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Introduction and History

Robert W. Brodersen

In the early 1980's, there were predictions of an integrated circuit design
crisis, which was to occur when circuit complexities surpassed the hundred thou-
sand transistor level. Commercial chips which have well over a million transistors
are now available. What happened?

The answer lies in the widespread application of computer aided design
tools which automated much of the low level record keeping and data base man-

agement needed for large designs as well as automatically performing design
tasks such as routing and verification. These tools made it possible for large chips
to be designed and verified with a reasonable time investment (10's of people--
years).

The set of tools described here, however, are even more ambitious, since
the goal is to produce a verified chip design within a few days. This coupled with
a rapid fabrication capability, meant that a single designer could obtain a fabri-
cated chip within 2 1/2 to 3 months.

To simplify the task in the initial stages of the tool development, designs
were considered acceptable even if they were not highly optimized with respect to
silicon area and performance. The strategy was to optimize at the architectural
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level, so that the system requirements could be met without requiring transistor

level optimization. In fact, the lowest level units which the designer can specify
are modules (adder, ram, etc.) and their interconnection. Even more desirable is to
design at even higher level specifications, ranging up to hardware independent
behavioral descriptions which further facilitates architectural exploration.

The basic approach is to use techniques that have become known as silicon
assembly and compilation and the system which shall be described here in detail

is called LAGER.

1.1. WHAT IS LAGER

LAGER is composed of design managers, libraries, design tools, test gener-

ators and simulators, which are interfaced to a common database. The basic

approach is to use a set of libraries of hand designed cells that are configured so
that they can be automatically assembled by layout generation programs. It is in

the design of the libraries and the technology in which they are designed that the
issues of performance and silicon area efficiency are most directly affected.

Another major set of tools in LAGER involve using higher level descriptions of
behavior to synthesize the structural description, which in turn is used to provide

the necessary input data to the layout generators.

In order to minimize the size of the libraries, extensive use is made of

parameterization. The various circuit blocks, such as adders or memory, are

designed so that the size and other features can be varied through input parame-

ters passed to the layout generators.

The extensive use of parameterization and the use of high level descrip-
tions motivates the use of textual input as the primary entry mechanism. The

description of a chip (or system) completely in text is a significant break from the

conventional means of electronic design entry, which is typically based on sche-
matics. In the approach used here, a variety of languages were used, including a

language for describing the parameterized structure, a language for boolean

expressions, a procedural language ("C") for behavioral description, and an appli-
cative language (Silage) for behavioral description. A graphical input capability
has also been integrated with enhancements to give it the flexibility of a language,

but this has typically only been used for designs of low complexity.

The structural input description can be simulated, using the compiled simu-

lator THOR. Each block in the cell library has a behavioral model written in "C"

'.4 *
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which allows a program to be generated that mimics the exact operation of the
circuit which will be generated from that input description. It is at this level that
the design is debugged, and compared to the input specification. Only after this
task has been accomplished is the layout generation phase entered.

The input description is sufficient to automatically generate the complete
physical description of all the geometries used to generate the masks for fabrica-

tion. From this physical description, the individual transistors and their sizes are
extracted, as well as a netlist describing their interconnection. The extracted
netlist is compared to the connections designated in the input description to check
the connectivity. A switch level simulator, IRSIM, can also use this same data
and be compared with the high level THOR simulation to determine if all timing
constraints are met.

The large number of tools that are involved in this design system would be
very time consuming to learn to use, necessitating the design management tools,
DMoct and DMpost. DMoct simplifies the task of generating a design, by pre-
senting a single user interface for the entire design process, providing error
reporting and allowing conditional operation of the tools. A post processing
design manager, DMpost, performs a similar function for the verification tools.

1.2. USERS VS. DEVELOPERS

There are two types of designers which must be supported with LAGER. At
one level is the user who enters the structural and behavioral descriptions to pro-
duce a chip for a particular application. The other level is the developer who adds
cells to the libraries or new tools to the system.

The user is primarily interested in the syntax and semantics of the various
forms of entry, and primarily interacts only with the design management tools or
with the interactive tools in the design process. This person is not required to be
familiar with the underlying database or the techniques used in the automatic
tools.

The developer, on the other hand, adds cells to the libraries and thus must
be familiar with transistor level physical design. This requires not only the knowl-
edge involved to implement a good design, but also the constraints that must be
incorporated so that the designs are compatible with the automatic tools. In addi-
tion, if a new tool is to be incorporated then the developer must also be familiar

with the policies involved in integrating with the underlying database, as well as

- - - - - - - . .
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possibly requiring extensions to the design management software and the descrip-
tions to input the design.

1.3. HISTORY
In the first attempts at writing these tools, were single programs which per-

formed the entire design task [Rabaey85, Ruetz86]. This, however, was only pos-
3ible when the task was restricted to a limited range of architectures. The initial
focus was on programmable microcoded multi-processors for digital signal pro-
cessing [Rabaey85I. The degree of freedom included word-widths, the inclusion
of major blocks such as the address arithmetic unit and decision making finite
state machines and the number of processors and interconnection paths between
them. The design of these circuits was from an assembly level language which
was used to determine the parameters of the design to be generated as well as the
microcode of the individual processors.

The use of this system for a variety of applications made it clear that more
flexibility was desirable. For those applications which required high throughput,
an optimized datapath was often required and microcoding was often not needed.
This led to the development of a set of tools instead of one program, which per-
form tasks such as module generation and floorplanning. The data was transferred
between these programs through the use of standard ascii files, without a central-
ized database.. The flexibility of the circuits that could be generated was
improved, but it was found difficult to add new tools as information about the
design was distributed across a number of different files and formats. Also as the
designs increased in size an increasing amount of time was involved in writing
and parsing the design files.

A centralized database was then developed which was based on the object
oriented programming package, Flavors, which ran under LISP (Shung88]. Inte-
gration of new tools and flexibility in their use was possible but the inefficiencies
of LISP and the lack of a persistent database made it clear that this would not be
adequate for the ever increasing size of the designs.

OCT, an object oriented database designed for VLSI applications, which
had been under development for some time was then incorporated as the underly-
ing database. This immediately gave access to a number of new tools which were
already interfaced to OcT. In addition, the X windows interface was adopted and
policies were adopted for the use of the OcT database so that data could be stored
from high level flow graphs through to the actual physical design.

I___________ ~ .
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1.4. ASSEMBLY VS. BEHAVIORAL SYNTHESIS
The generation tools in LAGER can be divided into two basic cagories

which perform behavioral synthesis and silicon assembly. The behavioral synthe-

sis components are exemplified by Hyper, Firgen and C-to-Silicon.
These take a behavioral input, which is relatively hardware independent, that
describes the specifications desired by the designer. They output a structural

description (interconnection of circuit blocks and their parameters), which pro-
vides the input to the silicon assembly tools. These tools implement the actual
physical design which can be used for fabrication, and include Flint, Tim-
Lager, dpp, Padroute, and Stdcell and are controlled by DMoct.

1.5. BOOK ORGANIZATION

The book is divided into five parts. Part I, which covers Chapters 2-6,
describes the framework, including the underlying database, as well as the design
management tools which control the design process. The data manager used is
OCT [Harrison86], along with a specific set of policies that was developed for a
library based, parameterized design methodology. A language was developed,
SDL, which allows a text description that can be converted into the database by
the design management tool DMoct. Also described is a schematic entry capabil-
ity which allows direct graphical entry into the database. The post processing
design manager. Dmpost, is presented which provides a consistent user interface
during the verification process.

The silicon assembly portion of LAGER is described in Chapters 6-10
which comprise Part U. First is TimLager, which is used to generate modules by
tiling library cells which have been designed so that all connectivity is through
abutment of adjacent signal lines (no routers are required). The sizes of these
arrays are defined by parameters obtained from the user or higher level tools.
Logic synthesis is provided by the script Bds2stdcel1 which converts a logic
description written in the language BDS to a netlist. The actual generation of a
standard cell module is accomplished by the script, Stdcell, which calls opti-
mization tools for placement and routing. The placement and routing of modules
is done by the interactive floorplanner, Flint. This tool is also used with Tim-
Lager to implement bit sliced datapaths, under control of the generator dpp,
which also performs some modification of net lists to minimize the length of nets
within the datapath. The last step in the silicon assembly process is done by
Padroute, which performs the specialized routing task required to connect the
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signal, power and ground lines from the rectangular chip core to the bonding pad
ring.

Testing and verification is described in Part III which covers Chapters
11-13. The on-chip test strategy makes use of scan paths and a limited level of
automatic test pattern generation, provided by TGS. The direct verification of
netlists is done by DMverify and verification through simulation by THOR and
IRSIM.

The tools and representations used for the behavioral synthesis tools are
described in Part IV in Chapters 14-17. The Silage applicative language, which is
optimized for signal processing descriptions, provides a behavioral input descrip-
tion. The HYPER tools take this description and use transformations and schedul-
ing algorithms to synthesize a datapath with the associated control that meets real
time computation constraints with the minimum amount of hardware.
C-to-Silicon is a synthesis tool which starts from a description using a sub-
set of the procedural language "C" and a description of an architecture and pro-
duces the microcode and parameters necessary to generate a circuit. The third
behavioral synthesis tool, Firgen, takes specifications in the frequency domain
and generates high performance digital filter circuits.

Part V, Chapters 18-21, describe applications of the tools in a variety of
areas. A chip for calculation of the inverse kinematics for a six degree of freedom
robot (PUMA arm,' is discussed which made use of the C-to-Silicon
approach. A highly parallel architecture for calculation of the Radon transform,
which is useful in machine vision, is described, followed by the design of a
real-time large vocabulary speech recognition system.

It is suggested that the first chapters on the database and design manage-
ment methodology be read since the following chapters assume familiarity with
the concepts presented there. The subsequent chapters are more independent and
can be read out of order.
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The OCT Data Manager

Rick Spickelmier and Brian C. Richards

OCT is a data manager based on object-oriented principles for electronic
CAD applications [Harrison86a, Harmson89b, Spickelmier90a]. OCT offers a sim-

ple interface for storing information about the various aspects of an evolving sys-

tem design which can range from the lowest level of physical description of a
chip to board level specification. The data manager provides a mechanism to store
and retrieve information through a set of C language procedural calls that buffer

the user from the actual data storage strategy. It is assumed that the underlying
operating system is UNIX, as do most of the tools within LAGER, otherwise the
data manager is relatively independent of the particular computing platform.

2.1. BASIC STRUCTURE
The basic unit in a design is the cell. This can be as small as a transistor or

NAND gate, or as large as a complete board containing many components. A cell

can consist of instances of other cells, such as a NAND gate consisting of several

transistors or the floorplan consisting of an ALU, register file, etc. A cell can have

many aspects or views, depending on what point in the design you are at and on
what design style you use.
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There can be a schematic view, showing in an abstract way what subcells
the cell consists of and how they are connected. There can be the symbolic view,
where additional information of rough relative placement, subcell size and shape,
and initial implementation of interconnect might be kept. And even more refined,
the physical view, where the implementation is fully defined with exact placement
and specific geometry. In addition there can be quite different views, such as the
simulation view, which might contain the description of the cell in a format that a
particular simulator could understand. What views a cell may have, what is con-
tained in those views, and how they are related are not issues addressed by OCT;
these decisions, which are called the OCT policy, are specific to a given system,
and are left to authors of the tools that use OCT. The particular policy used in the
LAGER system is described in the next chapter.

Finally, there is the concept of facets. Cells are hierarchical, i.e. they con-
tain instances of other cells which in turn may contain instances of other cells,
etc. For various applications, the designer may wish to cut off this hierarchy;
instead of continuing to traverse the hierarchy by processing the contents of a
view, the cell might be represented by some simplified abstraction. For a graphics
editor, the abstraction might be a bounding box, for routing the abstraction might
be the terminals and routing regions of the cell, and for a netlist verifier, it might
be just the terminals and nets on the boundary of the cell that need to be checked
against those of neighboring cells (thus avoiding rechecking the interior of cell
each time it is instantiated). We call these various abstractions facets of the view.

Each view has a facet named "contents" which contains the actual defini-
tion of the view, as well as various application-dependent interface facets. Again,
OCT does not explicitly define what interface facets may exist, and what their
relation to the contents facet might be. The only facet OCT has any explicit
knowledge about is the contents facet, which is the facet that defines the name
and number of external (formal) terminals that a view has. When an instance of a
view or a new interface facet is created, the contents facet of that view is con-
suited to find out what terminals the instance or facet inherits from the view. Thus
the contents facet must be created before any other facet is created and before any
instance of that view is created.

The final specification for a facet is the version. The version allows there to
be multiple time sequenced facets. Versions are generally ignored by most OCT
applications and are only dealt with by data management systems (Silvag9].

S_ _ I
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The facet is the unit that is edited in OcT. A particular facet of a view of a
cell is opened and edited independent of the other facets of that view and the
other views of that cell. The facet consists of a collection of objects that are
related by attaching one to another (see Figure 2.1). A box is put on a particular
layer by attaching it to that layer, a terminal is shown to be part of a net by attach-
ing it to that net, a box is shown to implement a terminal by attaching it to that
terminal. Objects can be attached to more than one object and can have more than
one object attached to themselves. Being attached is not particularly strong: if you
delete an object, you do not delete objects attached to it, you merely detach the

connection. The structure created by attachments can be thought of as a directed

graph of OCT objects

2.2. POLICY VERSUS MECHANISM

OCT provides a mechanism for representing data but places no meaning on

the data. Policy is used for assigning meaning to the data represented using OCT.
For example, OCT has objects that represent layers and geometry, ýut does not

specify how the objects are related to give the meaning of a geometry imple-
mented on a given layer. The policy states that a geometry that is contained by a

facet

formal terminal INSTANCES net layer CONNECTORS

actual terminal actual terminal actual terminal

Figure 2.1: Sample Attachments which conform to OCT symbolic policy
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layer is implemented on that layer. As another example, Ocr has objects that rep-

resent nets and terminals, but does not specify how connectivity is represented.
The policy describes how terminals and nets are used to represent connectivity.
See rSpickelmier90b] for detailed information about specific OCT policies; the
next chapter describes the extensions to those policies for LAGER. The next few
sections describe the objects supported by OcT and the procedural interface that
is used to create, modify, delete, and access those objects. The particular set of
objects and procedures was chosen based on experience with previous systems.
Similarly, the LAGER OCT policy evolved from an earlier version of LAGER
which was based on LISP [Shung88].

2.3. THE OCT OBJECTS

Ocr supports a set of primitive types chosen for their usefulness in VLSI
CAD. All OCT objects have type and identification attributes. There are two iden-
tification attributes, objectid and externalId. An objectId is the per-session
identifier for a specific object. Given the objectld, the procedure octGetById
will return the corresponding object. This means that the objectId can be used as
a form of pointer to the object, so the entire object need not be kept to reference
it. An objectId is guaranteed to be unique across all objects in all open facets dur-
ing an OCT session. When an object is deleted, the objectld is marked as invalid
and may not be used in any further operations during the session. An externalld
is an identifier that is scoped by the containing facet and exists across sessions.
This is opposed to the objecild, which is unique across all objects in all opened

facets. Combined with the facet that contains the object, the externalld is unique
across all objects in all facets. OCT supports the following object types:

2.3.1. Design Objects

The basic design object in OCT is the facet, OCT-FACET. The facet can be

read-only or modifiable, and can contain other objects, but may not be contained
by any object.

2.3.2. Geometric Objects

Ocr supports a wide range of geometric types: point, box, circle (contain-
ing support for donuts and arcs), path, polygon, edge, and label. OCT also pro-
vides a layer type for those wishing to implement a policy requiring geometry to
be attached to a layer to specify that the geometry is on that layer (as is the case
for all of the OCT policies used in LAGER).

9l i t _
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2.33. Interconnection Objects

OCT supports two types of objects for the specification of interconnection,
terminals and nets. Terminals can be associated with a view or an instance. A ter-
minal of a view is called a formal terminal. A terminal of an instance is called an
actual terminal. You cannot explicitly create an actual terminal. They are instead
implicitly created when an instance is created, with an actual terminal being created
and attached to the instance for each formal terminal in the view itself. Formal termi-
nals can only be created in the contents facet of a view; all other facets may only ref-
erence them. A net can be used to represent a logical connection between terminals by
attaching the terminals to the net. Terminals and nets have a width attribute that can
be used for representing vectors of terminals and nets.

2.3.4. Hierarchy Objects

OCT supports the building of hierarchical designs with the instance object,
OCTJNSTANCE. An instance is a reference to a facet, called the master of the
instance. Instances have an origin and a transformation. When instances are cre-
ated, an actual terminal for each formal terminal of the facet is created and
attached to the instance.

2.3.5. Annotation Objects

Ocr supports properties and bags as a means of specifying extra informa-
tion not directly supported by Ocr. A property contains annotation that can be
attached to any object (including another property). A property consists of a
name, a type, and a value of that type. The supported types are: integer, floating
point number, string, collection of bytes, integer array, and floating point array.
The bag object, OCT-BAG, is used for collecting other objects. Typical policy
applications include grouping OCT-INSTANCE objects into a category, or contain-
ing a list of design parameters. Using bags and properties, arbitrarily complex

structures (composite objects) can be built up.

2.3.6. Change List Objects

OCT supports the ability to monitor changes in a design. The change list
and change record objects are used for monitoring changes in an OCT facet. For
each set of operations and objects that is to be monitored, a change list is created
and change records are created and attached to the change list whenever a moni-
tored change takes place.

- ll I IIIIIIIii_--
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2.4. THE OCT PROCEDURAL INTERFACE

The procedural interface, along with the basic concepts, make up the heart
of OCT. The particular set of objects can change, but the procedural interface
defines the way users think of OCT. Since CAD tools tend to navigate through
designs, rather than make complex ad-hoc queries (as in rational database sys-
tems), OCT has a number of routines for traversing a design. OCT also has a lim-
ited number of simple query routines for those cases where appropriate (accessing

objects by name). For a complete list and description of the OCT procedural inter-
face, see [Spickelmier90c]. In order to ease the use of the OCT procedures (and
based on feedback on the first version of OCT), the procedures signal the majority

of errors via raising an exception (using the errtrap facility [Spickelmier90c].
This eliminates the necessity for programmers having to surround all OCT proce-
dures with a check of the return value of the procedure.

2.4.1. Starting a Session
In order to access the database, initiate and terminate the interaction with

the database, OCT provides the procedures octBegin and octEnd. The former
will flush out any existing design facets from the database manager, and the latter
will force existing data to be purged if new facets are opened.

After octBegin, the facets containing objects must be opened before the

objects themselves can be viewed. There are three routines for opening facets.
octOpenFacet is the primary method for opening the top level of a design or
creating a new facet. octOpenRelative is a version of octOpenFacet that
opens up a facet with a location relative to some other OCT facet. This could be
used for opening up cells in the same library or in the same workspace or config-

uration. octOpenMaster opens up the master (describer) of an instance.
octOpenFacet and octOpenRelative can be used for creating new facets,

opening up old ones (for read or modify access), and for purging the modifica-
tions to the current version and bringing in a fresh copy (revert).

Once a facet is opened, all objects contained in the facet are available to the
user. Whether all of the objects are read into memory when the facet is opened or
paged in and out as needed is an implementation detail, and both forms have been

implemented.

When there is no longer a need to have the facet open (i.e. objects con-
tained in the facet available), the facet can be closed, via octCloseFacet, with

S
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all changes committed to persistent storage, or freed, with all changes thrown
away (aborted). Pairs of opens and closes/frees are reference counted so that the

objects are still available until the last closelfree is called. This allows program-

ruing libraries to open and close/free facets without affecting the open status of

the facets being used by the program that uses the programming library. A facet
can also be committed to persistent store and have the objects available after the
commit (also known as commit and hold). This can be accomplished by oct-
FlushFacet. The Ocr procedural interface also provides a procedure for comn-
mitting the facets to an alternative name (octWriteFacet), and for copying a
facet (octCopyFacet).

2.4.2. Access to Objects

The Ocr procedures do not give the user access to the actual object that
was made available (referred to as 'OcT space') due to an octOpenFacet,
octOperiMaster, or octOpenRelative call, but instead they copy the
user-visible portion of the OCT object into a user-supplied structure. This pro-
vides a layer of safety: the user can modify and destroy his copy of the object
without corrupting the data in OCT space. A commit operation (such as octMod-
ify) is necessary to update OCr space. 1

All objects have two methods for directly accessing them and some have a
third method. There are two identifiers associated with each object. The first is a
per-session object identifier (objectId) that is unique across all facets that are cur-
rently available (contained in open facets). The procedure octGetById will
retrieve an object using an objectld. The second identifier is called an external
identifier (xid). This identifier is unique inside of a facet, and combined with the
facet name is unique across all facets (even those that have not been opened).
This identifier persists across sessions and can be used for relating objects across
facets. The xid of an object is returned by the octExternalld procedure. The
procedure octGetByExternalId is used to retrieve an object based on its
xid.

The third method of retrieving an object based on an identifier is by name.
Some object types have names associated with them (properties, bags, instances,

1 The only exception to this is in the case of strings. The char pointer for strings (beg
names, property values, etc.) ve pointers into the data in Oct space. Thus directly modifying or
freeing the string is not allowed and will comrpt 'Oct space'. Strings of copied out objects
should have been put in static buffers that ae only valid until the next Oct call.
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layers, terminals, nets, and labels). The call octGetByName takes a name, type,
and container and returns the object of the given name and type contained by the
container. If multiple objects of the same type and container have the same name,
the particular object that is returned is not defined; OcT does not try to force
uniqueness of names, this is considered a policy.

2.43. Navigation of Designs

There are two ways to navigate in OcT. One is by direct reference as
described previously (octGetByIId octGetByName, etc.). The other is by the
use of generators. Generators are used for sequencing through objects of a 4
given type or set of types that are attached to an object (such as all terminals
attached to a net). Generators must be initialized by a call to
octInitGenContents or octInitGenContainers, and objects are
returned in sequence by subsequent calls to octGenerate. If objects that would
occur in the generation sequence are modified such that they will not be in the
generation sequence (deleted, detached from the container), they will be skipped.
If new objects appear (creation or attachment to the container) they will be seen
by the generator. OCT generators are also safe, meaning that if the object that is
being generated over is deleted, the generation sequence terminates cleanly, or if
the object that appears next in the sequence is deleted, the generator continues on
to the next object in the sequence.

2.4.4. Creation, Deletion, and Modification of Objects
OCT supports the creation of objects via the octCreate procedure.

Objects in OCT are always created relative (attached) to some other object.
Objects can be deleted with the octDelete procedure. Objects are modified by
taking the original object (returned by any of the OcT retrieval procedures), mod-
ifying the fields that are to be changed, and then calling octModify to tell OCT
about the changes. In addition to altering the attachment structure of a facet by
using the creation and deletion procedures, there are two procedures for directly
changing attachments, octAttach and octDetach.

2.4.5. Support for Hierarchy
OCT allows the specification of hierarchy by providing instance objects.

Instance objects are used for referring to OCT facets. The OCT facet referred to by
the instance is known as the master of the instance. There are two ways to refer- |
ence facets using instances: relative and absolute. Relative means that the context
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(location) of the facet that contains the instance is used to find the master of the
instance. Relative allows the entire design to be moved without modifying the
instance objects. This method would be used for the cells specific to a particular
design. Absolute means that the context is not used to find the master of the
instance; all the necessary information is contained in the instance object. This
method would be used for accessing cell libraries; the location of the cell library
does not change as the design moves.

When an instance of a master is created, a copy of the formal terminal of
the master, called an actual terminal is created for each formal terminal in the
master (and attached to the instance).

2.4.6. Change Propagation and Dealing with Inconsistencies

One difference between a static data format (i.e. EDIF [EIA87]) and a data-
base and interface (i.e. OCT) is how changes and inconsistencies are dealt with.
Static data formats are snapshots of a design at a particular point in the design
process, they do not change. Databases are dynamic and thus constantly chang-
ing, therefore techniques for dealing with these changes must be developed.

There are two types of changes that are automatically propagated by OcT:
changes to the bounding box of a master and changes to the formal terminals of a
contents facet If the bounding box of the master changes, the bounding box infor-
mation associated with the instances of that master are updated. If the name of a
formal terminal in the contents facet of a view changes, the name is changed in all
other facets of the view and all instances of all facets of the view. If a new formal
terminal is created in the contents facet, the terminal is added to all other facets of
the view and to all instances of all facets of the view. If a formal terminal is
deleted from the contents facet, the terminal is deleted from all other facets of the
view and all instances of all facets of the view. These operations are performed
transparently by OCT.

Under certain circumstances, there is one type of change that will not be
done transparently. When a formal terminal is deleted, if the equivalent formal
terminal in another facet is contained by something other than the facet or con-
tains objects itself, it will not be deleted and instead will be marked as inconsis-
tent. Once the attachments to the formal terminal are removed, the next time the j
facet is opened, the formal terminal will be deleted. This procedure also applies to
actual terminals; if the actual terminal that corresponds to a deleted formal termi-
nal is contained by something other than the instance or contains objects itself, it

II
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will not be deleted and instead with be marked as inconistent. Once the attach-
ments to the actual terminal are removed, the next time the facet is opened, the

actual terminal will be deleted.
Besides the inconsistencies that can be encountered when terminals

change, inconsistencies can also occur when the masters of instances disappear.

Masters can disappear for three reasons: the master has been removed, the master
has been moved, or the facet that references the master has been moved. The later
case is only a problem if the master is referenced via relative paths; if the master
is referenced via an absolute path, the facet that contains an instance of the master

can be moved anywhere where the absolute path can be reached. When opening
up a facet that contains instances, if the masters can not be found, the instances
are marked as inconsistent.

There are many instances in CAD tools where finding out what has
changed in a design is important. The region searching package supplied with the
OCT Tools [Spickelmier90a] uses change lists to update internal data structures
when changes occur in the data base. The graphics editor VEM, which is used for

viewing physical layouts, uses change lists for undo, for determining when new
layers have been added, and for determining what regions of the screen need to be
redrawn after a command [Harrison89a, Harrison89b]. OCT supports change mon-
itoring via change lists and change records.

A change list object has two fields, one for the types of operations to be
monitored and one for the types of objects that operations of the selected type

should be recorded. Multiple change lists can be created, each looking for any
combination of operation/object pairs. The change record contains information

about the type of the operation, the xid of the object changed, and the xid of the
container of the object changed. Performing an oCtBB On the change record will
return the bounding box of the object before the operation. In the case of a change
record that represents a deleted object, generating the contents of the change

record will return the deleted object.

2.5. OCT PHYSICAL POLICY

The OCT "physical" view of a design is the simplest form of design repre-
sentation, storing the design in terms of geometrical shapes[Spickelmier9Ob]. The
OCTrFACET object, representing the contents of a "physical" view, contains pri-
marily OCT-LAYER, OCT-TERM, and OCTJNSTANCE objects. Each OCT-LAYER
typically corresponds to a photographic mask used for designing a custom chip or

0i
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printed circuit board, and can contain any number of OCT-BOX, OCT-CIRCLE,
and other geometrical objects. Figure 2.2 illustrates how objects are connected to
represent some simple geometrical shapes.

deign_namedesigname

layer layer
"METI' "ET2"

Figure 2.2: Representing physical geometry in OcT

The OCT TERM objects define terminals, which serve as ports for passing

information between the different levels of design hierarchy. A terminal will usu-
ally contain one or more geometrical object, also contained by an OCT_LAYER, to
define the implementation. For a VLSI macrocell, a terminal is typically imple-
mented as a piece of metal or polysilicon near the edge of the corresponding cir-
cuitry. For a printed circuit board design, each pin on a package or connector
might have an associated terminal. These OCT-TERM objects contained by the
OCT-FACET are called "formal" terminals.

The OCTJNSTANCE objects refer to instances of smaller, self-contained
designs, which most commonly have "symbolic" or "physical" views. The refer-
enced subcircuit is referred to as the master of the given instance. The OCTIN-
STANCE objects automatically contain copies of the OCT-TERM objects defined
in the master. These copies are called "actual" terminals.

For the most part, the remainder of the OCT Physical policy defines annota-
tion of parts of the facet. Several OCT-PROP objects define which policy and
technology is used for the design. Also, OCTr_JNSTANCE objects are generally
grouped together under an OCt._BAG named the "INSTANCES" bag. This bag is
used by tools to categorize different types of instances; for most "physical"
views, the same instances are grouped under the "INSTANCES" bag as they are

t
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design name desinm
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Figure 2.3: Representing a terminal in OcT
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Figure 2.4: Instantiation of a design in OCT

Sattached to the facet. The need for this distinction is more apparent in the OCr
• Symbolic policy which follows.

2.6. OCT SYMBOLIC POLICY
The OcT Symbolic policy extends the Physical policy, adding interconnec-

tivity information. Figure 2.5 illustrates how a net object is used to represent con-

nections between one or more terminal. An OCTET object, contained by the
OCTACET, can contain one or more OCTTERM, where both formal and actual
instance terminals are allowed. A net may refer to anything from a terminal to an
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Figure 2.5: Interconnection with nets in OCT

abstract data type which is passed between the contained terminals. For the most
part, only the OCT-SEGMENT object is used to represent geometry in a symbolic
view. A design will consist of instances of physical or symbolic masters, with
segments interconnecting the terminals. The OCT-SEGMENT object defines two
points and a width, and may be diagonal. If more than one segment is needed to
define a path between terminals, instances called connectors are placed at the cor-
ners between adjacent segments. Connector instances can define connections
between layers, so that the segments of a given net need not be defined on the
same layer. These instances are identical to the other OCT-INSTANCE objects,
with the exception that they are contained by a bag named "CONNECTORS". In

Sfacet "higher lever"
"higher-level'l
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Insta laerinputi
'mm NM12'51 lr'19'1'w" LT g)
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Figure 2.6: Connectors and segments on a net.
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general, all connector instances and segments could be deleted without losing any
interconnectivity information, and hence they are grouped separately from the
instances under the "INSTANCES" bag, described earlier.

2.7. SUMMARY

A key advantage of OCT is that by adhering to a consistent policy, tools
from a variety of sources can be made to work together. In addition, the adherence
to object-oriented principles considerably simplified the task of interfacing new
tools.
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Lager OCT Policy and the SDL
Language

Brian C. Richards

The OCT database, described in the preceding chapter, provides a mecha-

nism for storing system design information, without imposing rigid rules for
specifying a design. Instead, guidelines or" policies are offered, recommending
certain conventions for representing different types of design information.
Designs containing structural information, including interconnections or nedlist

specifications, are typically represented by following the OCT Symbolic Policy,
detailing how OCT objects are used to represent the structure. The OCT Physical

Policy is used to represent structure defined by geometrical shapes. Within
LAGER, several policies are defined, for representing a system at different stages
of the design process.

The majority of tools that use the OCT database use either the "symbolic"
or "physical" policies for representing both the input description driving the tool,
and for saving the results. It follows that LAGER uses these policies as well for
passing design information from one tool to another. Since the basic "physical"
and "symbolic" policies do not have parameterization and bus representation
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capability, the structure-master and structurejinstance policies have been defined
to provide this capability.

3.1. LAGER POLICIES
Most tools tied into the OCT database follow either the physical or sym-

bolic policies described previously. Within LAGER, there are three common poli-
cies for describing different stages of the design flow. These views are generally
extensions to the OCT "physical" or "symbolic" policies described in the preced-
ing chapter.

The user interfaces to OCT in two ways: 1) textually, through the Structure
Description Language (SDL), and 2) graphically using a commercial tool (see
Chapter 4).

3.2. THE STRUCTUREMASTER VIEW AND THE SDL
LANGUAGE

A parameterized design can be represented using the "structuremaster"
view, which can be generated from either graphical or textual design specifica-
tions. SDL is a textual description, which uses a LISP-like syntax to describe the
design, and is converted by the Design Manager, discussed in the following chap-
ter, into the structuremaster view. The relationship between the structuremaster
view and the SDL file is one to one; all design information in the SDL file is
transferred to the structure..master view, with the exception of comments. Hence,
an SDL file can be produced from a structure_master view, with the same infor-
mation as the original.

The first non-comment line in an SDL file begins with the parent-cell dec-
laration, defining the OCT cell name:

(parent-cell mycell)

In the resulting structure_master view, the OCTFACET object will be
named:

"mycell:structuremaster.contents"

The SDL file must be named "mycell. adl", corresponding to the name in
the parent-cell declaration for consistency checking by the design manager,
DMoct.

Several aspects of a design can be parameterized. Arrays of nets, called
busses, can be defined, where the width of the bus is derived from a parameter.

_...
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Arrays of instances can also be defined, allowing a single description to describe
a large number of possible circuits. Also, parts of the structure can be generated
conditionally, including both nets and subcell instances.

A subset of Common LISP, called LightLisp [Baker90], is used to evaluate
parameters. The structuremaster view is used in -onjunction with user-defined
parameters by the LAGER design manager, DMoct, to produce a unique version
of the desired design that uses the given parameters. This "instance" of the
parameterized design is represented in a "structureinstance" view, described in
the next section,

Aside from structure, the parameters also serve to pass information about a
circuit to tools, eliminating the need for user interaction in most cases. In the case
of a ROM circuit, the number of words and the word size would be specified, as
well as the contents of the ROM locations.

Parameters are defined in an OCT_BAG named FORMAL_PARAMETERS,
with one OCTPROP for each parameter (See Figure 3.1). Each property has a
parameter for its name, and either has a string value containing a LightLisp
expression, or has no value at all. If an expression is given, it will be used as a
default value if the parameter named in the property is not provided by the user or
from a higher level of the design hierarchy.

The FORMALPARAMETERS are defined in the SDL file with the
parameters declaration. The parameters defined in Figure 3.1 can be entered as
follows:

facet
"higherlevel"

"FORMALPARAMETERS"

propetty property Property po~t
w width name Input-plane

NULL N+ w 3) , ""U64" , ,'(,oxo" "-ox"),"

Figure 3.1: Formal Parameter specification in the structurejmaster vie'v.

i
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(parameters
w
(width (+ w 3))

(name "U64")

(input-plane '("OX0" "1OX"))

The parameter w is not given a default value, and thus the corresponding
property in the structuremaster view has an OCT-NULL value, rather than an
OCT STRING value. S~i

To pass parameter values through a design hierarchy, instance-specific
parameters are defined as properties in the ACTUAL_PARAMETERS bag under
each instance. Parameter values are passed explicitly; the string value of each

property will be evaluated in LightLisp, and passed to the subcell, to be used as a
value for the FORMAL-PARAMETERS property by the same name.

The SDL file defines the hierarchical structure of a design using the

subcells declaration. To declare the instance in Figure 2.4, the following text may

be used:

(subcells
(designname Dl ((w w)))

In this case, the parameter w is passed to the subcell, so that its value may

be used for parameter evaluation in the cell designname. The values are

assigned explicitly; the first w is the name of the subcell's parameter, and the sec-

ond, which may be a general LightLisp expression, is evaluated using the current

set of parameters.

The structuremaster view defines interconnections between instance and

facet terminals with the same policy as is used in the symbolic view (Figure 2.1),

although extensions have been included to describe busses of signals in a parame-

terized fashion. These connections may be made using either the instance or the

net declaration syntax. The difference is whether connections are grouped by

instance or net. Using instance declarations, the connections in Figure 2.5 can be
declared as follows:

I

*!
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(instance parent
(top _input wire)

Other terminal - net pairs on the parent.

(instance Dl
(input wire)

Other terminal - net pairs on Dl.

Alternatively, the connections could be described using the net syntax:

(net wire
(parent topinput)
(Dl input)

The choice of which syntax to use is left to user preference.

In the Ocr database, the instance object can store two-dimensional trans-
formation information, which can be used for providing placement hints to VLSI
and printed circuit board CAD tools. This information can be described in the
SDL file using pre-defined instance properties, as in the following example:

(top-input wire)

; Other terminal - net pairs on the parent.uinformation can be described in
the SDL file using pre-defined instance properties, as in the following example:

(instance Dl (X 1) (Y 2) (T HMXRO) (
terminal - net pairs in Dl.

These properties are evaluated in LightLisp, and are included in the result-
ing instance object for the x translation, y translation, and manhattan rotation
fields. Tools such as oct2rinf, an interface to a commercial PCB router, allow
the designer to define parameterized placement hints.

The structure of a design can be controlled by parameters. In the simplest
case, an instance or net can be included conditionally into a design by placing a
CONDITIONAL property with a LightLisp value under the OCT object in ques-
tion. For the above net in an SDL file, this might appear as follows:

(net wire (CONDITIONAL (> w 1)) (
(parent top input) (DI input)

)

I) _
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A zero or nil value will cause the object to be eliminated when a design
instance is produced. Although not detailed here, arrays of instances can be
defined as well, so that a variable number of instances can be described.

Busses can be represented in the structure-master view by an OCTNET
object containing a NETWIDTH property. The width will be evaluated, and the
single net in the structuremaster view will be expanded into the specified num-
ber of distinct nets in the structureinstance view, with integer indices appended,
ranging from 0 to NETWIDTH-I by default.

To define more elaborate connectivity, a net and terminal can contain one
or more MAP bag. A given MAP bag is contained by exactly one OCTTERM and
one OCT-NET object, defining a detailed relationship between the terminal and
net. The MAP contains one or more properties defining how terminal and net
indices are numbered, or in the extreme, completely renamed. Also, a given ter-
minal-net pair may share several MAP bags.

The MAP bag contains one or more of several properties containing Light-

Lisp expressions. To define busses, two properties can be used. The MAP bag
may contain a property named WIDTH, defining the number of indexed terminal
and net pairs that should be connected. If the NETWIDTH property is given
under the OCT_NET object, the integer value of the given LightLisp expression
will be used as the default value for the MAP width. To give maximum flexibility
to the designer for naming and indexing bus nets, the LightLisp variable _i can
be used in expressions to define the net and terminal indices. If only the WIDTH
is given, then the terminals and nets will be enumerated from 0 to WIDTH-I. The

te trminal i nt '

" /'- ~~bVg••• NETWlDTHI

propery P' w -olty
* WIDTH TERMINDEX NETINDEX CONDITIONAL%%WIV(+ _- 3)" .';r Jo ,,(> N 2)"

Figure 3.2: Example of terminal to net bus mapping.

*
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following SDL lines illustrate how terminal and net indices may be controlled
explicitly:

(instance something
(t n (width W) (term-index (+ i 3))(net-index _i)

(CONDITIONAL (> W 2))

Figure 3.2 shows the resulting Ocr representation in the structuremaster
view. Each terminal-net connection may be conditional, according to the value of
the CONDITIONAL property, which is re-evaluated for each connection. Using
these and additional MAP features, complex terminal to net assignments for bus-
ses can be achieved.

Many tools' expect that formal terminals (facet terminals) have certain
properties to give hints about placement, power requirements, etc. These can be
defined with the terminal declaration:

(terminal top-input (TERMEDGE LEFT)

(TERMRELATIVE POSITION 0.65))

In the above case, the OCTTERM 'top-input' will have an OCT_PROP
named "TERKEDGE" with the string value "LEFT". The "TERMRELA-
TIVEyPOSITION" property will be real-valued.

In addition to parameters and busses, the "structurejmaster" view also
defines the tools that are to be executed to generate an instance of a design. Two
properties have been defined to specify tools; the STRUCTURE-PROCESSOR
and LAYOUT-GENERATOR properties. The STRUCTURE-PROCESSOR
defines an optional tool that will modify the structure (netlists and hierarchy) of a
design, such as a datapath compiler or a logic synthesis program. The
LAYOUT-GENERATOR is a program that produces a physical design from
netlist information and parameters. In an SDL file, these properties are declared
with the structure-processor and layout-generator declarations:

(structure-processor dpp)

(layout-generator "Flint -a")

If arguments are given to the tool, then the command should be placed in
quotes.

The SDL syntax includes several other constructs which are detailed in the
sdl(5) manual pages [Lager91]. Other features include arrays of instances, hierar-
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chy flattening, ad a general syntax for placing nested prperties and bags on OCT
facets, instances, nets and terminals.

3.3. THE STRUCTURE INSTANCE VIEW
The ,view is essentially an OcT "symbolic" policy

view, although there is usually no physical information (geometry) stored. Only
structural information, with unique instances and individual nets is required. As
an extension to the "symbolic" view, the FORMALPARAMETERS bag is cop-
ied from the structure-master view, with all parameters evaluated, and stored as
constants in properties with the corresponding names. Figure 3.3 shows how the
parameters defined in Figure 3.1 would be evaluated and represented in Ocr.
Notice that a list of parameters in LightLisp is expanded into several properties
with the same name as the parameter, with enumerated indices. Integer, real and
string data types can be represented. Notice that the property w now has an integer
value; the user provided this value, since there was no default.

The names of tools are carried over from the structure-master view,
included as properties under the design facet. The structure-instance view should
contain all of the information that is required to generate the layout of the defined
structure, including tool names and options.

3.4. THE PHYSICAL VIEW
The "physical" view is used for the primitive design description, and is

"produced by all layout generation tools. In general, either the OCT "physical" or
Ocr "symbolic" policy can be generated by each tool. By convention, LAY-

fame

i Fig, ure 3.3: Formal Parametr specifation in the stuuniance view.
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OUT.GENERATOR tools generally produce files for the Magic layout editor

[Scott85] as well, which are used for design post-processing, including extraction
and design rule checking.

3,5. SUMMARY

The SDL language is a powerful textual representation for design structure
which can offer parameterization of nearly all aspects of a design. The flexibility J
of the SDL text description is also fully represented in the Ocr database using the
structure-master policy, allowing alternative front-ends to be used without sacri-

ficing any of the pmameterized features of the SDL language. By placing this
information in the OCT database, the user can thus choose a preferred style of user
interface.
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Schematic Entry

S I"III

Bob Reese

The LAGER system consists of tools, libraries, and policy. It is the LAGER
policy which allows the user to incorporate new tools into the design methodol-
ogy. The SDL file, the structure master view, the structurejnstance view and the
physical view represent the data formats which tools can use as entry points into
the LAGER design pipeline. The structure-processor and layout-generator specifi-
cations are the links through which DMoct can be instructed to invoke a tool.
These links can be used to interface various commercial tools to LAGER. This
section details a schematic capture/simulation system which has been integrated
into the LAGER system.

4.1. SCHEMATIC TOOL INTERFACE

While SDL provides for text entry, the schematic drawing tools and VHDL
"simulator from Viewlogic Systems, Inc. provides a means for graphical entry of

* design information into Ocr using the LAGER policy described in Chapter 3. This
allows the user to create parameterized schematics for his design, using a
state-of-the art commercial interface. There is nothing unique about the View-
logic schematic capture/simulation package that particularly lends itself to inter-

* £
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facing with LAGER - the interfaces described in this chapter could be duplicated

for most other commercial schematic capture/simulation packages.

User creates hierarchical design

via Viewlogic schematic capture', package

Convert Viewlogic netflst to struc-
ture-master view via vb2oct
program..

I Specify parameters for blocks
and use DMoct to produce the |
structure-instance view hierarchy

I Convert structure-instance view Edit Schematic
netist back to Viewlogic netlist
format via oct2wir program.

!I

Simulate Design Via Viewlogic

Use DMoct to generate physical
Sview of design

Figure 4.1: Schematic capture/simulation interface for LAGER

The operation of the schematic tool interface is shown in Figure 4.1. Four

of the basic file types in the schematic tool are:
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1. sch: schematic placement information.
2. wir netlist (bare netlist, no schematic placement information).
3. sym: symbol (icon form of a schematic).
4. vsm: simulation nedist (created from individual wit files, flattened view

for simulator).
The conversion of Viewlogic-Viewbase schematics to a LAGER view is

done by vb2oct. The vb2oct program converts each schematic to a structure--
master view. Full timestamp checking is done so that only those schematics which
are younger than the corresponding structure.master view are converted. It is
important to realize that the schematic represents the structuremaster view and
not the structure_instance view. For designs with no parameters (designs with
constant bus sizes, non-parameterized components such as standard cell leafcells)
these views are essentially the same. viewlogic simulation can be performed
on unparameterized designs without creating any LAGER views because the sche-
matic represents the exact entity to be simulated. However, simulation of a
parameterized design requires that you:

1. generate the structuremaster view hierarchy using vb2oct.
2. generate the structure_instance view hierarchy using DMoct.
3. generate the Viewlogic wir files for each block using the oct2wir

program.
4. generate the Viewlogic simulation file using the siv2vsm pro-

gram.
The first two steps are available from Viewlogic menus customized for

LAGER. The last two steps can be automated as a side effect of the
structure-instance view generation by specifying the oct2wir and siv2vsm
programs as structure-processors in the appropriate schematics. This is the
desired method as new wire files and simulation netlist files are only generated if
the schematic has been updated. If the schematic has changed then vb2oct wiln
create a new structure_master view; this will cause DMoct to regenerate the
structureinstance view the next time it is invoked; the creation of the
structureinstance view involves running user-specified structure-processors such
as oct2wir and siv2vsm. Special components and attributes added to the
schematic by the user are used to define such LAGER constructs as structure-pro-
cessors and layout generators. Once a design is simulated, the layout can be gen-
erated in the normal manner using DMoct. This requires that vb2oct had been
run previously to generate the structure-master view hierarchy.
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Figure 4.2: Logic schematic without parameters

4.2. DESIGN EXAMPLES
Figure 4.2 shows some random standard cell logic entered as a schematic.

The schematic can be thought of as the graphical view of the SDL file. Items
which are entered as statements in the SDL file are now entered as either compo-
nents or attributes in the schematic. The special SMV component is used as a
place for putting LAGER specific attributes such as SIVMASTER,
DEPENDS-ON, STRUCTURE-PROCESSOR, etc. This schematic has no param-
eters and thus can simulated without invoking vb2oct.

Figure 4.3 is a schematic of a parameterized component called "MOVE"
which is used as part of a chip that plays TicTacToe. Note that this schematic only
contains formal terminal definitions; its internal logic is synthesized by the
Bds2 stdcell structure-processor from a BDS description (see Figure 4.3). The
bag component labeled SP is used to create an OCT bag named SP in the
structuremaster view. Attributes attached to a bag component get translated to
OCT string properties attached to the OCT bag object. The SP bag contains a list of

- ---- a,. --
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Figure 4.3: BDS block schematic

structure-processors to run on the structure_instance view. The SP 1 structure pro-
cessor is executed first, the SP2 structure-processor next, and so forth. Note that
the SPI structure processor is Bds2stdce1l, the standard LAGER structure pro-
cessor used for logic synthesis (see Standard Cell chapter). The SP2 structure
processor is the oct2wir program which will create the wir file for the block
from the structureinstance view produced by the Bds2stdcell structure-pro-
cessor. The oct2wir structure processor is necessary because the wir file is
needed in order to simulate this block with the VHDL simulator. The oct2wir
program is run after the Bds2stdcell script; this order is required in order to
generate the wirelist of the synthesized logic. The ability to specify multiple
structure processors or layout generators for a block allows us to make the stan-
dard LAGER scripts very generic. Users can combine the standard LAGER proces-
sors and vendor-specific processors in any manner they choose.

Figure 4.4 shows the top-level schematic of the TicTacToe chip; the move
block is just one component of the top-level schematic. The TERMEDGE
attribute on each terminal is used by the standard cell layout generator to control
terminal placement on the generated layout. Note that the "-flatten" option is
passed to the Stdcell layout generator; this causes the Stdcell script to flat-
ten the standard cell hierarchy before attempting layout generation.

Figure 4.5 shows a pad frame created with the schematic interface for the
TicTacToe chip. The FACET:PAD parameter of each pad and the pads parameter I
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Figure 4.6:- Dmapaih schematic

parameter N is also passed to each of the datapath components through the
PARM:AN:=AN attribute on each Component. The 'A' and 'V symbols ar case
modifiers to compensate for the lack of case sensitivity in the schematic tool. 'A'

makes all characters lower case while T only lower cases the next character. The
structure-processor used is vbdpp which is a special version of the normal dpp
structure processor. vbdpp invokes oct2wir and the VHDL compiler whenever
the structure instance view is generated so that the simulator can be run. Because
the schematic is parameterized and cannot be simulated "as is", vb2oct must
first be run to produce the structure-master view hierarchy, and then DMoct Must
be run to produce a structure-instance view hierarchy with N bound to some fixed
number, such as N=16. Only then can the resulting wirelist be simulated from
within the schematic tool.

Figure 4.7 is part of a schematic of a parameterized standard-cell multiplier
which illustrates some additional features of parameterized nets. The parameter-
ized busses are drawn as single nets with the NETWIDTH attribute defining the

width of the bus. The value of the NETWIDTH attribute can be an arbitrary Lisp
* expression such as (* 2(+ N 1)). In this case, N is a parameter defined in this sche-

matic. The sc-.register cell is a parameterized N-bit register. The parameter N
specifies the width of the register. This parameter is represented by the PARM:N
attribute on the scjFgister symbol. The PARm notation is used to distinguish
this attribute from other attributes which are non-LAGER specific. In this exam-
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Figure 4.7: Part of a parameterized multiplier schematic

pie, PARM: specifies that this attribute should be attached as property to the
actual parameters bag for this instance.

The BUS-SPLIT component is used to split off a portion of a parameter-
ized bus to form another bus of smaller size (the split bus). The BUS terminal in
an input and connects to the larger bus and the SPLIT terminal connects to the
split bus. The BUS.-BASE attribute is used to define the index at which the split
bus will be taken from the larger bus (other attributes such as BUS.JNCR and
SPLIT_INCR give more control over which bus lines will be taken from the
larger bus and placed in the split bus). Again, the values of these attributes can be
Lisp expressions. The BUS-MERGE component is to use to merge a smaller busii

I1
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into a larger bus. The FROM attribute defines the starting index in the larger bus
for connecting the smaller bus.

4.3. SUMMARY

The Viewlogic schematic capture tool, which is interfaced to the LAGER

tool set, provides the user with an alternative to textual design entry. By defining
a strategy for representing the structure-master view policy using a schematic
capture systems normal capabilities, nearly all parameterization features offered
by DMoCt can be supported in a graphical environment. Since this capability is
not restricted to a particular tool, the designer can choose text or graphical entry
for any of the LAGER tools.

!a
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Design Management

Brian C. Richards

DMoct is the central design manager for the LAGER system design tool set
and libraries. As a design manager, it automates the generation of a hierarchical
system which may consist of pieces created by a large variety of tools. The user
has access through the design manager to a large and ever growing library of
designs, from VLSI leafcells to large subsystems with a wide range of custom and
commercial parts. A designer can tailor a system to specific needs by taking
advantage of several parameterized subsystems. With this design manager, the
user is not required to be an expert at the large number of underlying tools that
make up LAGER.

Where the software developer might use the UNIX "make" utility, the
hardware system developer can use Dmoct. This offers file time-stamp checking
to identify parts of a design that must be regenerated. Unlike the "make" utility,
DMOCt is also capable of dealing efficiently with hierarchical designs, where
each level of the design has a set of commands for regenerating that part of the
design. Each subsection of a design is treated as a black box when used within a
larger system. This modular design style allows designers to focus on system
architectures without large levels of effort at the lower levels of circuit design.

5 {
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5.1. PARAMETERIZATION AND LIBRARY SUPPORT
Modules or subsystems are generally parameterized so that no more cir-

cuitry is generated than is needed. If the designer wants a memory with 13 bits of
data and 21 locations, then the memory type is chosen (Dynamic, Static,
Read-Only), and the size information is passed as design-specific information
(width = 13, size = 21). Pre-designed circuits can thus be reused with maximum
flexibility. Parameterized interconnections, such as variable-width groups of sig-
nals, or busses, can be described so that the number of bits in such a bus can be
evaluated according to system parameters.

An important feature of the design manager is the ability to maintain librar-
ies of pre-designed and tested subsystems. VLSI and common board level sys-
tems can be made available to many users as black-box systems which have
specified connections and accept design-specific parameters. In some cases, there
may be more than one design for a subsystem (such as a RAM or multiplier), and
the designer can try the different versions by merely selecting a different module
from the library to try meeting size, shape or speed requirements.

5.2. THE DESIGN FLOW STRATEGY

DMOCt is, as the name suggests, based on the OCT object-oriented data-
base. The Ocr database supports a hierarchical design style, where a given level
of the hierarchy may be some actual circuitry (a VLSI layout or a TTL part for
example), or an interconnection of these circuits. If several circuits are intercon-
nected within one level of a design hierarchy, they may be called subcells, mod-
ules, or macrocells of that design, and each reference to a given subcell is called
an instance of that subcell. A library cell is usually treated as a subcell in a larger
design.

The user can enter designs by using the LISP-like Structural Description
Language (SDL) files described in the previous chapter. DMoct will then read the
SDL files to produce the structuremaster view described previously. Once the
parameterized structuremaster view has been created for all parts of a design, the
parameters are entered from a parameter file, on the DMoct command line, or by
responding to interactive requests for parameter values from DMoct. Then, a sec-
ond OCT view, the "structure..instance" view is created. In the structureinstance
view, all parameters requested by the structuremaster view are evaluated by call-
ing to the built-in LightLisp interpreter, subcells are instantiated (referenced as
instances of a subcell), and all interconnection busses are expanded into individ-
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ual signals or nets. The structureinsance view is the generic structure descrip-
tion which is recognized by all of the Ocr-based tools. For most tools, the
structurejnstance view contains all information required to generate a design,
although references to other technology and design files may be included.

Once the structure of a design has been produced in the structure-instance
view, some modifications to parts of the structure may be required, to incorporate
additional information into the design, or to improve the area or speed of a
design. Tools that modify the structure of a design are called structure-processors
as described in Chapter 3, which read one or more structurejinstance views and
produce one or more modified versions. As an example, the designer might have a
behavioral description of part of a design along with a structurejnstance view
describing the boundary connections or terminals of the design. The structure-
processor could then synthesize the subcell structurejnstance views for this cir-
cuit (See Figure 5.1). An example of this for logic synthesis will be given in
Chapter 8.

A datapath compiler is another example of a structure-processor [Srivas-
tava87]. Given a set of subcircuits that are to be assembled, the structure of a

File:
PROCESSING

lc.bds

'+C - A+B

Nedist with behavioral information Netist after structmu processing

Figure 5.1: Structure Processing with Behavioral Descriptions

*
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datapath slice can be replicated, and size and placement hints can be provided to

lower level tools to produce an efficient design, as in Figure 5.2.

STRUCTURE A D A
PROCESSING

REG MU *.M MU

slice n-I slice 1 Sim 0

Nelist with Datapath Slice Structure Nelist after floorplanning and duplication

Figure 5.2: Structure Processing a Datapath Structure

Once the structure of the design is available, functional simulation can be
performed. The THOR simulator described in Chapter 13 is used for this purpose.
Many problems can be identified by simulating a design at this point, before actu-
ally generating the final design.

With a complete structural description of the design, DMoCt will then run
tools to generate the physical design descriptions, such as in Figure 5.3. Each
structureinstance view designates which "layout generator" tool is to be exe-
cuted to produce the "physical" view. These layout generators generally accept a
structureinstance view description, and will produce a physical description of
the design in OCT. In the case of VLSI design, files are also optionally produced
for the Magic layout editor [ScottS5].

Several post-processing operations can then be done on the resulting physi-
"cal database, such as design extraction, switch-level simulation, design rule veri-
fication and actually prepeaing the design for the fabrication vendor. This is done
"outside of the DMoct design manager in an application called DMpost that will
be discussed in the next chapter.

ti

-I .[a. .~. -. -.



Chapier 5 Design Maagemiem 49

FSM

LDATAPATH

S-LAYOUT . -I
GENERATION

SIV with connectivity and modules Final layout, ready for fabrication

Figure 5.3: Layout Generation from strucure-nistance views

5.3. CONTROLLING THE DESIGN FLOW
The user has a great deal of flexibility with Dmoct to manage the evolution

of a design. Given a design description, there are three distinct stages of design
generation, discussed in the previous section, each of which can be individually
controlled, or all can be executed with a single command. An important feature of
DMoct is that design parameters may come from several sources. Also, hierarchi-
cal designs can be regenerated in a controlled fashion, selecting parts of a design
to be regenerated unconditionally, as well as sections to ignore, to improve per-
formance while experimenting with design iterations.

5.3.1. Design flow from description to layout

The three distinct tasks for Dmoct to manage can be individually con-
trolled by DMoct. The tasks are as follows: I

1. Read the SDL files to produce parameterized struncturenmaster views

2. Substitute parameters, and expand instances and nets to produce the
stncture-instance view nedlist

3. Run designated tools on the structureinstance views to produce the
-physical layout in OCT. -
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Typically, DMoct is run in one step to produce the layout given one or
more SDL files. If an SDL file or design parameter has been revised and DMoct
is executed, the file modification time stamps are inspected to determine which
parts of a design should be regenerated, and only those sections that are inconsis-
tent will be regenerated.

In many cases, the designer does not want to run all steps of a design. For
instance, if a high level simulation is to be performed on the netlist, then there is
no need to spend the time creating the physical layout. Alternatively, if no
changes are made to SDL files, but new parameters are to be given, then there is
no need to check the SDL files. The actions taken can be explicitly controlled by
DMoct command fine options to perform only select design operations. In addi-
tion, the time-stamps can be ignored entirely, and all of the design files can be
regenerated unconditionally (as long as they are writable). If a design has been
generated incrementally, and the aesigner has manually prevented any consis-
tency checks, the full design should be regenerated from the beginning to make
certain that there are no hidden inconsistencies in the design.

5.3.2. Specifying design parameter values
There are many ways that parameters can be provided for controlling the

generation of a design instance. Default values can be provided in the database,
and parameters can be entered interactively, from files, or on the DMoct com-
mand line.

Default values can be entered in the SDL files when parameters are
defined, and are saved in the structure_master view database. The default values
are defined using arbitrary LightLisp s-expressions, and thus may be constant
numbers or strings, or may depend on other parameters, according to the order
that the parameters are defined in the SDL file.

If no value is provided for a parameter, the user will be prompted by
DMoct to enter a LightLisp expression for the value. If the designer knows in
advance which parameters are needed, such as the width of a datapath, these val-
ues can be passed on the DMoct command line. For small designs, this is within
reason, but for more than a handful of parameters, this is extremely cumbersome,
especially if the design will be regenerated.

For most significant designs, the parameters are entered using a parameter
value file, the name of which is specified on the DMoct command line, or
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requested interactively. This file contains one or more parameter name and value

pairs, each enclosed in parentheses. In cases where the design is synthesized from
a higher level description, this parameter file may be generated automatically.

5.3.3. Selective generation of hierarchical designs

DMoct will be routinely run more than once on a given design, as simula-

tions and revisions are followed up by final design generation. If only minor

changes are made to a design, the regeneration time can still be significant, since

all database files must be read in to verify design consistency. To speed up titis

process, Dmoct allows the user to designate parts of a design to regenerate, or

parts to ignore.

Sometimes, a minor revision is made to a subcell in a large design, leaving
most of a circuit unaffected. In this case, the circuit or circuits affected may be

named according to their design instance names on the DMoct command line.
This will cause all subcells of those designs to be checked for consistency, and

regeneration will be performed as needed. Then, all cells containing that design

will be regenerated, without checking other subcells. This often reduces the

regeneration time significantly, so that the new circuit may be simulated

promptly.

Alternatively, the designer may want to specify one or more subcells that

are not to be checked. An example of this is the task of attaching pads to the core
of a VLSI design; if the core is believed to be correct and consistent, then the

design could be quickly assembled without searching through the design hierar-

chy.

The capability to selectively disable time-stamp checking has proven valu-

able in many large designs, but must be used with care; the burden of checking
the design for consistency has been entrusted to the designer. Generally, a design

that was made through several iterations of DMoct should be regenerated from

the beginning to check the consistency of the full design before considering the

design finished.

53.4. Support for PCB and larger system designs

When designing systems beyond the scope of VLSI, some additional

design management issues arise. With VLSI design, the system is implemented as

a single end-product; a chip. When designing printed circuit board systems using

custom VLSI parts, the structure of the design will describe a system which has
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an electrical hierarchy differing from the physical implementation hierarchy. To a
circuit simulator, the system is a single entity; to the physical CAD tools, the sys-
tem is a collection of independently manufactured components, boards and back-
planes. Also, different CAD tools will view a single design in differing ways. For
instance, a PCB design tool considers a custom VLSI part to be a primitive pack-
age with specified pin locations, whereas a VLSI tool expects to find pads and cir-
cuitry.

To support the description of physical hierarchies, DMoct Can selectively
treat a complex circuit design as a component with no subcircuits, or as a com-
plete electrical design. The notion of PACKAGECLASS has been adopted to con-
trol the treatment of a circuit. From the command line, the designer can designate
how designs with specific PACKAGECLASS properties are to be treated. Exam-
pies of systems where the physical and electrical descriptions differ include VLSI
components, programmable logic devices, and multiple component modules.

5.3.5. Controlling CAD tools
DMoct reads the structurejnstance views of a design to determine which

tools are to be executed. As discussed previously, there are two types of tools;
structure-processors, which modify netlists and/or hierarchy, and layout-genera-
tors, which produce physical designs given parameters and netlists. Dmoct can
modify the parameter lists passed to these tools, and can avoid running them
entirely.

Often, the designer would like to pass additional instructions to tools with-
out having to modify SDL files or structuremaster views in Ocr. DMoct allows
additional parameters to be passed to tools, identified by the name of the tool. A
typical use of this is to request that a layout generator run in an automatic batch
mode, or to control the effort or technology used by a placement tool.

To debug new designs or new tools, DMoct can avoid running the
structure-processors or layout-generators entirely. Since structure-processor tools
actually replace the original structurejnstance view netlist with a new netlist,
possibly with a different design hierarchy, the original structure-instance view is
usually modified in-place, losing the original information from Dmoct. This
information can be saved by disabling structure-processing, so that the original
database can be investigated.I ' I
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5.4. THE DESIGN MANAGEMENT STRATEGY

Several underlying mechanisms are involved in managing the design flow.
Library support, parameter evaluation, and consistency checks are among the
tasks which must be performed by Dmoct. Also, clear and unambiguous user
feedback is a crucial part of Dmoct to guide the designer through a project, and
to help solve problems.

5.4.1. Libraries and Customization: The path-search mechdanism
To support libraries, DMoct uses a start-up file, generally referred to as a

lager file. The file follows a LISP-like syntax, and is essentially a set of parenthe-
sis-enclosed lists. The first element of each list is a key, and the remaining ele-
ments are directory names in the UNIX filesystem. The key, which can be an
arbitrary suing, provides a mechanism to categorize the search space. A full
search is specified by the file name and a key, and the file is searched for in each
of the directories listed under that key. The key names themselves are part of the
policies associated with the various tools.

A library of routines is available to read and search for files according to
the lager file. These routines are used by many of the LAGER tools. A path search
mechanism, Getpath, can be used by shell scripts to access the lager file data-
base. This mechanism is the cr-e of the library support within LAGER. When
tools (including Dmoct) start up, they usually read one or more lager files, which
include a common file maintained for all users and customized lager files for an
individual user or even for a particular design. If a given key appears in more than
one file, then each list of paths is checked in turn.

Following is an excerpt from a lager file:

(DMoct. adi

-lager/cellib/actel

(bin

-/bin
$LAGER/bin

i6

In this example, there are two search paths with keys DMoct.sdl and bin
respectively. Dmoctt itself uses the list of directories specified under the key
DMoct.sdl to search for SDL files. A default directory list for this purpose is

*I A
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maintained in the common lager file. Users can have private libraries referenced
S~in the lager Mie in the current or home directory, although it is strongly recom-

Smended that the common lager file should be updated and the private library
installed, so that others can use the new cells, and avoid duplication of effort.

5.4.2. LightUsp
LightLisp [Bakerg0] is an interpreter for a subset of Common LISP. It

has been chosen to provide parameter evaluation capability to DMoct, since it is
much smaller and mare portable than commercially available Common LISP
implementations.

DMoct is actually linked together with LightLisp libraries, and can be used
as an interactive LightLisp interpreter to debug LightLisp parameter evaluation
problems. It is possible to add user-defined functions to DMoct, by simple addi-
tions to a LightLisp start-up file (Dmoct. 11). Some of the functions included in
the standard file are:

log2 integer-length bitsize ifl stringify termpos termsize
mkpinstring mkpinlist getpin pinlist pin getval

These functions help to simplify common parameterized property declarations.

Each level of a design hierarchy uses a separate set (or closure) of variables
for parameter evaluation within that part of the design. For the most part, all vari-
ables are passed explicitly through a design hierarchy, to avoid ambiguity for sim-
ilar subcells. Dmoct allows the user to define global variables that are accessible
to all LightLisp expressions, either by defining them in the DMoct. 11 file, or by
defining them on the DMoct command line.

.4.3. UNIX File Time-stamp Checking

In addition to providing the flexibility of LightLisp to develop parameter-
ized designs, DMoct also identifies those parts of a design that are out of date,
and can selectively regenerate only those parts that have been changed, in anal-
ogy to the UNIX "make" utility. The basic rules for determining if a design will
be regenerated are listed below.

Structurejmaster view
A structuremaster view will be regenerated if there is a corresponding

SDL file that is more recent, or if any of the subcells of this design are more
recent.

B\
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Structure_instance view
A structureinstance view will be regenerated if the structure_master

view is newer, or if any of the subcell structure_instance views are newer. Also,

if any of the parameters have changed, the structure_instance view will be recre-
ated. In addition, the structureinstance view may depend on changes in foreign
files (other than SDL and OCT views). Any foreign files that affect a given struc-

hure_instance view should be named in a "depends-on" property under the struc-
ture_master view facet. Many structure-processor tools require foreign files

(e.g.: BDS files in Chapter 8).

Physical view and Magic files

With the exception of leafcells (CELLCLASS LEAF), DMoct does not

generate any physical views on its own. DMoct calls layout-generator tools
named in each structure_instance view if necessary. This is done if the physical

design is older than the corresponding structure_instance view, or if any of the

physical subcells are newer. The time-stamps are checked on magic files as well,

to determine if a design should be regenerated.

The user can instruct DMoct to ignore all file time-stamps, and regenerate

everything. Any time a tool is changed, a design should be regenerated, even if
DMoct thinks that it is up to date. Options exist to cause all views to be regener-

ated, starting from the SDL files, if they exist, or only regeneration of specific
views, either structure-master view, structurejinstance view, or physical, if

desired.

The selective design generation capabilities discussed in Section 5.3.3.
essentially disable time-stamp checking on select parts of a design. As a result, a
large circuit can be regenerated more quickly than if all parts of a design are

checked. This capability is intended to speed up design iteration, but the designer

should regenerate the complete design from scratch before submitting a design
for fabrication, to verify the consistency of the design hierarchy.

5.4.4. Error Diagnostics

DMoct collects all the error diagnostics into a single readable file. DMoct
passes the name of this diagnostic log file to the tools that it executes. The log

entries from DMoct are formatted to cut long lines, and to indent according to the
active part of the design hierarchy. As DMoct runs, diagnostics are output to indi-
cate what DMoct is doing. These diagnostics and more detailed information are

* .-- - . ~ -
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saved in the log file, which can be referred to in the event that problems should

occur.

Typical emrxs are often indications that one or more of the lager files are out of
date, or the desired SDL file is not installed in the correct place. DMoct gives the
user an opportunity to solve the problem without having to restart the design pro-
cess.

$.$. SUMMARY

DMoct is the design manager for the tools used in LAGER. With the Light-
Lisp interpreter built in, DMoct has powerful parameter evaluation capabilities.

Time stamp checking and design flow control over user-designated tools are
offered, along with clear feedback to the user. Also, library support makes a

wealth of existing designs available to users, to avoid duplication of effort.

REFERENCES.

[Baker90] W. Baker, "Volume 6: Light/Oct/Vem/Lisp," Oct Tools Distribution 4.0, U. C. Ber-
keley Electronics Research Laboratory, Berkeley, California, March 1990

(Scott85] Walter S. Scott, Robert N. Mayo, Gordon Hamachi, and John Ousterhout, editors,
"1986 VLSI Tools: Still More Works by the Original Authors," Technical Report No.
UCB/CSD 86/272, December, 1985

[Srivastava87] M. B. Srivastava, "Automatic Generation of CMOS datapaths in the LAGER
Framework," Masters Thesis, University of California at Berkeley, May 1987.

I,



Design Post-Processing

Marcus Thaler and Brian C. Richards

Once a design has been generated by DMoct, it has to be verified and
tested before the final data for fabrication can be created and shipped to the man-
ufacturer. Simulation data must be extracted from a structural or physical repre-
sentation, design rule checking (DRC) performed, CIF (Caltech Intermediate
Form) layer representation generated, and the verified design sent to MOSIS for
fabrication. DMpost supports a set of tools that perform these tasks, while hiding

all the details and command line options of the tools from the user. It essentially
provides the link between the OCT design database and the post-processing tools
by generating the required input files.

All the necessary technology parameters involved in a design are derived

either from command line options or read in interactively and are passed to the
tools called by DMpost, thus minimizing the possibility of erroneous usage.
DMpost itself is a UNIX C-shell script that can easily be updated and extended
as LAGER is updated with minimal portability problems. Many of the tools used
by DMpost are based on design files for the Magic layout editor.

.4
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6.1. CAPABILITIES
Figure 6.1 shows the role of DMpost in the design process. For functional

simulation using THOR, DMpost extracts behavioral models of cells and a corre-
sponding net-list from the structure-instance view. For logic level simulation

using IRSIM, circuit information is extracted from the physical view. To check

for design rule violations, generate the CIF layer representation, and edit the lay-
out, DMpost invokes the layout editor Magic. DMpost collects all the files

required by the simulators, including technology dependent files or files gener-
ated by Magic, into appropriate directories so the designer has easy access to
them for further processing.

6.2. THE POST PROCESSING TOOLS
The main tools involved in design post-processing or verification include

the Magic layout editor and the simulators, THOR and IRS IM.

6.2.1. The Magic layout program

Magic [Scott85] is an interactive tool for creating and modifying the geo-
metric layers of a VLSI circuit. All cell libraries are designed with Magic and
then converted to the OCT physical representation. In contrast to many other lay-

out editors, Magic has a wide range of capabilities beyond color painting. For

example Magic performs on-line design rule checking during editing as well as
in batch mode on complete designs, based on given layout rules for a particular

technology. One particularly important feature is that the MOSIS implementation

service provides complete design rules in the Magic technology file format.
Magic also contains a hierarchical circuit extractor which provides netlists for
the circuitry, useful for logic level simulation or for Spice circuit simulation.

Magic is a symbolic layout editor that uses simplified design rules and cir-

cuit geometrical structures, making layout editing easier. This style of layout
depends on a uniformly spaced grid in both X and Y directions where the grid
size represents the minimum feature size. Designs in Magic use lambda based

rules. Magic is restricted to Manhattan (non-diagonal) designs, but this has
rarely been found to be a limiting factor, and has considerable advantages. In

* LAGER, the layout editing capability of Magic is only used for library develop-
* ment. It is not used for layout generation once the design with DMoct is under

way.
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6.2.2. THOR

THOR [Alverson88] is a functional simulator based on hierarchical behav-
ior models, including register-transfer level down to the gate level models. In
LAGER, THOR models accompany all library cells which are part of the library
installation, such as PLA's, RAM's, adders, latches, logic gates, etc. When appro-
priate or necessary, the designer describes higher levels in the design hierarchy J
with more complex models. Since THOR is a compiled simulator that models
behavior above the transistor level, THOR simulations run much faster than a cor-
responding switch-level simulation using IRS IM, described in the next section.

THOR is equipped with a graphical user interface, the analyzer, that

interactively presents the simulation results. The analyzer reports results in the
form of timing diagrams as they would appear from an actual logic analyzer. Sig-
nals are displayed and updated as the simulation proceeds, and the user can pan
and zoom through the data. Signals can be viewed individually or as busses, and
their order of appearance can be rearranged interactively.

In LAGER, the behavioral models are parameterized and stored as string
properties attached to the OCT facets of the cells. They can be extracted from the
structure_instance view with MakeThorSim, along with a netlist of all the mod-
els used in the entire design. In addition, MakeThorSim generates a call to the
analyzer for displaying all nets to which formal terminals are attached.

6.2.3. IRSIM

In contrast with the THOR functional simulator, IRSIM [Salz891 is an
event driven logic or switch level simulator for nMOS and pMOS circuits, and
models first order timing behavior. Two transistor models are supported by

IRS IM. The first is a switch model where each transistor is represented by a volt-
age controlled switch. The second is a linear model where each transistor is mod-
eled by a voltage controlled switch in series with a resistor, and each node in the
circuit has a capacitance attached to it.

The stimuli and user commands can be passed to the simulator from either
a start-up command file or interactively by the user. The first mode is typically

used for initialization. The simulation results are displayed through an interface
similar to the analyzer graphical interface used by THOR.

--- .-- - .. ,- --- . -- - -- - --..-- -
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6.3. RUNTIME OPERATION
DMpost must be run from the directory containing the top level or work-

ing directory of the design. DMpost will create a subdirectory in the working
directory, if it does not exist, to store the DMpost and simulation files for THOR
and IRSIM.

As mentioned earlier, DMpost is a UNIX C-shell script and is controlled
either by command line options or interactively asks for required parameters. As
with most LAGER tools, DMpost records all runtime information produced by
DMpost itself or by any tool called by DMpost and saves the information in a
log file. In addition, DMpost informs the user about each task as it is executing,
which is helpful in monitoring progress on large, time-consuming designs.

To locate all of the technology and configuration files used by the different
tools, DMpost uses the GetPath mechanism provided by LAGER.

6.3.1. Organization
The input to DMpost can either be a structureinstance view or a physical

view of a design.
Figure 6.2 shows an overview on the organization of DMpost for a design

example named MyDesign. Given the structure_instance view, DMpost, calls
MakeTho rS im to generate the MyDesign.csl file which contains the net-list and
the THOR model files. Given the physical view, DMpost uses Magic for further
processing. If the physical representation exists only in OCT, DWpost converts
the physical view to a CIF representation which is readable by Magic. On the
other hand, if the Magic files already exist, DMpost will copy all Magic files
into the layout directory. This forces Magic to regenerate all extraction files,
making sure they use identical technology parameters. Otherwise, Magic would
use already created extraction files. Once the extraction files are generated,
Magic will flatten the design into one single simulation file MyDesign. aim in
the layout directory.

DMpost is also capable of passing commands to Magic to run a design
rule check (DRC), generate a CIF file according to the chosen technology and
process parameters, or start Magic interactively, eventually resulting in an
updated set of Magic files.

" '_ A
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6.3.2. User Control
The commands that the user can give to DMpost can be divided into four

categories.

* Options for specifying the desired post-processing operations.
* Commands for generating THOR simulation files, or extracting eleCti-

Cal Circuit information for IRS IM.
* Commands for enabling design rule check to verify that a design can be

Commands for preparing a CIF file, and format a request to MOSIS to
fabricate a chip.

With the exception of running Magic and preparing for MOSIS, the
options may be used in any combination or order. If no options are given then
DMpost will extract the circuit, perform a design rule check, and create a CIF
file.

DMpost requires the user to specify the technology used for post-process-
ing. The minimum feature size must be given in microns per lambda, where 2
lambda corresponds to the minimum feature width. Presently, 0.6, 0.8, 1.0, and
1.5 microns per lambda are supported. The p-well, n-well or generic process well
type must also be defined, where the latter allows the fabrication vendor to decide
which well type should be used.

Sev,•ral options specify where the fileg generated by DMpost are placed.
The destinations of layout files, simulation nedlist fiies, and run-time diagnostic
log files can be changed. DMpost can be run in verbose mode, to provide diag-
nostics to the user, or the operations can be previewed without actually running
any tools. Also, to save space, files can be used directly from libraries where
appropriate, and post-processing files can be deleted from previous post-process-
ing attempts. Other options affect THOR model generation, such as disabling
automatic generation of the analyzer. This is useful if the user wants to explicitly
control the generation of the analyzer or an alternative user interface.

6.4. SUMMARY
DMpost supports designers during the verification phase. From behavioral

simulation through submitting a fabrication request, DMpost offers a consistent
interface to each application.

S
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Hierarchical Tiling

Jane Sun and Brkan C. Richards

TimLager is a hierarchical tiler which exploits the feature for which
VLSI technology is well suited - the implementation of regular arrays of subcells.
It is a general purpose, hierarchical macrocell layout generator that is used to gen-
erate parameterized bit-slice modules such as adders, registers, multiplexers and
parameterized array-based modules such as RAMs, PLAs and ROMs. TimLager
assembles the layout by abutting instances of leafcells, which are the lowest level
entities seen by TimLager and represented by OCT physical views. TimLager
allows high level control over construction of macrocells through its tiling speci-
fication language.

A key characteristic of a TimLager macrocell is that all the interconnec-
tion between leafcells is made through abutment of the leafcells. The leafcell lay-

out can be either manually designed or generated from the macrocell place and
route tool, Flint:. Since TimLager macrocells are assembled by placement,

, leafcelis must be pitch-matched and no routing is involved in the macrocell gen-
eration. Hence, the area and performance of the macrocell can easily be predicted
based on the leafcell characteristics.
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The macrocells produced by TimLager can be connected by Flint to
other datapath blocks, standard celiS, or TimLager macrocells to generate a

macrocell for the next higher level in the design hierarchy.

7.1. USER INTERFACE

To generate a tiled macrocell with TimLager, two distinct sets of inputs
must be provided. The first is the leafcell layouts and the (parametrized) tiling

specification for the generic macroceil. The second is the specific macrocell name
and parameter values for a macrocell instance. Usually, a TimLager user will
only need to provide the second set, because the leafcell layouts and tiling speci-
fication for the generic macrocell are already designed by a developer and
installed into the TimLager cell library.

An example of a TimLager macrocell is an N-bit latch. The general block
diagram and the actual layout for a 4-bit macrocell is shown in Figure 7.1, while
the SDL description of the black-box view is given in Figure 7.5. The latch leaf-
cells are the memory cell, latchcell, and the control signal buffers in the cell,
latchctl. A tiling specification describes how the leafcells are abutted to form the
N-bit latch. A strength of TimLager is its ability to allow the tiling specification
to be dependent on parameters. In this example, the word width, Nbit, is the only
parameter, as shown in the SDL description. To have TimLager generate a 4-bit
macrocell, the user needs only to provide the specific instance name, such as
"my jatch", and the Nbit parameter value, 4.

A PLA (programmable logic array) is another example of a TimLager
macrocell. The leaftells for this macrocell are the AND-OR plane cells and the

input and output signal drivers. The tiling specification describes how the leaf-

cells are abutted to form the AND-OR plane circuit and the driver circuits that
buffer the input and output signals to and from the AND-OR plane. The parame-
ters are the bit patterns of the AND and OR planes, as well as the input word and
output word width.

7.2. MACROCELL DESIGN

7.2.1. Design Flow
The design flow for a TimLager macrocell is shown in Figure 7.2. The

developer needs to determine the black-box view of the macrocell (i.e., what are
the I/O terminals), what the parameters are, what set of leafcells are needed, and
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IN[Nbitj OLrrNbit)
in Iatchcell out

parameter:
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aleafell terminal name
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ltac/well Nbit =4

latcheell

latchctl

Figure 7.1: Latch Macrocell: block diagram and layout
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how instances of the leafcells are placed to compose the macrocell. The developer

then uses this specification to create a set of leafcell layouts, an SDL file and a til-
ing procedure. The tiling procedure describes how the macrocell is constructed
from the leafcell instances, as a function of the parameters.

Once the basic macrocell design is complete, TimLager can generate
various layout instances, given the instance name and parameter values from the
user. The complete set of inputs to TimLager, one from the developer and the
other from the user, is shown in Figure 7.2.

macrocell user input:

macrocell developer input: parameter values,
instance name

tiling procedure
.c or 0) black-box view

leafcell layouts (.sdl, SMV)
( .Mag) ....................

.0 or SlVs

Ot physical view

TimLager

macrocell layout
(Magic fornat or
Oct physical view)

To Flint or TimLager

Figure 7.2: TimLager design flow

To actually generate a macrocell layout, TimLager reads the leafcell lay-

outs in the OCT physical format, and loads the tiling instructions either from the
structure instance view or the .o object file compiled from the C tiling description.

The macrocell instance name and parameter values are contained in the structure

I
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instance view. TimLager can be invoked manually or it can be run automatically
through DMoct.

TimLager produces the macrocell and its subcell layouts in two possible

formats: the OcT physical view or the Magic file format. The Magic layout files
are deposited in a directory called "layout" residing in the current working direc-

tory.

The rest of this sectinn elaborates on the various phases of the design flow.

7.2.2. Leaftell Layout

The main goal at the leafcell level is to design the minimum number of

leafcells needed to form the macrocell. Typically, the leafcell layout is manually

designed with the layout editor Magic. Instances of the leafculls can be over-

lapped, rotated, mirrored, and then abutted v.) form the macrocell array(s). When
array dimensions are large, signal lines formed by connecting common signals

among leafcells will have significant load capacitances, and this must be given

consideration in the circuit design process. For some applications, the rows and
columns of the array need individual control circuits, or they may need circuits

that interface them to other (external) circuits. In all these cases, the developer
also needs to design peripheral leafcells such as driver and latch circuits. Though
not mandatory, an efficient design style is to constrain control, clock, data, and

power signal lines to run straight through the entire leafcell so that they connect

upon leafcell abutment to form the global line. Metal I and metal 2 lines should

run mutually perpendicularly and should be used for global signals; polysilicon

lines should be used only for connections local to the leafcell. The total area of a

leafcell layout is heavily influenced by the number of vias in it, so that number

should be minimized.

The leafcells in the current TimLager cell library have been designed

using the MOSIS scalable design rules and are compatible with minimum channel

lengths of 0.8, 1.2, 1.6, 2.0 and 3.0 microns (lambda = 0.4, 0.6, 0.8, 1.0, 1.5).

7.2.3. Tiling Procedures

The tiling procedure instructs TimLager how to generate the macrocell

layout by placing and abutting (tiling) leafcell instances. The procedure can be
written in the C programming language or directly in SDL. In either case, the user

can express the desired design hierarchy, leafcell tiling dependency on parame-

ters, and placement transformations. Both specification methods are described
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leafcell
instance 2

Ileafcell leafcell leafceliinstance I instance2 instance 1

C procedure C procedure
Addright(leafccllEND); Addup(leafcell,END);
Addright(leafcell,END); AddupoeafcellEND);

SDL procedure SDL procedure
(subcells (subcells

(leafceli ((instance (X 0)))) (leafcell ((instance (Y 0))))
(Ieafell ((instance (X 1))))) (leafcel ((instance (Y 1)))))

Figure 7.3: Placement functions (in C) or properties (in SDL)

here. There are other macrocell generators such as Mocha Chip[Mayo86] which
allow graphical specification of the macrocell structure in terms of leafcell lay-
outs, but they do not support hierarchy, which is essential for use within LAGER.

C Tiling Method

To support the C tiling specification, TimLager provides a library of
placement functions used for procedural tiling of leafcell instances, as well as

parameter access functions used to read parameter values from the structure
instance view.

The two placement functions Addrighto and Addupo are illustrated in Fig-

ure 7.3. TimLager tiles the array in the upward direction or toward the right of
the current array of leafcells already tiled. An Addupo performed on a leafcell
will place an instance (of the leafcell) by aligning the bottom left corner of the

instance with the top left corner of the current array. Performing an Addright0 on
a leafcell will place an instance by aligning the bottom left corner of the instance
with the bottom right corner of the current array. In Figure 7.1, the latch is a
one-dimensional vertical array, so only AddupO is used. Both the Addupo and
AddrightO functions use the same arguments. The syntax of the two functions

are:

_ _ Ai
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Addup(leaftell name, (optional arguments], END)
Addright (leafcellname, (optional arguments], END)

The optional arguments OVERLAP, MX, MY, R90, RI10, R270, [OFF-
SETX, integer], [OFFSETY, integer], specify geometric transformations in which
the leafcell instance is overlapped, mirrored, rotated, or offset when it is placed.
Optional arguments of the form [TDold.terminal-name,ALIASnewter-
minal name, INDEX, integer] allow the instance terminal names to be aliased
and indexed at the parent level, as illustrated by the latch example. Thus the ter-
minal names on the leafcells can be changed arbitrarily to names more pertinent
to the design as seen at the top level. The optional arguments NONE, LEFT,
RIGHT, TOP, BOTTOM, indicate which sides of the leafcells have terminals that
are to be promoted to parent terminals of the macrocell.

The C tiling procedure for the latch example of Figure 7.1 is shown in Fig-
ure 7.4. Even numbered latchceU leafcell instances are placed without geometric
transformation, and odd-numbered latchcell instances are mirrored about the
X-axis as specified with the argument MX. All the latchcell instances have input
and output data terminals that become parent terminals under aliased and indexed
names, IN and OUT, respectively.

AddupO and AddrightO also allow optional arguments that provide a
stretching mechanism to pitch-match one macrocell to another, and a mechanism
for adding metal feed-through lines between cells. These options are useful for
optimization of higher level cells that are constructed from multiple TimLager
cells. In particular, these features are used in the datapath optimization tool, dpp,
as discussed in Chapter 10.

The AddrightO and Addup0 functions specify how cells are placed relative
to cells that have already been placed. Hence the macrocell structure depends on
both the order and the arguments of the function calls. AddupO and AddrightO
functions can be embedded in for-loops to form parameterized array structures.
They can also be embedded in if-else statements to make conditional choices of
which cell to place or the particular geometric transformation to apply. This is
shown in the latch tiling procedure, where the parameter is Nbit. The for- loop is
controlled by Nbit so that instances of the leafcell latchcell are tiled Nbit times.
Inside the loop, the if-else statements select the MX geometric transformation for
odd-numbered latchcells, and no mirroring for even-numbered latchcells.

II

II
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/*

* latch.c: tiling procedure for an N-bit latch.

#include "TimLager.h"

latch ()

int i,Nbit;
Nbit-etparan("Nbit");

Opean nopevc (Read ("name"));
I*

*tiling procedure
*1

/* addup control leafcell */

kddup("latchctl",BOTTOM, TD, "ld",ALIAS, "LD",
TD, "phil",ALIAS, "PHIl",

TD, -ph12-,ALIAS, 'PHI2",END) ;

/* addup one-bit latch leafcells */
for (i=O;i<Nbit; i++){

if ((1%2) -- 0)

Addup("latchcell",RIGHTILEFT, TD, "in",ALIAS, "IN",

INDEX, i, TD, "out",ALIAS, "OUT", INDEX, i, END);

else

Addup("latchcell",RIGHTILEFT,MX, TD, "in",ALIAS,

"IN", INDEX, i, TD, "out",ALIAS, "OUT",INDEX, i,END);

Close_newvellO);
)

Figure 7.4: C tiling procedure for latch macrocell

For complex macrocells, it may be desirable to introduce additional levels
of hierarchy in the tiling procedure. This means that the subblocks are created
which in turn are tiled to form the top level layout. To express hierarchical layout,
the developer writes the tiling procedure for each individual block layout as a C
function, and calls them in such an order so that the subblocks have been gener-
ated before we use them at a higher level.

Each of the subblock tiling procedures must call the Openunewcell
(block name) library function for TimLager to start placement at the lower-left
corner (0,0) for the block named, block name. The end of the block tiling proce-
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; latch.sdl top-level SDL file for latch.

(parent-cell latch)

(parameters Nbit)

(layout-generator TimLager)

(net in (width Nbit) ((parent IN)))

(net out (width Nbit) ((parent OUT)))

(net Id ((parent LD)))

(net phil ((parent PHI1)))

(net phi2 ((parent PH12)))
(net Vdd ((parent Vdd)))

(net GND ((parent GND))) )

(end-sdl)

Figure 7.5: Top-level SDL for latch macrocell

dure must call the Close_newcello library function which marks the end of the
block tiling procedure. The latch tiling procedure shows the use of these two nec-
essary library functions.

For DMoct to integrate a TimLager into a larger design, the developer
must create an SDL file which specifies the black-box I/O-terminal view of the
macrocell and the macrocell parameters. Hierarchical tiling procedures need only
be accompanied by a single SDL file for the top-level. The top-level SDL file for
the latch example is shown in Figure 7.5.

The tiling procedure for each macrocell is compiled and stored in its own
directory of the cell library, along with associated OCT physical view of the leaf-
cells. At run time TimLager dynamically links the required procedure and exe-
cutes it. The parameter values are read from the structure_instance view and a
physical view is generated for the macrocell layout.

SDL Tiling Method

The macrocell developer can also describe the complete tiling procedure in
with the SDL language. In this specification method, the SDL for the top-level
macrocell gives the black-box view, and it also describes how lower level blocks
or leafcell instances are geometrically transformed and placed to form an array.
The SDL file for any lower level block describes in turn its black-box view and
tiling procedure. Finally, the there must be an SDL file for each inidividual leaf-
cell type, showing the black-box view of that leafcell. Hierarchical description
and parameter access are natural features of SDL, as is promoting a leafcell termi-
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nal to a parent terminal of the macrocell. Also, loop and conditional procedure
control is provided by SDL LightLisp expressions. In the top level SDL tile, a
"-s" flag must be specified for the layout-generator TimLager. The flag indi-
cates that the tiling procedure information is given in the structureinstance view
of the macrocell.

The SDL tiling procedure for the latch example appears in Figure 7.6. The
individual leafcell SDLs are not shown. To describe the equivalent of Addup0)
and Addrighto placement, the user attaches X and Y properties to each leafcell
instance, as illustrated in Figure 7.6. The X or Y property takes on an integer
value or an expression that evaluates to an integer. Note that the X and Y proper-
ties specify the absolute position of the instance, as opposed AddrightO and
Addupo, which place the instance relative to the instances that have already been
placed. The top and block level SDLs are most conveniently written in the pinlist
style (as opposed to the netlist style), since placement properties can then be con-
veniently attached to each instance as it occurs.

For the latch example, no X property is required for the latchcell instances,
since they are tiled in the vertical direction only. Also note that the order of decla-
ration of instances does not affect the placement. SDL is a non-procedural lan-
guage, and all the entire text of the SDL file is read before any action is taken. To
apply geometric transformations, the user can attach T properties to any leafcell
instance. A T property can take one of the values: "NONE", "MX", "MY",
"R90", "R180", "R270", "MXR90", "MYR90". Also, the developer can rename
terminals by placing an ALIAS property on the terminal. The new terminal name
and must then be used to refer to that terminal at the next level of the SDL hierar-
chy.

C Tiling versus SDL Tiling

Originally, TimLager supported only C language tiling procedures. The C
language offers the macrocell developer powerful constructs that can be used to
describe complex and detailed tiling procedures. However, this method did not
support timestamp checking of individual blocks and leafcells in a hierarchical
macrocell. Since the use of SDL already had automatic timestamp checking and

naturally provided all the non-placement and transformation features that the C
description provided, SDL was enhanced with the X,Y, and T property options to
support tiling tasks.
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I)
;latch.sdl: top-level SDL and tiling procedure for latch.

(parent-cell latch)
(layout-generator "TimLager -s")

; go through structureinstance view to get tiling info!

(parameters Nbit);
-. top-level view of latch macrocell-----------

(instance parent

(IN IN (width Nbit))

(OUT OUT (width Nbit))

(LD LD)

(PHI1 PHIl)

(PH12 PH12)

(Vdd Vdd)
(GND GND) ))

; ------ pinlist and tiling procedure------------

; addup control leafcell( subce i l

(latchctl ((CTRL (Y 0))

* (instance CTRL

(ld LD)

(Vdd Vdd)

(GND GND)

(phil PHI1)

(phi2 PH12)

addup one-bit latch leafcells

(dotimes (i Nbit)

(subcell (latchcell ((LATCH (cond (evenp i)
(Y (+ i M) ))

(subcell (latchcell ((LATCH (cond (oddp i))

(Y (+ i 1)) (T "MX-)) )))

(instance LATCH

(in IN (term-base i) (net-base i))

(out OUT (term-base i) (net-base i)))

Figure 7.6: SDL Mling procedure for the latch macroceli
-
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Besides automatically gaining the timestamp checking capability, the mac-
rocell developer can easily instruct TimLager to tile leafcells that are actually
macrocells produced by Flint. In this case, the developer can succinctly write
the black-box view of a macrocell and a simple tiling procedure all in one file.

The cost of using the SDL for tiling procedure specification is in layout
generation speed. The extra expense over using C tiling procedures is incurred
during generation of the macrocell structure~instance view from the
structure.master view. Using a C tiling proceduie, TimLager dynamically loads
the .o tiling procedure, and then runs the tiling. When SDL tiling procedure are
used, structureinstance views are generated for each leafcell type (recall that
each leafcell type has an SDL) before TimLager can actually perform tiling. If a
macrocell design includes many leafcell types or the tiling procedure includes

many control loops, the structure-instance view generation time is significant
compared to the actual TimLager run time.

For simple macrocell array structures, with few leafcell types, it is often
easier to use the SDL tiling method. For large hierarchical macrocell designs, it
can be better to use the C tiling method or a mix of SDL and C tiling. For exam-
pie, the developer could write a C function for complex and detailed tiling of
lower level blocks from leafcells. Then, the placement of the blocks for the over-
all macrocell could be described one top level SDL file, along with the macrocell
black-box view.

7.3. TILER TECHNIQUES AND ALGORITHMS

As discussed in the previous sections, the heart of TimLager is a small set
of C functions that give relative placement instructions for tiling leafcells and
subblocks, both collectively referred to as subcells in this section. The routines
Opennewcell0, AddrightO, AddupO, and Close..newcello are called to produce
the layout of the design. The same routines are called when using SDL tiling, but

in this case they are called from inside TimLager itself instead of explicitly in a
developer-supplied C function.

Several characteristics are required of subcells that are to be tiled. The cells
are tiled so that adjacent cells automatically abut, without requiring specific trans-
lation information. This tessellation of cells is guided by the tiling boxes of each
cell. By default, the tiling box is the bounding box of all the layout geometries. In
many cases, however, there are geometries extending beyond the desired tiling

box, so the developer may give a specific tiling box by placing the label "obox" in

aJ
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Figure 7.7: The two tiling boxes maintained by TimLager

a Magic design file, or the "OVERLAP" layer in an OCT physical view. This is
often useful in CMOS designs, where space can be saved by sharing wells and
contacts on the boundary of adjacent subcells.

The developer may specify that either the bounding boxes or the OVER-
LAP boxes of adjacent cells should abut. To support both alternatives, Tim-
Lager maintains two current tiling location coordinates, one for the OVERLAP
box and another for the bounding box. The locations designate where the lower
left-hand coordinate of the next subcell can be placed. If the developer specifies
the OVERLAP option in the Addup() or Addrighto function, the OVERLAP
coordinates are used, otherwise the bounding boxes are aligned (default).

TimLager maintains simultaneously a bounding box and an OVERLAP
box for the cell under construction, both of which contain all of the respective
bounding and OVERLAP boxes of subcells (see Figure 7.7). These boxes are
updated following each Addupo or Addrighto call, along with the current tiling
location pointers. AddupO or AddrightO are identical, except that the AddupO
function resets the next OVERLAP box tiling point to the top-left corner of the
current OVERLAP box, and similarly updates the bounding box tiling point.
Addup0 and Addrighto both call a more general routine that performs the actual
tiling.

| .. .... .. . . .. ........ ... ... .
__
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When a subcell is tiled, the tiling box of the subcell is transformed accord-
ing to AddupO or Addrighto command arguments. The resulting tiling box is
then translated so that the lower left-hand corner of the tiling box lies on the
appropriate current tiling location.

The terminals of a subcell can be promoted to the next level of hierarchy if
(and only if) they are on the boundary (bounding box or OVERLAP box) of the
cell. To be promoted, they must also be declared as parent terminals in the SDL
file.

If a C routine is used for the tiling, each call to Addup0 or Addright0 must
specify which terminals (if any) should be promoted. Each call has the form
Addup (subcellname, termsidemask, <other arguments>, END). The termside-
mask is an integer which specifies the sides of the subcell from which terminals
should be promoted. The macro NONE or any bitwise-OR combination of the
macros LEFT, RIGHT, TOP, BOTTOM can be used It is also possible to specify
by name exactly which terminals to promote (on any side)

AddupO and Addrighto can also take TD (terminal data) arguments speci-
fying that any given terminal be renamed (aliased) and possibly indexed when
promoted. The alias specified must correspond to a terminal declared in the SDL
file. The format of a TD specification is Addup(..., TD, olCdterminal_name,
ALIAS, newterminalname, INDEX, integer,...). The INDEX argument, if any,
will be appended to the new terminal name inside square brackets following the
terminal name. This conforms with LAGER bus naming conventions.

If the SDL tiling method is used, the terminals of a subcell instance are
promoted to the tiled design only if they connect to a formal or "parent" terminal
in the structure-instance view, through a net. The parent terminal name in the
structure-instance view is given to the terminal in the layout. This has the advan-
tage of unambiguously defining terminal names, without regard to the position of
the terminal in the subcell. Also, the structure instance view may be generated by
a tool other than DMoct as long as it conforms to the LAGER policy, so that tiling
commands can be created or modified by structure-processors.

When tiling according to a C routine, TimLager uses the Getpath file
search mechanism to find the files containing the tiling routine and the leafcells.
The Getpath keyword TimLager.o in the lager file delimits a list of directo-
ries to search for TimLager tiling routines. This list is usually machine-depen-
dent, since the ".o" files are created for each machine.

t*
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Figure 7.8: TimLager cell library organization

7.4. CELL LIBRARY

7.4.1. Library Organization
Figure 7.8 shows the directory organization of the main TimLager cell

library. The library consists of individual directories for each macrocell, located

under the blocks directory. Every macrocell is represented in the library by a

top-level SDL and a C tiling procedure, or by one or more SDL files that also con-

tain the tiling procedure. Each SDL file has a corresponding structure master

view. The leafcell directory contains the physical leafcell layouts in Magic for-

mat and Ocr physical format. The THOR directory contains THOR behavioral

models for functional simulation. Current LAGER cell library policy places the

machine independent files and OcT views in the blocks directory, while the

machine-dependent .o files reside in a separate generators directory.

The organizational structure of files for a TimLager macrocell allows a

"family" of macrocells to be conveniently placed in one macrocell directory.

Macrocells are considered a family if they serve the same type of function and

share leafcells. For example, a PLA macrocell and FSM macrocell can be imple-

mented with the same input and output plane leafcells, but need different 1/0 leaf-

cells on the border of the main array (the FSM will need latches). In one generic

directory, the individual SDL, structure-master view, and C descriptions reside

along with a common leafcell directory that contains leafcells that are shared by

A10
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both types of macrocells, and along with other leafcell directories that contain
leafcells specific to one of the macroceil types.

Table 7.1 lists the macrocells currently installed in the main TimLager
cell library. All but one are parameterized array-type cells that serve PLA, mem-
ory, or I/O pad functions. Clock is just a single leafcell but still is closer to the
TimLager design paradigm than to the standard cell or datapath libraries. Tim-
Lager cells designed for datapaths are stored in a separate dpp library, as dis-
cussed in Chapter 10. The TimLager. kappa library contains special purpose
macrocells for the kappa processor. These three libraries represent the Tim-
Lager macrocells provided as part of the standard LAGER distribution. Users
can create their own TimLage r libraries to complement the standard libraries.

7.4.2. Extending The Library

In the case that the macrocells provided by the TimLager cell library do
not meet the particular functional or performance requirements of a user's appli-
cation, the LAGER library management philosophy allows the user to design and
install their own macrocells. The guidelines presented here apply specifically to
the main TimLager library cells. Guidelines for datapath cells appear in Chapter
10.

The user may extend the TimLager library by putting the new macrocell

design in either the main TimLager library directory or in a directory outside of
the LAGER directories. Either way, the user should follow the directory organiza-
tion presented in the previous section. If the user or developer prefers, all the files
and views including the .o files for a macrocell may reside in one directory. The
user's lager file should be updated to contain the names of any such additional
directories.

The leafcell layout files are called leafname.mag. The C tiling procedure
must be named macrocell.c, where macrocell is the name of the new macrocell.
To use the TinLage r C function library, it is only necessary to include a header
file TimLager. h at the beginning of the macrocell.c file.

After installing all Magic, SDL and C files, the user must create the
structuremaster view (by running DMoct), the tiling .o file (by running the C
compiler) and the OCT physical views (by running ma g2oct on each Magic
leafcell file). At this point, the user can run DMoct and TimLager to generate d

instances of the new macrocell. To complete the installation, the developer should

II
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macrocell purposeparameters

pla Programmable logic array. Implements the input and output planes of

a truth table. Macrocell parameters are the bit-panem of the planes.

fsm This is the pla macrocell with input and output latches. Can be used as
a finite state machine.

ram3T Dynamic RAM with optional ROM locations. Macrocell parameters

are the word size, memory capacity, and ROM addresses and con-

tents.

dpram Dual-port RAM. Macrocell parameters are the word size and memory

capacity.

fifo Static first-in-first-out stack. Macrocell parameters are the word size,

memory capacity and flag option.

latch Clocked semi-dynamic latch with load control. Macrocell parameter
is the word size. Used only for non-datapath designs.

clock Two-phase non-overlapping clock generator. No parameters.

scpads I/O pads for CMOS technology. The cell library provides a set of pads
for 3micron, 2micron, 1.6micron and 1.2micron feature sizes. Each set

consists of a variety of leafcell pads including input, output, Vdd,

GND, Comer,... type pads. To generate the chip pad frame, appropri-

ate pad leafetIls are tiled in a row by TImLager to form a side of the

frame. Scpads library does not provide a top-level SDL. The user

writes a SDL tiling procedure specifically for each application.

Table 7.1: Example Macrocells in TimLager Cell Library

create THOR functional models, as well as documentation in textual and sche-
matic form. For example, the documentation for the latch example is shown in
Figure 7.9.

* :I
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MACROCELL-NAME latch

SYNOPSIS

The latch macrocell is an n-bit clocked semi-dynamic register.

INTERFACE

Input Terminals: IN[i, i=-0,l,...,width-1.

Output Terminals: OUT[i], i-O,l,...,width-l.

Control Terminals: LD. LD=load.

Clocks: PHI1 and PEH2 for two phase non-overlapping clock sig-
nal.

PARAMETERS

width - number of bits stored in latch

DESCRIPTION

The n-bit width data is written into the latch at the IN[i] terminals
and is read out at the OUT[ii terminals. To write, the LD control
signal should be 1; during read, the LD signal should be 0. Each
storage cell (contained in the leafcell latchceli) in the n-bit latch
is clocked by PHI, P1I2, and their complements, and each cell
is controlled by LD and its complement. The complements are
generated locally in a separate cell (contained in the leafcell
latchcd).

SIZE

leafcell: W = 164 lambda, H = 49 lambda

macrocell: W = 164 lambda, H = (49* width + 64)

PERFORMANCE

A 10-bit latch has been fabricated on a 3 micron run, and its func-
tionality and performance verified at 20MHz.

LAYOUT-GENERATOR TimLager

FILES latch.sdl, latch.c

Figure 7.9: Documentation for Latch Macrocell

7.5. SUMMARY
Among the LAGER ensemble of layout generation tools, TimLager sup-

ports the tiled layout design style. Starting from a parameterized tiling procedure
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and associated leafcell layouts (from the cell library), and from the user-specified
parameter values, the tool constructs bit-sliced or arrayed macrocells by leafcell
abutment. The tiling procedure is a structural specification of the macrocell in
terms of placement of leafcell instances, and can be described either in C or SDL.
Since there is no routing involved in the macrocell generation, the user can easily
and accurately predict macrocell area and performance from knowledge of the
pre-designed leafcells, and use the predictions to make higher level design deci-
sions.

Typical circuit layouts generated by TimLager are datapath stages in the
bit-slice design style, rows of I/O pads, static or dynamic RAMs, ROMs, PLAs,
and crossbar switches. For macrocells that have relatively simple structure and
parameters, such as the memory circuits and I/O pads, TimLager is self-suffi-
cient. However, some macrocells such as datapaths (complex structure) and PLAs
(complex parameters) are generated with the assistance of strut ture processors.
LAGER provides the structure processors dpp for datapaths and plagen for
PLAs. dpp takes care of the routing between stages of the datapath, whereas
TimLager itself only tiles each separate datapath stage. plagen allows the
specification of PLAs at a high level and translates the specification into the low--
level inplane and outplane parameters used by TimLager.

REFERENCES:

[Mayo86] R. Mayo. Mocha Cho: A System for the Graphical Design of VLSI Module Gener2.
tors. IEEE International Conference on Computer Aided Design, 1986.
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Standard Cell Design

Bob Reese and Barry Boes

One of the most efficient ways to implement random logic is through the

use of standard cells. For this purpose, LAGER contains a cell library of standard
cells along with logic synthesis and place-and-route tools. The standard cells can

be used to create blocks of random logic to be used in conjunction with other
LAGER library blocks (datapath blocks from the dpp library and/or special-pur-

pose tiled macro cells from the TimLager library), or the design can consist
solely of standard cells. When creating a standard cell design, the user can explic-
itly specify the standard cell netlist, or synthesize the standard cell netlist from a

high-level description.

8.1. SPECIFICATION

One method for specifying a standard cell design in LAGER is explicitly to
specify the netlist as an SDL file. Figure 8.1 shows a schematic of a simple

a ,decoder built using standard cells. The SDL file which describes the decoder is
also included in Figure 8.1. The components invf 101 and nanf2ll are cells from

the standard -11 library. The statement (layout-generator Stdcell) in the
SDL file causes DMoct to use the Stdcell script to produce the layout for this

design.

__ _ _ _ __!_L
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When using an SDL file for a standard cell design, the user can control two

characteristics of the layout: The terminal edge placement and the number of

rows. A TERMEDGE property defined for a terminal instructs the Stdcell

program to bring that terminal to the specified edge of the layout. If the TER-

invf101 nanf21110 0 Al

EN 0- B1 h 0

A $1

nant211

(parent-cell decode (SIVMASTER 'decode")

;Stdcell is layout generator for standard cell designs

(layout-generator Stdcell)

(subcells

(nanf2ll (nO nl)) (invflOl iG) ;cell declaration

;Note that leafcells Vdd/GND terminals are not

included in the Vdd/GND nets

(instance i0 ( (Al S) (0 S b) )

(instance nO ( (8l EN) (Al Sb) (02 SO) ))

(instance ni ( ((B S) (Al EN) (02 Sl1 ))

(instance parent

((terminal S (TERM EDGE TOP) (DIRECTION INPUT)) S)

((terminal EN (TERMEDGE TOP) (DIRECTION INPUT)) EN)

((terminal SO (TERMEDGE BOTTOM) (DIRECTION OUTPUT)) SO)

((terminal S1 (TERMEDGE BOTTOM) (DIRECTION OUTPUT)) Si)

((terminal Vdd (TERMTYPE SUPPLY)) Vdd)

((terminal GND (TERMTYPE GROUND)) GND)

Figure 8.1: Standard Cell example with schematic and associated SDL file.

iI
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MEDGE property is not specified, then the terminal is routed to a randomly cho-
sen edge. The number of rows can also be specified.

When writing SDL files for a standard cell design, two special rules must
be followed. The first rule concerns hierarchical design. The Stdcell layout
generator expects a flattened netlist of standard cells. The user may create a hier-
archy of SDL files to describe a standard cell design, but if so must also direct the
DMoct program (in the top level SDL file) to flatten the hierarchy before passing
the structureinstance view to the Stdcell program for layout generation.

The second rule concerns the Vdd and GND terminals. Note that in the
decoder example, the Vdd and GND terminals of the individual cells are not
included in the Vdd and GND net statements. This is because the Vdd and GND
terminals of the individual cells are automatically connected via abutment when-
ever a row of standard cells are generated. Thus there is no need to include these
Vdd/GND terminals in explicit nets. In fact, specifying these terminals in
Vdd/GND nets will cause the layout generator to attempt to route these nets and
will cause an erroneous layout to be generated. It is necessary to specify parent
Vdd and GND terminals for the entire design, hence two TERMINAL statements
defining Vdd and GND terminals are included in the SDL file.

Combinational 1 Outputs
"14 Block

synthesized by
BDS

44

Figure 8.2: Finite State Machine Example

8.2. RANDOM LOGIC SYNTHESIS

Standard cell logic can alternatively be synthesized from a high-level spec-
ification in the BDS language [Segal90]. The BDS file is translated by the

4f
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I0

IZ

l -ToPayrMovvS-e

Sta

elayerRe

layerRead -D iSwtate moe rea

ositionFu

LoadPMove twin- n spae r

To Player Move State

Start state entered on Reset; Win, Draw states exited only on
Reset
Inputs: Start - starts game

PlayerReady - indicates when player move is ready
Position Full - selected position by player is
already full
Board Full -no empty spaces remain on board

Outputs: LoadPltove -write player move to board
LoadC!4ove -write computer move to board
Win -indicates that the computer has won
Draw - indicates that the computer has drawn

Always results in a win or draw for the computer

Figure 8.3: State Diagram for Tic-Tac-Toe Player

BDSYN program into BLIF format (Berkeley Logic Interchange Format) which
is then handed to the mi s I I program for logic optimization and technology map-
ping onto the standard cell library [Brayton87l. This sequence of steps is pack-
aged into a single shell script called Bds2stdcell, which the user can specify
as a structure-processor in the SDL file. j

|t
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One use for the logic synthesis capability is to synthesize finite state
machines. Figure 8.3 shows a generic finite state machine. A BDS description can
be used to synthesize the combinational logic block. SDL files are then used to
define the formal terminals for the logic block and connect the terminals to the
state flip-flops. Figure 8.3 shows the state diagram for a finite state machine that
implements the control for a tic-tac-toe player. Figure 8.4 shows the BDS file
which specifies the logic part of this finite state machine. Note that in the BDS
description, we specify default values for outputs. The synthesized logic will pro-
duce these default output values unless otherwise specified. The effect of default
values can be seen in the WIN-STATE, where the WIN output is asserted but
nothing is stated about the NextState outputs. The default assignment of "Next-
State = PresentState" indicates that by default the machine will stay in the WIN-
STATE. WINSTATE can only be exited by asserting the asynchronous reset to
the state flip-flops.

Figure 8.5 shows the SDL wrapper file used to interface the BDS descrip-
tion to LAGER. Note that the structure-processor is Bds2stdceil. This is the
script mentioned earlier which calls bdsyn and mis I I to synthesize the logic.
The statement (depends-on "control.bds") in the parent-cell declaration places a
dependency between this SDL file and the BDS file. If the BDS file changes then
the structure_instance view will be remade whenever DMoct is invoked. The
Bds2stdcell script uses the value of the bdsyn parameter in the
structurejinstance view as the name of BDS file to pass to the bdsyn program.

Figure 8.6 shows the SDL file used to connect the combinational logic
block to the state flip-flops. In this particular case, we need three flip-flops to
implement the five states in the finite state machine. The statement (bag FLAT-
TEN-TO (CELLCLASS LEAF)) in the parent-cell declaration causes the hierar-
chy to be flattened before being passed to the Stdcell layout generator. This is
necessary in this design because of the hierarchy created by having the logic
block as a subcell along with the state flip-flops.

8.3. EXAMPLE DESIGN

Figure 8.7 shows the block diagram of the complete 3x3 tic-tac-toe player.
The Move Generation block generates the computer move based on the current
board status as indicated by inputs BO-B9. Each board location is implemented
with two flip-flops and has three outputs which indicate if that location is player
occupied, computer occupied, or empty. The Move Generation and Control

L i
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!Bds logic which defines control logic for tic-tac-toe player
MODEL control

Outputs followed by inputs.
NextState<2:0>, LoadPMove, LoadCMove, Draw, Win
- PresentState<2:0>, Start, ,PlayerReady, IWin,

BoardFull,PositionFull;

ROUTINE main;
CONSTANT STARTSTATE- 0, MOVESTATE- 2, CMOVESTATE= 3;

CONSTANT WIN STATE= 7, DRAW STATE- 1;
Default output assignments.

NextState = PresentState; Draw - 0; Win - 0;
SELECTONE (PresentState) FROM

[STARTSTATE]:
BEGIN IF (Start EQL 1) THEN NextState = PMOVESTATE; END;

[PMOVESTATE]:
BEGIN

IF (PositionFull EQL 0 AND PlayerReady EQL 1) THEN BEGIN
! Move is ready and valid.

LoadPMove = 1; NextState = CMOVE STATE;

END;
END;

(CMOVESTATE]:

BEGIN
IF (PlayerReady EQL 0) THEN BEGIN

IF (BoardFull EQL 1 ) THEN NextState = DRAWSTATE
ELSE BEGIN LoadCMove = I;

IF (IWin EQL 1) THEN NextState = WIN-STATE

ELSE NextState = PMOVE STATE;
END;

END;

END;
(WIN-STATE ]: BEGIN Win = 1; END;
(DRAWSTATE ]: BEGIN Draw - 1; END;

ENDSELECTONE;

ENDROUTINE; ENDMODEL;

Figure 8.4: BDS description of TicTacToe state machine

blocks were described through BDS files. The logic required for the board was

straight-forward and regular so this logic was explicitly specified via an SDL
nelist. The total standard cell count for the design was 225 standard cells and

easily fit in the TinyChip padframe used by MOSIS for educational projects (2.2

mm x 2.3 mm).

9. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . .

---------------------.- ---.
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(parent-cell control
(SIVMASTER "control")

(depends-on 'control.bds")

(parameters (bdsyn 'control.bds"))

(structure-processor Bds2stdcell)

(instance parent (
((terminal NextState (DIRECTION OUTPUT)) NextState (width 2))
((terminal LoadPMove (DIRECTION OUTPUT))LoadPMove)

((terminal LoadCMove (DIRECTION OUTPUT))LoadCMove)

((terminal Draw (DIRECTION OUTPUT)) Draw)
((terminal Win (DIRECTION OUTPUT)) Win)
((terminal PresentState (DIRECTION INPUT))PresentState(width 2))
((terminal Start (DIRECTION INPUT)) Start)

((terminal CompMoveFirst (DIRECTION INPUT)) CompMoveFirst)
((terminal PlayerReady (DIRECTION INPUT)) PlayerReady)
((terminal IWin (DIRECTION INPUT)) IWin)

((terminal IDraw (DIRECTION INPUT)) IDraw)
((terminal BoardFull (DIRECTION INPUT)) BoardFull)
((terminal PositionFull (DIRECTION INPUT)) PositionFull)

S )

Figure 8.5: SDL file for TicTacToe combinational logic

While this design is 100% standard cells, there is nothing to prevent the
user from using standard cell blocks with blocks from the other LAGER libraries.
In fact, most LAGER designs use a combination of different types of library
blocks.

8.4. STANDARD CELL LIBRARY

Figure 8.8 lists all of the members of the standard cell library. Nominal and
worst case timings for no load and 1 pF load are given in the documentation for
each library member. The documentation also contains Spice decks for each
library element.

Each standard cell is 66 lambda high, with cell width depending on the
complexity of the function which the cell implements. Figure 8.9 shows a chip
created using LAGER and the standard cell library. The chip illustrates the stan-
dard cell layout style of multiple fixed-height rows with the channels between the
rows used for signal routing. In each standard cell, a Vdd bus runs along the top

*_

t-- -. '-..,.- ~ -~ -- -. ~ - . -



94 Silicon Assembly Part II

(parent-cell controlfsm
(SIVMASTER "controlfsm') (bag FLATTENTO (CELLCLASS LEAF))

(layout-generator Stdcell)
(subcells (control CONT)) ;combination logic block defined via bds
(dotimes (i 3)

(subcells (dfrf301 FF)) ;three flip-flops needed to hold state

(instance FF
(DATAl NextState (net-index i)) ; NextState connected to

flip-flop input
(Q PresentState (net-index i)) ;PresentState connected to

flip-flop output
(CLK2 clock) (RST3 reset b)

(instance CONT
(NextState NextState (width 2))
(LoadPMove LoadPMove) (LoadCMove LoadCMove)
(Draw Draw) (Win Win)
(PresentState PresentState (width 2))
(Start Start) (PlayerReady PlayerReady) (IWin IWin)
(BoardFull BoardFull )
(PositionFull PositionFull)

(instance parent
((terminal LoadPMove (DIRECTIO:. OUTPUT))LoadPMove)
((terminal LoadCMove (DIRECTION OUTPUT))LoadCMove)
((terminal Draw (DIRECTION OUTPUT))Draw)
((terminal Win (DIRECTION OUTPUT)) Win)
((terminal clock (DIRECTION INPUT)) clock)
((terminal resetb (DIRECTION INPUT)) reset b)
((terminal Start (DIRECTION INPUT)) Start)
((terminal PlayerReady (DIRECTION INPUT)) PlayerReady)
((terminal IWin (DIRECTION INPUT)) IWin)

((terminal BoardFull (DIRECTION INPUT)) BoardFull)
((terminal PositionEull (DIRECTION INPUT)) PositionFull)

Figure 8.6: Top level SDL file for connecting combinational logic described
using BDS of Figure 8.4 and the SDL file in Figure 8.5 with state registers.

of the cell and a GND bus runs along the bottom. These busses are joined when-
ever the cells are placed adjacent to each other. Vdd and GND terminals are then
created at the end of each row, and will be joined together at the next level of
hierarchy by Padroute or Flint.

II
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8.5. LAYOUT GENERATION

The layout-generator program for standard cell designs is a UNIX shell
script called Stdcell. Figure 8.10 illustrates the steps which Stdcell follows
to produce a standard cell layout. The Stdcell script calls the wolfe program,
which in turn calls the TimberWolfSC [1] and YACR [21 (Yet Another Channel
Router) programs. TimberWolf SC performs the global place and route for the
design, and YACR is called to perform the detailed channel routing for each chan-
nel. Wolfe converts the nedist from the Ocr structureinstance view format to
the input format required by TimberWolf SC and converts the output of Tim-
berWolf SC and YACR to the OCT physical format. After wolfe is finished, the
wolfepost program is called to add Vdd and GND terminals to the end of each
row so that the block can be used a macrocell in a larger hierarchy. The last pro-
gram called by Stdcell is oct2mag which is a filter program for producing
Magic-format layout files from the OCT physical view.

Wolfe is the principal program called by the Stdcell script. In addition
to performing input/output format conversion for the TimberwolfSC and YACR
programs, Wolfe also scans each standard cell for implicit feedthrough channels
(over-the-cell routing areas), and notifies TimberWolfSC that these are avail-
able for routing. Within a design, Wolfe looks for user-specified OCT properties
or OCT bags which specify particular optimizations that TimberWolfSC can
perform on the layout.

The OCT WOLFE-CLASS bag can be used to specify cells which should
be placed on common rows. All cells that are within a WOLFE-CLASS bag, and
that have a WOLFE-ROW property of the same value, will be placed in the same
row with no other cells placed in that row. Cells with no WOLFE-CLASS bag can
be placed on any row except one with cells having WOLFE-CLASS bags. In
addition to the possibility of reducing routing area, this method is also useful if a
standard cell family has cells which are not compatible (i.e., some cells with pow-
er/ground rails at non-standard heights) by allowing only compatible cells to be
placed on a row.

An ACCESSIBILITY property can be placed on any leafcell terminal to
inform wolf e how to connect to this terminal. The values of the ACCESSIBIL-
ITY property are TOP_ONLY, BOTTOM-ONLY, or BOTH. The HI-R property
can be placed on a leafcell terminal to inform wolfe there is high resistance
between the top and bottom implementations that terminal, meaning that it should

ii
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Current board positions
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Figure 8.7: Complete Tic-Tac-Toe player schematic

not should not be used as a feedthrough for a net. The FEEDTHRU property can

be attached to a pair of terminals to indicate that they are a feedthrough path for
the cell. wolfe will automatically find implicit feedthrough paths (vertical chan-

nels) but a cell may have a built-in jumper which is not vertical.

8.6. EXTENDING THE LIBRARY

If a user wishes to extend the current standard cell library or integrate a
new standard cell library, then the user must be aware of certain rules which stan-

dard cells must follow in order to be compatible with the wo 1 fe/Timbe rWo 1 f-

SC/YACR place-and-route package. The bounding box of a cell is the minimum

sized box which surrounds all of the geometries in a cell (including the wells).

I
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LIBRARY DESCRIPTION

CI' Cell
Name Description

aof2201, aof2301 2,2 AND/OR Mux; 2,3 AND/OR Mux
aof3201, aof4201 3,2 AND/OR Mux; 4,2 AND/OR Mux
aoif2201 2,2 AND/NOR Mux
blifDO0I, bMl00101 2,1 AND/NOR Mux; 2,1 OR/NAND Mux
buff100 High Impedance Buffer
buffl01 Non-Inverting Buffer
buffl2l Tri-State Buffer
delf)11 Delay Cell
dfnf3ll D-Flip lip with S, R, Q & QB
dfrf301 D-Flip Flop with Asynchronous R & Q
faW001 Full Adder
invf100 High Impedance Inverter
invfl01 invfl013, invfl04 Inverter, 3X,4X Inverting Buffers
invfl2I Tri-State Buffer
invf20I Dual Inverter
labfI 11, labf2lI NAND Latch, NOR Latch
larf3I0 Clock Latch
lrbf202 Logic Reference Cell
ldf001 RC Load Cell
muxf201 Data Select
nanf201, nanf2l 1 2 Input NAND; 2 Input NAND/AND
nanf251 A OR B-not Decoder
nanf301, nanf3ll 3 Input NAND;3 Input NAND/AND
nanf401, nanf4ll 4 Input NAND;4 Input NAND/AND
norf201, norf2l 1 2 Input NOR; 2 Input OR/NOR
norf251 A-not AND B Decoder
norf301, norf3ll 3 Input NOR; 3 Input OR/NOR
norf401, orf40I 4 Input NOR;4 Input OR
oaif2201 2,2 OR/NAND Mux
pudfO0O, puuf00o Pull-Down, Pull-Up
swcf020 Transmission Gate
xnof20l, xorf201 Exclusive NOR, Exclusive OR

Figure 8.8: Components of Standard Cell library

I
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Figure 8.9: Complete Standard Cell design

The overlap box (also known as the tesselation box) is a rectangle placed on the
OVERLAP layer to tell woif e how to place the cell relative to its neighbors. If

- the OCT physical views of a cell library contain overlap boxes, then woif e will
place the cells such that their overlap boxes abut. Othei. -se wol fe will abut the
cells according to their bounding boxes. Using the overlap box allows cells to
share common geometries such as well pieces. Figure 8.11 shows how cells might

* be placed using overlap boxes.

In the X direction, the overlap box must be designed such that any cell can
be abutted to any other cell without causing design rule violations. Furthermore,

k ~the overlap box must be an integer multiple of the vertical layer pitch (cuarrently

" III/n- l7Ii -S
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Structure Instance View
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Stdcell

• w~lfe'• T i[rnberWolfeSC-4 I

2 (place & global route)
\ " 2• yacr (detailed chan-
S• nel routing)-

3 wolfepost (add power/ground terminals

oct2mag convert oct physical view to ma ic

Figure 8.10: The Standard Cell layout generator sub-programs

eight lambda) in the X direction. If the vertical layer pitch (the minimum center--
to-center separation of the layer used for vertical routing) is 8 lambda, then valid
values for the width of an overlap box are 8*n lambda, where n is a positive inte-
ger. If this rule is not followed, then wol fe will generate designs which cuntain
non-Manhattan channel routing. One should also observe the following:

1. Some policy regarding the extension of geometries beyond the overlap
box is required to ensure that no inter-cell design rule violations will
occur.

Ii
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Figure 8.11: Cell placement

2. Important geometries (e.g. contacts) which are shared between cells
must overlap exactly in order to meet design rule specifications.

3. Vertical metall which shares contacts between cells implies the use of
metal I at the boundary, with the possible undesirable consequence of
the feedthrough cell width being greater than the vertical layer pitch.

Wolfe places no restrictions on terminal placement in the Y direction.
However, there is a policy for the terminal placement on the X axis: The terminals
must be centered at (1/2 +n)* vertical-layer-pitch lambdas from either side of the
cell's overlap box (n specifies the n'th possible vertical routing channel).

In Figure 8.12 the dashed lines indicate valid locations for terminal centers.
Notice that the width of the overlap box for this example is an integer multiple of
the vertical layer pitch. If this were not true, then the cell would not meet the
requirements for terminal placement. Strictly speaking, the end terminals can be
placed an integer multiple of the vertical pitch from the edge of the overlap box.
However, this reduces the terminal density and is normally avoided.

V7. SUMMARY
The Stdcell script controls the programs Wolfe, TimberWolfSC,

YACR, Bds2stdcell, and misII, and along with the standard cell library
implements a self-contained standard cell design framework. In typical LAGER
designs, standard cell blocks are used to provide control for datapaths, glue logic

for connecting TimLager blocks, or random logic for finite state machines. The

A L
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Figure 8.12: Terminal placement

standard cell design style provides a familiar metaphor for designers who are new
to VLSI design. We have found most users new to LAGER create their first
designs using standard cells exclusively. As they become more experienced with
VLSI design and LAGER, they can begin to explore alternative methods of imple-
mentation, combining standard cell blocks with blocks created using dpp,
TimLager and the other LAGER synthesis tools.
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components of the design so as to optimize the final chip layout with respect to a
set of constraints defined on the interconnections and chip dimensions (Sangio-
vanni87]. The routing process on the other hand determines the absolute positions
of the components and generates the interconnect wiring. Flint is an interactive
floorplanning and routing tool for macrocell-based designs. Floorplans can be
generated either interactively or automatically. The quality of a given floorplan
can be evaluated instantly with the aid of a number of efficient placement and
routing routines. The composing modules may be tiled macrocells, datapaths,
standard cells blocks, or hierarchical subsystems, as generated by LAGER. The
floorplans can be stored for reuse in later design iterations.

As input, Flint requires information about the interconnection between
the modules, the physical dimensions of each module and the module terminal
locations. This information is obtained from the structureinstance view (inter.
connections) and the physical views (locations). The resulting layout is stored as
a physical view in the OcT database format.

a*hsia ie__ h 1dtaaefomt
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I 9.1. OVERALL FUNCTIONALITY

SFlint presents an interactive approach to the floorplanning task for mac-i roceli-based designs. The floorplanning activity consists of the following consec-

utive steps: placement, channel denition, global routing, absolute placement and

detailed routing. The first three steps can be considered as being part of the floor-
planning process, and are executed as an interactive process. The floorplan real-
ization (or routing) task consists of the absolute placement and the detailed
routing, and is completely automated.

Besides the interactive process, Flint also supports automatic as well as
batch oriented floorplan creation modes. In the batch mode, the floorplan topol-
ogy is entered using a dedicated floorplan description language fdl. This allows
smart module generators (such as dpp, the LAGER datapath generator) to gener-
ate a floorplan infdl format and use Flint to generate the detailed layout. The
floorplan description language is also used to store alternative floorplans, as gen-
erated during an interactive floorplanning session. The automatic floorplan cre-
ation approach is generally used to generate an initial solution. The user can then
use, the initial solution as basis for interactive improvement. Automatic floor-
planning can also be used when area minimization is not the highest priority. The
algorithmic details of the automated procedures will be presented in the following
sections.

The four steps in the floorplan creation process are placement, channel def-
inition, global routing and power routing. Each of these processes appear as a
separate mode in the Flint user interface.

iI

The input database is loaded from the structure_instance view and the input
netlist is converted into a cable list. A cable is defined as a group of nets that have
the same source and destination (source and destination being the side of a mod-

* ule, see Figure 9.1). For example, RAM-BOTTOM:ALU-TOP represents a cable
containing all nets connecting the bottom of the module RAM to the top side of
module ALU. During the rest of the floorplanning, all nets in a cable are treated
as a single object and will be routed along the same path. Although this approach
may result in less than optimal routing, it serves user interactivity and floorplan
generation efficiency in a dramatic way. In numerous examples, we have
observed that the penalties inflicted by the routing restrictions are small, com-
pared to the gains obtained from the user interaction in placement and global
routing.

S. . . . .. ... . . . . . ... . .. . . .. ... . . . . . . . . . . ...
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Figure 9.1: Nets versus cables

After the input phase, either a predefined floorplan can be loaded (in the
library mode) or the interactive floorplanning mode can be entered. In the first
step, the relative placement of the modules is defined. The initial placement,
given by the automatic procedure, can be modified by moving, rotating, or mirror-
ing each block. The final placement must have a slicing structure [Otten82] to
guarantee routability by the channel router. The user's view of the placement pro-
cess is shown in Figure 9.2. Once the placement is completed, channels are
defined by dividing the area between the blocks into rectangular sections which
are created or deleted by simple mouse operations.

The global routing step assigns to each a cable a routing path through adja-
cent channels. In the automatic mode, Flint routes the cables starting from the
shortest. Cables which were already routed manually or in previous floorplanning
steps will be preserved. At the end of the automated step, the user can interac-
tively change the results through mouse operations (Figure 9.3).

Power nets and clock nets are treated individually and are not grouped into
cables. Each of these nets can be routed one by one. Any other nets which need to
be routed with special care may be defined as clock nets and routed during this
power routing stage as well. Once again, a combined automatic/interactive
approach is supported (Figure 9.4).

When a complete floorplan has been created or the pre-existing floorplan is
loaded, the layout generation process can start. The generation step first checks

a I

I,-i



106 Silicon Assembly Part II

mint ~ "ru1rVI n

FLLf=t

mug I1 U.UW agla lait

mRauwt pl lwi

........... ..... ..... .......... ........ .. ... .................... ....................................... .

Figure 9.2: User interface during placement process

the consistency of the floorplan. If the floorplan is acceptable, the absolute place-
ment and detailed routing processes will run automatically without user interven-
tion. The final layout can be saved either in Magic files or in OCT format. The
floorplan can also be stored in a file for later use. Figure 9.5 shows the floorplan
after the detailed routing. The channels have been sized to their real dimensions
and the total circuit area is displayed.

Flint also estimates the accumulated routing capacitance for each net.
The capacitance values can be used to locate critical delay paths.
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Figure 9.3: User interface during global routing phase

9.2. THE FLOORPLAN DESCRIPTION LANGUAGE
Before presenting in detail the algorithms and procedures used in Flint,

a brief discussion of the floorplan description language fdl is appropriate. As
mentioned earlier, fdI serves a dual purpose. Module generators and behavioral
synthesis systems often have expert knowledge of the topological properties of
the module under design. This knowledge can be translated into a floorplan topol-
ogy which is far more efficient than what could be generated using automatic
placement and routing programs. Thefdl language allows those generators to for-
mulate that structural knowledge. Examples of tools which use this approach are
dpp and firgen. On the other hand, fdI is also used by Flint itself as a data-
base format to store temporary floorplans, as generated by the designer during
interactive floorplanning sessions.

- .*-~~- . ---. .-.--- -.- ---
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Figure 9.4: User iterface during power routing

The four phases of the floorplan definition process (placement, channel
definition, global routing and power routing) can also be related to the floorplan
language. This is best demonstrated using a simple example, as given in Figure
9.6. The description contains for each macrocell (or module) its placement rela-
tive to the other cells. For a channel, extra information regarding the cables and
signals entering its four sides is given. These data are sufficient to describe the
global routing. Notice how the cable concept makes the description compact and
easy to generate.

9.3. ALGORITHMS OF THE AUTOMATED PROCEDURES

9.3.1. Relative Placement

The placement heuristic uses a combination of muin-cut partitioning and the
slicing approach (Otten82, LaPotin86]. This approach has a number of advan-
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Figure 9.5: Floorplan after absolute placement and detailed routing

z ages, particularly in terms of efficiency within an interactive floorplanning envi-
romnment. First of all, it inherently produces a slicing structure, as required by

SFl.nt: to perform channel routing. It also usually runs much faster than other
heuristic methods, which soits the interactive style of Fl~int• operation.

The placement algorithm is composed of three major ports, 1) a bipartition-
ing step, 2) physical positioning and orientation of each macrocell, and 3) a mir-
roring step.
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//* Simple Floorplan */
module Root, ModA, ModB;

channel chan#1;

signal Vdd, GND;

Root (ModA, chanil, ModB) {

place (NULL, NULL, NULL, NULL);

)9

ModA C)

place (Root, Root, chan#l, Root);

transform(bottom, left);

ModB()

place (chan#l, Root, Root, Root);

chan#l 0)

place (ModA, Root, ModB, Root);

route (ModAlright.:ModBi left ModAi right :Root,

ModAiright:Root, ModAiright:ModBlleft, NULL);

power(ModA, Root, ModB, NULL, Vdd);

power(ModA, NULL, ModB, Root, GND);

layer (metal2);

Figure 9.6: Simple floorplan description usingfdl.

Bipartitioning Step

The first step of relative placement is to construct a binary decomposition
tree where non-terminal nodes correspond to cuts (or slices), and leaf nodes are
the macrocells (Figure 9.7). To construct the tree, an efficient heuristic/exhaustive
min-cut bipartitioning scheme is applied recursively. Heuristics are used when the
number of modules to partition is greater than a predefined constant. Otherwise,
all possible subsets are enumerated to find an optimal partition.

The cost function for each bipartition is the weighted sum of the number of
wires connecting two subsets and the absolute difference between the sum of the
module areas contained in each subset. That is,

Cost = WsxS(A,B) + WdxD(A,B) (9.1)

i i u, ,
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Figure 9.7: Construction of binary decision tree

I
where W, and Wd are weight factors, S(A,B) equals the number of connections
between subsets A and B and D(A,B) is the absolute difference in area between A
and B.

The Flint placement scheme differs from other min-cut bipartitioning
and slicing approaches in the following way: When a set of modules are divided
into two subsets, it has to be decided if the slice should be horizontal or vertical
and which subset goes on what side. In the in-place partitioning approach [LaPo-
tin86], the latter problem is solved by slicing alternatingly in the horizontal and
vertical directions. A tree-traversal operation [Stockmeyer83] is then performed
to determine the dimension, orientation, and location of each macrocell within the
slicing tree.

In Flint, the slice-line directions are not decided at the bipartitioning
stage. They are determined at the next step along with the orientation and location
for each macrocell, taking into consideration every possible configuration of the
decomposition tree.

Location and Orientation of Macrocells
A modification of a standard placement algorithm [Stockmeyer83] is used

for this task. In the process of finding the optimal orientation of each macrocell,
the modified algorithm also determines the direction of the slice-line at each node
of the decomposition tree.

"There are two tree-traversal operations. First, a post-order traversal is used
to create a list of possible dimensions for each node in the tree. Dimension is rep-

A_
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tI
resented by a height-width pair. Each pair in the list is annotated with two point-
ers. After the list for the root of the tree has been constructed, and the total area
associated with the desired aspect ratio of final layout has been minimized over
all pairs in the list, the pointers are used for top-down tree-traversal to reconstruct

the orientation that achieves the minimum area. In addition, each pair has a flag
which specifies whether the dimension is obtained from vertical slicing or hori-
zontal slicing. The direction of the slice-line for each node is determined accord-

ing to the flags during the process of top-down traversal.

The algorithm begins by constructing a list of possible dimensions for each
leaf node. To reserve a reasonable area for routing, the dimension of each macro-
cell is expanded proportional to the number of terminals at its bounding box. If
the macrocell has expanded dimensions of a and b with a > b, the dimension list
is set to U(a. b), (b, a)) and the pointers are null. If a = b, there is just one pair in
the list. The algorithm now works its way up the tree. In general, let u be a non-

leaf node in the tree, with children v and v'. The two lists constructed for v and V
are combined to obtain a list for u by a list-merging procedure [Stockmeyer83].

The procedure is applied twice for both vertical and horizontal slicing,

because the node u does not have a fixed direction. The two lists thus obtained are

merged into one where each pair keeps the information on whether it resulted
from vertical or horizontal slicing. A pair (a, b) is eliminated while merging if
another pair (a',b') exists in the merged list, with a > a' and b > b.

At most, this algorithm keeps twice as many list elements for each node as
previous methods, and it is easily seen that the number of pairs in the root node is

O(n2 ) in a balanced binary tree. In the worst case, the number of pairs grows
exponentially (Figure 9.8). Experiments show that the number of pairs in the root
node grows almost linearly in a balanced tree, and that even in the worst case the

growth rate is not exponential. This is caused by the fact that a considerable num-
ber of possible pairs are pruned away while traversing the tree.

The running time of the algorithm can be reduced using a simple heuristic.
First, the maximum allowable dimension is computed with respect to the total

area of the macrocells and the desired aspect ratio of the final layout. When two
lists are combined, the pairs whose width or height dimensions are greater than

the maximum dimension are dropped. This results in an important reduction in
the size of the candidate list of the root node.
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Figure 9.8: Growth of dimension lists for (a) binary and (b) unbalanced trees

When the decomposition tree is unbalanced, it may happen that no single
pair can meet the given aspect ratio constraint. In that case we go back and mod-
ify the cost function, and rebuild the decomposition tree with respect to a new
cost function.

Once the dimension-pair list of the root node of the tree is obtained, the

optimal entry is selected with respect to area and aspect ratio. The direction of the
slicing line is decided according to the flag in the entry, and the two pointers of
the entry are used to traverse down the tree.

The relative positioning of the subblocks, with respect to the slicing line, is
chosen considering the connections to modules contained in other partitions, as

well as to the I/O pads. Whenever the position of a subbluzks is fixed, the external
connections to the other modules are updated. This idea is similar to in-place par-

titioning [LaPotin86j.

Mirroring Step

Once the relative positions of the macrocells are fixed, the only freedom for
each cell is the mirroring. This does not affect the area but can reduce the total

wire length. To find the optimal orientation for every cell is another NP-complete
problem. A simple heuristic is used to attack this problem.

For each cell the expected reduction of the total length of the connecting

wires is calculated when mirroring with respect to both the x and the y axes. The

I__..mw., mi m•nn~nmnuuulnlnI.4I I I I II I
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solution with the maximal reduction is selected. This procedure is repeated until

no further length reduction can be found.

9.3.2. Channel Definition

Routing Region Definition and Hierarchical Ordering

A channel is a rectangular area reserved for routing purposes. The task of
the channel definition step is to divide the area between the macrocells into rect-
angular sections, such that standard channel routing techniques can be used to
perform the detailed routing (Figure 9.9) This requirement sets some constraints
on the way channels can be defined: a channel has a longitudinal direction along
which the terminals have to have fixed positions and an orthogonal direction,
along which the terminal positions can be chosen freely by the routing process.

- In -Out

chan3 CMas

chanO chant tf

Figure 9.9: Channel Definition

After routing the channel, its dimensions can be expanded or contracted
along the orthogonal direction. This must be done without affecting the previ-
ously routed channels. To avoid possible channel interferences [Dai85], we need a
feasible routing order for the channels. With a placement having a slicing struc-
ture, this problem can be solved by routing each channel in the hierarchical order
resulting from the slicing structures. Establishing the routing order is another task
of this stage.
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Scanning
"Tb find feasible channels, scanning is performed along an initial direction

which is selected to be the direction of the slicing line at the top level of the
decomposition tree (Figure 9.10a). The initial scanning direction can be overrid-
den by the user. Once channels are found, the areas between channels are defined
as subblocks and the scanning is applied to those subblocks, recursively, until
there remains no empty space not used as a channel area (Figure 9.I1Ob).

(a)

-- hahofzwdal ucuinlng

(b)

vadloalacalow

Figure 9.10: Scanning procedure and hierarchy building

This automatic channel definition procedure fails when there is a cycle in
the placement. Two solutions to this problem can be formulated. The first
approach uses more complicated routing channels (such as L-shaped or U-shaped
channels). Routing such channels requires a switch-box router (or a specialized
router for L and U shaped channels). Since this is not supported in Flint, the
approach taken is simply to modify the existing placement. When a cycle is
detected, Flint will issue a warning to do so. This will only happen if the place-
ment is performed manually, since the automatic placement always results in a
placement with a valid slicing structure.
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Refinement

A final operation in the channel definition phase is the removal of redun-
dant channels. When the placement is done manually, it is hard to align the mac-
rocells accurately. The result is small, undesired channels. Therefore, when a
channel is narrow enough to be considered redundant, it is removed automatically
so that the cells can be aligned (Figure 9.11) The minimum allowable channel
width is determined dynamically with respect to the overall sizes of the macro-
cells.

chan han- chan [ in

Figure 9.11: Macrocell alignment

9.3.3. Global Routing
The global routing phase defines the routing path for each cable. The global

routing problem is basically a Steiner-tree problem, which is known to be
NP-complete [Karp72]. However, the problem is reduced to a shortest path prob-
lem when the cables are dealt with one by one.

In this case, the goal is to find the shortest path for each cable while avoid-
ing congestion of any specific channel. A graph is constructed where a node cor-
responds to an interface between two channels. An edge is present between two
nodes if both interfaces have a single channel in common. Each edge is weighted

with the manhattan distance between the connecting nodes (Figure 9.12a). Each
node is annotated with the number of wires that have been routed through that
node so far. The numbers are updated every time a cable is routed, so that channel
congestion can be avoided when assigning a path for the next cable.
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(a) (b)

Figure 9.12: Routing graph representation

Algorithm
The procedure starts with the construction of the graph. Interfaces between

channels and the outside world are also defined as nodes, but are treated differ-
ently: they can be used as terminal nodes but not as routing paths. The cables are
then sorted according to the length divided by the number of wires in them. Thus,
long cables and short cables with many wires have the highest priority. A short
cable does not have many alternative paths, and a cable with many wires has to be
routed efficiently or would create great area overhead.

Two sorted lists are generated simultaneously to handle multi-terminal
nets. These nets are part of multiple cables (or cable clusters). A first list contains
the so-called essential cables. Cables are essential when they have to be routed,
i.e. there exists no alternative routing path. The second list compiles sets of cable
clusters. Within a cluster, only a single covering set of cables has to be routed.

For each cable in the sorted list (in descending priority order), the shortest
path through the routing graph is determined using Dijkstra's shortest path algo-
rithm [Dijkstra59] in a modified formulation to accommodate the channel conges-
tion constraint. The source and destination of a cable are defined as source node
and destination nodes, respectively, and added to the graph (Figure 9.12b). The
path that minimizes the weighted sum of the length of the arcs and the number of
wires in the nodes along the path is selected. Once the optimal path for a cable is

found, the node costs along the path are updated so that the path through those
nodes becomes less favorable for the next cables.
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(a) G (b) G--G1

Figure 9.13: Power routing graphs

9.3.4. Power Routing
The power routing phase differs from the generic global routing in that

power nets are treated on a net by net basis. Once again, this translates into a
Steiner-tree problem, for which no polynomial time algorithms are known.

We have to differentiate between two classes of power nets: nets with and
without external terminals. For instance, Vdd and GND nets always have external
terminals, while clock nets and special nets might be completely internal to the
current module. For the group of nets with external terminals the routing problem
is a slightly more complicated, because all the terminals in such a net do not have

tobe connected into a single spanning tree, as long as they are connected to at

II

least one external terminal (they can then be connected together at a higher level
of hierarchy). In this case, the routing problem is more like finding the minimum

spaninforstthan finding a minimum spanning tree.
Anotherc Fio o power routing praphs

have multiple equivalent (internally connected) terminals for the same net. In such

cases, routing to only one of the terminals is sufficient, but the internal path should
not generally be used as a feedthrough to reach other terminals in different cells'.

n hineral condiffeeon may be used astapwt of the overall routing network if it can
sutain the current levels needed to dtive the connecting mapcols.
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(a) GI-- G2 (b) G2 ->G3

M MM

~ J

Figure 9.14: Construction of minimum spanning tree

Algorithm

The graph constructed in the global routing stage is used again for the
power routing. Flint uses an approximation algorithm to solve the Steiner tree
problem [Mehlhorn88l.

Let G = (V, E, d) be a connected, undirected distance graph, obtained by
adding the set of terminals of a given net to the global routing graph. V is the set
of nodes in G. E is the set of edges in G. and d is a distance function which maps
E into the set of non-negative numbers (Figure 9.13a).

The algorithm consists of the following steps:
1. Construct the complete distance graph G, = (VI, El, dj), where V1 is the

set of power terminals, and for every (vi, v,) in EI, d, (vi, vj) is equal to
the distance of a shortest path from vi to vj in G (Figure 9.13b).

2. Find a minimum spanning tree (MST) G2 of G, (Figure 9.14a).
3. Construct a subgraph G3 of G by replacing each edge in G2 by its corre-

sponding shortest path in G. (If there are several shortest paths, pick an
arbitrary one) (Figure 9.14b).

Routing the internal nets follows Mehlhom's procedure, but some modifi-
cation is needed in step 2 to deal with the nets with external (also calledformal)
terminals. The MST algorithm described in [Berge65] has been modified to find
the minimum spanning forests. The algorithm starts by adding to G, a set of
nodes, each one of which is the formal terminal closest to at least one node in GI.
Formal terminals can be made either left and right, or top and bottom. Two dis-

I
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(a) Top and Bottom (b) Left and Right

Ie

Figure 9.15: Graphs for a net with external (or formal) terminals

tance graphs are constructed for top/bottom and left/right, and the minimum span-
ning forests are found for each graph. Finally, the better forest is chosen (Figure

9.15).

To keep track of nodes being connected to a formal terminal node, every

node carries a label. The nodes corresponding to formal terminals are initially
marked as "ROOT" and the others are marked as "POWER". All the nodes of a
subtree are marked as "ROOT" if the subtree has grown to be connected to any
"ROOT" node during the tree growing step in the MST algorithm.

To avoid internal connections being used as a routing paths to other nodes,
each node has another flag on it. Initially the flag of every node is set to "CANDI-

DATE" for connection. Whenever any two subtrees are merged into one by add-
ing an edge, the flags of all the nodes in both subtrees are set to "NULL" except
for the nodes corresponding to the ends of the edge. In the next tree-growing step,
only "CANDIDATE" nodes are considered for connection, and that can prevent

any node from being connected to a "ROOT" node through an internal connec-

tion.

9.3.5. Detailed Routing
The detailed routing phase uses a gridless channel router [Yoshimura82].

The algorithm has been modified extensively to eliminate fixed grid constraints,
to handle cyclic constraints and to incorporate power, ground and clock routing.

I __ ___ ___ ___ ___ ___ 4
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a (a)a
b

(b)

Figure 9.16: Horizontal (a) and vertical constraints (b) graphs for channel routing

The basic routing algorithm uses a so-called left-right approach. First, a set

of constraint graphs are built. The vertical constraint graph expresses a set of

relations between the vertical placement positions of the routing tracks for the
different nets. The horizontal constraint graph, on the other hand, determines
which nets can share the same track (i.e. which nets are non-overlapping in the
length direction of the channel). Examples of vertical and horizontal constraints
are shown in Figure 9.16. The left-right algorithm then assigns the nets to the
routing tracks, starting from the left side of the channel. Heuristics are used to
determine the allocation.

Gridless routers allow for denser routing, and can handle arbitrary loca-
tions of terminals on the macrocell boundaries. This is an essential requirement
for a silicon assembly environment. The left-right algorithm is easily extended to
fully gridless routing: the vertical constraints between opposing terminals are
determined by checking the minimum distance between terminals, as dictated by
the design rules, instead of just looking if they are on the same grid-line, as is
done in grid-based routers. The design rules are stored in a user-provided technol-
ogy file. The router has also been extended to handle three interconnect layers
(polysilicon, metal I and metal2). Wiring on the polysilicon layer is normally
avoided, but is used for short internal connections in bit-sliced datapaths.

In order to be routable, the vertical constraint graph has to be acyclic. If
not, no feasible placement (or ordering) of the routing tracks can be derived.

* I
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(a) (b)
Figure 9.17: Routing graph cycles (a) and dog legs (b)

Cycles are unfortunately often present in typical routing problems. An example of

a cycle is shown in Figure 9.17a. The most commonly used technique to eliminate
such a cycle is to introduce a dogleg (Figure 9.17b). One of the nets causing the
cycle is broken up and an intermediate jumper is introduced. This effectively cre-

ates an acyclic graph. The Flint channel router handles cycles in the following
way: during the construction of the vertical constraint graph, the graph is checked
for cycles every time a new terminal is added. If a terminal would cause a cycle, it
is temporarily removed and stored in a waiting list. After the completion of the
vertical graph construction process, all cycle generating terminals are revisited.
For each of those terminals, a suitable dogleg position is determined by searching

on both sides of the terminal. A dogleg position is feasible if it does not create

any new cycles in the constraint graph. Out of all feasible positions, we select the
one which minimizes the track length and the number of required tracks.

A main feature of the Flint router is its capability to simultaneously han-
die power, clock and signal nets. Power and clock nets are routed in the same way

as normal signal nets. However some precautions are necessary: In order to mini-
mize the channel area as well as the wire resistance, dog legs should be avoided
as much as possible on power an clock nets. This is achieved by assigning a

higher routing priority to those nets. Also, since power nets normally require
wider wires, they should by preference be assigned to the same routing tracks.

The Flint global and local routing approach has some other features

worth mentioning.
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"The widths of the power wires ue automatically scaled such that a con-
stant current density is maintained. The current magnitude in each wie
is determined by a traversal of the power network, starting from the con-
nectors on the leaf modules up to the 1/0 power terminals. When no cur-
rent information is available on the leaf modules, a simple "rule of
thumb" approach is used, determining the width of the wire based on the
number of wires connecting to it and their widths.

"* Flint automatically extracts the parasitic capacitance of each wire
during the routing process. This information is back-annotated into the
database for usage by estimation and verification tools.

Pp-r

Figure 9.18: FIR Filter for pulsar signal recovery (top level view)
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Figure 9.19: Interleaved accumulation aree of 1024 lap FIR filter.

Figure 9.20: DatapaUh section of Viterbi search circuit

9.4. EXAMPLES

The floorplanning capabilities of Flint are demonstrated using a number

of real examples. In the first example, the floorplan and layout of a 1024-tap FIR

filter for pulsar signal recovery is examined. This complex circuit, which counts
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140,000 transistors and is clocked at 32 MHz, was generated entirely using the
LAGER tools. It contains a 2048 word shift-register, 64 complex multipliers and
two data accumulation trees. The top layout view is shown in Figure 9.18. Espe-
cially hard to implement were the accumulation structures. Due to the tree-like
structure, careful floorplanning was essential to avoid an explosion of wiring
area. The interactive nature of Flint allowed interleaving the two trees in such a
manner that the overall wire length was minimized (Figure 9.19).

A second example shows how Flint is used in a batch mode to route
datapath structures. The datapath section under examination here is a part of a
Viterbi search chip, used in a connected speech recognition system. In this case, a
floorplan description in thefdl language was automatically generated by the data-
path compiler dpp. Flint was then called to perform the absolute placement
and detailed routing between the blocks. As can be seen from the layout in Figure
9.20, Flint exploits cell feed-throughs to reduce the routing area.

9.5. SUMMARY

Flint is an interactive floorplannr and router for macrocell-based
designs. The floorplanner represents a close integration between interactive and
automatic approaches. The automatic procedures can save a chip designer consid-
erable effort by providing rapid initial solutions in every design phase The user
can later modify the initial solutions so that fine tuning and spot design improve-
merits are possible.

Flint has been used to generate a large number of complex designs, the
largest ones containing up to 150,000 transistors. Designs with up to 5000 nets (at
one single hierarchy level) have been routed in less than 5 minutes.
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Datapath Generation

Mani Srivastava

The processing power of application-specific VLSIs primarily comes from
the use of dedicated datapaths with architectures tailored to the exact needs of the
algorithm. This makes it imperative that a CAD environment provides the
designer with the ability to quickly reconfigure a datapath and iterate on several
designs while evaluating their area and performance.

The bit-slice datapath generator, dpp, provides this capability and is per-
haps the most important utility for algorithm-specific ICs. General-purpose mac-
rocell place-and-route tools, like Flint (Chapter 9) and Mosaico [Burns87],
do not work well for bit-slice datapaths as they fail to exploit the regularity inher-
ent in such structures. A special tool for datapaths was therefore found desirable.
TimLager can be used to generate the individual blocks (adder, register,...) of a
datapath, but cannot handle the routing between and through the blocks. Given
the net-list of a bit-slice datapath, dpp does the placement, channel definition and
global routing of the datapath and produces a floorplan file which Flint will
later use to route the channels and generate the physical layout. dpp also
back-annotates the structure_instance view of the datapath blocks with geometric
constraints and feed-through specifications. This information is used by the block
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S123 Silicon Assembly Part II

layout generator (TimLager) when generating the blocks. In LAGER terminol-
ogy, dpp is a structure-processor.

10.1. THE BIT-SLICE DATAPATH MODEL

The datapath model adopted by dpp is characterized by a data width N and
is composed of The blocks have two types of terminals: data terminals and con-
trol terminals. The data terminals represent N-bit wide busses. dpp assumes that
the data signals flow horizontally and control signals vertically. Accordingly, ter-
minals at the left and right edges of a block are assumed to be data terminals, and
terminals on the top and bottom edges are assumed to represent control terminals.

The datapath itself is described as an interconnection of the blocks using
data and control nets. The data nets connect data terminals of the blocks and
optionally also formal data terminals of the datapath (terminals coming out at the
left or right edges of the datapath). Similarly, the control nets connect control ter-
minals of the blocks and optionally also formal control terminals of the datapath
(terminals coming out at the top or bottom edges of the datapath).

An important point is that the data nets actually represent N-bit wide bus-
ses that connect to N-bit wide data terminals. The expansion into N-bit wide bus-
ses is done by dpp itself, instead of during the structurejmaster view to
structurejnstance view conversion phase of DMoct, and must not be done
through the SDL syntax. This was done to enforce a bit-slice discipline whereby
no inter-bit routing is allowed, because many heuristics used by dpp will not
work otherwise. This idiosyncrasy of dpp is the source of the various differences
in the way SDL files are written for datapaths as described later.

10.2. DESIGNING A DATAPATH

There are two distinct tasks that need to be done in order to design a data-
path using dpp. The first is the design of the blocks used in the datapath which
would be performed by a developer and the second is the design of the datapath
by interconnecting the blocks which is done by users. Most users will not need to
design their own blocks because most likely one block or a combination of blocks

from the fairly extensive central library will suffice.

10.2.1. Designing a block for use in datapaths

A block for use in a datapath is a LAGER module generated by some layout
generator, typically TimLager. The block has the property that it is parameter-
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Chapter 10 Datapath Generation 129* t
ized by N, the number of bits. It has data terminals, which are N-bit wide, coming
out on the left and right edges, and control and supply terminals on the top and the
bottom. Due to limitations in dpp, the block cannot be hierarchical. In other
words, the SDL file describing it may not have any subcells. In fact, the SDL file
will just be a set of formal terminals with TERMEDGE properties to indicate
whether they are data or control terminals. Further, due to the idiosyncrasy in
dpp mentioned earlier, the data terminals must not be specified as bus terminals.

Figure 10.1 shows the SDL file for trist inverter, the tristate inverting
buffer block shown in Figure 10.2, using TimLager as the layout generator:

(parent-cell tristinverter (VERIFYSTOP) (verify-stop))

(parameters

N

(FEEDTHRUS 0)

(BITHEIGHT 0)

(LSBOFFSET 0)

(layout-generator TimLager)

(structure-processor dpp)
(terminal IN (TERMEDGE LEFT) (TERM_EDGE RIGHT))

(terminal OUTINV (TERMEDGE LEFT) (TERMNEDGE RIGHT))

(terminal CNTL (TERMEDGE TOP) (TERMEDGE BOTTOM))

(terminal CNTLINV (TERM EDGE TOP) (TERMNEDGE BOTTOM))

(terminal GND (TERM EDGE TOP) (TERMEDGE BOTTOM))

(terminal Vdd (TERMNEDGE TOP) (TERMEDGE BOTTOM))

(end-sdl)

Figure 10.1: The SDL file for tristinverter.

A dpp block cannot use any arbitrary layout generator. This is because the
layout generator is also called by dpp in a special estimation mode to obtain
information about the physical characteristics of the block. There is a well defined
protocol for this information exchange using OCT bags and properties. Also, the
layout generator tool must be able to provide feedthroughs through the block,
stretch it to a required height and add appropriate control logic at the top and the
bottom, the information about which is passed through special parameters whose
value is calculated by dpp. Only a layout generator tool with the above capabili-
ties can be used, and at present TimLager is the only such tool in LAGER.

4
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CNTL CNTLINV

IN OUTINV
N trist inverter

IVCC lGND
Figure 10.2: A tristate inverter block from the LAGER datapath block library

As described in the chapter on TimLager, for every block using
TimLager as the layout generator, there is an associated file containing the
TimLager tiling function. Special constructs were added to TimLager to sup-
port the stretching, feed-through and control logic features required by dpp and
to pass information to dpp. The parameter N is used to decide the number of leaf-
cells tiled in the vertical direction. Unfortunately, all the special constructs make
a typical tiling function quite complicated to write manually. Therefore, a sup-
porting tool called dppdotc has been provided to automate this task. It can han-
dle most commonly encountered tiling schemes, although in cases like a
carry-save adder or a carry-lookahead adder one still has to write the tiling func-
tion manually. Following is the tiling function generated by dppdotc for
trist inverter:

#include *TimLager.h"
#include "oct.h"

tristinverter() {
int i,nbits, lsboffset;
nbit s-Getparam (WNO);
lsboffset-Getparam ("LSBOFFSET");
bit ();

Open newcell (Read ('name"));
if (nbits<l) I

J- ... ... ... ..... .. . .......... . ........ . - I _-
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Timerror("TimLager: FATAL ERROR:",

number of bits N < 1 in %s\n", *trist_inverter');

exitC-l);

else if (nbits--1)

Addup(~it', BOTTO!4ILEFTIRIGHTITOP, LEFTINDEX, 0,

RIGHTINDEX, 0, BOTTOMSTRETCH, lsboffset, END);

if (Ino-bat-stretch)

Addup(bot_stretch celiname, BOTTOM, OFFSETX,

bat stretch x offset, OFFSETY,

bat stretchj ~offset, END);

else

Addup("bit', BOTTOMILEFTIRIGHT, LEFTINDEX, 0,

RIGHTINDEX, 0, BOTTOMSTRETCH, Isboffset, END);

if (!no-bat-stretch)(

Addup(bot_stretch-ceilname, BOTTOM, OFFSETX,

bat-stretch-.x-offset, OFFSETY,

bat stretch-y-offset, END);

* ~for(i-1; i<-nbits-2; i++)(

Addup('bit', LEFTI RIGHT, LEFTINDEX, i,

RIGHTINDEX, i, END);

Addup('"bitff, TOP ILEFTIRIGHT, LEFTINDEX, nbits-l,

RIGHTINDEX, nbits-1, END);

Clo~se ne'wcell(0;

bit()

mnt nfeeds, height;
nfeeds-Getparam ("FEEDTHRUS');

height=Getparam (*BITHEIGHTff);

Open newcell (bitO);

Addup(ýtrist-inverterO, LEFTIRIGHTITOP IBOTTOM, HEIGHT,

height, FEEDTHRU, nfeeds, -1, END);

if (Ino-feedthru)

Addup (feed cell_name, LEFT IRIGHT ITOP, END);

if OIno stretch)

Addup (stretch-ceilname, TOP, OFFSETX,

stretch-offset, END);

Close nevacill ;
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There are some layout restrictions that need to be followed when designing
leafcells for use in the blocks. As already mentioned, the data terminals need to
come out at the left or right edges, whereas the control and supply terminals need
to come out at the top or bottom edges. Due to restrictions imposed by Flint,
the data terminals must come out on one of the following Magic layers: metall,
metal2, poly, via, polycontacL The control and supply terminals must come out
on metall, poly or polycontact. Neighboring terminals must be separated by a dis-
tance that meets the requirements imposed by Flint. In general, for MOSIS's
SCMOS technology, terminals should be made 4X wide and have a 4X. spacing.
While designing the leafcells for the various bits of a block, one should try to
minimize the variance in the heights in order to get better routing results. Finally,
dpp tries to make use of horizontal feedthroughs already provided in the leafcell.
This can be done in one of two ways. First, the leafell designer can bring out a
data terminal on both left and right edges. dpp will take advantage of this
implicit feedthrough if the corresponding data net crosses the block. Second, the
leafcell designer can provide explicit and uncommitted feedthroughs. In case of
blocks using TimLager, terminals with names of the form FEEDi (i=1,2,...) are
used to represent such explicit feedthroughs and are thus recognized by Tim-
Lager.

10.2.2. Designing a datapath

Just as with any other module designed in LAGER, a datapath is also
described in the SDL syntax. As mentioned earlier, some idiosyncrasies in dpp
result in restrictions and deviations from the norm in case of SDL files for datap-
aths. Figure 10.3 shows the block diagram of an example datapath which is the
datapath datapath from the on-line LAGER tutorial tut8.

The SDL file of the example datapath is as follows:

; sdl-file to describe the data path for tutorial #6
(parent-cell datapath)

(parameters N)
; N is the number of bit-slices. The number of bit-slices has

to be the same for the entire datapath.
(structure-processor dpp)

This declaration must appear for every datapath. It
; indicates to DMoct that the structural description must be
; processed by the program dpp before layout generation.

(layout-generator Flint a)

; This declaration must always be present. The 'a" flag
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specifies that Flint is to be run in automatic mode.

(subcells

(adder ADDER ((N N)))

(mux2tol ZSAT ((N N))M

(scanreg ACC ((N N)))

; NOTE: any arbitrary subcells may be chosen, but for each

; cell the subcell parameter declaration '((N N))" must be

; given

Data Nets

(net ibus ((parent IBUS) (ADDER INI)))

(net outfeedback ((parent OBUS) (ACC OUT) (ADDER IN2)))

(net adderout (((ADDER OUT) (ZSAT INI)))

(net z sat toacc ((ZSAT OUT) (ACC IN)))
(net scanin ((parent SCANIN) (ACC SCANIN)))

(net scanout ((parent SCANOUT) (ACC SCANOUT)))

(net carryout ((parent CARRY) (ADDER COUT)))
(net set one ((parent ONEBUS) (ZSAT IN2)))

Control Nets

(net cntlGND ((parent CNTLGND) (ADDER CIN)))

(net cntlVdd ((parent CNTLVDD) (ADDER CININV)))
(net cntl load ((parent LOAD) (ACC LOAD)))

(net cntl scan ((parent SCAN) (ACC SCAN)))

(net cntl keep ((parent KEEP) (ACC KEEP)))

(net cntlloadinv ((parent LOADINV) (ACC LOADINV)))

(net cntlscaninv ((parent SCANINV) (ACC SCANINV)))

(net cntlkeep_inv ((parent KEEPINV) (ACC KEEPINV)))

(net cntl sell ((parent SELl) (2_SAT SELl)))

(net cntl sel2 ((parent SEL2) (ZSAT SEL2)))

Power Nets

(net Vdd (NETTYPE SUPPLY) ((parent Vdd) (ADDER Vdd)

(Z SAT Vdd) (ACC Vdd)))

(net GND (NETTYPE GROUND) ((parent GND) (ADDER GND)

(ZSAT GND) (ACC GND)))

Clock Nets

(net PHIl (NETTYPE CLOCK) ((parent PHIl) (ACC PHI1)))
(net PHIIINV (NETTYPE CLOCK) ((parent PHIlINV)

(ACC PHIlINV)))

(net PH12 (NETTYPE CLOCK) ((parent PH12) (ACC PH12)))

(net PHI2INV (NETTYPE CLOCK) ((parent PHI2INV)

(ACC PH12INV)))

(end-sdl)
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Figure 10.3: An example datapath

Every datapath SDL file specifies dpp as the structure-processor and
Flint as the layout-generator. Flint is run in batch mode, using the option -a
(automatic , as opposed to interactive mode). A variety of options can be speci-
fied for dpp to specify the amount of tool optimization versus user control , such
as the ability to suppress the automatic placement. Every datapath must have a
formal integer parameter named "N" whose value is used by dpp as the number
of bits in the datapath. The value of N is also passed on to the subcells.

Although dpp requires that the datapath blocks be non-hierarchical and
generated by a layout generator with some additional capabilities, one can use the
flattening feature of DMOCt to create libraries of datapaths that can be used in
other datapaths as sub-datapaths, resulting in a hierarchical datapath specifica-
tion. This was used to great advantage in the design described in Chapter 21.

10.3. IMPLEMENTATION DETAILS

As already mentioned, dpp is a structure-processor in LAGER terminol-
, ogy. This means that it takes a structure_instance view sub-tree as its input and

converts it into another structureinstance view sub-tree (rooted at the same
point) which is ready for a layout-generator. In case of dpp the structure_instance
view sub-tree is a two level tree with the root being the datapath and the leaves
being blocks from the library. dpp does the placement of the blocks, does global

. ....- -



Chapter 10 Datapath Generation 135

routing, creates the channel structure, allocates feedthroughs for over-the-block
routing of data nets, and does bit-height equalization. The output is a floorplan
file for Flint and a modified structure_instance view sub-tree where all the data
nets and terminals are expanded, feedthrough terminals created and the leaf
structureinstance views annotated with information for the block layout genera-
tor.

Bit-sliced datapaths are viewed by dpp to consist of blocks that are tiled in

the vertical direction and placed linearly along the horizontal direction with the
bottom edges of the blocks being co-linear. Routing channels separate blocks
which are adjacent. Channels are also placed along the top edge of each block in
order to equalize the heights of the blocks. Finally, global channels spanning the
entire width of the datapath are placed at the top and the bottom of the datapath.
Figure 10.4 illustrates the generic floorplan of datapaths created by dpp.

w~t mnm• Olwtj)CS~TN ftas OW Cox"

Figure 1OA: Bit-slice datapath by dpp. Each cell in the block consists of a
leafcell (dark), an optional feedthrough cell (grey), and an optional
stretching cell (white). Horizontal channels are used to route data signals
between blocks. Global and local channels are used to route control, status,
and clock signals. Each block is generated by TimLager. Routing of
blocks is done by Flint.

I
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The control, status, clock and supply nets run vertically. Within a macrocell
they are routed implicitly by the abutment of leafcell terminals during the tiling

process. The global routing of these nets between macrocells and to the outside is

done by dpp using the global routing channels. The data busses flow in the hori-
zontal direction and are routed explicitly using the routing channels between the

* adjacent macrocells. Data busses connecting non-adjacent macrocells are routed
through the intervening blocks. This is done by back-annotation of the structure-
instance views of the blocks with information for the block layout generator to

generate enough feedthroughs for data busses going across the block.
Feedthroughs already provided by the leafcell designer are used first before extra
feedthroughs are generated.

The process of guiding the lower-level layout generation according to the
requirements of the upper-level layout generator is a key feature of dpp. It makes

the datapath blocks appear porous to Flint and saves the area wasted by the
general-purpose macrocell place-and-route approach in routing the data busses

around the opaque macrocells. As shown in Figure 10.5, this results in a 24%
reduction in area from 4.2 mm2 to 3.2 mm2 in 21L technology for the case of a 12-

bit version of an example datapath from a chip for measuring position and veloc-
ity of a robot arm joint from the quadrature signals obtained from an optical

incremental position encoder.

A problem with the approach outlined so far is that there may be a mis-
match between the heights of adjacent blocks resulting in a stair-case effect or

congestion in the interblock routing channels. Again, the process of back-annota-
tion is used to direct the macrocell layout generator to artificially stretch the
heights of each bit in all blocks to a uniform value. A further 32% reduction in
area was obtained for the example datapath.

1This feature of making the blocks porous and stretchable results in a total

area reduction of 48% for a 12-bit version of the example datapath. The relative
area penalty due to the stair-case effect and macrocell opacity Increases with the

number of bits. Consequently the relative area reduction obtained by making the

macrocell porous and stretchable also increases as the number of bits increases

and results in dramatic improvements in area. For example, a 24-bit version of the

same datapath shows a 63% reduction in area. In general, using dpp results in an
arca that is a linear function of N as opposed to a quadratic function of N that
results in the presence of stair-case effect and opaque (nonporous) blocks.

___ ___ I
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(a)

1~ At

(c)

Figure 10.5: (a) Datapadh layout with Flint; ame 4.2 n= 2. (b) Datapath
layout With Flint after processing with dpp to add feeddiroughs; area

3.2 nm2.(c) Datpathlayout with Fl11nt after processing with dpp to add

feedthioughis and stechig of cefls are - 2.2 mm2.I

I, lrI,
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The other crucial step in dpp is block plcement. The goal is to find a suit-

able ordering of the macrocells so as to minimize the ame. With through-the-

block routing of global busses and equalization of the block heights, the problem

can be quite accurately modeled as minimization of the height of the tallest mac-
rocell taking the extra feedthroughs required into account. dpp directly calls the
macrocell layout generator in an estimation mode to get information about the
physical characteristics of the macrocells. This information is then used by the
placement procedure, which is based on the well known Kernighan and Lin's
Min-Cut partitioning algorithm [Kernighan70]. It tries to minimize the height of
the tallest macrocell taking the extra feedthroughs required into account, instead
of just the number of nets crossing a partition.

celfib

dP

blocks leaf cells eertors doc;
.c, .sdl, and .THOR flies .mag fies, physical .o files documentation in
stuctue_master views view and .ext oin (machine specific) LaTex or gremlin

Figure 10.6: Organization of the dpp library in LAGER

10.4. DATAPATH LIBRARY ORGANIZATION

The datapath library consists of the primitive blocks used by the datapath

designer and the leafcells used to generate those blocks. As mentioned earlier, all
the current datapath blocks are actually TimLager modules following a very
strict tiling discipline to cooperate with dpp. Every block is represented in the
library by an SDL file describing its black-box appearance, a TimLager .c file
describing the tiling structure, a .THOR file giving its functional simulation
model, and one or more .mag files giving the layouts of the leafcells of the block.
In addition, .o files, structure master views and physical views are automatically
generated from the above files by the library management software. Figure 10.6
shows the directory organization of the main datapath library in LAGER. In keep-
ing with the LAGER library management philosophy, the users can create their

own datapath libraries.
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adder ripple carry adder with a dual carry chain for fast cary propagatio

bufferbig buffer with medium drive capability output is available in both positive and

negative logic
bufferhuge buaffer with large drive capability output is available in both positive and nega-

tive logic
buffermaall buffer with small drive capability output is available in both positive and nega-

tive logic
cOmperatorE ripple type comparator for even number of bits
comperatorO ripple type comparator for odd number of bits

compconst compare with a hardwird constant

constant implements a constant value in a datapath

c"a carr-select adder

inoonsimux output is same as the input or one of the four constants 0. 1, -1 and -2

inv2tolmuxone 240-I multiplexer with a negative logic output and a signal to force the output

high
inv2tolmuxzem 2-to-I multiplexer with a negative logic output and a signal to force the output

low
inverter inverts the input

invpass sets output to either the input or its complement
isoinvzero sets output to either the input or its complement or zero (all bits 0)

isozero sets output to either the input or zero

mux2tol 2-to-1 multiplexer with both positive and negative logic outputs
regconstant hardwired constant value with output enable control

saturator implements saturation in accumulators

scanmslatch single-ported dynamic scan path register
scammslatchmx scanmalatch mirrored about a horizontal axis
scanreg single-posted scan path register

scanreginx scanfeg mirrored about a horizontal axis

shift parameterized shifter for logical up, logical down or arithmetic down shift by

1. 2, 4, 8 or 16. Several of these can be chained to form a log shifter.
signmag converts a one's complement number into a sign magnitude number

tristbuffer buffer with tristateable output

tristjnverter inverter with tristateable output

xfer.sate transfer gate

zero conditionally pulls down a bus

Table 10.1 Datapath Block Library

Table 10.1 gives a listing of the various blocks currently installed in the
main dpp library. One can add additional blocks to the library or create one's
own library. The best way to do this is to follow the same organization as in the

- I . - --- ~ -- --- - - - - *---
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main library and copy the corresponding Makefiles for use with the GNU Make
utility. The Makefiles are written such that they are independent of the names of
the blocks and the leafcells, although appropriate uNIx environment variables
need to be set. In general, for a block using TimLager, one needs to provide the
.sdl, .c and .THOR files for the block, and the .mag files for all the leafcells used
by the block. In addition, LaTex and gremlin files are used for documenting the
block and the leaflcels.

10.5. LIMITATIONS

dpp has had extensive use and during this process several limitations aid
problems have become known. The foremost problem is due to the confluence of
two factors, a wide variation in the height of cells in the library and an unsophis-
ticated placement algorithm, which produces layouts that have a substantial scope
for improvement. A third factor contributing to this problem is that dpp does not
have any knowledge of the locations of predefined feedthroughs in the leafcells,
and as a result the data net routing is inefficient This problem occurs because the
only way for dpp to obtain physical information about the blocks is by running
TimLager in the estimation mode and by also modifying the tiling functions to
pass the desired information to dpp.

10.6. SUMMARY
By exploiting unique characteristics of datapaths, layout topologies can be

found that are very efficient dpp is a structure-processor which understands
these optimizations and generates the required information and netlist modifica-
tions to generate datapath designs.
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Pad Routing

Erik Lettang

The last stage of an integrated circuit design usually is to place a bonding-

pad ring around the "core" portion of the chip and connect the nets from the ring

to the core. The specialized nature of this routing problem requires algorithms

optimized to the task, which are implemented in a program called Padroute.

The pad ring is formed by one to four padgroups, each of which is a row of bond-

ing pad leafcells from the pad libraries and assembled by TimLager. The bond-

ing pads provide input buffering, input protection, and output drive capability for

the chip. If desired, the pads can also implement boundary scan. Normally the pad

ring is functionally transparent.

11.1. ROUTING STRATEGY

Figure 11.1 shows the general layout of a chip. The ring structure is

employed to help prevent latch-up, which is most critical in the high-current

CMOS devices present in the pad leafcells. N+ and P+ guard rings are placed

around the devices in each pad. These rings are in turn connected to power and

ground rails that appear on each side of the pad. The rails are connected by abut-

ment to form the ring shown in Figure 11.I. Special power and ground pads feed

current into the rails and to the core of the chip.
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Padroute uses the space pads (cells with only power and ground rails) to
equalize the size of mismatched padgroups or to build up an entire padgroup if it
was not provided. Similarly, Padroute uses the corner pad pieces to complete
the ring and connect the power and ground rails of the padgroups.

11.2. USER INPUT

The input to Padroute is the OCT structurejnstance view of the top level
of the chip hierarchy. This view must contain references to the structureinstance

Bonding Pads Power and Ground Rails

............................ ........... > . i

Pad Group Piece

Space Pads 0

Pad
CRE

Pad
Group

Grup
Routin Area

Pad Group

Figure 11.1: Padroute's View of an Integrated Circuit.
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views of all of the cells in the next lower hierarchical level, consisting of the core

and one to four padgroups.

Padroute assumes that the bonding pads have been assembled into pad-
groups by another layout generator (normally TimLager). Padroute also
requires access to the OCT physical views of each chip subcell. The physical view*
contains the actual dimensions of all subcells and the locations of all terminals.

Padroute's command line must specify which the pad library was used
to build the padgroups. With the library known, Padroute accesses the OCr
physical views of the space pad and the corner piece. Padroute will use
instances of the space pads, as necessary, when the chip core or the routing is too
large to fit inside the ring. Space pads will also be used, if padgroups on opposite
sides of the core are not the same length.

The proper filesystem path to the space pad and corner piece must be
known so that both may be assembled into the final result. The paths are found
using calls to special routines (Getpath) provided by LAGER. Padroute uses
other LAGER utilities to determine the technology in which the chip is being
designed. The technology specifies minimum wire widths and inter-wire spacings
of the metal lines used to create the routing.

11.3. ROUTING ALGORITHM OVERVIEW

Padroute operates in two stages. The first stage is a simple placement of
the core with the bonding pad ring arranged around it. The second stage connects
together the signal pins that enter the channel, as specified by the structure-in-
stance view. The second step is performed by Padroute's ring-shaped-channel
router.

Padroute's router uses many of the algorithms described by Yoshimura
and Kuh [Yoshimura,Kuh82], though tailored to function with a ring-shaped
channel. The fundamental difference is that Padroute's channel is continuous

* and has no ends. The concept of tracks is as shown in Figure 11.2: The tracks
form an unbroken circle around the core.

To operate in this topology, the vertical constraint graph of Yoshimura and
* Kuh is altered slightly (and given the name radial constraint graph), but both

actually contain the same information. A major deviation from Yoshimura and
Kuh is the introduction of a circumferential constraint graph. This graph shows
which nets are not allowed to appear together in the same track. The radial con-
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Track n

Track I

Track 0

Figure 11.2: Circumferential tracks used in routing

straint graph is usually quite sparse, while the circumferential constraint graph is
usually very dense.

The second major deviation from Yoshimura and Kuh is that Padroute's
router is gridless, allowing terminals to appear at any point on the core or pad
ring.

The radial constraint graph is used to detect cycles in the radial constraints.
To remove them, Padroute adds doglegs to the nets involved. After all cycles J
have been removed, Padroute uses the circumferential constraint graph to com-
bine multiple nets into single tracks. Then the physical geometries are generated

and stored in an OCT physical view

11.4. PLACEMENT ALGORITHM

Padroute's placement algorithm is not very complicated. Every cell
passed to Padroute has a parameter called "fplan" attached to it. The chip
designer specifies fplan when creating the SDL files for the chip, the padgroups,
and the core. As shown in Figure 11.3, the four padgroups are rotated and trans-
lated as necessary to form a ring. The core is then translated so that it is in the
center of the ring.
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Figure 11.3: Rotation and Translation

If the core is too large to fit into the ring as provided, space pads are added
"so that the core will just fit inside the ring. Later, after the routing of the nets has
been determined and if the padring is again found to be too small, more space
pads are added so that the routing will fit inside the ring.

Space pads may be added after the routing is determined without any recal-
culation of the terminal positions by introducing the concept of fixed and sliding
coordinates. The core is fixed in both the X and the Y direction. The padgroups
are fixed in either the X or the Y direction. If the padring needs to be enlarged, the
positions of the padgroups may be altered by sliding dtem away from the core
(see Figure 11.3). Altering the positions of the padgroups in this way allows the
channel width to be increased without requiring any routing to be redone.
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11.4.1. Channel Cleanup

Once placement is complete, Padroute cleans up its net and terminal
database. At this point Padroute performs the following operations:

1. Deletes invalid terminals. These are terminals not appearing on the bot-
tom edge (inside) of a padgroup or one of a pair of terminals that are on
the same net and appear in the same location.

2. Deletes invalid nets. An invalid net is one with only one valid terminal
(the terminal is then deleted also).

3. Calculates the width of each net.

4. Finds the terminals that appear in the corner regions and finds the mini-
mum distance from Lhe core that the terminal's net may be routed.

Padroute considers all nets to be in one of three classes: signal, clock or

power. The final routed width of a net is determined by the class it is in. Signal
nets are always routed with the narrowest wire width. A clock net's width is
determined by its widest terminal. A power net's width is the largest of the fol-
lowing values: the width necessary to handle the net's rated current (the sum of

, all the terminal currents), the width of the widest terminal on the net, or the

default minimum wire width for a power net. The current through all terminals
must be specified in the OcT views if the current summing feature is used.
Padroute will check the terminals and sum their currents to calculate the width

of each power net.

For clock and power nets, the radial wire that connects a terminal to the cir-
cumferential wire is never wider than the terminal it is coming from, but it may be
narrower: The terminal on the pad ring for a power net is usually quite large. The
width is usually not necessary for current requirements, and Padroute may
make the radial wire narrower than what the terminal allows. In fact, the radial
wire of a power net that connects to a pad is kept the same width as the circumfer-

ential wire for that net. Reducing the width of the radial wire reduces the number
of nets that will have radial constraints with the power net. This makes the routing

task easier later on.

In Padroute, terminals that appear in the corner region (the shaded areas
in Figure 11.4(a)), and the nets that contain them, must are given special treat-
ment. The reason they are special can be understood by studying Figure 11.4(b).
This picture gives a view of a ring channel that has been unwrapped. The trape-

zoidal areas are part of the real channel. The triangular, darkly shaded, areas are

not usable by the router since they do not actually exist in the real channel. Nets
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(a) Unusable Area
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Figure 11A: Corner Regions (a) and Unwrapping the Channel (b).

that just go around corners effectively cross the striped areas without actually
occupying them, but nets that must have radial wires over the shaded areas (i.e.
nets that have terminals in the corner regions) cannot enter them. This defines a

* minimum distance from the core at which a net with a comer terminal may be
routed. Padroute uses separate values for the X and Y minimum radii. It is pos-
sible to define four different values for minimum radius depending on which part
of the channel the net leaves for the corner, but this was not done in Padroute.
The minimum radius is illustrated in Figure 11.5. A track which contains multiple
corner nets will inherit the largest of the minimum radii. Tracks that do not con-
tain comer nets have a minimum radius of zero.

11.5. ROUTING ALGORITHM

11.5.1. Organizing Terminals on a Net
Given a minimum radius, Padroute tries to route each net in the shortest

distance. Padroute measures the distance between two terminals by projecting
them to the outer edge of the channel and measuring the clockwise distance
between them. Projection and clockwise distance is illustrated in Figure 11.6.

The ordering of the terminals on each net is determined as follows. A ter-
minal in the net's terminal list is selected. The clockwise distance from that termi-
nal to every other terminal on the net is calculated. The terminals are then put into
the net's terminal list in the order of increasing clockwise distance. The next step
is to measure the clockwise distance between each pair of adjacent terminals. The
largest distance between adjacent terminals is found. The terminal on the clock-

4 sp_
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Figure 11.5: Minimum Radius of a Net.
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Figure 11.6: Mapping Terminals and Clockwise Distance.

wise end of this gap is made the first terminal in the net's terminal list. The termi-
nal on the counterclockwise end of the gap is made the last terminal in the lisL
With the terminal list set up in this way, if the net's wire starts on the first terminal
and runs clockwise to the last terminal, the total wire length is minimized, given a
value for minimum radius. Figure 11.7 illustrates the terminal arrangement for
two nets.
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net 2heed

Figure 11.7: Arrangement of Terminals on Nets.

11.5.2. Radial Constraint Graph

The radial constraint graph is the equivalent of the vertical constraint graph
in an ordinary channel router. In Padroute, the core is considered to be the top
and the pad ring is the bottom of the channel. Even though the graph is formed for
the entire channel, Padroute generates the graph by comparing the terminals in
the top, bottom, left, and right sections independently. The terminals on the top
edge of the core are compared with all of the terminals on the top padgroup. Sim-
ilarly, the terminals on the bottom edge of the core are checked compared to the
terminals on the bottom padgroup. The terminals in the left and right channels are
checked in the same way. Figure 11.7 shows a sample channel and the radial con-
straint graph that is generated for it.

11.5.3. Circumferential Constraint Graph
The circumferential constraint graph shows which nets are not allowed to

occupy the same routing track. A pair of nets are not allowed to coexist in the
same track if any one of the following conditions is true:

1. Both nets are constrained with each other radially
2. Either net has a terminal in one of the corner regions
3. dist(netl.firsuenn, net2frterm) + dist(net2.firsiterm, netl.lastterm) <

circumference of the inner edge of the pad frame

di

__... ._________N____i________l_________I________............___________n__
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C3 True and C4 False
C3 and C4 False

Figure 11.8: Examples of conditions 3 and 4

4. dist(netl.firstterm, net2.lastterm) + dist(net2.1astterm, netl.lasuerm) <
circumference of the inner edge of the pad frame

Here, dist(terminal 1, terminal 2) means the clockwise distance from termi-
nal I to terminal 2 after the positions of the terminals have been projected to the
outer edge of the pad frame.

Examples of situations where rules C3 and C4 apply are given in Figure
11.8. The examples show the positions of the terminals at each end of the net. The
distances are shown graphically, no values are given. The diagrams assume that
all terminals have been projected to the outer edge of the channel. C3 is dia-
grammed on the outside of the circle. C4 is diagrammed on the inside of the cir-
cle. The arrows depict the distances calculated by the clockwise distance
function.If any of the tests CI through C4 are true, then, in the circumferential
constraint graph, a bidirected edge is created between the nodes representing nets
one and two.

In summary, the radial constraint graph contains information describing the
relative stacking order of nets in the radial direction. The circumferential con-

straint graph contains information about which nets are not allowed to occupy the
same routing track since they would occupy the same region in the channel.

* _ __ _ _ _- ~ __ _
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11.5.4. Cycle Removal
The radial constraint graph may contain from zero to several cycles.

Padroute uses a number of routines to detect and summarize all of the cycles
present. Details of the cycle detection functions may be found in [Lettang89]. The
end result is a concise list of the cycles, which is then passed to the cycle removal
functions.

Padroute's cycle removal techniques are rudimentary. They do no more
than add doglegs to nets involved in cycles. To break one cycle, Padroute picks
one of the nets involved and puts in a dogleg. Adding the dogleg breaks the net
into two separate nets, which may then be treated independently throughout the
rest of the routing process. Every time a dogleg is added, Padroute re-creates
the radial constraint graph and checks it for cycles. Padroute follows the pro-
cedure until no more cycles are found. The procedure just described has a possi-
bility of not completing, so Padroute counts the attempts and will give up after
a large number of iterations.

The procedure for placing a dogleg into a net is as follows. Every net
involved in a cycle has at least two terminals that are constrained with other ter-
minals on other nets in the cycle. Padroute selects, at random, a net involved in
the cycle it is currently breaking. It locates the two terminals that cause the con-
straints in the cycle. Starting from the most counterclockwise terminal,
Padroute searches for an opening to place the dogleg. A valid opening is one in
which the radial jumper that forms the dogleg may be added to the channel with-
out adding an additional constraint to the radial constraint graph. If such an
opening cannot be located, Padroute discards the net and selects anothei une.
Valid openings are generally available due to the nature of Padroute's task:
there are many regions along the channel that are not populated by terminals at
all. It is possible to produce a channel with a cycle that Padroute cannot break.
However, such channels do not appear very often in practice.

Once a dogleg has been added to a net, Padroute views that net as two
separate nets. A terminal is added to each new net where they were once con-
nected together. The dogleg connects the two terminals, maintaining an electrical
connection. The new terminals maintain pointers to each other to keep track of
the end points of the dogleg.
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II.S.S. Track Assignment

Figure 11.2 shows the muting tracks in which Padroute places the nets.
The tracks are of variable width and run unbroken around the core of the chip. A
feature of the channel is that a given track may be of varying distance from the
core.

On the first pass of the track assignment phase, Padroute places one net
per track. The track index acquires the net index. This preserves the indices of the
constraint graphs. To help reduce the wire length of each net, Padroute initially
assigns the longest nets to tracks closest to the core. The tracks are stored as a
linked list, the first track in the list is closest to the core the last track is farthest
from the core. At this phase, no attention is paid to either of the constraint graphs.

The second pass of track assignment is to merge multiple nets onto the
same track. The algorithm starts at the first track and tries to pull nets from other
tracks onto it. Each track farther down on the list is checked, in turn. Once the
other tracks have been checked for inclusion, Padroute moves to the next on
the list and fills it in the same way. This process continues until the track list runs
out. Before two tracks can be merged, Padroute checks the circumferential
constraint graph to make s& -, that the nets in the track will not overlap.
Padroute also checks to make sure that merging the nets will not generate a
cycle in the radial constraint graph. Ordering to satisfy the radial constraint graph
is not verified until the next step.

The third pass of track assignment is to make sure that none of the tracks
violate the radial constraint graph. This algorithm simple traverses the track list
and makes sure that the successors of a track in the constraint graph also appear
farther down in the track list. Any tracks for which this is not true are placed after
their successor in the track list.

The final pass of track assignment is to set the physical location of the track
in the channel. This step may rearrange the track order, but does not add to or vio-
late any constraints in the radial constraint graph. This phase also pulls all the
tracks as close to the core as possible.

As described in Section 11.4.1. (Channel Cleanup), each net has a mini-
mum distance from the core. When a net was assigned to a track, that track inher-
ited that net's minimum distance. When multiple nets were assigned to a track,
that track's minimum distance became the largest minimum distance of all the
nets in the track. A track may not be pulled closer to the core than its minimum

-- --- a -- -- ill --- -m - .-- --- -. -



Chapter 11 Pad Routing 153

radius. If the radius of each track was assigned paying attention only to the mini-
mum radius of each track without rearranging the order of the tracks, the routing
would contain unnecessary gaps between tracks. The final phase of track assign-
ment places the tracks according to their minimum radii and moves the tracks that
can move closer to the core.

To perform the final step, two interdependent algorithms are implemented.
The first algorithm traverses the track list. It keeps two accumulation variables
(one each for the X and Y axes). These variables maintain the value of the radius
from the core that the current track should occupy. The accumulation variables
are compared to the minimum radius of the track being processed. If the differ-
ence is large enough in both the X and Y directions (for a minimum width net),
the second algorithm is used to select and insert into the gap tracks from farther
down in the track list. When the second algorithm is finished filling the gap, the
accumulation variables are updated to the minimum radius of the current track.
The next track in the list is then processed.

The second algorithm operates as follows. It is given the size of the gap to
fill and the current track from the first algorithm. It traverses the track list from
the current track. A track which satisfies the following three conditions will be
moved to fill in the gap:

1. The track fits physically into the gap.

2. Moving the track into this position will not violate the radial constraint
graph.

3. The minimum radius of the new track will allow it to be placed into the
gaP.

The second algorithm completes when either the gap is filled or no tracks
remain in the list.When the first algorithm runs out of tracks to be processed, all
the tracks are fixed in position. All unknowns have been resolved and Padroute
can report the routing.

11.5.6. Output and Cleanup

When nets have been assigned to tracks and tracks have been assigned
positions in the channel, Padroute is essentially finished with routing. All that
remains is to produce the rectangles of the two layers of metal and the vias that
actually implement the routing. Padroute produces output in either OCT or
Magic layout editor format.

a
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Padroute traverses the net list and calls functions that produce either
radial connections or circumferential connections between terminals. A radial
connection will connect a terminal on a pad to the circumferential track or con-
nect the two pieces of a net split up by a dogleg. The circumferential terminal
connector works like the distance functions described above, but it does not
report the distances. It does produce the proper rectangles in metal.

Padroute stores all the routing geometries internally before writing them
out in either Magic format or in OCT. Padroute's final step is to write formal
terminal information into the OCT physical view.

11.6. SUMMARY

Padroute uses specialized algorithms to perform the final step in genera-
tion of a complete chip. By modifying standard rectangular channel routing algo-
rithms, it is possible to provide efficient solutions for the case of a circular
channel surrounding a rectangular core.
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Design Verification

Wun-Tsin Jao and Rajeev Jain

Automatic layout generation of an integrated circuit, using a framework

such as LAGER, should normally result in an error free design. However, in prac-
tice there are two possible sources of error. First, there is always a possibility that

a layout error is introduced by a bug in one of the tools in the system, since users
can integrate their own tools to the framework. Second, the designer may choose

to manually alter the routing to achieve a better result than the automatic routers

(a procedure which is strongly discouraged). In both cases it is desirable to check
that the final layout actually implements the desired circuit as described by the

SDL input description (see Chapter 3).

This chapter describes the approach used in LAGER for layout verification

and gives some details of the program DMverify which can be used to verify

designs generated using DMoct.

12.1. VERIFICATION METHODOLOGY

12.1.1. Logic Simulation

The silicon assembly is completely driven by the input netlist specified by

the designer using the structure description language SDL. This description is
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stored in the OCT database and can be verified for functional correctness by simu-
lating with THOR (see Chapter 13). The THOR simulation is based on models for
each individual library cell used in the circuit. If these models are correct the
THOR simulations can completely check the logic or functional behavior of the
circuit description.

The correctness of the THOR models can be verified a priori for each cell
and need not be repeated for each design. When a cell is created in the library, its
layout is verified by extracting a transistor netlist (with Magic) and performing
SPICE simulations. The THOR model for the cell can then be verified by check-
ing that it conforms with the actual behavior of the cell layout as predicted by
SPICE.

If a circuit description has been verified by THOR and the cell layouts have
been verified by sPICE, then the only source of error in the layout generated
with LAGER is in the interconnection of cells created by the automatic routing
tools (and any subsequent manual modifications). The layout verification problem
then reduces to checking that the interconnection of cells in the layout is identical
to that described by the SDL circuit description. This layout connectivity check
can be done with simulation or netlist verification techniques as discussed below.

12.1.2. Layout extraction and simulation
Layout connectivity can be verified by extracting a netlist of transistors

from the layout and then performing circuit simulation with a switch-level simu-
* 1lator such as IRSIM (see Chapter 13). If the simulation results are not as

expected one can conclude that a connectivity error occurred. However, the simu-
lation gives no information as to the location of the error in the layouL Iterative
simulation to detect the location of the error can be very time consuming.

An alternative for verifying the layout connectivity is to extract the con-
nectivity of the library cells in the layout (as opposed to extracting connectivity
of the transistors) and to compare this with the interconnect specified in the SDL
input. With this approach, a chip designer needs to perform only logic-level simu-
lation (with THOR) to verify the SDL input description and netlist comparison to
check the layout. Circuit-level or switch-level simulation of the entire IC layout is
unnecessary except for performance verification.

This approach works especially well for cell library based systems like
LAGER, where the circuit design of library cells has been fully verified by cir-
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cult-level simulation. The combination of functional simulation of the input cir-
cuit description along with netlist comparison of the resulting layout is the
verification methodology presented in this chapter.

12.1.3. Routing Verification
The task of comparing a netlist extracted from a layout against its specifi-

cation is known by various names such as network comparison, netlist compari-
son, interconnection check and connectivity audit. In this text, the term routing
verification is adopted, because the purpose of this task is to verify that the rout-
ing done by layout generators in the silicon assembly phase is identical to the user
specification.

12.2. NETLIST COMPARISON TECHNIQUES FOR VERIFICATION
To verify the routing of a design, netlist comparison must be performed

between the actual layout and the original SDL netlist. Two approaches are gener-
ally employed for netlist comparison methods. One is to make use of labels
placed on the layout corresponding to the node names in the reference circuit to
compare the connectivity locally. The other is to apply graph isomorphism algo-
rithms to compare the connectivity globally. The second approach is a more gen-
eral one which does not require any pre-processing for assigning names to nodes
in the circuitry. A lot of effort has been devoted to this second approach, as can be
seen in systems like GEMINI [Ebz83], CCOMP [Tak82] [Tak88], YNCC [Shi86]
and NECOM [Bar84].

However, due to the nature of the LAGER design environment, where all
the terminals are named uniquely both in the user input schematic and in the
actual layout, the first approach is adopted in this project. Graph isomorphism
based approaches are essentially an overkill for the routing verification problem.

12.2.1. Layout Hierarchy

One major feature of the LAGER circuit design tool set is that entire chips
are built up hierarchically from primitive cells. For those designs built up in a
hierarchical cell structure, the simulation and verification tools should try to
exploit the hierarchy. Unfortunately, all four of the verification systems men-
tioned above work on flattened layout only. This was advantageous for classical
full custom handcrafted designs. Since LAGER designs are cell based and hierar-
chical, flattened netlist verification is both unnecessary and inappropriate, since
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the reference circuit (described by SDL) is a hierarchical cell netlist, rather than a
transistor or gate netlist. To use conventional techniques mentioned above, the
user input description has to be flattened. By contrast, the routing verification in
LAGER is done hierarchically to exploit the approach that designs are assembled.

12.2.2. Labeling of Nodes and Nets

To compare the netlist extracted from the physical layout with the original

netlist described in SDL, the hierarchical circuit must first be extracted, and the

cells must be identified. During the identification of pins, gates, and modules, ele-
ments could be grouped as transistors/gates/modules. Some systems may also

take care of pin permutation (Wombat [SpN83] [Spi83]) or functional isomor-
phism (YNCC [Shi86]). Most of these isomorphism algorithms are based on a

signature calculation, where the signature of an element (a node, a net, or a
device), given to identify elements uniquely, is usually a combination of informa-
tion about the element itself and its neighbors. Some systems may allow elements
to be labeled, where a label is the name of an element.

Since the LAGER policy ensures that all signal nodes are uniquely named
in the original schematic netlist es well as in the physical layout, no extra effort

need be devoted to assign unique labels or signatures to electrical nodes which
appear in the original netlist.

However, a problem which does arise in LAGER is that nodes may be cre-

ated in the layout that are not declared in the input netlist. These are nodes that
are not created by routing but by implicit connections such as abutment and over-
lap of cells. The layout extractor assigns unique names to these nodes as well.
Thus the extracted circuit contains two sets of unique node names a) those that

correspond to nodes in the user specified netlist and b) those that correspond to
nodes created by the layout generators without routing. For the comparison to
work, the verification tool must distinguish between these two types of node

names and only use those in set (a) for comparison. The nodes in set (b) usually
do not need to be verified but they should be listed for visual checking by the

user.

12.23. Comparison Scheme

Once the cells and nodes have been identified, the final step of netlist com-
parison is to compare the connectivity of the nodes from the extracted layout

against the netlist specification of the original design. For those systems exercis-

I- II
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ing graph isomorphism algorithms (such as Gemini, CCOMP, YNCC, NECOM),
the entire circuitry must be flattened and be represented by a graph at first. During
the process of matching elements between two graphs (one from the extracted
layout and the other from the design specification), some systems (such as
Wombat, Gemini and NECOM) partition the graph repetitively until matching is
found, while some others (like YNCC) group vertices of the graph repetitively
until matching is found. These graph-theory operations constitute an important

Sof the system.

For the net comparison in LAGER, no grouping or partitioning is neces-
sary, since nodes are well-labeled from the beginning and hierarchy is exploited.
On the other hand, a hierarchical matching algorithm is needed to identify nets in
the extracted layout and match them against nets in the user input.

12.3. ROUTING VERIFICATION

The task of routing verification is divided into three sequential steps (Fig-
ure 12.1):

S1. Extract nedist information from the actual layout using conventional
layout e"traction methods.

2. Reconstruct a hierarchical netlist of library cells from the extracted data
and record it back into the OCT database using an "extract" view (see
below).

3. Compare the netlist in the extract view against that in the structure
instance view.

, These three steps are performed by three programs: phy2ext, ext2oct
and netdiff, respectively. A master program, DMverify, integrates the flow
control of the three steps in sequence.

In the first step, phy2ext reads the actual layout and uses Magic for
extraction. Since the Magic layout does not contain all of the Ocr database
information, names of cell instances and the paths to leafcells are recovered from
the OCT physical view.

In the second step, ext2oct constructs the hierarchical netlist from the
extracted data and stores it back into the OCT database by creating an "extract"

* view. In some sense, the extract view is actually a subset of the structure-instance
view and contains only cells, terminals, and nets. However, since names of nets
are not recoverable from the layout, this extract view may not have the same net
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representation .ext files

Figure 12.1: Routing verification

names as in the user input. Therefore the nets have to be compared by their com-
position.

In the last step, netdiff reads the connectivity described in both the struc-
ture instance view and in the extract view separately, and compares them. Being
based on the concept of nets, this program matches nets ,,rchically in the two
views and checks if a net in the extract view has an identir at counterpart in the
structure instance view (and vice-versa).

a?
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12.3.1. Routing Information from the Extract Files
After extraction, a two-phase process is carried out to read routing infor-

mation from Magic extract files. The first phase is a top-down traversal to record

cell instances as well as electric nodes (terminals) in the internal data structure of

ext2oct. This step is performed in a top-down manner since child cells are not

known until consulting the extract file of the parent cell. The recording of nodes

could be performed in a separate (top-down or bottom-up) phase if desired.

The second phase is a bottom-up traversal to record all the two-terminal
connections described in the extract files. This is done in a separate stage since

the connections can not be formed until all the cells and nodes are built up in , -
internal data structure. The second phase could be performed either top-down •.
bottom-up if only to build up these two-terminal connections. However, they are

performed bottom-up to simultaneously convert the net representation, as will be

discussed below.

12.3.2. Hierarchical Netlist Extraction

Magic extract data describes the routing by a sequence of connections
between pairs of electric nodes (terminals). Such a connection is called a link. A

multiple-terminal net is described implicitly by a collection of such links. Thus

net information is not available explicitly and nwust be recovered.

A net consisting of n terminals is described by n-1 links in the extracted

circuit. The links belonging to a net are created in a "chain" style, as shown in
Figure 12.2(b). But, when creating the extract view for netlist comparison, it is

preferred that these links are arranged in a "star" style as shown in Figure 12.2(a).

(a) Star style (b) Chain style

Figure 12.2: Net representations (a) in OCT and (b) in Magic extract files.

- I _____ a' ea"m
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This is more consistent with the OCT policy for representing nets. In the first
phase of transformation, a general procedure constructs and removes links to con-
vert the links of each net to a star style.

Taking advantage of the hierarchical nature of Magic extract files, the
conversion can be performed in a bottom-up manner as the links are built up in
the internal data structure. Whenever the bottom-up traversal stops at a certain
cell, all the links specified by the Magic extract file of that cell are implemented
in the internal data structure. With all of the links that have been constructed to

that point, every set of chain style links associated with the currently traversed
cell and all of its child cells is converted to an equivalent set of star style links.
One of the typical examples is to convert a net as shown in Figure 12.3(a) to a net

as shown in Figure 12.3(b).

(a)

cild 15 child 2 child 3

(b)

child IS child2 child3

Figure 12.3: Hierarcical net representation (a) in an extract file,

and (b) in an OcT extract view.
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This kind of transformation should be performed in a bottom-up manner.

Otherwise, a connection as shown in Figure 12.4(a) would be transformed as

shown in Figure 12.4(b) in a separated top-down manner, which is certainly not

what the structure instance view describes.

parent

grandchild grandchild grandchild grandchild

parent

grandchild grandchild ggrandcchil grandchild

Figure 12.4 Undesirable top-down conversion of net in (a) to the
representation in (b). Bottom-up traversal leads to the desired
representation.

D
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12.33. Isolating Implicit connections

Due to implicit connections created in the process of tiling macro cells,
some of those links read from Magic extract files do not exist in the structure
instance view since they are not part of the user input description (SDL). They are
called implicit links and are not implemented in the extract view. The implicit
connections always come from the abutment or overlapping of geometric rectan-
gles in physical layout when blocks are tiled. Figure 12.5(a) shows an example of

parent
child terminal A of

the parent cell

\ terminal B of
the child cell

(a) An implicit connection of two terminals with overlapping
geometry

terminal A of cell child I terminal B of cell child 2

(b) An implicit connection of two terminals with abutting geometry

Figure 12.5: Two types of implicit connection
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implicit connections coming from geometric overlapping. Figure 12.5(b) shows a
typical example of implicit connections coming from geometric abutment.
Implicit links can not always be ignored since some of them may come from mis-
routing of layout generator programs. Therefore they are reported in a text file for
users to examine manually.

12.3.4. Creating the Extract View in OCT (ext2oct)

Once all the links in the Magic extracted data have been processed, the
hierarchical nets corresponding to cell interconnections have been identified and
implicit connections isolated, the netlist information is stored in the extract view
of the OCT database. All the cells, nodes, and connections are recorded in the con-
tents facet of the extract view. Ideally all the cells, terminals and nets in the
extract view would be identical to what can be observed in the structure instance
view, except that names of nets could be different.

12.3.5. Netlist Comparison for Verification (netdiff)

To verify correctness of the routing, the connectivity in the extract view
must be compared against the connectivity in the structure instance view. Names
of nets are insignificant in the comparison since only the connectivity among ter-
minals are of concern. There are four categories of mismatches that netdiff will
identify:

1. A cell that appears in only one of the two views under comparison is
reported as one mismatch.

2. A terminal that appears in only one of the two views under comparison
is reported as one mismatch.

3. If there are nets in both views that have some terminals in common but
not all. It is reported as one mismatch.

4. A net that appears in only one of the two facets under comparison, being
unable to find a counterpart in another facet, is reported as one mis-
match.

For example, as shown in Figure 12.6, say, a net N may contain terminals
A, B, C and D in the first facet as shown in Figure 12.6(a), while N may contain
only three terminals, A, B and C, in the second facet as shown in Figure 12.6(b).
In this case, a mismatch is reported.

Netdiff first builds up two sets of internal data structures to record sub-
cells, terminals and nets of the two facets, one set for each facet. With lists of sub-



168 Verification and Testing Par h

cells and lists of terminals pre-sorted alphabetically when the internal data
structures are built up, mismatches of the first/second category are identified by
performing a synchronous linear traversal on the two subcell-lists/terminal-lists
to match pairs of subcells/terminals. Two subcells/terminals, one in each facet,
are matched as a pair if they are named identically. This is based on a fundamen-
tal assumption that names of subcells and terminals are kept undistorted in the
physical layout, which is what LAGER does. Any subcell un-matched is reported
as a first-category mismatch. Any terminal un-matched is reported as a second--
category mismatch.

NET N NODE C

0_ NODE A
NODE D

NODE B

(a) A net N in one facet may contain four nodes, say , AB,C and D.

NET N NODE A

NODE B

NODE C

(b) It may contain only nodes A, B and C in another facet

Figure 12.6: Possible discrepency between two facets

* _ I

* .
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To pair nets in the two facets, terminals attached to nets are examined. For
each net to find a partner in the other facet, a linear traversal is performed on nets
of the other facet. Two nets, one in each facet, having at least one terminal in
common are defined as a matched pair and are marked to be exempted from fur-
ther searching and matching. This matching scheme is based on a fundamental
assumption that a terminal may belong to at most one net in a facet, which is a
policy that LAGER holds. Any net un-matched is reported as a fourth-category
mismatch. Any pair of matched nets not holding identical sets of terminals are
reported as a third-category mismatch.

Since the design hierarchy is not completely recorded in the structure
instance view, the contents facets of structure instance view are only available for
user-defined cells. In other words, the structure instance view may not exist for
library leafcells. Therefore, the connectivity comparison is performed only on
user-defined cells. With the cell libraries being assumed to have been fully
debugged, this does not cause any problem in the routing verification.

12.3.6. Net Comparison vs. Facet Comparison

Although there is already a facet comparison tool called octdiff available
with the OCT database, a the connectivity comparison tool netdiff was required
since the loss of names of nets in the layout (and therefore the extract view) does
not allow the comparison of nets by octdiff. This is because octdiff assumes two
facets to be identical but facets in the extract view have only cells, terminals and
nets. This may lead to several mismatches in the output of octdiff since any OCT
object other than cells, terminals and nets would be reported as missing in the
extract view. The major difference between netdiff and octdiff can be summarized
as:

1. Netdiff checks only cells, terminals and nets. Any other OCT objects arc
ignored.

2. Netdiff checks only the connectivity among terminals, the names of nets

are insignificant.

12A. PERFORMANCE

All the programs are implemented on a 2 MIPS SUN 3/60 workstation
where the whole environment of LAGER, OCT and Magic works. Listed above are
the CPU time in minutes for processing designs of various sizes.
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The overall complexity of DMve rify (together with phy2ext, ext2oct and
netdiff) is not clear without enough number of cases measured. However, the
cases listed above give a rough idea that Dlverify's overall complexity is
worse than O(n), and better than O(n2), where n is the total number of links in
the entire design.

no. of no. no. CPU function
of of no. of no. of no. of time Oflevel cell nodes links nets (mi) designstars (i) dsg
S s

30705 3 2112 33335 21740 1274 1759 multiplier

11672 5 384 11787 6169 2816 320.6 filter

3584 4 452 6445 4070 1120 62.5 datapath
module

1581 3 106 1590 678 172 8.27 random

decoder

532 6 151 1223 911 213 3.51 processor

462 4 66 864 588 N.A. 1.52 latch

397 5 57 820 580 174 1.80 accumu-
lator

322 4 43 629 419 121 1.53 multiplier

Table 12.1: Experimental Results

12.5. SUMMARY
The first stage in verification is to determine if the interconnection defined

by the user is the same as that in the final layout. The netlist comparison programs
described here are designed to efficiently perform this check.

REFERENCES:

[Bar84] E. Barke," A Network Comparison Algorithm for Layout Verification of Integrated
Circuits", IEEE Transactions on Computer Aided Design Vol CAD-3, No. 2, April
1984, pp 135-141.



Chapter 12 Design Verification 171

(CIF80] C.Mead and L. Conway. 'Introduction to VLSI systems". Addison-Wesley Publishing
Co., 1980, pp 115-127.

[EbZ83] C.Ebeling and 0 Zajicek, "Validating VLSI CIrcuit Layout by Wirelist Comparison",
Proc. 1983 InterrAdional Conference on Computer Aided Design, September 1983, pp
172-173.

[Lag88] Electronic Research Laboratory, University of California, Berkeley, "LagerIV Distri-
bution 1.0 Silicon Assembly System Manual", June 1988.

[Lob84] C.Lob, "RUBICC : A Rule Based Expert System for VLSI Integrated Circuit Cri-
tique", UCB/ERL Memo M84/80, UC Berkeley Electronics Research Laboratory, Sep-
tember 28, 1984.

[LSN85] C.Lob, R. Spickeimier and A.R.Newton, "Circuit Verification using Rule based
Expert Systems", Proc. 1985 International Symposium on CIrcuits and Systems, Kyoto,
Japan, June 5-7. 1985, pp 881-884.

[Mag86] Electronic Research Laboratory, University of California, Berkeley, "1986 VLSI
Tools: Still More Works by the Original Artists", Report No. UCB/CSD 86/272,
December 1985.

[Oct88] Electronic Research Laboratory, Univerisity of California, Berkeley, "Oct Tools Distri-
bution 2.1", March 1988.

[Pap88] A.C. Papaspyridis, "A Prolog Based Connectivity Verification Tool", Proc. 1986 Inter-
national Conference on Computer Aided Design, pp 298-301.

[Shi86] Y. Shiran, "YNCC : A New Algorithm for Device Level Comparison between Two
Functionally Isomorphic VLSI circuits", Proc. 1986 International Conference on Com-
puter-Aided Design, pp 298-301.

[Spi831 R.L. Spicklemier, "Verification of Circuit Interconnectivity", UCB/ERL Memo 83/66,
UC Berkeley Electronics Research Laboratory, October 21, 1983.

(SpN83] R.L. Spicklemier and A.R. Newton, "Connectivity Verification Using a Rule Based
Approach". Proc. 1985 International Conference on Computer Aided Design, Santa
Clara, USA, November 18-21, 1985, pp 544-550.

CTak82] M. Takashima, T. Mitsuhashi, T.Chiba and K. Yoshida, "Programs for Verifying Cir-
cuit Connectivity of MOS/LSI Mask Artwork", Proc 19th Design Automation Confer-
ence, June 1982, pp 544-550.

ITak88] M. Takashima, et. al., "A Circuit Comparison System with Rule Based Functional Iso-
morphism Checking", Proc. 25th Design Automation Conference, June 1988, pp
512-516.

4
b

* 4e- rm- l ii li



¾: 13
Behavior and Switch Level Simulation

Lars Svensson, Lars E. Thon and Seungjun Lee

One of the most important characteristics of the LAGER set of tools is the
tight coupling between the specification of the design and the simulation of that
description. There are several levels of simulation which are employed. At the
lowest level simulation is performed on a description which is obtained by extrac-
tion from the physical layout, using the simulator IRS IM [Salz89]. This is used to

verify the functionality and timing of the actual completed layout. At a higher
level, using models that are stored in the libraries along with the cell descriptions,

is behavioral simulation using Thor [Thor88]. This chapter shows how Thor

and IRS IM are integrated with LAGER.

13.1. THE THOR SIMULATOR

Thor is a compiled simulator, where functional descriptions of the hard-
ware are converted into the C language, compiled, and linked with a number of

libraries to form the executable simulator file. Thor offers fast simulation at sev-
eral abstraction levels, as well as a convenient user interface.

The Thor simulator is capable of simulating a design at the behavior level.

register-transfer level, or gate level. Mixed-mode simulation is also allowed; the

modules of the design may be modeled at different levels of abstraction. The

_ _ _
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interconnection between the modules uses single signal lines, fixed width busses,
or variable width busses. Each signal line carries one of four values: Low (0),
High (1), Undefined (U), or Floating (Z). In addition, the value on a bus of signal
lines may be represented as an integer. The integer value is the two's complement
interpretation of the values on the individual signal lines. (The integer interpreta-
tion only works if the individual signal lines carry Os or Is).

The modules and the interconnection network are specified with two differ-
ent description languages, CHDL and CSL. The main features of these languages
are described below. After conversion into C and compilation with a standard C
compiler, the hardware description is linked with an event-driven simulator ker-
nel, a user interface, and libraries of commonly-used functions. The supplied

* function libraries include "standard" logic functions for simple gates, arithmetic
operations on two's-complement numbers, module models for generation of test
patterns (generators), module models for observations of the signals of some nets
(monitors), and an extensive TTL model library as well.

The resulting simulator executable may be run in batch mode, with a com-
mand script that specifies the details of the simulation. The same executable also
runs in interactive mode, letting the user set breakpoints, single-step a number of
clock cycles, etc. An X-windows interface similar to that of IRS IM is also avail-
able. In each case, only signal values on nets which have a monitor model
attached to them will be displayed. The input signals of the simulation may be
generated algorithmically (as is the case for, e.g., clock signals) or read from
input files (by virtue of a generator model that reads the file).

13.2. MODEL DESCRIPTION LANGUAGE

Functional models for Thor are written in a language called CHDL. This
language is C with few extensions which is converted to true C by a pre-proces-
sorbefore compilation by the standard C compiler. Any C construct may be used
in the model description, which has the advantages of being familiar to most users
and allowing complex efficient descriptions.

A simple CHDL model of an eight-bit adder is shown in Figure 13.1. The
MODEL(adder) line declares the model name as being "adder". The model name
is used to refer to the model in the netlist specification (see below).

The initialization section of the CHDL model contains ordinary C code,
enhanced with the special port constructs. It is executed once for each instance of

•. ..... i.....a ..
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MODEL(adder)

/* list of the input connections */
IN LIST

SIG(Cin); GRP(Inl, 8); GRP(In2, 8);
ENDLIST
/* list of output connections */
OUTLIST

SIG(Cout);
GRP(Outl, 8);
/* temporary variable, invisible from outside */

TGRP(TOut, 9);
ENDLIST
/* No bidirectional ports (biputs) for this block */

INIT
/* No initialization needed; purely combinational */
ENDINIT

/* Model body starts here */
/* Compute temporary result. Sub-bus addressing is

an extension to C */
TOut[8:0] - Inl(7:0] + In2[7:0];
/* Write values to outputs*/
Outl[7:0] = TOut[7:0]; Cout - TOut[8];
/* exit model */

EXITMOD (0);

Figure 13.1: A simplified CHDL example of an adder

the model, before the actual simulation begins. Since any C statement is allowed,
it is possible, for example, to read a file that determines the behavior of the
model. (This is used in the LAGER RAM and PLA models). For purely combina-
torial models such as the one shown in Figure 13.1, no initialization is necessary.

The model body implements the actual hardware behavior. The body is
executed whenever the signals on the nets connected to the input and biput ports
of the model change value. Typically, the body code reads the signal values from
the input and biput ports, decides what to do (maybe using the state variables),
and writes new values to the biput and output ports (and maybe to its state vari-
ables).

The macro EXITMODO is used to exit the model; any argument but 0 indi-
cates that an error has occurred.
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13.3. NETLIST LANGUAGE

CSL is the netlist description language used to specify the interconnection
of the instances of the CHDL models. The CSL syntax is very different from that

of CHDL; it does not look like C at all, even though it is converted to C when the

simulator is built, just like the CHDL models are. An example of a CSL file is

given in Figure 13.2.

/* An instance of the adder of Figure 13.1. The nets connected

to the 'li and 'o' ports of the adder are given in the same

order as in the CHDL model. The delay is zero simulator time
units for all outputs. */

(f-adder) (n-black adder) (i-carry in,in_a[0-7],inb[0-7])

(ofcarry out,out[O-7]) (do-0,0,0,0,0,0,0,0,0);

/* A counter is used to generate data */

(g-COUNT) (n-in_data) (o-carryin,ina[0-7],in b[O-7]);

/* Simulation data dumped on a file for later examination */
(m-Banalyzer) (n-datadumper) (i-carry out, out i0-7));

Figure 13.2: A simple CSL (THOR nedist) example

Each instance of a CHDL module is declared in exactly one CSL statement.
The statement specifies the element type (which refers to the model name in the
CHDL file header); a model instance name; lists of nets to connect the input, out-

put, and biput ports to; and the delays associated with the output and biput ports.

The second type of CSL statement is the subnetwork definition. This is
essentially a macro definition; instances of the subnetwork look like CHDL model
instance declarations, but are expanded into groups of model instances according

to the macro definition. The ports of the subnetwork are declared as inputs, out-

puts, or biputs, just as the ports in the CHDL models.

These are the only types of CSL statements. Nets are not explicitly
declared. There is no explicit interface to the outside world, since all input and

output is performed with generators and monitors, which use the sane syntax as
other model instances.

0
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13.4. BUILDING A SIMULATOR

Building the simulator is almost automatic, through use of the Unix utility
Make. A Thor utility program, gensim, generates a makefile for the simulator

San then calls make. make will run mkmod on each of the CHDL files; this pro-

gram generates true C from the model descriptions, and feeds them to the system
SC compiler to produce object files. In a similar fashion, the CSL files are con-

verted into C and compiled. The objects are then linked with Thor libraries to
produce the simulator. Gensim finally spawns the newly built simulator and
exits.

Note that since make is used in the compilation process, a complete
recompilation is not needed if only a few of the CHDL or CSL files have been

I changed. Only the updated files need to be recompiled. The link step must also be
redone.

13.5. DATABASE GENERATION

In addition to the main objective, some extra requirements were set up for
the MakeThorS im interface between Thor OCT representation:

- CHDL models for the standard library cells and module generators should
be stored in the leafcell libraries.

- The interface must place very little restriction on the flexibility of
LAGER.

- The user should be able to recognize the circuit, in order for interactive

simulation to be useful. In practice, this requirement forces a one-to-one corre-
spondence between LAGER net names and Thor net names. Also, the names of
the Thor nets, as well as those of terminals and building-blocks, should be as
close to the corresponding LAGER names as possible.

These requirements have strongly influenced the design of the interface.
The main idea of the interface is simple and obvious: subcells of a design should
be modeled in CHDL, and the interconnection network should be an automati-
cally generated CSL version of the OCT netlist.

13.5.1. Parameterization

The flexible parameterization mechanism is an indispensable feature of the
* LAGER system. Actual parameter values may be strings, integers, floating-point
* values, or arrays of these. In contrast, parameterization of Thor models is more

-- u
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limited: the actual parameter values are in practice integers. Also, the terminal

specification of a Thor model allows only one flexible-width port of every type,

while the number of parameterized ports in a LAGER module is unlimited. Map-

ping several parameterized LAGER ports onto one flexible-width Thor port

would in principle be possible, but it would violate the one-to-one requirement,

making interactive simulation impractical.

In the MakeThorSim interface, LAGER-style parameterization is provided

by the introduction of a CHDL model template. The template is a CHDL model,

where the LAGER parameter names are used at any place where the parameter
value would be used. The actual parameter values are substituted for the parame-

ter names before compilation of the CHDL model.

To make it easier to identify the formal parameters in the CHDL templates,

an exclamation mark, !, is prepended and appended to the parameter name. Thus:

to access the value of the parameter BUS_WIDTH, ! BUS-WIDTH! is inserted in

the template; at parameter substitution, this construct is replaced by (say) 8. This

(integer) parameter would typically be used in the dimension specifier of a GRP
port, in limit expressions for loops in the code, and to specify dimensions for

local array variables.

13.5.2. Storage and instantiation

The CHDL template itself is stored as a string-valued OCT property, named
THORTEMPLATE, in the structuremaster view. There is no way to specify

Thor information in the SDL representation of a cell; the property is inserted by

a utility program that works directly with the OCT database.

Since DMoct copies properties from the structure._master view to the struc-

tureinstance view, a copy of the THORTEMPLATE property is present in the

structure-instance view. The structureinstance view also contains the actual val-
ues of all the parameters. An instantiation procedure performs the parameter sub-

stitutions on the THOR-TEMPLATE property and writes the results to a CHDL

file. It also stores the instantiated model in the structureinstance view as another

string property, THOR-MODEL. For a cell without parameters, the instantiation

is of course unnecessary; all instances of the cell are identical, and identical

CHDL model! may be used for them all. For such a cell, the CHDL model is

stored directly in a THOR.MODEL property.
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13.$.3. CSL generation
Generation of a CSL version of the OCT netlist is conceptually easy. Some

practical quirks complicate the procedure somewhat.

In OCT. a design is represented in a hierarchical manner. CSL offers a sub-
network construct, which also makes hierarchical descriptions possible. It seems
natural to map one hierarchy onto the other; however, this would force the user to
specify the signal direction of each terminal of each module, that is, whether the
terminal is an input, an output, or a biput. This information is usually not avail-
able in the OCT representation.

Therefore, another approach is used here: the hierarchical OCT representa-
tion is flattened into a one-level netlist before the conversion to CSL. The signal
directions of the terminals of the CHDL models are specified in the model itself:
input ports are given in the IN._LIST, output ports in the OUT-LIST, and so on.
This means that the designer need not care about the signal direction at all, if the
design only includes leafcells with CHDL models already in the system library.

The flattening is performed by a standard OCT library routine. The flatten-
ing starts from the top-level SIV and stops when an SIV with a THORTEM-
PLATE or a THOR-MODEL is found.

Once a flat netlist representation has been constructed, the CSL file genera-
tion may start. For each cell instance of the flattened netlist, the THOR-MODEL
is extracted; if necessary, it is constructed from the THOR-TEMPLATE by
replacing the formal parameters with their actual values.

When a cell description is parameterized, separate CHDL files are written
for the instances. On the other hand, if the cell has no parameters, one copy of the
code is sufficient for all the instances. This makes a big difference in the size of
the simulator executable for a standard-cell design, which might contain hundreds
of instances of the same non-parameterized cell.

For each port of the CHDL model, the corresponding terminal is then
extracted from the OCT representation of the design, and a CSL statement is writ-
ten to the output file. When all the cells have been processed in this manner,
MakeThorSim exits; the CSL file should now be complete except for the gener-
ators and monitors.



180 Verification and Testing Part III

13.5.4. Restrictions
IlThe MakeThorSim interface generates a collection of CHDL and CSL

files that represents the structure of the OCT design. Some pieces of information
are not handled by the interface, or at least not handled well. These restrictions

are addressed by the MakeThor interface, which is the subject of the next sec-
tion.

First, generators and monitors have to be inserted in the CSL file by hand.

Actually, the program is capable of inserting a monitor that provides graphical
display of the waveforms of all the external connections of a module. This still
leaves the generators.

Furthermore, in Thor, output delays are specified in the CSL file. This
makes it possible to adjust the module delays according to wire length and capac-
itance of the interconnecting nets. For a gate in the standard cell library, a numer-
ical value of the propagation delay could be stored as an OCT property. However,
for a complex module like a PLA, the delay depends heavily on the parameters of
the module. Therefore, the delay figure would need to be computed anew for each
parameter set, as part of the instantiation procedure. Because of this complication
the solution used with makeThorSim was to usea unit delay of zero everywhere,
and such a delay specification is inserted in the CSL file. This means that a well
behaved network always evaluates in one Thor time unit.

13.6. IMPROVED INTERFACE
The MakeThor interface is an improved version of MakeThorSim. It

provides a direct interface between Thor and the structureinstance view in
LAGER. Just like MakeThorSim, it extracts interconnection data from an
structure-instance view and fetches copies of the Thor models for the subcell
instances of the structurejinstance view In contrast to MakeThorSiv4
MakeThor builds the Thor interconnection structure directly from the
structure-instance view i nstcad of generating a CSL description. It then compiles
the models along with the connectivity information and links them with Thor
simulation kernel and library files to build the executable simulator. The two
approaches are illustrated in Figure 13.3.

13.6.1. Generators and monitors

Compared to MakeThorSim, MakeThor has a slightly different view of
the simulation process. The CSL that MakeThorSim generates from the SIV

K II---ii
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SFigure 13.3: The approaches of MakeThorSim and MakeThor

does not contain any generators and monitors. They have to be inserted into the
CSL file by hand. Then, gensim builds the simulator from the hand-patched CSL
file. Whenever generators and monitors are added or deleted, gensim has to go
through the full procedure all over again to generate the simulator corresponding

to the modified CSL file. This procedure may take some time, since it requires
recompiling and relinking.

In contrast, in the MakeThor interface, generators and monitors are addedat runtime. The executable simulator which MakeThor generates contains no

generators and monitors. It starts its execution by reading information about gen-
erators and monitors from a specified input file. Adding or deleting generatorsand monitors is done by editing this input file. To ensure consistency, a special-

purpose editor (GMedit is used for this task. GMedit makes recompiling and
relinking unnecessary when the only changes are to the generators and monitors.The front end of the Thor kernel has been modified to accommodate this feature.

13.6. Delay handling

The simulator generated by MakeThor can take an option that specifies
the internal delay specification. The internal delays of all the modules get the con-
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stant value provided by the user. If no value is given, the MakeThorSim behav-
ior is used, that ;s, a delay of zero is assumed everywhere.

If Thor had allowed delay to be specified in the CHDL model, the INIT
section of the model would be the ideal place to include it. A powerful program-
ming language, C, would then be available, as well as all the parameter values for
the module, so even complicated functions of the parameters could be used as
delay values. Parameter-dependent delays would be computed once, before the
actual simulation, thus insuring efficiency.

13.7. SWITCH LEVEL SIMULATION

IRS IM[Salz89] is an event driven switch level simulator that provides first
order timing information for NMOS and PMOS transistor circuits .Two transistor
models are supported by IRS IM: A switch model where each transistor is mod-
eled as a voltage controlled switch and a linear model where each transistor is
modeled by a voltage controlled switch in series with a piecewise linear resistor,
and where each node in the circuit has a capacitance attached to it.

13.7.1. Input data

IRS IM requires two input files:

1. The parameterjile contains electrical parameters for the circuit technol-
ogy, mainly properties of the transistors, such as threshold voltages, gate
area capacitances and dynamic channel resistances (for the piecewise
linear model). There are also area capacitances for various layers, but
this information is not used by IRS IM at present. IRS IM provides a
calibration facility where a spice model (e.g. as provided by MOSIS)
can be used to tune the parameter file so that there is close correspon-
dence between IRS IM and spice delay values. The difference between
spice and IRSIM is often less than 10% when using tuned models on a
moderately sized circuit (say, a full adder with 50 transistors). Sample
parameter files (untuned) for MOSIS SCMOS technologies are pro-
vided. An example is shown in Table 13.1.

2. The circuitfile is a fiat circuit description in the Magic sim file formalt
This file is typically generated directly from the circuit layout by using
the Magic extract facility and then running the ext 2 sim program to
flatten the hierarchical .ext description into a flat .sim file.

.-..----...--. . . . .-- **----. . .. - , - ..
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Additional command files and/or interactive entry can be used to specify
input patterns, timing and simulation commands. The simulation results are dis-
played through a graphical interface called the analyzer.

13.7.2. Using IRSIM
IRSIM is the basic tool to check a layout for connectivity, functionality

and timing. Any missing connections or shorts in the layout will be revealed if
properly exercised by your test patterns. Functionality can likewise be established

Name value comment

capga .000816 gate capacitance pF/sq-micron

lambda 1.0 microns/lambda

lowthresh 0.4 logic low threshold (normalized)

highthresh 0.6 logic high threshold (normalized)

Channel resistances width(O) length(A) resistance (a)

n-chan dynamic-high 10.0 2.0 3847.0

n-chan dynamic-low 10.0 2.0 1856.0

n-chan static 10.0 2.0 2472.0

p-chan dynamic-high 20.0 2.0 2020.0

p-chan dynamic-low 20.0 2.0 3969.0

p-chan static 20.0 2.0 2011.0

Table 13.1: The primary IRS IM model parameters

by applying appropriate input sequences. The timing accuracy is also quite rea-
sonable as long as the wiring resistance in the circuit can be ignored. IRS 1m does
not model resistance except as part of the transistor model, so it will not give
accurate results if, for example, a layout contains long polysilicon lines.

13.7.3. zsizx example: The PUMA chip

The PUMA chip [Chapter 191 is a relatively complex chip containing about
44,000 active transistors and about 16,500 nodes in the flattened circuit. The pur-

_ ____

I -- ( a n Ia



184 Verification and Testing Part III

i n r -n -. n-n

iiH

i- , ,i- i i,! ! -

--- , FL F- H-

-%" UM ...... . ...4.......

.- ' I- . 4 - 4 -, I!-l- m J4 TI i-izr-I',-

famaTM:

-- I-i -.." 4H - I 4 -. .t4 - 4 - 4

mm lq ; .. ... .... i, .... ... .... 4 .. ... .... ... i .. ... ........ , ......... ... . .............. ............... ,. . ........ .+ ............... ;............. . .- ..... . .
-m. "s. - ý

Figure 13.4: IRSIM analyzer display of PUMA chip simulation

pose of our simulation of PUMA with IRS IM was to go through a complete exe-
cution of a 700 line C program that had been compiled into silicon, using the
techniques described in Chapter 17. This required simulation of more than 18,000
clock cycles of the extracted layout.

The input to the simulation consists of resetting the processor, starting the
program execution, and waiting for the chip to signal that it is ready to read its
inputs. We then feed the inputs to the processor and then simulate until it signals
that it has finished. The chip is then gi,,en the input sequence which outputs the
results. The outputs are then examined and compared to Thor simulation results.

Figure 13.4 shows parts of the analyzer display just as the PUMA chip is
starting to output the first few numbers on the DATAOUTPORT terminal. The
signal WRITESTRB (next to last in the display) goes high for one cycle to signal
that a new value is available on DATAOUTPORT.

-. <t
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13.8. SUMMARY

The objective of the Thor interfaces was to automate the Thor simulation
of LAGER designs. The high level simulations made possible with Thor are the
primary means of debugging the input specification. On the other hand IRS IM is
used to verify chip connectivity, functionality and timing and has been found use-
ful for quite large designs, in spite of the low level of the simulation.

REFERENCES:
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14
Chip and Board Testing

Kevin T. Kornegay

Upon receipt of the chip from a fabrication foundry, testing is required to

exercise the chip to determine whether it implements its intended functions. If an

incorrect response is observed, a second objective of testing is to diagnose why

the chip behaved incorrectly. Furthermore, in order to meet the tight design con-
straints imposed on today's chip designers, such as reduced chip to market time
and reduced cost, testing must be considered very early in the design process.

The use of design techniques specifically employed to guarantee that a

chip is testable is commonly known as design for testability (DFT). In this chap-
ter, we will describe how to integrate two DFT techniques, namely scan path

[Funatsu75] and boundary scan [IEEE90], into LAGER. Examples of how these

techniques are used for chip-level and board-level testing are also presented. We
also describe the oct2tgs tool which translates an OCT structure_instance view
into a netlist format required by the test generation system (TGS) [USC88].

Finally, the architecture for the Test Controller Board, which is used for control of

and access to the scan path and boundary scan devices, will be described. Cur-
rently, since LAGER is primarily focused on fast prototyping of circuits, these

testing techniques are used only to provide us with diagnostic information about
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the location of a failure. High 3peed testing for high volume fabrication has not
been addressed.

14.1. CHIP-LEVEL TESTING

Most chip-level structured DFT techniques are built upon the concept that
if the values in all of the latches can be controlled to any specific value, and if
they can be observed with a straightforward operation, then test generation can be
reduced to that of doing test generation for the combinational circuits between the
controlled latches.

14.1.1. Methodology
The scan path methodology is probably the most widely used technique for

testing those parts of the circuit that are constructed of clocked flip-flops inter-
connected by combinational logic[ Funatsu75] As illustrated in Figure 14.1, it is
based on converting the circuit's flip-flops into a serial scan path chain denoted by
the thick black line threading the circuit flip-flops. When the circuit is put in the
test mode, it is possible to shift an arbitrary test pattern into this serial register. By
returning the circuit to normal mode for one clock period, the contents of the scan
register and primary input signals act as inputs to the combinational circuitry and
new values are stored in the scan path register. If the circuit is then placed into
test mode, it is possible to shift out the contents of the scan register for compari-
son with the correct response.

14.1.2. Scan Path Register Cell
By using test points, one can easily enhance the observability and control-

lability of a circuit. The scan path register effectively provides such test points. A

SCANOU

LOAD PH_2 PHI_

• -1- KEEP
SCAN

Figure 14. 1: Scan path register cell. ,
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scan path register is a serial cascade of scan path register cells whose inputs and
outputs are connected to the internal logic of a chip. A schematic of our scan path
register cell is shown in Figure 14. 1. Operation of the cell requires two non-over-
lapping clocks, namely Phil and Phi2. During normal operation, the LOAD signal
is asserted and the logic value at the input (IN) reaches the output (OUT) after one
clock cycle. When the signal SCAN is asserted during test, the logic value at SCA-
NIN arrives at SCANOUT one clock cycle later. The KEEP signal is used to
refresh the value stored in the cell.

14.2. BOARD-LEVEL TESTING

To better address problems of board-level testing, several standards have
been developed. The primary goal of such a standard is to ensure that chips con-
tain common circuitry that will make test software development and the testing of
boards containing these chips significantly more effective and less costly. One
such standard is called the JTAG Testability Bus Standard [IEEE901, also known
as Boundary Scan, 1149.1 or simply JTAG.

14.2.1. JTAG Boundary Scan Architecture

The JTAG standard consists of a dedicated serial test bus which resides on
a printed circuit board, a protocol which controls the I/O pins that connect the
chip to the test bus, and control logic that resides on chip to interface the test bus
to the DFT circuitry residing on the chip. The primary reasons for boundary scan
are to allow efficient testing of board interconnect, and to facilitate isolation and
testing of chips either via the test bus or with additional circuitry.

With boundary scan, chip-level testing can be supported at the board-level
by simply connecting boundary scan register cells to the chip's scanin and
scanout pins as shown in Figure 14.2. There are two major components associated
with this standard, namely boundary scan registers and the finite state machine
test access port (TAP) controller. Scan path registers are accessible from the test
data input (TDI). The normal terminals of the application logic are connected
through boundary scan cells to the chip's I/O pads. The rest of the test circuitry
consists of a 1-bit bypass register and the instruction register.

The TAP bus consists of four lines, namely the test clock (TCK), the test
mode select (TMS), the test data in (TDI) and the test data out (TDO) lines.
Boundary scan cells can be interconnected forming a single scan-chain. Various
tests such as scan path, interconnect test, or snapshot observation, can be carried

iJi
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out with this architecture. To implement these tests, three test modes exist,
namely internal test, external test, and sample test. While in the internal test
mode, multiple internal scan path operations can be activated to test a chip. Dur-
ing external test mode, printed circuit board interconnect tests can be carried out.
In the sample test mode, internal nodes of the chip can be sampled during normal
system operation.

14.2.2. Boundary Scan Register Cell

The boundary scan register tests circuitry external to the chip package (pri-
marily the board interconnect). It also permits the signals flowing through the
chip's I/O pins to be sampled and examined without impacting the operation to
the system logic. The boundary scan register is single shift register based path
containing cells connected to all system inputs and outputs of the circuit and the
system logic.

A block diagram of an output boundary scan register cell is shown in Fig-
ure 14.3. During normal operation, the MODE signal is disabled and the cell

TDI = Test Data Input

S I TDO = Test Data Output

_S STMS = Test Mode Select

JU . .BP = Bypass Register

R SP = scan path Register Cell

BS Boundary Scan Register Cell

IR = Instruction Register

STAP = Test Access Port Controller

TDI TMS TCK TDO

Figure 14.2: JTAG Boundary Scan Architecture.

I
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becomes transparent and data is passed directly to the output pin. When a test ses-
sion is invoked, the ShiftDR and ClkdrDR signals are asserted until all the test
data is loaded into the boundary scan chain after which, the UpdateDR signal is
asserted and the test data is applied to the output pins. Meanwhile, the Mode sig-
nal is asserted during the entire test session. Test results are then captured at the
input pin of an adjacent chip and shifted out for comparison with that of a good
circuit.

14.3. IMPLEMENTING SCAN PATH AND BOUNDARY SCAN
An example of a chip containing both scan path and boundary scan, called

TESTCHIPI, is illustrated in Figure 14.4. TESTCHIP1 is partitioned into four
boundary scan register blocks, one TAP controller block, and one data path and
scan path block. It was generated from a hierarchical SDL file comprised of two
lower-level sdl files which are called JTAGMACRO and DATA-PATH.
JTAGMACRO contains the minimum amount of circuitry necessary to imple-
ment the JTAG Boundary Scan standard. DATAPATH contains the data path and
scan path circuitry. The widths of both the scan path and boundary scan registers
are determined by the user specified design parameters.

For designs which are limited by the core area, we have designed dedicated
chip pad library whose primitive cells contain boundary scan register cells. A list
and brief description of these pads is described in Table 14.1. An implementation
which utilizes these pads is illustrated in the TESTCHIP2 example shown in Fig-
ure 14.5

Data From
System M 'yTem

From '-- m, X Sste
Previous L Pin

Cell

ClockDR UpdateDR

! Figure 14.3: Block diagram of output Boundary Scan register cell.
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Padname Function

in Boundary Scan input pad.

out Boundary Scan output pad.

io Boundary Scan bi-directional pad.

tdi Test data input pad.

tdo Test data output pad.

miscellaneous Supply and ground pads.

nobsin/out Non-Boundary Scan I/O pads.

Table 14.1 Boundary Scan Pad Library Cells

14.4. TEST CONTROLLER BOARD

When testing printed circuit boards, it is often useful for purposes of test-
ing to be able to isolate one chip from the other. Hence, provisions must be made
in order to access and control the scan path and boundary scan hardware imple-
mented on these chips. This can be accomplished using the Test Controller Board,
which implements the JTAG Boundary Scan bus master protocol.

ETHERNET

Net"orking VME Card Cage
S&I I ~CommunicatIon CP

ImpierenZs Board
ProtocolsVM Bu

Applies Tests, nits TCB
Uploads Results for Analysis TOBCU
& Diagnosis, Test Hardware

* Insertion, ATPG TPPr

Figure 14.6: Block diagram of system hardware.
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A block diagram illustrating how the Test Controller Board is used in our
system hardware development environment is shown in Figure 14.6, where the
Test Controller Board, CPU board, and the chip under test (CUT) all reside in a
card cage.

14.4.1. Test Controller Board Architecture

The TCB provides us with a means to exercise the test hardware imple-
mented on the CUT. Assuming every chip on the printed circuit board conforms
to the JTAG Boundary Scan standard, we can test the internal logic or test the
interconnect ion between the chips on the printed circuit board.

A block diagram of the TCB is shown in Figure 14.7. It contains VME
interface logic, which handles communication between the HOST and the Test
Controller Board, control, status, and data registers, adl of which are used to ini-
tialize and configure the Test Controller Board for a test, a test controller, which
implements various test algorithms, test data memory, which stores the test stimu-
lus and response, and the test interface, which connects it to the DFT structures
implemented on the CUT.

14.4.2. Test Controller Board Software
The software, called SCANTEST, controls an entire testing sequence by

providing a user on a host system with the means to apply test data to a circuit, to

V'VME Interface
I Control,

VME Status, Address
Interface & Data Generator

Logic Registers

Local Bus
Test

Teat DataController !Memory
JTAG Bus

F TAP Port

Figure 14.7: Test Controller Board (TCB) architecture.
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execute a particular test, and to capture the response for analysis. This software
essentially controls the Test Controller Board and is capable of supporting three
types of test, namely scan path, boundary scan, and data acquisition. SCANTEST
was written in the C-programming language and it is composed of three primary
functions. First, the board is initialized, and its status is checked, after which test
vectors we downloaded. Next the board is operated, and finally, the data is
uploaded back to the host.

14.43. Testing using the Test Controller Board
During a test, the scan path or boundary scan registers are exercised and the

following sequence of events occur:

1. the TCB scans in the test data.
2. the CUT runs for one clock cycle.
3. the TCB then scans out the test results.
Once the results are obtained, the functionality of the CUT can then be ver-

ified. For example, the functionality of the Viterbi processor [see Chapter 21] was
verified using the scan path test method described in Section 14.1. A block dia-
gram, of one its data paths with its scan path register is shown in Figure 14.1. By
issuing the scan path instruction, a scan path test sequence was executed, and the
functionality of the logic surrounded by registers REG[1] through REG[5I was
verified. The software prompts for the type of Boundary Scan test to be per-
formed, and any of the public instructions outlined in [IEEE90] can be executed
during a Boundary Scan test.

14.5. TEST PATTERN GENERATION

The test pattern generation process provides a test vector (consisting of 0, 1
or dont-care values) for any given detectable fault. In a combinational circuit, a
specific stuck-fault can be tested with a single input vector. Most automatic test

pattern generation (ATPG) programs work extremely well for combinational cir-
cuits, and are usually some derivative of the D-algorithm or PODEM [Goel8 I].
Testing a fault in a sequential circuit, in general, requires a sequence of vectors.
Test generation for sequential circuits is much more complex than that for combi-
national circuits. In fact, none of the known sequential circuit test generators pro-
vide satisfactory performance. This motivates the use of the scan path method. By
using such DFT techniques, test generation for sequential circuits can then be
treated as test generation for combinational circuits.
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Test generation is performed in two steps. First, an interface tool, called

oct2tgs, translates the design into an input format which is understood by the
ATPG program. Second, the test patterns are generated using TGS [USC88]. TGS
generates a set of test patterns for combinational logic circuits described at the
gate level using the PODEM [Goel81] test generation algorithm. The gate types
supported by the system are AND, OR, NAND, NOR, INV (inverter) and BUFF
(buffer). Fault collapsing, whose main objective is to classify the set of all possi-
ble faults into one set, and fault simulation, which attempts to identify all faults
that can be detected by a given input vector, are also supported by TGS.

14.6. SUMMARY

Most techniques deal with either the resynthesis of an existing design or
the addition of extra hardware to the design. The approaches described in this
chapter require modifications to the design and affect such factors as area, I/O
pins and performance. Hence, a critical balance must exist between the amount of
DFI used and the gain achieved when employing these techniques. Furthermore,
these techniques provide us with adequate diagnostic information and were found
to be extremely suitable for a rapid-prototyping environment.

Without DFT and ATPG, tests have to be generated manually, with DFT
and ATPG, they can be generated automatically. The implementation of the
Boundary Scan and scan path cells have also been described. These cells help
provide support at both the chip and board levels. Finally, the Test Controller
Board which is used to access the DFT devices implementd on the chips was
described.
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15
DSP Specification Using the Silage

Language

Paul Hilfinger and Jan Rabaey

Digital signal processing (DSP) algorithms are most easily described using
a block diagram or schematic representation of the d!:ta flow in the algorithm.
This can be captured in a graphical format[Lee89, Goering90], which is conve-
nient if the number of blocks is relatively small and the interconnection is not
complex. For more complex systems it is often more convenient to use a text rep-
resentation. However, the commonly used procedural languages such as C,
impose an ordering on the operations, and the variables actually represent mem-
ory locations, rather than true arithmetic values from which meaningful arith-
metic equations can be written. An applicative (functional or single assignment)
language accurately represents the computation which is to be performed, rather
than how it is to be calculated. Silage is such a language with the addition of con-
structs (e.g. delay) that are commonly found in DSP applications.

15.1. BASIC CONCEPTS

A popular form for high-level descriptions of signal-processing algorithms
is a graphical signal-flow representation in which nodes represent instances of

S. .. ... .... ......
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functions (such as addition, multiplication, and delays) and arcs represent the
path followed by data for, and results from, these functions. The semantics
implied by such a representation are what are known as data-flow semantics, in
which the emphasis is on the paths followed by the inputs and intermediate results
of a computation, rather than the sequence of imperative operations performed on
memory locations, the control-flow semantics. One potential advantage of the
data-flow representation iq that no explicit statements are made about the order or
concurrency of the operations specified, and simple graphical properties of the
data-flow graph correspond to opportunities for parallel computation.

A natural textual representation for a data-flow semantics is an applicative
language: a language whose fundamental operation is function application, and
that has no variables or assignment operator. A program consists of a set of defini-
tions of functions and named values. Each function definition is a set of equations
relating the values of the inputs, outputs, and intermediate values of the function
as if they were static, timeless quantities. Hence, in a typical applicative lan-
guage, one would not write

S :- 0;

for i :- 1 to 10 do S :- S + AMil;

but rather

PS[0] - 0;
• (i 1 .. 10):: PS[i] -PS[i-I] + A~i];

S - PS[10l;

SThis looks very much the same, of course, but all of the statements above are
equations, rather than assignments; a statement such as

i - i+1;

is meaningless. Furthermore, imagine that each of the P S [ i ] is the result of a separate
functional unit (an adder in this case). Then the second program describes a pipeline
with i indexing the stages of the pipe, which is a bit difficult to extract from the first
description. Of course, i does not have to index pipeline stages; it can also be thought
of as indexing the steps of an iteration, as in the first program.

Expressions in Silage generally denote infinite streams of values. For
example, in an expression such as A+B, the operands A and B denote infinite
streams of numbers, and the result is the infinite stream of sums of corresponding
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elements in the two sequences. This is basically the same interpretation one
places on signal-flow graphs, cast in a textual form. More specifically, if we use
subscripts to denote the individual items in a sequence, then by definition

I(A+B)i = A,+B (15.1)

for all i. The dummy variable i may be thought of as ranging over the integers. It is
implicit; with few exceptions, one does not normally refer to individual members of a
sequence. Unless explicitly defined, values at negative indices have arbitrary values.

Inputs to a program are certain designated streams having no explicit defi-
nition. In general, a Silage program is driven by the receipt of inputs. Physically,
a set of values from a group of input streams typically arrives together. In keeping
with standard usage, we call each such set aframe.

Many operations, like addition, are elementwise--each element of the
stream they produce is purely a function of the corresponding elements of their
operand streams. This is not sufficient to define systems that have state, and there
are other operators that perform more complex manipulations of streams. The
most common of these is the delay operator, denoted by '@', and defined

(E@n) = E(j_.) (15.2)

for an expression E, and non-negative integer expressions n and j.

The introduction of the delay operator makes it easy to write expressions
that are rather difficult to implement. For example, consider the following pair of

definitions.

i -i@l + 1;

A A@1 + A@(i div 2);

Here, the operator div performs integer division. Ignoring for the moment the problem
S of getting initial values for i and A, it should be clear that computing the values of A

will require ever-increasing amounts of storage. Therefore, although one can make
perfect semantic sense out of definitions of this sort, Silage implementations will place
restrictions on the use of delay and related operators that allow most cases that are
useful in practice without complicating implementations too much.

These restrictions are most easily motivated by considering implementa-
tions. In many applications, the indices of the elements of a stream of data are
related in some simple fashion to the times at which those data arrive or are com-

... ......
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puted-they are synchronous. When two streams, A and B, are synchronized, with
each A, arriving at the same time as B , the computation implied by A+B, for
example, is simply a matter of repetitively receiving values from the two streams
and sending off their sums to some consumer. When the streams are not synchro-
nized, the implementation must in general maintain a dynamically-changing
amount of additional storage in the form of queue or buffer of values. To avoid
the costs of providing this general facility at execution time for application areas
where it is seldom needed, an implementation may place restrictions that avoid it.

15.2. LANGUAGE FEATURES

This section informally describes the major features of Silage. Because it is
not intended as a reference manual, sections of the language that duplicate famil-
iar features of other common programming language (arithmetic expression syn-
tax, for example), as well as obscure points that are not important to a general
understanding of the language, have been skipped in the following discussion.

15.2.1. Definitions of Values.

A Silage program consists of an unordered sequence of definitions of val-
ues (or, as discussed in the preceding section, streams of values) and ot functions
that act on streams of values to produce one or more streams of results. Names
and expressions that yield values are statically typed, as in most modem program-
ming languages. A value may be an integer with a specified width (width refers to
the number of bits in the representation, including sign), a fixed-point number
with specified width and scaling, a floating-point number with specified signifi-
cand and exponent widths, a boolean (true/false) value, or a one-dimensional
array of values having identical type. A multidimensional array type is simply an
array type whose element type is itself an array type.

Definitions of values are equations having one of the following forms.

A - E

A[iOl]... 1[ml] - E;

(A0, ... , ~m-d) - E;

where A is a name of the quantity being defined and E is a defining expression. The
first form defines A to be the single stream of values produced by E. In the second
form, A denotes an array of at least m dimensions; the equation defines the value of one
single element of A. The third form simultaneously defines m quantities; it is intended
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to facilitate the use of functions that return multiple results.

These constructs should all be thought of as definitions or equations-
static assertions of relationships between values, rather than assignments to vari-
ables. In particular, the order in which definitions are written does not generally
matter. Likewise, anything that would constitute a multiple or conflicting defini-
tion is illegal. Without further restriction, a compiler would find this latter restric-
tion extremely difficult or impossible to check in the case of arrays, as illustrated
by the following equations.

A[i] - 1;

AU * j div k] - 0;

Without a general-purpose theorem prover for the integers, a compiler would have no
way of knowing whether there is any conflict in these two definitions. Hence, Silage
imposes the additional restriction that the indices of array elements being defined in an
equation must be manifest (compile-time computable) expressions.

Since Silage is single assignment, an expression such as:

M - 3*M + X;

is invalid. Recurrences in which the definition of any element of the stream x depends
on previous values of that stream, such as commonly found in digital filter
descriptions, are allowed and compactly written as follows:

X - C * X@1 + Y.

In general, the right-hand side of a definition is allowed to refer to the stream being
defined as long as this reference is delayed.

1S.2.2. Expressions with Elementwise Operators.
As the examples in previous sections suggest, Silage provides the usual

arithmetic operators, which operate element-by-element on streams of numeric
values. The full set includes the usual relational operators (such as '<'), arith-
metic shift operators ('<<' and '>>' as in C), and the bit-wise logical operators-
and ('&'), or (T), exclusive or ('Al) and not ('!')---on numeric and boolean val-
ues.

The definitions of the arithmetic operators are non-deterministic in their
overflow behavior and rounding. For cases where these must be specified more

- - - - -
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precisely, the language provides functions add, sub, mult, divide, and
round, taking the expected operands plus an extra argument that designates the
specific behavior desired-such as saturating or wrapped arithmetic on overflow,
or truncation or rounding for real results.

The only real complication in the semantics of arithmetic involves the
fixed-point operations. A fixed-point quantity represents a rational number with a
fixed scale, or number of binary digits to the right of the binary point. As is only
too familiar to those dealing with such values, the intricacies arise from the need
to define the widths and scales of the results of all possible arithmetic operations,
as functions of the scales and widths of the operands. Silage provides default
rules for such results, so that, for example, the result of multiplying two fixed--
point numbers of identical width w and scales do and d, has width wand scale
do + d, - w + 1. These defaults are not always adequate, and so Silage provides
explicit coercions (or casts) that indicate the desired type of a result. For exam-
ple, two values x and y might range over the interval (-2,2), both representable by

the type fix<16,14> (the fixed-point type with a width of 16 bits with a 14-bit
binary fraction). The programmer might know that their product is always
bounded by the same interval, and accordingly write their product as

fix<16,14> (x*y)

As illustrated, coercions are denoted by prefixing the value to be coerced with the
target type.

Manipulation of arrays is always a problem in applicative languages,
because the familiar operations on arrays from languages such as FORTRAN or C

change an element at a time. Since a change in any one element of an array
changes the value of the array as a whole, this means that in an applicative frame-
work, a sequence of N changes corresponds to N distinct values of the array, and
naively, to N copies of the array. While careful analysis by the compiler can
diminish this problem, it is nevertheless very helpful--both for programmers and

compilers-to have operations that succinctly describe operations affecting or
referencing an entire array at once. The array constructor in Silage defines all
values of an array either according to some enumeration-as in

{ 1, 3, 5, 7, 9, 11

which lists the elements of a vector, beginning with element 0--r by a rule, as in
1 , I
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Si :0 .. 5:: 2*1 + 1 1

or, equivalently,

{ i : 5:: 2*1 + 1

which map the integer indices in some range (here, 0 to 5) to values at those index
positions. The dummy variable i, which is local to the constructor, is called a control
variable.

In addition to the constructor, there are several reduction operators that
operate on entire arrays. The standard function calls sum (A), max (A),
nmn (A), and innerprod (A, B) return, respectively, the sum, maximum, and
minimum of the elements of A, and the inner product of the elements of identical-
ly-indexed arrays A and B. Together, these operations are quite useful; for exam-
ple

sum(( 1 : 1 .. 5:: A~i))

is the sum of the previous 5 values of A.

Corresponding to the conditional statements found in conventional pro-
gramming languages, Silage has a conditional expression, like those found in the
Algol dialects, Lisp, and C. The expression

if Co -> E0 II C1 -> E, II ... H En-i fi

yields the value of Ej for the first i such that the boolean condition (or guard) Ci is

true. That is, given one value from each of the streams Ci and Ep, the conditional

expression uses the values of the c i to select the value of one of the E ', throwing all
others away. For convenience, conditional expressions can yield tuples of values,
which may in turn be used to define tuples of values. For example, in the following
definition, a quantity P 10 is defined that holds each tenth value of P for ten frames.

(k, Pl0) - if k@l -- 9 -> (0, P) I I (k9l+1, P10@1) fi;

15.23. Expressions with Stream Operators.
The operators described so far have all been elementwise-they can be

described as extending some operation on individual values to streams of values
in the obvious fashion. The more interesting operators cannot be so described.
They explicitly manipulate streams of values.

i i



206 Behavioral Synthesis Part IV

i
The most common of these is the previously-described delay operator,

denoted by 'W'. Element i of the stream E@rn is defined to be element i-rn of
stream E, for positive n. Since E is usually undefined at negative frame indices,
the first few elements of E @n would ordinarily be undefined. Where this is unde-
sirable, the language permits the explicit definition of values at particular posi-
tions in a stream. For example, in the previous example, defining quantities k
and P 10, it is desirable to insure that the initial value of k@ 1 is well-defined. The
declaration

k@@1 - 9;

defines the '- l'th value of k, and insures the proper values for the k and P 10.

The implementation of E @ n presents a problem if the right operand is not
restricted. If n is allowed to be unbounded, then any value in the entire stream of
values E may be called for at any time, requiring that the storage required for the

computation increase linearly with time. To prevent this, the second operand is
required to be manifestly bounded-its upper bound must be a fixed number
determinable at translation time. This condition is obviously met when n is a con-
stant. For other situations, the language provides the expression bnd (n, L, U),
which simply yields n as long as L : n < U, and is otherwise erroneous. Thus,
when L and U are constants, the legal values of this expression have known

bounds, and it can be used to specify a delay.

The most elaborate and specialized of the stream-manipulation operators
are those for converting the frequency of a stream of values. The most general is
the switch function, which "re-packages" the values in a stream of vectors into
another stream of vectors having a different length. Specifically, for a stream of
vectors A, the stream B defined by

B - switch(A,N)

is computed by first converting A into the single stream of values

A [L] 0, A [L+ 11 0,..., A [U] 0, A[L] ,...

where L - lwb (A) (the lower index bound of A) andu - upb (A), and then in

effect renaming the stream

B [00. ... [N- I 1 B [0],..-
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Letting = U - L + 1, this may also be expressed

i+k = A[Ilwb(A)+'Ik

Brilk = cii+kN

The sampling rate of each of the individual elements B i is therefore M/N times that
of each A [i].

For expressive clarity and compiler convenience, two common special
cases of "switch" have their own designation. The expression interpolate(A)
yields the stream x defined by

X - 010);
Q - switch(A, 1);

That is, it "flattens" A into a single stream of values; if A is of size N, this stream is N
times faster than any of the elements A[il. Going in the other direction, the expression
decimate (Y,M,p) yields the stream z defined by

Z - REp];

R - switch(YVEC,M);
YVEC[0] - Y•

In other words, this decimates the stream Y by a factor of M, selecting sample p out of
each M samples. It follows that for A with bounds 0 and N-1,

A- 1 i: 0 .. N-1:: decimate(interpolate(A), N, i) }

Here, for example, is another definition of P 10 from page 205.

P10 - interpolate({ j: 10:: decimate(P, 10, 0) }};

15.2.4. Iteration and Blocks.

When defining a set of interrelated arrays, it is convenient to be able to
have some construct to give rules for their construction, as for individual array
constructors, without having to enumerate their contents element-by-element.
Silage provides iterative constructs for this purpose. These allow entire defini-
tions or groups of definitions to be subject to a control variable. For example, the
definition

V - { 1 : 0 .. 5:: 2*i + 1 };
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may also be written using either of the iterated definitions

(i: 0 .. 5):: V(i] - 2*i + 1;

(i: 5):: V~ii - 2*i + 1;

either of which is equivalent to the sequence of definitions

V[0] - 2*0 + 1; V[1] - 2*1 + 1; ... ; V[5) - 2*5 + 1;

The repeated clause may also be a block-a group of definitions bracketed by begin
and end. For example,

N - 10;

delta - (X - XOW)/N;

S[o] - 0.0;

Ci: 1 .. N)::
begin

plil - X + delta *i;

Stil - Sfi-l] + C[iJ*p[i);

and;

Frequently, iterators accumulate values, as in the case of this last example,
where the S I -ý] are partial sums, of which the last, S (N], is probably the only
one of interest. This is so common that the delay ('@') operator is preempted
inside iteration blocks. The iteration above is equivalent to the following.

N - 10;
delta - (X - XQI)/N;

Ui: 1 .. N)::
begin

S@@l - 0.0;
p~il - X + delta * i;

S - Sol + C(iJ*p[i];
end;

In addition, if the quantity p is not needed except to define S (and is included,
therefore, to break up the definition for clarity), it can be made local to each iteration
of the loop as follows.

(i: 1 .. N)::

begin

local p;

* A
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s301 - 0.0;
p - X + delta * i;

S - S@l + C(i]*p;

end;

The bounds in all the preceding iterations are required to be static. This is
not a semantically necessary restriction, but is a reasonable restriction for the
sorts of algorithms and target architectures at which Silage is aimed. Sometimes,
however, iterations without predetermined bounds are necessary. For these cases,
the language provides an indefinite iterator. A representative example will con-
vey the semantics. The following defines m to be the first index in the array A at
such that A [m+l ] is less than or equal to A mi], if the fictitious element A N] is
taken to be -- @.

do
i661 - -1;

i - i@1 + 1;

m - ezit i -- upb(A) -> 0;

II A[i] >- A[i+1] -> i;

tize;

od;

Again, the delay operator here refers to prior loop iterations. The guards of the exit
clause enumerate the conditions under which the loop terminates, with a syntax
resembling that of conditional expressions. The guarded clauses in this case are
alternate definitions of m, one of which is selected at the end of the iteration.

15.2.5. Function Definitions

As do most high-level languages, Silage provides a way of abstracting a
computation and giving it a name. The most general form of a function definition
is as follows.

fune f(p 0 : TO; ... ; Pn-1: Tn-)

r 0 : RT0 ; ... ; rmI: RTm_-

begin
definitions

end;

where f. the p, and the rj are unique identifiers and the T, and RT1 are type
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designators. The P, are the formal parameters (inputs) of the function and the rj,
which must be defined in the definitions in the body of the function, are the outputs. In
the case of a single output, the ri may be elided, yielding the more familiar form

funo f(...): RT-...

In this case, there is a single output of type RT named retu rn, which must be defined
in the body.

A function is called using the usual prefix form:

f (A* .... AmI)

and may be used as a value in an expression in the case of a single return value, or to

define a tuple of values in the case of multiple return values. The semantics of this call
are that it is replaced with a copy of the body in which the formal parameters are first
defined to have the values of the corresponding actuals, and local names are changed
as necessary to prevent conflicts. That is, it is by definition implemented as a form of

macro-expansion, but with (in effect) automatic name changes to prevent the name
conflicts that macro expansion tends to cause. The actual parameters of the function
may not be defined using its outputs.

The types of the actual parameters must match those of the corresponding
formals. The formal parameters, however, are allowed to have generic types,
which match any of a class of actual types. Thus, the type int<w> denotes the
specific type of w-bit integers. The generic type int matches any integer type.
Likewise, the generic type fix matches any fixed-point type (fiz<w,s>), and
float matches any floating-point type. Furthermore, the type num matches any
numeric type at all, and any matches any of the non-array types. The meaning of
any particular call on a function with generic types is therefore determined in part
by the actual parameters (as a result, certain type errors become apparent only at
the point in the text that a function is called, rather than at its definition). Finally,
to allow parameter specifications that relate the types of two parameters, the type
expression typeof (E) denotes the type of the expression E.

Normally, macro-expanded functions do not allow recursion. However,
recursively-defined structures are sometimes useful in signal processing applica-
tions, and Silage provides a simple form of primitive recursion for describing
them. Specifically, a function is allowed to be recursive if it has an integer argu-
ment that is always called with a manifest (compile-time determined) value, that
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is always smaller in inner calls of the function, and that is never negative. For
example, to define the inner product of two 0-based vectors computed by a tree--
structured collection of additions, we may write the following.

Luno innerprod2(A: nun[]; B: typeof(A)): typeof(A) -

begin
funo F(Q: typeof(A); R: typeoL(A); L: int; N: int):

typeof(A) -
begin

N - N div 2;
return -

if N - 0 -> 0
II N - 1-> Q(L] * RLI
II N > 1 -> F(Q, R, L, M) + F(Q, R, L+M, N-M)
fi;

end;
return - F(A, B, 0, upb(A));

end;

The arithmetic operators are, in effect, pre-defined functions with a special
syntax. It is notationally convenient to be able to use them to denote addition,
subtraction, and so forth, even when the programmer needs to be more specific
about the behavior of these operations by using the previously-described arith-
metic functions (add, sub, etc.). Therefore, Silage provides a way of locally
redefining the arithmetic operators for this purpose. For example, the definition

oper +(x,y) - add(x,y,saturating);

is essentially a macro definition that causes each occurrence of E0 + El in the scope of

the definition to be replaced by

add(E0 1 El, saturating)

(which specifies that overflows saturate).

15.3. EXAMPLES
To demonstrate the expressive power of the language, let us look at a num-

ber of simple examples, drawn from the signal processing literature.

I

iii
--f --
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153.1. The FIR filter

The FIR (Finite Impulse Response) filter, whose block-diagram is given in

Figure 15.1, is one of the most common signal processing building blocks. The
Silage description of an FIR filter is rather straightforward, as is demonstrated
with the example of an 11th order x/ (sinx) correction filter, required in front of
a D/A converter.

In

COut

Figure 15.1: FIR signal-flow graph

#define word fiz<8,0>
#define N 11

Coef { -0.001953125, 0.003906250, -0.007812500,

0.01953125, -0.06640625, 0.75,

-0.06640625, 0.01953125, -0.007812500,
0.003906250, -0.001953125);

funo FIR ( In : word ) Out : word -

begin
acc[O] - 0;
(i 1 .. N )

acc[i] - acc[i-1] + word (coef[i-11 * In@(i-1));

Out - acc(N];
end;

The cast operation after the multiplication explicitly denotes the introduction of

truncation noise. This description can be simplified drastically using the reduction
operator sum.

runa FIR (In : word ) Out: word-

begin
Out - sum({i:0..N-l:: word (coef[i] * Inei)});

end;
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The frequency domain responses of the x/ (sinx) filter, as obtained by the
Silage simulator, are shown in Figure 15.2. The full line show the ideal response,

idea
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Figure 15.2: Frequency-domain response of l1th-order filter, showing ideal
response and 8- and 10-bit fixed-point approximations. The x-axis gives
relative frequency (64=sampling frequency), and the y-axis is in db.

as obtained from a floating point simulation, while the dotted lines are the results
of the fixed point simulations with respectively 8- and 10-bit precision. This
clearly demonstrates the importance of accurate data typing in signal processing
applications.

The basic FIR filter is easily extended to an adaptive version:

funo ADAPTFIR(In, d : word) e word -

begin
e - d - sum( I i: O..N-1 word (In~i * hEi]l) ) );
h - { i 0..N-1 : h[i]@1 + K * e* In@i };

end;
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15.3.2. CORDIC
The cordic rotation is a well-known arithmetic operation and is often used,

for instance, to compute trigonometric functions in hardware accelerators. It has
also been extensively used in signal processing applications such as FM-demodu-
lation. A Cartesian to polar coordinate conversion is described using the follow-
ing Silage code.

#define xyWord fix<22, 18>
*1define phaseWord fix<22, 20>

#define N 20
#defmn. AnglO9 phaseWord (0.5)

#define Corrector xyWord(0.607253)

tune CORDIC (Xin, Yin: xyWord; CorAngles: phaseWord[N])

Amplitude: xyWord, Phase: phaseWord-

begin
/* Rotate into the right-hand half of polar circle */

(X[O], Y[01, Phi[01) -

if Yin >- 0 -> (Yin, -Xin, Angle90)

1 I (-Yin, Xin, -Angle90)

f ;

/* Perform cordic iteration */

(i : 1 .. N- 1)

begin
(X[i], Y[i], Phi[i])-

if Y[i - 1] >- 0 ->
(Xji - 1] + (Y~i - 1] >> (i - 1)),
Y[i - 1] - (X[i - 1] >> (i - 2)),

Phi[i - 1] + CorAngles[i - 11)

11 (X[i - 1] - (Y[i - 1] >> (i - 1)),
Y[i - 1] + (X[i - 1] >> (i - 1)),
Phi[i - 11 - CorAngles[i - 1])

fi;
end;

Amplitude -X[N - 1* Corrector;

Phase - Phi[N - 1];
end;

9

I•
, i
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Figure 15.3 plots the consecutive values of x, Y and Phi for the case of
Xin and Yin equal to 1. Fast convergence is obtained towards the final values
(Phase - x/4). The final X value has to be multiplied with a constant corrector
value to give the exact amplitude.

1.50 - __- '"""- -- -' .

1.00-

0.50-,

0.00 --

A -Il

*..

0.0 ,• . .,. . . .- • - - - - " : - -

: 7g

-1.00 - -"

0 5 10 15

Figure 15.3: Time-domain simulation of cartesian to polar conversion,
for Xin=Yinffl. The x-axis shows the number of iterations. The graph
plots Phi (with 1.0 corresponding to xt) and the amplitudes of X and Y.

15.3.3. PCM-FDM Transmultiplexer

The last example demonstrates the usage of the stream-operators such as

switch and decimate. A PCM-FDM transmultiplexer takes as input a set of
telephone channels (16 in this particular case, each with a bandwidth of 4KHz)

and multiplexes them in the frequency domain, resulting in a single signal with a
bandwidth of 64 Khz. The is realized by using a cascade of filter banks, each of
them operating at different sampling rate, as diagramed in part (a) of Figure 15.4.

The sampling rate is doubled after each stage. Each of the boxes in the dia-
gram is a lattice wave digital filter of the type shown in part (b) of Figure 15.4.

__ _ _ __ _ _ __ _ _ _ __ _ _ __ _ _ __ _ __l_ _ _ __ _ I __ _ _ _

1I
,a•- -.•*,* ~ ~ ~ . .--. . - - -
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Figure 15.4: PCM-FDM transmultiplexer overall view (a) and
basic filter structure (b).

The Silage description of this complete system is very compact. For the sake of
brevity, only one of the filter blocks is described here.

#define wdata fix<30,8>

#define wcoef fix<16,14>

func TRANSMULTIPLEXER(ch wdata[16]) fdm: wdata-

begin
(i : 0 .. 7):: /* first stage*/

(Outifi), Outl[8 + i]) - stagel(ch[2*i), ch[2*i+ll);

In2 - switch(Outl, 8);

(i : 0 .. 3) :: /* second stage *1
(Out2[ij, Out2[4 + i]) -

stage2 (In2 [2*i], In2[2*i+l]);

In3 - switch(Out2, 4);

(i 0 .. 1):: /* third stage *1
(Out3[ij, Out3[2 + ij) -

stage3(In3[2*i], In3[2*i+ll);
In4 - switch(Out3, 2);
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/* fourth stage */
(Out4(01, Out4[1]) - stage4(In4[O], In4[l]);
fdm - interpolate(Out4);

end;

func stagel(inl, in2 wdata) outi, out2 wdata-

begin

/* Butterfly Network */
butl- inl + in2;

but2- inl - in2;

/* adaptor calls*/

(nl, statel) - adaptl (but1, statell, 0.070579);
(n2, state2) - adaptl (nl, state2@1, 0.459054);

(n3, state3) - adapt2 (n2, state3Ml, 0.1925556);

(n4, state4) - adaptl (but2, state4@l, 0.2474406);
(n5, stateS) - adapt2 (n4, stateS5l, 0.3485903);
(n6, state6) - adapt2 (n5, state6fl, 0.0626826);

/* delay and scaling at the end of the second */

/* lattice branch F'' */

out2 - wdata ( wcoef(0.5) * n6);
outl - wdata ( wcoef(0.5) * n3);

end;

Figure 15.5 displays the frequency domain response for two different channels, as
obtained from the Silage simulator, showing an excellent channel separation of over

60db.

15.4. SILAGE-BASED TOOLS AND ENVIRONMENTS
Silage has been used as the front end language for a number of DSP simu-

lation and synthesis environments. It was originally developed to serve as a high
level description language for early version of the LAGER silicon compilation

environment. This early version targeted the automatic synthesis of dedicated
multi-processor architectures and evolved in a later phase into C-to-Silicon
compiler, which is described in detail in Chapter 17. A simulator and language

-,--...' . *.,,.--.------,--,-. --- ---~ .* --.-. *-- .- ........ -.. ..
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Figure 15.5: Frequency-domain response of PCM-FDM channels
ch[l] and ch[16]. Frequencies on the x-axis are relative, with 4096
being the sampling frequency and the y-axis is in db.

parser and compiler were also developed [WangSS]. The output of the compiler is

a description of the algorithm in RL, a procedural C-like language, which serves
as the input to the C-to-Silicon environment.

Silage was also selected as the specification language for the CATHE-
DRAL-If environment, developed at the IMEC laboratory in Belgium
[Deman86]. CATHEDRAL-II targets the synthesis of dedicated multi-processor

architectures. Whereas in the C-to-Silicon environment the data-path archi-

tecture is manually defined by the user (or by a data-path template), the CATHE-
DRAL-Il environment attempts to automatically derive the structure of the data
paths as well. In order to help the compiler to converge towards an efficient hard-
ware solution, CATHEDRAL-Il makes extensive use of the Silage pragmas,
which are pragmatic hints to the compiler. Pragmas can be used as structural
specifications (where the rest of the Silage input only describes behavior). Here
are two examples.

pzagma(alloc, mult, 2);
pzagma(assign, ,a*_", multi);

The first pragma tells the compiler to provide and use two multipliers, while the second

causes all multiplications with the variable a to be performed on a multiplier called

Ii
LL i It l i i
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mult 1 (the "_"serves as a wild card, matching every possible identifier). Within
CATHEDRAL-H, a Silage simulator, called s2c was developed as well. The
simulator first translates the Silage code into a C program, which is compiled into an
executable simulator. This approach is very efficient and allows for the debugging and
optimization of large Silage programs (such as for singular value decomposition,
adaptive interpolation for digital audio, and CELP-based speech coders) using
extensive data files.

The CATHEDRAL-II compiler has been adapted and reworked by the Phil-
ips Corp. into the PIRAMID environment [Delaruelle88]. From this commercial-
ization and others (EDC) a number of language adaptations and extensions have
been introduced. In addition other compilers have been either interfaced to or
developed around Silage. The CATHEDRAL-I environment targets bit-serial
architectures (Jain86]. Silage compilers for general purpose DSP processors such
as the TMS320C25 and TMS32030 have proven to be far more efficient than their
C counterparts [Genin89].

Finally, Silage is also being used as the specification language for the
HYPER system described in Chapter 15. HYPER provides a complete synthesis
path from high-level behavioral description in Silage to chip layout within
LAGER framework. It is particularly efficient for data-path intensive architec-
tures such as those encountered in image, video and speech processing.

15.5. SUMMARY

Silage was specialized for use in DSP applications, and was not intended to
be a general-purpose programming language. Even within DSP, certain applica-
tions can be awkward to write or difficult to compile efficiently. This has moti-
vated some planned extensions to Silage, most notably a facility for controlled
use of traditional imperative procedures whose code uses side-effects, which can
be useful, for example, in matrix computations.

Recent progress in programming languages has been toward more declara-
tive programming, that is, towards a style in which the programmer describes the
desired effect, rather than the method of achieving it. In DSP, Silage has provided
some progress in this direction, by automating some of the "data choreography"
and allowing programmers to abstract away from messy implementation details.
With the development of libraries of Silage functions representing increasingly
complex components, as illustrated in the previous section, we come still closer

to the ideal of a declarative DSP programming environment.
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Synthesis of Datapath Architectures

Jan Rabaey, Chi-min Chu, Phu Hoang and Miodrag Potkonjak

The comiputationally intensive parts of high performance real time systems,
such as those encountered in the areas of telecommunications, speech, robotics,
video and image processing, are usually implemented on clusters of heavily pipe-

lnddatapaths, controlled by a relatively simple finite state machine.

Atypical example of such an architecture can be found in Figure 16.1,

S

which shows the datapath section of a Vizerbi Processor used in connected speech
recognition. The extremely high throughput requirements exclude the use of a
classical Von Neumann style architecture where all operations are multiplexed on
a single data general purpose datapath and the functionality is determined prima-
rily by the contents of the controller. The small ratio between the sampling fre-
quency and the clock frequency prohibits extensive operation multiplexing. The
emphasis is therefore shifted from the control to the datapath section. As can be
seen in Figure 16.y1 the datapath is an almost direct representation of the compu-
tational graph. A dedicated hardware unit has been assigned to each operator.
Pipelining has been added to meet the clocking requirements. the controller of
this processor is a simple finite state machine, containing only 20 states. Another
important observation regring this example is that a direct mapping of the corn-
pucasional graph into a hardware structre would not have resulted in a real-time

a sigledat genralpurosedataathandthefuncionlit isdetemind pima
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performance. Extra flow-graph transformations, such as the overlapping of the

iterations of the inner loop were necessary.

Designers usually adopt either a direct one-to-one mapping approach where

a dedicated hardware unit is provided for each operation, or a multi-processor

approach where the algorithm is partitioned over a number of concurrent proces-

sors, each consisting of a multi-function ALU with a simple controller The latter
approach is often used in image and video processing (e.g. [Roermund89]). How-
ever, in many cases the ideal solution is situated somewhere between the two

extremes: the algorithm is best implemented on a cluster of dedicated datapaths

with limited resource sharing, and the computation is controlled by a simple con-

troller.

Synthesizing such an architecture is however a tough task for a human

designer. For example, designers tend to over-emphasize pipelining, not realizing
that the cost of a register is between 1/3 to 1/2 the cost of an adder. A major part

of the design effort is usually devoted to optimizing the clock frequency, whereas

optimizing the algorithm flow graph may result in solutions that are orders of

P(O"-Ap

p O-1Pp(Oý1P P(O-I-P

Figure 16.1: Dutapath section of Vite'bi prceso

Ii

*19 A_ A
WOZ

r~ormkslol man~im



Chapter 16 Synthesis of Datapath Architectures 223

magnitude better. The HYPER set of tools were developed to automate the pro-
cess of optimizing an algorithm flow graph and synthesizing a physical imple-
mentation within the LAGER framework.

16.1. HYPER OVERVIEW AND METHODOLOGY

The synthesis for real time applications can be defined as the following
optimization process:

Given: An input computational graph, a number of real-time constraints
and a hardware cell library.

Find: The hardware implementation with the minimal area.
This process requires the execution of a large number of operations, each

of them having considerable complexity. This is demonstrated in Figure 16.2
which shows the overall composition of the HYPER system. The real time appli-
cation is described using the SILAGE signal flow graph language. This descrip-
tion is parsed and compiled into an intermediate Control/Data Flow Graph
database. This CDFG represents the algorithm as a data flow graph, extended with
some macro control flow statements such as loops and if-else structures. During
the parsing process, a number of standard, architecture independent, compiler
transformations, such as the elimination of dead code, manifest expressions, com-
mon sub-expressions and algebraic identities, are executed.

The data flow serves as a central repository on which synthesis operations,
such as complexity estimations, flow graph transformations, hardware allocation
and scheduling, are executed. The results of these operations are back-annotated
into the database. As a result, the HYPER system has a modular composition
which allows new tools to be easily integrated. At every point in the design pro-
cess a simulation model of the flow graph can be generated, which allows for a
verification of the correctness of the executed operations and a checking of their
effects on the performance parameters such as the signal-to-noise ratio.

7 The HYPER synthesis tool box will be discussed in detail in the subsequent
sections. A brief description of each of class of operations is however instructive
at this poinL

8 * Module Selection: This is one of the first steps in the synthesis process.
It selects an appropriate hardware hlbrary module for each flow graph
operation. At the same time, groups of operations awe clustered together



224 Behavioral Synthesis Part IV

into primtive hardware nodes, which can be executed within one
clock-period, and are thus fully combinational

Estlmalion: Derives the minimum and maximum bounds on the
required hardware resouces. This information serves as an initial solu-
tion and helps in selecting the next synthesis operation to perform.
Transformatious: Manipulate the signal flow graph of the algorithm to
improve the final implementation, without changing the input-output
relation. Typical transformations are retiming, loop unrolling and soft-
ware pipelining.
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t
Aliocatum, Assignment and Scheduling'. Select the amount of hard-
ware resources (execution units, registers and interconnect), needed for
the execution of the algorithm. Bind each flow graph operation to a par-
ticular hardware unit and time slot.

Finding an optimal solution for the hardware synthesis problem is a non--
trivial task, due to the facts that most of the synthesis operations mentioned above
are at least NP-hard. Furthermore, the ordering of the operations (such as the
transformations) affects the quality of the final solution. We have opted in HYPER
to implement the overall synthesis procedure as a search process: Starting from an
initial solution, new solutions can be proposed by executing a number of basic
moves such as adding or removing resources (in other words, changing the alloca-
tion), changing the time-allocation for the different sub-graphs of the algorithm
and applying an optimizing graph transformation. The feasibility and the precise
cost of the current solution is checked by the assignment-scheduling module. The
overall search is managed by the synthesis-manager, which manages the overall
synthesis process and decides (either inwtractively or automatically) what move to
perform next. This decision is driven by the results of the estimation process and
the feedback of the scheduling module on bottlenecks and problem areas. The
user interface of the synthesis manager is shown in Figure 16.3.

Once an acceptable solution is obtained, the search is halted and the graph
is mapped into hardware (Figure 16.2) and stored in the OCT database as a struc-
ture_instance view (Chapter 5) for use by DMOCt and the layout generation tools.

The different modules mentioned above will now be described in detail. A
single example (7th order biquadratic IIR filter) will be used throughout to dem-
onstrate the effects of the various synthesis operations and the quality of the pro-
posed algorithms.

16.2. BEHAVIORAL SPECIFICATION AND SIMULATION

A proper representation of the input algorithm is crucial to the performance
of any synthesis environment. The input representation should allow for efficient
synthesis of the algorithm independent of whether it is data flow oriented, control
flow oriented, or both. Information on the data flow of the algorithm exposes all
of the available parallelism in the algorithm, which allows for area/performance
trade-off's. Information on the overall control flow of the algorithm results in a
fast and area efficient control unit. For these reasons, a mixed controlldata flow
graph (CDFG) representation is used at the heart of the HYPER synthesis system.

I
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16.1. Control/ahta Flow Graph (CDFG)
T'he CDFG represents dhe algorithm as a flow graph with nodes, data edges,

and control edges. The nodes represent data operations, while the data edges rep-
resent data precedences between those nodes. In addition, control edges can be
introduced to enforce extra precedence rules between nodes (e.g. the execution
time of operation X has to trail the execution of operation Y by at least N clock
cycles).
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Besides the standard arithmetic operations, the CDFG allows a number of
macro controlflow operations such as loops and if-then-else blocks. The introduc-
tion of these control statements results in a hierarchical graph: The body of a loop
or a conditional is represented by a sub-graph, which is contracted into a single
node at the next higher level in the hierarchy. This hierarchical representation has
the advantages of compactness and descriptiveness. The flow graphs are stored
more efficiently. It also allows for a clean definition of the macro control-flow of
the algorithm resulting in more efficient control structures. Finally, the hierarchi-
cal structure helps in preserving the structural hints from the designers.

The flow graph is stored in the OCT database (Chapter 2) using a policy
detailed in [Rabaey89]. This policy is meant to capture the structure of the flow
graph, not its behavior. It describes the interconnection of nodes and edges, as
well as where specific information on the behavior of the node is found. A library
of behavioral primitives (addition, multiplication, delay, decimation, etc.) is pro-
vided as a start. The user can easily define his own primitives. By storing only the
structure, the same representation can be used to support a variety of front-ends,
such as SILAGE (Chapter 15), GABRIEL [Lee89] and McDAS [Hoang92].

In addition, an ASCII format flow graph description language [Rabaey89]
is available. This format (called AFL) has a one to one correspondence to the OCT
policy, and serves as an easy readable interface to the OCT database. A tool to
translate the AFL format to OCT, and vice versa, has been developed.

16.2.2. Silage To Fl,w Graph
Silage (Chapter 15) is a signal-flow language developed especially for DSP

specification. A translator was developed to convert a Silage program to a CDFG

Figure 16.4: 7th order UIR: flow graph structure
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with essentially the same hierarchical structure. A function call in Silage is repre-

sented by a Fwsc node which has a pointer to a subgraph representing the function
body. Similarly, an iteration is Silage is represented by an Iter node with a pointer
to a subgraph representing the loop body. The translator generates the flow graph
in Ocr by default, and optionally also in the ascii AFL formaLt

#define num16 fix<32,8>
#define CoefO 0.001953125
#define Coefl_1 -1.3125
#define Coefl 2 0.625
#define Coefl-3 1
#define Coefl 4 1
#define Coef2 1 -1.25
#define Coef2 2 0.75
#define Coef2 3 0.0625
#define Coef2 4 1
#define Coef3 1 -1.125
#define Coef3 2 0.921875
#define Coef3 3 -0.25
#define Coef3_4 1
#define Coef4_1 -0.71875
#define Coef4_2 1
func main (In : num16) Out num16 =

begin
Inl = num16(In*CoefO);
In2 = biquad(Inl, Coefl_l, Coefl_2, Coefl_3, Coefl_4);
In3 = biquad(In2, Coef2_1, Coef2_2, Coef2_3, Coef2_4);
In4 = biquad(In3, Coef3_1, Coef3_2, Coef3_3, Coef3_4);
Out - firstorder(In4, Coef4 1, Coef4 2);

end;
func biquad(in, al, a2, bl, b2 numl6) numl6 =

begin
state@@1 = 0.0;
state@@2 = 0.0;
state - in - (num16(a1*state@l) + num16(a2*state@2));
return - state + num16(bl*state@l) + numl6(b2*state@2)

end;
func firstorder(in, al, bl: num16) : num16 -

begin

state@@l - 0.0;
state - in - numl6(al*state@l);
return - state + numl6(bl*state@l);

end;

Figure 16.5: 7th order IIR: Silage description
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Figure 16.5 gives the Silage program of our example 7th order IIR filter.
The filter is composed of 3 cascaded biquadratic and I first-order section, as also
shown in the block diagram of Figure 16.4. This hierarchical structure, defined by
the user in the Silage program, is retained in the initial CDFG. Subsequent syn-
thesis operations might however manipulate this hierarchy, either by flattening or
by clustering nodes.

16.3. Behavioral Simulation
Simulation of the algorithm is an essential part of the synthesis process. It

is needed not only to verify the functionality of the algorithm and the correctness I
of the transformations performed, but also to optimize and check the values of
performance parameters like the signal to noise ratio, the effects of truncation on
the transfer function, the distortion and the presence of small and large scale limit
cycles. For instance, a simple flow graph transformation, which replaces a multi-
plication with a constant by a sequence of add/shift operations is known to change
the effects of truncation and hence also the signal to noise ratio of the algorithm.

A compiler was therefore developed to translate the CDFG description into
executable C-code. Two simulation models are generated: the first uses floating
point data types, while the second models data as fixed point entities. The floating
point mode offers (quasi)-infinite precision, while the fixed point mode uses the
exact data type, defined in the flow graph and thus allows for the modeling of
quantization effects. In this way, the distortion of the system response due to
quantization effects can be accurately monitored.

16.3. MODULE SELECTION
Given the behavior description of an algorithm represented by a signal flow

graph, the goal of the hardware selection process is to select the clock period (if
not specified by the user), to choose proper hardware modules for all operations
and to determine where to pipeline (or where to put registers), such that a minimal
hardware cost is obtained under given timing and throughput constraints.

Most published datapath synthesis systems either consider only a fully
pipelined architecture [Jain88] (which means that each intermediate result is
stored in a register) or do not consider pipelining and resource sharing simulta-
neously [Note9O]. These restrictions tend to result in inefficient solutions. If an
algorithm is fully pipelined, the available clock period might not be completely
exploited, due to mismatches between the execution times of the operators. Fur-
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thermore, performing operations in sequence without intermediate buffering can
result in a reduction of the critical path. For instance, the delay of two carry-prop-

agt ditions in series is shorter than two times the delay of a single addition,

since the carry propagation has to be accounted for only once. HYPER attempts to
perform as many operations in sequence as allowed by the clock period, while
still trying to maximize the resource sharing factor. This requires that when clus-
tering operations into non-pipelined hardware modules, the reusability of these
modules over the complete computational graph be maximized.

Both the hardware selection and the pipelining process are at least NP-hard
problems. These problems become even more complicated when considering the
timing constraints and possible multiple-function units, such as an ALU. There-
fore we have opted for a heuristic approach based on operation clustering as
shown in Figure 16.6.

L L - - - ---J hardware units:
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Figure 16.6: Operation clustering

The search starts from an initial solution with all operations implemented
on the cheapest hardware and with full pipelining. HYPER then clusters opera-
tions in a way that favors structures with a high reusability factor. It simulta-
neously ensures that clustering does not violate timing constraints. During
clustering, more expensive but faster hardware may be swapped in for operations
on the critical path.

This approach requires the implementation of three basic tasks: a search
strategy to determine the next move, a hardware cost estimation to evaluate the

- ~ --.-- _____________________...
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effect of a move on the cost function and a timing estimation module to check if a
proposed solution does not violate any timing constraints.

Currently, a simple greedy search mechanism is used. The basic moves in
the search process are either the clustering of a set of nodes or the swapping in of

more expensive hardware. The effect of a move on the overall hardware cost is

evaluated by estimating the required hardware using a fast parallelism analysis

(as discussed later in the section on estimation). The reusability of a cluster can
further be determined by an analysis of the occurrence of that cluster in the com-

putation graph.

During the clustering process, the delay of each proposed cluster has to be

checked against the available clock-period. An accurate, yet easily computable
timing model is therefore required. A fully expanded bit-level model was pro-
posed in [Note9O]. This model is accurate but inefficient to calculate. In our case
the timing analysis has to be performed repeatedly during the optimization pro-
cess. HYPER therefore uses a ripple model to simplify the timing estimation prob-

lem.

The ripple model characterizes a hardware block by three parameters: the
ripple delay, the ripple direction and the one-bit delay. The propagation delay of

an individual module is defined by the ripple delay, which is normally a function
of the word length of the operator. This function can be any expression and can
capture the characteristics of complex operators such as carry-select and carry--
look-ahead adders. The ripple direction expresses the direction of the internal rip-
ple (left, right or no-ripple) and is used to determine the propagation delay of

cascaded modules. Finally, the one-bit delay is the delay of the one-bit operation.

It can also be a function of some parameters such as the word length.

The ripple model estimates the critical path of a flow graph by tracing the

graph and maintaining three parameter values for each edge - the longest ripple
delay so far, the ripple direction, and the total accumulated delay. These values of
an edge can be derived from the three ripple parameters of its input node and the

input edges of the node. If a ripple operation has a smaller ripple-delay than the
longest ripple-delay of its input edges and both ripples have the same direction,

only the one-bit delay is added to the accumulated delay and thus to the critical
path. The ripple delay of this operation is ignored since it overlaps with the long-

est ripple delay. Through simple rules such as this an algorithm using the ripple
model efficiently and accurately calculates the critical path of a flow graph.

-. i
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16.4. ESTIMATION
In the estimation phase, min and max bounds on the required resources are

deduced [Rabwy9O0. These bounds are important for several reasons: first of all,
they delimit the design space, thus speeding up the design synthesis search pro-

cess. The computed min-bounds can serve as an initial solution, which from our
experience is often very close to the final solution. The bounds also serve as

entries in a resource utilization table which helps to guide the transformation,
assignment and scheduling operations. In order to be useful, it is essential that

these bounds be as sharp as possible. To obtain this goal a technique of gradual
refinement is used. Let us consider first a fiat graph with a max-bound on the exe-
cution time t...

The estimation process starts with a topological ordering and leveling of

the graph with respect to the input nodes and the output nodes, yielding a mini-

mum and maximum execution time for each operation Oi (tijn and t2.' respec-
tively). In the literature these times are often called the as soon as possible

(ASAP) and as late as possible (ALAP) execution times.

An upper bound on each resource is easily obtained from the ordered graph

by computing for each clock cycle the maximal possible usage of that resource (in
other words, the maximal parallelism available in the graph) and by finding the

maximum of this value over the entire time period. Notice that a resource could

be an execution unit, a register, an interconnection between execution units or an
input/output bus. For the sake of brevity, we will concentrate our description on

execution units.

This procedure is demonstrated for the example of a 7th order IIR low pass

filter, whose signal flow graph was given in Figure 5. Since a hardware multiplier

is too expensive, it was decided to expand the multiplication operation into shifts
and adds. The parallelism graph for this expanded flow graph is shown in Figure
16.7. The graphs shown display the maximum available parallelism (here in terms

of the number of additions, subtractions and shifts), plotted over time. It is

assumed here that a maximum of 16 clock cycles is available and that each opera-

tion takes exactly one clock cycle. It is clear from this figure that the maximum
, parallelism in additions, subtractions and shifts equals respectively 6,4 and 8.

Deriving a precise lower bound is somewhat more complicated. A crude

guess (called the naive lower bound) is first obtained by observing that given a
number of resources of class Ri (Npo), at most NRi*txl/dpj operations can be

w*t mm m m mmm mm mmaml m



Chapter 16 Synthesis of Datapath Architectures 233

Units

8.00 - ,,/\ - .
'7o ' I, . t . . . .

7.00 - it ___ - ut
6.00-

0.00 -
Time0.00 5.00 10.00 15.00

Figure 16.7: Parallelism graphs (multiply, shift, add) for 7th order filter

performed on those resources (where diki is the duration of a single operation).

The required number of operations (O -) can be easily derived from the computa-
tionul graph-, resulting in the following lower bound on NRi:

Nit >Rli x dRi
tmi 2 (16.1)

ST~1his bound is however too optimistic: it assumes that the flow graph con- :
S~~tains sufficient paralelism to support a 100% utilization of the resource, which is

S~obviously rarely the case. This is demonstrated in Figure 16.7, where the avail-
able number of shift operations drops below 3 after cycle 8. This observation

S~results in a more precise min bound.

!I

>ORT x dmi + UnusedTime

tte
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Unwed Time actually depends on NRi and can be deduced from the paral-
lelism graph. Therefore, (EQ 2) has to be solved iteratively starting from the ini-
tial solution obtained using (EQ 1).

A sharper lower bound can be determined using a technique called discrete
relaxation. Given NRi, the minimal execution time t.. is determined using a
slack based list scheduling, considering only operations of class i. This too is an
iterative procedure: starting from the solution obtained in (EQ 2), NRi is increased
till ti,!; t*,..The scheduling operation is of complexity NRi log (NRi)
[Simons81], if di = I (an approximate solution can be found with the same com-
plexity when dRi * 1).

The min and max bounds obtained by the above algorithm for the example
of Figure 16.4 are shown in Table 16.1.

Resource No. of OpUahiom MinBound MaxBound
'add15 2 16

shift 12 2 8
subtract 9 1 4
add (registers) 30 8 30
shift (rcesiters) 12 8 12

mblact (registeas) 18 4 8

add-add 4 1 3

add-shift 4 1 4

add-subtract 6 1 3

add-io 1 I1
shift-add 8 1 7

Table 16.1: Min and max bounds on execution units, registers and interconnect for
7th order biquadratic filter (Figure 16.4)

The situation becomes more complex when considering hierarchical graphs
, (containing loops and if-else constructs). Since the only time constraint is the

total execution time for the complete graph, the time allotted to each subgraph is
unknown and is a subject of optimization itself. Once again discrete relaxation
offers the solution. For each sub-graph and each resource a resource-time graph is j A

_ _ _I1I j
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constructed. It plots the minimum number of resources it takes to execute the
sub-graph as a function of the available time. Figure 16.8 shows the resource-time
graphs for the adder and shifter resources in the filter example.

#Adders #Shifters
31 31

2 2
11

8 12 16 Time 8 12 16 Time
Figure 16.8: Area-time trade-off graphs for the 7th order filter

Hierarchical estimation is now straightforward: the resource-time graph of
a hierarchical graph is constructed by combining the results of its sub-graphs.
This is demonstrated in Figure 16.9 for a function Total which is composed of two
sub-graphs (Funcl and Fwnc2). From the combined resource-time graphs it can
be deduced that at least two adders are needed when the total available time to
execute Total equals 34 clock cycles.

The results of the estimation process are summarized in the resource utili-
zation table which tabulates for each sub-graph the min-bounds on hardware and
time researces. The entries in this table serve as an initial seed as well as selection
measure in the allocation and transformation process described next. A sample
table is shown in Table 16.2.

16.5. EXPLORING THE DESIGN SPACE

The goal of the design space exploration and resource allocation process is
to find the minimal area solution, which still complies with the timing constraints.

Before this process starts, it has to determine whether a feasible solution
exists. By checking the critical paths, it can be determined if the proposed graph
violates the timing constraints. If so, performance optimizing transformations
such as retiming for critical path (Leiserson83j, pipelining and tree height reduc-
tion can be applied. After an acceptable graph is obtained, the resource allocation

I )
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#Adders #Adders
31Fn 31 Func2

2 2
S1 1

89 16 Time 10 14 24 Time

#Adders 3 Total
31

18 23 34 40 Time

Figure 16.9: Hierarchical composition of resource-time graphs.

Block CdtclI Path Cycles 10 + Registers

Graphl C1 tl 1 0 1 12

Graph2 c2 t2 0 1 4 36
GrapW3 c3 03 1 2 1 18

Total c=C. t tji 1 2 4 36

Table 16.2: Sample resource utilization table

process is initiated. As we explained earlier, the design space exploration in
HYPER is organized as a search process [Rabaey9O]. The search is organized as
an iterative process, where new solutions are proposed by applying basic moves.
Those moves can be categorized in three classes:
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Changing the available hardware (also called the hardware allocation).
The hardware allocation includes the number of execution units, regis-
ten and buses.

• Redistributin the time allocation over the sub-graphs.

* Transforming the graph to reduce the hardware requirements. Possible
rasfomaions here ae pipelining and the application of arithmetic

laws such as associativity and commutativity.

Since many different moves are feasible at any point during the search, we
need an accurate, yet easily computable measure to rank the candidate moves
according to their effect on the overall cost function. This information is given by
the resource utilization table, resulting from the estimation process. Consider
for instance Table 16.2. The number of adders required for sub-graph 2 is dispro-
portionate to the required adders in the other sub-graphs. One move would be to
extend the time allocated to sub-graph 2 or to select a transformation (such as
retiming) which reduces the min-bounds on the additions in this sub-graph. In
effect, the latter transformation would also reduce the overall min-bound, as the
bottom row of the table shows. In this sense, the utilization table serves both as a
global measure of the quality of a proposed solution and as a guide for selecting
moves.

Further move ranking can be obtained from the assignment and scheduling
process discussed later. Each time a promising solution is proposed, the assign-
ment and scheduling module is applied to determine the feasibility of this solu-
tion. During its execution the module gathers a number of statistics regarding the
ease of scheduling - such as which resources are in short supply (hence hamper-
ing the chances for successful scheduling) and which resources were over-sup- i

plied. This feedback information is extremely useful in helping to select the next
move.

Since the search mechanism has to simultaneously address resource alloca-
tion and transformations, it is obvious that the optimization strategy should be
flexible enough to handle the variety of constraints imposed by these problems.
This suggest a probabilistic iterative improvement algorithm such as simulated
annealing. However, the application of transformations (as well as the scheduling
and the assignment process) is computationally expensive. We have therefore
adopted a rejectionless probabilistic iterative search technique, where moves are
always accepted, once executed [Welch84]. Our approach gives faster conver-

gence and reduces computational complexity. Our initial experiments have dem-
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onstrated that convergence is obtained with a fairly small number of steps - three
to six allocation moves appear to be sufficient for most benchmarks.

16.6. TRANSFORMATIONS
A behavioral transformation reorganizes the signal flow graph of an algo-

rithm to improve the quality of its final implementation without altering the
input-output relationships. Most of those transformations have been introduced in
the field of software compilers. They include the elimination of constant arith-
metic and common sub-expressions, dead-code elimination and the application of
algebraic laws such as commutativity, distributivity and associativity.

Most of the recent attention in this area has been focused on the transfor-
mation of loops, since most of the parallelism in an algorithm is embodied in the
loops. Thus loops are likely to have the most dramatic effects on the quality and
performance of a solution.The most important loop transformations are loop jam-
ming, partial and complete loop unroling, strength reduction and the more recent
loop retiming and software pipelining [Lam85, (3oossens89]. An interesting
observation is that loop transformations are even more effective in real time sys-
tems, where most programs contain an infinite loop over time. This feature has
been used extensively in the signal processing literature, for instance as a means
to implement very fast recursive filters [Messerschmitt88].

Optimizing transformations are extremely important in the hardware syn-
thesis process and have far more effect on the quality of the final solution than for
instance the assignment and scheduling. As mentioned earlier, in HYPER the
transformation process is an integral part of the design space exploration. The
majority of the above discussed transformations have been implemented. In addi-
tion, a number of novel transformations specifically geared towards the needs of a
hardware compiler have also been developed. An example of such a transforma-
tion is the retiming for resource utilization which is described in detail below.

Retiming is a powerful and conceptually simple transformation which has
been applied successfully in several areas of design synthesis and automation.
The goal of the retiming transformation is to move delays (which can be either
clocked delays in a circuit or algorithmic delays in a behavioral flow graph,
depending upon application) such that a certain objective function is optimized.
Until recently, the objective function has been exclusively the critical path or the
number of delays in a graph or a circuit [Leierson83]. However, the potential of
retiming is significantly higher. We have developed a new formulation, this time

-!- .- .. - -
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targeted towards behavioral synthesis: given a signal flow graph, retime it in a
such a way that the resulting signal flow graph will have a minimum hardware
cost, while still satisfying all timing constraints. Since the implementation with
minimum cost has the most efficient resource utilization, we call this transforma-
tion: retiming for efficient resource utilization.

I

D D

(a) (b)
Figure 16.10:. Biquadratic filter (a) before and (b) after retiming for scheduling

Consider, for instance, the biquadratic second order filter shown in Figure
16.10. Assume that at most 4 clock cycles are available for the execution of this
flow graph and that both multiplication and addition take a single clock cycle.
The critical path of this computational graph equals four clock cycles as well. It is
obvious that at least two multipliers are required to implement this flow graph.
This is due to the fact that all multiplications are clustered in the earlier stages of
the program, while the additions can only be performed in the final cycles. For
example, no multiplication can be executed in the fourth cycle, and no addition
can be executed in the first cycle. The resource utilization is obviously not i
equally balanced over time. If we define the resource utilization as the ratio of the
number of cycles a resource is used versus the total number of available cycles,
then the resource utilization for adders and multipliers in this example is 50%,
which is an indication of a relatively low quality solution. Table 16.3a shows a
possible schedule for this filter.

Consider now an equivalent flow graph, shown in Figure 16.10b, obtained
by moving the delays (retiming) in the original flow graph. A solution with one

*
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BEFORE AFrER

Cycle Multpler Adder Multiplier Adder

1 3,4 1 8
2 1,2 5 3 6

3 6 4 7

4 7.8 2 5

Table 16.3: (a) Possible filter schedule (before retiming)
(b) Filter Schedule after Retiming

multiplier and one adder can be achieved as shown in Table 16.3b. The resource
utilization for the execution units now equals 100%.

While the traditional retiming problem is of a polynomial complexity, we
have proven that retiming for efficient resource utilization is an NP complete
problem [Potkonjak9O]. A probabilistic algorithm has been developed and imple-
mented. The proposed algorithm has the advantage that other transformations
such as associativity and pipelining can be easily combined with the retiming
ope••tion.

Application of the transformation on a large number of examples has dem-
onstrated its distinctive advantage over the traditional retiming for minimal criti-
cal path in the high level synthesis arena. The benefits of the retiming for
resource utilization transformation are demonstrated for the example of the 7th
order filter. The parallelism graphs before retiming have already been shown in
Figure 16.7. It can be noticed that most of the parallelism in the original graphs is
present in the first 5 cycles. Resource utilization will be low in the later phases of
the algorithm. The parallelism graphs after the retiming operation are plotted in
Figure 16.11 from which it is clear that due to an overall increase in the available
parallelism, the resource utilization is improved and the min-bounds on the num-
ber of required resources drops.

16.7. SCHEDULING AND ASSIGNMENT

The scheduling task selects the control step in which a given operation will
happen. The assignment operation determines on which particular execution unit
a given operation will be realized, from which register it will request data and

* tJ
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units
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Figure 16.11: Parallelism graphs for 7th order HR filter (after retiming)

where it will send the result using which connection. The resource allocation is
closely related to the above tasks: it reserves the amount of hardware (in terms of
execution units, memory registers and interconnect) necessary for realization.
Obviously, those three tasks are interdependent.

Almost all scheduling and assignment problems, even when posed in a
highly restricted form, are at least NP-complete. Numerous approaches have been
proposed in the recent literature. They can be categorized in several groups: brute
force approaches, heuristics techniques, using as soon as possible (ASAP) and as
late as possible (ALAP) scheduling to obtain a global picture of the solution
space, integer programming, probabilistic approaches. such as simulated anneal-
ing and neural nets and continuous relaxation techniques, including linear pro-
gramming and gradient methods.

Despite the intense activity in solving scheduling and assignment problem,
some aspects of the problem have not been adequately addressed. First, in VLSI
technology it is essential to simultaneously address all three components of the
cost function (the number of execution units, memory registers and interconnect).
Very few scheduling and assignment algorithms do this. Second, none of the pub-
lished approaches describe how to cope with hierarchical graphs (containing
loops or ,if-else constructs) such that a global optimum can be pursued. Further-

,, _II_ I ,
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more, it is necessary that the scheduling process considers not only the structure
of the SF0 but also the available hardware and its properties. It is obvious that
schedules for two different technologies, where for instance the relative hardware
costs of the functional units are different, could be radically different.

The key characteristics of our approach can be summarized as follows:

* In contrast to most published approaches, we perform assignment
before scheduling. Assignments are produced using an iterative, proba-
bilistic approach. We succeeded in characterizing a proposed assign-
ment with a simple quality measure, which predicts the chances to find a
successful schedule for this assignment.

* Once an assignment is accepted, scheduling is performed using resource
utilization as the priority function. Operations, which relax the con-
straints on the critical resources (execution units, interconnect or regis-
ters) are given a higher scheduling priority. A critical resource is a
resource which is in large demand and short supply. A resource can, for
instance, be critical if due to precedence constraints it is not usable dur-
ing some control steps. The resource utilization can be measured using
the discrete relaxation technique discussed in Section 16.4.

• The graph is scheduled hierarchically in a bottom-up fashion.

The algorithms have been tested on a wide variety of examples, and per-
formed better or at least as good as other algorithms using only a fraction of the
time required by those algorithms. A detailed description of the algorithms can be
found in [Potkonjak89].

16.8. HARDWARE MAPPING
The last step in the synthesis process maps the allocated, assigned and

scheduled flow graph (called the decorated flow graph) onto the available hard-
ware blocks. The result of this process is a structural description of the processor
architecture in the SDL language (Chapter 3) which serves as the input to DMoct

(Chapter 5) and the layout-generation tools in LAGER. The mapping process
transforms the decorated flow graph into three structural sub-graphs: the datapath
structure graph, the controller state machine graph, and the interface graph. The
interface graph determines the relationship between the datapath control inputs
and the controller output signals. Three dedicated mapping tools then translate
those graphs into the corresponding structure_instance views. An overview of the
basic features of each of these tools is given below. A more complete description
of the hardware mapping process can be found in [Chu89].

, I



Chapter 16 Synthesis of Datapath Architectures 243

16.8.1. Datapath Generation
The hardware mapping pocess of datapaths consists of a set of transforma-

tion steps, applied on the datapath structure graph. The key steps will be dis-
cussed riefly.

During the register file recognition and the multiplexer reduction steps,
individual registers are merged as much as possible into register files. This pro-

cess reduces the number of bus multiplexers, the overall number of busses (since
all registers in a file share the input and output busses) and the number of control
signals (since a register file uses a local decoder). The idea of the multiplexer
reduction transformation is explained in Figure 16.12.

a cob d
a b1 qc dP 19 rbv

Ifile IfileI
mnux

adder + + aclcerl mux red.

flow graph tle

Figure 16.12: Multiplexer reduction

Our approach addresses the multiplexer and I/O bus minimization prob-

lems simultaneously. In the literature, it has been shown that the I/O bus minimi-
zation can be modeled as a clique partitioning problem, which is NP-complete.
Adding the multiplexer minimization to it makes the problem even harder and

also excludes a clique-partitioning formulation. Experiments with a heuristic
approach on a number of benchmark examples did not yield acceptable results.
Therefore, a simulated annealing based algorithm [Kirkpatrick83] was selected.

The datapath partitioning step optimizes the processor floorplan. Non--
partitioned datapaths tend to be long and thin with long local interconnect wires
and lost space due to cell stretching (Chapter 10). Three criteria are used to i
decide when and where to partition: First, sets of disjointed blocks are put in dif-

S•*, ___, ........ j.
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ferent partitions. Each group is further divided if different word lengths are found
within the group. If the number of blocks in a partition is still too large after the
above processes, further partitioning is applied using a a probabilistic approach

[Greene86] based on clustering and rejectionless annealing.

In addition to the above algorithmic transformations, the hardware map-

ping process performs a number of translation steps (such as final hardware mod-
ule selection and operator expansion into basic library cells) which require an
accurate knowledge of the available cell library in terms of functionality, speed,
area, and black box views. This is provided by a rule-based library database. A set
of access routines are provided to support an efficient search of the database, I
using either the operator functionality or the cell name as the key. The search can
be constrained by timing or area requirements. A rule editor allows for an easy
introduction of new cells into the library.

16.11. Control Path Generation

The control path of a processor can also be derived from the decorated flow
graph. First, a state transition diagram is generated based on the scheduling infor-
mation. This is a recursive procedure due to the hierarchical nature of the flow
graph. The transition diagram is then optimized by removing the dummy states
such as the ending states of the' if-then-else constructs.

Next, hardware is allocated for the status registers, the interface logic and
the finite state machines. Notice that the resource allocation, described in previ-
ous sections, did not include these three parts (also called the control path). The
interface logic between the datapaths and the finite state machine is allocated
based on a demand driven algorithm so that no redundant logic is allocated. This
algorithm traces the flow graph recursively and uses a set of heuristic rules to
decide if a logic operation is to be performed in the interface logic or in the finite
state machine. The interface logic is then partitioned in correspondence with the
datapath partitioning.

From the transition diagram and the interface logic, a finite state machine
description is generated. To reduce the size of the finite state machine and also to
simplify the wiring between the control path and the datapath, further optimiza-
tion steps are performed before the final control structure is generated.

The first pass recognizes control signals that are independent of the con-
trol states and replaces them by a local control in the interface logic.
This optimization is especially useful for the control of pipeline regis-
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tMrs and multiplexers: the load and output-enable signals of pipeline reg-
isters can be driven directly by the clock signals, while a multiplexer
can often be controlled locally without needing any central control (for
instance in a max/ain operation).

* The second transfonnation merges equivalent or complementary sig-
nals. Te boolean value DON'T CARE is assigned as much as possible
to facilitate the merging (for instance when an execution unit is not in
use). This gives more freedom to the logic synthesis system (in this case
MIS-1 [Brayton87]) for the final synthesis of the control logic.

* Decoders for register files are allocated to reduce the wiring and the
minimize of the number of control signals.

* Status registers are generated when the production and consumption
times of a status signal are different and a temporary storage is required.
These registers will be part of the state of the FSM.

The output of the control synthesis process is a number of BDS files (Sec-
tion 8.2.), describing the contents of both the controller FSM and the interface
logic. These BDS-files serve as input to the MIS-II logic synthesizer [Brayton87].

The hardware mapping process discussed above resulted from the analysis
and critique of a number of layouts produced by the system. The data and control
path partitioning heuristics were particularly influenced. This has resulted in a
dramatic improvement in the area-efficiency of the layouts generated by the hard-
ware mapper. Some of the important conclusions of the layout analysis are given
below:

The interface logic should be properly partitioned for area and timing
reasons. The standard cell implementation should be implemented as a
single row and match the pitch of the datapath as closely as possible.
Local control slices abutting the datapath are preferred.

* Datapaths should be partitioned into approximately equal size. Irregular
size datapaths usually produce inefficient layouts.
In the digital signal processing area, datapaths tend to occupy far more
area than the control paths. This implies datapath optimizations have
more significant effects than the control path optimizations.
Wiring is still one of the dominant area consumers. We are currently
studying altenative layout strategies (e.g. using standard cell datapaths)
as well as more accurate estimation wiring estimation techniques to
cope with this issue.

I



246 Behavioral Synthesis Part IV

16.9. COMPARING IMPLEMENTATIONS OF THE IIR FILTER
Three versions of the IR filter of Figure 16.5, each with different timing

constraints, were generated (using a 2 tim CMOS library). All the implements-
tions went through the retiming process to achieve a high utilization rate for each
hardware unit. Each implementation is partitioned into three datapaths and three
control slices. A Finite State Machine (FSM) is used as the central control for
each filter. The functional correctness of all produced layouts has been analyzed
using the THOR functional simulator (Section 13.1.) and the simulation results
have been checked against the simulation results at the SILAGE level. Although
this is by no means a complete test, it has assured us about the correctness of the
applied transformations and synthesis operations.

Niumber of Implem. I Implekm 2 Iumple 3

Clock Cycls 20 16 10

Adders 1 2 2

Subltractors 1 1 2

Shiftes 11 1 2

Renisters 36 37 46

Buffers 15 17 25

Total Area 131m 2  18.9 Mnn 2  279 .2
_______________ ______________ ______________ _____________

Table 16A: Comparison of 3 Filter Implementations

Table 16A shows the results of the synthesis with three solutions, indicat-
ing the tradeoff between area and speed. Implementing the same filter on a gen-
eral purpose signal processor, such as the Motorola 56000 -a 24-bit 20 Mhz fixed
point signal processor with concurrent multiply-accumulate and address genera-
tion unit - would take at least 27 cycles of manually optimized assembler code.

The layouts of three implementations are shown in Figure 16.13, properly
scaled to show the relative sizes. The area grows almost linearly, when the com-
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putation time goes down. Table 16.5 summarizes the distribution of the CPU time

over the synthesis modules for this particular example.

Flow graph generation 0.8 sac

Mod&e Selection 1.8 sm.
Estimation/Allocation 1.7 sc.

Retiming 7.4 sec.

AwignmWtScheduling 1.9 ec.

Hardware Mapping - I min.

LAyout Generation -1 hour

Table 16.5: CPU time for HR Synthesis operations (on Sun 4/100)

0

* IplmenatonI Implemenation 2 Implemnentation 3
.clock-cycles 16 clock-cycles 10 clock-cycles

Figure 16.13:Layouts of the 3 HR Filters
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16.10. SUMMARY
The overall composition of the HYPER, a synthesis system for arithmetic

intensive processors, has been described. The most important characteristics of
the system are:

a single, global quality measure, called the resource utilization, is used
thrnghout the system to drive the design space exploration process.
This approach effectively merges the hardware allocation, transfonna-
tion application and hierarchy handling in a consistent way.

The modular organization of HYPER allows for an easy introduction of
new software modules, such as trnsformations, schedulers and user
feedback tools. $

HYPER allows the designer to quickly make area-time trade-offs and thus
shortens the design cycle dramatically for this portion of the design task.
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17
From C to Silicon

Lars E. Thon, Ken Rimey and Lars Svensson

A major difficulty in the design of application-specific programmable sig-
nal processors is the program development for the processor [Pope84, Ruetz86J.
Common software development tools are typically poorly suited for the task of
generating code that must be targeted to varying architectures. This results in the
program development being done directly in the machine language of the proces-
sor, discouraging architecture exploration because of the large time investment
needed for machine code development. Determining whether a malfunction in the
functional simulation of the processor is caused by an error in the code or by an
error in the hardware design is very difficult. To ease the effort required in the
software development and verification, a compiler for RL, a C-like language, has
been developed.

A critical issue is whether (and how easily) the compiler can be retargeted

from one architecture to another, and also the range of architectures for which it
can be applied. The RL compiler covers a fairly general class of architectures,
that can be retargeted by the architecture designer (as opposed to a compiler
"expert) through a machine description file.
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17.1. ARCHITECTURE EXAMPLES
The processor architecture Kappa, which was used as the initial target, was

originally developed for a robot-control application [AzimB8l. Tih Kappa datap-
ath is shown in Figure 17.1. A few details are not shown explicitly in the figure:

* The parallel-to-serial convertor rcoef at the bottom of te picture is used
in shift-and-ad multiplication and in long division.

a The barrel shifter shifts by an mount that is specified in the instruction
(an immediate constt).

SStatus signals ell the controlle if die output of either adder is negative.
When overflow occurs in the main adder (on the left), saturation may be
applied befone the result is saved in the accumulator.

Examples of other architectures which have used the C-to-Silicon
code generation and simulation tools in their design include one optimized for a
trigonometrically intensive robotics calculation and another for a communica-
tions application.

The PUMA processor performs a computationally intensive task normally
assigned to the host processor of a robot arm: solving for sets of joint angles that
correspond to a desired position and orientation of the manipulator. PUMA incor-
porates a shifter that can shift by data-dependent amounts. A parallel multiplier
was also considered during the architecture exploration phase, but was found to
be too expensive in terms of silicon area. A detailed discussion of the PUMA
design can be found in Chapter 19.

Another application was a channel equalizer for digital mobile radio
[Svensson9O]. Again a number of architecture and algorithm tradeoffs were
investigated. To achieve the necessary throughput, it was essential to incorporate
a parallel multiplier. This in turn made it necessary to rebalance the architecture.
To keep the multiplier supplied with operands, the memory bank was split. To
keep the dual memory banks supplied with addresses, the address-arithmetic unit
was modified. The resulting datapaths are shown in Figure 17.2 and Figure 17.3.

The basic restrictions on the architectures are that they are Harvard
machines (instructions and data are stored separately), and that they use a hori-
zontal control word with no or little restrictive encoding. A basic structure is
assumed for the microcode control unit, based on finite state machines, as shown
in Figure 17.4. The detailed specifications am generated by the compiler.
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Figure 17.1: The Kappa datapath

The flexibility lies in the design of the datapaths. They may differ in the
functional units and registers provided, and in topology. However, they also must
retain some common features: The microoperations that they implement must 0
belong to a standard set of microoperation types supporting the operations of a
C-like language. The register structure and datapath topology must meet some* _
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Figure 17.2: Integer datapath for channel equalizer

basic connectedness requirements imposed by the compiler. Finally, the overall

design style should ideally be similar to the style demonstrated by Kappa. The
compiler is tuned to irregular datapaths with moderate amounts of parallelism,

and will certainly produce substandard code for radically different datapaths.

17.2. THE RL LANGUAGE

The RL language is an approximate subset of C. To keep the compiler sim-
pie, RL includes only those features of C that correspond closely to the capabili-

ties of Kappa and related architectures-recursion, for example, is not supported.

RL includes two major extensions: fixed-point types and register type modifiers.

It is therefore not strictly compatible with C. For behavior simulation, we provide

a translator that converts RL into standard C acceptable to other compilers.

Fixed-point types are a convenience for the programmer. The underlying

integer arithmetic is inconvenient to write by hand, partly because simple fixed--

point constants correspond to huge integers, and partly because the natural multi-
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Figure 17.4: The control sequencer

plication for fixed-point numbers is not integer multiplication. In adding a new
numerical type to a programming language, finding an elegant notation for the
new constants can be difficult. In RL, all constants are typeless real numbers that
take on appropriate types from context. In declarations and type casts, the fixed--
point type of range -2" < x < 2' is denoted by fix: n; or if n = 0 then by just fix.

Register type modifiers, which are generalized C register declarations, let
the programmer suggest storage locations for critical variables. For example,

register "r" fix y;
declares the variable y to be a fixed-point number to be stored in the register
bank r. A reasonable default is chosen if the name of the register bank is omitted
(as in Figure 17.5). Register type modifiers are also helpful with multiple memo-
ries, and they can be applied to pointers. For example,

"mem" fix * "mere p;

declares p to reside in mem2 and point into mera.

17.2.1. Limitations
Many parts of C have been left out of RL for the sake of simplicity:

* 1___ __
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"• There is no separate compilation.
"* There are no explicit or implicit function declarations; functions must be

defined before they are used.
"• Initial values may only be specified in declarations of variables that are

to be stored in read-only memory.
• Therem ano st ruct, union, or enum types; no char, float, or

double types; and no short, long, or unsigned modifiers. This
leaves only void, int, pointer types, array types, and the RL-specific
types, bool and fix.

* There are no goto, switch, continue, or break statements.
* There is no typedef, no sizeof, and there are no octal or hexadeci-

mal constants.

Because the target processors do not provide a stack for local variables, it
is also necessary to prohibit recursive function calls. For the same reason, the pro-
grammer has to be aware that doing a function call within the scope of a register
declaration will force the compiler to produce rather poor code.

17.2.2. Type modifiers

In RL, the const type modifier is used mainly in declaring variables that
are to be stored in read-only memory. The volatile type modifier is used
mainly to identify boolean variables that represent signals on external pins. A
volatile bool variable represents an output pin which is set by the proces-
sor. A const volatile bool variable represents an input pin which is
sensed by the processor.

17.23. Pragmas

In RL, pragmas have the same form as the #define preprocessor com-

mand, but start with #pragma instead. Pragmas define flags and parameters that
control the RL compiler and other software, as in these examples:

arch file gives the name of the machine description file to use;

word-length determines the number of bits in a processor word;

x_capacity sets a limit on the number of registers that the compiler may assume
for the register bank x.

at

j
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17.2.4. Register declarations and register type modifiers
'The RL compiler assigns a variable to a specific memory or register bank

depending on
0 whether or not it is a register variable,
0 its base type, and
4 if the base type is a pointer type, the bank that it points into.

The defaults for a given architecture are specified by pragmas in the machine
description, but can be overridden by pragmas in the RL program. For example,
to override the usual defaults for Kappa and store non-register integer vari-
ables, and pointers into bank mem, in bank x instead of in bank mem, the pro-
grammer would put the following pragmas into the RL program:

#pragma int_memory "x"
#pragma mempointer-memory "x"

Assigning all variables to default memory and register banks is sometimes
too crude. For such cases, RL has register type modifiers. A register type modifier
is written as the name of a memory or register bank in double quotes. It is a type
modifier, like const and volatile, that can appear wherever const and
volatile can appear. For example, an integer variable x stored in the bank
f oo would be declared like this:

"foo" int x;

A more complex example is a pointer to int, residing in the bank bar and point-
ing into the bank foo:

"foo" int * "bar" p;

17.2.5. The boolean type

In C, boolean values (true and false) are represented as integers, which is
convenient for typical general-purpose computers. In contrast, our application--
specific target processors perform boolean operations on (and store) individual
bits. This is the reason for having a distinct boolean type, boo 1, in RL.

In RL, there are no implicit conversions to or from boo 1, except in certain
cases involving literal numbers. True can be written as (bool) 1; false, as
(bool) 0; and in most cases, the casts can be omitted.

The operations that return booleans as results are the relationals (<, >,
<-, >=, -- , ! -)and the boolean operations(&&, I I, !).The operations

f
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that require boolean operators are the three boolean operations, and the condi-
tional expression (condition ? then-part : else-part). The tests in if, while,
do-while, and for statements are also required te

17.2.6. Fixed-point numbers
RL has a set of fixed-point types. Arithmetic on fixed-point numbers is sat-

urating, except in shift operations. This is in contrast to integer arithmetic, which I
is always non-saturating.

The fixed-point types have names of the form f ix:n, where n is a possibly

negative integer. The form fix is a shorthand for fix: 0. Values of type fix: n
have a machine-dependent precision (controlled by the pragma word length)
and lie in the range -2" < x < 2". Casts may be used to convert between the differ-
ent fixed-point types, but conversions between fixed-point and integer types are
not allowed. A cast of a fixed-point datum to another fixed-point type is typically
implemented with an arithmetic shift operation.

All of C's floating-point arithmetic operators are available in RL for fixed
point arithmetic. With the exception of multiplication and division, the arguments
of a binary fixed-point operator must have the same type, as must the second and
third arguments in a conditional expression. Casts are commonly used to accom-
plish this.

In addition, fixed-point values may be explicitly shifted with the arithmetic
shift operators << and >>.

17.2.7. Predefined functions
RL has three predefined functions: abs () , in () , and out (). These func-

tions are overloaded to take arguments of type int as well as type fix: n. The
value returned by in () may be considered to be of type number, that is, the
resulting type (after implicit conversion) depends on a limited amount of context.
In ambiguous cases, casts must be used.

17.2.8. User-defined operations
Hardware-supported operations that are not predefined in RL can be speci-

fied in the machine description file. An operation is defined and given a name,
and one or several implementations of the operation are specified in the same way
as for the predefined operations. An operation defined in this way is available in
Ri in the form of a "function call", where the function has the same name as the

_ __ __ ___ _ jr
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operation. This is useful for hardware lookup tables and in general for handwrit-
ten. idiomatic instruction sequences. For example, a multiplication step with
some particular behavior on overflow might be implemented as a user-defined
operation because it would not be compiled into efficient code if written in pure

17.23. Preprocessor commands

There are four new preprocessor commands in addition to those of standard
C. They are useful for unrolling and partially unrolling loops: #repeat,
#endrepeat, r'epeat, and #endrrepeat. The form i

#repeat id N
... text...

#endrepeat
is roughly equivalent to
#define id 0
•...text...

#undef id
#define id 1

.. text...
#undef id

#define id N-1

.. text...

#undef id

#rrepeat and #endrrepeat are similar, except that they count backwards.

17.2.10. Program structure

The last difference between RL and C is that the RL programmer may (and
often will) leave main () undefined. In its place, the code should define loop ()
and optionally init 0). The compiler then supplies an implicit main (), where
init () is called once (if it has been defined), and then loop 0 is called indef-
initely. This is an appropriate form for a program which reads a indefinite input

stream.

____________

S.!-- ---- - - -- -
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#pragma word length 16
#pragma arch_file "kappa"
register fix y;
init() {y - 0;)

loop () (|

y - (3/4) *y + (1/4) (fix) in();

out (y) ;

/* Provided by the compiler
main() inito;

for (;;) loopO;

Figure 17.5: A simple filter program in RL.

17.3. FIR FILTER EXAMPLE
The sample program in Figure 17.5 is a trivial low-pass filter. Using the

recurrence

y = (3/4)*y ._ + (1/4)*x (17.1)

the filter smooths the input sequence xi, x2, x3 .... to produce the output sequence
Y1' Y2' Y3.  Instead of main, RL programs define the functions init and
loop. This implicit form for the outermost loop will facilitate, for example, auto-
matic insertion of memory-refresh code. The pragma construct has recently been
introduced into C by the ANSI draft standard [Kemighan88]. A pragma at the
head of the sample program is used to specify the word width of the processor.

17.3.1. The Register-Transfer Notation
The compiler output for the low-pass filter program is shown in Figure

17.6. The code consists of two straight-line segments, each of which is a sequence

of instructions terminated by semicolons1 . Each instruction is a sequence of
microoperations separated by commas. We have abbreviated "a - b, b - c"
by "a - b - c" to make the code easier to read.

C Chapter 19, "The PUMA proceuor", describes a more realistic example in which
the RL program is several hundred lines long

- .i ____ _ __ _
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init: acc-O;
r[OJ-acc;

GOTO loop;

loop: acc-bbus-mbue-r[0], morebus, r[l]-iodata-in (;
mor-mbus-r [i ],abus-mor, bbus-acc>>l,
bbus.1- (abus+bbus) >>1:

acc-bbus;
acc-abus-mor, mor-mbus-acc;

abus-mor, bbus-acc>>2, acc-abus+bbus;
iodata-mbus-acc, out(iodata), r[0]-acc;
GOTO loop;

Figure 17.6: Compiler output (microcode) for the FIR filter

The microoperations are written in a register-transfer notation reminiscent
of C or RL. Subscripting (e.g., r [ 0 ] ) is used to refer to an element of a register
(or memory) bank. Member selection (e.g., bbus. 1) is used to refer to the value
of a register or tlis at a given time: register. 0 refers to the value of register in the
current instruction, register. -1, to the value in the previous instruction, and so
on.

Reasonable defaults reduce the need for the latter notation. An unqualified
name means register. 0, except on the left hand side of an assignn,,nt. There, it
means register. deLay, where delay is defined in the machine description. For
example, in the microoperation

bbus.1 - (abus.0 + bbus.0) >> 1

the qualifiers on the right can be omitted, but the one on the left must remain
because the delay attribute of bbus is 0. This register transfer designates a single
microoperation, even though its right-hand side appears to be a compound expres-
sion. This microoperation is equivalent to "acc = abus + bbus", followed in
the next instruction by "bbus = acc >> 1", except that the compound opera-
tion allows correction of overflow by shifting the overflowing bit back into the
word.

17.3.2. The machine description

As mentioned earlier, the RL compiler needs a description (md-file) of the
architecture for which to compile. Figure 17.7 shows a portion of the md-file for
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#define bus node :delay - 0
#define req node :delay - 1 :static
#define file reg :bank

field :signed xaddr_imm[]l
field output enable_x[], load_x([,selectimmed

file x
bus addr, xbus, xsum
bus xsign /* this "bus" carries a boolean value*/

micro addr - Immediate
{ x_addr im m- Immediate I

micro xbus - x(NJ

I outputenablex[N] -1, select immed- 0 }
micro xsum - addr

{ select_imned - 1
micro xsum - xbus

I xaddr-imm - 0 }
micro xsum - addr + xbus
micro xsum - xbus + addr

micro xsign - xsum.-1 < 0

micro x[N) - xsum
{ load x[N] - 1

Figure 17.7: Machine description for the Kappa address arithmetic unit

Kappa. The portion showed corresponds to the address datapath, which is the
right half of Figure 17.1.

The md-file contains declarations of control word fields (field),
resources (bus, file) and microoperations(micro). The microoperations may
optionally specify their implementation in terms of control signals. Information
about control signals is used later on by the assembler.

17.33. Simuation and profiling

* The RL compiler is accompanied by a translation tool which can translate
RL programs into real C code for execution on a regular computer. Table 17.1
shows the names and some options for the various programs. The float translator
replaces fix variables with floating point variables. The fix translator replaces

I1
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fix variables with integer variables and replaces operators +,-,*,/ with
calls to fixed point subroutines from a library.

There is also an option which inserts profiling code, using the same mecha-
nism as the UNIX C compiler -pg option. This allows us to collect a dynamic
instruction count (cycle count) for a given program executed on a given target
architecture and with given input data. The cycle count is for the actual target j
chip architecture executing the RL program (not for the computer which executes

Program name Program function Comment

kc RL to microcode compiler c-compiler

kt -float RL to C translator (floating point) t=-translaw

kt -fix RL to C translator (fixed point)

kt -fix-p RL to C translator (for profiling) pprofiler

kprof Profiling postprocessor _,

Table 17.1: The RL compiler and translator programs

the C program). The program kprof analyzes the profiling data and prints out

the cycle count.

17.3.4. Microcode assembly and layout generation
The actual layout of the processor which executes a RL program is per-

formed by the layout-generation tools in LAGER, as presented in the earlier chap-

ters. The interface between the RL compiler and the layout-generators is a

microcode assembler which translates the microcode and associated information

into layout parameters making use of the parameterization facility provided by

the SDL language (Chapter 3). Examples of parameters are PLA content specifi-

* cations and bus width specifications. Chapter 19 shows the results of such a lay-

out process.

* 17.4. IMPLEMENTATION OF THE RL COMPILER

Ideally, the chip designer should not have to know how the high-level-lan-

guage compiler works. He should be able to treat it as a black box that takes

descriptions of an algorithm and of a machine and produces symbolic microcode j
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according to these specifications. The languages in which the two inputs and the
output are expressed will be described in the following sections. All these lan-
guages are preprocessed by the standard C preprocessor. Comments and macro
definitions are therefore allowed just as in C.

The compiler consists of two parts. The front end translates the program
into successive straight-line segments of code expressed in an intermediate lan-
guage. For each straight-line segment, the back end selects microoperations and

packs them into instruction words. Only the back end uses the machine descrip-
tion.

17.4.1. The Front End

The front end performs a variety of routine tasks and simple optimizations,
including parsing, constant folding, building the symbol table, and type analysis.

Because they reflect our target machines, two additional optimizations should be
noted:

The first is the reduction of multiplications by constants into minimal

sequences of shifts, additions, and subtractions. For example, a fixed-point multi-
plication by 7/8 is reduced to a three-bit right-shift and a subtraction.

The second is control-flow optimization, intended to take advantage of
multi-way jump/call/return operations. The compiler uses a structured dataflow
algorithm to move control-flow operations upward within the program so that
they can be coalesced. All jumps to jumps, to calls, and to returns are eliminated
in the process.

For each straight-line segment, the front end passes to the back end a data-
flow graph whose nodes are intermediate-language operations such as "add" and
"shift-right." The front end eliminates all variables that are not live across
branches by adding edges to the graph. The back end assigns the remaining vari-
ables to register banks using the register declarations from the RL program
together with reasonable defaults. These variables are accessed by special "read"
and "write" nodes in the dataflow graph, which itself makes no reference to par-
ticular busses or registers.

17.42. The Back End

Most of the effort in developing the RL compiler has gone into developing
the algorithms used in the back end [Rimey88]. Here, we describe the relationship

4 1
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of our basic approach to the approaches that have been tried elsewhere in the
compiler-construction community.

The usual approach to generating horizontal code has been to separate the
process into two phases. First loose sequences of microoperations are generated.
Then these are packed tightly into a small number of instructions in the compac-
don phase. Researchers have studied compaction in various forms:

Local compaction is the packing of straight-line code segments one at a time.
Good heuristics for this have been developed and thoroughly studied.

Global compaction generalizes local compaction to include movement of mi-
crooperations across branches. The best known method, trace scheduling,
has been developed in conjunction with very-long-instruction-word
(VLIW) supercomputers [Colwel87]. Unfortunately, trace scheduling is
unsuitable for signal processing applications because it improves average
running time only at the expense of worst-case time.

Software pipelining is a specialized technique for the compaction of loops. It re-
arranges the body of a loop to overlap the execution of many successive it-
erations. Touzeau describes the use of software pipelining in a compiler for
the FPS-164 array processor [Touzeau84].

Fisher, Landskov, and Shriver's paper on microcode compaction [Fisher81] is a
good general introduction to these techniques.

Vegdahl critically examines this separation of code generation into two
phases [Vegdahl82]. He concludes that some coupling of them is useful: feedback
from the compaction phase is needed for effective microoperation selection. We
find this issue to be particularly important in generating transfer microoperations
for Kappa-like architectures. However, rather than couple the two phases, we
have chosen to completely integrate them.

The back end of the RL compiler schedules microoperations as they are
selected. This approach creates numerous opportunities for code improvement-
even when it is applied just to one straight-line program segment at a time. Hence
we have limited ourselves to local scheduling.

Our scheduler is similar to the "operation scheduler" developed by Rutten-
berg and described in a paper written with Fisher et al [Fisher84]. It does greedy
scheduling of function microoperations and lazy scheduling of transfer microop-
erations. For each node of the directed acyclic graph (DAG) of operations, it finds
the function microoperation that can be inserted into the earliest possible instruc-
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tion, and inserts it. It also finds transfer microoperations that deliver the argu-
ments of the function microoperation, and inserts them into the appropriate

instructions. This subtask is lazy data routing.

How best to route an intermediate result between functional units depends
on the time interval between the definition and the use, as well as on what
resources in the datapath are free during that interval. By postponing the selection
of the route until the use is scheduled (and more of the schedule is known), we get
more constraints to guide the selection. We also get a complication: the possibil-

ity that all feasible routes for the value will be unwittingly closed off by an unfor-
tunate scheduling decision in the meantime.

We detect and avoid such disaster by maintaining a feasible route to the
indefinite future, a spill path, for each value with as-yet-unscheduled uses. These

spill paths do not represent scheduling commitments; indeed, they are continu-
ously adjusted as scheduling proceeds. Their purpose is to identify scheduling

decisions for which no accommodating adjustment exists.

Spill-path adjustment can be performed efficiently; any number of spill
paths can be rerouted in a time linear in the size of the space-time graph. This is a
directed graph whose nodes are ordered pairs [r, t] such that r is a node of the
datapath and t e ( 1, 2, 3, ..., t. ) is an instruction number. The quantity t- is the

number of instructions in the current schedule, and then some. There is an edge
from [r 1, t!] to [r 2 , t2] if and only if there is a transfer microoperation that copies

a value from rI to r2 in t2 - t, instruction times. Spill paths respect the node capac-

ities of the space-time graph: if the capacity attribute of the datapath node r is n,
and if r is currently committed to holding k values at t, then no more than n - k

spill paths may pass through the space-time node [r, t]. By a standard construction
that splits each node of the graph into two, the space-time graph with its node
capacities can be converted into a space-time network with edge capacities. On
this the spill paths form a networkflow, to which well-known algorithms apply. In

* particular, if the flow can be adjusted to accommodate a unit reduction in the

capacity of an edge, this can be done in a time linear in the size of the network.

17.5. SUMMARY

We have described a class of programmable processors and a user-retar-

getable compiler that form the basis for a practical ASIC development strategy.

The use of irregular horizontal-instruction-word architectures facilitates the tun-
ing of the processor datapath but limits the applicability of standard code-genera-
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ion techniques. To generate efficient code for diverse datapath topologies. we

have developed the technique of lazy data routing.
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An FIR Filter Generator

Paul Yang and Rajeev Jain

High performance FIR filters have applications in several video processing
[Privat86] and digital communications systems (Samuefi9OJ. While compiler
tools exist for low sample rate applications such as audio and telecommunication,
techniques for automating the design of high sample rate FIR filters have only
recently been emerging [Hartley89, Reutz89]. These techniques have been shown
useful for sample rates of 10-30 MHz. However, methods for higher rates such as
required in high-speed digital data communications [Samueli9Ol or high rate
video transmission systems [Isnardin88 have not yet been reported. In this chapter
a silicon compiler tool, Firgen, is presented that has been succesfully used to
generate compact FIR filter circuits operating at sample rates up to 112 MHz in
relatively mature technologies.

Firgera allows the user to generate the chip layout starting from filter
specifications or from coefficient values. It consists of programs for (a) filter syn-
thesis, optimization and simulation; (b) architecture generation; and (c) floorplan
generation. The architecture generation techniques ae based on ideas proposed in
[Reulz89o Ulbrich8s, Lino9j, and the floorplanning techniques are based on
results reported in [Lins9,Hatamiant7, Noli869. The architecture and floorplan
generation tools ae specifically aimed at achieving very high sample rates with
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compact layout and minimal pipeline latency. The final layout generation is
accomplished by the LAGER silicon assembly system.

Relative to existing filter compiler tools Firgen provides two advanced
features: (a) high performance with relatively compact layouts and (b) integration
of filter synthesis, simulation, architecture generation and layout generation tools.

18.1. ARCHITECTURAL REVIEW
The bit-serial compilers FIRST [Denyer84], Inpact [Yassa87], and Cathe-

dral I [Jain86] are applicable to both FIR and IIR filters but are mostly useful for
low sample rate filters such as in speech, audio and telecommunication applica-
tions [Ginderdeuren86]. Microcoded bit-parallel compilers [Rabaey85, Ruetz86]
have also been used for these low sample rate applications. Several techniques
have been proposed for achieving higher sample rates in FIR filter circuits. These
require varying amounts of hardware complexity and in many cases rely on
heavily pipelining the architecture since pipeline latency can be introduced in FIR
structures without affecting the input/output transfer function. However, the use
of indiscriminate pipelining leads to substantial increases in power dissipation as
well as chip area due to the pipeline registers [Reutz89, Jain87]. The increase in
power dissipation is of special concern at high speeds. The aim in developing
Fi.rgen has been to achieve high sample rates with minimum possible use of
pipelining.

The FIR filter compiler Parsifal [Hartley89] offers the user the choice of
combining multiple digit-serial datapaths to achieve performance that is higher
than that of pure bit-serial structures but lower than that of full bit-parallel archi-
tectures. The idea is to offer a spectrum of trade-offs between bit-serial and bik--
parallel architectures. In contrast FiLrgen is optimized for hardwired bit-parallel
architectures only to get maximum performance for a given technology.

The FIR filter compiler proposed by Privat IIPrivat86] is also targeted at
hardwired bit-parallel architecture but uses carry-ripple addition which offsets the
advantage of bit-parallel processing. Ruetz [Reutz89J also uses bit-parallel archi-
tecture but uses carry-save addition and additionally employs a tree structure for
accumulating the tap products to reduce the critical path delay through the car-
ry-save adders. A further reduction in critical path can be achieved by using car-
ry-save bit-parallel processing together with the transpose form instead of the
direct form. Ulbrich and Noll [Ulbrich85] have proposed such an architecture
with both carry-save addition and a fast vector-merge adder to get full advantage
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Figure 18.1: Flint place and route without floorplan constraints

of bit-parallel processing, and Lin and Samueli [Lin89] have shown a bit-level
pipelined version of such an architecture. This is the approach used in F i rgen.

18.1.1. High performance layout requirements

To achieve the high-performance requirement, special attention is paid to
the construction of power, clock and signal cables. In particular, it was found that
if Flint were allowed to perform automatic place and route, the resultant layout
(Figure 18.1) not only consumes more area but also causes excessive signal

delays and clock skews that would result in incorrect high-speed operation due to
sub-optimal routing solution To remedy this, Firgen generates both the netlist

describing the structure of the filter and a floorplan file specifying the placement
and routing of the macrocells and cables. The floorplan file directs Flint in the
place & route operation. The resultant layout, shown in Figure 18.2, reduces the

size of the routing channel between macrocells and produces regular routing for
the clock and signal bus. The area of this floorplan-directed layout is less than

half of that produced by Flint without a floorplan. The details of the floorplan
generation process will be discussed in a later section.

I
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Figure 18.2: Flint place and route with Firgen generated floorplan

182. FIRGEN FILTER DESIGN SYSTEM
The filter design system Firgen consists of three major subsystems: (a)

filter synthesis and coefficient quantization; (b) filter architecture and floorplan
generation; (c) chip layout generation. Details of each subsystem are given below.
Figure 18.3 provides an overview of the entire filter generation process.

In the first step the user determines the filter coefficient values using the fil-
ter synthesis, simulation and optimization software. The coefficient values are
then entered in the architecture and floorplan generation programs. Both pro-
grams obtain information about the circuit cells from the cell library database
using a mapping function. The architecture generator provides a netlist of the
library cells to implement the filter. The floorplan generator creates a floorplan
describing placement of the cells in the layout. The netlist and floorplan informa-
tion is then used by DMoct to obtain the final layout.

Frequency domain design specifications can be entered for lowpass, high-
pass, bandpass or arbitrary multi-band filters. The specifications are entered inter-
actively through a command window (Figure 18.4). The user can then choose to

S-___ I
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Figure 18.4: Snap shot of Firgen user interface

use either the synthesis tool FIR [Parks85] or WINDOW [Rabiner85] to obtain
floating point values for the filter tap coefficients. Firgen then processes these
values through a coefficient quantization routine MKCSD to convert the coeffi-
cients to canonical signed digit form [Reitwiesner66]. Next, the user specifies the
number of CSD digits and the internal wordlength to be used. The CSD values are
optionally optimized to obtain the best possible frequency response with the
given number of non-zero canonical signed digits using the CSDOPT program
[Samueli87]. Firgen then displays a plot of the frequency response obtained
with the floating-point coefficient values as well as with the CSD quantized val-
ues (Figure 18.4). At this point the designer can iterate on the quantization until
the number of CSD digits used produces an acceptable response.

18.3. ARCHITECTURE GENERATION

Once the CSD coefficient values have been decided on, Firgen can pro-
ceed with the architecture and floorplan generation (Figure 16.2). Note that the
user can also enter the filter coefficients directly.

The architecture used in Firgen has been described in [Jain9l,Yang9O]
and is shown in Figure 18.5 (in this figure, two non-zero CSD bits are assumed
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Figure 18.5: Filter architecture

for the CSD multiplier). It basically consists of a transposed form FIR filter struc-
ture with carry-save adders and registers implementing the filter core. A vec-
tor-merge adder is used to reduce the carry-save outputs to conventional two's
complement final output. A pipeline register is inserted between the final tap out-
put and the vector-merge adder to isolate the final tap delay and the vector-merge
adder delay. The input signal is broadcasted to all filter taps, and the multiplica-
tion is performed by hardwired shift-and-add circuits using canonical signed digit
multiplication. The critical path of the architecture is either: (1) the delay through
the data broadcast TRC(N) and the delay through one filter tap, Nad x T , where
TRC(N) is the RC delay for broadcasting data to N filter taps, Nd is the number of
non-zero CSD bits used, and T is the delay through a carry-save adder; or (2)
the delay through the vector-merge adder, Tin, which is a function of the internal
wordlength of the filter. The two delay paths are indicated in Figure 18.5 and the
actual dominant delay depends on the complexity of the filter as well as the pro-
cess parameters for circuit parasitics. This target architecture provides high-speed
operation with minimal latency and reduced hardware complexity.

Based on this target architecture, Firgen generates an architectural sche-
matic that consists of integrated circuit macrocells for the basic hardware func-
tions addition, subtraction, and sample delay. The mapping flow from signal flow
representation of the filter to the actual hardware implementation is illustrated for
one tap of a filter in Figure 18.6. Additionally, Firgen generates the netlist for

It
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the clock generation and distribution network, and for the data distribution net-
work, using various buffer macrocells.

The netlist is created as a text file using SDL and then entered into the nor-
mal layout generation process using DMoct.

18.3.1. Floorplan generation

The floorplan provides placement constraints to automatic place and route
tool, Flint. In the floorplan, the placement of all macrocells, including those of
clock and data buffers, in the schematic, as well as the definition of routing chan-

nels are specified. The actual optimized floorplan is derived using a multi-step
user-guided process which is described in [Jain9l, Yang90].

The basic floorplan strategy can be arrived at by looking at the architecture
(Figure 18.5) and surmising that there are two kinds of nets that have to be routed:

1. Global nets: the input data bus distributed to all of the carry-save adder
macrocells, and the clock signals distributed to all of the registers.

2. Local nets: the carry/sum signals are connected between neighboring
adder or register macrocells.

To make the layout compact, all adder and register macrocells are placed in
a row in the same order that they appear in the schematic (Figure 18.5). Thus, all
of the local nets can be routed in channels between the macrocells. The global
databus net has to be shifted at each carry-save adder input to implement the coef-
ficient scaling (Figure 18.6). To avoid congestion in routing this net, it is routed
by a combination of local channels between the macrocells and feedthroughs pro-
vided in the macrocells.

As noted earlier, particular attention has been paid to the data and clock

distribution in the floorplan since this is crucial in high-speed circuits. A tree dis-
tribution of the clock and data network with multiple level buffering scheme as
shown in Figure 18.7 is used to minimize clock skew and reduce signal propaga-

tion delays.

The floorplan for Flint is stored using FDL. In the FDL description,
macrocells are clustered into modules that also contain routing channels. Associ-

ated with each of these modules (which can be hierarchical) are descriptions of
(1) neighboring modules; (2) signal and power routing entering and/or exiting the
module; and (3) preferred routing layer and routing direction. Thus, (1) specifies

-- _-
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the relative (rather than the absolute) macrocei• placement, while (2) and (3)
serve to give routing hints to the place and route tools.

The place and route tool Flint takes this floorplan file and perform phys-
ical cell placement and generate physical connections for signal and power rout-
ing. To obtain a compact layout, feedthroughs are provided in the macrocells.
These are exploited to divide the global routing into local channel routing prob-
lems in a manner similar to dpp (Srivastava87l. Note, dpp is not employed
because of the restriction in dpp that the power and data signals be orthogonal to
each other;, in the FIR filter architecture, the optimal layout for the adder which
makes up the core of the filter is to have the power and signal buses run along the
same direction. In addition, bit slices are not identical (as dpp assumes) due to
shifting of buses to realize scaling by power of two.

18.3.2. Layout generaton

The final layout generation can be performed using the automatic macro-
cell generation and place and route programs of LAGER under the control of
DMoct. Flint performs the automatic place and routing of the macrocells using
the netlist and floorplan generated and TimLager generates the actual macro-
cells with parameters.

x(n)
SDaft Buffer

h( ) h S ( ) h 3 ( ) h l h(O)

VMA

Clock Buffer

CSii
Figure 18.7: Data and clock distribution tree network
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18.4. DESIGN EXAMPLE AND TEST CIRCUIT

18.4.1. Example design of a FIR filter

In this section, the design of an 11-tap FIR pre-distortion filter for sinc
compensation in a D/A converter [Samueli88] will be described.

When the Firgen system is first started, an X-window based
graphical-user-interface appears on the user's workstation (the XFIRGEN win-
dow in Figure 18A). The user can then initiate the filter design by selecting the
appropriate options (in this case, selecting the "Equiripple" design methodology)
and the correct filter order and sampling frequency. Next, the multiband filter type
is selected, after entering a "1" for a single band specification (as shown in the
"Band Specification" submenu beneath the XFIRGEN window in Figure 18.4), a
band specification menu appears and the appropriate values are entered (see the
bottom "Band Specification" window in Figure 18.4). For the sinc filter, the
"SINC compensation" button is set to "ON" to signal to the filter design/synthesis
program to pre-distort the frequency specification in order to achieve the

X/SIN(X) compensation desired; in normal filter design, the SINC compensation
option would have been turn "OFF". Upon the completion of the filter specifica-
tion, various options in the "Action Menu" can be invoked (as seen in XFIRGEN
window in Figure 18.4), these include options to run programs for filter synthesis
and design (Synthesize FIR Design), CSD coefficient synthesis (Create Binary
CSD Coeff, where a popup window appears to prompt the user for hardware--
structure related parameters, see the "Filter I/O Specifications" window in Figure
18.4), CSD optimization (Run CSD Optimization), filter simulation (Run Simula-
tion), display simulation results (Display Xgraph), netlist and floorplan genera-
tion (Create SDL file), and the final layout generation (Create SMV, Create SIV,
Create Layout).The filter specifications are also stored in OCT database and is
automatically restored in the next Firgen session.

Feedback to the user are provided in the "Message Center" window, these
includes warning and error messages generated by the programs as well as pro-
viding information to assist the filter design. For example, by selecting the "Esti-
mate Internal WL" option from the "Action Menu", a popup menu will appear
requesting the user to enter the desired output wordlength (not shown in Figure
18.4); based on this required output wordlength and the filter order, a suggested
internal wordlength as well as the estimated SNR at the output is generated and

W 0
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displayed in the "Message Center" window as is shown in the XFIRGEN window
in Figure 18.4.

Additional feedback on the filter performance is provided by first simulat-
ing the design using the built-in simulation program and then display the simula-
tion results via the "Display Xgraph" option as is shown in the xgraph window in
Figure 18.4. Note, in this particular example, the CSD implementation and hence
the CSD response has been scaled to prevent overflow in the filter and is thus off-
set from the ideal frequency response of the filter. The scaling of the coefficients
are done when the "Synthesize FIR Design" option is exercised. A scaling factor
is computed and presented to the user for possible alteration in a popup window
(see the "Coefficient Scaling" window in Figure 18.4).

Figure 18.8: CIF plot of the 1.2-micron CMOS chip

18.4.2. An 11-tap FIR filter chip

A CMOS chip implementing the example described in the previous section
has been fabricated and tested. The CMOS chip is fabricated in 1.2-pJm n-well
CMOS technology through MOSIS. The critical path of the test chip is the delay
through a 14-bit vector-merge adder, T M (Figure 18.5); and in order to speed up
the operation of the vector-merge adder, a carry-select adder is used in place of
the conventional carry-ripple adder. The chip has been tested functionally up to
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112 MHz and dissipates 332 mW at the maximum operating frequency. A plot of
the chip is shown in Figure 18.8.

18.5. SUMMARY
Firgen provides a means to take high level filter specifications and auto-

maticaily synthesizes filter coefficients, generates the architecture annd provides
the information necessary for the silicon assembly tools to generate an optimized
layout. The critical characteristic which allows such high level operation is the
limitation to a particular application area.
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19
The PUMA Processor

Lars E. Thon

The PUMA processor application and algorithm will demonstrate many of
the features of the C-to-Silicon system described in Chapter 17. It also dem-
onstrates architecture exploration and system simulation. This chapter is arranged
as follows: we first present an overview of the design problem and the computa-
tion involved. Then we examine the computation task in more detail, and extract
its primary characteristics. The next step is to apply this knowledge to select algo-
rithms that will lead to an efficient integrated circuit implementation. Simulating
the algorithm is important especially with respect to its implementation in fixed--
point arithmetic. Of critical importance is the development of an efficient archi-
tecture, supported by the C-to-Silicon tools, for implementing the
algorithms. The finished chip developed in this process, and its physical charac-
teristics, is presented.

19.1. THE INVERSE POSITION PROBLEM

The problem chosen comes from the field of robot control and path plan-
ning, and is known as the inverse position-orientation problem (IPOP), or the
Inverse Kinematics problem. The most advanced industrial robots have six revo-
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44:

0 e (P", Py, Pz)

ci = cosei

Si = sin~i
rik = components of 3x3 orientation matrix

Figure 19.1: A fully articulated robotic arm

lute joints driven by independent actuators. A typical robot is shown in Figure
19.1.

9le robot is typically controlled by executing separate position/speed/ac-

celeration profiles (over time) for each joint, and employing feedback to correct
deviations from the given profile. However, the robot task is more naturally
described in cartesian space. Hence, we need to be able to compute a set of joint
angles that correspond to a given position and orientation of the robot hand in the
cartesian space. Our task is to compute the solutions of the IPOP for the Puma
560 industrial robot.

19.1.1. The Computation TUsk
The method for computing IPOP for a 6-R robot is well known for the case

where the three last axes intersect in a point [Craig88]. Not coincidentally, most,
if not all, industrial robots are designed so that such is the case. The input to the
algorithm is the mechanical (Denavit-Hartenberg) parameters of the robot, and
the desired position/orientation of the hand, given as the T matrix. The following

I _ _ _ _ _ _ _ _ _ _ _ _ _ _
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shows the essentials of the computation. The actual code has to cover four differ-
ent cases, so most of the code is in effect iterated four times.

0 9= atan2(pp) - atan2d3, sqrtfp 2+p 2)) (19.1)

K = (p2+p2+p2-a -a32-dA2..d4)/(2a) (19.2)

903= atan2(a3 ,d4)-atan2(K, ± sqrt(a3
2+d-_K)) (19.3)

0 aan2 ((-a3-a2 c3) p. -(c, p,+s! p)(d4 a £3), a s-d 4) p-a

(a3+a2 c3) (cI p+sip7 )) (19.4)

C4 s5 1= -r 3 cI c23 -r23 SI c23 +r3 S23  (19.5)

Ss = -r13 sI + r23 cl (19.6)

04= (c4s~c4s5+s4s?4ss<L) ? 04Od: atan2(s4s5 , c4se) (19.7)

5= -r1 3 (cI c23 c4+s! S4) -r23 (s! c23 C4 -C1 s4) +r33 S23 c4  (19.8)

5= -r3 C1 S23 -r23 st S23 -r 33 c2 3  (19.9)

05 = atan2(ss. c5) (19.10)

s6 -- -r, (Cl C2 3 S4 -S 1 Q - r2 , (S, C23 S4 +C1 c4 s s4 (19.11)

c6 = r,! ((c, C2 3 C4 +S1 S4) C5 -Cl S23 S5) + r2 , ((s c23 c47cI s4) c5 -

S1 S2 3S5) - r31 (s2 3 c4 c5+c23 s5) (19.12)

06 = atan2(s6 ,'cd (19.13)

The notation a ? b : c used above has the same meaning aw in the C pro-
gramming language. The number of solutions is doubled from four to eight by the

following symmetry:
04= 04+I- 0 .05 0 =06 + (19.14)

19.1.2. Characteristics of the Task
The IPOP algorithm is intensive in multiplication and trigonometric com-

putations. Table 19.1 gives a summary of the operations involved for computing

all eight solutions. The table makes it clear that there is strong need for using effli-

cient algorithms for the sin/cos/atan2/sqrt operations. The standard method used
in general purpose computer systems is rational approximation. That is, using an

approximation which is the ratio of two polynomials [Cody80]. Rational approxi-

i
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Coperaton count

Mult (var) 208 atan2 22

Mult (const) 24 cos 14

Add 108 sin 14

Sub 104 sqrt 2

Divide(var) I Divide(const) 1

Table 19.1: The IPOP algorithm is intensive in multiplication and trigonometric
functions

function shift and add add mult

atan2 34 17 0

cos and sin 36 19 0

sqrt 32 18 1

Table 19.2: CORDIC functions consist mostly of shift/add operations

mations usually involve polynomials of degree 3 and 4 each. This adds up to eight
multiplications and one division as a minimum, assuming the polynomials are
evaluated with Homer's scheme.

To minimize area requirements we will employ an architecture without an
array multiplier, which would make the rational approximation approach very
time consuming. In fact, just evaluating atan2 twenty-two times would cost more
than all the remaining multiply and add operations in the algorithm. We will
therefore use alternative algorithms for sin/cos/atan2/sqrt, based on CORDIC
operations.

19.2. ALGORITHM SELECTION

CORDIC [Blahut85,Volder59,Walther7l] is a family of algorithms that
meets our computational requirements. It can compute all the functions we need,
and-in the absence of an array multiplier, it is also much more efficient than ratio-
nal approximation. For a 20 bit word length (and full accuracy), the operation
count is given in Table 19.2
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Note that cos and sin are computed at the same time at no extra expense.

This is quite handy in our case. As we shall see later, CORDIC can be efficiently

implemented on a datapath which has an adder and a variable preshifter for one of

the inputs. An overview of the CORDIC algorithm is given below.

19..1. An RL program for atan2
This is the program text of the CORDIC atan2 (catan2) function, as pro-

grammed in the RL language:

fix catan2 (sin, cos)
fix sin, cos;

register int k;
register fix x, y;
fix theta;

/* Start Cordic. The first step takes care of quadrants
2 and 3. */

if (cos < 0)
if (sin >- 0) 1

theta - FIXPIHALF; x - sin; y - -cos;
} else

theta - -FIXPIHALF; x - -sin; y - cos;
}

} else {
theta - 0; x - cos; y - sin;

}

/* Scale x,y so they don't overflow when amplified. */
x- (x>>l); y- (y>>l);

/* The Cordic iterations work in quadrants 1 and 4. */
for (k - 0; k <- NUMIT; k++) {

fix xnew, ynew;
if (y > 0) 1

theta +- ctable(k];

xnew - x + (y >> k); ynew - y - (x >> k);
x - xnew; y - ynew;

else
theta -- ctable[k];
xnew - x - (y >> k); ynew - y + (x >> k);
x - xnew; y - ynew;

return theta;
Ii
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In the above program, the operations that have the most impact on the
architecture turn out to be the ones of the type x>>k, where k is the loop index.
We will refer to this later as the variable shift operation.

The complete RL program for the IPOP algorithm consists of five functions
and a main program. Total code size is 658 lines of text, of which 263 lines are
actual RL statements (i.e., not counting comments, blank lines, etc.). It is clear
that the IPOP algorithm is nontrivial both in size and complexity, and therefore
constitutes a good test case for the C-to-Silicon tools.

Alternative I Alternative 2

R6LI shifter R16LI logarithmic shifter

in!!ne multiplication code subroutine call

constant shifter (r>>I) variable shifter (r>>x[I)

awray multiplier (possibly pipelined) iterative shift/add multiplier

Table 19.3: Design tradeoffs affect layout area, static instruction count and dynamic
instruction count

19.3. ARCHITECTURE DESIGN AND EXPLORATION

The starting target architecture is known as Kappa. It was originally devel-
oped for speech processing applications [Pope84], and later modified for use in a
PID robot joint controller [Azim88]. See Figure 17.1 for a description of the
Kappa datapath. Starting with this datapath, we went through architecture design
iterations, each time making inexpensive modifications that would improve the
efficiency in executing the algorithm. It is emphasized that most of these changes
only had to be done on paper or in the machine description file, as explained in
Chapter 17. Hence we could quickly evaluate a number of alternatives without
expensive investment in circuit layout generation. The tradeoffs we considered
Sare shown in Table 19.3. Some of the tradeoffs are interrelated.

For each of the alternatives, we investigated the effect on the static instruc-
tion count (program size) and dynamic instruction count (running time in cycles).
The cost of the hardware involved, if any, was also considered. The results are
shown in Table 19.4

i. , .-. ..- ...--.-. .... .• _
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Let us first discuss the shifter type: we use R<n>L<m> to denote a shifter
that can shift up to n places to the right or in places to the left in one cycle. Since
the CORDIC routines need shifts almost as large as the word length W=20, we
decided to eliminate the original R6LI shifter and replace it by a R15LI shifter.
This allows rapid CORDIC iterations (the improvement is not shown in the table,
but the hardware cost was small).

Case Shifter Mult type Num blocks Code size Cycles

0 constant inline code 201 2924 18156

1 constant subroutine 255 1920 18156

2 variable inline code 66 1720 18156

3 variable subroutine 120 717 18156

4 variable array (delay 1) 66 683 9192

5 variable array (delay 1*) 66 642 9028

6 variable array (delay 3*) 66 723 9352

Table 19.4: Effect of design decisions on code size (static instruction count) and
code execution time (dynamic instruction count)

Entries 0-1 in the table reflect the use of inline code versus a subroutine
call for multiplication. Using the subroutine means an increase in the number of
basic program blocks, but a large decrease in code size since one piece of code is
shared by all the multiplication operations. Since the architecture has a low-over-
head subroutine call, there was essentially no difference in execution time.
Entries 0-1 versus 2-3 reflect the result of introducing variable shift capability.
The original architecture could only shift by an immediate constant which is
coded into the instruction at compile time. Looking at the catar.2 RL program,
this means that the loop over k would have to be unrolled and the code repeated
17 times (NUMIT=16), each time with a different value for k. This is very expen-
sive in terms of static instruction count, as evident from the table. It was therefore
decided to introduce an extra instruction bit which selects between the immediate
constant and the lower 4 bits of the index registers XO-X2 as source for the shift
amount. This was a very inexpensive addition to the hardware, but the benefit was
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very significant, reducing program (and hence ROM) size without changing the
execution speed.

Entries 4-6 show what happens if we introduce an array multiplier unit into
the datapath. First of all, the number of blocks is reduced because the multiplica-
tion subroutine calls go away. More impressive is that the execution time is cut in
half. A reduction was expected, considered that the program has a large amount of
multiplications. The code size, however, shows little improvement. Considering
the cost and design time for an array multiplier, we decided against using one. A
previous layout indicated that a 20x20 array would be at least 2.54x2.60mm in 24L
technology, plus a substantial overhead in hooking up the busses between the
multiplier and the datapath.

The three different cases 4-6 were done as an experiment to see whether
the introduction of pipeline delay and/or input multiplexers would make a large
difference in the performance. Case 4 assumes that each multiplier input can only
come from one particular source, for example, the left input from mbus and the
right input from the RAM. Cases 5-6 assumes that either input can come from
either source (marked with a * in the table). We observe that neither the pipeline
delay nor the input routing had much of an impact on either static or dynamic
instruction count. This is positive evidence that the compiler is doing a good job
at both scheduling and data routing. In summary, we decided to use the architec-
ture with the RI6LI variable shifter, and leave out the multiplier. Assuming that
the chip can run at a 10MHz clock rate, this means we can solve the IPOP equa-
tions at a rate of 10e+07/18156=551 times per second. This will be sufficient for
most purposes (most robots have a control loop that runs at less than 100Hz, and
the IPOP typically is run at a slower rate than the control loop). The resulting
datapath is shown in Figure 19.2

As mentioned in Chapter 17, the RL compiler requires that the program
sequencer for the chip has a certain minimum instruction set, but the implementa-
tion can vary. The PUMA chip uses the sequencer shown in Figure 19.3
[Azim88J.

194. FIXED POINT COMPUTATION

Since our target processor does not support the floating point data type, it is
important to perform a careful analysis of how to implement the algorithm effi-
ciently in fixed-point arithmetic. The goal is to minimize the word length w. The
parameters determining word length are the precision and range requirements of
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Figure 19.2: The PUMA Datapath

the variables in the program. The basic concepts of fixed-point computation are
reviewed briefly in Table 19.5. If abs(x)<2! we can use the scale S=2!. The basic
tradeoff is to choose 2" large enough to give sufficient range and small enough to
provide sufficient accuracy.

Scaling by powers of 2 is convenient, because the processor can easily con-
vert between numbers of different scale by using shift operations. Increasing the
scale will, however, lead to loss of significant bits as the bits are shifted out. It is

I. . .. . . . . . . . . . . . .. . . .. .. . . . .. . . . . . . . .
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control ism control store

pop line no

Figure 19.3: The Program Sequencer

Real number Requirement Representation (wordlength w)

x abs(x) < 2s rep(xw) = integer(x2W'l/ 2s)

operation scales requirement result scale

X1 x2  s1,s 2  S-=S2  s__-'-Sl=S

x1 1x2  -s"ýsl-s 2

IlX Sl, s2S=+2

Xl/X2 $1, s2 s";-s "2

class range actual scale binary point posi-
tion

lengths (p , a., dQ) ±2048 2048 12.8

lengths2  ±20482 204 23.(-3)

angles (qi) X X 3.17 (approx)

* nits (sci, rk) ±1 2 2.18

Table 19.5: Rules for fixed-point representation and
computation. Scaling classes for TPOP variables.

I _
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sometimes handy to use scale values other than powers of two, for example X as
the scale value for angles, as seen below.

Since RL only allows power-of-two scales, we must simulate other scales
by doing the appropriate scaling outside the chip and declare the angle variables
to be of typefix.-O. In fact, it was easier in our case to declare ALL variables in the
program puma.k to be of the type fix:O. However, constants and input data are
assumed to be prescaled according to Table 19.5

In Table 19.5, the scale 2048 for lengths is chosen because the maximum
reach of the robot is about 900mm. We cover this with a safety factor of two.
Products of lengths get the scale 20482 for consistency. The reason for scaling
angles to x is the following: The formulas for 01 and 03 involve the subtraction of
two angles. Since each of the two angles may be in [-x,+x], the result can in prin-
ciple be anywhere in [-2x,+2x]. Hence there will be a need to reduce the value
modulo x so that it comes inside [-it,+,t]. When we use x as the scale of the
angles, the modulo reduction comes for free during the subtraction (due to the
modulo arithmetic of the processor). It would seem reasonable to use scale 1 for
the c. and the s.. We know that a sine/cosine will always be between -l and 1, so a
scale of I should be sufficient. This seems appealing, but consider the effect of
inaccuracy: If cos=0.999 becomes cos=l.001, the value will wrap around and
become cos=-0.999. These values are not at all "close", because they correspond
to very different angles. (It is not analogous to the situation with angle values,
where +179.990 and -179.990 describes essentially the same angle.) Hence, we
decided to use a scale of 2.

The word length used was w=20. It was chosen as follows: our target wa:
to compute 0 with an error of less than 0.050, or 4.5 decimal digits. To
achieve this, we determined that we need about 5.5 decimal digits precision in the
intermediate calculations. This corresponds to roughly 19 bits. Adding one bit to
represent the negative numbers we end up with w=20.

19.5. HIGH-LEVEL SIMULATION

Using the above scaling scheme, the IPOP computation was programmed
in RL, using CORDIC subroutines for the elementary functions. To make sure
that the program and the scaling were sound, we used the KT tools to perform
first floating point and then fixed point simulation.The simulations showed that
the program works well unless the specified goal frame is close to a singularity
([Craig88], p146). It should be noted that a floating point program will also pro-

* I l
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Characteristic Value Comment

wordlength 20 size of all the datapaths

cstore PLA 13 x 649 x 77 49973 bits (microcode ROM)

Igu PLA 16 x 32 x 8 inputs • minterms • outputs

cfsm PLA 21 x 171 x26 inputs • minterms • outputs

data RAM 172 x 20 3440 bits

technology 2 micron scalable CMOS (nwell)

width x height 9864 x 9608 lambda2

transistors 44802 54582 inactive transistors in PLA/ROM

pads 126

package 208 pin PGA

Table 19.6: Physical design characteristics of the PUMA chip

Block Speed Comment

chip (IRSIM) 6.2 MHz without resistance modelling

chip 4.6 MHz limited by RAM speed

RAM 4.6 MHz long poly lines (area optimized)

datapath 8.2 MHz

control store 8.4 MHz

control fsm 8.4 MHz

program counter >10 MHz

Table 19.7: Measurements on the PUMA chip

duce inaccurate results in this case. Moreover, the loss of accuracy is often
accompanied by the fact that the position/orientation is only weakly dependent on
the value of the particular inaccurate angle. It is also possible to detect during the
computation that we are close to a singularity, and issue an error signal. The typi-
cal case had an angle error of less than 0.020 for each one of the 48 angles when

I
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simulated using target positions/orientations generated with a random number
generator.

19.6. CHIP DESIGN AND VERIFICATION

The IPOP algorithm is quite complex compared to algorithms employed in
DSP applications. In particular, the resulting microprogram is large (about 670
lines after compression), yielding a chip of 9.8 x 9.6 mm2 in 2gi technology. The
PUMA chip core consists of 221 macrocells (six at the top level) and seven levels
of hierarchy. Table 19.6 summarizes the key aspects of the physical chip design.

19.6.1. Chip Simulation

The PUMA chip has been simulated extensively at both the !-gical level
with THOR [Thor88] and at the switch level, from extracted layout, using IRS IM
[Salz89,Salz90J. The execution of the microcode, including data input and output,
has been simulated in its entirety, and the results have been verified against those
computed in the high-level (RL) simulations.

19.6.2. Physical design results

The completed chip layout is shown in Figure 19.4. There was complete
functional agreement between measurements on the chip and the THOR/IRSIM

simulation results. IRS IM is usually a conservative predictor of chip speed. For
the PUMA chip, the simulation worked up to 6.5 MHz. Measurements on the chip
showed that it was fully functional only up to 4.6MHz. The first block to fail was
the RAM. The datapaths, the program ROM and the block seq4uencer were all
functional up to 8.2MHz at 5V. The discrepancy is due to the fact that the circuit
extraction did not include wire resistances. Resistance extraction is important
when there are long polysilicon lines in the layout. This was the case in the RAM
and PLA modules. These modules had been optimized with respect to area by
using polysilicon lines instead of metal lines in certain key circuits. It is clear that
the speed could be increased substantially by spending more area on metal lines.

19.7. SUMMARY

The design of the PUMA chip demonstrates the feasibility of the
C-to-Silicon system, and served as the main driving force behind its devel-
opment. The system allows architecture-level experimentation, that is, finding the
best architectural tradeoffs without having to go through a detailed design pro-
cess. The detailed netlist design and the physical layout is deferred until the

i . . . . .. . .
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I.

( Figure 19.4: CIF plot of the PUMA chip

desired architecture has been chosen. The system also provides facilities for
fixed-point simulation, so that the numerical correctness of the user's algorithm
can be verified.
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20
Radon Transform Using the PPPE

William B. Baringer

The Radon and inverse Radon transforms offer attractive opportunities for
image processing and analysis. These transforms involve computing and analyz-
ing the "projections" of a digitized image along lines at various angles (for the
forward Radon transform) and reconstructing an image from a set of projections
(for the inverse Radon transform). The inverse Radon transform is used in medi-
cal computer aided tomography (CAT) imaging devices, and in image reconstruc-
tion for geophysics, for example. The use of the Radon transform enables
efficient computation in image processing/analysis applications. This is accom-
plished by analyzing the image in its transformed space, thus reducing two-di-
mensional image processing to a set of independent and parallel one-dimensional

processing steps.

Because of the autonomous relationship between these independent one-di-
mensional transform vectors, they can then be processed independently by the
current breed of powerful commercial DSPs. Thus, many different image process-
ing algorithms can be realized by simply programming the DSPs appropriately.
This results in a highly flexible machine vision and image synthesis environment.

i
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II

This chapter presents the custom ASICs that implement the forward and
inverse Radon transform in real-time, the associated DSP micro-computers that
process the transformed data, and the custom printed circuit boards that support
them. Some of the image processing algorithms that benefit from operating in the
Radon domain are also discussed.

20.1. MACHINE VISION ALGORITHMS

The Radon transform can be efficiently used to realize a wide variety of

machine vision algorithms. Image processing algorithms employing the Radon
transform can be divided into two general classes. One class produces certain
numeric or symbolic information from the transformed data, while the other pro-
duces an image as output. These classes are referred to in general as "analysis"
and "synthesis" algorithms.

20.1.1. Examples of General Analysis Algorithms
Examples of Radon transform-based image analysis algorithms that benefit

from operating in projection, rather than spatial or frequency image representa-
tion, include robust high-accuracy line detection and measurement [Petk89],
model-based shape analysis for image segmentation, image recognition, and geo-
metric feature extraction such as centroids and moments [Sanz88]. All of these
algorithms can be applied to either gray-level or binary input images.

The general computation involved in image analysis tasks involves pre-
computing the desired angles through which projections are to be taken, for the
specific analysis task at hand. Then, during the active image period, the projec-
tions of the image are computed along the given angles Oi. These projections are
then stored in local buffers.

At the end of the active image frame, the necessary transform-based image
processing is performed on each of the projections to extract the desired parame-
ters from the original image. Some examples of required transform-based opera-
tions on the projections include peak finding, to determine the location and
orientation of lines or edges in the image; one-dimensional cenroid or higher
moment computation, to determine the two-dimensional centroid or higher
moments of an object; averaging, to determine the total average grey-level of the
image; one-dimensional discrete Fourier transform, to determine the spatial fre-
quency content along the particular angle of projection, for filtering in the Fourier ]
domain, and for Fourier phase analysis to determine shifts in the projection
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domain; removal of means and cross-correlation, to compare different projections
against one another for object identification and tracking, etc.

20.1.2. Examples of General Synthesis Algorithms

Examples of Radon transform-based image synthesis algorithms include
general image reconstruction from projections (using the inverse Radon trans-
form) [Herm8O, Brac79], very large kernel two-dimensional linear filtering, con-
vex hull approximation, multi-color mask generation, mathematical morphology,
and image compression / decompression [Shap80].

For this second class of algorithms, the necessary computation becomes
more elaborate. In addition to collection and subsequent processing of the projec-
tions as in the analysis discussion above, a third phase is required.

Synthesis task specific computations are first performed on the projection
data. The final image is reconstructed using this processed projection data. The
projection bins that contribute to the appropriate output pixels in the recon-
structed image are determined. Arithmetic or logic operations are performed to
combine the appropriate projection bins to form a final processed or synthesized
image. This output image is then sent to the system CRT monitor or output frame
buffer.

Depending on the particular synthesis application, processing operations
on the projections include one-dimensional convolutions, one-dimensional dis-
crete Fourier and inverse-Fourier transforms with multiplications by Fourier ker-
nels, decimation, etc. Some non-linear image operations, such as convex hull
approximations, are achieved by treating the local projection buffers as gener-
al-purpose look-up tables (LUTs). After performing projection data analysis, the
LUT is filled with "synthesized" data for reconstruction.

Thus, there is a wide class of image processing and machine vision algo-
rithms that greatly benefit from operating in the Radon space, both in image anal-
ysis and image synthesis tasks. This wide class of algorithms would typically
need many different architectures to support the diversity of operations required.
A single architecture that achieves this wide range of functionality is presented in
the following section.

I ii
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20.2. A REAL-TIME RADON TRANSFORM ARCHITECTURE

This section presents an architecture that provides the forward Radon
transform and the inverse Radon transform at video rates. The discrete Radon
transform is given by Equation 22. The calculation of the Radon transform is
comprised of the following nested loops: For each orientation angle 0; and for
each offset p for a given 0; find all the pixels (x, y3) that are contained in the dig-
ital line Ld(O, p); and for each such pixel accumulate the pixel's valuef(%,, y) into
the register Pe(p).

Pe (P) -- • (X, y) As (01(X..) 4 LX, 0.P)

For 180 different angles of 0, and 1024 offsets p, and 512 pixels on a given
digital line of projection, all at 30 frames per second, there is a total of approxi-
mately three billion inner loop executions required per second. Each inner loop
includes a random access to a frame buffer, a read and write cycle to the appropri-
ate Radon (p, 0) storage elements, and associated computation.

An architectural concept called the "Parallel Pipeline Projection Engine",
or "PPPE" was developed [Sanz88l. The concept was extensively simulated, and

was shown to efficiently perform raster-mode processing. This architecture has an
"MISD" arrangement of its instruction and data streams. This is provided by a

single wide pipelined video bus connected through all of the homogeneous (iden-
tical) processing elements, and separate control and instruction busses connected
in parallel to each of the processing elements. This arrangement is shown in Fig-

ure 20.1.

The architecture is composed of a pipeline connection of "M" processor
element stages. Each stage is responsible for one projection orientation in the
Radon space. Thus, the architecture is "output-partitioned" such that each stage
computes all of the output p values for a given fixed angle 0. This arrangement of
identical processing stages provides a high degree of modularity and application

specific flexibility. The pipelined video bus running through the processors oper-
ates at a 10 MHz (synchronous) rate. There is little pipeline delay in each stage,
so the overall latency of the architecture is small. There are no explicit communi-
cation or control channels between the stages, except the video data bus
described. Thus, there is no message passing, and no global memory contention
"between stages. This enables a highly efficient parallel implementation in the

"- ' I
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architecture. The stages essentially operate independently, transforming a two-di-
mensional input image to a set of "M" one-dimensional independent and parallel
data vectors. These vectors are approximately 2K bytes in size. Thus, the trans-
formation has effectively reduced the 10 MHz bandwidth of the input image to an
amount that a commercial DSP chip can process in one image frame period.

Each processing element has several modes of operation allowing algo-
rithm flexibility and computational power to be realized in a decoupled and mod-
ular fashion. Due to the highly computational and I/ intensive nature of the tasks
performed in each processor stage, the functions enclosed in the dotted box in
Figure 20.1 are implemented in a custom VLSI application specific IC. Extensive
use of parallelism and pipelining is employed at all levels of the hierarchy within
this architecture.

Each individual processor element consists of an address generator, a pro-
jection collector, a line-length counter, internal dynamic RAM banks, an arith-
metic logic unit, and the necessary control and interface logic. Eight of these
processor elements share access to a general-purpose digital signal processing
(DSP) micro-computer, in a time-shared fashion. A local host CPU has direct
access to each DSP and indirect access to the contents of each projection memory
of each stage. The host can download program control to each stage's DSP chip,
and obtain results of the locally executed algorithms from each stage for further
high-level processing.

In summary, this "parallel pipelined projection engine" has many desirable
features:

• It provides the forward and inverse Radon transforms.
• It operates in a raster scan fashion.
0 It supports a wide range of projection-based image processing and

image analysis tasks.
a The building blocks are simple and modular; the algorithms are com-

pletely decoupled with no global intercommunication connection
required. .

• The architecture is amenable to VLSI implementation.

• The architecture scales with the desired number of projections and
stages. 4~i
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20.3. THE RECONFIGURABLE RADON TRANSFORM
SUBSYSTEM

This section describes the application specific printed circuit board that
supports the implementation of the forward and inverse Radon transforms. This
board also supports a wide range of real-time transform-based image processing,
due to its high degree of parallelism and pipelining.

This custom printed circuit board is based around the VME bus. It is con-
structed as a 9U, 400mm VME board, using six signal layers and two planes for
power and ground. A block diagram of the entire board is shown in Figure 20.2,

Camera Projection 10 MHz 24-bit Video Projection

Orientation -Orientation

Host Bus

ige VLSI ASIC
I- - -J-- 1 I IM I I-

AG PCAddress
A PCPC &LC

Generator

0 Collector
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.•Host bu/0
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Figure 20.1: Architecture of the Parallel Pipelined Projection Engine
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and a photograph of the fabricated and tested board is shown in Figure 20.3.
Because of the hierarchical and modular nature of the design of the board, there is
a close correspondence between its block diagram and its layout.

At its highest level of hierarchy, the board is composed of three internal
functional circuit blocks, or "modules". These are the VME interface module, the
video signal interface module, and the DSP-ASIC processor module. Referring to
Figure 20.2, the DSP-ASIC processor module is instantiated four times on the
board. In this way, placement of all the components contained in each of the four
modules can be specified with a single placement offset coordinate in LAGER.

Video Interface

ASIC ASI ASIC ASI SIC ASI SIC ASI

ASIC AS ASIC ASI ASIC ASI ASIC ASI

ASIC ASI ASIC ASI ASIC ASI ASIC ASI

ASIC SI ASIC SIC ASIC SI ASIC SI

XcvrsCS~gen IXcvrs,C~e XcrC~e XcvlCS~gen

I VME Interface 1

Figure 20.2: Block Diagram of Radon Transform Subsystem
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Each of these DSP-ASIC processor modules is in turn made up of a DSP
micro-computer module and an ASIC array module. Each of the DSP micro-coi-
puter modules is a complete, self-contained, micro-computer based on the AT&T
DSP32C floating-point processor. This compact and very powerful module can be
used in other board-level designs by simply instantiating its design files via
LAGER. This module represents yet another layer of hierarchy, by encompassing
the necessary modules containing the circuitry that comprises a DSP microcom-
puter. This includes the local high-speed static RAM module, a high-speed
dual-port RAM module for communication to the VME interface module, and
other modules for the necessary control, status, and interrupt registers, address
buffering and decoding, reset circuitry and clock.

The ASIC array module consists of support for eight custom ASIC proces-
sors, as well as the required data, address, and control interface circuitry between
the ASICs and the DSP micro-computer, and between the ASICs and the video
interface circuitry. Referring again to Figure 20.2, the video pipeline flows from

the video interface circuitry to the first ASIC in the far left DSP-ASIC module.
After passing through the pipeline connection of the eight ASICs in the first ASIC
array module, the video stream continues to the eight ASICs of the second ASIC

array module. This continues until the image data has passed through all 32
ASICs on the board and finally returns to the output stage of the video interface
module.

The video interface circuitry accommodates both Imaging Technology and
Datacube commercial video signal protocols. This provides the flexibility to use
the printed circuit board in image systems that employ either style of commercial
image acquisition and processing boards. The video busses of multiple printed

circuit boards are connected together in a daisy-chain fashion by plugging in rib-
bon cables between the video output port of one board's video interface circuitry
with the video input port of the next board.

The VME interface circuitry includes the necessary address, data, and con-

trol lines to provide communication between the four DSP micro-computer mod-
ules and the VME bus (and thus the VME master on the back-plane). There are no
communication channels made available between adjacent DSP micro-computer

modules directly. The VME bus master communicates individually with each
micro-computer module on each of these boards in the card-cage, and the analysis

results from all of these processor modules are combined by the 68020 CPU in the
bus master. This communication from micro-computer module to VME host is

Li
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typically one of low bandwidth, as most of the processor-intensive computations
are performed first by the ASICs, and then by the DSPs themselves.

The total board is comprised of approximately 300 integrated circuits, both
commercial and custom. Forty-four of these ICs are in PGA packages, of size 84,

........ .... . .. ... :1. 7 ...... . ......... . .. ....,... ..

Figure 20.3: Thirty-Two Stage Radon Transform PCB
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20.4. THE RECONFIGURABLE RADON TRANSFORM ASIC
This section describes the development and design of a VLSI ASIC that

implements the forward and inverse Radon transforms at video rates. Transform-
ing a 512 x 512 image into Radon space at video rates is a computational and I/O
intensive operation. For the forward Radon transform, a pixel value must be read,
the address of the correct projection bin must be computed, the previous value of
the projection bin at this address must be read, its value updated, and written back
to the projection memory. For the inverse Radon transform, the address of the
correct projection bin must be computed, the previous value of the projection bin
at this address must be read, a partial back-projection value must be read, the two
data values must be combined, and the result must be sent to the next processing
stage. In parallel with these operations, the desired region-of-interest must be
computed, and the lengths of the digital lines must be updated. This must be done
for each projection angle throughout the image, and each angle has 1K projection
bins. Each bin must be at least 17 bits wide for 8-bit gray-level image pixels. All
of these operations must be accomplished within a lOOns period, requiring tens of
billions of operations per second. For this reason, the design and fabrication of a
custom, application specific, VLSI circuit was necessary.

The data and 1/0 busses and control signals of the ASIC are created with a
"generic" interface in mind. This means that the connections to an external DSP
are made such that the ASIC appears as a memory-mapped device to the DSP.
This simplifies the connections between the DSP and the ASIC, reducing the
amount of required external components to a minimum. The only additional com-
ponent required on the printed circuit board is an address decoder chip to produce
a chip-select signal "cs" to choose which one of the ASICs is currently being
addressed.

A "generic" treatment of the video signal interface is also built into the
ASIC. Independent video input and video output busses are provided, as well as
pins for "standard" RS-170 video control input signals.

The ASIC is composed of twelve internal functional circuit blocks or
"modules". Most of these modules are parameterizable in size, number of words,
number of bits, etc., as supported by LAGER. In this way, the ASIC can be rede-
signed for different image formats or for different internal data representations
for accuracy requirements, for example.

-. --- ,.....- .~,------ - - -- .--
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Figure 20.4: Block Diagram of ASIC

A block diagram of the ASIC, indicating the different modules and the
address and data busses interconnecting them, is shown in Figure 20.4.

The "projection collector RAM" module, or "PCRAM", accumulates the
projections of an image in raster scan mode. It is a self-timed read-modify-write
dynamic RAM of size 1024 words by 17 bits per word. The maximum number of
memory words arises when projections are taken at 45 degrees through an image,
requiring 1024 projection bins in which to accumulate the slice of the Radon
transform. The maximum length (actually the "area") of the projection lines is
512, so with eight-bit per pixel input images, the largest accumulated projection
value will be 512 x 256, or 21, thus requiring 17 bits per word in the PCRAM.

SI_
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The "line counter RAM" module, or "LCRAM", accumulates the length of
the lines over which an image is projected. It is also a self-timed read-modify-
write dynamic RAM. This module has a size of 1024 words by 9 bits per word, to
accommodate up to 1024 projection lines with individual lengths, and with each
line no longer than 512 units.

The modules that access the data busses and control lines of each of the
PCRAM and LCRAM are designed so that the PCRAM and LCRAM can share
the same address bus. The two memory modules could be specified to LAGER to
be created as two different memory blocks by simply giving different specifica-
tions of the required data word widths. However, substantial area of the chip was
saved by combining both modules into one memory block of size 1024 words by
26 bits per word. Routing area was also saved by this scheme. The PCRAM thtn
consists of the common ten-bit address bus and the lower 17 bits of memory I/O
busses, while the LCRAM makes up the upper 9 bits of memory I/O busses while
sharing the address bus. The final layout actually uses two banks of 512 words by
26 bits per word to implement the combined 1024 words by 26 bits required by
the PCRAM and LCRAM modules. Splitting the total memory into two banks
provides a more optimal overall chip layout and decreases the address decoder
delay time for the memories.

The "projection collector" module, or "PC", is tightly coupled with the
PCRAM in order to provide the computationa! updates of the stored projection
values depending on the external incoming data and the modes of operation cho-
sen. In its "projection" mode of operation it reads values from the PCRAM, adds
a new input image pixel value, and writes the result back into the iame address
location in the PCRAM. Other modes of operation include auto.-clearing of the
PCRAM, external data access of the PCRAM, gray-level histogram accumulation,
and region-of-interest conditioning of the projection operation. To achieve all of
this functionality, the PC module has input from the buffered DSP data bus, and
input from a portion of the image input bus. It also has separate input and output
data busses connected to the PCRAM module. An output bus from the PC can be
read off of the chip by the DSP to support DSP read cycles of the PCRAM.

The "line counter" module, or "LC", is tightly coupled with the LCRAM in
order to provide the computational updates of the stored projection line-lengths in
the LCRAM. It also provides auto-clearing and conditional operation based on
the calculated region-of-interest. This module also has separate input and output
data busses connected to the LCRAM module. Litiewise, an output bus from the
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LC can be read off of the chip by the DSP to support DSP read cycles of the
LCRAM.

The "address computation" module, or "AC", provides the addresses to the
LCRAM and PCRAM that correspond to the raster scan generation of Bresenham
lines [Bres65J. It is programmable to generate projection lines at angles from -90
to 90 degrees, in increments of arctan(1/512). It is also highly reconfigurable,
allowing the internal RAM modules to be addressed by the DSP's address bus, or
by an internal refresh counter, or by the external image input bus for gray-level
histogram operation. This flexibility requires a portion of the DSP's buffered data
and address busses as inputs, as well as a portion of the input image bus.

The "back-projection arithmetic logic unit" module, or "BPALU", is used
for image synthesis applications, such as image reconstruction, image filtering,
and synthesized graphics. It performs the computational tasks necessary to com-
bine previously stored projections or arbitrary functions into a raster scan output
image, for further processing, storing, or viewing. It is highly programmable, to
provide many arithmetic and logical functions on its input data streams. It can be
configured to divide the internal data results by powers of two to rescale the data
for viewing on a CRT monitor, or for processing on a subsequent stage. The
BPALU's inputs are the external image input bus, an output bus from the AC
module, and an output bus from the PC module.

The "region-of-interest" module, or "ROI", generates the appropriate clock
signals to realize an effective region-of-interest over which computations by other
modules in the ASIC take place. This programmable module is typically config-
ured by an interactive X-window program that uses the workstation's mouse to
select an area of interest. Automatic window selection is also commonly used. It
uses a portion of the DSP's data bus as its input.

The "strobe generation", "horizontal blank programmable delay", "vertical

blank programmable delay", "strobe generation", "programmable precharge gen-
eration", and "configuration control register" modules provide various levels of
control of the operations of the ASIC from the external DSP. This design greatly
reduces required external interface logic on the printed circuit board, as well as
reducing unnecessary I/O pins on the ASIC.

The modules of the ASIC can be interconnected in different configurations
to support a wide variety of different operating modes.The ASIC is fabricated in a
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108 pin PGA package. A die photograph of the chip is shown in Figure 20.5. The
chip consumes 7934 x 9031 microns in a 1.6 micron scalable CMOS process.

ý in

Figure 20.5: CIF plot of Radon T~nmsfonm ASIC

20.5. DESIGN PROCEDURE

The development of an architecture to realize the Radon transform involves
many trade-off. in hardware and software complexity. This is particularly true for
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the system implemented, as achieving video data rate throughput was a strict
requirement. Careful analysis of the computational critical paths, data and address
bus bandwidths, and all required control circuitry, was important to meet the
specifications using the targeted ASIC and board-level technologies. These stud-
ies resulted in appropriated partitioning between commercially available compo-
nents and custom ASIC circuits, as well as a hierarchical arrangement of
processing power in the system.

The Radon transform ASICs can be considered as high-speed co-proces-
sors to the DSP micro-computers. The ASICs handle constant data stream 10
MHz video channels, while the DSPs have a lower data I/O bandwidth to process.
The DSP micro-computers can be considered as high-speed floating point co-pro-
cessors to the 68020/68882-based VME master single board computer. The entire
VME card-cage can be considered as a high-speed machine vision co-processor to
the host workstation. This division of labor, according to the required processing
power and I/O bandwidths, provides a robust means of achieving real-time digital
signal processing for a wide range of algorithms.

Reconfigurability, as opposed to traditional micro-controlled programming,
was employed extensively in the ASIC. This provided a high level of flexibility in
a real-time system that would otherwise be entirely dedicated to a single mode of
operation. Virtually every module within the ASIC can be programmed for differ-
ent modes of operation.

Substantial partitioning of the algorithm was required within the ASIC to
meet the video data rate. The computation of the projection bin addresses were
"transposed" or "twisted" so that they would correspond to the incoming video
data in a raster-scan mode. This saved a tremendous amount of high-speed mem-
ory in the system, which would have had to have been accessed in a random fash-
ion.

20.5.1. Design tools for Printed Circuit Boards

The printed circuit boards and ASICs of this project employ the lager
suite of CAD tools that use the OCT database. The SDL files for the Radon trans-
form printed circuit boards are written in a modular, hierarchical, and parameter-
izable fashion. Modules are instantiated by higher-level files, while calling lower
level modules or "leafcells". As the lowest level in the hierarchy, the leafcells are
the representations of the actual physical components of the board, such as a
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"74LS•24" tr-state buffer for the DSP micro-computer's address bus, or one of
the custom ASIC.

The custom printed circuit board is intentionally designed in a highly mod-
ular and hierarchical fashion. This approach greatly enhances the feasibility of
re-use of these modules, both on this board and in other designs. The modular
approach increases the ease with which different modules interconnect, and it
facilitates the layout of the board by treating the modules as physical "blocks"
that are each placed and moved as a whole.

Synthesis of the desired Radon transform printed circuit board proceeds as
with other described applications. DMoct generates SMV and S Iv from SDL, and
behavioral-level simulation with THOR is performed. oct2 rinf is used to con-
vert to the required PCB place-and-route CAD tool format.

An option in oct2rinf provides automatic insertion of 100nF bypass
capacitors for every digital component on the board. These capacitors are placed
next to the "pin 1" of the digital component, and oriented in accordance with the
digital component. These capacitors, and the ten tantalum capacitors of value 50
to l00uF, stabilize the five-volt power supply on the board and reduce system
noise.

As is standard procedure in current printed circuit board designs of this size
and complexity, one conductor plane of the board is dedicated to power, and
another is dedicated to ground. This greatly reduces board-level noise by provid-
ing the shortest possible return path for any generated signal. This is because the
cross-sectional area of the emanating signal line and its shortest return path
through ground is made minimal by the ground plane, thus reducing the transmit-
ting antenna effects as well as the receiving antenna operation of various signal
lines on the board.

Employing hierarchy in the SDL description of the design allows modules
to be repeatedly instantiated on the board, so that only a single placement offset
parameter needs to be entered for each module. An example of this instantiation
is shown in the section of the "board.sdl" file listed in Figure 20.6. The "x" and
"y" coordinates of the four "dspasic8" modules are entered in the "position" argu-
ment list.

The "dspasic8" module contains a complete DSP micro-computer module,
and a second module of eight ASICs with associated circuitry. The DSP micro--
computer module contains two memory modules, I/0 buffer modules, and control

____________________________________ I
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; Name: board.sdl
; Function: Supports 32 custom ASICs

; and four DSP micro-computer modules
; with video interface and vme interface circuitry provided.

; Called by: None; Top level.

; Calls: four dspasic8 modules, one vme module, one vidcon module.

(parent-cell board)
(layout-generator NONE)

(parameters (ROTATION "0.0") (POSITION "0.0 0.0"))
(subcells

(dspasic8

(inst dspasic8_0 (ROTATION '0.0") (POSITION "0.0 2.1"))
(inst dspasic8_I (ROTATION "0.0") (POSITION "3.6 2.1"))
(inst dspasic8_2 (ROTATION "0.0") (POSITION "7.2 2.1"))
(inst dspasic8_3 (ROTATION "0.0") (POSITION "10.8 3.1"))

(vidcon vidcon ((ROTATION "0") (POSITION "0.2 14.6')))
(vme vme ((ROTATION "0") (POSITION '0.0 0.0")))

Figure 20.6: Sample SDL file for a board.

circuitry modules. These levels of hierarchy continue until the leafcells contain-

ing the actual components are called.

The 300 ICs on this printed circuit board consume almost the entire area of

this 400mm x 280mm VME card. Careful consideration of placement was made

before routing so that the number of lines that needed to traverse large distances

across the board was minimized. Extra routing room was given at the VME inter-

face end of the board and at the video interface side, to accommodate wide

address and data busses traversing long distances through densely packed areas of

PGA sockets.

A liberal use of header pins was made for access to some of the PGAs' sig-

nals, and for reconfiguring the board for different modes of operation. Where

room was available, "berg sticks" were employed to provide local connection to

the ground plane for connecting ground clips of oscilloscope probes. LEDs (with

- t~----'- ... - - - - -. * ~ .. t
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pull-up resistors) were used on a couple of ports for debugging the board's opera-
tion at a glance; these are convenient "5-cent oscilloscopes". Due to area limita-
tions, the metal-enclosed crystal oscillators for each DSP micro-computer were
designed to be socketed above the surrounding socketed chips. This recognizes

the use of designing in "three dimensions". Even the pull-up resistors were given
consideration on the board in terms of the area that they consume; 10-pin SIPs are
more efficient than 16-pin DIP resistor packages. The routing of this board took
several days to execute on a SUN-4/280. This routing was based on a technology
file that allows two printed circuit traces to pass between adjacent (100 mil
spaced) pins of a component. Approximately 6000 wires had to be routed, on a
board with six conductor planes.

20.5.2. Design tools for ASICs

As with the printed circuit boards, the ASICs of this project employ the
lager suite of CAD tools that use the OCT database. For a class of architectures,
higher levels of CAD tools exist that can take a "C-like" description of the
desired algorithm and translate it into the appropriate hardware through the
OcTOCT database. This applies primarily to those architectures that have many
clock cycles available for every input data sample, and can thus re-use a single
pipe-lined datapath for multiple operations. This is in contrast to the architecture
presented in this chapter that requires many operations for every input data sam-
ple.

In contrast with the printed circuit board design, placement and routing of
the ASICs continues in a hierarchical fashion. DMOCt is used to translate the S IV

to placement and routing information, depending on the type of module under
construction.

The modules in the Radon transform ASIC that route by abutment are
"tiled" together by the TimLager program. These are typically RAM, ROM,
PLA, or I/O pad modules, that accept parameter values such as the number of
words of memory in the module, or the number of bits per word. For example, the
PC_RAM and LCRAM modules are constructed as two blocks of 512 words by
26 bits, by specifying "ram-words = 512" and "ram_bits = 26" in a parameter
value file. Similarly, the 108 1/0 pad drivers of the ASIC are generated by four
calls to TimLager to create 27 1/0 pads in each module.

The standard-cell logic of the ASIC uses the Stdcell program, which
calls the TimberWolf placement and routing program. Standard cells are
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employed as the local control circuitry for each of the address generation, back--
projection ALU, projection collector, and region of interest modules. Standard
cells are also used for global control circuitry for the ASIC, establishing appropri-
ate clocking and timing throughout the various modules. Bit-sliced datapaths are
assembled by the dpp datapath assembler.

The back-projection ALU module contains a 24-bit wide datapath, while
the forward projection and line calculation modules employ datapaths of 17 and 9
bits each. The address generation module actually contains two 10-bit wide data-
paths merged into one, and the region of interest module requires a 9-bit wide
datapath. The configuration register uses a 16-bit wide datapath.

Placement and routing of the various modules on the ASIC, at each level of
hierarchy in the design, is accomplished with the global place-and-route program
Flint. Each of the modules that contain both datapaths and control logic stan-
dard cells, (the ROI, BPALU, PCALU, and AG) use F lint to place and route the
appropriate nets between the respective datapath cell modules and standard cell
modules. The resulting "controlled datapath" is considered a succinct module at
the next highest level of hierarchy. Flint then places and routes these modules (the
ROI, BPALU, PCALU, LCALU, AG, PCRAM, LCRAM, and CONFIG modules)
into an ASIC "core" that contains all of the functional circuitry. Special attention
is given to the routing of power and clock lines at every level of hierarchy. Place-
ment of the ASIC's I/O pads, as well as routing of these pads to the central cir-
cuitry of the chip, is provided by the Padroute routine at the highest level of
hierarchy.

The real-time constraints imposed on this ASIC necessitated the design or

enhancement of many new scalable CMOS circuits for the CAD tool libraries.
These new cells include the tiled read-modify-write dynamic RAM, and TTL
compatible I/O pads; several bit-slice datapath cells such as adders, multiplexors,
registers, latches, buffers, conditional zeroes, programmable masks, etc.;and sev-
eral standard-cells.

20.6. SUMMARY

This chapter has discussed the use of the Radon transform to enable effi-
cient computation in image processing/analysis applications. An algorithmic-spe-
cific architecture has been designed, fabricated, and tested which supports many
different image processing algorithms. Custom ASICs are presented that imple-
ment the forward and inverse Radon transforms at real-time video rates. Custom

* ____
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pinted circuit boards are described that contain DSP micro-computers to process
the transformed data. Some of the image processing algorithms that benefit from
operating in the Radon domain are also discussed.
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Speech Recognition

Anton St61zle

This chapter describes a full custom processing board for a real-time

speech recognition system [StO9] and how LAGER was used to design it. The

task of this board is to perform the most time critical parts of hidden Markov

model based recognition algorithms. Due to the large amount of computation (520

million operations per second) and a large memory bandwidth requirement

(SGbits per second), the processing board has a full custom architecture that uses

12 ASICs and 8MBytes of static memory.

Speech recognition technology has come to a stage where the underlying
recognition algorithm (Hidden Markov model) has stabilized and impressive rec-

ognition accuracies for certain task domains are obtained. For example, speaker

dependent systems from various DARPA-sponsored research facilities achieve a

word accuracy of 95.5% up to 98.5% (June 1990 DARPA benchmark test). How-

ever, the underlying recognition algorithm is computationally intensive. Attempts

to perform real time recognition for large vocabulary connected speech (1,000
words and more) using general purpose processors or general purpose multipro-
cessor systems are only successful if necessary computations are skipped, thus

severely penalizing recognition accuracy. Even existing full custom processors

like the Graph Search Machine (Glin87] or full custom multiprocessor systems

; |
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like BEAM IBis89] cannot perform in real time for a vocabulary larger than 1,000
words.

21.1. ALGORITHM AND ARCHITECTURE

Currently, the most successful method for modelling continuous speech is
to use hidden Markov models [Rab89].

In this approach, speech is segmented into frames which are time intervals
of typically loins. The characteristics of every frame is described with a set of
features (oi for the feature values at frame i) where one feature could, for exam-
ple, be a vector describing the energy of the speech signal in different frequency
bands. The assumption is that these features were produced by a HMM speech
process consisting of a finite set of states and a set of transitions between these
states (Figure 21.1). The states in the HMM correspond to generic speech sounds
(e.g. a phoneme or a part of a phoneme) where every state has a probability distri-
bution that gives the output probability, P(ols), that the state will output feature o.
Speech can be considered as being generated by transitions between these states
yielding a state sequence, SN = s, .- sN. The likelihood of these transition is
described with a set of transition probabilities, A(s,t), which reflect the probability
that state t follows state s.

Using this framework, the task in speech recognition is to find the sequence
of word models that most likely could have produced the speech to be recog-
nized. This corresponds to finding the most probable state sequence (path)
through a composite hidden Markov model that connects all the word models in

the vocabulary. This problem can be formalized as finding the maximum a poste-
riori probability P(SIION), the probability of the state sequence SN = s, .. sN
given a sequence of N observations, ON = ol .. oN. A computational very efficient

solution to this problem is the Viterbi algorithm, a forward dynamic programming
scheme.

Let us define the state probability, P(O0,s), as the probability of the most
probable state sequence that ends in s and generates O, a sequence of i feature
values ol .. oi . This probability will be used to compute the desired state proba-

bilities P(ONs) for all the states in the HMM using the Viterbi algorithm [Rab89I:

P(01.s) = :(,).P(o3) z) (21.1)
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P(Op s) = MAXP,,d [P(Oj_1,p) .A(p.s)J .P(ojis) (21.2)

In these equations, 7(s) is a probability distribution that gives the probabil-
ities at the beginning of a sentence (first frame). The states p in (21.2) denote all
predecessors of state s, which are defined in the topology of the HMM. Given
these equations, P(O.s) can be computed for all states for 01, then for all states
for 02 and so on until all probabilities P(ON.s) for all states are computed. The
state with the highest state probability then is the final state of the most likely
state sequence. In order to recover this desired state sequence, we use backtrack
pointers that are generated along with (21.2) [StO9 1].

The above equations allow us to compute the most probable state sequence
for a HMM without hierarchy. However, to save memory the composite HMM
describing a language is stored hierarchically using a small set of basic units
called unique phones. These unique phones are then instantiated and concatenated
to describe words and grammars as shown in Figure 21.2. The instances of
unique phones are called wordarcs. To be able to perform (21.2) on the hierarchi-
cal HMM, we use grammar nodes with an assigned probability in which the end

A(I, I) A(m,m) A(nn)

A(1, n)

frame number i-1 i i+ l i+2

state sequence {si) si.= I si =m si+,l= n si+2= n

output sequence (oi) O.1 i Oi+ 0 i+2

*speech ALA

Figure 21.1: Hidden Markov Model for speech production.
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destination
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~ sou roe
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probability P(S)

Figure 21.2: Concatenation of unique phones (inside shaded ellipses) using
grammar nodes.

of a phone terminates the most probable state sequence (destination grammar
node probability P(D)) or in which the beginning of a phone terminates the most
probable state sequence (source grammar node probability, P(S)). Transitions
between grammar nodes give the probability that a certain wordarc follows
another. The grammar node probabilities are computed using

P (D') = max [P (0, s) • A (s, D) 1 (21.3)

(P (Si) = max [ P (Di) • A (D, S) ])ou (21.4)

In these equations, i specifies the frame number for which the grammar
node probabilities are computed. The transitions A(s, D) from the states inside the
wordarcs to the destination grammar node are called null arcs since they are not
associated with a frame delay.

In order to minimize the amount of hardware needed to implement the rec-
ognition algorithm, we use the negative logarithm of probabilities. Thus, multipli-
cations reduce to additions and the MAX operations are implemented using MIN
operations. Also, we use a pruning algorithm which, in wordarc processing, dis-
cards wordarcs that have state and destination grammar node probabilities that are
lower than a pruning threshold probability. Therefore, (21.2) is only performed
for active wordarcs who's states that have a high likelihood of terminating the
most likely path. Assuming that a state has an average of three predecessors, the
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P(D1)

wordarc amnmar
processing pr cessing

full custom board general purpose board

Figure 21.3: Hardware partitioning.

computation of the above equations involves 7 additions and 7 MIN operations
per state (this includes normalization [StO901). Also, 9 address computations have
to be performed to access 400 bits of data. Simulations showed, that a state has to
be processed within 50ns for a real time implementation of a 60,000 word recog-
nition system. This corresponds to 460 million (add and MIN) operations per sec-
ond and a memory bandwidth of 8GBits per second.

21.2. SYSTEM ARCHITECTURE
The hierarchical representation of the HMM along with (EQ 25) and (EQ

26) make it possible to process the HMM in two levels: in the first level, the state
probabilities in the wordarcs and the destination grammar node probabilities
using (21.1), (21.2) and (21.3) are computed (wordarc processing). In the second
level, called grammar processing, the source grammar nodes using (21.4) are
computed using transitions between the phones. The communication between
these two processes is formalized using the source and destination grammar
nodes, as illustrated in Figure 21.3.

Besides the advantage of a potential computational speedup, it allows us to
use different hardware approaches for the two levels. This is very important since
the requirements for these two processes are fairly different. The computational
throughput requirement for phone processing is very demanding while this

ii



326 Applications Part V

requirement is more relaxed for wordarc processing. On the other side, the state
transitions inside phones are local and strictly left-to-right, there is no predeces-
sor state transitions that skips more than a few states, and there are only a few
predecessor states for a given state. This is different for transitions between wor-
darcs: they are left-to-right inside a word, but at word boundaries they can theo-
retically go to any other word. Thus, they are also not local and a certain wordarc
can have a very large number of predecessor wordarcs.

The actual partitioning of the subsystems into hardware entities is outlined
with the shaded curves in Figure 21.3: wordarc processing along with the compu-
tation of the MAXpmd D operation in (EQ 26) is performed on a full custom board
with custom VLSI processors. The operation P(D') • A(SD) in this equation,
however, is performed on a set of general purpose signal processing boards using
TI's TMS32OC30 processors

This partitioning reduces the data rate between the subsystems since word-
arcs that should stay active in the next frame but have a low destination grammar
node probability do not have to be sent to the grammar processing system. Also,
the multiplication in P(D') • A(SD) can be implemented very efficiently on gen-
eral purpose hardware while the MAX operation involves a sequence of operations
that cannot be implemented on general purpose hardware in real time. Another
benefit of this approach is that it is now possible to use a wide variety of grammar
processing algorithms by reprogramming the grammar processing system.

The architecture of the full custom board is sketched in Figure 21.4. At any
given frame two processes, each implemented with 3 custom VLSI circuits, are
operating in parallel.

21.2.1. Viterbi Process

The Viterbi process sequentially computes the state probabilities and the
destination grammar node probabilities ((21.2) and (21.3)) along with the back-
track pointers of active wordarcs that are listed in the ActiveWord memory. It also
decides if a wordarc that has been processed should be active in the next frame
and/or if the destination grammar node probability is high enough to send it to the
general purpose grammar subsystem. All operations for the Viterbi process
including address computations for the memories are done on a chip set consist-
ing of 3 VLSI processors. To perform (21.2), the processors read external mem-
ory that contains the state probabilities of the active wordarcs from the previous
frame, P(Oi.., s), the output probabilities P(oils) and the transition probabilities
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P(Oj,s) P(ols) A(p,s)
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tablegrama

Figure 21.4: Basic block diagram of the full custom board.

A(p,s) associated with transitions inside the wordarcs. To reduce the bandwidth
between external memories and the VLSI processors, the topology of unique
phones is stored using on-chip memories. The result of (21.2), is then stored in

memory P(Os).

21.2.2. ToActiveWord Process

The ToActiveWord process, on the other side, generates a list of active
wordarcs for the next frame. This list contains, among other data, the source
grammar node probabilities that are computed by maximizing, for every source
grammar node, over all the incoming contributions from destination grammar
nodes of predecessor wordarcs. The source of a request to put a certain wordarc
onto the active list can be the Viterbi process and the general purpose grammar

susbsystem. To avoid replication after receiving multiple requests for the same

wordarc, we use a lookup table that gives a pointer into the ActiveWord memory

i I I i *l • I ml I l l ~ MI ~ I
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Figure 21.5: Switching processor architecture.

if the wordarc had been already processed. If it is the first request for that wordarc
in a certain frame, the lookup table will yield a NIL pointer. In this case, the wor-
darc will be added to the ActiveList memory and the appropriate pointer written
into the lookup table.

21.2.3. Switching Processors

Processing of a frame is finished after the Viterbi process updated all the
active wordarcs in the ActiveWord memory and after the ToActiveWord process
finished the generation of a new list of active wordarcs for the next frame. To pro-
ceed to the next frame, conceptually the memories have to be switched between
processors. The ToActiveWord memory that contains the new list of active word-
arcs and was written by the ToActiveWord process now has to be read by the Vit-
erbi process. The lookup table that was used by the ToActiveWord Process has to
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be cleared and to save time, it is replaced by an already cleared version of the
lookup table. In the Viterbi Process, the two memories containing the state proba-
bilities of two consecutive frames have to be switched such that the memory that
was written in the last frame is now read and vice versa.

To avoid having to switch all the address and data busses between the cus-
tom processors, we use a switching processor architecture. Instead of multiplex-
ing the memories, we activate a second set of processors that is directly connected
to the memories. Figure 21.5 sketches this principle: assume that during a certain
frame the ToActiveWord process A is active and generated data for the Active-
Word memory A. During the same frame Viterbi B is active and processes the
active wordarcs listed in the ActiveWord memory B. In the next frame, Viterbi B
and ToActiveWord A are inactive while Viterbi A and ToActiveWord B are
active. This way there are no multiplexors needed to switch memories, all that is
required is to activate the right set of processors. This architecture also has the
advantage that the resulting system is symmetric.

21.2A. VMEbus Access to Memories
All memories on the system are accessible by the host CPU via the VME-

bus. To reduce the number of discrete components on the system, the host CPU
communicates only to the custom VLSI processors on the board. These proces-
sors have a small instruction set to read and write memories and internal status
registers. Using this approach and the switching processor architecture, no
address or data bus has to be multiplexed.

21.2.5. Caching Model Parameters
To decrease the amount of memory on the system board, we use a caching

scheme for the output probabilities, the parameters with the biggest storage
requirements: only a small subset of these parameters is loaded onto the board,
the subset that corresponds to the output probabilities for a given speech segment.
This loading operation is overlapped with the processing of the frame whose out-
put probabilities had been downloaded in the previous frame. With this approach
it is possible to use different modeling techniques for computing the output prob-
ability distributions. The current approach is to use up to 4 independent discrete
probability distributions that are stored and combined on a separate board. Other
modeling approaches such as continuous distributions and tied-mixtures are also
possible, as long as the probabilities can be computed and loaded in real time.
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21.3. CHIP ARCHITECTURES

21.3.1. Viterbl Process

To meet real time performance, the throughput requirement for the chip set
that implements the Viterbi equations is to update 20 million states per second.
We decided to use a clock cycle time of 50ns which is the minimum cycle time for
the off-chip static memories, so the chip set has to keep up with that throughput of

one state probability computation per clock cycle. To support that requirement,

pipelined datapaths are used as shown in Figure 21.5.
S

P(Oi.1 ,P)

cah cache Icache
register file register file i register file

,o r tc u oh ilo -P2) sAp)t p l

ca Gpos onrttepepr csor yl i three ntm rethnhrep-

destination eprune thresholdigrammar nodeI nraiain computationI

V PNO V P(Ok s))

Figure 21.6: Architecture of the Viterbi chip.

For the computation of the inner loop, (P(Oi-1, p) " A(p,s)), three identical

pipelined datapaths are provided that work in parallel. Using this setup, the chips

can process one state per processor cycle given there are not more than three pre-
decessors for a state inside a wordarc.
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To provide the necessary bandwidth to feed the multiple datapaths. we use
three on-chip cache register files that keep three identical copies of a relevant
subset of the off-chip memories containing the state probabilities P(O8 .1 , p).
Thus, P(O.1 , p), can be accessed by the individual datapaths in parallel. This
architecture is possible because transitions between states inside wordarcs are
local and strictly left to right. Therefore, if the state probabilities of a wordarc are
sequentially stored according to their occurrence in the HMM topology, all possi- J
ble predecessors of a state are locally stored in the neighborhood of that state. The
on chip cache memories can be updated in a sequential fashion since processing
of the states is also done sequentially. Thus there is only one bus to external mem-
ory, but multiple busses to multiple internal memories to increase the bandwidth.

The processors are partitioned into VLSI chips according to their function-
ality. One chip computes the addresses for the external memories (add), another
chip computes the backtrack pointers that are needed to recover the most probable
state sequence after the termination of the Viterbi algorithm (back) and finally, the
processor computes the state probabilities, performs normalization and pruning
and controls the other two chips. Figure 21.7 shows a chip plot of that processor

The control structure chosen for the Viterbi chip set is data stationary con-
trol. This is possible because there are no local decisions at any pipeline step that
globally change the control sequence for the entire pipeline. Using this setup, the
size of the controller including delay registers can be minimized since the depth
of the pipeline is fairly large (9 steps).

213.2. ToActiveWord Process
The time critical operation in processing a request to put a certain wordarc

onto the list of active words is reading and writing memories: for every request
the lookup table memory as well as ActiveWord memory have to be accessed
twice (see 21.2.2.). Since one memory cycle corresponds to one processor cycle,
the maximum throughput we can achieve is one request per two processor cycles.

* 7The ToActiveWord processors use a pipelined architecture to achieve this maxi-
mum throughput (Figure 21.8). If the pipeline is filled, three different requests are
processed simultaneously.

If there is more ttan one request for the same wordare in the pipeline of the
processors, there might be a problem with memory coherence: decisions for the
most recent request are based on data in the ActiveWord memory. However, these
data might not yet be the up to date with respect to the former request in the pipe-

I
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III

Figure 21.7: Chip plot of the Viterb Processor.

line. To take care of that problem, we use 3 memory coherence registers that keep
all the information associated with wordarcs that are currently processed in the
pipeline. If there is arequest for awordarc that is already in one of the memory
coherence registers, this request is only processed after processing the wordarc in

* the pipeline is finished.

The information associated with a particular wordarc request is 96 bits
wide. It contains all data that are necessary to update that wordarc in the Viterbi
process in the next frame. Since the ToActiveWord process has two input request
busses and one 96 bit wide bus to the ToActiveWord memory, the implementation

has to be partitioned into several chips. We used a bitsliced partitioning, where

I
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Figure 21.8: Architecture of the ToActiveWord Request Chip.

the process is implemented on three chips, each chip working on a small part of
the 96 bit wide information.

The control structure for the ToActiveWord chipset is time stationary
because decisions in one pipelinestep might influence the pipeline globally. Also,
the depth of pipeline (6) is moderate, thus the size of the controller is not an issue.

2133. Testing Strategy
The testing strategy for the custom processors is scanpath testing. In addi-

tion, they can also be tested on the board using the existing VME interface. A
dedicated on-chip test controller supervises this VME test mode so that even the
VME interface controller can be tested. This way, every state on the complete
board (except the test controller itself) is observable and controllable without
changing the hardware. Another provision for testability is that all memories are
read and write accessible by the VME bus through the custom processors.

I J) i il il l
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Figure 21.9: Top-down design procedure

21.4. DESIGN PROCEDURE

This section describes the individual steps and decisions that were made to
design the hardware. The procedure is a series if partitions and refinements which
repeatedly have to be verified. The partitioning was done in a top-down manner
shown in Figure 21.9. The functional break down on the highest level used a few
blocks, each still having a fairly high complexity. In the next level, these blocks
are further partiti-Aed and so on.

21.4.1. Procedural Description: Full Custom Hardware Specification

In the first step the parts of the algorithm that have to be mapped into cus-
tom hardware and the parts that can be performed with general purpose compo-
nents have to be identified. For the Viterbi algorithm, the most critical operation
in terms of computation and bandwidth is the performance of (21.2) and the MAX
operation in (21.4). All other computation can be implemented using general pur-

, pose components.

In this partition we also took into consideration the fact that the multiplica-
tions (additions) in (21.4) ought to be flexible. There is still a lot of research being
done to find the best way for deriving the transition probabilities between words:

*
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those transition probabilities are not necessarily time stationary, they change
depending on context (natual language processing). Thus, it is convenient to sup-

port this part with the flexibility of a general purpose solution even though it can
only be implemented using cc.-splex and expensive hardware. Once the full cus-

i torn partition is identified, its functionality has to be described and simulate toi
verify that the was done correctly. For that we used c to describe the procedure

lperfored by the full custom hardware. We used C instead of a hardware descrip-
tion language like VHDL since this program was used as a subroutine in the
DECIPHER speech recognition system [Murv89] for verification. The C code was
then further refined to take into account finite word length effects. The result of
these simulation was a compact, high level functional description of the full cus-
tom hardware.

21.4.2. Functional Description: Partition of the Full Custom Hardware

In this next level of refinement the function of the full custom hardware is
further partitioned into smaller functions. The objective is to identify functional
elements that have disjunct memory requirements to avoid memory contention. In
this system, we identified two main functions, the Viterbi process and the ToAc-
tiveWord process (see above). There are only two memories that are shared
between these processes, but it is easy to guarantee that they are never accessed
simultaneously.

This description already defines the high level architecture of the custom
board. Therefore it is important to take into account that the requirements for real
time performance can be met. For example, we have to guarantee that all data
needed to perform (21.2) can be accessed in only one memory cycle. This require-
ment defines a memory architecture that uses several data busses so that several
memories can be accessed simultaneously. To support fast memory cycles, we
fast static memories (SRAMs), but due to the memory requirements of a large
vocabulary hidden Markov model, not all model parameters can be stored on
SRAM. Also, we have to use full custom processors to perform the computations
and these processors have an upper limit number of pins that can be used (204
pins in our packaging technology). Therefore, we designed a hierarchical Lnemory
structure that uses caching methods to achieve the required memory bandwidth.

Using this parition, we again described the system and verified it's correct-
ness against the C code that described the full custom hardware. For this descrip-
tion we decided to use CHDL, the THOR netlist language, te describe memories

.
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and processing elements and to use SDL to connect the hardware blocks. How-
ever, this description did not take into account any pipelining artifacts, the hard-
ware blocks (memory, Viterbi process, ToActiveWord process) were described
procedurally.

This partition resulted in smaller functions that can directly be mapped into
full custom processors or commodity components (memories, drivers). It also
defined the connectivity between these hardware entities. d

21.43. Detailed Structural Description
In the next step the functional blocks that were described in CHDL now

had to be described as a structure of generic hardware elements using SDL. The
blocks that are mapped into ASICs were described using LAGER library elements
(datapath cells, finite state machines, standard cells, etc.), while the memory mod-
ules were implemented using an interconnection of discrete components (memo-
ries, drivers and FPGAs).

This structural specification results in a detailed description of the function

where issues like timing (pipelining), parallelism and partitioning into several
chips are implicitly contained. Also, architectural trade-offs to save hardware
(switching processors, VME logic on ASICs) are to be described on this level.

The translation from the CHDL description to the detailed SDL structural

description was done manually. On this level, the complete function was "flat-
tened", mapped into library elements and then a new hierarchy was build based
on structural entities (datapaths, standardcell blocks, controllers, chips). To avoid

timing conflicts due to pipelining and to allocate hardware we used hardware allo-
cation tables.

This structural hierarchy partitions the function into several chips and par-
titions the function of a certain chip into several datapaths. The objective in these
portioning decisions was to minimize the amount of interconnects. On the level

where chips are partitioned, we replicated hardware on several chips to minimize
the interconnection. The chip partition for the Viterbi process was done based on
functionality. That means, there is a chip that generates all addresses needed to
access external data, a chip that generates the backtrack pointers and finally a
chip that computes the state probabilities. The ToActiveWord process on the other
side has a bitsliced partition: each chip performs the same function for a different
block of data.

i U
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The strategy we used to describe the individual chips was to build small

functional entities like pipelined comparators or counters that are implemented

using a few LAGER library elements. These entities were then used to describe
larger datapaths. Using the structure processor Octflatten, the hierarchy that
was built inside a datapath could be flattened so that the resulting layout was opti-
mized. The objective in partitioning the function of an individual chip into several
datapaths was, again, to minimize the number of interconnects and to optimize
the floorplan. This resulted in datapaths that have approximately the same size
and aspect ratio.

As a result we had a hierarchical structural description in SDL format for
the full custom processing board. The lowest hierarchy levels described the indi-
vidual chips of the board. This could be a single sdl file for a standard TTL part or
a complex, hierarchical description of a full custom chip. The next sdl hierarchy
described functional entities such as the Viterbi process as an interconnection of
chips. This way entities like the Viterbi process that were described functionally
in CHDL at an earlier stage, are now described structurally. Finally, these func-
tional entities are connected to describe the complete full custom board. The hier-
archical sdl files were then translated into an OCT structurejnstance view that
was used as a common database for verification and layout generation.

To verify the design against the higher level CHDL description, we used
MakeThorSim to compile a THOR simulator of the initial hardware partitions and
compared the patterns generated by the different levels. Once the individual parti-
tions were verified, we checked the timing of critical paths between pipeline steps
on the ASICs. For that, the physical design of the custom ASICs had to be gener-
ated and extracted to get a database for an IRS IM simulation.

We also compiled a THOR simulation for the complete full custom board
and compared Mke patterns generated by this simulation against the results gener-
ated by the initial C code. This was necessary to verify the architectural decisions
and partitions that were not considered in the C simulation. For example, the
switching processor architecture uses busses that are shared between the sub-
systems. Thus the proper control of the tristate drivers connected to these busses
had to be verified.

Finally, using the structure processor OCT2RINF, the Ocr database
describing the full custom board was used to drive RACAL to generate the printed
circuit board layout.0,
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21,5. SUMMARY
This chapter presented the architecture of a processing board for a real time

large vocabulary speech recognition system and the procedure that was used to
design it using the LAGER system. The fact that we used a unique description for
both, simulation and layout generation, proved to be extremely valuable to handle
the complexity of the system. It was also very important that we could generate a
board level simulation. The printed circuit board uses 12 routing layers and any
error in the structure of that board would be extremely difficult to correct. Due to
the fact that errors could be detected through simulation, the board was opera-
tional after the first design cycle with a minimal amount of rework.
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II 22
i: Conclusions and Future Work

Robert W. Brodersen

The LAGER system met its primary requirement of reducing the time and
effort required to implement an integrated circuit, and allowed the designers to
focus on the chip architectures and the applications in which the chips were
designed to be used rather than details of the physical implementation.

22.1. WHAT WORKED

The development of a clean interface to a set of tools which performed the
silicon assembly task of taking a structural input and producing a complete physi-
cal description was found to have many benefits. A primary success was that it
allowed a user to describe a chip at a sufficiently high level that the chip design
task could be reduced to hours in simple cases and days for more complex cir-

"* cuits. -

Another benefit was that it allowed the separate development of silicon
compiler tools, which take a behavioral discription as an input and then produce

'. the structural output. This was useful in that the high level tool development
could focus on the complex issues involved in synthesizing structure from behav-
iorai descriptions, with the knowledge that once this structural description was
complete, other tools would provide the actual physical implementation. This

S s_
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separation comes with some disadvantage in that feedback of parameters from the
actual physical implementation into the high level tools is complicated by the
separation of function. More accurate feedback from the silicon assembly phase
may be desirable through more direct estimation from the various physical design
tools. The present strategy, htowever, has been to use the assembly process to
develop accurate estimation formulas and tables to direct the design of the higher
level tools.

The most important components of LAGER are the various circuit layout
libraries. The reuse of these libraries made it possible for errors and limitations in
the various circuits to be identified, and allowed most users to avoid the time con-
suming activity of physical design. A major limitation of libaries is that they must
be redesigned when the underlying technology is changed. However, the use of
scaleable design rules has allowed the libraries to stay essentially intact while the
the technology hIs scaled from 3 micron to 1.2 micron.

The use of the object-oriented data manager OcT was found to be an excel-
lent choice for our underlying database. Its efficiency was found to be more than
adequate for our largest chip designs (100-200 thousand transistors) and its per-
formace for recalling information was sufficient so that it rarely was a major time
consumer. The simplicity and extensibility of the database worked well as we
evolved the quantity and type of information that was stored well beyond that
which was contemplated by the original developers.

22.2. WHAT DIDN'T WORK
The success of allowing designers to avoid the process of transistor level

design, resulted in a considerable lack of interest in the further development of
the libraries. This was due not only to the actual effort in the layout task but also
to the documentation requirements if the new cells are to be made useful to other
users. It was found to be a consistent effort to remind users of the necessity to
move proven cells that were used in a design from a "private" library to the stan-
dard user library locations (with the required documentation). Support tools for
this task would no doubt facilitate this transfer.

A related problem was the lack of interest in developing performance
driven design tools. Once the capabilities to achieve design functionality was
obtained, then architectural techniques were used to obtain the desired system
performance. For the dedicated application for which the system was primarily
used, this was found to be adequate. This approach has been found to make it pos-

S
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sible to work up to frequencies well over 100 MHz (see Chapter 17), but if archi-

tectural techniques are not possible, it is then required to modify the underlying
cell library (a task which has been undertaken a few times). This effort may have

been avoided in some cases if performance driven tools had been developed.

The original goal was to remove the requirement that users (as opposed to
developers) need to know about the physical design beyond that required for the
structural description. This eventually was possible for the generation of the cir-
cuits, but not for the verification of functionality and performance. Though sup-
port was given to help set up the required files for final simulation, the user was
required to exercise the simulator and interpret the results.

The verification phase had other limitations as well. It became the most
time consuming portion of the design task. In addition, the use of a simulator for
verification has the disadvantage of not being complete due to the difficulty
(impossibility) of determining an adequate set of test vectors.

22.3. FUTURE
The future developments of LAGER are in a couple of directions. The basic

tool set (particularly the control generation) is upgraded as new tools are devel-
oped and integrated into the underlying framework. Improvements in the verifica-
tion phase include more sophisticated automatic test generation and a simulation
strategy which can simultaneously simulate at various levels of description rang-
ing from behavioral to structural.

The major thrust, however, is not in the enhancement of the basic chip gen-
eration capability, but rather to extend the capability of the compilation and
assembly process to the system level. A system in this context contains a number
of chips which may or may not be custom designs, and may include such compo-
nents as programmable logic, software programmable processors, subsystems
built from advanced packaging techniques such as multi-chip modules or even
conventional printed circuit boards. This extension is being made following the
same methodology developed at the chip level, but with extensions to handle the
more heterogeneous nature of system design. In fact, the strategy for the system
assembly task is to use basically the same design manager and structural descrip-
tion but with a number of physical target technologies. The libraries will contain
not only leafcelis for chip designs, but software libraries, board level module gen-
erators and programmable logic macrocells. The chip generation capability
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i described here will then only be one of a number of possibilities for realization of

S~user specifications.
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APPENDIX A

Design Example

Brian C. Richards

A.1. RUNNING DMOCT TO GENERATE A DESIGN

To illustrate how DMoct uses a library cell to produce a customized layout,
consider the following example of generating a latch. There are several command
line options that control the design flow, allowing the user to generate the com-
plete design with a single command, or to step through the design process incre-
mentally, running DMoct several times.

To generate a latch in a single step, the following command can be issued:

DMoct -P latch MyLatch

In this case, the user will provide any necessary design parameters interac-
tively, as needed. The option '-P' is thus given to prevent DMoct from asking for
a parameter value file. The library template for the desired design is called
"latch', and the user wants the resulting circut to be named 'MyLatch'. The
resulting diagnostics will be similar to Figure A.I:I: After reading initialization files, DMoct begins by scanning the library for
the file 'latch.sdl', and checking for the corresponding structure-master view

(SMV). For a properly installed library circuit, the SMV should already exist, in

which case the diagnostics show that it is up to date. If the SMV does not exist,
then DMoct will attempt to create it in user's current working directory.

0 Given the parameterized structure-master view template for the latch,
DMoct will then generate the structureinstance view in OCT (the SIV), with the
name 'NyLatch'. The latch is parameterized, however, and DMoct determines

that the parameter 'width' has not been defined. The user is asked to enter the

iI
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* LagerIV Silicon Assembly System *

* Design Manager for the Oct Database *
* (email: lager0zion.berkeloy.edu) *

Loading Dioct.ll
... Done loading Dloct.11
Dioct>
DMoct>
DMoct> CREATING/READING STRUCTURE MASTER VIEWS (SMV' s)
DMoct>
D~oct> (latch (reading -lager/common/LagerIV/cellib/\
DMoct> TimLager/blocks/latch/latch. adl)
DMoct> (latch:structuremaster in up to date))
DMoct>
DMoct>
DMoct> CREATING STRUCTURE INSTANCE VIEWS (SIV's)..
D~oct>
DMoct> The value for the parameter 'width' is missing.

Enter value for parameter "'width": 4
Dtoct> (MyLatch (creating the SIV 'MyLatch'))
DMoct>
DMoct>
DMoct> RUNNING LAYOUT GENERATORS
DMoct>
DMoct> (MyLatch (executing: home/zion4/lager/SUN42.0/\
DMoct> LagerIV/bin/TimLager -L MyLatch.log -m\
DMoct> MyLatch: structure instance)
DMoct> )

Figure A.I: Sample of DMoct design generation feedback

value interactively ('4' in the above example). With all parameters entered,
DMoct then proceeds to generate the SIV, containing the structure description of
the latch (subcells, netlists), the CAD tool that is needed to generate the layout,
and the parameters needed by the CAD tool.

During the layout generation stage, the SIV is passed to the CAD tool des-
ignated by the SIV, TimLager in this case, to produce the final layout. By default,
both an OCT representation of the design (an OCT 'physical' view typically), and
a MAGIC design file (for VLSI designs) are produced by the CAD tool.

In typical designs, it would be prohibitive to manually enter design pararn-
eters each time a design instance is generated. Most commonly, a parameter value

- -- , - - - - - - = ,++,+• -.- -, - , ._•. ,:__ + • _ _ - . ...
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file is given to DMOCL The parameter value file contains one or mor pairs of
pammter name - parameter value pairs, each enclosed in parentheses. For theabove example, the file lyLatch.parval might be created, containing the fol-

lowing line:

(width 4) I
DMoct can then be run as follows, to use the MyLatch .parval file:

DMoct -p MyLatch.parval latch IyLatch

The name of the parameter value file can have any suffix; .parval and .par are
commonly used. Another alternative for a simple design with few parameters is to
enter the parameters on the command line:

D14oct latch MyLatch -P -Dwidth-4

Note that options to DMoct can be before or after the design master and instance
names. The only requirement is that the master name precede the instance name
in the command li..

DMoct can also be run in several distinct steps, to control the design flow.
For instance, only the SMV may be needed if the user is installing a personal
library which will be used in several designs. Also, the user might want to post-
pone the layout generation until a functional simulation has verified that the sys-
tem operates correctly. The design stages can be isolated as follows:

# SMV generation
Dtoct -m latch

# SIY generation with parameters.
""DMoct -a latch MyLatch -P

# Now a functional simluation using THOR can be run.

# Layout generation.
DMoct -1 latch MyLatch

More than one of the options -m, -s, and -1 can be given on the command line at
the same time; often -m and -s are used concurrently, to prepare for a functional
simulator after changing SDL files. If none of these three options are given, all
three are implied by default.
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A.2 DESIGN POST-PROCESSING WITH DMPOST

In the following, examples are shown how DMpost is used to do THOR
and IRSIM simulations, design rule checking, CIF file generation, starting
MAGIC in interactive mode and shipping a request to MOSIS. It is assumed that
the design MyLatch, a simple latch shown in Figure A.2, has been generated
using DMoct. The latch operates on a two phase clock where data at the input in
is latched on Id andtphO, and appears at the output out on phil (see also Figure
A.3). First, the structure-instance view is created to verify the behavior of the
design, then the physical view is created to verify the logic level operation and to
check for design rule errors. Next, the CIF file is generated. By splitting the simu-
lation phase into functional and logic level simulation, time is saved since physi-
cal generation can be very time consuming especially on large designs.

A.2M1. Functional Simulation with THOR
First the structure instance view should be created from SDL by using

DMoct with the -s option to prevent the creation of the physical view since this is
not required for behavioral simulation. DMpost can now be run to generate the
input files for the THOR simulator. This generates the THOR directory and stores
the nedist in the THOR model files. An analyzer call containing all of the formal
terminals is added to the netlist file, which allows observation of all signals that
are external to the design being simulated.

phil phi2 Id

Master: "latch"
IpDesign Instance:"M Latch" uO.kh]

Parameter: width

Figure A.2: DMpost example: MyLatch

, or
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t come) aiwAa : fins"
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Figure A.3: Output ftom the THOR analyzer

At this point, the generators and any additional monitors have to be added

by the user to the CSL file. THOR may then be started in two ways. The com-
mand genhim can produce an executable simulation file, which can then be run
interactively, accepting both batch initialization files and user commands. Figure
A.3 shows some time steps displayed by the THOR analyzer for this example, in
which the values 9, 5,6, and F16 are sequentially clocked through the latch. Alter-
natively, the gensim command can produce and run a simulation in batch mode,
running for a specified number of time steps.

If the THOR simulation shows the desired functionality, the next step in the
verification process can be taken, otherwise the design has to be modified and
again simulated.

A.2.2. Simulation with IRSIM and Design Rule Checking

The next step in the verification process is to simulate the actual layout and

check for design rule violations. Running DMoct -1 on MyLatch will call all nec-
essary layout generators And the physical view will be created in OCT and
MAGIC representation since the -g option was not used. Then DMpost is able to
extract the circuit data and check for design rule violations:

>> DMpoat -1 0.8 -w pwell -aim -dre -t acmo MyLatch

The above command line specifies that the design should be checked and
extracted for a 0.8 microns per lambda P-well process using the SCMOS technol-
ogy of MOSIS and that the design should be read from Magic files. DMpoat Will
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generate the .ext files, the MyLatchml and MyLatch.sim file and store them in the
layout directory since the -sf option was not used. In addition IRSIM needs a
technology file called scmos8O.prm, which gives the pammeters for the first-order
timing checks, to which DMpost will establish a link in the layout directory.

When DMpost finishes running, the user will be instructed how to run the I
simulator

DKpost>
DMpost> WELCOME to the LagerIV postprocessor
DMpost>
DMpost> Working on -aim -dx.c for MyLatch
DMpost> Reading input from magic files
DMpost> Using: technology-sc'n~s, microns/lambda-0.8,

well-pwell
DMpost>
phy2extl.8> Reading names of cell instances

from oct physical view
phy2extl.8> Collecting magic files of all cells

to "./layout" directory
DMpost> Running magic -Tscmos -dNULL MyLatch < magic.TmP4477
DMpost> Running ext2sim -L -R -c 10

-a /class/tut 1/layout/MyLatch. al
-o /class/tutl/layout/MyLatch.sim MyLatch

DMpost>
DMpost>
DMpost> Options -aim -drc successfully completed
DMpost>
DMpost> drc: see file ./layout/MyLatch.drc
DMpost> aim: see file ./layout/MyLatch.sim
DMpost>
DMpost> Usage of irsim (in directory /class/tutl/layout):
DMpost> irsim scmos80.prm MyLatch.sim -USER.COMMANDS
DMpost>
DMpost> See file DMpost.log in the current directory

The file -USER.ComMAmDs contains all the startup commands to IRS IM provided
by the designer. At th same time DMpost will generate the MyLatch. drc file in
the layout directory containing information on design rule violations.
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A.2.3. CIF Generation

If simulation showed the correct behavior and if the desig shows no
design rule violation don the CIF file can be genaate. For that pu DMpost
is used again:

>> DMpost -cif -w pwell -1 0.8 MyLatch

The technology parmeters have to be specified again and should be the same as
for the extraction and design rule checking (there is currently no mechanism to
assure consistency). The MyLatch. cif file will be placed in the layout directory.
The following lines show the first ten lines of the CIF file for the latch example:

DS 1 40 2;

9 ,yLatch; P

L CWP;
B 4 24 146 800;

L CMS;

B 16 16 32 988;

B 16 16 64 988;

B 16 16 96 988;

B 40 48 284 972;
B 40 48 372 972;

The DS command defines the cell number 1 and the scale factor, followed
by the name of the cell in the CIF extension command "9". The MOSIS layers are
then referenced (the "L" command); in this example, the CWP layer defines the
CMOS P-well mask, and the CMS layer defines the CMOS second metal layer.
Boxes using those layers are defined with the "B" command, where the first two
coordinates define the size of the box, and the latter two define the center of the
box.

A.2.4. Interactive Magic

If it is desired to display a cell to investigate a design rule violation caused
by an error in a cell or a CAD tool fault (which of course rarely happensl), print
out a design, or use other possibilities supported by MAGIC but not by DMpost,
MAGIC can be started in interactive display mode on a workstation that runs
X-windows with all the necessary technology parameters:

>> DMpost -Xmaq -w pwell -1 0.8 -t acmos MyLatch

I_
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Figure A.4: Layout of MyLatch, from CIF

The final resulting layout of MyLatch. generated from a CIF file produced

by MAGIC, is shown in Figure A.4. Notice that all of the named terminals are
labelled in the plot.

A.2.M. Fabrication Request
Once the design exists as CIF file, a request for fabricating the design may

be sent to MOSIS which must contain some data on the design. To ship the

request to MOSIS, type:

>> Mpost -mosis MyLatch

The only thing DMpost will currently do is to ask for the request file and

* show you how to ship the request by e-mail to MOSIS. This is to avoid unin-

tended shippment of requests to the MOSIS service.

A.2.6. Post Processing Run
The following output is displayed on the terminal when DMpost is run as

follows:

I 1•
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* » DNpost -THOR -aim -cif -drc -w pwell -1 0.81 HyLatch

j D~post>
DMpost> WELCOME to the LagerIV postprocessor

DMpost>
D~post> Working on -THOR -aim -cif -drc for kMyLatchfD~post> Reading input from magic files
DI'post> Using: technoloqy-scmoa, microns/lanmbda-0.8,

wellpwell

DMpo at>

Dt~post> Running MakeThorSim -L /claas/tutl/DMpost.log -a

MyLatch

phy2extl.8> Reading names of cell instances from Oct

physical view

phy2extl.8> Collecting magic files of all cells to

"./layout' directory

Dt~pogt> Running magic -Tscmos -L/cad/lib/magic/sys -dNULL

lMyLatch < magic.TmP4735

Dt~post> Running /cad/bin/ext2sim -L -R -c 10 -a

/claas/layout/MyLatch.al - /class/tutl/layout/MyLatch. aim

blyLatch

Dl~po at>

DMpo at>

D~post> Options -THOR -aim -cif -drc successfully Completed

DI~po at>

D~post> cif:see file ./layout/tMyLatch-cif

DMpoat> drc:see file ./layout/MyLatch-drc

Dl~post> aim:see file /claas/tutl/layout/lMyLatch.aim

Dt~post> THOR:see file ./THOR/MyLatch.cal

DMpo at>

D~post> Usage of irsim (in directory /class/tutl/layout):

Dkpost> iraim scmosS0.prin MyLatch.siin -USER.COMHAI4DS

D~post>

Dl~post> See file Dl~post.log in the current directory

>>I



APPENDIX B

Training and Distribution

Bob Reese

Training is a key issue when dealing with a complex system such as
LAGER. A week-long training course and associated tutorial materials were
developed to introduce new users.

B.A. TRAINING

The typical training takes four and a half days with each day consisting of
two lecture periods and two laboratory periods (one lecture, one lab in the morn-
mg; one lecture, one lab in the afternoon). The schedule shown below covers the
basic use of the toolseL After this training the user is able to produce designs
which can use any of the cells in the three LAGER cell libraries (standard cell,
datapath, macro-cell).

Day I
The morning lecture covers the basic environment and SDL syntax. The

Oct database is discussed and the process by which LAGER converts a SDL file to
a silicon implementation is demonstrated. In the lab session the students are
required to write a SDL file for a simple parameterized design. The afternoon lec-
ture covers the functional and switch level simulators used in LAGER (THOR and
IRSIM). The afternoon lab section has the students simulate the morning lab
design with both IRSIM and THOR..

Day 2
The morning lecture covers the Standard cell design methodology. The lab-

oratory session has the students create a small standard cell design. The afternoon
lecture discusses the new SDL language features such as looping, conditional
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instances, conditional nets, and conditional terminals. The lab session has the stu-
dents write the SDL file for a parameterized shifter using these new SDL features.

Day 3
The morning lecture discusses the logic synthesis methodology using the

misll tool and BDS language. The lab session has the student synthesize the con-
trol for a small finite state machine. The afternoon session discusses the padframe
creation tools. The lab session requires the student to put a padframe around a
design created earlier in the week.

Day 4
The morning lecture covers the datapath library and Flint macro cell router.

The lab session has the student create a simple datapath design. The afternoon
session discusses the TimLager macro cell library concentrating on the multiplier
and RAM macro cells. The afternoon session has the students instantiate and sim-
ulate one of the new macro cells in the TimLager library.

Day 5
This half day covered the TGS test generation tools. The lab session has the

students generate test vectors for a sample design.

B.1.1. Training Materials

The primary training materials are overhead slides (approximately 200)
which uses mixed text and graphics to convey LAGER concepts. All of the train-
ing slides are included in the LAGER distribution tape.

B.1 LAGER DISTRIBUTION

The LAGER distribution disk storage requirements vary from release to

release but the total disk usage for the LAGER 3.0 release is approximately 200
Mbytes (includes Octtools, LAGER source on-line, all tools installed). Installa-
tion instructions also vary between releases and are shipped with the tape. Hints
are given within the installation instructions on how to further reduce disk storage
by removing source trees and not installing some optional systems.

All LAGER documentation is included on the tape in the form of "man"
pages and postscript files. There are also seven bounds volumes of LAGER docu-
mentation which are available with the distribution. These are:
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* Volume #1: LAGER Training Slides, LAGER Tutorials, Magic Tutorial
* Volume #2: LAGER Man pages; Thor, IRSIM, BDS User Guides
* Volume #3: Dpp, TimLager, Pad Library does
* Volume #4: Stdell Library does
* Volume #5: GDT to LAGER Interface

* Volume #6: GE Bitserial Toolset Inierface
* Volume #7: Viewlogic Interface

Volume #1 contains all of the training slides previously discussed. Volumes #5,
#6 and #7 document LACER interfaces to commercial tools.
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A CF 57
ACITtAL.PARAMETERS bag 28 circumferential constraint graph 143, 149
Addright 72, 73, 78. 79, 81 C-like 251, 253

ALIAS 73, 80 clock and power nets 146
TINDEX 73 Closejnewcell 75, 78
INDEX argument 80 computers
MXMY 73 very-long-instruction-word 266
OFFSECX,OFFSETY 73 CONDITIONAL property 29,31
OVERLAP 73 CONNECTORS bag 23
R90,R180,R270 73 control flow graph 226
TD 73,80 control terminals 129

Addup 72, 73, 78, 79, 81 control-flow 200
ASIC 267,302.319 CORDIC 288
automatic test pattern generation 195 core 141

comer
B region 146

bags terminal 147
ACTUALJPARAMETERS 28 comer pad 142
CONNECTORS 23 cost function 110
FORMALPARAMETERS 27,32 C-to-Silicon 285,297
INSTANCES 24 current array 72
MAP 30 customization 53

BDS 89 cycle 115
Bds2stdcell 38,90 removal 151
bdsyn 91
bipartitioning 110 D
bit-parallel compilers 270 data flow graph 226
bit-serial compilers 270 data terminals 129
bit-slice datapath, see also dpp 127 data-flow 200
BUF 9O datapath
boundary scan 187, 189 automatic generation 243

architecture 189 block 128
signal flow 128

C debugging 52
cables Denavit-Hartenberg 286

essential 117 DEPENDS-ON property 38
canonical signed digit 274 design manager 45
CeC 11 design post-processing (DMpost) 57
cell library 81 design rule checking 57
channel 114 DFT 187

congestion 116 Dijkstra 117
tng-shaped 143 DMoct 45,57

channel definition 104 design flow 49
channels design flow strategy 46

undesired 116 design management strategy 53
chip under test 194 DMverify 161
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dogleg 122, 151 interactive 104dpp 121 FORMAL_PARAMETERS bag 27,32

algorithm 134 fplsn parameter 144
block strwhing 136 I:SM 81
desapath layout restrictions 132 functional simulation 48

feedthroughs 132
oorpl 13 G

global routing 136 gensim 177
interaction with DMot 128 Getpath 61, 143
libraryorganization 138 GMedit 181
pramaters 134 Graph Search Machine 321

placement 138
dppdotc 130 H
dynamic instruction count 292 hidden Markov models

grammar node 324
E null arcs 324

examples output probability 322
channel equalizer 252 pruning 324

dpp 13 2  speech recognition
fOlte- hidden Markov models 322

i...rocode 262 state probability 322
program in RL 261 transition probabilities 322

FIR filter 279 unique phones 323
macrocells 83 Viterbi algorithm 322

tic-tac-toe 91 wordarcs 323
ext2oct 161, 163 hierarchical datapaths 134

hierarchy 18. 227

F flatten 89

FACET histogram
PAD parameter 39 gray-level 312

facet Hyper 223

contents 12 allocation 225, 241

definition 12 assignment 225, 240

version 12 control path generation 244

fdl 104, 107. 125 data path generation 243
FIR filters design space 235

high performance 269 estimation 224,232

Firgen 272 module selection 223, 229

architecture generation 274 parallelism graphs 233
clock and data tree 277 partitioning 243
critical path 275 retiming 239

Flint fioorplen 277 scheduling 225, 240

floorplan generation 277 simulation 225
layout generation 278 transformations 224, 238

Flint 103
cable 104
slicing structure 105 image
use by Firgen 278 analysis 302

use with dpp 127 projections 301
floorplan description language 107 reconstruction 301
florplanning synthesis 303
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image process 301 MOSIS 58
INSTANCES bag 24
Winecve floorplmnning 104 N
imver position-orientation problem 285 natural language processing 335
IPOP 285 netdiff 167, 169
IRSIM 58, 173, 182 nedist

circuit file 182 flattened 89
paraimet file 182 NETWDTH property 30,40
PUMA exaMle 183
with LAGER 183 0

isomorphism 160 OCi 11 I
change propagation 19

J Inconsistencies 19
JTAG 189 physical policy 20

procedural interface 16
K symbolic policy 22

Kappa 252 OCT physical view 154
kapn datapath 290 OCTBAG 15

OCTFACET 14

L OCT_INSTANCE 15
Lager 242 oct2rinf 29, 337
lagerfile 80 oct2Ws 187
layout extractor 160 oct2wir 37
layout verification 158 octdiff 169
layout-generator 48, 52, 87 Open..newc~ell 74, 78
LAYOUT-GENERATOR property 31 output-partitioned 304

libraries 53 overlap box 98
librrmy 46 OVERLAP layer 79,98

blocks 81
dp 13s P
seratonr 81 pad
leafcRel directory 81 corner 142

ightLiasp 27.54 pad groups 142
space 142. 145

M Padroute 141
machine description 251 placement algorithm 144
Machine Vision 302 Parallel Pipeline Projection Engine 304

machine-dependent 80 parameterization 46
Magic 48,71,106,154,164 paammeters 50

obox label 78 in Thor 178
MakhThor 180 Parsifal 270
MakeThorSim 177 partitioning
MAPbag 30 in-place 111
micocode assembly 264 phoneme 322

layoutpowneters 264 phy2ext 161
min-cut partitionis 108 physical policy 25
mialI 90 physical view 12,48
mlnmod 177 PLA 81, 264
mobile radio 252 placement 104,109
Mocha Chip 72 absolute 104
Mosaico 127 relative 105
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subblocks 113 front end 265
sbboDE 196 greedy scheduling 266

poDiy 196 5implementation 
264

policy 2 lazy data rutng 267
LAGER 26 local scheduling 266
symbolic 25 network flow 267
versus mechanism 13 spill path 267

straight-line segment 265
power trace scheduling 266not 146

pres 251,261 RLlanguage 251,254
floating-point operators 259

prsagnu functions
wordje•fgth 259

printed circuit board 302, 320 abs0 259

programmable processors 267 ino 259

promoting taminals 80 out() 259

property nit() 260
CONDITIONAL 29,31 loopO 260
DEPENDS-ON 38 machine description 262

LAYOUT-GENERATOR 31 memory and register banks 258

NETWIDTH 30,40 pragmas 257

SIVMASTER 38 wordjength 259

STRUCrURE-PROCESSOR 31 profiling 263

TERMEDGE 31,39 dynamic instruction count 264

THORODEL 178 kprof 264
THORTEMPLATh 178 register declarations 258

WIDTH 30 register-transfer notation 261

WOLFE-ROW 95 scaling by a power-of-two 295

pruning 324 simulation 263

PUMA 252 type modifiers

simulation const 258

fixed point 295 volatile 258

Thor and IRSIM simulations 297 types

wordlength 295 boolean 258

Puma 560 286 fix:0 295

PUMA proeessor 285 fix:n 259
fixed-point 254

R register type modifiers 258

radial constraint graph 143,149 type modifiers 257

Radon transform, 301 volatile bool 257
Rdiscetef 304 user-defined operations 259

hardware subsystem 306 RL program 290

RAMuting
dynamic read-modify-write 311 clockwise distance 147

raster-mode 304 cycle removal 151

rational approximation 287 detailed 104

region-of-interest 312 dogleg 122, 144, 151

register transfer notation global 104, 105
microoperations 261 gridless 120,144

Lcompiler 261horizontal constraint graph 121
RL compiler lf-ih 2

back end 265 left-right 121

code geneation 266 minimum radius 147,153
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power 105, 118 recognition accuracies 321
priority 122 switching processor architecture 329
switch-box 115 ToActiveWord process 327
track assignment 152 Viterbi process 326
tracks 121 wordarc processing 325
vertical constraint graph 121 standard cell 87

routing verification 161 cell pitch 98
Steiner-tree 116

S Structural Description Language (SDL) 46

scat path 187 structurejnstance view 32 46, 55. 142
register cell 188 structurej.aster view 26,46, 54

scampath test 333 structure-processor 47, 52, 80, 90. 128

SCANTEST 194 STRUCTURE-PROCESSOR property 31
schematic entry 35 symbolic microcode 264

schematic view 12 symbolic policy 25

SDL 87,264 symbolic view 12

for tristinverter 129
instance declaration 28 T
net declaration 28 TERMEDGE property 31, 39, 88
parameters declaration 27 in dpp 129
subcells declaration 28 test access port 189

selective generation 51 Test Controller Board 187, 194
self4imed 311 test generation system 187
shortestpath 116 testability
Silage 199 design for 187

block 207 testing
control variable 205 board level 189
expression 202 203 chip level 188
iteration 207 Test Controller Board 193
pragma 218 software 194
reduction operators 205 test pattern generation 195
sampling rate 207,215 Thor 48,58, 173

simulation CHDL 174
batch mode 174 CSL 174,176
behavioral 173, 229 generation from OCT 179
Hyper 225 delay handling 180, 181
switch-level 173, 182 gensimn 177

siv2vun 37 MakeThorSim 177
SIVMASTER property 38 mkmod 177
space pad 142 model 175
spuming parameters 178

fkforest 118 THOR_MODELproperty 178
tree 118 THORTEMPLATE property 178

speech recognition tiling
BEAM multiprocessor system 322 bounding box 79
cacheregister file 331 box 78
grammar processing 325 C versus SDL 76
graph serch machine 321 dpp blocks 130
left-to right 11MM 326 point 79
memory coherae 331 SDL method 75
rel-time 321 tiling procedure 72
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TnmberWolfSC 95
time-stanp diecking 51
Timdgr 67,87,141,143

consruct for dpp 130
use in dpp 129

U
UNX 11 I

V
vb2oct 37
verification

layout 158
routing 161

vertical constraint graph 143
video rates 304
view II

extract ý61
phys;";al 12, 32
sdk.ematic 12
s'.ucturemstancr 32
smuwre..mastr 26
symbolic 12

'iterbi algorithm 322
backtrack pointers 3, I

VIUW 266
VMEbus 306,329

w
WIMTH property 30
wolfe 95

ACCESSIBIFTY propercy 95
PEEDTHRU property 96

WOLFE-CLASS bag 95
WOLFE-ROW property 95

y
YACR 95
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A silicon comnplier is a sciftwoea systemn which can aulOnaftcally generate an
integated cirCult from a user's spieclflcation. An*Wmy of a SMWon ConWJe
examnines one such cornpiler In detail, covering; the basic frameswork and
deepg enry, the actua sigloriftms and libraries which aem used, the approach
to vericfictin aW testin, behavioral syntiesis; tools and several applications
which demronstrate the system's capabilities.

Anatomy 01 a Silcon ConWkr explains all of the stages in a comnplete desWg
process fromn specification through generation and testing- This authoritative
reference book provides an invaluable souce of inlormaton for mteifrated
circuit designers, CAD developers and signal procesing professionals.
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