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Forecasting Demand for Weapon System Items

Executive Summary
High-level management at the Defense Logistics Agency (DLA) has been

concerned for some time that DLA's current, historical-demand-based forecast
for consumable weapon system items will tend to overestimate demand in an era
of shrinking force structure. Excessive demand estimates, of course, lead to un-
necessary acquisition and excess stock.

We examined whether the forecasting of demand for weapon system items
could be improved by using program data such as weapon system densities (the
number of units of a weapon system), flying hours, steaming hours, rounds
fired, or planned overhauls. Program-based forecasting has the obvious, intui-
tive appeal of responsiveness to the planned program, but its effect on inventory
performance - say in terms of average wholesale response time for a given level
of inventory investment - is far less apparent. We found that program-based
forecasting showed little, if any, improvement over demand-based forecasting.

We analyzed relationships between (1) demand histories for stocked,
demand-based consumable weapon system items and (2) weapon system densi-
ties over a nine-year period. For aviation systems, we examined the relation-
ships between flying hours and nonoverhaul demand, as well as those between
programmed overhauls and overhaul demand. In all cases, we focused on
single-application items, where the effect of program on demand, if present,
would be most pronounced. We found

* only weak-to-moderate correlation between demand and program for most
of the weapon systems in our sample, and

• demand volatility of much larger magnitude than the program-driven trend,
where one is present, over periods comparable to the procurement lead-
times of DLA items.

Using an inventory simulator that we developed, we measured the average
wholesale response time at various levels of inventory investment for the current
DLA forecasting method and two alternatives: exponential smoothing of histori-
cal demand, and a program forecast with a smoothed demand-per-program rate.
Our findings were as follows:

• Exponential smoothing of historical demand performs better than program-
based forecasting.

* Both alternatives outperform the current DLA method.
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* Reducing the smoothing constant - that is, placing less emphasis on the
most recent quarter's demands, improves the performance of both alterna-
tives.

In addition to having the advantages outlined above, exponential smoothing
of historical demand, unlike the program-based method, avoids the complica-
tions associated with forecasting demand for items with applications to multiple,
dissimilar weapon systems. For all these reasons, we recommend that DLA use
exponential smoothing of historical demand instead of its current method.

DLA's Operations Research Office (DORO) is already developing Composite
Forecasting, which includes exponential smoothing among its forecasting
method choices. Composite Forecasting is intended to replace the current
method when the Joint Logistics Systems Center (LSC) makes the Statistical De-
mand Forecasting package available to DLA.

The DORO is also developing a method for estimating the effects of weapon
system phaseouts on item demands in order to provide guidance to the manag-
ers of those items affected. We strongly recommend that this effort continue.
Better buy decisions require not only technical improvements to forecasting, but
also up-to-date information on management actions that could justify reducing
or eliminating certain buys.
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CHAPTER 1

Overview

BACKGROUND

The Defenst Logistics Agency (DLA)' currently bases its forecasts of de-
mand for mont -_ nsumable weapon system items on historical demand. Man-
agement at DLA has been concerned that these forecasts will not respond quickly
enough to the decrease in demand for some DLA items occasioned by ongoing
reductions in programs and in numbers of units of certain weapon systems. This
lack of responsiveness, if present, would cause overly large demand forecasts for
some items and lead to unnecessary buys and excess supply.

Program-based forecasting is a natural alternative to demand-based fore-
casting because of its obvious responsiveness to declines in programs. In the
simplest version, the estimated demand for an item is the program for the item's
weapon system multiplied by a demand-per-program factor. Thus, if a system's
flying hours, say, change by a certain percentage, projected demands for that sys-
tem's items will change by the some percentage (all else being equal). More so-
phisticated versions are discussed in the Army studies referenced below.

Earlier studies are inconclusive on the question of whether program-based
forecasting is preferable to historical-demand-based forecasting. Extensive DLA
work on demand forecasting [1, 21 has not considered program-based forecasts.
Army studies [3, 4] have found that certain program-based forecasts outperform
moving averages of historical demand on populations of items consisting largely
of consumables. On the other hand, one Air Force study of demand forecasting
for consumable items [5] found that using a moving average of historical de-
mand was preferable to using a program-based forecast.

We consider three possibilities: program-based forecasts, historical-
demand-based forecasts, and a weighted average of these two types of methods.

OBJECTIVES

Our objectives in conducting the study embodied in this report were as fol-
lows:

* Determine whether there is a significant correlation between (1) weapon sys-
tem programs and (2) demand for consumable weapon system items.

'Appendix F is a glossary of acronyms used in this report.
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* Determine whetber there is an alternative forecasting method that offers bet-
ter inventory performance for a given level of investment than thc current
(historical-demand-based) method.

* If an alternative forecasting method outperforms the current method, deter-
mine whether it is feasible and cost-effective to implement.

DEMAND DATA

We obtained demand histories for consumable items in DLA's Weapon Sys-
tem Support Program (WSSP) whose stock levels are based on demand forecasts;
thus we excluded numeric stockage objective and insurance items. We further
restricted items to those that were under DLA management prior to 1 January
1990. This eliminated items assumed by DLA under the Consumable Item
Transfer Program. After filtering the data, we had 313,838 items, or roughly
70 percent of the 440,000 WSSP items with demand-based forecasts. Each item's
demand history covered 36 quarters, spanning the period from FY84 through
FY92.

Demand histories were obtained by Service and were separated into
nonoverhaul and overhaul demand within each Service. Demands from Foreign
Military Sales (FMS) and military assistance programs (MAPs) were excluded, as
was other non-Service demand. An item's nonoverhaul and overhaul demand
originating from a Service was then further divided into recurring and non-
recurring demand. We focused on recurring demand alone, operating on the as-
sumption that this is the demand that is intrinsically "forecastable."

PROGRAM DATA

We obtained weapon system densities (the number of units in use) for
94 weapon systems representing all of the Services. Systems included aircraft,
helicopters, howitzers, machine guns, mortars, tanks, ships, submarines, and
others.

To investigate the possibility that weapon system use and overhaul pro-
grams, rather than the number of units in use, drive consumable item demand,
we obtained planned flying hour programs from the Army and the Air Force, ac-
tual flying hour programs from the Navy, and planned overhaul programs from
the Air Force.

APPROACH

We focused on single-application items, for the study of correlation between
item demand and programs and also for the assessment of forecasting methods.
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For the correlation analysis, we used total demand for all single-application
items of a weapon system, reasoning that it would be less susceptible to large
non-program-driven fluctuations than the demand for individual items would
be.

In the spirit of "Weapon System Support," we chose to evaluate forecasting
methods in terms of inventory performance resulting from a given level of in-
vestment. Other measures, such as mean squared error or mean absolute error,
provide little indication of the effects on inventory performance of changing a
forecasting method. One forecasting method may offer lower mean squared er-
ror (averaged across items) but worse inventory performance than another [1, 6].

FORECASTING METHODS

We focused our evaluation of alternative forecasting methods on
exponential .smoothing-based techniques. Exponential smoothing is easy to im-
plement, has been shown by a number of studies to be effective, and is familiar
to DLA materiel management personnel. We limited the number of alternatives,
because our goal was to determine whether DLA can use program information to
improve demand forecasts. We began with the assumption that if using pro-
gram information were able to improve forecasts, then the improvement would
be evident in simple as well as complex forecast algorithms.

The methods we analyzed were as follows:

a. Demand proportional to program, where the proportionality is esti-
mated by single exponential smoothing of historical demand per pro-
gram unit.

b. Sing!e exponential smoothing of historical demand.

c. Weighted combinations of (a) and (b).

d. DLA Standard Automated Materiel Management System (SAMMS) al-
gorithm.

The SAMMS technique was included as a baseline for the analysis. In fact, DLA
intends to adopt a different method when the Statistical Demand Forecasting
package is made available by the Joint Logistics Systems Center (JLSC). Methods
(a) and (b) between them pick up the extremes, [i.e., extensive use of program in-
formation in method (a); no use of program in method (b)]. Method (c), the com-
bination of (a) and (b), was added for completeness and also because some
previous work had suggested that program information may be beneficial when
used as a component of the forecast

The forecast methods are described in detail in Chapter 4.
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ASSESSING PERFORMANCE OF FORECASTING METHODS

Previous studies of forecasting methods have used two approaches to rank-
ing them. One approach uses statistical measures such as mean squared error, or
mean absolute deviation, for ranking. The problem with this approach is that it
does not assess the consequences of underforecasting or overforecasting. An-
other approach creates a model of the inventory system and produces measures
of cost and supply performance. That is, it emulates how the inventory system
would perform if a particular forecasting method is used. We prefer this ap-
proach, because it uses performance measures that show the effect of the choice
of forecasting method on customer support.

We therefore chose to build an inventory system simulation that uses the
36-quarter demand history to produce estimates of wholesale response time and
inventory investment for each forecast method. By varying stock levels, we were
able to produce curves showing the relationship between wholesale response
time and average inventory investment (by response time, here, we mean the av-
erage time a demand spends on backorder, averaging across all demands, in-
cluding those filled immediately). We judged a forecasting method best if it
achieved a given response time for the least cost.

FINDINGS

For most of the 94 weapon systems in our sample, we found only weak-to-
moderate correlation between nonoverhaul demand and weapon system densi-
ties, and between total (overhaul and nonoverhaul) demand and densities. For
50 aviation systems, we found low-to-moderate correlation between flying hours
and nonoverhaul demand and also between flying hours and total demand.
Correlation between planned overhauls of Air Force aircraft and overhaul de-
mands was generally weak.

On charts showing demand and program versus time, the long-term trend
in demand, which for many weapon systems paralleled the long-term trend in
the weapon system program, was always dominated by short-term fluctuations
of much larger magnitude. The duration of demand "spikes" was often on the
order of one to two years, comparable to the longest procurement lead-times for
items in our sample.

Single exponential smoothing of historical demand resulted in better inven-
tory performance than did density-based (or, where applicable, flying-hour-
based) forecasting. Both alternative forecasts performed better than the current
DLA method.

Exponential smoothing performed still better when we reduced the smooth-
ing constant from 0.2 to 0.1, which has the effect of giving less weight to the most
recent quarter's demand and is more stable.
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CONCLUSIONS

The program-driven component of demand is small in comparison with de-
mand fluctuations that arise from ordering patterns, maintenance actions, and
other unknown factors.

For single-application items, where we might expect program-based fore-
casting to perform best, single exponential smoothing of historical demand still
outperformed program-based forecasting. Accordingly, it is likely that exponen-
tial smoothing will also outperform program-based forecasts for multiple-
application items. For such items, differing program profiles for each weapon
system application, and the likelihood of differing impact on demand across
weapon systems even if program changes were parallel, would further attenuate
any benefits of a program-based forecast.

RECOMMENDATIONS

We recommend that DLA change its forecasting method for consumable
weapon system items to single exponential smoothing of historical demand. The
method is requires no additional data, is simple, and is already one of the choices
available in the Composite Forecasting methodology that DLA's Operations Re-
search Office (DORO) is developing. Also, DLA should move to a smaller
smoothing constant.
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CHAPTER 2

Data Base Development

INTRODUCTION

This chapter discusses our data and the processes we used to select and filter
that data. The results-oriented reader may wish to skim or skip over this chap-
ter. The analysis is discussed in Chapters 3 and 4; our conclusions and recom-
mendations are in Chapter 5.

ITEM SELECTION

We considered only items in the DLA Weapon System Support Program
(WSSP). We refer to these as "weapon system items." These are items that at
least one of the Services has asked DLA to consider as an item important to op-
eration or support of a particular weapon system. The DLA Integrated Data
Bank (DIDB) identifies an item's weapon system applications with one or more
weapon system designator codes (WSDCs).

Limiting ourselves to items for which DLA uses a demand forecast to deter-
mine the item's stock level, we considered only items with Supply Status Code 1
(stocked) and Item Category Code 1 (demand-based stockage policy).

To avoid having to eliminate large numbers of items with short demand his-
tories from the data base, we considered only established items (Age of Inven-
tory Code "E") and excluded items whose management was assumed by DLA
after 1 January 1990. In particular, this excluded most of the items transferred to
DLA from the Services under the Consumable Item Transfer Program. The re-
maining items constitute about 70 percent of the items in the WSSP that have
stock levels based on a demand forecast.

All selection criteria above were applied only to items present in the DIDB
during FY93. This means that migration of items across categories before
FY93 was not considered.

DEMAND HISTORIES

For the classes of items described above, DORO provided requisition sum-
maries from the DIDB's requisition history file. We obtained separate requisition
summaries for requisitions originating at overhaul and nonoverhaul activities
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within each Service. Thus an item used only by the Army and Navy would have
distinct requisition summaries for requisitions arising from Army nonoverhaul
activities, Army overhaul activities, Navy nonoverhaul activities, and Navy
overhaul activities. We identified requisitions as belonging to an overhaul or
nonoverhaul requisition summary through the DoD Activity Address Codes
(DoDAACs) on those requisitions.

Each summary contained the total demand from all requisitions received by
DLA from a Service/activity, for each quarter with at least one requisition, dur-
ing the period from FY84 through FY92. By a demand, we mean the request for a
single unit of an item. We converted each item's requisition summary to a de-
mand history consisting of a national stock number (NSN) followed by 36 quar-
ters of demands. (Zero demand is a permissible value.) Demands in each
quarter were further divided into recurring and non-recurring demands.

We excluded demand from all types of FMS, MAPs, and other non-Service
activities from our demand histories.

The number of items present in each demand history is shown in Table 2-1.
In general, each item was present in more than one of these demand histories.

Table 2-1.
Number of Items in Demand Histories

Service/activity Number of items

Air Force nonoverhaul 191,507

Air Force overhaul 132,694
Army nonoverhaul 155,816

Army overhaul 100,307
Navy nonoverhaul 255,159

Navy overhaul 179,260
Marine nonoverhaul 82,360

Marine overhaul 52,458

ITEM Ci CTERISUCS
We obtained both time-phased and non-time-phased item characteristics

files containing item prices, production and administrative lead-times, and other
item characteristics. All non-time phased data were taken from FY93.
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APPLICATION FILES

We obtained item application data from the DIDB, with one record for each
combination of NSN, WSDC, and Weapon System Essentiality Code. From this,
we extracted an application file consisting of records with unique NSN-WSDC
combinations and containing the highest essentiality code for each such applica-
tion. From the application file, we created a file showing the number of applica-
tions for each NSN, and from that, we developed a list of the single-application
items, containing 170,899 NSNs.

SINGLE-APPLICATION ITEM DEMAND HISTORIES

By matching the Service/activity demand histories against the list of single-
application items, we obtained Service/activity demand histories for single-
application items only. The number of items present in each of these histories is
shown in Table 2-2.

Table 2-2.
Number of Single-Application Items in Demand Histories

Service/activity Number of items

Air Force nonoverhaul 21,471

Air Force overhaul 20,562

Army nonoverhaul 26,079

Army overhaul 13,459

Navy nonoverhaul 38,970

Navy overhaul 29,693

Marine nonoverhaul 13,256
Marine overhaul 7,409

Note: These numbers are for the filtered data bases. Data filtering is descrbed below.

Totaling demand for all single-application items applying to a weapon sys-
tem yielded demand histories by weapon system for each Service/activity com-
bination. Table 2-3 displays the number of weapon systems present in each
demand history.

In each Service/activity demand history, we identified some items whose
WSDCs indicated other Services (the third position of the WSDC identifies the
Service that requested the items' inclusion in the WSSP). When the weapon sys-
tem identified by the WSDC was identical to or substantially similar to a weapon
system used by the Service, we retained the item's demand history; otherwise,
we discarded it. The number of items thus eliminated was in the range of 50 to
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100 for the nonoverhaul demand histories and 100 to 400 for the overhaul de-
mand histories.

Table 2-3.
Number of Weapon Systems in Single-Application Demand Histories

Service/activity Number of weapon systems

Air Force nonoverhaul 32

Air Force overhaul 32

Army nonoverhaul 28

Army overhaul 28

Navy nonoverhaul 52

Navy overhaul 54

Marine nonoverhaul 7

Marine overhaul 7

Note: The difference in the number of weapon systems in the Navy nonoverhaul and overhaul data
bases is due to the fact that we had no single-application item demand in the nonoverhaul data base for
two weapon systems that appeared in the overhaul data base.

The presence of these items tells us that the application data used to identify
single-application items are not always reliable - for instance, an item identified
in the application data as applying only to a battleship does not belong in a de-
mand history of items applying only to Army systems. Any DLA project (such
as the Multi-link inventory management system now under development) rely-
ing on DLA's application data will require improvement of the data.

The filtered histories of total single-application item demand by weapon sys-
tem were used in the correlation analysis described in Chapter 3; the filtered
item-level demand histories for single-application items were used in the analy-
sis of forecasting methods described in Chapter 4.

PROGRAM DATA

We used four types of program data: actual weapon system densities (the
number of units of a system), planned and actual flying hours for aviation sys-
tems, and planned overhauls of aviation systems. Each is discussed below.

We obtained histories of weapon system densities from the Office of the Sec-
retary of Defense, Program Analysis and Evaluation (OSD, PA&E). Histories ex-
tended from FY92 back to FY84 (or less, if only limited data were available). For
each system, every effort was made to identify the number of units actually in
use, rather than the total number in existence. Our density histories covered
about 120 weapon systems, representing all Services, and included aircraft,
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helicopters, howitzers, mortars, ships, submarines, one type of strategic missile,

tanks, and trucks. Where substantially similar systems were used by two Serv-

ices, we added their densities together.

For systems for which the first two years of data were missing, but that had
a slowly changing series of densities, we set the missing densities to the density
in the first quarter for which data were available. When more than two years of
data were missing, or where the density increased or decreased sharply from
that in the initial quarter with data, we dropped the system from our sample.
This process left us with density histories for 94 weapon systems. We then con-
verted yearly densities to quarterly densities via linear interpolation.

We obtained planned flying hours for FY84 through FY92 from Headquar-
ters Air Force, Office of the Deputy Chief of Staff for Plans and Operations (spe-
cifically AF/XOOT), where the flying hour programs were those as of the
beginning of the fiscal year for which they were programmed. Flying hours by
mission design series (MDS) were aggregated to yield flying hours by mission
design (MD) whenever the WSDCs in our application data referred only to an
MD. After aggregation, and after deletion of the B-2 (for lack of data), we had
planned flying hours for 23 types of aircraft and helicopters.

The Army's Deputy Chief of Staff for Operations and Plans (DCSOPs)
(DAMO-TR) provided us with programmed flying hours for FY84 through FY92,
where the flying hours were programmed in the Program Budget Execution Re-
view. We received densities for 28 types of helicopters and aircraft. After aggre-
gating flying hours for weapon systems with common WSDCs and deleting
systems for which we had no single-application item demand in our data base,
6 systems remained.

The Navy's Flying Hour Office provided us with a history of actual flying
hours by fiscal year for the plriod from FY88 through FY92. Navy flying hours
include those of Marine aircraft. We aggregated flying hours in cases where
DLA identified two or more type mission series (TMSs) by the same WSDC. This
left us with flying hours for 21 types of aircraft and helicopters.

We converted flying hours from each Service from yearly to quarterly fig-
ures, using linear interpolation.

The Air Force Material Command (LGIR) provided us with planned over-
hauls for each MDS, by quarter, for FY87 through FY92. Planned overhauls for a
given fiscal year were those approved in the Logistics Support Review, held in
the spring before the beginning of the fiscal year. Where DLA identified two or
more MDS's with the same WSDC, we aggregated the planned overhauls, yield-
ing histories of planned overhauls for 24 types of aircraft and helicopters.
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CHAPTER 3

Analysis of Demand and Programs

In our investigation of the relationship between demands and programs, we
focused on single-application items. If a significant correlation emerged here, we
planned to extend our analysis to items with two to five applications. If we did
not see a strong correlation with single-application items, we thought it reason-
able to forgo correlation tests for multiple-application items, for the following
reason: unless demands arising from each of an item's applications have equally
strong program-correlated trends (unlikely), a strong program-correlated trend
in demand from one weapon system would be diluted by stable or even
opposite-trending demand arising from other weapon systems.

To quickly see the relationship, if any, between demands and programs, we
chose graphical analysis. In each type of chart discussed, "total demand from a
weapon system" refers to the time series consisting of 36 quarters of total de-
mand for single-application items on a weapon system. "Weapon system pro-
gram" refers to the time series consisting of 36 quarters of the weapon system
program. Our charts consisted of

* time charts - graphs of both total demand from a weapon system and
weapon system program as functions of time, on a single chart;

* scatter plots - graphs of total demand from a weapon system versus
weapon system program;

* correlation charts - graphs of the cross-correlation between total demand
from a weapon system and the weapon system program, as a function of the
lag between the two time series.

Time charts enabled us to look for parallel trends in programs and demands
over time. Scatter plots provided visual evidence for or against a functional re-
lationship between program and demands: if points on the scatter plot clustered
about the best-fit regression line, this would suggest a linear relationship; if they
clustered about a curve, it would suggest a non-linear relationship, and if they
clustered about vertical or horizontal lines, it would suggest no relationship.
Correlation charts showed the extent to which demands and lagged densities fit
a linear relationship.

We considered the correlation between two time series with a given lag "sig-
nificant" if there was at least a 95 percent probability that the observed correla-
tion could not have occurred between two time series generated by jointly
distributed, normal random variables. We produced correlation bar charts,
where the height of each bar represented the correlation for a given lag. Two sig-
nificance curves, one lying below the horizontal (lag) axis and one above,
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showed significance limits for the correlation bars: if a bar indicating positive
correlation extended above the upper significance curve, the correlation indi-
cated by that bar was significant (as defined above); if a bar indicating negative
correlation extended below the lower significance curve, the correlation was sig-
nificant; if bars either above or below the axis lay between the significance
curves, the correlation was not significant.

ANALYSIS OF DEMANDS AND DENSITIES

We first examined the relationship between weapon system densities and
nonoverhaul demand (see Appendix A). We had a total of 94 weapon systems
with density histories.

Our time charts showed that for virtually every weapon system, the magni-
tude of demand "peaks" and "troughs" dwarfed the longer term trend in de-
mand over periods of two years or less (for example, see Figure 3-1). Since
procurement lead-times for most of our items were on the order of six months to
a year, it was unlikely that the demand for an item at the time a shipment arrived
would be anywhere near the demand predicted at the time the shipment was or-
dered, regardless of the forecasting method. There were also cases where den-
sity was constant but demand varied widely (see Figure 3-2).

Examining the scatter plots of density versus nonoverhaul demand, we
found that for most weapon systems the points were widely dispersed about the
regression line. In some cases, the points formed an inverted "T" or sideways
"L" pattern, so that there were many points with the same density but with
widely varying demands (see Figures 3-3 and 3-4).

These scatter plots showed that a strong linear relationship between density
and demand occurred for relatively few systems and that there were many cases
in which there was clearly no functional relationship, linear or non-linear, be-
tween density and demand.

To quantify the correlation between density and demand and to test the ef-
fect of a time lag, we examined cross-correlation charts. When we refer to corre-
lation, we mean the maximum correlation between the nonoverhaul demand
time series and the lagged density time series, where the lag between densities
and demands ranges from 0 to 7 quarters. Our results are displayed in
Table 3-1.

Nearly two-thirds of the weapon systems show no significant correlation (as
defined above) between density and demand, or show negative correlation. In
the cases where the correlation was not significant, it was also typically on the
order of 0.3 or less. Only a quarter of the systems exhibit a correlation of 0.5 or
better. We concluded that weapon system density is generally not a good indica-
tor of nonoverhaul demand.
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Figure 3-1.
F-15 Eagle: Nonoverhaul Demand and Density by Quarter

Next we examined the relationship between total (nonoverhaul plus over-
haul) demand and weapon system densities (see Appendix B). Time charts
again showed a pattern of large amplitude variations in demand relative to the
demand trend. On the scatter plots, we noticed that for the few weapon systems
that had points clustered about the regression line, the points now clustered
more tightly, indicating stronger correlation. But for the roughly 60 percent of
the systems that had shown no clear relationship between nonoverhaul demand
and density, there was no better relationship with total demand and density.
The correlation results shown in Table 3-2 confirm this.
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Figure 3-2.
Spruance-Class Destroyers: Nonoveriaul Demand
and Density by Quarter

For a few systems, such as the F-16, there was strong (greater Lhan 0.8) corre-
lation between density and demand (see Figure 3-5), but this is far from typical.
For most weapon systems (and therefore most single-application items), density
was not a good indicator of total demand, as in the case of the Sturgeon-class sub-
marine (see Figure 3-6).
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Scatter Plot of Bradley Fighting Vehicle Demand versus Density
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Figure 3-5.
F-16 Fighting Falcon: Correlation of Total Demand with Density
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Sturgeon-Class Submarine: Correlation of Total Demand with Density
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Table 3-1.
Correlation Between Nonoverhaul Demand and Density

Maximum correlation Number of systems Percentage of systems

Not significant, or negative 58 62

0 < correlation < 0.4 4 4

0.4 < correlation < 0.5 8 9

0.5 < correlation < 0.6 7 7

0.6' correlation < 0.7 10 11

0.7 < correlation < 0.8 4 4

0.8 <correlation < 0.9 3 3

Table 3-2.
Correlation Between Total Demand and Density

Maximum correlation Number of systems Percentage of systems

Not significant, or negative 58 62

0 < correlation < 0.4 3 3

0.4 <correlation < 0.5 8 9
0.5 <correlation < 0.6 8 9
0.6 'correlation < 0.7 9 10

0.7 'correlation < 0.8 5 5
0.8 < correlation < 0.9 2 2

0.9 < correlation < 1.0 1 1

Note: Percentages sum to more than 100 percent because of rounding.

ANALYSIS OF DEMANDS AND FLYING HouRs

To see whether there was a stronger relationship between weapon system
use and demand than the one we found between densities and demand, we re-
peated our analysis for 50 aviation systems, substituting flying hours for densi-
ties. For Army and Air Force aircraft, we obtained programmed flying hours;
the Navy supplied us with actual flying hours.1 We considered separating
weapon systems into two categories on the basis of planned versus actual flying
hours, but as the results emerged, they were of essentially the same character for
both subgroups. For this reason, results for aviation systems from the three
Services are displayed together in Tables 3-3 and 3-4. (See also Appendices C
and D.)

'Also, the Navy data spanned 20 quarters instead of 36.
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We conducted separate analyses for nonoverhaul demand and for total de-
mand. In both cases, our observations were similar to those we had made with
densities. On time charts, there were large variations in demand relative to any
trend that paralleled the flying hour program, and on scatter plots, points were
widely dispersed about the regression line for most systems.

With the correlation charts, we found only minor differences between the re-
sults for nonoverhaul demand and those for total demand: the percentage of
weapon systems with insignificant or negative correlation was slightly lower for
nonoverhaul demand than it was for total demand (50 percent versus 52 per-
cent), while the number with correlation between 0.5 and 0.7 was higher for total
demand (22 percent versus 17 percent). The number of systems with strong cor-
relation (greater than 0.7) was 12 for nonoverhaul demand and 14 for total de-
mand. Tables 3-3 and 3-4 display our results for correlation of flying hours with
nonoverhaul demand and total demand, respectively. We concluded that there
was no clear advantage to splitting out nonoverhaul demand for the purpose of
finding a relationship between demand and flying hours.

Table 3-3.
Correlation Between Nonoverhaul Demand and Flying Hours

Maxdmum correlation Number of systems Percentage of systems

Not significant, or negative 25 50

0 < correlation < 0.4 2 4

0.4 < correlation < 0.5 8 16
0.5 < correlation < 0.6 8 16
0.65s correlation < 0.7 1 1

0.75S correlation < 0.8 3 6
0.8S <correlation < 0.9 3 6
0.9S <correlation < 1.0 0 0

Note" Percentages sum to more than 100 percent because of rounding.

Comparing our flying hour correlation results with those we obtained with
densities, we find a slightly higher percentage of systems (12 to 14 percent versus
about 8 percent) with strong correlation ( greater than 0.7 percent). The percent-
age of systems with moderate correlation (0.5 to 0.7) lay in the range of 17 to
22 percent for both flying hours and densities. We concluded that the relation-
ship between demands and flying hours was not significantly stronger than that
between demands and densities.
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Table 3-4.
Correlation Between Total Demand and Flying Hours

Maximum correlation Number of systems Percentage of systems

Not significant, or negative 26 52
0 < correlation < 0.4 2 4

0.4 5 correlation < 0.5 4 8

0.5 < correlation < 0.6 7 14
0.6 < correlation < 0.7 4 8
0.7 < correlation < 0.8 4 8
0.8:S correlation < 0.9 2 4
0.9:S correlation < 1.0 1 2

ANALYSIS WITH OVERHAUL DEMANDS

AND PROGRAMMED OVERHAULS

We originally split demand into nonoverhaul and overhaul demand to de-
termine whether there were stronger relationships between nonoverhaul de-
mand and flying hours, and between overhaul demand and programmed
overhauls, than were present with total demand and with flying hours. Al-
though the results of the previous section show that there that the correlation be-
tween nonoverhaul demand and flying hours was not significantly better than
that between total demand and flying hours, we present our overhaul demand
results because we believe that they are of interest in their own right.

For overhaul demands and programmed overhauls (see Appendix E), we
considered only correlation charts. We examined 24 Air Force weapon systems
for which we were able to obtain programmed overhauls. As shown in
Table 3-5, for three quarters of the weapon systems, the correlation between pro-
grammed overhauls and overhaul demands was either insignificant or negative.
For the remaining one-quarter of the weapon systems, we observed moderate
correlation (0.5 to 0.7). The lack of a strong correlation here may indicate that ac-
tual and planned overhauls differ substantially, as a result of work load schedul-
ing and budgeting. It may also be true that it is not the number of weapon
system overhauls that drives overhaul demand. In particular, many overhaul
demands for consumables arise from overhauls of reparable items rather than
from overhauls of a complete weapon system. But an investigation of the rela-
tionship between programmed overhauls of reparable items and consumable
item demand would have required a data collection effort beyond the scope of
this study.
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Table 3-5.
Correlation Between Overhaul Demands and Programmed Overhauls

Maximum correlation Number of systems Percentage of systems

Not significant, or negative 18 75

0 < correlation < 0.4 0 0
0.4 < correlation < 0.5 0 0
0.5 < correlation < 0.6 5 21
0.6 < correlation < 0.7 0 0
0.7 < correlation 0.8 1 4
0.8 < correlation c 0.9 0 0
0.9 < correlation c 1.0 0 0

Whether the program data covered weapon system densities, flying hours,
or overhauls, for most weapon systems we found only a weak-to-moderate cor-
relation between demands and programs. Segregation of demand into nonover-
haul and overhaul categories did not reveal a stronger relationship between
demands and the relevant type of program data.
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CHAPTER 4

Analysis of Forecasting Methods

In this chapter, we discuss the forecasting methods that we decided to
evaluate, the method of evaluation, and the results of the evaluations, using both
density and flying hours as programs. Most of our analysis was concerned with
the performance of forecasting methods, but we also considered implementation
issues.

PROGRAM-BASED FORECAST

When the Services use program information (such as density or flying
hours), to forecast demand, demand is assumed to be proportional to the pro-
gram. Our program-based forecast technique makes the same assumption. The
burden of the forecasting algorithm, then, is to estimate the size of the propor-
tionality.

For a given item, let

FP(n, j) = program-based forecast of demand for quarter j made at the
beginning of quarter n; j, >n,

D(n) = demand in period n,

P(n) = program in period n,

a = smoothing constant, 0 < a < 1,

SSFDP(n) = single exponentially smoothed value of the observations
DO)/PO), j = 1, 2... n,

= cD(n) +(1-a)SSFDP(n-1),n>It 1. [Eq. 4-1]

Then,

FP(, j) = PO) *SSFDP (n- 1). [Eq. 4-2]
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DEMAND-BASED FORECAST

Currently, DLA uses a pure demand-based forecast. However, because this
technique has some unconventional features (these are explained later), we de-
cided to use single exponential smoothing of demand, in addition to the DLA
method, as counterparts to the program-based method.

If

FD(n, j) = demand-based forecast of demand for quarter j made at the
beginning of quarter n; j > n, and

SSFD(n) = single exponentially smoothed value of the observations DO),
j-1,2 ... n,

a c D(n) + (1 - a) SSFD(n - 1), [Eq. 4-3]

then

FD(n,j) = SSFD(n-1). [Eq. 4-41

In this case, the demand forecast for all future quarters is the same. Fore-
casts change each quarter, depending on the preceding quarter's demand and the
previous forecast.

COMBINATION FORECAST

Some studies have suggested [3, 7] that program information may be more
effective if used in a linear regression scheme. Doing so can have the effect of
limiting the impact of program on the forecast Since our data do not display
strict proportionality of demand to program but do indicate some correlation, we
also evaluated a weighted combination of the program-based and demand-based
forecasts.

Let

FC(n, j) = combination forecast of demand for quarter j made at the be-
ginning of quarter n; j >_ n, and

w = weight, 0 < w < 1.

Then,

FC(n, j) = w FP(n, j) + (1 - w) FD(n, j). [Eq. 4-51
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DLA SAMMS FORECAST

This method is a variant of exponential smoothing, accompanied by a track-
ing signal to detect the presence of a trend or shift in the demand process. It is
unconventional in its use of both single and double exponential smoothing to
forecast demand.

Let

FS(n, j) = SAMMS forecast of demand for quarter j made at the begin-
ning of quarter n; j > n, and

DSFD(n) = double smoothed value of the observations DO), j = 1, 2... n,

= a SSFD(n) + (1 - a) DSFD(n). [Eq. 4-61

Then, apart from adjustments to be discussed later,

FS(nj) = 2SSFD(n- 1) - DSFD(n- 1). [Eq. 4-7]

The SAMMS method can be traced to R.G. Brown [8], who showed that
SSF(D, n) - DSF(D, n) corrects for a lag in SSF(D, n) when the demand process
has a linear trend. When demand is stationary, E[SSF(D, n) - DSF(D, n)] = 0, so
that E[FS(n, j)] = E[SSF(D, n - 1)], where E(X) denotes the expected value of the
random variable X. However, FS(n, j) is more sensitive to most recent demand
than is single exponential smoothing with the same smoothing constant and is
thus more unstable.

As noted previously, some adjustments are made to the basic FS(n, j). First,
a tracking signal is computed to detect whether the underlying demand rate is
shifting or has shifted in some manner.

If

ASFE(n) = algebraic sum of forecast errors at the end of quarter n
n

MAD(n) mean absolute deviation of forecast error at the end of quarter n

= alF(nn)-D(n)I + (1-a) MAD(n- 1), and
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t = smoothing constant, same value as used in Equation 4-5, then
the tracking signal (TS), is

TS(n) = ASFE(n) [Eq. 4-8]

When the tracking signal exceeds a specified limit twice in a row in the same
direction, then the underlying demand rate is assumed to have shifted. To cor-
rect for this shift, SAMMS then employs a "correcting a" in Equation 4-7 that is
larger than the normal a. This larger value of a has the effect of giving more
weight to recent demands. The correcting a is never used more than twice in a
row, even if the tracking signal continues to indicate a shift.

Another adjustment is made if FS(n, j), as computed by Equation 4-7, is < 1.
Then, SAMMS uses a two-quarter moving average in its place. If the moving av-
erage is also < 1, then the quarterly forecast is set to 1.

SAMMS also has logic for dealing with non-recurring demands; we will not
discuss this logic, since we have confined our analyses to recurring demand.

FORECAST EVALUATION METHODOLOGY

There are two basic ways to evaluate forecast methods, both of which have
been used in previous studies. One way is to compare statistical measures such
as mean squared error or mean absolute error for each forecast method. The
other way, and the one we prefer, is to compare the methods by simulating their
effects on the operational environment. To do this, we constructed a simulator
using the quarterly demand history and a simple inventory policy to produce,
for each forecast, a trade-off curve of inventory investment versus wholesale re-
sponse time. We could then evaluate each method in terms of the cost required
to achieve a given response time.

Because of data constraints, we kept our simulator as simple as possible.
Since we had quarterly demand quantity only, we decided to simulate an inven-
tory policy that reviews assets and stock levels quarterly to determine buy ac-
tions. In practice, of course, DLA makes reorder point reviews more frequently
than quarterly. Nevertheless, we believe that assuming a quarterly review is rea-
sonable and that running the model using more frequent reviews would not
change the relative ranking of forecast methods. The reorder policy was of the
reorder level, order-up-to level form - that is, when assets (on-hand plus on-
order) drop below the reorder level, an order is placed to bring assets to the
order-up-to level.

Because we were testing program-based forecast methods where each future
quarter can have a different forecast value, we had to build the stock levels in a
manner that would recognize the potential for these forecasts to change. The
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reorder level, at the beginning of quarter n, R(n), was set to the expected demand
in the procurement lead-time plus a safety level. For simplicity, the procurement
lead-time was an integer number of quarters, NP. We have

R(n) = F(nj)] + SL(n), [Eq. 4-91
1 -n

where

F(n,j) = forecast of demand for quarter j made at the beginning of
quarter n, and

SL(n) - safety level at quarter n.

SL(n) was set using the Presutti-Trepp model that DLA currently uses. Forecast
error is required by the model to set the safety level. Instead of the DLA forecast
error estimate, which is based on the actual item forecast error history, for sim-
plicity we used the Army variance estimation procedure. This procedure uses an
empirically based table that relates forecast error and the item demand fre-
quency. The higher the frequency, the smaller the error [9M.

The order-up-to level, S(n), was set to be an integer number of quarters, NQ
of demand above the reorder point. NQ is typically referred to as the procure-
ment cycle. Thus, we set

n+MP+NQ-1

S(n) = R(n) + I F(nj). [Eq. 4-10]
jn+NP

In order to produce the tradeoff curves of inventory investment versus response
time, we varied the safety level by changing the "lambda factor" or backorder
cost used in the Presutti-Trepp model. As the lambda increases, safety levels in-
crease, causing an increase in on-hand inventory and a reduction in the response
time. In practice, when seeking to adjust inventory investment or supply per-
formance, the normal method is to adjust the safety level.

The first four quarters of the simulation were used for start-up purposes and
were simulated identically for each method tested. On-hand and on-order in-
ventory at the beginning were set to theoretical steady-state average values
based on the demand rate over the entire demand history. Simulation then be-
gan by processing the quarterly demand history. At the end of each quarter, the
simulation did the following:

a. Computed end-of-quarter on-hand inventory by subtracting the quar-
ter's demand from beginning-of-quarter on-hand; negative values de-
noted backorders.
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b. Computed beginning-of-next-quarter on-hand inventory by adding ar-
rivals from procurement to end-of-quarter on-hand inventory and up-
dated on-order; separate variables were maintained for beginning
on-hand inventory and ending on-hand inventory.

c. Recomputed the forecast of demand and used it to recompute stock lev-
els.

d. Scheduled a buy to arrive one procurement lead-time in the future and
updated on-order if assets (on-hand plus on-order) were below the re-
order point.

e. Proceeded to next quarter.

For the first four quarters, the forecasted demand is updated using single ex-
ponential smoothing, no matter what forecast method is being evaluated. Fore-
casts from the specific method do not begin until quarter 5. In addition, to lessen
the chance that the initial inventory generated during the first four quarters will
unduly influence the results, safety levels are set to zero until the specific forecast
method takes effect. Since the specific method cannot have an effect on on-hand
inventory or backorders until at least a procurement lead-time from when it is
first used, no statistics are accumulated until then.

When simulation is completed for each item, there is a record of on-hand in-
ventory (beginning and ending) for each quarter. These on-hand levels are used
to compute average dollars of inventory on-hand and average backorders, under
the assumption that demand in each quarter occurs uniformly, (i.e., if demand in
the quarter is 180, then it is assumed to occur at the rate of two per day). Re-
sponse time is defined as the average time a demand spends on backorder, in-
duding situations in which the demand is filled immediately, (i.e., time on
backorder equal to zero). Response time was not observed directly but was in-
ferred from average backorders using Little's theorem (L = .w). In this case, L is
average backorders, X is the demand rate, and w is the response time. When all
items are simulated for a specific method and safety level policy, response time
is computed by dividing average backorders accumulated over all items by total
demand for all items and then converting to days.

FORECASTING PERFORMANCE

Since our correlation analyses indicated that total recurring demand had
higher correlation to program, (either flying hours or density), than did recurring
nonoverhaul demand, we tested forecast methods on total recurring demand
only. We had density data on 94 weapon systems for all Services and planned
flying hour data on 28 types of aircraft from the Army and the Air Force (because
the flying hours supplied by the Navy were actual flying hours and covered only
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20 quarters, we excluded them from this analysis). Separate sets of runs were
made for both types of 7rograms.

Instead of separately analyzing each system, we grouped systems according
to their program pattern. We found that there were four patterns: stable, in-
creasing, decreasing, and what we called "up and down," to denote an increas-
ing pattern followed by a period of stability and then a decrease.

For all simulation runs, we set the order-up-to level to two quarters of de-
mand above the reorder point and the procurement lead-time to four quarters.
DLA's current dollar weighted average for the lead-time is 10.2 months; the pro-
curement cycle averages 7.7 months.

DENSITY FINDINGS

Table 4-1 shows the number of weapon systems in each density pattern
group, along with the associated number of parts on those systems on which the
forecast methods were evaluated.

Table 4-1.
Weapon-System Density Groups

Group type Number of systems Number of parts simulated

Stable 23 2,708
Increasing 25 5,239
Decreasing 30 6,200
Up and down 17 8,770

Total 95 22,917

Figures 4-1 through 4-5 are the response-time versus inventory cost curves
for the total set of weapon systems and for each of the four pattern groups. The
performance difference between the SAMMS forecast and the two other forecasts
may be larger in our simulation than it would be in practice, because the simula-
tion employs quarterly - rather than continuous - review of the inventory po-
sition.r

1A continuous-review inventory system, which DLA uses, permits several orders to
be placed during a quarter in which demand increased sharply. These orders would be
based on the forecast made at the end of the most recently completed quarter and would
therefore be smaller than if they were based on the new, larger forecast made at the end
of the current quarter. Hence the inventory cost for a given level of supply performance
tends to be less in a continuous-review system, possibly resulting in a narrowing of the
performance differences between forecasting methods.
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Figure 4-5.
Response Time as a Function of Inventory Investment
for Items on Up-and-Down Density Systems

In these runs the exponential smoothing constants were equal to .2. The cor-
recting smoothing constant in the SAMMS algorithm was .35. We used these
values, since they had been the DLA default values for some time, although
some DLA centers have recently reduced the value of the smoothing constants.
We will say more about smoothing constants later. In Figure 4-2 the program-
based and demand based methods, as expected, yielded virtually identical re-
sults, since program has no effect when stable.

Our criterion for preferring one method to another is that the first achieves
the same response time at less inventory cost than the second. Thus, if the curves
never crossed one another, there would be a clearly preferred method. Some-
times, however, the curves do cross, indicating that one method is preferred for
some response time rangc while another is preferred for a different response
time range. One way of overcoming this dilemma is to decide which response
time range is more representative of actual operating conditions. In our case, the
crossing points occur on the flat part of the curves, where there is little improve-
ment in response time per additional dollar in inventory cost. We believe that
these are uneconomical regions of operation. Therefore, we judged the forecast
methods on how they compared on response times greater than those at any of
the crossing points.

With this in mind, our conclusion is that exponential smoothing of demand
is preferable to a density-based forecast. Only on the group of decreasing densi-
ties is the density-based method preferred, and even here, it outperforms the
demand-based method by only a small margin.
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Figure 4-3, showing the curves for increasing-density systems, displays an
odd pattern in which the curves are virtually separate from one another. We
found that this seeming anomaly was due to the Navy F/A-18, in which an un-
usual number of expensive items dominated the cost but had no safety level be-
cause of their high price. Figure 4-6 shows the results for the increasing-density
group with the F/A-18 items removed; the curves appear more like those for the
other groups. Figure 4-7, which is for all groups with the F/A-18 items removed,
indicates that exponential smoothing of demand is still preferred overall even
without the undue effect of the F/A-18 items.
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Figure 4-6.
Response Time as a Function of Inventory Investment
for Items on Increasing-Density Systems; F/A-18 Items Removed

We also evaluated some combination forecasts for the decreasing-density
items to see if we could get further improvement by tempering the impact of
program on the forecast We could not Figure 4-8 shows one result when pro-
gram was given a weight of .25 and demand a weight of .75. These combination
runs produced curves falling between exponential smoothing of demand and
program-based forecasts.
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Finally, we looked briefly at the effect of changing the smoothing constant.
Because of the extreme variability in demand, we suspected that smaller values
for the smoothing constant would be preferable. We tried a smoothing constant
of .1 and a SAMMS correcting constant of .2. For the sake of comparison, a
smoothing constant of .2 is said to correspond to a 9-quarter moving average,
while a constant of .1 corresponds to a 19-quarter moving average2. The results
in Figure 4-9 indicate a significant improvement in all three methods using the
smaller constant.
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Figure 4-9.
Response Time as a Function of Inventory Investment
for All Items with Density Data; Smoothing Constant - .1

FLYING HouR FINDINGS

Table 4-2 shows the number of weapon systems in each flying hour pattern
group, along with the associated number of parts simulated. The B-2 bomber
was not included, because it was not introduced until late in our demand his-
tory.

2R.A. Brown suggested comparing exponential smoothing with a moving average on
the basis of the average age of the data used to make the forecast. For an exponential
smoothed forecast with the same age of data as an N-quarter moving average, set the
smoothing constant = 2/N + 1.
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Table 4-2.
Weapon-System Flying Hour Groups

Group type Number of systems Number of parts simulated

Stable 11 4,563

Increasing 6 1,977

Decreasing 10 2,231
Up and down 1 160

Total 28 8,931

Figures 4-10 through 4-14 are the response-time versus inventory cost curves
for the total and various flying hour pattern groups. The flying hour results are
similar to those for density. Single exponential smoothing of demand is pre-
ferred overall, while program-based forecasting does best only on the
decreasing-flying-hour group. Again, in this case, the program-based method is
only marginally better than single exponential smoothing of demand.
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Figure 4-10.
Response Time as a Function of Inventory Investment
for All Items on Systems with Flying Hour Data
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Figure 4-15 shows the curves when the smoothing constant is reduced to .1.
Again, as with density, there is a significant improvement in all methods when
the smoothing constant is reduced.
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Figure 4-15.
Response Time as a Function of Inventory Investment
for Items on All Weapon Systems with Flying Hour Data;
Smoothing Constant - .1

IMPLEMENTATION ISSUES

Since program-based forecasting did offer a slight performance edge for
weapon systems with decreasing densities, it is natural to ask whether it would
be worth implementing program-based forecasts for those systems.

If are asking about systemic implementation of program-based forecasts for
items on weapon systems with decreasing density, the answer is "no," for the
following reasons:

* Program-based forecasts require an extensive effort to collect program data,
as we discovered in preparing for this study.

* Planned programs for some weapon systems may be classified. DLA is not
currently authorized to handle classified data.
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* For multiple-application items, it is difficult, if not impossible, to attribute
demands to specific weapons systems. For example, if a bolt is used on both
a tank and a truck, how is DLA to know how many of the bolts ordered by
the Army are for tanks, and how many are for trucks? To our knowledge,
no one currently collects this information, and for many items it is difficult
to see how it could be collected.

However, program-based forecasts for single-application items on a limited
number of weapon systems may be feasible.

In contrast to the program-based forecast, single exponential smoothing of
historical demand does not suffer from any of these implementation problems; it
can be implemented using data ciurrently available to DLA.

SUMMARY

For programs with a decreasing trend, it is true that program-based forecast-
ing slightly outperforms historical-demand-based forecasting. Overall, however,
single exponential smoothing of historical demand is superior to program-based
forecasting, regardless of whether the program is weapon system density or
planned flying hours. As discussed above, single exponential smoothing of de-
mand also avoids the extensive data collection effort required by a program-
based method.

We also observed that using a smaller smoothing constant than the one tra-
ditionally used by DLA improves the results obtained by all forecast methods
and leads to less of a difference between the program-based and demand-based
results. The SAMMS algorithm was consistently the poorest of the three fore-
casting methods evaluated because, we believe, it is the one most sensitive to re-
cent demand.
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CHAPTER 5

Conclusions and Recommendations

The correlation between weapon system programs and single application
item demand is weak to moderate for most of the 94 weapon systems we consid-
ered. This finding is consistent with our observation that the sharp peaks and
troughs in a weapon system's demand pattern overwhelm any trend component
paralleling the weapon system program.

For the few weapon systems that exhibited a strong correlation, we found no
defining characteristic; they included systems as diverse as the Navy's
Ticonderoga-class cruiser, the Army's HIMMWV ("Hum-Vee"), and the Air Force's
F-16 Fighting Falcon.

When we evaluated program-based and demand-based forecast methods in
an inventory simulator, we found that single exponential smoothing, a demand-
based forecast, outperformed the program-based forecast, except on weapon sys-
tems with decreasing program, and there the difference was small. Both alterna-
tives consistently outperformed the current SAMMS method, which is especially
sensitive to recent demand. Considering feasibility, the program-based forecast
is too difficult to implement systematically: it requires extensive effort to collect
program data, the program data may be classified, and attributing demands to
specific weapon systems is difficult or impossible for multiple-application items.
It may be feasible for single-application items on a small number of weapon sys-
tems. None of these difficulties affect single exponential smoothing of historical
demand.

We recommend that DLA replace the current SAMMS method with single
exponential smoothing of historical demand, when DLA's new Composite Fore-
casting becomes available. (Single exponential smoothing of historical demand
is an option under Composite Forecasting.)

Since our results show some advantage in program-based forecasting when
a weapon system's program is decreasing, yet do not support an overall use of
program-based forecasting, we recommend that DLA arrange to obtain informa-
tion from the Services on systems that are being phased out. Item manager
knowledge could be used effectively in these cases to reduce buy quantities for
stock levels, especially on items that used on only a few systems.

To an extent, the differences between the results obtained from the two alter-
natives were due to the size of the smoothing constant; when we decreased that
constant from 0.2 to 0.1, the differences in performance narrowed greatly. Tradi-
tionally, DLA has used a smoothing constant of 0.2 that corresponds (in terms of
"data age") to a nine-quarter moving average. DLA should consider using a
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longer base period (smaller smoothing constant) when implementing Composite
Forecasting.

Finally, we found that the DLA weapon system data base is not entirely ade-
quate for identifying item applications. For example, it identified items appear-
ing in the Army demand history as belonging to weapon systems such as a
battleships and submarines. We recommend that DLA improve the application
data base before implementing Multi-Link or any other inventory management
system that depends upon weapon system application data.
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Correlation Results for Densities
and Nonoverhaul Demand

Tabla A-1.
Correlatiin of Nonoverhaul Demand with Densities

Weapon system WSDC Maximum correlation

LGM-30 Minuteman missile 01F not significant

UH-1 Iroquois helicr1pter 02A not significant

F-4 Phantom aircraft 02F 0.45

Benjamin Franklin-class submarine 03N not significant

B-52 Stratofortress aircraft 04F not significant
C-135 Stratolifter aircraft 05F negative

C-130 Hercules aircraft (non-SOF) 06F 0.55
M-551 Sheridan tank 07A not significant

F-106 Delta Dart aircraft 09F 0.81
F-111 aircraft IOF not significant
F-14 Tomcat aircraft ION 0.6
C-5 Galaxy aircraft IIF 0.45
TOW 12A not significant
C-141 Stldifter aircraft 12F not significant

H-3 Green Giant helicopter 15F not significant
H-53 Super Jolly helicopter 16F 0.5

S-3A Viking aircraft 16N 0.35

A-7D Corsair aircraft 17F 0.35

E-2C Hawkeye aircraft 17N not significant
A-6E aircraft 18N 0.6

KA-6D Intruder aircraft 19N not significant

F-15 Eagle aircraft 19F 0.4
F-5 Freedom fighter 21F 0.4

Hti,-1 Iroquois helicopter 22F 0.65

M-109 howitzer 23A not significant
Ohio-class submarine 23N 0.35
A-10 Thunderbolt II aircraft 24F not significant

M-102 howitzer 25A not significant

Note: WSDC = weapon system designator code; SOF = Srecial Operations Forces; TOW : tube
launched, optically tracked, wire-guided missile; and AWACS = airborne warning and control system.
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Table A-1.
Correlation of Nonoverhaul Demand with Densities (Continued)

Weapon system WSDC Maximum correlation

E-3A AWACS aircraft 25F not significant

M-29 mortar 26A not significant

F-16 Fighting Falcon aircraft 26F 0.8

M-60 tank 30A 0.45

OH-58 Kiowa helicopter 32A not significant

Cobra Helicopter, AH series 34A not significant

M-198 155mm howitzer 35A not significant

M-1 Abrams tank 36A not significant

Bradley Fighting Vehicle 37A 0.5

Stinger missile 38A not significant

H-2 Seasprite helicopter 38N not significant

Patriot missile 39A 0.45

H-3 Sea King helicopter 39N not significant

UH-60A Black Hawk helicopter 40A 0.5

H-46 Sea Knight helicopter 40N not significant

"T-37 aircraft 41 F negative

T-38 aircraft 42F 0.5

F/A-18 Hornet aircraft 43N 0.65

OV-1D Mohawk aircraft 44A negative

SH-60B LAMPS MARK III helicopter 44N 0.6

EA-6B Prowler aircraft 45N not significant

AH-IJ Cobra helicopter 47N not significant

UH-1N search and recovery helicopter 48N 0.35

A-4 Skyhawk aircraft 52N not significant

EA-6A aircraft 53N not significant

B-1 B aircraft 56F not significant

KC-130 Hercules aircraft 59N not significant

AH-64 Apache helicopter 61A 0.75

Multiple Launch Rocket System (MLRS) 62A 0.6

OV-10 Bronco aircraft 62N 0.4

P-3 Orion aircraft. 63N not significant

M101-Al Light, Towed 105mm howitzer 6DM not significant

M-114-A2 Medium, Towed 155mm howitzer 6EM 0.5

M-1 I 0-A2 heavy 8 inch howitzer 6GM 0.4

Note: WSDC = weapon system designator code; SOF = Special Operations Forces; TOW = tube-
launched, optically tracked, wire-guided missile; and AWACS = airborne warning and control system.
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Table A-1.
Correlation of Nonoverhaul Demand with Densities (Continued)

Weapon system WSDC Maximum correlation

M-109 Al, A3 155mm howitzer 6JM not significant

M29-Al 81mm mortar 6KM not significant

M-915 Series, M-916A1 truck 73A negative

M-939 5-ton truck 79A 0.75

Vehicle System, 1-1/4 ton (HMMWV) 80A 0.75

Special Operations C-1 30 aircraft ATF not significant

T-39 aircraft CDF 0.5

M-114 A-2 medium, towed 155mm howitzer EAA not significant

M-203 40mm Grenade Launcher EBA not significant

M-2 0.50 caliber machine gun ECA not significant
M-85 0.50 caliber machine gun EDA not significant

M-60 7.62mm Machine Gun EGA not significant

E-4B airborne command post EJF not significant
Los Angeles-class submarine EXN not significant

Strurgeon-class submarine EYN not significant
Ticonderoga-class cruiser EZN 0.65

Virginia-class cruiser FAN not significant

Spruance-class destroyer FBN not significant
Fornstal-class aircraft carrier HZN 0.6
Nimitz-class aircraft carrier JAN not significant

Iowa-class battleship JBN not significant

Kidd-class destroyer JCN not significant
Belknap-class cruiser JEN not significant
Oliver Peny-class guided missile fgate JFN not significant

Tarawa-class amphibious assault ship JLN not significant

Knox-class Frigate JRN 0.6

Whidbey Island-class dock landing ship JSN 0.75
Newport-class tank landing ship JWN not significant

Iwo Jima-class amphibious assault helicopter carrier JYN not significant

Blue Ridge-class amphibious warfare ship MQN not significant

M-231 Port Firing 5.5mm machine gun PMA not significant

M-1 A-1 tank UKM 0.6

Note: WSDC = weapon system designator code; SOF = Special Operations Forces; TOW = tube-
launched, optically tracked, we-guided missile; and AWACS = airborne warning and control system.
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Correlation Results for Densities
and Total Demand

Table B-I.
Correlation of Total Demand with Densities

Weapon system WSDC Maximum correlation

LGM-30 Minuteman missile 01F not significant
UH-1 Iroquois helicopter 02A not significant

F-4 Phantom aircraft 02F 0.6
Benjamin Franklin-class submarine 03N not significant
B-52 Stratofortress aircraft 04F not significant
C-1 35 Stratolifter aircraft 05F negative
C-130 Hercules aircraft (non-SOF) 06F 0.45
M-551 Sheridan tank 07A not significant
F-106 Delta Dart aircraft 09F 0.8
F-111 aircraft 1OF not significant
F-14 Tomcat aircraft ION 0.45
C-5 Galaxy aircraft 11F 0.7

TOW 12A not significant
C-141 Starlifter aircraft 12F negative
H-3 Green Giant helicopter 15F not significant
H-53 Super Jolly helicopter 16F 0.5

S-3A Viking Aircraft 16N 0.5
A-7D Corsair aircraft 17F 0.5
E-2C Hawkeye aircraft 17N not significant
A-6E aircraft 18N 0.6
KA-6D Intruder aircraft 19N not significant
F-15 Eagle aircraft 19F 0.75
F-5 Freedom fighter 21F 0.3
HH-1 Iroquois helicopter 22F 0.6
M-109 howitzer 23A not significant
Ohio-class submarine 23N not significant
A-10 Thunderbolt II aircraft 24F not significant
M-102 howitzer 25A not significant
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Table B-1.
Correlation of Total Demand with Densities (Continued)

Weapon system WSDC Maximum correlation

E-3A AWACS aircraft 25F not significant
M-29 mortar 26A not significant
F-16 Fighting Falcon aircraft 26F 0.9
M-60 Tank 30A 0.5
OH-58 Kiowa helicopter 32A not significant
Cobra helicopter, AH series 34A not significant
M-198 155mm howitzer 35A not significant
M-1 Abrams tank 36A not significant
Bradley Fighting Vehicle 37A 0.45
Stinger missile 38A not significant
H-2 Seasprite helicopter 38N not significant
Patriot missile 39A 0.5
H-3 Sea King helicopter 39N not significant
UH-60A Black Hawk helicopter 40A 0.45
H-46 Sea Knight helicopter 40N not significant
"T-37 aircraft 41F negative
T-38 aircraft 42F 0.4
FIA-18 Hornet aircraft 43N 0.75
OV-1D Mohawk aircraft 44A negative
SH-60B LAMPS MARK III helicopter 44N 0.65
EA-6B Prowler aircraft 45N not significant
AH-1J Cobra helicopter 47N 0.4
UH-1 N search and recovery helicopter 48N 0.4
A-4 Skyhawk aircraft 52N 0.35
EA-CA aircraft 53N not significant
B-1B aircraft 56F 0.8
KC-130 Hercules aircraft 59N not significant
AH-64 Apache helicopter 61A 0.7
Multiple Launch Rocket System (MLRS) 62A 0.6
OV-10 Bronco aircraft 62N not significant
P-3 Orion aircraft 63N 0.35
M101-Al light, towed 105mm howitzer 6DM not significant
M-114-A2 medium, towed 155mm howitzer 6EM 0.5
M-1 I 0-A2 heavy 8 inch howitzer 6GM 0.4
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Table B-1.
Correlation of Total Demand with Densities (Continued)

Weapon system WSDC Maximum correlation

M-1 09 Al.A3l155mm howitzer 6JM negative
M29-Al 81mm mortar 6KM not significant
M-915 series, M-91BAl truck 73A negative
M-939 5-ton truck 79A 0.65
Vehicle system, 1-114 toni (HMMWV) BOA 0.75
Special operations C-130 aircraft ATF not significant
T-39 aircraft CDF not significant
M-1 14 A-2 medium, towed 155mm howitzer EAA not significant
M-203 40mm grenade launcher EBA not significant
M-2 0.50 caliber machine gun ECA not significant
M-85 0.50 caliber machine gun EDA not significant
M-60 7.62mm machine gun EGA not significant
E-4B Airborne command post EJF not significant
Los Angeles-class submarine EXN not significant
Sfrurgeon-class submarine EYN not significant
Tioondemoga-class cruiser EZN 0.65
Virginia-cass cruiser FAN not significant
Spruance-class destroyer FBN not significant
Forrestal-clss aircraft carrier HZN 0.6
Nimitz-class; aircraft carrier JAN not significant
Iowa-class battleship JBN not significant
Kidd-class destroyer JCN not significant
Belknap-class cruiser JEN not significant
Oliver Pen)'class guided missile frigate JFN not significant
Tarawa-class; amphibious assault ship JLN not significant
Knox-class frigate JRN 0.6
Whidbey Island-class dock landing ship JSN 0.5
Newpor-class tank landing ship JWN not significant
Iwo Jima-class Amphibious assault helicopter carrier JYN not significant
Blue Rklge-class Amphibious warfare ship MON not significant
M-231 Port Firing 5.5mm machine gun PMA not significant
M-1 A-I tank UKM 0.6
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Correlation Results for Nonoverhaul
Demand and Flying Hours

Table C-1.
Correlation of Nonoverhaul Demand with Flying Hours

Weapon system WSDC Maximum correlation

UH-1 Iroquois helicopter 02A not significant
F-4 Phantom Aircraft (Air Force version) 02F 0.45

B-52 Stratofortress aircraft 04F not significant

CH-47 Chinook helicopter 05A negative
C-135 Stratolifter aircraft 05F not significant

C-130 Hercules (non-SOF) 06F 0.4
F-11 aircraft 1OF 0.4
F-14 Tomcat aircraft ION not significant

C-5 Galaxy aircraft 111F not significant
C-141 Starlifter aircraft 12F negative
H-3 Green Giant helicopter 15F not significant
H-53 Super Jolly helicopter 16F negative
S-3A Viking aircraft 16N 0.5

A-7D Corsair 17F 0.45
E-2C Hawkeye 17N not significant
A-6E aircraft 18N not significant
F-15 Eagle aircraft 19F 0.4

KA-6D Intruder ION not significant

E-6 Tacamo 20N 0.5
F-5 Freedom Fighter 21F 0.55
HH-I Iroquois helicopter 22F not significant

A-10 Thunderbolt II aircraft 24F not significant
E-3A AWACS aircraft 25F not significant
F-16 Fighting Falcon aircraft 26F 0.8
OH-58 Kiowa helicopter 32A 0.45

Cobra Helicopter, AH series 34A 0.35
H-2 Seasprite helicopter 38N not significant
H-3 Sea King helicopter 39N 0.7
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Table C-1.
Correlation of Nonoverhaul Demand with Flying Hours (Continued)

Weapon system WSDC Maximum correlation

UH-60 Black Hawk helicopter 40A 0.45
H-46 Sea Knight helicopter 40N not significant
T-37 aircraft 41F negative
T-38 aircraft 41. 0.3
FIA-18 Hornet aircraft 43N 0.5
SH-60B LAMPS MARK III helicopter 44N not significant
EA-6B Prowler aircraft 45N not significant
AH-1J Cobra Attack helicopter 47N 0.5
UH-IN search and recovery helicopter 48N 0.5
A-4 Skyhawk aircraft 52N 0.8
EA-6A aircraft 53N not significant
AV-8B Harrier aircraft 55N 0.6
B-I B aircraft 56F 0.8
KC-130 Hercules aircraft 59N not significant
AH-64 Apache helicopter 61A 0.7
F-4 Phantom (Navy version) 61N 0.5
P-3 Orion aircraft 63N 0.5
Pave Hawk HH-MH60G helicopter 75F 0.7
Special operations C-130 ATF not significant
SH-60F antksubmarine warfare helicopter ERN not significant
B-2 aircraft FMF 0.5
T-IA aircraft MZF not significant
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Correlation Results for Total Demand
and Flying Hours

Table D-1.
Correlation of Total Demand with Flying Hours

Weapon system WSDC Maximum correlation

UH-i Iroquois helicopter 02A not significant

F-4 Phantom aircraft (Air Force version) 02F 0.6

B-52 Stratofortress aircraft 04F not significant

CH-47 Chinook helicopter 05A negative

C-135 Stratolifter aircraft 05F not significant

C-130 Hercules (non-SOF) 06F 0.4

F-111 aircraft IOF 0.45

F-14 Tomcat aircraft ION 0.5

C-5 Galaxy aircraft 11F 0.35

C-141 Stadifter aircraft 12F negative

H-3 Green Giant helicopter 15F not significant
H-53 Super Jolly helicopter 16F negative

S-3A Viking aircraft 16N 0.7

A-7D Corsair 17F 0.55

E-PC Hawkeye 17N not significant

A-8E aircraft IN negative

F-I5 Eagle aircraft 19F 0.7

KA-6D Intruder 19N not significant

E-6 Tacamo 20N not significant

F-5 Freedom Fighter 21F 0.45

HH-I Iroquois helicopter 22F not significant

A-10 Thunderbolt II aircraft 24F not significant

E-3A AWACS aircraft 25F not significant

F-16 Fighting Falcon aircraft 26F 0.9

OH-58 Kiowa helicopter 32A 0.45

Cobra Helicopter, AH series 34A 0.35

H-2 Seasprite helicopter 38N not significant

H-3 Sea King helicopter 39N 0.6
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Table D-1.
Correlation of Total Demand with Flying Hours (Continued)

Weapon system WSDC Maximum correlation

UH-60 Black Hawk helicopter 40A 0.5
H-46 Sea Knight helicopter 40N 0.5
T-37 aircraft 41F negative
T-38 aircraft 42F not significant
FIA-18 Hornet aircraft 43N 0.6
SH-60B LAMPS MARK III helicopter 44N not significant
EA-6B Prowler aircraft 45N not significant
AH-1J Cobra Attack helicopter 47N 0.5
UH-1 N search and recovery helicopter 48N not significant
A-4 Skyhawk aircraft 52N 0.8
EA-6A aircraft 53N not significant
AV-8B Harrier aircraft 55N 0.6
B-1B aircraft 56F 0.8
KC-130 Hercules aircraft 59N not significant
AH-64 Apache helicopter 61A 0.7
F-4 Phantom (Navy verion) 61N 0.5
P-3 Orion aircraft 63N 0.55
Pave Hawk HH-MH60G helicopter 75F 0.7
Special operations C-130 ATF not significant
SH-60F anti-submarine warfare helicopter ERN not significant
B-2 aircraft FMF not significant
T-1A aircraft MZF not significant
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Correlation Results for Overhaul
Demand and Programmed Overhauls

Table E-1.
Correlation of Overhaul Demands with Programrmed Overhauls

Weapon system WSDC Maximum correlation

F-4 Phantom aircraft 02F 0.7
B-52 Stratofortress aircraft 04F not significant

C-135 Stratolifter aircraft 05F not significant

C-130 Hercules aircraft (non-SOF) 06F not significant
F-106 Delta Dart aircraft 09F 0.5
F-111 aircraft 1OF not significant
C-5 Galaxy aircraft 11F 0.5
C-141 Starlifter aircraft 12F not significant
H-3 Green Giant helicopter 15F 0.5
H-53 Super Jolly helicopter 16F not significant
A-7D Corsair aircraft 17F not significant
F-15 Eagle aircraft 19F not significant
F-5 Fraedom Fighter 21F not significant
HH-1 Iroquois helicopter 22F not significant
A-10 Thunderbolt II aircraft 24F not significant
E-3A AWACS aircraft 25F not significant
F-16 Fighting Falcon aircraft 26F 0.5
T-37 aircraft 41F not significant

T-38 aircraft 42F not significant
OV-10 aircraft 53F not significant
B-1 B aircraft 56F not significant

Pave Hawk HH/AH-60G helicopter 75F 0.5
Special operations C-1 30 aircraft ATF not significant
T-39 aircraft CDF not significant
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Glossary

AF/XOOT = Office of the Deputy Chief of Staff for Plans and Operations
(Air Force)

AWACS = airborne warning and control system

DCSOPs = Deputy Chief of Staff for Operations and Plans (Army)

DIDB = DLA Integrated Data Bank

DLA = Defense Logistics Agency

DoDAAC = DoD Activity Address Code

DORO = DLA's Operations Research Office

FMS = Foreign Military Sales

FY = fiscal year

JLSC = Joint Logistics Systems Center

LMI = Logistics Management Institute

MAP = military assistance program

MD = mission design

MDS = mission design series

NSN = national stock number

OSD, PA&E = Office of the Secretary of Defense, Program Analysis and
Evaluation

SAMMS = Standard Automated Materiel Management System

SOF = Special Operations Forces

TMSs = type mission series

TS = Tracking Signal

WSDC - weapon system designator code

WSSP = Weapon System Support Program
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