
Form ApVproved

FT77 REPORT DOCUMENTATION PAGE I OM NO. 0704-01A 8
A r• Jlt •#•lmm .a .m. pr •memvrg~ r~ersponse mncvungm Ifrne fr re~WQnginat•Jnscuse ati1ngeoming dat

/.,tlL~f"-Ar~tJ•,,NN,' collecti~mm v~on of nforonadon..sthis b.,~nurden, esdador anAD-A 285 493_ '_ggWQ•i1=n9 forEduEng his burden. to Washingto=nI-le".r = Directorate for In.oUneflon

I 1111 11 ~l) 1111111111)111111 RT DATE 3. REPORT TYPE AND DATES COVERED
Technical 920601-940531

5. FUNDING NUMBERS

The Small-scale Structure of Dispersing Clouds in the Atmosphere C - DAAL03-92-C-0020

6. AUTHOR(S)

R. Ian Sykes, Robert S. Gabruk, and Douglas S. Henn
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
The Titan Corporation
Titan Research & Technology Div.
P.O. Box 2229; A.R.A.P. Report No. 7 10
Princeton. NJ 08543-2229 ',,,. i . -. 0 ..

9. SPONSORING/MONITORING AGENCY NAME(S) AND AD 10. SPONSORING/MONITORING
EPA Z AGENCY REPORT NUMBER

U.S. Army Research Office ,. , cv,,
P.O. Box 12211 I:
Research Triangle Park
NC 27709-2211 .-.
11. SUPPLEMENTARY NOTES 01W..
The views, opinions and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy, or decision, unless so designated by other
documentation.\\

12a. DISTRIBUrT, AVAILABILIrY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 worfs)

The fractal properties of a plume dispersing in a turbulent velocity field have been examined using Large-Eddy
Simulation results for neutral and convective boundary layers. A fractal generation technique has been
developed that correctly matches a specified mean and variance distribution for the plume. The spatial
correlation scale of the fractal realizations can also be specified, and the one-point probability density function
can be chosen as clipped normal or lognormal. Realizations generated with the fractal technique show
reasonably close resemblance to the LES results.
The small-scale structure of the plume is further analyzed using multifractal techniques, and a the generation
methodology is extended to incorporate unequal partitioning of the random variance during the refinement
process. This procedure corresponds to the localization of small-scale energy in the turbulent cascade process
which leads to an intermittent dissipation field. The multifractal spectrum of the dissipation field can be
adjusted to match observations and the LES calculation results. The visual appearance of the dissipation field
from the fractal/multifractal model is much more intermittent than the fractal realization, and the concentration
field shows more localized small-scale fluctuations. These features give better correspondence to the LES
realizations.

4. SUBJECT TERMS 15. NUMBER OF PAGES

Atmospheric dispersion Turbulence
Fractals 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-280-5500 i - . Standard Form 298 (Rev.249)

Prescntbed by ANSI STA. 239-18
298-102

-- r•,9



A.R.A.P Report No. 710

The Small-scale Structure of Dispersing Clouds in the
Atmosphere

R. I. Sykes
R. S. Gabruk
D. S. Henn

The Titan Corporation
Titan Research & Technology Div.
P.O. Box 2229
Princeton, NJ 08543-2229

Army Research Office

CONTRACT No. DAAL03-92-C-0020

July 1994



SUMMARY

The fractal properties of a plume dispersing in a turbulent velocity field have been
examined using Large-Eddy Simulation results for neutral and convective boundary
layers. Scalar concentration isosurfaces were found to have a fractal dimension of about

1.3 from a two-dimensional plume cross-section, consistent with atmospheric and

laboratory results. A fractal generation technique has been developed that correctly

matches a specified mean and variance distribution for the plume. The spatial correlation

scale of the fractal realizations can also be specified, and the one-point probability density
function can be chosen as clipped-normal or lognormal. Realizations generated with the

fractal technique show reasonably close resemblance to the LES results.

The small-scale structure of the plume is further analyzed using multifractal

techniques, and a the generation methodology is extended to incorporate unequal

partitioning of the random variance during the refinement process. This procedure

corresponds to the localization of small-scale energy in the turbulent cascade process
which leads to an intermittent dissipation field. The extended fractal/multifractal model

maintains the fractal isosurface properties, but also yields a multifractal dissipation field

consistent with laboratory observations. The multifractal spectrum of the dissipation

field can be adjusted to match observations and the LES calculation results. The visual

appearance of the dissipation field from the fractal/multifractal model is much more

intermittent than the fractal realization, and the concentration field shows more localized

small-scale fluctuations. These features give better correspondence to the LES

realizations.
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1. INTRODUCTION

The dispersion of material in the atmosphere is a chaotic process, due to the

turbulent nature of the wind field. Molecular diffusivity is very small, and contaminants

are transported by the local wind, which induces distortions into the evolving

concentration field. The stretching and shearing motions of the turbulent wind field

produce an increasingly complex concentration field, and eventually cascade the scale of

the variations down to the smallest sizes where molecular diffusivity is effective. The

detailed structure of a dispersing plume of material is therefore highly convoluted, and
the smooth Gaussian shapes predicted by most dispersion models are only relevant to

long term or ensemble averages.

Many applications of atmospheric dispersion modeling are concerned with short-

term or near-instantaneous concentration measurements. An example is the obscuration

l~oblem, where the ability to see through an obscurant cloud depends on the

instantaneous distribution of material. Long-term averages are not an appropriate

measure for this problem, since the 'average' cloud does not exist at any jistance in time.

Instead, we need to characterize the random fluctuations in the cloud to determine the

probability of obscuration. We may also need to characterize the temporal and spatial

variations of the obscuration, if the duration and extent of periods of visibility are

important factors. Other examples where the small-scale statistical structure is important
include the dispersion of highly toxic materials, where short-term exposure can cause

serious health effects, and chemically reactive dispersion, where interaction between

species can occur on very fast timescales and is determined by very localized conditions.

The preceding discussion has introduced the notion of an instantaneous cloud as a
random field with complicated structure on all scales down to the molecular mixing scale.

This random nature of a dispersing cloud or plume has long been recognized by

atmospheric dispersion modelers, and attempts to represent the phenomenon were

initiated by Gifford (1959) using the meandering plume concept. Model validation was

one of the principal reasons for the study of the statistical fluctuations, since the

inherently unpredictable variation in an observed concentration can mask any model

errors or differences between models (Fox, 1981). However, direct interest in short-term

concentration values for assessing either toxic effects, flammability limits, or visibility

estimates has also prompted recent research in this area (e.g., Durbin, 1980; Fackrell and



Robins, 1982a.b; Sawford and Hunt. 1986; Dinar et al., 1988; Chatwin and Sullivan,

1990; Mylne and Mason, 1991).

Gifford's (1959) model only accounts for the large-scale, meandering motions

which move the entire plume in a coherent fashion. These motions are a major

contributor to the variance in the concentration close to the plume source, but the

meandering plume model neglects the small-scale fluctuations entirely. A practical

methodology for predicting the total concentration fluctuation variance was developed by

Sykes et al. (1986) under the sponsorship of the Electric Power Researchi Institute (EPRI).

The basis of the modeling is second-order turbulence closure, and the variance prediction

has been incorporated into a Gaussian plume and a Gaussian puff model. The model

development is described in a series of reports by Lewellen et al. (1988).

For some applications, a prediction of the variance or one-point probability

distribution function is insufficient. In order to represent the visual appearance of a

plume, for example, a complete realization of the instantaneous concentration field as a

function of time and space is necessary. The one-point information is an important part

of the fluctuation description, but a more complete representation of the spatial and

temporal structure is needed. Some useful information is obtainable from photographic

data or other experimental measurements (Sreenivasan, 1991), but complete quantitative

descriptions are very difficult to obtain. A complementary data source is numerical

simulation, and the Large-Eddy Simulation (LES) studies of dispersing plumes by Sykes

and Henn (1992) and Henn and Sykes (1992) provide detailed results on the three-

dimensional, time-dependent behavior of a plume dispersing in a neutral and a convective

boundary layer, respectively.

While LES provides a complete description of the instantaneous plume over the

range of resolved calculation scales, the technique demands large computational

resources since the flow dynamics must be computed in addition to the plume dispersal.

A more practical scheme is required that can utilize the statistical information from an

ensemble average prediction to generate realistic spatial and temporal variability without

explicit dynamics. The most appropriate description of the turbulent field geometry is in

terms of fractal structures, which embody the self-similar characteristics of the

Kolmogorov inertial range and have been extensively applied to turbulent flows, e.g.

Sreenivasan and Meneveau (1986), Prasad and Sreenivasan (1990a,b), Lovejoy and

Mandelbrot (1985).
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The objective of the study reported here is the development of techniques for

generating representations of dispersing plumes that properly describe the random small-

scale structure of the fluctuating concentration field. Fractal geometry provides the

framework for analyzing and constructing the complex random fields; we analyze the

LES plume data of Sykes and Henn (1992) and Henn and Sykes (1992), and incorporate

the information into new fractal generation methods. We should emphasize that our

objective in generating a fractal plume realization is.not simply to adjust parameters of a

fractal model to obtain a field similar to an atmospheric plume, but rather to develop a

methodology that can utilize the quantitative predictions of models such as that described

by Sykes et al. (1986). We therefore require a fractal field that is consistent with a

predicted mean concentration, the fluctuation variance, and a spatial/temporal correlation

scale. In addition, the generated realization should match the statistical structure of the

small-scale variations as closely as possible, and the fractal analysis of the LES fields will

be employed to determine the important characteristics of the small scales. Section 2

describes the results of the analysis and the development of a fractal generation technique

based on a recursive or iterative refinement.

Recently, much research on random fields has focused on the multifractal nature

of singular quantities such as energy dissipation (e.g., Meneveau and Sreenivasan, 1987).

The concept of a fractal is actually only applicable to a set of points, as distinct from a

continuous field, and is generally applied to isosurfaces or contour levels. This does not

provide a complete description of the entire concentration field, and there is evidence that

the fractal properties may depend somewhat on the choice of level (Lane-Serff, 1993).

The multifractal definition is based on a functional description and therefore gives a more

complete description of a field, but the definition is couched in terms of the singularities

of the field and describes the measure of the sets of spatial points where the function

displays a particular rate of divergence as the sampling scale is reduced. This is clearly

appropriate for dissipation fields, which are concentrated in very small regions when the

Reynolds number is high and the molecular diffusivity is very small. In Section 3, we

discuss the multifractal properties of the dispersing plume and incorporate some of these

properties into the fractal generation model. The extended fractal/multifractal model

gives an improved representation of the small-scale plume structure and in particular

provides a proper dissipation field.

Section 4 describes the application of our fractal generation methodology to the

animation of a plume. The time-dependence can be considered as an independent

3



dimension, similar to the spatial dimensions, but the localized nature of the generation
technique allows the realization to be constructed locally in time. This avoids the
requirement that the entire time series be pre-computed and stored before display.
Instead, storage is only needed for the spatial field, which is modified as time is
advanced. The small scales are modified more rapidly than the large scales and the
proper fractallmultifractal is preserved. This technique could form the basis of a real-
time display with relatively small storage requirements. Concluding remarks are
presented in Section 5.
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2. FRACTAL ANALYSIS AND REPRESENTATION

As a preliminary step towards a realistic description of a turbulent plume in the
atmosphere, we have examined some simple fractal field generation methods to
determine their consistency with known plume characteristics. The detailed description

of this work is included as Appendix A to this report and is briefly summarized here.
Fractal geometry has been used to analyze turbulent fields in several contexts

(Sreenivasan and Meneveau, 1986; Prasad and Sreenivasan, 1990a,b; Lovejoy and

Mandelbrot. 1985). and provides a natural method for describing the self-similar nature of

the turbulent cascade process. The characterization of scalar isosurfaces in terms of
monofractal properties is imperfect, but is a reasonable step toward a more general

approach. Fractal fields can be generated with the appropriate degree of complexity and
spatial structure and can be used to produce 'cloud-like' fields (Lovejoy and Mandelbrot,

1985). Our objective here is not simply to produce a visual image reminiscent of a

dispersing plume, but rather to generate a 'realization' that is statistically consistent with a

given plume and can therefore be used for quantitative analysis.

We have also analyzed the LES (Large-Eddy Simulation) plume calculation data

of Sykes and Henn (1992) and Henn and Sykes (1992), which provide a number of time-
dependent, three-dimensional 'realizations' of the instantaneous plume. The numerical

results have previously been analyzed to obtain statistical measures such as concentration

moments, spatial and temporal correlatiors, and one-point probability distribution

functions, and these parameters will be required for a fractal generation scheme. We

performed fractal dimension analyses of the concentration fields in these 'realizations' in

order to quantify a fractal description of the LES plumes. Perimeter-area relations and

box counting methods were utilized, and the dimension of a concentration contour in a

two-dimensional cross-section was found to be roughly 1.30 - 1.35 using the two
different estimation methods. This is slightly smaller than observational estimates from

natural clouds.

We next examined techniques for generating a fractal field with the correct

ensemble mean and variance values. A simple method for producing a random fractal
realization was demonstrated, giving either a 'clipped-normal' probability distribution

(Lewellen and Sykes, 1986) or a lognormal probability distribution. The recursive
refinement technique was adapted to provide a consistent representation of the mean and
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variance of an inhomogeneous concentration field. The interpolation methodology of the
standard method was replaced by a randomized pulse approach to obtain a good match
with the ensemble statistics. It was found that the concentration statistics were modified
by the interpolation step, which gives the concentration value on the successively refined
grid before the addition of the new random component. The interpolation effectively
reduces the local variance, since it averages two random numbers, so the ensemble
statistics of the realizations becomes increasingly inaccurate as each new level of grid
points is added. The randomization of the pulse position in the new method avoids the
implicit averaging problem and gives correct ensemble statistics for inhomogeneous

fields, such as a dispersing plume. The fractal generation scheme can be used to generate
a concentration field with the desired fractal dimension and accurate ensemble mean
moments of first and second order; the scheme also requires the specification of a spatial
correlation scale as the outer scale for the fractal field.

Finally, we compared the characteristics of the fractal-generated plume cross-
sections with the LES realizations. The application of the resulting technique using
ensemble statistics produced reasonably good 'realizations' of the LES plume.
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3. MULTIFRACTAL ANALYSIS AND
REPRESENTATION

The representation of a concentration field, which is a function of space and/or

time, as a fractai is known to be incomplete since fractal concepts strictly only apply to

sets of points. The generation technique described in Section 2 (and Appendix A)

produces a concentration field with the appropriate mean and variance and also with

isosurfaces that exhibit the correct fractal dimension. Recently, the multifractal concept

has been introduced to characterize the behavior of intermittent fields such as the energy

dissipation. The definition of a multifractal involves the functional behavior of the field,

and therefore gives a more complete description than conventional fractal analysis. The

fractal fields generated by the methods of Section 2 were therefore analyzed to determine

their multifractal properties and compared with those of the LES realizations and

laboratory data. The detailed description of this work is given in Appendix B, and is

summarized here.

We analyzed the pseudo-dissipation field from the fractal realizations, defined as

the square of the concentration gradient, for comparison with the observational data on

true scalar dissipation fields. The scalar pseudo-dissipation field derived from the fractal

generation scheme of Section 2 fails to exhibit the intermittent, multifractal behavior

observed in experimental measurements of scalar dissipation fields (Prasad and

Sreenivasan, 1990b). The homogeneous nature of the random pulse addition gives small

scale energy everywhere with the same likelihood. Since the gradient operator

emphasizes the smallest scales, we find a dense distribution of dissipation peak- rather

than intermittent spikes. The mmltifractal analysis shows that the dissipation field is

essentially monofractal, that is the multifractal spectrum consists of a single point.

We therefore generalized the fractal model to produce a multifractal dissipation

field while maintaining the simple fractal nature of the scalar field. Noting that a simple

binomial multiplicative cascade process produces intermittent distributions and has been

shown to agree well with measurements of turbulent kinetic energy dissipation

(Meneveau and Sreenivasan, 1987), a model was constructed which randomly allocates

variance unequally in a fixed ratio to successive levels of refinement. The unequal

partition of the variance as the cascade proceeds concentrates variance in localized

regions and actually produces a multifractal distribution of the variance. Since the scalar
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field is made up of a summation of random pulses from many refinement levels with

decreasing variance, it is dominated by the larger scale structures that contain most of the

variance. The fractal behavior of the concentration field is maintained since the average

variance at each iteration level is still controlled by co-dimension, H, and, hence, the

power spectra is unchanged. The fractal behavoir of the scalar field remains unchanged

since the total variance at each level is still controlled by the given codimension.

However, the gradient operator involved in calculating the pseudo-dissipation field

emphasizes small scales. In fact, the summation of pulse gradients diverges, so that the

pseudo-dissipation field becomes highly intermittent and exhibits multifractal behavior.

The partition parameter can be chosen to match observational dissipation data, while the

concentration field still exhibits the appropriate fractal isosurface behavior. An important

feature of the model is that it is still completely local and may be applied to

inhomogeneous fields.

Idealized time series were generated with the new fractal/multifractal model using

clipped-normal and lognormal distribution, to define the pulses. An analysis of these

show that the resulting multifractal spectra agree very well with the (assumed) universal

spectrum derived from measurements of turbulent jets and wakes, even though the

pseudo-dissipation fields from the two distributions are somewhat different in character.

Analysis of LES neutral boundary layer plumes shows that the pseudo-dissipation fields

reveal multifractal behavior, although the scaling range is limited. Application of the

fractal/multifractal model using the LES statistics yields plumes realizations which are

similar in appearance to the LES realizations. The fractal dimensions of plume

isosurfaces from the LES and model are close (1.36 and 1.30 respectively); the model

dimension is unchanged from the simple fractal model results given in Section 2

(Appendix A). The LES multifractal spectrum is close to the model and experimental

spectra, although it may indicate less intermittency in the LES pseudo-dissipation fields.

However, given the uncertainty resulting from the small scaling range, the match with the

presumed universal spectrum is reasonably good.
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4. SCALAR FIELD CONSTRUCTION FOR
ANIMATION

A fractal animation model has been developed which simulates the time evolution

of scalar fields in one, two, or three dimensions. This animation model is simply an

extension of our successive refinement technique by considering time as an independent

dimension. In this fractal animation scheme, 'time pulses' are generated in addition to the

spatial pulses' of the static fractal models.

Consider a one-dimensional fractal generation. In the static model we add

random pulses on successively smaller spatial scales with appropriately scaled variance.

The location of the pulses is randomized in order to give an accurate representation of the

scalar field variance. The method has also becn adapted for inhomogeneous fields and

provides either clipped-normal or lognormal one-point probability density functions. The

concentration field, c(x), can thus be written schematically in the form

c(x) = F + I I ani P(x- xni) (4.1)
n i

where the overbar denotes the ensemble average, n is the refinement level, and i is the

range of overlapping spatial pulse functions that contribute to the concentration fluctuation

at the location x. The spatial pulse function, Pn (x - x,i) , with width A and centered at

xi, is defined in one dimension as

P(x-xo) = Ix- Ix-xol<A (4.2)
0o, IIx-xol>_A

The pulse amplitude ani is chosen randomly from a Gaussian distribution with zero mean

and standard deviation a., where, an = 2 -nH ao. The constant H controls the fractal

dimension of the generated field. Now, consider time as an added dimension. The local

concentration can now be written

C(X,t) = 0 + aX aiP(x - Xni 1"(t - tnm) (4.3)
n i m

where m is the range of overlapping time pulse functions at a given iteration level n. The

time pulse function, T(t - t,,n), with width A, at time to is defined as

9



SIlI,-olIt-to1 <A
T(t-to) = I A I A, (4.4)0 it-,to1_. A,

This process can be envisioned as a one-dimensional field sweeping through static

time pulses. At each new instant in time, time pulses are interpolated as they lose or gain

influence on the field. Consider iteration level n, with time pulses of half-width

An, = 2-n, A0 . Once the field has moved through a time An,, an older time pulse loses its

influence on the concentration field and a new time pulse gains influence. At any given

time, only three pulses affect the field since the pulse centroids fall within An, while the

width of the pulses is twice An. Therefore, it is only necessary to store three time pulses

at each level of iteration, and the summation of overlapping time pulses is carried out

over only three pulses.

The animation technique is easily extended to higher dimensions by using the

product of spatial triangular functions for each dimension as well as the time pulse

function. Theivefore, for two dimensions we have

c(x,y,t) = F + XXX janijmP(x - xni)P(y - ynj)T(t - tnm) (4.5)
n i j m

where y is the second space coordinate and j is the corresponding range-of overlapping

pulses.

Real plumes generally have some mean flow translation and large scale

meandering along with time evolution. Translation is created by adding a further

extension to our simple animation procedure, namely using a mean flow velocity to move

the streamwise spatial pulse locations downstream. Accordingly, at each time step, new

streamwise pulses are created at the domain origin to replace the pulses that move

downstream. Unfortunately, accounting for large scale meandering is not a simple task

and a complete procedure has yet to be established.

10



5. CONCLUDING REMARKS

The instantaneous structure of a plume of material dispersing in the atmosphere is

a random field with detailed structure on a wide range of scales. The self-similar nature

of the turbulence spectrum suggests a fractal description of the scalar concentration field,

and Large-Eddy Simulation results for a plume in both a neutral and a convective

boundary layer have been analyzed to determine appropriate fractal properties. It is

found that the LES concentration isosurfaces exhibit a fractal dimension in general

agreement with atmospheric observations of water and smoke clouds.

Using a combination of the successive refinement and random pulse techniques,

we have developed a method for generating a fractal field with given statistics. The

method adds successively smaller scale triangular pulses with random amplitude and

random location. The scale of the pulse is halved at each refinement, and the amplitude

variance is reduced appropriately. Ensemble mean and variance as well as the spatial

correlation scale can be specified arbitrarily and the one-point probability distributions

can be specified as clipped-normal or lognormal. The realizations generated using this

technique will be consistent with the given statistics.

The fractal generation technique was generalized to incorporate a multifractal

aspect in the small-scale fluctuations. It was shown that an unequal partition of the

variance during the refinement process yields a multifractal dissipation field but

maintains the fractal isosurface properties. The resulting realizations are much improved

as representations of a turbulent plume, and the small-scale variations are correctly

localized in regions of intermittent dissipation.

We have developed a technique for representing the instantaneous structure of a

dispersing plume. The technique requires the specification of the mean and variance of

the concentration field, as well as the spatial correlation scale, and the realizations will be

consistent with the given statistics. The statistics can be inhomogeneous, so that the

plume can be localized in space, and the technique can be efficiently implemented for

animation purposes since the pulses are defined in real space and time and only need to

be considered locally. The generation method can therefore be used with a dispersion

model such as that of Sykes et al. (1986) to produce a representation of a complete plume.

11



While much progress has been made in developing techniques for representing the

instantaneous structure, there are several areas for further investigation. First, we are

currently restricted to a choice of clipped-normal or lognormal statistics for the

concentration fluctuations, while observations and numerical simulations show

intermediate distributions between these two. Early time meandering plumes and plume

edges tend to be intermittent and close to a clipped-normal distribution, while the plume

interior far downstream from the source is closer to a lognormal distribution. The

transition between the two probability distributions needs to be characterized and a

generalized representation technique needs to be found to improve the fractal realizations.

The second area for future research is in the representation of large scale

coherence and spatial anisotropy of the fluctuations. The early plume often contains a

meandering component, where the entire plume is moved coherently by the large eddies.

The plume also exhibits different characteristics in the streamwise and transverse

directions. The techniques described in this report are essentially isotropic, and give the

same characteristics on all scales. One can imagine a technique that modifies the simple

triangular pulse shape to describe different spatial structures, but it is far from clear how

to specify the appropriate shapes for a given plume. Further research is needed to

characterize this behavior and develop appropriate representation techniques.

12
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