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Preface

This report is a primer on the subject of structural dynamics, oriented
toward the analysis of the intake structures that fall under the authority of
the U.S. Army Corps of Engineers. It is a part of the work sponsored by
the Comnputer-Aided Structural Engineering Program sponsored by the
Directorate, Headquarters, U.S. Army Corps of Engineers (HQUSACE)
under the Structural Engineering Research Program. Funds for publica-
tion of the report were provided from those available for the Computer-
Aided Structural Engineering (CASE) project managed by the Information
Technologyr Laboratory (ITL) at the U.S. Army Corps of Engineers Water-
ways Experiment Station (WES) at Vicksburg, MS. H. Wayne Jones is the
CASE project manager. Technical monitor for the project is Mr. Lucien
Guthrie, HQUSACE.

The work was performed at WES under the direction of Dr. Robert M.
Ebeling, Interdisciplinary Research Group, Computer-Aided Engineering
Division (CAED), ITL. The report was prepared by Professor Samuel E.
French of the University of Tennessee at Martin, Dr. Ebeling, and
Mr. Ralph Strom, North Pacific Division, U.S. Army Corps of Engineers.
This report is part of a general development of design manuals intended
for use primarily by district personnel whose background does not include
advance:! dynamics. The work was accomplished under the general direc-
tion of Dr. Reed L. Mosher, Acting Chief, CAED, and the general supervi-
sion of Dr. N. Radhakrishnan, Director, ITL.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. How~ard, EN.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

V



Conversion Factors, Non-SI to SI
Units of Measurement

Non-SI units of measurement used in this report can be converted to SI
(Systeme Internationale) units by applying the following factors:

Multiply By To Obtain

angular degrees 0.01745329 radians

cycles per second 1.000 Hertz

cycles per second 6.28318531 radians per second

feet 0.3048 meters

feet per second per second 30.4838 centimeters per second per second

gravitational acceleration 980.665 centimeters per second per second

gravitational acceleration 32.174 feet per second per second

gravitational acceleration 386.086 inches per second per second

inches 2.54 centimeters

pounds 4.4822 Newtons

tons 8.896 kilonewtons
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1 Single-Degree-of-Freedom
Systems

Introduction

This report presents the fundamental concepts of the dynamics of in-
take towers. The theory is quite general, however, and will apply to multiple-
degree-of-freedom (MDOF) systems other than intake towers. The
ultimate purpose is to present the computer-aided analysis of distributed-
mass towers such as the step-tapered tower shown in Figure 1 i. The devel-
opment of the theory therefore becomes slanted toward distributed-mass
towers as it progresses. In this chapter of the report systems having a
single degree of freedom (SDOF systems) are discussed. The single
lumped-mass systems depicted in Figure 1 are typical examples of such
SDOF systems.

The primary source of dynamic excitation of structures is earthquake
motion. A brief summary of earthquake loading as it is characterized in
terms of response spectra is presented in Chapter 2 of this report. Distributed-
mass systems such as towers are presented in Chapter 3 as an application
of the Rayleigh method. While the distributed-mass systems of Chapter 3
are recognized as MDOF systems, the Rayleigh method allows them to be
examined one degree of freedom at a time. Multistory lumped-mass sys-
tems are presented in Chapter 4. Such systems are MDOF systems that
can also be examined one degree of freedom at a time.

The lumped-mass systems (but not the distributed-mass systems)
shown in Figure 1 can oscillate in only one way, that is, the motion of the
single mass can be only a back-and-forth motion across its initial at-rest
position. Figure 2 is a sketch of such an oscillating system. The position
of the mass at any point in time in the system is entirely predictable.

Chapter 1 Single-Degree-of-Freedom Systems
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Figure 1. Common types of oscillating systems

Figure 1 shows several common types of single- and distributed-mass
oscillating systems. If any one of these systems is given an initial d;s-
placement of amplitude u0

1 and then released, it will oscillate at it.,
natural freq uency, continuing to oscillate with ever-decreasing amplitude
(and ever-decreasing energy) until it finally returns to its at-rest state.

The causes of the decrease in amplitude might be such things as hyster-
esis losses, inelastic behavior, or any one of many other sources of energy
dissipation. The cause could also include man-made shock absorbers de-
liberately placed to reduce oscillations. Taken together, these losses in

For convenience, symbols and abbreviations are listed in the notation (Appendix B).

2 Chapter 1 Single-Degree-of-Freedom Systems



energy are called damping
effects; without damping,
the mass could theoreti-
cally oscillate forever AT-MSTPOS

with no loss in amplitude.
Shown schematically,
damping effects are usu-
ally lumped together and
shown as a viscous shock
absorber called a dashpot, aota q

such as that shown in
Figure le.

Figure 3 shows the dis-
placement of an oscillat-
ing mass both with and
without damping. The
damping will affect only
the force resulting from -. MOTMo"

the velocity of the mass in K
motion. Damping effects
are greatest when the /
mass is at its highest ve- -( osTION RIGHT

locity. As velocities de- -

crease, the damping also
decreases, resulting in an
asymptotic decrease in am- Figure 2. Oscillations of a lumped-mass
plitude as shown, system

Figure 3 also indicates
the period of oscillation,
T. The period is the time
in seconds for the mass to complete one full oscillation, or cycle. The fre-
quency of oscillation f is another commonly used property; the frequency
is the number of cycles completed in one second (Hz). Mathematically,
frequency is the reciprocal of the period T. The rotational speed o0 is an-
other commonly used property and is the angular velocity in radians per
second where there are 2n radians in one complete cycle.

f in cycles/second = 1 (1)
in T seconds

o) in radians/second = 271 radians/cycle (2)
T seconds

Figure 3 shows that the period of oscillation T for this structure is es-
sentially the same for both damped and undamped oscillations. At very
high levels of damping, there will in fact be a slight elongation in the
period T (TDAMPED > TUNDAMPED), but for ordinary structures working
at elastic levels of stress, the level of damping is so low that any such

Chapter 1 Single-Degree-of-Freedom Systems 3
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Figure 3. Damped oscillations

difference can be safely ignored. The dominant effect of damping is to re-
duce the velocity of oscillation, thereby producing .he asymptotic reduc-
tion in amplitude shown in Figure 3.

The angular velocity o) does not always appear physically in an oscillat-
ing system, but the symbol (o usually does. Figure 4, in which an imagin-
ary wheel is added to a laterally oscillating system, shows a means to
visualize a rotational velocity when none actually exists. The rotational
velocity of the imaginary wheel is oo.

1 0

.,-- -- UMNTING POSITION i-

I I

Figure 4. Rolational velocity for a linear oscillation
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Equation of Motion

The equation of motion for lumped-mass systems having a single de-
gree of freedom (termed SDOF systems) is derived from Newton's second
law, force = mass times acceleration. Consider the system shown in Fig-
ure 5 in which the oscillating mass has been removed as a free body at
some instant in time t. An externally applied dynamic force p(t) is acting
on the system. The force p(t) varies with time and is called a forcing
function.

MA mFORCEp(t) M

I - -PRNcONSTANk
FOR COLUMINS

a) Idealized System b) Forces acting on the mass

Figure 5. Common SDOF oscillating system

The free body shown in Figure 5 is subject to four forces, each one
varying with time.

a. The inertial force (fi = mu) is given by D'Alembert's principle to be
a force acting through the center of mass, opposite in direction to
the imposed motion.

b. The restoring force (fk = ku) is the stiffness k (in pounds of force
per unit of displacement) times the displacement u.

c. The damping force (fd = c6) is the damping constant c (in pounds of
force per unit of velocity) times the velocity i at any time t.

d. The fourth force is that of the forcing function [p(t)], which may or
may not exist at any given time.

The sum of forces yields the equation of basic force equilibrium:

-fi -fk -fd + p(t) = 0 (3)

Chapter I Single-Degree-of-Freedom Systems 5



All of these forces may be expressed in terms of the displacement u,
where, as noted earlier:

f =m (4a)

d= cu (4b)

fk= ku (4c)

Substituting Equations 4a, b, and c into Equation 3 yields the basic
equation of motion for an SDOF system subjected to an externally applied
forcing function:

mý + cu + ku = p(t) (5)

This same equation applies equally to all of the SDOF systems shown
in Figure 1. For the rotational oscillations of Figure lh, rotational dis-
placement co would have to be substituted for lateral displacement u.

In all of the lumped-mass systems of Figure 1, the mass of the system
is understood to be rigid. Consider, for example, the idealized one-story,
single-bay building frame of Figure Id. Under the indicated displace-
ment, it is assumed that the rigid mass does not undergo any bending; only
the columns will experience bending. Therefore, all of the restoring force
fk in this system must come from bending in the columns.

The equation of motion (Equation 5) for the systems of Figure 1 in-
cludes a forcing function p(t) applied to the mass m. An earthquake, how-
ever, does not produce such a tangible force acting on the system. Rather,
an earthquake will produce displacements of the foundations of the struc-
ture. It is these displacements, rather than tangible forces, which the
earthquake imposes on the system.

The results of such earthquake-induced displacements are shown in the
free body of Figure 6. The earthquake ground motions are shown as ug(t),
which are random motions in time. The total displacement of the mass rel-
ative to its at-rest position, ut(t), is shown in Figure 6a. The displacement
u again represents the displacement of the structural mass relative to the
base of the structure at any time t. The geometry of Figure 6a shows that
the total displacement ut(t) is given by

uW(t) = UP) + u(t) (6)

Figure 6b shows the forces associated with the free body of Figure 6a.
In this case, however, the inertial force fi created by the total acceleration
Ot(t) becomes:

f= hi (t) = mu0(t) + mu (7)

6 Chapter 1 Single-Degree-of-Freedom Systems
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RELATIVE TO AT-REST

AT4.ESTPO6ITIOV ut POSITION
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+ -RELATIVE TO
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I APERI POSITM OF
Ia 1 ROUAW AT TAWEt

a) Displacements b) Forces acting on the mass

Figure 6. Relative displacements of SDOF systems

Forces are summed as before, yielding the equation of force equilibrium:

fi + fd + fk= 0  (8)

where

fd = cu

fk = ku

These values of displacements are substituted into Equation 8, yielding:

m' g(t) + mu + c6 + ku = 0 (9)

Rearranging terms produces the final form of the equation of motion for a
structure subjected to earthquake displacements at its base:

mu + cu + ku = -mug(t) (10)

Equation 10 is essentially the same as Equation 5, with the forcing func-
tion being the effective force -mui (t). The amount of force exerted on a
structure is therefore a function of the mass of the structure itself. Light-
weight steel or timber structures will experience much less force from
earthquake motions than will heavier concrete or masonry structures.

Equation 10 is the general equation of motion for a single-mass struc-
ture subjected to a dynamic forcing function such as an earthquake. A typ-
ical example of such a structure is shown schematically in Figure 7.
Figure 7 shows that under the actual excitation, the earth is moving relative

Chapter I Single-Degree-of-Freedom Systems 7
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a.ACTUAL EXCITA11O ( (OF GROUND b. MOU#VALENT FmXC#TAT

Figure 7. SDO#F system under earthquake forcing function

to the mass whereas under the equivalent excitation, the mass is moving
relative to the earth.

The major part of this report is devoted to the solution of Equation 10.
As with any differential equation, the solution of Equation 10 consists of
two parts:

a. The general solution of the homogeneous equation, that is, a
solution with the forcing function 0ig(t) -- 0 and the structure
undergoing unforced (free) oscillations.

b. A particular solution of the general equation, that is, a solution with
the forcing function in place and the structure being forced to undergo
the same displacements as the forcing function, but with a time lag.

The solution for the unforced free oscillations will be developed first.

Undamped Free Oscillations

The equation of motion given by the homogeneous portion of Equa-
tion 10 will be solved first without any damping. Damping will then be
added, and the final form of the solution will be developed.

At some instant t = to, an SDOF system is assumed to have a known dis-
placement u0 and a known velocity u0. Thereafter, the system is allowed to

oscillate freely without any further forcing function being applied. The equa-
tion of motion for the undamped free oscillations is then given by:

muý + ku = 0 (1lla)

or,

S+ (k/m)u = 0 (1 l b)

8 Chapter 1 Single-Degree-of-Freedom Systems



The solution of this ordinary differential equation is:

u = A sin (o) + B cos(cot) (12)

where co is the constant circular frequency of the solution in radians per
second and A and B are the constants of integration.

The circular frequency o is found from the solution as:

o) = "4•lkm (13)

The natural period of oscillation T can now be determined, even before
the constants of integration have been evaluated:

T = 2n F (14)

Equation 14 shows that the natural period of oscillation of an un-
damped SDOF system is dependent only on the mass of the system and
the stiffness of the system. No boundary conditions or any other factors
affect the undamped natural period T.

The constants of integration A and B can be found as usual by evaluat-
ing the boundary conditions:

At time t = 0, u = u0 = A sin [o(O)] + B cos [co(O)I

u- = B (15)

The velocity u at any time t is given by:

u = A co cos (wot) - B o sin (cot)

At time t = 0, = 10 = Aco

uo/co = A (16)

The final solution is then given by:

u = u0 cos (cot) + (u0/co) sin (cot) (17)

The maximum amplitude given by Equation 17 will occur when the deriva-
tive of the amplitude (the velocity) is zero:

U = 0 = -uoco sin (cot) + (io/co) co cos (cot)

or,

0 = - u0 sin (cot) + (U0/co) cos (cot) (18)

Chapter 1 Single-Degree-of-Freedom Systems 9



Equation 18 is squared:

o= 2 22 22(9-o sin (w) - (2uo~'0-w) sin (ov) cos (wi) + (uO/os) ' (1N9)

Equation 17 is squared:

2 2 22 2 (20)
U = COS2 (wI) + (2O•iV/O)sin (W Cos (0) + (o'o0)2 sin (0C)(2

Equations 19 and 20 are summed to yield the maximum amplitude umax
that can be produced by the motions of Equation 17.

Umax 0 (21)

The motion described by Equation 17 for an undamped, unforced SDOF
system is summarized schematically in Figure 8.

INITIAL CONDITIONS

Ut.e LUo
ONO -00U(t)

MASS m

STIFFNESSk

I

LATERAL DISPLACEMENT

-U +U

U(0.U' 0CS6)t,#SIw0 21
0) r.

WHERE w.

Figure 8. Undamped, unforced oscillations

10 Chapter 1 Single-Degree-of-Freedom Systems



Damped Free Oscillations

The foregoing solution for free oscillations did not include damping.
When damping is included (still without a forcing function), the homoge-
neous part of Equation 10 becomes:

mý + cu + ku = 0 (22)

The equation is divided by m to put it in standard form:

S+ 20o)i + a2u = 0 (23a)

where the constant

A3 = c/2mo (23b)

For 1 < 1, the solution of Equation 23a is:
e /u0W (acs uo + U1oU 0  / (24)

u = e-" 
tjCod + sin (Ot

The motion described by Equation 24 for 03 < 1 is summarized in Figure 9.
It is a periodic function having an exponentially decaying amplitude and a
damped circular frequency coD:

cOD = 0) Vj- 1 2 4k(1 - P2)/m (25)

where Co is, as usual, the circular frequency of the undamped system.

The damped period for the motion of Equation 24 is found from Equa-
tion 25:

TD = T/4Yjl- (26)

where T is, as previously defined, the natural period of oscillation of the
undamped system.

If the factor P in Equation 26 could be made equal to 1, the natural pe-
riod of the damped system would become infinite. Such a system would
simply return to its original at-rest position following a displacement, i.e.,
there would be no oscillations. For the case in which P3 = 1, the damping
coefficient c as given by Equation 23 is its value of critical damping:

C " Ccritical= 2moa (27)

Chapter 1 Single-Degree-of-Freedom Systems 11



INITIAL CONDITIONS

Ut-o-Uo

MASS m

STIFFNESS k /

LATERAL DISPLACEMENT
-U +U

to U11
UAXo, Uo 0 U2 n

U(t).e- COSWt,11JO)D TO,2

WHERE(0D-j (i.3)

m

0

Figure 9. Damped, unforced oscillations

Further examination of Equation 23a reveals that the factor J may be
regarded as the fraction of critical damping in a system, i.e.:

S= c/2m'0 = Clccritical (28)

For typical structures working in their elastic ranges, the factor 13 has
been found to be less than 0.1, or, stated another way, the maximum
amount of damping in a typical structure will normally be less than 10 per-
cent of its critical damping. Substitution of this maximum value of 13 = 0. 1
into Equation 26 indicates that for typical structures, the effects of damping
on the period of oscillation are indeed negligible and can be ignored, i.e.:

12 Chapter 1 Single-Degree-of-Freedom Systems



T- TD (29)

Forced Oscillations with a Dynamic Forcing
Function

As stated earlier, the intended solution of Equation 10 would consist of
the general solution of the homogeneous equation, both with and without
damping, plus a particular solution of the general equation, both with and
without damping. Equations 17 and 24 satisfy the first part of this solu-
tion. They are the required general solutions of the homogeneous equa-
tion. It remains now to find a particalar solution of Equation 10, both
with and without damping, when the system is subjected to a dynamic
forcing function.

When a forcing function is included, Equation 10 takes its most general
form:

nit + cu + ku = -muw(t) (10)

The forcing function mils(t) is the mass of the structure times the ground
acceleration; physically, the result is a force. The nature of this force has
yet to be defined.

Two cases of dynamic forcing functions will be considered for examina-
tion, one being a harmonic variation and the other being the random varia-
tion produced by an earthquake. The first case considers a forcing
function that has a harmonic variation similar to that of the natural oscilla-
tions of the structure. The forcing function, however, is assumed to have
some frequency which is not necessarily the same as the natural fre-
quency of the structure:

-mu = P0 sin &t (30)

where p0 is the maximum magnitude of the forcing function.

When a harmonic forcing function such as that of Equation 30 is ap-
plied to a damped SDOF structure, the response of the structure will con-
sist of two parts, as noted earlier. The first part, the free oscillation part,
is that given by Equation 24. This free oscillation soon decays, however,
leaving only the second part. The second part is the continuous steady-
state response that is being imposed on the system by the forcing function.
This steady-state response is the particular solution of Equation 10. The
forcing function is physically forcing the SDOF system to follow the mo-
tions of the forcing function.

Chapter 1 Single-Degree-of-Freedom System,; 13



However, the forcing function is not acting on the oscillating mass.
The forcing function acts at the base of the columns as shown earlier in
Figure 7. The motion of the mass is being created by a back-and-forth
ground motion at the base of the columns. At any time t, the force im-
parted to the columns is that given by Equation 30.

The displacements of the mass will follow the same harmonic displace-
ments as the ground motion. There will be a lag in time, however, be-
tween the motion of the ground and the motion of the mass. The lag
occurs as the columns develop enough lateral force to produce (or to
change) the motion in the mass. It is well to note also that the amplitude
of motion of the mass need not be equal to the amplitude of motion of the
ground. Such a difference is indicated in Figure 10.

£EAXAIA FORCE p0
MR4ONI FORCE P10 P0 s UIt

III

DISPLACEMENT

AA,,../~u.

Figure 10. Steady-state response due to harmonic ground motion

The displacement u of the oscillating mass at any time t is:

u = Ureax sin ( -0)(31)

where 0 is the lagging phase angle between the motion of the ground and
the motion of the mass.

The solution for the response of the system to various excitation fre-
quencies 6) is mathematically quite complex, far beyond the scope of an
elementary treatment such as this (see Paz, Structural Dynamics 1991).
The end result of the solution, however, is relatively simple. The displace-
ment u at any time t is given by the solution as:

U = Ureax sin (Ib~t - 0) (32a)

14 Chapter I Single-Degree-of-Freedom Systems



where

!811 (32b)

S - ([a)2] 2 + (&o))]2

and the lagging phase angle 0 is given by

= an 20(&Vo)) (32c)

In Equations 32a and 32b, the displacement ust is the displacement that
the maximum force p0 would produce if the force were to be applied as a
static force (i.e., Ust - P0k). All other symbols in Equations 32a, b, and c
were introduced and defined earlier.

Equation 32b reveals that there are two primary variables. The first
variable is umax/Us1, which indicates the relative level of magnification
of displacement at various forcing frequencies &. The second variable is

V/)c, which is the ratio of the forcing frequency @ to the natural fre-
quency (o. (The third variable 13, the ratio of critical damping, can be as-
signed whatever value the physical conditions warrant.)

Figure I I presents a graph of Equation 32b for various levels of damp-
ing. The most significant feature of the graph is, of course, the sharp in-
crease in displacement as the frequency of the forcing function
approaches the natural frequency of the system. A second significant fea-
ture of the graph is the effect of the damping. A large amount of damping
is required if a pronounced reduction in the peaking effect is required.

Figure 1 I reveals the phenomenon of resonance. The peak value of dis-
placement given by Equation 32b occurs when the forcing frequency & is:

@peak = 0) 4-1- 2V (33)

In comparison, the damped natural frequency a) is:

0D = M •" -02 (34)

The resonant frequency is therefore not exactly equal to the damped
natural frequency of the system, but for low values of damping, the
difference is quite small. In general, this small difference is ignored,
and the resonant frequency is taken to be essentially equal to the natu-
ral frequency.

Insofar as the structural design is concerned, it is considered prudent to
keep the natural frequency of a structure as far away as possible from the
frequency & of any known dynamic loading. Since the natural frequency
of the structure is a function only of stiffness and mass:
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Figure 11. SDOF system with a harmonic forcing function

o = 4k/rm (13)

a designer might deliberately alter the structural stiffness or the structural
mass in order to change the natural frequency and decrease any chance of
accidental resonance.

In the case of earthquakes, however, the motion is irregular, i.e., there
is no single value for @. Therefore, the structural design should include
some reasonable amplification of load over a broad range of forcing fre-
quencies. This point is discussed further in Chapter 2.
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Forced Oscillations Under Earthquake Ground
Motions

For the general case of loading in which the forcing function is that of
random earthquake motions, the equation of motion, Equation ! ', remains
in its most general form:

mu + CU' + ku = -mi~p(t) (10)

In its standard integrable form, Equation 10 becomes:

ý + 20e)i + (o2u = -iý (t) (35)

The problem of a damped SDOF system shaken by a time-varying ground
acceleration is equivalent to the problem of a damped SDOF system rest-
ing on a fixed base and being subjected to a time-dependent force p(t) of
magnitude -m • i9(t), as shown in Figure 12.

MASS, a "MASS, m

"FIXED BASE
GROUND ACCELERATION

STEP 1. SOLVE

mG(t) + c62(t) + ku(t) T.m1 ground (t)

STEP 2, SOLVE

atotal(t) (t) + a ground (t)

Figure 12. Equivalent dynamic SDOF system problems

The total dynamic response of the SDOF system problem is computed
in two steps:

Step 1) Solve for the relative response of the damped SDOF system
as governed by the ordinary differential equation,
Equation 35.
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Step 2) Sum the relative response with the motion of the ground to
obtain the total response.

Step I assumes that the contribution of the general solution is negligible
compared with the contribution of the particular solution.

For simple harmonic ground accelerations, e.g., [ug = constant • sin (todt)],

closed-form solutions to Equation 35 are available in numerous textbooks
on both mechanical ,ibrations and structural dynamics. This procedure is
impractical for solviitg earthquake engineering problems due to the irregu-
lar nature of ground acceleration/time histories.

A second procedure used to solve for the relative displacement of the
SDOF system involves the representation of the load/time history
p(t) = -m - us(t) as a series of impulse loadings P(,t) applied to the SDOF

system for infinitesimal time intervals dr. Duhamel's integral for a
damped SDOF system is given by:

u(t) = --(l/oD) (' ii e" - T) sin [o)D (t - r)] d T (36)

where

OD = the damped angular frequency of vibration.

o) = the undamped angular frequency of vibration.

D = the fraction of critical damping.

The irregular forms of acceleration/time histories require numerical solu-
tions to be used to solve Duhamel's integral (e.g., Paz 1991, or Clough
and Penzien 1993).

In usual applications to earthquake engineering problems, numerical
methods are used to solve Equations 35 and 36 for the relative displace-
ment of the SDOF mass because of the irregular nature of ground accelera-
tion/time histories. In general, there are two categories of numerical
methods used for solving the dynamic equilibrium equation: 1) direct inte-
gration methods, and 2) frequency domain methods. The reader is re-
ferred to books on structural dynamics, e.g., Paz 1991, Clough and
Penzien 1993, or Ebeling 1992 for a description of these two methods.

The solution of Duhamel's equation with P = 0 yiel Is a useful relation-
ship between displacement, velocity, and acceleration (Appendix A, Ebel-
ing 1992).

=ou (37a)
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=02u (37b)

It is important to recognize that the relationships given by Equations 37a
and b are exact only when damping is zero. The velocity L computed
from Equation 37a is called pseudovelocity and the acceleration U com-
puted from Equation 37b is called pseudoacceleration. Equations 37a
and b define the interrelationship between spectral displacement u,
pseudovelocity L, and pseudoacceleration U, three terms to be discussed in
detail in Chapter 2.
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2 Design Response Spectra

Introduction

Earthquake loading is typically represented in a dynamic analysis
either by a ground acceleration/time history or by a response spectrum. A
response spectrum is a graphical relationship of maximum values of accel-
eration, velocity, and displacement response of SDOF systems having a
natural frequency f. The graph is drawn over the usual range of frequen-
cies for elastic SDOF systems.

To prepare such a response spectrum, Equation 35 is evaluated for the
relative accelerations ii of an SDOF system during a particular earthquake
excitation. The evaluation is made for the frequency f (or period T) of the
SDOF system and its level of damping P3. As indicated in Figure 13, the
absolute acceleration response spectrum SA is then computed as the maxi-
mum absolute value of the sum of this computed relative acceleration/time
history for the SDOF system plus the ground acceleration/time history
from step 2 ctf Figure 12.

Also indicated in Figure 13, the solution is then searched over the en-
tire time history for the maximum absolute acceleration SA of the SDOF
system, which is found and recorded. The corresponding value of
pseudoacceleration SA is also computed and recorded, where SA = ( 2SD.
The procedure is performed repeatedly at close intervals of frequency.
The resulting sets of values for frequency f and pseudoacceleration SA are
then plotted as the spectra of responses for the various SDOF systems. A
key feature of a response spectrum is that it has been made independent of
time.

As more recordings of earthquake acceleration/time histories became
available during the 1970's, statistical analyses of response spectra of
earthquake ground motions were conducted by several groups of earth-
quake engineers and seismologists. The results of some of the early
ground motion studies are summarized in Seed, Ugas, and Lysmer (1976),
Mohraz (1976), and Newmark and Hall (1982). Their studies showed that
the spectral frequency contents of the recorded accelerograms were depen-
dent on the earthquake magnitude, distance from causative fault to site,
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Figure 13. Absolute accelerations and pseudoaccelerations for elastic SDOF systems
(Ebeling 1992)

the type of substratum on which the recording station was founded (i.e.,
rock, shallow alluvium, or deep alluvium), and the tectonic environment
(i.e., strike-slip faulting, normal faulting, thrust faulting, subduction
zones, etc.). A summary of the studies of Seed, Ugas, Lysmer, Mohraz,
Newmark and Hall is presented in EM 1110-2-6050.

The response spectra developed and plotted from such studies are quite
rough and jagged, but a general form can be readily deduced. Figure 14
shows an example of such a plot for a hypothetical plot of accelerations
from three earthquake records. The overall average value of
pseudoacceleration is a smoothed line as shown, drawn manually between
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Figure 14. Smoothing of raw response data

the peak values. The overall accuracy increases, of course, as the number
of records increases.

With an adequate number of records (see the appendix of EM !1110-2-
6050), such smooth curves can be developed well within the range of accu-
racy of the earthquake projections themselves. All of the smooth-shaped
spectra are drawn using this technique.

Smooth-Shaped, Broad-Band Design Response
Spectra

Early ground motion studies identified the factors affecting the re-
sponse spectra for earthquake motions, characterizing shape or the fre-
quency content of the earthquake spectrum for the category under study
and developing smooth, broad-band spectra for use in the design of struc-
tures for earthquake loadings. A broad-band spectrum ensures that suffi-
cient seismic energy is delivered to all frequencies.

22 
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There are two smooth-shaped, broad-band response spectra now in

wide use by dynamicists and structural engineers:

"* The Newmark and Hall response spectra.

"* The Applied Technology Council ATC 3-06 response spectra.

Both spectra are nonsite-specific and both can be applied in general struc-
tural applications.

Newmark and Hall Response Spectra

In the Newmark and Hall approach for developing design response
spectra, it is necessary first to identify the peak ground acceleration
(PGA), peak ground velocity (PGV), and peak ground displacement
(PGD) for the design earthquake. These peak values are then multiplied
by appropriate spectral amplification factors to obtain the corresponding
displacements, velocities, and accelerations of SDOF systems throughout
a range of natural frequencies. The results are presented graphically in a
particular type of graph called a tripartite graph. Figure 15 is an example
of such a design response spectrum adapted from Newmark and Hall 1982.

200 •\

101.35 g

50 .2 0.5 1 2.7 - 1 0 20g5
1~~ 8 33z H

FREQUENCY, Hz

Figure 15. Newmark and Hall design response spectrum for a site having
a stiff soil
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There are four logarithmic scales used in Figure 15 to show the follow-
ing three quantities as functions of the frequency f.

"* D' is the maximum relative displacement between the ground and
the mass of an SDOF system having a natural frequency f, at
whatever point in time it occurs.

"* V' is the maximum pseudovelocity WD' of the SDOF mass.

"* A' is the maximum pseudoacceleration o)2D' of the SDOF mass.

Since all four quantities are interrelated, the tripartite plot provides a con-
venient means to show the entire interrelationship in a single curve. It can
be shown (Hudson 1979 or Ebeling 1992) that for low levels of damping,
the pseudovelocity and the pseudoacceleration are nearly equal to the max-
imum relative velocity and maximum relative acceleration. This approxi-
mation applies over most of the usual frequency range, with the
pseudoacceleration being more accurate than the pseudovelocity. (For ad-
ditional details regarding these issues, see Ebeling 1992.)

For reference, the maximum ground motion is shown in dashed lines
on the graph of Figure 15. The ground motion shows only values of PGD,
PGV, and PGA without regard to time.

In order to draw a SDOF response curve, a ground motion curve must
be established, which means that the values of PGD, PGV, and PGA must
be established. To establish these peak values of ground motion, it is nec-
essary first to adopt a design basis earthquake. There are two minimum
design basis earthquakes in use by the Army Corps of Engineers for intake
towers (ER 1110-2-1806 and EM 1110-2-2401):

" Operational Basis Earthquake (OBE): The OBE is the level of
ground motion for which the structure is expected to remain
functional with little or no damage. Ordinarily, the OBE is defined
as a ground motion having a 50 percent probability of exceedance
during the design life of 100 years (a 144-year return period). The
associated performance level is normally the requirement that the
structure will function within the elastic range with little or no
damage and without interruption of function. Because the purpose
of the OBE is to protect against economic losses from damage or
loss of service, alternative choices of return period for the OBE
may be made on the basis of an economic analysis. The OBE is
normally based on a probabilistic site hazard analysis (PSHA).

" Maximum Design Earthquake (MDE): The MDE is the maximum
level of ground motion for which the structure is designed or
evaluated. The associated performance level is the requirement
that the structure perform without catastrophic failure, such as
uncontrolled release of a reservoir, although severe damage or
economic loss may be tolerated. For critical structures (refer to
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ER 1110-2-1806), the MDE is the same as the maximum credible
earthquake (MCE). For noncritical structures (refer to ER 1110-2-
1806), the MDE may be chosen as a lesser earthquake than the
MCE to provide economical designs meeting appropriate safety
standards. For noncritical structures, the MDE can be determined
by a PSHA.

The maximum credible earthquake (MCE) is defined as the greatest
earthquake that can reasonably be expected to be generated by a specific
source, on the basis of seismological and geological evidence. Since a
project site may be affected by earthquakes generated by various sources,
each with its own fault mechanism, maximum earthquake magnitude, and
distance from the site, multiple MCE's may be defined for the site, each
with characteristic ground motion parameters and spectral shape. The
MCE is determined by a Deterministic Seismic Hazard Analysis (DSHA).

Moderate levels of damage may be acceptable in existing intake towers
if it can be demonstrated that the structure will continue to function fol-
lowing an OBE event. The acceptance of a higher level of damage in ex-
isting intake towers will depend on the cost of retrofitting to preclude
damage versus the cost of repairs following an OBE event.

There are two special cases for defining the MDE to be the same as the
MCE. In the special case in which failure of the tower due to an earth-
quake can lead to failure of the dam and loss of the reservoir, the MDE
should be the maximum credible earthquake (MCE).

The other special case in which the MDE is defined as the MCE occurs
when the intake tower is required to operate after a severe earthquake.
The tower may be damaged but its ability to function is not impaired by
damage sustained during ground motions in excess of the minimum design
basis earthquake. The MDE is the MCE for this case so that the
postearthquake functionality of the intake structure can be demonstrated.

When site-specific information is not available, Newmark and Hall rec-
ommend that a v/a ratio of 48 in/sec/g (122 cm/sec/g) be used for a compe-
tent (stiff) soil. For rock, they recommend a v/a ratio of 36 in/sec/g
(91 cm/sec/g). To ensure that the spectrum includes an adequate band
width of frequencies, they recommend that ad/v 2 be taken at 6. (In these
recommendations, a, v, and d are the values of the peak ground accelera-
tion, peak ground velocity, and peak ground displacement, respectively.)
From these recommended values, the value of d/a is found to be 90 cmlg
for competent soil and 51 cm/g for rock.

The smooth elastic design spectrum shown in Figure 12 is an 8 4 th per-
centile spectrum developed for a site located on a competent soil with an
estimated PGA value of a = 0.5g. In the spectrum of Figure 15, a value of
122 cm/sec/g is used for v/a, and a value of 90 is used for d/a. For a value
of a = 0.5g, the corresponding value for velocity v is 61 cm/sec and for
displacement d is 45 cm.
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In an earlier paper, Newmark and Hall (1978) provided values of ampli-
fication factors for the different parts of the spectrum. These spectrum
amplification factors are shown in Table I for various damping ratios.
For the MDE, the spectrum amplification factors at 5 percent damping are
2.71, 2.30, and 2.01 for acceleration A, velocity V, and displacement D, re-
spectively, of the SDOF system.

Table 1
Spectrum Amplification Factors for Horizontal Elastic Response
(Source: Adapted from Newmark and Hall 1982)

Damping One sigma (84.1%) Median (50%)
percent
critical A V D A V D

0.5 5.10 3.84 3.04 3.68 2.59 2.01

1.0 4.38 3.38 2.73 3.21 2.31 1.82

2.0 3.66 2.92 2.42 2.74 2.03 1.63

3.0 3.24 2.64 2.24 2.46 1.86 1.52

5.0 2.71 2.30 2.01 2.12 1.65 1.39

7.0 2.38 2.08 1.85 1.89 1.51 1.29

10.0 1.99 1.84 1.69 1.64 1.37 1.20

20.0 1.26 1.37 1.38 1.17 1.08 1.01

For these amplification factors, the following bounds for the response

spectrum are computed:

A' = A x PGA = 2.71 x 0.5g = 1.35g

V = V x PGV = 2.30 x 61 cm/sec = 140cm/sec

D' = D x PGD = 2.01 x 45 cm = 90cm

The resulting elastic response spectrum is that shown in Figure 15. As
shown there, Newmark and Hall (1982) connect the SDOF acceleration at
8 cps to the peak ground acceleration at 33 cps, thereby completing the
high-frequency portion of the spectrum. They do not, however, specify at
what frequency the SDOF displacement should be connected to the peak
ground displacement to complete the low-frequency portion of the spectrum.
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ATC 3-06 Response Spectra

In studies and analyses separate from those of Newmark and Hall, the
Applied Technology Council (ATC) developed another form of the
broad-band, smooth-shaped response spectra. The results of their anal-
yses are presented in publication ATC 3-06, dated 1978.

The ATC 3-06 broad-band, smooth-shaped spectra were based on the
smoothed mean spectral shapes from the study by Seed, Ugas, and Lysmer
(1976) shown in Figure 16. These average spectra are based on 104 re-
cords mostly from earthquakes from the western part of the United States
and having a Richter magnitude range of 5.25 to 7.5.

4I I

TOTAL NUMBER OF RECORDS ANALYSED: 104 SPECTRA FOR 5% OAMPING

SSOFT/ ;tOMED CLA YANDS" -PS ,ECOADS

o I I I I I -

0 0.s 1,0 1.5 2.0 Z' 3.0

PERIOD- SECONOS

Figure 16. Average acceleration spectra (Seed, Ugas, Lysmer 1976)

Like the Newmark and Hall analysis, the end product of the ATC analy-
sis is a graph. The ATC graph is a linear graph on which the periods of
SDOF systems are plotted against the normalized spectral acceleration
(pseudoacceleration divided by the peak ground acceleration). An exam-
ple of the ATC 3-06 response spectra, drawn for 5 percent damping, is
shown in Figure 17; a distinct advantage of the ATC response spectra is
that the various soil conditions are included directly with the spectra.

In Figure 17, the nonsite-specific response spectra appropriate for use
at a given site are distinguished between the three site classifications
given in Table 2.

The ordinate of the ATC 3-06 response spectra of Figure 17 is normal-
ized, that is, it is the ratio of peak SDOF pseudoacceleration to peak
ground acceleration. Note also that Figure 17 is a linear plot rather than a
log plot.
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Figure 17. ATC 3-06 response spectra, 5 percent damping

Table 2

Soil Types

Type Desrlptions

A soil profile with either:
a. A rock-like material characterized by a shear wave velocity

greater than 2,500 fps or by other suitable means of classification.
or

I b. Stiff or dense soil condition where the soil depth is less than 200 ft.

A soil profile with dense or stiff soil conditions, where the soil depth exceeds
2 200 ft.

A soil profile 70 ft or more in depth and containing more than 20 ft of soft to
3 medium-stiff clay but not more than 40 ft of soft clay.

For SDOF systems founded on rock or stiff soils (Type 1 soils), the
maximum normalized value of 2.5 occurs in SDOF systems having a natural
period between 0.2 to 0.4 sec. For SDOF systems founded on Type 1 soils
but which have periods longer than 0.4 sec, the normalized values
decrease in amplitude inversely proportional to the period T, as indicated
in Figure 17 (recall that T = 1/f).
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For soils softer than Type 1 soils, the peak normalized acceleration is
elongated significantly, extending to periods of 0.6 sec for Type 2 soils
and to 0.9 sec for Type 3 soils. Even when acceleration does start to de-
crease in Types 2 and 3 soils, the rate of decrease is less than that in stif-
fer soils. Such long periods are more characteristic of flexible structural
systems than rigid structural systems, indicating that when soils are soft,
spectral accelerations are likely to be high for both flexible and rigid struc-
tural systems.

The greatest dynamic amplification of ground motion occurs in struc-
tures when the fundamental period of the structure is close to the charac-
teristic period of the ground motions. This means that flexible or
long-period structures on soft sites will respond more to earthquake
ground motions than flexible structures on stiff sites. The ATC 3-06 stan-
dard spectra for various site conditions attempts to capture this phenomenon.

As a matter of interest, the smoothed plot for rock foundations as it
was proposed in the Seed, Ugas, Lysmer study is shown in Figure 18. It
has already been noted that the ATC curves evolved from this study.
Shown also for comparison are the plot as it was finally adopted for the
ATC 3-06 curve and the corresponding plot taken from a Newmark and
Hall response spectra for the same rock foundation.

3

SW ATC 3.06 SPECTRUM 1984

'd2

W NEWUAPK AND ,ALL SPECTRuM 1982

SED .- ol ,YUE 1976

0L_
0 0.5 1.0 1.5 2.0 2.5 3.0

PERIOD - SECONDS

Figure 18. Comparison of design response spectra for rock foundations

Comparing the ATC curve with the Seed curve (a "mean" curve) shows
that ATC truncated Seed's peak normalized acceleration at 2.5. This maxi-
mum of 2.5 is applied to all soils in the ATC spectra (see Figure 17), not
just rock. Also, ATC more than tripled the range of periods which would
experience the maximum normalized acceleration of 2.5.

Comparing the two major response spectra of Newmark and Hall and
ATC 3-06 shows that the maximum magnitude of the ATC response is
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significantly higher than that of Newmark and Hall (a "median" curve),
and remains higher for all values of T. It is concluded that the ATC 3-06
spectrum is somewhat more conservative than the Newmark and Hall spec-
trum for all frequencies.

The ATC 3-06 spectra also appear in the 1991 Uniform Building Code
as a general nonsite-specific design requirement. They are included as
well in the recommended Lateral Force Requirements of the Structural
Engineers Association of California (SEAOC) and are also used in the
tri-services manual TM 5-809-10-1, SEISMIC DESIGN MANUAL FOR
ESSENTIAL BUILDINGS. The ATC 3-06 Type I response spectra are
used in EM 1110-2-2401 intake tower example problems.

Standard spectra, such as ATC 3-06, are intended to be used only for
preliminary structural evaluations when site-specific response spectra are
not yet available for the site. Another procedure for developing standard
spectra to be used in preliminary structural evaluations is described in
ER 1110-2-1806.
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3 Distributed-Mass Systems

Period of Oscillation of Distributed-Mass
Systems

A true SDOF system is one in which only one deflection pattern can
occur. All of the lumped-mass systems shown in Figure 1 are such SDOF
systems. In solutions to SDOF systems there was never any need to con-
sider multiple patterns of oscillations.

A distributed-mass system such as the tower shown in Figure 19 is not
an SDOF system. The tower could have a number of patterns of oscilla-
tions as shown, and it could also oscillate in two or more of these patterns
at the same time. The distributed-mass system of Figure 19 is, in fact, a
multiple-degree-of-freedom (MDOF) system with an infinite number of
degrees of freedom.

•sWMd/UfWf-L-TH 1 - 1 - o

U(x-t) UP40t U tJ

_ _ FUNDAMENTAL SECOND THIRD

Figure 19. Distributed-mass system
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If, however, it is assumed that the tower oscillates in only a single de-
flection shape at any one time, the system could be analyzed as an SDOF
system. Such an assumption is the basis of analysis of distributed-mass
systems, i.e., that the system can in fact be limited to a single pattern of
deflections at a particular time. The Rayleigh method provides such an
analysis of distributed-mass systems.

In the Rayleigh method, it is assumed that the deflection u(x,t) is lim-
i•ed to a single shape and that the single shape can be expressed as vari-
ables separable:

u(x,t) = V(x)U(t) (38)

Inherently, the variables-separable solution uncouples the solution for
displacements from the solution for frequency; eac, can be solved inde-
pendently of the other. The time function u(t) defines only the magnitude
of the horizontal displacement at some reference level r at any time t. The
displacement function V becomes only a shape function, defining the
relative sihape of the tower at any point x along its height as shown in
Figure 20.

For the sake of simplicity, the reference level r in this report s always
taken at the top of the cantilever, that is, x in Equation 38 equals L.

/ . ('1-0- "")%(

'I' (x) U(: ) = (X I

"ShAPE TOTAL
FUNCTION DISPLACEMENT

Figure 20. Shape function
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The kinetic energy KE of the SDOF system of Figure 20 is given by:

KE = t/2

= ½ m(x) [u (x,t)]2 dx (39)

The stored potential energy PE in the system is the strain energy due to
flexure:

JPE = 1/2 f0 M Odx (0

0(40)

where M is the moment on the cross section and 0 is the rotation of the
cross section about the neutral axis. The rotation 0 is given by the Ber-
noulli equation:

I M d 2u (41)
p El d2

The final form of the PE equation is then:

PE = ½ fo El (x) [u"(x,t)2 dX (42)

An important observation is appropriate at this point. Note that the
potential energy used in the Rayleigh solution is limited to the flexural
moment-times-rotation strain energy. Shear deformations, axial deforma-
tions, and torsional rotations are all ignored. The Rayleigh solution is,
therefore, most accurate in those applications in which the flexural energy
dominates all other strain energy sources to such an extent that they may
be safely ignored.

It should be noted that for squat towers the shear displacement can be a
significant part of the total lateral displacemer t (flexural and shear). In-
take towers with height-to-width aspect ratios of 3 or less should be de-
signed for earthquake ground motions using procedures that include shear
stiffness capability.

The variation in KE at any time interval must be equal and opposite to
the variation in the PE over the same interval since there is no damping in
this conservative system. The resulting solutions of Equations 39 and 42
are rather complicated solutions in the calculus of variations (Paz 1991)
which yields the Rayleigh solution:

m*i(t) + k*u(t) = peff *(t) (43)
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where

S~(44a)
m*= m(x) ,' 2 dx = generalized mass

k*= EI(x) [V,1 2 dx = generalized stiffness (44b)
0

Peff*(t) = -'g f0 m(x) Wdx = generalized load (44c)

In Equations 43 and 44, the asterisks denote that the functions are general-
ized functions which occur at the reference level r at the top of the cantilever.

A careful examination of Equations 43 and 44 reveals that the Rayleigh
solution is actually a solution for a lumped-mass system rather than for a
distributed-mass system. Such an equivalent system is shown in Fig-
ure 21.

As indicated in Figure 21, the Rayleigh solution given by Equation 43
is an equivalent solution for the oscillations of a generalized mass m* at
the reference level r with respect only to time. The solution for u(t) is no
longer a function of the height x. This indicates that the Rayleigh solution
transforms an MDOF distributed-mass system into an equivalent SDOF
lumped-mass system at the reference level r.

,AT.- S POSMON

UmREFERENCE 
LE VEL {~ EF(

8 mXA(t) AT-RESTPOS-ION 
/---k- E Lx /

a) ACTUAL DISTRIBUTED-MASS SYSTEM b) EQUIVALENT LUMP-MASS SYSTEM

Figure 21. Equivalent Rayleigh lumped-mass system
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Equation 43 does not include damping, i.e., there is no loss of energy
anywhere in the system. It was shown earlier, however, that the natural
period of oscillation is not affected by damping (for low levels of damp-
ing), so the period computed by use of Equation 43 will still be correct.

The solution of Equation 43 takes the form:

ii(t) + k*/m*1o(t) = -(Ln/m*) ýig(t) (45)

where

Ln= j0 m(x)Vdx (46)

The natural frequency of this system remains, of course, the unforced fre-
quency. Again, the unforced solution for l(t) is harmonic, i.e.,

U(t) = uO0 sin cot (47)

and

u(x,t) = (x)W0 sin cot (48)

where v0 is the maximum value of displacement at the reference level r.

With no damping, the energy in this conservative system remains con-
stant. The sum of KE (Equation 39) and PE (Equation 42) is therefore a
constant. At maximum amplitude, the velocity is zero, and all the energy
in the system at that time is in the form of PE:

PE = / f El (x) u] 2 dX (42)

Equation 48 is substituted, yielding:

PE = ,u/2 JL El(x) [V,"]2 dx (49a)

or

PE = ½/ 2 k* (49b)

where i0 is the displacement at the reference level r.

Similarly, when displacement u(x,t) is zero, all of the energy in the sys-
tem is in the form of KE:
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KE = ½ o m(x) [i (x)] 2& (39)

Equation 48 is substituted, where, with cos(o~t) I 1 when k(x,t) is at its
maximum:

KE = & o2 2  M (x) [V (x)J 2 dx (50a)

or

KE=• 2 02m* (50b)

Equations 49 and 50 must be equal in a conservative system. Equating
them produces the result:

O)2 = k*lm* (51a)

or equivalently,

T = 2n "f-g"I* (51 b)

When Equation 51 a is substituted into Equation 45. the result is the
final form of the Rayleigh solution:

_O(t) + (02u(t) = -(Ln/m*) 4 g(t) (52)

where the natural period T and the circular frequency wo are those given by
Equations 51 a and b.

The factor Ln/m* on the right-hand side of Equation 52 is an important
feature of the Rayleigh solution. It is a dimensionless number, a multi-
plier that is applied to the ground acceleration 0,(t). As such, it becomes
a part of the forcing function and, consequently, it automatically becomes
the same multiplier of the spectral quantities SD, Sv, and SA (to be dis-
cussed later).

Equation 52 shows that the factor Ln by itself is the "normalization"
factor between the actual ground acceleration Ug(t) and the response ii by
the generalized mass in*. When divided by m*, the entire factor Ln/m* be-
comes the normalization ratio factor between (1g(t) and ii per unit of gener-
alized mass.

Equation 5la has more than one solution. The only requirement for a
solution is that the strain energy stored in a given deformation shape be ex-
actly equal to the work done by the mass in moving into that shape. For a
distributed mass, there are an infinite number of shape functions that will
satisfy all the energy relations and thus be a solution to Equation 51 a.
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Each such shape function will have its own corresponding circular fre-
quency w and period T.

In order to compute the period of the structure from Equation 5 ib, it is
necessary to know the mass m(x) and its distribution, the stiffness El(x)
and its distribution, and the shape function V. Where El is constant or var-
ies in discrete steps, it is known from the Bernoulli equation that the re-
storing force on the system is the fourth derivative of the displacement
function V:

d4 2 M _ (53)

This restoring force at any point is equal to the spring constant k times
the deflection V, with the direction of the force always opposite to the di-
rection of the deflection ,:

kV = -p (54)

Equating these two values for p yields an equation of the form:

= (constant) (AV) (55a)

or,

- (constant) (l) = 0 (55b)

The solution of an equation of this form is given by:

V = A sin (az) + B cos (az) + C sinh (az) + D cosh (az) (56)

where z = x/L and a is a constant involving the rotational frequency

co (a4 = mdo 2/EI, Clough and Penzien 1993).

There are only four constants of integration in the solution, which lim-
its the boundary conditions to four. There are five unknowns, however,
since a is also unknown. Therefore, a fifth condition is required. One
way to develop the fifth condition is to assign some arbitrary value (such
as unity) to V at the reference level r (at the top of the cantilever, see Fig-
ure 21). The solution will then be a reference solution, or normalized solu-
tion, in terms of unit displacement at r.

An example will illustrate the format of the solution. The first three
shape functions for the cantilever of Figure 22 will be found. The four
boundary conditions for the cantilever are:

1) The deflection at the base of the cantilever is zero

at z = 0, V=0
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Figure 22. Typical distributed-mass cantilever

2) The slope of the elastic curve at the base is zero

atz=O, w'=0

3) The moment at the free end is zero

at z= 1, w1" = 0

4) The shear at the free end is zero

atz= 1, qp'=O

The derivative forms of Equation 56 are:

= A sin (az) + B cos (az) + C sinh (az) + D cosh (az)

S= a A cos (az) - aB sin (az) + aC cosh (az) + aD sinh (az)

1'' = -a2A sin (az) - a2B cos (az) + a2C sinh (az) + a2D cosh (az)
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= -a3A cos (az) + a3B sin (az) + a3C cosh (az) + a3D sinh (az)

= a4A sin (az) + a4B cos (az) + a4C sinh (az) + a4D cosh (az)

These are substituted into the boundary conditions to find:

Atz=0,W =0= B+D

Atz=0,4(' =0= A+C

At z = 1, V" = 0=-A sin (a) - B cos (a) + C sinh (a) + D cosh (a)

At z = I, v." = 0 = -A cos (a) + B sin (a) + C cosh (a) + D sinh (a)

A fifth condition is now imposed to obtain the required fifth equation.
The value of Vj at the free end of the cantilever (reference level r) is as-
signed a value of unity, yielding:

Atz= 1, V = 1 = Asin(a)+Bcos(a)+Csinh(a)+Dcosh(a)

A set of equations such as these five, having a variable coefficient in
the matrix, is called a characteristic problem or an eigenproblem. A solu-
tion will exist only for particular values of the variable a; these values of
a are callecl the characteristic values or the eigenvalues.

There are an infinite number of values of a in any distributed-mass sys-
tem. Each value of a . .)rresponds to a shape function; the lowest value of
a corresponding to the first shape function, the next lowest value of a cor-
responding to the second shape function, and so on. For the sake of brev-
ity, only three shape functions are presented here.

These five simultaneous equations are solved using conventional com-
puter software (e.g., Maple, MathCAD, Matlab, Mathematica, etc.),
though there are also specialized hand-held calculators available (e.g.,
HP 48S, TI 81, TI 85, etc.) that could solve such a set of equations. The
first three solutions are:

a - 1.87510 a = 4.69409 a a 785476

A - +0.36705 A = -0.50923 A = +0.49961

B = -0.50000 B - +0.50000 B - -0.50000

C - -0.36705 C = +0.50923 C a -0.49961

D a +0.50000 D - -0.50000 D = +0.50000

Depending upon the particular software, the trial values of a are entered
interactively by the engineer. The lowest value of a for which a solution
can be obtained will yield the first shape function. The next lowest value
of a will yield the second shape function, and so on. It is recommended
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that the graphics capability of the software be used to verify each shape
function so obtained. The number of curvatures corresponds to the num-
ber of the shape function (see Figure 23).

Therefore, the equations of the first three shape functions are:

= 0.367 sin (1.875z) - 0.500 cos (1.875z)

- 0.367 sinh (1.875z) + 0.500 cosh (1.875z)

ivi = -0.509 sin (4.694 z) + 0.500 cos (4.694z)

+ 0.509 sinh (4.694z) - 0.500 cosh (4.694z)

i3 = 0.500 sin (7.85 5 z) - 0.500 cos (7.855z)

- 0.500 sinh (7.855z) + 0.500 cosh (7.855z)

The configurations of the shape functions xV corresponding to these first
three solutions are shown in Figure 23.

L
0."A

T ~0.784L .
"O7IL k.1041.

'0.1 ' ' 1 0 1"

FIRST SECOND THIRD
SWAPE SHAPE SHAPE

Figure 23. Shape functions for a cantilever having a uniformly distributed
mass

The -hree equations for 'V are now used to evaluate the generalized
functions for m*, k*, and Ln given by the integrals of Equations 44a and
b and Equation 46 (or, equivalently, 44c). The integrals may be evaluated
by conventional software or by specialized hand-held calculators. The
generalized values for the three shape functions of Figure 20 are listed in
Table 3, along with the rotational frequencies and the natural periods.
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Table 3

Generalized Values for a Distributed Mass Cantilever

Shape Function 1 Shape Function 2 Shape Function 3

m" 0.25000 mdl m" 0.24998 mdl m" 0.25019 mdL

k- 3.09055 EI/L3  k- 121.3693 EI/I 3  k- 952.3417 EI/L 3

Ln 0.39149 mdL Ln - -0.21701 mdL Ln - 0.12758 mNL

I,/m" - 1.56599 L,/m" - -0.86811 L/m" a 0.50995

a? - 12.36 (ElI/mdL4 ) W 485.5 (EI/mdL) w2 - 3806 (El/MdL 4 )

T - 2X/6) T 2x/a) T - 2U/

Flexural Stiffness El for OBE and MDE

The value of k* given in Table 3 is a function of the modulus of elastic-
ity E and the moment of inertia I. For concrete structures under the OBE,
the value of EI is taken conservatively as that of the uncracked concrete
section. The uncracked value of El is used for determination of both the
accelerations and displacements under an OBE earthquake.

For the maximum design earthquake, it is recognized that the worst-
case values of acceleration and velocity will occur if the section does not
crack since the higher the stiffness, the higher the structural system fre-
quency and corresponding spectral acceleration and velocity. The un-
cracked section is, therefore, used when calculating accelerations and
velocities under the MDE. For displacements, however, the largest dis-
placements will occur when the concrete cracks, resulting in a reduction
in stiffness which increases the period of the structure and its correspond-
ing spectral displacement. Under the MDE, therefore, the uncracked
value of El is used to determine accelerations. To determine displace-
ments, a flexural stiffness equal to half the gross section flexural stiffness
is generally used. This value is considered an approximate typical effec-
tive stiffness for reinforced concrete structures loaded to yield levels.

Combined Effects in Distributed-Mass Systems

The values of the period T found from the Rayleigh solution are used
to find the spectral values of SD, Sv, and SA, either from standard spectra
such as Newmark and Hall or ATC 3-06 or from a design response spectra
developed for the specific site. There will, of course, be three sets of spec-
tral values, one for each shape function. Since the cantilever can experi-
ence all three (or even more) of the oscillation shapes at the same time,
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the spectral values must now be combined. A means to combine the spec-
tral values from several shape functions is presented in this section.

Finding a rational means to combine several shape functions is a major
consideration if a set of SDOF solutions is to be taken as the solution to
an MDOF problem. Because a system may oscillate in more than one fre-
quency at any one time, a combination of SDOF shapes will undoubtedly
occur in any MDOF oscillating system. For each of these participating
shapes, a spectral maximum displacement SD can be found, along with its
corresponding spectral maximum pseudovelocity Sv and its spectral maxi-
mum pseudoacceleration SA. The spectral values are the maximum values
for each frequency. Since it is unlikely that all these maxima will occur
at the same time, some reasonable basis for combining these maximum
values is obviously needed.

There are two methods in common use for combining several SDOF so-
lutions to obtain a single MDOF solution:

"* square root of the sum of the squares (SRSS), and

"s complete quadratic combination (CQC)

The older and more universal of these two methods is the SRSS method,
which is an approximate method. Any number of spectral values can be
combined by SRSS, but the usual number is three. When combined using
SRSS, the spectral values for n SDOF solutions are:

SD- = ýS + So2 + S2o + ....s2 (57a)
DD4 ~I +D2 D3 .Dn(5)

S- = S_, + S2 + S+ ...... S2 (57b)

S- A= sl + s2 +s2 + S2 (57c)
Al A2 A3 ****An

The more recent CQC method is based on random vibration theory and
it accounts for the interaction between two shape functions that have peri-
ods relatively close to each other. The method uses a cross-function coef-
ficient pi, where i and j are any two shape functions and where r = Tj/Ti:

8132 (I + r) r1 ' 5  (58)

(1 - + 4p 2r (1 + r

Figure 24 shows a graph of pi For values of damping less than 5 per-
cent, the periods must be within about 25 percent of each other for signifi-
cant cross-function interaction to occur.
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Figure 24. Cross-function coefficient Pij

The spectral values for a CQC combination are given by:

i'a -'(59a)

SD= VI X SM Pij SDj
i=lj=l

(59b)

i=1 j=i

SA = £ SAiPijSAj(5)
i= I j=~ I

When the periods between functions are well separated, the cross-function
coefficient p.. approaches zero for all cases where i * j. For the case in
which i=j, the value of o_. becomes 1, and the CQC method degenerates
into the SRSS method. Most large structures will have distinct separation
between periods and will fall into this default category in which the SRSS
method will apply.

Table 3 shows that the normalization factor Ln can have different alge-
braic signs for different shape functions. When the CQC method is used,
those signs must be preserved throughout the calculations. Further, when
combining east-west, north-south and up-down contributions to any spec-
tral quantity, the contributions must be added algebraically before being
used either in the SRSS method or the CQC method (EC 1110-2-6050).

The following example illustrates the procedure for finding the spectral
response of a distributed-mass system in which Rayleigh's solution is
used to find the period T.
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Example Solution for a Stepped Tower

Problem statement

Calculate the forces, overturning moment, and displacements on the
square step-tapered intake tower under the maximum design earthquake,
using the uncracked section for computing forces and the fully cracked
and rotated section for computing the displacements. The Type I ATC 3-06
response spectrum is to be used. Maximum ground acceleration is 0.4 5g,
the foundation is rock, Yconc = 150 lb/ft3, and Gross Ec = 3.6 x 106 lb/in. 2

Compute

a. Natural periods of oscillation for the first three shape functions.

b. Spectral displacements, velocities, and accelerations for the first
three shape functions.

c. Combined accelerations for the first three shape functions.

d. Base shear under the combined accelerations.

e. Overturning moment under the combined accelerations.

f. Displacements of the cracked and damaged tower.

SS, S rod3 = 1984 slugs/ft = 1.00md3

13 = bh3/12 = 72,470fl4 = 1.00013

od2 = 2534 slugs/ft = 1.28md3

12 = bW3 /12 = 106,260ft4 = 1.46613

Smdl = 3261 slugs/ft = 1.64md3

i1 = bh3/12 = 145,830f14 = 2.01213
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Solution

Because the shape function is discontinuous at the steps, it is defined
by three discontinuous equations:

0 - z _< i/3: - Alsin (az) + Blcos (az) + Cisinh (az) + Dlcosh (az)

'A _< z :_ 2/: , = A2sin (az) + B2cos (az) + C2 sinh (az) + D2cosh (az)

2A• z 5 1: = A3sin (az) + B3cos (az) + C3 sinh (az) + D3cosh (az)

Boundary conditions are:

Atz=0, W4,=0anda4e,=0

At z = I/A, I1I = 2; ' 1 =V 2; MI =M 2 and V= V2

At z = V3, 2 = W3; W'2 =W'3; M2 M3 and V2 V3

Atz=1, M3 =OandV 3 =0

wheit

M = moment

V = shear

These 12 boundary conditions apply to 13 unknowns. The 13 th condi-
tion is obtained by setting the displacement W3 = I at the top of the tower.

At z = 1.000, W3 = 1-.000

The three equations of the shape function are substituted into these
13 boundary conditions, producing 13 equations in 13 unknowns. The
equations are independent of mass.

0=B 1 +D1

0=A1 +C 1

0 = (A1-A2 ) sin (1/3a) + (B1 -B2) cos ('Aa)
+ (C1-C2) sinh ('Aa) + (D1-D2) cosh ('Aa)

0 = (AI-A 2) cos (1/3a) - (B1-B2) sin (1/3a)
+ (C -C2) cosh (I/3a) + (D,-D 2) sinh ('Aa)

0 = - (IIAI-12A 2) sin (1/3a) - (IIBI-12B2) cos (1/3a)
+ (IC 1 -I2C2) sinh (1/3a) + (IIDI-1 2D2) cosh (1/3a)
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0 = -(IIA I-12A2) cos (1/3a) + (1IB1 -12B2) sin (*/3a)
+ (IIC 1-I 2C2) cosh (/3a) + (1ID1 -12D2) sinh (1/3a)

0 = (A2 -A3 ) sin (6a) + (B2 -B3) cos (;/a)+ (C2-C3) sinh (2/a) + (D 2-D3) cosh (2,6a)

0 = (A 2-A3) cos (23a) - (B2-B3 ) sin (/3a)
+ (C2-C3) cosh (2/3a) + (D 2-D3) sinh (2Aa)

0 = -(12 A2-I3A3) sin (26a) - (12B2-13B3) cos (2/ha)
+ (12C2-I 3C3) sinh (2/3a) + (12D2-13D3) cosh (26a)

0 = -(12 A2-I3A3) cos (2/3a) + (12 B2-13B3) sin (2/a)

+ (12C 2-I3C3) cosh (2/3a) + (12D2 -13D3) sinh (2V3a)

0 = -A3 sin (a) - B3 cos (a) + C3 sinh (a) + D3 cosh (a)

0 = -A 3 cos (a) + B3 sir, (a) + C3 cosh (a) + D3 sinh (a)

1 = A3 sin (a) + B3 cos (a) + C3 sinh (a) + D3 cosh (a)

It is well to observe at this point that the boundary conditions will al-
ways include the four end conditions (at the base and at the top) plus four
conditions for each discontinuity in moment of inertia. There will be as
many of these interior discontinuities as there are changes in EL. Each dis-
continuity will simply add four more equations to the set of simultaneous
equations. Since the computer will solve forty equations as readily as
four, the additional equations cause no more labor than making some addi-
tional entries ip the mathematics software.

The foregoing equations also show that the shape function of any
distributed-mass MDOF system is independent of the distribution of the
mass. Additional masses may be added or deleted at will, but as long as
the stiffness is unchanged, the shape of the deflection curve will remain
the same. The mass and its distribution will affect the magnitude of the
displacements (and the period T), but not the shape function.

The 13 equations of the example are solved by the mathematics soft-
ware, as usual, to find the coefficients at the three steps. The coefficients
are listed in Table 4. Trial entries of 2, 5, and 8 for the value of a were
used in finding the three shape functions shown in Table 4.
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Table 4
Shape Function Coefficients
First Shape Function Second Shope Function Third Shape Function

a 2.15045 a = 4.8357 5  a = 7.85376

First step. 0:< z S 1/3

A1 - +0.24070 A1 - -0.33292 A, - +0.34856

8, - -0.35659 B1 - +0.34887 81 - -0-35227

C, - -0.24070 C, - +0.33292 C, - -0.34856

0, - +0.35659 0, - -0.34887 DI - +0.35227

Second step. 1/3 < z < 2/3

A2 - +0.25698 A2 - -0.37461 A2 = +0.40870

B2 = -0.46345 B2 - +0.41823 B2 = -0.40996

C2 . -0.39978 C2 - +0.40194 C2 = +0.35635

D2 - +0.50951 D2 = -0.39552 D2 - -0.35675

Third step, 2/3 s z < 1

A3 - +0.23485 A3 = -0.43826 A3 = +0.50011

B3 - -C.55413 B3 - +0.52886 B3 - -0.49329

C3 - -0.66003 C3 : -1.82776 C3 = -8.49612

rD3 +0.75725 D3 = +1.83547 D3 = +8.49651

The equations defining the first shape function are:

0 < z < 'A-: v - 0.241 sin (2.150z) - 0.357 cos (2.150z)
- 0.241 sinh (2.150z) + 0.357 cosh (2.150z)

'6 5 z 2 A: A = 0.257 sin (2.150z) - 0.463 cos (2.150z)
- 0.400 sinh (2.150z) + 0.5 10 cosh (2.150z)

2A z P I: AV = 0.235 sin (2.150z) -0.554 cos(2.150z)
- 0.660 sinh (2.150z) + 0.757 cosh (2.150z)
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The generalized mass m* and generalized stiffness k* for the first
shape function are found by evaluating the integrals of Equations 44a and
b. For the uncracked section:

M*= r mdlL [0.241 sin (2.150z) - 0.357 cos (2.150z)
0

- 0.241 sinh (2.150z) + 0.357 cosh (2.15Oz)] 2 dz

+ P md2L [0.257 sin (2.150z) - 0.463 cos (2.150z)

- 0.400 sinh (2 .150z) + 0.5 10 cosh (2.150z)] 2 dz

+ Jf, md3L [0.235 sin (2.150z) - 0.554 cos (2.150z)

- 0.660 sinh (2 .150 z) + 0.757 cosh (2.15Oz)] 2 dz

- 90,560 slugs

k*= r_ (E1/IL3) [-1.114 sin (2.150z) + 1.650 cos (2.150z)

- 1.114 sinh (2.150z) + 1.650 cosh (2.150z)] 2 dz

+ P (EI2/L 3) [-1.188 sin (2.150z) + 2.140 cos (2.150z)

- 1.849 sinh (2.150z) + 2.357 cosh (2.150z)] 2 dz

+ (EI3 /L 3) [-1.086 sin (2 .150z) + 2.560 cos (2.150z)

- 3.051 sinh (2 .150z) + 3.499 cosh (2.150z)] 2 dz

= 36.15 x 106 lb/ft
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L= r- mdIL [0.241 sin (2.150z) - 0.357 cos (2.150z)

- 0.241 sinh (2.150z) + 0.357 cosh (2.150z)J dz

+ r md2L [0.257 sin (2 .150z) - 0.463 cos (2.150z)

- 0.400 sinh (2.150z) + 0.510 cosh (2.150z)] dz

+ md3L [0.235 sin (2.150z) - 0.554 cos (2.150z)

- 0.660 sinh (2 .150z) + 0.757 cosh (2.150z)] dz

= 151,215 slugs

The remaining constants are calculated from the following values:

Circular frequency (o = ,,k*/m* = 19.98 rad/sec

Period T = 2n/wo = 0.314 sec

Frequency f = 1/T = 3.186 cps

The values for the other shape functions are found similarly.

First Shape Function Second Shape Function Third Shape Function

m, 90,560 slugs m* 77,800 slugs m* 79,700 slugs

k" 36.2 x 106 ib/ft k =851 x 106 lb/ft k= 6,116 x 106 ib/ft

I., - 151,215 slugs Ln -79,480 slugs Ln 50,540 slugs

L =/m* - 1.670 Ln/m* - -1.022 I =/m* = 0.634

oo = 19.98 rad/sec o) = 105 rad/sec wo 277 rad/sec

T w 0.314 sec T = 0.060 sec T - 0.023 sec

The spectral accelerations are found from Figure 17 for the periods just
calculated.

First Shape Function Second Shape Function Third Shape Function

SA - 1.125 g SA = 0.7 2 0 g SA - 0. 5 54 g
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Effects of Submergence

It is again noted that the foregoing solution for the period of the exam-
ple step-tapered tower is mathematically exact. The solution in common
use for the period of such towers when they are used as intake structures
(EM 1110-2-2401, or Goyal and Chopra 1989) includes the additional
mass of water, both inside and outside the intake tower, that is being accel-
erated by the motion of the tower. Figure 25 shows a schematic of such
added mass for two pool levels. Even though the Chopra procedure for
finding the added mass of water is approximate, it indicates that the added
mass that lies below the waterline can sometimes triple the effective mass.
The overall result is to increase markedly the natural period T above that
of a "dry" tower.
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WATERA T
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4 * - u g ( t ) U 9( t
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Figure 25. Added mass due to acceleration of water

The increase in mass due to the added water poses no particular prob-
lem in the Rayleigh solution. The added mass of water is computed in
stepped increments as prescribed in the Chopra procedure and is then
added to the mass of the tower. It is not necessary that the steps in the
water mass match the steps in the tower mass. If the steps do not happen
to coincide, the steps in water mass will simply create some new dis-
continuities in the integration for m*. As noted earlier, however, the
shape function remains unchanged by the addition of hydraulic mass.

Since the added mass does not affect stiffness, the generalized stiffness
k* remains constant for all levels of water both inside and outside the
tower. Since the period is proportional to the square root of the mass m*
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(T = 2x Nrma/k ), the effect of submergence is computed by evaluating
m* for various levels of submergence and then recalculating T for each of
these levels. Figure 26 is a plot of the results of such calculations for the
example step-tapered tower.
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Figure 26. Effects of submergence on natural period

The magnitude of the added hydrodynamic mass is a function of the
cross-sectional geometry of the tower and the depth of submergence.
Gradual changes in the tower geometry produce gradual changes in effec-
tive mass and Aiffness, whereas abrupt changes in the tower geometry pro-
duce abrupt changes in mass and stiffness. The effect of taper on the
generalized stiffness is quite distinct. The periods will be distinctly differ-
ent (as much as 50 percent different) between a tower that has a uniform
cross section and one that has a tapered cross section, even when the mass
is the same (EM 1110-2-2401).

Effects of Bridge Structures

Another feature of intake structures that has not been included in the
previous discussions is the existence of the bridge structure that is com-
monly placed at the top of intake towers to permit service access. Such a
bridge structure is shown in Figure 27. In an earthquake, the existence of
the bridge structure can change the effective mass, and in some cases can
add a restraint that must be included as a boundary condition.
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Figure 27. Bridge structure on an intake tower

Unless the bridge is anchored to the tower by pinned or fixed connec-
tions, large relative displacements between the bridge and tower can
occur. These displacements, unless accounted for in the design, can lead
to hammering or to a loss of the bearing support at the bridge seat. The
preferred solution (not always done) is to tie the bridge and tower
together, forcing the two elements to perform as a single system. The po-
tential for damage due to hammering or to loss of support is then elimi-
nated. The. type of bearing supports at the bridge seats will determine
whether the bridge can be handled simply as an added mass or whether a
separate boundary condition will be necessary.

In many intake structures, the bridge beam bearings are pinned in one
direction, but in many others they are pinned in two directions. Further,
the bridge beams might also be pinned at their far ends at the supporting
pier. The flexibility of the tall piers is enough to dissipate any thermal ef-
fects on the doubly pinned beams. With restraints such as these, lateral
forces will be created at the top of the tower due to the bridge.

For earthquake motions transverse to the longitudinal axis of the
bridge, the force on the pinned bearings at the tower is the inertia force of
the half of the bridge supported by the tower. The additional inertial force
may be included in the Rayleigh solution by converting the vertical beam
reaction at the tower to an equivalent mass distributed over the height of
the bridge. The step in mass thus created adds yet one more discontinuity
in the distribution of mass. The integration for the generalized mass m* is
then made as usual; the extra discontinuity simply adds another term to
the integration.
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For motions transverse to the axis of the bridge, the addition of the
bridge mass has no effect on the displacement function V of the tower;
stiffness remains unchanged. Insofar as displacements are concerned,
only the magnitudes of the displacements are changed by attaching the sep-
arate bridge mass.

For earthquake motions parallel with the longitudinal axis of the
bridge, the force on the pinned bearings at the tower depends on the type
of bearings used at the pier at the far end of the beams. If the far bearings
are rollers, the force created at the tower would be the inertial force of the
entire mass of the bridge, not just the reaction at one end. The recalcula-
tion of m* would proceed as before but with the larger added mass. If the
far bearings are pinned, however, the force at the tower would be the iner-
tial force of the entire bridge plus the force due to the spring constant k.
of the adjacent pier as it is deformed laterally by the motions of the tower.
The existence of such a shear at the top of the tower can be handled
readily in the Rayleigh solution by the boundary condition W," = kVy/ at
z = 1; this boundary condition would be used instead of W4" = 0.

Base Shear and Overturning Moment

There are two static loads that occur on a cantilever as a result of earth-
quake motions. One is the base shear, and the other is the overturning
moment. These loads are
shown on the distributed-
mass structure of Figure 28. 7 -
These two loads are com-
puted by simple statics, TO, - M4SodL

and the procedure is pre-
sented in this section.

In the Rayleigh solu-
tion for a distributed L INERTA FORCE

mass, the acceleration of
the mass m* at the refer-
ence level r is found by
multiplying the spectral OVERTURNING

acceleration SA times the
normalization ratio
Ln/m*. For any given ,
shape function, the accel- VS USE.SHEAR

eration of the structural RESTORIGOMEN

mass at all other points -----
along the height of the
tower is found by muti;-
plying the acceleration at
the reference level r by Figure 28. Base shear and overturning
the shape function. The moment
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result then becomes the acceleration function (Table 5). Such a calcula-
tion for the step-tapered tower of the preceding example is demonstrated
in the fol'owing procedure.

Table 5
Acceleration Function Coefficients

Normalbamtion Ratio 1.670 Normalzatlion Ratio -1.022 Normallalon Ratio 0.634
tdme 8A tlnms First times S times Second times S time. Third
Sh -- Weion (Table 4) Shape XLnt=. (Table 4) Shape runCton (Table 4)

a - 2.15045 a a 4.83575 a a 7.85376

First step, 0 < xs <1/3

A, .+0.45222 A = .+0.24498 A1 = +0.12243

a, - -0.66994 B1 - -0.25671 B1 - -0.12373

C, - -0.45222 C1 = -0.24498 C1 - -0.12243

D, - +0.68994 D, - +0.25671 D- . +0.12373

Second step, 1/3 < x % 2/3

A2 = +0.48280 A 2 -= +0.27565 A2 .+0.14355

B2 - -0.87071 B2 - -0.30775 B2 = -0.14399

C2 - -0.75109 C2 - -0,. 9576 C2 = +0.12518

D2 - +0.95724 D2 .+0.29104 02 = -0.12530

Third step. 2/3 < x < 1

A3 = +0.44122 A3 = +0.32249 A3 . +0.17566

B3 = -1.04107 B3 - -0.38916 B3 = -0.17326

C3 - -1.24003 C3 - +1.34494 C3 - -2.98413

D3 .+1.42268 D3 - -1.35061 D3 . +2.98428

With these coefficients, the accelerations are given by the following
sets of three discontinuous equations, now termed the acceleration
functions.

First acceleration function

0 < z 5 1/3: V = 0.45222 sin (2.15045z) - 0.66994 cos (2 .15045z)

- 0.45222 sinh (2.15045z) + 0.66994 cosh (2.15045z)
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1/3 S z S 2/3: # = 0.4280sin (2.15045z) - 0.87071 cos (2.15045z)

- 0.75109 sinh (2.15045z) + 0.95724 cosh (2.15045z)

2/3 ! z 5 I: y 0.44122 sin (2.15045z) - 1.04107cos (2.15045z)

- 1.24003 sinh (2.15045z) + 1.42268 cosh (2. 1 5045z)

Second acceleration function

0 5 z 5 1/3; ¥ = 0.24498 sin (4.83575z) - 0.25671 cos (4.83575z)

- 0.24498 sinh (4.83575z) + 0.25671 cosh (4.83575z)

1/3 S z S 2/3: ¥ = 0.27565 sin (4.83575z) - 0.30775 cos (4.83575z)

- 0.29576 sinh (4.83575z) + 0.29104 cosh (4.83575z)

2/3 < z : 1: V = 0.32249 sin (4.83575z) - 0.38916 c (4.83575z)
+ 1.34494 sinh (4.83575z) - 311,061 cosh (4.83575z)

Third acceleration function

0 S : < 1/3: p = 0.12243 sin (7.85376z) - 0.12373 cos (7.85376z)

- 0.12243 sinh (7.85376z) + 0.12373 cosh (7.85376z)

1/3 5 z < 2/3: y - 0.14355 sin (7.85376z) - 0.14399cos (7.85376z)

+ 0.12516 sinh (7.85376z) - 0.12530 cosh (7.85376z)

2/3 ! z < 1: W = 0.17566 sin (7.85376z) - 0.17326Cos (7.85376z)

- 2.98414 sinh (7.85376z) + 2.98428 cosh (7.85376z)

Figure 29 is a graph of the acceleration functions along with their
SRSS combined accelerations. The CQC method of combining shape func-
tions degenerates to the SPSS method in all of the shape functions encoun-
tered so far. The ratio Tj/Ti is so small that there is never any
cross-interaction.

I."4 _ ý3 01_____3599 I

279

FIRST SECOND TKAR
ACCEL ACCEL ACCEL SASS COMBINIED
FUNCTION FUNCTION FUNCTION ACCELERATION

Figure 29. Acceleration functions
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The acceleration is now computed each 10 ft along the height of the
tower for each of the three acceleration functions. The calculations are
made from the foregoing equations, again using the mathematics software.
The results of these calculations are shown in the following tabulation.

E _ev._ Acceleratlon In g9'Elev.
From First Second Third SRSS Incr. Incr. Cumulative
Base Accel. Accel. Accel. Combined Mess Force Moment
ft Function Function Function Accel. slugs kip klp-ft

175 +1.8036 .0.6426 +0.2603 1.935 19,840 1,2361 7,000

165 +1.6533 -0.4572 +0.1298 1.720 19.840 1,099 14,000

155 +1.5034 -0.2757 -0.0066 1.528 19,840 976 36.000

145 +1.3547 -0.1038 -0.1210 1.364 19.640 871 69.000

135 +1.2081 +0.0514 -0.1937 1.225 19,840 783 111,000

125 +1.0650 +0.1824 -0.2174 1.102 19,840 704 160.000

115 +0.9266 +0.2823 -0.1975 0.989 25,340 807 217,000

105 +0.7930 +0.3511 -0.1351 0.678 25,340 716 282,000

95 +0.6653 +0.3916 -0.0521 0.774 25,340 632 354,000

65 +0.5452 +0.4029 +0.0372 0.679 25,340 554 432,000

75 +0.4342 +0.3863 +0.1167 0.593 25.340 484 516,000

65 +0.3342 +0.3451 +0.1715 0.510 25.340 416 604,000

55 +0.2466 +0.3030 +0.1923 0.435 32,610 457 697,000

45 +0.1703 +0.2328 +0.1824 0.341 32,610 358 794.000

35 +0.1061 +0.1595 +0.1466 0.241 32,610 253 895,000

25 +0.0557 +0.0911 +0.0947 0.143 32,610 150 999,000

15 +0.0206 +0.0363 +0.0416 0.059 32,610 62 1,104,000

5 +0.0024 +0.0044 +0.0055 0.007 32,610 7 1,209,000

0 0 0 0 0 0 0 1,248,000

SBase Shear - 10,565 kips

1.935g x 32.29 x 19,840 slugs= 1,236,1701bs = 1,236 kips

The tabulated calculations give the three accelerations that occur at the
middle of each 10-ft increment. Each of these accelerations is the i-..xi-
mum spectral acceleration for its particular shape function. The three
maximum accelerations at each increment are then combined into a resul-
tant acceleration using SRSS. The force at the middle of each I 0-ft incre-
ment is the mass of the I 0-ft segment times the combined acceleration at
that level.
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The sum of all the forces so obtained is the base shear. The cantilever
moment at any level in the tower can be readily calculated from these
forces and is included as the last column in the tabulation. Figure 30
shows a sketch of the results.
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150 10.346 947

762,7,

10.565 - 1.246

FORCE IN KIPS SHEAR DIAGRAM MOMENT DIAGRAM
laps KIP-FT

Figure 30. Forces and moments on the step-tapered tower

The remaining calculation to be made is that for the displacement of
the tower after it has sustained som, t'racking from the maximum design
earthquake (MDE). The generalizeo mass m* and the normalization fac-
tor L. are unchanged in this event, but since El is assumed to be reduced
by half, the stiffness k* is reduced by I/'f". With these revisions, the
Rayleigh constants and the natural frequencies become those listed in the
following tabulation.

rayleigh Constants for MDE Displacements

Firmt Shape function Second Shape Function Third Shape Function

m* 90,560 slugs m" 77,800 slugs m" 79,700 slugs

k' - 25.6 x 106 lb/ft k" 602 x 10 Wb/ft k" 4,325 x 10 Ib/fl

L, - 151,215 slugs Ln- -79,480 slugs L,n - 50,540 slugs

L/m" - 1.670 Ln/m" - -1.022 L,/m" = 0.634

w - 16.81 rad/sec w - 88.0 red/sec & - 233 red/sec

T - 0.374 sec T n 0.071 sec T - 0.027 sec
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The revised spectral accelerations are found from Figure 17 for the

periods just calculated.

First Shape Function, g Second Shape Function, g Third Shape Function, g

SA - 1.125 SA - 0. 7 70 SA - 0.5 7 2

With these revised values of spectral acceleration, the entire procedure
introduced earlier is repeated to find the revised equations for the three ac-
celeration functions. The new accelerations are then recomputed from the
revised acceleration functions at 10-ft intervals along the tower. The dis-
placements corresponding to these new accelerations are computed simply
by dividing the accelerations by 0)2. The results of such calculations are
given in the following tabulation.

Displacements
Elev. Displaements Under MDE, ft Under OSE, ft
Above
Base First Second Third SRSS Uncecked
ft Function Function Function Combined Section

175 +0.2055 -0.0029 +0.0002 0.2055 0.1455

165 +0.1884 -0.0020 +0.0001 0.1884 0.1334

155 +0.1713 -0.0012 -0.0000 0.1713 0.1213

145 +0.1544 -0.0005 -0.0001 0.1544 0.1097

135 +0.1377 +0.0002 -0.0001 0.1377 0.0975

125 +0.1214 +0.0008 -0.0001 0.1214 0.0859

115 +0.1056 +0.0013 -0.0001 0.1056 0.0747

105 +0.0904 +0.0018 -0.0001 0.0904 0.0640

95 +0.0758 +0.0018 -0.0000 0.0758 0.0537

85 +0.0621 +0.0019 +0.0000 0.0621 0.0440

75 +0.0495 +0.0018 +0.0001 0.0495 0.0350

65 +0.0381 +0.0016 +0.0001 0.0381 0.0270

55 +0.0281 +0.0014 +0.0001 0.0281 0.0200

45 +0.0194 +0.0010 +0.OQOI 0o0194 0.0137

35 +0.0121 +0.0007 +0.0001 0.0121 0.0086

25 +0.0064 +0.0004 +0.0001 0.0064 0.0044

15 +0.0024 +0.0002 +0.0000 0.0024 0.0017

5 +0.0003 +0.0000 +0.0000 0.0003 0.0002

0 0.0000 0.0000 0.0000 10.0000 0.0000
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Note that in the tabulation, the three revised acceleration functions
have been divided by &)2 and have thus become three displacement func-
tions. The three displacements at each elevation are combined using
SRSS as shown.

The displacements for this particular tower under the MDE are com-
pletely dominated by the first displacement function. For the sake of com-
parison, the displacements under the OBE were calculated separately and
are listed in the last column of the tabulation. The displacements under
the OBE were similarly found to be completely dominated by the first
displacement function.
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4 Multistory Lumped-Mass
Systems

Multiple Lumped-Mass Systems

The Rayleigh solution presented in th previous sections applies to sys-
tems having a distributed mass. The mass in those systems may be uni-
formly distributed as shown in Figure 3 Ia; it may vary in steps as shown
in Figure 31b; or it may vary continuously as shown in Figure 31c. While
the computation of the generaliztd mass and the generalized stiffness may
be quite complex, the use of mathematics software to perform the integra-
tions makes such solutions readily possible in modem practice.

However, not all systems are distributed-mass systems. Rigid frame
buildings, for example, have the building masses lumped at each floor,
with comparatively slender columns and negligible masses between the
floors. Such a structure is shown schematically in Figure 32. When the

a) UNIFORM DISTRIBUTION b) STEPPED DISTRIBUTION C) VARYING DISTRIBUTION

Figure 31. Distributed-mass systems
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Figure 32. Lumped-mass system

building is deformed laterally, as in an earthquake, all of the restoring
force is provided by flexure in the columns.

The multistory lumped-mass system shown in Figure 32 is not a single-
degree-of-freedom system. Later discussions will show that this three-
mass system will have three degrees of freedom, three natural frequencies,
and three deformation shapes. It is classed as a multiple-degree-of-freedom
(MDOP) system.

As previously stated, however, the distributed-mass systems treated in
the Rayleigh solution were also MDOF systems, but it was possible to
examine their dynamic responses by considering only one degree of free-
dom (one shape function) at a time. Therefore, the multiple lumped-mass
systems may also be examined by considering only one degree of freedom
(one mode shape) at a time. The shape of the deformation curve in a
lumped-mass system is called the mode shape and is analogous to the
shape function of the Rayleigh solution.

In most existing building systems, the floor beams are much stiffer in
flexure than the columns. The structure will therefore deform essentially
as if the columns were fixed at each floor and can be analyzed as the
close-coupled system shown in Figure 32 with a deformed shape as shown
in Figure 33. The structural idealization is designated as close-coupled be-
cause only the lateral displacements at each floor level are allowed to in-
fluence the distribution of inertial forces at the various floor levels. The
current seismic design practice, however, is to provide columns that are
stronger than the beams. The stronger column system prevents early de-
velopment of plastic hinging in the columns. Plastic hinging in columns
can lead to collapse of the building. When analyzing strong column/weak
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Figure 33. Lateral deformations of a lumped-mass system

beam systems for earthquake ground motions, it is desirable to use a far-
coupled analysis procedure. A far-coupled structural idealization is one
that includes the effects of beam/column joint rotations on the distribution
of inerial forces at the various floor levels. The close-coupled system,
however, is used in the following example to analyze lumped-mass build-
ing systems for earthquake ground motions.

There are two cases of deformation that occur in the columns shown in
Figure 33, that of a beam fixed at both ends and that of a beam fixed at
only one end. The two cases are shown in Figure 34 along with the formu-
las for calculating the deflections produced by a transverse load P applied
at the ends. The beams depicted in Figure 34 may look more familiar if
they are turned 90 deg counterclockwise.

For the beam loaded at one end only, the spring constant k is computed
as the force per unit deflection,

k- = - 3Elb/in. (60)
A L3
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Figure 34. Force-deflection relations in beams

Similarly for the beam fixed at both ends, the spring constant k is com-
puted as

P 12.E1bin (61)
A L-

The spring constant k is commonly called the stiffness of a member in
flexure, whether a beam or a column. It is the restoring force per unit de-
flection that will be exerted by a beam or a column having a flexural mo-
ment of inertia I.

Modal Analysis of a Lumped-Mass System

Figure 35 shows a frame of a typical MDOF lumped-mass building.
The stiffness k shown between two lumped masses is the sum of the
stiffnesses of all columns that undergo the same lateral displacement. At
each level i, the mass is denoted mi, the displacement of the mass is de-
noted yi, and the forcing function on the mass is denoted Fi(t).

Forces are summed on the undamped free body in Figure 35 as follows:

-m-, - ki_ 1 ,i (yi - yi_1 ) + ki, i+I (Yi+I - yi) + Fi(t) = 0 (62)

When the forcing function does not exist, the resulting mode shape at
any level i will be that of free vibration of an undamped system supported
laterally by the masses above and below it. The equation is:
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Figure 35. Forces acting on a lumped mass

miy, + (ki)yi = 0 (63)

where -ki = ki_... + k,+ 1

The solution to Equation 53 is, as before:

yj = ai sin (ot - a) (64)

where ai is the maximum amplitude of the displacement yi. For this value
of Yi:

ýj = -ai co2 sin (ot - a) - -<o 2yi (65)

These values for yi and Yi are substituted into Equation 53 to find, with
Fi(t) = 0:

mi O)2ai - ki- li (ai - a,_ ) + ki, + , (ai+ - a,) = 0 (66)

In a more easily remembered form, the equation may be written:

kbelowabelow + (mi 0 2 - T-,) a, + kaboveaabove = 0 (67)

where 1k, = kbelow + kabove
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Herein, Equation 67 is called the "three-force equation", though it might
also be called the "three-amplitude equation." Combined with appropriate
software for solving simultaneous equations, its use permits a very simple
and direct solution for the natural frequencies and mode shapes of lumped-
mass systems. The following example illustrates its use.

Example Solution for a Three-Story Building

Given: Three-story, lumped-mass system as shown below.

Find: 1) Natural periods of oscillation, and
2) Mode shapes corresponding to each period

WT-345k__________________

I-l1O IN4 1- ' I--oN' I1-160 IN' 2'

WT-435k _ _ __ _ _ _

I20N14 4 4I
I- 22OIN I -4IN 1-400 IN 1-220N" 12'

I- 505 IN2 I - 950 I I-O 950 1
4 1-SOSIN' 16'

24' 24' 24'

Solution:

Masses and stiffnesses are computed for each level.

mi = 490,000/32.2x12 = 1,268 lb/in/sec/sec
m2 = 435,000/32.2x12 = 1,126 lb/in/sec/sec
m3 = 345,000/32.2x12 = 893 lb/in/sec/sec

kol = 3EI/L 3 = 3 x 30 x 106 (505 + 950 + 950 + 505)/(16 x 12)3 = 37,003 lb/in

k 12 m 12EI/L3 = 12 x 30 x 106 (220 + 400 + 400 + 22U)/(12 x 12)3 = 149,498 lb/in

k2 3 = 12E/L 3 = 12 x 30 x 106 (160 + 300 + 300 + 160)/(12 x 12) = 110.918 b/in
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The computed values are shown on a lumped-mass sketch.
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The three-force equations are written for each mass.

Mass No. I: 0 + (1,268mo2 - 186,000)a, + 149,000a2 = 0

Mass No. 2: 149,000a1 + (1,1260)2 - 260,000)a 2 + I 1l,000a 3 = 0

Mass No. 3: 11 1,000a2 + ( 893o)2 - I I 1,000)a 3 + 0 = 0

The result at this point is three equations in four unknowns, with the
variable w2 appearing as a coefficient. As in the distributed-mass solu-
tion, the lumped-mass solution is an eigenfunction, having one eigenvalue
r, (2 for each equation. The amplitude a3 at the top level of the building
is now set equal to unity, reducing the set of equations to three equations
in three unknowns. All of the other amplitudes will then be found as mul-
tiples of amplitude a3, termed normalized amplitudes.

The three simultaneous equations are solved using conventional mathe-
matics software. No matter how the set of equations is solved, the solu-
tion for o) wi'l always be an nth degree polynomial in w2 . Thus, there will
always be n solutions ifW the set of n equations. This set of equations will
therefore have three solutions, one for each natural frequency co. The
starting value of (o (required by the software) is varied manually until all
three solutions are found. (See Appendix A for an alternate solution proce-
dure for o using matrix methods.)

e, - 3.159 rad/sec w- 11.602 rad/sec w = 18.903 rad/sec

T a 1.989sec T = 0.542sec T = 0.332sec

aI = +0.791 a, -0.805 a, - +1.046

a2 = +0.920 &2= -0.083 a2 -1.875

&3 = +1.000 a 3 =+1.000 a3 0+1.000
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The three mode shapes are shown in the following sketches:

SIM I O17 4

A significant feature revealed by this solution is that the lateral deflec-
tion of the first-floor mass is quite high. Almost 80 percent of the total de-
flection in the first mode shape occurs in the first floor. One cause of this
high deflection is that the first-floor columns are longer than the other col-
umns, a common design feature. Further, the first-floor columns are hinged
at their bases rather than being fixed, making them much more flexible.

As a point of interest, if the columns at the first level could be fixed at
their bases, the building would be much more rigid, and the first-floor de-
flections would be reduced. The following calculations show why this is
SO.

For fixed-column bases at ground level, the stiffness factor at the first
level becomes:

ko= = 12EI/L3 = 148,000 1b/in.

This value is used in the three-force equation for mass No. 1.

Mass No. 1: 0 + (1,268a)2 - 297,000)aI + 149,000a 2 = 0

With this change in the set of three-force equations, the computer solution
now yields:

w, 5.302 rad/sec w2 = 13.358 rad/sec w a 19.568 rad/sec

T . 1.l85sec T - 0.470sec T - 0.321 sec

a 1 + +0.441 a1 - -0.918 a1 - +1.644

a2 - +0.774 a2 - -0.436 a 2 - -2.080

a3 + 1.000 a3 - +1.000 a3s- +1.000
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The following sketches show the mode shapes for this more rigid structure.
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When this second (more rigid) response is compared with the first
(more flexible) response, it can be seen that the deflections of the first
mass are reduced considerably in the first two modes, with but little
change in the third mode deflection. In the first mode, the deflection is re-
duced to about half of what it was. Assuming that all the upper floors de-
flect the same amount in both solutions, the total lateral deflection of the
building has been reduced approximately 35 percent. The most striking
difference, however, is in the two periods. The first-mode period of the
more flexible building is almost 67 percent longer than the period of the
more rigid building. This period elongation brings the response of the
more flexible structure well below the peak values of spectral accelera-
tions given by the ATC 3-06 curves shown in Figure 17. Since a further
elongation of the period would reduce the spectral accelerations even
more, such an alternative seems worth pursuing.

The results of the foregoing comparisons suggest that the design might
be improved by base isolation. For that case, the ground floor would be
raised off the foundations at each column by isolators, each having a stiff-
ness of 5,000 lb/in. Such a base isolation system is shown in the follow-
ing sketch. For best utilization of the base isolation, the ground-floor
columns are fixed (rather than hinged) to the ground-floor girders.

Vff -345 I,
wrr-4,1 1k1

W'T - 4M

vff.
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The weight of the ground floor is given as 540,000 lbs. Therefore, the
ground floor mass is 1,400 lb/in/sec/sec. The stiffness of each of the four
isolators is set at 5,000 lb/in, for a total stiffness at the isolator level of
20,000 lb/in. The three-force equations become:

Mass No. 0: 0 + (1,400(02 - 168,000)ao + 148,000a, = 0

Mass No. 1: 148,000a0 + (1,267wo2 - 297,000)a, + 149,000a 2 = 0

Mass No. 2: 149,000a1 + (1,125(o2 - 260,000)a2 + lll,000a3 = 0

Mass No. 3: 111,000a2 + ( 892wo2 - 111,000)a3 + 0 = 0

The solutions of these four equations yield the following results for the
three-story lumped-mass building with base isolators.

w- - 1.969 rad/sec (% - 8.837 rad/sec w3 a 15.038 rad/sec

T = 3.194sec T = 0.711 sec T . 0.418sec

a. = +0.835 a% = -0.797 ao ., +0.771

a1 - +0.917 a, . -0.316 a1 - -0.774

a 2 - +0.969 a2 - +0.372 a 2 - -0.819

a3 . +1.000 a 3 - +1.000 a3 = +1.000

The following sketches show the shape functions with base isolators,
with ground-floor columns fixed at their bases.

1000 1,000 1 000

0969 0372 0819

0,91, 0.316 0774

0835~01797 07

FIRST MODE SECOND MODE THIRD MODE

W- 1969raseC W- 8.837 ra:lsec (0 - 15 038 rad/sec

The base isolators take about 80 percent of the total lateral displace-
ment, thereby sharply decreasing the relative displacements in the struc-
ture shown in the previous sketch. Further, the isolators significantly
increase the period T, bringing the spectral response from the ATC 3-06
curves well down from the peak value.
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Thus, it can be concluded that a principal advantage of base isolators is
that they lengthen the natural period, thereby reducing the spectral acceler-
ations and consequent inertial forces. One of the disadvantages is that
large overall displacements must be accommodated in the building design.

Modal Participation Factor for a Lumped-Mass
System

The n-story building shown in Figure 36 is subject to earthquake excita-
tion. The equations of motion for the building are obtained by summing
forces on the free body of each lumped mass.

MASS M n y

MASS I ° I M W1

I-MASS. , -'" , Yi-I

MASS m 2 TIki..¶jb{-Y .y 1)
k12 FREE BODY OF

I I Y_____ TYPICAL MASS
MASS m J AT LEVEL

FRAME DEFORMATIONS

Figure 36. Typical lumped-mass building

The equations of motion are:

mll + ko, (y, -ug) - k 12 (Y2 -Y1 ) = 0

m 2y2 + k 12 (Y2 -Y1) - k2 3 (y3 -Y 2 ) = 0

(68)
.l..o.. ........ o( 8

mn-]ýn-] + kn-2,n-I Un -Yn-2) - kn-],n (yn -yn-I) 0

m.n + kn-1,n (yn -y 1) = 0

As was done with SDOF systems, Equation 6, the coordinate displace-
ment yi is transformed into the displacement relative to the ground by the

transformation:
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u Y = U(t) (69)

where ui is the displacement of the mass mi relative to the ground.

Substitution into the equations of motion yields:

mlýuI + k01uI - k1 2 ("2-"I) = -m g(f)

m2 uý2 + k 1 2 (u2 -uI) - k23 (u3 -u 2 ) = -m2ug(1)

S............... (7 0 )

m.a- .I.n- I + kn- 2,n- I (un- ,-u.- 2 ) - kn- 1 ,n (un-un- 1) = -nzn - |ig(t)

m nn + kn- I. n ("n - Un- I ) --" -M n) g(t)

The system of equations is uncoupled by transforming the displace-
ments ui into a set of time functions zi(t) times the undamped modes, one
function zi for each mode:

U! = a, zl + a, 2z2 + a1 3Z3 + .......

u2 = a 2 1zI + a22z2 + a +3z3 . .......
(71)

S.......o...

Ui n = an)Z I + an2Z2 + an3z3 + .......

where the second subscript for the amplitude a denotes the mode.

These equations are substituted back into the equations of motion.
With some rather complex matrix manipulations (Paz 1991), the final solu-
tion for the time functions zi for each mode are:

C + Zj = rFlg(t)

2 + ( =2 : r 2ýg(t)
S.......... (72)I

(72

ii+ Ogizi = I-Ug(t)

The term F. for each mode i is given by:

Li (73)

n n

where Li = mpji and Mi = Y mjcppi
j=l j=I
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The symbol ipji denotes the unforced amplitude of the jdh mass oscillating
in the ih mode.

The right-hand sides of Equation 12 are the same at all levels of the
building for any given mode. The factor ri may therefore be viewed as a
multiplier on the ground motions (1g(t). Consequently, when ground mo-
tions are substituted into the transformation equations, ri also becomes
the multiplier on the relative amplitudes a1, a2 .... a.. The factor li is the
multiplier that tranforms the relative values of modal displacements into
absolute values.

Physically, the multiplier Fi indicates the increase or decrease of the
ground motion that occurs when the various modes of the time functions
zi are summed, each of which may be positive or negative at any given in-
stant. Fi is called the modal participation factor, and is directly analo-
gous to the integral forms developed in the Rayleigh method, right-hand
side of Equation 52.

The absolute values of displacement, velocity, and acceleration for
each mass can now be expressed in terms of the spectral values of SD, Sv,
and SA for each mode shape i.

"ji max = Fi pjiSDj

max = rji Svj (74)

4imax = r'PjiSAj

The values of u. i, and ii. for the various modes can be combined
either by SRSS orby CQC to obtain the final combined values. If SRSS
is used, the combined values are given by:

n
Ujmax r, f iji SDj)Uj~= ±

j=1

1 4jmax X (ri fpjiSVj2 
(75)

j=1( Vi

"UJma- Y, (1 Pji SAj)

The force fj acting at any level j is simply the acceleration at that level
times the mass at that level:

f = mjjmax (76)
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The total shear at the base of the structure Vb is the sum of all these
forces fJ over the total height of the structure:

"n (77)
Vb I fJ

j-1

The overturning moment on a lumped-mass system can be found simi-
larly. The force f1 acting at any level has already been found and defined
by Equation 59. The overturning moment M0 about the base of the struc-
ture caused by the forces fj is the sum of all these forces fj times their
height yj above the base:

"n (78)

Equations 77 and 78 yield the design values for base shear and over-
turning moment for a lumped-mass system subjected to earthquake load-
ing. From this point onward, the remainder of the analysis is one of
ordinary statics. The force at any level y in the structure is given by Equa-
tion 76. The shear at any level y is then simply the static sum of forces
above that level. The moment at any level y is the static sum of moments
due to the forces above that level.
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Appendix A
Matrix Solution for a ihree-Mass
MDOF System

The general equation of motion for a lumped-mass system is given by
Equation 66 in the main text. When there is no forcing function, the equa-
tion becomes:

ki .ai I+ (m0) 2 -Yk 1 ) a, + k~ii +,a, I=O0 (A- )

In alternate form,

kil,iai_l _. (k-i.l + ki,+l) ai + ki, i+I a,+ I =._oW2m ai (A-2)

When applied to a lumped-mass structure such as that shown in Figure A-I,
the set of equations becomes:

0 - (k01 + k12) a1 + k, 2a2 = -- 2mla1

k, 2a1 - (k12 + + k23a3 = --w2m2a2

k23a2 - (k23 + k3d)a3 + k3 4 a4 = -- ) m3a3

* • • • • • • • • • • • (A-3)

kn- l,nan - kn-1,nan + 0 = - ao2mnan

In matrix notation, the set of equations is given as:

[K - w2M ] a = 0 (A-4)

where K is the stiffness matrix, M is the mass matrix, and a is the ampli-
tude matrix.

The nontrivial solution for Equation A-4 (i.e., for a * 0) requires that
the determinant of the coefficient matrix must be zero:
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Figure A-i. General lumped-mass building

K - o 2M = 0 (A-5)

Equation A-5 defines an eigenproblem. The solution of the determinant
yields a polynomial equation of the nth degree in 0)2. The n roots of (02

are called the eigenvalues of the problem. A different set of values for the
amplitudes a1, a2 .... an will occur for each eigenvalue.

As an example, the solution will be applied to the three-mass structure
solved earlier in Chapter 4 of the main text and shown again in Figure A-2.

wr_,__45k m 3 - 893 SLUGS 3 Ek- 1.000LBAN

I1.1601N' I I-300 NIN4  
I-300lN' 1-160,N' 12 k- l1l,00 LB/IN

WT4I M2 12 -,126 SLUGS 2L.20OOB1

I - 220 IN' 1.4O0IN I-400 N I-2201N
4 

12 k - 149,000 LB,1N

WT-490k1____ n 1 ,268 SLUGS I ~k -186,000 LBJ1N

W50I 1950I1 -9501N 1-50 1 k . 37,000 LBAN

24' f 24 f 24

Figure A-2. Three-mass building
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The stiffness matrix K is given by

-186,000 +149,000 + 0 (A-6)

K = 149,000 -260,000 +111,000
0 +111,000 -111,000

The mass matrix M is given by

-1,268 0 0 (A-7)
M 0 -1,126 0

0 0 -893

The coefficient matrix is found from these matrices:

-186,000+ 1,26802 +149,000 0 (A-8)

K -_ )2 M 149,000 -260,000+1,126o)2 +111,000

0 +111,000 -111,000+8930 2

The determinant is expanded by minors to find:

(0)2) 3 - 502(0)2)2 + 53,090(0W2) 481,130= 0

The roots of the cubic equation are found by trial and error:

01 = ±3.16 rad/sec ; w2 = ±11.61 rad/sec ; (03 = ±18.91 rad/sec

For the first mode, (o = 3.16 rad/sec and the matrix becomes:

r -17,3,350 +149,000 0 1 [al (A-9)
[K - 2a = 149,000 -248,770 +111,000 a2  0

[ 0 +111,000 -102,090 a3

The set of equations is solved simultaneously to find:

al = +0.791 a2 = +0.920 a3 = +1.000

The solution is repeated for the second and third eigenvalues to find
the second and third mode shapes. The solutions are summarized below:

01 = 3.16 rad/sec 0)2= 11.61 rad/sec c03 = 18.91 rad/sec
a1 = +0.791 a, =-0.805 a, = +1.0 4 5

a2 = +0.920 a2 = -0.083 a2 = -1.874
a3 = +1.000 a3 = +1.000 a3 = +1.000

These solutions are, of course, identical with those obtained for this
problem in the example given in Chapter 4 of the main text.
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Appendix B
Notation

a Peak ground acceleration

A, V, D Constants in Chapter 2 (see Table 1 for values)

A, B, C, & D Constants of integration in Chapter 3 (Equation 56)

A' Maximum pseudoacceleration o2 D' of the SDOF mass

c Damping constant

d Peak ground displacement

D' Maximum relative displacement between ground and
mass of an SDOF system having a natural frequency f at
whatever point in time it occurs

E Modulus of elasticity

EI(x) Flexural stiffness

f Frequency of oscillation

fd = cu Damping force

f= mu Inertial force

fk = ku Restoring force

I Moment of inertia

k Stiffness; also, spring constant

K Stiffness matrix

KE Kinetic energy
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Ln/m* Dimensionless multiplier applied to ground acceleration

m Mass

md Mass per unit length

M Moment on the cross section

MDE Maximum design earthquake

OBE Operational basis earthquake

p(t) Externally applied dynamic force

p(t) Harmonic force

Pij Cross-function coefficient in which i and j are any two

shape functions

po Maximum magnitude of the forcing function

P(t) Time-dependent force of magnitude - m u8(t)

PE Stored potential energy

PGA Peak ground acceleration

PGD Peak ground displacement

PGV Peak ground velocity

r Reference level

SA Absolute acceleration response spectrum

SA Spectral pseudoacceleration

SD Spectral maximum displacement

SV Spectral maximum pseudovelocity

t Time

T Undamped period of vibration

TD Damped period of vibration

T. T undamped

u(t) Harmonic displacement
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u(x,t) Deflection

u(t) Velocity

ug(t) Earthquake ground motion

Umax Maximum displacement

uo Initial displacement

Ust Displacement that po would produce if applied as a static
force

ut(t) Total displacement of mass relative to its at-rest position

io Initial velocity

it(t) Total acceleration

v Peak ground velocity

V Shear on the cross section

V' Maximum pseudovelocity (WD of the SDOF mass

SConstant equal to c/2mo

SFraction of critical damping

ri Modal participation factor for mode i

0 Rotation of the cross section about the neutral axis

0 Lagging phase angle between motion of ground and
motion of mass

W(t) Time function

wo Maximum displacement at reference level r

SDisplacement function

AV Shape function

Co Natural circular frequency

c) Undamped angular frequency of vibration

Cod Damped circular frequency
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cOD Damped angular frequency of vibration

9i Forcing frequency
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Theory

Technical Report ITL-89-3 User's Guide: Pile Group Analysis (CPGA) Computer Group Jul 1989

Technical Report ITL-89-4 CBASIN-Structural Design of Saint Anthony Falls Stilling Basins Aug 1989
According to Corps of Engineers Criteria for Hydraulic
Structures; Computer Program X0098
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Technical Report ITL-89-5 CCHAN-Structural Design of Rectangular Channels According Aug 1989
to Corps of Engineers Criteria for Hydraulic
Structures; Computer Program X0097

Technical Report ITL-89-6 The Response-Spectrum Dynamic Analysis of Gravity Dams Using Aug 1989
the Finite Element Method; Phase II

Contract Report ITL-89-1 State of the Art on Expert Systems Applications in Design, Sep 1989
Construction, and Maintenance of Structures

Instruction Report ITL-90-1 User's Guide: Computer Program for Design and Analysis Feb 1990
of Sheet Pile Walls by Classical Methods (CWALSHT)

Technical Report ITL-90-3 Investigation and Design of U-Frame Structures Using May 1990
Program CUFRBC

Volume A: Program Criteria and Documentation
Volume B: User's Guide for Basins
Volume C: User's Guide for Channels

Instruction Report ITL-90-6 User's Guide: Computer Program for Two-Dimensional Analysis Sep 1990
of U-Frame or W-Frame Structures (CWFRAM)

Instruction Report ITL-90-2 User's Guide: Pile Group-Concrete Pile Analysis Program Jun 1990
(CPGC) Preprocessor to CPGA Program

Technical Report ITL-91-3 Application of Finite Element, Grid Generation, and Scientific Sep 1990
Visualization Technique* to 2-D and 3-D Seepage and
Groundwater Modeling

Instruction Report ITL-91-1 User's Guide: Computer Program for Design and Analysis Oct 1991
of Sheet-Pile Walls by Classical Methods (CWALSHT)
Including Rowe's Moment Reduction

Instruction Report ITL-87-2 User's Guide for Concrete Strength Investigation and Design Mar 1992
(Revised) (CASTR) in Accordance with ACI 318-89

Technical Report ITL-92-2 Fiinite Element Modeling of Welded Thick Plates for Bonneville May 1992
Navigation Lock

Technical Report ITL-92-4 Introduction to the Computation of Response Spectrum for Jun 1992
Earthquake Loading

Instruction Report ITL-92-3 Concept Design Example, Computer Aided Structural
Modeling (CASM,

Report 1: Scheme A Jun 1992
Report 2: Scheme B Jun 1992
Report 3: Scheme C Jun 1992

Instruction Report ITL-92-4 User's Guide: Computer-Aided Structural Modeling Apr 1992
(CASM) - Version 3.00

Instruction Report ITL-92-5 Tutorial Guide: Computer-Aided Structural Modeling Apr 1992
(CASM) - Version 3.00
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Contract Report ITL-92-1 Optimization of Steel Pile Foundations Using Optimality Criteria Jun 1992

Technical Report ITL-92-7 Refined Stress Analysis of Melvin Price Locks and Dam Sep 1992

Contract Report ITL-92-2 Knowledge-Based Expert System for Selection and Design Sep 1992
of Retaining Structures

Contract Report ITL-92-3 Evaluation of Thermal and Incremental Construction Effects Sep 1992
for Monoliths AL-3 and AL-5 of the Melvin Price Locks
and Dam

Instruction Report GL-87-1 User's Guide: UTEXAS3 Slope-Stability Package; Volume IV, Nov 1992
User's Manual

Technical Report ITL-92-11 The Seismic Design of Waterfront Retaining Structures Nov 1992

Technical Report ITL-92-12 Computer-Aided, Field-Verified Structural Evaluation
Report 1: Development of Computer Modeling Techniques Nov 1992

for Miter Lock Gates
Report 2: Field Test and Analysis Correlation at John Hollis Dec 1992

Bankhead Lock and Dam
Report 3: Field Test and Analysis Correlation of a Vertically Dec 1993

Framed Miter Gate at Emsworth Lock and Dam
Instruction Report GL-87-1 User's Guide: UTEXAS3 Slope-Stability Package; Volume III, Dec 1992

Example Problems
Technical Report ITL-93-1 Theoretical Manual for Analysis of Arch Dams Jul 1993

Technical Report ITL-93-2 Steel Structures for Civil Works, General Considerations Aug 1993
for Design and Rehabilitation

Technical Report ITL-93-3 Soil-Structure Interaction Study of Red River Lock and Dam Sep 1993
No. 1 Subjected to Sediment Loading

Instruction Report ITL-93-3 User's Manual--ADAP, Graphics-Based Dam Analysis Program Aug 1993

Instruction Report ITL-93-4 Load and Resistance Factor Design for Steel Miter Gates Oct 1993

Technical Report ITL-94-2 User's Guide for the Incremental Construction, Soil-Structure Interaction Mar 1994
Program SOILSTRUCT with Far-Field Boundary Elements

Instruction Report ITL-94-1 Tutorial Guide: Computer-Aided Structural Modeling (CASM); Apr 1994
Version 5.00

Instruction Report ITL-94-2 User's Guide: Computer-Aided Structural Modeling (CASM); Apr 1994
Version 5.00

Technical Report ITL-94-4 Dynamics of Intake Towers and Other MDOF Structures Under Jul 1994
Earthquake Loads: A Computer-Aided Approach

Destroy this report when no longer needed. Do not return it to the originator.


