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ABSTRACT

The scaling laws appropriate to the IR radiation from ships are
displayed. The heat equation is rendered in dimensionless form so that its
solutions manifestly apply to ships of arbitrary scale. The important
variables for IR thermodynamic similarity are shown, viz. the dimension-
less quantities, also called ir variables, associated with temperature,
position, time, power per unit volume, and heat transfer coefficient. The
purpose of scale modeling is to duplicate the ship values of these
dimensionless quantities in the scale models studied. In so doing, the IR
signals are duplicated as well and may be studied in a laboratory setting
with all the advantages of repetition and control thus implied.

Questions of compatibility of the dimensionless variables are
discussed. It is concluded that no apparent inherent incompatibilities
among the dimensionless quantities relevant to the IR present themselves.

A relative variance of the dimensionless temperature is derived, and
it is shown how its errors depend upon the experimental variables
controlling the IR scaling experiment.

A test program for IR scale models is outlined. A mathematical
criterion for the objective comparison of the experimentally determined
dimensionless temperature of a scale model and its prototype ship is given.

ADMINISTRATIVE INFORMATION

This work is submitted in partial fulfillment of Milestone 2, Task 3, of the
Topside Signature Reduction Project (RH21C17) of the Surface Ship Technology Program
(SC1A/PE0602121N). The work described herein was sponsored by the Office of the
Chief of Naval Research (OCNR 33) and was performed by the Carderock Division,
Naval Surface Warfare Center (CDNSWC, Code 7230).

INTRODUCTION

Recent work has indicated that scale models will be useful in advancing the field
of ship IR radiation analysis. This is in keeping with their utility, long recognized, in the
engineering of radar, hydro/aero dynamics, acoustics, etc. The scaling laws for IR are
known, but several questions related to their laboratory application remain.

For example, given that the IR scaling laws are in hand, are they mutually
compatible, and can they all be satisfied simultaneously? The answers are not
immediately obvious, but are certainly important for purposes of planning laboratory
experimentation. It is common experience in other scaling applications to find conflicts
between scaling laws; engineering choices are often required to sacrifice one in favor of
the other. A well-known illustration of the incompatibility of dimensionless numbers is
that of mechanical similarity of fluid flow around two spheres. If only inertial forces and
frictional forces are considered, mechanical similarity requires the constancy of the
Reynolds number, i.e.,
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Re = vL =constant,1)

where:

p = fluid mass density

v = relative velocity of fluid and sphere

L = a characteristic length (the radius)

=- kinematic viscosity of fluid

On the other hand, if only inertial forces and gravitational forces are considered,
mechanical similarity requires the constancy of the Froude number, i.e.,

Fr=v2 -constant (2)Lg

where g is the gravitational acceleration constant.

It is evident that for one fluid, constancy of the Re and Fr puts conflicting
demands on the fluid's velocity. In the case of the Reynolds number, a decrease in L, as
would occur for a small-scale model, demands an increase in v; whereas, in the Froude
number, a decrease in L demands a decrease in v. But the same fluid cannot both
increase and decrease v simultaneously. Both requirements for constancy in Re and Fr
cannot be met. This illustrates what is meant by incompatibility of dimensionless
numbers.

Notice, however, if we remove the restriction that one fluid be used for both
values of L, then a new possibility enters, viz., that a change in kinematic viscosity could
remove the previous incompatibility. Constancy of both Re and Fr would require of the
fluids a ratio

•/ _VI (3)

where subscripts 1 and 2 refer to properties associated with different scales. Mathemati-
cally, the possibility for compatibility of Re and Fr lies in satisfying this last equation.
Whether the mathematical possibility can be physically realized, however, depends upon
the actual existence of fluids with the required viscosities. It is important to note that the
mathematical possibility of compatibility, and its actual physical realization with real
materials, are different matters. We investigate these matters for the dimensionless
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numbers of IR scaling and find plausible the physical realization of their compatibility
using ordinary structural materials and thermodynamic conditions.

Another very practical question is what kind of accuracy is to be exr',ted of IR
scaling technology, and upon what does the accuracy depend? Does one expect to
replicate ship temperatures by scale modeling experiments to within 0.1 *F, I *F, 10°F or
100°F? We investigate these matters by identifying the variables that control ship surface
temperatures (dimensionless), and then straightforwardly propagate the variable errors
into the errors of surface temperatures, of which they are the cause. We present an
expression that relates the relative variance of dimensionless temperature in terms of the
experimental errors which underlie such variance.

Finally, we outline a test program for verification of the validity of scale model
results. In what way can one ascertain that the IR scale models work? Is there a
systematic manner of testing the models? We emphasize that the fundamental test
concerns a comparison of temperatures from an IR scale model and the ship it represents.
We discuss the comparison in terms of dimensionless quantities, emphasizing the
efficiency they bring to the experimental testing process.

REVIEW AND INTERPRETATION OF THE IR LAWS OF SIMILITUDE

The scaling laws appropriate for ships in the IR have previously been derived.*
The following is an outline of this derivation.

The physical problem is that of a naval vessel whose thermal properties are
allowed to vary with position. Some of the compartments may be filled with fluids.
Throughout the ship various processes (conductive, convective, and radiative) are allowed
to occur either separately or in concert. Boundary conditions describe the heat exchanged
between the ship and its surroundings.

The heat equation and its boundary conditions describe the thermodynamic system
present in a naval vessel. These take the form:

V. [k(x)VTjx,t)] ÷ H(x,t) =p(x)ctx) aT(411) (4)
8T

k(x)V.7Xx,t)=h(x)A7Tx,t) for all xCb (5)

* Cervenka, P.O. and L. Massa, "Laws of Infrared Similitude," CDNSWC report
CARDIVNSWC-TR-94/002 (Jan 1994).
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T(x, t)J, =To(x) for all x (6)

where:

b = boundary

V = three-dimensional gradient operator

Vn = operator yielding gradient magnitude in direction normal to boundary

k = thermal conductivity (power/distance/temperature)

T = temperature at position x

x = coordinates of a point in three-dimensional position space

t = coordinates of a point in time

H = rate of heat production per unit volume at position, x, and time, t
(power/volume)

p = mass density at the position x (mass/volume)

c = specific heat at the position x (heat/temperature/mass)

h = heat transfer coefficient at the position, x, belonging to the boundary, b
(power/area/temperature differential)

AT = temperature difference prevailing between the ship and its surroundings,
at position, x, and time, t

T = initial temperature distribution that holds at every position, x,
throughout the ship

These equations have as solution the temperature function of the vessel

T = T(x, t, H, k, p, c, h, AT). (7)

Note that this is a function of position and time and depends upon heat sources, material
thermodynamic properties, and system-surrounding temperature differences. The
description encapsulated by the heat equation is general enough to describe complicated
processes of heat transfer between a naval vessel and its usual surroundings.

By applying the heat equation to both a ship and its scale model, the IR scaling
laws may be derived. The relation which holds between analogous positions on a model
and a full-scale ship is

xM
Kx -- " (8)

xS

where Kx is the scaling constant of position. If such a scaling of positions holds,
geometrical similarity of model and ship prevails. One could assume that geometrical
similarity is all that is required of a model in order to be used in infrared scaling studies.

4



However, geometrical similarity simply forces the model to "look like" the ship; there is
no requirement based on geometrical similarity alone that it behave thermodynamically
like the ship. That is what is required of a useful IR scale model. It must go through
temperature variations analogous to those of the ship it models. A simple "look alike"
model does not. For this, geometrical similarity is only the first step. Complete
thermodynamic-IR similarity requires imposition of all the scaling relations which flow
from simultaneous application of the heat equation and its boundary conditions to both
model and ship. We define the scaling constants of time, temperature, conductivity, mass
density, specific heat, heat transfer coefficient, temperature difference, and initial
temperature, respectively, as

Kr -- (9)
t$

TM
KT -- _(10)

Ts

kM
Kk = _ (11)ks

KOp (12)

Sc C (13)
CS

Kh= hm (14)
hS

KT ATMW (15)
AT5
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K TO (16)

This collection of scaling relations connects all the model variables (M superscript) to
those of the ship (S superscript). This allows the heat equation and its boundary
conditions for the ship to be rewritten in terms of variables for the model. By comparing
the pairs of equations in one set of variables applied to both ship and model, we have:

K4
K k -i = 1 (17)

-2

KHKt =1 (18)

K.CKT ,

K Th --1 (19)

T KT

KT -1. (20)
KT

These are the IR scaling laws for the time-dependent case. They apply to uealistic naval
vessels in scenarios that include conduction, convection, and radiation heat transfer
mechanisms.

The form of the IR scaling laws suggests a set of dimensionless variables which
may be used to advantage in the design and practice of IR modeling experiments. Such
dimensionless variables are:

T-T.(21)

6o-T.



-x (22)
L

=- - (Fourier number) (23)
PC L2

H h7,2 (24)
k(To- T.)

h=hL (Biot number) (25)
-

where the bar above a symbol indicates a dimensionless quantity, L is a "typical" length,
T., is a convective/radiative background temperature, and all other symbols retain their
previously defined mearing.

When the above dimensionless variables are used to transform the heat equation
and its companion boundary conditions, they take on the dimensionless form

7'H= (26)

VnT= hT for allxCb (27)

TI- . = 1 forallx. (28)

These last equations in manifestly dimensionless form are the ful information equivalents
of the previously given heat equation and boundary conditions, :ut now apply to any ship
(or model) in the same way regardless of size. They have the same solution for ship or
model, viz.,
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T= T(x, t, H, h) (29)

a function of position X, and time T, depending parametrically on the heat source H, and
the transfer coefficient h. Notice T, when compared to T, displays a reduction in the
number of variables upon which it depends, an important advantage in the overall design
of an IR scale model test program.

The study of ship IR radiation may be based upon the dimensionless heat equation
and its dimensionless boundary conditions. They apply equally well to a prototype ship
or to its scale model. This must be so because they are written in a form that is
manifestly scale invariant. The same solution T applies to ship and model. For T to
have the same magnitudes for ship and model it is only required that the variables upon
which T depends also have the same magnitudes on ship and model. These variables are
tne dimensionless quantities x, t, H, h. That scale model is a thermodynamic replicate
of its prototype ship which has the same magnitudes as the ship for these four dimension-
less variables. The purpose of an IR scale modeling laboratory is to arrange that x, T,
H, h for a scale model have the same numerical values as on a prototype ship, and to
measure T for the model, which then is assured to achieve the same numerical values as
T on the ship. And T controls the IR emissions which therefore can be studied directly
with the scale model.

A further short discussion of hF is in order. The Biot number regulates the heat
exchange everywhere on the boundary. In general it can have a convective and a
radiative component because the regular dimensional heat transfer coefficient contains
such components, i.e.,

h = hC + hr. (30)

Obviously, to fix h to a particular value, one must adjust hc and hr to appropriate magni-
tudes. It is of interest, therefore, to know what variables these depend upon.

We discuss hc first. The Nusselt number, important to the description of convec-
tive processes, is defined as

hcL
Nu=--hc f ,(31)

kf
where Lf is a typical length across which the convecting fluid sweeps, and kf is the

conductivity of the convecting fluid.

Rearranging this last equation, an expression for hc is obtained of the form

hc=1 Nu. (32)
CL
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In the most general case, the Nusselt number is a function that depends on three

other dimensionless numbers

Nu = Nu(Re, Pr, Gr) (33)

where:

Re=-PLfv (Reynolds number) (34)
71

Pr= L C (Prandtl number) (35)kf

Gr= Pg AT L3p2  (Grashof number). (36)
12

where:

p = fluid mass density

Lf = a representative length over which the fluid flows

v = fluid free-stream velocity

71 = fluid viscosity

cf = fluid heat capacity

kf = fluid thermal conductivity

B = fluid thermal expansion coefficient

g = acceleration constant due to gravity

AT = temperature differential between fluid and surface

Interestingly, the Nusselt number can assume various simplifications depending upon the
type of convection under study. For pure free convection Re does not affect Nu
significantly. For pure forced convection, Nu is insensitive to Gr. Further
simplifications occur if the fluid considered is a gas, in which case for either free or
forced convection Nu is insensitive to Pr. Summarizing, we have

Nu = Nu (Pr, Gr) free convection
Nu = Nu (Re, Pr) forced convection
Nu = Nu (Gr) free convection (gas)
Nu = Nu (Re) forced convection (gas)

9



For many flow conditions, reasonably accurate functional forms of Nu are known. In
such cases these forms may be used to determine hr through Equation (32).

Now we discuss hr. Its form can be obtained using the Stefan-Boltzmann descrip-
tion of radiation exchange, from which we have

.-. Eo(T•-T), (37)
A

where:

1 = radiation power per unit emission area
A
f -- surface emissivity
a = Stefan constant
Too= temperature of radiation background

We can rewrite the equation for radiation exchange as

S=e (t + . +T 7r2+ +7 3)(T -TO). (38)

By definition hr is simply the coefficient of (T-To) in this last equation, thus

hr=ea(T3 + T2T7 +T T7_ +7T'3w). (39)

However, for temperature differences (T-T,,) that are fairly small compared to T
(absolute units) an approximation utilizing T', the average temperature is

T+TM (40)

and yields

hr =4 ETT(3, (41)

which is the form most often used.

10



The Stefan number is defined as

St = EoT'3 L (42)k

As a result,

hr= St. (43)

Having discussed both hc and hr, we recognize they will both contribute to the Biot
number, so that

h I -Nu + - St (44)
k IlLf L U

The heat equation discussed thus far has been the time-dependent equation. The
time-independent equation is less general and is included as a special case of what has
already been discussed. The relevant dimensionless variables are the same, except for the
Fourier number, which is not included since time plays no role in the description.

COMPATIBILiTY OF DIMENSIONLESS VARIABLES

The function T depends upon the dimensionless variables x, t, H, and h. The
temperature behavior of a model matches that of a ship prototype on condition that the
magnitude of all the dimensionless variables take the same values on both model and ship.
But is it possible to make all the dimensionless variables match simultaneously? The
answer to this question is not obvious. In the practice of using models in other fields, it
is commonly found that not all relevant dimensionless variables may be simultaneously
matched. In such cases, part of the scale modeler's task is to decide which dimensionless
variables are to be matched and which are to be sacrificed. At first glance, a similar
situation might be expected in the case of scaling the IR. For example, the representative
length L, appears in all four dimensionless variables x, t, H, and h. When a particular
value of L is assigned to the first of these, it might be that the same value used in one of
the remaining dimensionless variables contradicts the possibility of their taking matching
magnitudes in both a ship and its model. A closer examination reveals there are no
inherent incompatibilities among the dimensionless pairs, listed in column one of Table 1.
For example, imagine all five w's (or dimensionless quantities) listed are to be held
constant. Imagine that L is reduced, as would occur in building a model of scale smaller
than a ship.

As we examine the r's in pairs, we find that reduction of L introduces no
contradictions in the response required of any of the variables. The kind of contradiction
we refer to would be an analog to that discussed in the Introduction, where constancy of

11



Re and Fr for one fluid demanded v to increase as well as to decrease. No such
mathematical incompatibilities occur with the IR i's. For this to occur, it would require
one physical property, such as a, k, h, etc., to appear in two v's in such a way that as L
decreased, the property would be forced to respond by increasing in one " and decreasing
in the other. In the list of i's we examine, this does not happen.

Table 1. Experimental relations associated with compatibility of IR dimensionless variables.
(M and S indicate model and ship values, respectively)

Dimensionless Matching Conditions Experimental Model
Variables Variables

1.- T-T.. ~ TM-T,2AM TS-~T..S 7>-TS*.TM Go
To -T. TMT M T= -0TS

2 . x xM W XS xM- LM X$ =Kxxst
TLM LS Ls

3. t # __r stSm- x

c/dtM a:sS :M- K2 --
3. -i, 2 L2 L LS2 a

4. if M2  HMLM2 HSLS HM = K2 kM Hs
4. kM(ToM-T.) kS(Tjo- T.) kS

5. hL hMLM hSLS hM= K, "

* h tmertreeuain ncoun ndcte ha f-h tepeatr sok__ __ _ km ks Xks

*The temperature equation in column 2 indicates that if the temperatures of
model and ship are to be the same, then the model must be initialized so that
its surface starts out at the same temperature as the full-scale ship.

LM
" Note that by definition K1 =

Ls

# k = diffusivity
PC

Even though there is no mathematical incompatibility, that does not establish the
actual existence of materials and conditions adequate to satisfy the constancy requirement
on the v's. Whether or not this is the case depends on the range of variability in the
physical properties controlling all the dimensionless variables. Qualitatively one may say
that the more narrow the range of variability, the more difficult it is to enforce the
matching of dimensionless variables of model to ship; and conversely the wider the range
of variability, the easier to enforce such a match. As we show in an example below, in
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the case of IR scaling no physical prohibition seems to preclude all dimensionless
variables from simultaneously taking matching magnitudes on a ship and its scaled model.
The consequence of this is that all dimensionless variables controlling the IR are
simultaneously compatible. The ship values can all be simultaneously replicated in one
physical scale model, using available structural materials and thermodynamic conditions.

The general way to enforce the equality between ship and model dimensionless
variables is as follows. First, it is recognized that the thermal properties of the ship are
fixed and given. That is, if a ship is to be scaled, we assume to know the materials used
in its construction, for this is a requirement if scaling is to be feasible. Moreover, these
materials have known thermal properties, k, p, c. The heat sources, H, on the ship are
assumed to be known as are the conditions under which the ship operates, e.g., the ship's
relative velocity with respect to water and wind, and the temperatures of water and wind.
Given the information of the ship in its operating conditions, one may calculate the
magnitude of the r's from their respective definitions which apply to the ship. The
analogous model ir's are to be adjusted to these same values. This is done by choosing
thermal properties in accordance with the IR scaling laws and physical variables for the
model which allow the correct v values to hold. Simply building a small model to look
exactly like the ship certainly will not suffice. Consider the ir variables one at a time in
succession.

Once the scale of length KX is chosen, all values of x will automatically be equal
on model and ship; i.e., geometrical similarity is ensured. Suppose one chooses materials
to build the model based upon structural and cost considerations. The thermal properties
of the material (k, p, c) must be known (or measured). Now, equality between Fourier
numbers T of ship and model is enforced by controlling the time variable, i.e., the time
at which thermal events are measured on the model. Equality of the dimensionless heat
sources is ensured by regulating the magnitude of the ordinary heat sources built into the
model. The dimensionless transfer coefficients h9 are made equal on model and ship, by
appropriate selection of the ordinary heat transfer coefficient of the model. This, in turn,
depends on control of the relative velocities of water and wind in the experiment, and also
upon the choice of emissivity attached to the model surface. In summary, each of the
dimensionless variables can be appropriately controlled by bringing under experimental
regulation for given geometrical scale and thermal properties k, p, c the measurement
times, heat sources, and heat transfers associated with a model.

This process of equalizing analogous v's of ship and model through experimental
control of model properties may be clarified by referring to Table 1. In the first column
of the table each of the dimensionless variables is defined. The second column lists the
equations which follow from matching dimensionless variables of model and ship. The
third column rearranges these equations to display the magnitude that model experimental
variables must assume in order for all of the v relations to be simultaneously compatible.
The right side of the equations contain the choice of geometrical scale factor Kx, and the
thermal properties k, a which follow from a choice of model building materials. All
other variables on the right side of the equations refer to and are fixed by the ship.
Notice in so far as each model variable on the left side of the equations, i.e., xM, tM,
ToM, HM, and hM, is capable of experimental control, it follows that in principle the

13



compatibility of the v's can be experimentally ensured. This, of course, assumes a range
of experimental variability in the left side variables which allows the equations to hold,
given the choices made on the right sides. By examining specific cases of model scales
and typical ship and model materials, one can ensure that such a range of experimental
variabil'ty is within realistic expectations. This is illustrated in the following example.

For convenience we reformulate two of the quantities discussed above, viz., H, the
magnitude of the heat source, and h, the heat transfer coefficient. We want to rewrite H
and h in terms of quantities that are directly controlled in modeling experiments, viz.,
power of model heat sources such as electrical resistors, velocity of fluid flow, and
surface emissivity. Then we will rewrite the v, matching conditions using these
quantities and examine whether they are physically realizable.

Recall that

/.=_ (45)
V

where 1 equals power emitted, and V equals volume element.

The model/ship ratio of heat sources is therefore

HM = M VS (46)

HS 7SV*

If we consider the scaling of volumes to obey

VM = 3 VS
:Kx V (47)

then

HM_ qM (48)

HS K S'

a ratio we shall use presently. When we consider the experimental control of h, the heat
transfer coefficient, we must account for both the convective and radiative contributions;
i.e., h€ and hr, respectively, as previously defined. The convective contribution hc is
determined by the Nusselt number, which is considered a function of the Prandtl number
Pr, and the Reynolds number Re. For our purposes, it is adequate to take the specific
functional form of the Nusselt number to be

14



Nu = 0.664 Pr1/3 Re1 2 , (49)

which if used to enforce the equality of model-ship convective contributions to the Biot
number gives

M I(50)

This is the condition for similarity between ship and model of convective exchanges.

We turn now to the radiative contribution hr to the Biot number. Recall hr is
controlled by the Stefan number, which if used to enforce the equality of model-ship
radiative contributions to the Biot number gives

(M LS kM (51)
Es LM ks

For a given ship and choice of scale K. and model material thermal properties k and a,
we may arrange the information contained in the equality of model-ship v's (Table 1) as
follows:

t KM ? (52)

M (53)

4 S Xks

VM.kM 1 (54)7 K

e IM km (55)
CA Kx kS

These equations have been used to compute the information listed in Table 2, where it has
been assumed that a ship is made of aluminum and the model is made of fiberglass.
Using the thermal properties of these materials, the model-ship ratios given by the above
equations are listed as a function of scale. The principal conclusion drawn from the table
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is that conditions for simultaneous compatibility of all the dimensionless variables
considered is practical, at least with the materials of this one t. Mmple.

Consider, for example, the Table 2 results associated with the scale = 1/48.
A patrol gunboat of length 160 ft would be modeled at a length of 3 1/3 ft. A thermal
event occurring over the course of 1 hr on the aluminum gunboat would occur in 3.8 min
on the fiberglass model. An engine on the gunboat emitting 5 x 106 Btu/hr of heat into
the engine room would correspond to 1.77 watts on the model. Navy haze gray pair't
with emissivity = 0.95 on the gunboat would correspond to a model painted to emissivity
= 0.26. These magnitudes for the model experimental variables appear to be practical.
For this one example, the dimensionless variables associated with IR scaling are
simultaneously compatible with material properties that are physically realizable. It is a
reasonable expectation that similar results would ensue with a variety of other structural
materials. This remains to be investigated. The equations used to calculate the results
listed in Table 2, however, could be used as the basis for a wider study of the influence
of material thermal properties on 7--compatibility.

Table 2. Property ratios versus scale of length.*

Scale t M/t S 1/S VM/V S - 1/S

1/48 0.063 1.2 x 10-4 16.0 x 10-4 0.280

2/48 0.250 2.4 8.1 0.140

3/48 0.570 3.6 5.4 0.093

4/48 1.000 4.8 4.1 0.070

5/48 1.500 6.1 3.2 0.056

Ratios are calculated based on matching r's in model and ship. Calculations are
for an aluminum prototype and a fiberglass model, whose ratio of diffusivity =

0.0069 and ratio of conductivity = 0.0058.

ACCURACY CRITERION FOR IR SCALING TECHNOLOGY

The point of IR scale modeling is that the temperature behavior of a ship may be
replicated and conveniently studied in a laboratory setting. In order for the scaled
temperatures to be faithfully reproduced, the scaling laws must be obeyed, i.e., the
relevant dimensionless variables of ship and scaled model must be equivalent. In this way
both geometric and thermodynamic similarity are ensured. However, in any practical
case similarity is never totally achieved, because of experimental uncertainties of the
properties of both ship and scaled model. Therefore, quite naturally, questions arise
concerning just how these uncertainties will impact the IR scaling results. Does one
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expect temperature agreement between ship and model surfaces to match to within 0.1 OF,
1°F, 10*F, 100(F? In what way does the expected temperature error depend upon
experimental errors in the problem-defining variables? These include background temp-
eratures and thermodynamic properties of structural materials. Given a certain measured
error in a surface temperature, what experimental variable must be improved to reduce the
error? Or, given known errors in experimental conditions and thermodynamic properties,
what error can be expected in matching temperatures? What is an objective, quantitative
measure of how good IR scaling may be considered to be? This array of related questions
addresses essentially the accuracy of results reasonably expected in implementation of IR
scaling technology.

The quantitative approach to answering these questions is that of error analysis and
the propagation of errors. If a function is defined in terms of other variables, then the
uncertainties in the variables lead in a well defined way to corresponding uncertainties in
the evaluated function. In the case of IR scaling technology, the function of interest is the
dimensionlesstemperature, T, and the variables of interest are the dimensionless quantities
x, t, H and h. We now consider how errors in the latter dimensionless quantities propa-
gate into the former dimensionless temperature. We write the dimensionless temperature
as

T = T(x, t, H, h). (56)

We take the most probable value, < T >, to be

<T> =T( <x>, <t>, <H>, <h>) .(57)

Taylor-expanding T about its average value < T >, we obtain

) LTC _-5s) I I+

8X at aH 8/ "

The variance of T, i.e.,

2 1
f (T-< T>) 2  N> > (59)
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becomes

2 1-a- aT -aT- - a + Oa4 F, [x-<i>) +C1-<:>)+(H-<H>).+(h-<h>) .. 60ax at aH ah

or

2= 1 +(t-<g> 2 [T 2aT]]

T a (t - <t - + ~

axat )2 a

(,,)8 aT (<j>aT+

2 OT 8 Tj +.. 6

aH aH a

2 8T 8T 28T
at J H J h -

LUXJ aH aH t/
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2 OT aT 2 87' 87 2 87' aT
2 ar _= - ___+ ali-- -- =+

-lt ax at ax aH x ai /

2 aT aT 2 aT aT u2aT aTj(2OiH = --%- + Og •' -= =+Uwh- ---- -- +... (62)

at 8Hi at 8h Ha

The covariances may be assumed to vanish if the errors in the variables are independent.
In such a case, we have the simplified expression

2 2 2 aT 2+ (63)

[ x JI8 I at ll a

Here the variance in measurements of T is given in terms of the variance in measure-
ments of the dimensionless variables and the derivatives of the dimensionless temperature
with respect to these variables. The importance of this last equation is that it allows one
to quantitatively assess the expected accuracy in the dimensionless temperature.

Notice a4T depends on the variable variances and derivatives of T with respect to

them. Consider these factors one at a time. First, the variances can be analyzed in terms
of the definitions of the dimensionless variables. From these definitions, we derive the
following variance behaviors:

22 2
X= 0X _ (64)

x22

2 2 2 2
So .. +UL (65)

P2 t2 a 2  L 2
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2 2 2 2 2
H= H + -L + k +GTo-T. (66)

H 2 H 2  L 2  k 2  (To-Tc,) 2

2 2 2 2
0 h' h 0L + 7k (67)
h2 -- 2 L2 k2

Each of the experimental variables on the right side of Equations (64) through (67)
can also depend upon additional variables whose errors must then be propagated. For
example, we have for the heat transmission coefficient h, a convective and radiative
contribution

h = hc+hr (68)

and thus

2 2 2 (69)Oh = 6hC + Oh' (9

The convective coefficient has the dependence

kJif Nu(Gr,PrRe), (70)
Lf

so that

2 2 2 2
--. =f f+ , .(71)

h2 k LI Nu2

Of course by reapplying previously used arguments, the errors in the Nusselt number
obey

2 2 2 2
OrNu =Gr + .r +R- (72)
Nu2 Gr2 pr 2  Re2
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The definitions of Gr, Pr, and Re can be used to express the errors on the right side of
the last equation in more elementary terms. For example, the variances obey, in the case
of the Reynolds number,

2 
2  .2

OR, (TV2 OLf ;
- + D _( 7 3 )

Re2  V2  (73)

of the Prandtl number,

2 2 2 2
UpN =,a UCf + Uk (74)

Pr2  J2  C' k

and of the Grashof number,

2 2 2 2 2Or_ = +'AT +9L +o .(75)
Gr2  -2 AT 2  L 2  p2

Returning to the radiative coefficient, we note that

hr --- or(T+ T.)(1"2 + 7o). (76)

For temperature differences

AT=T-Too, (77)

which may be considered small compared to T and T. (expressed in absolute temperature
units), hr may be simplified using a first-order Taylor expansion, to obtain approximately

hrm=4e oT 3, (78)

where T' is the average temperature

T+ To. (79)

2
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Therefore, approximately

2 2 2
'Th e C'T' (80)

2 +2T

We can now collect all of the separate contributions derived for the variance of T. Doing
so will simplify our final expression if certain reasonable assumptions are invoked. For
example, it is often true that errors in measurement of position and time may be neglccted
compared to errors in thermodynamic properties. In the Nusselt number, if the fluid
studied is a gas, its dependence on the Grashof number can be neglected, and if the same
gas under similar conditions is applied to prototype and scaled model, all errors in the
Prandtl number and those in the Reynolds number due to kinematic viscosity may be
neglected. After collecting the remaining contributions, we obtain

TT at OfJ kH 2 (To-TC.) 2 J(HJ

I22 2 2 2 ~ .2
'Yk +Yk 4f 'v at~ OT' T1 (81)

k 2T2* + V2 + C + Oh

2 2

We have now analyzed the variances upon which 0i depends. Recall that a• also
depends upon the derivatives of the dimensionless variables. In order to analyze these
derivatives further, it is necessary to know the specific functional dependence of T upon
each of the variables x, t, H and h, and this will differ from one physical pro6lem to
another. For example, each class of ship will have its own function T specific to that
class. In general, the function is not known in advance and hence neither are its

2derivatives. But as the derivatives are required to evaluate oa, three methods present
themselves for discovering the function T in its dependence upon x, t, H and h: (1)
experimental measurement, (2) numerical calculation using computer models, and (3)
analytical solution of the heat equation.

For a quick assessment of how errors might be expected to propagate in the IR
scaling problem, we utilize the last of these three methods. We consider a simple model
problem, for which the exact solution of the heat equation is known. We know therefore

2
in such a case the derivatives demanded in the expression for cr. We use these to2
evaluate o4 explicitly.
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A model problem whose analytical solutions are known is that of a flat plate at
temperature T, cooling in a background temperature Too, by convective and radiative
processes. A prototype plate is shown with its scaled model in Fig. 1. The prototype
plate at the initial temperature TO simply cools down to the background temperature Too
of the air. The scaled model plate behaves in a similar manner. There are no sources of
heat in this model problem, and the surface temperatures are considered independent of
position.

Fig. 1. Flat plate (prototype and scaled model) cooling under
convective and radiative exchange.

Conservation of energy implies (fo.r either plate)

hA(T-T,)dt:= -pcVdT (82)

which can be rearranged to

dT -hA dt (83)
T-TO ;pcV

which if integrated as

rT dT -hA I t dt (84)
T. T-T .pcVfo

yields

T = -hA tt (85)
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and after evaluation at the limits of integration we have the solution

This solution can be conveniently expressed in terms of dimensionless quantities. The left
side is the dimensionless temperature. The exponent on the right side is the product of the
Biot and Fourier numbers, since

R [!L) caJ (87)

which when we use the definition

Ci =(88)
PC

becomes
7ij = hAt (89)

pcV

We have, therefore,
•=e-Tii,(90)

the solution in dimensionless form, and hence it is applicable to either the prototype
aluminum plate or the scaled model fiberglass version. Notice the temperature differential
between a plate and its background will decrease to e1 of its initial value when

-1 (91)7i

thus defming the dimensionless "time constant" for the cooling process. If we recall that
the Biot number h can be interpreted as a ratio of resistances to heat flow, internal to and
external to the plates, then it is quite natural that the system "reaction time" t should
decrease with increasing h.

For our purposes, the value of having an analytical solution of a model problem is
that we can obtain the derivatives required to perform an error analysis of the dimension-
less temperature, and thus examine the manner in which experimental errors in the IR
scaling process propagate into the IR scaling measurements.

Proceeding now to calculate the variance in the dimensionless temperature to be
expected as a result of modeling errors in the Biot and Fourier numbers, we have
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2 2 aT (92)

From the analytical solution for T, we obtain the derivatives

8T -t T (93)

ah

and

8T,_7. (94)
at

Using these for the relative variance of T, we get

2 2 2
" +u (95)
7.2 = 2 7+T2

It appears that the errors in the Biot and Fourier numbers are equally important,
and that the relative variance in T is linear in that of both h and t. Roughly speaking,
errors of a given magnitude in either the Biot number or Fourier number cause errors of
like magnitude in the dimensionless temperature. Thus, to control the error in T, one
must give attention to controlling the errors in h and T and note that they are equally
important.

If we assume that errors in position x and time t can be made negligible compared
to those involving thermodynamic properties and conditions, we obtain the relative
variances

2 2 2
2o h 0+k (96)
h- 2  k 2

2 2
O t -- a ( 9 7 )

72

and these yield a relative variance of T which is
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2 2 2 2-T. - h +Ok go (98)
FT-j + -, 2"T2 h2 k2 a•2

Here the relative variance of nondimensional T is given in terms of the relative variance
of the regular thermodynamic propertiesof heat transfer coefficient h, conductivity k, and
diffusivity a. Controlling the errors in T is reduced to controlling those of h, k, and Ca,
and they are all equally important. Or conversely, knowledge of the errors in h, k, a
allows one to know the expected errors in T.

Consider further the errors associated with the heat transfer coefficient h, which is

composed of two contributions, one convective and one radiative, thus

h=hc+hr (99)

from which we obtain the variance

2 2 2h = hc + h.(100)

How do the convective and radiative processes separately contribute to the errors in T?
Taking the convective process first, we recall that

c= f- Nu . (101)

Now the functional form of the Nusselt number, Nu, has been widely studied for a
variety of flow conditions and flow geometries. The average value of the Nusselt number
for laminar flow over a flat plate is known to take the form

Nu =0.664 pr/3 Re1 /2  (102)

under the conditions that

1. 0.6 < Pr < 50,
2. 100<Re< 5xl05 , and
3. thermodynamic properties used apply for the average temperature,

2
It follows that

2 2 2
ghc 1 ONh 1 'Re (103)

2 9 pr 2 4 Re2
h2
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The relative variance in the convective coefficient is linear in the relative
variances of the Prandtl number and the Reynolds number, but the former is less
important for a given magnitude with a statistical weight of 1/9, compared to the latter
with a statistical weight of 1/4. The Prandtl number depends only upon the fluid under
consideration, and for the scaling experiment under discussion, the fluid air can be
reasonably assumed to have exactly the same Prandtl number for prototype and model.
Thus in such a case,

2 2
ah C1 URe (104)

2 4Re2hC

The Reynolds number depends upon the kinematic viscosity of air, but again for this
experiment, all properties of air can be taken to be identical for prototype and model,
implying zero error due to kinematic viscosity. If we assume a negligible error in the
measure of distance along the plates, the only error of significance arises from control of
the fluid velocity, hence

2qhC 1 O1 2 (105)
2 4 V2hC

The relative variance of the convective contribution to the heat transfer coefficient
depends only on the relative variance of the fluid velocity, and is one fourth its
magnitude.

Taking up the radiative processes, with

hr =T' 3 , (106)

results in
2 2 2

oh, er o 0 T7
h 2-C2 +9 T#(107)

r2E

The relative variance in hr is linear in the relative variances of e and T', but the latter is
weighted nine times more than the former.

Summing together the separate convective and radiative contributions to the
variance of the overall heat transfer coefficient, we obtain

1 2+ 2 ,
2 2 27 (108)
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so the relative variance of h is

S" (109)
hf'= I-hc[ v2 + fhrj [f T'(

Now the relative variance of T, accounting for errors in h, k, and a is

T2{ [ f fU T' +t 7- +] k J 4 ] (110)

On the right side, the first curly bracket is the total contribution due to errors in the Biot
number, and the second curly bracket that due to errors in the Fourier number.
Ultimately the errors in T are due to errors in flow velocity v, emissivity e, the average
temperature of the background and the initial average temperature T', the conductivity k,
and the diffusivity oa. The relative variance of T is linear in the relative variance of each
variable v, E, T', k, and a. The importance of the relative variance for each of these
variables in the overall error is measured by its statistical weight shown in the last
equation.

The importance of the last equation is that it gives the quantitative connection
which holds between the errors in the fundamental dimensionless variable T, which
determines the thermal state of the ship, and the errors in variables controlling the
experiment. This equation provides a numerical answer to questions concerning the
quality of the IR scaling experiment.

By inspecting the equation giving the relative variance of T, a few general
conclusions may be drawn. Aserrors in each of the experimental variables, v, E, T', k,
ci, increase so too do errors in T. Other factors being equal, the variance of T increases
with the fraction of h due to radiation. These conclusions are verified by the numerical
results, based on the equation for variance of T, shown in Table 3.

For example, the first row of Table 3 shows that, for h,/h = 1.00 and hA/h=0, as
the relative standard deviation of the experimental variables increases from 0. 10% to
30%, that of T increases from 0.15% to 45%. The first column shows that, for the
relative standard deviation of the experimental values fixed at 0. 1 %, that of T increases
from 0.15% to 0.30% as (he/h) decreases from one to zero.

Of course, once the variance in the dimensionless temperature T is known, this
will also determine the variance in the normal temperature T. Since

T= T(To-T.) + T.,, (111)
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Table 3. Relative standard deviation in T, eT, for given (he/h) and e&.*

hC/h e. = 0.001 0.010 0.100 0.200 0.300

1.00 15.00 x 10 -4 15.00 x I03 15.00 x 10-2 30.00 x 10-2 45.00 x 10-2

0.75 16.00 16.00 16.00 33.00 50.00

0.50 21.00 21.00 21.00 43.00 64.00

0.25 27.00 27.00 27.00 55.00 83.00

0.00 30.00 34.00 34.00 69.99 104.00

Relative standard deviation in x, e.. Here x is any of the variables upon which T

depends. For simplicity, all x's are assumed to have the same relative errors.

e- . m vTeM Ox an h c + hr
eT. , ex 7 and -I -

it follows that

22 2 2
UT= aT(To- ra) T. (12)

The first term on the right of this equation may be expanded according to

2 2 2
T(T_-T.) 0 ai + _T (113)

T2(TrTo.)2 Y. (ToT(,) 2

so that

2=(To_T.)2 2 2 2 2 (114)
Oj.+T T0 .oT. "T..U

This gives the variance of T in terms of the variance of T. If it is desired, this can
also be expressed explicitly in terms of the relative variance of T, as

2
2=(T_T.)2 "T •2 2 2 (115)

+T GToTO+T. + O(T11
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Now let us turn our attention to a numerical application of the equation for
relative variance of the dimensionless temperature. We consider the problem of a flat
aluminum plate cooling toward a lower background temperature due to heat transfer by
convection and radiation. The data used for the calculation are listed in Table 4.

Table 4. Data for calculation of hc and hr.

kf, Btu /hr. Lf, ft Pr v, ft sec u, ft2/sec a T, OR

0.0152 1.04 0.70 0.0352 15.0 x 10-5 0.27 0.1710 x 10-s 530.0

In Table 5, we list the relative variance of T and its square root, ey which we
take to be a measure of the fractional error in T. For ease of display, we have assumed
all relative errors in the thermodynamic properties to be of equal magnitude, i.e., all 1 %
or all 10%, etc. Obviously they will not, in a practical case, be all the same; but the
general nature of the conclusions reached under our assumption will still hold. Tqhle 5
shows that, for the conditions of the experiment considered, as the relative errors of
thermodynamic properties grow from 1 % to 20%, the T relative error ey varies from
2.5% to 51%. This corresponds to a standard deviation in the surface temperature which
varies from 1.48°F to 2.68°F if it is assumed that the background temperature and the
initial state temperatures can be measured to within a variance of V °F2. If instead, these
temperatures could only be measured to an accuracy with a variance of 5°F2 then the
range of surface temperature error would vary from 3.59°F to 3.900 F.

Table 5. Relative standard deviation in T and standard deviation in T.
(x and e. as defined in Table 3)

e. 0.010 0.100 0.200

e- 0.025 0.260 0.510

OT, OF 0.110 1.100 2.300 2 2
0'T. - T. UT o -0

1.500 1.800 2.700 =1

3.500 3.600 3.900 =5
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SCALE MODEL TEST PROGRAM DESIGN

Given an existing lR scale model of a ship, a fair question follows. Does the IR
scale model work? Does it do what it is supposed to do, viz., behave thermally, just as
does the prototype ship? In what follows, we outline the design of a test program from
which answers to the questions posed would naturally emerge.

The underlying idea of IR scale modeling is that the IR contrast is equal to a
ship's surface temperature minus its background temperature. An information equivalent
to the surface temperature is the dimensionless temperature function T. In IR, a ship can
be described by its dimensionless temperature T = T (x, t, IHI, h), which is a function
of dimensionless variables. One desires knowledge of the ship's function T.

A faithful IR scale model has the same dimensionless temperature function as its
prototype. To know one is to know the other. According to the theory developed for
suchscaling, both T's are the same if and only if the set of dimensionless variables x, t,
H, h are prearranged to be the same on model and ship. How such prearrangement is
made to occur concerns the design of the IR scale model and measurements laboratory.
Assuming this has been carried out, here we will only discuss the design of a program to
test a model.

Figure 2 shows a visible spectrum photograph of a ship at sea and a corresponding
laboratory instrumented model. Ultimately the test of a model is to compare its T-
function to that of its prototype ship. If the pair of T-functions is the same, the model
works; if not, it does not. Therefore the point of a test program is to compare the
model/ship prototype T-function pair.

To make the development of our discussion easier, let us assume measurements

have been made, and we know the T-function of the ship being modeled. For the ship,

we know T and its companion relative variances T/T". What remains is (1) to discover

the T-function (including its variances 6.) for the model and (2) to compare the T-
functions of model and ship. We consider these two steps one at a time.

First, the model's T-function must be determined by measurements. Since the
function sought is T (x, t, H, h), the measurements to be made can simply be read out
of the function symbolism, i.e., we must measure T, x, t, H, and h. Indeed, to know
the function T simply means to know the value of T for all values of the variables x, T,
H, and h. Of course, all of these dimensionless quantities are compounded of sets of
other variables and therefore by a measurement of one dimensionless variable, we under-
stand a set of measurements on several regular variables. For example, to measure one
value of T, as we may see from its definition, is tantamount to a set of measurements on
T, TO and T*. The function T is discovered quite methodically. The result of such
measurements is a table of values which contains measured values of T in a one-to-one
correspondence with measured values of the variables x, t, IH, and h'. Knowledge of
such a correspondence is just what is meant by knowledge of the function T. By such
measurement the function T is experimentally determined. Moreover, by repetition of
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such measurements an experimental distribution of values is obtained. From such an

experimental distribution, one calculates, in accordance with its definition, the variance

which is companion to the experimental functionT. Similar remarks apply to the calculation
of variances for the dimensionless variables x, t, H, h, and the regular variables from which
they are compounded That is to say, the distribution of experimental measurements inherent
to measurement of T leads naturally to experimental knowledge of the relative variances of all
the variables upon which T depends.

Hence, in the expression

a 2M2 2 + 2 1 a 2 1TI (116)
17J 1 1 7t aH [a/

one has independent experimental knowledge of all terms in the equation, left side and
right side. Therefore, for a test program check whether or not the theoretical expression
above is verified by the experimental results. If it is, the experimental errors on the left
may be considered as being due to the experimental errors on the right. Now, with the

function T and varianceso T experimentally determined, we turn our attention to
comparison of ship and model.

Basically, we want to know whether or not the T-functions of model and ship are
the same. But we need an objective criterion for deciding the issue, that is, a numerical
one. The standard practice to make such a decision is as follows. One views the T-
function for the model as a "band" of values "arcing" through the space of the
dimensionless variables. The width of the "band" is defined by the error measure a.

The experimental standard is similarly viewed, its own "band" of error having width
defined by its own experimental a-T. If the "distance" between the two functions is less
than the combined width of the error "bands" which surround the functions, they are the
same, i.e., within experimental error; see Fig. 3. In this figure, v stands for any relevant
dimensionless variable that is v.aried over the course of an experiment, while ir' stands for
any set of dimensionless variables held constant.The measure of the "distance" between
the functions is given by the comparison function

(TM ...TS)2ý (117)
02

The sum is over all experimental measurements of the model ship T's, each
weighted with its variance o2, reciprocal. This is an unbiased weighting scheme which
effectively weights more of those points of lesser uncertainty.
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x 2

Fig. 3. Comparison criterionx 2 <. + 2

or, + F TS.

The criterion for matching T's is then

X2 :rim + ST.s (118)

Satisfaction of the inequality is regarded as a match within experimental errors.

In summary, an IR scale modeling test program measures the T-functions of
model and ship together with their companion error "bands" a-, and judges the similarity
of the functions based on whether or not the "distance" separating the functions x2 is less
than the combined width of the error "bands" around them.

This discussion of test program design implies that one must measure the variables
T x, t, H, h; but this requires, in turn, measurements of the variables T, To, T.o, x, L,
X, ax, t, H, h, k some of which can be measured once and for all for a given model, e.g.,
L, a, k, but others must be actively monitored over the course of an experiment, e.g.,
T, To, T., x, t, H, h. In general, h will depend upon kf, Pr, v, and v, and only v need
be actively monitored during an actual experimental run.

One of the principal instruments useful for gathering test program data is a FLIR
imaging device. A single frame image from a FUR would correspond to data for which
x is a variable that changes over the space of the frame, with all other dimensionless
variables held constant for the instant of that frame. A sequence of image frames would
correspond to data in which the variable t would change from frame to frame. Each
frame might be thought of as labeled with a different value of t.
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Building a test program upon the framework of dimensionless variables introduces
an important economy into the process. The reason for this is that the number of dimen-
sionless variables required to specify T is fewer than the number of regular variables
required for T, since as one may recall

T = T(x, t, k, H, ca, h, AT) (119)

whereas,

T = T(x, H, h) (120)

An argument may be raised in opposition by asserting that although the number of
dimensionless variables is reduced, each of them, since they are compounded of regular
variables in their very definition, must invoke measurements of all the regular variables
for their determination. Therefore, it would be assertf-' that if the regular variables must
be measured anyway, there can be no real experimental economies achieved.

But such arguments fail because they do not take into account the economy of
organization introduced by use of dimensionless numbers. We may illustrate this by
reference to the actual practice followed in experimentally determining a function. For
example, we may seek a function of one variable y = f(x). How does one by nmeasure-
ment determine the rule f? In the range of x one chooses NM discrete values of x and at
those values determines y. The number NM might typically be 10, 20, or 100 depending
on how well determined we wish to make f, since as N increases so does the accuracy of
the determination. The number of experiments required in any event is NMI, i.e., the
number of discrete mesh points in the space of the variable raised to the power one,
which is the number of variables. But suppose we should have a function of two
variables, y = f(xl, x2). Now a determination of f which samples the two-variable space
with a mesh of test points equally efficient to those in the one variable case would require
NM2 points, where the power 2 is again the number of variables. By extension, in the
general case where the fineness of the experimental mesh along a variable is measured by
NM and the number of variables is counted to be Nv, the number of experiments Ef, to
determine the function f becomes

Lf=NU v (121)

The experimental "cost" rises exponentially with the number of variables to be
tested. It is because of this exponential dependence that the reduction in numbers of
variables, even a few variables, by use of dimensionless variables is important. Although
it is true that the dimensionless variables depend upon the regular variables, they are
organized in such fashion that the number of experiments involved does not depend upon
the number of regular variables exponentially. There is a savings inherent in the
organization imposed naturally by the use of dimensionless numbers in the description of
the experiment. Suppose for example, one is to test a function at NM points in the space
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of a dimensionless variable. The number, as said be-fore, of measurements required is
NMI. If the dimensionless variab!e is compounded of three regular variables, for
example, then each determination of the dimensionless variable requires three
determinations of regular variables. We obtain in such a case

Ef- 3NM, (122)

a number which is generally smaller than NM3 which would be the number of tests if only
the regular variables were used. By extension, if the dimensionless variables in number
Nv, each depend upon regular variables in number NR or less, then in such a case

Ef : (NRNM)Nv, (123)

a number which is generally smaller than NMNR since Nv < NR.

A more specific example would be one in which NM = 10, NRT = 4, whe.-e NRT
is the total number of regular variables, NV = 2, and NR < 2. Notice,

(NR NM)NV < NM (124)

that is,

(2x10)2 <(I10)4 (125)

By numerically evaluating the two sides of the above general equality for several
values of the parameters involved, one may reach the conclusion that the use of dimen-
sionless numbers reduces the number of experimental measurements required to determine
a function of several variables.

SUMMARY AND CONCLUSIONS

The known IR scaling laws that flow from an analysis of the heat equation have
been reviewed. The scaling laws lead to the important dimensionless variables relevant to
the IR, Equations (21) through (25). These variables are T, x, t, H, and h. When the
last four of these are assumed equal on ship and model, one achieves thermodynamic
similarity which results in T = Ts. The goal of IR scale modeling is achieved by
assuring the constancy of the ir's between ship and scale model.

Now when the constancy of the i's is so imposed, a question arises whether all
the v's are mutually compatible with one another. Mathematically they prove to be
compatible, but this in no way assures they are physically compatible. We have studied
this matter by reference to one ideal example, that of an aluminum ship scale modeled in
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fiberglass. At a scale of 1/48, it occurs that enforcing the constancy of the Y's would be
physically possible under common laboratory conditions. Of course for different
materials, and complicated combinations of materials, the 7-compatibility might be more
or less difficult to achieve than is the case with the simple example studied here. This
remains to be investigated. However, the ideas applied here, encapsulated in the
requirements of Equations (52) to (55), would form the basis of a wider study. The
physically realizable '-compatibility in the case of an aluminum ship and fiberglass scale
model in the meantime augurs well for results anticipated with other structural materials.

As stated, if we equate the appropriate set of 7's on ship and model, the T-
function will be the same for both. But in practice there are always errors in the scaling
experiment. Therefore we have addressed the question of how one can get a quantitative
estimate of the errors to be expected. The basic answer is arrived at by identifying the
variables on which T depends, and then propagating the errors in these variables into T.
In Equation (81) the variance expected in T is written in terms of the relative variances of
the variables on which it depends and the derivatives of T with respect to these variables.
In order to evaluate these derivatives, a model problem was chosen for which T was
known exactly and therefore so were its derivatives. The model problem was that of a
plate cooling under combined convection and radiation. A formula for the relative
variance was calculated for the cooling plate problem and displayed in Equation (110).
Once the errors in T are known of course, the errors in T, the regular temperature of the
plate, can be obtained as we indicate in Equation (115). Using the expressions for the
errors associated with a cooling plate, specific materials and conditions may be chosen to
obtain numerical values for the errors. For this purpose, an aluminum plate was modeled
by a smaller fiberglass plate. For the particular conditions chosen in the text, if the
background and initial temperatures are known to 1 °F, as the magnitude of the relative
errors in thermal properties grew from 1% to 20%, the standard deviation in the surface
temperature associated with the model plate varied from 1.5°F to 2.7°F. The tempera-
ture of the plate modeled was 70°F. So for example, at the lower range of error, scale
measurements of temperature would predict the result to be 70 0F± 1.50F. The
percentage error in the scale measurement of surface temperature would be 2.1 %. At
the higher standard deviation (2.7°F), the same measurement would correspond to a
percentage error in the temperature equal to 3.9%. Importantly, if it is desired to
improve the errors in the temperature measurement, Equations (110) and (115) show how
these errors depend on those in the experimental variables. Improving the experimental
errors in any one of the variables would propagate into an improvement in the measured
temperatures, and Equations (110) and (115) indicate how big the expected improvement
would be. Of course, Equations (110) and (115) are particular results which only apply to
a cooling plate of small Biot number.

Such a particular system was studied because this is a case where the temperature
solution and its derivatives are known exactly. This allowed numerical values to be
obtained for the expected temperature errors associated with scaling. However, the more
general equation for the errors expected in the scaling experiment is given in Equation
(81). This equation can be used as the basis for a numerical error analysis of complex
scaling experiments. The pattern for such analysis, however, is that illustrated here for
the simple cooling plate system.
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The equations associated with an analysis of experimental error are also useful in
the design and implementation of a scale model test program. In such a program, it is
helpful to know whether a given scale model in fact thermally replicates a prototype ship.
This requires comparing T for the model and ship when both are under equivalent
thermal conditions. Since the T's will never be the same on ship and model under
realistic experimental conditions, it is required to have a measure of "distance" between
the dimensionless temperature functions. This is provided in Equation (117). The
criterion for whether this "distance" falls within the expected experimental errors
discussed above is given by Equation (118). Of course, a test program could be based
upon many comparison tests. The comparison suggested here has been based upon the
function T because it is a function of an optimal number of controlling experimental
variables that are dimensionless in form, and thus impose an efficiency upon the
organization of measurements.
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