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ABSTRACT
Our efforts to reconstruct the world using visual information have led to the
insight that the study of Vision should not be separated from the study
of a system's actions and purposes. In computational terms this relates
to approaching the analysis of perceptual information processing systems
through the modelling of the observer and world in a synergistic manner,
not through the isolated modelling of observer and world as closed systems.
The question still remains: how should such a synergistic modelling be re-
alized? This chapter addresses the question by providing a methodology for
synthesizing vision systems and integrating perception and action. In par- PT
ticular, we outline an architecture for purposive vision systems and present D L IC
a hierarchy of navigational competences based on computational models EL ECT E9
of increasing complexity, employing representations of motion, shape, form OCT13 1994
and space. Pure computational considerations will not tell us what visual
competences and representations are important to vision systems perform- ,
ing a set of tasks. Interaction, however, with empirical sciences such as
Neurobiology, Physiology, Psychology, Ethology, etc., can give us inspira-
tion about the visual categories relevant to systems existing in real world
environments. Throughout the chapter, we describe biological findings and
how they affect the choice of computational models and representations
needed for the synthesis of a hierarchy of navigational competences in a
working system.

1.1 Prolegomena

A complete theory of perception must examine a broad set of topics and
their interaction, ranging from the environment and the stimuli to sensory
organs, the brain and the tasks supported by perception. Many theories
for explaining visual perception have been proposed over the centuries. For
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tractability reasons, these theories concentrated on only one or a few of the
topics mentioned above. They range from the theory of Empedocles (440
B.C.) to the computational theory of David Marr (1982); some of the them
are well known to students of perception (Gestaltist theories (Kohler, 1947),
the theory of the empiricisL Helmholtz (1896), Gibson's theory of direct
perception (1979)), while others are almost forgotten (e.g., Brunswick's
theory of probabilistic functionalism (1956)).

The development of each theory, as is the case in all disciplines, was in-
fluenced by previous ones and other philosophical or scientific ideas promi-
nent at the time. For example, the Gestalt theories were influenced by
Kant's (1990) Critique of Pure Reason (although 100 years after its publi-
cation) and Marr's computational theory by neuroanatomical developments
of his time (Hubel & Wiesel, 1968) as well as by initial results on visual
agnosia (Warrington & Shallice, 1984). In our days, more than ever be-
fore, our views on the architecture and the structure of the computational
mechanisms underlying the behavior of intelligent organisms or robots pos-
sessing perception, are influenced by advances in various disciplines that
study the brain.

During the 1960's and 70's it was commonly supposed that each visual
area of the cerebral cortex analyzes all the information in the field of view,
but at a more complex level than the antecedent area, the areas forming
a sort of hierarchical chain . The computational theories that appeared at
these times reflected this doctrine and efforts were made for discovering
mechanisms to reconstruct general descriptions of the visible scene (Marr,
1982; Horn, 1986; Aloimonos & Shulman, 1993). Vision was studied in
a disembodied manner by concentrating mostly on stimuli, sensory organs
and the brain. In some sense, this work argued that "seeing" and "thinking"
are distinguishable activities, with "seeing" being a mechanical act that
does not originate anything (Nalwa, 1993; Kanizsa, 1979). This in turn
contributed to the separation of main stream Artificial Intelligence (that
was about "thinking") and Computer Vision (that was about "seeing").

During the 1980's with the emergence of Active Vision (Bajcsy, 1988; A,, i,-) -or
Aloimonos, 1993; Aloimonos, Weiss & Bandopadhay, 1988; Ballard, 1991), K ... .. -
researchers considered, in addition to the topics of stimuli, sensors and
brain, the topics of reflexes and motor responses and in particular the mo- D wowIcI.

tor responses whose goal is to control the image acquisition process. The
realization that active vision systems could, with selective perception, per- j~i 'itcaton ..........................

form a number of interesting tasks contributed to a novel view of the global
structure of a "seeing" system. Several researchers today view a vision sys- By .......................
tem as consisting of a set of behaviors, programs capable of supporting Di-vtribution.I
a set of actions. It has been understood that Perception should not be
studied in isolation, but in conjuncion with the physiology of systems and Availability Codes

with the tasks that systems perform. In the discipline of Computer Vision Avail and or
such ideas caused researchers to extend the scope of their field. If before Dist Special
Computer Vision was limited to the study of mappings of a given set of vi-
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sual data into representations on a more abstract level, it now has become
clear that Image Understanding should also include the process of selective
acquisition of data in space and time. This has led to a series of studies
published under the headings of Active, Animate, Purposive, or Behavioral
Vision. A good theory of vision would be one that can create an interface
between perception and other cognitive abilities. However, with a formal
theory integrating perception and action still lacking, most studies treated
Active Vision (Aloimonos, Weiss & Bandopadhay, 1988; Bajcsy, 1988) as an
extension of the classical reconstruction theory, employing activities only
as a means to regularize the ill-posed classical inverse problems.

1.2 Marr's theory and its drawbacks

Let us summarize the key features of the classical theory of Vision in order
to point out its drawbacks as an overall framework for studying and build-
ing perceptual systems: In the theory of Marr (1982), the most influential in
recent times, Vision is described as a reconstruction process, that is, a prob-
lem of creating representations of increasingly high levels of abstraction,
leading from 2-D images over the primal sketch through the 2--D sketch
to object centered descriptions ("from pixels to predicates") (Pentland,
1986). Marr suggested that visual processes--or any perceptual/cognitive
processes-are infoiiiation processing tasks and thus should be analyzed
at three levels: (a) at the computational theoretic level (definition of the
problem and its boundary conditions; formulation of theoretical access to
the problem), (b) at the level of selection of algorithms and representations
(specification of formal procedures for obtaining the solution), and (c) at
the implementational level (depending on the available hardware).

In the definition of cognitive processing in the classical theory, Vision
is formalized as a pure information processing task. Such a formalization
requires a well-defined closed system. Since part of this system is the en-
vironment, the system would be closed only if it were possible to model
all aspects of objective reality. The consequence is well-known: Only toy
problems (blocks worlds, Lambertian surfaces, smooth contours, controlled
illumination, and the like) could be successfully solved.

The strict formalization of representations at different levels of abstrac-
tion gave rise to breaking the problems into autonomous subproblems and
solving them independently. The conversion of external data (sensor data,
actuator commands, decision making, etc.) into an internal representation
was separated from the phase of algorithms to perform computations on
internal data; signal processing was separated from symbolic processing
and action. Processing of visual data was treated, for the most part, in
a syntactic manner and semantics was treated in a purely symbolic way
using the results of the syntax analysis. This is not surprising, since Com-
puter Vision was considered as a subfield of Artificial Intelligence and thus
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studied using the same methodology, influenced by the ideas about com-

putational theories of the last decades (Ernst & Newell, 1969; Gelernter,
1959; Nilsson, 1980).

The strict hierarchical organization of representational steps in the Marr
paradigm makes the development of learning, adaptation and generaliza-
tion processes practically impossible (no doubt there hasn't been much
work on computational "vision and learning"). Furthermore, the concep-

tualization of a vision system as consisting of a set of modules recovering
general scene descriptions in a hierarchical manner introduces computa-
tional difficulties with regard to issues of robustness, stability, and effi-
ciency. These problems lead us to believe that general vision does not seem

to be feasible. Any system has a specific relationship with the world in
which it lives, and the system itself is nothing but an embodiment of this

relationship. In the Marr approach the algorithmic level has been sepa-
rated from the physiology of the system (the hardware) and thus vision
was studied in a disembodied transcendental manner.

Of course, many of the solutions developed for disembodied systems may
also be of use for embodied ones. In general, however, this does not hold.
Having available an infinite amount of resources, every (decidable) problem
can be solved in principle. Assuming that we live in a finite world and that
we have a finite number of possibilities for performing computations, any
vision problem might be formulated as a simple search problem in very high

dimensional space. From this point of view, the study of embodied systems
is concerned with the study of techniques to make seemingly intractable
problems tractable.

Not the isolated modelling of observer and world (as closed systems) but
the modelling of observer and world in a synergistic manner, will contribute
to the understanding of perceptual information processing systems (Som-
mer, 1994). The question, of course, still remains how such a synergistic
modelling should be realized. Or: How can we relate perception and action?
What are the building blocks of an intelligent perceptual system? What are
the categories into which the system divides its perceptual world? What
are the representations it employs? How is it possible to implement such
systems in a flexible manner to allow them to learn from experience and
extend themselves to better ones? In this paper we present a formal frame-
work for addressing these questions. Our exposition describes both recent

technical results and some of our future research agenda.

1.3 The Architecture

1.3.1 THE MODULES OF THE SYSTEM

At the highest level of abstraction, a vision system consists of a set of
maps (Fig. 1.1) that relate the observer's space-time representations. For
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the purpose of a more systematic study, we classify the maps into three
categories: the visual competences, the action routines, and the learning
procedures. We distinguish two kinds of representations according to the
amount of processing performed on them: representations of the perceptual
information computed from visual input, and representations of any kind
of perceptual information acquired over time and shared and organized in
memory. Fig. 1.2 gives a more detailed description of a purposive vision
system.

Representation

OBSERVER/ACTOR WORLD

FIGURE 1.1. An intelligent system with vision creates various representations of
space-time that it uses in order to perform various actions.

At a different level of abstraction that modularizes the system, Fig. 1.3
describes the basic components of a purposive vision system. The abstract
procedures and representations of a vision system are: the procedures for
performing visual perceptions, physical actions, learning, and information
retrieval, and purposive representations of the perceptual information along
with representations of information acquired over time and stored in mem-
ory.

At any time a purposive vision system has a goal or a set of goals it ap-
proaches as best as it can by means of its available resources. Thus at any
time the system is engaged in executing a task. The visual system possesses
a set of visual competences with which it processes the visual information.
The competences compute purposive representations. Each of these rep-
resentations captures some aspect of the total visual information. Thus
compared with the representations of the old paradigm, they are partial.
The representations are of different complexities with regard to the space
they describe. The purposive representations themselves are purposive de-
scriptions of the visual information organized in certain data structures.
The purposive representations access programs which we call "action rou-
tines." This collective name refers to two kinds of routines; the first kind are
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FIGURE 1.2. An intelligent system with vision consists of a map of maps. These
maps map different representations of space-time (*) into each other. Space-time
includes, of course, the system itself. In order to study these maps more system-
atically, we divide them into three categories: the visual competences (vc), the
action routines (a), and the learning procedures (1).

the programs that schedule the physical actions to be performed, i.e., they
initialize motor commands and thus provide the interface to the body, and
the second kind schedule the selection of information to be retrieved from
the purposive representations and stored in long-term memory. An impor-
tant aspect of the architecture is that the access of the visual processes to
the actions is on the basis of the contents of the purposive representations,
i.e., the contents of the purposive representations serve as addresses to the
actions. Another class of programs is responsible for learning by providing
the actions, the competences, and the representations with the means to
change and adjust parameters.

Memosys

visual Purpo~sive Atn

comweences Representatons

Commands

FIGURE 1.3. Working model: Basic components of a purposive vision system.
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As can be seen from the figure, learning takes place at various levels of, as
well as in between, the modules of the system. For a flexible vision system,
it should be possible to learn the parameters describing actions, to acquire
new actions, to learn parameters describing visual competences, to acquire
new visual competences that compute new purposive representations, and
to learn the sequences of actions and perceptual competences to perform a
task. In any case, learning is accomplished by means of programs-learning
procedures-that allow the change and adaptation of parameters in order
to learn competences, actions, and their interrelationships.

The purposive perceptual representations, as weli as representations con-
taining other kinds of information, are stored in memory. The storing must
happen in an efficient way according to the available memory space. Dif-
ferent representations share common elements. Memory organization tech-
niques that allow you to store information according to its content are
needed. Also, designing a memory for representations includes designing
the procedures necessary for fast and reliable access. In this chapter we
focus our discussion on the visual competences.

Let us summarize in which way the above model captures the study of
perception and action in a synergistic way, and address some of the ques-
tions posed in Section 1.2: In this model the intelligence of a purposive
system is embodied in its visual competences and its actions. Thus compe-
tences and actions are considered to be the building blocks of an intelligent
system. In order to meet a purpose (a task which is stated in the form of
events that can be perceived by means of the perceptual processes), a sys-
tem executes behaviors. Thus, behaviors, which are an emergent attribute
of the system, couple perception and action. They constitute some form of
structural adaptation which might either be visible externally or take place
only internally in the form of parameter adaptation.

1.3.2 OUTLINE OF THE APPROACH

If we aim to understand perception, we have to come up with sor .e method-
ology to study it. The ideal would be to design a clearly defined model for
the architecture of vision systems and start working on its components.
However, we have few answers available when it comes to actually talking
about the visual categories that are relevant for visual systems. The kind
of representations needed to perform a task depends on the embodiment of
the system and the environment in which it lives. Answers to these ques-
tions cannot come only as insight gained from the study of mathematical
models. There must be empirical studies investigating systems (biological
and artificial ones) that will tell us how to couple functionality, visual cat-
egories and visual processes. If we haven't understood how we actually
could develop visual competences for systems that work in environments
as complex as our own, we won't be able to obtain a global view of the
overall architecture and functionality of vision systems. At this time it also
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wouldn't contribute much to the development of our understanding to just
develop particular systems that perform particular tasks, for example, a
system that recognizes tables. Even if we were able to create such a system
having a success rate of 99%, it would have the capacity of recognizing
many things that are unknown to us, and not just tables. Thus, by aim-
ing to build systems that recognize certain categories that seem relevant
to our symbolic language repertoire, we wouldn't gain much insight into
perception.

It seems somehow natural that the only way out of this problem of where
to start is to approach the study of vision systems in an "evolutionary" way.
We call such an approach the synthetic (evolutionary) approach. We give
here a short outline of the ideas behind this approach, which we discuss in
detail in the remainder of the paper. It means we should start by developing
individual primitive visual operations and provide the system in this way
with visual capabilities (or competences). As we go on, the competences
will become more and more complex. At the same time, as soon as we
have developed a small number of competences, we should work on their
integration. Such an endeavor throws us immediately into the study of two
other major components of the system. How is visual information related to
action and how is the information represented? How is it organized and how
it is coordinated with the object recognition space? We are confronted on
the one hand with the study of activities and the integration of vision and
action, and on the other hand with the study of the memory space with all
its associated problems of memory organization, visual data representation,
and indexing-the problerm of associating data stored in the memory with
new visual information. Furthermore, we also have to consider the problem
of learning from the very beginning.

1.4 The competences

1.4.1 COMPUTATIONAL PRINCIPLES

A: Model-Complexity

Our goal is to analyze, in order to design, a system from a computational
point of view. We argued earlier that the study of visual systems should
be performed in a hierarchical manner according to the complexity of the
visual processes. As a basis for its computations a system has to utilize
mathematical models, which serve as abstractions of the representations
employed. Thus, when referring to the complexity of visual processes, we
mean the complexity of the mathematical models involved.

The synthetic approach calls first for studying capabilities whose devel-
opment relies on only simple models and then going on to study capabilities
requiring more complex models. Simple models do not refer to environment-
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or situation-specific models which are of use in only a limited number of sit-
uations. Each of the capabilities requiring a specified set of models should
be used for solving a well-defined class of tasks in every environment and
situation to which the system is exposed. If our goal is to pursue the study
of perception in a scientific way, as opposed to industrial development, we
have to accept this requirement as one of the postulates, although it is hard
to achieve. Whenever we perform computations, we design models on the
basis of assumptions, which in the case of visual processing are constraints
on the space-time in which the system is acting, on the system itself, and
on their relationship. An assumption, however, can be general with regard
to the environment and situation, or very specific.

For example, the assumption about piecewise planarity of the world is
general with regard to the environment (every continuous differentiable
function can be approximated in an infinitesimal area by its derivatives).
However, in order to use this assumption for visual recovery, additional
assumptions regarding the number of planar patches have to be made; these
are environment-specific assumptions. Similarly, we may assume that the
world is smooth between discontinuities; this is general with regard to the
environment. Again, for this assumption to be utilized we must make some
assumptions specifying the discontinuities, and then we become specific. We
may assume that an observer only translates. If indeed the physiology of the
observer allows only translation, then we have made a general assumption
with regard to the system. If we assume that the motion of an observer in a
long sequence of frames is the same between any two consecutive frames, we
have made a specific assumption with regard to the system. If we assume
that the noise in our system is Gaussian or uniform, again we have made
a system-specific assumption.

Our approach requires that the assumptions used be general in regard to
the environment and the system. Scaled up to more complicated systems
existing in various environments, this requirement translates to the system's
capability to decide whether a model is appropriate for the environment in
which the system is acting. A system might possess a set of processes that
together supply the system with one competence. Some of the processes are
limited to certain environmental specifications. Thus, the system must be
given the capability to acquire knowledge about what processes to apply
in a specific situation.

The motivation for studying competences in a hierarchical way is to gain
increasing insight into the process of vision, which is extremely complex.
Therefore the capabilities which require more complex models should be
based on "simpler," already developed capabilities. The complexity of a
capability is given by the complexity of the assumptions employed; what
has been considered a "simple" capability might require complex models,
and vice versa.
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B: Qualitative models

The basic principle concerning the implementation of processes subserv-
ing the capabilities, which is motivated by the need for robustness, is the
quest for algorithms which are qualitative in nature. We argue that visual
competences should not be formulated as processes that reconstruct the
world but as recognition procedures. Visual competences are procedures
that recognize aspects of objective reality which are necessary to perform
a set of tasks. The function of every module in the system should consti-
tute an act of recognizing specific situations by means of primitives which
are applicable in general environments. Each such entity recognized consti-
tutes a category relevant to the system. Following are some examples from
navigation.

The problem of independent motion detection by a moving observer usu-
ally has been addressed with techniques for segmenting optical flow fields.
But it also may be tackled through the recognition of non-rigid flow fields
for a moving observer partially knowing its motion (Aloimonos, 1990; Nel-
son, 1991; Thompson & Pong, 1990). Pursuing a target amounts to recog-
nizing the target's location on the image plane along with a set of labels
representing aspects of its relative motion sufficient for the observer to plan
its actions. Motion measurements of this kind could be relative changes in
the motion such as a turn to the left, right, above, or down; or focusing
further away, or closer. In the same way, the problem of hand/eye coordi-
nation can be dealt with using stereo and other techniques to compute the
depth map and then solve the inverse kinematics problem in order to move
the arm. While the arm is moving the system is blind (Brady, Hollerbach,
Johnson, Lozano-Perez & Mason, 1983); however, the same problem can be
solved by creating a mapping (the perceptual kinematic map) from image
features to the robot's joints. The positioning of the arm is achieved by
recognizing the image features (Hervi, 1993).

Instead of reconstructing the world, the problems described above are

solved through the recognition of entities that are directly relevant to the
task at hand. These entities are represented by only those parameters suf-
ficient to solve the specific task. In many cases, there exists an appropriate
representation of the space-time information that allows us to derive di-
rectly the necessary parameters by recognizing a set of locations on this
representation along with a a set of attributes. Since recognition amounts
to comparing the information under consideration with prestored repre-
sentations, the described approaches to solving these problems amount to

matching patterns.
In addition, image information should be utilized globally whenever pos-

sible. Since the developed competences are meant to operate in real envi-
ronments the computations have to be insensitive to errors in the input
measurements. This postulates a requirement for redundancy in the input
used. The partial information about the scene, which we want to recognize,
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mostly will be globally encoded in the image information. The computa-
tional models we are using should be such that they map global image
information into partial scene information. Later in this section we will
demonstrate our point by means of the rigid motion model.

In order to speak of an algorithm as qualitative, the primitives to be
computed do not have to rely on explicit unstable, quantitative models.
Qualitativeness can be achieved in a number of ways: The primitives might
be expressible in qualitative terms, or their computation might be derived
from inexact measurements and pattern recognition techniques, or the com-
putational model itself might be proved stable and robust in all possible
cases.

The synthetic approach has some similarities at the philosophical level
with Brooks' proposal for understanding intelligent behavior through the
construction of working mechanisms (1986). In proposing the subsumption
architecture, Brooks suggested a hierarchy of competences such as avoiding
contact with objects, exploring the world by seeing places, reasoning about
the world in terms o' identifiable objects, etc. This proposal, however, did
not provide a systematic way of creating a hierarchy of competences by tak-
ing into account the system's purpose and physiology. This is the relevant,
question.

1.4.2 BIOLOGICAL HIERARCHY

It remains to be discussed what these simple capabilities actually are on
which we should concentrate our first efforts. Other scientific disciplines
give us some answers. Much simpler than the human visual system are
the perceptual systems of lower animals like medusae, worms, crustaceans,
insects, spiders and molluscs. Researchers in neuroethology study such sys-
tems and by now have gained some understanding of them. Horridge (1987,
1991), working on insect vision, studied the evolution of visual mechanisms
and proposed hierarchical classifications of visual capabilities. He argued
that the most basic capabilities found in animals are based on motion. An-
imals up to the complexity of insects perceive objects entirely by relative
motion. His view concerning the evolution of vision is that objects are first
separated by their motions and, with the evolution of a memory for shapes,
form vision progressively evolves. The importance of these studies on lower
animals becomes very clear when we take into account the view commonly
held by leaders in this field, that the principles governing visual motor
control are basically the same in lower animals and humans-whereas, of
course, we humans and other primates can see without relahive motion
between ourselves and our surroundings.

In the last decades the part of the brain in primates responsible for vi-
sual processing-the visual cortex-has been studied from an anatomical,
physiological, and also behavioral viewpoint. The different parts of the vi-
sual cortex have been identified and most of their connections established.
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(from (Orban, 1992)).

Most scientists subscribe to the theory that the different parts perform
functionally spe'ialized operations. What exactly these functions are, has
not yet been clarified. In particular, opinions diverge about the specializa-
tion and the interconnections involved in later stages of processing of the
visual data. Much more is known about the earlier processes. The visua.l
signal reaches the ccrtex at the primary visual cortex--also called V1, or
striate cortex, via the retina and the lateral geniculate body. From the
primary visual cortex the visual signals are sent to about 30 extrastriate
or higher-order visual cortical areas, among which about 300 connections
have been reported. Fig. 1.4, taken from (Orban, 1992) shows the major
areas involved in visual processing. According to Orban the modules in the
primate visual cortex can be di ¢ided into four hierarchical levels of process-
ing. It seems to be pretty well accepted that there exist lower areas that
are specialized for the processing of either static or dynamic imagery. MT
(also called V5), MST, and FST seem be involved in motion process-
ing, and V4 in color processing. Form vision seems to be accomplished by
different lower modules, which use both static and dynamic information.
Zeki (1993), for example, suggests that V3 is responsible for the under-
standing of form from motion information, and V4 derives form and color
information. At later stages the modules process both kinds of information

in a combined way.
On the basis of anatomical evidence and behavioral studies (studies on

patients with lesions of specific cortical areas) the hypothesis has been
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brought forward (Ungerleider & Mishkin, 1982) that there exist two visual
pathways originating from VI; a dorsal one !eading to the parietal cortex
and a ventral one leading to the infero-temporal cortex. The dorsal pathway
is concerned with either the computations concerned with "where" (object
localization) or "how" (the visual guidance of movements (Goodale, Milner,
Jacobson & Carey, 1991)), and the ventral pathway with the computations
concerned with "what" (object identification). It would be an oversimplifi-
cation to conceive of these two pathways as being mutually exclusive and
hierarchically organized (Zeki, 1993); one of the reasons is that this theory
needs to provide an answer to where and how the knowledge of "what" an
object is might be integrated with the knowledge of "where" it is. Also,
recently the existence of a third pathway leading to the identification of
actions has been suggested (Boussaud, Ungerleider & DeSimone, 1990).

Results from the brain sciences show us that there doesn't exist just
one hierarchy of visual processes, but various different computations are
performed in parallel. Also, it isn't our intention to propose one strict
hierarchy for developing visual competences. We merely suggest studying
competences by investigating more and more complex models, and base
more complicated competences on simpler ones. Naturally, it follows that
computations concerned with different cues and representations can and
should be studied in parallel.

Motion, shape and space competences

If we follow the results from the natural sciences it becomes clear that the
most fundamental competences are the ones that involve visual motion.
This leads us to the problems of navigation. The competences we encounter
in visual navigation encompass representations of different forms. 'lo elu-
cidate the synthetic approach, in the next section we will discuss a series
of competences of increasing complexity employing representations of mo-
tion, shape, and space. In the following section we will then outline our
realizations of the most basic competences mn visual navigation, which only
require motion information.

Next in the hierarchy follow capabilities related to the understanding of
form and shape and the learning of space. Concerning form and shape, our
view is that we should not try to adopt the classical idea of computing rep-
resentations that capture the 3-D world metrically. Psychological studies
on the role of the eye movements suggest that fixations play an important
role in our understanding of space. It seems that the level on which in-
formation from successive fixations is integrated is relatively abstract and
that the representations from which organisms operate on the world is 3-D
only locally. Therefore, it will be necessary to study new forms of shape
representations. In nature too, there doesn't exist just one method of shape
representation. As results from Neurobiology show, form perception in hu-
man brains takes place in more than just one part of the cortex and is
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realized with different kinds of hardware.
Space is also understood from the processing of various cues in a va-

riety of ways. Furthermore, different tasks will require representations of

space with regard to different reference systems-not just one, as often
has been debated in the past. Representations might be object-centered,
ego-centered, or action-driven.

Actions can be very typical for objects. Early perceptual studies have
shown that humans are able to interpret moving scenes correctly, even
when the static view does not contain any information about the structure.
In the experiments of Johansson (1973) subjects were able to recognize
animals, as well as specific human beings, given only the motions of light
bulbs mounted on the object's joints. Since our viewpoint is that we should
formulate competences as recognition procedures, the study of navigation
also leads us to the study of action-driven visual processing.

1.4.3 A HIERARCHY OF MODELS FOR NAVIGATIONAL

COMPETENCES

Navigation, in general, refers to the performance of sensory mediated move-
ment, and visual navigation is defined as the process of motion control
based on an analysis of images. A system with navigational capabilities
interacts adaptively with its environment. The movement of the system is
governed by sensory feedback which allows it to adapt to variations in the

environment. By this definition visual navigation comprises the problem of
navigation where a system controls its single components relative to the
environment and relative to each other.

Visual navigation encompasses a wide range of perceptual competences,
including tasks that every biological species possesses such as motion seg-
mentation and kinetic stabilization (the ability of a single compact sensor
to understand and control its own motion), as well as advanced specific

hand-eye coordination and servoing tasks.
To explain the principles of the synthetic approach, we describe six such

competences, all of which are concerned only with the movement of a sin-
gle compact sensor. These are: egomotion estimation, partial object-motion
estimation, independent motion detection, obstacle avoidance, target pur-
suit, and homing. These particular competences allow us to demonstrate
a hierarchy of models concerned with the representation of motion, form

and shape. Table 1.1 describes these competences and formulates them as
recognition procedures that rely on increasingly more complex models.

In the past, navigational tasks, since they inherently involve metric rela-
tionships between the observer and the environment, have been considered

as subproblems of the general "structure-from-motion" problem (Ullman,
1979). The idea was to recover the relative 3-D motion and the structure
of the scene in view from a given sequence of images taken by an observer
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in motion relative to its environment. Indeed, if structure and motion can
be computed, then various subsets of the computed parameters provide
sufficient information to solve many practical navigational tasks. However,
although a great deal of effort has been spent on the subject, the problem
of structure from motion still remains unsolved for all practical purposes.
The main reason for this is that the problem is ill-posed, in the sense that
its solution does not continuously depend on the input.

TABLE 1.1.

egomotion estimation Recognizing locations of intersection of
axis of rotation and axis of trans-
lation with image plane by locating
patterns on the flow field. Rigid mo-
tion model applied globally.

object-motion estimation Recognition of tracking acceleration.
Rigid motion model applied locally.

independent motion detection Recognition of locations whose flow
vectors do not originate from rigid
motion. Various motion models re-
sponding to nonrigidity.

obstacle avoidance Recognition of locations that represent
parts of the 3-D world on a colli-
sion course with observer. Models -

time-to-contact.
target pursuit Recognizing target's location along

with label sufficent to plan pursuing.
Models of operational space and the
motion of the target.

homing Recognition of routes connecting differ-
ent locations. Models of shape, form
and space.

The most simple navigational competence, according to our definition, is
the estimation of egomotion. The observer's sensory apparatus (eye/camera),
independent of the observer's body motion, is compact and rigid and thus
moves rigidly with respect to a static environment. As we will demonstrate,
the estimation of an observer's motion can indeed be based on only the rigid
motion model. A geometric analysis of motion fields reveals that the rigid
motion parameters manifest themselves in the form of patterns defined on
partial components of the motion fields (Fermiiller, 1993). Algorithmically
speaking, the estimation of motion thus can be performed through pattern
recognition techniques.

Another competence, the estimation of partial information about an ob-
ject's motion (its direction of translation), can be based on the same model;
but, whereas for the estimation of egomotion the rigid motion model could
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be employed globally, for this competence only local measurements can
legitimately be employed. Following our philosophy about the study of

perception, it makes perfect sense to define such a competence which ap-
pears very restricted. Since our goal is to study visual problems in the

form of modules directly related to the visual task in which the observer is
engaged, we argue that in many cases when an object is moving in an un-
restricted manner (translation and rotation) in the 3-D world we are only
interested in the object's translational component, which can be extracted
using dynamic fixation (rermiiller & Aloimonos, 1992).

Next in the hierarchy follow the capabilities of independent motion detec-
tion and obstacle avoidance. Although the detection of independent motion

seems to be a very primitive task, it can easily be shown by a counterex-

ample that in the general case it cannot be solved without any knowledge
of the system's own motion. Imagine a moving system that takes an image
showing two areas of different rigid motion. From this image alone, it is
not decidable which area corresponds to the static environment and which
to an independently moving object.

However, such an example shouldn't discourage us and drive us to the
conclusion that egomotion estimation and independent-motion detection

are "chicken and egg" problems, that unless one of them has been solved,

the other can't be addressed either. Have you ever experienced the illusion
that you are sitting in front of a wall which covers most of your visual field,

and suddenly this wall (which actually isn't one) starts to move? You seem
to experience yourself moving. It seems that vision alone does not provide

us (humans) with an infallible capability of estimating motion. In nature
the capability of independent motion detection appears at various levels of
complexity. We argue that in order to achieve a very sophisticated mecha-
nism for independent motion detection, various different processes have to
be employed. Another glimpse at nature should give us some inspiration:
We humans also do not perceive everything moving independently in our
visual field. We usually concentrate our attention on the moving objects in

the center of the visual field (where the image is sensed with high resolu-
tion) and pay attention only if something is moving fast in the periphery. It

thus seems to make sense to develop processes that detect anything moving
very fast (Nelson, 1991). If some upper bound on the observer's motion is

known (maximal speed), it is possible to detect even for small areas where
motions above the speed threshold appear. Similarly, for specific systems,
processes that recognize specific types of motion may be devised by em-
ploying filters that respond to these motions (of use, for example, when

the enemy moves in a particular way). To cope with the "chicken and egg"
problem in the detection of larger independently moving objects, we de-
velop a process based on the same principle as the estimation of egomotion,
which for an image patch recognizes whether the motion field within the

patch originates from only rigid motion, or whether the constraint of rigid-
ity does not hold. Having some idea about the egomotion or the scene (for
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example, in the form of bounds on the motioa, or knowing that the larger
part of the scene is static) we can also decide where the independently
moving objects are.

In order to perform obstacle avoidance it is necessary to have some rep-
resentation of space. This representation must capture in some form the
change of distance between the observer and the scene points which have
the potential of lying in the observer's path. An observer that wants to
avoid obstacles must be able to change its motion in a controlled way and
must therefore be able to determine its own motion and set it to known val-
ues. As can be seen, the capability of egomotion estimation is a prerequisite
for obstacle avoidance mechanisms, and general independent motion detec-
tion will require a model which is as complex as that used in egomotion
estimation in addition to other simple motion models.

Even higher in the hierarchy are the capabilities of target pursuit and
homing (the ability of a system to find a particular location in its environ-
ment). Obviously, a system that possesses these capabilities must be able
to compute its egomotion, and avoid obstacles while detecting independent
motion. Furthermore, homing requires knowledge of the space and models
of the environment (for example, shape models), whereas target pursuit re-
lies on models for representing the operational space and the motion of the
target. These examples should demonstrate the principles of the synthetic
approach, which argues for studying increasingly complex visual capabili-
ties and developing robust (qualitative) modules in such a way that more
complex capabilities require the existence of simpler ones.

1.4.4 MOTION-BASED COMPETENCES

In this section we describe the ideas behind some of the modules we have
developed to realize the most basic competences for visual navigation: the
competence of egomotion estimation, a process for partial object motion es-
timation and a process for independent motion detection. This description
should merely serve to demonstrate our viewpoint concerning the imple-
mentation of qualitative algorithms; more detailed outlines and analyses
are found elsewhere.

First, let us state some of the features that characterize our approach to
solving the above mentioned competences, and distinguishes it from most
existing work.

In the past, the problems of egomotion recovery for an observer moving
in a static scene and the recovery of an object's 3-D motion relative to the
observer, since they both were considered as reconstruction problems, have
been treated in the same way. The rigid motion model is appropriate if only
the observer is moving, but it holds only for a restricted subset of moving
objects-mainly man-made ones. Indeed, all objects in the natural world
move non-rigidly. However, considering only a small patch in the image of
a moving object, a rigid motion approximation is legitimate. For the case
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of egomotion, data from all parts of the image plane can be used, whereas
for object motion only local information can be employed.

Most current motion understanding techniques require the computation
of exact image motion (optical flow in the differential case or correspon-
dence of features in the discrete case); however, this amounts to an ill-posed
problem and additional assumptions about the scene have to be employed.
As a result, in the general case, the computed image displacements are
imperfect. In turn, the recovery of 3-D motion from noisy flow fields has
turned out to be a problem of extreme sensitivity with small perturbations
in the input causing large amounts of error in the motion parameter esti-
mation. To overcome this problem, in our approach to the development of
motion related competences, we skip the first computational step. All the
techniques developed are based on the use of only the sign of the projection
of the motion vector along some directions. That is, we assume that the
system has the capability to estimate the direction (positive or negative) of
the projection of the motion vector along a set of directions. The minimum
a system can accomplish is to estimate the direction of retinal motion in at
least one direction, namely the one perpendicular to the local edge, or as is
known, the direction of the normal flow. It should be mentioned that a few
techniques using normal flow have appeared in the literature; however, they
deal with restricted cases (only translation or only rotation (Aloimonos &
Brown, 1984; Horn & Weldon, 1987)).

Another characteristic is that the constraints developed for the motion
modules, for which the rigid motion module is the correct one globally, are
such that the input also is utilized globally. The basis of these computations
forms global constraints which relate the spatiotemporal derivatives of the
image intensity function to the 3-D motion parameters.

If we consider a spherical retina translating with velocity F, then the mo-
tion field is along the great circles connecting the two antidiametric points,
the focus of expansion (FOE) and the focus of contraction (FOG), where
the vector t intersects the sphere. In the case where the eye rotates with
velocity ri, the motion field is along the circles where planes perpendicular
to z9 cut the sphere. The points where 0 cuts the sphere are denoted as
AOR and -AOR. In the case of rigid motion (the retinas of all moving
organisms undergo rigid motion, even if the organisms themselves move
nonrigidly) the motion field is the addition of a translational field and a
rotational field. In this case it is not easy to recognize the FOE and the
AOR; however, if we examine the projection of the motion field along a
set of directions we discover a rich global structure. These directions are
defined below as the longitudinal and latitudinal vector fields (Figs. 1.5(A)
and (B)).

Consider an axis i passing from the center of the sphere and cutting the
sphere at points N and S. The unit vectors tangential to the great circles
containing g define a direction for every point on the retina (Fig. 1.5(A)).
We call these directions 9-longitudinal, as they depend on the axis i. Sim-
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(A) (B)

FIGURE 1.5. (A) An axis i" passing from the center of the sphere and cutting
the sphere at points S and N defines a longitudinal vector field. At each point we
consider the unit vector tangent to the geodesic connecting S and N. The value of
the vector il at point F is: u -- I(•r"(B) An axis s passing from the center of

U --. J

the sphere and cutting the sphere at points S and N defines a latitudinal vector
field. At each point we consider the unit vector tangent to the circle which is the
intersection of the sphere with the plane perpendicular to g'. The value of vectorIx -11'

at point F is a = rX.

ilarly, we define the/.-latitudinal directions as the unit vectors tangential
to the circles resulting from the intersection of the sphere with planes per-
pendicular to/. (Fig. 1.5(B)). In the case of a planar retina the longitudinal
and latitudinal vector fields become as in Figs. 1.6(A) and (B).

We introduce here a property of these directions that will be of use later.
Consider two axes s1 and pas cutting the sphere at N1, S, and N2,c2 re-
spectively. Each axis defines on every point a longitudinal and a latitudinal

direction. We ask the question: where on the sphere are the '1 longitudinal
(or latitudinal) directions perpendicular to ther 2 longitudinal (or latitu-
dinal) directions? Considering the p1 and 92 longitudinal (or latitudinal)
directions this question translates er n the sphere a great circle
containing o e r will be perpendicular to a great circle containinglu2? The an-
swer is in general two closed curves on the sphere defined by the equation
to.the)circls rs1u.ti2, where t denotes position on the sphere. The geometry
of these curves is described in Fig. 1.7. Considering now the longitudinal
directions of one axis and the latitudinal directions of the other axis, they
are perpendicular to each other along the great circle defined by the axes
Co and two. (Fig. 1 a8).

We now would lik the to n: whestructure of the projection of a rigid
motion field on anat (NS) longitudinal set of directions. Since a rigid motion
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(A) (B)

FIGURE 1.6. (A) For the case of a planar retina, the longitudinal field becomes
as in the figure, with the vectors perpendicular to a set of conic sections, defined
below. An axis i" = (A, B, C) passing from the nodal point of the eye cuts the
image plane at the point (A, 2). The family of cones with gas their axis intersects
the image plane at the set of conics. We have called this field the "co-axis" field
(as it is defined by an axis). (B) For the case of a planar retina the latitudinal field
becomes as in the figure, with the vectors perpendicular to lines passing from a
single point 0, which defines the field. We have called this field the "co-point"
field.

field is the addition of a translational and a rotational field, we first study
the cases of pure translation and pure rotation.

If we project a translational motion field on the g longitudinal vectors,
the resulting vectors will either be zero, positive (pointing towards S) or
negative (pointing towards N). The vectors will be zero on two curves
(symmetric around the center of the sphere) whose shape depends on the
angle between the vectors F and 9 as in Fig. 1.7. Inside the curves the
vectors will be negative and outside the curves positive (Fig. 1.9).

If we project a rotational motion field on the g (NS) longitudinal vectors,
the projections will be either zero (on the great circle defined by C and s-),
positive (in the one hemisphere) or negative (in the other hemisphere)
(Fig. 1.10).

If the observer now translates and rotates with vs!ocities F and 0 it is
possible to classify some parts of the projection of the general motion field
on any set of " longitudinal vectors by intersecting the patterns of Figs. 1.9
and 1.10. If at a longitudinal vector the projection of both the translational
and rotational vectors is positive, then the projection of the image motion
vector (the sum of the translational and rotational vectors) will also be
positive. Similarly, if the projections of both the translational and rotational
vectors on a longitudinal vector at a point are negative, so also will the
projection of the motion vector at this point. In other words, if we intersect
the patterns of Figs. 1.9 and 1.10, whenever positive and positive come
together the result will be positive and whenever negative and negative
come together the result will be negative. However, whenever positive and
negative come together, the result cannot be determined without knowledge
of the environment.
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FIGURE 1.7. The great circles containing i'i and g2 are perpendicular at points
of the sphere lying on two closed curves. If F denotes a point on the curves, then
( - r-")(12 - F)= g*2 . The shape of the curves depends on the angle between 9,

and g2.

Thus, if we project a rigid motion field on an 9 longitudinal vector field,
then the projections will be strictly negative or strictly positive in the
areas identified in Fig. 1.11. In the rest of the sphere the projections can be
negative, positive or zero. The pattern of Fig. 1.11 is defined by one great
circle containing c: and g and by two curves containing the points FOE,
FOC, N and S.

N,/

FIGURE 1.8. The ii-longitudinal vectors are perpendicular to the i'2-latitudinal
vectors along the great circle defined by i' and g2 .

It is worth pointing out that the pattern of Fig. 1.11 depends only on
the directions of vectors g (that defines the longitudinal vectors), F and 0;
and is independent of the scene in view. Also, the pattern is different for a
different choice of the vector 9.
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FIGURE 1.9. Projection of a translational motion field on an j, longitudinal
pattern. It is zero on two curves on the sphere (symmetric with regard to the
center of the sphere). The points where r, S, -Zt and -,q intersect the sphere hie on
the curves. The values are negative inside the curves and positive outside them.

If we consider the projection of a rigid motion field on the 9" latitudinal
directions (defined by the vector ýF(NS)), we obtain a pattern which is dual
to the one of Fig. 1. 11. This time, the translational flow is separated into
positive and negative by a great circle and the rotational flow by two closed
curves passing from the points AOR, -AOR, N and S, as in Fig. 1.7.

The geometric analysis described above allows us to formulate the prob-
lem of egomnotion estimation as a pattern recognition problem. If the system
has the capability of estimating the sign of the retinal motion along a set of
directions at each point, then this means that the system can find the sign
of the longitudinal and latitudinal vectors for a set of axes 4i, i = 1,. . ., n.
If the system can now locate the patterns in each longitudinal and latitu-
dinal vector field, then it has effectively recognized the directions rand cz.
If, however, the system has less power and can only compute the motion
in at most one direction in every point, namely the one perpendicular to
the local edge, then the solution proceeds exactly as before. The difference
is that for each longitudinal or latitudinal set of directions we do not have
information (positive, negative or zero) at every point of the sphere.

Considering a planar retina instead of a spherical retina, we have the
co-point vectors instead of the latitudinal vectors and the co-axis vectors
instead of the longitudinal vectors (Fermiiller, 1993). The curves separating
the positive from the negative values become a second order curve and a
line in the plane. Fig. 1.12 shows for the case of a planar retina the pattern
for the co-point vectors (latitudinal).

Thus we see that utilizing the geometry of the motion field globally, we
can get a lot of information from only a part of the image: the part where
we know that the vectors are only negative or only positive. Recall that in
order to find the pattern of Fig. 1.11, we had to intersect the patterns of
Figs. 1.9 and 1.10. At the intersection of positive and negative parts, the
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FIGURE 1.10. Projection of a rotational motion field on an g'longitudinal pattern.
The values are zero on the great circle defined by the plane of (Z and i. In the
one hemisphere the values are positive and in the other they are negative.

sign depends on the depth. It is only in these areas that the value along the
longitudinal or latitudinal vectors can become zero. The distribution of the
image points where the normal flow in some direction becomes zero has
again a rich geometric structure containing egomnotion information. The
interested reader is referred to (Fermfiller & Aloimonos, 1994).

Finally, based on the same basic constraints, a process for the detection of
independent motion has been designed. Since the observer is moving rigidly,
an area with a motion field not due to only one rigid motion, must contain
an independently moving object. The constraints are defined for the whole
visual field, but also the motion vectors in every part of the image plane
must obey a certain structure. Our approach consists of comparing the
motion field within image patches with pre-stored patterns (which represent
all possible rigid motions).

By considering patches of different sizes and using various resolutions,
the patterns may also be of use in estimating the motion of objects. Dif-
ferently sized filters can first be employed to localize the object and then
an appropriately sized filter can be used to estimate the motion; however,
objects do not always move rigidly. Furthermore, in many cases the area
covered by the object will not be large enough to provide satisfyingly accu-
rate information. In the general case, when estimating an object's motion,
only local information can be employed. In such a case, we utilize the ob-
server's capability to move in a controlled way. We describe the object's
motion with regard to an object centered coordinate system. From fixation
on a small area on the object the observer can derive information about the
direction of the object's translation parallel to its image plane. By tracking
the object over a small amount of time, the observer derives additional
information about the translation perpendicular to the image plane. Com-
bining the computed values allows the observer to derive the direction of

I I I I I It .-"
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FIGURE 1.11. The projection of a rigid motion field on an i" longitudinal pattern.
The sphere is divided in two halves with the great circle of the plane defined by
0 and g'. There are also two curves (the ones of Fig. 1.9) passing from the points
where F /, g-F" and -9" intersect the sphere. Whatever the motion F" and 01 is,
there exists a pattern of positive and negative longitudinal vectors in a part of
the sphere. (The intersection of the negative parts of Figs. 1.9 and 1.10 provides
the negative part and the intersection of the positive parts provides the positive.)

an object's translation (Fermiiller & Aloimonos, 1993).

1.4.5 A. LOOK AT THE MOTION PATHWAY

There is a very large amount of literature (Duffy & Wurtz, 1991; Maunsell
& Essen, 1983; Tanaka & Saito, 1989; Ungerleider & DeSimone, 1986) on
the properties of neurons involved in motion analysis. The modules which
have been found to be involved in the early stages of motion analysis are the
retinal parvocellular neurons, the magnocellular neurons in the LGN, layer
4C,6 of V1, layer 4B of V1, the thick bands of V2 and MT. These elements
together are referred to as the early motion pathway. Among others they
feed further motion processing modules, namely MST and FST, which in
turn have connections to the parietal lobe. Here we present a hypothesis,
based on the computational model described earlier, about how motion is
handled in the cortex.

Fig. 1.13 (from (Movshon, 1990)) shows an outline of the process to be
explained which involves four kinds of cells with different properties. In the
early stages, from the retinal Pa ganglion cells through the magnocellular
LGN cells to layer 4Ca of V1 the cells appear functionally homogeneous
and respond almost equally well to the movement of a bar (moving per-
pendicularly to its direction) in any direction (Fig. 1.13(A)). Within layer
4C of V1 we observe an onset of directional selectivity. The receptive fields
of the neurons here are divided into separate excitatory and inhibitory re-
gions. The regions are arranged in parallel stripes and this arrangement
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provides the neurons with a preference for a particular orientation of a bar
target (which is displayed in the polar diagram) (Fig. 1.13(B)). In layer
4B of VI another major transformation takes place with the appearance
of directional selectivity. The receptive fields here are relatively large and
they seem to be excited everywhere by light or dark targets. In addition,
these neurons respond better or solely to one direction of motion of an opti-
mally oriented bar target, and less or not at all to the other (Fig. 1.13(C)).
Finally, in MT neurons have considerably large receptive fields and in gen-
eral the precision of the selectivity for direction of motion that the neurons
exhibit is typically less than in V1 (Fig. 1.13(D)).

(A) (B)

(C)

FIGURE 1.12. (A) The translational (r,s) co-point vectors are separated by
a line that passes through the FOE (the point which denotes the direction of
translation); in one half-plane all vectors have positive values (light grey), in the
other half-plane negative values (dark grey). (B) The rotational (r, s) co-point
vectors are separated by a second order curve that passes through the AOR
(the point where the rotation axis pierces the image plane). (C) A general
rigid motion separates the (r, s) co-point vectors into an area of negative vectors,
an area of positive vectors, and an area thit may contain vectors of any value
(white).

One can easily envision an architecture that, using neurons with the
properties listed above implements a global decomposition of the normal
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motion field: Neurons of the first kind could be involved in the estimation
of the local retinal motion perpendicular to the local edge (normal flow).
Neurons at this stage could be thought of as computing whether the projec-
tion of retinal motion along some direction is positive or negative. Neurons
of the second kind could be involved in the selection of local vectors in

particular directions as parts of tne various different patterns discussed in
the previous section, while neurons of the third kind could be involved in
computing the sign (positive or negative) of pattern vectors for areas in
the image; i.e., they might compute patches of different sizes whether the
normal flow in certain directions is positive or negative. Finally, neurons
of the last kind could be the ones that piece together the parts of the

patterns developed already into global patterns that are matched with pre-
stored global patterns. Matches provide information about egomotion and
mismatches provideinformation about independent motion.

In this architecture we are not concerned with neurons that possibly es-
timate the motion field (optic flow). This is not to say that optic flow is not
estimated in the cortex; several neurons could bI, involved in approximating

the motion fi&d. However, if the cortex is capable of solving some motion

problems without the use of optic flow, whose estimation amounts to the
solutiun of an optimization problem, it is quite plausible to expect that it
would prefer such a solution. After all, it is important to realize that at the

low levels of processing the system must utilize very relit',,c data, such as
the sign of the motion field along some direction. It is worth noting that

after deriving egomotion from normal flow, information about 3-D motion

is available, and the cortex could involve itself with approximating optic

flow, because in this way the problem is not ill-posed any more (at least
for background scene points).

1.4.6 FORM-BASED COMPETENCES

Since Computer Vision was considered to be approached through the con-
struction of 3-D descriptions of the wo, 1d, a lot of effort was spent on

developing techniques for computing metric shape and depth descriptions
from 2-D imagery. Studies concerned with this kind of work are collectively
referred to as "shape from X" computations, where X refers to cues such
as shading, texture, pattern, motion, or stereo. Exact, quantitative 3-D
structure is hard to compute though, and explicit assumptions about the

scene (smoothness, planarity, etc.) usually have to be made in the models
employed.

Considerig all the work that has been spent on the computation of

metric shape and that has yet not given rise to any system working in

a real environment, a glimpse at nature might give us some inspiration.
Maybe it is a hopeless task to aim at deriving metric shape or depth in-
formation. Psychophysical experiments indicate that binocular stereopsis
in the human visual system does not produce an explicit representation of
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FIGURE 1.13. The spatial structure of visual receptive fields and their directional
selectivity at different levels of the motion pathway (from (Movshol, 1990)). The
spatial scales of the receptive fields (0.1 degree, etc.) listed here are for neurons
at the center of gaze; in the periphery these dimensions would be larger. The
polar diagrams illustrate responses to variation in the direction of a bar target
oriented at right angles to its direction of motion. The angular coordinate in the
polar diagram indicates the direction of motion and the radial coordinate the
magnitude of the response.

the metric depth structure of the scene. Psychophysical evidence (Collett,
Schwartz & Sobel, 1991; Johnston, 1991) suggests that human performance
in tasks irnvolving metric structure from binocular disparities is very poor.
Also, other cues don't seem to allow humans to extract the kind of depth
information that has usually been considered. In their experiments, Todd
and Reichel (1989) had subjects estimate the depths of points on a drape-
like surface shown on video images. Subjects could accurately report the
relative depth of two points if they were on the same surface on the same
side of the "fold," but were quite poor at determining the relative depth
if the points were on different "folds." This experiment leads to the con-
clusion that humans possess relative depth judgment for points within a
local area lying on a surface; however, they cannot estimate even relative
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depth correctly for large distances in the visual field, when depth extrema
are passed.

We also know that in humans the area of the eye in which detailed (high
resolution) information can be extracted covers only a small region around
the fovea (about five degrees of visual angle at normal viewing distance).
The low resolution at the periphery does not allow to derive accurate depth
information. Human eyes, however, are seldom not in motion. The eyes
are engaged in performing fixations, each lasting about 1/4 of a second.
Between the fixations, saccadic movements are carried out, during which
no useful information is extracted.

The biological evidence gives us good reason to argue for alternative
shape models. The experiments mentioned above give rise to the following
conclusions:

(a) Shape or depth should not be computed in metric form, but only
relative depth measurements (ordered depth) should be computed.

(b) Shape/depth information should be computed only locally. Then the
information derived for different patches has to be integrated. This
integration, however, should not take place in the usual form, leading
to complete, coherent spatial descriptions. The result should not be a
complete reconstructed 3-D shape model, obtained by exactly putting
("glueing") together the local shape representations to a global one.
Instead, we have to look for alternative representations that suffice for
accessing the shape information one needs to solve particular tasks.

These or similar arguments also find support from computational consid-
erations. Concerning argument (b), one might ask why one should compute
only local information, if from a technical standpoint there is no difference
whether the devised sensors have different or the same resolution every-
where. If stereo systems are used-the most obvious for deriving shape
information-and the two cameras fixate at a point, the disparity mea-
surements are small only near the fixation point, and thus can also only
be computed exactly there. In particular, if continuous techniques are em-
ployed to estimate the displacement (due to stereo or also due to motion),
the assumption of continuity of the spatio-temporal imagery does not have
to be greatly violated. The measurements which are due to rotation increase
with the distance from the image center and the translational measurements
are proportional to the distance from the epipole or the point denoting the
direction of translation. Another argument is that computing shape only
locally gives legitimacy to the the orthographic projection model for ap-
proximating the image formation. The exact perspective projection model
makes the computation of distance and shape very hard, since the depth
component appears inversely in the image coordinates, which in turn leads
to equations that are non-linear in the unknown parameters.

However, concerning argument (a), we don't want to prescribe to the
computation of ordered as opposed to metric shape information. Why



Cornelia Fermfiller, Yiannis Aloimonos xxix

should we limit ourselves to ordered depth and not be even less restrictive?
Throughout this chapter, we have argued for task-dependent descriptions.
This also applies to the shape descriptions; a variety of shape descriptions
subserving different tasks can be accepted. To derive metric depth or shape
means to compute exact values of the distance between the camera and
the scene. In order to solve, for example, the general structure from motion
problem, theoretically we require at least three views of the scene, or two
views and some additional information, such as the length of the baseline
for a stereo setting. From two perspective views, only scaled distance, or
distance up to the so-called relief transformation, can be derived. To com-
pute only ordered depth measurements would mean that in addition, scaled
depth is derived only up to a positive term (i.e., it would result in deriving
monotonic functions of the depth measurement Z, for example functions of
the form f(Z) = Ia.+.b, f(Z) = aZ-+b, etc., where a and b are constants).
We then argue that one could try to compute even less informative depth
or shape information by aiming at deriving more involved depth functions.

Under the influence of the reconstructionists' ideas, all effort in the past
has been devoted to deriving metric measurements. A new look at the old
research with a different goal in mind might give us new insights. From dif-
ferent cues, depth and shape information of different forms might be com-
puted and then appropriately fused. A representation less than an ordered
one by itself does not seem to be sufficient for 3-D scene understanding.
However, by combining two or more such representations, additional infor-
mation can be obtained. It seems that the study of fusion of information
for the purpose of deriving form and shape description will definitely be of
importance.

It should be noted that whereas shape and depth measurements are
equivalent for a metric 3-D representation, they are not for ordered repre-
sentations. Dealing with metric measurements, if absolute depth is given,
shape (defined as the first order derivatives of depth) can be directly com-
puted, and vice versa. The same, however, does not hold for ordered, or
even less informative representations.

Our goal is to derive qualitative, as opposed to quantitative, represen-
tations, because the computations to be performed should be robust. This
requires that we not make unreasonable assumptions and employ com-
putations that are ill-posed. Qualitativeness, for example, does not mean
performing the same computations that have been performed under the
reconstruction philosophy, making the same assumptions about the 3-D
world, and at the end separating the computed values by a threshold in
order to end up with "qualitative" information in the form of "greater or
smaller than some value." Our effort should be devoted to deriving quali-
tative shape descriptions from well-defined input. For example, it wouldn't
make sense to assume exact optical flow or stereo disparity measurements-
which are impossible to obtain-in order to derive shape descriptions less
powerful than the one of scaled depth because, if we had exact 2-D image
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measurements, we could compute scaled shape, and there is nothing we
would gain computationally from computing less.

By concentrating on simpler shape descriptions, new mathematical mod-
els and new constraints might be found. Purely mathematical considera-
tions can reveal what kind of information could possibly be computed from
a certain input allowing a defined class of operations. The study of Koen-
derink and van Doom (1991) on affine structure from motion might serve
as an inspiration; in it they investigated a hierarchy of shape descriptions
based on a stratification of geometries.

1.4.7 SPACE UNDERSTANDING

Since in the past the actions of the observer were not considered as an
integral part of perceptual investigations, computational modelling, and
in particular Al research has dealt with space only at a symbolic level.
For example, some early systems (Winston, 1975) dealt with the spatial
relationship of objects in a blocks world. Assuming that objects can be
recognized and thus can be stored as symbols, the spatial configuration
of these objects under changing conditions was studied. Also, in existing
studies on spatial planning (e.g., path planning), solutions to the problems
of recognizing the objects and the environment are assumed to be available
for the phase of coordiiiating motions.

Within the framework of behavioral vision a new meaning is given to the
study of space perception. The understanding of the space surrounding an
observer results from the actions and perceptions the observer performs and
their relationship. For a static observer that does not act in any way, space
does not have much relevance. But in order to interact with its environment
it has to have some knowledge about the space in which it lives, which it can
acquire through actions and perceptions. Of course, the knowledge of space
can be of different forms at various levels of complexity depending on the
sophistication of the observer/actor and the tasks it has to perform. At one
end of the scale, we find a capability as simple as obstacle avoidance, which
in the most parsimonious form has to capture only the distance between
the observer and points in the 3-D world, and at the other end of the scale,
the competence of homing, which requires the actor to maintain some kind
of map of its environment.

To obtain an understanding of space by visual means requires us to
identify entities of the environment and also to localize their positions;
thus both basic problems, the one of "where" and the one of "what" have
to be addressed.

The problem of recognizing three-dimensional objects in space is by it-
self very difficult, since the object's appearance varies with the pose it has
relative to the observer. In the Computer Vision literature two extreme
views are taken about how to address the 3-D recognition problem, which
differ in the nature of the models to be selected for the descriptions of
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objects in the 3-D environment. One view calls for object-centered models
and the other for descriptions of the objects by means of viewer-centered
views (3-D vs 2-D models). In most of the work on object-centered descrip-
tions the form of objects is described with simple geometric 3-D models,
such as polyhedra, quadrics, or superquadrics. Such models are suited to
represent a small number of man-made (e.g., industrial) parts. However,
to extend 3-D modelling to a larger range of objects will require models
of more complex structural description, characterizing objects as systems
and parts of relations. Recently a number of studies have been performed
on viewer-centered descriptions approaching the problem from various di-
rections. To name a few of them: Based on some results in the literature of
structure from motion, that show that under parallel projection any view
of an object can be constructed as a linear combination of a small number
of views of the same object, a series of studies on recognition using or-
thographic and paraperspective projections have been conducted (Ullman
& Basri, 1991; Jacobs, 1992). The body of projective geometry has been
investigated to prove results about the computation of structure and mo-
tion from a set of views under perspective projection (Faugeras, 1992). The
learning of object recognition capabilities has been studied for neuronal net-
works using nodes that store viewer-centered projections (Poggio, Edelman
& Fahle, 1992), and geometric studies on the so-called aspect graphs have
investigated how different kinds of geometric properties change with the
views the observer has of the geometric model (Koenderink & van Doom,
1979).

The problem of solving both localization and recognition is exactly the
antagonistic conflict at the heart of pattern recognition. From the point of
signal processing, it has been proved (Gabor, 1946) that any single (linear)
operator can answer only one of these questions with sufficient accuracy.
In theory, thus, a number of processes are required to solve tasks related
to space perception.

Results from the brain sciences reveal that the receptive field sizes of cells
are much larger in the specialized visual areas involved in later processing
than in those of the early stages. Many cells with large receptive field
sizes respond equally well to stimuli at different positions. For example,
in V5 cells with large receptive fields respond to spots of lights moved
in certain directions, no matter where the stimulus in the receptive field
occurs; nevertheless, the position of the light in the visual field can be
localized accurately. Neurobiologists have suggested several solutions to
this problem. The following interesting results deserve special mention: In
the visual cortex cells have been found which are "gaze-locked," in the sense
that they only respond to a certain stimulus if the subject is gazing in a
particular direction. These cells probably respond to absolute positions in
the ego-centric space (Zeki, 1993).

It seems that nature has invented a number of ways for perceiving space
through recognition and localization of objects in the 3-D world. Also,
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neurophysiological studies have been conducted that give good reason to
assume that the perception of space in primates is not only grounded on
object-centered or ego-centered descriptions, but that some descriptions are
with regard to some action. For example, in an area called TEA, cells have
been reported which are involved in the coding of hand movements (Per-
rett, Harries, Mistlin & Chitty, 1990). These cells respond when an action is
directed towards a particular goal, but they do not respond to the compo-
nent actions and motions when there is no causal connection between them.
Monkeys were shown on video film arrangements of hand movements and
object movements contiguous or separated in space or time, for example,
Shand and a cup. The hand was retracted and after a short delay the cup

moved (as by itself) along the same trajectory as the hand. As the dis-
crepancy between hand and object movement widened the impression of
causality weakened. The mentioned cells tuned to hand actions were found
to be less responsive when the movement of the hand and the object were
spatially separated and appeared not to be causally related.

Humans possess a remarkable capability in recognizing situations, scenes,
and objects in the space surrounding them from actions being performed.
In the Computer Vision literature a number of experiments (Johansson,
1973) are often cited in which it has been shown that humans can recog-
nize specific animals and humans that move in the dark and are visible
only from a set of flashing light bulbs attached to their joints. These ex-
periments demonstrate very well the power of motion cues. Since actions
give rise to recognition, and actions are largely understood from motions,
it seems to be worthwhile to investigate further motion models, more com-
plicated than the rigid one, to describe actions. For example, situations
occurring in manipulation tasks might be modelled through non-rigid mo-
tion fields. The change of the motion field or parts of it may be expressed
in form of space-time descriptions that can be related to the tasks to be
performed. It should be mentioned that recently some effort along this line
has started; a few studies have been conducted exploiting motion cues for
recognition tasks. In particular, periodic movements, such as the motion of
certain animal species have been characterized in frequency space (Nelson
& Polana, 1992; Shavit & Jepson, 1993). Statistical pattern recognition
techniques have been applied in the time-domain to model highly struc-
tured motions occurring in nature, such as the motions of flowing water
or fluttering leaves (Polana & Nelson, 1993). Attempts have been made to
model walking or running humans by describing the motion of single limbs
rigidly (Qian & Huang, 1992), and also various deformable spatial models
like superquadrics and snakes have been utilized to model non-rigid mo-
tions of rigid bodies (Pentland, Horowitz & Sclaroff, 1991), for the purpose
of face recognition.

Representations used for understanding space should be allowed to be of
any of three kinds: with regard to the viewer, with regard to an object, or
action-driven. An appropriate representation might allow us to solve tasks
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straightforwardly that would require very elaborate computations and de-
scriptions otherwise. Perrett et al. (1988) give a good example underpin-
ning this point of view: A choreographer could, for example, use a set of
instructions centered on the different dancers (such as to dancer M. who is
currently lying prostrate and oriented toward the front of the stage: "Raise
head slowly" and to dancer G., currently at the rear of the stage facing
stage left: "Turn head to look over left shoulder"). Alternatively the chore-
ographer could give a single instruction to all members of the dance troupe
("Move the head slowly to face the audience"). To allow for the choice of
different systems of representation will be a necessity when studying space
descriptions. These descriptions, however, must be related in some form.
After all, all measurements are taken in a frame fixed to the observer's eye.
Thus a great deal of work in space understanding will amount to combining
different representations into an ego-centered one.

The competence of homing is considered to be the apogee of spatial
behavior. The so amazing homing capabilities of some animals have at-
tracted the attention of researchers for many years. In particular, effort
has been spent on investigating the sensory basis of animals' perception;
discoveries were made about the use of sensory guidance by sunlight, light
patterns in the sky, and moonlight, such as the use of ultraviolet light by
ants (Lubbock, 1889) and polarized light by bees (Frisch, 1949). Recently,
research has also started on investigations of how particular species orga-
nize the spatial information acquired through their motor sequences and
sensors (Sandini, Gandolfo, Grosso & Tistarelli, 1993; Srinivasan, Lehrer,
Zhang & Horridge, 1989).

Zoologists differentiate between two mechanisms for acquiring orienta-
tion: the use of ego-centered and geo-centered systems of reference. Sim-
ple animals, like most arthropods, represent spatial information in form
of positional information obtained by some kind of route integration rel-
ative to their homes. The route consists of path segments each of which
takes the animal for a given distance in a given direction. This form of
representation related to one point of reference is referred to as an ego-
centered representation. 1 More complicated than relying only on informa-
tion collected en route is the use of geo-centered reference systems where
the animal in addition relies on information collected on site (recognition
of landmarks) and where it organizes spatial information in a map-based
form.

However, research from studies on arthropods (Wehner, 1992; Collett,
Dillmann, Giger & Wehner, 1992; Collett, Fry & Wehner, 1993) shows that
already in these simple animals, the competence of homing is realized in
seemingly any possible way. A large variety of different ways employing

'In the Computer Vision literature the term "ego-centered" reference system

is used with a different meaning than in Zoology.
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combinations of information from action and perception have been discov-
ered. The way the path is stored, the way landmarks are recognized, etc.,
is different for every species. Not many general concepts can be derived: it
seems that the physical realizations are tightly linked to the animal's phys-
iology and overall performance. This has to apply to artificial systems as
well. Computations and implementations cannot be separated. Obviously,
the more storage capability a system has, the more complex operations it
can perform. The number of classes of landmarks that a system can differ-
entiate and the number of actions it can perform will determine the homing
capability of a system. Our suggested strategy is to address competences
involving space representations (and in particular the homing competence)
by synthesizing systems with increasing action and perception capabilities
and study the performance of these systems, considering constraints on
their memory.

1.5 Conclusions

The study of vision systems in a behavioral framework requires the mod-
elling of observer and world in a synergistic way and the analysis of the
interrelationship of action and perception. The role that vision plays in

a system that interacts with its environment can be considered as the ex-
traction of representations of the space-time in which the system exists and
the establishing of relations between these representations and the system's
actions. We have defined a vision system as consisting of a number of rep-
resentations and processes, or on a more abstract level, as a set of maps
whicti can be classified into three categories: the visual competences that

map different representations of space-time (including the retinotopic ones)
to each other, the action routines which map space-time representations to

motor commands or representations of various kinds residing in memory,
and the learning programs that are responsible for the development of any
map. To design or analyze a vision system amounts to understanding the
mappings involved. In this paper we have provided a framework for devel-
oping vision systems in a synthetic manner, and have discussed a number
of problems concerning the development of competences, learning routines
and the integration of action and perception. We have also described some
of our technical work on the development of specific motion-related com-
petences.

To achieve an understanding of vision will require efforts from various

disciplines. We have described in this study work from a number of sciences,
computational as well as empirical ones. Besides these, the general area of
Information Processing has various fields of study from which the design
and analysis of vision systems can benefit. Some studies of possible interest
include the realization of specific maps in hardware (VLSI chips or optical
computing elements); the study of the complexity of visual tasks under the
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new framework; information theoretic studies investigating the relationship
between memory and task-specific perceptual information; and the study
of control mechanisms for behavioral systems.
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