Buflf Cinnamon, Gray, Green, Pink, Purple, Red,
White, Yellow

Bruises? True, False

Odor Almond, Anise, Creosote, Foul, Musty, Pungent, None

Gill Attachment Attached, Descending, Free, Notched

Gill Spacing Close (0), Crowded (50), Distant (100)

Gill Size Broad, Narrow

Gill Color Black, Brown, Buff, Chocolate, Gray, Green, Orange,
Pink, Purple, Red, White, Yellow

Stalk Shape Enlarging, Tapering

Stalk Root Bulbous, Club, Cup, Equal, Rhizomorphs, Rooted,
Missing

Stalk Surface Above Ring Fibrous, Scaly, Silky, Smooth

Stalk Surface Below Ring Fibrous, Scaly, Silky, Smooth

Stalk Color Above Ring Brown, Buff; Cinnamon, Gray, Orange, Pink, Red

Stalk Color Below Ring Brown, Bug Cinnamon, Gray, Orange, Pink, Red, White,
Yellow

Veil Type Partial, Universal

Veil Color Brown, Orange, White, Yellow

Ring Number None (0), One (50), Two (100)

Ring Type Cobwebby, Evanescent, Flaring, Large, Pendant,
Sheathing, Zone, None

Spore Print Color Black, Brown, Bufg Chocolate, Green, Orange, Purple,
White, Yellow

Population Abundant, Clustered, Numerous, Scattered, Several,
Solitary

Habitat Grasses, Leaves, Meadows, Paths, Un an, Waste, Woods

32



3. Rareness of Target Attribute

We cctld not test for rare outcomes without changing the database because the

target attribute in the mushroom database. "Classes" has only two almost equally

distributed states, "Edible" and "Poisonous." To test the ability of the knowledge quality

fimctions to find rare events (i.e., states of the target attribute that occur less often than

most), it was necessary t:v add a new "Rare" state and insure that a good pattern had that

state as the outcome. One high quality rule (i.e., IF Odor ý- None, Then mushroom is

Edible) was observed in the database. The examples supporting that rule were found and

25% (852 examples) were changed from state "edible" to state "z." Table 4-5 represents

the occurrence of the states in the target attribute before and after adding the new class

"z .

TABLE 4-5. RARENESS OF TARGET CLASS BEFORE AND AFTER
CHANGING THE DATA SET

Without Rare Rule J With Rare Rule

edible poisonous z edible poisonous z

4,208 3,916 0 3,356 3,916 852

51.8% 48.2% 0% 41.3% 48.2% 10.5%

C. NPSGP OUTPUT

Figure 4-1 shows how NPSGP presents a rule discovered in the mushroom database

using Rule Interest as the fitness fimction.
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Top 50 of Generation 49
True #1
(IF

(AND
(AND

(NOT
(TWIXT

-263.782806
RING NUMBER
-222.571823))

(NOT
(TWIXT

-0.231361
GILL SPACING
29.317902)))

(NOT
(IN-CATEGORY

RING TYPE
Evanescent )))

(IN-CATEGORY
CLASSIFY
Poisonous ))

Number of records matched by LHS: 3332.000000
Number of misclassified records: 240.000000
Confidence: 0.927971
Validation Fitness= 0.817100

Figure 4-1. A Sample Genetic Programming Rule

As can be seen, even in production rule format, the apparent complexity of the rule

requires some post-processing before the rule is easily understandable. The rule displayed

in Figure 4-1, while appearing complicated is actually:

IF GILL-SPACE is NOT between -0.23 and 29.32 and RING-TYPE is NOT
Evanescent, THEN mushroom is Poisonous.

A worksheet was used to facilitate the collection and comparison of the rules discovered

by NPSGP. The rule in Figure 4-1 is shown in a rule tracking worksheet in Appendix D.
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As mentioned in Chapter III, rule simplicity is considered highly desirable, as simple

rules are considered more likely to be correct for new data not represented in the

database. Overly complex rules are expected to be "overfitted" and unlikely to stand up in

the face of additional examples. Rule simplicity can be enforced within the program or

through the fitness fimction. An automated pruning mechanism similar to those used by

some data-mining systems to prevent overfitting would reduce the human task of

interpreting the rules. However, any automatic simplification of the rules within the

genetic programming process would be extremely undesirable because this simplification

would diminish the diversity of the "genetic material" available for crossover operations

and so diminish the opportunity to escape from local optima. Therefore, manipulation of

the fitness flnction is the best way to bias the system toward discovery of functionally

simple rules.
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V. EVALUATION OF KNOWLEDGE QUALITY FUNCTIONS

NPSGP was used to test the performance of Rule Interest, J-measure, and Certainty

as fitness fiinctions. If each of these knowledge quality functions discovers a distinctively

different set of rules, it becomes possible to choose the most appropriate of them for

different data-mining applications. Worksheets showing the best rules discovered using

the three functions are in Appendix D. Table 5-1 provides some summary statistics about

the rules discovered by the three knowledge quality functions.

TABLE 5-1. SUMMARY STATISTICS ABOUT THE "BEST" RULES

Knowledge Quality Functions

Rule Interest J-measure Certainty

20 best rules 43 exact rules

Average coverage 41.8% 30.3% 15.3%

Minimum number of examples 26.6% 10.6% 7.1%
covered by a description

Maximum number of examples 54.3% 51.2% 26.6%
covered by a description

Minimum confidence: p(x[y) 67.4% 71.8% 100%

Maximum confidence: p(xLv) 100 % 100 % 100 %
'Average coverage is calculated by summing the number of examples matched by

each rule description in a set, dividing by the number of rules, and expressing the
result as a percentage.

If the number of attributes included in a rule is considered a measure of complexity,

Table 5-2 summarizes the complexity of the "best" rules for each of the knowledge quality

functions.
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TABLE 5-2. NUMBER OF ATTRIBUTES USED IN RULES

Number of Knowledge Quality Functions

Attributes Used Rule Interest J-measure Certainty

in Rules 20 best rules 43 exact rules

1 20% 50% 26%

2 40% 35% 67%

3 40% 10% 1 5%

4 0% 5% 2%

To the extent the differences between the sets of rules discovered can be defined, a choice

can be made between them as appropriate knowledge quality functions for future

data-mining applications.

A. CERTAINTY

The Certainty function finds a wealth of rules, many of which are exact rules: e.g.,

rules that predict the outcome without any misclassifications. All exact rules are equally

valued by the Certainty function. Unconstrained, Certainty discovered a very large

number of exact rules, including some that applied to only two or three of the 8124

examples in the Mushroom database. In all, 43 exact rules that applied to at least 500

examples were considered the "best" rules found by Certainty. In general, exact rules that

apply to very large proportions of the database are not particularly interesting because

they are usually quite obvious. Certainty did not find the rule that was introduced in the

database to test for the ability to find "rare" outcomes because its Certainty value was only

25%. The lowest certainty value of the rules output by the program was 70.8%. Only the
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best 100 rules were output from each generation. Presumably, if enough rules had been

output, the planted rule would have appeared.

Certainty is a useful knowledge quality function when the rules discovered do not

apply to either a preponderance or a very small fraction of the examples in the database.

The rules then discovered will be neither obvious nor trivial.

B. RULE INTEREST AND J-MEASURE

Both Rule Interest and J-measure knowledge quality functions are based on

information theory concepts and attempt to discover rules with essentially the same

characteristics. Piatetsky-Shapiro holds that knowledge quality functions which satisfy his

three proposed principles will produce the same set of rules. Smyth and Goodman

counter that the failure to use log functions will undervalue "rare events" and thus result in

different sets of rules (Smyth and Goodman, 1991, p. 163). As expected, the sets of

"best" rules discovered by the functions based on information theory, Rule Interest and

J-measure, are similar in most respects. A few exact rules that apply to most of the

examples in the database were found by both of these knowledge quality functions, but the

other biases built into these functions led them to find other, more interesting rules. Both

functions found the rule that was planted to test for the ability to find "rare" outcomes,

while Certainty did not find this rule. Some differences were also found between the sets

of rules discovered by Rule Interest and J-measure. As displayed in Table 5-1, Rule

Interest and J-measure differ primarily in the average proportion of the database covered

by the respective sets of rules. The descriptions in the rules discovered by Rule Interest all

apply to at least a quarter of the database. The descriptions in the rules discovered by
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J-measure all apply to at least a tenth of the database. Both functions found rules with

descriptions that apply to approximately half of the examples in the database. In general,

J-measure is able to discover a greater range of rules, especially those with descriptions

that apply to a small proportion of the examples in the database. This capacity would

make J-measure a more appropriate knowledge quality function for applications where

unusual activity is an important part of the model to be developed; e.g., modeling

adversary aircraft behaviors. Rule Interest would be valuable where more general patterns

are of interest, such as demand for material stocked in DoD's supply system. The principle

difference between the two functions revealed by Table 5-2 is the complexity of the rules

discovered: J-measure tends to favor very simple rules with only one attribute in the

description, while the bias of Rule Interest towards simple rules is less clear. The

difference between the complexity of rules discovered by the two functions does not seem

large enough to suggest either Rule Interest or J-measure should be preferred based on

this criterion. Both functions generate interesting rules, many of which overlap. If time

allows, both functions might be used to develop a more complete model of a database than

either alone provides.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Performance in many areas of importance to the Department of Defense can be

improved if the underlying patterns of behavior are known. The patterns are there, hidden

in DoD's many large databases. Computer systems using inductive reasoning are essential

to discover this knowledge. This thesis investigates the manner in which data-mining

systems discover useful, interesting but currently unavailable knowledge. A data-mining

system creates descriptions, evaluates them for useflulness, modifies them, and reevaluates

them in an iterative process The set of rules produced by the data-mining system

constitutes a model of the data from which it was derived. Due to the potentially

enormous number of rules, the search and evaluation process is the key task of a

data-mining system

A. CONCLUSIONS

Three knowledge quality functions, Certainty, Rule Interest, and J-measure, were

evaluated. Each has strengths and weaknesses. Certainty is the most intuitively obvious

to the user. Certainty is most likely to find rules that are obvious and in that way reassure

the potential user that the data-mining system is capable of finding familiar, general

patterns. These patterns however, by our definition, are not interesting if they do not add

to the uses base of knowledge. Therefore, other knowledge quality functions should be

used by the data-mining system if new, previously unknown knowledge is to be

discovered.
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Rule Interest and J-measure are successful at discovering new and interesting

knowledge. Both are based on information theory, so there is a large overlap in the

characteristics of the rules they find. Both functions find exact rules with wide

applicability. Both functions find rules with rare outcomes and high information gain.

J-measure discovers rules that apply to a smaller proportion of the examples in the

database than does Rule Interest. J-measure also tends to discover simpler rules than Rule

Siitei est.

Choice of a knowledge quality function for a data-mining system should be based on

the application. If the purpose of data-mining is to discover rules about rare events such

as adversary submarine behavior, J-measure would be the preferred knowledge quality

function. Rule Interest would be the preferred function for applications requiring

knowledge about general but not exact patterns of behavior. Such patterns are useful to

support procurement and stocking material held in the military's supply system, for

example. Certainty would be the most appropriate knowledge quality fimction if

knowledge about alternative payoffs is desired; for example, this type of knowledge can be

used to support decisions -,bout utilization of resources such as medical treatments and

education.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

Several areas are candidates for further research based on this study. First, the

knowledge quality functions should be validated against actual DoD databases from

several functional fields. The databases tested should be of increasing size, both number

of examples and number of attributes, eventually testing databases of terabyte size with
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millions of examples and hundreds of attributes. This line of research would provide

realistic insights about the actual value of data mining to DoD. Second, additional

research is needed in the area of termination criteria. This is a well-known problem in the

knowledge discovery field. Possible termination criteria are:

"* Terminate when a time limit is reached.

"* Terminate after a certain number of iterations is completed.

"* Terminate when the increase in the total value of the rules discovered drops below a
given threshold.

A third potential area of research is to use NPSGP to discover better knowledge quality

functions.
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APPENDIX A: NORMALIZING CONTINUOUS DATA

NPSGP will typically work only as well as the quality of the attributes firom which it

is trying to generate a rule. If continuous attribute extremes vary widely in the search

space, e.g., 10 and 10,0000, the random numbers generated by NPSGP may not be able to

converge. A method of normalizing continuous attributes over a uniform range is

described in Table A- 1.

TABLE A-I DATA NORMALIZATION

1 7 2 3 4 5 6

A Original Data Normalized Data
B Range Low 1 1 0 Range Low 0

C Range High 1000 20 2 Range High 100

D 50 5
E 100 10

F 500 50
G 1000 100

LOTUS 123 Equations for Normalized Data:
Cell B4 ((B3-$B$2)/$C$2)*$C$6
Cell C4 ((C3-$B$2)/$C$2)*$C$6
Cell D4 ((D3-$B$2)/$C$2)*$C$6 etc.
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APPENDIX B: NPSGP USERS MANUAL

A. NPSGP PREPARATION

Default settings may be made using a UNIX command line editor "Vi", "emacs", etc.

to modify the NPSGP source code.

1. default.in

Default configuration of the default random seed, checkpointfrequency,

population size, number of rules reported, etc. Figure B-I illustrates default.in.

seed = 579482
checkpoint frequency = 1
population-size = 2000
max depth-for new-trees = 6
max depth_aftercrossover = 12
maxmutant depth = 4
growmethod = RAMPED
selection-method = FITNESSPROP
tournamentK = 6
crossover func_pt_fraction = 0.2
crossover anypt fraction = 0.2
fitnesspropjreprofraction = 0.1
parsimony factor = 0.00000
numberreported = 50

Figure B-1. Sample NPSGP Default File
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2. setup.c

The last line of source code in setup.c provides assignment of the initial random

constants for floating point generation. The range of this floating point is critical in

generation of continuous variables in the initial population. Figure B-2 illustrates the line

of code and editing points to establish this constant.

{ return ((GENERIC)random float(10.0) - GENERIC)0.0);

Figure B-2. Initial Random Constant Floating Point

3. fitness.c.

Two sections of fitness.c require modification prior to NPSGP execution. They

are number of examples/tuples in database and Quality Function Selection.

Fitness.c also contains additional code to force NPSGP to produce rules under

bounds established by the authors. Comment out these penalty functions if unconstrained

program is desired. A listing of fitness.c with explanation of the additonal code is found in

Appendix C.

B. COMPILING NPSGP

The TAB delimited ASCII file must be converted to a C-structure for use by NPSGP.

Procedure as follows:

1. perl definepl carsl.tab, Converts the data rile.

2. make, Compiles the NPSGP source code.
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C. EXECUTION OF NPSGP

Execute NPSGP with command, gpc 1 50 none 4 > test. out&.

1. nice gives secondary priorty to gpc program

2. gpc execute command

3. 1 - specifies the number of populations

4. 50 number of generations to run

5. ntqte default.in file

6. 4 seed number

7. file_nametout - redirects the output to file_name.out

8. & runs the program in background

D. TRACKING NPSGP OUTPUT

1. Documentation of runs.

Documentation of each run is a necessity when running multiple runs with

multiple fitness function on multiple databases. Table B- I illustrates a run tracking sheet.

2. Visualize output.

The UNIX command tail -f filename directs gpc output to the screen. This

allows the user to visualize and verify the output of the program
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TABLE B-I. NPSGP RUN TRACKING SHEET

•I Database Name
2 Date/Time Start:

3 UNIX PID (command: ps -lax)
4 Ifate/Time Finish:

6 Filename.out

7 Database -------- mu
8 Fitness Function -- jmin

9 Date ----------- 730
10 UNIX Machine ---- in21O_
I I*** To Start GP *
12

13 gpc 1 50 none > filename.out&
tail -f filename.out

16*** Before You Start *

17 Name database = carsl.tab
Is pen define.pi carsi.tab

19 make

20

21 fitness.c

221 tUples =

23 fitness function =

24

25 structure.c

261 Change RHSy to Problem Field I____

271

28 default.in

S]population size

30 number of rules

31 setup.c

32 random_ float(10.0) - (generic)O. 0);
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APPENDIX C: FITNESS FUNCTIONS

/* a+b = number of total matches
c+d = number of total mismatches
a+c = number in category
b+d = number out of category

*/

if(i >= 0)
lasti = i;

totmatch ÷= a+b;
ife(a = 0) Prevents consideration of rules where
result = 10000000; RHS = LHS is always false.

else

ifr(a(a+b) <= (a+c)/tuples) Prevents consideration of rules without
result = 10000000; positive information gain.

else

if((a+b) <= 500) Prevents consideration of rules that
else apply to less than 501 examples/tuples.

/* J-measure *1
/* { result = 1 - (((a+b)/tuples) * ((aI(a+b)) * (loglO(a/(a+b)) - loglO((a+c)/tuples)) +
((1-(a/(a+b))) * (log 10(1.00 1-(a/(a+b))) - log 1 0(1-((a+c)/tuples))))));

} */

/* Rule Interest *
/* result = 1-(((a/(a+b))-((a+c)/tuples))*((a+b)/tuples)); *1

r* Confidence*/ Quality functions are commented out if
result = I -(aI(a+b)-. 00 1); not to be used, e.g. /* comment*/.

return(result ); Confidence quality function is selected

for this run.
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APPENDIX D: RULE TRACKING SHEETS
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