
AD-A285 472
WL-TR-94-1093,

PATTERN THEORETIC KNOWLEDGE DISCOVERY

J4ffrey Alan Goldman

August 1994

Final Report for Period December 1993- August 1994

or3T 1 D1994
Approved for Public Release; Distribution is unlimited

4'3-(94-32423,.
AVIONICS DIRECTORATE
WRIGHT LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-7409

NOT7CE

When Government drawings, specifications or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility nor
any obligation whatsoever. The f3ct that the government may have
formulated, or in any way supplied the said drawings, specifications, or
other data, is not to be regarded by implication or otherwise in any
manner construed, as licensing the holder or any other person or
corporation, or as conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related
thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publication.

JEFFREY ALAN GOLDMAN DOUGLAS/S. HAGER, C f
Computer Scientist Technol Section
Technology Section Target Recognition Technology

Branch

WILLIAM E. MOORE, Acting Chief
Mission Avionics Division
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list or if the addressee is no longer employed by your organization,
please notify WL/AART, Bldg 22, 2690 C Street STE 1, Wright-Patterson
AFB, OH 45433-7408 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

Form ApprovedREPORT DOCUMENTATION PAGE I OM No- 070-0188

Public reporting burden for this collection of .nformatior is estimated to average I nour Der reswcse. nclwdirg 'ne time for reviewing instructionsm, searcring e!stirng data sources.
gathering and maintaining the data needed, and completing and reviewing the collection Of information Send comments regarding this burden estimate or anv other aspect of this
collection of information. including suggestions for reducing this ourcien to washvngton Headcluarters Services, Director.,e for information Operations and RDorts. 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to trhe Office of Management and Budget. Paperwork ReduciOrn Project (0704-0188). Washington. DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I Auzust 94 IFinal Revort Dec 93 - AuQ 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Pattern Theoretic Knowledge Discovery PE 62204F

PR 0100
TA AA

6. AUTHOR(S) WU 13

Jeffrey Alan Goldman

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Avionics Directorate
Wright Laboratory WL-TR-94-1093
Air Force Material Command
Wright-Patterson AFB OH 45433-7409

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Avionics Directorate
Wright Laboratory WL-TR-94-1093

Air Force Material Command
Wright-Patterson AFB OF 45433-7409

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited

13. ABSTRACT (Maximum 200 words)

Among the future research directions of Knowledge Discovery in Databases is
the ability to extract an overlying concept relating data objects that are
useful to the investigator. Some of the current limitations involve the

search complexity and what it means to be "useful." The Pattern Theory
research crosses over in a natural way to the aforementioned domain. The
goal of this paper is threefold. First, we wish to present a new approach
to the problem of learning by Discovery and robust pattern finding in
general. Second, we will show its performance by exhibiting several

learning curves. Third, from a practical standpoint, we wish to explore
the current limitations of a Pattern Theoretic Discovery and Databases
problem. Function decomposition is the central core of Pattern Theory.
The development allows us to discuss the notion of "patterns," and thus,
the notion of "useful," in a formal manner.

14. SUBJECT TERMS 15. NUMBER OF PAGES
53

Pattern Theory, Function Decomposition, Machine Learning 16. PRICE CODE

Patterns, Knowledge Discovery

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified UTclassified UL
NSN 7540-01-280-550n Standard Form 298 (Rev 2-89)

P'esrcnieed by ANSI Sto Z39-18
298W102

Contents

1 The Pattern Theory Approach (V 1

2 Relating Pattern Theory to KDD 2

3 Search Complexity 3

4 Learning the Concept 4

5 Quantitative Results 4

6 Practical Issues . 17

7 Summary 17

8 Appendices 19

A A Detailed Study of Function 5 19

B The Decomposition Plans 25
B.1 D NIOE300 . 25
B.2 DNDOV 300 26
B.3 D NIOV300 26

C The Complete Graphs of All Ten Functions (FLASH Only) 2T

D Comparison Graphs of All Ten Functions (C4.5 and FLASH Together) 38

List of Figures

1 Function on Four Variables .. 1
2 Decomposed Function on Four Variables 2
3 Learning Curve for Function I 6
4 Learning Curve for Function 2 7
5 Learning Curve for Function 3, 8
6 Learning Curve for Function 4 9
7 Learning Curve for Function 5 10
8 Learning Curve for Function 6 11
9 Learning Curve for Function 7 12
10 Learning Curve for Function 8 13
11 Learning Curve for Function 9 14
12 Learning Curve for Function 10 15

List of Tables

1 The More Intuitive Function 3
2 The Functions Tested 5
3 DFC, Mean Error, and # of Samples Needed to Learn 16

iii

x

Y

F(X,Y,Z,W)
z

Z--- so_

Figure 1: Function on Four Variables

1 The Pattern Theory Approach

The Pattern Theory paradigm focuses on two central ideas shown in this section. The first is functions that
the investigator wishes to learn, have low decomposed function cardinality. The second is functions with low
decomposed function cardinality are learnable with a relatively small number of samples. In this section, we will
present some background on function decomposition and how Pattern Theory uses this as a robust way to find
patterns.

The Pattern Theory approach attempts to find an expression for the given data in the training set. The
function that it does find will exactly match the training data. However, in order for this function to be useful,
not only does it have to match the training data but it has to extrapolate on other data with some confidence.
To find that function, we need a measure to rate the function's proposed ability to extrapolate. That measure is
obtained when we decompose the function.

Decomposing a function involves breaking it up into smaller subfunctions. These smaller functions are further
broken down until the subfunction will no longer decompose. One can see that for a given function the partition
space is exponential in the number of variables. The decomposition space is even larger since there are several
unique ways subfunctions can be combined and there are several levels of subfunctions possible. The measure
that we use to determine the relative abilities of different function decompositions is one of complexity. It is called
decomposed function cardinality.

Decomposed function cardinality or DFC, is calculated by taking each subfunction in the decomposition and
adding up their cardinality. The cardinality of an n-variable function is 2'. We illustrate the measure in the
following figures. In Figure 1, we have a function on four variables. The function cardinality is 24 = 16. In Figure
2, we show the same function after it has been decomposed. The DFC of this representation for the original
function is 22 +22+22 = 12. The DFC measures the relative complexity for a function. When we search through
the possible decompositions for a function, we choose one with the smallest DFC. This decomposition is our
learned concept.

The learned function can be used to classify data that are not in the training set. The decomposed repre-
sentation of the function is one that exhibits more information than the alternative. For example, the Figure 1
representation is essentially a lookup table of inputs and outputs. Figure 2, on the other hand, is a function that
is not simply a table. The decomposition, for example, could be two simple functions "or'ed" together.

The only domain knowledge used in this approach is implicit in the representation. In our discussion of relating
this approach to a database domain, we will use a natural representation but others are possible. Besides this
implicit representation, every attempt was made in developing the theory not to incorporate any such knowledge.
The goal was to stay as general as possible.

The important point is that a function with a low DFC has been experimentally determined to be learnable
with a small number of samples. The second point is that the functions that we are interested in learning, i.e.,
functions that are highly "patterned," have a low DFC. These statements will be supported in the quantitative
section of this paper. FLASH, an acronym for Function Learning And Synthesis Hot-Bed, wLý developed to

x

F(X,Y, Z,W)

z

Figure 2: Decomposed Function on Four Variables

explore function decomposition, and pattern finding. The paper will show that the FLASH program exhibits
promising results for finding patterns robustly in a domain with a solution useful to the reader. Throughout the
paper when we refer to a minimal function decomposition, we use minimal to mean a decomposition such that the
DFC is the smallest possible for the entire set of decompositions. It is noted that a given minimal decomposition
is not unique. To explore in more rigorous detail about the inner workings of function decomposition or function
extrapolation, the reader is referred to [3], [2] and [11].

2 Relating Pattern Theory to KDD

Pattern Theory offers the ability to look for any patterns for a given set of data in a robust way. What is
meant by robust is that Pattern Theory has no inherent bias to a particular class of patterns except those of low
complexity. This makes Pattern Theory directly applicable to Knowledge Discovery. In general, the approach is
to look for some decomposition in a number of binary variables. We can think of a database as a set of 7n records
with n binary fields each. It is noted to the reader that we are simplifying the problem by only allowing binary
valued fields. However, since this approach has been proven to be valid for k outcomes instead of just two, we will
continue with this model without loss of generality [11]. In fact, our method generalizes to continuous variables
as well [10). We now have a representation that covers all possibilities of data entries. Next, we can take some
subset of the records and classify each as a positive or negative example of the proposed concept to be learned. It
is also possible to choose a field as the output and attempt to find a description for it in terms of the other fields
as in data mining. Our approach will then attempt to find any pattern, if one exists, via function decomposition.

The decomposability of this concept gives a relative measure of "usefulness" to the investigator. If we achieve
a minimum decomposition, we have in a sense, extracted a best concept possible with the given information.
If this minimum decomposition is small in function cardinality, we have a strong pattern and thus a "useful"
concept. If the concept did not decompose, or only decomposed a slight amount, then we can say no "useful"
pattern was found or more precisely, there does not exist a strong pattern. It is important to note that we need
not have a minimum decomposition in order to exhibit a strong pattern. In fact, if we have a decomposition
whose cardinality is (experimentally) small, then the pattern is strong. Moreover with a small decomposition, we
can still extrapolate with a small number of errors.

Another esoteric point to make is that it may be possible that our minimum decomposition is less "useful"
than a small decomposition. This can happen if our minimum decomposition takes advantage of small unintuitive
functions whereas a small decomposition may give us a function more complex, but nonetheless, one we have a
name for. We illustrate this point in Table 1. The function F(X,Y) is not a function we have a common name for,
however, G(X,Y) is an "xor" function which is more intuitive to the user, even though both F and G have the same
cardinality. If a larger function decomposed into more smaller subfunctions like F instead of less subfunctions
like G, we can have a minimal decomposition be less useful than a decomposition which is not minimal.

Since Knowledge Discovery has the goal of finding useful patterns in a very large potentially noisy database,

2

Variables Functions

X Y F(X,Y) = XY G(X,Y)= X xor Y
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 0

Table 1: The More Intuitive Function

Pattern Theory is directly related. It is ideal in the sense that we can use Pattern Theory to extract the useful
information in a small sampling that will have very high accuracy. An advantage Pattern Theory has over a neural
network is at the end of "training," we have a readable explanation as a combinational network with universal
gates.

Pattern Theory is not yet equipped to handle missing values or noise in the data for all fields. At the time
of this writing, there were several ideas on how to handle these situations but none were implemented. Pattern
Theory does however, posses the ability to handle missing values in the output fields. In this approach, any
attribute that is unknown is treated as a "don't know." In particular, Pattern Theory can extrapolate quite well
with significant unknown information. Of course as with any system, if there is too much missing information,
FLASH will have an incorrect concept. One advantage of Pattern Theory over other methods is its ability to find
patterns with missing information. FLASH will find a pattern in the available data if one exists even though it
may not generalize to all of the data. However, this is precisely one of the main issues in Knowledge Discovery.

As well as missing output values, Pattern Theory is also able to handle irrelevant [1] fields. An irrelevant field is
found as a vacuous variable in a function decomposition. It is found quite easily. For example, if the concept to be
learned in an eight variable function is NOT (X4), FLASH will find the concept exactly with only 7 samples thus
correctly identifying variables X 1, X 2 , X 3 , Xs, X6 , X7, and Xs as irrelevant. Missing fields, however, is another
story. This is an inherent fault in the database and not the approach. If it turns out that a pattern is found or
not found incorrectly because of a missing field, the method to do so simply acted on the available information.
Caution needs to be taken when the training information contains inconsistencies. For example, if we have an
inconsistency, it would signal a missing field or noisy data and often, we would not be able to determine which
error it is. One mighi. argue several inconsistencies would signal a missing field whereas a few would indicate
noise. In any case, the same problem is being explored in Pattern Theory as it is with Knowledge Discovery in
Databases.

3 Search Complexity

One of the drawbacks to current methods for learning concepts in large databases is the time required to find
the answer. Although it has been shown that it is not possible to efficiently learn an arbitrary Boolean concept
[7] [8] [12], one can still consider the feasibility of learning for small sizes. The question here is: How small? If
we continue with our example of m records with n binary fields each, we can explore the time it would take to
learn an arbitrary concept.

Pattern Theory is currently equipped to handle functions with no more than a few dozen variables. In general,
finding the minimal function decomposition is an exponential problem if we were to search through all of the
decomposition space. However, there is hope. In order to perform in real time for database query, i.e., a few
minutes, we are limited to about eight variables. Using each variable to indicate the presence of a field, we are
limited to eight fields. The number of records, which is equivalent to training set information or samples, is
unlimited. In fact, the more records there are, the better we are equipped to learn the concept.

In practice, an eight field database is quite small and as we increase the variables linearly, the time growth
is exponential. Ten to 16 variables can be handled in less than an hour and twenty-four variables can be days.
A possible solution to this dilemma using Pattern Theory is to find a decomposition that is not necessarily the

3

minimum decomposition. Thus, some sort of heuristic search through the set of possible decompositions would
increase the number of variables we can handle. If such a heuristic search were available then we would have
a technique for finding the underlying pattern without sacrificing very much accuracy. TIis point is illustrated
in [11] but the best methods for finding near minimal decompositions are still unknown.

The consequences of choosing a polynomial time algorithm over the exhaustive search is the ever familiar
speed versus accuracy dilemma. Although our polynomial time search will provide useful information for highly
patterned concepts, it may not be optimal. For practical discovery issues, this does not appear to be unreasonable.
If we are searching for some obscure relation among objects, we need to take the time to consider the possibilities.
However, if we wish to perform a user assisted search in as fast and accurate way as possible for correlated fields,
a polynomial algorithm is a valid and necessary choice.

4 Learning the Concept

The Pattern Theory approach will always try to find the pattern that exactly matches all of the given informa-
tion in the simplest way possible. If there is contradictory information, we currently have no method to handle
the situation. One alternative being considered is to not include the record in the training set. Although we
skirt the problem, we are most likely losing some information. However, preliminary results suggest that this is
completely the wrong approach [4]. Instead, it is necessary to have some internal method of handling noise that
considers all of the data, correct or not.

Pattern Theory is well suited for the problems associated with irrelevant fields. Irrelevant fields or vacuous
variables are found by looking at the column multiplicity [11]. If the field is not present in the learned decompo-
sition, then it has nothing to do with the pattern. For example, this includes the case where a field is pregnancy
and we are looking for patterns among men only. Although it is true that the co.icept among men includes the
tautology that they are not pregnant, it is irrelevant. The method also does not omit relevant fields even if they
may appear on the surface to be irrelevant. For example, looking for knowledge about a particular disease in a
database of patients, it would appear that a zip code field should be irrelevant. However, if there is a pattern
based on symptoms as well as geographic region, Pattern Theory is equipped to find the entire relationship.

The case of missing values in fields other than the output needs to be explored. Although we have success
when there are missing values for the output field, the general missing value issue has not been addressed. We
have some ideas on how to handle the situation. One way is to include the record with every possible value for the
missing field duplicating all other entries. This introduces new, potentially erroneous information but may prove
better than simply excluding the record for training. Again, a working theory is a future direction for Pattern
Theory.

When we have a decomposed function with small cardinality, we have learned a useful concept. This concept
can be used as a piece of discovered knowledge and as a tool to extrapolate on additional records. In the end,
the relationship of learning concepts in Knowledge Discovery and thus finding a useful pattern, corresponds to
finding a function decomposition with a low cardinality in Pattern Theory. Moreover, functions with low DFC
are learnable with a relatively small number of samples.

5 Quantitative Results

The last statements are powerful ones, but words are cheap. In this section we exhibit some experimental
data on eight variable Boolean functions. The goal is to show the performance of the system and to show the
strong correlation between low decomposed function cardinality, the metric used to find patterns, and "patterns"
themselves. Also, we wish to show that functions with low DFC are learnable with a relatively small number of
samples.

The program FLASH, can handle up to 24 binary variables as mentioned previously but again, only eight for
the time required in the database domain. FLASH cannot currently handle missing values for input fields but we
demonstrate its ability to do so for output fields. Also, FLASH cannot handle conflicting information for input
variables in the training set. We will test unknown outputs by training on known outputs and extrapolating to

4

Original Function
F1 = (XIa 3) + Y2

F2 = (Xl-2X3)(X4 + X6)
F 3 = (T,1 + x 2) + (- 1 X 4 X 6)

F4 =T 4

F 5 = (XlX2y 4) + (X3T 5x7x8) + (X1x 2x 5x6x 8) + (Y3T5)
F6 = X2 + X4 + -6 + X8

F7 = (xIx 2) + (x3x4) + (x5x6) + (x~x8)
F8 = (xI5 2) XOR (xlx5)
F9 = (X2 XOR X4)(T1 XOR(XsX7X8))
F1, = (X1 =* X4)XOR(y 7X8(X2 + X3))

Table 2: The Functions Tested

others. With these restrictions set aside, we examine FLASH's ability to find patterns in eight binary variables
that may have irrelevant fields and missing information in the output field. We also demonstrate FLASH's ability
to extrapolate on learned concepts.

Table 2 is a list of all of the functions tested. Table 3 shows the functions with their corresponding minimal
DFC. The functions were chosen as an attempt to represent a concept in a database. Functions such as parity
or multiply were not included because they have no meaning in this context. It is noted to the reader that many
other kinds of "patterned" functions were tested with FLASH besides Boolean Expressions. Some of them include
symmetric functions, numerical functions, image functions, and string functions. For results with those types of
functions, the reader is referred to Ross et al. [11] and [5].

Table 3 shows an abridged version of our test results with FLASH and C4.5 [9). The options for C4.5 essentially
say that there is no noise in the data and choose the best of 10 trees. These options were not simply chosen at
random. Instead, after a careful testing of more than 15 different settings, the options that yielded C4.5's best
performance on our benchmark functions was used for comparison [5]. It is noted that we can always increase the
number of trees built in C4.5. However, this setting not only made the experiments such that each mechan:sm had
approximately the same amount of CPU time to solve the problem, when we tested 100 trees, the performance
increase was not statistically significant.

The tests on the individual functions were as follows. First, each method was given a random set of test cases
to train on ranging from 25 to 250 out of a total of 256 possible cases. Once the method was trained, the entire
256 cases were tested and the number of errors were recorded. This procedure was repeated 10 times to yield a
maximum, minimum, and average number of errors for a given sample training size. Again, the sample training
sizes ranged from 25 to 250 and data was collected in intervals of 25 yielding a total of 10 points of average error
and number of training samples. Thus, the total number of runs for each function was 100 of varying sample size.
These points were used to construct a learning curve (number of errors vs. training sample size) for each function
using C4.5 and Pattern Theory. None of the learning was incremental. All of the runs were independent.

For brevity, a condensed summary of each of the learning curves was also included. For each function, the
average number of errors for the entire run was recorded in Table 3, similar to the area under the curve value. It
was then possible to compare FLASH and C4.5 with these averages for a given function (middle two columns).
The far right two columns of Table 3 show the number of samples necessary before the learning method obtains
a concept such that in all ten separate runs, the number of errors was 0. The value at the bottom of the table is
the average over all of the functions. The smaller the number here, the better the performance.

Looking at the relationship between a function expression and its DFC, the simpler functions, or more intuitive
patterned functions, have a lower DFC. For example, function 1 is less complicated than function 5 and it is a
more intuitive relationship between the variables. Thus, its DFC is appreciably lower. It is noted to the reader

5

Learning Curve for Function 1

140
Maximum Error

- Minimum Error
1Average Error

120
C hance

100

80

00
o 60

.1
E

0 40 80 120 160 200 240

Number of Samples

Figure 3: Learning Curve for Function 1

6

Learning Curve for Function 2

140

Maximum Error
Minimum Error

- --- Average Error120 - Chance

100

o 80

Ui0

60

22

z0

0 40 80 120 160 200 240

Number of Samples

Figure 4: Learning Curve for Function 2

7

Learning C urve for Function 3

140

Maximum Error
-- Minimum Error

2- Average Error
120

C hance

100 -1

o

80

w

j ~~~60___ __ _

E
z

40

0'
0 40 80 120 160 200 240

Number of Samples

Figure 5: Learning Curve for Function 3

8

Leaming C urve for Function 4

140
Maximum Error

SM inim um Error

120- -- Average Error
1o Chance

100

oQ 80'

w
0

60 "-_

E
z

40

20-

0 a .m-- - m -a aa---
0 40 80 120 160 200 240

Number of Samples

Figure 6: Learning Curve for Function 4

9

Learning Curve for Function 5

140

Maximum Error
SM inim um Error

120 _ _ -- Average Error
C hance

100

o 80

00.1.
60-

E
z

40

20-

s \\
"0 r

0 40 80 120 160 200 240

Number of Samples

Figure 7: Learning Curve for Function 5

10

Learning Curve for Function 6

140

Maximum Error
--- Minimum E rro r

120-- Average Error

1 200•
- C hance

80

0
60

z
40

20

0 40 80 120 160 200 240

Number of Samples

Figure 8: Learning Curve for Function 6

11

Learning Curve for Function 7

140

Maximum Error
~ Minimum Error

120' -- Average Error
-20-- Chance

100

08

z

040 80 120 160 200 240

Number of Samples

Figure 9: Learning Curve for Function 7

12

Learning Curve for Function 8

140

Maximum Error
-- *- Minimum Error

12 __ -- - Average Error
-20o C hance

100

o 80

IM

0

E

40

0 40 80 120 160 200 240

Number of Samples

Figure 10: Learning Curve for Function 8

13

Learning Curve for Function 9

140
-a-- Maximum Error

- Minimum Error

120-- Average Error

1-00-
- C hance

100-

080

60

40-

20-

0 40 80 120 160 200 240

Number of Samples

Figure 11: Learning Curve for Function 9

14

Learning Curve for Function 10

140
-a- Maximum Error

- Minimum Error

120 _ _-- Average Error
-2o- C hance

100*

oo80

0-

j 60
E
z

40-

20-

0 40 80 120 160 200 240

Number of Samples

Figure 12: Learning Curve for Function 10

15

Original Actual Average Error # Samples
Function DFC C4.5 I Flash C4.51 Flash

F 4 2 0 0 8 7
F1 8 0.32 0 31 25
Fs 8 6.35 0 83F 25
F6 12 2.48 3.72 74 67
F3 12 1.28 2.72 61 76
F2 16 2.76 2.4 97 126
Flo 20 17.52 8.18 200 60
F9 20 13.79 6.55 224 104
F7 28 20.69 10.53 256 126
F5 36 10.52 11.11 249 251

Average 7.57] 4.52]3 128.32 8676.7

Table 3: DFC, Mean Error, and # of Samples Needed to Learn

that the DFC range for functions on eight variables is from 0 to 256. Comparing these 10 functions to any eight
variable function in general, our examples are relatively simple.

FLASH does a good job at learning all 10 functions. Also, there is a high correlation between the number
of samples needed to-learn a function and its DFC. In general, the higher the DFC, the more samples that are
required to learn the function. The functions with lower DFC require fewer samples to be learned. With the
exceptions of functions 5 and 9, FLASH learns all of the functions quickly.

Some of the problems with function 9 may be owed to poor samples. It was unusual to see a difference between
function 9 and 10 when they have the same DFC. The reason function 9 was unable to find the true DFC as
quickly as function 10 is due to the number of minority elements, vacuous variables, and the decomposition plan
itself. All in all, some discrepancy is to be expected but the general trend of DFC measure and number of samples
needed to learn, is preserved.

Function 5 is rather involved and is not an intuitive function. Further studies showed that heuristic decomposi-
tion searches performed nearly as well in 1/4 the time. We also compared its relative performance against a neural
network in which FLASH performed appreciably better. In any case, this function is perhaps too complicated for
a typical relationship in a database. The point here is that even if a pattern is not intuitive to us, it can still be
discovered by FLASH.

Now that we have shown FLASH's ability to learn and the connection between low DFC, patterned functions,
and learnable functions, we wish to examine what concepts FLASH learned. It is important to note that if
FLASH has all of the inputs and outputs, it will find a function that exactly matches the information. In all
cases but one, FLASH found an equivalent function with considerably less information. Again, FLASH is not
restricted in any way as to the representations that it chooses (i.e., there is no bias to the Boolean operators
AND, OR., or NOT). The result is that FLASH can find unintuitive functions with the possibility of discovery.
For example, function 8 was listed in the Table 2 as (Xi and Y2) xor (XI and Xs). FLASH found the function:
X1 and (X2 xor Xs). This new function is equivalent to the original representation but it is more simplified and
in a sense, a discovery. FLASH found functions 4, 6, and 7 exactly as they were represented in the table. Some of
the other functions it found were less informative using functions that we have no common name for. However,
those unusual representations exactly matched the outputs of the original function.

The point to be made is that the learning method does not bias toward a specific function representation. The
trade off is the learned function can be unintuitive to the user. There is room, however, to restrict FLASH to a
specific set of functions if the domain calls for it. If for example, there is some database that the only relationships
we are interested in includes AND, OR, and NOT, then the concepts we find will only contain those operators

1 C4.5 with pruning learned this function with 46 samples
2 The average with the better score for Fs is 124.6

16

while still constrained to find the minimum DFC.
One final point to mention about these experiments is the decomposition plan itself. All of the learning curves

were generated with the same decomposition strategy. That strategy was to search through all possible partitions
at the top level, down to the evaluation of the DFC of each node's grandchild. What this means is for a given
breakdown of eight variables into two functions, each was further broken down one additional time. The lowest
DFC representations were chosen and recombined. The search was not completely exhaustive. Altkugh the
choice of decomposition plans themselves do affect the learning ability of a given function, the functions in this
paper were not chosen to make the plan perform better. The choice of plans only affects the amount and order
of the search through the decomposition space. Some plans work better on classes of functions because of where
they look or where they do not look and not because they somehow take advantage of information about the
function.

6 Practical Issues

Thus far, we have explored a different approach to the problem of Knowledge Discovery in Databases. We have
showed how Pattern Theory fits into the Knowledge Discovery in Databases ideology. We now want to consider
the practical issues in building a real system using the Pattern Theory approach.

Currently, the FLASH program is capable of a database with only eight fields; 16 if we have about an hour,
and 24 fields if we can potentially wait for days for our answer. Exploring decompositions that are not mnimal
would increase the number of fields we can examine with some loss of the "usefulness" quality that we would
like to see in Knowledge Discovery. We are currently exploring methods of pruned searches that still yield near
optimal results.

There is also the problem of missing values in input variables. Thus far, we have suggested ways of dealing with
the problem but have not explored the consequences quantitatively. A separate but related issue is the problem
of conflicting data. Again, we have a good idea of how to try to handle the problem but testing is another focus
of future work.

Some theoretical issues that would help formalize the problem include some confidence level or a probably,
approximately correct (PAC) model for a "useful concept." At present, we have experimental results that show:
If the decomposed function cardinality is less than two times the number of samples, then our confidence level is
approximately greater than 50% [11]. Work in this area would give more quantitative relations between confidence
of the learned concept and the decomposed function cardinality. Results would not only yield a quantifiable metric
for the notion of "pattern," but a confidence measure to boot.

Another issue is the decomposition function cardinality bounds on a polynomial approach to function decom-
position. We would like to have a relationship of the polynomial approach to the exhaustive search approach
in terms of a bound on the decomposition function cardinality. This bound would allow us to use a polynomial
approach with the knowledge of precisely how much confidence and "usefulness" will be sacrificed.

For practicality, we would like to expand FLASH to be able to accept multivalued variables instead of just
binary variables. The theoretical results of Ross et al. show that all of the methods generalize. The good news
is that changing a two state variable to an n-state variable will not appreciably increase the time required to find
the pattern in the fields. The reason is comparisons are made between two numbers, regardless of their value.
No additional computation is required. The more important issue is what will happen to the learned concept
with this expansion. For example, if one of our fields is temperature over some set of integers, will a concept be
difficult to learn if it ranges over a set of temperature values? Also, will the learned concept be "useful?" It may
be the case that the decomposed function found is of the form: (L and 600) or (L and 610) or ... or (L and 700).
This concept is less "useful" than L and any temperature between 600 and 700 even though we will correctly
extrapolate. Exploring different learning curves with n-state variables is a future direction for Pattern Theory.

7 Summary

Although the problems of conflicting data in input or output variables and missing values in input variables
still needs development, we have a strong basis for finding patterns in a robust way. Pattern Theory is particularly

17

well suited for problems that arise dealing with irrelevant fields. The approach simply looks for the pattern within
the variables and will not report "obvious" knowledge. We have shown a correlation between low DFC and highly
"patterned" functions. We have also shown that only a small number of samples were needed to learn a highly
patterned function.

With the theoretical results showing the generalization of function decomposition to n-state variables, the
relationship between finding patterns in Pattern Theory and Knowledge Discovery in Databases is clear. The
problems and goals are similar. One of the main thrusts for Pattern Theory is to be able to handle hundreds of
variables. Analogously, databases are daunting in information and to extract the relevant information, we need
to be able to handle large numbers of fields.

References

[1] Hussein Almuaflim and Thomas G. Dietterich. Learning with many irrelevant features. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pages 547-552, Anaheim, CA, 1990. AAAI Press.

[2] Robert L. Ashenhurst. The decomposition of switching functions. In Proceedings of the International Sym-
posium on the Theory of Swiitching, April 1957.

[3] Mark L. Axtell, Timothy D. Ross, and Michael J. Noviskey. Pattern theory in algorithm design. In NAECON
Proceedings. IEEE and AIAA, May 1993.

(4] Jeffrey A. Goldman. Expert systems in preprocessing: A preliminary study of supervised learning with
noise using C4.5. Technical Report WL-TR-94-1103, Wright Laboratory, USAF, WL/AART, WPAFB, OH
45433-6543, August 1994. work in progress.

[5] Jeffrey A. Goldman. Machine learning: A comparative study of pattern theory and C4.5. Technical Report
WL-TR-94-1102, Wright Laboratory, USAF, WL/AART, WPAFB, OH 45433-6543, August 1994. work in
progress.

(6] Jeffrey A. Goldman. Pattern theoretic knowledge discovery. In 6th IEEE International Conference on Tools
with Artificial Intelligence. IEEE, November 1994.

[7] David Haussler. Quantifying inductive bias: AI learning algorithms and Valiant's learning framework.
Artificial Intelligence, 36(2):177-221, 1988.

[8] Gregory Piatetsky-Shapiro and William J. Frawley. Knowledge Discovery in Datakses. AAAI Press, 1991.

[9] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, Palo Alto, California, 1993.

[10] Timothy D. Ross, Jeffrey A. Goldman, David A. Gadd, Michael J. Noviskey, and Mark L. Axtell. On the
decomposition of real-valued functions. In Third International Workshop on Post-Binary ULSI Systems in
affiliation with the Twenty-Fourth International Symposium on Multiple- Valued Logic, 1994.

[11] Timothy D. Ross, Michael J. Noviskey, Timothy N. Taylor, and David A. Gadd. Pattern theory: An
engineering paradigm for algorithm design. Final Technical Report WL-TR-91-1060, Wright Laboratory,
USAF, WL/AART, WPAFB, OH 45433-6543, August 1991.

[12] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142, November 1984.

18

8 Appendices

The following appendices were not part of the original paper but were a part of the research work in the area
of knowledge discovery in databases. They are included here in order to be complete and for their value to the
research group in pattern theory.

There is a short version of this entire work [61 cited here for the reader's convenience.
All of the following data applies to the FLASH program and function decomposition.

A A Detailed Study of Function 5

The first appendix shows 5 graphs all dealing with function 5. For some reason, there was trouble finding this
pattern so extra studies were performed in order to gain some type of insight as to the phenomenon.

Graph 1 shows three different decomposition plans and their relative performance. The methods are the same
as described in the body of the paper. The decomposition plans are described briefly as follows:

dniOe300 looks at the order of partitions in increasing order and the search is nearly exhaustive.
dndOv300 looks at the order of partitions in decreasing order and stops at the top level when a vacuous column

is found.
dniOv300 looks at the order of partitions in increasing order and stops searching at the top level when a vacuous

column is found.
Graph 2 shows the average calculated DFC for each plan as it is given more samples.
Graph 3 shows the average number of "cares" for each of the decomposition plans.
Graph 4 shows the average runtime for each of the decomposition plans.
Graph 5 shows the Number of Errors vs. the Number of Samples for various sample sizes as described in the

quantitative section of the paper. However, instead of 10 trials per point, there were 100 trials per point.

19

Average Error

o o 0 0 0 0 0) 0 0 0 0 0 0

00

z -A

C .L
(A0

2)co

___(D_ CD

0"

000

00

02

Average DFC

00

C -L

0 C
> >0>

'n -n f'

00

____C

21

Average Cares

0 . * , I I * I , I * I • I • I

ul (D (

0

00

C -L

0• (

-I -i, i I ",•

SI) 0' () : i: ="(0 " ! in

33C

CL CA)!

22

Average Runtime

w -Ab Ln Ch -- 4 c

0*0

C -L

C)0.

0 CD

_' 0.

23

Number of Errors

N .b. 0 0 N 0

00

o -'

a1

-u $

I 1 ul

* _ i ' 0.

0 0

N _ _ _ _ _ _ -,

o 1• : i5*i

24

B The Decomposition Plans

This Appendix lists the decomposition plans themselves as they are entered into the FLASH program.

B.1 DNIOE300

Decomp Plan:
Selection Plan:
0 = use shared variables
12 = method
0 = first part type
0 = stopping condition
Evaluation Plan:
1 = no of partition tests
3 = measure challenger by
3 = measure champ by
4 = threshold in n
1 = champ.multiplier
0 = dplfor-children-is-same
Decomp Plan:
Selection Plan:
0 = use shared variables
20 = method
0 = first part type
1 = stopping condition
30 = stopping condition parameter
Evaluation Plan:
2 = no of partition tests
4 = measure challenger by
I = measure champ by
4 = threshold in n
1 = champ-multiplier
1 = measure challenger by
1 = measure champ by
4 = threshold in n
1 = champ.multiplier
1 = Random No generator seed (> 0)
0 = dplfor-best-part-children-is-same
Decomp Plan:
Selection Plan:
0 = use shared variables
12 = method
2 = first part type
1 = stopping condition
1 = stopping condition parameter
Evaluation Plan:
I = no of partition tests
4 = measure challenger by
4 = measure champ by
4 = threshold in n
1 = champ-multiplier
1 = Random No generator seed (> 0)

25

1 = dplfor-bestlpart-children"issame
I = Random No generator seed (> 0)
1 = dplfor-best-partchildren-is-same

B.2 DNDOV300

Decomp Plan:
Selection Plan:
0 = use shared variables
11 = method
0 = first part type
4 = stopping condition
Evaluation Plan:
1 = no of partition tests
3 = measure challenger by
3 = measurc champ by
4 = threshold in n 1 = champ.multiplier
1 = dpifor-children-is-same
1 = Random No generator seed (> 0)
I = dplfor-best-part-childrensisa-me

B.3 DNIOV300

Decomp Plan:
Selection Plan:
0 = use shared variables
12 = method
0 = first part type
4 = stopping condition
Evaluation Plan:
1 = no of partition tests
3 = measure challenger by
3 = measure champ by
4 = threshold in n
1 = champ-multiplier
1 = dplfor-children-is-same
1 = Random No generator seed (> 0)
I = dpfor.best-part-children-is-same

26

C The Complete Graphs of All Ten Functions (FLASH Only)

This Appendix shows 10 graphs, one for each function listed in Table 2 in the paper body. The graphs show the
average error with the average calculated DFC for comparison. Each function is explicitly listed at the top along
with the actual DFC, the number of vacuous variables, and the number of minority elements for convenience.

27

Average Error

N 0o 0 0 0 0 0 0

a, X
-n b

m -

0 0 0 0)

c~cD c

-0

0 ------ ---- (DW

0 0 0 0 0

Average DFC

28

Average Error

o o 0 0 0 0

43a

-0

29I'

0~0

~ax
0 ~-P

0* O 0

U<

CD (D b (
Um

-a. -fn
0~46 _ _

Averae D0

U) . 29

Average Error

oo coo 0 00 0 0

-~ --- -----

g • x
g x

•m OO

0 0 0 +

c30

(DOO

00

Average DFC

30

Average Error

o00) 0o 0N

-n

0

0 003

31 1

cC
a(

00

n -

- 08

00

Average DFC

31

Average Error

N. 0 3N

z o 0 0 0 0 0

- 08

-& +

x

-.1 X
o ,cx,~ 4

0~ -a

0 00 0

Average DFC

32

Average Error

o 0 0

<00

30

,, +

xco xCA +
- _ _ _ _ _ _ _a) x

0 CD M m

Average DFC

33

Average Error

A o 0 N

0-n

0= --' ÷

<00

0C
0G

x

z co x

3.3
CD

+

0~

CD 0 +
x

'3> 0 -44 1
0 <l 0

o -n -'

00)

0 0 0 0 0

Average DFC

34

Average Error

0a

oc

o a

0 *x

35*

CA (A

co m'

CD C

0D CD

0~ m

Average DFC

35

Average Error

00

'0• II (O

z oo
i

cr 0

(D L7

33

0. 00
(Dx

-44-4
-n

00

Average DFC

36

Average Error

<0

-IVU,

"0 Oii
0*

CD

cnn

0-

o >

N -n- .

(DO (D
0 11%coc

o C u

00 0(00n

Average DFC

37

D Comparison Graphs of All Ten Functions (C4.5 and FLASH Together)

This Appendix shows a comparison of the 10 functions. The graphs show the average error for each sample
size with both methods. This data was used in (6] in a condensed form. The graphs are shown here explicitly.

As before, each point was an average over 10 separate runs with a given sample size.

38

KDD1

100-

500

50

0 50 100 150 200 250
Samples

Chance

)K Average Error for FLASH (dniOe300)

E3 Average Error for C4.5 -m 0 -t 10

39

KDD2

100 "

0N

WN

50O

0 50 10O0 150 200 250
Samples

- Chance

)K Average Error for FLASH (dniOe300)

E3 Average Error for C4.5 -m 0 -t 10

40

KDD3

100 "

8N

50O

0

o •. . I .. .

0 50 100 150 200 250
Samples

Chance

)1(Average Error for FLASH (dni0e300)

- Average Error for C4.5 -m 0 -t 10

41

KDD4

100

0

50

0 , •, , .•I ., , I , , , I I

0 50 100 150 200 250
Samples

Chance

SAverage Error for FLASH (dniOe300)

r Average Error for C4.5 -m 0 -t 10

42

KDD5

100 .

WN

50

0 50 10O0 150 200 250
Samples

- Chance

)K Average Error for FLASH (dniOe300)

B] Average Error for C4.5 -m 0 -t 10

43

KDD6

100 " N N

50

0 - L.

0 50 100 150 200 250
Samples

Chance

A Average Error for FLASH (dniOe300)

B. Average Error for C4.5 -m 0 -t 10

44

KDD7

100 -

50 "" -.
0N

0 50 10O0 150 200 250
Samples

- Chance

)K Average Error for FLASH (dniOe300)

[] Average Error for C4.5 -m 0 -t 10

45

KDD8

100 -

50O

0

0 , •I ,,i ..

0 50 100 150 200 250
Samples

Chance

W. Average Error for FLASH (dniOe300)

9 Average Error for C4.5 -m 0 -t 10

46

KDD9

100 -

50 """ ..

0 50 10O0 150 200 250
Samples

Chance

)I(Average Error for FLASH (dniOe300)

t3 Average Error for C4.5 -m 0 -t 10

47

KDD1O

100 -

0N

50- -
0N

0 50 I1O0 150 200 250
Samples

- Chance

)1(Average Error for FLASH (dniOe300)

[] Average Error for C4.5 -m 0 -t 10

48

Acknowledgement s

I would like to thank all of the members of the (extended) Pattern Theory Team for their helpful suggestions
and comments.

49

