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k. INTRODUCTION

Electrically and/or physically small antennas are often required by missile systems
because of limited space requirements or reduction in radar cross section. For some
systems, even at UHF and VHF frequencies, the antenna can be isolaied as the single most
heavy and bulky component (Reference 1). Reduction in size presents problems for the
system designer due to the performance penaities in bandwidth and efficiency that arise.
These performance penaliics must be absorbed into the overall system performance
resulting in poor reception in low signa! regions. Maicking technigues can be used to boost
antenna performance but a reduction in total etficiency is still incurred.

Several methods to counteract the above problems have been considered. For small
antennas with radiation resistances lower than the ohmic resistances of their radiating
elements and which include feed and matching networks, higher efficiencies have been
measured when all components are composed of high temperature superconducting (HTS)
materials (References 2 through 5). However, this replacement of normal conductors with
HTS components can only partially compensate for the drop in efficiency upon size
reducton. Thus it is advantageous to obtain as large an cfficiency as possible from a given

rrranna ke Atk ac s an e £l
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One such method has been investigated for some years by D. M. Grimes (References 6
through 11). This method consists of using judicious combinations of eleciric and
tragnetic multipole sources o attempt to exceed the small antenna limitations derived by
Chu (Refer :nce 12), Harrington (References 13 and 14), and Wheeler (References 15 and
16). Since most of Grimes' analyses on this subject are very general. in this report we
investigate the most simple case of the above, 1.¢.. an electricaily small colocated array
composed of an electric dipole and 2 magnetic loop (modelled as an orthogonal equivalent
magnetic dipole). We have found that, even for this simple case, the individual electric and
magnetic ficld components combine in such a way that the interaction term involving the
currents on both array elements disappears from the complex power. This allows the
reactive part of the complex power to be set tc zero when appropriate amplitude and phase
ratios between the dipole current and the loop current are used. Inputting the derived
currents into the numerical code, NEC3D, we find that the radiated power is significantly
increased over the corresponding power resuliing from an eleciric dipole or a magnetic loop
alone. We have determined that the loop curren:t must be driven in phase quadrature to the
dipole current in order for this increased radiated power effect to be seen. If the currents

are simply in phase, the array radiates exactly as if each element stood alone. Similarly the

directivity of the array is the same as that of a dipole alone or a loop aione if the respective -

currents are in phase, but the directivity of the array is doubled if the respective currents are
in phase quadrature.

In Section 11, we determine the total field cocmponentis of the electric dipole, magnetic
loop array in simplified form, i.e., without resorting to Hankel and Legendre functions.
In Section III we compute the radial part of the complex Poynting vector, the ragdial
complex pcwer, and the current amplitude ratio which gives zero reactive power. In
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Section IV we derive the radiation intensity and directivity of the array for two cases: (1)
when the dipole and loop currents are in phase and (2) when they are in phase quadrature.
The NEC3D numencal results are presented in Section V, a general discussion on antenna
element coupling is presented in Section VI, and conclusions appear in Section VIL

II. THEORY

Consider the geometry of Figure 1. We assume that the antenna consists of two
elements, an clectric dipole oriented along the 2 axis and a magnetic loop oriented in the
same plane, the yz plane. The loop and dipole are colocated and nontouching. The dipole
runs from - £/2 to £/2 along % with a total length £ and a current Iy. The loop has a radius,
"a," and a current I;. We assume that both elements are electrically very small and thus
cornsidered to be infinitesimal (<A/50) for anaiysis purposes.

¥4

!

FIGURE 1. Antenna Geometry.
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Since the dipole is oriented along the £ axis, its electromagnetic field components in
spherical coordinates (for a constant cusrent) are (Reference 17):

HY =B =P =0 | 12
_— _

H(l):M(HL ~ikr (1b)

¢ anr tkr

Q7 1 _:
EW < iy cos JLH}k_r)e ir (1c)

2ar

j kldt’sinﬁ 1 1 _j
E(l):lr’ 1+_’_2‘ ‘k’ ' ld
6 4nr ikr  (kr) (1d)

where k = %ﬁ, N = ’ Y and the superscript 1 indicates that these are dipole fields. Now
3

we 1nust put the loop into the same coordinate frame. Standard analyses of locp aniennas
place them in the xy plane with £ normal to the loop. Tn our case the loop is located in the
yz plane with { as its normal. We invoke the usual equivalency between an infinitesimal
loop of radius a, current I, and an infimtesimal magnetic dipole of length £, current I,

which (in our case) runs along the  axis. Thus (Reference 17)

Int m = i{ma® Jeoptl = i ma® Yot

An equivalent magnetic dipole along the & axis has
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where & and F are the usual magnetic and electric vector potentials, respectively. Using

—
Iy = I, & where I, is assumed to be constant and assuming that R = r, the electric vector
potential becomes

—’
F= js_’ﬂim.e"” (4)
4nr
Using the transformation between Cartesian and spherical coordinates,
F, sinBcos¢ sinGsing cosf \(F,
Fg[=]cos@cos¢ cosBsing -sin@}| 0| , (5)
Fq —sin ¢ cos ¢ o Jlo
we obtain
F,= £lm'5 Gn 6 cos pe ik (6a)
4nr
el,t —ikr
Fg=—0"cos 6 cos ¢ e (6b)
4nr
—€l,6, . —ikr
Fy=—"nsinge (6¢)
The electric field components of the loop are given by
- 1 -
E=-—VxF M
€
or
Eﬁz) =0 (8a)
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1:(2) ﬁm[—lsm ¢( —-l-)r"”" , (8b)
4ar ikr
Eg) i{jﬂfﬂcos @ cos ¢( ;Ll_r-)c_ik’ (8¢)

where the superscript 2 indicates that these are loop fields.

Using

— i -
H=—VVxE |, )
iwy

the magnetic ficld componerits are

HY = Smbm e sin @ cos (b(l 4 \e""‘r . (*0a)
’ r‘.f'r ikr}
Hg) —L—I-’-"f—lcos 9cos ¢ 1+-1-- L e~ ikr (10b)
nanr ikr (kr)
@) _ ikl L
H\) = =mim g . 10c
¢ ndnr ¢[ ikr (Lr (109

Thus the total field ccmponents of the dipole and the loop should be simply a superposition
of the field components from 2ach element alone. Using

-

- - - -2 T
E=EV+E® | p=p4Wy@ | an

the total field components are
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. nlaf ( 1 ) —ikr
E ==—d-2-c059 J+— e (12a)
" 2m U ikr v
Msm 6 l+—1-—- ’—1—5"‘{ ~ikr +——m—"-'Lsm ol i+ —) (12b) . .-5"
dnr ikr  (kr)” k :
Ey= ﬂm{mcoseco ¢(1+—1—) =ik (12c) X
anr tkr N

ﬂ—mfsvn 6 cos ¢( ) ~ikr (12d)

ik, € f o ikr £

H —‘—-ﬂ-m-cos Gcos ¢ 14+ —— ——7 ! 12 v

6~ némr ¢'_ ikr (kr) 2 -
P R NI (T

v dm Cikr ) 77“‘7—’ L tkr \k")z_l =

Equations 12 are a superposition of a TM (to ?) mode from the dipole and a TE (1o ?) mode
from the loop. The field components from the dipole have no ¢ dependence, while those

from the loop ha = both 6 and ¢ dependence in general (although E(ez) and H(¢2) are not

functions cf 8) Of the total ficld comporents given by Equations 12, none are zero, but
only two, Eg and Hy, contain contributions from both the dipole and the loop.

III. THE RADIAL PART OF THE COMPLEX POYNTING VECTOR
AND COMPLEX POWER

The usual complex Poynang vector is defined to be (References 17 and 18)

- 1({~ =
Sc=—(ExH*J , (13)
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or in component form

S, = %(EgH; - EgHg) (14a)
. l . - »

S, = 5(1;¢H, - EHy) (14b)
S, = —;—(E,H; - EgH;) . (14c)

For now, we will consider only the radial part of the complex Poynting vector given by
Equation 14a. Using Equations 12 and after some algebra, Equaton 14a becomes

2 2 )
1| nkfafl” i
SC, =~2-{~—L—§]—sm 0 l-k—3'

(477)

K261y ) * 1 1
+— in @sin ¢ 1~ +
amp O
K1 I 1
+—-L—I—(4m) sin @sn ¢ +—T(kr)
[ 2 2 i ! )
+—51-4—m;4—[5m ¢ +cos 0 cos ¢] 1+-E;-r1'J . (i3)

To obtain complex power travelling in the radial direction, we integrate the radial part of the
complex Poyniing vector over a sphere of radiusr. So
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r=§ §:.d}’ (16)
nx
= [ [ [sc,7+5c,6+5,8]|r*sin 0 dode 7] (7
00
or
2n

S, sin 6 d6d¢ (18)

D ey 29

P=r2‘[
0

with S¢; given by Equation 15. Considering the four terms in Equation 15 and since we
only have to integrate over the angular dependence, the first tenm in Equaton 15 leads to an

integral of the form
inx
L= [ sin®6deds | (19)

00

the second and third terms in Equation 15 lead to

sin? @'sin ¢ d6dp |

and the fourth term in Equaton 15 leads to

"

Iy= J (sin2 ¢ +¢052 0 cos’ ¢)siu 0 dédy
0

Performing the integrations in Equations 19 through 21,1 =%, 1 = 0, 13 = &% Thus the
complex radial power becomes
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2ir o2 . 2 2 )
p=5T nk |ld2£L 1- l3 X II"’[”;I [1+ ! 3~] . (22)
6| @n) (kr) n4m) (kr)

Because the second integration, given by Equation 20 vanishes, the interaction ‘crms
between the dipole and the loop disappear from the radial complex power. These cross
terms are still present in the complex Poynting vector.

Splitung Equation 22 into real and imaginary parts,

)
It
Re(P)= Lo |Id£{2+—-—r| | (23a)
37 n
and
Imtnl” | 1
nr 1 Fmimi .
Im(FP) = gl + B | — 23b
( W('dl n J(kr) )

If we interpret Equation 23a as the radial radiated power and Equation 23b as the radial
reactive or stored power, then

2
: I £
Prag = :%rf(lldflz + '—’";%I—} (24a)
and
20(Wy, ~ W, )= 255 It ~Jratf | (24b)
m ¢ W 1 d “kr)

where Prad is the time-averaged radiated power, w is the frequency, and W and W, are the
time-averaged magnetic and electric radial enexgies, respectively.

Due to the disappearance of the interaction terms between the loop and the dipole in
the complex radial power, we can set the reactive or stored power to zero by insisting that
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gt = '—m—n’zi» : (25)

Using Equation 2, the proper current amplitude ratio for zerc reactive power is

(x)
) ( ) . (26)
However, Equation 26 does not tell us about the relative phases of the dipole and loop
currents. We will discuss this issue in Section I'V.

IV. RADIATION INTENSITY, DIRECTIVITY, AND
RELATIVE CURRENT PHASES

From the total field components in Equations 12, in the far-field these components

beccme
E,=H =0 , (27a}
L ik
Eg =21 (ni e sin 6 +iAkl, sin 9) (27b)
Anr
__sz.nI e—ikf
E,= — L cos@cos ¢ (27¢)
4nr
with

and A = naZ, the loop area.

The radiation intensities, Ug and Uy, are
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2
leEg‘ rzlE‘f;I -
Uy = - Ua=—1Y 29
8 2n » Yo in (9

and we will consider two separate cases based on the phase relationship between the loop
and dipole curmrents.

Case 1. LetIgbe pure real and I; be pure real. Then since they are in phase

N2 ) TR
Ug "%[(i‘) sin? 0+ (24°) (%) U—‘J sin” 4 (30a)
and
4
(&
Uy= A (——f-) cos? 8 cosZ 0] (30b)
2 1y

n[fz.z 22043_2'.2 2 2,
U=— (I) sin 9+(27t ) (—i) (14) (sm @ +cos” @ cos (D) . Gh

Since the radiated power is given by Equation 24a, we can obtain both the directive gain
from

A
n, = 47U (32)

I rad

and the directivity from
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¢ 1
The directive gain is plotted for ¢ = (5) in Figure 2 with (é) as a parameter for Iz and Iy in
phase. The maximum directivity of this antenna (when the currents are in phase) is 3/2
(1.76 dB), exactly the same value as the directivity of the small dipole alone, or the small

loop alone (Reference 17;.

I, andIq are in phase

Dg (dB)

e’ .-.\".
z 3
. .'l‘.;.é;;,lAg.»_L 4..|.L..4.\‘:-".‘ . 6 (deq)
//}?,,, 50 75 100 125 \E&w o

1 S5 \ o\
-1 E‘/,”:":' ,'/ \ .1": ‘:\ - 7.
F- \ %> 6.48455
L~ 'I \ e 6
28 7/ ¢= = \
[, 2 N
L 7 A I
L~ N. L.
lq

RS

FIGURE 2. Directive Gain When Array Element Currents are in Phase.

Case 2. Letlq be real and I; = -il,” where I is real. The two currents are now 90 degrees
out of phase, or in quadrature. Now

o —ikr
Eg~ %18 (1, 5in 6 + AkT} sin ¢) (34a)
4nr
and
2 s —ikr
Ey = iA—Z’-L cos@cos¢ . (34b)
nr

Thus the radiation intensities for this case are

12
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2
Uo=%[(é) sin 0+412(£)(\-’% L Jsmesm¢
(35a)
4/ 4,
4 (-g) L}%J sin? ¢+cos 8 cos? ¢):I
and
(4]
A Y 2,2 -
Uq,— > (Id} cos”“ 8¢cos“ ¢ . (35b)

Immediately we see that Equation 35a contains extra terms when compared with Equation

30a. Uy as given by Equanons 30b and 35b is the same for buth cases. When ¢ = 0,
l 7’

Equations 302 and 35a are identical for the same ( é) When ¢ = E , Equation 35a is larger

than Equation 30a (see Figure 3). Where the direcuve gain is computed using Equation 35,
the amplitude as well as the shapc of the curves are quite different from the in phase case.

The maximum directivity is 3(4.77 dB) in this case when !TdJ is given by Equation 26.

Thus the antenna directivity for currents in quadrature is twice as much as the directivity
resulang when the currents are in phase.

i3
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I and 14 are in quadrature

Dg (4B)

NS SPI EPEE PPN SRS
B0 75 10 1% 1% \Wag 8 (deg)
N7
\\‘-3;648455
7 6
¢== \p7
i S
d

FIGURE 3. Directive Gain When Array Element Currents are in Quadratre.

V. MUTUAL AND DRIVING POINT IMPEDANCES USING NEC3D

‘This secuon describes the approach used in modelling the colocated magnetic loop
and electric dipole array shewn in Figure 1 (also sec Reference 19). The modelling
approach can be summarized by the following steps:

(1) Find the array Y-matrix using Method of Momenis (MOM)

(2) Find the array Z-matrix (by inversion of Y-matrix)

(3) Determine desired cuirent excitations for both loop and dipole
(4) Determine active port impedances for both loop and dipole from:

I I / -
aa; = 2y 1—l+ F4%) -72--&----+z,-,-+---4-z,-n Tn (36)
i i 4

where

Za; is the active impedance at the ith port
Zjj is the ijth clement of the Z-matrix
I; 15 the cucrent at the ith port

The remainder of this section will discuss each of the above steps in more detail and present
results for the colocated array.
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FINDING THE Y-MATRIX USING MOM

In the MOM approach the antenna array geometry is first defined by wire segments as
shown in Figure 4. The electrically small loop to be analyzed has been assumed to be
square with side length of 0.025 A. Each side of the loop is subdivided into five segments.
The loop is centered about the origin and is located in the yz plane. The dipole is also
centered about the origin and is located along the z-axis with total length of 0.020 A. The
dipole is also divided into five segments. For this example, the radius of the wire was
chosen as 0.001 A. The total length of the dipole was adjusted to be 80% of the loop side
length to avoid close proximity of the ends of the dipole with segrnents in the loop. The
effects of varying the relative dipcle length have not been investigated but changes are not
expected to change the basic operating pnnciples of the colocated array.

MAGNETIC LOOP A WIRE RADIUS .001 A
ANTENNA

L

A Q@ =90 ELECTRIC
' ' ! ! ] DIPOLE

4 7 ANTENNA

025 1 . -0201/1'\ e —y
=11- =r T|- DELTA GAP
GENERATORS
/ 5—L/ ‘ . —-0
| l | |
¢ ] [} }

/ 025 A —>

X

FIGURE 4. Colocated Antenna Gecimery for Method of Moments Analysis.

In MOM the array is excited by inserting delta gap voltage genera.ors of specified
magnitude and phase at the center of a wire segment. The currents arc then determined in
each of the segments according to the MOM procedure. As wili be shown below the MOM
approach lends itself to direct computation of the two port Y matrix of the array. The Y
matrix of a two port is described in terms of thie termninal voltages and currents by:

15
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h=YnVi+Y2Vva

L=YnVi+22Vy | 7

Norics that if Vi is set to 1 volt, and V7 1s set io zero, Y1 is identically equal to the current
5 and Y7 is equal 10 Ip. Similarly, if Vi is set 1o zero and V7 is set to 1 volt, then Y7 is
equal to the cuitent 1) and Y22 1s equal to I2. In this fashion the Y matrix can be direciiv
computed from the MOM derived currents since the delta gap voltage can be set to 1 voit
and the voliage set to zero by replacing the delta gap generator by a wire segment {i.e.
removing the delta gap generatcr). The Y matrix computed for the example in Figure 4
(with lossless conductors) at a frequency of 500 MHz is:

(11293107 +3.4111-10™  7.4836-107° - 5.8541-10‘5"]

Y= -9 - -6 ©8)
7.7687-1077 —5.5983-107°; 1.4187-10™° -0.0:039; J

Tke above values were computed using Numerical Electromagnetics (ode (NEC),
version NEC3D run on a Macintosh Iisi. NEC was developed as the Lawrence Livermore
Laboratory under the sponsorship cf tne Navai Qcear: Svstems Center and the Air Force
Weapens Labcratory.

ARRAY Z MATKIX

The Y matrix can be inverted to give the Z matrix

i} 103; 1075 + 16, 50405
z=( 0.00934-2.9289-10%  9.13542-107° +16.50405i | 9

~§.52033-1070 +15.78289i  0.01314+96.1667% )

Z11 correspoads to the self impedance of the dipole and 27 is the self impedunce of
the loop. Since in this example conductor: are assumed lossless, Ry and K> represent
the radiation resistances of the dipole and loop, respectively, and since both leop and dipele
are electrically smail, the radiation resistance of each isolated artenna is correspondingiy
very smali. One of the prime motivations for this hybrid mode array is to significanidy
increase the radiation resistance of the clecirically small antennas without increasing their
physical sizc.

COMPUTING CURRENT EXCITATIONS OF HYRRIU MODE ANTENNA

Using Equation 26 from Section III that specifies the proper current raiio for z2to
reactive power and rewriting the denrominator in terins of the area of the loop, A, gives
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£

For a square loop with side length S the proper rato is

£
l-_
e A, @n
¢ enfz)
2-n- I

for ¢/A = 0.020, S/2. = 0.025, and 14/Ig = i 5.093. Thus, the current in the loop is
approximately five ames that in the dipole, and the currents are in quadrature,
ACTIVE IMPEDANCES OF HYBRID MODE ANTENNA

The active impedances are compnted from Equation 36 and listed in Table 1 for the

P . S ————
feiaiive CWTEihi EXCIatons shown.

TABLE 1
ldipgle Ligop Zagipole 71000
1 20° 5.003 0.0098 - 1284243 | 0.01313 +199.266
1 £ 90° 5.093 84.064 -i2928.9 -3.086 +196.17
1 £ 180° 5.093 0.0089 - i3013.0 | 0.01316 + i93.068
1.£270° 5.093 -84.045 - i2928.9 l 3.112 +i96.167

It is importint to note thai when the currents are in quadrature the radiation resistance
of both the loop and dipole is significar 1y increased. If the currents are not in quadrature
the radiation resistance is approxiraately that of the isolated element. Furthermore, with the
currents in quadrature the radiation resistiance of one element is positive and the radiation
resistance of the other element is negative. The physical interpretation of a negative
radiation resistance is that rather than radiating power {as would be the case for a positive
radiaton resistance), an antenna with a negative radiation resistance is receiving power and
delivering it to the load connected to the port. The significance of colocation and
quadrature currents in the large increase in radiation resistance can be seen in the expression
for the active impedances of a two port colocated anenna array,




NAWCWPNS TP 8212

Zay=2Z+2Z1p 12-
Iy
(42)
Zay = Iy Ay Zn
I

From Equation 39 the mutual coupling (212 and Z3)) for colocated antennas is
observed to have a large reactive component. As the separation between antennas is
increased the magnitude of the mutual coupling also decreases. The large reactive
component of the mutual coupling combined with the currents in quadrature results in a
significant real resistive component in the active impedance compared to the small radiation
resistance due to the self impedance of electrically small antennas.

SENSITIVITY TO MAGNITUDE AND PHASE PERTURBATIONS

Table 2 lists computed active impedances for current excitations that deviate from the
specified current ratio of Equation 41.

TABLE 2.

Tdigoie Tioop Za) Pg,?g' Ie ’P!?‘m
1 £90°, 6.000 . -12 . -2.317‘#1%3.” 49.52 , -47.11
1 Z£90°,5.093 £4.064 - 12928.9 -3.086 +196.17 42.03 , -40.02
1.£90°,5.000 82.531 -12928.¢ -3.144 +196.17 41.27 , -39.29
1 £ 90°, 4.000 66.027 - 12928.9 -3.933 +196.17 33.01,-31.46
. £ 85°,5.093 83.746 - 12921.6 -3.074 + 196.44 41.87 , -39.87
1 £45°,5.093 59.446 - 12869.5 -2.178 + i198.36 29.72 , -28.25
1£135°,5.003 59.446 - 12988.4 -2.178 +i93.98 29.72 ,-28.24

Thus, it appears that the colocatec antenna is relatively insensitive to small perturbations in
the magnitude and phase of the excitation currents. The powers listed for the dipole and
loop are the radiated power from the dipole {positive) and the power received by the loop
(negative), respectively. The total radiated power of the array is the algebraic surn. As the
magnitude of the current in the loop is decreased the total radiated power also decreases.
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VI. GENERAL DISCUSSION ON ANTENNA ELEMENT COUPLING

In anienna arrays the relative input currents to the individual antenna clements are
specified as 1o their relauve magnitudes and phases in order to obtain the desired gain,
pattern, radiation direction, etc.

With close packed arrays, (and a colocated loop and dipole is certainly an example)
where the coupling between the elements cannot be ignored, a s<rious efficiency problem
can arise.

Consider our two-element array as a two port as in Figure Sa, with impedance matrix
(2) and scattering matrix (S). It follows thar the active input impedances looking into ports
(or antenna elements) one and two are;

!
Zy=2y +212'?‘ (43a)

I/
Zy=Zyn+2), 72L : (43b)

Sirce the Z;; are nixed by the geometry of the situaticn and 17 and 1; are fixed by the
antenna performance requirements, Z) and Z; are fixed impedances with specific numerical
values.

The active impedances, Z) and Z;, represent the impedances that must be matched
into in order to increase the system efficiency and radiate as inuch of the available power as
possible. The matching problem reduces to Figure 5b with some provisos that we will note
as we proceed.

a| — — b2
i S). & 2
I4 Ip

‘——82

FIGURE 5(a). Two-Element Array as a Two Pori.

aa — a —» <« 8B1
-1 Sa) 2 —2 (s 1}—-
bAy «— by« 14 Jf1 l‘2| I2 — bg;
+

FIGURE 5(b). Reduction of Two Port Matching
Problem.
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The active reflection coefficients, I') and I"2, are given by

_Z-Z

I, = ;o 1=12 44
! Zi+ZO ! ¢ )

while (Sa) and (SB) represent matching networks with the goal of reducing the reflected
waves ba) and bp to zero while simultaneously not introducing loss in the matching
networks themselves.

For a lossless matching network, the condition for zero reflection is given by

San=T1 i Sgn=T2 . (45)

The other scattering coefficients of the matching networks can then be found by
imposing the usual unitary condition

$)sT) =) 46)

on the matching networks.

It should be noted that merely attaching the matching networks thus designzd to the
antenna array input ports will rot ensure proper performance of the antenna array. The
drive levels ap and ag) into the matching ustworks must be of the proper relative
magnitude and phase to provide the correct relative currents 1 and I. The relations
between ap) and the Saj; and current I are readily found as are the relations between agi
and the Sgij and current fy_.

The drive levels ap) and ag) would gererally be supplied from an uneven power
divider designed to give the proper complex ratic aa(/ag) with the system looking like
Figure 6.
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am_‘
1 (Sa) 2 aq by
W4
2 3
———11 (Sp) (S)
3 2
21t
881.—» a3 by

1 {Sg) 2

FIGURE 6. Two-Element Array With Matching Networks.

As long as Equation 45 can be satisfied, there is no reason, in principal, why lossless
marching networks and power dividers cannot be designed and buiit to a good degree of
approximation. If the coupling between antenna elements is sufficiently strong, and the
currents, I) and I, have sufficiently different magnitudes and phases, the real part of Z) or
Z> (but noi both due 10 the conservation of energy) can be negative. When that is the case,
the magnitude of the active reflection coefficient is greater than unity and cannot be matched

esmacan A Vmnnloon casas a1
UDLUE A 1UIMCDD LCLWUIA.

For the electnc dipole and the loop with I} and I set 10 "zero out” the imaginary part
of the complex Poynting vector, this is precisely the case as siiown in Table 1. The
mechanism by which this occurs is readily seen by rewniting Equaaons 43a and 43b:

Zl = Rl + in = Rll + -llzl(Rn cos Ag _XIZ sin A¢)
1

l
+ i[X“ +l—£—2—1(R12 sin Ag + X;, cos A¢)] ,
1

1
Zy =Ry +iX3 =Ry +H(R12 cos A¢ + X7 sin A(P)
2

+ i[Xzz + ’—;‘—‘(Xu cos Ap — Ry sin A¢)]
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where A¢ is the phase shift between 1) and Ip. If I1>>11], for cxample, and R 2 is small,

and A¢ = ®/2, it is casily seen that Rj may very well be negative, while R3 is positive.
(Ry; and R2; in the impedance mawrix must be positive without the presence of active
devices.)

If a negative R is the case then the marching problem leads to Figure 7, where I'a is
chosen to give the proper current at port 1 of our antenna array.

— — 32 r ‘_aB'

‘I:_b‘:__T 1 (S) Py S b2 2 (Sp) 1
rA
4 12

FIGURE 7. The Matching Problem When R is Negative.

Figure 8 is equivalent to Figure 7 and maintaining the proper value of I} must be done
by setting I'A equal + the reciprocal of Iy,

:1 -— — 2 -— 8By
— =212 sp
FAJ l1Jf1 r2J:|2
FIGURE 8. Equivalent System to Figure 7.
1 a a 1
L==—(a-b)==L(1-T, =-—(1--—) . (48)
Z ( Z ) Zo\ Ta
Solving (48) for I'p gives
Fy=a . (49)
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z, = IR~ (50a)
where

Zy =Ry|+iX; . (500)

Because IRj! is a positive ohmic resistance and the current J; flows through it, there is

ohmic loss whick means that although the anenna performance in terms of pattern and

radiation direction is preserved, the efficiency is reduced. In the case of electrically small

superconducting antennas, this reduction in efficiency can be drastic.

However, all is not lost. The load Za can be replaced with 2 lossless two port as in
Figure . The lossless maiching network (Sp) is designed for matching so that

Spn =T
ba1 aj - 82 °C1
- . bq : — by ~ -—8B1 1
1 (Sp) 2 1 (5) 2 2 (Gp 1 350 g |—
Iy P —bgs — |
- acy
Exp (i)

FIGURE 9. Replacing ihe Load Zs, With a Lossless Two Fort.
Per Equation 45, while the lossless two port (Sa) is designed to produce the curreat Iy with

1
S =— , 51)
A22 rl (51)

the ourput ba is fed, with the proper phase shift, to the input of a power combiner to
produce the desised drive level ags.

It is not our purpose to go into the combiner details here but one way to achieve this
end is to use a directional coupler with one port terminated in Zop, with the coupling
coefficients set to give zero output at the terminated port and the proper apj of the input of
the matching network.

This may seem to be a somewhat complex process but if it is compared with Figure
6, one power divider and two two port matching circuits verst's one power combiner, one

23
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two port matching circuit, and one two port to meet the condition of Equation 51, the two
cases are seen to be topologically equivalent.

ViI. CONCLUSIONS

We have presented a detailed electromagnetic analysis of an electrically small
colocated electnc dipole and magnetic loop antenna array. This antenna is the simplest
example of the Grimes multipole class of antenna arrays. We have determined that since
the interaction term between the two elements disappears from the radial complex power,
we were able to set the radial reactance to zero by choosing appropriate current magnitudes
and phases on the array elements. By driving the two elemenis in quadrature, we saw a
much increased radiation intensity and directvity as well as increased radiated power.
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. Appendix

RELATIONSHIP BETWEEN THE INSTANTANECQUS POYNTING
VECTCR AND THE COMPLEX POYNTING VECTCR

Itis important to recall that the complex Poynting vector can be derived directly from
Maxwell's equations (Reference 20). Using standard phasor notation and €'®! time
dependence

- —
VxE=-iouH (A-1

-

- -
VxH=J+iweE (A-1b)
with the complex conjugate equation for Equation A-1b as

— - -
VxH*=J*—iwe E* . (A-2)

Dotting H*into Equaton A-la and E into Equation A-2, we obtain

- - - =
H* VxE = ~iwg H* -H (A-3)

and

- —_ > - -
. VxH*=FE-J*-iweE- E* . (A-3b)

Subtracung Equanon A-3b from Equaton A-32, we have
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- - T T e e
V-(ExH*)=—iw(uH*-H—8E*-E)-E-J* . (A-4)

Allowing primed variables to denote real parts of quantities and double primes to denote
imaginary parts, we can rewrite

- - v A

HH*=H'“+H" (A-52)
and

22 2, 2,

E-E*X=E'“4+E" (A-5b)

which have no imaginary parts.

However, E x H* does have an imaginary part. Thus

- = e e f— 9 = =3

EXH*=(E’x11’+E”xH”JHl\E’.rH”-E”xH’J (A-6)
while

e

E-J<E*QE* (A-7)

and as long as the conductivity, G. is real, E-T*isa purely real quantity. So returning
to Equation (A-4),

(= =) s e = S o9 2
V-(EXH*J-—-V- (E'xH'+E"xH")+-i(E'xH”-—E"xH')

- -
=V~[Re(£xﬂ*)+ilm(ExH*)] . (A-8)
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Using Equation A-8 with Equation A-4,

1 - - 1{— =
—V-Rc(ExH* =-(E-J* (A-9a3)
2 ] 2
and
- ->* - —
- - . E*
%V-Im(EIH*)z—w quH —Ez . (A-9b)

Y v.Re(’Ex ﬁ*)w:-% [ E-Jvav (A-10a)
|4

and

—_ -

P 25
H H _15-215 Jdv

(A-10b)

Of course, the above can be found in many text books and we repeat it here for the reader's
convenence.

Now let the instantaneous Poynting vector be given by
- —
S=ExH (A-11)

where all boldface variables indicate instantaneous quantities. Sisa power density. i.c.
power/unit area and has the MKS units of watts/m2. The total power crossing some closed

surface at a given time is found by integrating the normal component of S over the entire
surface, or
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P=§ Sas = S- hda (A-12)
A)

where P is the instantancous power in watts. We can write E and lf in the foan
(Reference 17)

- = )
E(x,y,2;t)= Ref E(x,y,z)e'? (A-13a)
i 4
- [ -
H(x,y,z;t) =Re| H(x,y,7)e'? (A-13b)
L
and then
- - = B
E=FEcoswr+ E"sin (A-14a)
and
- = -
H=H cosex+H"sinax , (A-14b)

d we have thrown away all else. Using Equations A-14, the instantaneous Poynting
*~tor becoraes

- - - - e
) =(E’xh’)cos‘“ -’ut+(E'x H+E"x H')sin Wt cos wi
(A-15)

A
+| E"xH” |sin® @

An altemnate form of Equatdon A-15 is
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=2 1= =2 = SY ({2 2 o5 -S)
S=E E'xH+E”"xH” +:2- E’xH”"+ E”xH  |sin 2ax
(A-16)
1{32 = = -
‘ +-2- E'xH'-E"xH” {cos 2wt
or
- 2 —
S = Ng+ Njcos 2wt + Ny sin 2ax (A-17)
where
— 1(—) S St
NO—E\ "sH'+E”"xH” (A-18a)
-2 1o 2 o )
Ny = —Z-LE’.L H—-E"x 'J (A-18b)
— 1= = - =
N2=5 "xH"+E"xH’ (A-18¢)

which is Grimes' notation (Referencce 6).

Once we time average Equation A-17 over one peniod, 1, we find that the intcgrals
over cos 2 ot and sin 2wt are zero. Thus while

- - 9 - S
Savg-——S:NO:Re(ExH*) . (A-19)

- s . . .
the tenns containing 1?1 and N7 average to zero. Then the radiated power is also the time
' averaged power, as usual,
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-
P,M=Pa,.g=§ %Rc(ExH*)-ﬁda=§ Ny-rda . (A-20)
A" A

Only the instantaneous total power keeps the ﬁ’l and ﬁa terms. Thus

P=4¢ S ida
A

- a0 =
=§ Ny nda + cos Zwtﬁ Ny nda + sin 2wx§ N)-nda . (A-2D)
A A A

But neither ﬁ’l nor N’z given in Equations A-18b and A-18¢ are equat to % Im(E x }—ﬁ‘),
which is

(A-22)

which is obtained from Maxwell's equations and their associated complex conjugates.
Thus there is no explicit relationship between the imaginary part of the complex Poynting
vector and the instantaneous Poynting vecior.
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