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Abstract

Existing models to obtain intensity and phase changes of sound due to thermal
fluctuations in the ocean, such as that developed by Chernov, are limited in their
application. They are valid only for an sotropic medium and where the range is much
greater than the correlation distance of the fluctuations. Extensions to short range and for
an anisotropic medium are described here, both for the stochastic wave and ray models.
Theoretical expressions obtained for acoustic fluctuations are easily evaluated. Numerica!
estimates are provided using stochastic wave and ray models for certain parameters of
range, frequency and temperature variation, of interest in target strength measurements.
These estimates indicate acoustic fluctuations for an anisotropic medium are always higher
than for an isotropic media. For a range of 100 m, frequency of 100 kHz and temperature
fluctuation of 7 x 1073 ¢ deg, the root mean square relative intensities and the root mean
square phase fluctuations are on the average higher by a factor of 6, where the vertical
correlation lengths are the same and the :adial correlation length is about 50 times larger.
Closed form expressions in the deterministic ray approximation are given to evaluate
intensity and phase changes due to the mean temperature gradient. The validity of the
deterministic ray theory results is discussed. Results from the stochastic wave and ray
models are examined for the applicability of the stochastic ray model at high frequencies.
At mega hertz frequencies and ranges of 1-3 metres, which are of interest in acoustic mine
imaging, estimates of the phase fluctuations from the stochastic ray approximation and the
wave model are indistinguishable. Theoretical expressions of the phase structure function
are given in the ray approximation to provide estimates of the phase coherence between
signals. These results can provide valuable comparisons with experimental results, when
such measurements are carried out with frequencies in the mega hertz band and at ranges
of 1-3 metres.
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Models to Estimate High Frequency
Acoustic Scattering Due to Thermal Fine-
and Micro-Structure of the Ocean

1. Introduction

Scattering in the ocean can result from several sources. These include organic and
inorganic particles (such as plankton and sand), air bubbles, the sea bottom or
surface, and change s in current or temperature. This paper focuses attention on
high frequency acoustic scattering due to temperature changes in the ocean.

Scattering of sound due to temperature changes can cause attenuation and
fluctuations in amplitude and phase. Amplitude fluctuations cause erratic
detection ot targets, since the targets tend to be detected when the signal is strong
and lost when the signal is weak {Urick, 1983, p183]. Further, in acoustic
underwater imaging, temperature fluctuations can cause varying intensities and
phase errors at different positions of the image, and loss of correlation between
signals. Thus the iinportance of this study.

In this paper a number of questions are looked at, in relation to high frequency
acoustic scattering due to teinperature changes in the ocean. How do we obtain
reliable theoretical estimates of acoustic attenuation, intensity and phase
fluctuations from ocean temperature measurements? Can we theoretically
estimate intensity and phase fluctuations due to temperature changes in target
strength measurements where the range is around 100 m? In the study of
underwater acoustic imaging the range involved is a few metres. Is it possible to
obtain theoretical estimates at this short range? The ocean being an anisotropic
medium, how does one obtain estimates of acoustic fluctuations, since most of the
models treat it as isotropic. How good is the stochastic ray approximation at
frequencies of 100 kHz and above? An experiment usually carried out is the
measurement of the coherence of the phases of an acoustic signal at two receivers
separated in space. The phase structure function is a measure of this coherence. Is
it possible to obtain theoretical estimates of this quantity at short range?

Flatte {1979, p93] presented the different sound transmission regions in the
A - ®space. Here A is the diffraction parameter, and ® the root mean square
(rms) phase fluctuations in the ray model. These parameters are defined Jater in
this report. Fig.1 is a diagram of this space. The unsaturated region corresponds to
weak scattering, while the saturated region is that of strong scattering. The ray




region is where diffraction effects are small. For an isotropic medium expressions
for A [Flatte, 1979, p91, eqn.6.2.3] and & [Flatte, 1979, p92, eqn 6.2.5) are
available. The expression for @’ is valid only when the range (L) is very much
greater than the correlation length («, ).
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Figure 1: A - @ space, where A is the diffraction parameter, and ® is the rms phase
fluctuation in the ray model.

In the ray region, expressions for the relative intensity fluctuations and phase
fluctuations are available only for an isotropic medium, in a domain where L is
very much greater than a, [Chernov, 1960, p34, p29; Flatte, 1979, p92]. No closed
form results are available for short range where L is less than or equal to a, and
for an anisotropic medium. Again in the unsaturated Rytov region, expressions
for relative intensity and phase fluctuations are available only for L very much
greater than @, and for large k,a, {Chernov, 1960, p83]. No closed form
expressions are available for L less than or equal to @, or for an anisotropic
medium.

The paper discusses extensions to these models to obtain estimates of
fluctuations at all ranges in the ray and Rytov regions, both for isotropic and
anisotropic media. Numerical estimates are provided for some situations to give a
measure of the magnitude of these fluctuations. Comparisons are made between
the Chernov results and the results of the stochastic ray model. Mathematical
detail is kept to a minimum; the emphasis will be on the application of models to
obtain acoustic estimates.

The structure of the paper is as follows. Some experimental temperature and
temperature gradient profiles are examined. Using deterministic ray theory,
closed form results for intensity and phase changes, with reference to a medium
where there is no temperature gradient, are given. These results provide a
qualitative understanding of the effect of the mean temperature gradient on




acoustic transmission, and quantitative estimates of intensity and phase changes
under certain limited conditions. Next, a statistical model based on wave theory is
developed and examined. Theoretical expressions for the mean square scattered
pressure, attenuation, intensity and phase variance at a p 't scparated
horizontally from the transmitter are given. Comparisons are made with other
models such as the Chernov wave model and a new stochastic ray model. Finally
a theoretical expression for the phase structure function based on the stochastic
ray model is described.

Velocity fluctuations that occur in the ocean can be classified in general into
three time scales [Anderson and Zahuranec, 1977, p135]. Velocity fluctuations that
arise due to earth's rotation occur in time scales in excess of 1/ f hours, where f
is the inertial frequency or Coriolis frequency in Ars™. 1/ f, is approximately 24
hours. Velocaity fluctuations that arise due to density gradient, stratification, or
internal waves occur in time scales between 1/ f,, to 1/ f, where f,, corresponds
to the stability frequency or the Brunt Vaisala frequency (1/ /,, lies approximately
between 30 mins to 24 hrs). Velocity fluctuations due to temperature fine structure
and micro structure occur typically in a time scale less than 30 mins. The length
scale of the structure is the basis of division between fine structure and micro
structure. Fine structure corresponds to a length scale between 1 m and 100 m
while for the micro structure it is below 1 m [Flatte, 1979, p15].

2. Some Experimental Temperature and
Temperature Gradient Profiles

Fig. 2(a) is an example of a temperature profile obtained off Perth, Western
Australia (from the RV Franklin). Fig. 2(b) is the corresponding temperature
gradient profile. Temperature is given at every 2 m interval and has an accuracy
of 107 C deg. The plots indicate that the temperature gradient has more structure
than the temperature prc!ile. In the next section it will be shown that it is the
temperature gradient that is responsible for acoustic refraction.

Fig. 3(a) is an example of the temperature profile obtained at Woronora dam, a
fresh water lake approximately 50 km south of Sydney, New South Wales. Fig.
3(b) is the temperature gradient of this profile. The profile is over a depth interval
of 10 m. One can observe here some temperature inversions that are characteristic
of surface layers. Normally, temperature decreases with depth (dT /dZ < 0).

Fig. 4 shows the temperature variation with time over the same 10 m depth
interval at three times. Plotted here is the temperature difference, that is the
temperature at time t minus the temperature at t=), where the temperature at t=0
corresponds to the profile shown in Fig. 3(a). The three parts of Fig. 4 correspond
to variations after 3, 6 and 9 mins respectively. The diagram shows that even at
the small time scales considered here there is a temperature variation, the
magnitude of which on the average varies from 10~ to 10™'C deg per minute.
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Figure 2:  Temperature, (b) Temperature gradient profile obtained off Perth in Western
Australia, 31 58.82°5 115 11.42°E.
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Figure 3: (a) Temperature, (b) Temperature gradient profile obtained at Woronora dam,
approximately 50 km south of Sydney, New South Wales.
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Figure 5: Discrete probability function of the temperature gradient obtained off Perth in

Western Australia, and A times the gamma probability density function (the smooth
curve). A =103

Fig. 5 is the discrete probability function of the temperature gradient obtained
using the Perth data shown in Fig.2. This was cbtained from the frequency of
occurrence of a particular temperature gradient (using the Numerical Algorithm
Group (NAG) routine GO1AEF). For ease of comparison with the model of Hayes
et al [1975], the temperature gradient plotted is the negative of the observed
temperature gradient. The probability unction shows a large skewness and can be
fitted quite well to a function of the form A f(x), where A is the discretisation

-x
interval (equal to 107 in this example) and f(x) = wgePo x*0=1, which is the
gamma probability density function. The variable X corresponds to the
temperature gradient. The mean and vanance of the x distribution give the
constants 0., and P, [Freund, 1965, p147], while the result that the integral of the
gamma probability density function over all values of X 2quals unity gives the
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constant W,. The model proposed by Hayes et al [1975] is the basis of the choice

of f(x). This model assumes layers of water that are nearly hcmogeneous,
separated by sheets of sharp gradient with the mixing process occurring
randomly in the vertical according to Poisson's law. This model is the basis of the
choice of the anisotropic correlation function used later in this paper. So far, only
vertical temperature profiles have been presented. However to obtain accurate
estimates one also requires temperature profiles at horizontal separations.

Next, the effect of the mean temperature gradient on the acoustic intensity and
phase changes will be examined, using simple deterministic ray theory. The
reference is a medium where there is no temperature gradient.

3. Deterministic Ray Theory Results

The speed of sound (¢ )in the ocean can be given by an empirical equation of the
form,

c=1449.2+4. 6T ~0.055T2 +0.0003T3 +(1.34-0.012T (S~ 35)+0.016 Z

where T is the temperature in degrees Centigrade, S is the salinity in parts per
thousand and Z the depth in metres [Medwin, 1975). The speed of sound in the
ocean is therefore a function of temperature, salinity and depth. However, as seen
from the above equation the largest coefficient is that of temperature, which
indicates that temperature change is the dominant cause of velocity variation.
Consider the case where we can approximate the above equation by c = ¢ + gZ

where g is equal to the velocity gradient g;— This g is mainly due to

temperature variation. From ray theory, the path of the ray is given by [Officer,
1958, p48]:

do_ de
s Pz
in®
where p = suc\ 9 s is the ray path, 0, tite angle at the source, and ¢, the speed of
0

sound near the source. We measure 8 and 0, as the angles of the ray made with

the vertical as shown in Fig. 6(a), with depth increasing downwards. If %;—

changes with depth, then % changes with depth.

If £>0 then _@2)0'

dz ds

that is  increases with s . In other words the ray bends upwards. On the other
hand,

if g-cz<0 then %’<0,

that is @ decreases with 5, and the ray bends downwards. Thus due to
temperature gradient, and therefore velocity gradient, rays undergo refraction.
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Let us now look at intensity changes due to refraction. Suppose we have a
receiver (R ) and transmitter (7') at the same depth but separated horizontally by
adistance L, as indicated in Fig. 6(a). Let us assume always that the transmitter is
at z =0 and the speed of sound near it is ¢,. For a medium with a linear velocity
gradient g, the intensity loss due to refraction measured in decibels (dB) is given
by

272
AI(R, )(dB) = 10Log o (1+‘i6'"2 ). )
0

This was obtained from Officer's equations (2-83), (2-85) and from the expression
for the intensity at horizontal range L given by,
I Eq sinBg @)
Lcos6( -a—L— )
98
[Officer, 1958, p50, eqn.2-54]. In eqn(2), £, is the amount of energy emitted per
unit time per unit solid angle. These equations are invalid for either L equal to 0
or for B, equal to 0, as seen from Officer's eqns (2-54), (2-83) and (2-84). Equation
(2) also fails at 8 = 0.57, that is at a turning point. The intensity loss A/(R, ) is
the difference in intensity at R,, between a medium with a constant velocity
gradient g and one where g =0. The larger the magnitude of g, the bigger is the
intensity change. Another feature to be noted is that the intensity changes due to
refraction, when receiver and transmitter are at the same horizontal distance, is
independent of the sign of 'g". What this means is that although the direction of
bending is different, this being dependent on the sign of 'g’, the amount of
bending at R,, that is the normal cross sectional area at R, is the same. To get an
estimate for the intensity losses due to refraction, let us look at some results for
L =100 m and ¢, =1500 m/s. The intensity loss for g equal to -0.23,

-0.46 s™'are 2.55X107* dB and 1.02X107>dB respectively. These results are
obtained using eqn (1). The velocity gradients correspond to temperature
gradients of -0.05 C deg/m and -0.1 C deg/m respectively. Such gradients are
observable, as may be seen from Fig. 2(b).

Consider the case where the transmitter and receiver are separated by a distance
R and at the same time they are displaced vertically by z . We again take a
coordinate system where the depth increases downwards, so that if the receiver is
above the transmitter, z < 0, while if the receiver is below the transmitter, z > 0.
The intensity loss due to refractiou in this case is given by,

2p2

Al(lzz)(aus)=1onog,o(1+5'R2 + £ 3)
4c; o

When z =0 and R = L, eqn (3) reduces to (1). The result given in eqn (3) is
obtained using Officer’s, eqn (2-89), (2-83) and (2-85). Both eqns (1) and (3) are
invalid either for L = 0 or for 8, = 0. Unlike eqn (1), for z # 0 the intensity loss
depends on the sign of g. For g < 0 (velocity decreases with depth), intensity loss
due to refraction will decrease with Z for constant R. On the other hand for

£ > 0 (velocity increases with depth), intensity loss due to refraction will increase
with 2 for constant R,
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An interesting corollary of eqn (3) is that one can find a depth Z for a particular
£ and R where the intensity change due to refraction becomes zero. In other
words the normal area of the ray tube is the same as that for an isospeed medium.
This depth is given by

RZ
=82

460

For g > 0, this is above the transmitter, whereas for g <0 it is below the

transmitter.
Let us now consider the case of normal incidence where 6, = 0. We begin with

Officers eqn(2-81),

d0  sin@
— 4
ds o g @
For 8, = 0, the above expression becomes zero, which implies there is no
refraction, and hence no intensity or phase changes due to refraction.
-2
When 8, # 0, but L =0, Officer's eqn (2-83) and (2-85) gives z = 0 In other

words there is a unique position where the ray crosses the Z axis. At this position,
using Officer's eqn (2-80), the acoustic velocity ¢ = —¢,. Thus the situation with
0, # 0, but L =0 is not realistic.

Let us now look at the effect of the mean temperature gradient on the phase
change, with reference to a medium where there is no temperature gradient.
Consider the case where the transmitter and the receiver are at the same depth
but separated horizontally by L. In this case derivation of a closed form result is
possible. Starting from Officer's eqn (2-84), and using eqn (2-83), with the
trigonometric relationship between the full and half angle for cotangent, one can
show that the phase change due to refraction is

o 2l 28, (P8R g L
AQ(Rl)—(an){gln[zco +( 4cg +1)2 o g#0

where f is frequency in Hz.
Consider g = —g,. Substituting for g, one obtains after some algebra:

ool 2yl 81, L8 L
M(Rl)_(znf){glm[2c0+(—4:g_+1)2 = g1>0 (5

This shows that the phase change is independent of the sign of g. For small [g{,

L*|g|
4C02

Ad(Ry ) = (2xf)

showing that the larger the value of |g], the bigger is the phase change. If |g] is
equal to 0, then there is of course no phase change due to refraction.

17
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Consider the case where the transmitter and receiver are at a separation R but
displaced vertically by Z . The method to obtain phase change due to refraction is
as follows. For a particular R and Z one calculates,

Rzg+22co

cot@y = —S =70
2¢5(R2-22)%2

This was obtained using Officer's eqns (2-51) and (2-83). Starting from Officer's
eqn (2-84), and agam expressing the cotangent of the half angles in terms of the
full angles, the phase change is given by,

G

cotBy +(cot? 8, +1)V2J R }

AB(R)=(28f){ 2 1n .S
¥ cot 8 + (cot? e+1)%

where from Officer's eqn (2-51),

2.2 .12
n-£2-28]

o €0
Z
1+ 8
o

cotf="-

Equations (5) and(6) are valid for g # 0. If g = 0 there is no refraction and hence
no phase change. The parameter 7Y is defined as follows:

If (R2 - z2)42 5 8 coi(6p)
g
then y=-1 if g>0 whie y=1 if ¢g<0.
If (R? - 22)¥2 < 20 co1(8y)
g
then Y=1 if g>0 while 7y=-1 if g<0.
if (R?-z2)V2 _ Egp—cot(eo)

then  y=1, and 8=7

For z =0, one can show that eqn (6) reduces to eqn (5). For z # 0 the phase
change is dependent on the sign of g. To understand this, let us look at the ray
paths drawn in Fig. 6(b). When g > O the receiver is in a region where the velocity
is greater than ¢, . This would therefore shorten the time taken by the ray to reach
the receiver, when compared to a medium where g = 0. This results in a negative
phase change. As depth increases, so does the phase change, where the reference
is a medium having a constant sound speed ¢,. If g < 0, the velocity of sound
near the receiver is less than that near the transmitter. This would increase the
time taken to reach the receiver, when compared to a medium where g = 0. This

18




would result in a positive phase change. Increasing the depth increases the phase
change.

The only discontinuity and singularity that occur in eqn (6) are at 8, = 0 and
0 = 0 respectively. If 0, = 0, it has been shov’n before that there is no refraction,
and hence no phase change. If 8 = 0, but 6 # 0, then from Officer's eqn (2-85),

~C . - P -
z=—2 This position corresponds to ¢ = Q, which is not realistic. In other words,
g

if 8, # 0, then O can never equal zero.

To get an estimate of the phase changes and intensity changes due to refraction
let us look at the system depicted in Fig. 6(c). The system consists of three
receivers, all at the same horizontal distance L, but vertically displaced by -z, 0,
and Z m. In imaging it is not intensity or phase change at one point that is
important but the differences between them. The phase and intensity changes at
each of the receivers R, R, and K, are calculated using egns(1), (3), (5) and (6).
Let us consider three cases. The first case correspondsto L=3m, 2=0.5m,

S =1MHz and g = —0.23. The intensity changes at R, R, and K; are
3.33X107%,2.29X1077, and -3.33X10™* dB respectively, while the phase changes
are —0.488,-1.11X10™ and 0.488 radians respectively. The next case considered
isL=10m,z=0.5m, f =100kHz and g = —0.23. The intensity changes at
R, R, and R, are 3.36X107*,2.55X107® and —3.30X10™ dB respectively, while
the phase changes are ~0.161,~4.10X107%, and 0.161 radians respectively. For
the third case, increasing L to 100 m at 100 kHz gives intensity changes at

R, R, and R, of 5.88X107%,2.55X10~ and -7.77X10™° dB respectively, while
the phase changes are ~2.02,-0.41 and 1.195 radians respectively.

The results described so far, for intensity and phase changes using ray theory,
were obtained by considering the medium to be one where the speed of sound
varies linearly with a constant gradient and is homogeneous horizontally. In a
medium that consists of many vertical layers with different constant velocity
gradients, it is impossible to obtain closed form expressions for intensity and
phase changes. In the case where one can identify the presence of more than one
layer, the solution is obtained by solving numerically Officer's egns (2-83 to 2-85)
for each layer. The ray solution is an exact solution of the wave equation at infinite
frequency. At finite frequencies the ray solution is a good approximation to the
wave equation if {Tolstoy and Clay, 1966, p52 and Officer, 1958, p39]

v2A

<<1
ko2 A

where ky (= 2%) is the wave number, A_ the amplitude and V2 the Laplacian.

The ray solution fails at caustics and shadow zones [Tolstoy and Clay, 1966, p57].
In a plane stratified medium, like the one assumed here, it also fails at turning
points. Egns (1), (3), (5), (6) are obtained under the assumption that there are no
reflections or scattering from the boundaries, and no interference. Under such
circumstances for a plane stratified medium the equation of a caustic is defined by

a"'(a‘i'o ) =0 [Kravtsov and Orlov, 1990, p137], where L is the horizontal

range.That would be the equation of the caustic is also seen from egn (2). Using
Officer's eqns (2-83, 2-85) for L and differentiating with respect to 0, the equation
for the caustic can be obtained. The equation obtained is an implicit equation in
0,. For a single layer having a constant velocity gradient (as assumed here),

19




numerical solution indicates absence of caustics. This can also be shown
analytically as follows. For a medium with constant velocity gradient the ray
paths for different for different 0, are circular arcs that pass through the source

with a horizontal range of E;—ocoteo . Since the horizontal range decreases

monotonically with 8, ray paths with different 8, do not intersect.
For near horizontal rays, using Officer’s eqns (2-27,2-46,2-83,2-85,2-13) and the

assumption that %%24 and g—g are approximately zero, one can show that the ray

solution will be a good approximation to the wave equation if

2
(4
0 1

—— L
anifi?

l.ai .a_e and _82
AdL'3L’ " %
approximately zero, one can show using Officer's eqns (2-27, 2-46) that the ray
solution will be a good approximation to the wave equation if f >> g {Tolstoy
and Clay, 1966, p50].

So far in this section, expressions to obtain intensity and phase changes in a
medium with a mean temperature gradient have been described. The reference
has been a medium where there is no temperature gradient. The usefulness of
these simple closed form expressions is that one can estimate changes in intensity
and phase, due to changes in the mean temperature gradient, in regions where the
ray solution is valid.

For steep rays ( where z is large), assuming to be all

4. Stochastic Wave and Ray Theory in a
Random Medium

In most cases in the real ocean one can write

¢=cq+8gz+small random part

The following sections look at obtaining acoustic estimates such as intensity and
phase fluctuations, and attenuation from the random part of the sound velocity.
This is done using both stochastic wave and ray models. The stochastic ray model
suffers from many deficiencies, in that there is no frequency dependence for
intensity loss, and ignores diffraction and interference. However it is an exact
solution at infinite frequency. By comparing the results of the stochastic ray
model, with that of the stochastic wave model, the region of applicability of the
stochastic ray mode! for finite frequencies is examined.




4.1 Correlation Function, Mean Square Scattered Pressure and
Attenuation

The basis of this model is the approach developed by Liu [1991] to obtain the
mean square scattered pressure for a discrete random medium. A correlation
function or a spectral function characterises the random medium. This is obtained
from a large collection of temperature data and will be 2 function of the
environment. The covariance N, is given by

Ny(r=r)=p2N(r-r"),

where the correlation coefficient N is defined as

i?(r, v) sc—‘-(r',w
N(r-r)={ £——€c "~
(’»‘Cf(r,v))2

and]?as

F=<[%<r,v)]z>.

The symbol ( ) indicates averaging over different temperature profiles, V. l1° is
the mean square fractional speed fluctuation at position r . The spectral function

is given by W2 F(K), where F(K) is the Fourier transform of N(r —r").
K= (K,.K,,K,), where K depends on the incident wave number K, and the
direction of incident and scattered beam. In spherical coordinates,

Ky =ko(sin®; cos¢; —sin g, cos¢,)
Ky =ko(sin@; sin¢; -sinB; sin¢,) )
K; =kg(cos8; —cosog)

where i is the direction of the incident beam, and 5 the direction of the scattered
beam. © and ¢ are the polar and azimuthal angles respectively. For back-

scattered pressure, K = 2k, .

Two forms of correlation and spectral functions have been used to deal with
temperature fluctuations that occur at the fine structure and micro structure level.
One is isotropic that is characteristic of micro structure fluctuations, and the other
is anisotropic and characteristic of fine structure fluctuations. The isotropic
functions F(K) and N(x, y,z) are given by Liebermann [1951], Chernov [1960,
p10},

3 -a3(K1+K2+K2)
FRy =2 2L
8(:)/2
~x3+y2+2%)
N(x,y,z)=¢e K% (7a)
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where q, is the correlation length.

The anisotropic functions F(K) and N(x, y,z) are given by Unni and Kaufman
(1981},

22
> pzzo P K%
FR) =l —r a1l
4n° (K z5+1)

2 _p2 2
I(P -K,+Ky

_(x2 +y2)

-
N(x,y,z)=¢e %e /P

on

(7b)

where z, is the correlation distance in the depth direction and p,, is the
correlation distance in the radial direction. The form of the anisotropic function is
obtained from a statistical model where the thermal fine slructure in the vertical is
a steppy Poisson process and where the layered fine structure is advected
horizontally and vertically by internal waves. The basis of the steppy Poisson
process is the experimental discrete probability function of the observed layer size
Uoyce and Desaubies, 1977]. The introduction of a steppy Poisson process in the
vertical introduces the exponential function in the anisotropic correlation function.
However it must be noted that the exponential function introduces a peculiarity,
namely its partial derivative with respect to Z at the origin differs from zero. This
implies that the refractive index fluctuation is a discontinuous function {Chernov,
1960, p9]. The exponential function is commonly used however because it often

yields realistic results. The parameters a,, z,,p, and 1’ are dependent on the
environment.

For a medium where the mean speed of sound is ¢,, and where the sound
source is continuous and monochromatic, the mean square scattered pressure at a
distance 7, very much greater than the dimensions of the scattering region of
volume V, is given by [Chernov, 1960, p51)

Akl
lps (r)f? =—°—°f7(——"l—F(K) ®)

where kg = -:i and ® , 4, are the angular frequency and amplitude of the sound
0
wave respectively.

Assuming the initial direction of the incident beam to be along the X axis,
6, =90" and ¢, = 0° let us evaluate the term

_ ky Pk
R(R)=—0—e¢ 2 O
(Kzzg +1)
for the anisotropic function and

-ag(x§+x;+1<3%

F(K)=kje (10)




for the isotropic function. The function (K contains all the angular and the
freq.cncy dependence of the mean square scattered pressure. Fig. 7(a) is a plot of
the anisotropic F, (eqns 7, 9) as a function of ¢, at 1 MHz for two scattering
directions 8, = 89.8" and 89.6°. K is plotted on a logarithmic scale with

Po =74 m, and z,=2 m [Unni and Kaufman, 1981 and Joyce and Desaubies,
1977). These lengths were obtained for the Sargasso sea, and are not universal
parameters. From Fig. 7(a) we observe that in going from 89.8" to 89.6° there isa
large decrease in the magnitude of F{. Also, the function decreases very rapidly
with increasing azimuthal scattering angle ¢, . This indicates that scattering is
confined to a small angle close to the direction of propagation.

Fig. 7(b) is a plot of the anisotropic /| (eqns 7,9) for a particular scattered
direction 8, = 89.8° as a function of ¢, for the two different frequencies 1 MHz
and 100 kHz. The results indicate that as the frequency decreases scattering
spreads over a wide angle. However the spread is still small, the function
decreasing rapidly with increasing ¢, .

Fig. 7(c) is a plot of the isotropic /{ (eqns 7,10) as a function of the azimuthal
scattering angle ¢, , for the two angles 8, = 89.9° and 89.8°, withq, =0.7 m.
Changing the scattered direction from the incident direction of propagation, there
is a marked decrease in /. However the width of the scattered beam using the
isotropic spectral function is much greater than for the anisotropic function. The
above results indicate that high frequency (A << a,) scattering is strongly
directional, the direction being close to the direction of propagation, [Chernov,
1960, p52).

Next the evaluation of the total attenuation both for the isotropic and
anisotropic functions is undertaken. Starting from equations (50), (51) and (52) of
Chernov [1960. pp53, 541, the attenuation (Q) is given by,

n

2x e ——— 2
fo 7 r
_'gsmwegdwlps(r), ————Aozv. an

st

The expression for |p,( r)]2 is given by eqn (8). For the isotroric correlation

function it is independent of the direction of propagation and can be easily
evaluated, [Chernov, 1960, p55):

a(dB/ m)=4.34p 2k, 2aq JR(1—e~%K ) (12)

At high frequencies it varies as k. This arises since for large &,,k,a, >> 1, and

thus e~%% _5 . Fig. 8(a) shows the attenuation in dB/m (eqn 12) at the two
frequencies 1 MHz and 100 kHz, as a function of a, for p2 = 5.1X107'°. This Te

corresponds to a root mean square temperature fluctuation of 7 X 1073 C deg.
Although with increase in frequency, scattering becomes confined to a small
region close to the direction of propagation, the increase in attenuation at small
angles, causes the total attenuation to increase.

In the anisotropic case, attenuation will depend on the direction of propagation.
Where the direction of propagation is along the Z axis, the attenuation is given by

o~0:25p3k§ sin’0
(k222 (1-cos8)? +1]

R
a(dB/m)=4. %uzk‘pozofdesine (13)
0




w§

C .2 o1 o B .
oagmes)

Figure 7: (a) Plot of Fy (eqns. 7,9) asa function of the azimuthal angle ¢, for 1 MHz
and 0, = 89.8° and 89.6°, (b) Plot of Fy (eqns. 7, 9) as a function of ¢, for 6, = 89.8°,
and frequency of 1 MHz and 100 kHz. The spectral function is anisotropic, with pg =

74 m, and 25 = 2 m. (c) Plot of Fy (eqns. 7, 10) as a function of &, for 8,=89.5° and
89.8°at 1 MHz. ay=0.7m.
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Integration over angles in the above integral arises due to scattering being in all
directions. The integral is evaluated numerically using the NAG routine DO1GAF.
Since high frequency scattering is confined close to the direction of propagation,
in this sector a fine interval has to be employed to obtain accurate results for
attenuation. To obtain a relative error of less than 1%, for 6 upto 0.1 radians,

integration intervals were found to be of 107 radians and 10 radians at
frequencies of 100 kHz and 1 MHz respectively. Beyond 0.1 radians a much
coarser interval is used. Fig. 8(b) shows the attenuation (eqn 13) at 1 MHz and 100
kHz as a function of the vertical correlation length z,, for p, = 50 m and

F =5.1X1071%, The magnitudes are of the same order as the isotropic function

and show a k? dependence. There is negligible variation with p,. With
propagation along the vertical Z direction, and attenuation being confined to
angles close to the direction of propagation, the radial correlation length is
expected to have a negligible effect.

4.2 Amplitude and Phase Fluctuations in Wave and Ray
Theory

In the last section we found high frequency acoustic scattering confined to regions
close to the direction of propagation. This effect indicates amplitude and phase
fluctuations will become important. This section looks at obtaining estimates of
these fluctuations. Consider an experiment where the receiver is in the direction
of propagation and separated by a distance L from the source, which transmits a
continuous wave monochromatic signal. The receiver receives the direct wave as
well as waves scattered by the media. The superposition of the direct and
scattered waves gives rise to fluctuations in the received signal. The Rytov
method, [Chernov, 1960, p61] is used to obtain estimates of the mean square log

amplitude fluctuations ( ln('%%))2 and the mean square phase fluctuations,

(40)*. Here A, A, are the amplitudes and ¢, @, the phase of the received and
transmitted signals respectively. A® equals ¢ — @, . The Rytov method is
applicable when the relative amplitude change, and phase change over a
wavelength is small. There is no restriction on the total change of these quantities.
Consider the source being placed at (0, 0, (1) and the receiver at (L, 0, 0). Then,
following Chernov (1960, p70], we have:

(In(4/, )2 = 0.5k 2 (1, - 1) (14)
(80)% = 0.5k 2 (1, +1,). (15)

where [, I, are integrals that depend on the correlation coefficient and are
defined by Chernov {1960, p70]. Let us evaluate the integrals /|, /, for the two

different correlation coefficients.
For the isotropic correlation function,

-,_zy7
1 (-1 R

12
I Li!'dx :[ dy i

(16)

ka3
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—L2y2
(4L2(2-2x—yV ]

-X 1+ 2‘
kgag

These are obtained by starting from equations (118) and (119) of Chernov [1960,
p70) and without making any further approximations (such as L >>a, or
M, >>1).

Making the approximation that L >> g, and a, >> 1, Chernov obtained, see
his eqns (159), (160) in Chernov [1960, p83),

(17)

5=Bja
0

(1:1(-;:‘;))2 = O.SJ;Fkg“OL(l—%arctan(D)) (18)
(49)? =0.5J;FkgaoL(l+—éarctan(D)) (19)
where D = —ﬂ'f

In the limit k,a, — °° one can obtain simple analytical resulis. In this case,

L 7% a
I, - gy [L erf(—)+(e /% ~1) ] (20)
4 vr

where erf(x) is the error function of argument X . For k, a, >> 1, using cqns (16)
and (17),

1 1-x L2y
41t /i
!1-12 ﬁ—njdx jdy 4 /a"|(2'2x“!/)2‘}/21 (2])
kgap v,

-X

In the limit k,@, — oo, /, = I, — Oand therefore,

g2
332 L /%_
(80)% - niE Vrag[L erf(a0)+(e 1>§%1 (22)

One can also obtain this result from ray statistics, using the expression for the
mean square transit time fluctuation given in Chernov [1960, p29].
Substituting the expression for (I, — /,) (eqn(21)), into eqn (14) the relative
intensity fluctuation at large k,a, becomes,

1-x -2

——— 2/
T A7 2 2 2I..41 y
<ln<%0»’~»—l:3—£dx [y e A‘uz-zxw)’—yzl @3

There is no restriction on the value of the horizontal range in the above equation.
When %0 >>1, egn (22) becomes,




(80)? - p*k3LJnaq %)
Chernov obtained the same result in the ray approximation, using the isotropic

gaussian correlation function and evaluating the integral given in Chernov [1960,
p29]. When %0 >>1, eqn (23) reduces to

—_—— -—13
(.n(on)z)_,%Eu2;’:g 5)

Eqn (25) is the same as that obtained by Chernov in the ray approximation,
{Chernov, 1960, p34]. Clearly his expressions in the ray model are therefore valid
only when L >>q,.

If %0 <<1, eqn (22) reduces to,

(40)% 5 2p2k212 (26)
For the anisotropic correlation function, equaticns (118) and (119) of Chernov
{1960, p 70) are again the starting point for the evaluation of the integrals /, and

I,. When evaluated without invoking any simplifications, one obtains for the
integral /|

1-x

1 -12y?
i 2
11=L2fdx fdy e A’[IA(bl,po)IC(b,,zo)+IB(b1,p0)[D(b1,zo)] (27)
0 X

where b‘l = I%Lly’ .

The expression for the integral /, is given by

1 1-x —ysz/
2
12=L2J'dx J'dy e /P{IA(by,pg)IC(by,29)+ IBby,po ) ID(by, 20)] 28)
0 -X

where b, =k%L(2—2x-y)'

IA, IB, IC and ID are given by,

IB(b,po) = v J%fiz)%l)'/’%b 9)
b




IC(b, zg) = (cos(4)(0.5-5(q))-sin(4)(0.5-C(q))
ID(b,zy) = (cos(4)(0.5-C(q)) +sin(q)(0.5- S(q)) (30)

in which ¢q= 972§-
zjb

S(q) and C(q) are the Fresnel sine and cosine integrals, where
1 1 5
5(g)= 195 sin(1)dt
(9 oy .!; sin(t)

q
C(q)=7;—nfl'°‘5 cos{t)dt
0

In the limit k,p, — °0,/, =1, = 0, with /, being the same as eqn (20) except that
P, replaces a,. Chernov has not treated the anisotropic case. Equations (16), (17),

(27) and (28) do not have any restriction on the range or frequency, and are
applicable at all ranges and frequencies.

4.3 Numerical Estimates of Intensity and Phase Fluctuations
for the Isotropic Correlation Function in the Wave and Ray
Models

In this section the isotropic correlation function is used to obtain some numerical
estimates for intensity and phase fluctuations at high frequencies. The dependence

of the estimates on the isotropic correlation length (a,), |L*, frequency ( /), and
range(L) is examined. Also, wave model results are compared with the results
from the Chernov model and the statistical ray model. A brief discussion on the
trends observed in the simulation resulits is given. A frequency of 100 kHz and a
range close to 100 m are often used in target strength measurement of mines. This
is the reason for the choice of these values for frequency and range in most of the
calculations presented in this section.

In Fig. 9(a), comparisons of the rms relative intensity fluctuation (eqns (14, 16
and 17)) and the rms phase fluctuations (eqns (15, 16 and 17)) are made with the
Chernov result (eqns (18) and (19)), as a function of range. The NAG routines
DO01AJF and DO1GAF are used for the numerical evaluation of the inner and outer

integrals in ], and , respectively. Using a relative error of 107 for the inner

integral and an interval of 5X10™ for the outer integral, a relative error of less
than 1% is achieved for the double integral. The parameters used in the

comparison are f =100kHz, a,=2 mand p*=5.1X1072°. The value of p.

corresponds to a rms temperature fluctuation of 7 X107>C deg and

koag ~ 838 >> 1. The plot shows that for L greater than 50 m, there is an error of
less than 5% in the intensity between the results of Chernov and the wave model .
At large range where L is very much greater than a, both models agree. In Fig.

9(b) comparison is made between the models as a function of X,a,,. This is carried
out with L =100 m, f =100kHz, and p? =5.1X107'°. The maximum value of

R P P




a, used is 0.75 m, thus L >> q,. The plot shows that the two models agree only

for k,a, >> 80.

Figure 10 compares the rms relative intensity and rms phase obtained from the
ray model (eqns (23, 22)) with that of the Chernov ray model Eqns(ZS, 24)),as a

function of range L. The parameters used are f = 200kHz, p2 =5.1X10719,

a, =2 m, and kya, =1676. Figure 10(a) compares the rms relative intensities
and Fig. 10(b) compares the rms phases. The graphs indicate that the Chernov ray
model results agree with our ray model results with an error of less than 5% only

for L greater than 20 m. At this value of L, % =10. In other words the
0

Chernov ray model (eqns (25, 24)), is valid only for L very much greater than a,,.

In Fig 11(a) the rms relative intensity fluctuations (eqns (14, 16, 17)), and in Fig.
11(b) the rms phase fluctuations (eqns (15, 16, 17)), are plotted for different
isotropic correlation lengths a,,, with f =100 kHz, L =100 m, and

p? =5.1X10"2° The correlation length a, varies from 10 cm to 2 m. The integrals
(eqns (16, 17)) are evaluated numerically as before. The maximum variation in the
rms relative intensity for this range of g, is less than 0.3 dB and the maximum
phase fluctuation about 0.15 radians. The peak observed around 0.5 m in the rms
intensity curve is interesting, and this is discussed later, along with the trend
observed in the fluctuations as a function of a,.

Figure 12(a) shows the _\g_riation of the rms l:(_el_ative intensity fluctuations (eqns

(14, 16, 17)) for different uz . The variation in \> corresponds to a variation in the

rms temperature fluctuation from 7 X102 to 3X1072 C deg at a particular depth
and salinity. Fig. 12(b) shows the variation in the rms phase (eqns (15, 16, 17)). The
rms relative intensity fluctuation varies by about 1.2 dB and the rms phase
fluctuation by about 0.3 radians over this interval of temperature fluctuation. The
calculations are carried out with f =100 kHz, @, =0.7 mand L =100 m. We

have plotted the results here on a semi-logarithmic scale due to the range

involved in p®. However if we plot it on a linear scale against (1> )**, a linear
dependence is observed with the rms relative intensity and phase fluctuations, in
accordance with eqns (14) and (15) respectively.

Figures 13(a) and (b) show the variation of the rms relative intensity fluctuations
(eqns (14, 16, 17)) and rms phase fluctuations, (eqns (15, 16, 17)) as a function of
frequency, where the frequ_elncy varies from 100 kHz to 400 kHz. The parameters

used in the calculation are p? =5.1X107'%, g, = 0.7 m and L =100 m. The rms
relative intensity fluctuations initially show a non linear variation with frequency,
but as the frequency increases, a linear dependence is seen. Simulations carried
out at high frequencies show that the relative intensity approaches the result of
eqn (25), where it will be independent of frequency. This is expected since
L >> a, in this example. The rms phase fluctuation on the other hand, exhibits a
linear variation even in the frequency range of 100 kHz to 400 kHz (it follows the
trend predicted by either eqn (22) or (24)). This indicates that for phase
fluctuations, agreement with the ray result can be obtained at a lower frequency.
Figures 14(a) and (b) show the variation of the rms relative intensity fluctuations
(eqgns (14, 16, 17)) and rms phase fluctuations (eqns (15, 16, 17)) as a function of
range L, where the range varies from 50 m to 300 m. Other parameters taken for

the calculations are p? =5.1X107%, g) =0.7 m and f =100 kHz. The rms
relative intensity shows a near linear relationship. In the ray approximation it

varies as L’ (eqn (25)), showing that the frequency has to be much higher for this
limit to be reached. The rms phase fluctuations initially show a non linear




behaviour of L”*, becoming linear with increase in range. In the ray
approximation the variation with range is non linear and is of the form L’ (eqn
(24)). It will be seen later that for a particular frequency, the smaller the range, the
better is the agreement with the ray resull.

Figure 15(a) compares the rms phase fluctuations obtained from the stochastic
ray model (eqn (22)), with the wave model (eqns (15, 16, 17)las a function of
k,a,.The calculations are carried out with L = 100 m and p? =5.1X107°. The
differences between the two models decrease with increase in k,d,. Since the
stochastic ray model is obtained from the wave model in the limit k,d, — oo, the
observed results follow the expected trend.

The correlation distance is a measure of the decay length of the coherence of
fluctuations. The bigger the length the larger the distance at which fluctuations
become uncorrelated. For a range greater than q,, the larger the value of g,, more
time is spent in going through the coherent region of fluctuations. This increases
the phase fluctuations, as seen also from eqn (24). On the other hand if the range is
much smaller than a, we would expect the phase fluctuations to be independent

of a,, as seen also from eqn (26).

Variation of intensity fluctuation with correlation length is more involved than
the variation of phase fluctuations. To understand this let us consider Fig. 1. The
diffraction or the size parameter A is given by [Flatte, 1979, eqn.6.2.3},

L
A= —
6abko

The strength parameter P is the rms phase fluctuation in the ray approximation
and is given by eqn (22).The geometrical approximation or the ray model is valid
when diffraction effects are small, that is A <1 and A®* < 1. The Rytov method
is applicable for A > 1 but A®* < 1. Fig. 16(a) is a plot of the diffraction
parameter (eqn (31)), as a function of a,, for f =100 kHzand L =100 m. The
plots indicate that diffraction becomes important for @, less than 0.5 m. We
observed before that the maximum in the rms intensity as a function of g,
occurred close to 0.5 m. The Fresnel zone radius is defined as the size of the
inhomogeneities that will cause the scattered path length from source to receiver
to differ from the unscattered path length by half a wavelength. When this
happens there will be interference between the direct and scattered rays. At 100
kHz over a path length of 100 m, this is evaluated and is equal to 0.5 m. This is
close to the value of g, at which the maximum in the rms relative intensity
occurred (see Fig.11(a)).

Figure 16(b) is a plot of ® the rms phase fluctuation obtained in the ray
approximation, given by eqn (22), as a function of 4. Figure 16(c) is a plot of

AD? as a function of @, . Correlation length (,) varies from 10 cm to 2 m. Other

parameters used in the calculations are p? = 5.1X107°, £ =100 kHz and

L =100 m. The results indicate that we are in the unsaturated region of the

A - D space. Unlike the rms phase fluctuations, intensity fluctuations decrease
with correlation distance. Since diffraction effects decrease with increase in
correlation length, the ray model becomes a good approximation to evaluate
fluctuations at large correlation length. In the geometric approximation intensity
fluctuations decrease with increase in the correlation length [Chernov, 1960, p34].
We would therefore expect the same trend in the results of intensity fluctuations
from the wave model. This trend is seen in Fig.11(a).

(31)
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4.4 Numerical Estimates of Intensity and Phase Fluctuations
for the Anisotropic Correlation Function in the Wave and Ray
Models

This section gives some numerical estimates of high frequency intensity and
phase fluctuations using the anisotropic correlation function. The variation with

the radial and vertical correlation lengths, range, t°, and frequency are
examined. In addition, the wave model results are compared with the results of
the stochastic ray model.

Figures 11(c) and Fig. 11(d) show the rms relative intensity fluctuations (eqns
(14, 27-30)), and rms phase fluctuations (eqns (15, 27-30)), for different values of
the vertical correlation length z,. As for the isotropic case, the NAG routines
DO1AJF and DO1GAF are used to evaluates the integrals /,and /, (eqns (27) and
(28)) . Using an interval of 5X1073 for the outer integral, a relative error of less
than 1% is achieved in the double integral. The NAG routines S20ADF and
S20ACF evaluate the Fresnel integrals S(¢) and C(¢) (eqn (30)) respectively . The
correlation length 2z varies from 10 cm to 2 m. The values of the other parameters

used are L =100 m, p, = 50 m, u? =5.1X107'°, and f =100 kHz. The results
using the anisotropic correlation function are in general similar to that obtained
using the isotropic correlation function, except that the variations are much
higher. The variation in the relative intensity is around 1.25 dB compared to about
0.3 dB for the isotropic case. For the phase fluctuations the variations are about 0.4
radians as compared to 0.15 radians for the isotropic case. This increase could be
due to increased scattering at angles close to the direction of propagation, as a
result of the anisotropy.

Figures 17(a) and (b) show the rms relative intensity (eqns(14, 27-30)), and phase
fluctuations (eqns (15, 27-30)), for different values of the radial correlation
distance p,. The radial correlation distance varies from 10 cm to 100 m. The

values of the other parameters used are 25 =1 m, p2 =5.1X107'%, f =100 kHe,
and L =100 m. The relative intensity variations and phase variations are
approximately 1.5 dB and 0.8 radians respectively.

Figures 12(c) and (d) show the rms relative intensity and phase fluctuations for
different values of W’ . The variation in i° corresponds to a temperature
fluctuation that varies from 7 X10™3 to 3X107? C degree at a particular depth and
salinity. The values of the other parameters used are f =100 kHz, L =100 m,

29 =0.7 m, and pg = 50 m. The variation in acoustic fluctuation is much higher
than that obtained with the isotropic correlation function. The variation in the rms
relative intensity is about 6 dB, and the variation in phase is about 2.4 radians,

over the range of 1> used. This shows that the rms intensity and phase
fluctuations are sensitive to \L*. The plot shown is a semi-logarithmic plot due to
the range involved in jt°. However a plot of the acoustic fluctuations against

(1*)"* on a linear scale gives a straight line that passes through the origin.
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Figure 17: (a) RMS relative intensity, eqns (14, 27-30) (b) and rms phase eqns (15, 27-
30) as a function of the radial correlation length py of the anisotropic medium,

f=100kHz, L =100 m, uz =51x 1010 and z5= 1 m.
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Figures 13(c) and (d) show the variation of rms relative intensity and phase
fluctuations as a function of frequency, where the frequency varies from 100 kHz

to 400 kHz. The values of the other parameters used are u? =5.1X1071°, L = 100
m, p, = 50 mand z, = 0.7 m. The rms relative intensity shows a near linear
variation. The rms phase fluctuation increases linearly with frequency, as
predicted by eqn (22). The result is similar to that obtained for the isotropic case.
Agreement with the ray result is obtained at a lower frequency for the rms phase,
than for the relative intensity. Comparison of the results for the two media
indicates that for the anisotropic medium the rms phase is about 6 times larger
and the relative intensity about 5-12 times larger than the isotropic medium, for
the parameters chosen in this example.

Figures 14(c) and(d) show the variation of rms relative intensity and phase
fluctuations as functions of range, where the range varies from 50 m to 300 m. The

values of the other parameters used are u2 =5.1X107%,2,=0.7 m, p, =50 m
and f =100kHz. The rms relative intensity shows a near linear relationship with
range, with values on the average approximately 5 times larger than for the
isotropic case. The rms phase variation shows a non linearity of L°° initially, close
to that predicted by the ray result (eqn (22, 24)). As the range increases, the

variation becomes linear showing that for a particular frequency, the shorter the
range, closer the agreement with the ray result. This is understood on the basis of

the parameters A and @° introduced for the isotropic case, both of which
increase with range. The rms phase values are higher by 5-7 times the value of the
isotropic case, for the parameters used in this example.

Figures 15(b) and (c) compares rms phase fluctuations obtained from the wave
model (eqns (14, 27-30)), with that of the stochastic ray model (eqn (22), with p,
replacing a, ). This is shown in Fig. 15(b) as a function of k,z, and in Fig. 15(c) as

a function of k. The values of the other parameters used are

p2 =5.1X10"1%, L =100 m, and f =100kHz. In Fig. 15(b), p, = 50 m, and in Fig.
15(c), 2z, =1 m. In both cases, the graphs indicate that agreement with the ray
model improves with increase in k,z, and k,p, . Since the ray model results are
obtained by making k,a,,k,p, — oo, the results follow the expected trends.

5. Phase Structure Function using Stochastic
Ray Theory

In the previous sections we obtained estimates of the variance of the relative
intensity and phase fluctuations at a point in space. On comparing the results of
phase fluctuations obtained from the wave and ray models, it can be seen that for
L =100 m, if kyay > 500, the difference between the models is less than 5%. This
can be seen from Fig. 15(a). To obtain the same agreement in the anisotropic
medium, kyzg and kgpy must be greater than 600, as can be seen from Figs. 15(b)
and (c). In high frequency mine imaging, the range involved is a few metres and
frequencies are in the mega hertz band. To examine the accuracy of the stochastic
ray model to predict the rms phase fluctuations under these conditions, wave
model calculations (eqns (15-17) for the isotropic medium and eqns (15, 27-30) for
the arli_sotropic medium), and ray model calculations (eqn (22)) are carried out

with uz = 5.1X10'1°,f= 1 MHz, and L =3 m. The results of these calculations
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are shown in Fig. 18(a) as a function of the isotropic correlation length a,, and in
Fig. 18(b) as a function of the anisotropic correlation length p,. In Fig. 18(b)

Z, = 2 m. The curves in Fig. 18 indicate that for f =1 MHz, and L =3 m the
results of the two models are indistinguishable graphically. This shows that for
these situations the stochastic ray model can provide good estimates of the
variance of the phase fluctuations. This being the case, one may proceed to obtain

estimates of the phase structure function in the ray approximation.
The phase structure function (PSF) is defined by [Flatte et al 1979, p108]

PSF(x) = [(8(R)) - 8(R) - (8(Ry) - $(R)) P (32)

where ¢(R;), ¢(R;) are the phases of the signal at receiversR;, Ry, ¢(Rq), 9(R;)
their mean values, and x the distance of separation between the receivers. The
phase structure function gives the variance of the phase difference between two
points caused by sound speed fluctuation. Expanding PSF(x), it can be written as

PSF(x) = (A0(R)) +(80(R;))? - 280(R)A0(R;) (33)

where A®(R) = ¢(R)-¢(R). In eqn(33) (Aq’(Rl))2 is the variance of the phase
fluctuation at receiver 1 and (A9(R, ))2 is the variance of the phase fluctuation at

receiver 2. The term A®(R;)A$(R3) is the spatial auto correlation function of the
phase fluctuations. The phase structure function therefore involves the variances
of the phase fluctuation at receivers 1 and 2 and the spatial auto correlation
function of the phase fluctuations. If the variance of the phase difference between
the two receivers is large then the coherence between the two signals is small and
vice versa, {Esswein and Flatte, 1981]. Since the phase structure function is a
measure of variance of the phase difference at the two receivers, it is a useful
parameter in the evaluation of coherence. The phase structure function is also seen
as a measure of correlation between the signals at the two receivers. If the signals
are completely independent then PSF(x) approaches a value that is the sum of the
variance of the phase fluctuations at the two receivers.

Let us now estimate the phase structure function due to thermal fluctuations in
the ray approximation. Suppose we have the source at (0, 0, 0), receiver R, at
(R,0,0) and R, at (X,,0,z), where Xz2 +2% = R®. That is both receivers are at
the same distance from the source but are in different directions, one being at a
different depth. Using the expression for PSF in terms of the correlation function,
[Esswein and Flatte, 1981] and sustituting the isotropic correlation function {eqn
7(a)], one obtains

— —RZ
PSF(z)= k3 n? Jrag[2R erf(%o)+2§‘:t-(e Aé—l)—l’ul (34

where
{0 %  R-Xgx, o Xpx
Ru=Rdx e /Blerf ==Ly af TN, (35)
0
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Figure 18: Comparison of the RMS phase fluctuations from the wave model, for an
isotropic (eqns 15-17) and anisotropic (eqns 15, 27-30) medium, with the stochastic ray
model, eqn (22). f=1MHz, L =3 mand p? = 5.1 x 1019, (a) as a function of a,, the

isotropic correlation length. (b) as a function of pg, the anisotropic radial correlation
length, with the vertical correlation length zo = 2 m. The 2 curves are indistinguishable
within graphical accuracy.
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For the anisotropic correlation function {egn (7b)],

— -R} 2
PSF(@)= KD RR (B, Y4oule /4 -1+ By=Py) 39

where
b+X2

Po ., -x%_szz
Pp=(Lem?)2bpg+Xp) [P atepgle /% P-1) (7)
b

L e B}
Py = RUE [dx ¢ oo lenf(REX2E) g B2y, (38)
0 Po Po

in which b= Imlp%zo . |ml= l%z The above expressions for the phase structure

function are obtained assuming the path of the ray between the source and
receiver to be a straight line. This is a reasonable assumption for a range of a few
metres and when the mean gradient is small. There is no restriction on the
separation between receivers.

When the two rays are almost parallel to the X axis, with the receiver R,

positioned at (R, 0, z), for the isotropic correlation function,

)
PSF(z) =20} (1-¢ A?) (39)

and for the anisotropic correlation function,
PSF(z) = 203 (1-¢ /%) (40)

where (Df is the mean square phase fluctuation at R, ®? = (A®(R;))?, given by
eqn (22). For the anisotropic function p, replace g, in eqn (22). The assumption
that two rays are parallel would be a reasonable approximation at large range and
for small separation between the receivers. One can also derive eqn(39) in the ray
approximation for an isotropic medium using R >> 4,z = 44, and the spatial auto
correlation coefficient of the phase fluctuations obtained by Chernov [1960, p107].
This indicates that the closed form eqns (39) and (40) are valid only at large range
and for smail separation between the receivers. No expressions are given by
Chernov for small R or for the anisotropic case.

Let us now examine the results of some numerical simulations carried out for

the PSF. Consider first the isotropic medium. Fig. 19(a} is a plot of PSF (% 2
(eqgns (34, 35, 22)) as a function %2 where R is equal to 3 m. The two plots
correspond to @, =1 and 2 m. The expression PSF (%% is independent of p?
and frequency, and depends only on R, @, and z. This can easily be seen from
eqns (34, 35, 22). Since R is comparable to @, use of eqn (39) to obtain PSF (%f

would be inappropriate. The integral that occurs in egn (35) is evaluated
numerically using the NAG routine DO1AJF. A relative error of less than 1% in the
integral is obtained by specifying the relative error in the routine to be less than




107*. A qualitative understanding of the variation with a, is obtained using eqn
(39). This indicates that for small a,,, the value of Z to reach saturation is also
small.
Figure19(b) shows the plot of PSF (% , as a function of %0 where 43 =0.1 m
1

and R =3 m. PSF(z) is calculated using eqns (39, 22) as well as eqns (34, 35). For
R >> ag, eqn (39) would be appropriate only at short separations. The calculations
are carried out with receiver R, being positioned at (R,0,z). At small
separations, where z <0.54, the results of both approximations agree. However,
at large Z, discrepancies appear, where the parallel approximation ((eqn.(39))
fails. At very large vertical separations, both approximations give a value of 2 for

PSF (%2 . This is true always for an isotropic medium and cannot be used to
1

distinguish between the approximations. For an isotropic medium the first two
terms of the PSF given in eqn (34) are equal for all separations z, provided the
distances between the source and receivers are the same. The third term decreases
to zero at large separations. This accounts for the result observed at large vertical
separations. Figures 19(a), (b) show that as a, decrease, the separation at which

saturation occurs also decrease. As a, decreases, the distance over which the

acoustic phase fluctuations are correlated decreases, which in turn causes the
distance at which saturation occurs to decrease.

Let us now consider an anisotropic medium. In this case the phase fluctuations
at positions that are separated from the source by the same distance R but are in
different directions in the xz plane will not be the same. When the angle of
inclination of the receiver measured from the horizontal direction increases, there
is a decrease in the variance of the fluctuations at the receiver. This is because the
temperature fluctuation decays much faster in the vertical direction than in the
radial direction, resulting in a reduction in the acoustic fluctuation. For large

separation we would therefore expect that a plot of PSF (% » as a function of %{
1

to approach 1. The parallel ray approximation (eqn.(40)) clearly fails at large
where it approaches a value of 2. This is because the two paths to the receivers are

the same in the parallel ray approximation. Figure 20 is a plot of PSE( %% asa

function of }ﬁ . The calculations are carried out with pg =75 m, R =3, and

25 =0.1,0.5 m. Since R << py, eqns (36,37,38,22) are used to evaluate the PSF. The
integral that appears in eqns (37) and (38) is again evaluated numerically using the
NAG routine DO1AJF. A relative error of less than 1% for the integral is obtained

by specifying the relative accuracy to be less than 10~ in the routine. When z, is

small, saturation is reached at small vertical separations. The results display the
expected trends.
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1 m. Both curves plotted using eqns (22, 34, 35). (b) Curve (1) plotted using eqns (22,
34, 35) and curve (2) using eqn (39). In (b) both curves use ag = 0.1 m. Graph (b)
compares the linear and parallel approximations.
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6. Summary

In this paper suitable models to obtain high frequency acoustic scattering
estimates due to temperature changes were examined. Previously models were
restricted to long range, and did not treat the anisotropy of the fluctuations. There
was thus a need to correct this problem. Other questions that were looked into
include the validity of the stochastic ray model at high frequendcies ( say 100 kHz
and above), theoretical estimates for the phase structure function, and estimates of
intensity and phase changes due to the mean temperature gradient.

Section 2 shows some experimental temperature and temperature gradient
profiles. They show the type of data obtained experimentally, and give a feeling
for the magnitudes of the temporal and spatial variation of temperature, Near
surface layers, there are temperature inversions, and the average temporal
variation of temperature ranges from 107 to 10™ C deg per min (Figs.(3, 4)). The
temperature gradient is responsible for acoustic refraction. The average
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temperature gradient in the vertical direction, obtained from the ocean data near
Perth, shows a value of -0.1 C deg /m. However at some positions in the profile

the temperature gradients are much higher, close to -0.15 C deg/m. The gamma

probability distribution function [Hayes et al, 1975] fits quite well to the discrete
probability function ot the temperature gradient.

Section 3 gives results for intensity and phase changes due to the mean
temperature gradient. Expressions for intensity changes, eqns (1, 3), and phase
changes, eqns (5, 6), due to the mean temperature gradient are given. They were
obtained from deterministic ray theory. The reference point in the evaluation of
these changes is a medium where there is no temperature gradient. For vertical
rays where Officer's eqn (2) is invalid, analysis of eqn (4) indicates no intensity or
phase change. Equation (4) also fails at 8 = % which corresponds to a turning
point. Ray solutions always fail at turning points. Since the acoustic velocity must
be positive, for 8, not equal to 0, the horizontal range L cannot be equal to 0. The
expressions obtained, egns (1, 3, 5, 6), enable one to obtain intensity and phase
changes due to variations in the mean temperature gradient, in regions where the
ray approximation is valid.

Section 4 and beyond discusses models to obtain acoustic estimates due to the
random part of the temperature. Equation (8) is the expression for the scattered
pressure, using a stochastic wave model. Numerical calculations of the angular
distribution of the scattered pressure for high frequency sound (Figs.7, 8) both for
anisotropic and isotropic media indicate scattering being confined to an angle
close to the direction of propagation. For attenuation in an isotropic medium, an
expression has been available for some time, eqn (12) [Chernov, 1960, p55]. In an
anisotropic medium, attenuation depends on the direction of propagation. When
the direction of propagation is along the Z axis, attenuation is given by eqn (13).
At 1 MHz the attenuation is of the order of 5X10” ? dB/m. The magnitudes for
the isotropic medium are of the same order. Attenuation varied as k for
frequencies above 100 kHz.

Section 4.2 examines analytically amplitude and phase fluctuations at a receiver
separated by a horizontal range L from a continuous monochromatic acoustic
source. The study is in the unsaturated region of the A —® space and uses
stochastic wave and ray models. For an isotropic medium, with k,a, very much
greater than 1 and range L very much greater than g, expressions (18) and (19)
for acoustic fluctuations have been available in the wave model [Chernov, 1960,
p83]. Equations (14-17) are the new results for acoustic fluctuations in an isotropic
medium, valid at all ranges and frequencies. Numerical comparisons between the
two models show (see Fig. 9) that the Chernov model is valid only for L very
much greater than g, and k,a, very much greater than 1. Equations (14, 15, 27-
30) give expressions for acoustic fluctuations in an anisotropic medium, which are
valid at all ranges, and frequencies. The anisotropic case has not been treated
previously.

Expressions (24) and (25) for acoustic fluctuations in the stochastic ray model
have been available only for an isotropic medium and at large range, where L is
very much greater than g, {Chernov, 1960, p29, 34]. Equations (22, 23) are the
new results for the acoustic fluctuations in the ray approximation valid at all
ranges for an isotropic medium. Numerical comparisons between the two ray
models (Fig.10) show the Chernov mode! is valid only for L very much greater
than g, . Equation (22) with p, replacing a, gives the expression for the rms
phase fluctuation in the stochastic ray model for an anisotropic medium. The
anisotropic case has not been treated previously.
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Sections 4.3 and 4.4 presents numerical estimates of intensity and phase
fluctuations. Calculations at 100 kHz, with L equal to 100 m and a temperature
fluctuation of 7 X103 C deg, show the rms relative mtensitv fluctuations (dB) and
rms phase(rads) for an anisotropic medium are on the average higher by a factor
of 5-10, and 3-6 respectively, when compared with an isotropic medium, where
the vertical correlation lengths are the same, and the radial correlation length is
about 50 times larger. For these parameters the rms phase and the rms relative
intensity for an isotropic medium are of the order of 0.1 radians and 0.3 dB

respectively. The variation of the rms relative intensity and rms phase with ?,
which is dependent on the magnitude of the temperature fluctuation, is linear
both for the isotropic and anisotropic media. The variation of the acoustic
fluctuations as a function of frequency for large k a,, obtained using the wave
model, show that the agreement of the rms phase with the ray result occurs at a
lower frequency than for the relative intensity. A shorter range gives better
agreement with the ray model, since an increase in range increases the diffraction
parameter and ®°. Comparison with the statistical ray model shows, that in the
isotropic case diffraction effects become important at correlation lengths that are

less than approximately ’ % ko

Finally, section 5 examines the evaluation of theoretical estimates for phase
structure function, using the ray model. Agreement in the phase fluctuation
estimates between the wave and ray models is within 5% for an isotropic medium
with L equal to 100 m, if k,a, is greater than 500. The same agreement occurs in
the anisotropic medium if k z, and k,p, is greater than 600. At a range of 3 m

and a frequency of 1 MHz, the results of the phase fluctuations from the two
models show that they are indistinguishable graphically (Fig. 18). Equations (39)
and (40) are the expressions of the phase structure function for an isotropic and
anisotropic medium respectively, valid at ranges L >>a,,p,, and at separations
Z =d,,z,. In other words eqns (39), (40) are expressions for the phase structure
function at large range and for small separations between receivers. One can also
obtain eqn (39) in the ray approximation, using the spatial auto correlation
function of the phase fluctuations [Chernov, 1960, p107]. Equations (34, 35) and
eqns (36, 37) are the expressions for the PSF of isotropic and anisotropic media
respectively, valid at short range, and at all separations between receivers. At

short range, the limiting value of PSE (7 5 for large Z is 1 for the anisotropic
>

medium, and 2 for an isotropic medium. At large range where L is very much
greater than p,,, both approach the limiting value of 2.
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Appendix

List of Symbols

frequency

inertial frequency
Brunt Vaisala frequency
sound velocity

wave number = ZTnf
time

degree Centigrade
salinity in ppt
positional coordinate
depth in m

velocity gradient

co speed of sound near source; 8, ray angle at source

ray path
Intensity loss

phase

root mean square phase fluctuation in the ray
approximation

used in equation (6)
mean square scattered pressure
different temperature profiles

wavelength of sound
diffraction parameter

mean square fractional sound speed fluctauation
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4,4,
N,(r—-r)

N(@r-r)

F(K)
K(K)

o
Z,,P,
a,

(49)°

1,1,
IA,IB,IC,ID
5(9).C(q)
E,

PSF(x)

Py Py, By

amplitude of received, transmitted sound wave
covariance

correlation coefficient

denote direction of incident and scattered sound
Fourier transform oi N(r-r')

frequency and angular part of the mean scattered
pressure

total attenuation in dB/m
vertical and radial correlation length

isotropic correlation length

mean square relative log amplitude fluctuation
mean square phase fluctuation

integrals that appear in fluctuation formulae
defined by equations {29) and (30)

Fresnel sine and cosine integrals

energy emitted per unit time per unit solid angle
phase structure function

defined by equations (35), (37) (38)
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