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Abstract c,,IlI1 11111111
If an observer is moving rigidly with bounded rotation then normal flow measurements (i.e., the spatiotemporal
derivatives of the image intensity function) give rise to a constraint on the oberver's translation. This novel
constraint gives rise to a robust, qualitative solution to the problem of recovering the observer's heading direction,
by providing an area where the Focus of Expansion lies. If the rotation of the observer is large then the solution
area is large too, while small rotation causes the solution area to be small, thus giving rise to a robust solution.
In the paper the relationship between the solution area and the rotation and translation vectors is studied and
experimental results using synthetic and real calibrated image sequences are presented. This work demonstrates
that the algorithm developed in (Horn and Weldon 1987) for the case of pure translation, if appropriately
modified, results in a robust algorithm that works in the case of general rigid motion with bounded rotation.
Subsequently, it has the potential to replace expensive accelerometers, inertial systems and inaccurate odometers
in practical navigational systems for the problem of kinetic stabilization, which is a prerequisite for any other
navigational ability.

1 Introduction the following five numbers: the direction of transla-
tion (, -K) and the rotation (wo, iv, wz). (See Figure

The problem of passive navigation has attracted a lot 1 for a pictorial description of the geometric model
of attention in the past ten years (Bruss and Horn of the observer; 0 is the nodal point of the eye).

1983; Longuet-Higgins 1981; Longuet-Higgins and The problem has thus been formulated as the gen-

Prazdny 1980; Spetsakis and Aloimonos 1988; Tsai eral 3-D motion estimation problem (kinetic depth

and Huang 1984; Ullman 1979) because of the gen- or structure from motion) and its solution would

erality of a potential solution. The problem has been solve a series of problems (for example target put-

formulated as follows: Given a sequence of images suit, visual rendezvous, etc.) as simple applications.

taken by a monocular observer undergoing unre- In this paper we study the problem of passive nay-

stricted rigid motion in a stationary environment, to tio in the fm ork of pup sive nai-

recover the 3-D motion of the observer. In partic- monos 1990a; Aloironos 1992). Our basic thesis is

ular, if (U, V, W) and (w,, way, w,) are the transla- that we must seek a robust solution for the prob-

tion and rotation, respectively, comprising the general lem under consideration only. If our proposed solu-

rigid motion of the observer, the problem is to recover tiondfr tepsivenation problem solve
tion for the passive navigation problem also solves

the problem of determining the 3-D motion of an
*This work was funded in part by ARPA, ONR, NSF (under a object moving in the field of view of a static ob-
Presidential Young Investigator Award, Grant IRI-90-57934), Al- server, then we have solved a more general prob-
liant Techsystems, Inc.. Texas Instruments, Inc., and Sony Coqro- lem than the one we initially considered. In ad-
ration. Thanks to Sara Larson for her expert help in preparing this dition, the technique has qualitative characteristics.
paper, to Zoran Dudc for performing the experiments, and to the

anonymous reviewers whose comments significantly improved the For an example of qualitative approaches to visual
manuscript. motion problems, see Burger and Bhanu (1990),
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Y puting optic flow or displacements (correspondence)
is ill-posed and any algorithm for computing them

V Imust rely on assumptions about the world that might
A / not always be valid. There is no doubt that research

Vi on the topic will continue and will shed more light on
the difficulties associated with the general problem of
3-D motion computation.

0 W wIn the second category, direct methods attempt to

A f- focalI z recover 3-D motion using as input the spatiotempo-
U length/ ral derivatives of the image intensity function, thus

getting rid of the correspondence problem. These
techniques were pioneered in (Aloimonos and Brown
1984) for the case of pure rotation and developed
much further by Horn and his associates (Horn and

Fig. 1. Image plane perpendicular to the optical axis OZ. Weldon 1987; Negahdaripour 1986; White and Wel-
don 1987) for the case of translation only. Recently

Francois and Bouthemy (1990), Thompson and Kear- Fermfiller addressed the general case (unrestricted
ney (1986), Thompson and Painter (1992), Tistarelli rigid motion) (Fermuiller 1993b) by discovering geo-
and Sandini (1992), Weinshall (1990), Weinshall metric constraints on the normal flow signs that take
(1991), Zisserman and Cipolla (1990), and Fermuiller the form of global patterns in the image plane. Here.
(1993a). we treat the bneral problem but for the case where

the rotation is bounded. When this paper was under
2 Previous Work review it came to our attention that the same result

was developed independently in (Blake, Murray, and
Previous research can be classified into two broad cat- Sinclair 1992).
egories: methods based on optic flow or correspon-
dence and direct methods.'

In the first category, whose uniqueness properties
are well understood (Faugeras and Maybank 1990), 3 Kinetic Stabilization
under the assumption that optic flow or correspon-
dence is known with some uncertainty, finding the Consider a monocular observer as in Figure 2.
best solution results in a non-linear optimization prob- We assume that the observer moves only forward
lem. One develops an error measure (usually a func- (see Figure 3).4 It is assumed that the observer is
tion of the input error) that is minimized in some equipped with inertial sensors which provide the
way. Treating the problem as one of statistical esti- rotation(wr, wo, &w.) of the observer at any time. As
mation has given rise lately to very sophisticated ap- the observer moves in its environment, normal flow
proaches. Although such research on general recovery fields are computed in real time. Since optic flow due
is making tremendous progress, the existing general to rotation does not depend on depth but on image
recovery results cannot yet survive in the real world, position (x, y), we know (and can compute in real
because small amounts of error in the input can pro- time) its value (uR, VR) at every image point along
duce very large errors in the output (Spetsakis and with the normal flow.' That means that we know the
Aloimonos 1988; Horn 1990; Young and Chellappa normal flow due to translation (see Figure 3a). In
1988; Weng, Huang, and Ahuja 1987). Although it other words, since we can derotate, we assume that
is true that if a human operator corresponded fea- the normal flow is due to translation only. In later sec-
tures in the successive image frames,2 most of these tions we analyze the case where rotation is present.
algorithms would give practical results, it is highly When the observer moves forward6 in a static scene,
questionable that these algorithms could be used in a it is approaching anything visible in the scene and
real time navigational system, when an average of 1% the flow is expanding. From Figure 3b, it is clear that
input noise is enough to create an error of 100% in the focus of expansion (FOE) = (-L, -) (when the
the output, and especially when the problem of com- gradient space of directions is superimposed on the
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image space) lies in the half plane defined by line (c); This linear inequality in ., , (i.e. the FOE) con-
thus every point in that half space receives one vote strains the FOE to lie on one side of the line normal to
for being the FOE. Clearly, at every point we obtain (f,, fy). The contribution of this paper is to show that
a constraint-line which constrains the FOE to lie in a this simple constraint intersection technique, when
half plane. If the FOE lies on the image plane (i.e. the appropriately modified, works even in the presence
direction of translation is anywhere in the solid sector of rotation.
OABCD (Figure 4)) then the FOE is constrained to
lie in an area on the image plane and thus it can be 4 The Algorithm
localized (see Figure 5). When the FOE does not lie
inside the image, a closed area cannot be found, but We assume that the computation of the normal flow,
the votes collected by the half planes indicate its gen- the voting and the localization of the area containing
eral direction. By making a "saccade", i.e. a rotation the highest number of votes can be done in real time.
of the camera, the observer can then bring the FOE In this paper we don't get involved with real time
inside the image and localize it (Figure 6 explains the implementation issues as we wish to analyze the the-
process). oretical aspects of the technique. However it is quite

An algebraic way to derive the same constraint clear that computation of normal flow can be done in
(Horn and Weldon 1987) is as follows: If f(x, y, t) real time (there already exist chips performing edge
is the image intensity function, then we have fu + detection). According to the literature on connection-
fyv + f, = 0, where u, v is the flow. If we only ist networks (Ballard 1984), voting can also be done
have translation (or we know the rotation), then in real time. Let S denote the area with the high-

we get f.(_ + fy (.!w)+f, 0 or est number of votes. Let L(S) be a Boolean function
0 > z that is true when the intersection of S with the imagef &(x_ - R+fyw (y_ - )+f, = 0and if" > 0,

_ _ _ boundary is the null set, and false otherwise. Then,
( X (x -) + fy (Y - If, < 0. the following algorithm finds the area S, i.e., solves
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Fig. 3. Given the normal flow a" and the rotational flow aR at a point O(x, v). and given that the projection of the sum UR + a, on W i
should equal 0". we concude that the transitional flow is OD where D is anywhere on (E2)- Clearly, in such a case, the focus of expassio ,
lies on the half plane defined by (E) that does not contain it. This statement is equivalent to the following algebraic inequality (Horn aid
Weldon 1987). If f(x, y, t) is the image intensity function, then we have fxu + fyv + f, 0, where u, v is the How. If we only hmae
translation (or we have rotation), then we get fý + fy((-'+-) + f, = o or , (x - + f, (y - + f, = and if

> 0. (f. (x - .) + t, (y - W))/if < 0. However. thinking in terms of normal flow due to translation is as in Figure 3b, the FO!
must lie in the half plane (dotted line) of (c). But this assumes that the flow a can be arbitrarily large, which is absurd. If there is a bound
on the flow, then the FOE is constrained further (Figure 3c).

the passive navigation problem. We assume that the y
inertial sensors provide the rotation and thus we know B
the normal flow due to translation, (U V, W)

1. begin {
2. find area S
3. repeat until L(S)
4. { rotate camera around x, y axes so that

the optical axis passes through the X
center of S (saccade) D

5. find area S
Fig. 4. Consider the camera coordinate system. If the translation

6. output S vector (U. V, W) is anywhere inside the solid OABCD defined
by the nodal point of the eye and the boundaries of the image, then
the FOE is somewhere on the image.

If the camera has a wide angle lens, then image
points can represent many orientations, and only one 5 Analysis of the Method
saccade (or none) may be necessary. But if we have
a small angle lens, then we may have to make more We have assumed that the inertial sensors will provide
than one saccade. the observer with accurate information about rotation.
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Fig. 5. (a) From a measurement of ai of the normal flow due to translation at a point (x, y) of the image, every point of the image belonging
to the half plane defined by (c) that does not contain ii is a candidate for the position of the focus of expansion, and collects one vote. The
voting is done in parallel for every image measurement. (b) If the FOE lies within the image boundaries, then the area containing the highest
number of votes is the area containing the FOE. Using only a few measurements can result in a large area. Using many measurements (all
possible) results in a small area (in our experiments a small area means a few pixels, usually at most three or four).

Although expensive accelerometers can achieve very It can easily be shown (Koenderink and van Doom
high accuracy, the same is not true for inexpensive 1975; Maybank 1985) that
inertial sensors and so we are bound to have some
error. Thus we must assume that some unknown ro- r' - (1)

tational part still exists and contributes to !he value of R RJ
the normal flow. As a result, the method for finding 1 7_ ]
the FOE (previous section) which is based on transla- T -tf + - (tF - F) 6 X 7
tional normal flow information (since we have "dero- f

tated") might be affected by the presence of some Thus, the translational flow is
rotational flow. In this section, we study the effect
of rotation (the error of the inertial sensor) on the P,=iE_7f )

technique for finding the FOE. R f
In order to avoid artificial problems introduced by while the rotational flow is given by

perspective distortions in the case of a planar retina
and to simplify the formulas without loss of general- uR -w x r.
ity, we employ a spherical retina. Let a sphere with
radius f and center 0 (Figure 7) represent the spher- Without loss of generality we can set f = 1.
ical retina (with 0 the nodal point of the eye) and a At this point we define two quantities that will
coordinate system OXYZ attached to it. be of use later. They are r = -- , which is related

Let ORll

to the time to collision, and k = I•kR = II lir,
1it I

= (X, Y, Z) be a world point which represents the effective ratio of rotation and
translation.

and The geometry of the spherical projection is then
given in Figure 8. It has been shown (Nelson and

F = (x, y, z) be its image on the image plane. Aloimonos 1988) that a full (360') visual field sim-
plifies motion analysis. However, what we usually
have is just a piece of the surface of the sphere (due

SThen to a limited field of view). Consider then that the im-
age (the part that we see) is projected on the surface

' r, =lI a1 = •patch S. Obviously, voting for the estimation of the
= R FOE can be performed for all points on S.
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Fig. 6. (a) If the area containing the highest number of votes has a piece of the image boundary as part of its boundary, then the FOE
is outside the image plane (see 6b). (b) The position of the area containing the highest number of votes indicates the general direction in
which the translation vector lies. (c) The camera ("eye") rotates so that the area containing the highest number of votes becomes centered.
With a rotation around the x and y axes only, the optical axis can be positioned anywhere in space. The process stops when the highest
vote area is entirely inside the image.

5.1 Principles of Voting

Consider

ri = (x, y, z), a point in S,

fi = (nn, nv, nz), the image gradient direction

at point F,,

ri = ai = (us, Uy, uz), the flow at point ii, and

u = (hi -ii) ii, the normal flow at Fi.

Fig. 7 Then (see Figure 9) if•F = (x, y, z) is a point in S, a

feature point F, will vote for ; being the FOE (direc-
tion of translation) iff 41 (F - Fi) < 0 (see Figure 9).
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Case 1: S' does not intersect the border of S, in
which case the FOE is in S'.

Case 2: S' touches the border of S, in which case the
FOE could be outside of S.

It should be clear that if there is no rotation, then S'
""- will always contain the FOE or give the direction of

the FOE-i.e. the direction towards which we need
to rotate. The size of S' depends on the distribution
of features.

In the sequel we investigate the performance of
:*.. voting scheme in the presence of rotation. In
?articular we ask how large area S is when rota-

t1on is present. It will be shown that this depends
on ihe angle 0,o, between the direction of translation
and the axis of rotation as well as on the rotation-to-
translation ratio k. In particular, 0, distorts area S'
and k enlarges it as it grows. The rest of the paper

Fig. 8. quantifies this interaction.
Before we proceed with the analysis we introduce

a natural coordinate system that greatly simplifies the

calculations.

5.2 A Natural Coordinate System

Z Since spherical projection is symmetrical we can
I .i choose a coordinate system that facilitates our analy-

sis. We defih a new orthonormal coordinate system
with unit vectors t, ". " = J, = k (defined by

Figure 10):

r
o I,
0

Fig. 9. t 0)

If V[F] represents the number of votes collected
at point F, then it is easy to see that car

whereax' a
l,x>0

UW) = 0, x :_ 0

Let S' = JFlVr'ES, V[F]>_V[Pr'] be the setof e

points that have acquired the maximum number of
votes. There are two cases: Fig. 10.
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t and

n- u, =--sm,,• Cosa
R

any unit vector such that

I ax -or = 0 otherwise. " = -(5 x 7 )i cosa - ( x •)•sina

S= '5' x. Also,

In spherical coordinates we get - x >) = (Wxr)U,

" = IIji (00, 0 1) Out u

io= llciol1(0,sinOý,cosOý) _ ~X~~ +

7 = (cos W, sin 0,, sin ro, sin Or, Cos 0L)
So, _ "( • ± = -llo31k sin 0,, cos €,So, tl

= (0,0, W) := Wk for some W and

= (0,BC):=Bj + C, for some B and C. X
=((0B)(kCB)

Similarly, we define a coordinate system (k, ,x) Ikxrll

which lies on the plane tangent to the sphere at point - -sinO, r 3lI[cos5,OsinGr-sinOwcos0,sin,
i = (x, y, z). This tangent plane is spanned by the sinO,

vectors
so that

A• = t] and AQ= Ik x '" with At • f = 0. A "Ua = V111[- cos 0, sin0, sin a
+ sin90, cos 6, sin q0 sinac - sin O~ cos Par cosc•]

Any flow vector lies on the tangent plane; there-

fore it will be a linear combination of vectors uit and
-. 7

Now we are ready to express normal flow in the 5.3 Correctness of Voting in the Presence of Rotation
new coordinate system. Consider a feature with gra-
dient direction The normal flow (as well as actual flow) is very small

= cos a + jsin a in the region close to the FOE, and in the directions
close to orthogonal to the directions of the flow. Con-

The translational normal flow is sequently, even when only translation is present, in
order to avoid inaccuracies that might arise in the es-

cos ao +insina) = timated direction of the normal flow-numerical ma-

nipulation of very small quantities is unstable-we
= cos a + nW, • usin a = Il,11 cos a. are going to discard any normal flow whose mag-
Ilull nitude is less than some threshold T,. Later, it will

Also, turn out that choosing this threshold greatly facili-

(.tates the geometrical analysis of the technique. Con-

( 1lte + - 2(F r))2 12 sidering an actual flow a at a point A (see Figurer R2  R2  11) we can compute the locus of gradient directions
ii along which the normal flow (i.e. the projection of

11tH sin0, a on A) is bigger than the threshold T,. In Figure 11
- R they are all directions inside angle BAC defined by
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the rotational flow is

S- "I RI : -S IIURII = IIHRII = I1 x niI == I lijl " Ilill • I sin(Zio, i)I :S I1io11

P POThus if we choose T, = ll~ll, then the sign of -a.
(actual normal flow) is equal to the sign of if,.

- (translational normal flow) for any normal flow of
U. MST, magnitude greater than T,.

5.4 The Geometry of the Solution Area

The introduction of the threshold T, into our analy-
sis has a beneficial side-effect, since this constrains
"the possible gradient directions at every point where
we can vote. As a consequence we can estimate the

Fig. II. size of the smallest possible area that we might find
as a solution. We need to caution the reader that in
the case of pure translation the solution area (the area
containing the FOE) contains the uncertainty area (the

Po arccos Z- for 4- < 1, or there are no such area where the values of the normal flow do not al-

directions for Z- > 1. low voting to be performed). However, when rotationHull is present then the solution area, in general, does not
We now develop a condition that needs to be sat-

isfied in order for voting at a point to be correct in contain the uncertainty area. The reason for this is that

the presence of rotation. points far away from the position of the FOE might

Voting will clearly be correct only if the direction constrain the solution area more than the uncertainty

of the translational normal flow is the same as the area does. The following two sections quantify this

direction cf the actual normal flow, that is when analysis.

The Case of Translation Depending on the thresh-
S• •,)(ii • i) > 0 (2) old T,, there is a point closest to the FOE for which a

feature (normal flow) can be registered. It is obtained
In addition, since we consider only normal flows when

greater than threshold, we need - s os = (5)

Rlh' -a > T, (3)
It is obvious that for 0, smaller than some threshold

Inequality (2) becomes 0ro (5) never holds; for 0, = 0,, (5) holds only for
a = 0, when O,. grows this cone of directions for A

(gradient) or range of a's grows and for 0, - it
(4) reaches Jal E [0, -. - 0,j] if the R's are the same at

= (h iI) 2 + ( )(A ii R) > 0 both points.

This increasing range of a's for increasing 0r can
So, if we set IA - URl = T, then there are two be viewed as an increasing density of features (fea-

possibilities: either I1 • 41 is below the threshold, in tures are registered only for c's in the cone). But it is
which case it is of no interest to voting, or the sign of easy to show that feature points Fi with increasing 0
h u is the same as the sign of A -i. In other words, will vote for some points with 0 > 0, and will vote
if we can set the threshold equal to the maximum for some points with 0 < O0,. This happens when for
value of the normal rotational flow, then our voting a > 0 the FOE constraint line gets slanted. The effect
will always be correct. But at point i of the sphere is shown in Figure 12.
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simply means that the solution area (i-e. S') on the
sphere will always be closed and contain the FOE.
Its size, however, could be large if the distribution of

FO features is not favorable. In addition, if voting is done
only on a surface patch S (a limited visual field). S'
could be open.

The Case of Nonzero Rotation In the presence of
a rotation, voting will still yield a closed area on the

sphere which can in general be larger. Here %ke study
properties of the shape and size of the solution area
Due to the use of threshold T, = IJt,-,I- points in an
area around the FOE will not be used for voting. The
size and shape of the solution area will depend on the

Fig. 12. angle 0,, between tand (_ and the threshold 1i = 11(7, J.

We first consider the case where t and )Ij are parallel.

Using spherical trigonometry (the law of sines) Then the normal flow is given by (see Section 5.2)

(Kom and Kom 1968) for triangle AB (FOE), we
get 71 -=sin ,ft cosaO - T_(, sin a]

siny =sinP sin 0, (6) [

Since fi is normal to great circle 1. we have Now we find the angular distance 6,,, between the

a + I = - and (6) becomes FOE and the closest point to it on the sphere that can
vote, i.e. the ckmest point with normal flow equal to

sin y = cos a sin 0,, (7) T, = I1•11. It is clear that the point closest to the FOE

The normal translational flow is given by that can vote is the one at which the maximum pos-
sible normal flow is equal to T,. Maximum normal

1 t11sin 0, cos a flow is obtained when the direction of the gradient
R is the same as the direction of the actual flow. That

And so, setting Iii, -il = T, and using (7), we
find the most restrictive voting, i.e. the smallest pos-
sible y:

siny = R = sin 0, (8) FOE

We prove here that the voting function V[F] (intro-
duced in Section 5.1) is non-decreasing on any great
circle, as we move from the south to the north pole
where the FOE is assumed to be.' To remind the
reader, voting at a feature point r' increases by one
the votes of every point in the northern hemisphere9  A
(see Figure 13, defined by the great circle normal to
the gradient at the feature point ;i. Consider a great
circle SA(FOE). All points on the arc SA receive
zero votes, while each point on A (FOE) receives
one vote. Consequently, since each voting process

can only increase the votes, the number of votes is
non-decreasing as we move closer to the FOE. This Fig. 13.
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happens for the angle a for which IIfla = Uk11 will change its shape in the same way. If
the flow increases, the border cf the uncertainty area

.f = ino, cos,, - iIIsinal will shrink closer to the north pole (FOE) and if flow
I R Jdecreases, it will stretch the border away from the

is maximized, i.e. for north pole
It happens that with growth of 0,, and I1o'I1 this area

Yo = - arctan R stretches away in direction W x 7 and it shrinks in the
kIlt / opposite direction. The exact shape of the area for a

Thus, the angular distance 0, obeys given io. 7 and R = R(V. 0) can be computed numer-
ically (the border is defined by Ila 11-= Ila, + aRI1 =

71 a sin0, '1 cos - Ilolsinao 1 Ilioll). The effect of the change in shape of the area
.=n R - is as if the FOE moved in the x - z plane (ýo, = 0).

or Again, if the area were not completely closed (was
intersected by the image patch S). the solution area

tan 0 = -ltU (with maximum voting) would not be closed If the

area were in the image, feature points outside it would
As was said before, if the uncertainty area is not further constrain the area which contains the FOE be-

contained in the image, then the solution area will not cause of the slant of the FOE constraint lines in each
be closed; otherwise things depend on the distribution feature point. Figure 14 demonstrates graphically the
of features, and any feature point might further con- evolution of the uncertainty area for different values
strain the solution area more, as was shown in Figure of 9,, and k. Each figure is produced by projecting
12. every point of the northern hemisphere on the plane

The rest of this section describes various proper- tangent to the north pole (FOE) with the south pole
ties of the solution area as the relevant parameters as the center of projection (stereographic projection).
vary. Figure 14(a) shows the evolution of the uncertainty

If 0, = 0,, then a = 0,, (Figure 12) and the con- area for k = 0.25 and 0.< = 0. 1, 1, ', with the un-
straint line (circle) will come as close as y to the certainty area centered for 0, = 0, and completely
FOE where offset for 0,, = I (with all other values in between).

siny = sin0,, sinfi = Similarly. Figures 14(b) and 14(c) show the same re-

= sin ,0 sin(M- - a) = sin 20,, suits for k = 0.5 and 0.75, respectively.

If. however, a 0 0, (we might even have a =

as the cone of normal flows around the flow grows The Case of Dominant Rotation Although the tech-
(Figure 11), this constrains the area around the north nique described in this paper was derived to solve the

pole (FOE) even more. Unlike the case of transla- problem of kinetic stabilization it turns out that it has

tion only, voting further restricts the FOE when fea- general applicability. It can be modified to handle the
ture points are moving away from it and the area for case of dominant rotation with translation.
which voting is maximum becomes smaller than the For the case of pure rotation and a spherical retina
uncertainty area. On the other hand, if L x t # 6 but the optical flow will correspond to vectors tangent to

iv = (0, B, C), things become unsymmetrical around the circles around the axis of rotation i,. The point at

the FOE. Using the already-defined coordinate sys- which the axis of rotation passes through the image

tem Oxyz, j) is defined by I1eoI1, Vt., = 1 (the analog will be called the AOR. If there is circular optical

of (p,-see Figure 10), and 9,,. flow in the image (due to pure rotation) the center
When the angle 9,. becomes greater than zero and of all the circles is the AOR. If we take an arbitrary

acquires a small value, a subtle change in the uncer- optical flow vector iR at the point ;i then we can say

tainty area occurs. The flow values at the points on that a point ; is a candidate for the AOR if

the border of that area increase or decrease depend- (;j x 9R); < 0.
ing on their positions. Since flow is continuous in i,
the point or points for which #;J = ff•1 will stay This inequality expresses the fact that the feature
close to the border. The effect is that the borderline point and the flow vector at the point span the plane p
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Fig. 14. (a) The evolution of the uncertainty area for k = 0.25 and 19. 0. 1, with the uncertainty area centered for ,, 0. and

compleely offset for 0., -- - (with all other values in between). (b) The same results for k = 0.5. (c) The same results for k = 0.75.

which cuts the sphere in two hemispheres where one passing through (xi, Yi) and parallel to (u, v). Fur-

contains all possible candidate points for the AOR thermore, they all lie on the line normal to (u, v) and

(and all of them satisfy the previous inequality). Fur- originating at (xi, Yi). In other words candidate points

thermore, all possible positions of the AOR lie on (x, y) for the AOR satisfy the inequality

the great circle which is normal (on the sphere) to

the great circle which is the intersection of the plane ((uV,v 0) x (x - xi, y - Yi, 0))(0, 0, I) < 0.

p and the image sphere. In other words if we replace

4R with the normal flow i" the inequality will still This inequality indicates that the z component of the

hold. vector product of the optical flow vector and the dif-

Very similar reasoning applies in the case of a flat ference of the candidate AOR point and the feature

retina (perspective projection). Given an optical flow point must be negative. As in the case of a spherical

(u, v) at the feature point (xi, yi) all possible candi- retina this holds even when the optical flow (u, v) ins

date points for the AOR are on the right of the line replaced by the normal flow (u#, v0). As was done
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in the case of translation, voting can be performed.
Points with maximum votes are candidates for the
AOR. If a minimum is sought then the opposite direc-
tion will be found. ;f the area is closed then the AOR
is localized as before; otherwise its general direction
will be indicated by the area with maximum votes.

An analysis (on a spherical retina) similar to the

one performed for the case of dominant translation
can be performed again. This time, however, the
threshold should be set to T, = r = -_-. If the mag-

11tIIt
nitude of the normal flow is greater then T, then it
must have the same sign (and direction) as rotational
normal flow.

When iv and " are parallel the angular radius of
the uncertainty region is equal to ,0t where cot r0 =

SR. The difference in the angular radii of the un- X
iPll

certainty areas around the FOE and the AOR is that Fig. 15. Sphere OXYZ iepresents aspherical retina(frame OXYZ

the tangent is replaced by the cotangent. When 0,, > 0 is the frame of the observer). The translation vector " is along the
the uncertainty area around the AOR changes shape z axis and the rotation axis lies on the plane OZY. Although a

in a similar manner as the uncertainty area around the spherical retina is used here, information is used only from a patch

FOE. It extends in the direction c x T with the growth of the sphere defined by the solid angle FOV containing the view-
ing direction Vd (defined by the two angles 0 and g--see Figure

of 0,, and gets closer to the AOR in the opposite di- 10). The spherical image patch is projected stereographically with
rection. center S' on the plane P tangent to the sphere at N'. and having a

natural coordinate system (t, r?). All results (solution areas, voting
functions, actual and normal flow fields) are projected and shown

6 Experimental Results on the tangential plane.

We have performed several experiments with both
synthetic and real image sequences in order to demon-
strate the stability of the method. From experiments Figures 16 to 20 show one set of experiments. Fig-
on real images it was found that in the case of pure ure 16 shows the optic flow field for 0,, = 0', viewing
translatien or pure rotation the method computes the angles (0, tp) = (00, 0W), Rmin = I' and Rmax = 20 in
Focus of Expansion or the Axis of Rotation very ac- R_+, _

curately. In the case of general motion it was found units of focal length, 1,7k1= =, k 2

from experiments on synthetic data that the behav- 0.1 and FOV = 56'. Figure 17 shows the corre-
ior of the method is as predicted by our theoretical sponding normal flow. Similarly Figures 18, 19 show
analysis. optical and normal flow fields for the same conditions

as before with the exception that k = 0.75 which is
obtained by growing IIi4II. Under the above viewing

6.1 Synthetic Data conditions, the FOE as well as AOR is in the center
of the image. Figure 20 shows results of voting for

We considered a set of features at random depths determining the FOE. In the first column thresholding
(uniformly distributed in a range Rmin to Rmax). precedes voting, with T, = 1l1ItIf, and in the second
The scene was imaged using a spherical retina as column there is no thresholding. In the first row, only
in Figure 15. Optic flow and normal optic flow the area with the maximum number of votes is shown,
were computed or the sphere and then projected while in the second row the whole voting function is
onto the tangent plane (see Figure 15). Normal flow displayed (black is maximum). Clearly, the solution
was computed by considering features whose orien- is a closed area (except for the biggest k) whose size
tations were produced using a uniform distribution, grows with k.

AAL
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Figures 21 to 25 show the second set of exper-
inents. The only change from the first set is that
FUV= 106'. The FOE is in the center of the image. ,' "' .--. . ""i ,'
The uncertainty is quite small due to bigger field of " (-_
view. This was predicted in our analysis. se/o,- " .. ", '!/; " , .- .-

Finally, Figures 26 to 30 show the third se-f. ,"i.
experiments. The change from the first set is that ' . A ' W - i• " -• \\

k = 450. As was predicted the solution area gets . -

distorted and for bigger fl611 it becomes open. In case - - / ,
when there is no thresholding before voting (second L -A " 4 i -" :" "'
row) this appears as shift in the estimated position of
the FOE. Fig. 22.
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Thresholding No Thresholding 6.2 Real Data

Figure 31 shows one of the images from a dense se-
quence collected in our laboratory using an American

k= 0.75 Merlin Robot Arm carrying a miniature CCD Sony
TV. camera and translating along the camera's opti-
cal axis (Figure 32). Figure 33 shows the last frame
of the sequence and Figure 34 shows the normal flow
field obtained. Finally, Figure 35 shows the first frame
with the solution area (where the FOE lies), which
agrees with the ground truth.

k = 0.5 Figure 36 shows the first from a series of images
acquired and made public for the IEEE 1991 Work-
shop on Motion by NASA Ames Research Center.
The cam, :a is moving forward (FOE = (232,240),
which is in our images (4 times reduced) in the mid-
dle of the white area of the Coca-Cola can). Figure
37 shows a normal flow field acquired from this se-

k = 0.25 quence and Figure 38 shows the solution area. Figure
39 shows the solution area superimposed with the first
frame, which contains the actual solution.

Figure 40 shows the first of a series of images col-
lected by the University of Massachusetts at Amherst
and made public for the IEEE 1991 Workshop on Mo-
tion. The camera was mounted on a robot arm. The

= 0.1 upper arm of the robot (shoulder to elbows) is ap-
proximately along the viewing direction. The lower
arm (elbow to gripper) is normal to the upper arm
(90 deg.). The camera is traveling along the circle
centered at the elbow and the axis of the camera is
parallel to the upper arm. Since the scene is 5-10m

away the effect is one of the rotation about the axis

Fig. 30. parallel to the viewing direction and small transla-
tion normal to it (FOE at infinity, dominant rotation.
k approximately equal to 0.1. Figure 41 shows the
last frame of the sequence. Figure 42 represents the
normal flow estimated using frames 3, 4 and 5. Fig-
ure 43 shows the results of voting for the position
of the AOR and Figure 44 shows the position of the
AOR superimposed on the first frame.

The above experiments produced very good results
(actual solution always inside the solution area) be-
cause there was either dominant translation or dom-
inant rotation. The experiment below demonstrates
noisy results for the FOE and the AOR because trans-
lation and rotation have about the same proportion on
the image) 0 Figure 45 shows the first from a series of
images of a box rotating around a vertical axis passing

Fig. 31. through the middle of the up-face, and collected by

j
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Fig. 35. 
Fig. 38.

Fig. 36. Fig. 39.
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the University of Massachusetts at Amherst and made .••• ,.,. t' '"Tf."., ,, /
public for the 1991 Workshop on Motion. The box is " " "- / :"... ;t
rotating around the shaft. To compare our algorithm's

results with ground truth we need to understand the L ---"-----

object's motion in a camera-centered coordinate sys-
tem. Since there is a distance between the box and Fig. 42.
the camera of 6W0 mm. (lie t,.,,i uiion prcuu,ýcl ...
by the box's rotation is equivalent to the motion pro-
duced by a general motion of the observer, consisting
of both rotation and translation. The axis of rotation ...;::
is parallel to the shaft pointing downward and the
translation is along a circle centered at the shaft with
radius 600 nun. The circle lies on a plane normal
to the shaftL and the direction of translation is to the
left side (with the FOE at infinity). In this case rota-
tion and translation are of about the same proportion
(k -= 1) and thus the results for both the FOE and
the AOR are noisy. Figure 46 shows the normal flow
field obtained from the first three images of the se-
quence, and figures 47 and 48 display the solutions
for the FOE and the AOR respectively, superimposed Fig. 43.

on the original image.

7 Conclusions

A technique was presented for computing the di-
rection of motion of a moving observer using as
input the normal flow field. In particular, for the
actual computation only the direction of the nor-
mal Hlow is used. We showed theoretically that the
method works robustly even when some amount of
rotation is present, and we quantified the relation-
ship between time-to-collision and magnitude of ro-
tation that allows the method to work correctly. It
has been shown that the position of the estimated Fig. 44. -

S->

\, l ~ ikiI I I II
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Fig. 45. Fig. 48.

FOE is displaced in the presence of rotation and this
displacement has been explained. The practical sig-
nificance of this research is that if we have at our"-~ disposal an inertial sensor whose error bounds areV .. -> ,. • . : ' i

,' --"'- iknown, we can use the method described in this pa-
,- . , ,per to obtain a machine vision system that can ro-

SI I-' bustly compute the heading direction. However, if
*i• "~. - v ii .- -~rotation is not large," then the method can still re-. •liably compute the direction of motion, without us-

4., ing inertial sensor information. The technique cannot
A .be used for determining the translation of a rigidly

3 ._" moving object, simply because the area on the im-
,, ,.-. ,age where voting could be performed is relativelyit ..- ., y/, small. See, for example, Figure 49, where an ob-

", '"- . •-,'-- ject is translating parallel to the optical awdis (a),

"but the solution area is open (b) (in this case the".". ') . . .FOE = (0,0)). Finally, the same analysis described
here has been carried out for a different coordinate
system (Duric et al., 1993).

Fig. 46.

Notes

i. One can also differentiate a category of methods that use cor-
respondence of macrofeatures (contours, lines, sets of points,
etc.) (Aloimonas and Shulman 1989; Spetsakis and Aloimonos
1990). but we don't discuss them here, due to the lack of lit-
eraturwe on the stability of such techniques.

2. As in photograrnmetry, for example, for solving the problem
oft relative orientation (Horn 1990).

3. Since measurements wre in focal lengt units, 1% error in dis- ,
placements amounts to about 3-8 pixels for most contret, dally "
available cameras. 

,
4. In the case of backwwad movement the situation is symm "Al

Fig. 47. (maximum - minimum) and handled similarly.

i 
A

--- ~~~~~~~~ -, --------- m mmna m li l ll • d al-i i • i



Estimating the Heading Direction Using Normal Flow 55

(a) (b)

Fig. 49.

5. If computation of normal flow at some points is unreliable, we 0. Faugeras and S. Maybank. 'Motion from point matches: Multi-
just don't compute normal flow there (see Section 6). plicity of solutions". Int'l J. Computer Vision 4, 1990. 225-246.

6. In the sense of Figure 2; we assume that the observer usually C. Fermiiller. -'Basic Visual Capabilities." Ph.D. Thesis. Institute
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