
AD-A285 454 T
E .: LECTE

SIX-MONTH REPORT OCT 131994

APRIL 1 to SEPTEMBER 31, 1994 G. D
INVESTIGATION OF MODULARLY CONFIGURED ATTACHED

PROCESSORS WITH INTELLIGENT MEMORIES

GRANT NO. N00014-93-1-1343

1. STATUS OF PROJECT

Objective I (register-level design of MCAP): The register-level
design of the MCAP has been completed for all component types
except the instruction component, which has been partially
designed. The component designs are currently being document-
ed by Glenn Gibson and an undergraduate assistant. This design
effort has resulted in a masters-level thesis.

Objective 2 (architecture/algorithm case studies): This study
has progressed slowly because of the incompleteness of the
simulator. However, the simulator has just been completed and
considerable progress on this objective is expected in the next
six months. Preliminary work has been done by assuming all
data needed by an algorithm is already in the MCAP. Also,
Sergio Cabrera and his post-doctoral assistant have investigat-
ed which algorithms should be studied in the area of signal and
image processing and Yi-Chieh Chang and a masters-level student
have simulated some matrix operations. An undergraduate as-
sistant and a doctoral student have just started work in this
area and a masters-level student is to be added in the near
future. Chang, Gibson and a masters-level student have
produced a conference paper on matching matrix multiplication
to an MCAP architecture.

Objective 3 (two memory controller designs): Yu-Cheng Liu and
a masters-level student began their work on comparing two
memory controller designs in August when our new workstations
arrived and the Mentor Graphics design software was installed
on them. This work will continue throughout the coming year.
A related study by Gibson, Liu and Chang of memory hierarchies
and computational intensity has resulted in a conference paper.

Objective 4 (technology evaluations): Considerable work has
been done in this area. This work has mainly been concerned

(A) with implementing an MCAP on a multichip module and has been
carried out by Vijay Singh and two masters-level students with

___ some assistance by Gibson. Some investigation of a wafer-scale
- implementation has been done by Chang. This work has produced

a master's thesis and two conference papers. Another paper has
been submitted to a journal.
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Objective 5 (simulator development): Except for updating the
architecture editor, the simulator software package has been
completed. However, because it is difficult to program an MCAP
using the current assembler, a preprocessor is being programmed
by Chang and an undergraduate assistant. Gibson and an under-
graduate assistant will continue testing and documenting this
software. This work has produced two theses and a third is
currently being written. A conference paper is being written
and will be submitted before October 15. An expanded version
of this paper will be submitted to a journal.

2. MASTERS-LEVEL THESES PRODUCED

Ernesto Castro-Gomez, "Assembler Design and Algorithm Imple-
mentation on a Modularly Configured Attached Processor," The-
sis, University of Texas at El Paso, 1994.

Alejandro Brito, "A Graphics Editor for the MCAP Simulator,"
Thesis, University of Texas at El Paso, 1994.

Sanjay Singh, "A Comparative Evaluation of Implementing a Novel
Modularly Configured Attached Processor Architecture," Thesis,
University of Texas at El Paso, 1994.

Michael Flahie, "Fast N-bit Multipliers Using Cascaded Half
Adders," Thesis, University of Texas at El Paso, 1994.

Stephen Synesyzn, "Simulation of a Memory Controller for a Mod-
ularly Configured Attached Processor," Thesis, University of
Texas at El Paso, currently being written.
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Abstract ing arrays are also controlled by a host (e.g., the PAX com-
A new architecture for hgh.performonce parllel attached puter (4]) and are designed to perform most of the overall

system's computational tasks. Therefore, these arrays and
processors is described in this paper. Based on this archi-
tecture, an attached processor can be implemented as mul. even the array processing portions of today's supercom-

tiple memory-to.memory pipelines, each being constructed puters, such as the Cray series (1), [3] could be interpreted

with a class of fundamental components. The unique fea- as attached processors.

tures are that the attached processor can be configured to The specific purpose of an attached processor is to execute
match a set of algorithms and its memory controllers can members of a set of algorithms very quickly. The broader
be programmed to fit the access patterns required by the the set of algorithms the more generally applicable the at-
algorithms. As a result, high utilization of the process- tached processor. The underlying goal of the designer is
ing logic for given sets of algorithms can be obtained. An to efficiently utilize the hardware for as broad a set of al-

example based on matrix multiplication is used for illustra- gorithms as possible. However, for most current designs,
tion. Finally, design issues related to the implementation the average sustainable execution rates have been found
of the attached processor based on an MCM technology are to be only 5% to 20% of their peak rates, which are de-

discuued. termnined by summing the maximum computational rates
of the processing elements. For example, the sustainable

1 Introduction rate for a Cray X-MP with four processors may be as low
as 5% for some algorithms [5]. Also extensive evaluations

An attached, or back-end, processor is a processing o of recent high-performance computations using Lapack are

tern that is connected to a host computer for the purpose of given in [6] and using NSA parallel benchmarks are given

very quickly executing most of the overall system's compu- in [7). Although some of the lost efficiency is necessitated

tational tasks. Typical early attached processors were the by the algorithms, much of it is due to memory accessing

AP-120B and FPS-164 made by Floating Point Systems, and contention for shared resources in general, including
Inc., the IBM 3838, and the MATP made by Datawest, internal buses.
Inc. [I, (21, (3]. These attached processors all have their
own data memories and transfer data between these mem- Described in this paper is a class of high-performance at-
ories and the main memories of their hosts using DMA tached processors called Modularly Configurable Attached

data channels. They also include their own code memories Processors (MCAPs) which can attain quickness and high

where subprograms may be permanently stored or down- utilization through: (1) Closely matching their architec-

loaded from their hosts. These subprograms are initiated tures to the set of algorithms they are to execute. (2)
by commands from the host and supervise the data flows Overlapping of processing and memory accessing by us-

from the attached processor's data memories, through the ing memory prefetching. (3) Minimizing the movement of

attached processor's processing elements, and back into data. (4) Using a high-speed technology with MCM or

the data memories. wafer scale implementations.

Although the early attached processors included limited An MCAP is constructed from the component types spec-
multiprocessing, the more recently implemented process- ified in Sec. 2. These component types are such that

each member of the class may include parallel process-
IThe work reported in this paper was supported in part by ins, memory-to-memory pipelines, and be constructed in

the Office of Naval Research under Grant No. N00014-93-1-
1343. Any opinions, finding, and conclusions or recOmmenda- a building block fashion. They encompass routing com-
tions expressed in this paper are those of the authors and do ponents (including buses) as well as memory, control, and
not necessarily reflect the view of the funding agency. processing components. By overlapping processing with



memory accessing and matching an architecture with a set in the instruction stream include input instruction queues.
of algorithms, it is predicted that the average sustainable When the non-memory components have received all of the

rate for a specific set of algorithms can attain at least 60% instructions needed to perform an algorithm, they auto-

of the peak rate. By defining components that are sim- matically prefetch the data from the memory components,

ple enough to be fabricated onto single low-density IC@, a route the data to and from the processor components and
high-speed technology may be used. store the results back into the memory components. Some
Much of an MCAP's efciency is gained by distributing the controller components, which are the components that su-
instructions for the next algorithm (or algorithm phase) pervise all memory accessing, are used to automatically
to the various components while the current algorithm (or transfer data between the host's main memory and theto he arius ompnens wil th curen alorihm or MCAP's memory components. The instruction and data
phase) is executing. Once the algorithm begins, these in- streas me op nets. T he instruction

structions dictate the modes, routing patterns, prefetch- streams are separate, thereby allowing the instructions
ing patterns, and so on of the components receiving them. needed for the next algorithm to be distributed while the
After an algorithm starts, each component operates more
or less on its own except for responding to its handshak-
isg signals. Efficiency is further enhanced by prefetching Instructions from HOST
operands from the memory subsystems. Prefetching using n
programned patterns avoids the misses that result from
using ordinary caches.

Section 2 describes the architecture of the MCAP and the [j ] 3
fundamental components required to construct an MCAP.
Section 3 illustrates how to match an algorithm with a
given MCAP architecture in order to attain a high sustain-
able ratze. A major issue related to the implementation
of MCAis is the choice of semiconductor technology and
packaging, which affect speed, gate density, power dissi- I .

pation, and cost. The emphasis of implementation con-
siderations given in this paper is on CMOS Multi-Chip
Module (MCM) technology due to its ability to achieve
fast inter-chip communication. Section 4 discusses various
design issues involved using the MCM approach to imple- Pf,

meat the MCAPs. Such considerations include transistor
count, loading, estimate of speed, and power dissipation.

2 MCAP Architecture . Lii
An MCAP is an attached processor that is constructed en-
tirely from a standard set of connections and components. Other non-memory components
This standard set consists of two types of asynchronous
connections and twelve types of components. The def- Fig. 1. The instruction stream
initions of the connection and component types provide
a standard set of rules that allow the components to be The two types of connections are referred to as instruc-

easily configured in different ways to construct attached tion and data connections. These connections are asyn-
processors that can efficiently perform different sets of al- chronous and, therefore, must include handshaking lines as
gorithms. well as data and, perhaps, address lines. Because memory

An MCAP has exactly one instruction component and it is components are connected to controller components only,

connected to a memory component for storing instructions, they are an integrate part of controller/memory subsys-

Most of this memory component is a ROM that contains tems. Therefore, the exact controller/memory connection
the subprograms needed to execute the algorithms, but specificatios are left to the subsystem designer and may be

some of it is a RAM that can receive instructions (those synchronous.
that initiate the subprograms) from the host. Instruction connections are for passing instructions from

An MCAP operates by drawing an instruction stream from the instruction component to the bus component and from
the memory component into the instruction component. the bus component to one of the other non-memory compo.

The instruction component uses internal instructions in nents. An istruction connection consists of unidirectional
the stream to form external instructions that are then dis- instruction and address buses and a Req/Ack handshaking

tributed to the other non-memory components through the pair. The component that is to receive the instruction is
MCAP's (one and only) bus component. The instruction indicated by the a component number on the address bus.
stream is illustrated in Fig. 1. Note that all components A transfer is initiated when the sending component puts



an address on the address bus, an instruction on the in- and patterns for prefetching the operands needed by the
struction bus and begins the handshaking. Except for the algorithm.
connections to memory components, all connections used
to transfer data are data connections. They are used to

pass data to and from the processors and consist of only a 1
unidirectional data bus and a Req/Ack pair. A data trans- RI..SFC Req Ack A FI F

fer consists of placing data on the data bus and initiating
the handshaking. Except for a write to a memory compo-

nent, all transfers include the latching of an instruction or
datum into a queue at the receiving end.

The twelve types of components are divided into six cate-
gories as indicated below:

Instruction coot1 oie
Bus

Memory
Processor Req "- ,q

Elementary-one input, one output

Two-input-two inputs, one output Ack Procmins i Ack
Comparator-two inputs, one output plus Q trnr-
special outputs -U

Router Dau ED
Join-multiple inputs, one output E
Fork-one input, multiple outputs
Link-multiple inputs, multiple outputs

Controller Fig. 2. Block diagram of an elementary component
RAM-internal to MCAP, no partitions
Single-access-internal to MCAP, has
partitions
Dual-access-connects to main memory, has Each of the components that receives instructions contains

partitions a Number of Operands Output (NumOpsOut) register that
is always the last register filled before the component be-

As mentioned earlier, an MCAP contains one memory gins its part in the execution of the algorithm. Each time

component for storing instructions, one instruction com- the component outputs an operand, the NumOpsOut reg-

ponent for executing internal instructions and forming ex- ister is decremented. When the NumOpsOut register be-

ternal instructions, and one bus component for distribut- comes zero, the component has completed its part in exe-

ing the instructions. An MCAP may contain several con- cuting the current algorithm. It may then distribute new

troller, router, and processor components and several other values, those needed for the next algorithm, from its in-

memory components for storing data. However, the other struction input queue to its registers. This cycle may con-

memory components can be connected to controller com- tinue indefinitely. Except for reacting to the hndshaking
ponents only. Only controller components are capable of (i.e., Req and Ack) signals in its connections, each compo-

being programmed to prefetch data from and deposit data nent acts independently. The data is input to a data queue

into data memory components. Although the instruction through an input connection, processed or routed through

memory component or a dual-access component can be a bus, and output through an output connection. Because

connected to the host system, all other components can be separate queues are used to input instructions and data,

connected to the MCAP's components only. the instruction and data streams are completely separate.

Each non-memory component that is used during the exe- The processor components are used for performing unary
cution of an algorithm contains an instruction input queue, and binary arithmetic/logic operations. There are three

one or more data input queues, and control logic that in- types of processor components. There are one-input ele-
dudes a number of registers. For example, a typical ele- mentary (E) components, two-input (T) components, and
mentary component is shown in Fig. 2. The instructions comparator (C) components. These components contain

for an algorithm received by a component fill these reg- only two registers, a mode register and a NumOpsOut reg-

isters and then the register contents dictate the activity ister. The mode register dictates the actions taken by the
within the component while the algorithm is executed. component and the NumOpsOut register gives the total

They determine the component's mode and, for a rout- number of operands that is to be output before the cur-

ing component, the patterns for accepting inputs and dis- rent algorithm is completed. Both the E and T compo-

tributing outputs. For a controller component, they de- nents may be used for either unary or binary operations,
termine the memory partitions, DMA accessing patterns, depending on the mode. When an E component is used for



a binary operation it must, of course, input both operands In addition to the mode, NumOpsOut and NumOpsln reg.
through its single input connection. A T component per- isters, an S component contains registers for specifying the
forming a unary operation would use only one of its two patterns for accessing the partitions and a set of registers

input connections. for each putition for specifying the pattern of accesses

A C component is similar to a T component, but has two within the partition.

special sets of lines connecting it to the instruction compo- That portion of a D component that communicates with

nent. There can be only one C component in an MCAP. As the MCAP is similar to an S component except that a Nu.

usual, its current function is determined by its mode. One mOpsOut register is needed for each output stream and a

of its functions is to simply compare two inputs and set re- NumOpsIn register is needed for each input stream. Both
lational flags that are then transmitted to the instruction S and D components include a window which is a set of
component over one set of the special lines. When per- memory locations with consecutive addresses whose base
forming comparisons, there are no outputs other than the address increments after each repetition of a pattern. The
flag outputs. The C component can, however, also deter. purpose of the window is to separate the input trom the

mine the maximum or minimum of a sequence of numbers. output. Data that are output from the partition must in-

In this case, the second set of special lines is used to output volve accesses that are within the window and inputs to
the index of the maximum or minimum to the instruction the partition must involve accesses that are outside the
component. The maximum or minimum is output on the window. Because a partition is treated as a circular mem-

output data connection. ory, the location with the highest address in the p .rtition

Routing components are for directing data along the is considered to be adjacent to the one with the lowest

proper paths. There are three types of routing compo- address and the window is considered to move in a circle.

nents, join (J) components with more than one input and
one output, fork (F) components with one input and more [s. . .ss c. M.GE S E

than one output, and link (L) components with more than
one input and more than one output. In addition to the
mode and NumOpsOut registers, they contain registers for
dictating their input and output patterns while the cur-
rent algorithm is being executed. F and L components
may include broadcasting in their output patterns. J and

F components may be used in conjunction with T and E
components to form pipelines with feedback that can ac-
cumu~late sums. T

There are three types of controller components, RAM (R) 3
components, single-access (S) components, and dual-access
(D) components. All controller components are for auto- g
matically retrieving operands from and storing results in P

their associated memory components. In addition, a D
component includes connections communicating with the

host's main memory. All controller components have an
output data connection for outputting operands to the re-

mainder of the MCAP and an input data connection for T

inputting results from the MCAP. Therefore, they must
be capable of handling both an output data stream and T

an input data stream. A queue is inserted in each of these
data streams. A D controller also has input and output

data stream for transferring data to and from the host's
main memory.

A significant difference between the controller components DUALACCESS CNRLE

and the other programmable components is that a Number
of Operands In (NumOpsln) register as well as a NumOp- @

sOut register must be included. The NumOpsln register H T
serves the same purpose for the input data stream as Nu- Fig. 3. An example MCAP architecture
mOpsOut does for the output stream. An S component

differs from an R component in that its memory may be An example architecture is given in Fig. 3. Its processing

divided into partitions that consist of blocks of memory subsection includes a comparator (C component), a nega-

having consecutive addresses. The memory components tor (E component), a reciprocator (E component), a set of

are interleaved so that the partitions, because they occupy four pipelined adders capable of accumulation, and a set of

consecutive addreses, are spread across the components. four pipelined multipliers. Each adder or multiplier is con.



structed of four stages (a T component followed by three By matching this s,. "thm with the architecture in Fig. 3,
E components). All communications to and from the pro- it is seen that each adder and multiplier must peiform
cessing components are through six L components, three approximately n 3/2 operations and each link on the left

on each side of the processor. J and kU .compoacnnsu.ve Pad two.gf !he links on the right must perform approxi-

provided to allow flexible use of the L components. Also, mately us transfers. (The third link on the right is not.
to allow for accumulation there is a feedback connection be needed.) The approximate numbers of accesses to the
between the F component at the output from each adder S component, D component and main memory are about
and the J component at the input to the adder. There 2W , X3(l + 1/m) and s3 /M, respectively. If T is the per
is a D component to provide intermediate memory and a stage processing time of the multipliers, then T should
connection to main memory. The S component provides also be the per stage processing time of the adders and
internal stoiage. T/4 should be the transfer time of the links. The access

times of the S component, D component and main memory

3 Matching Algorithms to Architec- should be T/8, mT/4(m + 1) and mT/4, respectively for
both reads and writes. For T = 40 ns and m = B, the link

tures transfer time should be 10us and the average memory ac-

In order to efficiently use the available logic and intercon- cess times should be 5 ns, 9 ns and 80 na. The computation

nections, an architecture must be carefully matched to an ratt would be 200 Mflops per second. If the MCAP were

algorithm or set of algorithms. This involves a study relat- put into an MCM or wafer and memory interleaving were

ing the flows, storage and processing of the data required used, these times would certainly be within the capability

by the algorithm(s). Clearly, there is no point in increasing of current RCMOS technology. (The join and fork compo-

the speed of a processing subsystem if the current intercon- nents were ignored in this discussion because the commu-

nections and memory hierarchy are inadequate to support nication times are dictated by the slower link components.)

the processing (or vice versa). But a good balance for one BiCMOS and GaAs could produce proportionately faster

algorithm may not be a good balance for a different algo- processing, memory and memory controller components,
rithm. What is needed is a satisfactory tradeof for the but, as seen in the next section, increasing the speed of

work mix expected of a system and a means of evaluating the link components is a more challenging problem.

the design parameters chosen.

Space allows only a single example, so let us consider the SUigle-4ccess Memory

computation that most frequently occurs in computation-
ally intense algorithms, matrix multiplication. Let us ex-
amine how the MCAP in Fig. 3 could be analyzed rela-
tive to the algorithm AB = C using the middle product
method [3J where A, B and C are n x n mati.ces. Fig. 4 Bank of Adders
shows the required flow of data through the MCAP. The
variable m is the number of rows that can be simultane-
ously stored in each of the D and S component memories.
The expressions give the total numbers of operands trans- Lintrnermnaao
ferred between the major subsystems.

The algorithm consists of the computations

where the a,1s are the elements of A, the Bjs are the rows

of B, and the Cs are the rows of C. The algorithm pro- Dual-access Memory
ceeds by storing the first m elements of the first column of
A and the first m rows of B in the D component's memory. 2 j
Then the products ailBi, for i = l,...,m, are formed and I V
stored in the S component. Next, the first m elements of
the second column of A are brought into the D compo. Hot's Main Memory

nent and the products ai2B, are formed and added to the
corresponding previous products, with the results being re- MI. 4. Data flow for matix multiplication
turned to the S component. This is repeated n/m-I times,
but the last time the product totals, which are the first m
rows of C, are put in the D component and then output to Except for the unused link component, the design would

main memory. The entire process is repeated n/m times. utilize the link and processor components over 95% of the
Overlapping can be used to reduce the required time. time while performing a matrix multiplication. In contrast,



note that matrix addition would utilize these components 4.1 The transistor count
only about 50% of the time on the average with the S. In estimating the total number of transistors required
multiplier and some of the routing components not being to build the proposed M.CAP, we made the MsumptisQn
used at &U. This contrast -pointa out the need for different that the technology used is high-speed CMOS. CMOS was
designs for different algorithms and the need for compro- picked as the first benchmark technology because of its
misc when a set of algorithms must be executed on the commercial maturity. In the future, faster technologies
same architecture. such as GaA* will be evaluated. As an example, let us

consider a pipelined 64-bit floating point adder with four
stages. It has: (1) nine 64-bit registers with 4032 transis.

4 MCM IMPLEMENTATICN CON- tors (7 transistors per bit for a dynamic latch), (2) seventy-
four 2-input XOR gates with 592 transistors, (3) one hun-

SIDERATIONS dred and twenty-six 2 to I MUX's with 504 transistors,
(4) two 11-bit adders with 528 transistors, (5) one 52-bit

Since the signal delays associated with a PCB implemen- adder with 1248 transistors, (6) a 64-bit leading zero de-
tation are experted to be prohibitively excessive, it is tector with 5000 transistors, (7) two 52-bit barrel shifters
thought that the fabrication of an MCAP in a Multi-Chip with 4000 transistors, and (8) rounding and other control
Module (MCM) configuration or Wafer Scale Integration logic taking 6500 transistors.
(WSI) are the only realistic alternatives for attaining high- The total is 23K transistors for an adder. By having four
performance. Some important design considerations for pipelined stages, we can achieve stage delays of less than
implementing an example MCAP architecture in MCM 20 ns [8]. This delay is of course expected to be even
configuration are presented in this section. smaller for faster technologies like GaAs. Similarly, we

Fig. 5 shows a layout for an MCM implementation of the can evaluate the number of transistors for a pipelined 64-

example architecture. In designing this layout, we aimed bit floating point multiplier (using an optimized, modified

toward minimizing chip to chip interconnections, maxi- Booth's algorithm) and arrive at a total of 58K transis-

raizing interconnection densities, and using a parallel ar- tors. Again with four pipelined stages, the delay per stage

chitecture. Other factors of importance are ground and is less than 20 s (8]. Following this procedure, the tran-

power plane generation and physical design verification. sistor count for the rest of the elements in the MCAP are

The amount of heat generated is directly dependent on calculated and Table I gives the count for the various corn-

the type of substrate (MCM's are classified according to ponents. A figure of approximately ten million is reckoned

the substrate technology; MCM-C, MCM-D, and MCM- as the transistor count to build the whole MCAP.

L), selection of bonding and placement of chips. Parasitics In the proposed architecture, the bottleneck is the corn-
on the interconnects, inductances on the power lines and munication through the LINK elements because of their
the 1/0 pin limitation are other important considerations. high fan-out and relatively large interconnection distances.

This means that the output buffers for these elements must
be relatively large. Next, w,- present the delay, power
and area calculations for the output buffers as functions
of fan-out (F) and interconnection length (1). For these

M r ao"Icalculations, (1) The input capacitance of a gate includ-
I ing the lead and ESD capacitance is Ci. = I pF; (2) The

width of the metal conductor used for an interconnection
is to = 25pm; (3) The capacitance of the metal conductor

a. is Cm1 = 30 aF/pm'; (4) The sheet resistance of the metal

I I I is R. = 0.051/0; (5) The feature size is X = 0.5pm.
2 0. 4.2 Load capacitance

For the load capacitance C1 = C,,a + F x C,., with C,,, =
40 wxtxCi = (0.025) xt30xl1- 'sx 10' pF = 0.75xt pF

where I is in mm and C,. = I pF. The resistance of the
interconnect is

4 U., = A. x (t/,a) = 0.05 x (1/0.025) = 2 x I Rz)

. Thus, a LINK element with a fan-out of 19 and with an av-
OWL Merage interconnection length of 2 cm has load capacitance

of 34 pF.
0409M

Flg. S. Layout of MCAP on an MCM 4.3 Average delay
It is known that, in general, the minimum size of a logic
gate has a W/L ratio of 2. So, we start with a ratio of



2 and go to higher values in stages in order to drive a 4.6 Thermal management
load within a short time. By dividing the buffering stages There have been successive revolutions in device technolo-
into the Dumber of buffers with increasing W/L, optimum
speeds can be achieved. It has been found that a stage gis, proceeding from TTL, ECL and NMOS to the re-

ratio of 3 [9] gives best results. Also, the optimum nume ..... vent ih-5peed CMOS, BiCMOS and GaAs. Three to

of stages is N = 0.91(inCi +4.19), where N is truncated to five orders of magnitude reduction in minimal feature size,

the nearest integer. Using the optimum number of stages, an order of magnitude in the characteristic chip dimen-

the average delay is sion and, more importantly, a significant drop in the tran-
sistor switching energy from more than 10- 9 J to nearly

T,,g = 0.484(N - 1) + 5C 1 /3(N - 1) + 0.076 as (2) to - " J (i0. Power dissipation, in a leading edge bipolar
chip, with 1 cm 2 area has reached 20 - 25 W, and based on

The plot ofT , as a function of F and is shown in Fig. 6. a short term extrapolation of current trends in the packag-
For the example with F = 19 ad £ 20 mam, the delay ing technology, it may well be anticipated that the power
time is seen to be 3.2 as. dissipation might approach more than 100 watts for 50 mil-

lion transistors on the same I cm3 atea with a switching
speed of 10 ps [10]. After comparing various existing VLSI

modules in terms of thermal parameters [10], the value of
heat Bux, Q = 25 W/cm2 seems to be reasonable for air
cooling. Considering again the critical LINK element in
the MCAP, we estimate Q = 14.24 W/cm2 to drive 2 cm

3- of interconnect and 19 gates. It is reasonable to expect,
therefore, that for a MCAP architecture implemented in
MCM, air cooling would be sufficient.

2 5 Conclusions
The architecture to implement a class of high-performance

# -attached processors, which can be modularly configured
4 0 20 to match given sets of algorithms, has been presented.

The high utilization rate of the processing components is

4 10 tachieved mainly by (1) minimizing the movement of in-
termediate results; (2) prefetching almost all operands us-

ing intelligent memory controllers; and (3) reconfiguring
(through programming) the interconnection of the process-

Fig. 6. Buffer and interconnect delay ing components to match the needs of a given algorithm.

An example MCAP architecture was evaluated for MCM
implementation. Because of its commercial maturity, the
CMOS technology was picked as the first (benchmark)

4.4 Buffer area technology to be evaluated. Transistor count for imple-

A simple invrter with (W/L),, = (W/L)p = 2 will need menting the MCAP was estimated at 9.85 million. In

an area of 66 pm2 . A buffer with equal rise (tr) and fall the proposed architecture, the bottleneck is the commu-

(t) times requires (W/L), = 2(W/L), = 4 and the area is nication through the LINK elements because of their high

going to be 150 pm2 . The total area of the buffer depends fan-out and relatively large interconnection distances. For

on the number of stages and, hence, is a function of F and the LINK element output buffers, delay, power and area

1. We have Area = 66+3[14(N - 1)+36(1+3+3+ ... 4- calculations were made as functions of fan-out and inter-

3N-2) ; 55 x 3 g-' om' connection length. For example, a LINK element with a
fan-out of 19 and an average interconnection length of 2

4.5 Power dissipation in the buffer cm has a load capacitance of 34 pF, has a delay time of

In CMOS, most of the power is dissipated during switching 3.2 us, occupies an area of 40,000 pm 2 and dissipates 175

and, hence, dynamic power is approximately equal to the mW of power. Heat flux was estimated at 14.2 W/cm2 ,
total power. The dynamic power is Pd = Cr x vx 2X - = which leads us to believe that air cooling will be sufficient

25(Ci + Cam6y)/T,,g, where C"11y = 0.0152 (3 N- ) pF for this MCAP architecture implemented in MCM.

Since the design of an MCAP uses asynchronous communi- Further improvements in MCAP performance could be o.
cation, the transfers over a LINK component involves the taned by: (1) Reducing the minimal feature size to 0.5
return of an acknowledge signal and the transmission of an pm or 0.2 pm, (2) Minimizing the chip to chip spacing by
output enable signal. It is estimated that the transfer rate mounting the chips on two sides, (3) Employing a higher
may be " high as f = 1/2T,. Hs. For F = 19 and I = 20 speed technology like GaAs ( HEMT's), (4). Perhaps, us-
mm, the total power dissipated by buffer is 175 roW. ing Wafer Scale Integration.
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Abstract are determined by summing the maximum computational
rates of the processing elements. For example, the sus-

Aronewsorcieturied fin thispper.rhe u ue attae tainable rate for a Cray X-MP with four processors may
processors is studied in this paper. The unique eatures are be as low as 5% for some algorithms (2]. Also extensive
tht ohe aorttach nd itscesmoryc can be prnurd tom o- a evaluations of recent high-performance computations as-
set of algorithms and its memory controllers can be pro- ing Lapack are given in [3] and using NSA parallel bench-
grammed to fit the access patterns required by the algi- marks are given in [4]. These evaluations confirm the low
rithms. As a result, high utsliation of the processing lotgit efficiencies of most supercomputers. Although some of the

for given sets of algorithms can be obtained. A simula- bat efficiency is necessitated by the algorithms much of

tor with interactive graphic interface is designed to study it is due to memory accessing bad contention for shared

the performance of the proposed architecture. An ezample reso. in general, including internal buses.

based on matrix multiplication is usedfor illustration. The

simulation results show that a sustained execution rate as Described in this paper is a class of high-performance at-

high as 95% of the peak speed for matrices with a size of tached processors called Modularly Configurabie AttacheO

128 x 128 can be achievedin the proposed attached processor Processors (MCAPs) which can attain quickness and high

architecture. If CMOS technology is chosen to implement utilization through:

the MCAP architecture, a sustained speed of 190 MFLOPS * Closely matching their architectures to the set of a)-
can be obtained for matrix multiplication with four multi- Coi ey a e toecuteplies an fou addrs.gorithms they are to execute.pliers and four adders.

* Overlapping of processing and memory accessing by

1 Introduction using memory prefetching.
* Minimizing the movement of data.

An attached, or back-end, processor is a processing sys- a Using a high-speed technology with MCM or wafr
tem that is connected to a host computer for the purpose scale implementations.
of very quickly executing most of the overall system's com-
putational tasks. In such an organization, "the host is a An MCAP is constructed from the component types spec-
program manager which handles all I/O, code compiling, ified in Sec. 2. These component types are such that
and operating system functions, while the back-end at- each member of the class may include parallel processing
tached processor concentrates on arithmetic computation and memory-to-memory pipelines, and be constructed in
with data supplied by the host machine" [1. a building block fashion. They encompass routing com-

The specific purpose of an attached processor is to exe- ponents (including buses) as well as memory, co,..rol, and
cute members of a set of algorithms very quickly. The processing components. By overlapping processing with
broader the set of algorithms the more generally applica- memory accessing and matching an architecture with a set
ble the attached processor. The underlying goal of the of algorithms, it is predicted that the average sustainable
designer is to efficiently utilize the hardware for as broad rate for a specific set of algorithms can attain at least 60%
a set of algorithms as possible. However, for most current of the peak rate. By defining components that are sim-
designs, the average sustainable execution rates have been pie enough to be fabricated onto single low-density ICs, a
found to be only 5% to 20% of their peak rates, which high-speed technology may be used.

In order to study and analyze the performance of the'The work reported in this paper was supported in part by MCAP architecture, a set of simulation tools has been de-

the Office of Naval Research under Grant No. N00014-93-1-
1343. Any opinions, findinp, and conclusions or recommend.- velop-d. These tools include an architecture editor, an
tions expressed in this paper are those of the authors and do asserbler, and a simulator. The main objective of this pa-
not necessarily reflect the view of the funding agency. per is to study the performance of the MCAP architecture



using the developed simulation tools. Matrix multiplica- stages pipeline (a two-input (T) component followed by
tion is studied as an example to illustrate how to match an three elementary (E) components]. All communications to
algorithm to a specific MCAP architecture. Through the and from the processing components are through six link
simulation, the hardware attributes of each component, components, three on each side of the processor. Join and
such as the execution delay and the size of the data queue fork components are provided to allow flexible use of the
can be fine tuned to achieve a high sustained execution link components. Also, to allow for accumulation there
rate. For example, the simulation results showed that for is a feedback connection between the fork component at
matrices with a size of 128x 1L8, a sustained rate as high the output from each adder and the join component at the
as 95% of the peak speed can be achieved, input to the adder. There is a dual-acces, component to

The rest of this paper is organized as follows. Section 2 provide intermediate memory and a connection to main

briefly describes the architecture of the MCAP and the memory. The single-access component provides internal

fundamental components required to construct an MCAP. storage. The detail description of these basic components

Section 3 describes the simulation tools developed for the can be found in (5].

performance analysis of the MCAP architectures. Section CLzACuC11oJ 5jRA S I ELM.

4 shows how to design a simulation program to match
an algorithm on a given MCAP architecture. Section 5
shows the simulation results and discusses the various de-
sign principles for achieving a high sustained execution
speeds on MCAP architectures. This paper concludes withMOT
Section 6.

2 MCAP Architecture a I
An MCAP is an attached processor that is constructed en- i
tirely from a standard set of connections and components. i
This standard set consists of three types of asynchronous T

connections and twelve types of components. The def-initions of the connection and component types provide I,/

a standar4 set of riles that allow the components to be - Z Z 1

easily configured in different ways to construct attached -
processors that can efficiently perform different sets of al-
gorithms.

An MCAP operates by drawing an instruction stream fromT
the memory component into the instruction component.
The instruction component uses internal instructions in T

the stream to form external instructions that are then dis-
tributed to the other non-memory components through the
MCAP's bus component. All components in the instruc-
tion stream include input instruction queues. When the o Tim
non-memory components have received all of the instruc-
tions needed to perform an algorithm, they automatically cLsAccsss S2 . E3
prefetch the data from the memory comiponents, route
the data to and from the processor components and store Fig. 1. An example MCAP architecture.
the results back into the memory components. All non-
memory components have input data queues. DMA units 3 Simulation tools for the performance
built into some controller components, which are the com-
ponents that supervise all memory accessing, are used to analysis of the MCAP architectures
automatically transfer data between the host's main mem- Three CAD tools have been developed for the performance
ory and the MCAP's memory components while the algo- analysis of the MCAP architectures. These tools include
rithm is executing. Also, the instruction and data streams an architecture editor, an assembler, and a simulator. All
are separate, thereby allowing the instructions needed for these tools are written in C +  and installed on a PC corn-
the next algorithm to be distributed while the current al- patible with a 486 microprocessor.
gorithm is executing.gorihm s excutng.3.1 Architecture editor
An example architecture is given in Fig. 1. Its processing
subsection includes a comparator, a negator (elementary An interactive graphics editor is designed to facilitate the
component), a reciprocator (elementary), a set of pipelined construction of an MCAP architecture. The architecture
adders capable of accumulation, and a set of pipelined mul- editor provides the following functions for constructing an
tipliers. Each adder or multiplier is constructed of four MCAP architecture: (1) Creating, deleting, and moving



around any fundamental component defined in Section 2 in the simulation program where the errors occur. A seg-
in an existing architecture, (2) Adding or deleting a con- ment of the load file for the link component, L80, is shown
nection between any two components, (3) Modifying the below.
attributes of any component, such as the execution time,
instruction or data queue size, number of pipeline stages, 53 L80 52 ;set the mode
capacity, etc. All the above functions are performed on an 57 L80 1 1 135 ;set input connection
interactive graphic display, thus it is very easy and conve- 59 L80 4 4 151 196 190 ;set the output connections
nient to construct any kind of MCAP architecture, The 58 L80 32 5 32767 151 196 190 ;set output patterns
outpat file generated by the architecture editor is the ar- 51 L80 33 ;set the number of output operands
chitecture source file which is later used by the assembler
and the simulator. The architecture source file specifies Fig. 2 shows the process of creating a load file from the
the detailed information of an MCAP architecture, such simulation program and an architecture source file.
as the component ID, the number of connections and their
connection numbers, and other attributes of each compo- 3.3 MCAP Simulator
nent. The simulator is designed to simulate the operation of each

component in an MCAP architecture while an algorithm
is being executed on the architecture. This allows an ar-
chitecture to be matched to an algorithm. The structure

AR011TECITURE of the state diagrams for the memory, instruction and bus
EDTOR components are shown in Fig. 3. Note that each compo-

Dnent may take on a subset of the following states:

Simulation FREE - there is no activity in the component
program Architecture DIST - the component is waiting for an instruction

source file to distribute
DBSY - an instruction is being distributed to its

register(s)
IDLE - the component is waiting for input

Loud ile BUSY - the component is being executed
SIMULATOR WAIT - the component is waiting for its output to

be taken

Error mesae The simulator first brings in the architecture source file
and the program to be simulated, opens a result file, asks
the user for the format of the results and then begins the
simulation. The pseudocode for the simulator is

Fig. 2. The simulation tools developed for simulating the
MCAP architecture. Retrieve architecture source file

Retrieve simulation program file
3.2 Generation of a load file for the Open results file and request the format of the results

Initialize variables (includes setting the system time
graphic simulator to zero)

The assembler compiles a simulation program and an ar- DO {
chitecture source file, then generates a load file to be used Update components in BUSY state
by the simulator. The assembler runs two passes. In the Update components in WAIT state
first pass, the assembler reads the architecture source file Update instruction and data queues
and builds two tables. The first table associates the com- Update components in IDLE state
ponent's mnemonic to its corresponding ID number, and Update components in FREE state
the second table lists all the connections along with their Update components in DIST state
corresponding source and destination components. Dur- Update components in DBSY state
ing the first pass, the assembler also includes all defined Increment system time
symbols and their values in the first table. In the second If format requires results to be stored, then output
pass, the assembler reads the simulation program again results
and produces the load statements for each instruction. If ) While (not end of simulation)
the simulation program references only components listed Close results file
in the architecture file, uo syntax errors are generated and
the assembler produces a load file; otherwise, the assembler Inside the Do loop, the simulator first updates all compo-
produces an error file (.SLT) which lists the line numbers nents currently in the BUSY state. Their execution times,



which are set to their maximum values when the BUSY method [6] where A, B and C are n x n matrices. As-
state is entered, are decremented and, for those that be- sume the S2's memory can hold the entire matrices for the
come zero, the component's state is changed (usually to multiplication.
the IDLE state, see Fig. 3). As the transition occurs, ap- The algorithm consists of the computations
propriate actions are taken. Similarly, the components in
the other states are checked. If the transition conditions
are met (e.g., the output has been accepted by the suc- u, Bj = C, = I.n
ceeding component), then appropriate actions are taken .. I
and the component is put into its next state. The simu-
lator is updated such that a component can have at most where the s are the mns of AThe arethe ro
one state change each time around the loop. Also, all in- of B, and the C,s are the rows of C. The algorithm pro-
structions and data queues are updated each time around ceeds by storing the first elements of the first column
the loop. The results primarily consist of the times each of A and the first n rows of B in the S2's memory. Then
component spends in each of its states and are recorded at the pous me or ,...r n efomend tedthe ime spcifid b th resltsforatin the Si's memory. Next, the first ni elements of the 5ec-
the times specified by the results format. ond column of A are brought into the SI and the products

IDL9My nal MZ Buy (12 B, are formed and added to the corresponding previous
products, with the results being returned to the SI.

By matching this algor.thm with the architecture in Fig. 1,
it is seen that each adder and multiplier must perform ap-
proximately n3 /2 operations and each link on the left and

two of the links on the right must perform approximately
n3 transfers. (The third link on the right is not be needed.)

(a) The approximate number of accesses to the S components
is about 2n 3 . If T is th- per stage processing time of the

IE buy multipliers, then T sh, also be the per stage processing
time of the adders and T/4 should be the transfer time of
the links. The access times of the S components should
be T/8 for both reads and writes. For T = 40 ns, the
link transfer time should be 10ns and the average memory

access times should be 5 ns. The computation rate would
be 200 Mflops per second. If the MCAP were put into an
MCM or wafer and memory interleaving were used, these

(C) times would be within the capability of current HCMOS
technology.

Fig. 3. State diagram structure for the (a) memory, (b)
instruction, and (c) bus components. 4.1 Design of a simulation prog, am for an

MCAP Architecture

4 Matching an algorithm to an MCAP To verify the above simple analysis, we have designed a
architecture set of simulation programs for the matrix multiplication

to be run by the MCAP simulator. The instruction set for
In order to efficiently use the available logic and intercon- an MCAP architecture consists of two sets of instructions,
nections, an architecture must be carefully matched to an internal and external. The former is processed within the
algorithm or set of algorithms. This involves a study relat- instruction component and the latter is distributed by the
ing the flows, storage and processing of the data required instruction component to the corresponding components.
by the algorithm(s). Clearly, there is no point in increasing In this paper we will only discuss the external instruc-
the speed of a processing subsystem if the current intercon- tion set. The external instructions set consists of three
nections and memory hierarchy are inadequate to support types of instructions: instructions which set the number
the processing (or vice versa). But a good balance for one of operands to be output from or input to a component,
algorithm may not be a good balance for a different algo- instructions which set the mode of a component, and in-
rithm. What is needed is a satisfactory tradeoff for the structions which set input or output connection patterns
work mix expected of a system and a means of evaluating for the router components or partition and operand pat-
the design parameters chosen. terns for the controller components,

Space allows only a single example, so let us consider the When programming an MCAP architecture, each com-
computation that most frequently occurs in computation- ponent must be programmed individually. The opera-
ally intense algorithms, matrix multiplication. Let us ex- tion mode, input/output patterns, connections, number
amine how the MCAP in Fig. I could be analyzed rela- of operands to be input or output, broadcasting patterns,
tive to the algorithm AB = C using the middle product etc., are programmed for each component using external



instructions. For example, referring to Fig. I, the input partition base and size) instruction: Thus, the instruction
data stream is supplied from the 52 component. This data sequence for the 52 component is shown below:
stream passes through link component and is distributed
among four multipliers (each multiplier is composed of one stood S2, mode ;set mode
T and three E components), then the output of the multi- sopp S2, #n, 0, 1 ;set output pattern, I followed by n
pliers is sent back to the four adders for accumulating the spbs 52, 0, 0, N ;set base address for partition 0
results. The SI component stores the intermediate results spbs 52, 1, N, N ;set base address for partition I
output from the adders and sends back to the adders when stko S2, Nx(n+1) ;set the number of output operands
new products are produced from the multipliers. The final
results are stored back to S2 component. For the matrix The first instruction configures the S2 component for out-
multiplication discussed in the previous section as an ex- put only and sets the output pattern of partitions 0 and I
ample, the instruction set for programming each compo- to a I then n pattern. Since the S component only outputs
nent is discussed below. data, only the output partition pattern needs to be sped-

fied. The second instruction generates a pattern in which
4.2 Programming the single access, S partition 0 is accessed once and partition I is accessed a

component times. This pattern is repeated N times. The third in-

To compute one product for one row of the C matrix, one struction defines partition 0 to start at base address 0 and

needs to broadcast one element of A and then transfer one assigns it a size of N. The fourth instruction defines par-

row of B to the multipliers. Since there are n products to tition I to start at base address N and assigns it a size of

be multiplied and added to form a row of C, this opera- N. Using the middle product method for the matrix mul-
tion needs to be repeated n times. So, the total number tiplication, the first element of the first row of matrix A
of operands to be output from the S2 components to the needs to be output first followed by the first row of matrix

multipliers is n2(n + 1). The memory access controller, i.e. B. Then, the second element of the first row of matrix A
S component, connect. to one or more memory modules is output followed by the second row of matrix B and so
and allows the storage and retrieval of data to and from on.

these modules. Memory as a whole is divided into a spec- Using the instructions shown above, 52 will output the
ified number of partitions across the modules. Thus, the data stream a,,, bxl, ... , bi,,, 412, b2, .... - b, -- ,
consecutive addresses of a single partition extend over ad- bnt ...., bn to produce the first row of C. Similarly, 52
jacent modules to reduce the average memory access time. will output the data stream stream a2l, bii, ... , bin, a22,
Also, partitions allows the data to be stored in a partion .... , ,,, ... , a 2n, b,,1 .  bnn to produce the second
lar pattern according to the requirement of the algorithm, row of C, etc.
Fig. 4 shows how the partitions are distributed across the
memory modules. 4.3 Programming the link component

The operation of the link component, LINK, consists of the
.,,.,,-ddu broadcasting of one element of matrix A and distributing

a row of matrix B among four join components, for ex-
0 P' Iample J059, J057, J060, and J062. Thus, the number of

operands to be output by LINK is N (I + a). The fol-
-0 .. lowing instructions program the LINK component for the

4- s 4=4 4.1 ' 4 matrix multiplication:

to 4 - o.2 = hnod LINK, mode ;set mode

lwmb " . .- ip LINK, F077 ;set input pattern
a~a, so 60.. pIU. IS ow lsbp LINK, J059, J057, J060, j062 ;set broadcast pattern

ft4 ..1 4 Iw sop LINK, #n, &, 3059, J057, J060, j062 ;output pattern
-* - is Iko LINK, NumnOpsOutL ;set number of output operands

The third instruction sets the broadcasting pattern which

specifies the components to receive the broadcast operand.
The fourth instruction programs the LINK component to
perform a broadcast, indicated by the symbol &, and then

to distribute a operands to the components listed in the
Fig. 4. Distribution of partitions across memory modules. instruction. The # character always precedes the value of

n when using a I then n pattern or an n then 1 pattern.
To access a memory location, the S component alternates 4.4 Programming the, Join, Fork, and
between the partitions listed in the programmed partition
pattern. As an example, to store two n x n matrices A Processing components
and B, we divide the memory connected to S2 in the ex- The Fork, Join, and processing components, T and E, cam
ample architecture into two partitions using the 'spbs' (S be programmed in a similar fashion. Since each multiplier



and adder is composed of four pipeline stages, one T com- the execution time for all other components is unchanged.
ponent followed by three E components are needed to con- If the address generation time of S004 is set at I ns while
figure one multiplier or one adder. The first pipeline stage reducing the execution time of other components, such as
for the processing component must use the T component the Join, Fork, or Link components, no improvement on
because the T component can take two input operands the sustained rate was found. However, if the address gen-
while the E component can only take one input operand eration time of S004 is set at 4 ns and the execution time
from the previous pipeline stage. of J006 is reduced from 6 as to 5 as, the highest sustained

rate is increased from 83.3% to 90.9% as shown in Fig. 5.
5 Simulation and performance study Further reducing the execution time of to 4 as in-

creases the sustained rate to 94.6% k tee with a
The sustained speed for executing the matrix multiplica- size of 128 x 128. Also, if the address 946 . on time of

tion on the MCAP architecture shown in Fig. I is stud- S004 is fixed between 4 s and 6 us, no imp iement on the

ied through the simulation. The execution time for each sustained rate was found by reducing the memory access

component is determined from an earlier paper [] where time.

an MCM implementation of the MCAP architecture us-

ing CMOS technology was studied and analyzed. From Based on the simulation data collected for matrices with
this paper, we found that the total number of transistors sizes ranging from 4 x 4 to 128 X 128, we are able to pre-
needed for implementing the MCAP architecture shown in dict the sustained rate for larger matrices. The simulation
Fig. I is at around 9.85 million transistors and the whole results and estimated data are given in Table 1. F in this
system can be built into a 5 cm by 5 cm MCM package us- table, the sustained rate is estimated to be as high as 6%
ing CMOS technology. Based on this study, the estimated for matrices with a size of 1024 x 1024 or larger.
execution time for each component is listed below (5]:

Sustained rate
* Multiplier and adder (64-bit floating-point processor):

40 ns per pipeline stage. I.

* Link components: 8 to 10 ns

a Join and fork components: 4 to 6 us

e S component (memory controller): 4 to 8 us for exe- a"

cution time, address generation time, and bus access
time

* Memory module: 80 as (two-port DRAM)

Several simulations were run to study the best obtainable
sustained speed for matrix multiplication on the MCAP IM
architecture. The sustained rate compared to the peak
speed vs. matrix size is plotted in Fig. 5 and the actual
MFLOPS vs. matrix size is plotted in Fig. 6. The total
clock cycles and the average percentage of BUSY, WAIT.
IDLE, and FREE states for the multipliers and adders is 0 sm &Jim",nm toSM. "U 4LlaasJ

given in Table 1. Many interesting results can be derived s ddrau usftadei,-.s4ma EM:uamJW-
from the simulation data. Note that the peak speed of the IS, £ A4sddapm ah.aL-:,4mjUS: 5J.S.s-

MCAP architecture shown in Fig. 1 is at 200 MFLOPS S sdda ,..bm: m:mag:4m
with four multipliers and four adders using the above ex.
ecution time derived from [5]. a I

5.1 Sustained rate in the MCAP architec. Ma r x d o
ture Matrix dimen (a)

In order to achieve a very high sustained rate in an at- Fig. 5. Sustained rate vs. matrix size for matrix
tached processor, the bottleneck component needs to be multiplication.
identified, so that the system performance can be im-
proved. From the simulation study, the bottleneck compo- 5.2 Performance comparison with other
nent in the MCAP architecture moves from one component high-performance parallel computers
to another component when the address generation time In one of the recent issues of IEEE Parallel and Distributed
for the S component is reduced. Technoloigy, a thorough performance comparison between

For example, the lower two curves in Fig. 5 showed the various high-performance parallel computers was made us-
sustained rate remains unchanged when the address gen- iL, the LinPack benchmark (3]. Since matrix multiplica-
eration time for S004 is reduced from 6 as to 4 as while tion is the main portion of the computation in LinPack



benchmark, it is appropriate to compare the simulation tion on the MCAP architecture is estimated at 25 W/cm2
results obtained in this study to the results reported in (3]. which is suitable for air cooling [5]; this is in sharp contrast
In [3], it showed that Cray X-MP/I with peak speed at to most supercomputers where liquid cooling is required.
235 MFLOPS achieves the highest sustained rate at 51%
(121 MFLOPS actual speed) while Cray C-90/16 can de- Sustained seed (MFLOPS)
liver the highest actual speed at 479 MFLOPS but with
only 3.1% of its peak speed of 15,238 MFLOPS.

In the MCAP architecture, the peak speed for four mul-
tipliers and four adders is at 200 MFLOPS using CMOS
technology. However, by matching the algorithm to the ar-
chitecture, the best sustained rate can be as high as 94.6% ,'
for matrices with a size of 128 x 128. The actual speed ob-
tainable from the MCAP architecture is at 190 MFLOPS 3,.

which is within the same range as Cray Y-MP/I (145
MFLOPS) or X-MP/4 (178 MFLOPS). Note that both Uss
Cray computers are designed using the ECL logic and the
cost for both machines is several million dollars, while the
MCAP architecture is based on the much cheaper CMOS
technology.

Comparing with microcomputer or workstations, MCAP
has the following advantages. First, it is very easy to con-
struct an MCAP architecture to match an algorithm so swr4lmhdre 4s4 Lo : 12m% J*s56m
that a high sustained rate can be obtained. Second, the S A S04,dd r vran UvWA LA:4 [GetsJ:s w

component can be programmed in ahead of time for a new 0 s4 bddres ,mso. tlw:4, LUS:ma, J66:4m

algorithm before completing the current algorithm, so that
the instruction fetclung time can be overlapped with the NA

execution of the current algorithm. Third, the MCAP ar-
chitecture can be scaled up to include 10 to 20 processing -L ob

components to achieve a peak performance between 200 to Matrix dimension (n)
500 MFLOPS using CMOS technology. Lastly, the MCAP Fig. 6. Sustained speed vs. matrix size for matrix
can be constructed from a few basic components and it's F. Ste p v.ati se m
architecture is much simpler than any modern micropro-
cessor or workstations.
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Abstract Another reason to investigate computational intensity
is that it directly affects the average performance of a

The computational intensity of the task being ezecuted is an pipelined processor. For a highly pipelined machine,
important factor in determining the sustainable through- main memory becomes the bottleneck of the system.
put, especially for modern computers with hierarchical The speed imbalance between the memory and pro-
memories and highly pipelined processors. This paper de- cessing elements causes the average performance to
termines the computational intensity with respect to the in- be substantially lower than the peak performance de-
ner memory capacity for several computationally intensive signed into the processor. Sustainable computation
algorithms that have wide application. It also analyzes the rates of typical supercomputers have been evaluated
influences of computational intensity on the speed and Cost and reported by Tang and Davidson [4] and found to
of hierarchical memories. Based on the analysis, a method be much lower than the sustainable rates for most a11

gorithms. A high computational intensity reduces theto optimize the memory cost relative to the memory size rate of memory access, thus improving the average
and speed at each memory level is also presentedk performance. Hockney and Jesshope [5] have shown

the average performance as a function of the compu-
1 Introduction tational intensity for nonoverlapped as well as over-lapped memory transfer and arithmetic operation.
The performance of a computer system is typically

limited by the speed of its memory and cache memory
has been widely used in reducing the memory access Me' o 1
time (1], [2], [3. In the two-level memory hierarchy Memory
shown in Fig. 1, where memory accesses must be made M location
through the first-level memory, M is the number of lo- Boundary
cations in outer memory, m is the number of locations
in inner memory, and n is the number of floating-
point operations involvedin the algorithm.
The average access time is tav, = tm +(l-h)tM, where
h is the hit ratio, and tm and tM are the access times
of the inner and outer memory, respectively. The in-
ner memory of this two-level hierarchy can be imple-
mented in a variety of ways and may represent a mem- m locations
ory subhierarchy. Obviously the hit ratio increases as
the size of the first-level memory grows. However, in
addition to size, the hit ratio is also a function of the
algorithms and applications involved. An algorithm Prcessing
that exhibits a high degree of locality in memory ac-
cesses will result in a high hit ratio. For computation- rp flops
intensive algorithms, this programming locality can
be measured as the computational intensity, which is
defined as the average number of floating-point oper-
ations per access to the second level memory.

I The work reported in this paper was supported in part by Figure 1. Two-level memory hiearchy structure.
the Ofce of Naval Research under Grant No. N00014-93-1-
1343. Any opinions, findinp, and conclusions or recomends- In this paper, we investigate the computational in-
tions expressed in this paper are those of the authors and do tensities for some of the frequently used algorithms
not necessarily redect the view of the funding agency. and their impact on the design of hierarchical memory



systems. Section 2 analyzes several computationally The sequence of computations is cl =a l x bat, ci

intensive algorithms, including matrix multiplication, c11 + 612 X 421. .li = C11 + o1s x b3 -. . . . . .li cj +
matrix inversion, and solutions to linear and partial aft, X b,,, c13 = al x biz. C13 = C12 + 412 X bfl.
differential equations. For these algorithms, analyti- C12 = C13 + 1 x bX .3.
cal methods are developed to evaluate their compu-
tational intensities with the inner memory capacity Since this method computes one element c,), i.e., one inner

and problem size as the parameters. Sections 3 and product, before computing the next -dement, it is advan-

4 consider possible applications of computational in- tageous to keep c,, in the inner memory to reduce accesses

tensities in the desi;n of hierarchical memory systems. to the outer memory. Also shown in the above compu-

Expressions for optimizing a hierarchy with respect to tation sequence is that in computing each row of matrix

speed and cost are given in terms of computational C, all elements in matrix B are referenced once. On the

intensities, other hand, in the same computation, only one row of ma-

trix A is referenced and it is used % times. Therefore,

2 Case Studies of Computational In- when the available storage m is between I and a + 1, the

tensities best possible allocation is to store the matrix C elements

currently being computed and m - I matrix A elements.

In this section the computational intensities as functions Based on this, the computation of each row in matrix C

of internal memory size and problem size are determined requires n' fetches and n stores. For a row of c's, there

for several example algorithms. When m = 0, only the are m - I fetches for the a's kept in the inner memory

pipeline buffer registers are available for internal storage. plus (n - m + 1)n fetches for the remaining x - m + I

In some cases, chaining of processing components is as- a's from the outer memory. The total number of mem-

sumed. In deriving the required number of accesses to the ory accesses is ((n2 + n + m - 1 + (n - m + l)n]n =

outer memory level it is assumed that the inner memory 2ns3 + 22 _ mn2 + mn - n. Thus, the computational

is entirely usable (e.g., it is fully associative), intensity is (2n 3 - n2 )/(2 n3 + 2 n- mn2 + mn - ).

2.1 Matrix Multiplication Once the storage exceeds n + 1, there is no advantage in
storing more than one row of a's. This is because after

As discussed in (5], there are three major algorithms for one row of c's is computed, the same row of a's will not

matrix multiplication, the inner product, middle product, be used again. Therefore, when the inner storage size is

and outer product algorithms. All three algorithms require between n + I and (n + l)n + 1, the inner memory should

the same number of operations. However, the sequences of keep one c, one row of a's and as many columns of i's as

computation are different for the three approaches. the remaining space allows. These columns of b's will be

The analysis assumes that each matrix is an n x n matrix used in computing each row of c's. For the case kn + % + 1,

and the multiplication is: k columns of b's can be kept in the inner memory. The
total number of accesses is vO + n2 + kn + (a -)u r =

oil 512 ... , 1. bi1 412 1. bi +2' - k"2 + kn. This includes a' fetches of a's, is'

C121 (22 ... a3,, X bt b22 ... 62. stores of c's, kn fetches of b's, that are kept in the inner

... ... memory plus (n - ')n 2 fetches for the remaining b's. Table

nt d," b... bann .'- b inn 1 summarizes computational intensities for various storage
sizes.

cii C12 ... 1i
C21 C22 ... , m Computational intensity

- 0 4n-n 2

Hence, c, is computed as follows: I < m < n + 2 i -n 1
2h43+2 n2

- m n +m
n -n

n n +2 n3-n3 _2 ,

CS) a ,,, x b kj 2 n + I; n n 2

kal kn + n + I

and the total number of computations is n x n x (2 n-1) = k = 3,4,.. .,n - I 2n-n "  2

2xs - , which is the same for all three algorithms. ( + n + 1 2 Z,

The inner product method computes the elements of C in 3 a J , In.
sequence. This is implemented in a high-level languages as

Table I Computational intensities for the inner product

for i = 1 to n do method.

for j=1 to a do
for k =1 to a do The middle product method computes an entire col-

C[i, i = Ci, j] + Ali, k) * B[k, J); unt of c's simultaneously, thus allowing up to n pro-



cessors to compute in parallel. In a high-level Ian- for k = I to n do
guage, this can be implem'ented as for i=1 to n do

for j =1 to n do
forj = ito do ,C[i,j] Cli, j] + A[i, k) B[k, j);for k= to n do

for i =1 to n do The sequence of computations becomes cl = c11 +

C[i, i] := Cli, j] + A[i, k) * Blk, j]; al x bti, c12 - c12 + k X bkX2, C13 = C1 3 + alk X b 3 ,
... , c =n = Cin + alk X bkn, C2 1 = Cat + a2k x bkl ,

The sequence of computations becomes cii = a I x bli, C22 = cU2 + a2k x b2, ...

Cj a2 1x bij, ca3j = aa x baj, ... , enj = a, x 6i, For I < m < n+1,oneaand m-1 b'sshould be
li = Ci1 + al 2 x b2j, C€j = C2j + a22 x b2j, C31 = internally stored. This leads to the total number of

C3j + a32 x b2j, .... accesses 3 n -(m- l)n 2 +(m- )n. For a memory size

Since each bi is used n times and may then be dis. ofkn+n+ 1, the inner memory should store one a, one
carded, keeping b~, in inner memory will reduce the row of b's and k rows of c's. The resulting number of

number of memory accesses. For I < m < n + 1 memoryaccessesinthiscase is2 n+ n-2kn + 2n
the remaining locations store m - I c's. Based on Table 3 shows computational intensities for various

this organization, the total number of memory ac- memory sizes based on the outer product algorithm.
cesses required in computing one column of c's is
n(n + 2) + 2(n- m + l)(n - 1). The first term includes m Computational intensity
n writes for storing a column of matrix C. The sec- 2T4
ond term represents the number of accesses required 0 4-__, 2
to save and retrieve partial sums for the remaining 1 1 n=
n - m + 1 c's that are not kept in the inner mem- 3
ory. Therefore, the entire matrix multiplication re- I < M< n 3(+,,- 3
quires n(3 n2 + 2n - 2mn + 2m - 2) memory accesses. n + I 2 -n

For a memory size ofkn + n + 1, in addition to one b 2n + 1 1;'-+ s 1
and one column of c's, k columns of a's can be kept in ++n

memory. This leads to the following total number of n + n + 1
accesses for the entire matrix multiplication: k 3,4,.. .,n - I

(n +l)n + 1 2 F .- I

n+2 + kn +(n -k)n 2  3P+)n3

The first term is to fetch 's, the second term to store
c's, the third term to fetch k columns of a's and the Table 3 Computational intensities for the outer product
last term to fetch the remaining a's n times. Compu- method.
tational intensities for the middle product algorithm
are summarized in Table 2. The computational intensities of these three matrix

m Computational intensity multiplication algorithms are compared in Fig. 2. The
0 ng.-_.- I Icomparison is based on the matrix size 1000 x 1000,

0i.e., n = 1000. As seen in this figure, the inner prod-
4,3-n I uct algorithm yields the highest computational inten-
n+-0 m sity among the three, followed by the middle prod-

1< M < + 1 "n +
2 n-

2in~ 2
m-2ft 3 uct method, and the outer product algorithm is the

n + I . 2 lowest. The reason is that the inner product method
n + 1 - 2 completes the sequence of computing one inner prod-

n3+n7+" uct before starting the next. This computation se-
kn +n+ 23 quence involves at most one row of matrix A and one

k = 3,4. . - ,n - n 2 column of matrix B at a time. On the other hand, the(n+ 4,.n I s, :n_,+~ 2 " outer product method provides the maximum degree

(ft + 3)n + Iof parallelism among the three methods. Since this

3 ft2  .. method computes all n vector product terms at the
same time, it requires access to all elements in ma-
trix A and B before any vector product is completed,

Table 2 Computational intensities for the middle product thus yielding the lowest computational intensity for
method. the three approaches (about half of that for the inner

product method) when the storage size is less than n2 .

The outer product algorithm further increases the de- Once the storage size is above n2 , the inner product
gree of parallelism by computing all n2 c elements at method has no advantage. When the storage size is
the same time. This allows up to n2 processors to below n, the inner product method is also better than
compute the matrix multiplication in parallel. In a the middle product method. This is because the mid-
high-level language, this algorithm is implemented as de product method computes n vector product terms



at a time, thus requiring accesses to n operands at a m Computational intensity
time. 0 f v I

2n+i 21000 '.., -. 1 . -1 "1 3nl 1* 3 , ..

Inner product - 1- < m < n + I 2nm-- +r-2 rn -1

Middle product - n mod (m - 1) = 0 2n
2

Outer product n + I < m < 2n 2n+- "

100 m= (k + l) n
k = 2, 1n

3

Computa- m > n(n -1) n
tional

intensity 10 Table 4 Computational intensities for matrix inversion.

2.3 Partial differential Equations

1 <For examining the solution of partial differential equa-
tions, two-dimensional equations are assumed and the
nearest neighbor approach is used (6], [2]. Suppose
that the area of the solution is represented by an n x p

.array surrounded by 2 (n + p) boundary points that
1 10 100 103 104 103 106 l~ I are known. If the dependent variable is v and f is a

known function, then there are constants a, b, c, d, and

Inner memory sized e such that =avi- j +bv,*+Itj+cvij.-+dtij+l+e f, i = l..p ,.,

Figure 2. Computational intensity vs. inner memory The solution is found by q iterations over the entire ar.
sizes for matrix multiplication ray by incrementing i and j and using the new values

of v13 as they are computed. So that the outer mem-

2.2 Matrix Inversion ory can contain the constants and all values of vi9 and

For inversion of an arbitrary n x n nonsingular ma,- f. , the size of M must be at least 2(np + n + p) + 5.
trix (n > 2) the pivot method j6] for which the pivot First np multiplications are required to replace all f, s

with ef,, and then, for each iteration, four multipli.
is determined by scanni a couln for its maximm cations and four additions are required for each point.
magnitude is assumed. Only one colum.n is scanned Theeoe p 8q+1np 8nq

for each pivot and the n pivots are determined in herefore, np = (8 q + 1) n p - 8 npq.

succession using the columns from left to right. The Table 5 gives the computational intensities for several
approximate size of the outer memory, M, must be values of m and one of the curves in Fig. 3 gives the
at least n(n + 1). The number of flops, n.., corre- computational intensity as a function of m for n =
sponding to each pivot is n comparisons, n divisions p = 1000 and q = 20. For example, the fifth entry
(or one reciprocation and n multiplications), n(n - 1) in the second column of Table 5 was found for k = 0
subtractions, and n(n - 1) multiplications so that assuming the five weighting constants are input and
n.. = (2 n + 2 n(n - 1)] n = 2 n' then pn values of fij are input and pn values of efi,

Computational intensities for several sizes of the in- are output. Then for each iteration the efo, products,
ner memory are given in Table 4. Row interchanges 2(n + p) boundary points, and old values of the np

have been ignored. As an example of computing the interior points are input, and the new values of the
number of memory accesses, consider the third entry np interior points are output. For k > 0 there are

in the second column. For each column, the n column k points that need to be input and output only once
elements are input one at a time and the maximum instead of q times.

element is determined. Then for each group of m - I
elements in the pivot row, the elements are input and 2.4 Linear equations
divided by the pivot element. Then for each of the Simultaneous linear equations can be solved efficiently
other n - I rows, the element in the pivot column by the Gaussian elimination method (6]. In the first
and m - I other elements are input. After m - 1  phase of the Gaussian elimination, n simultaneous lin-
new values are computed, they are output. Finally, ear equations with n variables are reduced to
the m - 1 new elements in the pivot row are output.
Therefore, the number of accesses for each of the n
columns is n+ [2(m - 1) + (2m- 1)(n- 1)] =
2M-1 n2 + - n Also, the computational intensity a22Z2 +" + a'2, : C

as a function of im for n = 1000 is one of the curves in ...

Fig. 3. anz. = C. (1)



In the second phase, variables z to z,, can be obtained thus eliminating two outer memory accesses, e.g., one
by the following computations: write and one read of the intermediate product. So,

the computational intensity is 7/5 times higher than
C1 the case when in = 0. In the case of in = 3, one can

Zn =" =Xstore the most often used coefficients ahk and ak ina'. - the inner memory to further reduce the outer memory
1

.=a, k" = n- 1,... 1(2) accesses to three accesses per loop. When more innerZk " memory is available, one can store all the coefficients
in the inner memory, thus the minimal number of
outer memory accesses will be equal to n(n+ 1). Since

The total number of computations in phase I is the total number of computations is 0(n3 ), the com-

n-l putational intensity approaches n when m = n(n + 1).
3(n(n - 1) + (n - 1)(n - 2) +.-+ 2] = 3 i(i + 1) Computational intensity

10 119+3 11

- n(n - 1)(2n - 1) + !n(n - )=n 3 -nl.21 < in < 4_ +,p

The number of computations in Eq. (2) is

6nE (0 9 1 )n

+3 ... + 2n - 1 = (2i - I) = n2 . (3) M = P + 6 (4n- - +,)9+2np+$ 2

m = 2p+6+ k,
Therefore, the total number of computations for solv- k . -P

ing n simultaneous linear equations is k 0_ n(p - 1) -n , 2 + 2n54-

C= 3 +n2-n (4) m= 2p+6+np + k,
k = 0....n~p -l) (q+l)n.p

The number of accesses to outer memory and corre- k0.n(p-1) (np 2n)+2p4n'p -k(q-

sponding computational intensities are given in Ta-
ble 6. Also, see Fig. 3 for the computational intensity m = 2p + 6 + 2np + k,
as a function of m for n = 1000. The number of k
memory accesses for reducing n simultaneous linear k =o,.n- s
equations to Eq. (1).in the case of = 0 is derived as
follows. Since there is no internal memory in the pro- m > 2{np + +p) + q
cessing units, all intermediate results must be stored
back to memory and read in for later computations.
The number of memory accesses is Table 5 Computational intensities for partial differential

n-I equation solution.
T~n(n - 1) +(n-l1)(n -2) + -- +2] =T7 i(i+ 1)

im Computational intensity
77 2 0 +n n " i, . I.= n(n - 1)(2n - 1) + !n(n - 1) = !n(n - O I"+ .+j -2 7

7 3
(5) 1 ,4_) 2.

And the number of memory accesses in Eq. (2) is t(n-1)(2n 1)+(fn+l)(n-I+3 5

n +1 n-1 3 (-II
3n+E i+3 i = 3n+(n-1)(n+2)

i=3 i=1n 2* n3+n

= n 2+4n-2. (6) n+ 2 *n(n+i)(2n+1)+(,n+3) = 1.5

Summing Eqs. (5) and (6), the total number of mem- 2 n . ,,f+n'-t
ory accesses is .5

Tn +n 2 + !n- 2. (7) n2 +n n

For the case of tn = 1, the intermediate product in Table 6 Computational intensities for solving linear
the innermost loop can be Atored in the inner memory, equations using Gaussian elimination.



where R. sp/s. and I,-i = = I(,-,), = 1--r.

tNow suppose that instead of using ordinary cache at level

1000 j, it is assumed that the memory at this level can prefetch

Linear equations .-- operands from the outer levels and automatically supply

Matrix inversion . them to the inner levels. Then there can be overlapping of

Diff. Eq. - processing and memory accessing in the inner levels with
the memory accessing in the outer levels. This overlapping

100 "implies that the summation in Eq. (8) can be replaced with

Comput. - { 1uo{l, , . )

tionTn T. max{l + T' - 2 - r

intensity 10 
f

In the extreme, for which prefetching is done at all levels
so that overlapping is maximized

Tnl = mazi 1, - ,--.R, R,.

This is minimized when y&j < I or s< s, ,-, a =
.1 .... r For the slowest speeds, s, = s,/I,-a,' = 1i ..

1 10 100 103  104 10S  106 Next let us assume no prefetching, but that the (j- l)th

Inner memory s level can access the (i + l)th level directly. For input,
operands are stored in the (j - l)th and )th levels simul-
taneously and for output, operands are stored in the ith

Figure 3. Computational intensity vs. inner memory and J + Ith levels simultaneously. Then
sizes for linear equations, matrix inversion, and

partial differential equations. T. = + n +I and T. = I+

3 Time Analysis SP 3 a

One use of computational intensity is in time analysis for In the extreme for which all memories can access the pro-

which, at any level i in the hierachy, the memory com- cessor level at the same time as the other memory levels

municates with only the memories at the i - I and i + I and there is prefetching and direct accessing at all levels

levels. Consider a hierarchy of r + I levels. If R II

* m, = number of locations in the ith memory level,-- - '-

i = 0, 1..., v, where the 0th level includes only pro- The minimum of T. for the slowest memory speeds occurs
cessing (i.e., m 0 = 0). when

" n, = number of operand accesses from the (i + l)th
level to the ith level, = 0,1,.r - 1. 1,an ,=S

" sp = processor speed in megaflops per second. s, -- sp .- , I.,

" s, = memory access speed in megaoperands per sec-
ond of level i and includes the miss determination
time associated with level i - 1, i = 1..... r. 4 Cost Minimization

" 1(m,-j) = computational intensity at the boundary Another use of the computational intensity is in the min-
between levels i - I and i, i = 1 .... I r, as a function imization of the cost of a processing system that includes
of the size of memory inside that boundary. a memory hierarchy of r + 1 levels. The total cost is

then the time required to complete an algorithm, assum- r

ing all memory levels except the outer level operate like C = cp(sp) + E c,,,(s,, M.), m, = M
ordinary caches, is ,l

V. 'where c,(s,) is the cost of the processing logic as a function

T. + o of processing speed and cm is the cost of memory as a
im= function of memory access speed in operands/s and size in

Let T,, be the normalized quantity operand locations. Now suppose that c is to be minimized
relative to the constraints that a given algorithm must be

T. ff .T. = + (8) performed within a speciied time T, ap > 0, j. > 0 for all
up , i and m, > 0 for all i. The time constraint normalized

' ' '" ' ' ' | Il I I I I I



by it, ansuming no overlapping of processing and memory can be overlapping of processing and the memory accessing
accessing, is of the inner levels with the memory accessing of the outer

levels. This overlapping implies that the summation in
inequality Eq. (9) can be replaced with the maximum of

" S %at s. ,..) two summations and

_fmar x :
For a realistic system, c, and c. are strictly monotonic T >
increasing positive functions (MIPFs) that approach in- -1 + 2

finity as speed approaches infinity. Also c,,, is & strictly

MIPF that approaches infinity as memory size approaches For j -2,..., r - 1, assume that
infinity. Therefore, the minimum c must occur when the
inequality becomes an equality and 1 - 1 r

I -p+ < S, ](-2
= - > 0 (10) .-

T .- I #:when the cost c is at its minimum. But, without increasing

But, sp is a strictly monotonic decreasing positive func- T, less memory could be used to construct 'he inner mein-

tion (MDPF) of each s, and, hence, cp(s.) is a strictly onies and the cost could be reduced, thus contradicting

MDPF of each s,. This implies that, for each j,, c is the the origina assumption. Similarly, if inequality (12) is re-

sum of a strictly MDPF and a strictly MIPF. Therefore, versed the cost could be reduced by reducing the amount of

c has a minimum relative to the s,s that occurs at ex- outer memory without increasing T. Theref, re, the mini-

actly one point (s',..., 4). Similarly, because 1(m) is a mum c occurs when inequality (12) is replaced by an equal-

MIPF of m, c is known to have a minimum relative to the ity and both sides are equal to T. Similar arguments could

ms. Moreover, because 1(m) may not be strictly mono- be made for the cases j = I and j = r. This implies that

tonic increasing, the minimum may occur at several points, the minimum occurs when

But there is at least one point I (a'..... snm' 1 ... ,1.. t)
at which c is a minimum. The speed s. can be determined Er I

from Eq. (10) and m, = M ;a given. T = o 7.
ap 7-r-...,

As an example, let us assume that
Therefore, two of the speed variables, say sp and s,, can

Cbe expressed in terms of T and eliminated from the mini-
c = Cs, + > (T) a, (Am, + B), (11) mization process.

sal

In the extreme, complete overlapping for which all mem-

where A, B, and C are constants and ories operate independently in supplying and storing the
needed operands may be assumed. In this case the mini-

10 T < 1Ons mum occurs when
T(T = ;_ = .. =~s11~~n - -

and minimize the cost of the memory hierarchy relative to 3T , A10

the inner product algorithm for multiplying 1000 x 1000 and all of the speed variab)-s can Ie expressed in terms of

matrices. The factor f(T) is to compensate for a change the T and the comptational intensities, and the expres-
to a very fast technology. Suppose that C = 5 x 10-4 dol- t e admhe comes

tars per flops/s, A = I0" dollars per flops/s per operand, sion to be minimized becomes
B = l0- dollars per flops/s, M = 1.6 x 10 operands, 1, + r 1n
200, 500, 1001, 2001, 3001, 4001, 251001, 501001, 7510el, C = C, ()+ ( 7-, ,, m, = M

and 10001000 operands are the possible memory sizes, and 1= M

10, 15, 20, 25, 30, 50, 100, 200 and 400 M operands/s are Because c,(1/T) is a constant for a given value of T, it
the possible memory speeds.. Then the minimum total may be eliminated from the minimization process. If it is
cost as a function of actual processing speed (as opposed assumed that c,. = Ds(m+Bl, D > 0, then the expression
to the speed of the processor) is as shown in Fig. 4. This to be minimized is
figure has three curves and each cure corresponds to a num-
ber of levels. A four-level hierarchy was also considered, , Am, + B

but in no case did the fourth level permit a reduction in li-I ' IM, = M

the total cost. =t

The above has assumed nonoverlapping of processing and and the minimal cost is

memory accessing. If we now assume that the memory 1 D A ,

at level j can prefetch operands from the outer levels and c = cp( B ) m, = M. (13)
automatically supply them to the inner levels, then there r-T



If overlapping and the same cost function with the same
parameters used to generate Fig. 4 are assumed, then the I I _ T
minimum total cost as a function of the number of levels is
shown in Fig. 5 for four problem sizes. The memory sizes le+07 Number of levels = 1
were limited as before, but the memory speeds were not Number of levels = 2 B-
linted. Note that from Eq. (11) the total cost increases Number of levels = 3 -X-
with the processing speed, which was assumed to be 100
Mflops/s while generating Fig. 5. Also, note that the total
cost depends very little on problem size and there is no le+06
gain in using four memory levels.

Total

5 Summary and Conclusions cost

In this paper, the computational intensity for various algo- 100000
rithms are investigated. Computational intensity directly
affects the hit ratios in a hierarchical memory system and
is, therefore, a major factor on memory performance.

This paper also develops expressions showing the relation-
ship between the computational intensity and the speed 10000
and cost of hierarchical memory systems. These expres-
sions can be used as design tools in determining the opti- 20 40 60 80 100
mal size and speed for each memory level without relying
on time-consuming simulations. Processing speed

A cost minimization example is presented which analyzes
a hierarchy for both the overlapped and nonoverlapped Figure 4. Total cost vs. processing speed for various
cases. Although the data resulting from only one alga- numbers of memory levels.
rithm and one set of cost parameters is shown, a variety of
algorithms and cost parameters were examined and it was
noted that in none of trial minimizations did four memory
levels show a significant cost improvement over three merm-
ory levels. However, for the nonoverlapped trials the mem-
ory speeds were limited to 10 M operands/s and above. le+06

n = 100 0-
1 = 500 -
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Abstract

Low yield is one of the practical difficulties in the design of WS[ systems, such as array
processors or WSI memories. The conventional row-column memory cells organization is not
suitable for WSI memory systems due to the long signal delay on a wafer and a much more
complicate procedure for replacing a defect row or column of memory cell. To alleviate these
difficulties, a module-sliced WSI memory system is proposed for high yield WSI memory sys-
tems. The basic unit of the WSI memory system is a module which consists of a memory bank,
a module comparator, a module register, and a row-column decoder. The WSI memory system
is organized in a two level row/column structure. The first level is a two dimensional mesh
with the basic unit of a module. Within each module, i.e. the second level, the memory bank
is organized in a conventional rows and columns of memory cells.

The most important feature of the proposed WSI memory system is that the reconfigu-
ration of the faulty memory system into a fault-free memory system is done straightforward
without employing any reconfiguration algorithm by using the module address in each module.
Each module in the WSI memory system is a complete memory system and its operation is
independent of any other module. An effective module address stored in the module register
can activate a module if its fault-free, otherwise a dummy address can be stored in the module
register to bypass a faulty module without the needs for reconfiguration. Since the module
comparator, the register, and the row-column decoder inside a module are the extra hardware
required for the module-sliced WS[ memory system which will in turn decrease the yield of the
memory module, we found through simulation the optimal module size which will maximize the
yield on the WSI memory system. Our studies showed that for a 64 Mb and 256 Mb memory
system, the optimal module size is 16 Kb, while the optimal module size is 64 Kb for a 1024
Mb memory system. The yield rate of the WSI memory system can be as high as 70% for the
64 Mb memory system and 40% for the 1024 Mb memory system using a 0.6 Am technology
with a defect density of four defects per square centimeter.

Index Term--WSI memory system, module-sliced, yield rate, reconfiguration, defect.
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1 Introduction

Due to the advances on VLSI technologies and studies in the reconfigurable fault-tolerant

architectures in the past decades, many high-yield VLSI systems built on an entire wafer has

been reported recently [1, 2, 3, 4]. Especially, a 3-D WSI signal processing system using indium

bumps for wafer-to-wafer interconnections has been reported to be able to stack multi-wafers

in a high density VLSI system [3, 5]. In such a system, a WSI memory system is needed for

storing the image data or supporting the processing elements on another wafer through the

vertical wafer-to-wafer interconnections.

The conventional row-column memory cells organization is not suitable for WSI memory

systems due to the long signal delay on a wafer and a much more complicate procedure for

replacing a defect row or column of memory cell. Moreover, since the yield of a module decreases

with the increase of its size, the yield of a system can be improved by decomposing a large

system into several smaller submodules, or using the module-sliced approach. The submodules

will collectively perform the function of the original large module. In an earlier paper [61, we

have proposed a reconfigurable fault-tolerant segmented array processor (RFTSAP) structure

to realize the module-sliced approach for high yield WSI array processors. In this paper, our

fault-tolerant WSI memory system can be reconfigured without employing any reconfiguration

algorithm by using a module address in each module.

In this paper, a module-sliced memory architecture is proposed for high yield WSI memory

systems. The basic unit of the WSI memory system is a module which consists of a memory

bank, a module comparator (MC), a module register (MR), and a row-column decoder. The

WSI memory system is organized in a two level row/column structure. The first level is a two

dimensional mesh with the basic unit of a module. Within each module, i.e. the second level,

the memory bank is organized in conventional rows and columns of memory cells. The size of

the memory bank is a multiple of 4, such as 16 Kb, or 64 Kb, organized in rows and columns.

The actual number of rows and columns depends on the size of the memory bank.

Each module in the WSI memory system is a complete memory system, and its operation is
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independent of any other module. Addressing a memory cell in the module-sliced WSI memory

system is done in two steps which can be processed concurrently. A module address is sent to

the MC to select a module, and a cell address is sent to every module to select one memory

cell within each memory module. If the memory bank in a module has one or more defective

cells, a dummy module address which will permanently disable the faulty memory module

will be stored in the MR. On the other hand, if a memory module is tested as fault-free, an

effective module address will be loaded to the MR which will activate the memory module when

the MC detects a match between the stored module address and the address on the address

bus. However, if the MC or MR, or the address and control signal line in the memory module

is faulty, an entire column of memory modules will be discarded since the defective memory

module may affect the read/write operations of other fault-free memory modules in the same

column; this is considered as a serious defect in the module-sliced WSI memory system.

Since a memory module will be disabled if there is more than one defective cell in the

module, a smaller memory bank in a module will generally minimize the percentage of wasted

memory cells. However, since the MC, MR, and the row-column decoder inside a module are the

extra hardware required for the module-sliced WSL memory system, this will in turn decrease

the yield of the memory module. Moreover, the probability of having a serious defect on a

memory module depends on the relative area ratio of the extra hardware to the memory bank.

A smaller memory module will have a higher probability of having a serious defective which

will destroy an entire column of memory modules. Thus, it is desirable to derive the optimal

module size which will maximize the yield on the WSI memory system.

Our analysis showed that for a 64 Mb and 256 Mb memory system, the optimal module size

is 16 Kb, while the optimal module size is 64 Kb for a 1024 Mb memory system. The yield rate

of the WSI memory system can be as high as 70% for the 64 Mb memory system and 40% for

the 1024 Mb memory system using a 0.6 pm CMOS technology with a defect density of four

defects per square centimeter.

The rest of this paper is organized as follows. The architecture, addressing technique,
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and the procedure to bypass the faulty modules in the module-sliced WSI memory system is

described in Section 2. The analysis and derivation of the optimal module size based on a

6-transistor SRAM layout is discussed in Section 3. This paper concludes with Section 4.

2 Architecture and operation of the module-sliced memory

system

The basic unit of the module-sliced WSI memory system is a module which consists of a

memory bank, a MC, a MR, and a row-column decoder. Assume the total memory capacity

of a memory system is 2N. The WSI memory system is organized in a two level row/column

structure. The first level is a two dimensional mesh with a total number of 2' modules organized

in a 2 m/2 x 2
' /2 (assume m is an even number) square mesh. A module decoding circuitry in

the first level is used to select one module out of the 2m modules to load an effective module

address to the MR in each module. In each module, the size of the memory bank is 2' where

m + t = N. The memory cells in the memory bank is organized in a conventional row-column

fashion, i.e., 2/ 2 x 21/2 (assume t is also an even number). The MR stores m bits module

address, the MR has two operation mode: configuration mode and operation mode. In the

configuration mode, the most significant m bits on the address bus will be stored in the MR.

In the operation mode, the content of the MR will not be changed. The MC compares m bits

address in parallel between the MR (operation mode) and the most significant m bits on the

address bus.

The row-column decoder decodes the least significant t bits on the address bus and selects

one cell from the memory bank. The block diagram of a memory module is shown in Fig. I

and the organization of a 4 x 4 modules is shown in Fig. 2.
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2.1 Addressing procedure in the module-sliced WSI memory systems

To address one memory cell from the entire memory system, two steps addressing process

should be carried. The most significant m bits address lines will be sent to the MC in each

module I he MC compares the m bits address stored in the MR with the address lines. If

there is a match, the memory module will be activated, otherwise the entire module will be

disabled. At the same time, the row-column decoder in each module will receive the least

significant t bits address and an unique cell will be selected from the memory bank. If every

fault-free memory module has an unique module address, only one module will be activated

from the most significant m bits address, thus only one memory cell will be accessed at a time.

One of the advantage of the module-sliced memory system is that the MC and the row-column

decoder in each module can operate at the same time, thus reducing the address decoding time

significantly.

2.2 Bypassing faulty memory modules

Due to the imperfect manufacturing procedure, it is almost impossible to fabricate a WSI

memory system of the size more than 64 Mb without any defects. If no spare rows or columns

of memory cells are provided in each memory module, the module needs to be bypassed or

permanently disabled if there is only one defect in the memory bank. Although many recon-

figuration algorithms have been reported to be able to reconfigure the WSI systems in the

presence of defects [7, 8, 9], the defective modules in the module-sliced WSI memory system

can be bypassed without using any sophisticated reconfiguration algorithm. Bypassing a faulty

module can be easily done by storing a dummy module address in the MR so that the module

will never be activated whenever an effective address is inserted.

However, if the MR or the MC are defective, it is considered as a serious defect since

it is impossible to disable the module by storing a dummy address to the MR. Moreover, if

the address line or the control signal line in the module is defective, it is also impossible to

bypass the defective module. In such a case, an entire column of modules must be discarded

4



by disconnecting the power connection to that column. In order to reduce the number of good

memory modules to be discarded due to the serious defect, a complete set of address bus and

control signal lines is passed to each column of memory modules, so that any serious defect on

one column of memory modules will only affect that column, not the adjacent columns. Note

that the probability of having a serious defect in a memory module depends on the ratio of the

areas for the memory bank and the extra hardware, such as the MC, MR, and the signal lines.

The configuration of a 2 x 4 array out of a 4 x 4 array is shown in Fig. 3.

2.3 Spare rows and columns in the memory bank

When the size of the memory bank is large, for instance, larger than 64 Kb, it is found that

most of the defects will fall on the memory bank because the hardware overhead of the MC,

MR, and control lines is almost negligible. Thus, it is desirable to provide some spare rows

and columns in the memory bank, so that the memory module can be repaired by replacing

the defective rows or columns from the spares. The improvement of the yield rate by providing

spare rows and columns will be discussed in the following section.

3 Yield rate analysis

The yield rate for a VLSI system is usually defined as the ratio between the number of

good chips and the total number of chips fabricated on a wafer. However, for the WSI memory

system, the entire system is built on a wafer, the yield rate definition for the VLSI system

needs to be modified for describing the yield rate of the WSI memory system. Note that each

memory module in the proposed module-sliced memory system is a complete system and every

fault-free memory module can be configured into a functioning memory system with a reduced

usable memory capacity. Since a memory module will be either activated if it's fault-free, or

discarded if it's faulty, the ratio of the number of fault-free modules to the total number of

modules fabricated on the wafer is equivalent to the yield rate definition for a VLSI system.
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Let the number of faulty memory modules be f, the yield rate of the WSI memory system

is 2-f. A memory module is considered as faulty when there is more than one defect in the

memory bank or an entire column of memory modules will be considered as faulty if any one of

the memory modules in the same column has a serious defect. Assuming the defect density D

is a constant, such as 4 defects per square centimeter, the total number of defects on an entire

wafer is bounded by the product of D x A where A is the area of the wafer. Thus, the smaller

the module size (smaller t), the yield rate will be higher since 2' = 2 v/2 t will increase by

reducing t. However, the relative area ratio for the MC, MR, and signal lines to the memory

bank will increase when the size of the memory bank decreases, thus increasing the probability

of having a serious defect.

In order to find the optimal module size, we consider the layout of a 6-transistor SRAM

as an example in this study. A complete VLSI layout of a 2 x 2 memory module with 64 bits

memory bank is shown in Fig. 4. From this figure, it is easy to see that when the memory

bank size is very small, the hardware overhead is almost 40% of the entire memory module,

thus dramatically increasing the probability of having a serious defect. Based on the layout in

Fig. 4, we have calculated the module size for 4 Kb and 64 Kb in a 256 Mb memory system for

1.0 to 0.4 pm design technologies. The calculated areas are given in Tables 1 and 2.

3.1 Simulation results

Based on the areas calculated from the basic layout of the 64 bits memory module, we have

randomly generated defects on the wafer assuming D = 2, 3, 4, and 6 for 1.0 jm, 0.8 pm, 0.6

pm, and 0.4 pm design technologies, respectively. The defects are uniformly distributed over

the entire wafer. If a defect falls on a memory bank, the memory module is marked as faulty.

If a serious defect is found, all memory modules in the same column are marked as faulty and

cannot be repaired by the spare rows or columns in the memory bank.

Figs. 5 and 6 show the yield rate of the module-sliced WSI memory system vs. various

module size without any spare rows or columns in the memory bank. It is found that the
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optimal module size of 64 Mb and 256 Mb memory system is 16 Kb while the optimal module

size is 64 Kb for the 1024 Mb memory system. With two spare rows or columns in the memory

module (for module size larger than 64 Kb) as shown in Fig. 7, the optimal module size for 64

Mb and 256 Mb memory shifts to 64 Kb and the yield rate can be as high as 98% for the 64

Mb memory system. The optimal module size for the 1024 Mb memory shifts to 256 Kb in

this case. As shown in Fig. 8 with 4 spare rows or columns, the optimal module size remains

the same for all three memory systems. Note that the yield rate for the 1024 Mb system is as

high as 75% with four spare rows or columns in the memory ban1K using the optimal module

size (256 Kb). Several simulations were run to study the effect of increasing the spare rows

and columns to the optimal module size and it is found that the optimal module size ranges

between 64 Kb and 256 Kb with up to 32 spare rows or columns.

Furthermore, we found that when the module size is less than 16 Kb, the probability of

having a serious defect is higher than 10%, thus, the yield rate will not be increased significantly

even if spare rows or columns are provided in the memory bank since the serious defect cannot

be repaired by the spare memory cells.

4 Conclusions

In this paper, we have studied a module-sliced WSI memory system which allows defective

memory modules to be easily bypassed from the fault-free modules. Each memory module is

a complete system and its operation is independent of any other modules. An optimal module

size which maximizes the yield rate of the WSI memory system is derived from the simulation

study.

Several advantages of the module-sliced WSI memory system are as follows. First, the

reconfiguration of the faulty memory system into a fault-free memory system is done straight-

forward without employing any reconfiguration algorithm by using the module address in each

module. Second, the address decoding is done in two steps in parallel, i.e. comparison in the

MC and decoding in the row-column decoder, thus reducing the memory access time. Third, a
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faulty module can be easily bypassed by storing a dummy address in the MR if the defects are

in the memory bank without imposing any complicate reconfiguration algorithm. Fourth, since

each module is a complete system it is possible to achieve parallel testing on each module, thus

reducing the testing complexity from 2 N to 2' which is several order of magnitudes less than

2N .

Several interesting topics worth to be further investigated in the future are (1) the modifi-

cation of the memory bank so that the memory module can be read and write in a byte, word,

or double word width, (2) Addition of a self-testing circuitry in each memory module so that

parallel testing can be implemented, and (3) performing a timing analysis on the WSJ memory

system.
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