
S... .. - -.- • :•, • . . . - _ :• ,,

AI-S-

NAWCWPNS TP 8212

0N
M

A Colocated Magnetic Loop,
Electric Dipole Array Antenna

(Preliminary Results)

by
P. L. Overfelt

D. R. Bowling
D. J. White

Research Department DTIC
SEPTEMBER i994 "w. t. t R

NAVAL AIR WARFARE CENTER WEAPONS DIVISION
CHINA LAKE, CA 93555-6001

'3TIC Q UIL ary

N"AL L WMANAPE CTNfl

Approved for public release; distribution is
unlimited.

94-32027E""!li l,11'i Atl' i' •



Naval Air Warfare Center Weapons Division

FOREWORD

This report presents the electromagnetic analysis of a colocated electric dipole,
magnetic loop antenna array. This work was performed at the Naval Air Warfare Center
Weapons Division, China Lake, CA, during fiscal year 1994 in support of the IR Project
on "Analysis of Electrically Small Antennas," and also in support of an accelerated
technology initiative investigating high temperature superconducting antennas, sponsored
by the Office of Naval Research, Infen-nation, Electronics, and Surveillance Science and
Technology Department (ONR3D). This work was monitored initially by Dr. Y. S. Park
and subsequently by Dr. Donald H. Liebenberg under fund document
N0001494WX35177.

This report is a working document subject to change and was reviewed for technical
accuracy by Anna M. Martin.

Approved by Under authority of
R. L. DERR, Head D. B. McKinney
Research Deparnnent RAdm., U.S. Navy
September 1994 Commander

Released for publication by
S. HAALAND
Deputy Commander for Research and Development

NAWCWPNS Technical Publication 8212

Published by ........................... Technical Information Deparmnent
Collation ........................................... Cover, 16 leaves
First printing .............................................. 65 copies_



REPORT DOCUMENTATION PAGE MNo07418

PLufr r4atigbvrdsa for *a wc~bcx im4otiUorrvm a 95ff*d to tirwor I how ur~v~ pein "he tasltrawn w.s0wm ~d oom.qgitwrvV"a
rrriawti.Md Vi. d~la ibtiod. and ouv and (wr-iv..gthe 0v 4~no .ofwudori Send conivirts rogwdng the tnwdme eaftae or mniy other m* df ie O~doiiv at uiw o~nit.
vwkjde eu~ptiw for riaduorg the buriM,. to Wmehrgton H~wwdtw. Servmx D-owa. for anwtdtmb Operem end Peoporw. 1216 .etiiaorrA Osnu Higrm-W. Sute 1204. "ohtn.
VA 22O

4
3u. aid to the OfIce of Meugeaaemm end Budget. Paparmen Reduiono Projec (0704-at198). Wastegon. DC 206GM

1. AGENCY USE~ ONLY jLwvvb~tr) 2-REPORT DATE 3. REPORT TYPE AND DATES COVSRE.D

September 1994 Interim - October 1993-Septemnber 1994
4. TITLE AND SUBTITLE & FUNDING NUMBERS

(PREMINRY ESUTS)NOO0014-94-WX-351 77

a- ATHO(S)N0001 4-94-WX-41 012

P. L. Overfelt, D. R. Bowling, D. J. White

7. PERFORMING ORGANeZATION NAME(S) AND ADDRESS(EC) 6, PERFORMING ORGANIZATION

Naval Air Wartar"- Centier Weapons DivisionREOTM8F
Cnina Lake, CA 93555-6001 INAWC'WPNS TP 8212

I. 8 SPON NG/IiOITOR1NG AGENCY NAaIES) IRS ADDRESSEE) 10 SPONORIN01/IUONITORING
Dr. Yoon Soc Park AGEWCY REPORT NUMBIER

ONR 44GI
Office of NsvaI Research
Washington, DC

ii. SUPPLEMENTARY NOTES

12A. IDISTROUTIOWAVAJLAS3IITY STATEMENT 129. DISIRIBUT'IONCOOS

A Statement: Distribution Unlimited

13. ASSTRAC.T (Maactwn M.Owors)

(U) We present a detailed electromagnetic analysis of an electrically small colocated electric dipole arnd magnetic iocp
antenna array. This antenna is the simplest example of the Grimes multipolle class of antenna arrays. We have
determined that since the interaction term between the two elements disappears from the radial complex power, we
were able to set the radial react~ance to zero by choosing appropriate current magnitudes and phases on the array
elements. By driving the two elemnents in quadrature, we obtained a much increased radiation intensity and directivity
as wel' as increased radiated power.

M. SBJEC TERS 15 NUMBER Of PAGES

Antennas, Mutua! Impedar.:e, Electric Dinole, Arrays, Muhtipoles, Magnetic Loop 3

17. SECURtITY CLASSI1CA11ON 16. SECURITY CLASSIRCATION I&. SECURITY CLASSIRCATION 210 UNIATION OF' ABSTRACT

NSN 7540-01-280550 Standard Form 298 (Rev. 2-S9)
Probetu by ANSI Std 239 18



UNCLASSIFIED
--. C•LASSRCATION OF THIS PAGE w DM, &tad)

dandud Fom 298 Back (Rev. 2-49)

SECURITY CLASSARCATION OF THIS PAGE

UNCLASSIFIED



* e -. ..

NAWCWPNS TP 8212

k. INTRODUCTION

Electrically and/or physically small antennas are often required by missile systems
because of limited space requirements or reduction in radar cross section. For some
systems, even at UHF and VHF frequencies, the antenna can be isolated as the single most
heavy and bulky component (Reference 1). Reduction in size presents problems for the
system designer due to the performance penalties in bandwidth and efficiency that arise.
These performance penalties must be absorbed into the overall system performance
resulting in poor reception in low signal regions. Matclhing techniques can be used to boost
antenna performance but a reduction in total efficiency is still incurred.

Several methods to counteract the above problems have been considered. For small
antennas with radiation resistances lower than the ohmic resistances of their radiating
elements and which include feed and matching networks, higher efficiencies have been
measured when all components are composed of high temperature suoerconducting (HTS)
materials (References 2 through 5). However, this replacement of normal conductors with
HTS components can only partially compensate for the drop in efficiency upon size
reduction. Thus it is advantageous to obtain as large an efficiency as possible from a given
* . t b Yt. • &•,I. nAA•;.as .

One such method has been investigated for some years by D. M. Grimes (References 6
through 11). This method consists of using judicious combinations of electric and
magnetic multipole sources to attempt to exceed the small antenna limitations derived by
Chu (Refer :nce 12), Harrington (References 13 and 14), and Wheeler (References 15 and
16). Since most of Grimes' analyses on this subject are very general. in this report we
investigate the most simple case of the above, i.e.. an electrically small colocated array
composed of an electric dipole and a magnetic loop (modelled as an orthogonal equivalent
magnetic dipole). We have found that, even for this simple case, the individual electric and
magnetic field components combine in such a way that the interaction term involving the
currents on both array elements disappears from the complex power. This allows the
reactive part of the complex power to be set to zero when appropriate amplitude and phase
ratios between the dipole current and the loop current are used. Inputting the derived
currents into the numerical code, NEC3D, we find that the radiated power is significantly
increased over the corresponding power resulting from an electric dipoJe or a magnetic loop
alone. We have determined that the loop current must be driven in phase quadrature to the
dipole current in order for this increased radiated power effect to be seen. If the currents
are simply in phase, the array radiates exactly as if each element stood alone. Similarly the
directivity of the array is the same as that of a dipole alone or a loop alone if the respective
currents are in phase, but the directivity of the array is doubled if the respective currents are
in phase quadrature. .9

In Section 1f, we determine the total field components of the electric dipole, magnetic
loop array in simplified form, i.e., without resorting to Hankel and Legendre functions.
In Section III we compute the radial part of the complex Poynting vector, the rad-,al
complex power, and the current amplitude ratio which gives zero reactive power. In

... v , .r
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Section IV we derive the radiation intensity and directivity of the array for two cases: (1)
when the dipole and loop currents are in phase and (2) when they are in phase quadrature.
The NEC3D numerical results are presented in Section V, a general discussion on antenna
element coupling is presented in Section VI, and conclusions appear in Section VII.

II. THEORY

Consider the geometry of Figure 1. We assume that the antenna consists of two
elements, an electric dipole oriented along the z axis and a magnetic loop oriented in the
same plane, the yz plane. The loop and chpole are colocated and nontouching. The dipole

runs from - £M to f/2 along z with a total length i and a current Ld. The loop has a radius,
"a," and a current Ij. We assume that both elements are electrically very small and thus

considered to be infinitesimal (_<I50) for analysis purposes.
Z

S/ a

I
I

\ /

FIGURE 1. Antenna Geometry.

2



NAWCWPNS TP 8212

Since the dipole is oriented along the ý axis, its electromagnetic field components in
spherical coordinates (for a constant current) are (Reference 17):

H(1), (-a)

H¢) /dasinf r O(l+k I r , (1lb)

r 0- 2 0r

E(I)=iJ~ sin 0 (1 + I 1 _,

H ___=__Z -- I.Ikb
0 4nr ik~cf

f41) -7d COS (i + _ -k r V (ic)

42rr [ ikr (kr-- J

0 wher I 2i k rT-,-1

where k 71= cxf'and the superscript 1 indicates that these are dipole fields. Now

we must put the loop into the same coordinate ffame. Standard analyses of loop anienrnasA

place them in the xy plane with z normal to the loop. In our case the loop is located in the
yz plane with ý as its nomial. We invoke the usual equivalency between an infinitesimal
loop of radius a, current It, and an infinitesimal magnetic dipole of length tm, current Im

which (in our case) runs along the ý" axis. Thus (Reference 17)

'mim = i(rai2 )c-oIJ = i(mi2 )k1lI, . (2)

An equivalent magnetic dipole along the ý axis has

A =0

(3)
e -* ( , z ,- e-ikR

F(x,V,z) =-J IMd
C

3
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where and "9 are the usual magnetic and electric vector potentials, respectively. Using

Im = Im, ý where Imn is assumed to be constant and assuming that R - r, the electric vector
potential becomes

4=1r (4)

Using the transformation between Cartesian and spherical coordinates,

SFr Isin coso sinOsino cosO ]('
F0 =/cosOcoso cos~sino -sinO[ (5)
Fo -sin cos+ 0

we obtain

Fr = 1'--• sin 0cos 0 e-ikr (6a)
4 rr

F0 = elm-f---cos 0 cos 0 e-ikr (6b)
4Orr

F=-Ol= grff sin e-ikr (6c)

The electric field components of the loop are given by

E-VXF (7)

or

E(2) = 0 (8a)

4
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E (2) = ikhm-' sin 1(+1 'r-ikr I (8b)

E -(2) = __--__Cos 6 cos ( 1 V+- I,-r (8c)
-4 4rr ikrj

where the supersclipt 2 indicates that these are loop fields.

Using

._+=- VxE , (9)iwp

the mo-gnetic field components are

n!2) - sill 0 Cos pdl +. ýe-ikr(OR
i•2arr" "\ ikr}]

(2 os Cos 1 + 1 le-ikr (lOb)
rl 4 rrikr (kr) J

H•2 ) i._mfrn r sin.0[1 + 1 0 0i0
r- 4 nr r [ ikr (kr) j

Thus the total field components of the dipole and the loop should be simply a superposition

of the field components from each element alone. Using

-- = -4 2) -4 -+ - - +E E( E(' ; H= H(I)+ H(2'E--E )+ " ,(11)

the total field components are

5
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Er I=ld - Cos 1 + 11-• e-ikr 0 2a)2 nrr ikr )

sin, Sr (1+ 1- -i- +s Sin f I+ I (12b)Lrkr (kr) 4 ir " ikr-

E0 ili o 8 Co:. 1 + -Ie-k (I 2c)

4 Yrr \. kr)

H" - " - ik F l+-~eikI (I (2d)

-,- i kr ( ) .
__7 ATllkr-rT

1k~f '(.1 -ikr 4iklm - 1 1 ],- i
i kr r&r ik, (kr)2 ]

Equations 12 are a superposition of a TM (to i) mode from the dipole and a TE (to •) mode

from the loop. The field components from the dipole have no 0 dependence, while those

from the loop ha-,e both 0 and 40 dependence in general (although E(2) and H(2 ) are not

functions of 0) Of the total field components given by Equations 12, none are zero, but
only two, E0 and H-10, contain contributions from both the dipole and the loop.

III. THE RADIAL PART OF THE COMPLEX POYNTING VECTOR
AND COMPLEX POWER

The usual complex Poynnng vector is defined to be (References 17 and 18)

Sc = ExH* , (13)

6
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or in component form

S '(,H* EH;)(14a)

Sc8 = - E7H*) , (14b)

Sc. (O !'H EH) (14c)

For now, we will considei only the radial part of the complex Poynting vector given by
Equation 14a. Using Equations 12 and after some algebra, Equation 14a becomes

I+I ~k 2la m2 sin 2 i -
2 (4rr) [ (kr)[

+ (4 'M'M) sin 0 sin + 1 (k +
+ kP(4dt) t sin (+r•

f(4ytr) k7

To obtain complex power travelling in the radial direction, we integrate the radial part of the
complex Poynting vector over a sphere of radius r. So

7
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P=§ Scods (16)

2xx

Pr 2 J f Sc, sino d(d (18)
0 0

with Scr given by Equation 15. Considering the four terms in Equation 15 and since we
only have to integrate over the angular dependence, the first term in Equation 15 leads to an
integral of the foam

2n x
1- J f sin 3 0d~dO , (19)

00

the second and third term: in Equation 15 lead to

2-k K

12 = J fsins2 n sin 0 , (20)
0 0

and the fourth trm in Equation 15 leads to

2yr x

13 =f f (sin 2  +cs COS0cos 2 0) sin 0 ded4O (21)
0 0

Performing the integrations in Equations 19 through 21, I= 12=0,13=- Thus the

complex radial power becomes

8
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8zr[77lk2a•l1d - ir I+ 7(4,/ 2 [1_+ i (22)

Because the second integration, given by Equation 20 vanishes, the interaction *,;rms
between the dipole and the loop disappear from the radial complex power. These cross
terms are still present in the complex Poynting vector.

Splitting Equation 22 into real and imaginary pans,

Re(P) = I + I" + mI2  (23a)

and

Jnm(P) = - Idf + M J2' (23b)

If we interpret Equation 23a as the radial radiated power and Equation 23b as the radial
reactive or stored power, then

_3__v I 2 Iz,'mmI2)
rad 17= , I3 l +j ----+- 1 j (24a)

and

240)(1m - )•c)= IF. 2m ] (24b)
37 7T ,'kr)

where Prad is the time-averaged radiated power, (o is the frequency, and Wim and We are the
time-averaged magnetic and electric radial energies, respectively.

Due to the disappearance of the interaction terms between the loop and the dipole in
the complex radial power, we can set the reactive or stored power to zero by insisting that

9
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IA =Z _ 
(25)

Using Equation 2, the proper current amplitude ratio for zero reactive power is

__ _ \IL}(26)

However, Equation 26 does not tell us about the relative phases of the dipole and loop
currents. We will discuss this issue in Section IV.

IV. RADIATION INTENSITY, DIRECTIVITY, AND
RELATIVE CURRENT PHASES

From the total field components in Equations 12, in the far-field these components
beccme

Er=Hr=O , (27a)

ikvle-ikf
E0 .-.- (nildf sin + iAk 1 sin ¢) , (27b)4,-rr

-k 2 Ai•l ¢e-zA7(2

E0 -4- - - cos 0 cos (27c)

with

H=-iEO ; Ho = 7EO (28)

and A = ita2, the loop area.

The radiat.on intensities, U0 and U0, are

10
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r 2 r1 2 r2E4 (29)

and we will consider two separate cases based on the phase relationship between the loop
and dipole currents.

Case 1. Let 1d be pure real and Ij be pure real. Then since they are in phase

UO =1[()2 sin 2 0+ (2n2 si.-2  (30a)

and

UO X -COS 2  cos 2  (30b)
2 (id

and the total intensity is

U~[~2sirn2 e+(21r2)(. (sin2  +~ cos; cs 2 (1

Since the radiated power is given by Equation 24a, we can obtain both the directive gain
from

D9=4 rU (32)

gtrad

and the directivity from

Do = 47rna (33)
Pra1
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The directive gain is plotted for 4 = (2)in Figure 2 with (• as a parameter for Ie and ld in

phase. The maximum directivity of this antenna (when the currents are in phase) is 3/2
(1.76 dB), exactly the same value as the directivity of the small dipole alone, or the small
loop alone (Reference 17).

I, and Id are in phase
2

D9 (dB) 1 ...

.~. 0 (deg)2 ,5-0 75 100 125 '4 175

. %/ 7 8
I: I I - .=

-~:// \ ~%=*6.483455
6

.2 / '-

ld

FIGURE 2. Directive Gain When Array Element Currents are in Phase.

Case 2. Let Id be real and Ij = -ill' where Il' is real. The two currents are now 90 degrees
out of phase, or in quadrature. Now

E0  ikfle-il" (adi sin 6 + Ak/j sin ¢) (34a)

and

I E¢ ik2Ar¶lee-kt"

= cos 0 cos (34b)
4rr

Thus the radiation intensifies for this case are

12
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Uo sin- 2+ 4.2().('a jsin 0sin8 tL

(35a)
+4;r4sin2 +o iCos 2 0 )

and

4(a 4Y

UO I ~) Cos 0cs (35b.)

Immediately we see that Equation 35a contains extra terms when compared with Equation
30a. UO as given by Equations 30b and 35b is the same for both cases. When 0 = 0,

Equations 30t and 35a are identical for the same (-') When 0 = !, Equation 35a is larger

fttan Equation 3301a (see Figure 3). Where the directve gain is computed using Equation 35,
the amplitude as well as the shape of the carves are quite different from the in phase case.

It'The maximum directivity is 3(4.77 dB) in this case when I is given by Equation 26.

Thus the antenna directivity for currents in quadrature is twice as much as the directivity
resulting when the currents are in phase.

13
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I,. and Id are in quadrature

4

Dg (dB) 2

e (deg), 25 50 7S 10 125 150 '
-- 7.

}• .6.48455
-2 0r.• _ •

2 1, 1t_
.3 -( = 57d

FIGURE 3. Directive Gain When Array Element Currents are in Quadrature.

V. MUTUAL AND DRIVING POINT IMPEDANCES USING NEC3D

This section describes the approach used in modelling the colocated magnetic loop
and electric dipole array shown in Figure 1 (also see Reference 19). The modelling
approach coun be summarized by the following steps:

(1) Find the array Y-matrix using Method of Moments (MOM)
(2) Find the array Z-matrix (by inversion of Y-matrix)
(3) Determine desired cwurent excitations for both loop and dipole
(4) Determine active port impedances for both loop and dipole from:

11__12 In
zaq = zi1 . 1-/+ zi 2 -12-4.... +zii+ '.-in ---;-(36)

where

Zai is the active impedance at the ith port
Zij is the ijth element of the Z-matrix
1i is the current at the ith port

Tlih remainder of this section will discuss each of the above steps in more detail and present
results for the colocated array.

14
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FINDING THE Y-MATRIX USING MOM

In the MOM approach the antenna array geometry is first defined by wire segments as
shown in Figure 4. The electrically small loop to be analyzed has been assumed to be
square with side length of 0.025 ?,. Each side of the loop is subdivided into five segments.
The loop is centered about the origin and is located in the yz plane. The dipole is also
centered about the origin and is located along the z-axis with total length of 0.020 X. The
dipole is also divided into five segments. For this example, the radius of the wire was
chosen as 0.001 X. The total length of the dipole was adjusted to be 80% of the loop side
length to avoid close proximity of the ends of the dipole with segments in the loop. The
effects of varying the relative dipole length have not been investigated but changes are not
expected to change the basic operating principles of the colocated array.

z
MAGNETIC LOOP WIRE RADIUS .001 X

ANTENNA

- •ELECTRIC
I ,DIPOLE

ANTENNA

.025 X .02 Xy

11.• "ELTA GAP

GENERATORS

*

.025 ?.

FIGURE 4. Colocated Antenna Geometry for Method of Moments Analysis.

In MGOMI the array is excited by inserting delta gap voltage generaors of specified
magnitude and phase at the center of a wire segment. The currents are then determined in
each of the segments according to the MOM procedare. As wili be shown below the MOM
approach lends itself to direct computation of the two port Y matrix of the array. The Y
matrix of a two port is described in tem-s of the tenrinal voltages and currents by:

15
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I] =Y 1 l V1 -4 Y1 2 V2

12 = Y21 V1 + '122 V2  (37)

Notice that if VI is set to 1 volt, anid V2 is set to zero: YlI is identically tuaal to 'nec current
Ii and Y 2 1 is equal to 12. SimilarJy, if VI is set to zero and V2 is set to 1 volt, then r 1? is
equal to the current 11 and Y22 is equal to 12. In this fashion the Y matrix can be dirmctiv
computed from the MOM derived currents since the delta gap voltage can bc set tm I volt
and the voltage set to zero by replacing the delta gap generator by a wire segment (i.e.
removing the delta gap generater). Ilhe Y matrix computed for the example in Figure 4
(with lossless conductors) at a frequency of 500 MN-lz is:

- "i293"10-9+3.4111*10-4 i 7.4836"10-9-5.8541"10- 5 i' (38)( •7.7687.10-9 -5.5983.10-5'i 1.4187.10-'6 -0.011039i

T1e above vlues were. computed using Numerical Electromagnctics Code (NEC),
vei sion NEC3D run on a Macintosh lisi. NEC was developed at the Law'ence Livermore
Laboratory under the sponsorship ef tne Naval Oceai: Systems Center and the Ail FoTce
Weapons Laboratory.

ARRAY Z MIA'THIX

The Y matrix can be inverted to give the Z matrix

( 0.00934 -2.9289-103i 9.13542 -10 -5+ 16.570405il ("9)
.- 8.5203.1. !0-5 + 15.79289i 0.01314 + 96.16672i )

Z 11 corresponds to the self impedance of the dipok and Z22 is the self impe&mnce of
the loop. Since In this example conductor,, are assumed lossless, RI 1 and P22 represeui:
the radiation resistances of the dipole and loop, respectively, and since both loop and dipole
are electrically small, the radiation resistance of each isolated antenna is correspondingiy
very small. One of the prime motivations for this hybrid mode array is to significantly
increase the radiation resistance of the electrically small antennas without increasing their
physica! size.

COMPUTING CURRENT EXCITATIONS OF HYBRID MODE AN'IENNA

Using Equation 26 from Section III that specifies the proper current ratio for i:ero
reactive power and rewriting the denominator in terms of the area of the loop, A, gives

16
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1*n

A.I (40)

'd 2. Ir
Id 2..ir -- A,

For a square loop with side length S the proper ratio is

i'-

A ,(41)
'd 2. ir- -

for eA/ = 0.020, S/7. = 0.025, and lf/ld = i 5.093. Thus, the current in the loop is
approximately five times that in the dipole, and the currents are in quadrature.

ACTIVE IMPEDANCES OF HYBRID MODE ANTENNA

The active impedances are computed from Equation 36 and listed in Table 1 for the

TABLE I.

Idi~leIlooR Zadiole 7-,aiomH-
I ZOO 5.093 0.0098 - i2844.8 0.01313 + i99.266

1 Z900  5.093 84.064 -i2928.9 -3.086 + i96.17

1 z 1800 5.093 0.0089 - i3013.0 0.01316 + i93.068

1 Z 2700 5.093 -84.045 - i2928.9 3.112 + i96.167

It is important to note that when the currents are in quadrature the radiation resistance
of both the loop and dipole is significarJy increased. If the currents are not in quadrature
the radiation resistance is approximately that of the isolated element. Furthermore, with the
currents in quadrature the radiation resistance of one element is positive and the radiation
resistance of the other element is negative. The physical interpretation of a negative
radiation resistance is that rather than radiating power (as would be the case for a positive
radiation resistauce), an antenna with a negative radiation resistance is receiving power and
delivering it to the load connected to the port. The significance of colocation and
quadrature currents in the large increase in radiation resistance can be seen in the expression
for the active inpedances of a two port colocated antenna array,

17
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Zal =Z 1 I+ Z1 2 2.I1

(42)

Za.2 = Z21./l! + Z22

12

From Equation 39 the mutual coupling (Z1 2 and Z21) for colocated antennas is
observed to have a large reactive component. As the separation between antennas is
increased the magnitude of the mutual coupling also decreases. The large reactive
component of the mutual coupling combined with the currents in quadrature results in a
significant real resistive component in the active impedance compared to the small radiation
resistance due to the self impedance of electrically small antennas.

SENSITIVITY TO MAGNITUDE AND PHASE PERTURBATIONS

Table 2 lists computed active impedances for current excitations that deviate from the
specified current ratio of Equation 41.

TABLE 2.

Idlnole . llooD Za 2Tao PdiI 10

1 Z 900 , 6.000 99.035 - i2928.9 -2.617 + 196.17 49.52, -47.11

1 Z 900, 5.093 84.064 - i2928.9 -3.086 + i96.17 42.03 , •40.02
1 L 900 , 5.000 82.531 - i2928.9 -3.144 + i96.17 41.27 , -39.29

1 z 900, 4.000 66.027 - i2928.9 -3.933 + i96.17 33.01 , -31.46

L 85" 5093 83.746 - i2921.6 -3.074 + i96.44 41.87, -39.87

1 Z 450, 5.093 59.446 - i2869.5 -2.178 + i98.36 29.72 , -28.25

I Z 1350 5.093 59.446 - i2988.4 -2.178 + i93.98 29.72 , -28.24

Thus, it appears that the colocated antenna is relatively insensitive to small perturbations Ln
the magnitude and phase of the excitation currents. The powers listed for the dipole and
loop are the radiated power from the dipole (positive) and the power received by the loop
(negative), respectively. The total radiated power of the array is tie algebraic sum. As the
magnitude of the current in the loop is decreased the total radiated power also decreases.

18
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VI. GENERAL DISCUSSION ON ANTENNA ELEMENT COUPLING

In antenna arrays the relative input currents to the individual antenna elements are
specified as to their relative magnitudes and phases in order to obtain the desired gain,
pattern, radiation direction, etc.

With close packed arrays, (and a colocated loop and dipole is certainly an example)
where the coupling between the elements cannot be ignored, a serious efficiency problem
can arise.

Consider our two-element array as a two port as in Figure 5a, with impedance matrix
(Z) and scattering matrix (S). It follows that the active input impedances looking into ports
(or antenna elements) one and two are:

- 12I--- Z11 + Z12 1I2 (43a)

Z2 =Z 22 4 Z1 2L/ (43b)
12

Since the Zij are tixed by the geometr' ot the situation and 12 and Ij are fixed by the
antenna performance requirements, Z1 and Z2 are fixed impedances with specific numerical
values.

The active impedances, ZI and Z2, represent the impedances that must be matched
into in order to increase the system efficiency and radiate as much of the available power as
possible. The matching problem reduces to Figure 5b with some provisos that we will note
as we proceed.

1 (S).- (Z) 2
bj 1 1 2 "-"a2

FIGURE 5(a). Two-Element Array as a Two Port.

aA1 a- •3 1-

1 (SA) 2 2 (SB) 1
bA 1 b " Ir 2 12 bB1

FIGURE 5(b). Reduction of Two Port Matching
Problem.
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The active reflection coefficients, l'l and F2, are given by

r,=Zi-Z • i-_.1,2 (44)

while (SA) and (SB) represent matching networks with the goal of reducing the reflected
waves bAl and bBI to zero while simultaneously not introducing loss in the matching
networks themselves.

For a lossless matching network, the condition for zero reflection is given by

SA22 = 1I' ; SB22 = r2- (45)

The other scattering coefficients of the matching networks can then be found by
imposing the usual unitary condition

(S)(ST) =(U) (46)

on the matching networks.

It should be noted that merely attaching the matching networks thus designed to the
antenna array input ports will not ensure proper performance of the antenna array. The
drive levels aAl and aB1 into the matching networks must be of the proper relative
magnitude and phase to provide the correct relative currents I and 12. The relations
betwten aBI and the SAi- and current II are readily found as are the relations between aaI
and the SBij and current 12.

The drive levels aAl and aBI would generally be supplied from an uneven power
divider designed to give the proper complex ratio aAl/aBl with the system looking like
Figure 6.
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aA1 I
SI (SA) 2 al b1

22

3 2
aal - 1 SB) a2 ---2

FIGURE 6. Two-Element Array With Matching Networks

As long as Equation 45 can be satisfied, there is no reason, in principal, why lossless
matching networks and power dividers cannot be designed and built to a good degree of
approximation. If the coupling between antenna elements is sufficiently strong, and the
currents, It and 12, have sufficiently different magnitudes and phases, the real part of ZI or
Z2 (but not both due to the conservation of energy) can be negative. When that is the case,
the magnitude of the active reflection coefficient is greater than unity and cannot be matched

For the electfic dipole and the loop with I1 and 12 set to "zero out" the imaginary part
of the complex Poynting vector, this is precisely the case as slhown in Table 1. The
mechanism by which this occurs is readily seen by rewriting Equations 43a and 43b:

Z1 = R1 +iX1 =RII + !](Ru2COS A1-X 1 2 sin AO)

(47a)

+ i[XII + sin A + X12 cOS AO)i

Z2= R2 + iX2 = k22 + H1(R2 cos A0 + X12 sill AO)

(47b)

+ i{X 22 + HV2 cos A0 - R12 sin AO)]
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where Aý is the phase shift between I1 and 12. If 1121>>1I11, for example, and R1 2 is small,

and AO = 7t/2, it is easily seen that R1 may very well be negative, while R2 is positive.
(R11 and R22 in the impedance matrix must be positive without the presence of active
devices.)

If a negative RI is the case then the matching problem leads to Figure 7, where PA is
chosen to give the proper current at port I of our antenna array.

P 1 (S) 2 .2 (SB) 1
A 1t 112

FIGURE 7. The Matching Problem When R I is Negative.

Figure 8 is equivalent to Figure 7 and maintaining the proper value of II must be done
by setting FA equal -- the reciprocal of ri,

al 0 0 a2

b "-"- b ? - -[2 (S B ) 1

"At [1t 2112

FIGURE 8. Equivalent System to Figure 7.

I1--- (48)

Solving (48) for I'A gives

rA = 1 (49)

P1
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where Z =R1iX (5oa)

Z, = d-I +i±X, (50b)

Because IRII is a positive ohmic resistance and the current II flows through it, there is
ohmic loss which means that although the antenna performance in terms of pattern and
radiation direction is preserved, the efficiency is reduced. In the case of electrically small
superconducting antennas, this reduction in efficiency can be drastic.

However, all is not lost. The load ZA can be replaced with a lossless two port as in
Figure 9. The lossless matching network (SB) is designed for matching so that

SB22= 1-2

ad1
bAl - - - a1  ao -o4- -

0 1 (SA) 2 1.--- (~S) 2 2 (3p) 1 3(C

Exp (io)

FIGURE 9. Replacing the Load ZA With a Lossless Two Fort.

Per Equation 45, while the lossless two port (SA) is designed to produce the current I1 with

SA22 =1 (51)

the output bAl is fed, with the proper phase shift, to the input of a power combiner to
produce the desired drive level aB 1 *

It is not our purpose to go into the combiner details here but one way to achieve this
end is to use a directional coupler with one port terminated in ZO, with the coupling
coefficients set to give zero output at the terminated port and the proper aBI of the input of
the matching network.

This may seem to be a somewhat complex process but if it is compared with Figure
6, one power divider and two two port matching circuits versi's one power combiner, one
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two port matching circuit, and one two port to meet the condition of Equation 5 1, the two
cases are seen to be topologically equivalent.

'111. CONCLUSIONS

We have presented a detailed electromagnetic analysis of an electrically small
colocated electric dipole and magnetic loop antenna array. This antenna is the simplest
examule of the Grimes multipole class of antenna arrays. We have determined that since
the interaction term between the two elements disappears from the radial complex power,
we were able to set the radial reactance to zero by choosing appropriate current magnitudes
and phases on the array elements. By driving the two elements in quadrature, we saw a
much increased radiation intensity and directivity as well as increased radiated power.
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Appendix

RELATIONSHIP BETWEEN THE INSTANTANEOUS POYNTING
VECTOR AND THE COMPLEX POYNTING VECTOR

It is important to recall that the complex Poynting vector can be derived directly from
Maxwell's equations (Reference 20). Using standard phasor notation and eiWt time
depencknce

Vx E = -ioip H (A-]-,

- ), --4 -4VxH= J+iw)EE (A-lb)

with the complex conjugate equation for Equation A-l b as

- -.> -4 -4

Vx H *J *- iaoeE* (A-2)

Dotting f* into Equation A- l a and V into Equation A-2, we obtain

H*•Vx E = -iwj H*-H (A-3)

and

- -..- -4 - 4-4 -.

E.VxH* E. J*-iWoCE. E* (A-3b)

Subtracting Equation A-3b from Equation A-3a, we have
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V. ExH*) =-iw,1H*.H-,E*.E E. J* (A-4)

Allowing primed variables to denote real parts of quantities and double primes to denote
imagihary parts, we can rewmitc

-4 -) -- * 2 -4+H. H* =H' +H" (A-5a)

and

-4- --4

E .E* E= + E" (A-5b)

which have no imaginary parts.

However, • x does have an imaginary part. Thus

EH =E'xWi+E-xH" +iI E'XH"-'H (A.-6)

while

-- 4 -4 --4
E . J =E*. aE* (A-7)

and as long as the conductivity, ;, is real, " ' is a purely real quantity. So returning
to Equation (A-4),

E. E H * ) E'xH'+E xH " - E'xH "- E"xH'

-- v'[Re(xfH-*)+ilm(-xHrJ] (A*-8)
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Using Equation A-8 with Equation A-4,

1 ReEXH* -iEJ*I (A-9a)

and

2V.Im ExH* =-to H E (A-9b)

Integrating Equations A-9 over a sphere of volume V with boundary S, we see that

If V-Re(ExH*JdV=--•f E.J*dV (A-1Oa)
2 2 V

and

2 V-Im( ExH*} =-J [ Pa/ (A-10b)
V -- V

Of course, the above can be found in many text books and we repeat it here for the reader's
convenience.

Now let the instantaneous Poynting vector be given by

S = ExH (A-11)

where all boldface variables indicate instantaneous quantities. 9 is a power density, i.e.

power/unit area and has the MKS units of watts/m 2. The total power crossing some closed

surface at a given time is found by integrating the normal component of r over the entire
surface, or
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Pi S -ds =§S. hda (A -12)
S S

where P is the instantaneous power in watts. We can write "9 and "I in the fox-n
(Reference 17)

E(x,y,z;t) - Rc E(x,y,z)et°• (A-13a)

H (x,y, z; -) ReH H(X, y, 7)e° A-1ab)

and then

E =E cos (ot + E" sin ox (A- 14a)

and

H = H"'cos ot+H"sin com , (A-14b)

d we have thrown away all else. Using Equations A-14, the instantaneous Poynting
•-tor becomes

-4 -

S lxhi' )Jcos' Lot +(EOXiH"+ Ex HO sin ot cos cot

(A-15)

+ (E';xH" H sin2 ot

An alternate form of Equation A-15 is
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•) I( ) -) - 4 -- ' (-'+ --ý -30 -')
S= +2- EH xfi7"+- E"{xI7"+ E"xH')sin 2cot

(A-16)
1+-- "-- -- co -÷

+ (E'x H'- E"x H""cs2o

or

S =N 0 + N, cos 20ot + N2 sin 2"o (A-17)

where

- ~ 11 -4 -4 - +I

No = - E'.H'+ E"xH (A-lga)

1 -4 -4

N2  1.tE'xfi"+ E"xH' 
(A-18c)

which is Grimes' notation (Referencc 6).

Once we time average Equation A-17 over one period, r, we find that the integrals
over cos 2 wt and sin 2cot are zero. Thus while

-*=-*=-4 = -4 -4- -4 -19Savg = =No Re ExH* , (A-19)

the terms containing I and R2 average to zero. Then the radiated power is also the time
averaged power, as usual,
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Pra = PvgRe(E X -J.&ia~f No a (A-20)
A 2 A

Only the instantaneous total power keeps the 91 and W2 terms. ThIs

Pf S da
A

No.h& cs 2mgN, hda + sn2 oi NI. hda (A-21)

A A A

But neither 91 nor R2, given in Equations A-18b and A-18c are equal to! Im(9 x HO),2
which is

Im ExH*j -•--E'xH"- E-x (A-22)

which is obtained from Maxwells equations and their associated complex conjugates.
Thus there is no explicit relationship between the imaginary part of the complex Poynting
vector and the instantaneous Poynting vector.
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