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ON COMMONALITIES IN SIGNAL DESIGN FOR

NON-GAUSSIAN CHANNELS

1. INTRODUCTION

Signal design is an important aspect in the overall design of a communication system. Ideally,
the optimal signal set, subject to certain constraints such as bandwidth or energy, minimizes either
the probability of error (P,) or the Neyman-Pearson performance (NP). Even in the fortuitous case
that the channel is modeled as an additive Gaussian noise channel (possibly colored), there are few
analytic results. Moreover, if the noise happens to be non-Gaussian in nature, the design problem
as described above becomes for all practical purposes analytically intractable.

To address this in this report we apply and extend results from Large Deviation Theory (LDT)
to the problem of signal design for non-Gaussian channels. Originally, Johnson and Orsak consid-
ered this approach in Ref. 1 where they focused on the design of signal waveforms which were
asymptotically optimal with respect to the Neyman-Pearson criterion. We seek to generalize these
results to determine signal sets that are simultaneously asymptotically optimal with respect to the
minimum probability of error (Pe), the mini-max, and the Neyman-Pearson criteria.

One of the main issues addressed in this research is best summarized by the following ques-
tion: Are signal sets operating in non-Gaussian environments that are optimal with respect to the
Neyman-Pearson criterion also optimal with respect to the minimum P, and the mini-max criteria?
Through this work we are able to conclusively answer "yes," provided that the length of the signal
vector grows without bound.

In LDT, the min P, and mini-max criteria are associated with the Chernoff Distaiwce, and the
NP criterion with the Kullback-Leibler distance. We are able to establish that a unique optimal
signal (if exists) maximizes both of these distances. Significantly, we show that this maximality
extends over the whole class of Ali-Silvey distances.

We show within this report that if the background noise is accurately modeled as a discrete-time
generalized Gaussian random process, then there are only two optimal signal sets with respect to
all of the above optimality criteria. If the tail of the noise distribution diminishes faster than that
of the Gaussian, then the optimal signal waveform subject to an energy constraint is an impulse,
that is, all of the energy is contained in a single sample of the signal waveform. Conversely, if the
tail diminishes slower than that of the Gaussian, then the optimal signal has constant amplitude
over the waveform. Only in the case of additive Gaussian noise is a time-varying signal (except
for a purely impulsive signal) potentially1 optimum. So, as a by-product, this work implies that
sinusoidal waveforms can only be optimal for the purely Gaussian channel.

Manuscript approved June 21, 1994
'In fact, we know that in the case of an AWGN channel, only the total energy of the signal determines performance.
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2 Chu, Warke, and Orsak

In addition to determining the optimal signal waveform, we have been able to analytically
compare the relative performance of these designs with respect to the three optimality criteria of
interest. Results will show that for "small" signal energies, the error exponents associated with
the minimum P, and mini-max criteria are one fourth of the error exponent of the miss probability
(PM) in the Neyman-Pearson criterion for all non-Gaussian channels. Thus, when signal energies
are small, four times as much energy or four times as much data are required to achieve the same
error exponent in the minimum P6 /mini-max performance as that required for the NP performance.

Conversely, for "large" signal energies, we have shown that the error exponents for the minimum
Pe and mini-max criteria are no more than one half the error exponent for PM under Neyman-
Pearson criterion. This is to be expected since the Neyman-Pearson detector need only minimize
PM while the minimum P, detector must simultaneously minimize PF (false alarm rate) and PAl
and therefore can commit no more than one half of the computation capability of the likelihood
ratio test to either of the two error probabilities.

Even stronger results are obtained for the case of large signal energies when the background
noise is assumed to be from the Generalized Gaussian family with decay rate r, i.e., when the
noise density is modeled as p,1(x) = K1 exp(-K 21Xj"). If r > 1, then we have shown that the error
exponent of the minimum Pe or mini-max performance is 1/2' of the error exponent of PM under
Neyman-Pearson constraints. However, if r < 1, then the minimum P6/mini-max error exponent
is precisely one half of the error exponent of PM under the Neyman-Pearson criterion. Therefore,
as in the small energy case for r > 1, to equate the error exponents, one must utilize precisely
four times as much energy in the minimum P6/mini-max detection scheme as that used in the NP
scheme. However, if r < 1, then one is required to utilize 1/22/, times more energy under minimum
P6 /mini-max consideration as that used in NP considerations.

To support this theory, we have included Monte Carlo simulations. These results show that the
asymptotic results hold with striking precision even when in decidedly non-asymptotic regimes.

2. PREVIOUS WORK

As described in the introduction, Johnson and Orsak [1] were apparently the first to use Large
Deviation2 approaches to design signal waveforms for the non-Gaussian channel.

The results in this report were based upon a generalization of Stein's lemma first offered by
Kullback [3]. It was shown that under Neyman-Pearson optimality criterion, the error exponent
of the miss probability is asymptotically equivalent to the average Kullback-Leibler distance (also
known as the divergence) between the probability measures cerresponding to the two hypotheses.
From this, the "optimal" signal waveform in an additive non-Gaussian channel was determined by
maximizing the Kullback-Leibler distance subject to an energy constraint on the signal waveform.

It should be pointed out that others have also considered maximizing the divergence (or other
specific statistical distance measures) [4, 5, 6] between hypotheses as a means of designing "good"

2 Large Deviation Theory (LDT) is used to estimate the probabilities of rare events [I]. For a binary detection
problem, we are in the regime of large deviation when the separation between the probabilities of the two hypotheses

is sufficiently large [2].
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signal waveforms. Grettenberg [7] first proposed the maximum divergence criterion for the Gaussian
channel based upon a duality result originating with the work by Bradt and Karlin [8] where it was
shown that the maximum divergence criterion rendered the minimum probability of error signal
waveform for some a priori probabilities on the hypotheses. Based upon this result, Grettenberg was
able to establish that the Simplex Conjecture must hold for some set of input a priori probabilities.

Unfortunately, as pointed out by Kailath [9], there is no guarantee that the true a priori
probabilities will match those required by this duality principle. In addition, in this work Kailath
offered an alternate statistical distance measure known as the Bhattacharyya distance as a means
of determining the optimal energy allocation in a Gaussian environment. Empirical results seemed
to suggest that the Bhattacharyya distance offered solutions that were more consistent with those
derived by considering the probability of error as an optimality criterion. Nevertheless, as in the
case of the maximum divergence criterion, the maximum Bhattacharyya distance waveforms were
not guaranteed to be optimum for the true a priori probabilities.

In this work, we generalize the results offered in Ref. 1 to consider not only the NP criterion,
but also the minimum Pe and mini-max criterion for the non-Gaussian environment. The signal
waveforms obtained from this analysis will asymptotically minimize the desired performance for
every set of a priori probabilities and therefore will not suffer from the same kinds of theoreticaj
limitations as those in Refs. 7 and 9.

3. RELATING PERFORMANCE TO CERTAIN STATISTICAL DISTANCE
MEASURES

Consider the following binary detection problem where an N-dimensional vector is transmitted
through an additive iid noise channel:

He Xi = ni- jid (1)
HI :Xi = ni + si, ni , pn.

Absolute signal location does not determine performance when the noise density is symmetric.
As such, without loss of generality, we have considered an "on-off" signaling scheme 3 where the
observation and the signal vectors of interest will be denoted to as XN and .9N respectively. We
will assume throughout that the density function of the noise p,, is symmetric and monotonically
decreasing.

The optimal detector computes the log-likelihood-ratio test (LLRT) based on the aggregate of
N samples and compares the output to threshold -y:

log >( (H1
N Np(Xi) - ,

=1Y H0

3 Consider for example sending binary symbols W ={0, 1} in a quadrature phase modulation system. Symbol
W = 1 selects a set of signal samples s,, i = 1.N and generates a phase signal s(t) where s(iT•' = s, and T, is the
sampling period. Symbol W = 0 generates s(t) = 0 for the symbol interval. Two passband waveforms are generated
for each symbol interval: fq(t) = sin(w~t+s(t)) and f,(t) = cos(wct+s(t)). At the receiver, the quadrature-modulated
signals are demodulated, and combined to recover a noisy version of the sequence g, = s, + n,.
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where the threshold is chosen to optimize some performance measure. The false alarm and miss

probabilities that arise from the N-dimensional hypothesis testing problem are defined as ON =

Pr{say HIffjo} and fN = Pr{say H0oH 1 }, respectively (101.

In this report, we seek to determine the signal waveform sN that simultaneously optimizes each
of the following three criteria:

1 (Neyman-Pearson) minimize fiN such that ON < a.

2 (minimum P,) minimize lroaN + TrO 3 N where 7ri = Pr[Hi].

3 (mini-max) minimize maximum {aN,flN}

For the general non-Gaussian channel, the optimal signal waveform under any of the above
optimality criteria is analytically intractable. However, if we allow the length of the signal vector to
grow without bound, we may readily relate the above performance criteria to information theoretic
quantities that are more amenable to analysis. This is accomplished through the application of
results from LDT to the detection problem.

In the case of the Neyman-Pearson criterion, we have via a generalized version of Stein's lemma
[2, 11] the following asymptotic result:

Theorem 1 Let ON satisfy ON < a where a > 0. Then

lm -109Mn3 lim 1:dKL(si) (3)
lim logminI3N=- lm1 N

N-.oo NN-.oo N 3=
i=l

where dKL(Si) is the Kullback-Leibler distance (or divergence) betweea pn(x) and pn(x - sO), i.e.,
f log - pn(x)dx.

This result demonstrates that with respect to the NP criterion, the asymptotic error exponent is
determined by the average divergence across the data vector. As such, the asymptotically optimal
signal waveform must maximize this average divergence. It was this result that was used in Ref. 1
to design signal waveforms that are optimal for applications where the Neyman-Pearson criterion
is appropriate, e.g., radar applications.

However, in most communication applications, one prefers to use either the minimum Pe or

mini-max criteria. We may obtain an analogous asymptotic result by offering the following gen-
eralization of Sanov's theorem (or sometimes referred to as Chernoff's theorem)[2, 111. The proof

requires establishing asymptotically tight upper bound and lower bound on the error exponent
that asymptotically converge to the Chernoff bound. The proof, as shown in Appendix A, extends
standard versions based on i.i.d. random variables to the current problem where individual samples
Xi of the vector XN are independently distributed according to known translations of the noise
density, i.e Xi - Pn-,,.
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Theorem 2 Let PNv = 0ON + 71"lON. Then

N I m NlgipN = lIra
N-- -logm ir -logminPmax{N,•N (4)

1N-immx{ /gpAn(x)p1-A(x -s,)dx} (5)

N-o N

- lim- dc(si), (6)
N-oN 1

where the so-called Chernoff distance dc(s) is given by max{-log f p•(x)pn-n(x - s)dx}

As opposed to NP considerations, in this case, the asymptotic error exponent for both the
minimum P, and the mini-max detectors is determined by the average Chernoff distance across
the data vector. Thus, under these optimality criteria, the asymptotically optimal signal waveform
must maximize the average Chernoff information.

Summarizing, under the consideration that the length of the signal vector grows without bound,
the NP performance is determined by the statistical distance measure dKL, whereas tile minimum
Ps/mini-max performance is determined by the statistical distance measure dc. This observation
clearly begs the question: How aie dKL and dc related in the non-Gaussian environment? To
address this, in the following section we consider two signal regimes, one being the case where the
admissible signal energy is small and the other being the case where the admissible energy is large.

4. RELATION BETWEEN THE CHERNOFF INFORMATION AND THE
DIVERGENCE

The Chernoff Information and Kullback-Leibler distances are computed directly (see Appendix
B) for a selection of pdfs as shown in Table 1. One can observe that for the non-Gaussian noise
models considered, there is very l:,tle functional similarity between dc and dKL. However, we

Table 1 - Chernoff Information and Kullback-Leibler Distance

Noise Pn(x) dc(s) dKL(s)

Gaussian -I -e -(i)72era 8a2 s2a

Cauchy 1 1 log( 1 Er[ - log(E+

"VVl+( •+ +d e- I+2+ I-

Laplacian ,v--e -I•' I g+ i-2 •v• - lo-(1 +•_2_• s lo e- sA-T1
Gen.Gauss4 2 Fl+l)A,)exp{--[A] 7 -lo-l(3-4 F2(IU[ 6

s7 sT
L +1~

____A(r) =[a2•L•'{}(r-_"" =4) __________ _____________

Note: Ek is the complete elliptical integral of the first (real argument) and second (imaginary argument) kind. K114 is the
modified Bessel function of the second kind of fractional order 1/4.
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will be able to analytically demonstrate that there are quite strong commonalities for these two

distance measures when one considers both small and large signal displacements s.

Before proceeding, we wish to make an interesting obse 'ion regarding the structural rela-

tionship between dc and dKL and establish conditions foi tie reduction of dc to the negative
exponent of the Bhattacharyya distance.

4.1. Bhattacharyya Distance, Kullback-Leibler Distance and Chernoff Infor-
mation

Let dc(A) = -logf-opA(x)pl-(x - s)dx then

Fact 1 For a fixed value of s, the derivative of the Chernoff Information at A = 0, 1 is equivalent

to the Kullback-Leibler distance.

Proof:
~dc( A) fPA(x)pl-A(X-~s) log 7*$1 dx

f pA(X)P1 .(x-s)dx (7){ +dKL(p(x - s),p(x)) A = 0
-dKL(p(X),p(x - s)) 0 A = 1

For symmetric pdfs, dKL(P(X),p(x- s)) = dKL(p(x - s), p(x)).O

Fact 2 For symmetric densities, dc(A) is both symmetric and concave in A.

Proof:

a2_ '\ )P1\(53)ydx] \fp(x)pl-,(x-s)dx f P, (X)P, -(X -) 1e ~~5Ž-dx (8"=a\ f c(A)(=)If _ F(F__,,)f P (8)
-dCIA) = [ () - -. [fp,(x)p1-A(xs)dx,

2

which is negative by Schwarz integral inequality.O

Fact 1 shows that dc(A) initially increases and eventually decreases with A at the same rate.

Combined with Fact 2 it establishes that there must be a maximum at the center of symmetry

A•=. Figure 1 illustrates this.
1/2 1/2

Since the Bhattacharyya distance between po(x) and p1(x) is defined as dB = f PO (x)Pl (x)dx,
we have established that

Fact 3 For the translation problem of distinguishing between p(x) and p(x - s), the Chernoff In-

formation is equivalent to the negative of the exponent of the Bhattacharyya distance for symmetric

densities.

We use A = and use dc = -logdf = -logf V/pn(x)pn(x -sdx as the Chernoff Information

throughout this report.

Figure 1 also suggests a correlation between the slopes at end points ±dhKL and the maximum

value dc. Namely:
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Chemoff Informatlon vs. Convex-combinatlon coefficient
0.14

0.12

0. 1 y-slop ..... "K lo s i. "" .

j0.08-

O0.06-

0.04-

0.02-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lambda

Fig. I - Chernoff Information as a function of
X for symmetric noise density functions

Conjecture 3 It is plausible that for some symmetrical density functions, maximizing the ('hcrnoff
Information also maximi-es the Kullback-Leibler distances.

This observation is certainly true for the set of general exponential densities evaluated in this
report, as shown in the analyses of small- and large-signal behaviors of the distances in Sections
4.3. and 4.4. We first offer a more general theorem using the concept of Asymptotic Most Favorable
Statistics advanced by Orsak and Paris in Ref. 6.

4.2. Asymptotically Most Favorable Signal

Definition 1 Siqnal sN is called asymptotically most favorable (/.MF) if and only if for any other
signal si;

lim >r°(sN) + r 1/(sN) > 1 for arbitrary (ro, 7r,) (9)
N--oo iroa(sN) + 7rl/3(sN) -

where a and 0 are the false alarm and miss probabilities defined for the binary hypothesis problem,
and ir0 , 7r, the a priori probabilities.

For optimal detectors, each of the terms of the fraction is the minimum probability of error
min Pe(s) as a function of the signal s.
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Lemma 4 Any real convex function C((x) of real argument x may be expressed in th( following
form

C(X) = O(x)+ •(1 -7r.,)- -7rz.xl (10)

where 4) is some lo ar function and r I, E (0, 1), =1 -. Oc art real.

Proof: Let f(x) be F_ j(1 -= ro,) - rl,,x. For i = 1, f(z) is a convex function with one degree
of freedom controlled by rtj, which determines the location of the breakpoint and the slopes. For
each additional value of i, the sum continues to be a convex function with an additional degree of
freedom. In the limit, f(x) constructs a convex function completely specified by the infinite set of
{r1,}. The linear function 0() specifies the location of the minimum of the convex function. fl

Theorem 5 The asymptotically most favorable signal sN asymptotically maximizes any f-div'crg nce
d(po(sN), pi(sN)). Conversely, any signal sN that asymptotically maximizes any f-dire rgnce is tht
asymptotically most favorable signal.

Proof: For any f-divergence of the Ali-Silvey class [4]

d(po,pi) = h[EpC(-(11)

where h is a real, increasing function, and C is a convex function over [0, o). By Lemma 4
Sdpi • - dpl

d(po,p 1 ) = h[E C'p'•) + Z Ip -o r,i) -Ir,(p1 (12)

po i=_ dpo(

d

Using the identity min(a,b) = ½Ia + bi + 1 Ia - bI, with a = r= 1 - r and b = 7r] FL, it

can be shown that each of the terms , RI(I - ir1,i) - iri1jLI is precisely( I - 2 mii Pe,.), where
min Pe = 7roa + rOB, and ir0 = I - irl.

Therefore,

im d(po(sý ),pi(s 'N)) hi h[ E b(p,, 0) + - (1 - 2m in l 'j(sý ))]

lim =lim dpo((a. ) +3)
N-oo d(po(sN),pi(sN)) N--.c h[EVpo(4 :) + E=N (I - 2 min P•,,(sN))]

The AFM condition of Theorem 5 is satisfied for s4 if

lmmin P,"(sN) >1(4

N---o min P,,i(s) -

for each set of priors (iro,i, ir1,j).
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Applying this condition, we have:

lim d(po(sN),pi(sN*)) li + a + > 1 for some positive a,( (15)N-oo d(po(sN),p1(sN)) N-•0(l) +a --

The converse may be proved by reversing the steps above. 0

Corollary 6 The signal sN that maximizes the Chernoff distance between {po(sN ), p1(sN )} also
maximizes any f-diver-jence between these distributions.

Proof: We have shown in this report that the signal sN that maximizes the Chernoff distance is
optimal under the min P criterion. This criterion is precisely the condition required by Theorem
5. 0

4.3. Small Signal Behavior

It was shown [1) that for small signal values, the divergence is locally proportional to an 2
distance metric (e.g. s2) where the multiplicative constant is one half of Fisher's information for
location. Mathematically this is best stated as

dKL(S)
lim =K - 1 (16)
s--O

2

where 2" is Fisher's Information for location. A similar result for the Chernoff distance can be
easily established.

Proposition 7 For diminishingly small values of s, dc(s) is locally an 12 distance metric with
multiplicative constant 1, i.e.,

i dc(s) 1 (17)

8

Proof: Let Pi (x)= 'd-epn x) and p,(x)= f2-0,p(x). Then dc(s) = -logf pn(x)1p,_-(x)2dx and the
first and second derivatives are

adc(s) -I i op(x)4 ( pP_(nx)(X)½P,(-r)-½p.-0,(x) 2)dx

+ (18)

[f p7(X) 4 p,..- [ pX) pdxl

For symmetric and decreasing densities, f_ fi, (x)dx 0 and ffý pn(x)dx = 0, therefore

9-0 s2 4Ins)
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where 1(s) is the Fisher Information of the location s. dc(s) may be written in terms of a second
order Taylor series expansion around s = 0 where the constant and the first order terms are zero,
and the second order term is given in Eq. 19.0

Thus, these two facts (Eqs. 16 and 17) together show that both the average dKL and average
dc are locally Euclidean metrics. However we recognize that for small signal amplitudes, the error
exponent for the minimum Pe/mini-max detector is one fourth of the error exponent of the NP
detector. Thus, for small signal energies, this then requires that the minimum probability of error
detector utilize four times as much energy as the Neyman-Pearson detector to obtain the same
performance (as measured by the error exponent.)

This small signal generalization implies that the local performance under the three ciiteria of
interest depends only on the signal energy and not on the specific waveform. As sulch, in some sense,
this result demonstrates that non-Gaussian environments behave as Gaussian environments when

the signal energy is small. One might claim that this is merely the case because we are allowing
the length of the data vector to grow without bound and as such the Central Limit Theorem would
apply. However, we will show conclusively that this is not the case for all energy constraints.

4.4. Large Signal Behavior

As opposed to the results in the small signal case, we will show that the large signal performance
depends explicitly upon the tail of the noise distribution of choice. To begin, as was shown in Ref.
1 that for large signals, the Kullback-Leibler distance is well approximated by the negative of the
logarithm of the density function. To be more precise, it was shown that

lim dKL(s) = 1
-, - log p.(s)

fe-r noise densities satisfying some very general conditions. Similar large signal results can be
demonstrated for the Chernoff distance. To begin, we supply an upper bound which holds for the
same general class of distributions considered in Ref. 1.

Fact 4

dc(s) dc(s) I
saic dKL(s) s-lim-logp.(s) - 2

The proof is based on Jensen's inequality.

This fact suggests that for large signals, the error exponent for minimum Ps/mini-max detectors
can be no bigger than one half of the error exponent for NP detectors. As described in the
introduction, this should be the case since the NP detector need only minimize PM while the
minimum P, detector must simultaneously minimize PF and PM and therefore can commit no
more than one half of the computation capability of the likelihood ratio test to either of the two
error probabilities.
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If we limit our consideration to the class of generalized Gaussian density functions, i.e., densities
of the form

Pn(x) + )A(r)exp - [AX(r)]

then we may offer much stronger results.

Fact 5 Let the noise be modeled as an arbitrary generalized Gaussian density function. Then

dc (s) { if r > 1
""- --logPn(S) 2 r < 1

The proof is shown in Appendix C.

Hence, for this case we may consider large signal approximations to dc(s) as:

( I9-g(5) ifr>lands>1I
dc (s) = 2'

ds= agp() if r< 1 and s> 1
2

By comparing the large signal results presented here to those derived in [1], we observe that
the error exponent (performance) for all three optimality criteria is determined by the quantity
- logp,,(s), which in the generalized Gaussian environment is equivalent to an 4 metric of value 5 1 r.

Thus, for both large and small signal energies, the dc and dKL are identical up to a multiplicative
constant. However, it should be pointed out that this constant diminishes exponentially fast as
the decay rate of the density increases. This implies that for a fixed energy level, the relative

performance of the minimum Pe/mini-max detector as compared with the NP detector falls off at
a rate of 1/2r in the performance exponent as decay rate increases. Nonetheless, if we combine
this result with the small signal results, we see that in both regimes any signal that optimizes the
Neyman-Pearson performance also optimizes the performance as measured by minimum Pe and

mini-max criteria.

5. SIGNAL WAVEFORM DESIGN FOR THE NON-GAUSSIAN CHANNEL

For the family of generalized Gaussian noise models indexed by r, we consider the practical
problem of allocating the available energy on the samples of the signal sN so as to minimize the
three performance criteria of interest. Without any available analytic solutions, we rely upon the

asymptotic relations presented in the generalizations of Stein's Lemma and Sanov's Theorem. To
accommodate this, we pose the signal design problem in the following way: Let sN be a length
N signal vector. Further, let 9M be the N x M length signal formed by repeating sN precisely
M times. We seek to determine the signal waveform 9M or equivalently sN subject to an energy
constraint such that the three performance measures of interest are minimized as M - 0c. Note
that we have moved from the original problem of an signal of finite energy to a power signal, so

that the energy constraint E on sN becomes the power contraint on sM. For simplicity we use the
same notation E for the power coaistraint.
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Based upon this formulation, we know from our asymptotic analysis that the optimal signal
subject to the NP criterion is determined by maximizing the quantity

1N N

dKL(Si) s.t. < E.
ti=1

Alternatively, we have shown that the optimal signal waveform subject to the minimum Pe and
mini-max criteria is determined by maximizing the quantity

1N N

E dc(si) s.t. < E

When the signal energy is small, we know from our analysis in Section 4 that any waveform
satisfying the energy constraint will be optimal for all three optimality criteria. However, if we
consider the large signal regime, we show in this work that the optimal signal must be either fully
impulsive, i.e., s, = VE, si = 0 for i = 2, ... , N or constant for all i, that is si = v/7T7- for all i.

The optimal signal s N must maximize the Lagrangian

1 N N

J= N d(si)+p(E)- (20)
i=1 i=1

where the subscript on d(si) has been left ambiguous to account for both dc and dKL. To find the

maximizing {si} for J, we set its gradient w.r.t. sN to zero.

0 = [VJ]i = ld(si) - 2psi, i = 1,...N (21)

where d(si) is the derivative of d(si) with respect to si.

Equation 21 can be shown to have only two solutions, namely si = 0 and si = s*, i = 1 N,
for some s* # 0, as demonstrated in Fig. 2 for the limited set of pdfs for which we can numerically
evaluate the distances.

The maximizing signal set sN therefore must have the form si = v'/77 for i = 1 ... , L and

zero for i = L + 1,...,N for some L satisfying 1 • L < N.

We pause for a moment to consider the practical implications of this model. First for the
samples L + 1, ... , N, the received signal is identical under either H0 or H1, and more importantly,
this fact is known to the detector that will disregard samples in this interval. That raises the second

question, namely that if only L < N samples are ever used to represent the binary symbol, why not
omit N from the problem? The answer is to vary N would amount to changing the symbol rate
of the problem, and in turn the power E of the signal, thus making any performance comparison

meaningless.

The solution to the minimization problem of Eq. 20 is most succinctly stated through the
following proposition and its validity may be readily verified for the Generalized Gaussian family
of pdfs, but it is rather complex for the general case.
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d dC(s)/ds, d dKL(s)/ds,
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Fig. 2 - Derivative of Chernoff and KL distances w.r.t. displacement s vs s
intersects any linear function through the origin at most one more point

Proposition 8 Let pn(x) be an element of the generalized Gaussian family of density functions.
Then L = N for r < 2 and L = 1 for r > 2 under each of the three optimality criteria of interest.

To demonstrate this, consider Figs. 3 and 4. In these two figures we have plotted the average
Chernoff distance and the average Kullback-Leibler distance, respectively, as a function of L for
various levels of power E E [0.1,100] for the case of N = 20. When the noise is Laplacian (r = 1)
or Cauchy, the maximum occurs when L = N, while for generalized Gaussian noise with r = 4, the
optimal choice is L = 1. We see that for small signal energies, as for Gaussian noise, the average
divergence and Chernoff distance are essentially invariant to the choice of L. This is to be the case
since in this energy regime, only the energy and not the choice of L determines performance. In
addition, one can observe that aside from the scale (1/ 2r for large E, 1/4 for small E) the "shape"
of these error exponents is essentially identical; this verifies the strong similarities established in
the previous sections.

Since any waveform with a given energy is optimal for small amounts of energy, we then have
arrived at the following optimal signal design procedure for the generalized Gaussian channel: If
the tails of the noise density fall off faster than Gaussian tails, the optimal length N signal in both
the large and small energy regimes is an impulse with amplitude X/IE. If, however, the tails fall
off slower than Gaussian tails (e.g., Laplacian noise) then the optimal length N signal is constant
with amplitude V/-E-N.

To demonstrate the generality of these results, we consider the Cauchy density as an alternate
statistical model for the noise. As is well known, this model has polynomial tails and as such
differs significantly from the generalized Gaussian model considered in this report. In addition, in
this case the tail of the Cauchy density diminishes significantly slower than those of the Gaussian.
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Thus, our theory would suggest that constant amplitude signal waveforms should be optimal. If
one considers Figs. 3 and 4, then one can see that this is in fact the case for the error exponent
with respect to both dc and dKL.

It should be stressed again that these length N signals are optimal only when the waveform sN

is repeated an infinite number of times. Of course, this is never the case in practice. Therefore, we
are obliged to consider the performance of these signal waveforms in practical settings.

In Fig. 5, we have plotted the error exponent derived from simulations for the minimum P,
detector as a function of L for various levels of energy where one period (M = 1) of the signal
is transmitted in an N = 20 sample waveform. The simulation was performed on a Connection
Machine CM-5 for the present set of density functions. The simulation details are documented in
Section 6.

From an asymptotic standpoint, this case of M = 1 is a worst case scenario. Nevertheless, as
one can see, Fig. 5 is strikingly similar to both Figs. 3 and 4 even though the functional forms of
dc, dKL and Pe are drastically different from one another. This seems to suggest that the similarity
between dc, dKL and the minimum P, is much stronger than that offered by the duality principle
of Bradt and Karlin as discussed in Section 2 of this report.

6. SIMULATION

The objective is to estimate the detection error rate for our binary detection problem (Eq. 1)
for equal priors, and when only one period of the optimal signal is used. For power E and number
of nonzero samples L, a noise sequence is randomly generated according to density distribution

Gaussian: Empirical Error Rate Cauchy

10 -10

5 ------ 5 /

20 520

100 50L -

E 0 0 L E 00 L

Laplacian Gen Gauss 4

3 40

o1. 320

O 0.. ... 1..00

50 10

E 00 L E 00 L

Fig. 5 - Empirical Probability of Error vs the number of nonzero samples of the
signal waveform, L, for a variety of signal to noise ratios, N = 20 and M = 1
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function p, of one of four varieties, namely Gaussian, Laplacian, Cauchy, and Generalized Gaussian
with decay rate 4. In the basic Monte Carlo simulation, the following is repeated until the desired
accuracy is reached:

"* Each of the L samples of the sequence are examined. This sequence is equivalent to a
L - sample waveform received at the output of a noisy channel under the null hypothesis H0

(zero signal energy).

"* Each received sample is transformed by the log-likelihood function log ". Here p,, isPn "

a formula that describes a probability density function. p,,-, is another formula for the

alternate hypothesis pdf, translated from pn by the amount s = r.

" All L transformed values axe added and the sum is compared to a threshold 0. If positive,
the error count is incremented by 1. (This is because the present sample is transmitted under
Ho.)

The empirical probability of error is the error count divided by the number of experiments.

Importance Sampling

As the empirical probability (error rate) becomes very small, Monte Carlo simulation requires
an excessive sample size-in the order of the inverse of the error rate. Instead of using the sample
mean and s = 0 signal amplitude for H0 , we use the Importance Sampling technique. For a
rigorous treatment of the subject, the reader is referred to the book by Bucklew [2], and the paper
by Orsak[12).

The algorithm is as follows:

* L samples of randomly generated sequence ni are added with a bias, xi = ni + si, si =

,i = 1E , . ,L

• Each (biased) received sample xi is transformed by the usual log Pn-__ where s =
on+* For each sample, a counter-bias weight wi is also calculated. wi = log P,-l(xi).

• All L transformed values are added and the sum compared to a threshold 0. If positive, the
error count is incremented by an amount exp(W). The exponent W is the sum of the wi of
each of the sequence sample.

Even though the sequence still represents the waveform received under H0 , the bias places the
distribution precisely at the threshold of the log-likelihood-ratio test, such that an "error" occurs
with a probability in the vicinity of 1.
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Random Number Generators

The simalation runs on a Connection Machine CM5 and uses the uniform random number
generator native to this parallel architecture. The Gaussian generator uses a simplified version of
the polar method [13]. The Laplacian and Cauchy generators use the transform method[13].

The Generalized Gaussian index 4 generator uses in addition to the uniform number generator
a Gamma(¼,2) generator. The latter uses Berman's algorithm[14].

Simulation Codes are documented in Appendix D.

7. CONCLUSION

We have considered the problem of waveform design in a non-Gaussian environment for com-
munication applications. As is well known, optimal Neyman-Pearson, minimum error rate, and
optimal mini-max solutions are analytically unavailable when the background noise deviates from
Gaussian. In an effort to obtain "good" solutions, we have adapted Large Deviation based ap-
proaches to determine the asymptotically optimal signal waveform.

The principal result contained in this report was to show that for a given statistical model of
the background noise, one signal waveform is optimal with respect to each of the three optimality
criteria described above. This result holds for both large and small signal energies (amplitudes).
Moreover, we have been able to obtain the precise waveform for a wide class of non-Gaussian
statistics of much current interest. In addition to the above, we have demonstrated the following
specific results:

"* extended Chernoff's theorem for the non i.i.d. problem where the translation amount is
known;

"* demonstrated that the Chernoff Information and Kullback-Leibler distances determine the
error exponent in the problems of interest;

"* calculated large and small signal approximations for each of these statistical distance mea-
sures;

"* calculated formulae for dc and dKL for a variety of non-Gaussian statistics;

"* showed that for the generalized Gaussian class of pdf, maximizing dKL also maximizes dc,
and vice versa;

"* showed the maximizing signal of these two distances is an asymptotically most favorable
signal, in the sense that it also asymptotically maximizes all distances in the Ali Silvey class;

"* compared energy required to maintain same error exponent under NP and Bayes criteria;

"* designed the optimal signal waveform under NP, mini-max and Bayes optimal criteria;

"* confirmed by simulation the effectiveness of the asymptotic theory as applied to the finite-
sample problem.
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Appendix A

DETAILED PROOF OF CHERNOFF THEOREM

In this appendix we present a detailed proof of Chernoff Theorem extended to the case of
independent but not identically distributed samples.

Consider the following binary detection problem in which an N-vector is sent through additive
iid noise channel in one case with zero signal, and in the other with some known signal 8 N

{s 2,i= 1,...,N}.
Ho : Xi = ni i(A 1iid (A-i)
H1  Xi = ni + si, ni - Pn

The optimal detector computes the LLRT based on the aggregate of N samples and compares
it to some threshold -y:

N Hi

12(XN) = - log( s(8) > - (A-2)
i=1 Ho

The decision regions are denoted ZN and zN:

zN 4=S {XNIC(XN) > 7 (A-a)

The false alarm and miss probabilities are defined as aN = Pr{say H, IHo} and O3N = Pr{say Hol H},
respectively. Define the normalized convex combination distribution p' as

px(x N )df IP0-(XN)pAI(XN) (A-4)

f PO-A(ZN)pA(ZN)dZN

For the additive iid noise of Eq.( A-i), under either hypotheses, the difference between the
received signal and the transmitted signal (XN - sN) = {xi - siji = 1,..., N}. Each term xi - Si

is iid p,,. Thus
I-Aps (xN) = FfI ,pi(X,) = FINIPO-;k g-(X,)Pk(Xi) = A-NI• (xi)p"(Xi -3.)

where (A-5)
(S,) t~f fplA(zi)pA(z - si)dzi

The following statistics may be defined in terms of the divergence between the distributions of
the hypotheseses P0 and p, and the normalized-convex distribution p':

Go,(xN) def I 7 1 log EGo,,(XN) =f 7 V a log P\(X,-,) (A-6)
N 1 NI pn(x,)

19
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po,p, may be expressed in terms of G and p' as follows:

p(XN) = exp(NGo,A(XN))ps(XN)
= exp(NGo,,\(XN))fIp,(x') (A-7)

p(XN - sN) = exp(NGI,.\(XN))ps(XN)

= exp(NGI,A(XN)) 1 ,pi(x,)

Observe that under p\(XN), C{log } is identified as the negative of the Kullback-Leibler
P' (.r )

distance dKL, so that:
1 N Pnx,)

E{Go,A(XN)} = - log N i =p(x) 1 E I -dKL(Pi,Pn) (A-8
N A.•$=I jog •pv(xiZs:) = kNZ= 1 -dKL(Pi,Pn--s,)

By the Strong Law of Large Numbers, each of the statistics, Eq.( A-6) approaches its average
defined in terms of the Kullback-Leibler distances. Therefore, the sample average of the statistics
must approach the sample average of the KL distances.

limNo G0,A =limN.• 9j'Ei -dKL(Pi,pn) a.s.

lim N --, , G o, ,\ lim N .-. . IV = A (A -9 )
,A = liMN w7Vi - KL(p-,P ,) a.s.

Define the E -neighborhoods AN of P0 and BN of P, in terms of the statistics G and their
averages:

AN X {xN: Go,.\(XN) + -EN= dKL(Pi,Pn)I <(A
BN def {fxN : GI,A~N (_A-1N0)

{(XN) + - dKL(P,ý,Pn-s, )l <E}

As N -+ oo, by (A-9) we must have that VW, 6 > 0, 3No such that for VN > No,

Pr(ANIXN , p•(XN)) > 1 - b(A-l)

Pr(BNIXN ps(XN)) > 1-- 6

We can now relate the false alarm and miss rates to the E-neighborhoods of Po and Pi as
functions of c and the Kullback-Leiber distances under probability measure p'.

N= fz��s(XN)eNGOA(XN)dXN
> fz1 nAN psA(XN)eNGo,)'(XN)dxN (A-12)f z nAN )d( A 12

fZnAN p\(XN)e-N,-E•=I dKL(P\,Pn)dXN

As N -- oo, we already showed that GoA(XN) approaches 1 dKL(PNP,), ie:
NN

< IGo,A(XJ) + ZdKL(P, P.)I < (A-13)
t=i

Continuing developing inequality (A-12), we have
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aN > e-N-- dKL(P'•Ph)P2(zN ln AN) (A-14)

> e-- £ , ,P -KL(P•,P-)[p8(ZN) + p'(AN) _ 11,

where the last inequality is from P(Z fn A) = 1 - P(Z U A) > 1 - P(Z) - P(A) = 1 -(1 - P(Z)) -
(1 - P(A)) = P(Z) + P(A) - 1, and the assumption that P(ZN(XN)) >1 with Xn distributed
under Ps

The first Neyman Pearson lower bound is then

ON e-Nf NdLPk,.[*~

gan F -N i dK L(pWNPn) [lo - 6) (A- 15)

limN.-. 7loga0N _ limN-,,-N- N=dKL(Pi,p,)

On the other hand, if P(ZfN(XN)) < ½ under this distribution then we have P(ZON(XN)) >
and a similar result holds for the miss probability as follows.

limN--. IlogI3N > limN--,-7 ZN djKL(p\,Pn-s,) (A-16)

Combining Eqs. (A-15) and (A-16), we have the following inequality that can be minimized
with respect to A to achieve a minimax solution for P,.

1 N N

lim 1 log(max(>N,,3N)) > lim 1 min(Z dKL(pI. pn),E dKL(pd,P.-,,)) (A-17)
N-oo N- N-oo N i=1 i=1

Now, the minimum probability of error the best achievable exponent is FN 1 dKL(PAo,Pn),
where A,, satisfies :

Ao =arg(o<A<l) { dKL(Pi,Pn) = -dKL(PA, Pn-s,)
i=1 i=1

Hence,
lim minP, > lira e- -t=1dKL(Pk'XP") (A- 18)

N--o- N-oo

Before proceeding any further we must make sure that the assumptions made in the derivation of
equations (A-15) and (A-16) still hold simultaneously.

Lemma 9

arg.\ dKL(pi(XN),p(XN)) = dKL(pi(XN),p(XN - sN)) such that lim EI[IzN(XN)]A AN -oo A 2

=arg,\ IdKL(p\(X N!,p(X N)) = dKi(pi (XN), p(XN - sNl)}
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Proof: For minimum P, define:

ZN { IV 7rŽ(VV 7rIP(

and
ZN - XNIrlrpi(XN) > 7r,,po(XN')}

The likelihood ratio is,
N Hl

12(XN) = NrIPI(X,) > 0
Xo.Po(X) IH,

Therefore, 1(N i ,1° j pI(xi)]t-SSS ,? >H
lim £( XN)l= tN 1Ni <g0.

N-ooN-c-,NZ ý~i)JH

Therefore for large N,

£.[Iz•N(XN) = P[XN E ZONIXN ~ pij
0 A

o[X N log .p.(xi) A _

and (XNj =p[XI1 N lfPI(xi))

£.[Iz(xN) lop[xNI-!-=!og{, X >0 xNp

Now by the strong law of large numbers,

limN--, IN1I log } = limN--, _LEN flog PlIX, x p ,(,i)dxi a.s. (A-19)

Also for A = \o
N (

lfog P()}p',(xi)dxi = J lo p1 x, -- A(xi) dxi(zt xGi) P A.(xi) p,(x
N N

dKL(Pi\,PO) + dKL(PkoPI)
2=1i=

=0

Therefore,

limN--o-- i=l logN 0 0 a.s. (A-20)

Hence,

e.[Iz.(XN)I = £.[IzN(XN)]

0
The lemma shows that we still satisfy the assumptions in arriving at Eqs. (A-15) and (A-16).

Hence from Eq. (A-18) ,

lim lm min,,dKL (P%,P.)" (A-21)N •oo N -- N--oo N-g,
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Chernoff Information

Lemma 10

N 1
--- dKL(P•oPn) = Min logJA(s

Proof:
log JA(SN) = log f pI-A(XN)pA(XN - sN)dXN.

Since the components of XN are independently distributed,

N

log JA(sN) = f log PI- A(xi)PA(X, - si)dxi
3=1

N
= logJ e(I-A)logP(,) +)Alog px'-s,) dx

2=1

Maximizing JA wrt A:
0 ~N )

a0log JA (sN) N N jpl-A(X)pA(x - si)[logp(xi - si) - logp(xj)]dx3 .
N 1 /

E i J f(s I p1-2(xi))PA((X o p(- 8,)i
N( -S)x

i=1

N
= Z[-dKL(PiPn-s,) + dKL(Pi\,pn)].

i=1

which muc.t be equal to 0 for minlogJA(XNN). Hence the minimum A, is given by,

N N

SdKLL(po ,pn) dK L (PX Pn -s.
i=1 2=1

Now to get minA - log JA(XN), we must proceed as follows. Consider:

logAo (XN) = (1 - )logp(XN) + Alogp(XN - sN) - log JAo(sN).

Therefore,

log J,'o(sN) = (1 - A)log p(XN) + Alog p(XN-SN)
ps,(xNN p-%(XN)

Taking the expectation value w.r.t.p3o(XN):

log JAo(SN) = -(1 - A)dKL(pSo (XN), p(X N)) _ AdKL(p*\ (XN), p(XN S 5 N))

N

= - ZdKL(Pi,(Xi),p(X.)) (A-22)
i=1
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by making use of the fact that A. results in the minimum value for JA(sN) .Hence we have,

N N

- log J'o(sN) = EdKL(piPn) = EdKL(Pi\,Pn-8,)"
i=1 i=1

Hence the result.O

From Eq. (A-21) we have,

li 1NlogminPý N> lim 1 1ogJ9 o(sN)N--oo -- N-•oo N

which is the desired lower bound for min Pe.

Upper bound, Chernoff

We will now show an upper bound for minPe which approaches the value of the lower bound,
thus establishing the asymptotic equivalence of the Chernoff Information dc to the best annihilating
rate for Pe.

min Pe = f min (ropn(XN), ipn(XN - sN))dXN

•_ f ( 7roPn(XN))l-A( 7ripn(XN - sN))AdXN

= r0  1 o i=I -l1 fpj"(x i)p,•(Xi - si)dxi (A-23)I-A A I-IXpA(X
= ro 7r exp(,logfp. n(xi)pn(xi - si)dxi)

4 logminpN < 1 log(i0 rl)+ -s)d.log mi ~ Llg?'7A LE f Pln \xi)Pn,(xi -- si)dxi.

Taking the limit:

1 1 N-Alia m-logminp < li (x)pA(x - s)dxN--*oN -- N---00oA N Elgp (X-s~x

= lim min 1 log J\(sN)
N-oo xA N

= lim 1 log JA(sN). (A-24)
Nd oo N

Take the upper and lower bounds together, we have the limit.



Appendix B

DIRECT CALCULATION OF CHERNOFF INFORMATION

In this appendix we derive the Chernoff Information for the Gaussian, Cauchy, Laplacian and
Generalized Gaussian of index 4 densities. The results are summarized in Table 1.

Gaussian

1 _X 2

Probability density function: 1--- e 2

2 (XI+(

CG(s,o) = -logf 72=-,exp- 2or (x- s) 2)dx

= -iogf4 exp-, I -_ )2+ (1) 2 )dx
S

2

Cauchy

Probability density function: 1 1

Cc(a,a) = -log f-L•' +dx

S l 42 . dy (B-i)
+ -C7 ++1)

- log • f 1, dy
+(-2U2-L-)y2+(E-• +ýL+)

From Ref. B1, Formula 266.00, and definitions and modulus properties of Y in pages xv, 12:

D(a,a) = fo dy =-L.F(7r,k)
V/4+0y

2 
+_

4  20f

where

k2 _ 2_ (B-2)
4a,.

T (7,k)= 2Y(1,k)

YF(1, k) is the complete elliptic integral of the first kind that we denote in Table 1 of the report
as Ek.

25
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The application of Formula 266.00 requires that

2 2  S2 /8
2  

4 1

cr- -< V -OC7+-+W42 V2 16 ++

This can be shown to be true for all positive values of a and a.

Apply Eqs. (B-2) to (B-i), we have the substitutions

/3 = 2a2 ,2

4 32 2 2_4
16= C_ 7

(B-3)
a22,2 a2

2 322+ ýL_+

so that c(s,ao) = - log •D(s,ao)
log - _ _ T(-,k) (B-4)

where k is defined in Eq. (B-3).

Laplacian

Probability distribution function: e

CL(Sa) = log f. exp - +f_ e--

-+ £v+ fe_lo2; v7 :O• 1__ ;7/ 72(-X-X+S)dx

= _log [e 271- Z + I g~e 2;/-7;72

= 2 -log(1 + ').

Generalized Gaussian index 4

Probability distribution function: 2re+-)A(r) xp where A(r) 2/

I I
CGG 4 (Sr) = -log0fP pn.(x)p 2_xdx

-log j exp --2-- T(X4 + (X _ s)4 )dx
Y= -2( .A - A (B-5)

- -log 1 2 f0+ exp -2-j-A(2y4 + 3s 2y2 + 1-)dy

logPr(ýA4) + -logf' exp -F + s2 y2 )dy4 16AC o4 2
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The argument of the logarithm of the third term in Eq.( B-5) is evaluated using an identity in
Ref. B2. The identity is

exp- 2 x 4 -2 2 2 dx = 2-5-e K, (B-6)

where K•_is the modified Bessel function with fractional order 1. We apply identity Eq. (B-6)

with 0 nd- = -'.7A7 V14 "
The integration is then

00 1 4 3-e 4A 9B-4
Jexp -(Y +±_8Y )dy se32 AT.K1 9A:(-7

Substituting
4 3S

4

CQa, o)=----4log - logK i(--) (B-8)32A4  I(ý)A 32 A4

where A = A4  rLV-
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Appendix C

LARGE SIGNAl APPROXIMATION FOR CHERNOFF INFORMATION FOR
AN EXPONENTIAL FAMILY OF PROBABILITY DENSITIES

In this appendix we detail proofs for Fact 5 in the main text that provide upper bounds to the
Chernoff Information for large signal. It is repeated here:

Consider densities of the form pn(x ) = 2r+I'}A(rexp {- -{ } },where A(r) :{ r(ll}1/2

Then if Z denotes the following limit:

2 = lim dc(s) - log{fpV (x)p ( - s)dx}
-o-*-logpn(s) =s-.o -log p,(s)

it must be that 1
2= ,r> 1

Proof: Probability densities of this form are known as Generalized Gaussian density with
decay rate r and variance a 2. We begin with the r > I case.

1 For r>I :

Dividing the limits of the integral involved in C(s) as follows:

J0 pi 2 (x)pi/2(X - s)dx 0 L p 2 (X)pI/2(X - s)dx +/ .j /2(X)p1/2(X -- = P,, n•P •-~ P. nxP z sd
oo112 1/pl2X

+ n (x)p( - s)dx (C-1)

Now denoting b = A(r)r and I = +- 4 (-- the second term on the RHS of the above
2r{1+!,)A(r)

equation simplifies to,

jPn/2(X)p/2(X -s)dx = IC exp 2b

< Kj exp jjXI+Ix _I}r dx- 0 2rb

where the inequality was introduced by using the relation:(Ref. Cl)

Ixir + ix - sr > {ilX + Ix- (C-2)
2r-1

29
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which holds for all r > I and for all x and s. Thus, by recognizing that IxI + Ix - sl = s over
the region of integration, we have that

P'/2(x)p'/2(x-s)dx < IC exp-lsrdx

= Ks exp 2rb ((-3)

Proceeding, we turn our attention to the first term in Eq. C-1 to establish an upper bound

for the integral as follows :

0 1/2 XI1/2( 0 -[x~r -Ix- d1 .
pn pn - )dx = IC exp 2 exp x2b .

Now the term {exp -2 has its maximum value at x = 0 for x E [-o•, 0], hence we may

upper bound the integral by,

0 122 P1/2X /0 -•b 18"
oPn ( ) n ( - s)dx < _ IC . .c exp exp --- ax

j '()0\ " " 2b ep2b
_- 1 l fr 0 - I zV .

= exp -- --_ exp 2badx

=Kexp { -'sr -21/(2b J2/CCd

where the latter integral was evaluated by using the fact that Kexp zIxL is a valid density
function. Similarly we may upper bound the third term in Eq. C-1 as follows:

10" pnl(X1 I/2 00 _-jXjr -- X 8 1 r

n ( (x - s)dx = K z exp 2b exp 2b

Here the term {exp -ILI has its maximum value at x = s for x I [s, ol. Hence we can

upper bound the integral by,

P/2(x)p/2(x - s)dx < K/exp f exp b d
2b 2b

IC exp s 21/r
e 2b J 2K (C-5)

where the latter integral was evaluated as before. Therefore by combining the upper bounds

on the terms in the RHS of Eq.( C-i) we arrive at the following upper bound

j 
_____)PI2( 

~ fjr
P00 n(x)p,/ (x- s)dx < 21/r exp -Is + s exp (C-6)

Thus it must be that,
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-log{ff.pV 2 (x)P( (X- s)dx} - log{21/' exp - + KIs exp -2_.}

- logpn(s) -logK + Islr/b

Therefore from Eq. C,

- log{ffp,,(x)p, (X -s)d)X
Z = rn - logpn(s)

{ -log {exp [- L3" 1} logIIs+21/rexp[r5 ']}
_ a 00m Isl"Ib -Isrl/b"

Now as s oo: exp [ 24 + -,0 since r > 1, so the above limit reduces to,

z~ ~ > im sl" /2'b log{Ks}}
3ý0 f 2 Isrl/b IsFr/b
1I- 

(C-7)2r

thus establishing a lower bound on Z. Now we seek to bound Z from above by the same
quantity and we proceed as follows.

We know that :

IXIr +lIXsljr <5 {S 3 }
for x E [0, s]. Hence,

jII(/)p,12(/ - s)dx = 2./2 pV12(X)pVI2(X - s)dx

s1 I 8/ Ke {r--,i'ir--(2--_ • ) 2bd

> 2] 1 Ke 2 )b dx

2- I 2e 10" e dx
)r __

2•e-e
= sr-I (2--,r-_ )1

2b

Therefore we have,J0 p/ 2(X)pnl2(X - s11Ž p 2(X)pVI2(X -~X2-IC e/- -,2,

-> [•I(2- 2--r_)-1

2b

Therefore,

lg 2 - loge- - log e I

Z <lim ,
3"-00 A
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Slirm 2b s

I2 
(C-8)

Hence combining the upper and lower bounds of Eqs. C-7 and C-8 we get the desired result.EI

2 For r < 1:

Let us start out by establishing a general upper bound valid for all probability densities. We
shaHl first upper bound the Chernoff information C(s) using Jensen's inequality:

dc(s) --log{I Pn (X)n (x-s)dx}

-- logIE- p 1/2 s)

x EI -log{P 1/2(X)
1

= -dKL(S) (C-9)
2

Thus it is sufficient to show that,

lims--oo -dKL(S) (C-10)
- logp"(s)

Proceeding: we may write the above ratio as

dKL(S) f {log{pn(X) - logpn(X - s)}}pn(x)dx

- logpn(s) - logp"(s)

The final result is readily established by making the following assumptions

(a) pn(x) is symmetric in the tails,

(b) limI._, { • =0 for all x,

(c) lima--4  {g9pn( --s) 1 for all x.

to arrive at:

Z < lirms •00{ -lods)}

Thus establishing the desired result. As before, we shall lower bound Z by the same quantity
namely ½. Here we make use of the fact that

rIx + Ix - sIr > ksIr

for x E [0, s]. Therefore,

j S()s 2 -- }dx
Pn )n -s)dx < ICKe{

< K~se(10
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also from Eqs. (C-4) and (C-5),

pn ( s)dx < e

and,

p' •p- s)dx < 22 {e-

Therefore,

p'/ 2(x)p (�•��s)dx < Ksef{-} +21/be{--}

= 2{JI}{21/' + Cs}.

Hence,

_ -.l {-~log{21/r + IKs} +Z >1 li L2

2

By combining the upper and lower bounds together we get the desired result.

If we consider only the Generalized Gaussian density function, we must have:

For r> 1:

dc(s)- logpn(s) (C-11)de~s) - 2r

and for r < 1:
- logpn(s) (-2

dc (s) - 2 (C-12)

for large 's'.
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Appendix D

CM FORTRAN SIMULATION CODES

program simulation
integer NtMax, NMAX, MMAX, EMAX, SMAX
parameter (NMAX= 256, N2MAX= 256, MMAX=20, EMAX= 7)

C NtMAX: max number of blocks of time series data
C NMAX: time series length; actually a slice small enough to fit machine
C N2MAX: second time series length to do multiple slices in parallel
C MMAX: maximum number of channels
C EMAX: maximum number of Energy levels

Real pO,pl ! apriori prob of HO to H1
Real, array(EMAX), DATA ::EE = [0.1, 1.0, 10.0, 30.0, 50.0, 75.0, 100.0]
Real N(NMAX, N2MAX, MMAX)! time series of noise, variance 1 noise

i iid among samples and among channels
Real W(NMAX, N2MAX) ' time series of weighted received signal
Real WW(NMAX, N2MAX) ' time series of weighted received signal
Real R(NMAX, N2MAX) ' time series of received data
Real L(NMAX, N2MAX) ! time series of Bayesian statistic
Real P(MMAX, EMAX) ' prob. of error
Real Ptemp(MMAX, EMAX) ' prob. of error
Real a, temp, s, noise
character*1O PDF, myPDF

CMF$ LAYOUT N(:serial, :news, :news), L(:serial, :news)
CMF$ LAYOUT R(:serial, :news)
CMF$ LAYOUT W(:serial, :news)
CMF$ LAYOUT WW(:serial, :news)
CMF$ LAYOUT P(:news, :news)
CMF$ LAYOUT Ptemp(:news, :news)

Integer ns, ne, i, im, m, Ei, ii, j, jj
Integer thePDF
include 'Random.h'
include 'LogLRT.h'
include 'angle. comments'

pO =0.5
p1 =0.5

10 print*,'Which noise PDF ?
read*,PDF
print*,PDF
if (whichPDF(PDF) .EQ. 0) then

print*,'hey'

35
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go to 10

end if
print*,whichPDF(PDF)

11 print*,'Which detector PDF ?

read*,myPDF
print*,myPDF
if (whichPDF(myPDF) ,EQ. 0) then

print*,'hey'
go to 11

end if

print*,'How many slices (', NMAX*N2MAX,' samples each)?'

read*,NtMAX
P(I:MMAX,I:EMAX) = 0.0

do Nt =1, NtMAX !for all time slices Nt = 1: NtMax

do im = 1, MMAX
N(I:NMAX, 1:N2MAX, im) = MyRand(NMAX,N2MAX, PDF)

end do

Ptemp(I:MMAX, 1:EMAX) 0.0

do Ei = 1, EMAX
EO = EE(Ei)
do m=i, MMAX ' m is the grouping index

L(:,:) = 0.0 init the statistic array

a = Sqrt(EO/m)
W(:,:) = 0.0

do i=1, m ! channel i

C R = a/2.0 + N(:,:,i) !this line for Importance Sampling

R = N(:,:,i) !this line for Monte Carlo

C W = W + LogLRT(NMAX, N2MAX, R, a/2.0, PDF, 1) !for IS

L = L + LogLRT(NMAX, N2MAX, R, a, myPDF, 1) !for both

end do
WW(:,:) = 0.0

forall (ii=l:NMAX, jj=l:N2MAX, L(ii,jj).LT.Log(pl/pO))

I WW(ii,jj) = 1.0 !for Monte Carlo

C 1 WW(ii,jj) = Exp(W(ii,jj)) !for IS

temp = sum(WW)
Ptemp(m, Ei) = temp

C Accumulate the empirical prob of error across time slice

P(mEi) = P(m,Ei) + temp

end do ! channel grouping

end do ! energy
end do !time slices

P= P/(NMAX*N2MAX*NtMAX)
print*,PDF,'-',myPDF
write(*,98)EE(I:EMAX)

98 format(lx,' ml, E->',7(FI6.4, ' 1))

do m= 1,MMAX
write(*,99)m, P(m, 1:EMAX)

99 format(1x,14,TR1,7(G20.8, '
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end do
end

include 'Random.fcm'
include 'LogLRT.fcm'

C ................. ........... ............ .......................................
C File LogLRT.fcm

function LogLRT(NN,N2, R, a, PDF, s)
Integer NN, NI ' vector length, number of channels

Real LogLRT(NN,N2)
Real R(NN, N2), a, s ' received vector, translation, std dev

character*10 PDF which pdf
CMF$ LAYOUT LogLRT(:serial, :news), R(:serial, :news)

integer i
Real a2, s2
Real AA2, AA4, GQuarter, GFiveQ, GThreeQ
interface

integer function whichPDF(PDF)
character*10 PDF

end interface

C calculates the statistic for use in the Optimal test
a2 = a*a
s2 = s*s

select case (whichPDF(PDF))
case (:0)

LogLRT(I:NN, 1:N2) = 0.0
case (1) !Gaussian

LogLRT(1:NN, I:N2) =-(a/s2)*R(I:NN, 1:N2) + a2/(2.0*s2)
case (2) !Laplacian

LogLRT(1:NN, 1:N2) =
1 -(l/s)*Sqrt(2.0)*(Abs(R(l:NN,1:N2)) - Abs(R(1:NN,I:N2) -a))

case (3) !Cauchy
LogLRT(1:NN,1:N2) =

1 Log((1.0 + ((R(I:NN,I:N2) -a)/s)**2'1(1+ (R(I:NN,1:N2)/s)**2))

case (4:) !GenGasuss4
GQuarter = 3.6256099082
GThreeQ = 1.2254167024
GFiveQ = GQuarter/4.0
AA2 = s2*GQuarter/GThreeQ
AA4 = AA2*AA2

LogLRT(1:NN,I:N2) = (I.O/AA4)*((R(1:NN,I:N2)-a)**4 -R(I:NN,I:N2)**4)
end select
return
end function

C...............................................................................
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C File Random.f cm

Function RandUniform(N,N2)
Integer N,N2
Real RandUniform(N ,N2)

CMF$ LAYOUT RandUniform( :serial ,:nevs)

100 call cmf-.random(RandUniform(1 :N,1:N2))

if ((minval(RandUniform) <= 0.0) .OR. (maxval(RandUniform) >= 1.O))then
goto 100

end if
end

Function RandGaussian(N,N2)
Integer N,N2
Real RandGaussian(N,N2)
Real Temp(N,N2)
Logical ISHALF(N, N2)

CHF$ LAYOUT RandGaussian(:serial, :news)
CMF$ LAYOUT Temp(:serial, mnews)
CMF$ LAYOUT ISHALF(:serial, mnews)

integer i, j
real twopi

twopi = 4.0*acos(0.0)
100 call cmf-.random(Temp(1:N,1:N2))

RandGaussian(1:N,1:N2) = SQRT(-2.0*Log(Temp(l:N,1 :N2)))

200 call cmf-random(Temp(1:N,1:N2))
RandGaussian = RandGaussian*cos (TwoPi*Teznp)
end

Function RandLaplacian(N,N2)
Integer N,N2
Real RandLaplacian(N, N2)

Real Temp(N, N2)
CMF$ LAYOUT RandLaplacian(:serial, :news), Temp(:serial, :news)

Real s2
Integer i, j

100 call cmf-random(Temp(1:N,1:N2))
if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0)) then

goto 100
end if
s2 = 1.0 /Sqrt(2.0)
RandLaplacian(1:N,1:N2) = s2*Log(Temp(l:N,1:N2))
call cmf-.random(Temp(1 :N,1 :N2))
forall (i1l:N, j1i:N2, Temp(i,j) > 0.5)

1 RandLaplacian(i,j) =-RandLaplacian(i,j)
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end

Function RandCauchy(N ,N2)

Integer N,N2

Real RandCauchy(N ,N2)

Real Temp(N,N2)

CMF$ LAYOUT RandCauchy(:serial, :news), Temp(:serial, :news)

Integer i, j
Pi = 2.0*acos(O.0)

100 call cmf-.random(Temp(1:N,1:N2))

if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0)) then

C print*,'bad'

goto 100

end if
RandCauchy(1:N,1:N2) = tan(Pi.4(Temp(1:N, 1:N2) - 0.5))

end

Include 'Gamma.f cm'

Function RandGenGauss4(N ,N2)

Integer N,N2

Real RandGenGauss4(N N2)

Real Temp(NXN), X(N,N2)

CMF$ LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :news)

CMF$ LAYOUT X(:serial, :news)

Real A, A4, GQuarter, GFiveQ, GThreeQ, alpha

Integer i, j, ii, jj
real twopi

interface

function RandGammal(N,N2 ,aa)

integer N, N2

real RandGammal(N,N2), aa

CMF$ LAYOUT Ra~ndGAmmal(:serial, :news)

end interface

twopi = 4.0*acos(0.0)

alpha = 1.0/4.0

GQuarter = -.6256099082
GThreeQ = 1.2264167024

GFiveQ = GQuarter/4.0

A = Sqrt(GQuarter/GThreeQ)

100 call cmf-.random(Temp(1:N,1:N2))

if ((minval(Temp) <= 0.0) .OR. (maxval(Temp) >= 1.0)) then

C print*,'bad'

goto 100
end if

Xcl:N, 1:N2) = RandGammal(N, N2, alpha)
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RandGenGauss4 = A*SQRT(SQRT(X))
call cmf-random(Temp(1:N,1:N2))
forall (ii=l:N, jj~l:N2, Temp(ii,jj)>O.S)
IRandGenGauss4(ii,jj) =-RandGenGauss4(ii,jj)

end function

Function MyRand(NN2, PDF)
Integer N, N2
Real MyRand(N, N2)
Character*iO PDF
Real Temp(N, N2)

CMF$ LAYOUT MyRaxid(:serial, mnews), Temp(:serial, :news)

interface
integer function whichPDF(PDF)
character*1O PDF

end interface

interface
function RandUniform (N,N2)
integer N,N2
real RandUniform(N ,N2)

CMF$ LAYOUT RandUniform(:serial, mnews)
end interface

interface
function RandGaussian (N,N2)
integer N,N2
real RandGaussian(N,N2)
real Temp(N,N2)

CMF$ LAYOUT RandGaussian(:serial, mnews), Temp(:serial, mnews)

end interface
interface
function RandLaplacian (N,N2)

integer N,N2
real RandLaplacian(N,N2)
real Temp(N,N2)

CMF$ LAYOUT RandLapla'zian(:serial, :news), Temp(:serial, mnews)

end interface
interface
function RandCauchy (N, N2)
integer N,N2
real RandCauchy(N, N2)
real Temp(N, N2)

CMF$ LAYOUT RandCauchy(:serial, mnews), Temp(:serial, mnews)

end interface
interface
function RandGenGauss4 (NN2)
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integer NN2
real RandGenGauss4(N ,N2)
real Temp(N,N2)

CNF-$ LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :news)
end interface

select case (whichPDF(PDF))
case (:0)

MyRand = 0.0
case (1)

MyRand = RandGaussian(N,N2)
case (2)

MyRand = RandLaplacian(N,N2)
case (3)

MyRand = RandCauchy(N,N2)
case (4)

MyRand = RandGenGauss4(N,N2)
case (5)

MyRand = RandUniform(N,N2)
case (6:)

MyRand = 0.0
end select
return
end function

Function whichPDF(PDF)
integer whichPDF
character*10 PDF

if(index(PDF, 'Normal') .NE.0) then
whichPflF = I

else if(index(PDF,'normal') .NE.0) then
whichPDF = 1

else if(index(PDF,'gaussian') .NE.0) then
whichPDF = 1

else if(index(PDF,'Gaussian') .NE.0) then
whichPDF = I

else if(index(PDF, 'Laplacian') .NE.0) then
whichPDF = 2

else if(index(PDF, 'Laplace') .NE.0) then
whichPDF = 2

else if(index(PDF, 'laplacian') .NE.0) then
whichPDF = 2

else if(index(PDF, 'laplace') .NE.0) then
whichPDF = 2

else if(index(PDF, 'Cauchy') .NE.0) then
whichPDF = 3

else if(index(PDF, 'cauchy') .NE.O) then
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whichPDF = 3
else if(index(PDF, 'GenGauss4') .NE.0) then

whichPDF = 4
else if(index(PDF, 'gengauss4') .NE.0) then

whichPDF = 4
else if(index(PDF,'Gengauss4') .NE.O) then

whichPDF = 4
else if(index(PDF, 'uniform') .NE.O) then

whichPDF = 5
else if(index(PDF,'Uniform') .NE.O) then

whichPDF 5
else

whichPDF = 0
end if
return
end function

Function erf(NNAX, NMAX, R, x)
real erf
integer NMAX, N2MAX
real R(NMAX, N2MAX)
real x

CMF$ LAYOUT R(:serial, mnews)
real One(NMAX, N2MAX)

CMF$ LAYOUT One(:serial, :news)
integer ii,jj

One(:,:) =0.0
forall(ii=I:NMAX, jjlI:N2MAX, R(ii,jj).LT.real(x))
1 ~One(ii,jj)=1.0
erf = sum(One)/real(N2MAX*NMAX)
return
end function

C ...........................................................................
C File Gamma.fcm

Function RandGammal(N, N2, aa)
Integer N,N2
Real RandGammal (N ,N2)
Real aa
Real Temp(N,N2)
Real Temp2(N,N2)
Real X(N,N2)
Real Y(N,N2)
Real Z(N,N2)

CMF$ LAYOUT RandGainmal(:serial, mnews), Temp(:serial, :news)
CMF$ LAYOUT Temp2(:serial, :news)
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CMF$ LAYOUT X(:serial, :news)
CMF$ LAYOUT Y(:serial, :news)

Integer i, j, retry
Real b

retry = 0
C print*,'aa', aa

b = 1.O/(1.0-aa)
call cmfrandom(Temp(1:N, I:N2))
X(:, :) = Temp(:, :)**(1.0/aa)
call cmf-random(Temp(1:N, I:N2))
Y(:, :) = X(:, :) + Temp(:,:)**b

100 if (maxval(Y).GT.1.0) then
retry = retry + 1
if (mod(retry,100) .EQ.0 ) then

C print*,'retry =1, retry
endif
call cmf-random(Temp2(1:N, 1:N2))
call cmf-random(Temp(1:N, 1:N2))
where (Y(:,:).GT.I.0)

X(:, :) = Temp(:, :)**(1.0/aa)
Y(:, :) = X(:, :) + Temp2(:,:)**b

end where
goto 100

end if
C print*,'retry = ', retry
101 call cmf-random(Temp(1:N,1:N2))

if (minval(Temp) <= 0.0) then
C print*,'bad'

goto 101
end if

102 call cmf-random(Temp2(1:N, 1:N2))
if (minval(Temp2)<= 0.0) then

C print*,'bad'
goto 102

end if
RandGammal = X*(-log(Temp*Temp2))
end

...............................................................

C File Random.h

interface
function myRand(N, N2, PDF)
integer N, N2
character*10 PDF
real myRand(N,N2)
real Temp(N,N2)

CMF$ LAYOUT myRand(:serial, :news), Temp(:serial, :news)
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end interface

interface
integer function whichPDF(PDF)
character*1O PDF

end interface

interface
function RandUniform (N,N2)

integer N,N2
real RandUniform(N,N2)

CMF$ LAYOUT RandUniform(:serial, :news)

end interface

interface
function RandGaussian (N,N2)

integer N,N2
real RandGaussian(NN2)
real Temp(N,N2)

CMF$ LAYOUT RandGaussian(:serial, :news), Temp(:serial, :news)

end interface

interface
function RandLaplacian (N,N2)
integer N,N2

real RandLaplacian(NN2)
real Temp(N,N2)

CMF$ LAYOUT RandLaplacian(:serial, :news), Temp(:serial, :news)

end interface

interface
function RandCauchy (N, N2)

integer N,N2
real RandCauchy(N, N2)

real Temp(N, N2)

CMF$ LAYOUT RandCauchy(:serial, :news), Temp(:serial, :news)

end interface
interface

function RandGenGauss4 (N,N2)

integer N,N2
real RandGenGauss4(N,N2)
real Temp(N,N2)

CMF$ LAYOUT RandGenGauss4(:serial, :news), Temp(:serial, :news)

end interface

interface
function erf(NMAX, N2MAX, R, x)

real erf

integer NMAX, N2MAX
real R(NMAX, N2MAX)
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real x
CMF$ LAYOUT R(:serial, :news)

end interface
S.. . . . , o , . , , o , , , . ... . ., . , . . . . . . . .. . . . . . . . . . . . . . .

C File LogLRT.h

interface
function LogLRT(NN,N2, R, a, PDF, s)
Real LogLRT(NN,N2)
character*1O PDF I which pdf
Integer NN, N2 ! vector length, number of channels
Real R(NN, N2), a, s

CMF$ LAYOUT LogLRT(:serial, :news), R(:serial, :news)
end interface


