
SAD-A285 357/c 1 I)

IA JHU/APL
TG 1386
I SEPTEMBER 1994

I
Technical Memorandum

II PROCEEDINGS OF THE
II FOURTH SYSTEMS REENGINEERING

TECHNOLOGY WORKSHOP

1 BRUCE i. BLUM, editor

I

U

tIMC QUALMnyiNSPECTEED 2

I
I

THE JOHNS HOPKINS UNIVERSITY 0 APPLIED PHYSICS LABORATORY

Approved for public release; distribution is unlimited. I

94-31616

Ap JHU/APL

TG 1386

SEPTEMBER 1994

Technical Memorandum

I PROCEEDINGS OF THE
* FOURTH SYSTEMS REENGINEERING

TECHNOLOGY WORKSHOP

Monterey Marriot Hotel
Monterey, California
February 8-10, 1994

BRUCE I. BLUM, editor

Sponsored by

NAVAL SURFACE WARFARE CENTER
DAHLGREN DIVISION-WHITE OAK DETACHMENT

Silver Spring, MD 20903-5640

3 With the Cooperation of

JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

3 Laurel, MD 20723-6099

Approved for public release; distribution is unlimited.

II

I
U
I
I
I
I

The Systems Reengineering Technology Workshop is sponsored by 3
the Navy Surface Warfare Center, Dahlgren Division, as part of the
Complex Systems Engineering Block Program. The organizers of this
workshop wish to express their appreciation to CDR Grace Thompson
and Dr. Harry Crisp for their continuing guidance and assistance. Mr.
Blum is supported by ONR tasks under contract N00039-91-C-0001
with SPAWAR.

I
I
II
i

I

I

U

II

mm | • •I

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIOWAVAULABIUTY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release; distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

JHU/APL TG-1386 JHU/APL TG-1386

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

The Johns Hopkins University (N NAVTECHREP
Applied Physics Laboratory RCO Laurel. Maryland

Sc. ADDRESS (City, State. a,-d P Code) T7. ADDRESS (CAy, State arid ZIP Code)

Johns Hopkins Road Johns Hopkins Road
Laurel, Md. 20723-6099 Laurel. Md. 20723-6099

8a. NAME OF FUNDING/SPONSORING 1 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If asphmble)

Naval Surface Warfare Center N00039-91-C-0001
8c. ADDRESS (City, State. and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT

Dahlgren Division-White Oak Detachment ELEMENT NO. NO. NO. ACCESSION NO.

Silver Spring, MD 20903-5640

11. TITLE (InrAh Secunty C/assiticabtjo

Proceedings of the Fourth Systems Reengineering Technology Workshop (U)
12. PERSONAL AUTHOR(S)

Bruce I. Blum. editor
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGECOUNT

Technical Memorandum FROM TO September 1994 410
16. SUPPLEMENTARY NOTATION

Presented at Fourth Systems Reengineering Technology Workshop, Monterey, Calif., 8-10 Feb. 1994

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse i necessary and 'dentlyby bock number;

FIELD GROUP SUB-GROUP Reengineering Software reengineering

I Systems reengineering

19. ABSTRACT (Continue on reverse d necessaty and identiy by bXocX numbte)

The Navy has invested significant resources in the development of large and complex systems that must be modified and
extended to respond to changing requirements. However, many of these systems are based on archaic automation technolo-
gies that do not support modem hardware and software engineering methodologies or maintenance strategies. Conse-
quently, system modification has become increasingly complex. To reduce the complexity, developers can employ
reengineering techniques to create new systems. This report contains the papers presented at the Fourth Systems
Reengineering Technology Workshop sponsored by the Naval Surface Warfare Center. The papers discuss theoretical anG
applied techniques that can be used to facilitate systems reengineering efforts. Specific topics include design issues in
systems reengineering, reuse in reengineering and forward engineering, experience reports, reengineering translation and
transformation, evaluating a reengineering project, tools for reengineering, engineering science and reengineering, the
impact of object orientation, and approaches to reengineering.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

(!g UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOM

NAVTECHREP Security Officer (301) 953-5403 NAVTECHREP

DD FORM 1473, 4 MAR 83 APR edition may be used untit exhausted SECURITY CLASSIFICATION OF THIS PAGE

AM other, ad s am obsolete. UNCLASSIFIED

i The Johns Hopkins University

Applied Physics Laboratory
i Laurel, Maryland 20723-6099

i
ABSTRACTI

The Navy has invested significant resources in the development of large and
complex systems that must be modified and extended to respond to changing require-
ments. However, many of these systems are based on archaic automation technologies
that do not support modern hardware and software engineering methodologies or

maintenance strategies. Consequently, system modification has become increasingly
complex. To reduce the complexity, developers can employ reengineering techniques
to create new systems. This report contains the papers presented at the Fourth Systems
Reengineering Technology Workshop sponsored by the Naval Surface Warfare
Center. The papers discuss theoretical and applied techniques that can be used to
facilitate systems reengineering efforts. Specific topics include design issues in
systems reengineering, reuse in reengineering and forward engineering, experience
reports, reengineering translation and transformation, evaluating a reengineering
project, tools for reengineering, engineering science and reengineering, the impact of
object orientation, and approaches to reengineering.

Accesion For

NTIS CRA&IM/

DTIC ITABIiA

By
D i.•t, ib .•b •

Dist i AVLI'i u , or

Ult1 5p~d

Ii

I. . .,=, ==mmt m l nn ni N I ii i

The Johns Hopkins University 3
Applied Physics Laboratory

Laurel, Maryland 20723-6099

Foreword

This is the fourth of a series annual workshops sponsored by the Naval Surface Warfare I
Center (NSWC). These Systems Reengineering Technology Workshops are motivated by the
fact that the Navy has invested billions of dollars in the development of systems that may be
modified and extended to respond to changing requirements. Systems reengineering technology
is necessary if the Navy (as well as the other users of large-scale, complex systems) are to benefit
from their extensive investments.

The workshop brings together representatives of government, industry, and academia to
address the issues confronting this technology. Although the principal interest of the sponsors
is the reegineering of embedded, real-time systems that include hardware, software, and human- i
computer interaction, the workshop encourages the participation of all individuals andorganizations concerned with the reengineering of large-scale, complex systems.

These participant's proceedings contain the papers accepted for presentation at the
workshop. They have been organized to according to the order of the program. The workshop
begins with a keynote address by Andrew P. Sage. His paper, "Systems Engineering and
Management for Reengineering," provides an introduction to the issues to be discussed during
the workshop. The paper is abstracted from Systems Management for Information Technology
and Software Engineering, which will be published by Wiley later in 1994. This opening paper
is complemented by Robert S. Arnold, "A Road Map Guide to Software Reengineering
Technology," which is included as an appendix. It is the introduction to R. Arnold (ed.),
Software Reengineering, IEEE Computer Science Press, 1993. Thus, this volume begins and ends
with two very important surveys that present a conceptual context for reengineering and this I
workshop.

The papers in the volume have been grouped into units with common themes. The I
commonality, of course, often is more apparent than real. With the decision not to have parallel
sessions and a commitment to accept all the relevant, quality papers that could be accommodated
in the time available, the workshop organizers were not always able to focus a session on a I
central theme. We overcame this difficulty, in part, by structuring some of the workshop sessions
as panels rather than paper presentations. In those cases, the papers in these proceedings
constitute an extended discussion of concepts that may have been presented only briefly in the 1
workshop.

By the standards of most academic conferences, these proceedings are long. Because the
literature on systems (as opposed to software or organizational) reengineering is sparse, we
elected not to place any page limits on the papers. Thus, the papers are as long (or short) as
they needed to be to convey what the authors believe is important. As the organizers of this I
workshop, we hope that those who read these proceedings will concur with this decision.

Mark Wilson, Workshop Chair 3
Bruce Blum, Program Co-Chair
Gilbert Myers. Program Co-Chair

iv I

The Johns Hol i, -is University

Applied Physics Laboratory
Laurel Maryland 20723-6099

Table of Contents

F o rew o rd .. iv

Keynote Address

Systems Engineering and Management for Reengineering
Andrew P. Sage (George Mason University) 1

Design Issues in Systems Reengineering

Design Capture and Optimization Issues for System-Level Reengineering
Steven Howell, NgocDung Hoang, Cuong Nguyen (Naval Surface Warfare
Center, Dahigren Division), and Nicholas Karangelen (Trident Systems,
Inc.) J9

Information Architecture, An Architectural Basis for Evolution of Large
Scale Software Systems

John Leary (SEI Washington Office) 25

A Framework for Automated Reengineering of Complex Computer Systems
Lonnie R. Welch (NJIT), Antonio L. Samuel, Michael W Masters, Robert L.
Harrison (Naval Surface Warfare Center, Dahlgren Division), Alexander D.
Stoyenko (NJIT), and Joe Caruso (CSC) 44

Dynamic (Re)Generation of Software Documentation
W Lewis Johnson (USC/Information Sciences Institute) 57

Reuse in Reengineering and Forward Engineering

A Case Study of Software Reuse in Vertical Domain
Vaclav Rajlich and Joao Silva (Wayne State University) 67

Reengineering to Increase Maintainability and Enable Reuse
Grady H. Campbell, Jr. (Software Productivity Consortium) 77

A Reuse Approach to Computer-Assisted Software Reengineering
Daniel E. Wilkening, Joseph P. Loyall (TASC), Marc J. Pitarys, and
Kenneth Littlejohn (USAF Wright Laboratory) 83

Formal Specification and Software Reuse in Reengineering Embedded
Real-Time Systems

Farnam Jahanian (University of Michigan) 91

Vl

The Johns Hopkins Unive-,ity

Applied Physics Laboratory
Laurel, Maryland 20723-609

Experience Reports and Discussion (Panel)

MK 86/UYK-7 Enhanced Memory Unit Project: Jacking the Computer Up and m
Putting a Powerful Engine Under it!

Joe S. Ganes, Richard W, Williams and Jay Roske (Naval Surface
Warfqre Center, Crane Division) 97

Reengineering the LAMPS Mark III to Provide a LOS Ship-to-ship
Teleconferencing Mode I

James P. Rahilly (Naval Command, Control and Ocean Surveillance Center) 107

A Successful Process Improvement Effort Using Cleanroom Software Engineering m
S. Wayne Sherer (AMCCOM LCSEC), Paul Arnold (IBM), and Ara
Kouchakdjian (SET) 120

Design Capture Views Applied to the WAA System
Daniel J. Organ (Naval Undersea Warfare Center, Newport Division) 136

Reengineering Translation and Transformation (Panel)

Translating CMS-2 to Ada
Charles H. Sampson (Computer Sciences Corporation) 143

Reengineering Concurrent Software Into Ada
Noah Prywes, Giorgio Ingargiola, Insup Lee, and Moon Lee
(Computer Command and Control Company) 157

Software Migration and Reengineering (SMR): A Pilot Project in Reengineering
Stephen R. Mackey (MCC) and Lynn M. Meredith (Computing Devices
International) .. 178

Reverse Engineering Complex Database, to Support Data Fusion
R. D. Semmel (Applied Physics Laboratory) and R. Winkler (U. S.
Army Research Laboratory) .. 192

VHDL Board-Level Modeling To Expedite Redesign
L. J. Ceder (Naval Research Laboratory), Charles Rogers, Louie Kitcoff,

James Michaud (Naval Air Warfare Center. Aircraft Division), John Miles,
Gary Hout, Ed Woods, Darin York (Naval Surface Warfare Center, Crane
Division), and Peter Everitt (CACI, Inc.) 200

Evaluating a Reengineering Project

Using the CIM Reengineering Process Model in Navy Reengineering Efforts
Tamra Moore (Defense Information Systems Agency) 205

Reengineering Assessment Handbook (MIL-HDBK-SRAH)

ViI

I

The Johns Hopkins University

Applied Physics Laboratory
Laurel. Maryland 20723-6099

John Clark, Barry Stevens (COMPTEK Federal Systems), John Donald
(Air Force Cost Analysis Agency), and Sherry Stukes (Management
Consulting & Research, Inc.) 216

System Reengineering Evaluation: A Design Dependent Parameter Approach
Wolter J. Fabrycky (Virginia Polytechnic Institute and State University) 224

Metrics for Reengineering of Software Systems
Annette R. Ashton and William H. Farr (Naval Surface Warfare Center,
D ahigren D ivision) ... 234

Tools for Reengineering

Customized Software Evaluation Tools: Application of an Enabling Technology
for Reengineering

Lawrence Markosian, Russell Brand, and Gordon Kotik
(Reasoning Systems, Inc.) .. 248

Using Design Knowledge to Extract Real-Time Task Models
Lester Holzblatt, Richard Piazza, Howard Reubenstein, and Susan Roberts
(The M ITRE Corporation) .. 256

Maintenance Process Reengineering: Toward a New Generation of CASE Technology
Judith Ahrens, Noah Prywes, and Evan Lock (Computer Command and
Control Com pany) ... 263

A Syntax-Directed Tool for Program Understanding and Transformation
William G. Griswold and Darren C. Atkinson (University of California,
San D iego) .. 274

Engineering Science and Reengineering

Software Reengineering in the SF Framework
A. T. Berztiss (University of Pittsburgh) 283

Efficient Methods for Validating Timing Constraints in Multiprocessor and
Distributed Systems

Jane W. S. Liu and Rhan Ha (University of Illinois) 292

Massively Parallel Systems Design for Real-Time Embedded Applications
Thomas C. Choinski (Naval Undersea Warfare Center, Newport Division) and
Chin-Hwa Lee (Naval Postgraduate School) 304

Knowledge-Based, Metalanguage-Based Object Abstraction for Automatic
Program Transformation

Romel Rivera (Xinotech Research) 319

vii

The Johns Hopkins University n

Applied Physics Laboratory
Laurel, Maryland 20723-6099

The Impact of an Object Orientation

Issues in Re-engineering from Procedural to Object-Oriented Code
Ricky E. Sward and Robert A. Steigerwald (USAF Academy) 327

An Object-Based Framework for Reengineering Avionics Software
Noble N. Nkwocha and John J. Zenor (Naval Air Warfare Center Weapons
D ivisio n) 334

An Object-Oriented Paradigm for Reengineering Complex Real-Time Systems
Kwei-Jay Lin (University of California, Irvine) 342

Approaches to Reengineering (Panel)

The Next Generation Computer Resources Program: Strategic Direction
Rex Buddenberg (Naval Postgraduate School) 346

Reuse-based Reengincering: Notes From the Underground 1
Frank Svoboda (Unisys Government Systems Group) 355

Reengineering as an Engineering Problem: Conceptual Framework and I
Application to Community Problems

Peter Feiler, Walt Lamia, and Dennis Smith (Software Engineering
Institu te) . 36 1

Current STSC Reengineering Projects: MIL-HDBK-RAH Application Findings.
Reengineering Project Planning Orocess, and STSC Reengineering Survey
Results

Michael R. Olsem (SAIC) and Chris Sittenauer (USAF Software Technology
Support Center) . .. 373

Appendix

A Road Map Guide to Software Reengineering Technology (From R. Arnold (ed.),
Software Reengineering, IEEE CS Press, 1993, reprinted with permission.)

Robert Arnold (SEVTEC) .. 381

A uthor Index ... 401

I
I
I

viii

l

Systems Engineering and Management for Reengineering

Andrew P. Sage

School of Infomation Technology mid Engineenng
George Mason UWuversity
FairIx. VA 22U30-4444

AM*.. This paper prents and overview and perspective wo emxoiunenl uere statc and tay-imuiging Hovbever. when wc are
ystems egineetrig and systems managemenrt for in a period of lugh velocit environments, then continual

reengkincing and mlated approaches towards organizatiwal orpuuzationaI change aid associaled change in processes and
and technolog mitalizadon. As we will see, there are at lea~s product mnus be considered as a fluidaunental rule of the game for
he tp of re"eginering that can be comderrd: progress.
wmgienring at the leiels of product, process, and systems In many %uys, past progress can act to impede future progress.

managemenL We claim that all three am generally needed and This is especially the am when we become very accustomed to a
an approach at one level only may not be sati'actor). puticular •iy of doing things, mid have "alloicd a very large

overhead situation to aoccunulate aroumd Miat vere once highly
sLccessful efforts at the production of quality produs and services.
It is especially difficult to clhange %tien x%%iat % are doing now is

Resposivene is very clearly a critical need today. By tiis, %%e done %ery well. Yet, it is entirely possiblc tdat a competitor may be
mean of cm. organizational responsivenes in providing able to do it better, in may of a n•nbr of %%a)s. Also, what lwe do
pxkuis and services of demonstmble value to customers, mad well now nuty well not be whkal ut %ill need to be doing in the
thereby to the orgamzaios own stakeholders. T7is must be fiture.
acmpsW by ecienfly and effectively emnploying leadershiip In mnaiy if not nos cases, improvement needs come about no
and empowere people, such that systems management strategies. because of humnan inattention to the tasks they perforn. Rather, and
organizational procemes, human resrowes, and appropruite more often than not, it suggests that tie tasks themse•ves are in
tednologies are brought to bear on the production of ligh qualty need of restudy and renovation. These tasks may be strategic in
and trustworthy goods and seivics We also mean responsiveness nature, or they may be tactical, or dthy may be purely operational.
in supplying appropriate thnologies and sysems to me these Most often, hoxwmr, attempts at improvement tlhrough attention at
objective. Figure 1 illustrates these ingredients and some of their only operational levels will yield ery modest inprovements for the
linkages in the production of products and se•,ices. It is a effort invested. As many iave idicated it is the (strategic and
composite representations that indicates some of dte many Utctical, amd not the operational) sv,,em that is tdfault
ingredients responimble for trusiworhiy and high qtlity products. Figure 2 inicates somc improvement approaclhes. each of

Many reent papers I[I have indicated dhe need for continual \ihich relate to rewigincring.g Thcy are interrelated mad our listing
revitalization in the way in which %c do things, such that thie are is not complete. One of our obectis in this paper is to promide a
always done better. This is the case, even if the e.trcnal perspective and ovenriew of sonic of thc many reengineering

C4 cýýJ
....... .

Fig. I Some of the Many Major tigredients in Reengineering Fig 2 Some Approaches to Reengineering

I

qipprohes and niethodologies dugt have been suggeted. A inuich for such Lou%%e lewel coi~tnum as s~nvitural tacets of a IxtuicuLir
amor onniplel dissuasion is cntaiied ui 121, and tins pilxr is a product.
surnznary of(Charer 8 which discu~s~ aiguwcrnng. Our pipecr is org~uii,:d as Iblolv.s We first provide sonic

Figure 3 represnts a generic viewv of rnenguiernng. The eairni% definitons of remgicugernug Thn.:[%%% Chisus Sonic fiVe Of the
to be reengineew can be either systems nmanagemncrt process. or jiaN~ perspxxu~s that hax~e twn i tken reLtn~e to reenginecnig.
product. or some appropritne woitaniation of these. We %%-ll e.\xpad Tleni, %%e pro~ide somne swiuaur conunents-
on this histintion and its uiterprec-Uon in our discussions to1.PES CTVSO EN NER G

In this secuon. iw provide definitions aid perspectives on uhat
kow~d %e consider to be Unire reLated bit different t~pes of systems

awuguaceruag. nxan~crug cngincxlig at the Ileels ofI
Defindim product.

Ww" bfewasfw processorprodoct tcie.ad
wW~~~ ~ ~ ~ fta oof0systemus mna~gemnirt-
"*N~wbbf I*There haive been a mawtuber of definiion. forinal and ýiforna~l. of

No *f ft-o w Mod"ofrocrguiecrnng. The %%ord Ls occousinltY spelled as mre~nginwering
noed deign1hoWe choose the fomnier spelling here. both ae correcL

__ ninee on.In
W_ tand aevoaunfi ti Oe Rymnt A. Product Reengince ring

w--wnngt ýn Th-ne tenu n.enrgivmcernag could nican somec sort of re%%udkwg or
an opusbonl s retrfit o an dminhd engineered product- This could well be

- *-- -- -- fi~l~lC interpree xsm~uaiuc or refiuasluinent. As ut hive rioted

prcvaouslN 131. mnaintenance ctui be viewved fromn reactive or
Fig. 3 A Thre Phas Approsach to Generic Recrngincenrng corrective. interactie or adaptivc. and proxactive or perfoctive

perspectives Or, reeaagmncering could be interpreted as reverse
We can approaceh a discussion of reeng~inernng fmirin sevenil eiagtinernng. ut \ilucia the chwractenistcs; of an alreacy enguiceed

perspectives. Firt Nve can discss the prodict are identified. suich that the product can perhaps be
"* stflturaI, miodified or reusedl Inherent in these notions are tw~o major facetsI
"* fimectionaL, and of reengineering.

Upurposeful I .It unproves the pn.JtiLK1 or systemn delivered to the user for

aspects of reenginecring. Alternately, or in addition, we can enkuaced rehaibdity. nmaintaiability, or for an evolving userI
evaimin reeragincering at the level of need.

"* Sytems rmangemrent. 2. It in~icrss understanding of die systemn or product itself.
"* prtxM or 'iaus. this interpretation of rcengincenng is almost totilly product
"* product focused. Wec \\ill call it produc reeniginocring.

We may e:xamine reerigineering issues at any, or All of tie tlanx Thuis. we nught si\ thal
fundamrenital systenis engineering lifolcyces: P-othid rec'nginet.ring is the eiftaminafion, stud),, capaure,

"* resarch, developnment. tes. and e%-aduazon (RDT&E). and nwdifiication of the inft~nal mecdarnism orI
"* systemfs acquisitionprocurmnentor produtxoionor]ufisi'ionalizv of an, eaiaing .9'atn or produd in order to
"* sstems planning and marketing. reconmlitute it in a neivforan and isith~ newfeaftures, often to

Within eacl of these Ifecyclcs. Ae coulId consider reenginecring at take' adt-antage of nc~it' emergrd technologiesý bid nithout
any or all of the uhuee generic phase of defizudion, development. or major change to the inlwrenifutteionality and purpose of
deployment. At the level of systiems mnatvgemenit, %%c rcecginer 11w)'.%leJt".

each of these phases and potentiall al odier processes l"idiin tie lilis definitiona indicatecs that product reengicernng is basically
company for integrated improvemecnt. At the level of procs statl SML1r,1 Cvnginceenng mdit. at most, minor changes 'in purposeI
reeng~inering only, as we define it. only a single process is and fmiunctiolitx of the product that is recnginei~od. T'ius
redesigned, and wvith no fundamental changes in the structure or -coijiiecrod product could be integrated %%itl other products
purpos of the organization as a whole. Changes, when they, ocur, having rather different fiinctionality than vas the case in the initialI
may be radical and revolutionary, or inicremnental and evoltitrion-r deploaiaezat. T'itus reourginecied products could be used, together
at the levels of systems; rmangement, processes, or products. %%ith this a,-lentaton. to prouled nemw functionality and sernt ne

Onex fundamental notion of rerngincering is, ho~wevr, dhe puirposes. A nitunber of synonyms for product reengineering easil f
reality that it munto be top down directed if it is to achieve dhe conic to nutnd. Amiong these are: renewal, ref'urbishing. re~vorik,-
signtific antda long-lasting effects that arm possible. Thus, there repair. nuuanteniulce. mnodernizaton, reuse, redevelopment. and
should be a strong purposeful and systemis rmangeenirt orientation ret Aft.

to reengincering. even though it many have w~ell major imipliati~ons

2

A specific ex.1inple of a product rectiginceuing effort nighit be, This could lx- ýiplcmentled into tie processes for RDT&E,
that of takcing a legacy systemi written in Cobol or Fortrnu-, reverse acquiusiori, wuud systemis pLuming anid marketing. Btsasrnl
engineering it to detcrmine the systemt definition, and then ivenginctring at dhe level of processes would consist of theIreengincering it in C" or Ada. Depending upon whether or not dectenninationi, or s titieisis, of ant efficacious proces for ultimately
any nlodifiod user requirements are to be incorporated into the Fielding a product on the basis; of a kUowtrxlgc of generic customer
reengineered product, we would either reengineer the product, requirements, and the objectives aid critical capabilites of theI thrugh a forward engieering effort, just after reverse engineering systemis engineering organizotion. Ouir Figure 5 illustrates,
had determined either the initial development (techinical) system conceptually, some of the facets of process reengineering.
specifications, or after reverse engineering far enough to detennine
user requirements and user specifications, and then updating these. Organizational Objectives) Identify Customer

This reverse engineering concept 141, in Muhch salient aspect of andd Critical Capabilities Requirements
user requirements or technological specifications are recovered Ietf dafiln examination of chaacteristics of the product predates product (etif da
reriineing.PoesAtaPrcs

Figure 4 illustrates product reengineering conceptually. Aui Identify Actual or Product Line
IEEE software standards reference 151 states that "reengineening is s rdc
a complete proce~ss that encompasses an wanalyss of existingU ~ ~appficatlo. is;relrctuing, xevret, and forward engineering. Ildentity Process Change

The HEME sandard for software maintenance (6] suggests thatltae~Ne
reenigineering is a subset of sottware engineering that is comprised ldentiýy/lmpliment

of reverse engineering and forward engineering. We have 10 (Process Change Aon
disagreement with the sort of definition at all we prefer to call it
product reengineering for the reasons just stated. It is alsoInecessary to consider reenguinering at the levels of processes and Fi.5CnetaIlurtonrPocs egneig
systems management if we ame to take full advantages of the major Fi.5CcetlIlsrtonoPoesRegieig

oportunities offered. Thus, fth qulifier "product" appears In accordanice wvith this discussion, we offkr the followingUappropriate and desirable in fth conte~xt used here. definition.
Pr-ocess reengineering is tire examination, stwd, capvr4
and modifiication of the mnterwal mechanisms or

=jnwn Defrilifunictonahly of an edvsing process or sy1ems enrgineering
DemomentOperational Product 4fifevde, in ordler ito reamnstidue it in a neivforin and wit

Deplomeritnew featres, oftenr to take advantage of newly emexge4
caupabilitie, but itithout changing the inherentfundionality

Depoynet Rveseand purpose, of fheprocc~v itiOf that is being reengin eeed
lop FI eyopen rgieeing We could reengineer either the process for RDT&E, system

acquiusition or production, or systems planning and marketing.Ipcfcto Among tie first discussions of this sort of effort at business proces
reengincernng, although the word redesign wmas used rather than

De~initnreenginernng, is in a contemiporary paper by Davenport and Short

De~opmerd 171. Tnis was gcaitly' cxpIuided upon in it recent and seminal text
Depoymnt Reengineeired by' Davenport 181 which does make use of the term reengincernng.

Produc. We wll provide an overview of this miajor work in a later section.

Fig.4 Reresetaton o ProuctReenineeingThese and other authfors rocognize. of course, that redesign ofI Fi. 4Reprsenatin ofProuctReeninerin processes only anid wfitout attention to reengineering at a higher
B. Process Rtenginecring level than processes only may. in riany instances, represent an

incomplete anid not ftilly satisfactory wayN to improve organizational,
Reengineering can also be considered at the levels of prcse capabilities. Thus. the process considered as candidates for

and systems management. At the level of processes only, the effort rcg nceing e high level anuuagerial as wvel as operational
would be almost totally internal. It would consist of modificattions poes. infornnation tecluiology is considered to be a majr
to %bateve standard lifecycle processes are in use in a given enabling catalyst for process reengineering. Continuous processS organization in order to better acoonunodaite new and emerging improvement anid institutionalization is advocaited.
technologie or new customer reqluirements for a systemn. For Reengincerimig at the process level, and the resulting
example, an ex\plicit risk management capability inight be improvement in product thiat results froum improvement in the
incorporated at several different phases of a given life~cycle and produnct fine, is essentially Nfliat the AT&T Bell La1boratories haLs
accommodated by a revised configura tion management process

3

used to identify a common taylomble s'stemns acquisition process produce executable code from a set of input technical
for Federal Systems Advanced Technology (ESAT) use as a sjxxzifiatfions. A code generator aui be viewed as a special
deployment methodology for all Process Management Tcams txe of reusable soft\\wre product.
(PMTs) at this organization 19). The indicated benefits to using a 6. A process, or product line, test anod evaluation faility is I
common and understood lifeccle include: conlstrnctcd next. Thifs Nis the capacity for test and evaluation

"* shorter development cycles, of products from die product line. Following this phase, the
"* fewter engineering change orders, applications engineelrig lifecycle begins. Thiis involves
"* products that fulfill customer expectations, and actuad definition, development, and deployment on the basis
"* eduzxr program and product development costs throughout of thejust engineered product line, or proxm, lifecycle.

the lifeccle. 7. Product definition is the first phase in actual production of the
Thus, the process improvement results ultinately in an increase in soflNtwre product Thifs is achieved by identifying the user
effectiveness of product for the same cost, or a reduction in cost for requirements for a softmire product and translating them into
the same effectiveness, or some blend of these two. a set of specifications.

Essentially what we call process reengineering here is tenned 8. Product prototyping occurs in the second phase of the
"domain engineering" by the Software Productivity Consortiutm applications engineering lifecycle. Here, a prototype is built
1101. The combination of domain engineering with the and, with user interaction presumably, used to refine the
"application engineering," or lifecycle, effort needed to product the technical specifications for the software product. The
actual product is termed "synthesis." It is intended for use in the modeling and sinulation environment, built earlier in
systems acquisition, procurement, or production lifecycle. Figure 6 domain engineering, is used for this purpose.
illustrates the synthesis concept which is intended, in part. to 9. Newv product development occurs next. In this particular
facilitale the incorporation of reusable softhare products in new instance, this refers to the production of custom built U
software systems. The synthesis process proceeds as follows. executuble code for those portions of the sofivare prodit-

that are not to be comprised of reusable code.

______ -Synt i1.. ! 10. Reuse development occurs next. In this phase, the

Danan Erineering - a--Applicanon Ernneer•i g* . ,•.. incice code that ihs become reusable code and code
produced by applications generators in phase 5 of domain

ft= Ptanrl-ng engineering is integrated in with the customized code to

result in a complete ftunctioning product.
Dt Z+ 11. In tie final phase, integration and test of this functional

Product P g soft\,are occurs. This generally involves use of the test suites
produced by dte product line test and evaluation facility.

Pduct ibrary " Reuse Deveopment 12. The deploý,ed product results from this effort

n Txx est-val •i" As iididated in Figure 6, there are several entiy points from
domain engineering to application engineering as several of the

2222results of intentuiediate phases of domrain engineering (at phases 5. I
5, and 8) are used in the actual lifecycle that is developed as a result

1)_d_ P~r•.t.• of donain engineering.
"C. Reetgieering at (lie Level of S•stems Management

Fig. 6 The Software Productivity Consortium Syntlhesis Process At the level of syscnms management, reengineering is directed at

1. A set of 6 domain engineering phases is used to deveopthe potcntild clhmge in all business or organizational prooessas,

product line. In the first phase, process, or product line, including the sstcnms acquisition process lifecycle itself.. Many

planning is accomplished. This is presumably based on authors have discussed recnginoering the corporation. Arguably,

knowledge of tie organization and its critical core the earliest use of dte tenn business reengineering was by Hammer I
capabilities, and customer needs, as illustrated in Figume5 1111. in 1990. and more fillv documented in a more recent work on

2. This is followed by a process definitional phase. adled Reenrieering the Corlxration 112j. There are a small plethora of

product line analysis by SPC, in wiich the requirements for related works, as we %%ill soon discuss.

the process or product line ire spcified. Hammner's dcfinitioni of reengineering "Reengineering is the

3. This leads to product-line, or iifecycle process. development. findaenenlal rethinking and radical redesign of business processes

4. A modeling and simulation environmnent is next constructed to achieve dbramtatic improvements in critical, contemporary

such thit it %ill be possible to accomplish prototyping in the meavure.s qfperjbunnnce. sudc as cost, quality, service and speed' I
actual lifocycle for production of the product. is a definition of what we will call recnginetering at the level of

5. A product librabr is next constructed. This is comprised of systemts nialugement. There are four major terns it this definition.

reusable sofa-ire modules and code generators whichlii Fundantetal refers to a large scale and broad scope f
e.xamiation of \irtually everything about an organization and

41

how it operates. The purpose is to identily potential %weakncss Lifelclcl process rcenginoeenng occurs as a natural t~product of
that are in nccd ofdiagnosis and correction, reengincering at tie level of sy'stenis n~iangenient- Ti's may or

"* Radica redesign suggests disregarding existing mnay not result in tie recugincering of already existing products.I organizational processes and strucures, and irnventing totally Generally, it %%ill as new products and competitive strategies arm a
new ways of accomplishing worki major underlying objective of reengineering at tie level of systems

"* Dhamatic bmprovements suggests that, in Hlammier's view, management, or organizational reengineering as it is more
meengineering is not about making marg inad incr~emental conunonly callod.
imnprovements in the status quo. It is about making ClUlUntuni D. Perspectives of Reenigineering-~ in organizational performance.I Procese represent the collection of activities tha are used to This very brief discussion of reengineering suggests that we can
take input materias, including intellectua inputs, and consider reengineering at tlue levels: systems management,
transform themn into outputs and services that have value to lifecycle processes and product. T"he major purpose of
the customer. reenigineering, regardess of whether it is at the product level or theIHammrer suggests that reengineering and revolution are almost proces level or the level of systenms management, is to enable us to

syionymous terms His identification of the thre types of firms that product a bette product for the same cost, or a lower cost product at
attempt reengineering - those in trouble, those who see trouble a cost comparable to that for the uinitial product. Thus it improvesIcoming, and those who are ambitious and seek to avid impending competitiveness of the organization in coping with changing
zitrot" e~xleral situations and environments. We may approach

Hle indicates that one major catlytv for reengineering is the reengineering, at any or -all of these levels;, from eithe of thrm
creative use of information technology, Reengineeruig, is not just perspoctives:
automnation however, it is the ambitious and rule breaking study of a readive. because we reailize that we are in trouble and perhaps
eve~ything about the organization to enable more effective and in a crisis situation, and reengineering is one way to bring
efficient organizatonal processes to be designed. about needed change-,IWe essentially share this view of reengineering at the level of * interactive, because we wish to stay abreast of current changes
systems nmanagemnent. Our definition, is similar. as they evolve; or

Sy~stems mamagaemen retmgineering is the Crxinmation, 0 proadfive; because we wish to position our organization nowI ~s**dj c4*i- and modification of the internal meu* aimzs for changes that wve believe will occur in the fuxtuiv, and to
or fimdinalit of ecadsting syjste mnanagemnlat procm=e emerge in the changed situation as a market leader.
and pmdioes in an organization in order to riconslitite in our newi section, we examnine some of the manry contemporary
them in a new form and imkh new feahtres ofltm1 to tak ideas that havebeenexpressed abouttesiubject of reentginecring,I ~advantae of newliy emerged organizational competitivernes
ftqUiejMent hut nitholt chranging the intheren IL AN OVERVIEW OF REENCINEERING APPROACHES

fiudovtaliy and purpose of the organiurd on - As Ne have noted. it is possible to consider reengineering at the
We make no representation that this definition, or the other two for levels of strategy and systemis management, process or product line,
that matter, of reengineering is at all the same across the miany or product. In this section. we provide an expanded overview of
works that we discuss. Figure 7 represents this conception of each by means of an ovenriew of contemporary literature onI eengineering at the level of systemis management. reengineering.

Forecat Futre ta~eal -Withouit question, more hias been wr~itteni about recrngineernag at
Forecst _tu , diette levels of strategy or systemis management Chat at the other

(Needs adRqieent s , levecls. This is not wireasonable since reengineering efforts at theI denity Ideal Orgarizatioriai Identity Customer Ilevel of organizational strategy have direct implications for
'ectves nd CabiltiesRequremets nauagemient at the levels of mniutagerrentt control, and thence at
1deniy Idel Sysemsthe levels of process to implement maniagemnent controls, and
Manaemet Prces U&ISysemsproduct.

Idwtf clSses Maria lement Process It is difficult to trce di origins of rergneini n unique
11defityAckW S emsmanner. The notions of reengincering are very interrelated with

Management Process Ufecycte Process those of systemis engineering. infonnation technology, strategic

Idenftfy Process Change Ren'enrg planning, anid iran' other subjects. Thie term systems
Strategy Need Product mianiagemient reengineering is not at all common. Others have

used such related terms as s-sstemis reengineering, organizationalIden~tymptiment 9reengineering, corporate rcecgineet-ing. anid busintess process
(Process Changeioai

ft, i i~d : improvemniit. T1hese termis can. homtever, be interpreted to mean

Fig. 7 Reengineernmg at the Level of Systemis Management regncigi i cr fsscno rdcregneiga

* 5

I

the Level of lifecycle process, and of the sticture and fica-tiondity uruiigton suggests five phases for business process I
of the organization. unprovenient (BPI). These. represented in Figure 8, are as follows.

1. Org'a.ie for Imprnvernent - This phase involves severL
A. Business Processlmprovement steps. First. it is Incsary to establish an Executive

In 1992, Harrington publislhed a seminal work on business Improvement 7eanm (EIT). Thien a BPI chamnpion is
process improvement 1131. ne major thesis of the work is thiol it is appointed and executive taining is provided An normative
business and manufacturing processes that are the key to error-free untprovement nmodl is identified and BPI objectives are
perfonnanoe. His view, that the process is the problem and not the conuniucated to employees. Next, it is necessary to miew
empobyees, is essentially that of Deming and others in the TQM business stategy and antcipated customer iuiremnents.

areas. Harrington defines a process as a group of activities that TIs enables fihe organization to idknfy and select critical
take inputs, adds value to them, and produces an output that is ai processes for improvement and to appoint process owners. I
stpo of an organization's objectives. Two generic types of Perfonnance Improvement Team menbers are selected
process identified Prlouion pc are ductly 2. Develop an Undt.-sarnmng of the Various Irocesses
concerned with yielding the output product or service. Business Currently in Use - This phase includes defining the scope
procses support production processes. These include design of and objectives of current processes and the boundaries within
production processes, payroll processes, and engineering change which they are functional. This includes a variety of analysis
processm fwiutiofls including stnituring current processes and

Many works on reengineering recognize a dichotomy between detection and diagnosis of areas for potential improvente
organizational processes and organizational flunctionality. Most 3. Streamline Organiunional Froomes for Enhanced

organizations are stnxctured into vertically functioning groups. or Efficency, Effetivenes and Adaptability - Crent
hienuvues, and most processes are organized into horizontal processes are corrcted through various streamlining
phases for work flow. The many waterfall lifecycle models we iave approaches tiat ame responsive to the diagnosis perfonmed in
illustmted in our effort surely demonstrate this. Three desirable the last phase. This includes eliminating bureaucracy,
attributes of Business Process Improvement (BPI) are: reducing the opportunity for errors, reducing

" effideiny, in terms of minimizing the cost of the resources non-value-added activities, and otherwise simplifying
used- processes such as to reduce cost and increase effectiveness.

"• effecxvertm, in terms of producing desired results, and 4. Implent a Program of 4stematdc Meawurmnent and
"* ada•tabiity, in terms of flexibility in acconmidating Conmtrols - hi this phase, a program of systematic

changing customer and organizational needs. nistremnents is used as a quality control and monitoring

To do this requires processes with the following well defined system in order to bothi maintain dte new process productivity
chaacteristes: ownership and acxmutability, boundaries and mid to keep hornt regressig into poore process

scope, interfaces and responsibilities, work tasks ad trmiing implementations only because they havee been used in the

meuirements, measurement and feedback controls, customer past An extensive program of measurements, feedbck and

related mneasurements and targets, cycle times, and fonnalized acfion is suggested This includes audits of what are denoted
change procedures. Figure8 illustrates the BPI process. av Poor Quality Co.st (PQC) facets.

5. Continue the Evolutionwy Improvenent - Periodic reviewsI

Initiate Business Process Improvement of the effort are used to enable detection, diagnosis, and
correction of difficulties as inprovement continues. A formal

-Organize for Improvement -prognur of businiess process qualification is suggested
through use of a si\ level PBI scale for process maturity
Isttus. The levels are tunknown, understood, effective,Present Processes eflicient. error-fee. and wrodd class.rarrington's effort has much in common with those in strategic

mI
O r a -e f Stream line for Effifciency,

quality nina age nient 1111141. Th'le w ork has m uch rel evaince to
Ef , benclintaiking, a topic we will soon discuss, and to systematic

nmasturements. The autflor hats had much experience in efforts of

s Implement Process this sort. mad this is much in evidence in his high cabher writing.
Enablr of earnig • -Measurements and C-o~ntrolsl [B

anB. Intelligent Enterprise

-C n Implement Continuous The efforts of Janes Brian Quinn are focused on knowledge

Improvement m based serices ats a necessmiy complinment to manufacturing efforts.
His iew of an organization is basically that of a collection of
scrvice acti\ities and fliat both service and product oriented

Fig. 8 Interpretation of Business Process Reengineering orgluiizaitions Nill obtain their najor competitive advantages not
from superior physical fci~lities and materials alone, but fiom

6

I!

knowledge and service bsled capabilities. In tlhee recent works penetration. dccratsed risk. great prodtct reliability, and
115111611171 concerning technologies in services, the claim is set loxwer overall costs.
forth that it is services and not manuf•cturing activities that provide 4. Mare of the ar tt echnloog de-velopment companies are
the major course of value to consuners. Tlhis does not suggest tlat preeninent in their knowledge of a specific technology.
services replace n tinufiicturing, but rather that if it were not for the Often tlhe operate ui markets in which technical
value added by the services that ame associated ,vith a manulictured perfonwince cnterki are the nnujor drivers of demand and ame
product, there will be fur dininished value to the product itself. therefore able to self-define the characteristics of next
Several cdiateustics of new organizations ame cited: generation teclhology.

"* "infinitely flat," or horizontal; 5. DMsceefreestanding product ine companies form suxng
"sider's wei " like, or non-hierarchical and with highly research divisions and act as entrepreneurial units. They

d interconnections; depend more on technology push for their initiatives than
"* "hollow corporations," in which outsouring of both products demand pull, and %i•ll often introduce new products on a

and services becomes an increasing reality; snall scale aid obtain real time market test rather than pay
demolished bur ies and vertical integration and for very expensive marketing studies thal may not be as
"inll:etual holding com es." in which intellectual effective as snuil scale produc ýintrduction and interactive
technologies are critical. modification ofdie produ to meet os nee

It is represented that this viii lead to precise and swift straitgyed vom or faotion companies provide ;ale
execution, the leveraging and retention of key people, and "creative and limited qicuitty products to a specialized marcý .,:ie.
nmnagement for profits." 7. Job shop or cu.Wmg de*,n companies provide one of a kind

A 1992 text by Quinn I181 represents a definitive integration products tuht meet an individual customees requirements.
and synthesis of earlier efforts on this subject. It is much concerned Th7ese iay often involve fle\ible mantifiring or mass
with concentrating organizational strategy on core intellectual custonmiztion approacwes to enable highly specialized design
competencies: and core service ompetencies. He suggests four key to net an individual customer requixretents.

irles to follow in order to generate succoss in this regard. Clearly, this is not a mutually exclusive listing. Nor is the listirin,
1. Focus internal organizational resources on those relatively collectively e.haustive. Each of the industry types may be

few basic sources of intellectual strength and service strength associated with an orgalnzational strategy and configuration thad is
that will create and sustain a real and neanungfit) timed to providing nim'antn success opportunities. Each type will
distincfivenes to tie customer over the long term. have a different propensity for organizational growth, maturity,

2. Apprah the remaining capabilities as a non critical set of decline- and rebirth as we discussed Wi our last chapter. In his effort,
services activities which may be supplied internally or Quinn discusses the typical product lifecycle for each
outsourced from external suppliers who compete well iln organiztioltd claracteristics, the mix of attributes that descnbe
functional activities related to these capabilities. typical uiolvations, and recolmmended organizational structues for

3. Sustain sucess by building entry barriers around doe RDT&E, acquisition or production, planning and marketing, and
selected critical core capabilities to prevent a competitor from interfaces between nurketing and customers. Approaches for
assrmning a substantial market position. nmanging the intelligent enterprise are also suggested These

4. Plan and control outsourcing such as never to become either involve efforts that also encompass core capabilities, outsourcing,
dependent upon. or dominated by, external suppliers. total qua:dilty i:uigentent. and benchmarking, as well as some of

Strategic sourcing, including outsourcing, is a major ingredient in the other ingredients illustated ui Figure 8.2.
these: maxims, we discus it later. Appropriaite interfaces betweenC.PoesInvtnproduction efforts and service efforts are also stressed as is the C. Process Innovation

management of knowledge based intellect and professionad In die aforenoled text by Davenport 181, a careful distinction is
intellect, ade betw en process improvement and process innovation. His

Seven types of innovate organizations are identified in this fiudamental distinctions ure tiat improvement is continuous and
work incremental in Iiture, dds with die e:\stig process, can be

1. Basic research organizations support large RDT&E tunits. accomplishled in a relatively short time, is a bottom-up activity, and
They select products for development on the bisis of carefil is a inarrow scope effonr with relatively nmoderate attendant risks.
and conservative tradeoffs among risk and potential profit. On the other luid. innoation is generally a discrete phenomenon

2. Large system producers develop large-scale systemns tat thlat is rvolhtiionar' ,nd radical in nature. It starts with a zero base
generally cost a great deal and which must performn i a as contrasted wNith the existing process, can only be accomplished
reliable manner for a very long time. over a long time, is a top-down activity, is a broad scope effort that

3. Dominant market share oriented companies are often not cuts across all of the fiulctional areas and proesses in the
the first to introduce an emerging technology into tie organization, and is tisully characterized by high associated risks.
marketplace. Tlhy often support large research units and Of course, there may exist questions of whether an innovation is
plan market entry and product evolution to obtlin maxiitnlu a major improvemnent wid whether a set of incremental

improvecments does not add tip to in innovation. Ratler than a

7

binary scale to sejxute these two, perhaps it wvould be best to that techinology %%ill resolve all problems. Organizafional and
consider a continuous scale. Thiis would enable us to consider politiat! issues awe geneirlly ignored, perhaps bemuse thev'
incremental uniprovemcint at one end and radical innovation at tie are conisidered uimuuiiagcablc. In nsdity, the major focus may
other. Obviously, either can be appropriate or inappropriate in be on the technologies u~sed to process data rather than on tie
specific situations. Change increments may be so small diat infoniuition cointent dinhe data The major objective is
centuries vould be required to accomplish any change with modeling and use of organizational data Data engineering,
appreciable value added. On the other hand radical innovation miay mid some -ispects of information engineering is considered
be so dramnatic that the organization is culturally and odienvise king AU that is really nceded for organizational paradise isI
unable to adapt. Culture shockc and customer revolt is often the the selection of die best hardwnre and softwvare, and use of
result- the most appropriate CASE tools to assist in constructing the

Infoniation technology is suggested as a major enabler of most appropriate entity relationship diagrams and data flow
process ku ati oeher wih2.ognztinladhna models.

enaberandan nablr bsedon miisremntsassciatd %iti 2.Feudamis %%-as die model of information politics most often
proces information and managermet of the infonaton encountered in Othis study. In this model, a number of people
environment. Essentially these three wvere suggested as enablers in in feudal departments individtially control informationI
our Figure 1. The proces innovation proces itself is comprised of acqtuisition, representation, storage. anaiysis, transmission,
5 phases, and a number of activity steps within eachi phase, ats and use. The language used for information representation is
connoted by Figure 9. We note that there are opportunities bothi for ofien different across die various; departmriets. CriticalI
traditional incremental improvement anid the more etimrnie infonivation that Affects die organiziation as a whole is often
innovative Linprovement Presmaibly, the overall process is not collected. When a subset of this is collected by an
iterative and this leads to continual innovation, as suggested by the individual depaxtiient. it may not be passed on outside theI
feedxidc from phase V to phase I in the illustration of Figure 9. boundaries of die depailmnent. Making organizationally

nifornied decisions for the conunon good is often Very
94" rocss -- WWWdifficult, as a result of the information poor environment.

MYCotitateRmssSomnetimes, hoivever, strategic alliances across departmentsU
Winbl~ocead~hrilmomesare possible and innoviition within these units may be

ILMnf as for. Crtis EnMw 3. Morib is a pragniatic solutioni to the difficulties inlievent3
.09 in die feudal model. Information mnanagemnent is centralized

Iuid there is little autonomy concerning information policies.
1.A. A=Usokwz. " adp Ptor P@t okcwar~ri A benign monarch whlo is enlightened concerning

3. Badw oe becia Waty7 inforniation techniology and organizational needs for
N.U4~W WWu~~n 11ad EnXov. 1inUg PromOS, information may set up, potentially through a Chief

2. Anlz lr xm aqFosOple r eut nfornnation Officer (CIO), a very effective and efficient
3.cerof w~~~v~c Whtw rp~vth o me system. A constitutional monarchy may wvell accomplish

V.Afes Psroltp Rates tee ru~ Ui* E n eW Prdi~tis:, a despotic mionarhy seldom wvill perforn satisfactorily.
I FomM M .,ze wdItitt Dsign An Executive Informaition System (EIS) or Executive

2. Swett's PRIleifec h~S 0119W Support Sytein (ESS) 1201 may well be a beneficial productI
4 Wwd S t est ft Iteomth00Proessht to No of a constitutionail mionarchyv. One problem with a
-5.~Ir~r Irmemi bie NwPmocess Stujctm soi Fwr~one

_________________________________.........constitutional infornnation monarchy. however, is the
Fig. 9 Die Proctess ot'Process huoato problem of succession when the mionarch dies, retires, or is3

oveniirown. This can lead to inforniation anarchy.
Not ex\plicitly shown in this figure is the organizatoional 4. Airarelti is die result of complete absence of any information

communications that occur at each phase of the effort and die policy. Usually this is not a willfully imiposed model but a
commitmenrt building that is also needed Davenport examines a result of a breakdownu of one of the centralized approaches,I
number of enablers of specific processe including: pkuuuing, such as a mionairchy. T1his results in individuals and units in
research, development, design, production, madkefing. and sales. an organization nmanaging their own information resources

Also considered briefly are the role of organizational culture in and developing informnation reports that serve their owrnU
shaping desirable innovation strategies. In a related wvork 1191. this needs niather thani the organization as a whole. The major
is considered in greater detail. Five models of information culture, shortcoming of an inforination antarchy is not the wasted
denoted as informnation politics in the paper, are defined. effort involved in die reduixtidnt information processing and

1. Tedrnoxdic Utopianism is a formial analytical appraich to storige effort across units. btxt die tomvr of Babe effect that
information management It stresses highly quniaie results in termis of prorviding infornnation that is useful for the
approaches, major reliance on emerging technologies, and entire organiza~tion. Thecre Nvill seldom exist any

fuill informa-tion assets. Th~ere is an underlying assiumption iiiteroperaibility across tutits. at die level of either dlata or

U

U infonmation. As a consequence of duis, dte various uilts nu) 4. AMoid buiding infornuioii cinfpies, such as thuough
well prent entirely different rsults from using tie stune creation of despoic moLarchies and Uffornnlion czars.
data on the genenrlly very different alternative model Explicit rocognition of infonution minagenment cultures and
management mstern including intuitive nmodel mnuuuging them consmtnictivcly is sugges2d as the bouxo line. In
maia-,oement systemns, dial will be in use. conffornuice to our chswtssionts uggeste asd [21, we would prefer to

5. Feadfism inwolves the use of negotiations 12 11221 to bnng call these infor•ation rn~uglgenent styles, amd infomation cultures
competing and noncooperative individuals and witLs into or information nvuiagement cultures, rather dtn "information
consensus on information related issues. Strong centrl politics" tern used by these audtors. As w\e have noted before, there

leadership and an organizational culture that encourages are semnanic differences in use by the mnan' workers in these areas.
learning, cooperation and o ensnsus are required in order for hi terns of the vocabulaiy %ve use here, the organizational political
this model to work Understandming by top organizationaal cultures identified by dte authors are the anarchist and the feudalist
management of both infonnation techiologies and the value models. These are not to be encouraged. On this, of ourse, we
of information is a need if a shared information vision is to be agree strongly with the authors of this excellent work.
creted.

It seems quite clear that these models are neither mutually D. Bcnchmarking
iemcusive nor collectively exhaustive. A given organization may A bencimark is much like a brakpoint 1231, Actually, the
ivll function with a hybrid model, and the model tial is in use at a concept of a benchmairk preda-tes that of a breakpoint. Much further
given time may evolve from one form to the other with clhnges in discussion of benchmlnarking is available in 12411251 1261. A rcnt

organizational dynamics. Some of the models of organizational and definitive wNork by Watson 1271 provides an excellent overview
caltures discussed in II n mid 121 seeni also very plausible as of nmany current eflbrts concening benclunarking, He identifies
information cultures as well. four Ives of benchnixidng efforts.

In a study of the iformation culture at 25 comanp ies, o. Internal benchmainkg involves observations taken entirely
Davnpot and his colleagu-s found th~at the feudal model %vas die wvithin die sanie organtization, generally of the best practices

mos common model in 12 companies. Federalist, monarchist, and that have resulted in one segment of the organization that are
technocratic utopianist models were found with approximately desired to be transferred into anther segment of the
equal filuuency in that 8, 7, and 9 companies were found organization. Internal benchmarking efforts atI predominantly following the prescriptions of these models. Only 4 Hewlett-Packard are described
organizations followed the anarchist model. They also ranked these 2. Conyxlitive benchmarklng involves targeted best practices
five alternative models of information cultures according to their in an •xternal orgaýization. These can be at the level of
scoring on four attributes of information value: systemns management. processes, or product Often, muchI commonality of vocabulary, secondary rescarch is used for competitive benchmarlding

N acc to infornation, The competitive benchnmarking studies of the Ford Motor
* information quality, and Compnly, and their use of these in developing Ford Tanms,
* information management efficietn-y. are described.

Each of the four attributes had equal veight in tdis study. Their 3. Functonal be dmnarkbig is concerned with performance
onclusion, that the federalist and monarchfist models are nist investigation ifthin a specific functional area for an
appropriate, in most situations, seems inescapable. The feudalist industry-wide fticction. The results of functional
and anarchist models, which actually seem to have a lot in benchmn'rking are especially suited to identifying process
common, were the poorest performers. improvement related bcncluruaks. The efforts of the General

In order to determine a 'best" model for a given organization. Motors Corporation in September 1994, which led to major
we need to know the current model thal is in use, mid the GM strides to enlhmce product quality and reliability, are
evolutionary or revolutionary model for the infornation culture to described.
which the organization should be moving. Four suggestions are 4. Generic benchniarking is concerned with studying the best
given; our interpretation of these is a s follows. processes in actuid use in practice in a given organization

1. Match information management strategies to the such as to enable aundogous development of enlhanced
organizational culture extant ,and the orgamizational culture processes by dte organization(s) sponsoring the
the organization is desirous of adopting. bencluinuchming study. A generic benchmarkig study by

2. Practice technological realism, both in terns of infonmation Xerox which idutinately led to understanding and analogous
technologies themselves. interoperdbility across potentially modification and adoption of ficets of the shipping processes
different platforms, and the value of information that is not activities of dte c•taog casual-clothidg sales organization L.
ahrays easily captured in electrontic forn. L. Bcm. are described. This effort was so successful that it

3. Select appropriate information ma-agers, both from the led to establisluhent of die Benclimarking Effectiveness
standpoint of technical skills and broad-scope organizational Strategy Tewu (BEST) net\work to transfer lessons learned
understanding skills, throughout dte Xerox Corporation.

ii 9

I

in our terminology, we would use the tern functional produict for structural, fin-ctioial, ind piurposful answers. A similar set I
benchnadring to refer to benclunarking of the directly myeasiutrable tiels to be asked idter we benchluuak. Benchiuarking efforts can
aspects of a product Tlese serve to describe the operational be conducted relatil to issues at the level of systems management,
capabilities that are supplied to the user of the product or senice. process, or product Anisers to these qtestions need to be obmained
The nonfunctional attributes of a product are tiose consUtaints, in tenus of irnpli•zcoons for eich of these levels.
alterables, or limitations that relate to the structural or pturposeftd lTere caum be soime obvious etluad, moral, and legal concerns
properties of the product that are not a part of die ftuictional relative to bencluiarking. Some aspects of benchmarking may
properties. The nonfunctional attributes of a product relate to such seem to aniount to spying, or espionage, Clearly, successful
important characteristics of a product as relibility, maintainability, benchniarking should and can not involve behavior that is eithe
quality, and availability. Thus what was accomplished here would immnioral, unethical, or illegal. One of the major activities of the

noi be descnbed, using our terminology, as functional product International Benchmarking Clearinghlouse Committee of the I
benebmarking It is really nonfunctional product benchimarking. American Productivity and Quality Center (APQC) have resulted
The study conducted by GM was not restricted to automotive in a set of guidelines, know", as a Code of Condu4 for
products. It was a study of quality processes at II cooperating benclunarking that have been subscribed to by a considerable I
organizations in a variety of product areas. They had established 10 nuniber of companies and which are generally felt to be above
hypotees for empirical evaluation and these relate very closely to reproach 130). There are seven principles in the Benchmarking
quality prosm It would, therefore, be very appropriate to denote Code of Conduct. The, nmay be summarized as follows.
thi type of benchmarking asfuncdionalprommss hbmechmarking. I. Legality - The acquisition of ,ade secrets is proscribed, as is

Like a breakpoint, a benchmark involves a baseline comparison doing benclhiiarking widiout first requesting approval by the
of existing practices of an organization with those bes practices as benchinvarkee. All actions and intents should be legal ones.
used by one organization, or perhaps many other organizations. 2 E&ahange - The same typc and level of information should
These practices may be at the level of product, process, or s3stcmns be provided bodt by the benchniarked organization and the
managemten Breakpoints and benchmarks have tie saime ultimate organization doing tie benclunarking in an openly
purpose, that of enabling and enhancing organizational conmmunicated exchuage. I
impttvernits for customer satisfaction. The use of a benclunark 3. Confidemi6V - Bencluhmrking cornmunications should be
can be reactive, in which case we desire to emulate the best considered as confidential to the organizations involved and
practices of others that have already been established, or perhaps obtained information concerning benchmaricng should not
excel in theseO In can be interactive or anticipative, in wiich case, be divulged outside die concerned organizations withoutI
we desire to foresee efforts that are now occurring and adjust prior consent of all parties.
organizational practices, more or less in real time, to keep abreast 4. Use - Benclunarking infoination should only be used for

of the compeition. We can use benchmarks for forecasting fonnulation of iniprovanient options for procse or I
purposes such that we evolve entirely new forms of orgaizLitional products wifthin organizations participating in the study.
results in the form of system management strategies, processes, and Attribution of benchinarking partner names requires prior
products that are each world class in quality and tnistworthiness. In peniission, aid benchniarking infonration must not be used
all cases, benchmarks are based on systematic mneasurements, bo•t for marketing or sales purposes.
intemal and exernal measuremen, arid serve as a cat~ast for 5. F"-Pany Conlad - Benchmarking information contacts
action and results. In this regard, benchmarks are also 'e much wit, a partner organizaton should be made through tie
related to Critical Success Factors (CSF) 12811291. point of contact established by die benchmarking partner. I

We see that a benchmark is a standard of excellence or Mutual agreement must be reached for delegation of
achievement, or critical success fictor that provides a baseline responsibility in this regard to oiler pairties.

against which to measure or evaluate, or othdenvise judge. similar 6. 7uird-Par., Coirtaa - Prior penuission must be obtained
entities. While the benchnarking notion may seem quite simple at before divulging the unme of die benchmarking point of

first, there are really a number of benchmarking features that need contact to a u3,ird party or in an open forum.
to be examined. Them are at least seven important mid interrelated 7. Preparation - A benchitarking contact with the point of I
questions that need to be asked before Nve benchmark. contact at mnother organmiztion slxoud only be made after

1. Why do we benchmark? proper planning and preparation of an interview guide, in
2. What do we benchmark? order to make the encounter efficient and effective.

3, Wuicd benchmark measures do we need? 8. Completion - Each benclunarking study must be completed U
4. Who do we bencimuark? to tie mtisfaction of all benchinarking partners in a timely
5. Where do we benchmark? mainer, as agreed to prior to die study.

6. WheIr do we benchmark? 9. Undertandbrg and Adion - All partners should be treated
7. How do we benchmark? with mutual respect and understanding, and infomiation

We can and should ask diese questions of our orgaization, we c•i should be tsed as miuttally agreed. IIand shiould ask ths questions oftflums organtiztions that represent It seemis qtfite clear thiat these conidict codes are also applicab•le as

competitors. We can and should ask tiese questions fi die search ethical codes of conduct, as %%ell as being %r,-. useful standards for

10

benchmarking pnrctice. We can obtain benclunarks at the levels of 9. A ysitems fwwagtwentc reengiitevingfocus is neoded, both
systcms management, process, and product. at , levels of mdclid and rovolutionar, change, as well as

for evolutionary change. su•h as to also result in radical,I E. tntegr-aited Product Development revolutionary, or evolutJoruisy changes in processes and
In many ways, integrated product development is an e,\tension product.

of conrrent engineering as discussed in 1311 1321 1331. It is also 10. A organiuaional aururc'up-4 &lwdeshifocus isn in
closely related to the other reengineeriig approaches we descrnbe order to sucessfdll acconmodate changed perspectives
hem. The following definition seem appropriate relauve to customers. total quality, results and products,

in1gad product dedeopnat is a sysans management processes, employees, and organizational stngurte.
philosophy and approach that uses functional teams to 1o. A metods, took andfechniquesafocus is ned as they are

-proaue a effiwav and effeive proem for the ultimate needed throughout all aspects o& the [PD process even
depkoymod of a product that sagLsfles auvomer neds through they alone will not bring about sucess.
thurugh concurrWt qpfiaknm and wnegratlon of all 12. A systmawc measurements focus, primarily on proactiveI/ifecleprocann measurements but also on interactive and reactive

Intkrated roduat Development or IPD, involves systems measurements, is needed as we need to know where to go
management, leadership, systems engineering procees, die and where we art now. in order to make progress towards
products of the process, concument engineering and integration of getting there.
all necessay functions and processes throughout the organization. All of this should bring about high quality, continual and

to result in a cost-effective product that provides total quality mid evolutionmay, and perhaps even nidical and revolutionary,
customer need satisfaction, generally in ajust-in-time fashion. improvement for customer sitisfaction. Each of these could be

Thus, IPD is an organization's product-development strategy. It exjxrmdod into a series of questions, or a chedist, and used to
is focused on results. It also addresses the organizational nood for evaltute the potential effectiveness of a proposed integrated product
continual enhancement of efficiency and effectiveness in all of its development process and tean. While our discussion of IPD may
processes that lead to a product, or service. There are many focal nmake it seem as an approach untiquely suitable for system
points for [PD. Twelve are particularly important, acqiusition, produtaion, or proctuement; it is equally applicable to

1. A cutme sadsfacton focus is needed as a part of the products of dte RDT&E and m arketing lifecyde.
competiive strategy and is the result of a sucoessli We see that [PD is a people, organitons, and technology
competitive strategy, focuses effort as linked together through a number of lifecyde

2. A resudtfocus and a productfocus is needed in order to processes by systems management. These are major ingredients
bring about total customer satisfaction, for all our efforts here, as we suggested in Figure 8.1. The major

3. A pro focus is needed as high quality competitive result of IPD is tie ability to make optimum decisions within
products that satisfy customers and result in organizational ataiLble resouresand to execute them efficiently and effectively in
success come from efficient and effective processes. Tis order to achieve turee causally linked objectives:
neoessarily requires process understanding, 0 to integrate people, orgamizations, mad technology into a set of

4. A strategic planning and markWing focus is nteeded to multifunctional and networked product development teams,
insure that product and process lifecydes am fully integrated 0 to increase die quality mnd timeliness of decisions through
throughout all organizational fimctions, exiernal suppliers. centrally controlled, decentralized and netvorked operations,
and customers. mid thereby

5. A cwnasnw engineffingfocus is needed to insure that idl 0 to completely satisl. customers thrlough quality products and
functions and structures associated with fulfilling customer services that filfill their ex:pectations and meet their needs.
requirements are applied throughout the lifecycle of die The bottom line is clearly customer satisfaction through quality,
product to insure correct people, correct place. correct short product dcliv•en time, reduced cost and improved
produt, and correct tine deploymenL perfom•uince and fiuictiomlity. Equally supported by IPD are

6. An integration engine•ingfacus is needed to insure that organizational objectives for clnanced profit, well-being of
relevant processes and the resulting processes fit together in management. mad a decisive and clair focus on risk and riska seamldess manner, mueliomation.

j 7. A teannmork and communicaionsfocus is needed to insure Figure 10 illustrates a suggested sequences of steps mad phases
that all of the fiuictional, or multifutctional, te•ms ftnction to establish ma integrated product development process. As with
synergistically for the good of the customer and organization. other efforts, this embodies the definition, development, and

8. A people empmoement focus is needed such that all deploN'ient triage we have used so often in this book. As the
decisions are made by qualified people at the lowest possible implementation of the detailed steps in these phases is relatvely
level that is consistent with authority and responsibility. stmadard, we wil iiot desclbe them1 fulther here.
Empmoerment is a responsibility and not just an entitlement Appropriate references to IPD include 1341 and 1351. At this
and entails comnitunent and appropriate resoture allocation point. IPD is a relatively new concept mid there are few asailable
to support this conmmitment. references on tie subject.

I1

existing doctunientation is faulty, wuil perhiaps virtually
absent,

Definiti2 2. Denugn Recavety is a subset of reverse engineering anI
Oevelc~eot wiuh the redocwinentation knowiedge is combined %kithI

conwwwt nd Dvelomentother efforts. often involing, the personal experiences and
2 Fom~it . DptomeMkmnowdge of others about the smsem, that leadl to

140M.and boelas nans.functionial abstractions and enhanced product or system
3.W*wwzbri 2 M alyz dw~p- Iwapltbekpwsdersraiiding at the levecl of function, suincure, and even

and do~w fhe orp mV~ ~ mentaatjon purpose. We %%ould prefer to call this depkoflinent,
4. ~ ot~uprauaol of ihsem gtan oprni 2 Atilyz tiw~npacls ol development (%%iich %Woud include design) recovery, and

PMO-O & an4imp b prooesm and prodim Ihac and Mail
dftamm P" of lE'O 3 vo~wel Opbona. @61d daelabpfli en ins definition recovery, dependfing upon the phase in the

pgap ai uipiment liwng vim 1 Opronl ot reverse engineering lifbcycle at which the remcvry
u*d F d...opot of domfto davebymant tacks a kniowledge is obtained.

aahibg. iP4bt .Idvlawn WatemSIC then deployed 1PO 3. Reszru during involves tannsforniation of die revernse
meastoasiws. and IPO phi-Whyt~
Md*mctorw town, 4 Moionir and evakjate engineering information concerning die original systemr

mulsi and (*at@ for
structure into another represntation form. This generally
preserves die initial functionality of the original system, or
modifies it slightly in a purposefully manner that is in accordI

Fig. 10 Phases in Integrated Product Development Process With the user Wtreqireents for the reengineeref:1 systemn and
the %Yay in %wbich i thy differ from the requirements for the

F. Product Reengineering infitial sysemi. For our purposes, the terms deployment
Reengineerinig at the level of product has received much retructurirng, developmenit restructuring, and definition

attention in recent times, especially in informiation technology mnd restructuirnrg s~eem to be appropniate disaggregalions of the
software engineering areas. This is not a subject that is truly retutrn nlotioni.
independent of reengineering at dhe levels of either s~tci 4. Reerigineffing is, as defined in these efforts, equivalent toI

maaeetor 'a single lifecycle prcs.redevelopment engineering, renovation enginecering, and
As we nolte catr uhoordctrrgicr svr reclamation engineering. Thus, it is more realate to

closely associate with reverse: engineering to recover either dlesig nxatnagiem t and proes thangtneotern thats of havtem
specifications or user requirements. Thids is then foMowed by agnitadprcsregncigtht% av

refinement of these: requirements and/or specifications and die discussed in this chapter. Reengineering is the recreation Of

forward engineering to result in an improved product Thle terin esnial i original system. in a new form that has
reverse engi~nerng. rather thani reengincering, %it used in one of imiproved stnmcttue but generally not mnuch altered purpose
fth early semninal papers in this are 1361. In this work, as wvell ais and functiort T1he nonfunctional aspects of the new system
in a more recent chapter on the subject 1371. the follow~ing efforts ma becnieal different from those of the original
represenit both the taxonomy of and phases for whlat we denote here system. especially with respect to quality and reliability.
as prdua reengineeing. Figaure4. which illustrates product reengineering, involves

L Fonavwd engineering is die original process of defininig. Wesetal these six activities.
devopig, nd epl)7nnt f aprouct orreaizig a We anrecast this by considering a single phase for definition,u

dyseveloping, anddpoyeto a p roucorralznga for development, and for deplo)inient thal is exercised three times.

2. Rvere eninering soeties clle invrseengieerng, We theii see that there is a need for recovery, redocuinentation, and
i.Rees e t e process thoughwhich ale g i nvenrsstem orgpneductg, restructuring as a result of die reverse engineering product obtainedU
examined inrocers thoug wich~ or giveni *them diitor pofuc is at each of the fluee basis phases. This leads us to suggest Figure I11
pxainduc eitorer ato theeeiel of tpechf iedfnogicalncof die as an alternative way to represent Figure 4 and ani interpretation of

prodct ithr atthelevl oftecnolgica deign die representations used in 1361 and 1371. T1heir discussionsspecifications or system or user level requirements. . utilized a three phase generic lifecycte of requirements, design andI2.1 Redocunenitation is a subset of reverse engineering u'i imiplemientation. In this representation. imiplementation contains
which a representation of the sub~ject systemn or product is some of the detailed design and production efforts of our
rectreaed for the purpose of generating fiuictiorial developmrent phase and potentially less of the maintenance effortsI
expanaions of original system behavior and, perhaps dalflointlfedngftreste.Thrstuuigefo,
more importantly, to aid the reverse engineering team I in (flo rta iligo i ssen h etitrn fot

better understanding the systemn both at a fhnctionl and baeonrvyadrdctueaiokowdgobiedn
structural level. There are nuniber of retloctuneritation toos reverse engineering. is used to effect deployment resructuring,

de&velopment restructuring, and definition restructuring. To thces
fone softwr thalalemajor suome of hesouenamio cite pocing71 restruictured products, which might %vell be considered as reusble

Oneof iemajr urpsesofredctncnatin s podciiig products, wve augment the knowledge and results obtained by

newdocmenatin fr a exstig podut weredie detaiiled consideration of potentially augmented requiurements.

12

Thes augmnenled requirements are transLited, together \\idi~ the ent~it or, ui other \•ords. salient clh.racteristics of the entity.
results of the enstncuring efforts, into the outputs of the A non procedurd viewv is a purposeful view.
reenginecring effort at the various phases to ultiniately result in the 2. Procedhural vions contain dueit information about
reenginered product procedures or representationS, or information intimately

,ssociaLed %%ith this infonnaoitio Source code, and the objects
Smand entities of object oriented Languages am procedural

---."• •vie %s, A prooodx ml view is a functional view.
3. Puedoprocedural vci's, or azdiitwciually oriented vies,,

Reverse contain perspectives both of procedural and nonprocedual
, -,son %ieLvs Hierarchy charts, szucttwual models, data flow

diagrams. entily-relationship diagram. and Petri nets are
examiples of psudoprocedural views. A psuedoproculural
viewv could also be called a structural view.

We can also have viewvs that are derived from analysis of one, of in
some other way derived friom one, of the throe basic view
categories. Arnold denotes these as analysis views. For the most
part purposefid vievs or nonprocedural views are associated with
the definitional phases of the lifecycle for product acquisition. They

Deirion Dedopmrit DOPoys concern user requirements and technological specifications.

Fig. II Expanded Notion of Product Reengineering Ftuctional or procedural views tend to be associated with the very
end of the developnment plmse of the lifecycle and the deployment

For the most part this is also the perspective taken oil pluse when systems may be thought of in terms of their input

reenghine g in a recent definitive reprint book on sofl\\%tre output characteristics. Psucdoprocdtural, or architectural or

reengineering 1381. especially in the lead article by the editor of this structural. vies tend to be associated %ith the earlier phases of

work 1391 that takes an inherently transformational view of product system development. One of the major purposes of both fomard
en~gineing This reprint book is much cnoemen with h and reverse engineeuing, and tools that support these, is to enable

major ingredients needed for sohfivare pnxuct mengineerng as~ tnuisfonuation from one view to another such as to ultimately

summarized in Figure 12. obtain a fivctionally useful product
Arnold 1391 irnicates several potential uses and chaacteristics

of product reengineering These, %vhich are neither mutually
Reerxgi*neem Proms exclusive nor collectively exhaustive, include the following.

Reenginenerg Cost Effective I, Reengineering may help reduce an organizationt s risk of
product evolution through what effectively amounts to reuseeof proven subproducts.

Revegineg o Reuce Sottware Makiternce 2. Reengineering may help and organization recoup its product

Tedirnolgy and Tools fo Reerqneering development ex\penses through constructing new products
tiat are based on existing products.

Daia Fle'"e' 3. Reengincernig may make products easier to modify for

Source Code Mass f Reemni~n purposes of acconmnodatimg evolving customer needs.
ot4. Reenginoering nmay be a catalyst for automating productSSoftware Reshckifrng and Trarlation

Reverse Engheedng and Design Recovery 5. Reengincering may be a catalyst for application of new
Reenneeri fRue tocluiologics, such as CASE tools and artificial intelligence,

to system acquisition.
Reengmnei•g tb Otjec Orerted Archtectures 6. Reengineering is big business, especially considering the

Reeiineerig Irto KMtedge Based Program Alysis and Urerstncwidn major investment in legacy systems that need to be updated
and maintained.

Fig. 12 Major Product Reengineering Issues In short, roenginceming provides a mechanism that enables us to
uaderstand systems better, such that we are capable of extending

Arnold indicates tlht there are tiree basic classcs of this knowledge to new and better systenms. Thus, it enhances both
transformalional vies tuidcrsauding mad iniprovemeit abilities. Reengineering is

1. Nonprocedural vieWs are neta-level views, such as decision accompanied w~ith a variety of risks thiat are associated with
tables, event trees, attribute tU=es, data schemas, user processes, poople, tools. strategies, mad die application area for
requirements, and sysem specifications. There do 1ot reenginiering. These risks can be managed using the
represent view\s of the actual entity but a view of a view of the methodologies id the metrics discussed 121 and 1141.

13

I

A number of authors have suggested specific lifecycles that vill 2- There is a need to consider humaun leadersiup, and cultural U
lad to determination of a decision to. or nuo to. reengincer a issues, and ho%% these %%ill be unixpcted by' the development
product and, in support of a positive decision, enable a product and deployment of a roengtitecred product as a pait of the
reengineering lifecycle 1401 1411. There are a ntmber of needed defitition of die specifications for dhe reengineered product.
aompishments. These include tie followving. 3. It must be possible to demiojstrite that the reengineering

1. Initially, there exists a need for fonnulation, assessment, and process and product ain. or mill be. Qich cost e&ffctive and of
implementation of definitional issues associated %•itl tie lugh quality, atd that die\ support continued evolution of
technical and organizational environment These issues future capabilities.
include organizational needs relative to the area wider 4. Reengineered prodtuts must be considered vithin a larger
consideration, and the extent to which technology and dte frnie-vork that also considers dte potential need for
product or system under reengineering consideration reengineerig at die levels of systems m-anagemlent and I
supports these organizational needs. organizational processes as it \vill generally be a mistake to

2. Identification and evaluation of options for continued asswne that teclhologicd fixes only \il rsolve
development and maintenance of the product(s) wider organizational difficulties at these levels.
consideation is a need, including an option for outLsourcing 5. Product reengincering for improved post deployment
this activity. maiitainability must consider maintainability at the level of

3. Formulation and evaluation of options for composition of dte process rather dtan at dte level of product only, such as would
ieengtneenng team, including insourcing and outsotirng result in die case of sofl\\are through mvriting source code I
possbilities is a need. statements. Use of model based Inuiagenient s)stems or code

4. Identification and selection of a program of s)stematic generators should yield much greater productivity, in this
measurements that will enable demonstration of cost connection, than rewiting code at the level of source code. I
efficiency of the identified reengineeruig options and 6. Product recngincering mnust consider tie need for
selection of a chosen set of options is require& reintegration of tie reinigli•,erod product in with existing

5. The existing legacy systems in the organizations need to be legacy systerns that have not been rcengineered.
eamined in order to determine the extent to which these 7. Product reengineering should be such that imcreased
existing systems ame functionally useless at present and in confornance to standards is a result of die rcengineering
need of total replacement, functionally useful but with process.
functional and nonfunctional defects that could potentially be 8. Prodct reengineering must consider legal issues associated I
remedied using product reengineeting to create renovated V\ith reverse engineering.

sysems, or systems that are fully appropriate for dte cmuent The unportance of most of these issues is relatively self evident
and intended future uses. Issues surrounding legality are m a state of flux in much the same I

6. A suite of tools and methods to enable reengineering needs to %%-ay as for benchmarking.
be established. Method and tool analysis and integration is a It is clearly legal for an organization to reverse engineer a
need in order to provide for multiple perspective view across product that it ovns. Also. dtere exists little debate at this time on
the various abstraction levels (procedural, psuodoproceduraL whether inferring purpose from die anal3sis of existing I
and nonprocedural) that will be encountered hi reengineering functionhality of a product muid %%ithout any attempt to examine the
is needed. architectunid stnmcturJ or detailed components that cormprse the

7. A reengineering process for product reengineering needs to existing prodtuct, and then recapturing tie functionality in terms of I
be created on the basis of the results of these earlier steps that a new development effort (die so called black box approach), is
will provide for the reenigineering of complete products, or legal. Doubtlessly, it is legal. Major questions surround the legality
reengineering of systems, and for incremental reengincering of "white box" reverse engineering in which tie detailed
efforts that are phased in over tme. architectiual structure and comiponents of a s)yste, including code

8. There must be major provisions for education and training for sofl\-uire, are exainined in order to reverse engineer and
such that it becomes possible to implement ivhatever mengincer it. The miajor difictd(y appears to surround tie fair use
reengineering process eventuates through education mid pro~isions in copyright la%, aid die fact thia it is tie use of trade
training. secrets for illicit gain. Copyrighted umenial cinnot be trade secret

This is more of a checklist of needed accomplishments for a since die cop)right law rcqtdrcs disclosure of the material
meengineering process than it is a specification of a lifecycle for tie copyrighted. [i particular, solharv is copyright and not patented. I
process itself. Through pursual of this checklist, ,ve shotld be able So, trade-secret restrictions do not apply. There is a pragmatist
to establish an appropriate process for product reeigincering in die group tuht says even black box rocnghiiereng is legal and a
form of Figures4 or 11. constnrctionist grotup that sas it is illegal 1421 143). These issues

There are several needs that imst be considered if a product ill be die subject of nuch debate over the near tem.
reengineering process is to yield appropriate and usefid results. Aniold 1441 has identified nmuiy of these product roengineering

1. There is a need to consider organizational and teclhological ntois in die form of risks thdt must be managed during the
issues to develop useful product reenginecring stratepy. receigineering cffort. Tints. iic sce that dire ,are risks associated

14

with a variety of factors for product reeitgitieenng. as suggsesuxinII Cleauil the l(Se niSKS WC no itt1IttuLdix C\clUsI%'e. the risk attribuacs
Figure 12. are 1101 uidpendetiL wuid thte lislitg is incomtplete. For examnple, %%c

"* Integration risk is the risk associate xii tluwhaing a could surely include legal risks. We cut use "hs as the basis, fv a
menguieered product that canniot be satisactorily integrate inulu attribute type assessmenti or for a decision support s~steni
with, or interfaice to, existing legacy systems. 1451dthatsuipportsf tris xuangeincteit for product reusibith1%

"* Mainteaunce inrrowement risk- is tie risk that theG.OhrApoce nCmiraos
recngineered product will exxxewtte, rather thian amelionite. C te pr~ce idCnIc~ln
maintenance difficulties. Theire are a number of reLited approaches. Many, as noted, are

"* System P nagematet risk is the risk that the reenguicered discussed int 12 1. Two of these are vwry worthyV of further comment
product attempts to impose a technological fix on a situation here: sourcuig and integration-
where the major difficulties are not need for greater support. The principles supporting strategic sourcing decisions are
but for organizational reengiiieering at dhe level of S)'sten's concieptually simiple and nicely, stated by Venkatesan 1461.
managemena 1. The organization should focus ott those components and

"* Procm risk is that associated with having a reengineered subsystemis that are crucial to the product itself aid where the
product that might w~ell represent an improvement in a organization has critical core capabibLies 1471 1481 that
situafion where the specific organizational process in w~hich support the efforts requited and which the organization
the reengineeiul process is to be used is deflective and in need desires to sustain. Tlus enables an organization to exercise
of mengjineering. judgment concerning subsi)stems that are strategic and tOse

"* Cost risk is associated with having major cost ovcrmins in that are nonstrategic. It potentially elimninates difficulties tdo
order to obtain a deployed reengineetul product that inectst result from conflicting priorities and sourcing decisions.
specilications 2. Components and subsystems should be outsourced where

"* Schedule risk is associated with having schedule delays in there exist potential suppliers with a distinct competitiv
order to obtain a deployed reenigineered product thati amets advantage at producing these. These competitive adv-antages
specifications- could be either thos of lower cost producer or highier

"* Human acrq~ance- risk is the risk associated wvith obtaining subsystem differentiation.
a reenigineered product that is not suitable for ltiuu11at 3. Outsourcing should alwitys be used in such a manner that it
interaciort, or one that is unac.eptable to the user orgaiioatoi supports continuing emnpkoye commnitment and
for other reasons, eitpoaernient- It is necessary to outsource this in such a

"* Appilicatim supportability risk is that risk associated Nwith manner that there is mirnium opportunity for txploitation
hwavng a reenginecedu product that does not really support the and hollowing of the organization, including its people,. by
application or purpose it wvas intended to support. the external supplier.

"* Tool and method availability risk is associated \%ith These principles lead to a process for strategic sourcing Lacity and
proceeding with reengineecring a product based upon promises Hirschheini have publised tivo recent w~orks on information
for a method or tool, needed to complete the effort. whiich doe systemis outsourcing 149) 1501 in which they identify' three generic
not become available or which is faulty. t~pcs of outsourcing.

"* Leaderhip, s&Y&eV, and adtue r"s is that associated w\ith 0 Body shop outsourcing is a w~ay to tnect short term demands
imposing a technological fix in the form of a reenginecred that cannot be met by people internal to the organization even
product, in an organizational environment that cjulot adapt though the decision ~vould odlervise be favorable to
to the reengineered product- insourciuig.

0 Prjedec managamait oatsourcing binvoles the use of exierna]
Inteuration li-sk suppliers to futrnish a suibsystemn or service actvity. such as
Maintenance Imporovement Risk training, This %vuld sceem closely equivalent to product line

Sysems Manactement Pis or subsysemi outsourcing.
Procss Rsk Total outsourcing exists wvhenever an external supplier is
Procss ~responsible for nal, or a very major portion of a complete

iReengineerino Rlisks Cost Risk turn-kev like infonnation ssein hlinction.
Schiedule Risk The bottom ihne summany message of thes authors is that one

HumanAccetanceRsk dlN cannlot outso~uce the inanagemient of information systems.
HumanAccerance isk here semts to be much agreement w~ith this, especially as

Application Supportability Risk cioncerns informiation support for the highest level maonagerial
Tool, and Method Availability Risk decision's 1511 1521. Particularly whein thter. is considerable

Leadership, Strategy, and Culture Risk outsourcing to external suppliers, there %%ill be a ma'kjor mandate for
wery cttrefird integration of all aspects of the supply chain and an

Figure 12 Some Product Reengineering Risks tunderstunding of the relationships bertween the supply, chain and
thev~aluic chatin.

15

I

There ame also a nunber of utccresWig di•cussions dtat renLe to a\wrMIo1 \\lI pre-crwe the sums quo rnther tdmi encourage I
itregrafion at the level of mnethods and tools 1531 1541155 1. While Iup)leMcIit.Luou ofbeuelieial ;adivrt es in the forn or results.
of intert primarily for product reengoering, there is much 4 Fa.ling to ConImmiar Ltte wisel\ \ uid uiclely during
reIle'aiKe to process aid systenls; inuvuageicl reergincenrig as iplCluellLitaolll ll almost ahlw\s fnrsitate success.

IV. Summary 1
In this paper, we uive considered a number of issues relaue c to

sygerns rnginoering, We indicuted dtat icenginering C.u Like anagement
plac atcther, or All of the levels of

*proem or
systems maagement. Process

RWagineering at any of these levels is related to meengneering at
the other two levels. Reengineering can be ,Ae%,,ed fromll d.ie

teperspecthme of the customer, individual or organizawional
receiving the product. From the perspective of either of tihse, it Proauct
may weH trn out to be the case that reengineering at the level of
product only may rot be fully meaningful if this is not also
associated, and generally driven by, mengineering at dte levels of I
process and systems management. For an organization to
reengineer a product when it is in need of reengineering at tie
levels of systems management and/or proces is almost a I
guarantee of a reenginered product that will no be fidly Fig 13 Resorun .l)isihbutioti to Implement Systems
bustwulhy and ost efficient An organization thait contracts for Reigiineering
product reengineering when it is in need of enegirniering at dte
levels of systems management and/or process is asking for a To this list, we might add fCulure to obtain real commitment front
tMchnologicail fix and a symptomatic cure for difficulties tiat are the higlest levels of the org;uiTztion for the reengineering effort It
institutionally and value related- Such solutions are not really might be argues, of course. that this leads to such things as
sohluions at all. assigiunent of average wid imdiocre performers to the I

Figure 13 is a hyiodleical representation of potential need for recngiicenng effort. These authors also offer five factors said to
reengineering at the levels of product. process, and S"stcns enlunce successat reetgi[necring.
management. While it may \veU be the am as suggested in dte Set aggressive reengincrnug perfonnance targets in terms of
figure, that product reengineering may urll occupy much results.
resures, the combined total of resources needed for s3ste1ns 2, Commit a sigmficmt portion of die CEOs hine to the
management and process reengineering may be not insubstantial. recngiwcering effort especi.d'ly during dcplonernt

What the figure does not shiw is the fWet that resources e\xpended 3. Assign a very senior executive to head the mengineerintg
upon product reengineering onl', and widi no imnestigation of effort, especially during deploxment.
needs at the systems management and proces levels. may \well not 4. Pcrfoni a comprehensive review and analysis of customer

be wise expenditures - from either the perspective of the needs, orgiuuiatonal eatlities, stategic economic issms, and I
organization producing the product or the one consuming it aurckt trends as a prelude to reengineLfing.

In an insightful study 1561. it is indicated that organizations 5. Conduct a pilot study and proto thp e rtengineering effort
oflen sjuander resourmthat look very promising but which fail to in order to obtain results usefid both to refine the

produce long-lasting results of value for the organization. Four reegiimeering process and the enhlance communications and
major ways to fail are identified. build enth&iu n

1. Assigning aerage perfonners to the reengineering effort. while the study was bwsed primarily on organizational

often bemuse the mote valuable people are needed for othcr rcengiucnring efforts. dtere are clear implications in Ome
more inportant efforts. will guarantee mediocre perfonnimce suggestoos for all dtrce t'pcs of rtvngincering efforts
of the product of dte reengineering effort 0 S.SICeIlms Im•nagecImlet

2. Measuring the recriginoering plan and act6itcs oily,wd now a process, mnd
the results, will often product deceptive mleasuirleent results. 0 product.

3. Afloving new and innovative ideas for reengineering to be And, as we hiave dicatcd there is evn.r reason ,,by due
squelched thirough opportunistic politics and ex\reme risk consideration n•eds to be given to all three of these efforts in an

integrated Fiashion for the bttemennt of each effort.

16

V. REFERENCES

III Sage, A. P., "Systems Engineering and hifonnation 1211[Rai1a, If., The Art and SScience of Negotiation, Belknap,
Technology: Catalysts for Total Quality in Industry and Cambridge MA, 1982.
Education," IEEE Transactions on Systets. Man, and (221Neale, M. A., and hazennalm, M. H, Cognition and
Cybernetics, Vol. 22, No. 5, September 1992, pp. 833-864. Rationalitv in Negotiation, Free Press, New York, 1991.

121 Sage, A. P., Systems Matnagement for hifoirntaion 123[Strebel, P., Breakpoints: How Mlanagers Exploit Radical
Technology and Software Engineering, Joluh Wiley and Sons, Business Change, Harvard Business School Press, Boston
1994 (in press). MA, 1992.

[3) Sage, A. P., and Palmer, J. D., Software Systenms Engineering, [24[Camp, R. C., Benchniarking: The Search for Industry Best
John Wiley and Sons, New York, 1990. Practices That Lead to Superior Performance, Quality Press,

[4) Rekoff, Jr., M. G., "On Reverse Engineering," IEEE American Society for Quality Control, Milwaukee Wl, 1989.
Transactions on Systems. Man. and Cybernetics, Vol. SMC 125[Liebfried, K. H. J., and McNair, C. J., Benchmarking: A Tool
15, No. 2, March 1985, pp. 244-252. for Continuous Improvement, HarpeiCollins Publishers, New

151 *Software Engineering Glossary," IEEE Software Engineering York, 1992.
Standards, IEEE Press, New York, 1991. 1261Watson, G. H., The Benchmarking Workbook: Adapting Best

161 IEEE Standard for Software Maintenance, P1219/D134, IEEE Practices for Performance Improvement, Productivity Press,
Standards Department, New York, 1992. Cambridge MA, 1992.

[71 Davenport, T. H. and Short, J. E., "The New Industrial 127]Watson, G. H., Strategic Benchmarking: How to Rate Your
E~ngineering Information Technology and Business Process Company's Performance Against the World's Best, John
Redesign," Sloan Management Review, Vol. 31, No. 4, Wiley and Sons, New York, 1993.
Summer 1990, pp. 11-27. [28[Rockart, J. F., "Chief Executives Define Their Own Data

18] Davenport, T. H., Process Innovation: Reengineering Work Needs," Harvard Business Review, Vol. 57, No. 2, 1979, pp.
through Information Technology, Harvard Business School 81-93.
Press, Boston MA, 1993. 1291Rockart, J. F., and Bullen, C. V. (Eds.), The Rise of

[91 Hudak, G. J., "Reengineering the Systems Engineering A latagerial Computing, Dow Jones Irwin, Homewood U,
Process," Proceedings of the National Council oan Systems 1986.
Engineering Annual Meeting, Alexandria VA, August 1993, [30)Watson, G. H., Bookharl, S., et. al., "Applying Moral and
pp. 105- 112. Legal Considerations to Benclunarking Protocols," Appendix

[I0)Brackett, J. W., and Pyster, A. B., "High-Level Sojfware 2 in Planning. Organizing, and Managing Benchmarking: A
Synthesis," Proceedings of the National Council on Systems User's Guide, American Productivity and Quality Center,
Engineering Annual Meeting, Alexandria VA, August 1993. Houston TX, 1992.
pp. 207-214. 131 [Nevins, J. L., and Whitney, D. E. (Eds.), Concurrent Design

IllIHarnmer, M., Reengineering Work: Dont Automate, of Products and Processes: A Strategy for the Next
Obliterate," Harvard Business Review, Vol. 68, No. 4, July Generation in Afanufacturing, McGraw Hill Book Co., New

1990, pp. 104-112. York, 1989.
(12]r-amtmer, M., and Champy, J., Reengineering the [321Shina, S. G., Cotncurrent Engineering and Design for

Corporation: A Alanifiesto for Business Revolution, Haqrer Manufacture of Electronics Products, Van Nostrand
Business, New York, 1993. Reinhold, New York, 1991.

[13]Harrington, H. J., Business Process Improvement: The 133[Carter, D. E., and Baker, B. S., Concurrent Engineering: The
Breakthrough Strategy for Total Quality, Productivit~v, anl Product Development Emvironment for the 1990s, Addison
Competitiveness, McGraw Hill Cook Co., New York, 199 1. Wesley, Reading MA, 1992.

[14JSage, A. P., Systems Engineering, John Wiley and Sons, New [34[Hunt, V. D., Reengineering: Leveraging the Power of
York, 1992. Integrated Product Development, Oliver Wright Publications,I[15]Quinn, J. B., Paquette, P. C., and Doorley, T., "Technology in Essex Junction VT, 1993.
Services: Rethinking Strategic Focus," Sloan Management 135,-lir Force Afaterial Coninmand Guide on Integrated Product
Review, Winter 1990. Development. May 25, 1993.

(n16Quinn, J. B., Paquette, P. C., and Doorley, T., "Teclumology in [361Chikofsky, E., and Cross. J. H., "Reverse Engineering and
Services: Creating Organizational Revolutions," Sloan D)esigni Recovery," A Taxonomy, IEEE Software, Vol. 7, No.
Managernent Review, Winter 1990. I, January 1990, 99. pp. 13-17.

l17]Quinn, J. B., Paquette, P. C., and Doorley, T., "fieyond 1371Cross, J. It. II, Chikoltsky, E, J., and May, C. H Jr., "Reverse
Products: Service Based Strategies," Harvard Business Engineering," in Yovitz, M. C. (Ed.), .Advances in Computers,
Review, 68, No. 3, March 1990. Vol. 35, Academic Press, San Diego CA, 1992, pp. 199-254.

[11)Quinn, J. B., Intelligent Enterprise: A Knowledge and Service 138[Arnold, R. S. (Ed.), Software Reengineering, IEEE Computer
Based Paradigni for Industuy, Free Press, New York, 1992. Society Press, Los Altos CA, 1993.I19]Davenport, T. H., Eccles, R. G., and Prusak, L., "'lnfonnation [39[Aniold, R. S., "A Road Map Guide to Software
Politics," Sloan Afanagenient Review, Vol. 34, No. I, Fall Reengineering Tecluiology, in Arnold, R. S. (Ed.), Software
1992, pp. 53-65. Reengineering, IEEE Computer Society Press, Los Altos CA,

[20[Rockart, J. F., and DeLong, D. W., Executive Support 1993, pp. 3-2 2 .
Systems.: The Emergence of Top Maanagement Computer Use,
Dow Jones-Irwin, Homewood IL, 1988.

* 17

U

(40Ulrich, W. M., "Re-engineenng: Detining an Integrated 1491Lacity, M. C., and Ilirschheiin, R., "'lihe hiformation Systems I
Migration Framework," in Arnold, R. S. (Ed.), Software Outsourcing Bandwagon," Slmn Alanagenent Review, Vol.
Reengineering, IEEE Computer Society Press, Los Altos CA, 35, No. I, Fall 1993. pp. 73-8(
1993, pp. 108-118. 50(Lacity, M. C., and Hirschihcii, R., Information Systems

[41]Oisem, M. R., "Preparing to Reengineer," IEEE Computer Outsourcing: Aths, Afetaphors, and Realities. Johi Wiley
Society Reverse Engineering Newsletter, December 1993, pp. and Sons, Chichester UK, 1993.
1-3. 151 IBenjamin, R. J., and Blunt, J , "Critical IT Issues: The Next

[42]Samuelson, P., "Reverse Engineering Someone Else's Ten Years, Sloan Aianagement Review, Vol. 33, No. 4, I
Software: Is it Legal'?," IEEE Software, Vol. 7, No. 1, January Sutnner 1992, pp. 7-19.
1990, pp. 90-96. (521Boynton, A. C., Jacobs, G. C., and Zmud, R. W., Whose

[43]Sibor, V., "Interpreting Reverse Engineering Law," IEEE Responsibility is IT Management," Sloan Management
Software, Vol. 7, No. 4, July 1990, pp. 4-10. Review, Vol. 33, No. 4, Sununer 1992, pp. 32-38. I

144]Arnold, R. S., "Common Risks of Reengineering," IEEE 1531Kronlof, K (Ed.), Afethiod integration: Concepts and Case
Computer Society Reverse Engineering Newsletter, April Studies, Jolui Wiley and Sons, Chichester UK, 1993.
1992, pp. 1-2. Also in 1381, pp. 119-120. (541Scliefsttom, D., and van den Broek, G., Tool Integtration:

[451Sage, A. P., Decision Support Systems Engineering, Johi Environments and Frameworks, John Wiley and Sons,
Wiley and Sons, New York, 1991. Chichester UK, 1993.

1461Venkatesan, R., "Strategic Sourcing: To Make or Not to (55]Anidrews, D. C., and Leventhal, N. S., FUSION - hitegrating
Make," Harvard Business Review, Vol. 70, No. 6, November 1E, CASE, and JAD:. A Handbook for Reorganizing the I
1992, pp. 98-107. Sstewms Orgaitization, Prentice Hall, Englewood Cliffs NJ,

[47]Prahalad, C. K., and Hamel, G., "The Core Competence of 1993.
the Corporation," Harvard Business Review, Vol. 68, No. 3, 15611lall, G., Rosenthal, J., and Wade, J., "flow to Make
May 1990, pp. 60-74. Reengineering Really Work," Harard Business Review, Vol.

[48]Stalk, G., Evans, P., aid Shulman, L. E., "Competing on 71, No. 6, November 1993, pp. 119-131.
Capabilities: The New Rules of Corporate Strategy," Har'ard
Business Review, Vol. 70, No. 2, March 1992, pp. 57- 63.

I
I
U
I
I
I
I
I
I

1..8 3II II II

U Design Capture and Optimization Issues for System-Level Reengineering

Steven Howell, NgocDung Hoang, Cuong Nguyen
Naval Surface Warfare Center, Dahigren Division

Nicholas Karangelen
Trident Systems Inc.

ABSTRACT engineering of large and distributed applications involves
identifying the proper definition and structure of the

Given the increasing maturity of computer-based system finctionality and allocating these functions to
systems, more and more systems are evolving from past proper resource architectures. Engineers must be able to
systems ratherthan being developed from scratch. However, effectively trade-off between different types of resources
large and complex systems have put dramatic burdens on (i.e., hardware, software, and humanware) as well as
the systems engineers in designing these applications. The alternative resource architectures, to meet requirements
situation has become even more complicated by the for real-time, cost, safety, etc.
increased introduction of commercial off the shef (COTS) A key issue in designing a real-time, large-sized,
products into these systems. Additionally, many complex system is to optimize and assess the design,
reengineering efforts have only focused on software based on multiple competing requirements, early and
reengineering,providing little insight into the other system throughout the design process. However, "optimal

functionality not embodied in the software. Today solutions cannot be generated by addressing various
reengineeringtechnology must be integrated into a system- aspects of the system singularly. Non-functional issues,I level forward engineeringframework to effectively meet the including financial costs (development, production,
challenges of the future systems. Four critical issues that maintenance, logistics), physical constraints, timing,
reengineeringtechnology must address in order to effectively security, dependability (reliability, safety), maintainability,

facilitate the system-level design of evolution systems etc., will drive the system design as much as functionality
include: (1) the ability to provide means to recapture not for most large, complex systems.
only functional and control (behavioral) descriptions of the Many times, effective trade-offs cannot be
system, but all necessary information at the system level; performed due to the lack of design descriptions.
(2) the ability to merge reengineered information with Complete information about an application cannot be

forward engineeringinformation at the system level; (3) the specified in a single design model even for moderately
ability to separate "required" functionality from legacy" sized systems. At different stages of the design process,

I functionality which was the result of design and architecture the designer must decide which information is important
decisions; (4) and the ability to maintain and reengineer to capture and at what level of detail. Existing
system level designs. Without these capabilities, future reengineering technologies only focusses on certain types

I systems engineer willface two critical shortcomings: (1) an of design information (i.e., the design of software
exceedingly restricted design space during system-level algorithms can be easily recapture). Reengineering at
optimization which will produce ineffective systems, and (2) other levels in the design process is usually a labor-
fragile implementations which are difficult to modify in intensive and manual process. Existing design reflects a
response to either requirements changes or technology specific implementation (i.e., a particular hardware
advancements. This paper describesaframework to support platform and/or a unique software language) that is
both reengineeringandforwardengineeringinformation and selected to performed the desired functions. In capturing
provides a means to manage the information. The an existing system design, system engineers do not have
framework provides for separation of concerns, systematic the capability to distinguish which part of the design is
capture of non-functional attributes, and integration of driven by the original requirements and which part is
system information. This framework can also be used to dependent on a particular design decision. Also, reverse-
assess the ability of current reengineeringtechnology to meet engineering from code tends to lack non-functional
the needs of system level design. information.

For most computer-based evolutionary systems the
I IETRODUCTION amount of the former system reengineered or reused may

vary tremendously. For instance, the reengineering may
For computer-based systems, optimizing a facilitate a system upgrade where only a small percent (on

reengineered static or semi-static software architecture to the order of 5-30%) of the operational code is modified.
fit a static or semi-static distributed computer hardware In this case the system architecture and infrastructure is
implementation late in the application's implementation not likely to change significantly. Therefore, the
provides marginal performance enhancements. Vastly reengineering efforts must integrate into the existing
increased performance can be gained through proper system/software design.
system engineering. The computer-based system On the other hand, if the evolution involves the

I 19

next generation of a system, some of the original system Behavioral, and (5) Implementation. The capture I
level design might be reused; however, the system approach for each design domain or capture view share a
architecture and infrastructure would likely differ vastly common hierarchial structure which supports management
from the original system. This appears to be the case for of the magnitude and complexity associated with a large
the Next Attack Submarine (the follow-on to the system design. Flat representations of complex system
ANIBSY-2 Seawolf) and Combat System 2003 (the follow- designs rapidly become unwieldy as the design detail
on to Aegis). unfolds. A hierarchial structure allows the system capture

For the development of large and complex views to be represented at various levels of detail from a
systems, requirements derived from user needs are broad top level, which encompasses the breadth of the
defined. In turn, these requirements are captured and an system and its external interfaces, to very low levels, which
initial design is produced [Hoa9 1]. Analysis is executed to describe the details of a particular segment of the system I
assure that the initial design is complete and consistent design.
[BIF90]. This design is optimized iteratively until a The five system capture views partition the system
feasible or an optimal design is achieved [HNH91], design into logical segments which correspond to key
[HNH92]. Collected results are then passed through for perspectives of the system design. These five capture
rapid prototyping, assessment, evaluation, test and views are distinct but related representations of key
refinement to yield the final design [BoB85], (CYH91], aspects of the system. They are summarized in Table 1-1.
[JeY91], IKam91], [SvL76]. The design components are The design element portion of the table describes current
then implemented, integrated and tested. This description generalized methods or techniques used to specify the
follows a waterfall approach. Other models used, such as information. Specific methods exist for capturing the
modified waterfall, rapid prototyping or spiral model, Informational, Functional and Behavioral capture views I
follow the same steps in at different levels of details and (DeM79], [HaP87], [WaM85], (ShMg8] (Har86].
different orders. In actual system developments, a hybrid Implementation and Environmental capture views lack
of these approaches is typically used. mature methods for computer intensive real-time systems.

This paper describes a framework to support both The following paragraphs describe each capture view
reengineering and forward engineering information and objective in more detail.
provides a means to manage the information. The The Informational Capture View captures a
framework provides for separation of concerns, systematic conceptual representation of the system under design in
capture of non-functional attributes and integration of abstract terms. This view captures all components that
system information. This framework can also be used to make up the system and the interaction between these
assess the ability of current reengineering technology to components. This allows for a description of the intended I
meet the needs of system level design. First, a capture system concept of operations (use analysis) without
framework is described. Next, additional annotation implying or constraining the physical implementation of
capabilities are described which provide a basis for the system under design.
engineering decisions. Optimization of system designs The Functional Capture View establishes the
using the annotation and capture methods in an functional structure of the system. It specifies how the
evolutionary environment are also addressed, functions are decomposed and how the information is

transformed through these functions. This provides a I
SPECIFICATION AND INTEGRATIONISSUES better understanding of the system's functional

decomposition.
Regardless of the process used to develop the The Behavioral Capture View describes the I

system, a lack of a cohesive and coherent engineering system's attributes over time and describes the event or
discipline starts with a shortage of formal and cohesive time-driven aspects of the system. This view allows for
techniques for specifying the system under development, specification of the system's behavior at different times
This is especially true for system level design capture and and under various conditions and situations. This provides
design analysis. Most large systems are reactive systems a mechanism for specific real-time and time-critical
that must respond to external stimuli; therefore, the aspects of the system. This also may include behavioral
systems engineering must be able to predict the system's descriptions of dependability, safety, and security. I
behavior in all scenarios and environments under which The Implementation Capture View defines the
the system will operate including planned mode of physical hardware, software and human resources which
operation and action, and reaction to failure to internal comprise the system and its connectivity to external
system failure (fault tolerance) or external inflicted systems [HoK92]. This is where alternative physical
damage (damage tolerance). In order to effectively design system architectures are defined.
these systems, definitions of the multiple design domains The Environmental Capture View captures the
or views which address the principal system design system under design from an external viewpoint [Kar92].
perspectives are needed. We propose five Design Capture This view describes the situation(s), environment(s),
Views (DCV) [Hoa91] which as follows: (1) expected events and other factors that make up the
Environmental, (2) Informational, (3) Functional, (4) conditions under which the system is operating. This I

20

U TABLE 1. SYSTEM CAPTURE VIEWS

I DESIGN CAPTURE VIEW VIEW OBJECTIVES DESIGN METHODS

Infrmatmoal Capture View * Characterize& system concept of operations a Eidity-relationship diagrams
* Representa system components in abstract terms a Attribute/method descriptions

Functiona Capture View * Defines system functions and decompositions a Function/data flow diagrams
* Specifies data flow requirements a Process specifications

8 Data dictionary

Behavieral Capture View 5 Defines system states and trigger events a Control flow diagrams
* Specifies system behavior characteristics v State transition diagrams

8 Control specifications

Impliimetalitm Capture View a Defines the physical hardware, software, and a Hardware, software, and human resource
human resources which make up the system descriptions

a Specifies system physical interconnectivity a performance parameters and resource
characteristics

a Function-resource mapping

EsAui eal Captmre View a Establishes conditions and events constraining a Environmental conditions and event
system operations descriptions

a Specifies performance Measure Of Effectiveness a External system descriptions
(MOEs) and conditions of measurement a System initial conditions

a MOFA

includes the following: initial state of the system under SYSTEM DESIGN ANNOTATION
I design; environmental conditions including acoustic,

electromagnetic, and meteorological conditions; threat One key to designing a real-time, large, complex
types and locations (in a military application); operational system is to optimize the design to meet the requirements
constraints; likely strategic and tactical considerations and and desired MOEs. In order to achieve this, the system
other pertinent items; and concept of operations. The engineer/analyst must have the capability to annotate the
MOEs which characterize system performance and system design with design goals/criteria that relate to the
establish the "%uccess criteria" for the system are also requirements and MOEs. Whether the system design

I specified together with the conditions under which the emphasizes real-time, reliability, safety, security, cost,
MOEs are measured. The Environmental Capture View physical constraints, or any specific criteria, a set of design
also specifies the guidance and constraint of the goals is required to describe the desired characteristics of

environment which the design itself must face. the system. This set of design goals provides a framework
An attempt to address all of the issues associated for the specification of critical information from which

with these capture views simultaneously or without a system's qualities and performances can be measured.
structured methodology is a multi-dimensional problem of The design goals also provide a basis for the trade-off

I a magnitude which exceeds the capacity of most, if not all, between design criteria and design alternatives. One
systems engineers. Each of these capture views provides mechanism that allows these design goals to be specified
key information concerning particular aspects of the is System Design Factor (SDF) [NHL93]. SDFs are

I system under design. Taken individually the capture views "attributes" associated with any design element in the
allow the systems engineer to partition the design of a design. A Design Element (DE) is a set of one or more
proposed or existing system into manageable parts. design components such as functions, dataflows, states,

As systems increase in complexity and size, the objects, or relationships. Regardless of the employment
capturing design methods have to scale so that they are of any system development process, the SDFs can have

able to capture different aspects of the system in a major influence in various design activities within the
complete and systematic manner. Deciding what aspect of process (i.e., design capture, design structure, design

I the system needs to be captured and to what level of detail allocation, and design trade-off). The SDFs not only
is a very difficult task. The group of descriptions used to provide a mechanism to capture the system attributes but
capture one type of system may be irrelevant or also allow them to be related.

incomplete for another system. Therefore, the ideal SDFs can also be viewed as a communication path
situation is to define the capturing method for all aspects between customers and systems engineers. In general,
of the system and, depending on the system requirements system engineers must be able to express and prioritize the

or on the design phases, emphasize or deemphasize certain customers 'criteria. These criteria are, in turn, annotated
system capture views, through the design factors and are used as a guideline for

the design team. By considering these factors early and

I 21

throughout the development process, the design team can describes value types of quantifications such as integer, I
avoid both bad designs and design that does not meet the float, double, short, or long. The Metrics field describes
requirement to reduce costs, and to optimize productivity how measures are determined. Once instantiated, the
[HHN90a], [HHN90b]. Metrics field also holds values measured. A description of

Each SDF has one or more metrics defined. In this aspect of the SDF is described in more detail in an
addition, when associated with a design element, an SDF earlier section. (9) Consistency Rules list rules to
may have more than one measurement. The metric determine consistency of the SDF in various design
describes manners in which the factor might be measured. specifications. Rule types include By-Aggregation, By-
Metrics can be derived from (1) past experience, (2) Type, By-Design Factors, By-View, and By-Component
results of simulation/analysis/prototyping, (3) actual rules. For example, the By-Aggregation field provides a
system measurements, (4) other SDF measurements, or slot that holds the rule for governing this factor
(5) other SDF metrics. By using other SDF metrics or consistency throughout the hierarchy (e.g., Use Rule X
measurements to define a SDF metric, SDFs are defined and Rule Y). (10) Reference is the source or reference of
in a hierarchical manner. For example, a higher level factor which may be a publication or simply the name of i
Real-Time Performance (RTP) SDF can be derived from the designer that formulated this SDF. (11) Definition
two other SDFs: Deadline Success Rate (DSR), and provides a text book style definition of the SDF. (12)
Deadline Criticality (DC). The metric for RTP might be Annotation provides areas for free form comments
a mathematical formula related DSR and DC; e.g., the relevant to the SDF. The Annotation may include further
product. Metrics may also be related to the hierarchical SDF background information or provide warnings related
specification. For example, in a functional decomposition, to the SDF.
the Total Real-Time Performance of some Design 1
Element, TRTP(de) may be the product of decomposition 1 ., . Ig .,t.l
components of de as shown in EQ 1. 2. Ty: W r1 ,ft. P,&,,,s y

3. B,.": /Ai W VW of ON . 1 .. 0.0 10 1-0

4. Wks: LAqs. of r,9 . Ad..g (AW. oI~f P66wy/
EQ 1: TRTP(de) = IIRTP(DDE) M ,'.dse. f&&. , f.. , • A,4 , ý h..
such that DDE is the set of Design Elements F4,d Fe.W

which are a decomposition of Design Element de. 7. ,,,.,.0: O .m. W .of T& .raeo,.
Am~bfr)

s. telada"Exm• • Oem w Mow - @f&dW Og.. P*W,

It has been previously shown that based on the Ou•,o• C. , %P., C&.b",

design goal and design parameter, the engineer can tailor a.
T

ype C..... 4"d)

bS Mae"o ACTUAL Aeer& pgf&WJ#.the single criteria or multi-criteria objective function for , -, Ff,.1

optimization [NaF911. 0",. o -6 Try..ow.
Vs - Amomn-d Vao of rypý

SYSTEM LEVELOPTIIMIZATIONISSUES ,OUM: iN.' ry,,.e. sp , /.g.

8.wv 0". af 8..o Ty"eS Vef.. B1ll Wefm

A template of SDF is presented in Figure 1. 1. 7w".

This is a super class definition of SDF. The purpose of -71W

this template is to provide a general format to guide the 1.01 -.,* IT*,Md vO" S
systems engineer or the customer in the application of the s .9W o S...'... ..

SDF. It assists the engineer/customer in specifying the v,.'.:k,.ftw,*OWW .. •
goals/criteria to be measured. As a system design 0... -It R aa. By egg, le• U"e ad Xm *' V

matures, SDF class types are defined, a class hierarchy of &x -. P.•.0.,0_1w .,_*W
SDF is generated and instantiated SDF "objects "are used o .W___ w.

to annotate particular design elements. . By TVyp-

Currently, there are twelve items in the template. c. by n g.-td. By Deig

(1) Name is an unambiguous name of the SDF. (2) • Bys4w-
.. By I'n~~

Type is a classification of the SDF. (3) Range is either 10: A.,..•W w 'we..f Typo@,JLm f.. C* tf
the minimum and maximum values or the cardinality of 12. poud Chwo. T•@. .o C~..,wr,

the SDF. (4) Units is the unit of measurement of the Figure I SYSTEM DESIGN FACTORS TEMPLATE

SDF. (5) Methods/Principle lists approaches or techniques
that the designer/customer considers to affect changes in I
the factor's value. (6) Rationale lists the reasons that this

factor applies to design elements and specifies which THE FRAMEWORKAND REENGINEERING
design element types are appropriate. (7) Relationship The framework proposed addresses many of the I
lists other SDFs that are closely associated. The ti e deworkbproposed abdract. It of the
Relational Expression field in this item lists types of crtical issues described in the abstract. It provides the
associations for each Relationship. (8) Quantification is ability to capture and maintain more complete system

divided into Type and Metrics fields. The Type field information. Since the key issue in reengineering is the I
22

I ability to understand the functionality, the behavior, and evaluation of current CASE tools (i.e., Teamwork,
the implementation of the existing system, the design Software Through Pictures, Statemate, RDD-100) and
capture views framework naturally supports this process. simulation tools (i.e., ADAS, SES Workbench, Bones)
Depending on the level of reengineering, information shows that they do not provide complete representation
about the existing system can be specified in the and evaluation capabilities. One immediate solution is the
appropriate capture views. Supporting various levels of integration of various tools. However, more research is
detailed descriptions as well as multi-levels of design needed to provide a seamless support environment for
abstraction, the capture views provide a framework for the system design.
whole spectrum of reengineering. For example, for the The relationship between SDFs is not well
reuse of existing software, the functionality of the existing understood at the present time, but there are attempts to
code can be captured in the software architecture of the correlate these factors as this effort progresses. SDFs for
implementation view. This software architecture provides security and dependability aspects of the system are beingE a better understanding for the software function of the developed by related efforts and the use of SDFs within a
existing code which can then be assessed for its use in new multi-view specification of the system is ongoing. These
required applications. For the reengineering at system or factors are intended to be used throughout and are critical
subsystem level, the functionality, the behavior, and the to the entire system engineering process. For instance,
implementation of the existing subsystem (or system) can they are used to specify in the requirements phase,
be captured by the functional, behavioral and encapsulate in the capturing phase, quantify and evaluate
implementation capture views, in the analysis phase, characterize in the optimization

With the support of the SDFs in describing phase and, justify in the design trade-off phase.
various DEs of the capture views, the design of an existing A software tool called DESTINATION (Design
systems can be evaluated for reuse and integrated into new Structuring and Allocation Optimization) has beenH and evolutionary designs. Existing designs can be developed to explore issues described in this paper.
evaluated independently or as part of a new design. The DESTINATION has been linked to commercial
capability to integrate old and new designs and analyze specification tools and is being linked to simulation and
them based on different criteria allows the employment of scheduleability assessment tools. In the future,
reengineering to be properly evaluated and justified. DESTINATION will be linked to reengineering tools.

With these framework advantages, the design DESTINATION provides SDF annotation and resource
space considered by system designers could be broadened. allocation optimization. Design guidance capabilities are
In addition, systems will be more easily evolve from the in development.

design, with modification alternatives quickly determined The future plans include refining, restructuring
and assessed. This should be true whether the changes and streamlining (if necessary) the optimization of designsI occur due to a top-level requirements change or an using Multi-View Capture and SDFs. A dedicated
implementation-level technology insertion. research effort is considering a small but widely used set

of design factors. Given formalisms are currently lacking
and single' point solutions are being used for the

SUMMARY OF CURRENT STATUS Environmental and Implementation Capture Views. In
addition, research into providing robust capture methods

Definitions and examples of usage of the multi- for these areas will be explored. The formulation will beI domain system design capture methodology have been incorporated into a sonar [Hoa9 11 and other applicable
documented in several reports [HKH91], [Hoa9l], examples.
[HoK92]. Much work still needs to be done in the Together, the multi-view capture and optimization
development of specific representations within each of the based on SDFs provide a framework for the results of
capture views especially within the Behavior, real-time system simulation/analysis to view and manage
Implementation and Environmental Capture Views. a total system engineering process.

Currently, the study of the relationship and transition
between these capture views is only focused on the link REFERENCES
between the Functional/Behavioral and Implementation
Views [Hoa9 1]. Near-term goals also include the study of [BIF9O] Blanchard and Fabrycky, Systems Engineering
the transition between design capture and design and Analysis. 1990.
evaluation. Transformation techniques must be able to
preserve all information from design capture such that [BoB85] Bowen, B.,and A. Brown, W. R.,System Design:
analysis results will reflect a correct system. Volume II of System Design for Digital Signal Processing

Automation support for the generation of the Prentice-Hall, Inc., 1985

capture views, transition between them, and transition [CYH91] Choi, D., Youngblood, J., and Hwang, P.,
from design capture to design evaluation is a critical issue ?Modeling Technology for Dynamic Systems", Proc. 1991
for the success of the employment of this method. The Systems Evaluation and Assessment Technology

I 23

Workshop Aug 1991. [Kar92I Karangelen, N., 'he Environmental Capture i
View: Addressing External Factors in Capture and

[DeM79] DeMarco, T., Structured Analysis and System Analysis of Large Scale Complex System Design," Proc.
SMjification. Prentice-Hall, Inc. Yourdon Press, Complex Systems Engineering Synthesis and Assessment
Englewood Cliffs, NJ, 1979. Technology Workshop, Silver Spring, MD, July 1992, pp

235-247.
[HaP87] Hatley, D. and Pirbhai, I., Strategies for Real-
Time System Specification, Dorset Publishing, New York, [NaF91] Mansour, N. and Fox,G., 'Physical Optimization
NY, 1987. Methods for Allocating Data to Multicomputer Nodes,"

Proc. 1991 Systems Design Synthesis Technology
[Har86] Harel, D., Statecharts: A Visual Formalism for Workshop, Sep 1991.
Conmlex Systems The Weiznn Institute of Sci. Tech.
Report, Israel, Jul 1986,(also in Science of Programming [NHL93] Nguyen, C.,Howell, S.,Lock, E.,and Prasad B.,
8, 1987). 'Employing System Design Factors for Optimization and I

Trade-Off Analysis in Distributed Real-Time System
(HHN9Oa] Howell, S., Hwang, P., and Nguyen, C., Software Design Structuring," Proc. of the Workshop on
"Expert Design Advisor," Proc. 5th Jerusalem Conference Parallel and Distributed Real-Time Systems Apr. 1993.
on Information Technologv (JCI'T IEEE Computer
Society Press, Los Alamistos, CA, Oct 1990, pp 743-756. [ShM88] Shlaar, S. and Mellor, S., Obiect-Oriented

Systems Analysis: Modeling the World in Data, Prentice-
[HHN9Ob] Howell, S., Hwang, P., and Nguyen, C., Hall, Inc. Yourdon Press, Englewood Cliffs, NJ, 1988.
'Expert Design Advisor," Naval Surface Warfare Center
Technical Report, TR-90-46, Oct 1990. [SvL76] Svobodova and Liba, Computer Performance

Measurement and Evaluation Methods: Analysis and
[HKH91] Hoang, N., Karangelen, N., and Howell, S., Applications 1976
Mission Critical System Development: Design Views and
Their Integration Technical Report, NAVSWC TR 91-586 (WaM85] Ward, P. and Mellor, S., Structured

Development of Real-Time Systems, Prentice-Hall, Inc,
[HNH92] Howell, S.,Nguyen, C.,and Hwang, P., 'Design Yourdan Press, Englewood Cliffs, NJ, 1988.
Structuring and Allocation Optimization (DeStinAtiOn):
A Front-end Methodology for Prototyping Large,
Complex, Real-Time Systems," Proc. Hawaii International
Conference on System Sciences. IEEE Computer Society
Press, Los Alamistos, CA, Jan 1992, Vol. II, pp 517-528.

[HNH91I] Howell, S.,Nguyen, C.,and Hwang, P., 'System
Design Structuring and Allocation Optimization
(DeStinAtiOn)," Proc. 1991 Systems Design Synthesis
Technologv Workshop Sep 1991.

[Hoa91] Hoang, N., 'Essential Views of Systems
Development," Proc. 1991 Systems Design Synthesis
Technology Workshop Sep 1991.

[HoK92] Hoang, N. and Karangelen N., "A View to an I
Implementation, " Proc. Complex Systems Engineering
Synthesis and Assessment Technology Workshop Silver
Spring, MD, July 1992, pp 223-233.

[JeY91] Jenkins, M. and Yeh, C., "An Approach to
Design of Processor Networks Based On Massively
Interconnected Models," Proc. 1991 Systems Design
Synthesis Technology Workshop Sep 1991.

[Kam91] Kamat, V., 'Computer System Evaluation: Paths I
and Pitfalls," Proc. 1991 System s Evaluation and
Assessment Technologv Workshop, Aug 1991.

24

Information Architecture

An Architectural Basis for Evolution
of

Large Scale Software Systems

John R. Leary I
Software Engineering Institute

(SEI Washington Office)
801 N. Randolph St, Suite 405

Arlington VA, 22203

Tel: 703-908-8206; Email: jrl@sei.cmu.edu

introduce the notion of perspective as a means to mediate

Abstract this difficulty. In art, this allows appreciation of an artist's
The complexity and the volatility of requirements viewpoint. Perspective in engineering also helps create

for large scale software systems, and the vast in-place common viewpoints on which to optimize communication
investments, make evolution a necessity. With evolution among users, buyers, and builders.
there is risk that critical user objectives will not be met
within schedule and funds budgeted for new capabilities. Object-oriented views offer users of software
To assure that mission needs are satisfied, evolutionary systems a means to deal with complex software
process must be strongly influenced by users, but also abstractions in familiar terms. In addition, object-
must be carefully controlled by buyers and efficiently orientation provides builders a means to reuse artifacts
carried out by builders. This paper 2 discusses how efficiently. Realizing Cook's [161 first principle of object
architectural approaches add value by providing, from technology (i.e.: hiding the data behind the processing)
multiple perspectives, a vision of objectives that is also requires an information structure within which useful
understandable to users, buyers, and builders alike. It then and feasibly produced implementation objects are
describes how these same approaches also offer a means to identified and elaborated. These differing aspects of
organize the evolutionary engineering activity around object orientation suggest the levels of architectural
information needs for the target system. The paper information that are needed to successfully evolve
illustrates this and shows that use of an "information systems.
architecture" helps to assure that results meet ultimate
mission needs by focusing engineering activities on the Evolutionary reengineering is iterative and
needs of the end user. incremental. The continuing challenge is to determine

how to know, and when it is true, that the interim results
1 Introduction are proceding most rapidly toward the ultimate mission

needs of the user. Insight from consideration of the
Continuing evolution of large-scale software- object-oriented and architectural bases for software

intensive systems provides the context for this paper. evolution offers a model that provides the leverage needed
Even when precedents can be used to foster common to answer these questions.
understanding of objectives and methods, large-scale
systems pose exponentially greater difficulty in Software architectures are conceptual, intangible,
communication than is the case in smaller systems. We and abstract. Yet if they are to guide software engineers,

1 his work is spnsored in part by the U.S. D ment of Defe they must be concrete, visible, and as obvious as possible.
The views and condusions contained in this document are solely those of To achieve this goal, we apply the notion that one learns
the author and should not be interpreted as representing official policies, best while doing. From this comes the conclusion that
either expressed or implied, of the Software Engineering Institute,
Carnegie Mellon University, the U.S. r, e U.S. Depatment of architecture is most effective in communicating vision
Defense, or the US. Govenunent. when it is thoroughly integrated into the evolutionary

2 The concepts presented in this paper re based partly upon it
experience in maintaning large scale software systems Mr satellie process itself. Architectural insight clearly provides a
gound data processing, and based partly upon recent work at the SEI framework for that process. By inverting the tidtle of Best's
relad toa mission critical evolutionary development program. article ("If They Built Buildings the Way They Build

25

I'

Software") we suggest a way to define a practicable, and reasoning. Ideas presented are influenced heavily by I
pragmatic paradigm for applying architectural concepts tutorials and presentations from M. Shaw [53], and J.
toward reengineering large scale software systems [11]. Zachman 164,65] and by papers from D. Perry 1441 and B.

Gaines [211. Saunders [49, 50] and Horowitz 1281 offer I
Evolutionary reengineering process mediates views of the nature of software architecture for use in

problems in dealing with large-scale systems but fails (1) support of software acquisition. Anderson's ideas [5] that
without user-oriented direction and control, (2) without a architectural concepts are the structuring paradigms of
process framework that assures that mission needs are met, software systems, and that envisioning a product family
and (3) without consistent engineering methods and involves creating an appropriate architecture, are also
evaluation paradigms. Gelernter's insight that a different helpful in obtaining an operational understanding of what
way of viewing large scale systems (i.e.: that software the term architecture means to software engineering.
"shadow systems" are needed to track the evolution of Jones' [311 definition of architecture offers the following
actual systems) is the beacon followed in this paper for key points:
identifying technology needed to enable evolutionary I
reengineering [23]. • a structure of elements of known properties,

- which have rules of interaction and relations
An architectural framework for evolution should • and provide a basis for reasoning

offer (1) direction based on vision clearly understood by
both users and builders; (2) controls that reflect knowledge 2.2 Evolution
of both legacy systems and problem domain; and (3)
correlated process framework, engineering methods, and The notion of "evolution" is used in a literal I
evaluation paradigms. sense. As a "series of changes", evolution must have a

starting point (legacy). Having "a certain direction",
The thesis of this paper is that an information evolution differs from an unconstrained series of

architecture provides this framework. To develop this modifications that may have little direction over the long-
position, the use of architectural concepts is discussed, and term. It also differs from development, which has both
hypotheses are offered regards applying them for direction and precisely specified results. Webster defines
evolution. Architectural views, combined with object- evolution as
oriented concepts, prevent the failure modes identified for
evolutionary reengineering. * a series of related changes in a certain direction

Terms of reference are offered to frame the 2.3 Object
discussion. Architectural concepts that add value to the
evolutionary process are introduced in the context of In this paper, the literal definition of "object" is
object oriented techniques. A set of five architectural broadened by the notion of "cognitive apprehension",
propositions for evolving systems suggest how versus the more literal "visible", and extended by
architectural approaches contribute to software including software engineering notions re object
engineering activities, capabilities. This produces the definition that follows:

Discussion of engineering activities then • a tangible or cognitively apprehensible thing, having
illustrates how object-oriented considerations and levels of - discrete boundaries, and having I
architectural information help assure engineering results • intrinsic information and state, and

that meet long-term mission needs. The value of * capabilities including communications
information architecture in guiding this activity is
summarized in a five-point conclusion. 2.4 System

2 Concepts and Definitions The idea of "large scale software system" is
central to this paper. In the literal definition of "system", I

2.1 Architecture the key idea used is "aggregation of objects". An extract
from Webster brings this out.

The term "architecture" is used in this paper in I
the context of abstract systems. Architecture reflects * a complex unity of diverse parts
many kinds of structure and is a basis for several kinds of . serving a common purpose

26

I

• an aggregation of objects accessing and sharing data as the intransigent problems of
joined in regular interaction or interdependence classical computer systems development. The object-

oriented approach to systems development is neither
3 Leverage for Reengineering object-oriented programming, nor object-oriented design,

nor object-oriented analysis. This approach applies the
Using an object-oriented approach to identify, concepts underlying these object-oriented disciplines so as

elaborate, and incrementally realize a software architecture to realize systems that are designed for modification,
provides leverage for several aspects of rereengineering structured around real world objects, and composed of
large software systems. Both the object-oriented and the self-organizing components. The underlying principles of
software architectural approaches improve object-orientation, which are encapsulation, information
communications about the system by reducing technical hiding, classification, inheritance, and polymorphism are
and mission-oriented goals to familar aggregates of applied in this object-oriented systems approach to build
computer processing, user functionality, and mission data. readily evolvable parcels of software whose functions and
Both approaches support evolution of new capabilities data are localized; which intrinsically reflect real world
versus specialized development of integral functions. The objects; which avoid artificial division of enterprise

combination of the two approaches facilitates efficient activities into "automation functions"; which rely on
integration of the improved system capabilities which "intelligent data packages"; and which emphasize systems
satisfy ultimate user needs. development as a series of iteratively refined modeling

activities. This latter emphasis is inherently evolutionary
3.1 Objec-Orientation in that development of new applications is an implicit

result of continuing modeling of the attributes and
The Farringdon Group report on systems operations of new and refined objects of the mission or

productivity with an object-oriented paradigm cites enterprise. In the Farringdon Group's object-oriented
disintegration of manual user functions, inability to systems development paradigm, the associated
modify newly automated functions, and complications in development environments and applications architectures

............. i.....

Human Computer Interface G

I t/ d Mission Organization a r

a cI s

Sadapted from B. Gaines

Figure 1 -A Layered Architectural View of Generic System Capabilities

* 27

M 4.-. .. - i •. *.- -t- i I i

are themselves similarly integrated elements (e.g.: class Different approaches have been examined. One of these is I
browsers and debuggers, subsystem prototypes, and oriented toward exploiting domain expertise. This is
federated platforms and information infrastructures) of the represented in a domain model that is independent of any
large scale object oriented system [19]. implementation. Another approach is based upon I

representation of a particular architectural style associated

Capretz examined methodological aspects of the with a hierarchy of control devices. A third approach
object-oriented paradigm. He cites instances of relies upon formal engineering models of domain
jeopardized traceabilty of requirements when object- dependent computations. However, all of these
oriented and structured methods are combined, and approaches provide a basis for a software architecture that
strongly recommends use of object-oriented design and supports both focus on and resolution of design decisions,
analysis methods so as to assure realization of object- and which becomes a framework for development support
oriented systems. However, he found need for more tools. As a result of this research, common languages for
experimentation before a large scale software system can evolution of domain-specific applications, and frameworks
be developed without risk with use of an object-oriented for software reuse are becoming available (41].
approach, and he strongly advocates the pursuit of
improved object-oriented analysis and design Perry emphasizes that the three chief values
methodologies [121. added by the architectural approach are significantly

greater support for software reuse, increased support for
Shelton reports the criticality of using an iterative generational reuse, and insight into the nature of principles

development approach to guide implementation of an for composition of software systems [45]. Hayes-Roth et
object-oriented methodology. He cites distinct needs for al. report that their development of architectural I
enterprise (mission-oriented) models, for operational approaches for software systems development has
models that have application independent components, and enhanced their ability to provide knowledge-based,
for implementation models (blueprints for service layer artificially intelligent tool support for the process of I
classes of objects), as well as for integration models that developing controller applications [26]. Agrawala et al.
are class level physical designs for object implementation. report that their research relies extensively on formal
Where legacy systems are available for integration, these models with which an open toolset and an layered
latter integration models deviate from implementation architecture are used to increase applications' reliablity,
models and become the means for integrating legacy real-time performance, and fault-tolerance [3].
components and features [541.

In advancing the understandabilty of evolving U
Analysis techniques link the object-oriented systems, architectural representations are of particular

paradigm to architecture-based development approaches. value. Certain capabilities are common to nearly all
Coad details procedure for object-oriented analysis. It is systems. These can be viewed as generic attributes of
based upon recognition of three intuitive analytical typical system functions via a layered structure of related
approaches: differentiation of experience into objects and generic capabilities. Figure I presents a set of layered
attributes; distinguishing between whole objects and their slices of system capability as concentric rings of
component parts; and formation of and distinguishing increasing relevance to user operations from the outer to
among classes of objects [15]. the innermost. These layers themselves are arbitrary; the

aim of the diagramming technique is to facilitate
In the manufacturing domain, Coad's object- understanding of the system [21). The layering approach I

oriented modeling paradigms have been applied to modehing evolving systems is also applied to formal
successfully to develop process planning and assembly representations that are well suited for development of
control software applications. The generality of these tools which can automatically provide a capability for
object-oriented applications has led to practical definition program restructuring 125).
of subsystem software architectures [4].

3.3 Enabling Evolution
3.2 Architectural Leverage I

The layout of the concentric rings in Figure I also

The architectural approach for software suggests relationships within the system that will allow
engineering of large scale systems is being researched by isolation of locales in which technological upgrades can I
the Advanced Research Project Agency (ARPA) program proceed independently from changes in mission orin Domain Specific Software Architectures (DSSA). functionality. These locales are sites for technology

28

growth. Analyzing them identifies paths for technology factory. Another aspect of enabling evolution involves
transition that are essential for successful evolution, support for prototyping. Maxim et al. describe an object-

oriented design tool which permits non-programmers to
Evolution of system capabilities is further construct high performance configuration design systems

advanced by definition of intra-object schemas. graphically from a library of reusable mechanisms. His
Mittermeir proposes a semantic roadmap to an object's experimental system also includes tools to support analysis
subcomponents, and a service channel into an object. of the performance of the resulting code 140].
Through these paths, high level modification operations on
aspects of the structure of the object can be performed The utility of an architecture for enabling
[42]. Limited implementations of this kind of capability evolution of an acceptable systems design is greatly
currently exist in commercial software architectural enhanced if its perspectives completely span the range of
frameworks which enable development and operation of systems of interest to the user. The smallest set of such
object-oriented workstation applications f 18]. perspectives has members that are completely uncorrelated

with one another.
Using life cycle products of previous

developments is the essence of evolution. Basili and For software systems, basis architectural
others have defined a reference architecture for a software perspectives should address topology, behavior, function,
factory which enables the derivation of specific and information. In the list that follows, these
architectural instances [7]. The potential of this software perspectives are represented by models of varying
factory for supporting evolution of software system fineness. This fineness reflects composition relationships
artifacts is presented as a case study of a Toshiba among system elements, objects, data entities and
Corporation development organization which produces operations, and similar relations among system
application programs for manufacturing process control components, processes, tasks, messages and calls. Shaw
systems. A high degree of productivity is reported to have [52] addresses the composition of systems from
resulted from reuse of over 50% of code artifacts. The subsystems in which codification of architectural features
lack of models of experience functions, such as result from becomes a similar basis for developing formal system
the object-oriented modeling paradigms described above, specifications.
is seen as the limiting factor in the productivity of this

Display Network User
Shell C Transforms Managemen 03

0

m
p
U

Functions Element System Elementa Functions Functions Interfaces
t

0
n

Inrstutues Object oPlatfform Network
Methods Op systems Op System

Communications
Intra Inter Inter

Element Element System
adapted from Uenohari

Figure 2 -- A Sample Decomposition of System Components

29

3.4 Understanding System Properties I
Organizing, rationalizing, and rectifying systems

models from architectural perspectives helps assure The rules of interaction between elements of an
complete and consistent reflection of all key system architectural model, and the properties of those elements, I
properties for an evolutionary software engineering are themselves captured in the above models of static and
process. The following list of diagrams illustrates several dynamic aspects of a system. Software systems usually
different perspectives from which a software architecture have at least two kinds of properties: communications
can be modeled. properties and computational properties. In terms of these

two, a general decomposition of the component structure
"* Generic Framework Model of a system can be readily obtained with another layering

(topology of elements) approach. I
"• C"ntrol Flow Model

(operations or activities) Computational layers may include a shell that
"* Data Flow Model relates computations to the user, a functional layer, and a I

(data transformations) supporting or infrastructural layer through which theory,
" Dynamic Behavioral Model mechanisms, and operating environment are linked and

(state transitions) engaged. Communications layers may address
"* Object Model interchange within system element, among those

(element attributes; relations) elements and outside the system.
"* Object Interaction Model

(messages, calls, callbacks, flags) Figure 2 illustrates the decomposition of an
"• Functional Flow Model arbitrary system into categories of components that are

(tLomponents, processes, tasks) indicated by pairs of system properties from within the
above layers [60]. These categories of components are I

Example. Of Four
Object-Oriented Systems Objt Different kinds of
Architectural Integration objects In a system
Levels: have different scope.

Aystec This corresponds to
A the architectural layerat which they are

"•'• Nit Integrated.

Jo reted•0•i mleetto •

lementatObject Oriented Object Oriented Object Oriented
pmat lon Implementation Implementation Implementation

Code Level at Protocol at Interface at Domain

Software Inter-Application Portable Generic
Engineering Engineering Graphic User Applications

Interfaces Templates 3
- -Knowledge about

OSlILevels 1-6 I OSI Level6 OSI Level 7 Asystem applications,
Communication' Presentation I Application A , integrity constraints,
Layers Layer Layer operating modes, etc

Object Object Object ObjectI
Implementation Transport Access Behavior

adapted from B. Gaines

Figure 3 -- A View of Integration Levels of Object-Oriented Systems

30

I
U

inherently understandable to both builders and users. Lane standards may be reflected in objects that provide generic
[35] identifies three other categories of components processing interfaces for communications. Presentation of
(applications-specific, shared user-interface, and device- systems outputs requires different kinds of protocols for
dependent) which are useful in describing structural data bases and graphical user interfaces. Finally,
alternatives. In his work [34] with architectures for user functional applications can be composed of objects whose
interface software, he identifies a design space of 25 apprehensibility derives directly from the problem domain.
functional and 19 structural dimensions for which
alternative component designs can be selected to form a The Object Management Architecture [56]
user interface software architecture. represents one object-oriented means to facilitate efficient

integration of software objects. It defines means for inter
CIaracterization of systems components via this object communication and identifies operations that all

sort of layered decomposition can help users and builders classes must support, and common objects that are useful
uncover and prioritize required features and performance in wide ranges of applications.
factors in terms that are mutually intelligble.

Evolutionary integration of an object-oriented
An object-oriented system architecture uses system proceeds from the bottom up, providing an

several different kinds of objects to convey system integrated base of protocol and implementation objects
properties, to describe the fine and coarse structure of that can be used for testing higher level constructs. Lorin
design, and to enable reasoning about various system [39] notes the necessity of design method that supports
properties. instances of bottom up effort where super classes are

extruded from sets of smaller base objects. This is
3.5 Integration Layers effectively a way to discover the structure of a solution

from its basic components. At the same time a top down
Four kinds of objects are typically found in integration provides system level capabilities for

software systems. Gaines [21] identifies these objects as prototyping and user evaluation.
belonging to the four levels of integration depicted in
Figure 3. The most elementary or fine-grained objects 3.6 Potential Value Added

deal with typical code-level implementations such as for
device drivers. At the next higher level, protocol From the foregoing discussion, several

l n .exposing

surfacing development . helping to
L design trade-off assumptions, hypothesize

alternatives, constraints usage paths P
E criteria, factors and activity RG • I threads •
G - stimulating t 0

requirements . supporting BSallocation, requirements

C 0 traceability 4 Sr validation L

B -suggesting Deployed * describing S
response & - external M N

J I process $f ,System V4 context: event S

E sufficiency & and usage

C redundancy s t W scenarios I

T - facilitating . • spotlighting G

i T implementation . helping to operational H
S o functional pose limits and T

prototypes prototype boundaries
evaluation of behaviorI factors

Figure 4 -- Challenges to Achieving Evolutionary Success

3

observations can be made about the potential value to be • Object-oriented architecture aids in prototyping n
added to reengineering of large scale systems by using an user capabilities from the top down, and aids in integrating
object-oriented and architecture-based approach. systems platforms from the bottom up. 3

Architectural views of generic system capabilities 4 Challenges to Successful Evolution
improve user understanding of systems, and help builders
plan better technology growth paths. Garlan's experience Evolutionary reengineering must satisfy user I
with a course in software architecture testifies that needs within limits that are posed by
architecture

(a) physical constraints
increases the shared understanding of high level (b) allowable budgets for time and money,

relathionships in systems, (c) unknown problem domains
* facilitates development of new variations of (d) volatile and poorly understood requirements

previous systems, and (e) current technology I
* allows the software engineer to make principled

choices among design alternatives. [22) Misjudgments of any of the above factors can
misdirect the course of evolutionary reengineering such

Zachman recognized the value of multiple views that resulting operational capabilities
for improving information system development [65]. His
model suggested a perspective-based architectural (a) perform outside required tolerances,
approach for re-engineering of information systems [36]. (b) consume more budget (of time or dollars) than

is available,
Generalization and specialization of systems are (c) provide insufficient flexibility for planned

easier when systems knowledge is categorized and future enhancements, I
organized in an architectural fashion. (d) fail to include all required features or mis-

estimate priorities or other parameters of operations,
Characterization of systems components via (e) constrain future adaptability or present

layered decomposition helps uncover and prioritize performance by adopting unswapable architectural
required features and performance factors. elements or underwhelming technologies.

Different kinds of objects in a system will have Evolutionary reengineering needs to provide for
different scope. This corresponds to the architectural layer integrating future technology, and to expedite resolution of
at which objects are integrated, physical and logical engineering decisions by building on Ia base of objects synthesized from legacy systems. It also

Organizing, rationalizing, and rectifying system needs to leverage a base of architectural and problem
models from architectural perspectives helps assure domain knowledge. This must yield sufficient insight to
complete and consistent reflection of key system enable efficient model-based interaction with users to
properties for an evolutionary software engineering validate operational requirements. It must also facilitate
process- evaluation of prototypes to derive system functions that

are acceptable to users.
The above observations regarding the value

added by architectural approaches for evolving systems In guiding the path of evolution, pre-resolution of
can be summarized in the following propositions: certain kinds of questions is essential. Especially in

Command, Control, and Communitations (C3) systems,

* Evolutionary direction is guided by architectural the chief need for evolutionary development is the fact that
vision and facilitated by robust legacy. not all requirements can be understood or known explicitly

0 Representations of structure promote at the outset of new development or reengineering effort
understanding of generic capabilities. [10]. Salasin and Waugh [471 observe that in order to

- Architectural views frame both system specific effectively reengineer systems, information is needed
and system generic characteristics. about alternative processes, decompositions and data

• Layering techniques help architectural models structures individually and in terms of their relationships. I
to surface properties of system components. Both decisions to use a particular process and dependence

I
• • . i i I 32

I
I

upon data and other processes must be explicitly visible if
they are to be used effectively in evolving systems. The consensus fostered by architectural

representations enables early identification of critical
These needs are the basis for the challenges that issues regarding the use of existing technology and of both

are illustrated in Figure 4. hardware and software mechanisms and artifacts. This
consensus similarly helps to surface details of the problem

5 A Model for Systems Evolution domain that require specialized analysis or that stress
system engineering or performance capacities.

Systems evolution differs from systems
development and from systems modification. Small Successful evolution results when concerns iur
modifications, over time, can create large system changes synthesis of mechanisms are separated from concerns for
that may not have had a single direction or unifying intent, analysis of problems, and when those concerns are
Systems development can start from scratch. However, handled in parallel activities. Legacy mechanisms are
systems evolution is directed towards long term user inherited from legacy systems and from general purpose
needs, and it operates on the legacy of existing systems. design activities that fill needs of multiple products.IThis legacy includes the target system itself, and an Problem knowledge acquired from domain analysis offers
existing depth of knowledge about the problem domain, specific insights that permit the tailoring of applications

solutions that uniquely meet user needs.
To satisfy users, a systems evolution process

must assure that changes create enhanced operational Figure 5 offers a model for evolving software
capabilities that meet long-term needs. Architecture systems. It shows the stages of the evolutionary process

provides guidelines for the direction of evolution, and from conceptualization of the system through evaluation
enables development of constraints that organize the of tentative implementations. It differentiates two distinct
evolutionary process. aspects of the evolutionary process and the artifacts that

Product - Line System: Specific
Synthesis of Mechanisms Analysis of Problems

.....................3 Element
RequirmentsI(alioafion) 1g

Soft~are

Software Subsystem Reqm .Evouion.f.sotw s.

Software Sub3ystem Specsi 1 (derivation)

......... terface Sp~ecifications

I C (synthtesis)E

N Evolution 0

(trmdet ---.... . U

Incremental400'o N
Deployment

I Figure 5 -- Evolution of software systems

comprise the evolving system. One aspect reflects reengineering of many existing systems in order to
artifacts that are derived from the legacy of prior systems integrate the overall BMC3 capability. Figure 6
so as to provide features of new or changed systems. The summarizies concepts for an Information Architecture as
other aspect reflects the sequence of analytical activity they are viewed by contractor and government engineers
through with fresh knowledge of a problem is iteratively involved in this activity. Urban and others have
Wtased out of increasingly detailed problem specifics. elaborated the underlying concepts for the BMC3

Information Architecture [61]. Their draft paper identifies I
Rules of component composition and ways to this information architecture as "an information model for

standardize component interfaces based upon common evolving the system."
units of avionics components were investigated by Batory
and others [8]. Properly staged composition and flexible Information architecture content provides terms
harnessing of artifacts from both legacy sources and of reference, guidance for defining and supporting
domain knowledge are the essence of this model for engineering process and organized abstractions in model
systems evolution, form that represent structural, process and behavioral I

aspects of the system.
6 Information Architecture Concepts

An essential starting point for developing an
System evolution using an information information architecture is a representation of system

architecture to preserve a focus on user needs is operating context in terms of user activities and the
"converging evolution". This use of an information external events that stimulate the system. Hufnagel and
architecture leads to a refinement of system functions that Harbison propose a methodology which emphasizes these i
satisfy user needs. It also facilitates the identification of user views of a system in their seamless, scenario-driven
generic interfaces between subsystems. These permit object-oriented approach (29,301. The key notion in their
reuse of software components and enable continuing work is that a meta-linguistic object-oriented approach can 1
refinement of software mechanisms via a process of be used efficiently to organize system objects. They
successive replacement. propose a domain independent and virtual specification of

systems based upon conceptual analysis of a systems'
The ongoing evolutionary development of requirements, specifications, and designs. Artifacts of

Command, Control and Communications capabilities for such scenario-based approaches are essential elements of
the Ballsistic Missile Defense Organization (BMDO) is an an information architecture.
evolutionary development that must consider the

Ue& Use

Lmgacy Features D
Relatis t Knowledge

Reusable D c i n ~ s
PartsS.ystem

Arch.ltectw!Rt GUI(Ie Functions

Softwa...........

............ Element 3
Interfaces

Figure 6 -- Information Architecture

I

34l nllimHml Ip i

I
I

Abstractions of attributes of system properties 7.2 Strategy
and component features are essential when allocations are
made and derivations are worked out at each level of Commercial tool vendors recommend technical
legacy synthesis and at each level of problem analysis. strategies for developing information architectures. Many
Abstractions of properties and features help surface the current commercial strategies address needs identified by
constraints, assumptions, factors, and alternatives needed the Air Force SAB. Three of these were advocated by
for thorough analysis, specification, implementation and Lock [371 at the 1993 CASE World Conference:
evaluation. They thereby facilitate evolution that satisfies
long-term user needs. (a) aim the architectural building code at mission

functions and not at implementation technology by7 Information Architecture Methods
-establishing internal /external exchange

Methods for applying information architectural protocols
concepts address management, strategy, evolutionary e connecting to existing applications and data
process and tools, modeling, representation and analysis, - migrating first data, then functions
and use of information architectures. * adopting broad based external standards

7.1 Management (b) allow the architecture to guide the building
environment with layered designs, and equivalent

The Air Force Science Advisory Board (SAB) treatment of hardware and software entities, by requiring
sponsored a 1993 summer study on Information
Architecture [17]. It recommended that the Air Force • generalized application tool kits,
develop of an enterprise wide information architecture. a widely usable application services,
This was characterized as an enterprise-wide building code • easily accessible production services, and
that is layered, open, and driven by commercial off-the- • pervasive infrastructure elements.
shelf (COTS) considerations. A focus on common data
element definitions and on applications interface standards (c) developing tools for design engineering and
and conventions was also recommended. A process for performance evaluation which support reverse
managing architecture development was advocated as a engineering, and integrated modeling of mission, network,
means to apply an information architecture to both and data functions.
administrative corporate information management (CIM)
applications and to tactical warfare (mission critical) 7.3 Evolutionary Process and Tools
applications. Four facets of this process are appropos for
implementation of any information architecture. These Lockman and Salasin describe an object-oriented
facets are approach to implementing a four phase evolutionary

reengineering process [38]. With these phases they
(a) establishing a continuous process for "appeal to intuition" in their advocacy for creating and

evolving the "building code" to meet changing needs operating upon an object-oriented depiction of the current
including compatibility with external organizations. system to realize new or extended features of a similarly

(b) involving users and developers in assessing depicted target system. Their work identifies specific
and evolving this building code. steps are for each of these phases, and examines the needs

(c) applying with accountability the concept of and opportunities for tool support. The intuition regards
"central direction and decentralized execution" to the both a transformation-oriented reengineering process and
'architecture development process. the use of an object-oriented representation for an

(d) placing a priority focus on developing information architecture, which they offer in their 1989
paper, is validated by three current architecture-based

" enterprise architecture and process, software engineering environments, all of which support
" interoperability, an evolutionary reengineering process. These are SNAP
"* use of COTS technology, [181, ANSA [11, and DISCUS [20].
"" continuing utility assessments of standards,I tools for defining / analyzing architectures, SNAP is targeted at rapid implementation of
"* tools for migrating legacy software client-server applications subsystems which operate upon

workstations and networks of distributed processors. It

35

relies upon a standard architectural template to organize (e) recollection of prior plans and strategies 1
and support the process of evolving new objects within (f) annotation of intermediate artifacts
generic class libraries. These class libraries address
graphic user interfaces, communications, data base access, 7.4 Modeling, Representation and Analysis
external applications, internal storage, and knowledge
based support functions. SNAP has been applied Computer Integrated Manufacturing (CIM) Open
successfully with high productivity to developments of Systems Architecture (OSA) documents [331 provide a I
decision, analysis support, and command and control succinct explanation of concepts for modeling software
systems in such diverse applications as anti-submarine architectures and applying specific architectural concepts.
warfare and air traffic control. The CIMOSA modeling concept shows how to develop

enterprise models in an evolutionary mode, and illustrates
ANSA is a programming support environment the impact of information architecture on the evolution of

based upon an architecture that has been represented with information intensive systems. Requirements for
enterprise, information, computation, engineering, and modeling languages which support integration of layered I
technology models of generic distributed systems. This models have been identified by Gielingh [24], whose work
architecture makes the fact of distribution transparent to also addressed evolutionary reengineering for CIM
application builders and users, and produces distributed applications. He argues that to support layered modeling, I
applications subsystems which can be managed and information modeling languages must support definition
evolved as a coordinated whole, rather than as separate of modeling dimensions for specialization, discrimination,
black boxes with specialized, and potentially incompatible and orthogonalization. Specialization expresses a
development paths. hierarchy of concepts, discrimination separates concepts,

and orthogonalization identifies concepts which are
DISCUS is a generic reusable software independent of one another. Application of these

architecture which provides high levels of reusability definitions helps realize abstract and layered architectures I
between tools and data sources. Its aim is realization of which are truly evolvable.
seamless interoperability, particularly for the class of
workstation applications which involve significant image Representation of information architectures
manipulation. It represents one of several MITRE inherently involves both legacy and problem domain
Corporation sponsored efforts in the area of evolvable information. Models can provide top-down
systems development. Other similar systems / representations of architectural features. From a bottom-
architecture-based software engineering environments up perspective, component attributes also must be
include EXCITE (coordinated sharing of information for represented. Tracz reports on the structure of a design
intelligence analysis), DOMIS (distributed object record for Avionics Domain Application Generation
management system for integrating legacy data bases), and Environments (ADAGE) (59]. He details 18 distinct U
systems for support of collaborative computing and for elements of a design record for legacy avionics software.
support of distributed simulations [9]. These include the following dynamically changing aspects

of any potential software component: [

The evolutionary reengineering process has an
Io

intrinsic focus on design and on redesign. Few generic (a) name / type
tools have yet been developed to support generic design (b) description
activities. However, the nature of these activities is (c) requirement specification fragment U
becoming better understood to correlate well with the use (d) design structure
of architectural information. Studies of the design process (e) design rationale
also suggest several information attributes that are needed (f) interface specifications and dependencies
in architectural representations to support typical designer (g) program design language text
behavior. Adelson and Solloway report that, in general, (h) implementation
designers exhibit six characteristic behaviors [2). These (i) configuration and version data
behaviors are as follows (j) test cases

(k) metric data
(a) formulation of mental models (1) access rights
(b) simulation of mechanism behavior (m) search points I
(c) systematic expansion of level of detail (n) catalog information
(d) representation of constraints (o) library and architecture links

36

I
I

(p) hypertext paths features to solution mechanisms.
(q) models
(r) constraints The FODA method of domain analysis and the

Synthesis method follow a top down, problem oriented
Analysis of problem domain attributes is essential approach to analysis of a domain 143,14]. Both of these

for understanding and refining solutions which realize new domain analysis methods focus on invariable, unique, and

capacities, improve non-functional qualities, refine commonly used features of elements of the domain. The

existing functions, create interfaces to new or changed Synthesis technique is aimed at definition of a process

external contexts, etc. The nature of problem domains has model for application development, while the FODA
been investigated using several techniques, many of which method is focused on user decisions and views which can

are characterized as "domain analysis". Wartik and Prieto- become attributes of product architecture.
Diaz catalog and compare five differing approaches to
domain analysis [62]. Brief synopses and references are The KAPTUR method [6] for domain analysis

provided below. Each domain analysis method offers a and Lubars's method (62] both provide domain models

slightly different perspective on uncovering user needs and which can be more readily transformed by domain

understanding the legacy upon which evolutionary engineers into implementations. Both of these methods

reengineering must be based. apply to the stepwise process of assessing legacy as well
as to the analysis of problem domain attributes.

Prieto-Diaz' own analysis method is a hybrid of
problem and solution oriented approaches. He supports Another domain analysis approach was

bottom-up analysis with a classification approach and top- developed for the Joint Integrated Avionics Working

down activities with systems analysis, and aims to provide Group, and applies an analysis technique which is based3 artifacts which can be reused. These range from problem upon Coad and Yourdon techniques [27,15). This

Praa- 1 Information Architecture System - specg-c

Sythesk of Mechisms A =naysis o Pobies

e System

Eie tent

........ Requirements

e ..-. In o Aaclhecture G e Diion

. .. Soft 7 ubsyste.IReqmts........

Software Subisystem Spec

(deri ation)

vpq ~~~~Interface Specifications

c Osy IS E
NV Evolution 0,,_0 [0 L

n (tr w~wntsdo-ns) T.

...... . xx 0

I Figure 7 -- Information Architecture Guides Domain and Applications Engineering

I

technique is also implementation oriented, and produces increments of the process for evolving new capabilities, I
detail which facilitates generation of reusable artifacts. allocations of requirements and derivations of

specifications are revisited after evaluation of trial
7.5 Use of Information Architectures implementations that prototype significant new parts. i

Gelernter's vision ("shadow programs" which When tradeoff analyses are posed for design
mirror the operation of existing systems so as to facilitate alternatives, independent technical factors must be scored
their evolution [231) points to the goals of recent research to make balanced decisions. On the other hand, when
reported by Shaw [51] in which he investigates formal quality is assessed, correlated assessment perspectives lead
methods and mechanisms for executable, universal, to quality generalizations. The domain insight and legacy
formal, and scalable specifications. In specialized detail within an information architecture lead to this I
instances [55], some success has been reported with general balance.
formal software development tools for automated
transformational development. However, in the When boundary conditions and limits are known,
mainstream, information architectures must be developed evaluators can be assured of covering all cases of interest
by careful analysis of legacy systems and problem completely. Similarly the precedence of required features
features. A process ("Implementing Model Based and the priority for behavioral options are derived from
Software Engineering (MBSE)") is described by Withey system context detail. These in turn derive from user
which covers this more general range of applications [63]. consensus on domain features, which is facilitated by
MBSE consists of two parallel processes. One applies to elaboration of an information architecture.
domain engineering - the process for creating software I
models and other core assets; the other applies to In the object-oriented community, a kind of meta-
application engineering - the process for using models in information architecture exists in the Object Management
the construction of software systems. When software Architecture (OMA) [57]. The OMA Guide provides a
architectures are sufficiently mature in terms of their general and an abstract framework for object-oriented
formal representations and in terms of the generality of systems that outlines a single terminology, technical goals
their abstractions, then it will be possible to automatically (engineering process) and architectural goals (product
generate components of applications. Presently, the feature), and provides a reference model for integrating
MBSE process is largely manual. Its effectiveness is distributed applications using object-oriented techniques.
dependent upon careful use of modeling and
representational formalisms and upon an information 8 Impact of An Information Architecture I
architecture to guide its convergence on long term user
needs. Impact of an information architecture is seen in

the realization of systems performance and capability by
An information framework, within which design, means of an efficient and cost-effective engineering

behavioral, and engineering attributes of a system are process, which provides required levels of functional and
collected and stored, should be structured to facilitate each non-functional quality.
level of synthesis and analysis that is needed to meet I
reengineering objectives. It must preserve views of legacy An information architecture adds value to the
mechanisms and problem domain features which are evolutionary reengineering process by:
significant to successful reengineering. Provision for I
defining design objects is needed within each of these • Illuminating with abstraction, e.g.: functions,
views, entity relationships, objects, object classes, processing

states, data events, operational modes;
Figure 7 epicts an information architecture as • Decorrelating relationships to enable balanced

such a framework, and separates the related but distinctly tradeoffs, e.g.: operational flexibility versus efficiency, or
different concepts of systems and software architecture. modifiability versus seamless integration;

- Correlating perspectives to enable qualitative l
In an evolutionary reengineering process, assessment, e.g.: processing accessibility with

abstractions of system properties and component relations availability, or data persistence with redundancy;
provide a basis for reasoning about the system. From this • Framing boundaries to enable thorough
reasoning, both legacy details and domain knowledge can functional evaluation, e.g.: event scenarios, process
be used to create a system architecture. In the subsequent threads, file schema;

38

I
• Providing context for setting precedence and one hand and simplicity and ease of understanding on the

prioritization, e.g.: operator scenarios, metadata, other);
teretical models. identifications of opportunity for optimizing the

allocation of testing resources (e.g.: by identifying classes
Information architecture has a positive impact on of error-prone interfaces); and

acceptability, optimization, efficiency, and return on • assessments of the viability of the revised class
investment (ROI) of evolutionary reengineering efforts. It structure proposed for the system (e.g.: in terms of
adds value to several aspects of an evolutionary system: numbers of object classes at the root level, and
These are its: interconnections between various parts of an application).

"* capability To forecast the impact of an evolutionary
" performance reengineering effort, qualitative and quantitative metrics
" enginwring process are necessary. Kazman, Bass and others haveI overall quality experimentally applied methods for evaluation of

architectures [32]. Their approach applies a life cycle
The object-oriented aspects of an Information perspective (which considers engineering process aspects

Architecture offer the opportunity to assess the quality of a of an information architecture). It also relies upon a
proposed reengineering effort according to the techniques common representational form to surface a common
proposed by Chidamber and Kemerer (13]. While these understanding (which permits comparison of product
techniques are aimed at the evaluation of object-oriented attributes contained in an information architecture).
design, they clearly apply to the envelope of object Although present work has been limited to user interface
oriented design alternatives posed within an Information architectures, it permits comparison and ranking of
Architecture. Implications from the use of these metrics software architectures, and the approach promises to
can include extend to other software architectures.

0 indications of design tradeoff opportunities In their analysis of non-functional factors in the

(e.g.: between inheritance and related reusability on the quality of large systems, Salasin and Waugh construct a

* USEAB .. TY....

.A3 C M~IeI ~Completeness 0
CN
u 'Behavior Qualit I Currency TIT

I !:= ~~~......... . . .ADEQUAC.Y...:.:,. = ..-.

Figure 8 Facets of Quality of Information Architecture

I 39

U

chain of interlocking commitments and obligations to map User-functional capabilities that aptly typify an I
system level quality factors into indicators of non- evolving system are uncovered by comprehensive top-
functional quality [46,481. Their technique permits down analysis of its problem domain. This analysis also
assessment of information architectural attributes so as to helps decide which models are the best platforms for I
forecast such system qualities as testability and evaluating prototypes of these capabilities.
survivability. It enables an information architecture to
become a source of primary evidence for on-going Robust objects whose value has been proven in
examination of non-functional quality characteristics of an legacy systems are the result of continuing, bottom-up
evolving system. The approach uses several categories of synthesis of previously successful products and systems.
reengineering scenario to stimulate analysis. The Layered organizations of proven objects enables rapid
categories are platform changes (e.g.: processors, displays, realization of platforms for evolving and evaluating
software subsystems); performance improvements (e.g.: prototypes of subsystems elements that have potential
response, latency, speed, capacity, throughput, accuracy, operational value.
precision); extensions of functionality (e.g.: updated I
constraints and operating parameters); changes to Several conclusions about evolutionary
capabilities (e.g.: new missions); quality improvements reengineering of large scale software systems follow:
(e.g.: modifiability); and new external interfaces (e.g.:
swapped out functionality). * Converging evolution assures operational

success by realizing user goals incrementally and reducing
In general two kinds of factors indicate the risk of cost or schedule overruns and technical shortfalls.

quality of an information architecture: its intrinsic * Layered object organization facilitates evolution
leverage is a function of content and context factors; its by enabling efficient problem-oriented exploration and
extrinsic leverage flows from its adequacy, usefulness and product-domain tailoring.
usability. Figure 8 relates several facets of an information • Information architecture leads to converging I
architecture to four aspects of its quality, evolution. Systems and software architectures frame the

target for evolution, and information architecture frames
Information architecture qualifies both behavior the engineering activity.

and design characteristics, and identifies necessary • Analysis of problem domains is essential to
characteristics of the engineering process environment, uncover typical functions for evolutionary prototypes, and
As a framework for evolutionary reengineering, the value best models for evolving and evaluating prototype
of an information architecture is indicated in its capabilities.

• Synthesis from legacy systems speeds definition
(a) high-level, abstract models of the target of robust implementation objects from products that have

system from all perspectives that add to developer and had proven success, and realistic platforms for evaluating
user insight (at least dynamic, functional, and structural). prototypes / initial operations.

(b) boundaries and definitions for both operating
and engineering environments. 10 Summary Observation

9 Conclusion An analogy highlights the above conclusions.
Evolutionary reengineering using an information

Likelihood of satisfactory operations of large architecture can be viewed as a problem of stabilizing the U
scale systems increases with evolution by virtue of dynamic behavior of a software system. Linear systems
increased iteration to refine implementation aspects that models are used to approximate control solutions for such
meet long-term user needs. problems. Solutions are obtained via an iterative process

of integration in which vector representations and matrix I
Objects whose scope ranges from infrastructural organization of the known information about the problems

mechanisms to problem domain artifacts guide builders enable generation of parameters of the new stabilized
and users toward efficient realization of systems system state. In evolutionary reengineering using an
components. Architectures provide structure and form for information architecture, the iterative process of
mediating this organization and understanding so as to integration can be viewed as a series of incremental
meet constraints of builders and needs of users. changes to functionality and infrastructure through which I

new states of behavior and capability are evolved for thesoftware system.

40

I

12] Adelson, B. and Solloway. E.. "The Role of Domain

In this analogy, the system behavior of a software Experience in Software Design". IEEE Transactions on Software

system and the nature of its evolution relate to the Engineering. 1985, Volume SE- 11. pages 1351-1360

behavior and nature of a dynamic system. Information [31 Agrawala, A.. Krause. J.. and Vestal , S.. "Domain-Specific
representing the resulting state of software capability is Software Architectures for Intelligent Guidance, Navigation, &
analogous to the state vector that represents the stabilized Control", in Special Report CMU/SEI-92-SR-9. pages 63-71.
system state in the dynamics model. The driving force of Software Engineering Institute (SEI), Carnegie Mellon

user needs is comparable to the random noise vector that University, Pittsburgh. Pennsylvania, June 1992

perturbs a dynamic system to cause a change in its state. [4] Alngren, R., and Hasson. A... "Classification and Object
Controls provided via an architecture-based evolutionary Modeling of Assembly System Architectures", Proceedings of

process derive from problem domain analysis and the International Conference on Object-Oriented Manufacturing

synthesis of artifacts from legacy systems. These are Systems, pages 320-325. University of Calgary, Calgary.

analogous to the control vector which constrains the Alberta, Canada, May 1992

stabilization of the linear dynamics system. [51 Anderson, B., 'Towards an Architecture Handbook" in
Proceedings of the ARPA Domain Specific Software

Stabilization of a dynamics model is dependent Architectures VII Workshop, Key West Florida, July 1993
upon integrating the information content of these "KAPTUR: Knowledge Acquisition for
fundamental vector representations with a matrix of Preservation of Tradeoffs and Underlying Rationales",
information that represents the changing system state. unpublished paper, CTA Incorporated, Rockville MD, May 1992
This matrix is analogous to an information architecture.
Just as determining the precise form and content of a [7] Basili, V. Caldiera. G, and Cantone, G., "A Referencesyst state matrix is essential for developing a solution to Architecture for the Software Factory", pages 53-80 ACMTransactions on Software Engineering and Methodology. Vol. 1,
stabilize a mechanical linear dynamic system, elaborating No. 1, January 1992
the content and understanding the necessary form of a
matrix of information architectural information are [8] Batory. D.. "A Process and Retrospection on Creating a
essential to transforming a large-scale software system via Domain Model for Avionics Software", ADAGE-UT-93-04, in
an evolutionary process into a system with significantly Proceedings of the ARPA Domain Specific Softwareenhanced, extended, or adapted capabilities. Controlling Architectures VII Workshop, Key West Florida. July 1993

the convergence (stabilizing stages) of evolutionary [9] Bayard, H, and Prelle, M .,,. "Evolvable Systems Initiatives"
reengineering requires that both the guiding architectural in Proceedings of AFCEA Symposium, on New Directions in
vision and the evolutionary process be represented in the Software Acquisition, MITRE Corporation, Bedford

same context and form. Massachusetts, November 1993

[10] Bersoff. E., et al., "A New Look at the C31 Software
An information architecture-based approach to Lifecycle", Signal Magazine, pages 85-93, AFCEA, Fairfax

reengineering provides a pattern for representing the Virginia, April 1987
evolutionary process itself, the control inputs provided bydomain analysis and synthesis of legacy, and the stimuli [1111 Best, L., "If They Built Buildin•, the Way They Build

Software", white paper, in AMS Special Topics, Americanprovided by new user requirements. Management Systems, Fairfax Virginia, January 1991

I In different terms, this analogy e"presses the [12] Capretz, L., and Lee, P.. "Classification of Object-Oriented

insight presented by Srinivas and Smith in their recent Development Methodologies", in Proceedings of the Sixth

short paper on property preserving transformation of Brazilian Symposium on Software, Engineering, Granado/RS,

programs (581. When combined with Gelernter's notion of Brazil November 1992
"."shadow programs", a path is clearly evident for realizing [13] Chidamber, S., and Kemerer, C., "A Metrics Suite for
system features which support self-sustained evolution. Object- Oriented Design", MIT Center for Information Systems

Research Working Paper #249,,MIT Sloan School, Cambridge

References Massachusetts, July 1993

(14] Cohen, S., et al., "Application of Feature Oriented Domain
(1] -, "Advanced Network Systems Architecture (ANSA) Analysis (FODA) to the Army Movement Control Domain",
Manual", Architecture Projects Management Ltd. Poseidon technical report, CMU/SEI TR-91-TR-28, Carnegie Mellon
House, Cambridge, United Kingdom, 1989 University, Software Engineering Institute, Pittsburgh

Pennsylvania, June 1992

I
* /41

I

[151 Coad, P.. "Analysis and Design: New Advances in Object- 3
Oriented Analysis", in The International OOP Directory. SIGS [281 Horowitz, B.. "The Importance of Architecture in DoD
Publications Inc. 1992 Software". Technical Paper, M91-35. The MITRE Corporation,

Bedford, Massachusetts. July 1991
[161 Cook, S. '"The Three Ages of Objects", in FIRST CLASS, I
Vol 3. No 3, Object Management Group, Boulder Colorado, (291 Hufnagel. S. Harbison. K. "Scenario -Based Engineering
September 1993 Process: Computer-Aided Software Engineering(CASE) Tool

Specification". draft paper in Proceedings of the ARPA Domain
[17] Druffel. L, et al.,, "Air Force 1993 Science Advisory Board Specific Software Architectures VII Workshop. Key West
Summer Study on Information Architecture" in Proceedings of Florida. July 1993

AFCEA Symposium, on New Directions in Software

Acquisition, MITRE Corporation, Bedford Massachusetts, [30] Hufnagel, S. Harbison, K, and Hammons, C, "Seamless
November 1993 Scenario Driven Object-Oriented Approach: Methodology I

Notation and CASE Tool Integration for OOPSLA-93" draft

(181 Fox, J, "System Management with SNAP - Architecture paper in Proceedings of the ARPA Domain Specific Software
Overview', in System Management Template internal technical Architectures VII Workshop, Key West Florida. July 1993
paper, TEMPLATE Software. Herndon. Virginia. January 1993 I

(311 Jones, A., "lT..e Maturing of Software Architecture",

[191 Feltham. P. and Dachuk. J., "Systems Productivity: The keynote presentation at 1993 Software Engineering Symposium,
Impact of Object Orienration". The Farringdon Forum Club, Software Engineering Institute. (SET) Carnegie Mellon
Lonidon, 1992 University. Pittsburgh Pennsylvania. August 1993 [
[20] Fleisher. J., Mowbray, T., "Integrating Tools and Data [321 Kazman, R., Bass. L., Abowd, G.. Webb, M.. "Analyzing
Sources with the DISCUS Framework", technical report for the Properties of User Interface Software Architetures", draft
DISCUS Working Group, Programmers Tutorial, MITRE paper, SEI. Carnegie Mellon University. Pittsburgh l
Corporation, McLean Virginia. August 1993 Pennsylvania. August 1993

(21] Gaines, B.R., "Manufacturing in the Knowledge Economy", [331 Kosanke, K., "Computer Integrated Manufacturing Open
Proceedings of the International Conference on Object-Oriented System Architecture (CIM-OSA)" in "Enterprise Integration I
Manufacturing Systems, pages 19-36. University of Calgary, Modeling", Proceedings of the First International Conference,
Calgary, Alberta, Canada. May 1993 pages 179-188, MIT Press Cambridge Massachusetts. 1992

"E22] Gwtlan D., Shaw, M.. Okasaki, C.. Scott C., Swonger, R., [341 Lane, T., "A Design Space and Design Rules for User I
"Experience with a Course on Architectures for Software Interface Software Architecture". Technical Report CMU/SEI-1

Systems", Technical Report CMU/SEI-92-TR-17. SET. Carnegie 90-TR-22, SEI, Carnegie Mellon University, Pittsburgh
Mellon University, Pittsburgh Pennsylvania. August 1992 Pennsylvania. November 1990

[23] Gelernter, D. "The Metamorphosis of Information 1351 Lane, T, "Studying Software Architecture Through Design
Management". pages 66-73, Scientific American. August 1989 Spaces and Rules", Technical Report CMU/SEI-90-TR-18, SEI.

Carnegie Mellon University. Pittsburgh Pennsylvania, Nov 1990
[24] Gielingh, W., "Requirements for the Development of I
Layered Information Models". Proceedings of the First (361 Leary, L., "Six Views of Any Information Architecture",
International Conference on Enterprise Intrgration Modeling, technical presentation. Martin Marietta Corporation. Information
pages 269-277, MIT Press Cambridge Massachusetts, 1992 Systems Group (ISG), Chantilly, Virginia, May 1990

(251 Griswold, W., "An Architecture and Models for a Meaning- [371 Lock, E., and Sherr. D., "Reengineering Principles for
Preserving Program Restructuring Tool ". in Proceedings of the Information System Evolution". presentation at CASE WORLD.
ARO/AFOSR/ONR Workshop on Increasing the Practical Boston Massachusetts, October 1993
Impact of Formal Methods for Computer-Aided Software I
Development, pages pages 25-27. US Naval Post Graduate (38] Lockman, A. and Salasin J., "A Procedure and Tools for
School. Monterey California. October 1993 Transition Engineering". ACM SIGSOFT 90. Fourth Annual

Symposium on Software Development Environments, Irvine
[26] Hayes-Roth, F, et al., "Domain Specific Software California, December 1990
Architectures for Distributed Intelligent Control and
Communications", in Special Report CMU/SEI-92-SR-9, pages (391 Lorin H., "Objects, I-CASE, and Architectures". in FIRST
27-62. Software Engineering Institute (SEI), Carnegie Mellon CLASS, Vol 3, No 3, Object Management Group(OMG),
University, Pittsburgh. Pennsylvania, June 1992 Framingham Massachusets. September 1993

[271 Holibaugh, R., "Joint Integrated Avionics Working Group [40) Maxim, B., et al., "Prototyping Knowledge-based Design
(JIAWG) Object-Oriented Domain Analysis Method (JODA). in Systems in an Object-Oriented Environment". Proceedings of
Special Report CMU/SEI-92-SR-3, Software Engineering International Conference on Object-Oriented Manufacturing
Institute (SET), Carnegie Mellon University, Pittsburgh, Systems, pages 55-59. University of Calgary, Calgary, Alberta,
Pennsylvania, June 1992 Canada. May 1993

I
42 I

on Software Specification and Design. ACM, New York, NY,
[41) Mettala,. E.. and Graham. M., "The Domain Specific May 1989
Software Architecture (DSSA) Program", in Special Report
CMU/SEI-92-SR-9, pages 1-7. Software Engineering Institute (531 Shaw. M.. "Software Architecture". tutorial notes at Sih
(SEI), Carnegie Mellon University (CMU). Pittsburgh. International Conference on Software Engineering (ICSE-15).
Pennsylvania, June 1992 IEEE. Baltimore, Maryland, May 1993

[421 Mittermeir, R.. and Kinzl, K., "Intra-Object Schemas to 1541 Shelton, R.. "Object-Oriented Business Engineering". in
Enhance the Evolution of Software Objects", in Proceedings of FIRST CLASS. Vol 3, No 3. Object Management Group.
the ARO/AFOSR/0NR Workshop on Increasing the Practical Boulder Colorado, September 1993
Impact of Formal Methods for Computer-Aided Software
Development". pages 12-14. US Naval Post Graduate School. [551 Smith. D.. "Toward Practical Applications of Software
Monterey California. October 1993 Synthesis", Proceedings of the ARO/AFOSRJONR Workshop on

Increasing the Practica! Impact of Formal Methods for
(43] O'Connor, J., "Introducing Systematic Reuse to the Computer-Aided Software Development". pages 67-69. US
Command and Control Systems Division of Rockwell Naval Post Graduate School, Monterey California. October 1993
International", technical report, SPC-92020. (DTIC: AD-A252-
271) Software Productivity Consortium (SPC), May 1992 156) Soley, R., (ed), "Object Management Architecture Guide".

Rev 2.0, Object Management Group(OMG). Framingham
[44) Perry. D., and Wolf, A.. "Software Architecture", technical Massachusets, September 1992
paper. ATT Bell Labs, Murray Hill New Jersey., January 1991

[57) Soley, R., "Using Object Technology to Integrate
[45) Perry, J., and Shaw, M, "The Role of Domain Independence Distributed Applications" in "Enterprise Integration Modeling".
in Promotisg Software Reuse: Architectural Analysis of Proceedings of the First International Conference. pages 445-
Systems", in Position Papers of the Reuse in Practice Workshop, 454, MIT Press Cambridge Massachusetts, 1992
SEM. Carnegie Mellon University, Pittsburgh PA. July 1989

[58) Srinivas, Y.. and Smith. D.R., "A Theoretical Basis for
[46] Salasin, J. and Waugh, D. . "An Approach to Analyzing Software Evolution", in Proceedings of the ARO/AFOSR/ONR
Non-Functional Aspects During System Definition". in Workshop on Increasing the Practical Impact of Formal Methods
Procee'I.ngs of the ARPA Domain Specific Software for Computer-Aided Software Development". pages 15-17. US
Architectures VII Workshop, Key West Florida, July 1993 Naval Post Graduate School, Monterey California, October 1993

(47] Salasin, J., and Waugh. D. "The Design Record: Keystone [59) Tracz, W., Shafer, S.. and Coglianese. L. "DSSAAvionics
of Software Engineering", annotated presentation in Proceedings Domain Generation Environment (ADAGE)", ADAGE-IBM-93-
of the 3rd Reverse Engineering Forum, section 14, Northeastern 05, in Proceedings of the ARPA Domain Specific Software
University, Burlington Massachussets. September 1992 Architectures VII Workshop, Key West Florida, July 1993

(481 Salasin, L. and Waugh. D., "Analysis of Critical Non- [601 Uenohara, M.. . "Flexible Automation in Japanese
Functional Factors of Systems", Proceedings of the Electronics Industry". Proceedings of Japan - USA Symposium
ARO/AFOSRWONR Workshop on Increasing the Practical on Flexible Automation. pages 5-12, Osaka. Japan, 1986
Impact of Formal Methods for Computer-Aided Software
Development", pages 64-66, US Naval Post Graduate School, (61] Urban, M.. et al., "Command and Control (C2) Information
Monterey California, October 1993 Architecture Concept Overview". draft paper, for ADPA

Symposium on Ballistic Missile Defense Command, Control, and
[49) Saunders, T, "Architectures and Standards" in Proceedings Communications, Colorado Springs. Colorado. March 1994
of AFCEA Symposium, on New Directions in Software
Acquisition. MITRE Corporation, Bedford Massachusetts, [621 Wartik, S., and Prieto-Diaz, R., "Criteria for Comparing
November 1993 Reuse-Oriented Domain Analysis Approaches", pages 403-431

in International Journal for Software Engineering and
[501 Saunders, T., Horowitz, B., and Mleziva, M., "A New Knowledge Engineering, Vol. 2, No. 3., 1992
Process for Acquiring Software Architecture". Technical Paper
M92B0000126, The MITRE Corporation, Bedford, (63] Withey, J., "Implementing Model Based Software
Massachusetts, November 1992 Engineering in your Organization: An Approach to Domain

Engineering", draft technical report, pages 23-29, Software
(511 Shaw, A., "State-Based Specifications In-the-Large", Engineering Institute, Carnegie Mellon University. Pittsburgh
Proceedings of the ARO/AFOSRJONR Workshop on Increasing Pennsylvania, November 1993
the Practical Impact of Formal Methods for Computer-Aided
Software Development", pages 47-50, US Naval Post Graduate (64] Zachman, J., and Pyryamybida. S.. "IDEF Framework",
School, Monterey California, October 1993 presentation, version 1.2. Zachman & Associates, May 1990

(52] Shaw, M., "Larger Scale Systems Require Higher Level [65] Zachman, J. "Information Architecture", pages 87-113, IBM
Abstractions", Proceedings of the Fifth International Workshop Systems Journal, Vol 26, No 1, IBM Corporation, Armonk New

York, 1987

43

A Framework for Automated Reengincering
of Complex Computer Systems

Lonnie R. Welch "*
Antonio L. Samuel
Michael W. Masters
Robert D. Harrison

Alexander D. Stoyenko
Joe Caruso

Abstract currency analysis at varying degrees of granularity,
ranging from the statement level, to the package in-

The financial pressure to meet the need for change stance level, to the level of federated systems. In con-
in complex systems through evolution rather than junction with concuerency enhancement for the ac-
through revolution has spawned the discipline of commodation of enhanced requirementb, our reengi-
reenfineering. One driving factor of reengineering neering approach also employs software component
is thA it is increasingly becoming the case that en- layering and reuse to reduce the costs of design, im-
hanced requirements placed on complex systems are plementation, testing, verification, and maintenance.

overstressing the processing resources of the systems.
Thus, the distribution of processing load over highly 1 Introduction
parallel and distributed hardware architectures is be-
ing explored as part of the reengineering process. A complex system has many characteristics, in-
Existing complex systems were developed originally cluding performance, timeliness, availability, de-
to exploit small scale concurrency in programming pendability, safety and security. Furthermore, such
paradigms that support little or no expression of con- a system typically performs many related functions I
current execution. Therefore, several difficult tasks concurrently, interacts with the environment and
must be accomplished to reverse engineer, transform many human operators and/or clients simultane-
and restructure systems so that they exploit signif- ously, consists of many interconnected processing el-
icantly increased amounts of concurrency. In this ements, contains many millions or tens of millions of I
paper we present metrics for capturing features of lines of code, takes years to develop from first con-

complex systems needed for a transformation ap- cept formulation to final deployment, and has devel-
proach for enhancing concurrency. The metrics not opment costs of many tens or hundreds of millions of
only capture systems' features necessary for concur- dollars. I
rency analysis, but also are independent of any pro- Complex systems generally address nontransient
gramming language, operating system or hardware requirements that simply cannot be addressed with
architecture. Using the metrics, we define an ap- simpler solutions. Thus they tend to be character-
proach for transforming complex systems that ex- ized by long life cycles, often spanning decades. Dur- I
ploit modest amounts of concurrency into systems ing such extended life cycles, change is inevitable
that utilize large scale concurrency. The approach in many dimensions: operational environment, sys-
includes the aggregation of concurrency information tem requirements, technology base, etc. Because of
across levels of abstraction hierarchies to enable con- the time and cost of development of complex sys-

tems, and because of the infrastructure needed for
"Welch and Stoyenko are with The Real-Time Comput- their development and continued support o- ýý de-

ing Laboratory, Department of Computer and Information ployed, infrastructure which includes highly rained
Science, Institute for Integrated Systems Research, New personnel, hardware and support tools, doc~aienta- I
Jersey Institute of Technology, Newark, NJ 07102, e-mail: tion, test procedures, and many other components,
welchOvienna.njit.edu, phone: 201-596-5683, fax: 201-596- there is enormous financial pressure to meet the need
5777. for change through evolution rather than revolution.

t This work is supported in part by The U.S. NSWC
(N60921-93-M-1912), by the U.S. ONR (N00014-92-J-1367), This need has spawned the discipline of reengi-
by AT&T (UEDP-91-134), and by the State of New Jersey neering, the systematic application of methodology
(SBR-421290). and tools to managing the evolutionary transforma-

t Samuel, Masters and Harrison are with The Naval Surface tion of existing complex systems to encompass new
Warfare Center, Dahlgren Division, Dahlgren, VA. or altered requirements and to transport such sys-

ICaruso is with Computer Sciences Corporation. Dahlgren, tems into new environments and onto new technol-
VA. ogy bases.

44 I

While reengineering holds the promise of in- can be used to implement abstract data type mod-
creased efficiency in dealing with, and managing ules which are parameterized by types and opera-
change in, large, complex systems, it is not, and tions. Similarly, C++ allows the definition of generic
probably can never be, a panacea. The act of chang- class templates, which can be instantiated with type
ing (rather than rebuilding) a complex system in- and operation parameters to obtain abstract data ob-
evitably introduces something akin to entropy into a jects. The effective use of such language constructs
well ordered system. The accumulation of disorder should be considered during reengineering.
can be minimized to some degree by careful choice of We have developed an automated reengineering
original design and by advancing and fully exploit- framework that considers concurrency as well as lay-
ing reengineering technology. In particular, the cur- ering and reuse of software (see Figure 1). To reengi-
rent trend toward so called open system designs is a neer a system so that the resulting system has en-de facto recognition of the inevitability and cost of hanced concurrency and is implemented using mod-change. ern software engineering principles, it is necessary

It should be added that because of the multicom- first to reverse engineer the existing system. That is,
ponent nature of complex systems, it is often the it is necessary to capture in an intermediate represen-
case that old components must coexist harmoniously tation (IR) the syntactic and semantic attributes and
with new components in a mature complex system. interrelationships of the current system's software,
Thus, forward engineering of complex system com- hardware, and humanware (e.g., radar operator or
ponents may occur simultaneously with reengineer- other tactical operators, manual entry of key to per-
ing of other components. Reengineering, along with form secure operations). Using the IR, concurrency
open system design, may properly be viewed as avail- metrics are extracted. After capturing the syntac-
able techniques for optimizing the resources required tic and semantic aspects, as well as the concurrency
to extend the life cycles of complex systems. metrics of the system to be reengineered, redesign

(transformation) and reimplementation (translation)
It is increasingly becoming the case that the in- of the system are performed. Redesign (or design

creased requirements placed on complex systems are transformation) performs a restructuring of the sys-
overstressing the processing resources of the systems. tem by formulating abstractions and exposing con-
Thus, implementations that exploit highly paral- currency, while considering serializability and dead-
lel and distributed hardware are being developed, lock. The new system design is translated into pro-
While complex systems of the previous generation grams in one or more target languages. The gen-
employed some parallel processing, they typically eration of code from a design involves the defini-
used on the order of twenty-five processors. Func- tion of packages/templates/classes to implement the
tionality enhancements in modern complex systems design abstractions (employing genericity, reuse, en-
may need more than one-thousand processors Since capsulation, and information hiding), the definition
complex systems were developed for small scale par- of data structures (using types exported by, and/or
allelism in programming paradigms that supported objects encapsulated within, package/template/class
little or no expression of parallelism, the exploita- instances), and the retrieval and reuse of previously
tion of the tremendously increased parallelism is a implemented components that are stored in a soft-
challenge that must be addressed. ware repository. Given the complete collection of

In conjunction with concurrency enhancement software components, they are clustered/partitioned
for the accommodation of enhanced requirements, and assigned to a parallel and/or distributed hard-
reengineering should also consider the use of modern ware platform in a manner that allows effective uti-
software engineering principles to reduce the costs lization of concurrency and that also allows compli-
of design, implementation, testing, verification, and ance with timing, dependability, security and other
maintenance. Layering of software components is constraints.
one technique that addresses these concerns. When The work described in this manuscript is inspired
a system is constructed by layering, the benefits by both the AEGIS and the HIPER-D projects,
include encapsulation and information hiding (i.e., which provided the impetus to consider the problems
lo--;e coupling of software components) [6], abstrac- addressed and which are among the potential recip-
Ltor (highly cohesive modules), ease of understand- ients of the research results. AEGIS [4, 5] is a com-
ability and simplification of analyses for concur- plex system engineered to protect a fleet of ships from
rency [12 14, 9], timing properties [12, 10], depend- subsonic and supersonic threats such as manned air-
ability [2 and security. The reuse of software com- craft, air-to-surface missiles, surface-to-surface mis-
ponents during system implementation and reimple- siles, and undersea missiles. The requirements of the
mentation is another technique that addresses the system include fast reaction (instant response to tar-
aforementioned concerns. When previously engi- gets in specific sectors that match particular patterns
neered and validated components are reused, the with respect to speed, course and altitude), accuracy,
elapsed time from the initial phases of reengineer- resilience to faults and to overloads, and security. For
ing until system deployment can be reduced signifi- example, AEGIS may detect a sea-skimming missile
cantly. Fortunately, modern programming languages at a distance of 15 miles and traveling at Mach 1. To
provide constructs which enable software to be im- avoid loss of lives and equipment due to impact of the
plemented by layering components and by reuse. For missile, the detection, classification, tracking, assign-
example, Ada provides the generic package, which ment of threat priority, and firing of a counter-missile

45

must occur within a very stringent deadline (3]. The
other motivator of this work, the HIPER-D project,
is an ARPA sponsored project that is exploring the
use of high-performance distributed (and parallel)
computer systems as platforms for complex systems.SEThe remainder of the paper is organized as fol-
lows. Section 2 illustrates typical software, hard-
ware and operating system characteristics of Navy
systems for which reengineering is being considered
presently. In Section 3, it is shown how contem-

o porary programming languages, operating systems
"and hardware platforms can be used as targets for

If ap a reengineering process that enhances concurrency,
MM" bproduces layered software components and applies

h M in" M ofsoftware reuse. In Section 4 we discuss an intermedi-
-f. ate representation and metrics that capture the rele-

mmiu~UUvant attributes of complex systems in a manner thatI
is independent of any programming language, hard-

o ware architecture, or operating system. An overview
of our methodology for using our IR and metrics to
transform complex systems that have minimal soft-
ware layering and small-scale parallelism into sys-

tems with extensive layering of software components
and large-scale parallelism is also presented in Sec-
of concurrent execution that we have defined called

asynchronous remote procedure call (ARPC) [15],
which allows concurrency in amounts proportional
to the amount of layering in application software.
Since parallelism is not the only concern in complex
systems, our r-ethodology also considers timeliness,
dependability and security.

2 Typical Characteristics of Systems
to be Reengineered

Complex Navy systems built more than one
decade ago exhibit certain trends, reflecting the pre-
vious state-of-the-art in the areas of software, hard-
ware, and operating system technology. In this Sec-
tion we examine the past trends in each of these ar- I
eas, with an emphasis on characterizing aspects of
such systems in paradigm-independent fashions.

A typical software paradigm observed during re-
verse engineering is one in which procedures are com-
bined to form a module (see Figure 2). A module
may contain exported operations (callable from with-
out the module) and internal operations (callable
only from within the module). In addition to con-
taining operations, each module may contain data
accessible only by its operations. Each exported op-

L•i eration of a module is termed a module entry, and
0. serves as a means of manipulating the module's in- I

ternal state. A module may contain at most one
of each of several kinds of module entries, of which

Figure 1: Reengineering framework for concur- the following are representative. An initialization
rency enhancement, software component layering entry is scheduled when the tactical system is be- I
and reuse. ing initialized or when a disabled module is enabled.

A message entry is scheduled to accept anO process
messages from other modules. An error entrance is
scheduled when an error condition is detected. A U
successor entrance is used for any general purpose,
nonperiodic task. Both a buffer complete entrance

46

I

and a channel complete entrance are scheduled in re-
sponse to user-controlled directions associated with a
completed I/0 process. A periodic entrance executes
functions that must be performed at regular iiter-
vals. An important consideration during reengineer-
ing is that assembly language appears frequently in
the code bodies of entries, since module development
languages (such as CMS-2) provide no easy way to
control hardware device accesses. In addition to the
user-defined modules, a system may contain global
data (tables) that are accessible by the operations
of any module. There is also a set of common ser-
vice routines (CSRs) and executive service requests
(ESRs), callable from any operation.

___In addition to functionality, modules exhibit other
characteristics. Concurrency and timing properties

mmdak 1 (mW tcvlalCoM.M)Gy) are stated by defining periodic module entries. Each
of these executes once per period and may have a
deadline by which any particular execution of the
entry must complete. At most one entry may be ac-
tive within a module at any time (i.e., modules are
monitors). A complex system is composed of many

catty aindependent activities (or threads of control), which
are implemented via calls to module entries, ESRs

data in~1 (p k) ('•) (s • and CSRs, and which may directly access global ta-
bles. Due to the lack of layering, all modules, tables,
CSRs and ESRs are visible to each activity. Complex
systems must adapt to times of overload by shed-
ding less critical tasks in favor of more critical ones.
This shedding is termed throttling, and is specified

w,2(w thlcw(uinturnmc) by associating a criticality with each module entry.
Throttling allows some degree of adaptability, but
the system must also be able to function correctly
in the presence of hardware faults. This is normally
stated implicitly by designing redundancy into theI hardware.

r........ In addition to concurrency, it is also necessary to
M I ()obey various security levels. A module entry or a

indmI (Pwic) (i) (M~OM) piece of data may have access restrictions, only per-
_ _ _ __ 2mitting users having the appropriate security level,

password, or key to use them. Security requirements
cannot be stated in the programming paradigm, but
are implicitly coded into systems.

Fault tolerance is provided in the previous genera-
Figure 2: A typical model of previous generation tion of complex systems by replicating CPUs, memo-
software. ries, and interprocessor communication links. A typ-

ical hardware system employs fewer than 10 nodes,
each consisting of a few CPUs with private memo-
ries, and a shared node memory (see Figure 3). The
execution paradigm is usually MIMD. An approach
frequently used to tolerate faults is to maintain dual
memories, one containing the current values of all
data and the other keeping current values of critical
data. In the event of a failure of the first memory, the
system automatically switches to the second mem-
ory. Both memories also contain complete copies of
the code assigned to the node. Normally, both CPUs
execute the instructions. Each instruction is stati-
cally tagged with the CPU which is to execute it,
and the instruction fetching mechanism insures that
each instruction is executed by the correct CPU. To
perform a "hot restart" when a node becomes over-

47

HARDWARE MODEL interrupts on a real-time basis, determines
the processing to be performed, and per-
forms the processing or passes control of a
CPU either to firmware module Fault Tol-
erant System Reconfiguration Module or a I
scheduled software module for processing.
ATES/43 supports user-controlled rapid re-
covery and online reconfiguration, and pro-

m M vides flexibility for the design of diverse
CPUj eC CJ computers programs.

The executive restricts the execution to one en-
no& 2 W& 5 trance per module at any instant. In other words,

only one entrance of a module may be either exe-

cuting or in the execution queue at any time. A
secondary queue is provided to handle this restric-
tion. The user can also specify the CPU on which a
module entrance is to execute.

There are several reasons for migrating from theNODE I aforementioned paradigm. As the functionality of
complex systems increases, it is desirable to increase
the concurrency in order to meet the timing require-
ments. Thus, systems should be portable to differ-
ent hardware platforms. The frequent use of assem-

aipimmls canjkatims bly language to implement entries significantly de-
creases portability. Furthermore, the lack of user-

defined concurrency in system designs makes it dif-
ficult to exploit a large parallel processor, and theFigure 3: A typical model of previous generation use of programming constructs like pointers makeshardware. the automatic analysis of parallelism troublesome.

Also, the flat module hierarchy structure permits
loaded, execution switches to the copy of code in the the access of global data structures by every pro- Ibackup memory.tIn switchasto way, cy nofncodtic datae cedure, leading to inefficiencies due to synchroniza-backup memory. In that way, all noncritical data are tion of accesses to such structures. Another defi-
reset to their initial values. Additionally, a backup ciency is the lack of usage of modern software en-
node is installed. If one node crashes, its software gineering concepts like abstract data types and ob-
processes are restarted on the backup node. For se- jects, and generics (as can be implemented by Ada
curity, there are hardware mechanisms (such as keys) psecure ackages and C++ classes). The use of such con-
that must be switched on in order to execute sstructs increases layering, improves reusability, and
functions. simplifies development, reengineering, timing analy-

The execution model used in the previous gen- sis, and parallelism extraction (6, 15, 8]. The hard-
eration of systems typically relies on an executive ware model makes it impossible to achieve the large
that provides features to handle such things as hard- scale parallelism necessitated by the massive capabil-
ware interrupts, memory management, application ities of modern software systems. Additionally, the
module scheduling, and fault tolerance. The applica- ATES-like executive systems are restrictive in terms
tion programs use services provided by the executive of portability and also in terms of services provided
for module (re)initialization, intermodule and inter- to the application program. Additionally, there is
computer communication, scheduling of other mod- no clear distinction between services available for in-
ules, error processing, input/output channel commu- terfacing with the hardware and those provided for
nications, and periodic scheduling. These systems the application program. In other words, one major
are almost always non-portable and in most cases portability issue is that the operating system func-
are coded in high-level languages and assembly Ian- tions are not disjoint from the application run-time
guages available only on a specific class of hardware, type functions. Another issue is the limitation of
The Aegis Tactical Executive System, ATES/43, is the memory management functions-the executives
such an executive, as described in the following quote often do not provide virtual memory. There is also
from [1]: room for improvement in real-time scheduling tech-

niques. Additionally, the degree of parallelism man-
The ATES/43 is an interrupt-driven and aged by the systems is very low, and modern paral-
table-directed executive system designed to lelism paradigms such as asynchronous remote pro-
meet a broad range of requirements speci- cedure call [15] are not supported. Another void in
fled for AEGIS DDG combat system com- the systems is in the run-time support for modern I
puter programs that run in AN/UYK-43 software engineering constructs such as abstract data
computers. It. responds to all AN/UYK-43 types and abstract data objects.

48 I

I
I

U I type
I

nameI type

Figure 4: An abstract data type (ADT) module.

3 Desired Characteristics of Reengi-
neered Systems

Many of the shortcomings of "yesterday's" system
developmePn paradigms have been overcome by mod-
ern paradigms. Layering, loose coupling, reuse [6, 7],
high cohesion, layering, encapsulation, and informa-
tion hiding are facilitated by the proper use of pro-
gramming constructs such as abstract data types and
abstract data objects. The ability to define generic
ADTs and ADOs enables the development of pa-
rameterized abstractions, resulting in increased reuse
and in a high payoff when such a component is pro- Fi
duced by reengineering (since the cost of reengineer- Figure 5: A facility-an abstract data type (ADT)
ing a component can be amortized over multiple uses module instance.
of the component). The specification of concurrency
can be performed in modern languages such as Ada
by defining tasks within ADT or ADO modules. The
ability to lexically nest modules reduces the visibil-
ity of data structures to only those needing to ac-
cess them, thus lowering module coupling, simplify-
ing analysis of parallelism, and leading to systems
with fewer bugs. The amount of direct (assembly)
code is minimized in modern systems, leading to in-
creased portability.

Many modern software engineering paradigms (as
supported in Ada, Clu, Modula-2 and RESOLVE)
provide techniques supporting implementation of
templates. Normally, each template encapsulates an
abstract data type (ADT). A typical ADT (as illus-

I49

I
I

name

type I

(:opl II I

tye type

Figure 6: Variables managed by a facility. 01o>

Figure 8: A generic abstract data type (ADT) mod-
ule.

I

I
Figure 7: A facility with state.

I

I50 II'

n
I

1 object

i
i opl

i i name

Figure 9: An abstract data object (ADO) module.

trated in Figure 4) exports (1) a type that can be
used to declare variables and (2) operations to ma-
nipulate variables of the provided type. To use an
ADT module, it is instantiated by giving it a name
(see Figure 5). In Ada, for example, instantiation is
performed with the use and with clauses. Instanti-
ation creates a module instance, or a facility. With
ADTs, instantiation does not create a data value.
Instead, a variable must be explicitly declared to be
of a type exported by a facility, and may be accessed
by calling operations exported by the module. A set
of variables managed by a module instance is shown
in Figure 6. ADT instances may encapsulate state Figure 10: A facility-an abstract data object
that is accessible only by the operations of the mod- (ADO) module instance.
ule, as shown in Figure 7. Tailorable templates can
be developed in languages permitting development
of generic modules (modules parameterized by types,
by operations, or by other modules). A generic mod-
ule is represented graphically in Figure 8 A generic
module is instantiated by fixing its parameters.

A template may also encapsulate an abstract data
object (ADO), the unit of reuse in languages such as
C++, DEAL, Eiffel, and Smalltalk. An ADO is a
special case of an ADT-one that exports no type
and that encapsulates state (the value of an object),
as illustrated in Figu-es 9 and 10. Thus, ADOs can
also be developed in ADT-based languages such as
Ada, Clu, Modula-2 and RESOLVE. An ADO is de-
fined using a template module (called a class in most

i object-oriented languages) which exports a set of op-

3in51

I

entry entry obj 1

name I

onep entry.... 0obj n

Figure 11: A task type. type

erations, and defines the structure of objects created1
from the class. taski0

In the Ada programming paradigm, a template 0
may encapsulate tasks, in addition to either ex-
porting a type or encapsulating state. (See Fig-
ures 11 and 12. Each task represents a unit of
parallelism. When encapsulated in a template, a
task becomes active upon the creation of an instance task2 0
of the template. Tasks proceed independently and
may execute concurrently, except when synchroniz- -$_

ing (rendezvousing) with other tasks at p.:-ts called
entries. Entries allow tasks to exchange data syn-
chronously, and to provide mutually exclusive ac-
cess to shared state information, allowing clients to I
cause synchronous execution of a specific poi'cion of
a task body. Exchanging and sharing of information op
between two tasks can either be done conditionally
or unconditionally. Only one client may be active l
within a task at any instant. Furthermore, a tem-
plate may export one or more task types, allowing
many copies of a task to be obtained from a single '___
task object. To obtain a task from such a template,
one declares a variable to be of the appropriate task Figure 12: An ADT that exports task types in addi-
type and then invokes a task initiation operation on Figr 12 a at thte x
the variable. When such an approach is used, mul- tion to a data type.
tiple tasks may be active concurrently within an in-
stance. Tasks templates can be used to create fami-
lies of tasks by specifying a discrete range to indicate
the indices of the tasks in the family.

In addition to the explicit parallelism available in I
a task-based system, an abundance of parallelism is
available when the asynchronous remote procedure
call model of parallel execution is applied to pro-
grams constructed from ADT and ADO modules.
Facilities (consisting of code and possibly state) are
statically assigned to PEs (multiple facilities may re-
side on the same PE). Facilities' operations are in-
voked by sending call messages between PEs. To hide
the latency of a remote call, an operation is permit-

ted to continue execution until it attempts to access

I
! ! S2

a "locked" variable (this model of parallel execution
is termed asynchronous remote procedure call, or G_ _ do__...__,_
ARPC [15I) A variable is automatically locked when
it is passed as a parameter to a call and is unlocked O•i .
upon return of the call. An operation attempting to
access a locked variable must wait for a remote call to
return before retrying the access. ARPC can achieve
parallel execution at multiple levels in the abstrac-
tion hierarchy. Thus, potential parallelism within a
program increases with the number of levels of ab-
straction, and the model encourages development of
highly cohesive, loosely coupled modules. ,

With the increase in potential concurrency comes

the added complexity of exploiting the concurrency.
Software components must be partitioned/clustered
accordins to some binding relationships (such as
communication, concurrency or shared data access),
and the clusters assigned to processors in a way that
causes efficient utilization of hardware resources and : _
simultaneously obeys system constraints [11, 12, 13,91

The explicit concurrency available in task-based
systems, and the implicit concurrency available via s
ARPC can be exploited on modern hardware plat-
forms, which are characterized by a large number of
interconnected processing elements (PEs). For ex-
ample, the Intel Paragon computer contains thou-
sands of computing nodes, running according to
the MIMD paradigm, and interconnected by a 2-
dimensional mesh network. Its computing nodes con- Figure 13: A transformed system.
tain multiple CPUs that share memory. Although
there is shared memory within a node, there is no
globally shared memory. Additionally, one CPU per In our approach to reengineering, we increase con-
node is dedicated to communication processing and currency while maintaining consistency and serializ-
the others are general-purpose processors. ability, and preventing deadlock. Figure 13 shows a

The modern execution model provides greater system following transformation.
flexibility than the older execution model. Addi- The software modules described in Section 2 and
tionally, it provides the same services that the old d te soFigure module described in S e ri c
model provided, such as features to handle hard- epicted in Figure 2 can be described using generic
ware interrupts, memory management, application packages encapsulating ADTs, ADOs and task types.
module scheduling, and fault tolerance. Addition- There at least two approachs which can be used to
ally, the system provides real-time capabilities, which model the module structures. In the first approach, aprvdih plcto rorm ihagaate module is represented by a single task whose task en-
ofpresourcthe availabilityi for criticalelements. eeFur tries correspond to the original module entries. Withthermore, the execution model is capable of support- this approach, obeisance is given to the semantic con-th er ore th e exe utio m o el s ca abl of upp rt - straint w hich dictates that a single entry m ay be ac-
ing a wide variety of computer architectures, includ- ithic adite at an inglant.ry mye ac
in uniprocessors, loosely and tightly coupled dis- tive within a module at any instant. However, due to
tributed architectures, and a heterogeneous mix of subtleties in the Ada task rendezvous construct, the
systems. Also, the model aids portability and scal- periodic module entry cannot be accurately modeled.
ability. Two execution models that partially satisfy Furthermore, this approach does not take advantage

arthis of the Mach Operating of intramodule concurrency. In the second approach,I this~~ group ofrequirements aOoulpseereeteaytiacngecntiingn
and the OSF/1 operating system. These operating a module is represented by a packaage containing one
systems provide the portability and scalability that is task for each module entry. Thus, the amount of
desired, as well as the capability to operate on many concurrency allowed is increased, but consistency of
different architectures. These systems emphasize a guaranteed.
layered approach of providing services to the operat- To maintain consistent values for module level
ing system. The operating systems are designed as state variables as well as global variables, semaphores
highly optimized microkernels in which functionality are used to insure single access to each of them.
can be added to create a complete operating system. With the addition of the semaphores into the sys-

tem, the potential for deadlock is introduced. To
prevent deadlock, module managers are used to con-

4 Transformation of Systems trol accesses to module entries. For example, if two

53

I
entries a and b of the same module could enter a 1. among statements within an operation; I
circular wait state, the module manager may not al-
low a and b to execute concurrently. It may not al- 2. among operations within an instance;
ways be necessary to be this strict with intramodule 3
concurrency, and the module manager could make among operations of different instances; I
optimizations where appropriate to increase concur- 4. within a task entry;
rency. For example, segments of entry a could per-
haps be executed concurrently with segments of en- 5. among entries within a task;
try b. To prevent deadlock when accessing global
variables, a system manager is used to control con- 6. among tasks and operations within a package
currency among modules, ESRs and CSRs to avoid instance;
circular waiting conditions. 7. among package instances;

It is the task of reengineering to: I8. among clusters of package instances; and
" insert calls to semaphore operations before and

after shared variable access; 9. among systems.
"partition global and module variables into seg- We have defined language-independent interme-
ments that can be accessed concurrently; diate forms (or metrics) for capturing the features

" generate module managers that maximize in- of complex systems that are essential for reasoning
tramodule concurrency, subject to constraints about parallelism, encapsulation, information hid-
such as liveness and serializability; ing, reuse, real-time, fault tolerance, and security.

The intermediate representations presented in this
" generate system managers that maximize inter- Section can be derived by a combination of compile-

module concurrency, subject to constraints such time analysis tools and run-time monitoring tools. I
as liveness and serializability; Dependence graphs represent program statement,

" partition module entries into segments that can as nodes and use directed edges to denote state-
execute concurrently; and ment ordering implied by the dependences in a source

program. Different kinds of ordering requirements"replicate modules and procedures to maximize are represented in different dependence graphs. The
concurrency. classical data dependence graph (DDG) and control

dependence graph (CDG) are used, in addition to the
Obviously, software reengineering of the nature facility dependence raph (FDG) which was invented

just described requires more than a translation of for the purpose of clone analysis [14].
source code written in one language into source code
written in another language. Instead, reengineer- A directed acyclic graph (a DAG) is used to showing is a transformation of a software and hardware the call relationships among the facilities of a pro-

system from one paradigm into another. To per- gram and to represent inter-module parallelism. A p
form such a transformation, it is not enough to have program is modeled by a DAG, G = (V, E), where:
a syntactic knowledge of the system being reengi-
neered; a semantic knowledge must also be obtained. 1. a vertex v in V denotes the operations of a fa- I
Transformation of a system implementation from one cility, f(v);
paradigm to another involves the initial task of re-
verse engineering, that is, capturing the intermedi- 2. an edge (x, y) in E indicates that the code of
ate representation, and collecting the metrics neces- facility f(y). o
sary for assessment and optimization. Our language-
independent representation allows the redesign of a
system with the goals of employing modern software When assessing the timing properties of dis-
engineering principles, exploitin parallelism safely, tributed/parallel, periodic, time-constrained pro-
and conforming to constraints related to timing, de- cesses, it is important to capture several metrics [9].
pendability and security. In this Section we discuss Obviously, absolute timing constraints such as pe-
the metrics that must be collected for concurrency riods and deadlines must be determined. Addition-
analysis and show how the metrics are used to ex- ally, relative timing constraints can be identified. For
ploit parallelism, scheduling and assignment/allocation optimization,it is useful to represent the system as a set of (au-
4.1 Characterizing Complex Systems tonomous) activities, -.,d their constituents, which

When reasoning about parallelism, it is necessary we call beads.
first to analyze parallelism at a low level of granular- The module call DAG is used to represent the
ity, i.e., at the statement or the instruction level. To fault tolerance and security properties of systems.
obtain parallelism information units of larger granu- The degree of redundancy is given for nodes and
larity, one successively synthesizes parallelism infor- edges of the graph, indicating the number of redun- I
mation from lower levels. Our representation allows dant software modules and intermodule access paths,
parallelism to be exploited at the following levels: respectively. Additionally, the reliability attributes

I
54 I

I

of modules and interconnections are specified as real- groups, the parallelism matrix is used to determine
numbers between zero and one. Security is repre- the maximumn number of clones that can be used si-
sented as classification levels, which may be associ- multaneously among all groups.
ated with DAG edges and nodes. When awsociated After the software components of a complex sys-
with a node, a security level indicates the classifica- tern have been reengineered. it is necessary to assign
tion level required to execute the code represented them to the nodes of parallel and/or distributed
by the node. Classification levels on edges indicate atem to the nara e nd/or d fstr
the minimum degree of security that must be asso- computer [11, 13, 9]. Due to the large number of soft-Ite win y tree of that m eters ware and hardware components in complex systems,
ciated with any transmission of the call parameters the cost of obtaining an optimal assignment of soft-ware components to processors is quite high. Thus,

4.2 Concurrency Analysis heuristics are used for assignment. Furthermore, it
is useful to cluster components before assignment in

Given the statement dependence graphs and the order to reduce the problem size.
module call DAG, concurrency information is ob-
tained first at the statement level. That information We have developed a technique to distribute the
is then aggregated to the procedure level, then to the facilities of a program over the processing elements
module level, and so on, until concurrency informa- (PEs) of distributed memory parallel computers.
tion is obtained for the desired level of granularity. The technique uses a random neural network (RNN)

to assign facilities to PEs with the objectives of en-
Extraction of ARPC parallelism is achieved by abling maximum parallelism among facilities, and

first augmenting the call DAG to indicate two kinds achieving this level of parallelism with the minimum
of parallelism. An edge drawn using parallel lines in- number of PEs possible. We also incorporate mini-
dicates parallelism between a client and an exporter. mization of communication costs into the objective
The DAG is also used to indicate which co-exporters function by using a prepass to the neural network.
of a client can execute in parallel with each other; The prepass forms clusters of heavily-communicating
this type of parallelism is denoted by labeling edges software units. Following the formation of clusters,
with sets of facilities. To enable one to determine the random neural network assigns clusters to PEs
whether two arbitrary facilities can execute in par- using the objectives of maximum parallelism and PE
allel, we have defined theorems that state how the conservation.
parallelism information contained in the DAG can
be propagated among nodes of the graph (for details To provide the required dependability and secu-
see [11, 13]). rity properties, one must insure that the specifica-

tion is heeded. To achieve redundancy, redundant
Frequently, an ADT module is needed simultane- copies of a component are assigned to different phys-

ously by multiple clients, thus causing contention. ical processors. Similarly, redundancy in software
To decrease queueing delays to execute module op- component connections is achieved by a careful as-
erations, cloning of module instances (facilities) is signment of components to processors. Reliability is
used in conjunction with the ARPC paradigm [14 achieved by selecting, for each software component,
The detection of statements that contend for a facil- a hardware component with a sufficiently high de-
ity is accomplished by considering the DDG, CDG gree of reliability. Note that the communication links
and FDG in conjunction. An edge in an FDG shows must also be considered for reliability of messages
where it is beneficial to clone a facility, assuming that between software components. Security of message
data and control dependences do not prohibit paral- flows can be achieved with either encryption or with
lelism between the statements involved in the facility dedicated networks for each security class. For code
dependence. modules, security is attained by either run-time sys-

To detect contention for a facility, the statements tern mechanisms or by dedicated code processors for
of an operation are partitioned into units. A unit is each security level.
a sequence of statements that must execute in order,
due to the data dependences among them. (Hence, 5 Conclusions
the statements of a unit cannot contend for a facility,
but different units may contend for the same facility.) We have described a framework for automated
For any statement Si in a unit, except the last state- reengineering of complex systems. Our intermediate
ment of the unit, Si must complete execution before representation for complex systems is not linked with
S- can begin execution. Thus, each unit can utilize any specific combination of programming, hardware
ony one clone of each of the facilities that it uses. or execution paradigms. Furthermore, it allows the
However, if two units can execute in parallel, they capture of essential system metrics relating to par-
may contend for clones. Two units can execute in allelism, timing, fault tolerance, and security. The
parallel with each other as long as neither is an an- representation enables the incorporation of object-
cestor of the other (i.e., there is not a directed path based software engineering techniques during reengi-
from one to the other). This notion can be used to neering. Additionally, we describe how the repre-
construct a matrix, P, showing which units can run sentation is used to enhance parallelism during the
in parallel. The information in the matrix is used to reengineering process, to assess timing properties, to
group units with others, such that each member of a achieve dependability and security, and to optimize
group can run in parallel with all others. Given the software-to-hardware assignments.

55

We continue to evolve our reengineering analysis [10] J. P. C. Verhoosel. L. R. Welc&, I). K. Hammer, I
tools, which drive the evolution of the metrics. Thus, and A. D. Stovenko, "A Model for Scheduling of
additional metrics for parallelism analysis continue Object-Based, Hard Real-Time Parallel Processes,"
to be identified. We are also beginning to develop The Journal of Real-Tina, Systems, (submitted).
reverse engineering tools to capture the metrics for
languages such as assembler, CMS-2, and Ada. Fur- [11] L. R. Welch, "Assignment of ADT Modules to Pro-

thermore, we plan to develop reengineering tools that cessors," Proceedings of the International Parallel
transform previous generation complex systems into Processing Symposium. March, 1992.
layered, highly concurrent designs and to feed these
designs to backend code generators for languages [12] L. R. Welch, A. D. Stoyenko, T. J. Marlowe, "Mod-
such as Ada, C++, Smalltalk and Eiffel. Finally, eling Resource Contention among Distributed I -ri-
we plan to use parallel processors such as the In- edin Proces oneti a m postibut o Pr-
tel Paragon to implement the synchronization and odic Processes," Fourth IEEE Symposium on Par-
deadlock avoidance techniques incorporated in the allel and Distributed Computing(December 1992).
module and system managers. [13] L. R. Welch, A. D. Stoyenko and S. Chen, -Assign-

References ment of ADT Modules with Random Neural Net- I
works," The Hawaii International Conference on

[1] AEGIS TACTICAL EXECUTIVE System Sciences, IEEE, Jan. 1993.
SYSTEM (ATES/43) USER'S MANUAL, Volume
1-System Design Guide, July 1991, p. 3-1. [14] L. R. Welch, "Cloning ADT Modules to Increase I

Parallelism: Rationale and Techniques," Fifth IEEE
[2] T. J. Marlowe, A. D. Stoyenko, S. P. Masticola, Symposium on Parallel and Distributed Computing,

and L. R. Welch, "Schedulability-Analyzable Excep- December 1993.
tion Handling for Responsive Languages," Journal
of Real-Time Systems, to appear. [15] L. R. Welch, "A Parallel Virtual Machine for

Programs Composed of Abstract Data Types",
[3] W. B. Scott, "Navy May Accelerate Missile De- IEEE Transactions on Computers, accepted for

fense," Aviation Week and Space Technology, pp. publication-to appear. U
283-284, May 30, 1983.

[4] K. J. Stein, "Aegis Fleet Defense Nearing Sea Test,"
Aviation Week and Space Technology, pp. 32-35, I
August 13, 1973.

[5] K. J. Stein, "Aegis System Tested Successfully,"
Aviation Week and Space Technology, pp. 36-40, I
April 7, 1975.

[6] M. Sitaraman, L. R. Welch and D. E. Harms, "On
Specification of Reusable Software Components,"
The International Journal of Software Engineering
and Knowledge Engineering, volume 3, number 2,
1993.

[7] , R. A. Steigerwald and L. R. Welch, "Reusable
Component Retrieval for Real-Time Applications,"
Proceedings of the First IEEE Workshop on Real-
Time Applications, May 1993.

[8] A. D. Stoyenko, L. R. Welch, and B. C. Cheng, "Re-
sponse Time Prediction in Object-Based, Parallel
Embedded Systems," to appear in Euromicro Jour-
nal, 1994, Special Issue on Parallel Processing in
Embedded Real-Time Systems.

[9] J. P. C. Verhoosel, L. R. Welch, D. K. Ham-
mer, and A. D. Stoyenko, "Assignment and Pre-
Runtime Scheduling of Object-Oriented, Hard Real-
Time Parallel Processes Using Bead Partitioning," U
New Jersey Institute of Technology Technical Re-

port CIS-93-16, December, 1993.

56!

I Dynamic (Re)Generation of Software Documentation

* W. Lewis Johnson
USC / Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292-6695

johnson~isi.eduU
Abstract tation and user help for software systems. This tool

will result in dramatic improvements in the way doc-
We are developing an authoring tool called I-Doc umentation is developed, maintained, and used. If

that will automate the process of generating docu- the design, requirements, and assumptions underly-
mentation and user help for software systems. The ing code are made explicit, generation of documenta-I focus of the tool is on capture of the requirements tion can be substantially automated. This underlying
and design decisions that form the content of soft- knowledge can be acquired and formalized in a natu-
ware documentation. This information can then be ral, incremental fashion that does not overly burden
used to generate summaries and explanations of the developers.
software on demand. The objective of this research Documentation will be generated dynamically, in
is to provide on-line assistance for software maintain- response to specific requests for user information.
era and other software professionals that can take the When the user requests information, the documen-
place of conventional bulk documents. I-Doc is de- tation system determines what information content
signed to support the reengineering of software sys- should be presented. It composes a response by com-
tems, since some of the necessary design information bining textual descriptions previously entered in a
will have to be captured by annotating existing code. database, and automatically generating natural lan-
Reengineering technology, specifically transformation guage output to fill in the rest. The content of the
technology, is employed during the generation process generated output depends upon the level of expertise
to simplify and reorganize design information when of the user, and the history of previous user de-u-
describing software. mentation requests. This fundamentally changes the

nature and role of documentation. There will be less
need for users to search through bulk documents in

1 Introduction order to obtain answers to specific questions. Instead,
the documentation system will search its own knowl-

Conventional documentation for software systems edge base for the information that the user requires,
has surprisingly little value, given the amount of time and compose explanations meeting the user's needs.
and effort spent to create it. This is particularly true Other CASE (computer-aided software engineer-
for large, mature systems. Such systems typically have ing) tools have been developed to support the author-I voluminous design documents, in which it is difficult to ing of documentation. These tools differ in that they
find information relevant to any specific maintenance tend to be oriented toward the generation of specific
task. If the documentation is not maintained in lock reports, such as those mandated by Department of
step with the code, it quickly becomes inaccurate, so Defense procurement standards. They make it eas-
maintainers cannot rely upon it. There is an increas- ier to produce such reports, but that does not make
ing need for alternative technologies that can provide the reports themselves significantly more useful. The
maintainers and users of software systems with the I-Doc approach is designed to make such reports un-
information that they need to operate and maintain necessary for most purposes, although it will still be
those systems. possible to generate bulk reports from I-Doc's design

We are developing a documentation authoring tool repository.
that will automate the process of generating documen- The approach employ- reengineering technology,

U 57

N

and is designed to be compatible with reenginecrinig ef- change as the software evolves Nevertheless, main- I
forts. Information required to support documontation tenapce activities in general are vastly different from
is entered in a reengineering knowledge ba.,, in the specification and design reviews. Maintdiners rarely
form of annotations on source code prse trees. Tians- perform methodical reviews of entire systems; rather,
formations are employed to generate simplified and re- t:.ey inspect specific modules in detail in order to de-
organized sections of code that highlight the aspects termine how they can be modified. Interrelationships
of the system being documented. Design recov,'ry ac- between modules can be extremely important. Doc- U
tivities have the effect of bringir.g documentation up uments uiich as design documents, which describe all
to date, facilitating subsequent software maintenance, components in a uniform way, are more suited to de-

sign activities than maintenance activities.

In addition to being activity-oriented, good docu- I
2 The State of Current Documenta- mentation is task-oriented, i.e., designed to help read-

tion ers perform specific tasks. Tutorial user manuals are
frequently written in a task-oriented fashion. For ex-

Let us examine the problems associated with con- ample, a word processor manual might hav-. the user

ventional software documentation, to see how new work through sample tasks such as composing a busi-

techniques can alleviate those problems. ness letter or printing mailing labels. I
The primary emphasis of conventional system dot- A task-oriented approach centered on hypothetical

umentation is on amassing information. Documenta- tasks is not necessarily tWe best way to design doc-
tion standards, especially government standards such umentation in general. It requires the reader to take I
as MIL-STD-2167A or SDD, require developers sys- the time to work through exercises, whereas document
tematically to describe all details of a design. such as users typically are impatient and skip through the doc-
the inputs and outputs of each function. The structure umentation trying to find out what they need so they
of such documents is fixed and standardized. can get on with their actual job. This is the motivation

The first problem with such system documentation for the new "minimalist" approach to documentation,
is that is not sufficiently activity- oriented, i.t., it is which uses overviews, structured exercises, and any

not designed to support the activities of the intended information that the user cannot discover through ex- I
readership. User manuals are activity-oriented in this perimentation with the system [3]. However, the min-
sense: such manuals are designed to help people whose imal approach is not a rejection of task orientation per

activity is to use the software system. System docu- se, just of manuals that are oriented around lengthy I
mentation is not, or if it is the set of activities being hypothetical exercises and that contain information
supported is incomplete. System documentation can one can figure out on one's own.
potentialy support a number of activities, including It is certainly true that system documentation can
the following: be improved simply by learning lessons from other

types of documentation such as user documentation.
"* review by the customer to check that all stated However, even well-written paper documents suffer

requirements are met in the design, from basic limitations. A person writing a document
"can only make rough guesses about what tasks the

* design reviews in which the quality and validity reader might be performing, what information he or
of the design is evaluated, and she might want to know, and the level of expertise of

"* maintenance activities, in which maintainers seek the reader. Detailed exercises can help eliminate the

to obtain information about the design so that guesswo:k-if the reader works through an exercise,

modifications and enhancements can be per- the writer can try to anticipate what kinds of ques-
formed correctly. tions the reader might want to ask at each point in

the exercise. This does not work if readers lack the

These activities are very different, yet documents patience to work through the exercises, as the mini-

often must support more than one of them. The ac- malists argue. I
tivity that is least supported, of course, is mainte- The key to a substantial improvement in documen-
nance. Maintenance manuals are common for physical tation is an on-line system that can construct presen-
devices, but are rare for software systems. Of course tations dynamically, reducing the reliance on guess- U
it is harder to write maintenance manuals for soft- work. Interaction with the system should be in the
ware than it is for devices, because maintenance tasks form of a question-answer dialog; that way, the reader

I
53 I

I
I

indicates to the system what he or she wants to know.
I The system can present information in the context

of the reader's activities, simply by asking the reader
questions about those activities. If the reader does File Edit NewQuestion Follow-On HelpI not understand the descriptions generated by the sys-

tem, the reader should be able to request a clarifica- Name of Component:

tion, and have the system adjust its estimate of the range- whilse-scadreader's level of expertise. The process of supporting

documentation then becomes less an activity of writ-
ing text and more an activity of providing the system _
with the information that it needs to produce a range

I of descriptions of the system.
Such a capability constitutes a clear advance of the Figure 1: I-Doc Query Window

state of the art in documentation support. However,
* the technologies needed to realize such a capability, with in order to initiate the query. The user types in

such as design repositories, hypertext, program analy- the name of the component that he or she is interested
sis and transformation, and natural language genera- t h ana m s o r se component fro m a men u
tion, are well developed and in a state where they can in Mechanisms fo le ponen mI be brought to bear effectively on the documentation of alternatives will also be provided.
beproblem. Before I-Doc can accept a query, however, it firstrequests information about the user and the task be-

ing performed. The user parameters are input via a
3 menu such as that shown in Figure 2. The user is

3 An Example from the Reader's requested to indicate what role the user plays on the
Standpoint project, and indicates Maintainer. I-Doc will there-

fore include in the system descriptions that it gener-
The following example illustrates how I-Doc is in- ates information relevant to maintenance, e.g., inputs,

tended to function, from the viewpoint of the reader, outputs, and functional decomposition of each mod-
i.e., the person asking questions about the system. ule. If the user had chosen a different selection, such

The system in question is real-time embedded con- as User, descriptions would be more functional in na-
trol software of a fighter aircraft radar system. This ture, and limited to those aspects of functionality that
example was studied by Hughes in a research effort would be visible to the user (in this case the pilot or
sponsored by Wright Patterson Air Force Base [4]. radar intercept officer responsible for controlling and
Hughes built a demonstration hypertext documenta- monitoring the radar).
tion system to support a hypothetical maintenance Additionally I-Doc requires an initial estimate of
task on this system. We have been using the same ex- the user's degree of familiarity with the system. In
ample as an initial test case, to design I-Doc so that it this case the user selects Low, which causes I-Doc to
can generate descriptions automatically that ate sim- limit the extent to which it refers to implementation
ilar to what the Hughes group constructed manually details such as data representations.
in their demonstration. Next, I-Doc requests a characterization of the task

One of the functions of the radar system software the user is performing. Four types of activities are
is a Range While Search function, which electronically known relating to system maintenance: adding func-
controls how the aircraft's radar scans the airspace. tionality, fixing bugs, optimizing, and validating doc-
Normal Range While Search scans a volume of air umentation. Add Functionality is the choice in this
space that is wider in azimuth than it is in elevation, case. In this context, it causes I-Doc to generate high-
say 60 degrees to the left and right of the aircraft, and level overviews of the functionality in question. If Fix
10 degrees above and below the horizon. The volume Bug or Optimize were chosen, the description would
is scanned by sweeping back and forth horizontally, focus more narrowly on those system components in-
top to bottom. The hypothetical maintenance task is volved in generating the behavior that must be opti-
to change the code so that it can scan volumes that mized. Validate Documentation is chosen when the
are wider in elevation than in azimuth, by scanning user (typically a developer) wishes to see a variety of
vertically rather than horizontally, descriptions generated by I-Doc, to verify that the sys-

Figure 1 shows the window that the user interacts tem can generate valid documentation in each case.

I 59

Figure 3 shows a sample output, based upon the
parameters selected above. I-Doc cannot yet generate
this output, as the project is just getting started; this
is merely an illustration of the type of output that will
be generated. The figure is a display generated by the
Mosaic hypertext system [2], which is the hypertext
system used as an output interface by I-Doc. The fig-
ure contains a simplified decomposition diagram show-
ing the major components of Range-While-Scan: Scan
Generation and Output Processing. It summarizes the U
function of each component, and the main inputs and
outputs of each.

Several points are illustrated by this output exam-
ple. First, the output is selective both in terms of
what components of Range-While-Scan are described,
and what properties of those components are men- I
tioned. In this overview the major components of
Range-While-Scan are shown, but not those compo-
nents responsible for checking and reporting errors. I
(For example, if Output Processing detects erroneous
radar input, an error is signaled.) It characterizes
the function of the components (e.g, Scan-Generation I
creates a scan pattern), and the inputs and outputs
of each component. If the task or user parameters
were different, the summary would have changed ac-
cordingly, perhaps including more detailed informa-
tion about the system.

Because the presentation medium is hypertext, it is I
not necessary to enumerate all relevant properties of
Range-While-Scan. It is sufficient to provide hyper-
text links which, if selected, will permit the reader to
obtain further information. Some of these buttonable
items are interspersed through the text, and appear
underlined in the figure. Other items appear at the
bottom. Because Range-While-Scan's performance re-
quirements are particularly important for anyone at-
tempting to add functionality to it, a special hypertext

Figure 2: User Parameter Window link is included to access this information. Other rel-
evant topics are included at the bottom. The links
named "electronically controlled radars" and "radar
data processing" provide background about the ap-
plication domain that might be useful to a main-
tainer who is unfamiliar with the application. Below
are listed links for obtaining more information about
Range-While-Scan's components. Further down, be-
low the bottom of the scrolling window in this exam-
ple, are pointers that allow the reader to see the source
code from which this description is derived, either the I
full text or a simplified version corresponding to what

appears in this hypertext description.

60

Ic rnarg OMt~ ~nrm~r-

Fiue3Iyetx ecito fRneWieSa

I6

4 System Architecture all data is valid, and methods for handling exceptional
data will be described later. The content and use of

I-Doc contains the following major functions. data structures is characterized as well. Data struc-
"tures are categorized as to whether they represent ob-

* An acquisition interface is used to input the anno- jects, aggregates of objects (sets, sequences, etc.), or
tations necessary to generate system descriptions, names of objects. This enables I-Doc to refer to the

"* This information is stored in a repository, and output of Output-Processing as a set of contacts, re-
in annotations embedded within the source code gardless of the actual data representation (e.g., an ar-
itself, ray of pointers to contact objects).

" A query interface, as shown in Figure 1, is used Function categorizations can be applied to seg-

to input queries from the user. ments of components or groups of components, as well
as to individual components. For example, a set of

" The source code and repository are processed to routines may be employed to process radar data, or
extract the information to be presented. a set of statements may be employed to validate thedata.

" A presentation layout for the information is con- d

structed. Another type of information that plays a prominent U
"role in I-Doc descriptions is information about require-

The presentation layout is displayed as hyper- ments, particularly nonfunctional requirements. A set
text. Requests to traverse hypertext links are in- of attributes such as speed requirements or accuracy
tercepted and passed back to the extraction and requirements may be associated with functional com-
layout subsystems to generate new presentations. ponents and data.

These components will be described in further detail In order to determine how to render data dictionary I
below, but first the information content that these elements most effectively in natural language, I-Doc
components operate on will be discussed. uses grammatical annotations. The annotations used

in I-Doc are based on those used in the ARIES require-
ments acquisition system for annotating specifications

5 Underlying Knowledge [7]. Data expressing relationships between objects are

categorized as to whether they are attributes, actions,
In order to generate appropriate software descrip- circumstances, classes, or relations. Attributes de- I

tions, I-Doc requires a variety of information about the scribe properties of the object, actions describe actions
software and its design. Some of this information can that involve the object, circumstances describe states
be extracted directly from the code and from CASE of the object, classes identify categories to which the I
repositories. Other information must be added to the object belongs, and relations are default data relation-
design in the form of annotations, ships. Objects participating in such relationships can

First, a hierarchical decomposition of the design assume one of several grammatical categories, e.g., ac-
into functional components is required, ugether with tor, goal, location, or beneficiary. These categories are
the types of the components' inputs and outputs. The drawn from case grammars for natural language [5].
pattern of data flow among components is necessary
as well. Finally, descriptions of classes of behavior, called I

In order to present the information flow between scenarios, are useful in the description process. Sce-

modules in natural language, some additional char- narios are useful for defining system requirements, as
acterizations of the data and the operations on the a way of describing types of behavior that a system I
data are required. First, it is useful to classify the should or should not exhibit [1], which can be used to
type of operation being performed by the component. validate system specifications. They are intended to
Classifications that have been identified so far as use- serve two roles within I-Doc. First, scenarios can be
ful include create, destroy, filter, insert, remove, re- used to illustrate system behavior. Second, scenarios U
trieve, process, and validate. For example, the mod- provide the context in which to describe systems. If
ule Scan-Generation is classified as creating scan pat- the I-Doc user is trying to fix a bug, for example, then
terns. Modules whose function is to validate data were if a scenario illustrating the bug is available it can be I
omitted from the summary in Figure 3, under the as- used by I-Doc to focus on describing those components
sumption that initial descriptions should assume that of the system that are relevant to the bug.

62I

I

6 Knowledge Acquisition ties of Reasoning Systems' reengineering technology,
in particular Refine/Ada, are being used as the basis

The information described above is acquired from a for such analysis capability.
variety of sources. These sources will be described be- Use of the above capabilities for extracting rele-
low. It is important to emphasize, though, that I-Doc vant design annotations is one way in which reengi-
can still generate comprehensible system descriptions neering technology plays a prominent role in the con-
without much of this information. The added design struction of documentation in I-Doc. In fact, in order
information is used to improve the quality of system for automated generation of documentation to suc-
descriptions, and can be acquired when and as appro- ceed it must be viewed at least partly as a reverse
priate. engineering enterprise. Preparing a design for doc-

Some information is available in front-end CASE ument generation involves adding design information
tools such as Software through Pictures [6]. I-Doc that is not present in the original design. Front-end
will have the ability to query one or more such CASE CASE tools, executable specification languages, and
repositories in order to extract such information if other advanced forward engineering technologies can
available. reduce the amount of information that must be recap-

Another means of acquiring the documentary in- tured, but even then some information must be made
formation is through a special acquisition interface, explicit that is implicit in the design. Thus a combina-
This method is used especially for inputting grammat- tion of interactive design capture and design recovery
ical annotations and design component classifications, techniques appear to be essential.
These annotations need not be selected directly; in-
stead, the person entering the information can request
that I-Doc attempt to provide the annotations au-
tomatically, and present samples of natural language 7 Repository Storage and Mainte-
output based upon those annotations. Although the nance
grammatical annotations are based on linguistic con-
cepts that may be unfamiliar to software engineers,
it is easy to see when the generated natural language As design information is acquired it must be associ-

is awkward or incorrect. Once the user has selected ated with the code and maintained. The basic mecha-
from among alternative descriptions generated by I- nism being used to achieve this is to add attributes to
Doc, I-Doc saves the annotations used to produce that the Refine representation of program parse trees. In

sample output. order to permanently associate these attributes with
There are three other ways in which information the code, the following techniques are planned. First,

for constructing system descriptions is obtained. One Ada pragmas will be used to insert the information di-

means is through the use of object hierarchies. If an rectly into the code. Pragmas were originally intended
object class has a particular set of attributes, its spe- to record information to guide compilers in generating

cializations are likely to have similar attributes. A object code. In an analogous fashion they can be used
second approach is to annotate the models used in to guide the generation of system descriptions.

automated program synthesis systems. The knowl- In the longer term, it may be appropriate to ex-
edge bases of specialized knowledge-based synthesis tend the data model of a CASE tool such as Software
systems, such as user interface development systems, through Picturefc in order to record the design infor-
can be augmented to support the generation of docu- mation. However, that should not be a substitute for
mentation and help as well [12]. Integration of I-Doc inserting design information directly into the source
with one or more such systems is an option being con- code. In order for the captured design information to
sidered for future development. be useful, it must continue to be associated with the

The third source of design information for docu- code as it is maintained over time. At the present time
mentation is code analysis. Analysis routines can de- the best way of ensuring this is to integrate the design
tect components that appear to be creating objects, information into the source code, so that maintenance
inserting into or removing from data aggregates, val- using a front-end CASE tool is not required. For lan-
idating data, etc. Such analysis is further facilitated guages that do not have constructs similar to pragmas,
when some design components are already annotated; the approach will be to add grammatical extensions to
e.g., when data is designated as an aggregate, it makes the source language to provide such constructs, which
sense to look for routines that add and remove el- can then be removed from the source code via trans-
ements from that aggregate. The analysis capabili- formations, using a tool such as Refine.

3 63

8 Inputting User Queries The filtering procedures in I-Doc proceed by mark-
ing code as either central, interesting, or ignored. Cen-

If the design knowledge associated with a design is tral components are the primary focus of the descrip-
sufficiently rich, it can be used as the basis for answer- tion, and consist of all code satisfying a particular cri-
ing a variety of queries. Following the approach taken terion, such as code matching steps a scenario. Com-
in Lehnert's original work on question answering [8) ponents are designated interesting because of their in-
and further developed by research in expert system teractions with the central components. Ignored corn-
explanation, such as the work of Moore and Swartout ponents are removed because they can be explicitly
(101, common questions about software have been cate- filtered out, or because they are not found to be cen-
gorized into types. In the initial version of I-Doc, these tral or interesting. The following are some criteria that
question types will be available to the user as explicit have been found in pencil-and-paper studies to be use-
choices from which the user can choose. Examples ful in determining code to be central or ignored; others
of question types include Describe Function, Describe are expected to be identified.
Design, Describe Interface, and Describe Use. In sub-
sequent versions these choices will be automated to Exceptional case handling. In some descriptions,
a greater extent, so that the user can simply request such as the one shown in Figure 3, core for han-
"Describe" and the system will construct a combined dling exceptional cases is unimportant; in other

description appropriate to the context. cases (such as when fixing bugs) such code may
The main difference between question input in I- be central. Either way, such can be detected in

Doc and question input in expert system explanation a significant number of cases. Ada has explicit

is the use of hypertext as a medium for posing ques- constructs for raising exceptions. Additionally, if

tions. Question-answering systems such as Moore and a variable is being used as an error flag, tests of

Swartout's facility in the Explainable Expert System the variable can be detected automatically, and

(EES) system allow the user to point to an element branches of the code marked accordingly.

of ;-. description and ask one of several follow-up ques-
tions about `, . In hypertext, the interaction is more t hate t
limited-tlY.e user clicks on a ',ection of text where a tribute.
link begis, causing the system to jump to the other
end of link. The user does not have the option of * Code that assigns an attribute or variable to a
selecting one of several operations to perform on the specific value, or checks that the attribute or va.-
link. In order to overcome this difficulty, we are ex- able has a specific value.
peri'nenting with making choices explicit as lists of se- Once components are found be central, surround-
lect;,ble items at the bottom of the hypertext display,
as s iown in Figure 3. It remains to be seen how effec- ing code is often marked as interesting and is thereforeincluded. The motivat>'n for this is to provide some
tive this technique is in "omparison to more ordinary context so that the focussed operations are more eas-

mernu-based approaches. ily understood. For example, if a routine sets an in-

teresting attribute of an object, assignments to other
attributes of the same object in the same procedure

9 Extracting Relevant Information may be included as well.
The transformation facilities in Refine are to be em-

Once the type and the +ject of the query have ployed to implement this filtering process. The trans-
been chosen, the information suitable for inclusion formation pattern language can be used in some cases
in the presentation must be retrieved and presented. to detect the code that is of interest. In other cases,
Retrieval of relevant information can be easily ac- transformations can be used to perform simple ex- I
complished using the retrieval and query mechanisms pression simplifications in order to facilitate pattern
available in Refine, Software through Pictures, and matching. A tool that could recognize all instances
other tools. Difficulties arise, though, when the of potentially interesting code would require a more I
amount of retrieved information is too much to present powerful simplifier than is envisioned for I-Doc. In-
in such a way that the reader can assimilate it. In stead, I-Doc will either inform the reader when the
such cases filtering techniques may be employed to fo- view being piesented is possibly incomplete, or sim-
cus on the information of greatest potential interest to ply provide a view that is somewhat broader than is I
the reader. strictly necessary.

I

I

10 Presentation Layout * It interprets hypertext formatting commands dy-
namically, as needed; this makes it possible to

Once relevant information has been identified, I construct a hypertext document dynamically and
Doc must determine what media to use to present the display it.

information, and how to present the information using
those media. In the long term, we hope to be able to W It runs on a variety of platforms, including X
employ a variety of presentation media, including mix- Windows, Microsoft Windows, and Macintosh.
tures of text and diagrams. At first, -,hough, the focus
will be on natural language generation. Such gener- It is public domain, and the source code is read-
ated text may be supplemented with diagrams if such ily available, making it possible to customize the
diagrams have already been constructed and are avail- system for use within I-Doc.
able, as is currently the case with CASE-generated
documents.

The overall structure of each description that is gen- 12 Further Plans and Prospectus
erated will be determined by a presentation template,
a library of which will be included in I-Doc's knowl- The I-Doc project has just begun; it is expected to
edge base. These templates provide standard ways of continue for another three years. The project plans to
presenting different aspects of a system. Each tem- make available intermediate versions of the system on
plate will have a set of selection criteria, based upon a periodic basis. In the near term, the capability will
the amount of various types of information that is to be demonstrated on a military application selected in
be presented, and the assumed level of expertise of collaboration with the US Air Force's Wright Labora-
the user. Slots within the template are then filled out tory.
using a natural language generator. If resources are available, I-Doc will be extended

The natural language generator consists of two so that it can describe systems to other classes of
components. The basic generation work is performed users besides maintainers, such as clients and end-
by a Functional Unification Generator, which can users. This will further enhance Ihe value of documen-
construct arbitrary sentences from attribute-value de- tation generation technology tc .ftware development
scriptions of the content to be expressed. A second projects.
phrase selection component constructs attribute-value In the long run, dynamic generation of documen-
patterns in a form suitable for input to the Functional tation will prove successful if the perceived benefits
Unification Generator, according to directives con- outweigh the costs of additional design capture. The
tained within the system description templates. This benefits will be particularly apparent in projects that
architecture was used successfully in ARIES and the undergo periodic design reviews, since automated doc-

KBSA Concept Demonstration [11 to generate text umentation should prove to be a great benefit to the
descriptions rapidly. Functional Unification Gram- design review process. Reengineering and program

mar has been evaluated against competing methods synthesis technology will gradually reduce the amount

for natural language generation, and has le•wn found of interaction between developers and I-Doc necessary
to be both flexible and efficient [9). for design capture. In the near term, making enhanced

hypertext capabilities available to developers is likely

to bring benefits in itself. Hypertext is gradually being

11 Presentation Delivery adopted in software development practice, and the ac-
tivities of the I-Doc project will aim to help accelerate
this trend.

As indicated in Section 3, Mosaic is being employed
as the hypertext delivery mechanism for]-Doc. Al-
though there are various commercial products avail-
able that provide hypertext capability, Mosaic has a 13 Acknowledgements
set of features that make it particularly suitable to
dynamic documentation generation. The author wishes to thank Bill Swartout and

Richard Angros for their contributions to this effort,I Mosaic provides interfaces to external programs, and John Salasin and Marc Pitarys for their support.
so that the user buttoning on a hypertext link can Sheila Coyazo assisted with preparation of the arti-
cause a program to be invoked. cle. This work is sponsored by the Advanced Research

* 65

Projects Agency and administered by Wright Labora- [11] J.J. Myers and G. WVilliams. Exploiting meta- I
tory, Air Force Materiel Command, under Contract model correspondences to provide paraphrasing
No. F33615-94-1-1402. Views and conclusions con- capabilities for the concept demonstration. In
tained in this paper are the author's and should not Proceedings of the 5th KBSA Conference, pages I
be inter, -'ted as representing the official opinion or 331-345, Syracuse, NY, September 1990. Defense
policy of the U.S. Government or any agency thereof. Technical Information Center.

[12] P. Szekely, P. Luo, and R. Neches. Facilitating
the exploration of interface design alternatives:

References The HUMANOID model of interface design. In
Proceedings of CHI'92, The National Conference I

[1] K. Benner, M.S. Feather, W.L. Johnson, and on Computer-Human Interaction, pages 507-515,
L. Zorman. The role of scenarios in the software May 1992.
development process. In Proceedings of the IFIP
W8.1 Working Conference on Information Sys-
tem Development Process, 1993. To appear.

[21 E. Bina and M. Andreessen. NCSA mosaic home
page. Available from World Wide Web server

www.ncsa.uiuc.edu.

[3] J.M. Carroll. The minimal manual. Human-
Computer Interaction, 3(3):123-153, 1988.

[4] R.A. Falcioni and R.L. Buvel. Modular embed-
ded computer software (MECS): Interim report.
Technical Report WL-TR-92-1113, Wright Labo-
ratory, Wright Patterson AFB, OH, 1990.

(5] C.J. Fillmore. The case for case. In Universals
in Linguistic Theory, pages 1-88. Holt, Reinhart
and Winston, New York, NY, 1968.

(6] Interactive Development Environments. Software
through Pictures: Fundamentals of StP, 1993.

[7] W.L. Johnson, M.S. Feather, and D.R. Harris.
Representation and presentation of requirements
knowledge. IEEE Trans. on Software Engineer-
ing, 18(10):853-869, October 1992.

(8] W.G. Lehnert. The Process of Question An-
swering. Lawrence Erlbaum Associates, Hillsdale, I
New Jersey, 1978.

[9] K.R. McKeown and M. Elhadad. A Contrastive
Evaluation of Functional Unification Grammar
for Surface Language Generation: A Case Study
in the Choice of Connectives, pages 351-392.
Kluwer Academic Publishers, Norwell, MA, 1991. I

[10] J.D. Moore and W.R. Swartout. A Reactive Ap-
proach to Explanation: Taking the User's Feed-
back into Account, pages 3-44. Kluwer Academic
Publishers, Norwell, MA, 1991.

I
66

I

I
I

A Case Study of Software Reuse in Vertical Domain

I Vaclav Rajlich and Jo~o Silva

I Department of Computer Science
Wayne State University

Detroit, MI 48202
vtr@cs.wayne.edu

Abstract the case stLdy. The architecture was obtained throughi reengineering of an earlier tool.

This paper presents a case study of domain
specific software reuse, also called vertical reuse, where The major difference between the evolutionary
both the architecture and individual classes are reused. domain life cycle and the waterfall model are the
The applications domain we deal with is the domain of activities that span the whole application domain. These

visual interactive software tools. mhe paper describes the are domain analysis [21, 22, 23, 24], and domain design

architecture itself, the reverse engineering process by [8]. Domain analysis examines the requirements of a
which it was obtained, and the forward engineering family of systems. The end result of the domain analysis

process by which it was reused. mhe architecture is called phase is a document called the domain specifications.
orthogonal architecture, and it consists of classes Domain design includes definition of the data structures,
organized into layers and threads. file formats, and important algorithm descriptions for a

specific domain of applications. The final product of the

Key Words domain analysis phase is a domain architecture that
describes the architecture of a family of systems. This

Software reuse, vertical domain, object-oriented domain architecture reflects the design of all software
programming, visual graphical tools, layers, threads, systems that constitute the domain.

program families, process of reuse, reengineering. We studied the domain of visual interactive
1. Introduction tools. Our experience in building these systems dates to

1986 when we developed a prototype of VIC: Visual
Interactive C [25, 26]. Other visual interactive editors

The reuse in vertical domain is characterized by developed in our group were VIFOR [26], and EDG
a reuse of the whole software architecture, which is being (described here -- see Appendix A). We defined a set of
adjusted to satisfy a new set of requirements. In this classes -- some of them general, others specialized -- and
respect, reuse in vertical domain, software evolution, and all interactions among them. In this model classes may
perfective maintenance overlap to a large extenL In our evolve, but the overall architecture remains unchanged.
case study, we studied a process of reuse in vertical
domain of visual interactive software tools. We 2. Previous Work
developed an orthogonal architecture for that domain,
which is particularly suitable for vertical reuse. The concept of "program families" originates
Evolutionary domain life cycle was the process used in with Parnas [16, 17, 18, 19, 20]. Program families are

* 67

I
defined as sets of programs whose common properties are supports the OODG methodology of design [22]. The
so extensive that it becomes advantageous to study the EDG system has an architecture, which can be easily
common properties of these programs before analyzing adapted for other systems within the domain of visual
individual differences. Since then, other researchers such interactive editors. Our goal was not to show that the
as Neighbors [13, 14, 15], Barstow [6], Lubars [10, 11, architecture of EDG is the best possible, but we were
121, Bailin [4, 51, Kant [91, Arango [1, 2, 31, and Prieto- satisfied with an architecture that possessed the following
Diaz (211 have associated the concept of a "family of attributes:
programs" with the idea of application domain.

(1) reusable: The architecture can be
Barstow [6] investigated the issue of domain transformed to perform the functions

specific automatic programming in the context of the expected of other visual interactive tools.
two application domains, both related to oil well
logging. Similar studies have been concluded by other (2) Understandable: The architecture is I
researchers for other domaims of knowledge. Examples of simple. Domain users who have a
such studies includes those of Kant et al. [9], Bailin [4, minimum knowledge of visual interactive
5], and Dunn [7]. Our work, is in a sense, related to tools are capable of understanding what
these works because we also performed domain analysis each class does and what the roles are
and domain design studies within a specific domain, within the domain, by reading the classes

Prieto-Diaz [21] proposed a methodology for specifications.I

domain analysis. He described three distinct steps: pre- (3) adaptable: The classes are capable of
domain analysis, domain analysis, and pos-domain evolving. This capability involves the
analysis. Pre-domain analysis comprised the definition mechanics of changing specific members I
and scope of the domain, the identification of sources of within a class while it still preserves the
knowledge, and information about the domain. structural relationships between classes

(i.e., maintaining the overall generic
Barstow and Kant [6, 9], among others, architecture for the whole system).

performed domain analysis and domain design studies that
led to code generation within well defined domains of In order to accomplish these objectives, EDG
applications. These domains, quite different in nature, system is partitioned both horizontally and vertically.
possessed a high degree of cohesiveness, a well Horizontal partitioning represents layers or levels of
understood variability, and a low complexity level. Code abstraction. On layer 1, function "main" controls the
generation is advocated for such cases. For more application. Layer 2 implements the menu interface, and I
complex systems with a higher degree of variability and a triggers callback functions chosen from the menu. Layer
lower degree of cohesiveness, code generation is not 3 encapsulates the interfaces for all operations supported
recommended. Instead, a knowledge-base that captures by EDG. At this layer, we defined a standard dialogue for
important aspects that characterizes the family of systems each operation. For example, if the operation is "Save
can facilitate its development. The knowledge-base As," we know that there is a standard dialogue between
consists of : (1) well defined code components, (2) a the user and the system. First, after this operation is
generalized systems' architecture for the family of selected, a panel is presented and the user is asked to enter I
systems that constitute the domain, and (3) a set of a file name. Then if the file name is valid and the user
domain rules (i.e., domain knowledge). The domain hits the return key or presses the "ok" button, the file is
knowledge includes relationships among different saved. In any other sequence of events, this "Save As"
components that make up the system. operation is aborted.

3. Orthogonal architecture for The actual functionality of the operations was

interactive software tools. defined at layer 4. Some of the classes which were
defined at this layer include: a class to draw graphs on

We performed the domain analysis and design canvas, a class with algorithms for representing graphs, a

study for an experimental and reusable software system class with functions to scan C++ source code and to

known as "The Environment for Decomposition and extract relationships between objects, etc.

Generalization (EDG -- pronounced "edge"). EDG 3

69

I

Fiually, most operations in EDG need servicesI of a database. The fifth and sixth layers perform these 4. Reverse engineering: Creating
services. Layer 5 encapsulates the specific data model ED G.
and databM intgface, while layer 6 is the database itself.

I They are both custom made specifically for EDG.
Database is resident in the main memory, and is stored e was created from earlier projects, which had
on the disk in a flat file. The efficiency was not of a the same or overlapping functionauires but did not
conen, and hence relatively simple data ree tationsossess the othogonal arhitecture described above. The
i and sech reverse engineering was applied to a code written partially

in C and partially in C++. The effort involved domain

Vertical partitioning of the EDG system analysis, which had to be done for the whole domain of
I involves the division of the system into threads that are visual interactive tools. That was followed by a domain

orthogonal to layers. Threads are sets of classes related desig where the threads, layers, and individual classes of

to each other by relationship of "use". Threads in our EDG were defined. Fizially the existing code was analyzed
I architecture are largely independent of each other, with and reengineered into the new code, fitting the new

very few classes from one thread using services of the architecture. The classes of the new code fall into the
classes in other thread. Only layers 1 (highest) and 6 following categories: Classes transfered from the

(lowest) are shared among the threads. The threads of previous projects with modifications, and classes written
S EDG a from scratch. There were no classes which could be

reused from the previous project without any change.

(1) Project, supporting commands that
operate on entire projects and its files. Of the total 11,558 lines of the code of EDG, total

of 4,360 belongs to the classes written from the scratch.
(2) Graph, which supports graph display These classes belong mostly to top and bottom layers,
and editing where the impact of the new architecture was most felt.

The rest belonged to the classes that were modified to a

(3) Views, which selects information to be larger or lesser degree. As far as the effort is concerned,
presented in a window, the effort to reengineer old code into EDG was

approximately 40% of the estimated effort it would take

(4) Browser, which supports navigation to implement EDG from scratch. For more detailed
through the database. numbers, see [291.

I (5) Analyzer, which extracts architectural
informationfrompograms. 5. Forward engineering: From

(6) Run, which interfaces EDO with other EDG to EDFD.
tools (compilers, debuggers, etc.). The reusability of orthogonal architecture of

IThese six threads are truly universal within thee EDG was tested in a case study where it was reused for a

domain of visual interactive software environments. new visual interactive tool: Environment for Data FlowdomainlTeseiheo of visutale ideravelsof environments .aDiagrams (EDFD) which partially supports the
Examples of software develospent environments that use methodology described in [27]. A more detailed
one or more of these threads include: Software through description of both EDG and EDFD is included in
Pictures, Powertools from Iconix, and Teamwork from Appendices A and B. As the first step, we identified the

set of operations required by the new system, and

Taken together, these two orthogonal system organized them into a top-menu.

partitionings provide an interesting map of the EDG Via the second step, "assign operations," we
system. For each specific layer and thread, there is at mapped the set of operations identified in the previous
least one class implementing the requred functionality. step on the pre-existing set of threads. For example, the
This orthogonality substantially improves the operation "Hide Object" is mapped to thread "graph."understanding of software, and therefore facilitates its After this phase, when all operations for a new system

are assigned to a thread, all unnecessary threads are

69

removed from the system. In our case EDFD required 25.8 % of code was used with some
three threads: the Data-Flow Editor, the Data Dictionary modification.
Editor, and the Defining Functions Editor. The first Unnecessary to introduce new I
dwead was mapped on Graph Editor thread of EDO, while functions.
both remaining threads were mapped on Project thread of
EDG. Hence the project thread is modified in two Layer 3 Very easy adaptation.
different ways, once to serve as Data Dictionary thread 94.6 % of code was used without
and a second time as Defining Functions thread. The rest adaptations.
of the threads of EDG were no longer needed, and 4.5 % of code was used witbh

thfore wer discanled, adaptations.
0.9 % of code was implemented from

The next step consists of modification of the "scatch."

classes in the threads. When modifying a class, we Unnecessary to introduce new I
mapped the new specifications of the class on the old functions.
one, and compared the new requirements with the
existing code. For "Add an Object," we identified the set Layer 4 Refers to "graph_editor" (our worst
of functions in "graph" associated with that operation. case scenario).
First we searched the interface of class "graph" and Very easy adaptation for already
checked whether or not that function exists. If so, we existing functions.
considered that function and all functions called by it for 73.5 % of code was used without I
poss'ble modifications. adaptations.

2.2 % of code was used with

Function modifications were effected "top-down" adaptations. I
until all of the selected functions were completely 24.3 % of code was implemented
defined. Tbme different scenarios have occurred- from "srh."

Necessary to introduce new
(1) The function can be reused "as is." No functions.
changes were required.

Layer 5 Very easy to modify.
(2) The function needs to be "adjusted" to 88.3 % of code was used without I
conform to a new set of requirements. adaptations.
Here, we would isolate the portion of the 3.8 % of code was used with
function which can be reused without other adaptations.
changes, and then we would add code to 7.9 % of code was implemented from
perform the new required functionality. "sratch."

Unnecessary to introduce new
(3) The function does not exist. Here, we functions.
implement the new function to
accommodate a new set of requirements. Layer 6 Very easy to modify.

78.4 % of code was used without I
The whole architecture was scanned through this adaptations

process, and adapted for the new set of requirements. 2.3 % of code was used with
modifications

The following statistics on the extent of 19.3 % of code was implemented
modifications were gathered: from "scrtc."

Unnecessary to introduce new
Layer I Reused without adaptations. functions

Layer 2 Very easy adaptation Analyzing this data, the classes requiring least
74.2 % of code was used without amount of work were either high in the class hierarchy
adaptations (layer one) or low (layers five and six). Classes in the

middle of the hierarchy required more work.

70 1

I The total size of EDFD is 4,60 rues. The total Bibliography

effort of the reuse represents 37% of the estimated effort [1) Guilhermo F. Arango, "Evaluation of a Reuse-
to build the system from scratch. For more detailed Based Software Construction Technology," Proc. of
S numbers, see [29]. the Second IEE/BCS Conference: Soft. Engineering

88, pp. 85-92. LEE, London. UK, July, 1988.

6. Conclusions. [2] Guilhenno F. Arango, "Domain Analysis-From Art
to Engineering Discipline." IEEE Computer

We found that building the "perfect architecture" Society Press. pp. 81-88. 1991.H is a step by step process, very similar to exploratory
programming. As we coped with the new requirements [3] Guillermo Arango , Josiah Hoskins, and Eric
of EDFD, we were able to perfect the existing Schoen, *Product Modelling for Software Re-I yhitecture of EDG and improve its classes, thus making engineering." Proceedings of the 13th Int.
the architecture more universal and adaptable. We believe Conference on Software Engineering, pp. 14-17,
that the architecture of EDG developed in the case study May 13-17, 1991 Austin, Texas, USA.
is suitable for most visual interactive tools, and future
reuse and retroactive improvement will make it even [4] Sidney C. Bailin, "Generic POCC Architectures,"
more reusable. Report prepared for NASA Goddard Space Flight

Center." Associates, Laurel, MD, April. 1989.

We developed a process of three steps to adapt a
generic ortogonal architecture to perform a new set of [5] Sidney C. Bailin, "The KAPTUR Environment: An

requirements. Please note that the process is domain Operations Concept." Report prepared for NASA
independent. Hence we are expecting to be able to use Goddard Space Flight Center, Associates, Laurel,I this process in other domains as well. MD, June, 1989.

We conjecture that the orthogonal architecture [6] David R. Barstow, "Domain-Specific Automatic
can be developed for domains other than visual interactive Programming." IEEE Transactions on Software

tools. We did some preliminary studies of nucleus of Engineering, vol. SE-Il, no.11, pp. 1321-1336,
operating system, and found the same methodology and November, 1985.

airchitecture ideas applicable there. (7] Michael F. Dunn and John C. Knight, "Software

In our case study, we found encouraging Reuse in an Industrial Setting: A Case Study."
productivity figures. To reengineer an unconstrained IEEE Computer Society Press, CH2982-7/91,
architecture into an orthogonal one, we spent pp. 329-337, July 1991.

approximately 40% of the time compared to
implementation from the scratch. Adapting this [8] Hassan Gomaa and Larry Kerschberg, "An
architecture to a new set of requirements, we spent Evolutionary Domain Life Cycle for Domain

approximately 37% of the time compared to building the Modeling and Target System Generation."
system from the scratch. Hence to reengineer a system Proceedings of the 13th Int. Conference on
into orthogonal architecture, and then forward engineer it Software Engineering, pp. 65-71, May 13-17,
to a new set of requirements, was cost effective already 1991-Austin, Texas, USA.

on the first system, where it cost 77% of the estimated
original cost. We conjecture that each subsequent system [9] Elaine Kant and Ira Baxter, "Domain Modeling in

within that domain should cost again approximately 40% SINAPSE for Synthesizing Mathematical Modeling

of the original cost to build. We find these preliminary Programs." Proceedings of the 13th Int.
figures to be very encouraging, and hope to verify them Conference on Software Engineering, pp. 23-25,
by studies in other domains. May 13-17, 1991 -Austin, Texas, USA.

[101 Mitchell D. Lubars, "A Knowledge-based Design
Aid for the Construction of Software Systems.

I
SIll mul I l llll llll I 71

PhD. Thesis, University of Illinois, Urbana- 1201 David L. Parnas, Paul C. Clemens, and David M
Champaign, 1987. Weiss, "The Modular structure of Complex

Systems." IEEE Transactior.. on Software I
[11] Mitchell D. Lubars, "A Domain Modeling Engineering, vol. 11, no. 3, pp.259-266, March

Representation." Technical report STP-366-88, 1985.
Microelectronics and Computer Technology
Corporation, Austin, TX, November, 1988. (211 Ruben Prieto-Diaz and Peter Freeman, "Domain

Analysis for Reusability." Proceedings of
[121 Mitchell D. Lubars, "Domain Analysis and Domain COMPSAC 87: The Eleventh Annual International

Engineering in IDeA." Technical report Computer Software & Applications Conference, I
STP-295-88, Microelectronics and Computer pp. 23-29. IEEE Computer Society, Washington,
Technology Corporation, Austin, TX, September, DC, October 1987.
1988. I

[22] Ruben Prieto-Diaz, "A Domain An3lysis

[131 James M. Neighbors, "Software Construction Methodology." Proceedings of the 13th Int.
Using Components." PhD. Thesis, University of Conference on Software Engineering, pp. 138-140,
California at Irvine, 1980. May 13-17, 1991-Austin, Texas, USA.

[141 James M. Neighbors, "The Draco Approach to [23] Ruben Prieto-Diaz, "A Domain Analysis: An
Constructing Software from Reusable introduction." ACM Software Engineering Notes I
Components." IEEE Transactions on Software vol. 15, no. 2, pp. 47-54.
Engineering, Software Engineering, vol. 10, no. 5,
pp.564-74, September 134. [241 Ruben Prieto-Diaz, "A Doma.; Analysis

Methodology." Proceedings of the 13th Int.
[15] James M. Neighbors, "Report on the Domain Conference on Software Engineering, pp. 138-140,

Analysis Working Group Session." Proceedings of May 13-17, 1991-Austin, Texas, USA.
the Workshop on Software Reuse, Rocky
Mountains Institute of Software Engineering, [25] Vaclav Rajlich, Nicholas Damaskinos, Wafa
Boulder, CO. October 1987. Korshid, Panagiotis Linos, and Joao Silva, "Visual

Support for Programming in the Large." IEEE I
[16] David L. Parnas, "On the Design and Development Conference on Software Maintenance, 1988.

of Program Families." IEEE Transactions on
Software Engineering, vol. 2, no. 1, pp.1-9, March [26] Vaclav Rajlich, Nicholas Damaskinos, Wafa
1976. Korshid, Panagiotis Linos, and Joao Silva, "An

Environment for Maintaining C Programs."
[17] David L. Parnas, "The Influence of Software CASE'88 Second International Workshop on

Structure on Reliability." Current Trents in Computer-Aided Software Engineering July 12-15,
Programming Methodology: Software Specification 1988, Cambridge, Massachusetts, USA.
and Design vol. 1. ed. R. Yeh, Englewood Cliffs,
NJ: Prentice-Hall. [27] Vaclav Rajlich, "Decomposition/Generalization

Methodology for Object-Oriented Programming."
[18] David L. Parnas, "Designing Software for Ease of To be published in the Journal of Systems and

Extension and Contraction." IEEE Transactions on Software.
Software Engineering, vol. 5, no. 2, pp.128-138,
March 1979. [28] James Rumbaugh, Michael Blaha, William

Premerlani, Frederick Eddy, William Lorensen,

[191 David L. Parnas, Paul C. Clemens and David M "Object-Oriented Modeling and Design."
Weiss, "Enhancing Reusability with Information Prentice hall, Englewod Cliffs, New Jersey 07632,
Hiding." Proceedings of the Workshop on 1991.
Reusability in Programming, Stratford , CT: [IT T
Programing.

72!

• • a II | l I l l l lI

I
I

[291 Joao Silva. "Vertical Reuse in Software Tools: A Graph operations are used to build and
Case Study, PhD Dissrtation, Department of manipulate the architecture of a program. By using these
Computer Science, Wayne State University, 1993. operations, graphs may be created, deleted, and modified.

Specially designed canvas windows are used to display
these graphs. In association with the graph editor, we
implemented Sugiyama's algorithm to display

Appendix A hierarchical graphs.

New: Starts a new graph editor

EDG Requirements window and initializes the
graph database.

EDG is an experimental software tool used in Add: Adds objects to the graph

the development of C++ programs; it enforces the use of database. In EDG, objects can

the Object-Oriented Decomposition and Generalization be of two kinds: classes andE methodology (27). With EDG, C++ programs can be relationships between classes

displayed and edited in two forms: class diagrams and - use or inheritance

code. A more detailed &cription of the EDG follows, relationships.
Delete: Removes objects form the

Six major threads constitute ED:database.
Rename: Changes the name of an

- the project manager thread object.
- the graph editor dread Select: Changes the active object.

- the view manager threa Color. Changes colors of objects.

• the code analyzer thread Hide: Removes an object and

- the browser thread associated relationships from a
- the code generator thread graph. These objects are not

displayed, but are kept in the

database,
Move: Changes object positions in a

The project manager subsystem implements the displayed graph.

commands which operate on entire projects (project information from a file which

descriptions and files). A brief description of each contains the description of a

commands follows,
graph.

I Open: Opens an existing projct or Save Graph: Writes the graph description
starts anew project. in a named file for futureI strts newprojct.retrieval.

Close: Resumes the currently loaded

project.
Add File: Adds a new file to the project The View Manager

description.
Remove File: Removes a file from the project "View" operations are used to control and

description. display the information in text and canvas windows.

Save: Updates the current project However, "view" operations do not affect data itself.

description in a file. The view manager implements commands which control

Save As: Updates the current project the presentation of the information within a canvas

description in a new file window and/or a text window.
-- possibly the same. New: Creates a new instance for the

The Graph Editor Sview manager.
rShow File: Displays a named file in a text

window. This file cannot be

7

modified using the view information about class methods and variables may also
manager. be found.

Show Graph: Displays a named graph on a
canvas. This graph cannot New: Create a new instance of the
be modified using the view browser and initialize the browser
manager. database.

Text Editor. Starts a text window that can Show Class: Reads all classes from the
be used for documentation. database and shows all

Print File: Sends a text file to the printer, classes in a panel. When any one
Snapshot- Retrieves information of some of the project classes is selected,

portion of a displayed graph, its declaration file is opened
saves it in a named file, and and displayed on a text-window.
displays that portion The selected class becomes the
enarged."active class."

Select Class: Changes the current "active
class." The selected class text is

The Code Analyzer validated against class names
stored in the database. If the class
name is valid, then the active-

This thread contains commands used in the class is changed. Otherwise, an
extraction of architectural and procedural information of error message box is shown
C++ programs. The analyzer uses a parser to scan C++ to the user.
code files and identify C++ code components. In Class Info: Returns information about the
addition, the analyzer searches for relationships between "active class." This information
C++ code components. Examples of these code is shown on the information
components include classes and functions. While pawl and includes:
examples of relationships between code components -class name
include: "use" and "inheritance." -- " e" lationship

-"used-by" relationship
The menu interface to this thread includes the -- "isa_subclass" relationship

following operations: -- is a_superclass" relationship
-- inhertance path

New: Create a new instance of the analyzer. -header file
Initialize the analyzer database. -- number of "use"

Analyze: Start the interface template for the relationships
user to type the filename(s), activate -- number of "used-by"
the parser, and populate the analyzer relationships
database. Declarations: A text window is shown, which

Display: Invoke the Sugiyama's algorithm to opens the declaration file for the
compute object positions and display active class. To select the active
the graph. class one may use the mouse and

highlight a class identifier or may
The Browser highlight a function identifier.

Either way, the declaration file for

The browser, helps programmers to understand that class or function is shown in
object oriented software systems written in C++. To a text window.
achieve this goal, this thread provides information about Definitions: Similar to "declarations." Instead
the set of classes and files comprising the system and of displaying the header file, it
relationships among them. With the set of operations displays the definition file for the
described below, users of this thread may "browse" selected identifier.
through the system based on relationships among Show Info: This operation is used to give a
classes, files, and identifiers. Useful cross-reference summary of information about an

74

I
I

identifier. Identifiers may be 4. Identifying constraints.
classes or functions. The 5. Specifying optimization criteria.
following information related to
identifiers is preserved in the To provide support for 1 and 2, we provide a
database and displayed when this data flow diagram editor. To provide support to 1 and 4,
operation is selected: we provide a data dictionary editor. To support 3 and 5

- identifier_name we provide a describing functions editor. We continue
-isoverloaded this discussion with a description of the operations
- variableor_function required to support each one of the editors.
- type
-declaation-fie The Data Flow Diagram Editor

I - definitonfinle

- psnaneWetypes

- declaratimdfieindex Data elements flow from one process node to
I- definition file, index another process node wher'e they are processed. Data flow

-- comments diagrams consist of four graphical components:

- calLrelationships Processes, data flows, data stores, and actors. Processes

-called_fromrelationships denote functions of the system. Data Flows represent
I total._numberofcalls data elements flowing between process nodes. Data
-- number_of calls_-fom stores represent places where data elements are stored.

And, actors are independent objects that produce and

The Run Project consume values -- source or sink of data.

Data flow diagrams depict a system from the
The run project contains the set of commands data's point of view. Using data flow diagrams, the

used to interface EDG with other tools (eg: compilers, analyst is able to show how data flows in a system, how
d t n code gompiters, sstoem
debuggers, and code generators), data is transformed by the system, and where to store datain the system. To help us with this data flow

Generae: Generates C++ code skeletons for description, we provide the following data flow diagram
classes, editor.

Make: Generates a Makefile for an entire
project based on project New: Starts a new graph editor window

descriptions, and initializes the data flow
Compile: Executes the make file. diagram database.
Execute: Executes the object code for the Add: Adds objects to the graph database.

project. In EDFD, objects can be of four
Debug: Invokes a symbolic debugger -- For kinds: processes, data stores or

example dbxtool. file objects, and actor objects. In
addition, there are association
objects: data flow between
processes, data flow that results in

Appendix B a data store, and control flow. We

should also provide the possibility
of having composition of data

EDFD Requirements values, decomposition of data
values, duplication of data values,

EDFD supports: and access and update of data
values

1. Identifying input and output values. Delete: Removes objects from the
2. Using data Flow Diagrams as needed to show database.

functional dependencies. Rename: Changes the name of an object.
3. Describing what each function does. Select: Changes the active object.

75

Color Changes colors of objects in a
specific data flow diagram. New: Starts a new describing

Hide: Removes an object and associated functions instance.
associations from a data flow Add Function: Inserts a new function
diagram. These objects are not description in the database.
displayed, but are kept in the Delete Function: Removes an existing
database. function from the database.

Move: Changes object positions in a Show Functions: Displays a specific
displayed graph. function in read-only text

Load Graph: Reads the information window.
from a file which contains Load Functions: Copies a specified set of
the description of a data flow function descriptions into
diagram, and displays it. main storage.

Save Graph: Writes the data flow Save Function: Stores an existing set of
diagram description in a named file function descriptions in a
for future retrieval, file(s) for future retrieval.

Print Function: Generate a file with a copy

The Data Dictionary Editor of an existing function
description and sends that
file to the printer.

Data flow diagrams are documented by a data Print All: Generate a file with a copy
dictionary. The data dictionary defines the meaning of of all function
each data flow, and data elements. To support this descriptions existing in the
activity we provide the following data dictionary editor database, sorts them, and

sends that file to the
New: Starts a new data dictionary. default system printer.
Add Entry Inserts a new object in the

data dictionary database.
Delete Entry: Removes an existing object

from the data dictionary
database

Show DD: Displays the data dictionary
on a text window.

LoadDD: Copies a specified data
dictionary into main
storage.

Save DD: Stores an existing data
dictionary in a file for
future retrieval.

Print DD: Generates a file with a copy
of an existing data
dictionary and sends that file
to the printer.

The Describing Functions Editor

Ultimately, leaf processes in the data flow
diagrams must be specified directly as operations. The
use of structured English. pseudocode, and/or any other
form of textual documentation is recommended. To
support this activity, we provide the following describing
functions editor.

76

Reengineering to Increase Maintainability and Enable Reuse

I Grady H. Campbell, Jr.

Software Productivity Consortium
2214 Rock Hill Road

Herndon, Virginia 22070

I As existing systems are changed to keep up with Reengineering of a system involves first the analysis
changing needs, their structure becomes less coherent and of the existing system, referred to as reverse engineering,
cohesive making it difficult and increasingly expensive to and then reformulation, restructuring, and modification of
make further changes. In addition, as the legacy of the system so that required changes are easier to make
complex automated systems grows while the available reliably. Reengineering may be needed for several
resources for upgrading or replacing them shrink, there is reasons:
increasing concern for finding ways to leverage these • Documentation of the system's requirements, design,systems as a base for new or improved existing systems. and implementation has either been lost or become
Reengineering is the concept of creating an improved unreliable because of subsequent changes to the im-system by judiciously reorganizing, revising, and extend- plementation. Original needs may not be well under-
ing an existing system. Reuse is a related concept in which stood. This makes it difficult and risky to change the
a set of existing similar systems provide the basis for a system because of uncertainties in how parts of the
product line of new systems. The Consortium's Synthesis system interact or why certain functions behave as
methodology integrates reengineering within the frame- they do.work of a systematic reuse-driven process that promises
more cost-effective development and maintenance of * The needs served by the system have changed
software and systems in the future, sufficiently that the original design is no longer a

good solution. Aredesign is required for the system to

Motivations for reengineering continue to be acceptable to its users.

Sis cThe technology upon which the system is based has
Reengineering is commonly viewed as a variant of become obsolete. To accommodate improved

system maintenance. Maintenance differs from other technology and better serve user needs, the system

operational system that requires modifications to correct

errors, to support customer needs more effectively, or to In the worst case, a system may have all of these
satisfy changed needs. Over its useful lifetime, a system problems. Although reengineering can accomplish its
must be repeatedly modified to stay responsive to the intended purpose of creating a better structured, more
needs of the customers it is intended to serve. However, maintainable system in the short run, it may do nothing to
modifying a system in response to changing needs avoid recurrence of the problems that led to the need for
inevitably undermines the conceptual and structural reengineering in the first place. If recurence of these
integrity and subsequent modifiability of the system as problems is not somehow prevented by the reengineering
needs continue to change. Reengineering is distinguished or avoided in subsequent maintenance of the system, then
from other forms of maintenance because it presumes the after some time reengineering will again be necessary.
need for a redesign of the existing system to make current Taking a different view of reengineering can reduce
and future changes more cost-effective and less error- recurrence of these problems.
prone. It is a type of maintenance because the system is A framework for reengineering
not rebuilt from scratch but is derived in large part from
the artifacts of the existing system. The driving concern for reengineering is the ability to

create a system that can be easily changed as customer
This material is based in part upon work funded by the Virginia needs change. The driving concern for reuse is the need to
Centerof Excellence for Software Reuse and TechnologyTransfer, field multiple systems or system versions that satisfy
sponsored by the Advanced Research Projects Agency under Grant
MDA972-92-1-t018.Thecontent does not necessarily reflect the similar yet differing needs, of one or several customers,
position or the policy of the U.S. Government, and no official without having to repeatedly develop similar software
endorsement should be inferred from scratch. In reality, these two concerns are the samne:

* n77

the ability to produce similar systems, whether serially or The essence of our approach is that development i
concurrently, to satisfy similar needs, should result in a family of similar systems from which it

is possible to mechanically derive alternative members of
Looking more closely at the possible motivations for the family for rapid delivery to customers. A family is not

reengineering a system reveals several alternative just an abstract conception but a concrete formulation. It
objectives: is designed and constructed as the means for systematic

"• To make changes in the functioning or operational production and modification of systems to satisfy diverse
properties (e.g., reliability, performance) of an or changing needs.

existing system A Synthesis process, as depicted in Figure 1, consists
"To make it easier or safer to make current and future of two major activities: domain engineering and applica- Ition engineering. These activities, described briefly here,changes in an existing system are defined fully and in detail in [4], along with extensive

"* To use existing systems as a foundation for similar practical guidance.

future systems Application engineering is concerned entirely with
the needs of a particular customer and with producing a

When reengineering is motivated only by the first of system that effectively addresses those needs. Applica-
these objectives, the situation is not particularly different tion engineering prototypically consists of four I
from that of conventional development and maintenance. subactivities:
In this case, the objective is most likely addressed
adequately by traditional approaches to maintenance in Project management. Planning, monitoring, and
which the architecture of a system is upgraded or controlling an application engineering project to
particular data structures or algorithms are replaced by respond to customer needs.
improved alternatives. The other two objectives warrant a * Application modeling. Formalizing customer needs
different approach based, the Consortium believes, on the and analyzing alternative solutions in terms of a set of
concept of program families [1, 2]. decisions that are sufficient to distinguish a particular

When the objective of reengineering is either to make instance of a supported family of systems.

a system easier to change or to use legacy systems as a a Application production. Producing a system by
foundation for future systems, Dijkstra's and Parnas' means of a prescribed mechanical selection, adapta-
concept of orienting development to a family of systems tion, and composition of reusable components, di-
provides significant opportunities for leverage in compar- rected by the decisions made in application
ison to a traditional, single-system orientation. Even a modeling.
single system inevitably evolves through multiple ver- Delivery and operation support. Installing a system
sions because of poorly understood requirements or to
accommodate changing requirements or technology. The its operational environment, training users, assisting
Consortium's approach to reengineering is based on them in effective system operation, and identifying

families of systems, within the framework of the changes that will make the system a better fit to

Synthesis methodology for reuse-driven software pro- customcr needs.

cesses [3]. Reengineering within a Synthesis process Domain engineering focuses on how to make
comprises conventional reverse engineering capabilities application engineering most effective in meeting both
for the analysis of existing artifacts combined with an the objectives of the business and the needs of the targeted
innovative reuse-driven approach to creating and using market. To achieve this, domain engineering formalizes a
families of systems as a basis for both the development family of systems as a domain by identifying the common
and maintenance of systems. and varying features of the type of systems that the market

requires. Typically, domain engineering supports multl IA reuse-driven software process pie application engineering projects. Domain engineering
consists of five subactivities:

An organization's primary motivation for instituting a

Synthesis process is that the organization perceives itself Domain management. The planning, monitoring, and
as having expertise in and serving the market for a control of the domain engineering effort. This en-
cohesive business area. The market has the need for either compasses coordination with application engineer-
a single evolvingsystem or several similar systems, which ing project management -nd concern for all facets of I
in either case offers a basis for conceiving a family of process management including configuration
systems. management and quality assurance disciplines.

794

I

I * Domain definition. Establishing the scope and extent producing all of these when a system is needed. Creating a
of the domain and formalizing the variabilities that family of systems means creating a representation of each
differentiate instances of the targeted family of type of relevant artifact as a family in its own right.
systems. Furthermore, artifacts may be made up of components

0 Product family engineering. Formalizing standard- which are in turn instances of component families. Ali

ized (adaptable) requirements, design, and imple- essential objective of a Synthesis process is to create a

mentation for the family of systems and all associated material representation of all necessary system, artifact,
deliverable and supporting work products. and component families.

e eThe essence of a family in this sense is that it represent
r s e . i dtstandardized appliengineering process and a set of 'similar' individuals, by which we mean

sreatandardiz ated a upplatifon enin g perfor cess ad individual things that are identical relative to a specifiedcreating automated support for its performance. The set of traits. A family is formulated as an abstraction that

prototypical description of application engineering denotes a set of similar individuals and identifies the

described above is tailored to suit the specific needs panticua s tt determi neimembership in the
of the domain and associated projects. particular traits that determine membership in the family.

Materially representing a family requires expressing not

Project support. Assisting application engineering only the substance of similarity but, equally important,
projects to make effective use of the domain. This in- the details of variation (out of which come distinct
cludes validating whether the domain is responsive to individuals). Variations are additional traits that together
project needs and identifying needed improvements make each of the individual members of a family unique
"and changes. and correspond to decisions that are necessarily deferred

A domain is a formalization of a family of systems and until a particular family member (i.e., individual system,
an associated process for producing members of the artifact, or component) is needed. Production of an

family. A system is represented by a set of artifacts (i.e., individual then reduces to resolving these deferred

work products). A system is not just a collection of decisions as needed to designate and mechanically derive

implemented (i.e., code) components but includes the corresponding member of the family.

associated requirements/design/user documentation, test Methods for creating and using component families
materials, management plans, and any other artifacts that are referred to as metaprogramming [5]. A metaprogram-
result from development or support the use or ming technique specifies how to create a component
maintenance of the system. Synthesis is concerned with family and subsequently transform it into concrete

Business Objectives I Domain Knowledge

Domain Engineering

Application Feedback
Engineering Process (Customer and

Supr Project
* Needs)

Customer
Requirements

Customer - - - - ---- - -Appli,ýation Engineering

Key:

=-- Activity

Application Product : Product
-* Product flow

- -- t Information flow

Figure 1. A Synthesis Process

* 79

instances. Mechanisms such as C preprocessor constructs, Just as the emphasis in Synthesis is on creating a
Ada generics, and form-letter capabilities of word family of similar systems, the result of reengineering
processing software have proven sufficient for a viable within Synthesis should be not just an 'improved' variant
Synthesis process. Other, special-purpose mechanisms, of the legacy system(s) but a family of similar systems
which are more complete but experimental, may provide from which alternative instances of the family can be
additional leverage. derived. Derivable instances include alternative systems

Experience with Synthesis that are equivalent to an initial legacy system but
improved in some way as well as systems that are useful

The Synthesis approach, until now emphasizing reuse hybrids or modifications of initial legacy systems.
with only limited concern for reengineering, has been
used extensively by several industrial organizations. Two Within Synthesis, reengineering is not viewed as a

organizations, in particular, have contributed significant- separate activity. Since a Synthesis process is meant to be

ly to understanding Synthesis and how to achieve a comprehensive engineering process, many of the
effective reuse: necessary aspects of reengineering are already a part of

the process. Currently, whenever a Synthesis activity
SRockwell Command and Control Systems Division. involves the creation of a work product, it accommodates
Rockwell began using Synthesis experimentally in the analysis of existing systems as one source of the
1990. They have now progressed to the point that information in that work product. For example, require-
they are evaluating its use in support of a substantial ments specifications of legacy systems can be a source for
business area. Their experience is described in [6]. determining how best to express the requirements for the

* Boeing/NAVAIR STARS* demonstration project. family as a whole. Similarly, test cases used in regression
Boeing evaluated and selected the Synthesis method- testing of those systems can be a source for creating test
ology as the basis for its demonstration of megapro- cases to be used in testing future systems. Only the use of
gramming and reuse [7]. This experience is now reverse engineering capabilities need further elaboration
being transferred into trial use of Synthesis by the as integral elements of Synthesis activities. In large part,
Naval Training Systems Command of NAVAIR. this means the enhancement of the product family

in addition to these two examples, Synthesis is in engineering activity of domain engineering to describe

experimental use on projects in Martin-Marietta and explain the use of such capabilities.

Lockheed, and other organizations. Based on this experi- A family of systems can be derived initially from
ence, Synthesis is proving to be a viable and sound either a single or several similar legacy systems. Reengi-
approach for systematic reuse-driven software engineer- neering may be concerned with any and all of the work
ing. The experience so far in all of these is that a Synthesis products associated with a system. When a system is
process provides an effective capability for rapidly modified, changes are rarely limited to code components;
building multiple systems or system versions and subse- reengineering should facilitate coordinated change across
quently modifying them as customer needs change. We the entire set of artifacts associated with a system,
believe that Synthesis also provides an effective frame- including requirements, design, code, documentation,

work for systematic reengineering as an aid to leveraging and test support.
existing systems in producing new or improved softwareIand systems. One aspect of a Synthesis process is the design andimplementation of component families. This takes the

Reengineering within a Synthesis process form of reengineering when components are available

An organization institutes a Synthesis process because from legacy systems. Reengineering of legacy compo-
it has expertise in a targeted business area and intends to nents to create a family can start with a bottom-up analys's
serve the associated market. As a rule, requisite evidence of similarities among existing components. However, in a
of sufficient expertise to justify such a business commit- Synthesis process, analysis is guided by a top-down
ment is thatthe organization has produced systems forthis specification of component families based on an orga-
market in the past. Such legacy systems are a good initial nization's business objectives. The challenges in creating
source from which to create a domain as the formalization a viable family by reengineering are to identify compo-
of a family. For effective use of legacy systems, nents that fit sufficiently within the scope of the
reengineering is an integral element of the Synthesis envisioned family and to distinguish essential variations
process. among identified components (i.e., driven by sound

customer requirements or engineering concerns) from
"STARS is the Software Technology for Adaptable Reliable Systems incidental (and therefore unneeded) variations. The

program of the Advanced Research Projects Agency. leverage from this approach to reengineering comes from

80

I

recognizing that distinguishable instances can be derived * Understanding the real requirements for a system so
from the unified abstraction of a family. that effort is not wasted solving the wrong problem

System reengineering as a generalization of * Evaluating alternative solutions and making
software reengineering engineering tradeoffs to attain a proper balance

among system properties such as performance,
System engineering is concerned with hardware, reliability, development costs, and operating costs

software, and manual procedures Pnd the interactions . Verifying process performance and intermediate
among them. Much of the interest in reengineering has work products and validating the final product to en-

focused on software because of the increasing cost of sure that the problem has been solved properly and
maintenance associated with software changes. However, correctly
as defense spending shrinks, the useful life of individual
systems grows longer. To respond to new and changing are similarly a concern for reengineering. In addition to
needs, there is a corresponding need and benefit in these common concerns, reengineering raises additional
reengineering complete systems comprising hardware, issues, specifically an extended verification problem and
software, and manual procedures. Reengineering a sys- a deoptimization problem in reverse engineering. These

tem can involve coordinated changes to any of: problems are inherent to reengineering, regardless ofI approach.

i * The system architecture, including physical and Whenever a system is constructed, it must be

informational connections and the number, identity, validated to determine whether it satisfies the customer's
software components actual needs. Because in the context of reengineering an

operational system already exists, it is reasonable to
* The design and implementations of individual expect that validation reduces to a problem of verifying

hardware and software components the replacement system as the equivalent of the existing
system. When the replacement system is supposed to have

. The business/organizational and user processes identical functionality to the current system, this equates
within whichthe hardware/software system operates to a total regression test of the replacement system.

Another dimension of reengineering at the system However, creating a replacement system with identical

level, in contrast with the software level, is that the functionality is seldom feasible or necessary; creating
tradeoff between hardware, software, and manual proce- only near-identical functionality is usually sufficient and

dures can be reconsidered. As technology advances, it less costly. Unfortunately, a divergence from identical
becomes easier to move software functions into custom functionality makes regression testing much more diffi-

hardware. Alternatively, moving a hardware function into cult. When, as is often the case because of changed needs,
software can increase flexibility for modifying it in the replacement system also must differ in certain
response to changing needs. Similarly, as system usage functionality from that of the current system, the problem
matures and manual procedures become more standard- takes on the characteristics to a greater or lesser degree of

ized, it becomes feasible to implement more of them in a complete revalidation. For reengineering to be practical,
software. the effort of not only development but of verification and

validation as well must be significantly reduced as
As with software-oriented reengineering, the goal of compared to that of completing the system from scratch.

system reengineering should not be narrowly to recon- Reengineering generally requires the reverse
struct a system to meet current needs but also to facilitate engineering of a system for recovery of missing or
and reduce the costs of future changes as well. From this obsolete design information or to establish precise,
perspective, significant leverage arises from considering as-implemented requirements. Unfortunately, particular-
overall system concerns, as well as those related to each ly in the case of software, the as-implemented structure is
hardware, software, and procedural component of a often an optimized equivalent of the intended design. For
system, within a reengineering approach. Furthermore, example, real-time embedded software usually entails
the similarity of motivations for reuse and reengineering responding to asynchronous events in the environment;
justifies a unified approach for systems as well as for logically, this corresponds to an architecture consisting of
software. multiple concurrent processes. However, to satisfy strin-

Issues in reengineering gent performance constraints, such an architecture has
traditionally been implemented in a cyclic executive in

Most of the same issues that make system engineering which the logic of the processes is interleaved in a

a complex task, such as: nonobvious fashion. Trivial reverse engineering would

81I

not reveal the true logical structure of the software but References I
instead would describe a much more complex linear
structure. Reverse engineering techniques must be devel- [1] E.W. Dijkstra. "Notes on Structured Programming."Structured Programming, O.J. DahI, E.W. Dijkstra,
oped that help discover the original requirements and and C.A.R. Hoare, Eds. Academic Press, London,
design while recognizing that the implementation is 1972, pp. 1-82. U
actually an optimization. [21 David L. Panas."On the Design and Development of

Conclusions Program Families." IEEE Trans. Software Eng., U
The Synthesis methodology for domain-specific

software development offers a comprehensive framework (31 Grady Campbell, Stuart Faulk, and David Weiss.
Introduction to Synthesis, INTRO SYNTHE-

for a reuse- and reengineering-based approach to revital- SIS PROCESS-90019-N. Software Productivityizing existing operational systems and producing new, Consortium, Herndon, Va., 1990.

more maintainable systems. Issues remain in the specific [41 Software Productivity Consortium. Reuse-Driven
methods and technologies of reengineering, reuse-driven Software Processes Guidebook, SPC-92019-CMC.
product lines, and process automation. However, based on Software Productivity Consortium, Herndon, Va.,
extensive trial use by industry and government, the 1993.
essential process framework is sound. Further work will [5] Grady Campbell. "Abstraction-Based Reuse Reposi-
demonstrate the benefits of taking such a product line tories." AIAA Computers in Aerospace VII Confer-
perspective whether the motivation is to reduce the costs ence, Monterey, Ca., 1989, pp. 368-373.
of new development or the costs of maintenance and [61 James O'Connor, Catharine Mansour, Jerry
whether the focus is on software or on systems. Turner-Harris, and Grady Campbell. Exploring Sys- I

tematic Reuse for Command and Control Systems,
Acknowledgments SPC-92020-CMC. Software Productivity Consor-

Rich McCabe, Steve Wartik, and Roger Williams each tium, Herndon, Va., 1993.

provided helpful comments that greatly improved this [71 B. Freemon. STARS PSA SOI Experience Report, I
paper. D495-20154-1. The Boeing Company. 1993.

I
I
I
I
I
I
I
I
U

82 I

I
I
I A Reuse Approach To Computer-Assisted Software Reengineering*

Daniel E. Wilkening Marc J. Pitarys
Joseph P. Loyall Kenneth Littlejohn

TASC USAF Wright Laboratory
Reading, Massachusetts 01867 Wright Patterson AFB, Ohio 45433

3 Abstract today's standards, lacks structure and is difficult
to understand.

The United States Air Force's Wright Laboratory
and TASC are developing an environment for the * Employee turnover has reduced the amount of un-reengineering of software from one language to an- derstanding and "intimate" knowledge of the sys-other. Our approach engineers a program in the new tern.
language by reusing portions of the original implemen-
ration and design. We use reverse engineering to fa- TASC, under the auspices of Wright Laboratory, is
cilitate understanding, design recovery, viewing, and currently developing an environment for reengineer-
navigating of the subject system. We use computer- ing software from one language to another as part of
assisted restructuring to aid the engineer in developing the Avionics Software Reengineering Technology (AS-
a program using design and implementation informa- RET) project. We are initially concentrating on the
tion recovered from the subject system. We use au- reengineering of avionics simulation software written
tomatic translation of low-level program statements to in FORTRAN to Ada, but the environment is designedfree the engineer from the tedium associated with syn- so that additional languages can be supported in thetactic differences between languages. This paper de- future.
scribes our reengineering process model, the design of Under the ASRET project, we have performed anour reengineering environment, and the current state extensive investigation of existing reengineering 3nd
of the implementation. reverse engineering processes, techniques, and tools

[23]. Based upon this study, we have developed a pro-
cess model that defines reengineering in terms of (non-

1 Introduction destructively) engineering a new program by reusing
the design and implementation of the original pro-

The reengineering of software from one language gram. The process model is consistent with well-
to another is becoming a necessity as Department of accepted reengineering models [4, 51. and improves
Defense organizations strive to modernize and improve on them by dividing automated restructuring from re-
the maintainability of their systems while avoiding the structuring that requires human insight and by defin-
excessive costs of new development. Systems that have ing restructuring tasks in terms of modern software
been in use for years often incur large maintenance engineering practices.
costs [6] for a number of reasons, including: We have designed and are currently implementing

a reengineering tool (RET) that automates portions
" Continual maintenance has made the current im- of the process model an9 incorporates selected tech-

plementation and original design inconsistent, niques from the study. With our system, the engi-
made the code harder to understand and error- neer non-destructively develops a new Ada program
prone, and made the documentation out-of-date, by reusing parts of the original FORTRAN designSTeand implementation, as opposed to changing the orig-"They are written in languages that, while once inal FORTRAN into Ada. For example, an engineer
popular, have fallen out of favor. The limited se- can run an automatic packaging routine that extractslection of support tools for these languages, the FORTRAN subprograms, translates their declarations
corresponding expense of these tools, and the into Ada, and arranges them into packages based uponshrinking pool of qualified programmers to main- their data usage. The engineer can then rearrange thetain the software adds to the expense of mainte- resulting Ada subprograms interactively. When satis-
nance. fled with the package structure, the engineer can di-

" They were developed without modern software rect the system to automatically translate statements
e imptenienti f the wrr d
engineering practices, resulting in code that, by in the bodies of the subprograms. We are currently

*This work is sponsored by the Avionics Directorate of Most existing reengineering tools fall into one of
Wright Laboratory under Contract #: F33615-92-D-1052. two categories:

* 83

"* Reverse engineering and redocumentation tools After preliminary restructuring is complete, the ii- I
[8, 23, 20] that present different views of the struc- proved source code is analyzed and representations of
ture of a program, such as control flow and data the program are constructed. Some of the representa-
flow graphs, to aid in program understanding and tions, e.g., abstract syntax graphs (ASGs) and syn- I
manual reengineering. bol tables, are machine- readable representations used

only by automated restructuring and redesign tasks."* Other tools [18, 24] support automatic transla- Others, e.g., flow graphs and structure charts, aid in
tion from one language to another or forms of program understanding, redocumentation, and man-
automated restructuring, such as the removal of ual restructuring. For manual restructuring, the set
GOTOs. These tools require little human inter- of representations will certainly contain a source code
action but, because of this, provide little support listing.
for design recovery or improvement. The restructuring, redesign, and redocumentation

Our approach can be described as computer-assisted steps of the process model are performed multiple U
reengineering. It provides automated reverse engineer- times, each time building upon the results of the previ-
ing, redocumentation, and translation of low-level pro- ous pass. A multi-pass approach is necessary because,
gram entities, but also provides a combination of user in programs of reasonable size, it is easier and less 1
interaction and automated analysis to reorganize pro- error-prone to reengineer a program in stages, verify-
gram statements and data into new modules. The ing the program after each pass. Restructuring, i.e.,
RET will relieve the tedium associated with syntactic changing the structure of the program without chang-
minutia, i.e., differences between the source and target ing its functionality, should be performed first, possi-
programming language syntax, and allow the engineer bly in several passes. These passes should perform the
to concentrate on the more important design and im- following steps:
plementation decisions that will make the reengineered * Macro control restructuring - Grouping state-
system more maintainable. ments and control structures of the programteThe rest of this paper is structured as follows: Sec- into modules, such as procedures, functions, andtion 2 introduces our reengineering process model and packag es. s u des ro ve ring f u les of
compares it with existing reengineering process mod- packages. This includes recovering modules of
els. Section 3 describes the RET design. Section 4 the original program, generating new modules,
describes the current state of the RET implementa- and specifying a declaration nesting structure fortion. Section 5 presents some concluding remarks. modules.

* Macro data restructuring - Grouping of data
2 The Reuse-Based Reengineering items, such as types, variables, and constants, and U

Process associating them with modules created during
macro control restructuring. This includes recov-

Our reengineering process model as applied to the ering data groupings of the original program, cre-
Our eengneeing rocss mdelas aplid totheating new groupings, and creating abstract dataI

RET domain is illustrated in Figure 1. Steps in the ting nd rords.
process label the boxes in the figure and inputs and types and records.
outputs for each step label the icons between boxes. * Micro control restructuring - Manipulation of
The process model specifies a set of tasks (the steps individual control structures. This includes
of the process) that should be performed and the se- the translation of individual statements and
quence in which they should be performed to reengi- functionality-maintaining alterations, such as
neer a program in one language, e.g., FORTRAN, to code lifting [1].
another language, e.g., Ada. The source and target
languages can be the same if the goal of reengineering 9 Micro data restructuring - Manipulation of indi-
is simply to improve the structure of the program with- vidual data items. This includes actions such as
out moving to a different language. The process model translation, changing names, changing types, cre-
also specifies the information necessary and desirable ating symbolic constants, and changing the scope
to support these tasks. The process model does not of variables.
specify how the tasks are to be performed, i.e., they
might be automated (as many are in the RET) or they Macro control and data restructuring should be per-
might be performed manually. formed first to develop a modular structure for the

The first step in the process model is to perform target system, followed by micro control and data re- I
some preliminary restructuring of the source code of structuring to restructure individual components of
the original implementation. Preliminary restructur- the program.
ing improves the layout of the source code by remov- After restructuring is complete, code in the target
ing unstructured program constructs, such as GOTO language should be generated and the program should
statements, dead code, and implicit types. Prelimi- be tested to ensure that the restructuring did not in-
nary restructuring is separated from the later restruc- troduce any errors or undesired functional changes.
turing step because it can be completely automated by The test data of the original program can be used and
commercial tools, and placed first in the process model the results compared with the results of testing the I
because the structured version of the source program original program. In many cases, the test data will
is usually easier to analyze, understand, and restruc- need to be reengineered to work with the reengineered
ture. program. Any differences in the results of testing will

.4 I

I

r - -- -SRestructuring

S~Redesign
(Latet Passes)

Redocumentation 7I I

I INow Representations
Of oPmgrm I- - - - -- - - - - of Program

A Analyze Ada Gene Fodwae dr-oAPAN Code (Rev.ere(owd
codEngineering) I Engineering)

(R~everseEgierig

If I Test Tsege

r -,

I' I<

sldrfaid s

1 P ~ Structured

Source Code L. _

TsResuts

3 ohi~ • e i Configuration ManagementI

3 Figure 1: The reengineering process model.

indicate the introduction of an unexpected functional control, macro data, micro control, and micro data,
S~change during restructuring. Coverage analysis should but have different goals. Further restructuring is per-Ibe performed during the testing of the target code be- formed to further improve the structure of the pro-

cause restructuring could have introduced or altered gram. Redesign has the goal of changing the func-
control and data characteristics of the program. When tionality of the program, e.g., to correct design flaws

S~an error in the target program is indicated, the pro- or improve the design. If the target program codeIgram can be corrected by amending the target code was edited to correct errors indicated during testing.
directly or by restructuring the representations and the code is analyzed to generate representations before
regenerating the target code. subsequent restructuring and redesign is performed.

S~Redocumentation is performed simultaneously with
Once the program has been restructured and a func- the restructuring and redesign steps, e.g.,

tionally equivalent program in the target language

has been created, the engineer can perform additional * The generated representations can be saved and
S~restructuring and redesign actions on the program. serve as documentation of the program structureIThese steps use the same set of actions, i.e., macro and design.

3I H I

m

* The engineer can add comments and annotations the Symbol Table (ST). Secondary internal represen- I
during restructuring and redesign as he gains in- tations (SIRs) are derived from the PIRs. The SIRs
sights about the code or design. are the underlying data structures for the views pre-

sented to the engineer. The RET provides six views
The RE'1' reengineering process model includes for each side:

modern software development processes, such as con-
tinuous testing, iterative restructuring and redesign, * Source Code Listing (SCL) - displays the FOR-
and configuration management. The process model is TRAN or Ada source code
a specialization of the Chikofsky-Cross process model
[5, 8]. The entire Chikofsky-Cross model is repre- * Declaration Diagram (DED) - displays the pro-
sented, although there are the following changes: gram declaration nesting structure

" Inclusion of program management extensions to mCal Diagram (CD) - displays the subprogramthe process model [4], such as configuration man- calling structureagemn-t and testing.

" Separation of easily automated steps, such as pre- * Data Flow Diagram (DFD) - displays how data
liminary restructuring, so they can be addressed flows through the program
by commercial tools. b Hypertext Annotations (HA) - displays trees and

" Decomposition of Chikofsky-Cross steps, such as networks of textual commentary provided by the
restructuring being decomposed into macro con- engineer
trol, macro data, micro control, and micro data
restructuring. * Data Dictionary (DD) - displays various cross ref-

" Explicit introduction of the iteration steps that erences

are implicit in the Chikofsky-Cross process. 3.2 The RET Architecture

3 RET Design Overview Figure 2 shows the RET architecture. It depicts

The Reengineering Tool (RET) assists the software the organization of major RET cemponents, and in-
TheRengineerinunderstanding Tool (si s the softwcre dicates the data flow relationships among them. Theengineer in understanding and improving the structure Preliminary Restructurer (PR) performs control flow

of an avionics software support system while translat r estructur er (oderfor control n
ing its source code from the source programming lan- restructuring. The Source Code Processor (SCP) gen-
guage (FORTRAN) to the target programming lan- erates the LHS PIRs.

guage (Ada). The engineer constructs the RHS PIRs using the
The RET comprises two distinct logical parts called Packager (PACK) and Transformer (TRAN). The

the Left-Hand Side (LHS) and the Right-Hand Side Representation Generator (RG) creates the SIRs on
(RIIS). The LHS provides views of the original FOR- both sides from the PIRs. The User Interface and
TRAN program, or subject system. The RHS provides Display (UID) creates the corresponding views, and
views of the Ada program being developed, i.e., the pro,.ides the means by which the engineer interacts
target system. The LHS allows the engineer to navi- with the views on both sides and alters the views on
gate and view aspects of the subject system, but does the RHS. The Transformer implements the changes
not support changing the subject system. The RHS by transforming the RHS PIRs, and the Representa-
supports constructing, refining, viewing, and navigat- tion Generator propagates the changes to the RHS
ing the target system. The engineer constructs a ba- SIRs. The User Interface and Display refreshes the
sic structure for the RHS (macro restructuring) using RHS views in response to the changes.
information extracted from the LHS. Once the basic The File System Interface (FSI) manages external
structure of the RHS is established, the engineer re- persistent data and the Object Base (OB) manages
fines the target system (micro restructuring) on the internal data.
RHS. The views, PIRs, and SIRs are thus interdependent,

Semi-automated RET components support con- but the engineer need not be aware that the PIRs and
struction activities; they suggest largr-scale reorgani- SIRs exist. Any changes that the engineer makes to
zations of the subject system and populate the RHS the target system through the views provided by the I
with the basic structure of the target system. The User Interface and Disp ay may appear to affect the
components that support refinement allow the engi- views exclusively. The components are described in
neer to apply knowledge, which is beyond the RET, more detail below.
and human insight, which is lacking in the semi- I
automated support provided by the RET, to modify Preliminary Restructurer. The Preliminary Re-
and improve the RHS representations. structurer (PR) restructures the control flow of

the original FORTRAN source code by eliminating
3.1 Representations branches into or out of loops and decisions It elim- I

inates all GOTO statements, leaving only the pure
The RET provides two primary internal representa- structured programming constructs: sequence, selec-

tions (PIRs): the Abstract Syntax Graph (ASG) and tion, and iteration. We refer to this specialized form

.36

I

* ulo _

• *User User •User •User' View or Session
k4"u kW inpu Input Id.1110r

eA"". Userpum .Refresh Export Command
•User OPUMO Command , • alomLoad

Command

Transfor Refres
.Pe RG F$1

.IRS

Sessioe n tation
and State

.)LHS . L$ • RHS •Tran. *RHLS .1)6 LHS . S •IRS Inonneflon
PIRO PIR PIRO loimlattn PIRO and and end Sesion

Rules R HS AMS RHS and IO
1)4* PIRO Stias SIRS Informtation

FINS SIR
PIRO

Figure 2: The RET architecture.

of restructuring as control flow restructuring to distin- Representation Generator generates each SIR when its
guish it from the more general concept of restructuring corresponding view is requested by the engineer. Once
described in Section 2. the RHS SIRs are created, they may become inconsis-

The Preliminary Restructurer is applied as a pre- tent with the PIRs as the latter are restructured. The
processing step and the RET assumes, but does not engineer can request a refresh, which regenerates the
require, that the FORTRAN source code has already SIRs from the current PIRs or an environment vari-
undergone control flow restructuring. There are two able can be set so that SIRs are refreshed periodically.
reasons for this design. The first is that the subject The Representation Generator creates SIRs for the
system is not always poorly structured with respect DFD, CD, and DED views. The Representation Gen-
to control flow, so the step should be optional. The erator produces the DFD according to a method for
second reason is that the design allows any control flow creating Hierarchical Data Flow Diagrams given in [2].
restructuring product to be used without integrating It generates the CD in a straightforward manner from
it into the RET. information in the ST. The DED is a canonical orga-

nization of information in the ST.
Source Code Processor. The Source Code Pro- The Representation Generator does not create SIRs
cessor (SCP) reads the FORTRAN source code, per- for the SRC or HA views. The SRC view is produced
forms analyses, and generates the PIRs. The PIRs by the DIALECT [12] printer. Hypertext annotations
represent the structure of the program, semantic in- are provided by the engineer during use of the RET.
formation about program components, and data flow The RET allows the engineer to enter textual com-
information, ments, i.e., annotations, describing insights, recovered

The Source Code Processor will also detect ap- design information, or any other information. The en-
parent undefined-reference (U-R) data flow anomalies gineer can associate each annotation with any part
(DFA) on the LHS by static analysis of the LHS. A U- of the views, PIRs, or SIRs in a hypertext network.
R/DFA is an occurrence of a variable binding which is The HA is maintained by the Representation Gener-
referenced before it is assigned a value. An instance of ator and can be incorporated as in-line comments or
this involving some local VAX/FORTRAN variable in notes during code generation or redocumentation by
a subprogram is called an apparent U-R/DFA because the File System Interface.
it is not necessarily a data flow anomaly, even though
it may be detected as such by the static analysis. The Restructurer. The Restructurer (RES) component
(VAX/FORTRAN) variable enjoys static extent[21] comprises the Packager (PACK) and the Transformer
and may have been assigned a value on a prior call of (TRAN). The Restructurer helps the engineer develop
the subprogram. Ada variables have automatic extent an Ada program on the RHS by transforming and
[21], so it is important for the RET to identify these reusing components of the original FORTRAN pro-
situations and promote the variables to an appropriate gram from the LHS. The Pa-kager assists the engineer
enclosing scope. with macro restructuring. The Transformer supports

both macro and micro restructuring.
Representation Generator. The Representation All restructuring activities performed by the engi-
Generator (RG) creates the LHS and RHS SIRs. The neer using the Restructurer manipulate the PIRs ex-

87

I
clusively, by initially creating RIIS symbol tables and subject and target system views. The intermediate
abstract syntax graphs and then by populating and dat3 is stored in tile Ohje-t Baý-,c (OB).
transforming them. The information is entered by the
engineer through the views and, once the PIRs have 4e
been transformed, the SIRs are regenerated and the 4 Implementation
views are refreshed. Thus, the underlying PIRs and
SIRs are hidden from the engineer and it appears as 4.1 RET Development Environment
if the views are being transformed directly. W

We are developing the RET on a SPARCstation

Packager. The Packager constructs or initializes the 10/40 under Sun OS 4.1.3. The RET utilizes several
RHS ASG. It recognizes subprogram, object, and type commercial tools, including the following tools by Rea-
entities from the LHS PIR and requests the Trans- soning Systems:
former to transform them from the LHS domain model The REFINE language [14] - a high-level Ian-
to the RHS domain model, and to insert them into the guThe R Nanguae [14] -ahigh-levelslan

RHS ASG. (A domain model [3] is a kind of obyect- guage that includes object-oriented, rule-based,
based database schema.) The Packager builds an Ada and iterative characteristics. It includes an ob-

ASG on the RHS and calls upon REFINE/Ada [15, 16] ject database and an environment that facilitates
for semantic analysis. interactive development and testing.

The Packager groups the entities into Ada pack- DIALECT [12] - A tool for building parsers and
ages on the RHS by applying an interactive clustering code generators. I
technique based upon [7, 9, 10, 19]. The clustering
technique provides only a first approximation to a rea- * INTERVISTA [13] - A tool for building user in-
sonable Ada package structure. We expect that the terfaces, including mouse-sensitive windows and
engineer will need to interactively refine the generated menus.grouping.

REFINE/FORTRAN [17] - A tool that parses and
Transformer. The Transformer assists the Pack- analyzes FORTRAN code. It includes a printer
ager with both macro and micro restructuring. For for FORTRAN that generates source code from a
macro restructuring, the Transformer automatically symbol table and abstract syntax graph.
transforms low-level entities from the FORTRAN do- REFINE/Ada [16] - A tool that parses and ana-
main model to the Ada domain model by applying lyzes Ada code. It includes a printer for Ada that
rules that insert subgraphs and other information into generates source code from a symbol table and
the Ada PIRs corresponding to subgraphs and infor- abstract syntax graph.
mation in the FORTRAN PIRs. For micro restruc-
turing, the Transformer implements changes to low- A number of unsupported systems that can be
level Ada entities by allowing the engineer to select a used in the RET development, such as hypertext
portion of the Ada program under development and and fast dump/load facilities.
change it by applying a rule or by editing, deleting, or
inserting text. o

The engineer may indirectly provide input to the 4.2 Implementation of RET Components
Transformer by selecting portions of a view and then
interacting with the view to change its SIR. The Trans- We are implementing the components of the RET
former implements the change by transforming corre- as follows:
sponding portions of the PIRs while the Representa-
tion Generator propagates the results of the transfor- * Preliminary Restructurer - The SPAG com-
mation to the other SIRs. The User Interface and ponent of the plusFORT product [11] will provide
Display updates the views so that it may appear to the entire Preliminary Restructurer.
the engineer that the change was made directly to the
selected view. * Source Code Processor - REFINE/FOR-

TRAN provides most of the functionality for
the Source Code Processor component of the

User Interface and Display, File System Inter- RET. We have made slight extensions to RE-face, Object Base. The RET provides two external FINE/FORTRAN to gather and summarize infor-
interfaces. The engineer communicates with the RET mation needed by other RET components. RE-
throtgh the User Interface and Display (UID). The FINE/FORTRAN also provides most of the LHS
UID shows the views, prompts the engineer for input, PIRs.
receives commands and selections from the engineer,
and delivers them to the other components. Representation Generator - We are imple-

The File System Interface (FSI) is responsible for menting the RG component in the REFINE lan-
the storage and retrieval of persistent data. The FSI guage, using the REFINE Object Base for the
inputs the (FORTRAN) source code of the subject sys- SIR structures. REFINE/FORTRAN and RE-

tem, reads and writes intermediate data, and outputs FINE/Ada provide the Source Code Listing SIRs
the (Ada) source code for the target system and other for the LHS and RHS, respectively. I

88 1

" Restructurer- We are developing the RES com- We are developing a reengineering tool (RET) that
ponent using the REFINE language. The Re- implements parts of the process model. The RET
structurer will extract information from the LHS will assist in reengineering avionics simulat ion support
PIRs either interactivel i or automatically, and software written m itFORTRAN to Ada. The RET ewre
apply REFINE transformations to generate the phasizes increasing toe maintainability of tie software,
RHS PIRs. preserving its functionality, and improving the struc-ture of the code. The RET does not concentrate on

* User Interface and Display - We are develop- configuration management, testing, or preliminary re-
ing the UID using INTERVISTA. INTERVISTA structuring because there are many commercial tools
provides support for developing mouse-sensitive that can be used in conjunction with the RET to pro-
windows, menus, and diagrams. It is based upon vide those capabilities.
Allegro Common Windows. The RET will relieve the engineer from syntacti-

"• File System Interface - REFINE provides fa- cal minutia, i.e., differences between the source and
cilities for saving the state of a session and for target programming language syntax, that divert at-
storing some of the representations to disk. We tention from the more important design and imple-
are developing additional code to save the SIRs mentation decisions requiring human judgement. We
to disk. believe that by concentrating on tasks that are well-

suited to automated support, the RET will reduce the
"* Object Base - The object base is provided by resources needed to reengineer avionics support soft-

the REFINE Object Base. ware and will help the human engineer produce a more
maintainable system.

4.3 Status of the RET Implementation

We have developed and tested most of the Source References
Code Processor, Representation Generator, and File
System Interface components. We are developing the [1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers
associated User Interface and Display facilities along - Principles, Techniques, and Tools. Addison-
with each component. We have just begun to im- Wesley, Reading, MA, 1988.
plement the Restructurer component. We expect to
complete the first prototype/demonstraaion system by [2] P. Benedusi, A. Cimitile, and U. De Carlini. A re-
mid-Spring 1994, after which development will con- verse engineering methodology to reconstruct hi-
tinue. erarchical data flow diagrams for software main-

tenance. In Proceedings of the Conference on
Software Maintenance, pages 180-189, Miami,

5 Conclusions Florida, October 1989.

We discovered during a literature and tool survey [3] S. Burson, G.B. Kotik, and L.Z. Markosian. A
that most existing reengineering tools are limited to program transformation approach to automat-
reverse engineering and redocumentation. Language ing software re-engineering. In Proceedings of
translation tools have been around for some time. but the IEEE Computer Society's International Soft-
they are not adequate for reengineering [22]. Few tools warc and Applications Conference, pages 314-
provide automated help with restructuring and for- 322, 1990.
ward engineering, although techniques for these exist.

We have developed a reengineering process model [4] E.J. Byrne and D.A. Gustafson. A formal process
that: model for software re-engineering: The analysis

"* Is consistent with previous reengineering process phase. Technical Report TR-CS-91-12, Kansas
models State University, November 12 1991.

"• Considers software life cycle issues such as config- [5] E.J. Chikofsky and J.H. Cross II. Reverse engi-
uration management and testing neering and design recovery: A taxonomy. IEEE

"* Separates completely automated restructuring Software, pages 13-17, January 1990.

(i.e., control flow restructuring) that can be per- [6] T.A. Corbi. Program understanding: Challenge
formed as preprocessing from restructuring and for the 1990s. IBM Systems Journal, 28(2):294-
redesign that requires human intervention and in- 306, 1989.
put
" Promotes structured programming techniques, [7] D. Hutchens and V.R. Basili. System struc-

i.e., macro restructuring preceding micro restruc- ture analysis: Clustering with data bindings.
turing IEEE Transactions on Software Engineering, SE-

* Promotes development and testing of a function- 11(8):749-757, August 1985.

ally equivalent program before undertaking de- [8] J.H. Cross II, E.J. Chikofsky, and C.H. May Jr.
sign changes that might introduce errors, i.e., re- Reverse engineering. Advances in Computers,
structuring preceding redesign. 35:199-254, 1992.

89

I

[9] H.A. Muller, M.A. Orgun, S.R. Tilley, and J.S. I
Uhl. A reverse engineering approach to subsys-
tem structure identification. Submitted for pub-
lication.

(10] H.A. Muller and J.S. Uhl. Composing subsystem
structures using (K,2)-partite graphs. In Proceed-
ings of the Conference on Software Maintenance,
San Diego, California, November 26-29 1990.

[11] Polyhedron Software, Oxfordshire, UK. plus-
FORT Reference Manual, Revision B. U.S. Dis-
tributor: OTG Systems, Inc., Clifford, PA.

[12] Reasoning Systems, Inc., Palo Alto, CA. DI-
ALECT User's Guide.

(13] Reasoning Systems, Inc., Palo Alto, CA. INTER- IVISTA User's Guide.

[14] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE User's Guide. I

[15] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/Ada Programmer's Guide.

[16] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/Ado User's Guide.

[17] Reasoning Systems, Inc., Palo Alto, CA. RE-
FINE/FORTRAN User's Guide.

[18] J.M. Scandura. Cognitive approach to systems
engineering and re-engineering: Integrating new
designs with old systems. Software Maintenance:
Research and Practice, 2:145-156, 1990.

[19] R.W. Schwanke. An intelligent tool for re-
engineering software modularity. In Proceedings 1
of the 13th International Conference on Software

Engineering, pages 83-92, Austin, Texas, May 13-
17 1991.

[20] C. Sittenauer, M. Olsem, and D. Murdock. Re-
engineering tools report. Technical report, Soft-
ware Technology Support Center (STSC), Hill
Air Force Base, Utah, July 15 1992. l

[211 William M. Waite and Gerhard Goos. Compiler
Construction. Springer-Verlag, New York, 1984. I

[22] Richard C. Waters. Program translation via ab-
straction and reimplementation. IEEE Transac-
tions on Software Reengineering, SE-14(8):1207-
1228, August 1988.

[23] D.E. Wilkening, R.J. Kreutzfeld, and J.P. Loyall. I
Avionics software re-engineering technology (AS-
RET) software re-engineering study report. Tech-
nical Report TR-6661-1, TASC, Reading, Mas- I
sachusetts, February 17 1993.

[24] Xinotech Research, Inc., Minneapolis, Minnesota.
The Design of the Xinotech Language Translator I
- Jovial to Ada, second revision edition. Xinotech
Tcchnical report XRI 8911-04.

I
90

I

Formal Specification and Software Reuse in Reengineering
Embedded Real-Time Systems

Farnam Jahanian
Department of EECS
University of Michigan

Ann Arbor, MI 48109-2122
e-mail: farnam@eecs.umich.edu

Abstract systems that are pivotal to the operations of cormmer-
cial and defense systems are becoming more and more
costly to operate (7]. Each change to the software re-

With the increasing reliance on computer control suits in one or more patches that contribute to a sys-
of embedded real-time systems in diverse civilian and tem that is often less efficient, less reliable, and more
military Applications such as avionics, air-traffic con- difficult to maintain. Consequently, re-engineering ex-
trol, patient monitoring, and automated manufactur- isting software is a significant growing challenge that
ing, the problem of re-engineering an aging software confronts us in the 1990s and beyond.
base will confront a growing number of organizations
in this decade. Facing this challenge is particularly Re-engineering, also called renovation or reclama-
important because of the economic and security ram- tion in the literature [1], refers to the recovery of de-
ifications of maintaining complex embedded systems sign information and its uses to alter or reconstitute
that operate under increasingly strict dependability the existing system to improve its quality or to meet
and timing requirements. After discussing some of new requirements. The increasing importance of re-
the trends in the field of computing that have di- engineering has several economic, security and tech-
rectly influenced the changing requirements on the nological ramifications:
existing systems, this paper presents a re-engineering
approach based on the formal specification of a sys- The economic competitive in a global market is
tem through decomposition into a collection of ser- directly linked to the thousands of aging infor-
vices with well-defined interfaces. An approach based mation system and engineering applications that
on formal specification nicely complements the devel- are being used across large and small companies.
opment of a toolkit of common services that can be
reused in re-engineering multiple embedded systems. Embedded real-time systems often have strict de-
Precise specification of re-engineered components also pendability and timing requirements. They often
supports automated tools for testing, fault-injection, control and monitor defense systems as well as
verification and run-time monitoring, commercial safety-critical operations. Interrup-

tions in a timely delivery of services may have

1 Introduction significant national security or economic implica-
tions.

IComplex embedded real-time systems are being The existing software base is the infrastructure

used in diverse applications such as avionics, air-traffic on which future technology is built. Achieving a

control, automated manufacturing, and patient mon- technological edge in the next decade is depen-

itoring. With the increasing reliance on digital com- strength of this infrastructure.

puters in monitoring and controlling embedded real-
time systems, both industry and government organi- This position paper argues that the decomposition
zations are faced with the problem of extending and of a system into a collection of services (or building
modifying an "aging software" base. Many software blocks) with precise specifications and well-defined in-

* 91

terfaces may be the key to re-engineering complex em- cent years, a rapid shift from large centralized corn-
bedded systems. ' The paper further advocates a puter systems to clusters of closely-coupled nodes has
toolkit approach to re-engineering of these systems: taken place. In fact, most real-time computer control i
By identifying a collection of distributed services corn- systems are now distributed (Figure 2) in the sense
mon to a large class of embedded real-time systems, that they consist of a set of nodes interconnected by a
these building blocks can be reused to reduce the com- real-time communication subsystem. Conceptually, a
plexity and the cost of modifying and extending large real-time computer system is providing a set of well-
systems. We illustrate one such toolkit that was de- defined services to the environment. These services
veloped at IBM Research to support distributed fault- must be made fault-tolerant to meet the availability
tolerant systems. Finally, the paper argues that an and reliability requirements on the entire system.
approach based on formal specification and precise In summary, re-engineering embedded software is
interface definitions also facilitates the development compli mary reencireerisi oftime s
of automated tools that aid in demonstrating that a complicated by three characteristics of real-time sys- i
re-engineered system meets the new requirements. A tems:
brief discussion of a suite of tools, currently under de-
velopment, for testing,fault-injections, verification and 1. Timing Constraints: The system must provide m
run-time monitoring of embedded real-time systems is timely service even in the presence of faults. The
also presented. correctness of a computation is dependent not

only on the correctness of its results, but also on

2 Distinguishing Characteristics of Em- meeting stringent timing requirements.

bedded Real-Time Systems 2. Dependability Requirements: Embedded real-

time systems often have strict availability and
Embedded real-time systems often interact with the reliability requirements. Failure of a system may

external environment and operate under strict timing result in catastrophic loss of life or property.
and dependability requirements. As shown in Figure I
1, an embedded real-time system can be decomposed 3. Interaction with Environment: A real-time com-

into three components: the controlled object, the corn- puter system reacts to stimuli from the external
puter system, and the operator. The controlled ob- environment. The interaction with the external

ject and the operator are the environment of the sys- world makes the goal of meeting strict timing and
tem. The interface between the real-time computer dependability requirements more difficult.

system and the controlled object is called the instru-
mentation interface, consisting of sensors and actua- 3 Changing Requirements and the Search
tors. The interface between the computer system and for a Silver Bullet
the operator is called the man-machine (or the oper-
ator) interface. The operator monitors and controls I
the object via this interface to the computer system. The ever-changing requirements on the existing sys-
Embedded real-time systems are in essence responsive: tems is often mentioned as a source of continuing mod-
they often interact with the environment by "reacting ifications and extensions to a software system. These
to stimuli of external events and producing results, changes are sometimes needed because the original de- e
within specified timing constraints" [3]. To guarantee sign was not robust enough or because new software
this responsiveness, the system must be able to tol- bugs (or features) are discovered. However, as sug-
erate failures. Hence, a fundamental requirement of gested in the previous paragraph, several technological i
fault-tolerant real-time systems is that they provide trends in the computing field have contributed to the
the expected service in a timely manner even in the changing requirements on our existing software-based
presence of faults. applications. These trends include:

The above description depicts a real-time computer
system as a single entity. With the introduction of in- 9 Shift from centralized systems to distributed
expensive microprocessors and dense memories in re- computing,

'A more detailed version of this paper can be found in * Shift from monolithic operating systems to mi-
[4]. crokernels,

SIea

Figure 1: An Embedded Real-Time System.

Redundant Communication Subsystem

Replicated Server I Replicated Server 2 Replicated Server 3

Figure 2: A Distributed Real-Time Computer System.

"* Shift from proprietary hardware/software com- interfaces that are preserved from one version to an-
ponents to inter-operability of systems. other. Decomposition of a system into a collection of

formally specified services also lends itself to the reuse
"* Significant improvement in cost/performance ra- of software in different systems: by bailding toolkits of

tio for processors, memory, and storage devices, services that capture common functions in a range of
and embedded real-time systems, one can reduce the cost

of re-engineering through the reuse of software. We

"* Shift from human-control to computer-control of elaborate on this point in the following sections.
embedded systems.

4 Precise Specification and Well-Defined

These dramatic trends in the computing filed have Interfaces
contributed significantly to the increasing changes of
the requirements on the existing embedded systems. A key to re-engineering complex embedded softwareHence, we are faced with an aging software base Akytr-niern ope meddsfwr
tHatce mut be mified, extend, oging somtre cases systems is the capturing of important attributes of athat m ust be m odified, extended, or in som e casessy t m a an p ro i te l v l f ab r ci n. T scompletely redesigned and re-implemented. However, system at an appropriate level of abstraction. This
there is no silver bullet. The cost of re-engineering includes capturing both the requirements specification
there is noften very high e. ad The existing tools are ri mand the key design attributes of the system. At one ex-
is often very high and the existing toolsyacic o treme, an existing implementation itself can be viewedcas es very prim itive: tools for extracting syntactic oras a c n r t sp if a io of h e y t m , H w v ,structural information are available where as tools for as a concrete specification of the system. However,

this information is far too detailed and it exposes much
capturing semantic information are rare. of the implementation that may not carry over to the

Re-engineering a complex embedded system be- re-engineered system. At the other extreme, an infor-
comes manageable only by a careful decomposition of mal (English) requirements specification of the system
the system into a collection of services with precise can be viewed as a high-level description. The prob-

93

I
I

lem here is the informality of the specification and the architecture specifically designed for real-time systems
lack of precise semantics. Hence, specification tools is currently under development at the University of
are needed that aid the software engineer in capturing Michigan.
system requirements and key features of an existing
design. 5.1 Toolkit of Services: An Example

An issue related to the specification of requirements
and design attributes is the precise definition of inter- The testbed consists of a collection of protocols
nal and external interfaces for a system that is being for managing replicated and distributed resources in
re-engineered. A complete or a partial re-engineering a system. It consists of six software layers, each ex-of a system is feasible if we view an embedded sys- porting a well-defined interface to the other layers or

tem as a collection of building blocks (or services) to applications that are built on top of the testbed.
with well-defined external interfaces. Each service, in Figure 3 illustrates the software layers in the testbed.

turn, may be implemented using other services. This e ach software layer s a s eriesupprt
mode nauraly uppots ompsiton o moe pim- Each software layer, referred to as a service, supports

model naturally supports composition of more prim- one or more protocols. A brief description of each

itive building blocks so that more complex services service profols. n

are constructed. This is the same philosophy that service layer follows:

guided the initial design of the new generation of the
air-traffic control system [2]. Localizing the modifica- multicast communication service: provides a reli-
tions or extensions becomes manageable if there is a able datagrbm communication service for sending I
precise functional specification of each building block a message to a collection of destinations. This
with well-defined interfaces. As discussed in the sec- service allows the exploitation of available com-
tion 6, a precise and formal specification is also helpful munication protocols (e.g., Netbios vs. UDP)
in supporting automated tools for testing, verification and possible hardware support (e.g., hardware
and run-time monitoring of a re-engineered system. broadcast facility) on a given system without ex-

posing the implementation to the higher layer

5 Reuse of Building Blocks in Re- services.

Engineering Embedded Systems processor membership and monitoring service:
provides a consistent view of the operational sta-
tus of a group of processors in the presence of

The reuse of software can provide additional lever- processor/process failures/joins and communica-
age in re-engineering embedded systems. Since we will tion failures. Three membership protocols with
be faced with an increasing number of complex sys- varying degrees of consistency in the views of the
tems that will require partial or complete redesign and members are supported.
re-implemented, it makes sense to develop a collection
of building blocks that are reused in different systems. clock synchronization service: provides a bound
By capturing some of the changing requirements that on the deviation between logical clocks on pro-
are common to a large collection embedded real-time cessors in the presence of hardware clock drifts
systems, one can develop a set of services with well- and failures.
defined interfaces that are used in re-engineering large
systems. One can view this approach as a toolkit ap- * reliable naming service: provides a reliable ser-
proach to re-engineering, vice mapping the name of an object to a list of

processors in the system. This layer supportsAs mentioned earlier, the shift toward distributed multiple namespaces.

computing and the emphasis on open systems are

among the most important factors contributing to 9 distributed cache service: pro-
the changing requirements on the existing software vides shared/exclusive access to remote objects
base. Hence, a collection of distributed fault-tolerant with local caching. This layer supports multiple
services that can be used as building blocks in re- coherency protocols including cache invalidation
engineering real-time systems may prove to be a logi- and write-through policies. I
cal first step. In the following subsection, we introduce
a testbed that was built in IBM Research for devel- o replication service: provides a mechanism for
oping fault-tolerant servers[6]. A new version of this maintaining multiple copies of objects in a clus-

94I

ter. This layer supports several replication proto- Testing and fault-injection techniques exercise nu-
cols with different consistency semantics for up- merous execution paths in the new system to de-
dating replicas. tect design and implementation faults. Fault-injection

techniques are used to test the fault-tolerance capa-
" distributed synchronization service: provides bilities of the new protocols and the robustness of

fault-tolerant and scalable synchronization pro- the system with respect to failures. Formal verifica-
tocols for serializing access to shared/exclusive tion techniques are effective in proving the correctnes.
resources. The distributed synchronization ser- of an implementation with respect to a specification.
vice can recover from the failure of a lock These techniques will be effective in ensuring the cor-
holder/coordinator and communication failures. rectness of certain critical tasks in a system. Formal

verification complements testing and fault-injection by
" service failure detector: provides notifica- demonstrating that critical operations, for example,

tion/query service for monitoring status changes meet certain safety assertions. Testing and formal ver-
of a collection of subsystems grouped together as ification techniques may not guarantee against viola-
a server. A status change to a group can occur tion of design assumptions and unpredictable behav-
because of a subsystem failure or an update to ior of the external environment. Hence, monitoring
an application-defined status field. of a system is necessary to detect violation of safety

properties and design assumptions at run-time[5, 8].
The above software services are the building blocks It should be noted that a formal specification of a

from which much larger systems can be developed system and the interfaces of its building blocks are
fromTwhich mu chding blarc ss can be devdr ep l oped, pimportant for developing automated tools for testing,
These building blocks can be used to replace partially verification, and monitoring. We are currently inves-

or completely a system component that is being re-

engineered. The objective is to develop sufficiently tigating a collection of automated tools for testing,
fault-injection, verification and monitoring that aid ageneral building blocks once and to reuse them in ex- software engineer in modifying and extending existing

tending and modifying existing software systems. software.

6 Testing, Verification, and Monitoring 7 Conclusion
Tools

One can view the re-engineering of existing soft- Re-engineering embedded real-time systems is an
ware as a magic trick. The existing system and the important challenge that confronts us in the com-

war asa mgictrik. he xisingsysem nd he ing decade. With the increasing reliance on digi-
new requirements are fed into this complicated pro- g g g

cess, and the output is a new system that meets these tal computers for monitoring and controPing embed-
requirements. However, ensuring that the new sys- ded systems, the problem of modifying and extend-
tere meets the imposed requirements is an important ing an existing software base that meets new require-
problem that must be addressed. Embedded real-time ments is a key issue. The changing requirements on

probem hatmus be ddrsse. Ebeddd ral-ime the existing systems have been influenced by several
systems have strict timing and dependability require- trendstin temputing fiel includng th shftods
ments. Rigorous methods must be applied to demon- trends in the computing field including the shift to dis-
mtraenthats. Rstemethod muetsthee applriednto. detributed computing, the need for inter-operability of
strate that the system meets these constraints, hardware/software components, and the exploitation

Decomposition of a system into a set of services microkernel based O.S. Strict timing and dependabil-
with precise specifications and clean interfaces pro- ity requirements introduce additional complexity in
vides an advantage in achieving this. We advocate the re-engineering of embedded real-time systems.
a three-way approach in demonstrating that a re- This paper advocated that the decomposition of a
engineered system meets its specification: system into a collection of services with precise spec-

ification and well-defined interfaces is crucial in re-

1. Testing and fault-injection methods ducing the complexity of re-engineering large systems.
Furthermore, by developing a collection of building

2. Formal verification methods blocks (or services) that can be reused in different
systems, the cost of extending and modifying exist-

3. Run-time monitoring techniques ing systems may become more acceptable. However,

95

I
I

Replication Cache Service Fault-Tolerant I
Service Service Failure Synchronization

Detector Service

Reliable Naming Service 1

Processor Membership & Monitoring I

Multicast Communication Service Clock Sync
Service

I
Figure 3: The Software Layers of the Testbed.

these building blocks must contain a common collec- [5] F. Jahanian and A. Goyal. A formalism for mon- U
tion of services that may be needed when addressing itoring real-time constraints at run-time. In Proc.
the changing requirements of a large subset of em- of Fault-Tolerant Computing Symposium (FTCS-
bedded real-time systems. Finally, this approach is 20), June 1990. I
amenable to the development of a collection of tools
for ensuring that the new requirements are satisfied [6] F. Jahanian, R. Rajkumar, and J. Turek. A
by a re-engineered system. testbed for prototyping distributed and fault-

tolerant protocols. In Proc. of Complex Sys-

References tems Engineering and Synthesis Workshop, Sil-
ver Spring, MD, July 1993. Naval Surface Warfare

[1] E. Chikofsky and J. Cross III. Reverse engineering Center.

and design recovery: A taxonomy. IEEE Software, (71 R. Pressman. Software Eng;'eering A practi-
pages 13-17, January 1990. tioner's Approach. McGraw Hill, New York, 3rd

edition edition, 1992.U
[2] F. Cristian, R. Dancey, and J. Dehn. Fault-

tolerance in the advanced automation system. In [8] S. Raju, R. Rajkumar, and F. Jahanian. Moni-
Proceedings of the 20th Annual Sumposium on toring timing constraints in distributed real-time I
Fault-Tolerant Computing, pages 1-12, 1990. systems. In Proc. of Real-Time Systems Sympo-

[3] H. Hopetz and P. Verissimo. Real time and sium, December 1992.

dependability concepts. In Distributed Systems, I
2nd Edition, S. Mullender(editor), pages 411-46
(Chapter 16). Addison-Wesley, 1993.

[4] F. Jahanian. Formal specification and software I
reuse in reengineering embedded real-time sys-
tems. Technical Report Technical Report, Depart-
ment of EECS, University of Michigan, 1994. U

96

MK 86/UYK-7 Enhanced Memory Unit Project

Jacking the Computer Up and Putting a Powerful New Engine Under it!

Joe S. Gaines, Richard W. Williams and Jay Roske

Authors day is rapidly approaching when the UYK-7 as it exists
will not support MK 86 GFCS requirements. The MK 86

Joe Gaines serves as the Project Manager for the GFCS In Service Enigineering Agent (ISEA) at Port
MK 86/UYK-7 Enhanced Memory Unit (EMU) Hueneme Division (PHD) of the Naval Surface Warfare
development effort at Naval Surface Warfare Center Center (NSWC) recognized the approaching problem in
Crane Division, Crane Indiana. He is an electrical 1991 and took steps to counter it. NSWC Crane Division
engineer by profession with over 12 years combined was enlisted to provide product engineering support to
experience at both Crane and the Northrop Corporation. develop a technology upgrade for the MK 86 UYK-7

Richard Williams serves as the Project Engineer Computer Set. In an age of ever-decreasing defense
for the EMU development at Naval Surface Warfare budgets, there is more and more pressure to keep existing
Center Crane Division, Crane Indiana. He is an equipments upgraded and fielded. This paper describes
electrical engineer by profession with over 25 years in the project to develop an Enhanced Memory Unit (EMU)
systems engineering experience at Crane. for use in the AN/UYK-7(V) Computer Set and the

Jay Roske serves as the Technical Direction features of said unit. The EMU contains an embedded
Agent for the EMU development. He is employed at the state-of-the-art processor which essentially gives the
Naval Surface Warfare Center Port Hueneme Division, AN/UYK-7 computer access to new found powers. In
Port Hueneme, California as the MK 86 Software Support other words, we've jacked the computer up and put a
Agent. An electrical engineer by profession, he has over powerful new engine under it.
20 years experience with shipboard systems.

Teaming Arrangement
Background

The project is a teaming arrangement between
The AN/UYK-7 Computer Set is a Navy NSWC Port Hlueneme Division (PHD), NSWC Crane

standard computer originally fielded in the late 1970's and Division and PMS-412 UYK-7 Program Office. NSWC
manufactured by Unisys. The computer set is configured Crane is developing the MK 86/UYK-7 Enhanced
with a variety of modules such as the memory module or Memory Unit (EMU) and will undertake the MK 86
the Central Processing Unit (CPU) module. AN/UYK-7 production run of the EMU. PHD is writing the
computers are used across a wide array of platforms with application software for use with the MK 86 upgrades and
a population of hundreds of units. will perform the ORDALT to install the EMU into MK

The MK 86 Gun Fire Control System (GFCS) 86/UYK-7 computer sets. PHD is also responsible for
uses the AN/UYK-7(V) Computer Set for a variety of overall project direction. PMS-412 is providing physical
functions. The MK 86/UYK-7 computer as it exists assets for refurbishment and effecting the field change to
today faces several memory problems. Planned upgrades the UYK-7 computer set.
in targeting radar systems require more memory and
faster access to provide a performance increase in Goals & Objectives
computer execution of new application software. The
existing memory units available for use in the AN/UYK- The original goal of the project was to develop
7(V) Computer Set are inadequate for these upgrades. a semiconductor memory replacement for the UYK-7
Additionally, the existing memory units face severe Double Density Mated Film Memory (DDMFM). The
obsolescence problems. The mated film technology Enhanced Memory Unit was to have 4 times the memory
which forms the basis of the Double Density Mated Film and 30% performance enhancement. A further goal was
Memory Unit (DDMFM) is no longer in production. The to provide units to meet the scheduled ship installation of

97

I
other MK 86 upgrades. During the course of the project, computational tasks to be offloaded and future upgrades
the goals changed to attempt to develop a unit which require floating point calcuiations, an integral floating
could provide a solution for MK 86/UYK-7 requirements point processor was desired. With these considerations,
into the next century. the Motoroia 68040 became the choice.

The Enhanced Memory Unit (EMU) is composed
Acomnplishments of 5 main functional areas: 128K x 32 non-volatile

memory array, 8 access channels, control section, power
All of the original design goals will be met or distribution, and EMU Processor unit. The block

exceeded by the EMU which has been developed with diagram for the EMU is shown in Figure 1.
major improvements in power consumption and MTBF. The memory array is formed of 8K x 8 non-
More significantly, the EMU will provide performance volatile static RAM microcircuits. These microcircuits I
enhancements of approximately 1000% or better through consist of a fast static RAM section with a shadow

a technology insertion. The technology insertion is the EEPROM section. During normal operation, the memory
use of an embedded state-of-the-art processor, the operates from the static RAM section providing fast
M68040. A simple drawer replacement (slide out the old access for both read and write operations. The contents
unit and slide in the new EMU) will give the UYK-7 of the static RAM ae stored in EEPROM when the input
state-of-the-art processing capabilities, power is detected to be below normal operating voltage.

The project is currently on schedule and within The time required to make this transfer is 12 I
budget. The first Engineering Developmental Model milliseconds. Therefore, the internal voltages generated
(EDM) was delivered in November 1993. According to in the EMU must be maintained during this time. This is
a study by PHD, it is anticipated that this systems re- accomplished by having a large diode isolated capacitor U
engineering technological solution will result in a $60M on the input of the EMU power converter. On power up,
cost avoidance, the contents of the EEPROM are transferred to the static

Finally, it is anticipated that the EMU will RAM section. The time required to do this is 25
provide an excellent option for other UYK-7 users faced microseconds which otirs after the EMU power
with the same DDMFM obsolescence, lack of memory converter reaches normal operating voltage and while the
and needed performance enhancements which prompted UYK-7 master reset is still active. This gives the
MK 86 to initiate this project. PMS-412 estimates that as memory unit its non-volatile appearance and does not U
many as 800 EMU's could be needed by the UYK-7 affect any of the normal operating time of the UYK-7.
community. The EEPROM section has the same characteristics of any

other EEPROM which has a minimum of 10,000 write

Technical Features cycles. Since wntes to the EEPROM only occur during
power removal, this will provide several years of failure

The Enhanced Memory Unit (EMU) had many free non-volatile operation.

design goals. The first was to remain form, fit, and Eight access channels are provided to interface

functionally equivalent to the current Double Density the memory unit to the UYK-7 CPU and Input Output

Mated Film Memory (DDMFM) which is a 32K x 32 Controller (IOC). The CPU requires two interface

memory module used in the UYK-7 Computer Set. This channels; one to fetch instructions and one to obtain

would lead to easy installation of the EMU on board operands. The iOC requires only one interface channel.

ships. The second goal was to increase memory capacity Any combination of CPUs and IOCs can be interfaced to

to 128K x 32 in a memory module so that single and dual a memory unit within the limits of 8 channels. The eightto 18K 32in amemry odul sotha sinle nd ual access channels share the memory array through a simple
bay configurations of the UYK-7 could reach full memory cha nnel r a re priority arrat hrough Thime

capacity without adding more cabinets. The third goal chaunel ranking priority arbitration scheme. This means

was to increase the performance of the UYK-7 by the highest ranking channel with an active channel request

decreasing the memory access time. Early tests showed will get the next available memory cycle. The EMU

that only marginal performance increases could be contains 4 tim-., the available memory of the DDMFM

obtained with decreased access time, so a processor was which means that the EMU must provide faster access I
added to the memory module to offload computational time to provide equivalent performance of the DDMFM

processing tasks from the UYK-7 CPU. in certain configurations. The DDMFM provided a single

The choice of the processor was quickly cycle read access time of 1.!00 nanoseconds with a
narrowed to the Motorola 68000 family since the current memory cycle time of 750 nanoseconds. The EMU was
compiler for the UYK-7, CMS2K, presently supports the designed with a single read access time of 750Motorola 68000 series processors. Since most of the nanoseconds with a memory cycle time of 150

nanoseconds. The 750 nanosecond single cycle access

I

I time approaches the limit of the UYK-7 CPU. A single Processor Control Registers although they are dedicated
EMU provides better performance than two DDMFMs memory locations with additional decoding circuitry for
used in a software interleaved configuration. special functions. These registers provide a Control

The control section manages the data flow Register, a Status Register, a Software Reset Register, a
through the memory unit. Ti.e control unit is divided into UYK-7 Interrupt Register, and a Built-in-Test Register.
three functional blocks. The first is the local controller. The Control Register allows the UYK-7 CPU to
The local controller handles all the control signals from send commands to the EMU Processor Monitor Software.
the UYK-7 required for the transfer of information over When the UYK-7 CPU writes to this register, an interrupt
one channel. There is one local controller for each is generated to the 68040. The 68040 can read theI channel. The second functional block is the priority register and perform the required function.
arbiter which determines which of the requesting channels The Status Register is used by the EMU
will get the next memory cycle. The memory controller Processor to provide status information to the UYK-7
is the third major control function. Tne memory CPU. The infGomation passed in the Status Register can
controller provides the timing and the decoding required indicate such things as the EMU Processor being
to access the memory array. initialized, a valid command being received, and the

The power distribution section generates the 5 status of a completed task.
volt power required by the EMU logic from the -90 volt The Software Reset Register allows the UYK-7
DC provided from the UYK-7 power supply. Detection CPU to reset the EMU Processor. The reset performed
logic determines when the incoming power is going out is equivalent to a power-up reset.
of tolerance and generates the timing control signals The UYK-7 Interrupt Register provides a means
required to perform the store from static RAM to of signalling the UYK-7 CPU when the EMU Processor
EEPROM. A diode isolated capacitor provides the energy completes a task. When the EMU Processor writes to the
required to perform the store after incoming power has UYK-7 Interrupt Register, a Class II Interprocessor
been removed. After the store operation is complete, the interrupt is generated on the UYK-7 CPU. This feature
EMU power converter is shut off to prevent undesired requires that a wire be added on the UYK-7 backplane
store operation as the capacitor slowly discharges. from the EMU module to the UYK-7 CPU module.

The EMU Processor unit was designed to offload The Built-in-Test Register is reserved for use
processing tasks from the UYK-7 CPU. Independent with the EMU Processor built-in-test software. The built-
processing tasks can be downloaded from the UYK-7 in-test software uses this register to test the interface from
CPU to the EMU Processor. The UYK-7 CPU initiates the EMU Processor to the EMU Memory Array. The
tasks providing input parameters and receives processed built-in-test software on the EMU Processor tests the
results. Communication from the UYK-7 CPU to the 68040 functions, the RAM and EEPROM on the EMU
EMU processor is accomplished through shared memory Processor module, and the interface to the EMU Memory
which is the EMU Memory Array. The EMU Processor Array. The built-in-test does not test any other function
has no access to any external peripherals of the of the EMU. This check out is performed with the
AN/UYK-7. standard UYK-7 Diagnostics.

The EMU processor unit consists of a 68040 that To allow the UYK-7 Diagnostics to be executed
has local memory which is 128K x 32 words of volatile without change, an enable feature was designed into the
static RAM and 64K x 32 words of EEPROM as shown EMU Processor. When the EMU is powered up, the
in Figure 2. The static RAM section is used to store EMU Processor is not enabled. The EMU Processor can
tasks loaded from the UYK-7 CPU and to set up data not access the EMU Memory Array and will not respond
buffers to be used during the processing of tasks. The to commands from the EMU Processor Control Registers.
EEPROM section contains three program functions; the Therefore the EMU Processor Control Registers respond
floating point code provided by Motorola to provide full the same as normal memory locations. This allows the
function floating point processor, built-in-test routine for UYK-7 Diagnostics to run unchanged. The EMU
checking the EMU Processor module, and a monitor Processor is enabled by writing a coded sequence to the
routine to allow for initial download and start of tasks. Status Register memory location. This enables all the
The EMU processor module is connected to the address functions of the EMU Processor. The EMU Processor is
and data buses of the EMU memory array which gives disabled by any reset including the software reset.
the 68040 access to the entire EMU memory array as As a result of the redesign effort, two other
shown in Figure 1. improvements were obtained for the UYK-7 Computer

The upper eight memory locations of the EMU Set: decreased power consumption and an increased
Memory Array are reserved for control of the EMU reliability over the DDMFM. The present UYK-7 system
Processor. These memory locations are called the EMU has marginal cooling capacity. Some long term failure

99

I
problems have been attributed to inadequate cooling. The four identical tasks are performed during each sixteenth, I
present DDMFM dissipates 250 Watts. In a single bay the task is said to be a "64 hz" task. 64 Hz processing is
configuration, there can be up to three DDMFMs. One initiated by the IOC Monitor Clock. While the major
EMU has the memory capacity of four DDMFMs and has Executive cycle executes at a 16 Hz rate, there are also
a measured power dissipation of 80 Watts. If no memory a number of tasks which execute at rates of 8 Hz, 4Hz,
capacity increase is desired, this offers up to a 670 Watt 2 Hz, and 1 Hz. These are referred to as "Variable
power dissipation saving in this one cabinet and provides Sequences" and consist of a number of MK 86 functions
additional cooling capacity for the remaining modules in which must complete during an allocated amount of time,
the cabinet. but need not be executed at a 16 Hz rate.

The DDMFM has one of the highest failure rates Looking forward to operational software
of the modules in the UYK-7 Computer Set with the integration with the EMU, the basic program cycle will I
primary failures being the mated film stack and the not change. The 64 hz, 16 hz, etc. processing will
associated drivers. The EMU is designed with all solid continue. Our challenge is to off-load tasks that the
state devices which have inherently lower failure rates. UYK-7 struggles with onto the EMU Processor. The
The calculated MTBF per MIL-STD-217E is 8600 hours EMU drawer will function as a two port UYK-7 memory
which is approximately 4 times better than the actual with the M68040 processor providing high speed
failure rate of the DDMFM. With the fact that fewer execution and "mathpac" capabilities. The M68040
modules are required for the same memory capacity, this integer and floating point capabilities are extensive. In
offers a considerable reliability improvement for the anticipation, we have begun recoding mathematically
UYK-7 Computer Set. intense operations such as coordinate conversion routines,

various predictors, and stabilization subprograms to utilize
Software Re-engineering the EMU processor's power. It will be very interesting to

compare M68040 performance with UYK-7 and MK 152
In the late 1960's, the original MK 86 data where trigonometric functions were computed

operational program was written in assembly language utilizing look-up tables. For example, early MK 86
and hosted in a MK 152 (UNIVAC 1219B) computer with project notes indicate that a MK 152-hosted sine or cosine
32k of 18 bit memory. In the early 1970's, as MK 86 function, with "14 1/2 bit accuracy" could be
outgrew the MK 152 computer, efforts began to translate accomplished in as little as 400 microseconds! Recent
the program into UYK-7 code. The product that resulted investigations measure the same basic MK 86 algorithm,
was very much like the MK 152 program with changes executing in the UYK-7, at 87 microseconds. Given the
made to utilize the UYK-7 features and new system EMU processor's integer and floating point computational I
hardware. The significant computer improvements of that power, we fully expect to reduce our math execution
era included the faster CPU, memory, and an independent times by an order of magnitude.
Input/Output Controller. In accordance with U.S. Navy A depiction of the new structure is shown in I
policy to use standardized "high order languages," MK 86 Figure 4. All standard processes will be shared with the
began coding system improvements in CMS-2. Developed processor to the greatest extent possible. This will allow
in the late 1960's, CMS-2Y was a "Compiler Monitor Variable Sequence processes to be performed earlier (as
System" for the 32 bit instruction set architecture required). The UYK-7 will have more time available to U
machines. Compilations were performed on the UYK-7 perform additional background processes. This will allow
itself. for improvements in on-line data reduction and analysis,

As a language, CMS-2 has continued to be for example. Certain, rigid processes will remain I
updated, and is now supported on platforms other than the unchanged.
UYK-7 system. MK 86 now uses the Navy's standard set With regard to language, a major factor in
of support software tools called "Machine Transferrable selecting the EMU processor was the ability to compile I
And Support Software (MTASS)" hosted on a VAX to existing CMS-2 code with a new target in mind. The
perform lifc cycle software support activities. MTASS CMS-2K compiler supports the M68030 target

In order to discuss the re-engineering of our processor as utilized in the AN/UYK-43's "Time Critical
product, the structure of the current MK 86 operational Subfunction (TCS)". Therefore, we felt secure in I
program is depicted in Figure 3. There is a basic one selecting the M68040 which fully supports the repertoires
second cycle of events that must be completed to effect of the M68030 and M68882 coprocessor - only faster and
system operation. The one second window is broken more efficiently. In the development of a computer I
down into 16 segments, each having specific functions to program which could be executed by the EMU processor,
complete which support other "sixteenths" tasks. When we discovered a problem. We could not, using our

MTASS tools, build a bootable object tape containing

1 0I

M68040 code that could be loaded into the UYK-7 and Lessons Learned & Condusions
executed in the processor's upper 128k of memory. That
upper 128k space is where the EMU processor's high Perhaps the most difficult part of a design is
speed RAM is located. The reason for this problem is accurately defining the interface specifications from the
mainly due to the fact that the UYK-7 and the EMU unit to be designed and the rest of the system. Most of
processor have two separate memory maps for the same the requirements of the design were derived from the
physical memory space. In these maps, the EMU technical manuals and specifications in the fabrication
processor has read/write access to the UYK-7 memory, drawing package. When trying to duplicate the exact
but the UYK-7 cannot access the "non-shared" processor functions of a device, measured data defines the interface
memory. This is depicted in Figure 5. The UYK-7's requirements accurately. But when increased
lower 128k memory space is represented by locations 0 performance is desired, minimum and maximum timing
to 377,777 (octal), while the same space represents requirements and relationships are required. In over three

I locations 2,000,000 to 4,000,000 (octal) to the EMU cases during the design, timing relationships defined or
processor (its second 128k space). implied in the available data sources were found to be

Due to the difference in memory mapping, and incorrect which resulted in design changes during testing.
the fact that the UYK-7 does not have access to the EMU Another problem was noted when attempting to
processor's upper memory, no programs can be loaded change device types. The UYK-7 channel busses were
directly into the EMU processor's upper memory via the implemented with open collected devices. An attempt
UYK-7's NDRO bootstrap. This problem can be was made to use tri-state drivers to perform the same
overcome by loading the EMU processor code into function. Early testing showed that every thing would
UYK-7 memory via the bootstrap and "downloading" the work properly with tri-state drivers, but when the full
code from UYK-7 memory to EMU processor memory system was tested, intermittent problems occurred due to
via the EMU's Download command. decreased noise margins introduced by the tri-state

The download method would seem to be the drivers. This caused a design change to open collector
answer to the loading problem, however, this method drivers which are not as readily available in certain
unveils another problem. In order to execute a program functional type devices.
somewhere in memory, the program must be linked to These examples emphasize the advantage of
that particular memory area so that instruction operands performing early confidence testing to help define design
can evaluate correct absolute addresses for data movement requirements and parameters.
and branches. On the other hand, when building a Finally, this project demonstrates the advantage
bootable tape using MTASS, the Tape Builder program of providing technology insertions for existing systems.
(TBL) uses the absolute start address of the program Benefits are derived in system capabilities and
calculated during link. time as the address at which to load performance as well as substantial cost advantages.
that program. In other words, a program which is
compiled and linked to execute in EMU processor Refences
memory, cannot be loaded into UYK-7 memory.

Until a more elegant solution is found, a AN/UYK-7 Technical Manual
temporary "loader" program is being created for the
processor program which ignores the starting address SE610-AW-MMA-010 Maintenance Manual
associated with the NTDS boot record and, instead, loads
the EMU Processor program into a predetermined Enhanced Memory Unit Critical Item Development
location in UYK-7 memory. This allows the EMU Specification, 53711-6891400, Rev B.
processor program to be linked relative to an area of
EMU processor memory, and loaded into UYK-7 Product Fabrication Specification, Memory Module,
memory for downloading. Double Density Mated Film, SB-12857

While the overall implementation of changes in
the MK 86 project will be incremental, the processes CMS-2 Compiler, Users Handbook, 0967-LP-598-8020governing each upgrade remain the same over the next 3

years: identify candidate tasks to be off loaded to the Linkage Editor, Users Handbook, 0967-LP-598-8060
EMU processor, recode whatever assembly
language exists, recompile under CMS-2K, and recertify SDEX/7, SDEX/43, & SHARE/43 Tape Builder, Users
performance. This method supports our existing Handbook, 0967-LP-598-8070
maintenance philosophy, requires no additional personnel,
and is supported by our existing standard test procedures.

101

jPI

000

AI

AN/UY-7 EU BLCK DAGRA

Fiur 1

102

IW

II
L.AJ

c"0

ix LnJ
W 0

5 Ln cl: -

I Z
LI9L

U inlIa -0

40

.- I-

CLJ

LiJ

Z3I--

0zw

zz

103

iI

SIIII Ii II

S! !I-
S:I

II

CI~ENTMKM C•T•0LPR•N• IMII3 EQJNU

I Ie

ii~ I

104 I

IR

I __ _ __ __ _

FUUEI 6CNTO RGA I MNSEUCE EPTIN

I II

U _ _5

I-F F
_ _ _ _ I

_ I0 = I

" RMS77 SPMIIUMU- MM MSR

__K 5

106

I

L ienineeng the L P Ml toIPimide a LOS Slip-to-Ship Teleconfetencing Mode

I James P. Rahilly

Naval Cwm-z ,4 Control and Ocean Surveillance Center RDT&E Division
I San Diego, CA 92152-5000

ABS'I1,CT when required, to a new wideband receive-and-
Itzan.i system to achieve a ship-to-sh or ship-o-

This paper describes the r of the sor n dcuaiu tion data re of T 3 or 44.7 hriS.
NAVY's LAMPS MK III to provide a new high daft Ibis capability would be particularly usefiN to satisfy
rat (HDR) shp .ipLOScwrm, nicatin, capabilty the shr-to-si theater extensim (IEI)
"The application ofp•st LAMPS MK , with added requiemets of Global Guid. 9gure 1.1 pmovdes a
capability, permits ship-to-ship LOS data photograph of the present shipboard LAMPS MK Mll
conmnication rates in excess of near three times the system (SRQ-4) and Figure 12 shows dt LAMPS MK
T I rate of 1.544 NIps. A coperative effort is l(SH6OR)helicopterwh itsLAMPSMKMstemIuderway to demnstate this capability with the on-boart just after its takeoff fiun FF 8 of the Fast
support and resources of CINCLANrFLT. This Frigate COass. ASW and ASST data that the LAMPS
demonstration will consist of a HDR LAMPS MK M MK 1TM helicopter collects while on staticn, up to 100
extenion of the existing USS Mount Whitney Satomn Nmi fium its mother ship, is transitted at a-HDR back
Video Teleconferencing (VIQ to an HDR modified to the ship. The Navy has in excess of 80 ships with
LAMPS MK Mll ship. Since the VTC extensiior will the LAMPS MK I. The LAMPS MK III antenma
only operate at a 386 Kbps rate, other Multimedia installation is shown high up on the ship's mast of a
loading of the link will be used to more fully load the DD 963 in figur 1.3.
conmmnication link. ihis VIC demnstration uing
LAMPS MK I will be discused in in this paper. 2. DISUSON•

1. VIN'W DUCfLON In the early phases of the R&D investigion,
tedinical issues were examined and concusions

The LAMPS MK IH mengineering challenge is largely reacied that led to the belief that LAMPS MK ITl was
related to the achievement of this new HDR the optimum way to achieve a HDR ship--ship
communication, pability without naking system cx nicationn capability. For example, the scope ofIcanges that could impact LAMPS MK m ptimazy fthnvesigationm iredthecmsideramionofteentire

ison of AM d AS a suvillne and SHF band. However, as a result of a review of the
tageting). The exploitation of this systen~s design allowableeledmctroagnecfiequencyregionsintheSHF
features has been done in order to satisfy the R&D band, where nonsatellite ship-to-sthi cinmications
progmn'rs HDR of T-1 or 1.544 MIps objective. The is penritted by inemational agreeent, it was foind
use of LAMPS MK MI is the most viable and cost that only the spectral region fioum 4A to 5.0 fHz was
effective way for the Navy to provide a large number allocatd for this purpose. Therefore, this is thei of combatant ships with LOS HDR ship-to-ship operating fireqency band used by LAMPS MK M to
commumications. Navy R&D program plans for FY 95 establish a commication link between a ship and a
call for creating an even higher data rate helicopter.
co-mm ication system. Ibis new system only uses teI [.LAMPS MK M waveguide and high gain antn Another issue relates to the assessment of the

sm TIhese LAMPS MK Mit elements are coupled, electromagnetic compatibility of any newly created
cminication system with the existing LAMPS

A. ahfls vk a spnsorue uxe 62 block fuvg by tr MK III shipboard tmnsnfter and receiver operating
Office of Naval Resdi cmtad N0014-94-WX-3503&AD environment. For example, any newly created system

107

,i
I
I
I
I
I
I

4) I
0, I

" ~I

C-.,

I

I
I

S~I

I

108 i

E
Vaa.
.5a
4)

Lu

E
0

.4-4

0
4)
M

I-
4)
C
Lu

0.
0
C)i

0
%0

C,,

I-

4)
I-

to
IC

109

IdI

Id 0
lD-

110

wuld be operating in the same 4.4 to 5.0 GHz communications presently operates. Figure 3.1 shows
frequency band as the LAMPS MK III system and the basic facets of LAMPS MK WI ship-helicopter
must not interfere with the high priority communication communications. The shipboard Lamps transmit-and-
linkage between the ship and the SH-60B helicopter. receive equipment is below-deck and is connected by
The approach taken in this new ship-to-ship %•aveguide through the waveguide switch shown in
communication concept is to not create a new system figure 3.1 to either the high gain or onmi antennas,
that might interfere with LAMPS MK 11 but rather to mounted high on the mast. This figure shows the high
use the LAMPS MK 1II system itself to provide the gain antenna in use. ibis occurs when the helicopter is
ship-to-ship communications when it is not performing a significant distance from the ship. The uplink requires
its operational role with the LAMPS MK HI helicopter, less than 10% of the bandwidth required by the

helicopter-to-ship downlink. The term wideband (WB)
Another advantage to using the existing LAMP is used for the downlink and narrowband (NB) is used

MK III system to achieve a ship-to-ship HDR for the uplink-
capability includes the fact that the LAMPS MK III
high gain antenna system, because of its high The WB downlink includes the NB response data,
operational priority, is located very high up on the since it is multiplexed in with the wideband downlink
ship's mast, thus maximizing the LOS range. Real data stream. Thus, a full duplex comniumication is
estate is very scarce at these heights and a new system achieved relative to the namrwband data
would find it difficult to get a location as high as communication- The wideband link is simplex in
LAMPS MK III currently has. nature, since there has been no need for WB

transrmon from the LAMPS MK IIl ship until now.
Also, by using the LAMPS' antenna system, there

are no major developmental or procurement costs to
obtain a high gain, stabilized antenna that provides 3.1 LAMPS MK M OCOMtM NCAlN
monopulse azimuth tracking, has passed mil-spec shock (ONCEPP7 BASEiNE SYSTIEM WITH
and vibration testing, and has demonstrated highly NMAXIMJM CAPABILIrY.
successful operational reliability while providing
mission support in conjtmction with the LAMPS The baseline LAMPS MK Ill HDRconmmnication
MK III helicopter system. concept consists of using the shipboard LAMPS MK III

(SRQ-4) and integrating these assets together with the
It is the system goal, in this proposed use of the LAMPS MK Ill transmit, receive and muddemux

LAMPS MK III shipboard assets, to not only use the assets that are used on the SH-60B helicopter
above-deck assets but also to use to a maximum degree (ARQ-44). Figure 3.2 illustates this concept. As may
all the below-deck subsystems. These subsystems be seen in this sketch, a new dual rotary waveguide
include the firquency synthesizers, modulation, switch now replaces the present single action switch.
demodulation subsystem transmit and receive With the waveguide switch position shown, the SRQ-4
subsystems, mnux and demultiplex subsystems, and receive-and-transmit system is connected to the high
KG-45 crypto systems. Ibwvver, variations from the gain antenna, while the ARQ-44 is connected to the
present LAMPS MK III must carefully consider the omni antenna. This is the ship A configuration. Ship B
requirement to be able to rapidly reconfigure the is at the other end of the link and its connectivity is
system from a postre that supports ship-to-ship just reversed. Therefore, it can be seen from figure 3.2
conmmnication to one that can immediately support the that the high gain antennas are transmitting on the
LAMPS MK HI mission. The LAMPS MK II mission narrowband (NB) data links and the zero db gain omni
must always be the primary operational mode, and any antennas are transmitting the wideband (WB) data
design changes must always be evaluated from this links. It should also be noted that by rotating the SMA
perspective. switches the NB or WB operation can be conducted in

either LB lower band) or in the UB (upper band)
"This is required in order to achieve sufficient frequency

3. DESCR•qlON OF LAMPS MKmI HDR separation to afford the needed isolation between the
COMVM CATION (ONCEMIS transmitted energy from a given antenna and the low

level signals that are being simultaneously received by
In order to most effectively discuss this new the other. This signal isolation is presently obtained

concept, it is best to first examine how LAMPS MK II using two broadband RF bandpass filters in the lower

llII

<Z~

V I

go Io

Co z0 C-) I
- - I <

Cd ca

- I9
-c

" od

Iz
C4*

Ix
Ol _

Zw

I z

0- Q1
mlC

cc

IU u
cnr R7ýtC

IUJ1
-r-

UL 00

I 113

1

and upper frequency bands in each system. This 4. SHIP TO SHIP HDR IAMPS MK IMI
arrangement provides a diplexer with as much as 90 dB (JNIMMCA'HON DEI•ONSITRATION
of isolation between the receive and transmit signals SYSTEM
when the ship is using either the high gain antenna or
the omnri antenna. From Figure 3.2 we can see that Operational demonstrations that night be
the ARQ-44 is transmitting WB in the LB filter and the associated with the evolution of this new ship-to-ship
SRQ-4 is receiving WB in the UB to achieve the high data rate comnumiication capability can take many
needed transmit to receive isolation. Therefore, on forms. The first of these demonstations begins with
each of the platforms the separation between the tests in the laboratory. At the next level we will make
diplexer bandpass filters, located in the LB and LB, is a bridge between the laboratory and the world of the
the same and is sufficiently great that transmison and Navy combatant ship that already has a LAMPS I
reception can occur suinultaneously without causing MK Ill system on-board. The specifics of the areas of
orrption of the quality of the rcived data investigation, in each of the above categories, is

For this test system the UB bandpass RF filter used contained below. I
for the WB transmit and receive functions and LB RF
filter used for NB transmit and receive functions have 4.1 NAV IABORATORV TESTING
not been tailored for this test application. It has been
foand by testing the LAMPS MK M diplexer fas The work in this area was begun last year because of
that the bandpass characteristics of the LB filter was the support provided by NESEA, St. Inigoes, MD.
about an order of magnitude larger than was expected.
Cmsequently, it will be possible to allow operation of Although the docmxentiaion supporting the LAMPS
the WB tranmait through it in about seven channel system is quite extensive, the e are still many areas
locations. For this reason, it is estimated that ere documnation deficences were noted. Where I
duplex operation could occur in s channels. In the information deficiencies occurred detailed design

foregoing example we have proceeded, using the information and data on subsystem characteristics were

present LAMPS MK Iomi c ion architecture, to derived by NESEA. In these situations NESEA
create two simultaneous full duplex loops; one for conducted various measurements on the LAMPSrate twe ot hrfor widebandc o opcation. equipenet to reveal this needed design information.htr the present 90 db isolation can be achieved or Because ofsecurity classification issues, some of these

not remains to be determined. If the isolation level is rsults cannot be presented.
unsatisfactory for simultaneous full duplexWB and NB The laboratory testing in pre ton for the at-sea
operation, then nonsimultaneous we or NB full duplex demonstration has been conducted at NAVSEA To
conmmnication mode could solve the resulting d th

interference problemn To achieve the WB/NB capability date, testing has shown WBt the new fiequenBy

shown in figure 3.2, the following would be added to references for upper band WB and lower band NB

the basic HDR LAMPS MK 11 capability in order to operation are functioning properly. A considerable

equip two ships with a maximum capability: effort has been devoted to the data interface for the test
system. The LAMPS MK Ill WB downlink has

1. (2) dual waveguide switches evolved along telemetry lines, and the twansmitted data

2. (2) SMA type switches at input to the R/l words are commutated into specific data-framing

subsystems. locations. Therefore, along with the WB data which

3. (2) mnods to Voltage Tuneable Signal Sources may be in either the LAMPS Radar or ASW channels,

(VSS) to permit shig there are also discrete data frame locations that are

references in accordance with the new f used concurrently to carry 26-bit blocks of data plus I
LB and NB LB operation while still being 6 bits of EDAC. These slots are used to carry computer

able to meet LAMPS tansmit and receive data, voice, and DME data. The computer channel is

bands and channelization in the normal used for command and control information between the
mode (1). ship and the helicopter. The other two framing slots are

available for the data block transmission that results in
an independent 56 Kbps digital voice link and a 26-bit

(1) Note: The mods of this new VTSS subsystem data block that is used for distance measuring

have been now built and tested. equipment (DME) between the ship and the helicopter.
The HDR data interface challenge develops from the I

114

fact t.at the LAMPS MK Ill data flow is not a 4.3 MqIN M COST HDR LAMPS MK ID
continuous flow of one type of data as occurs in the VTC DEMONSTRATION SYSTIEM
normal commercial T-I communications world. Data
buffering using a PC-based FIFO (first-in, first-out) Figure 4.2 presents the HDR LAMPS MK Ill
buffering system and a special serial l/O card plus minimum-cost system to be used in at-sea VTC tests.
strict timing controls have been developed by the Navy Ibis system will allow full duplex WB data
to achieve this interface compatibility. This required communications between two ships to support the
data interface has been developed jointly by NRaD and VrC. As in the HDR configurations discussed, it is
NESEA. necessary to integrate an ARQ-44 with the shipboard

SRQ-4 to achieve this WB capability. Figure 4.2 shows
The next phase is the laboratory testing of the that, since this is a test, simplification of the system is

system which includes all the VrC equipment, possible. It can be noted that ship A and ship B have
Ttmeplexer nmltiplexeMs, data interfaces, HDR SRQ-4 particular connections of the bandpass filter to the WB
and HDRARQ-44 terminals, including the Cesium and receiving and WB transmitting subsystems. Both of
Rubidium time standards and cryptos that would these connections are manually made via SMA lines
represent video data to RF interconnection of the two within the SRQ-4 and the ARQ-44. The restriction to
HDR LAMPS equipped ships. This would duplicate full WB operation reloves the need for the dual wveguide
duplex VTC at-sea testing using the HDR LAMPS that switches shown in figure 3.2. When both ship A and
is to take place before the end of February 1994. ship B are LAMPS MK M] ships, then either one could

be ship A or ship B, since they both have the same
antenna systems. In this drawing it can be noted that in

4.2 AT-SEA VFC DEMUNS'1ATM4 N EIS-NG the ship B configurations the ARQ-44 would be
OF THE HDR LAMPS MK mil configured as it normally is in that it transmits WB on
CONU CATIONS SYSiTEM the LB/BPF. On the SRQ-4 side, we can see that the

shipboard system, which normally receives WB on the

Figure4.1presentsapictorialrepresentationofthe LB/BPF, is now to receive it from ship A in the
at-sea YrC testing with the USS Mxznt w y that UB/BPF. When the Satcom VTC testing occurs, the
is planned for the April/May 1994. Prior to this test shelter that contains the HDR LAMPS MK Il
there will be an at-sea test using only two LAMPS equipment will be represented by the configuration
MK III ships operating on a point-o-pint basis. In this shown as ship A since it will use the 0 db omni
early at-sea test there will be no requirement to antenna. The data interface developed for this system
interface with the Satcom VrC. The April/vay testing is as shown and for a number of reasons will operate
will reqtim the Satcom interface that will permit video only at twice the T-1 rate or about 3 Mbps. Other than
teleconfeencing between the CINCIANTFLT the SMA switching shown and the VISS changes, the
Headquarters and the HDR LAMPS MK m ship. The rest of the ARQ-44 and SRQ-4 radio terminal
USS Mount Whitney does not currently have a LAMPS equipment will remain the same as it is today.
MK IM installation, so it is being equipped with a
shelter to house the HDR LAMPS MK II capability
and will use an omni antenna that is telescopically 5.0 PREDICIP) CON1MMUNICATION
mounted to the roof of the shelter. PERFORMANCE

Ship-to-ship VTC tests will be conducted at sea at Using a Navy computer program (PC) called
various ranges and shipboard EMI (electromagnetic SLAM that allows a parametric examination of the
interfernce) conditions. This demonstration will reveal comnmunication performance of any particular system,
the level of electromagnetic interference that will be including the effects of multipath, propagation
experienced by the HDR LAMPS MK mH receive diffraction, and ducting, the plot shown in Figure 5.1
system in the WB mode. Also, the level of RF was developed. The actual characteristics ofthe present
intererence with other ship systems that will be created LAMPS system iwere utilized including the system
by LAMPS transmitter emitting a WB signal, using losses that affected both the transmitted signal as well
either the omni or the high gain directional antenna at as the received signal. These losses were provided in

SSIHF, will be examined. the engineering documentation in the Navy files on the
LAMPS MKmI. The term on the ordinate in Figure 5.1
is called margin and stands for the signal power level,

115

0 z~

-- I

C).

uI

uu
L#4U

116-

IIl
Ic

00

Ii14 Ii

00

IG

117

0I

I z

-0 U

u >

00

100 Io- C4

N N r-4 r--4 I

in db, greater than that level which will just allow simultaneously. It is, in fact, ideally suited to serving
achieving the desired data bit error rate (BER). the new world of multimedia including large file

transfers, digital interactive video, high resolution
For the link computations that resulted in image transmission and digital voice. There are also a

Figure 5.1, it was assumed that the antenna on each variety of possible operational military configurations,
ship was at 100 ft above sea level, and this results in a that appear to have very desirable features. At this
maximurm line-of-sight range of about 20 nmi. When juncture the technical investigations and operational
sufficient excess power is available range values will testing will continue so that greater insight will be
be in excess of the LOS limit out to a diffraction loss developed as to its most desirable and achievable
limit. Figure 5.1 shows the expected performance of operational capability.
the LAMPS conmunication link between the high gain
LAMPS antenna and the LAMPS "0" db antenna as a Biography
function of range assuming a communication data rate
of 4 Nbps with a Eb/No = 12 db. The sharp downward Mr. RahiUly originated the concepts presented in
spikes in figure 5.1 are due to nmultipath signal this paper and is the Program Manager over the HDR
degradation effects. The worst of these can be seen to LAMPS MK 11 development. The program is being
be about 5 db above the level which would create conducted in the RDT&E Division, Conmiumication
signal degradation This is regarded as the multipath Technology and Systems Branch. After graduation from
safty margin that exists in this linkI The received what is now New York Polytechnic University in 1951
signal power is sufficiently strong as to allow he was a systems engineer at Westinghouse Air Arm
comnmuication out to ranges of about 25 nmi including Division, Raytheon Missile Division, General Hectric
the link diffraction losses. Technical Military Planning Operation, and Philco Ford

Western Development Laboratories. He joined the
NAW laboratory on Pt Lona, San Diego Ca, that has

6.0 CONCLUSIONS now become the RDT&E Division, in 1968 and has
been employed there on a variety of communications

The US Navy has a valuable resource in the programs since that time.
LAMPS MK Il system and this has been demonstrated
in its remarkable operational perfomance. It has been
operational in the fleet for at least 10 years. It is a well
engineered system that in many ways is still very
sophisticated. Its excellent performance results from the
soundness of its engineering. It is an example of what
is possible in operational fleet electronics. For these
masons it represents a very sound foundation upon
which to create another remarkable level of LAMPS
MK 1] usefulness to the Navy. It presently has an
operational role which it performs efficiently and
effectively. Therefore, variations from its present design
have to be very carefully evaluated to be sure that no
reduction in present operational capability will occur if
any design changes are to be implemented.

This paper has touched on some specific
conmmunication and operational scenarios. Others being
examined, but not discussed, includes networking of an
ethernet type between HDR LAMPS MK m] ship's
that uses the high gain to omni link between ships to
achieve a 4 Mbps network trunk. In another version
networking is achieved only between the HDR LAMPS
MK IM omni antennas at a NB rate. What the HDR
nmle offers to the Navy is a communication trunk that
can serve many forms of data communication

119

I

SUCCESSFUL PROCESS IMPROVEMENT I
EFFORT USING

CLEANROOM SOFTWARE ENGINEERING I

S. Wayne Sherer, AMCCOM LCSEC i
Paul G. Arnold, IBM

Ara Kouchakdjian, SET 3
Abstract AMCCOM LCSEC was selected

in response to their expressed interest in
improving the process by which they

The results and lessons learned maintain software in general and,
from a STARS (Software Technology for specifically, in using the CSE I
Adaptable Reliable System) sponsored technology. Additionally, as a typical
process technology transfer DoD SSA, it was deemed important to
demonstration are presented in this paper. improve the means by which the
The Armament, Munitions and Chemical government spends their largest portion
Command (AMCCOM) Life Cycle of software money; i.e., in software
Software Engineering Center (LCSEC) at maintenance and re-engineering (as
Picatinny Arsenal was selected to opposed to new software development). I
demonstrate that Cleanroom Software The demonstration was to be facilitated
Engineering (CSE) and Process-Guided by IBM and SET (Software Engineering
Project Management (PGPM) could be Technology, Inc.). I
successfully applied in a typical DoD
Software Support Activity (SSA). The LCSEC at Picatinny Arsenal
Results indicate that: is a representative DoD Software Support
"• CSE practices and PGPM can be Center that wants to apply a more formal

successfully transferred to a typical approach to software support. The
DoD SSA, current state of software re-engineering at

"* engineering staff productivity and the AMCCOM LCSEC varies from I
quality was increased while project to project but the majority have
simultaneously increasing job not achieved the desired level of
satisfaction, and a productivity and quality. A major goal of

"* return on investment of at least 5.9:1 AMCCOM LCSEC is to achieve an
has been realized on the first project Software Engineering Institute Capability
to which CSE and PGPM techniques Maturity Model (SEI CMM) Level 3
were applied. rating by adopting an evolutionary

process improvement approach to
software re-engineering. Currently
AMCCOM LCSEC is receiving support, f
under STARS Task IA02 from IBM and

Technology Transfer Goal SET, in applying the Cleanroom
approach on the re-engineering of the I

The goal for the technology Mortar Ballistic Computer (MBC). Initial
transfer effort for the AMCCOM LCSEC results have been successful in terms of
at Picatinny Arsenal was to conduct a the projects employing the Cleanroom
demonstration of CSE practices and engineering practices and adopting a
process-guided project management at a process driven team organization.
typical DoD SSA.

120

Organization Overview software engineering environment. This

concept is called Megaprogramming and
DoD Software Support Centers the STARS program is currently engaged

(SSCs) provide important opportunities in several demonstration projects of the
to demonstrate STARS efforts to improve technologies developed earlier in the
software quality and productivity. SSC program. Picatinny MBC effort is the
activities represent a major portion of the first demonstration project to use STARS
DoD software budget and the proportion concepts. IBM is one of the prime
is expected to be increased during the contractors for this effort and SET is a
next decade. This will occur as the many principal subcontractor for the
systems in the DoD development pipeline IBM/STARS effort.
are turned over to SSCs for support. It is
likely that, as fewer new systems come The desire for process-driven
into the inventory, DoD managers will technology was the result of a Software
attempt to extend the useful life of old Process Assessment (SPA) conducted by
systems through software enhancements a team of representatives from the AMCand re-engineering.. LCSECs with coaching from the

Software Engineering Institute (SEI).

The AMCCOM LCSEC provides AMCCOM LCSEC management has
a number of services including: software developed a close relationship with the
acquisition support to program managers, SEI because they desired help with
computer resource life cycle management identifying areas to achieve W,,e desired
plans, pre-planning for software support, level of productivity and quality. Review
manage contracted post deployment of the SPA findings lead AMCCOM
software support efforts, software LCSEC management to realized that the
configuration management, and design software engineering process was not
and implement software changes. The under intellectual control. Each new
types of battlefield automated systems software project, whether performed by
supported include air defense, cannon contractors or civil servants, was treated
and tank gun systems, smart mines and largely as new activity that did not
munitions, ballistics computers, gunnery necessarily draw on prior experience for
simulators, trainers, and nuclear process improvement. The only factor
biological chemical detection systems. that perpetuated experience was people,

be it government or contractor, who
The MBC project was a re- participated in the same projects time after

engineering of the current system used by time. Documentation received by
the US Army to aim Mortars for combat Picatinny, when they were given systems
support. The existing MBC was to maintain, was poor or not up to date
implemented in DTL (Display Terminal and no defined process existed for
Language) and Z-80 Assembler that is not maintaining continual project control. In
easily upgraded for new requirements. other words, the state-of-the-practice
The re-engineered system was consisted of traditional software
implemented in Ada and as a result can be engineering practices that are ad-hoc in
moved to new updated hardware nature, as opposed to a disciplined,
platforms. defined software engineering process.

These realizations and the results from the
The STARS program is a DoD SPA were the basis for their move to

funded research and development effort enhance their software engineering
funded under ARPA (Advanced Research capabilities.
Projects Agency). The main thrust of this Typical DoD SSA organizations
effort is that software development is have immature processes and are subject
process-driven, domain-specific, reuse- to mmale proems ang subje
based, and supported by an integrated to morale problems among software

engineers due to the combination of an

121

I
undefined manner of doing work, along anticipated productivity gains and morale
with a lack of task-oriented scheduling, enhancement from the introduction of the I
The software engineers at the AMCCOM technology.
LCSEC did their work well because of
individual skills, but often seemed to be CSE consists of a body of
stuck in the same "groove," where the practical and theoretically sound
same situations, in terms of schedule, engineering principles applied to the
would arise year after year. A general activity of software engineering. i
lack of enthusiasm pervaded our initial Cleanroom consists of a thorough
discussions with project teams. specification phase; resulting in a six part

specification, including a precise, black
Despite these difficulties, box description of the software part of a

however, the customers (various users system. Software development proceeds
within the US Army) indicate that they from the black box specification via a
are basically content with the quality of step-wise refinement procedure using
the products. Not many field reports of box-structured design concepts. This
failures are submitted by their customers, process focuses on defect prevention,
due to extensive, pre-release user testing. effectively eliminating costly error i
Unfortunately, evidence suggests that this removal phases (i.e., debugging) and
may also result from the absence of produces verifiably correct software
formal failure observation and reporting parts. Development of software proceeds
mechanisms, making the field quality of in parallel with a usage specification
AMCCOM LCSEC developed products of the software. This usage profile
difficult to ascertain, becomes the basis for a statistical test

of the software, resulting in a scientific
AMCCOM LCSEC management certification of the quality of the software

recognized the problems with their state part of the system.
of the practice and took the initiative to I
recognize Cleanroom Software A quick high level comparison
Engineering (CSE) and Process-Guided between the typical development and CSE
Project Management (PGPM) as the philosophy of software development is
mechanisms with which to facilitate the summarized in Table I. The typical
desired cultural, technical and process development environment can be
changes. characterized by craft based techniques

which are highly dependent upon the
skills of the individuals involved whreas

Cleanroom Software CSE is an engineering discipline with

Engineering (CSE) associated rigor and formality.

CSE was chosen as the process
driven technology because it addresses
the deficiencies identified during the
LCSEC Software Process Assessment
(SPA). CSE's management and I
development team approach was
consistent with quality management
philosophy, e.g. workforce I
empowerment, process focus, and
quantitative orientation. It provides for
the transition of process technology to the
project staff and integrates several proven
software engineering practices into one
methodology. LCSEC management

122

Table I: Comparison between Typical Development and CSE

Characteristic Typical Development CSE

Programs regarded as Lines of Instructions Correct rule for a function.

Specification focus Incomplete description of Complete, precise
external behavior and description of external
internal design details, behavior; design details left

for development.

Specification to code Informal, debugging to Stepwise refinement and
transformation process verify code. verification using Box

Structures.

Failures are Expected and accepted. Unacceptable.

Testing strategy Futile attempt for coverage Random sample based on
and little insight on field usage model that predicts
reliability, field reliability.

Transfer of CSE Technology The instills specific values into its
transfer of CSE technology was achieved participants. For example, the focus on
through formal, classroom-style training product quality, a major Cleanroom
courses and follow-on coaching of theme, instills a "get it right the first time"
demonstration team members. The attitude into the members of CSE teams.
courses involved instruction on the As successes were made and milestones
underlying specification, development, conquered, the CSE teams reported
and certification methods of CSE and significant improvements in job
included in-class workshops so that satisfaction, team spirit, and the desire to
students gained experience applying the continue quality improvements. A
technology. As often as possible, significant focus of the coaching effort
workshops were supplemented with was to positively reinforce each project
examples extracted from the MBC success in order to create a stronger
project. Training provided the identity with the project.
introduction to and initial experience with
the tools that would help enhance Such behavioral changes within a
individual and team performance. project are improved by active

participation from all levels of the
Project support was given to the organizational hierarchy from

team members through repeated on-site contributing technical leads to engineering
coaching visits by CSE experts from IBM management. The initial plan was for the
and SET. This activity helped to solidify project staffs to work closely as teams,
the new ideas as team members saw how rather than as individuals. Additionally,
the techniques were applied to their the intention was for the staffs to be
specific problems. motivated and excited about what they

were doing; that is, have a strong identity
The major intent of the training with the process and project. Thus,

and coaching was to establish the human coaching contained a "cheer leading"
behavioral changes necessary to develop aspect, designed to create a healthy
better software. Implementing CSE is an Cleanroom environment.
intellectually challenging process that

123

I
Reinforcement of CSE was can follow and by which they may track

provided through the availability of a six progress towards project completion. i
volume set of process manuals to the
demonstration groups. These process Transfer of PGPM methods
manuals were an integral part of the Awareness of software process is a key
training program and were discussed in issue in successfully transferring
detail, both during the formal training technology to an organization and to an
sessions and off-line as a part of the organization's long term success with !
follow-on coaching activities. Their applying CSE. The project staffs at
purpose was to augment the training by AMCCOM LCSEC received an
providing reference information to introduction to process definition and
AMCCOM LCSEC engineers using process-guided engineering in the context
Cleanroom concepts. They serve as a of CSE. Coaching also reinforced the
single reference source for resolving importance of following the defined
questions about specific issues process and using the process definition,
concerning process adherence. The which defines the possible project
process manuals are organized as alternatives, to support the selection of
follows: correct project choices. I

Volume 1: Cleanroom Engineering
Process Introduction and In addition to training and
Overview coaching, the engineering handbooks

Volume 2: Organization and Project provide a key reinforcement of the
Formation in the concepts of process-guided engineering.
Cleanroom Environment Each volume defines the tasks and the

Volume 3: Project Execution in the control flow between the tasks necessary I
Cleanroom Environment to conduct the specific process which is

Volume 4: Specification Team the focus of the manual. Engineering
Practices processes are defined as formal control- i

Volume 5: Development Team flow procedures with specific completion
Practices conditions. Collections of engineering

Volume 6: Certification Team processes also have the same level of
Practices formalized control flow and completion

conditions. Thus, each engineer,
The division of the volumes represents a manager or other staff member has well
separation of concerns for the various defined roles and tasks that exist as a part
project stakeholders. of a larger software process.

Process-Guided Project The application of the process is
supported by formal enactment of the

Management (PGPM) tasks defined in the handbook. For the
MBC team, this enactment was automated

CSE is a formal process that in the Cleanroom Engineering Process
clearly defines the tasks necessary for the Assistant (CEPA), an automated process
engineering effort to progress, the support system which had the following
completion conditions for each task, and mission: I
the control flow that dictates the order of I. To minimize time lost because
work on each task. Process-guided supporting activities are not
project management entails the use of a properly coordinated. CEPA was U
clearly defined process as the approach to to significantly improve the
be used to complete the particular project. probability that all of the pre-
The intent with process-guided project requisites, tools and data that an
management is to give engineers a clear engineer needs to do a task are
and understandable road map which they available with no wasted time on

his or her part.

124 I

2. To enable engineers to follow the the CSE technology and PGPM
Cleanroom process and thereby techniques as provided by the
obtain all of its benefits. participation of IBM and SET. The

3. To enforce the Cleanroom process hypothesis to be confirmed or rejected in
in the most unobtrusive way this demonstration was: The use of
possible by being user-friendly. CSE practices and process-driven

4. To enable all levels of project management improves the
management to plan, schedule and effectiveness (quality and
control project tasks and to ensure productivity) of the AMCCOM
that the required reviews and LCSEC software support mission.
verifications take place.

5. To facilitate the collection of all The technology transfer package
required metrics for providing was implemented as follows:
statistical control of the process (1) the transfer of Cleanroom
and for providing better estimates Engineering practices to give team
of development time and cosL members the technical tools that

6. To update on-line state data, the provide the human behavioral
data needed to develop the changes necessary to create high
product, and make it immediately quality software with increased
available to all members of the productivity, and
project team.

7. To improve formal and informal (2) the transfer of process-guided
communication between the project management to orient both
members of the group. individuals and teams to thinking

and working within a PGPM
The engineering handbooks, and environment.

the automated enactment gave project
staff a way to use a project framework In order to transfer the
(the process model for the project) that technology, process and culture for a
facilitates scheduling, task dispatching Cleanroom environment, four different
and task statusing. tools were employed:

(1) training, in a formal classroom
setting which integrated lecture

Technology Transfer material and numerous hands-on
workshops (tailored for this

Description effort),

To conduct the demonstration, (2) coaching, both for project
both control and demonstration groups planning and execution as well as
were identified. The control group a medium to promote ongoing
consisted of a sample set of ongoing and education,
completed software projects at the
AMCCOM LCSEC. These projects (3) process handbooks (evolved for
represent the use of "typical" software this effort), which act as a written
engineering methods at the AMCCOM source of education material and
LCSEC. Enhancement projects at as a reference during project
Picatinny typically include the correction execution, and
of observed problems, the addition of
new capabilities, and in some cases, re- (4) an automated process support
engineering of software. The system (developed for this effort),
demonstration project was the Mortar that helps enforce process
Ballistics Computer (MBC) re- adherence and monitors task
engineering effort. The demonstration completion, by automating non
aspect of this project was the adoption of creative tasks.

125

I
Baseline Metrics for baseline mietrics for the control group.

Baselineo Mu rijcts for These metrics are presented with the

Control Group Projects caution that sonic data collection

mechanisms are unreliable, resulting in
The control groups represent the inaccuracies. The numbers in Table 11 are

state-of-the-practice at the AMCCOM similar to results reported by Mosemann

LCSEC. Baseline metrics were collected for other projects within the DoD [Ada
in order to gain insight into project and C++: A Business Case Analysis, I
practices and to establish a basis of ;uly 19911.
comparison to the demonstration
Cleanroom groups. Table II presents the

Table II: Baseline Metrics for Control Group Projects

Project I Measure Control Group Projects I
Number of Projects 5

Range of Effort - Staff Months 21-58

Total Technical Staff Months 192

Total KLOC (*) 23.14

DERIVED METRIC:

Productivity - LOC/Staff Month 121

(*) KLOC computed using NASA/Goddard formula of:
(New Lines of Code + 0.2 * Modified Lines of Code) / 1000

Observations Cleanroom practices to the needs of their
project. Engineers learned, used and

The following observations are a extended the ideas successfully for their I
compilation of IBM and SET experiences project. The evidence of this observation
with the MBC teams. These observations is the products they have produced.

are in the context of IBM's and SET's Disciplined ein a teamI
other experiences with replacing craft- Diro ne d engineering inoaeteam
based practices with engineering-based environment requires rigor, cooperation
practices, both in the private sector and of individuals, and the creativity to apply
with government organizations. One theory to real world problem!. Thismusth governmendthee or vations. One creates a challenging work environment
must kei p in mind these observations are that tends to bring out the best in both
completed. since the project has not bden individuals and teams.

1. The assigned project teams A prime example of the

were able to assimilate and even adapt the accomplishments of the MBC team was
Cleanroom Software Engineering the tailoring of the box structures
practices and process-guided project algorithm to meet both their application

management. environment and the target programming
language, Ada. MBC team members

A common worry among have made original contributions to the

managers when hearing about Cleanroom expression of box structure constructs in

is that it is too hard or too mathematical Ada, which will have applicability across

for their staff. At Picatinny, engineers many Cleanroom projects. This has

were able to apply and adapt the benefited both the project, in terms of

120 I

constructive methods, and the individual a.id what is remaining to be completed.
team members, in terms of a sense of When engineers learn to use the
accomplishment. The team has enjoyed Cleanroom practices, they know they can
using the various Cleanroom techniques do the high quality job they have been
and have seen many real striving to achieve. Engineers are
accomplishments. The specification team convinced that they are producing a better
is convinced that this is the most complete product. As a result, they are excited
and precise specification they have ever about it.
written. The step-wise refinement and
verification, which drives engineers to At the AMCCOM LCSEC, all the
define one small step to take at a time, engineers, both in informal contacts and
take that step, and then confirm its in a questionnaire distributed to the
correctness, has also been successful. engineering staff, reported morale
The development team is convinced that improvements. The AMCCOM LCSEC
they have a great design and have management has also confirmed the
minimized the amount of code they need existence of the improved morale and, of
to develop. course, is favorably impressed.

Furthermore, as the MBC team 3. Facilitation of work effort is
has almost completed their second greatly enhanced through proress-guided
increment, it has already shown major project management.
gains in productivity. Early estimates
show that productivity has tripled despite Team leaders managed by process
the learning curve of working with a new definition and task lists which allowed
methodology. Moreover, this measure more visibility of project status by
includes time spent toward an entire management. CEPA was the tool used to
product specification, which will make clearly define the tasks necessary for the
future increments less time consuming. software development process to continue
Thus, team members are optimistic about including completion conditions for each
continued increases in their productivity task and the control flow that dictated the
(although future predictions can only be order of work on each task. The intent
assertions and remain to be confirmed at with process-guided project management
project completion). is to give engineers a clear and

understandable road map which they can
2. Staff morale has improved on follow and by which they may track

the project teams. progress towards project completion.
Awareness of software process is a key

Another common fear of issue in successfully transferring
managers when hearing about Cleanroom technology to an organization and to an
is that their staff members will not like it organization's long term success with
due to the rigor of the process and the applying a given process-driven approach
absence of positive feedback through to project management. PGPM must
debugging. This has not been our provide for:
experience at other places where we have * the reduction of time lost because
introduced Cleanroom. Picatinny is no supporting activities are not properly
exct, 'tion. When an organization coordinated,
replictes craft-based practices with ° enable engineers to follow the defined
engineering-based practices, morale process and thereby obtain all of its
improves. The reason seems to be that benefits
people now know what to do, when to do • enforce the defined process in the
it, and how it should be done. This most unobtrusive way possible by
eliminates the uncertainty and anxiety for being user-friendly
project teams that now have a good
knowledge of exactly what has been done

127

I
"* enable all levels of management to Although the training was

plan, schedule and control project rigorous with a mixture of theory and
tasks workshops, students learn at different

"* facilitate the collection of all required rates. Coaching allowed IBM and SET
metrics for providing statistical staff to re-educate the slower-to-adopt I
control of the process and for project staff members and keep the entire
providing better estimates of team on a common level of knowledge
development time and cost. and expertise. IBM and SET technical I

* update on-line state data, the data presence at project inception and during
needed to develop the product, and project execution helped solidify the
make it immediately available to all transfer of the technology and ensured
members of the project team. that the project got started in the most

* improve formal and informal efficient manner.
communication between the members
of the group. Furthermore, there was a gap I

between the end of training and the start
4. The team-oriented approach of of the project and some of the education

CSE saw immediate acceptance and was forgotten. Coaching became the
realized both tangible and intangible mechanism to re-educate and supplement
benefits. the original training. Further, as good

ideas were conceived by some team
A key ingredient of Cleanroom is members, it was possible to see that all I

that a team amplifies human performance. members were supplied with the new
People took advantage of the insight of ideas.
others in order to bring the best possible I
project result. Good people working As the project progressed, the
together brought in better results. The CSE ideas needed to be adapted to the
simple idea that many minds are better specific Picatinny environment. Coaches
than one makes the outlook for quality were used to discuss design alternatives
good. However, some less tangible and to help in refining the technology to
benefits were realized as well. The fact best serve the application.
that the entire team is responsible for
quality, in a series of checks and reviews, Perhaps the most unnoticed but
puts pressure on the team and not on effective use of coaching was in the
individuals. This pressure creates a positive reinforcement the CSE trainers I
reliance on team activity over individual were able to give to the team members
performance. Furthermore, as successes and the team as a whole. Coaches are
are encountered, the entire team takes recognized as experts. When experts
credit, not a single individual, thus, comment positively on original ideas by a
cementing the teamwork concepts. The team member, the effect can be enormous
bottom line is that teamwork improves in terms of self-esteem and sense of
individual performance. accomplishment and contribution. The

CSE trainers tried to positively reinforce
Our observation is that the MBC the behavior of those making such

team now works within an effective team- contributions and encourage others to I
oriented environment. We believe that seek answers beyond the limits of current
further use of Cleanroom will establish a knowledge. The "cheer leading"
strong team mentality that will serve to approach increased project satisfaction,
further improve the initial good results, which motivated greater project

performance.
5. Coaching is a key ingredient of

technology transfer success. The idea of coaching with positive
reinforcement was first formally tried out
by IBM and SET on the Picatinny project

I• 28

based on the hypothesis that it would be departments, continues to be a problem.
helpful in technology transfer. The The MBC certification team members
realized benefits far exceeded our work for a different department than the
expectations. Based on this experience, it specification and development teams.
is now believed that coaching should be a Resulting problems are that the
formal part of any technology transfer certification team finds themselves
effort. working from outdated specifications.

Furthermore, the certification team seems
6. Communication among teams to duplicate each other's work. A future

(and between team members) is greatly goal is to be able to duplicate the success
enhanced through process-guided project of the specification and development
management. teams in the certification team, primarily

by improving communications. A more
An important ingredient of any concerted effort should have been mqde

proccss-guided activity is communication by the coaches to minimize these
among contributing teams and communications problems.
individuals. One aspect of this was that
no team culture existed at the AMCCOM 7. Process-guided project
LCSEC; meaning that no real notion management supports engineers in
existed of how teams are supposed to mastering a new technology.
behave during project execution. This
problem manifested itself in many Process-driven, now referred to
different ways. Testing teams often did as "Process-guided," project management
not receive specification updates (and is one of the two basic technologies being
failed to ask for them). Also, work advanced by the STARS program. The
tended to be duplicated by multiple team Picatinny project was the first project on
members because the division of tasks which this key idea has been employed.
was unclear and communication among
members occurred too seldom. The reason process-guided project

management seems to support technology
There were two aspects of solving transfer can be summarized as follows.

this problem at Picatinny. The first was When doing something for the first time,
to establish effective communication one often asks, "What do I do next?" or
among team members and the second was "When will I be done?" This indicates a
to establish communication among the lack of understanding the big picture,
different departments involved in the where engineers can clearly place their
project. The adoption of a well defined efforts in a project context. This is not
process includes a vocabulary that is of only an attribute of first time usage of
great help to the understanding and techniques or a process, but also an
discussion of the process. This well indication that a clearly defined process
defined vocabulary makes communication does not exist or is not effectively
between team members much more managed.
effective and productive. Our
observation indicates that communication By placing the Cleanroom
among team members significantly techniques within a fully defined process,
improved via the team approach and AMCCOM LCSEC engineers knew
strengthened through the use of CEPA. precisely what step they were currently
The improved communication also started on, as well as what had been completed
a shift in the culture of the teams. Team and what remained to be done. Giving
members report that they readily use each each individual the foresight that showed
other as information sources, quality where they were in the context of the
checks, etc. Team reviews are effective entire project strengthened project identity
and informative. However, the second and boosted morale.
aspect, communication between

129

t
The results of this project also

indicate that experienced engineers will It was observed that automated
also gain productivity benefits by process support is quite helpful in
employing a process support system but supporting technology transfer. This is in
that can only be tested by comparing the spite of some of the shortcomings of the l
performance of experienced teams which system that the MBC staff was asked to
was not possible at Picatinny. use. The developers of CEPA learned a

8tegreat deal about how people use such a
8. CEPA, the Clean room system; and consequently, requirements

Engineering Process Assistant, despite for an enhanced process support system
some shortcomings, provided valuable were identified and modified. The
process-guidance support for the project. automated process support system that is

to be transferred to Peterson Air Force
There were a number of known, Base has been improved as a result of this

as well as discovered, shortcomings in usage. I
developing and using CEPA. It was an
enhancement of a prototype system 9. Specific technological aspects
developed during a previous STARS of the Cleanroom Software Engineering
Phase. The enhanced system was to practices were easily and successfully
provide support to engineers using a used.
specific Cleanroom process model. This
approach was known to be somewhat Using specific techniques are
limiting, but was used in order to means by which engineers change their
determine the level of constraint behavior and improve their performance.
necessary for engineers to easily adopt Three techniques in specific were I
process-guided engineering. Although the discussed by project staff as being major
engineers did report finding the product sources of their improved performance.
constraining, CEPA did allow engineers These techniques are team reviews,
to identify the tasks assigned to them and Cleanroom specifications and box
locate all files necessary to complete the structured design, and are described in
tasks. Team leaders could also focus greater detail below:
their management effort based on
assigned/outstanding and completed Team reviews, although
tasks. This status reporting feature experiencing a slow, awkward start, were
allowed team leaders to manage project cited by team members as one of the most I
tasks at a more reasonable level of successful aspects of the new activity.
granularity, which permitted them to Members report that the team shared
maintain the project under greater responsibility eased misgivings about
intellectual control. participating in such a big project. This

negated "finger pointing" that existed in
CEPA was viewed as being previous projects and allowed even

tightly coupled with the process. As a difficult personality combinations to work
result, formal training in using it was not together. The result was that everyone
given, which would have also made its participated and worked as a team toward
use more effective. The lack of CEPA project success and completion. Morale I
training was a significant shortcoming increased sharply as groups of
that needs to be rectified in future individuals transformed into an effective
technology transfer efforts. Additionally, software team.
formal training in using the underlying
tools in CEPA would have been useful. Cleanroom specification,
Other problems with the CEPA most notably black box documentation,
implementation used at Picatinny included was cited as being responsible for gains
a clumsy user interface and difficulties in in productivity. Many talented engineers
using the software on a network. existed on the project and their

130

I

productivity was significantly enhanced is the most definitive conclusion of this
when working from a well defined effort.
problem statement. The completeness of
the specification was the main reason In addition to the above
cited for the team's confidence that they mentioned conclusion to this effort, the
were producing a high quality product. following conclusions can be drawn

based on the current status of the MBC
Box structured design is project.

credited with focusing the code
generation process and with making team 1. It is possible to transfer CSE
reviews more effective. The team and PGPM practices to project teams
enjoyed the orderly process of developing operating within a typical immature DoD
software. It got them started more SSA organization.
quickly on solving a particular problem
and they were able to measure the This was shown by the fact that
progress of the development activity with the MBC project has progressed to a
more precision than in the past. Since the point where CSE and PGPM are being
process relies a great deal on logical successfully applied. This result shows
thinking as opposed to programming that a specific maturity rating is not
skill, less experienced programmers are necessary in order to benefit from
able to take a bigger share of the Cleanroom Software Engineering or
development burden. Therefore software Process-Guided Project Management.
engineers can make the most of their The engineering staff also enjoyed using
software engineering skills without the ideas, and all were interested in using
having to develop in-depth programming the ideas again. Additionally, nearly all
language expertise. were interested in supporting and

participating in the establishment of a
"Cleanroom Competency Center" at theResults Picatinny Arsenal.

The most important result noted 2. Typical immature DoD SSA

by this effort, even in its preliminary organizations can realize important
form, is that the motivation to continue to benefits, in terms of improved process
use Cleanroom practices and PGPM at productivity, product quality, and staff
Picatinny has been established. This morale, from the application of CSE and

demonstration effort was sponsored by PGPM.

STARS and the continued effort is being This conclusion is supported by
sponsored by the AMCCOM LCSEC. the apparent tripling of productivity of the
This result is an instance of the STARS MBC team. Table III shows the results
program fulfilling its mission by being for productivity for increments 1 and 2.
the catalyst for introducing improvements The productivity increases because the
to the software engineering capabilities in training incr ve are t
the DoD. In one sense, the effort is to be training and learning curve are not
expanded across the entire organization, ruire increments.Future increments should show additional

improvement.

131

II

Table IIl: Productivity Change for MBC Re-engineering

LOC per Change in Productivity
Increment Starf based on Picatinny

Month Baseline Metrics

1 370 3.06:1 n

1+2 428 3.54:1 I
Two important observations from software developed during the first

the MBC project are that (1) PGPM has increment is very high when compared to
aided the learning process and helped quality for traditional software
ease the transfer and application of the development. The MBC team is excited
CSE technology and (2) following a well about the prospect of the upcoming test of
defined process significantly improves their second increment. Thus, the result I
team productivity and morale. achieved will be viewed by the MBC

team as the mark to better on the next
Early indication are that quality increment of this project. The incentive

has appeared to have improved over and motivation for continual improvement
previous product quality according to is firmly in place among MBC team
Picatinny's customers. The quality of the members.

Table IV: Quality: Number of First Increment Failures

Failure Number of Description
Type Failures I

Process 19 Approved improvements made to design but not reflected
in updates to the specifications.

Spelling 3 Misspellings on displays.

Behavior 2 Coding Errors, did not work as specified.

First Increment Failure Rate = 2 Behavior Failures = 0.24 Failures/KLOC
8500 LOC

3. The return on investment at on investment can only be based on
Picatinny cannot be definitively estimates from the information currently
calculated, but indications are that there is available. The resulting return on
a significant return on investment, investment (ROI) calculations appear on

the next page in Table V.
Since the project is not yet I

complete, a preliminary estimate of return

I

132

Table V: Return on Investment for MBC Re-engineering

LOC Staff Months MBC
Increment per would have taken ROI ROI ROI

Staff without CSE Base with with
Month Coaching Training

8500 LOC/121 LOC/SM =
1 370 70.3 5.9:1 8.9:1 14.1:1

18200 LOC/1 21 LOC/SM =1+2 428 150.4 9.8:1 20.4:1 17.1:1

SM = Staff Months

ROI Base = (SM MBC would have taken - SM MBC took)
Staff Months of Coaching Effort + Staff Months spent in Training

ROI with Coaching = (SM MBC would have taken - SM MBC took - SM of Coaching Effort)
Staff Months spent in Training

ROI with Training = (SM MBC would have taken - SM MBC took - SM spent in Training)
Staff Months of Coaching Effort

If these assertions are correct, one 5. Based on this demonstration
must also realize that productivity will we now believe that a technology transfer
increase with the later increments because program to support individual projects at
specifications are compette for the entire a typical DoD SSA organization must
system. Once again, the final calculation begin with a defined process for the
of return on investment awaits project project and should consist of the
completion. following five components:

(1)formal CSE training,
4. An Automated Process (2) training in PGPM,

Support System (PSS), that is consistent (3) the availability of engineering
with the process defined for the project, handbooks,
facilitates technology transfer (4) the use of a PSS (e.g., CEPA

and its successor), and
Automating the non-creative tasks (5) the availability of qualified

of a new technology, such as file access coaching.
and simple process flow facilitates the
adoption of the new technology. This The combination of technology
was true even for a system with transfer components created a series of
limitations known and subsequently successes at Picatinny; including
observed in CEPA. CEPA's successor productivity gains, expected quality
system (being developed for deployment gains, and the increased motivation of the
on the STARS Air Force demonstration engineering staff.
project) applies many of the lessons
learned from observing CEPA use at The MBC project has realized
Picatinny. significant gains from the CSE ideas.

Once the learning curve had been
completed;, initial successes in creating

133

the Black Box specification served to Institutional Conduct of Fire Trainer, a
cement commitment to CSE. software block update of a FORTRAN

system. This project is a maintenance
The resulting conclusions from software block update for the aiming

the overall evaluation are preliminary system on the Bradley fighting vehicle. I
because the demonstration project is still CSE and PGPM techniques are being

in its early stages. However, the original adapted for use in this important area.
hypothesis that Cleanroom improves the Much needs to be learned in adopting the
effectiveness of the software re- successful techniques used on the MBC
engineering activities at Picatinny looks to the area of software maintenance.
very promising. Indeed, management
and staff agree that morale and motivation Creating a Cleanroom Process
is extremely high, that teamwork is now Team to build CSE and process expertise
the normal mode of operation, and that in house. This group is responsible for
people are excited about the software continuous review and study of the I
process being established and are application of Cleanroom and PGPM at
motivated to produce high quality Picatinny. This group's charter is to
products. internalize and refine CSE and PGPM to

the software practices at Picatinny.
A good technical road map is in

place at Picatinny; the technical personnel Planning to use CSE for all future
are developing the skills that appear to development and re-engineering projects
show significant gains in productivity, internal to the LCSEC. It is cost effective
Even more promising is the fact that these to use these techniques for any
gains were made with minimal exposure maintenance project that requires effort I
to CSE. Future gains are likely to be of equal to changing one third or more of the
greater magnitude as projects are carried original code. Since productivity
out by experienced teams of Cleanroom increases are three times conventional
engineers well advanced on the learning methods, a whole system can be re-
curve, engineered for the same cost or less of a

maintenance update. The technology
transfer package developed by IBM and

Future Directions SET can be used by the trained staff to
support these projects. The MBC team is

fortunate to have talented team members IThe next steps for who can carry this out.
LCSEC/STARS cooperation have been

defined. The impressive results to date in Evolve the Process Support
the areas of productivity, quality, return System. The understood and observed
on investment and moral have convinced shortcomings in CEPA are primarily
AMCCOM LSCEC management to addressed by the PSS being developed by
continue the work begun under this the IBM STARS team for use on the I
demonstration project and to expand it STARS Air Force Demonstration Project
further throughout the organization and at Peterson Air Force Base. The majorthis I
thwill include the following: source that provided input to the

specification process for the PSS was the
Complete remaining phases of experience gained by using CEPA at

MBC project of which there are three Picatinny. As a result, many of the
increments in the initial plan. This will improvements desired by Picatinny are
result in a completely re-engineered being developed as a part of the PSS.
system. The PSS needs to be delivered to

Picatinny, as well as to Peterson Air I
Gain insight from a second Force Base. As a result, Picatinny will

experimental project, the Bradley receive their desired functionality and will

134

help provide a second test bed for the
PSS.

Evolve Cleanroom Software
Engineering into a complete life cycle
process as far as is feasible using
standard Cleanroom techniques. Work is
currently underway to perform a mapping
of the evolved Cleanroom Software
Engineering process, as used at
Picatinny, against SEI developed
Software Process Frameworks (SPF) for
the SEI CMM Level 2 and 3. The results
of this mapping will provide Picatinny
with a road map of all areas that are either
not covered or are poorly covered by the
CSE process. These results will be used
to identify areas for Cleanroom process
definition as far as is practical. Areas that
are not practical for Cleanroom extension
will be defined with non Cleanroom
extensions. The results will be a
complete life cycle process definition for
Picatinny to support their move to SEI
CMM level 3. Additional work is being
done in the area of Metrics to determine a
baseline of measures to support a level 3
organization.

135

I
I

Design Capture Views Applied to the WAA System

Daniel J. Organ

Naval Undersea Warfare Center
Newport Division

New London, CT 06320

Abstract 2. To provide a basis of comparison between I
the existing system and the new system.

This paper illustrates two system definition
methodologies developed by the Engineering of Complex I
Systems (ECS) project. The methodologies are the For example, cost versus performance may be the
System Design Views and the System Design Factors. primary tradeoff in design of the new system. The
These methodologies are used to provide a detailed baseline characterization of the existing system may
characterization of the hardware components of the reveal that the ratio of cost to throughput is high. In this
AN/BQG-5 Wide Aperture Array (WAA) system. The case the designer must ensure that the cost to throughput
system hardware components are characterized using the ratio for the new system does not exceed that of the
Informational, Functional and Implementational System existing system. I
Design Views. Properties including performance, The preceding example illustrates how specific
physical attributes and future needs of the system are information obtained from a characterization of a baseline
presented using the hierarchical System Design Factors system can be used to define and evaluate a new system I
approach. The benefits and utility of the information in a design. The example focused on a specific aspect (cost vs.
system reengineering environment are discussed. performance) of the system definition. It is clear that the

consideration of only this aspect provides a narrow and
1: Introduction incomplete definition of the system.

As part of the Engineering of Complex Systems
One area of evolving system engineering (ECS) project, scientists at the Naval Surface Warfare

methodologies for complex systems focuses on providing Center (NSWC) are actively pursuing research in the1 i
a comprehensive system definition early in the design areas of system definition using several design capture
cycle. Commercially available system engineering tools views. The following design capture views and objectives
such as RDD-100 allow system designers the facility to of each view have been defined by N. T. Hoang 1:
generate various design capture views. The views provide
the mechanism to completely define system requirements, 1. Informational
notional architectures and system behavior. The goal is • Characterizes system concept of operations
to mitigate risk by validating candidate architectures and • Represents system in abstract terms
identifying potential problems prior to building a
prototype of the system. 2. Functional

When beginning to specify the requirements for a - Defines system functions and decompositions I
complex military system replacement or upgrade, it is * Defines data flow requirements
important to characterize the existing system. The
designer uses the information obtained from the 3. Behavioral I
characterization of the baseline system in two valuable - Defines system critical pathsways: * Specifies system real-time characteristics

1. To identify areas which are candidates for 4. Implementational I
improvement in the new system design. * Define physical hardware, software, and human

136

* Specifies system physical interconnectivity WAA system provides the capability to acquire, track and
rapidly analyze an acoustic contact and conduct Target

5. Environmental Motion Analysis (TMA) without maneuvering the ship.
* Establishes conditions and events constraining The inboard system hardware consists of 3 Common
system operations Electronic Equipment Enclosures (CEEE). The units are
- Specifies performance MOEs and conditions of the WAA Receiver (1306), WAA Beamformer (1307) and
measurement WAA Processor (1308). A brief description of each unit

and the unit resident firmware follows.
Within these design capture views NSWC researchers The WAA Receiver cabinet receives multiplexed

have defined a set of System Design Factors2 (SDF). The Manchester coded serial-bit format data transmitted via
SDF represent a proposed standard methodology to twisted shielded pairs of wire from the canisters in the
describe the properties, attributes and characteristics of the WAA Passive Receive Outboard Electronics (OBE). The
system. The SDF can also be used to quantify specific WAA Receiver receives, demultiplexes, and reformats
aspects of the design and to perform trade-off analysis. data signals for output to the WAA Beamformer.

TIis report presents a baseline characterization of the Required DC power and control signals for the WAA
AN/BQG-5 Wide Aperture Array (WAA) system OBE are carried down twisted shielded pairs of wire from
hardware. The goal of this effort in an overall the WAA Receiver.
reengineering environment is to provide a detailed Firmware resident in the WAA Receiver provides
baseline to be used for comparison and trade off analysis control and performance monitoring of data that is input
between relevant aspects of the existing system and the from the WAA OBE and formats the data for output to
proposed system. In the following case study the the WAA Beamformer. The firmware receives OBE
characterization of an existing system will be represented controls and parameters from other system software and
using the Informational, Functional, and formats these for transfer to the OBE. The firmware
Implementational design capture views. In addition, includes control of a Pseudo Random Noise Generation
System Design Factors in the areas of performance, (PRNG)/Cal generation function which can generate a
physical attributes, and future needs will be used to single bit of Pseudo Random Noise (PRN) or calibration
describe the baseline system hardware. signal to be passed to the OBE for generation of a test

signal. The firmware performs a gain calculation to be
2: System Design Views used for OBE gain control. The firmware also performs

Digital ACINT Data Acquisition System
The following three System Design Views are the (DADAS)/ACINT Calibration injection upon command.

Informational, Functional and Implementational views. The WAA Beamformer cabinet receives WAA
The views focus on the hardware components of the hydrophone data from the WAA Receiver, provides
system. Each view contributes a different aspect of the required acquisition and track beamforming; implements a
overall system description. Collectively the design post beamformer correlation function; provides selectable
capture views provide a detailed characterization of the beam data output for recording, audio, and calibration;
AN/BQG-5 WAA system hardware. However, the performs integration and requantization of correlogram for
system hardware definition provides an illustration of display; provides post beamforming AOBT signal
only one aspect of the research being conducted by the injection, and provides resources for tracking,
ECS project. localization, performance monitoring and unit control.

The resident firmware receives DIMUS hydrophone
2.1: Informational data and linear hydrophone data and the necessary controls

to manage the track and acquisition beamforming and
This design view provides a textual description of the signal processing.

overall system functions and simple concept of The acquisition processing provides DIMUS
operations. In addition some hardware specific beamforming; post beamformer AOBT signal injection;
information is included. The. information in this view is post beamformer filtering and correlation processing;
intended to familiarize the designer with the functionality selectable digital beam output for recording; stabilization,
and use of the baseline system. integration, normalization, and requantization of

The AN/BQG-5 WAA is a stand alone acoustic correlation data for display; PM/FL and processing
sensing and tracking system designed to augment the control.
combat system in 688 class attack submarines. The

137

I

BCM ASICS 68000 56001 TMS320C30 TOTAL n
025 MIRS @35 MIPS @20bIP 025MLO MIPSIMELOPS

BCM 900 900/0

GCM 9 9/0
CFM 300 300/0

SPM 3120 3120/0
FPM 1400 0/1400
GCA 300 300/0
ERA 100 100/0 I

XTOTAL 900 9 3820 1400 4729/1400

Table I. MIPSIMFLOPS Calculations for Unit 1307 1
The track processing consists of linear beamforming; table. The various processors resident on the modules are

post beanftrmer filtering and correlation processing; listed on the top of the table along with the specific
DEMON classification processing; selectable digital MIP/MFLOP rating for each module type. Modules based
beam and hydkoplone data output for recording and audio; on two microprocessors, two Digital Signal Processing
stabilization, integration, normalization, and (DSP) chips and one Application Specific Integrated
requantization of correlation and DEMON data for Circuit (ASIC) provide the system processing. The DSPs I
display; noise estimation; PM/FL; and processing are the Motorola 56001 and Texas Instruments
controL TMS320C30. The microprocessors are the Motorola

The WAA processor supports functional processing 68000 and 68030. The ASIC is a special purpose chip I
for acoustic data, On-Board Training, Input/Output (1/0) called the Beamformer Computational ASIC.
processing, Database Management processing, disk For the throughput characterizations the processor
storage and Workstation processing. The unit ratings are estimated to be 2 MIPs for the 68030, 0.75 U
functionality is not provided by firmware but by MIP for the 68000, 20 MIPs for the 56001, 25
application software executing in processor nodes MFLOPS for the TMS32C30 and 25 MIPs for the BCM.
connected by a LAN called FLEXNET. FLEXNET The ratings for the ASIC and DSPs are estimates and are
supports data transfer and communication between nodes based on published benchmarks, clock speed and have I
within the unit. been derated to estimate actual sustained throughput rather

than peak throughput. The MIP rating for the 68030 is
2.2: Functional based on specified CPU module performance. I

In unit 1306, a combination of 68000 and 56001
The functional design view of the WAA subsystem provide a total of 486 MIPs. The 56001 support the

is represented by characterizing system throughput and demultiplexing of data received from the OBE. The I
resource utilization. Information describing the functional 68000 support unit control functions.
partition is also presented. The information presented in Table I shows that a combination of all processor
this view provides insight into the computational types contribute to the total 1307 unit throughput
allocation of the baseline system. When beginning to capacity of 4729 MIPs and 1400 MFlops. The primary I
develop a strategy for allocation of processing resources functions performed in this unit are beamforming,
for a system upgrade it is helpful to first examine the detection and tracking. The majority of the processing is
baseline system allocation as a starting point. By performed by the DSPs and the ASIC. Again, the 68000 I
characterizing the throughput of existing system the supports unit control functions and does not contribute
designer gains some insight into the overall processing significantly to the overall unit computational capacity.
requirements of the system as well as specific functional Although a table is not presented for unit 1308, the I
partitions. processing is provided entirely by 68030 processors for a

The system throughput is represented in MIPs and total unit throughput capacity of 95.2 MlPs 3 .The 68030
MFLOPs. The example unit calculation listed in Table I resident on the CPU module and the NSU module which
for unit 1307 are based on analysis of the number and performs FLEXNET processing have measured
types of processors resident in the unit 3 . The modules throughput of 2 MIPs. Other 68030 are resident on 1/0
which contain processors are listed on the left side of the modules (FST, NTDSE, SCSI, SIOC, CSIO) and have

133

90/% 22% 13% 2%
ASICS 68000 ASICS 68000

14%
TMS320C TMS320CTMS320 C4%

56000
55%
56000

Processors Throughput

16% 5%
Data Management 21% Data Management 16%• •O •)11%

23% 9% 30%
Beamtfoming Track Beamforming Track

31% 38%
Detection Detection

Processors/Function Throughput/Function

Figure 1. Functional and Processor Partitioning

measured throughput of 1.6 MIPs. requirement of less than 80% processor and memory
The pie charts in Figure I provide an overall system utilization.

summary which illustrates how the throughput is
partitioned between system functions and processors. The 2.3: Implementational
figure shows that the DSPs form the majority both in
number of processors and in throughput. In particular the The implementational design view of the WAA
56001 provides 55% of the number of processors in the subsystem is represented by describing each hardware
system and 64% of the total system throughput. unit. The description will include the drawer types,
Functionally, the majority of processors and throughput module populations, and finally overall unit metrics for
are allocated to Beamforming and Detection. As seen in power, weight, volume and available space 3 . The
Figure 1, 23% of the total number of processors and 30% importance of this view is that it provides a detailed
of the system throughput are allocated to Beamforming. characterization of the physical aspects of the baseline
For Detection 31% of the processors and 38% of the hardware.
throughput are allocated to this function. Three units comprise the WAA subsystem. All the

While the throughput data presented above illustrates units are nine drawer CEEE populated by SEM-D format
the available computational capacity of the system and modules. The units are water cooled and are powered by
some indication of the partitioning, it does not show how 155 VDC. Each unit contains one Power Control drawer
much of the capacity is being utilized by the application which provides EMI filtering, unit and drawer controls
software. Table II contains resource utilization for the and status monitoring and distribution of 155 VDC
A3 drawer in unit 13074. Both processor and memory power. Unit 1306 and 1307 each contain an Interface and
utilization as well as available memory metrics are listed Control drawer which acts as a unit controller for
for each individual processor or processor group. Because synchronization and timing control.
the available memory and memory utilization in unit As described earlier, unit 1306 contains nine drawers.
1307 are generally relatively low, the data indicates that In addition to the power drawer(A2) and the interface and
the resident functions are more processing intensive than control drawer(A5) , Unit 1306 contains six
memory intensive. With a few exceptions the majority of demultiplexor drawers(AI, A3, A4, A6, A7, A9) and one
the processors are below the system TADSTAND unpopulated drawer(A8). Each drawer, except for A2,

139

I

MODULE PROC MEM(RAM) MEM(RAM) I
DRAWER I PL R• TYPE UTIL(%) UTIL(%) AVAIL(KB)

CHANNEL BEAMFORMER 18 BCM 68.0 37.0 32
TIME DELAY CALC. 3 GCA 5.0 13.0 96
CHANNEL CONTROLLER 3 GCA 45.0 21.0 96

DRAWER CONTROLLER 1 GCM 45.0 20.0 128
FILTERING 6 SPM 79.0 7.0 192
SPECIAL OUTPUT COLLECT 3 SPM 65.0 10.0 192
SPECIAL OUTPUT 1 EFM 89.0 10.0 192
FULLBEAM CORRELATOR 6 SPM 71.0 78.0 192
HALFBEAM CORRELATOR 6 SPM 78.0 78.0 192
DEMON SPM 37.0 94.0 192
ACOUS. FORMT/OUTPUT 3 CFM 15.0 10.0 384

Table II. Unit 1307 Resource Utilization

contains 66 module slots. The module populations of the SPM modules which contain 2 56001 DSP, perform the
demultiplexor drawers are identical. CCM modules which majority of the demultiplexing. Unit 1306 contains 192 i
contain 68000 processors, perform control functions. The WPR modldes which provide DC power to the OBE.

A& A2 Al A4 AM AM A2 Aa A2 TOTL i
BCM 18 18 36

GCM 1 1 1 7 1 1 12

CFM 3 3 3 3 3 15

CTM 1 1 1 3 1 1 8

DRM 3 6 3 6 3 21

DDM 3 3

SPM 18 12 18 12 18 78

PSM 1 1 1 2 1 1 7

CDM 3 3 3 7 3 3 22

FPM 28 28

ROM 6 6

WFM 3 3 3 9

WCM 9 9 9 27

GCA 3 3 3 3 3 15

DRD 1 1 1 1 1 5

CIM 5 5

EFM I 1 1 1 1 5

DAC 2 2 4 3
KLM 1 1 2

TOTAL 47 0 53 47 61 53 47 0 0 308 3
Table Ill. Unit 1307 Module Population

140

POWER VOLUME PROC. SPARE PROC.

THROUGHPUT SLOTS DENSITY

UNIT (KW) (FT 3) (MIPS/MFLOPS) (%) (MIPS/FT3)

3 1306 5.9 24 486/0 38 20

1307 3.6 24 4729/1400 41 197

3 1308 2 24 95/0 77 4

Table IV. Summary of Unit Metrics

The module population of unit 1307 is listed in Table IV summarizes several unit metrics for the
Table MI3. In addition to the power (A2) and interface and WAA subsystem. The percentages of spare slots for each
control (A5) drawers, this unit contains three identical unit was computed by dividing the number of occupied
Acquisition/Beamformer drawers (Al, A4, A7) and two module slots by the number of available module slots.
identical Track/Beamformer drawers (A3, A6). Drawers All the units contain available space for additional
A8 and A9 are empty. The primary computational modules. The processing density for each unit was
modules contained in the unit are the BCM (ASIC), computed by dividing the unit MIPS by the volume and
GCM (68000), CFM (56001), SPM (2/56001), FPM indicates that the majority of the system processing is
(2/TMS320C30), GCA (68000/56001) and EFM performed in unit 1307.
(56001). The WCM module performs 1 bit DIMUS
processing. 3: System Design Factors

Unit 1308 contains two Data Management drawers
(A3, A4), a disk drawer (A6) and an EMSP I/O drawer One of the primary objectives of System Design
(Al) as well as the power control drawer (A2). Drawers Factors is " to provide a mechanism to quantify and
A5, A7, A8, A9 are empty. The modules in the identify a large, complex real-time system's strengths and
functional drawers (Al, A3, A4) are configured in weaknesses so that effective comparison of different
processing nodes to perform specific functions. Each node systems is achievable" 2 . By defining a set of SDF,
contains I CPU, 1 or 2 GM16, 1 NSU and various specific system characteristics are more easily compared.
interface cards (FST, NTDSE, SCSI, CSIO). The information is presented as a hierarchy in which each

IR ATTRIBUTES METRICS OUANTITATIVE VALUES
10 1307 130

3 MFLOPS 0 1400 0
Throughput

MIPS 486 4729 95
I. Performance

Utilization percent (%) 43 50 34

I Power kilowatts (kW) 5.9 3.6 2

3 II. Physical Weight pounds (lbs) 1120 1240 1060

Volume cubic feet (ft3) 24 24 24

U III. Future Needs Expandability spare slots (%) 38 41 71

3 Table V. System Design Factors

3 141

I

level provides increasingly specific descriptions of the goal of these methodologies is to improve the system
properties listed in the left hand column of the table. definition early in the design cycle. The hope is that these
Table V contains a list of SDF defined for the WAA methodologies will aid the system designer in the
subsystem. The properties listed in Table 9 are only a conceptualization and development of complex systems.
small subset of the SDF identified by Nguyen and When considering system upgrades or improvements
Howell 2 . it is important to evaluate characteristics of the new

system against the existing system. This report has
4: Summary attempted to characterize the WAA subsystem by

applying currently evolving system definition
This paper provides a characterization of the WAA methodologies to present the pertinent information. The

subsystem. The information is presented using two information presented will be used to perform trade off 1
system definition approaches developed by researchers at analysis and evaluate relevant aspects of the proposed
NSWC. The approaches are the System Design Views system upgrade.
and the System Design Factors methodologies.

The System Design Views approach uses 5 unique References
design views to describe the system. They are the
behavioral, environmental, functional, informational and 1. Hoang, N. , "The Essential Views of the
implementational view. Each view provides specific System", 1991 System Design Synthesis Technology
information which can be used separately to define Workshop, Silver Spring, MD, September 1991.
specific system characteristics. When taken together, the
set of views provide a comprehensive description of the 2. Nguyen, C.M., Howell S. L., "System Design I
system. Factors", 1992 Complex Systems Engineering Synthesis

The System Design Factors approach involves and Assessment Technology Workshop, Silver Spring,
creating a hierarchy of system properties. Each successive MD, July 1992.
layer of the hierarchy provides additional detail to define
the property. By presenting the information in a 3. General Electric Company, "AN/BQG-5 Hardware
hierarchical format, it allows the designer to compare and Notebooks", 9 March 1992.
contrast the relevant properties of various systems.

System definition methodologies such as System 4. General Electric Company, "AN/BQG-5 System
Design Views and System Design Factors are being Metric Reports", March 1993.
developed to improve complex system engineering. The I

I
I
I
I
I
I

142 I

I

Translating CMS-2 to Ada
Charles H. Sampson

Computer Sciences Corporation

Abstract are expected to be very rare or, in the case of inaccurate
translation, detectable by some other means.

The goal of this paper is a description of TRADA, a
CMS-2 to Ada translator that is being developed by Com- The desire for transportable, maintainable, Ada code
puter Sciences Corporation under the auspices of the comes from the belief that there is no particular virtue in
Naval Command, Control and Ocean Surveillance Center exercising an Ada compiler. That is, the primary, per-
(NCCOSC) Research, Development, Test and Evaluation haps unstated, purpose of the translation is to reap the
Division (NRaD) in San Diego. benefits of the Ada language and two of those benefits are

transportability and maintainability. While there might be

This paper begins with a discussion of the translation some argument on the issue of transportability, particular-
philosophy behind TRADA and an overview of the trans- ly for a specific system targeted to a particular Navy
lator. Then follow three sections that sketch CMS-2. computer, it is hard to justify ever producing code that is
Those familiar with CMS-2 might be tempted to skip harder to maintain than the CMS-2 original, as has been
these sections, but they do contain some subtle points that seen from time to time.
a user might be unaware of. A discussion of CMS-2
features that cause translation problems and several of the
translation strategies used in TRADA are next. The paper Fully accurate translation is required because of the
concludes with a brief discussion of the one known case carefully tuned algorithms in much deployed CMS-2 code,
of inadequate translation and a summary. particularly fixed-point calculations. If the translation

output inefficiently but accurately captures the algorithm,
1. Philosophy of Translation the maintenance programmer can look at the Ada code

and decide how to improve the efficiency. This is a much

What should be the goal of a CMS-2 to Ada translator? easier process than attempting to determine why a previ-
There is no single answer to that question. From the ously correct algorithm is no longer producing correct

user's viewpoint a translator (from any language to any results.

other) should ideally translate all code with 100% accura-
cy; if the ideal cannot be achieved then at least it should Clear indication of translation problems is a counter-
translate the hard parts that the user doesn't want to do part of the desire for fully accurate translation. When an
himself, accurate translation is not possible, it is necessary to call

out to the maintenance programmer that intervention is

In practice, it is often impossible to achieve either of required.

these goals, particularly when the language being translat-
ed is as undisciplined as CMS-2. It is often precisely the 2. TRADA Overview
parts that the user finds hard that are very difficult or
impossible for a translator. Nonetheless, a translator can TRADA is viewed as a one-shot tool. That is, any
have a significant impact in transitioning a project from CMS-2 program is expected to be translated only once.
CMS-2 to Ada. It can take care of many of the mind- After that, any modifications will be made to the output
numbing details, leaving the humans involved free to Ada code. Because of this one-shot aspect, the emphasis
devote their energies to important parts of the task. in TRADA has been on the translation process, with

minimal regard for execution speed. If a program is only
The design and implementation of TRADA is driven going to be used once per project and only a few times in

by three goals: to produce translated code that is trans- a single shop, very long execution times can be accepted.
portable and at least as easy to maintain as the original
CMS-2; to translate with 100% accuracy when translation It has been suggested that some might want to translate
is possible; and to clearly indicate the problem when using TRADA, investigate the translation output, modify
translation is not possible. Even these goals are not al- the CMS-2 source, translate again, and repeat this process
ways attainable, but the cases when they are not attained through several cycles. This approach seems to be based

143

I

on the belief that a slight tweak of the CMS-2 would translation is produced. The potential for chaos that could i
result in successfully translating many previously untrans- result from translating an incorrect CMS-2 program is too
latable statements. While this might be true, in these great. The requirement of a complete, correct, source
times of limited resources it was decided to carefully program means that the user must fix the problems dis- I
document the kind of changes that should be made to the cussed in sections 5.2 and 5.3. Without these fixes,
code before translation and reduce costs by implementing proper translation is impossible.with minimum consideration of throughput.1

TRADA must also be told the name of the main proce-
The implementation of TRADA is in progress as this dure. This information is used solely to generate the Ada

paper is being written. Rather than freezing the descrip- main procedure, which does nothing but call the transla-
tion of TRADA at this time, it is described as though it is tion of the CMS-2 main procedure. I
complete, with all specified features implemented.

TRADA optionally accepts the input of a script file,
TRADA is being developed on a VAX/VMS, using which directs certain aspects of the translation. Examples

DECAda. It has been designed to simplify transporting of the kind of thing controllable through the script file are
to other hosts. In particular, its design does not take whether the use clause or fully qualified names should be
advantage of the virtual memory of the VAX; all major used, whether fixed-point conversions should be by trun-
data structures have a spill-to-disk capability. (However, cation or left to the Ada fixed-point accuracy specifica-
TRADA is not a sequence of independently loaded phas- tions, and whether between-statement comments are at-
es. Therefore a reasonable amount of memory will be tached to the preceding construct or the following one.
required to hold the executing code.) 2

2.2 Outputs

In the following subsections a number of terms are
used that might be unfamiliar to those who do not know TRADA creates one package corresponding to each
CMS-2. They are explained in section 3. CMS-2 module of the program being translated. For

system data blocks, the package usually consists of a
2.1 Inputs specification only, although there are cases in which the

package will have a body. For system procedure blocks
TRADA is an unusual translator in that it only trans- the package specification contains the declarations of the

lates entire programs. Certain of its translation decisions module's entry subprograms and any other exported dec-
require knowledge of all uses of the item being translated. larations. Each of these compilation units is created in a I
Therefore, translation of less than an entire program separate file.
would conflict with the goal of fully accurate translation.

The output also contains a package (specification only)
As a result, one required input to TRADA is the entire corresponding to the major header and a "main" proce-

source of the program to be translated. TRADA does dure that calls the translation of the CMS-2 program's
support the include capability of the MTASS CMS-2 startup procedure.
compilation system, so it is not necessary to gather all of I
the source into a single file. On the other hand, TRADA In addition, a number of packages are created that do
does not support compools, so the source of the system not correspond to any single construct of the program
data blocks that make up compools must be presented as being translated. One of these contains the Ada transla- I
part of the source to be translated. (Compools cannot be tions of all of the CMS-2 types used, along with a number
used in TRADA because of the need to see all uses of of functions needed to support those types (mostly conver-
items before their translation can be determined. Even if sion functions that truncate). This package is tailored to
this were not an issue, compools are not cost-effective the specific translation; there are too many valid CMS-2
because they would be used only once. Thus the cost of fixed-point types (32,130) to use a canned package that
implementing compools in TRADA would not be paid contains translations of all of them. To minimize the
back as it is for a CMS-2 compiler by the reduction in number of explicit conversions needed in translated ex- I
resource usage gained when they are input to multiple pressions, this package makes heavy use of subtypes. (As

compilations.) an aside, the ranges and deltas used to define these types
are expressed in octal, which corresponds clearly to the

The presented source program must also be correct way the types are expressed in CMS-2.)
CMS-2; if any syntax or semantic error is found, no

I
144 I

The specification of another generated package contains mize the jolt to the sensibilities of the uninitiated, I will
the translations of everything whose definition was incom- describe CMS-2 using Ada terminology as much as possi-
plete. If any of those items are subprograms, the body of ble. For the benefit of those who know CMS-2, and who
this package is generated to contain their stubbed defini- might be confused by what they consider non-standard
tions. The existence of this package is a warning that the terminology, I will put the corresponding CMS-2 term in
requirement of a complete program has not been met. It parentheses.
does, however, permit the translated output to be com-
piled and linked. The careful user of TRADA might be One Ada term that will be used in the following has
able to flesh out this package and get working Ada code, not yet received wide acceptance. It is regional data,
rather than fixing the CMS-2 and retranslating. meaning data declared in a package body but outside any

subunit of the package.
Other generated packages, generated as needed, contain

Ada versions of subprograms predefined in CMS-2 and 3.1 Gross Program Structure
code to simulate the hardware switches of the Navy com-
puters. The latter will ultimately be replaced, of course, There are two structures for modularization in CMS-2:
but it is useful in the initial post-translation stages when the system data block and the system procedure block,
the translated code is being verified, augmented, and commonly called SYS-DD and SYS-PROC respectively,
cleaned up. after their defining keywords. (CMS-2 keywords often

contain embedded hyphens. Unlike COBOL, when the
2.3 Assumptions hyphen is used as a minus sign it is not necessary to set

it off from identifiers in any fashion. This is only one of
TRADA assumes very little about the Ada compiler to the unusual problems imposed on compiler writers by the

be used on the translated code. It assumes that the coin- language.) The system data block is a module that con-
piler supports a 32-bit integer, as suggested by the Uni- tains declarations of global data. A system procedure
formity Rapporteur Group, but does not assume that it is block contains executing code, along with data whose
Standard.Integer. It implicitly assumes that the compiler scope is global, local to that module, or local to a subpro-
has enough capacity to compile the translated code. It gram within that module. Each of these modules can be
assumes that binary fixed-point deltas are supported for preceded by a minor header, which essentially parameter-
some reasonable set of values. (I.e., it will properly izes the module. The purpose of a system procedure
compile statements of the form block appears to have been to afford a mechanism foi

encapsulating a subprogram of the system along with any
FOR Xyz'Small USE 2.0 ** N; auxiliary subprograms needed to assist it in carrying out

its function. In practice, it is often used as a simple
for a reasonable range of values of N.) collection of more or less related subprograms.

3. Description of CMS-2 A CMS-2 program consists of a number of these mod-
ules. There is no CMS-2 construct for indicating the

CMS-2 is a closely related family of languages. By "main program". The means for transferring control
standards of the 1990's, these languages lie at the low end from the operating system to the program depends on that
of the spectrum of high order languages. Indeed, when operating system, which is often special-purpose.
I first became familiar with CMS-2 almost 20 years ago,
I characterized them as "disguised assembly languages". A compilation (compile-time system) consists of the
I have had no reason to change that characterization since, source code for one or more modules, preceded by a

Of the well-known languages, the CMS-2 dialects are major header, which conceptually is used to parameterize
probably closest to C in strengths and weaknesses, al- the entire program. A compilation can also make use of
though certainly not in syntax. compools, which are previously compiled system data

blocks. As far as the semantics of a compilation are

In this paper I use the term CMS-2 as though it were concerned, the use of a compool has the same effect as
a single language rather than a family. When I write including the source of those system data blocks. What
about a particular dialect, I make that clear, is gained by using compools is the cost of repeatedly

parsing and semantic checking the data blocks. CMS-2
CMS-2 uses a bit of non-standard terminology, both in compilers also typically support some form of source file

its keywords and in the description of features. To mini- inclusion.

I 145

I

Two distinct forms for source code documentation are control is transferred to one of those labels when a partic- l
afforded. A comment is free-form non-executable text ular form of goto statement is executed. A procedure
that can only appear between statements and declarations, switch specifies a number of procedures; one of those
A note can appear between any two tokens of the pro- procedures is executed when the switch is invoked, with I
gram. a syntax very similar to that of a procedure invocation.

In both cases the choice depends either on the value of an
3.2 Declarations integer expression (indexed switch) or the value of a

specified variable (item switch) at the moment of execu-
The basic data types of CMS-2 comprise integer, fixed- tion/invocation. Thus, executing a goto using an indexed

point, floating-point, boolean, fixed length string (charac- label switch has an effect quite similar to FORTRAN's
ter or Hollerith type), and enumeration (status types). computed goto. I
The integer and fixed-point types are specified in terms of
the number of bits required to hold their values (size); for It is possible to elevate the scope of many identifiers.
fixed-point the fractional part (scaling) is also specified in Identifiers declared in a system procedure block whose I
number of bits. The floating-point types are specified in scope would ordinarily be local to that block can often be
terms of the floating-point formats available on the target given global scope.
machine. Enumeration literals are delimited by apostro-
phes. The actual enumeration literal values are thus not CMS-2 does not have a project library similar to that
restricted to be identifiers; any character from the CMS-2 of Ada. In order to support building large systems out of
character set can be used. a number of small compilations, most of the declarations

can be modified (EXTREFed) to indicate that the datum m
CMS-2 contains constructs for declaring typeless nu- is not to be allocated as a result of the declaration-only

meric constants (ntags) and typed variables, of either the its attributes are being specified in order to give the com-
basic data types (simple variables) or composite piler the information it needs to generate the proper code
types-records (item-areas or structured variables) and sequences. The code is tied to the proper memory loca-
arrays (tables). However, the components (fields) of a tion-allocated as a consequence of an unmodified decla-
record type are restricted to be of the basic types. It is ration elsewhere-when the system is linked.
possible to specify an initial value for most objects (vari-
ables and tables). The declaration of an array object 3.3 Subprograms
specifies how it is to be laid out in memory (similar to
row major vs. column major). This is an execution effi- Subprograms consist of procedures and functions. I
ciency issue and does not affect the program semantics, Procedures can optionally have input and output parame-
although use of one of the forms does impose some re- ters. Functions can have only input parameters and can
strictions. return values of only the basic types. It is not possible to

nest subprograms. Subprograms are not recursive, but
Only very late in the evolution of CMS-2 did it obtain they are compiled with code that permits reentrancy, if

an explicit type declaration. A number of unusual syntax- the requisite executive support is available.
es and concepts were used to compensate for this lack.
Specifically, the declaration of an array uses a block In some of the dialects of CMS-2, procedures can also
syntax. Within that block, the structure of the array's have exit parameters, similar to the abnormal exit of
components (items) is declared. Within that block it is FORTRAN. At the point of invocation, the exit parame- I
also possible to declare other arrays whose components ters are matched with labels. If the invocation is termi-
have the same structure (like-tables), variables having the nated by executing an "abnormal" return, control is trans-
same structure (item-areas), and sub-arrays (subtables), ferred to the corresponding label. In this case, the assign-
whose components are a contiguous subset of components ment of values to actual output parameters is not per-
of the array being declared. Even with these mecha- formed. (See section 4.3.)
nisms, restrictions in the language made it necessary to
replicate component declarations in different array decla- 3.4 Expressions I
rations. This occurs quite often in old CMS-2 code, in
spite of the obvious maintenance problems it engenders. The operands of numeric expressions can be of any

numeric type. The rules of the language specify the
A switch is a CMS-2 construct not found in many other implicit type conversions that will be performed in order

languages. A label switch specifies a number of labels; to evaluate a numeric expression. In particular, an ex-

I146

I

pression involving fixed-point values is evaluated accord- specifies. In this case, the loop resumes execution at its
ing to an elaborate set offixed-point scaling rules, which bottom-of-loop processing.
are highly machine dependent. Generally, these rules
prevent loss of significant data, specifying when values A special form of loop (find statement) is supplied for
are to be shifted right internally to avoid overflow, performing a linear search of any array. The search
(There are a few exceptions that are intentionally in the terminates when a component satisfying specified criteria
language!) When type conversion results in the loss of is found. The search can be continued by the resume
information, it is by truncation rather than rounding. statement.

The usual numeric operations are available for data up The selector of a case statement can be of any basic
to 32 bits long (counting the sign bit). These operations type. The semantics specify that a search is made for a
can be written for quantities in the 33-64 bit range. Addi- matching case value, clearly dangerous if the selector's
tion and subtraction of such quantities are performed type is an approximate type, such as fixed-point or float-
efficiently and accurately. When such quantities are ing-point.
multiplied or divided, the operation is performed in float-
ing-point. (The conversion of a 64-bit value to floating- There is no restriction on the relative locations of a
point is inexact in all dialects of CMS-2.) goto statement and its label. Free transfer of control into

and out of arbitrary statement blocks is permitted. One
Boolean expressions are usually evaluated by short- dialect even permits transfer of control across subprogram

circuit. This is always the case in conditional statements boundaries.
and is now the case for some compilers in boolean assign-
ment statements. This evaluation is an artifact of the As mentioned in 3.2, there are forms of the goto state-
compiler implementations; it is not specified as part of the ment for executing a multi-way branch through a label
language definition, switch and there are procedure-call-like statements for

invoking procedure switches. These statements also allow
3.5 Statements specification of a label to be transferred to if the value on

which the switching decision is to be made is invalid
Although their syntaxes can be quite non-standard, (invalid specification).

CMS-2 has the expected collection of statements: assign-
ment, if-elsif-else, loops, case, goto, etc. Many of these 4. Unusual and Problematic Features
have unusual features. There are also a few non-standard
statements. The above description of CMS-2 concentrated on con-

cepts that it shares, more or less, with other high-level
Loops (vary statements) have the usual three forms: languages. It has however a number of features that are

FOR-loop (controlled by an index), WHILE-loop (con- rare, if not unique. In preparing this paper I easily devel-

trolled by a boolean expression evaluated at the top of the oped a list of 48 of them. In the following, I discuss only
loop), and loop-UNTIL (controlled by a boolean expres- those that give particular problems in translating, omitting
sion evaluated at the bottom of the loop). A loop index those that might cause headaches for compiler and transla-
can be of either a numeric or an enumeration type. tor writers but whose actual translation is simple.

One unusual feature of loops is that numeric loop 4.1 Static Aliasing
indexes are not required to be integer; a numeric loop
index is initialized, incremented on each iteration, and CMS-2 affords an astonishing variety of ways to stati-
tested for equaling or exceeding its terminal value, re- cally alias objects. (By this I mean causing two objects to

gardless of its type. Another is that any combination of share memory. I am not discussing dynamic aliasing,
the loop controls can be used in a single loop, including such as the aliasing that occurs in many languages when
multiple indexes; the loop terminates as soon as any one a global object is used as an actual parameter of a subpro-
of its controls satisfies its termination condition. gram invocation, for example.)

Related to loops is the resume statement. When it is First among these is the overlay statement, which
executed inside a loop, it terminates execution of the specifies that the bit string allocated to an object is to also

current iteration. (It causes bottom-of-loop processing to be used for the bit strings allocated to some other objects.
occur.) It can also be executed outside of the loop it Notice that this is much finer than simply specifying that

147

I

two objects are to use the same memory location. As an The result regains a type dependent on the context of the I
example, for an 18-bit object it is possible to specify that operation.
bits 1-6 are to be used for another object and bits 9-17 are
to be used for a third. This ovtrlaying can be specified 4.3 Subprogram Parameter Passage I
for directly allocatable objects (those that hold the values
of variables) or for the components of a record type. Subprogram formal parameters are very unusual in that

rather than serving as surrogates for the actual parameters
This effect can be obtained a second way for the corn- during execution of an invocation, they are variables

ponents of a record type, because CMS-2 allows user- external to the subprogram. At the point of invocation,
packing, similar to Ada's record representation clause, the values of the actual input parameters are copied to the
Unlike the Ada construct, user-packing permits overlap- corresponding formal input parameter prior to transfer of I
ping of components. control. Following the invocation, the values of any

formal output parameters are copied to the corresponding
Finally, there is a means for specifying the relative actual output parameters.

allocations of variable objects. This relative allocation is
expressed in words of the target machine; the programmer The semantics of parameter assignment, coupled with
can specify that XYZ is to be allocated 23 words beyond the parameters being variables external to the subpro-
the place where ABC is allocated. Notice that if ABC is gram, can give rise to cross-parameter interference: as-
an array, then XYZ might be allocated in the middle of signing a value to one parameter in the list can affect the
one of ABC's components. value assigned to another. An example is a formal pa-

rameter that is an integer variable, with that variable I
4.2 Bit-Twiddling being used as a subscript of a later actual parameter.

Different dialects of CMS-2 assign the formal parameters
By bit-twiddling I mean working with bit substrings of in different orders.

values. The problem with bit-twiddling is that the lan-
guage-defined semantics of the substrings are incomplete There is no restriction on the use of formal parameters;
at best. While the language specifies which bits of the they can be used at any time like ordinary variables.
value are to be extracted or replaced, the meaning of Furthermore, the same variable can be used as a formal
those bits and the relation of them to the larger value is parameter of more than one subprogram.
known only to the programmer. It is the ease with which
one can bit-twiddle in CMS-2 that caused me to character- 4.4 Indirect Arrays I
ize it as a disguised assembly language.

There is no heap/pointer mechanism in CMS-2, but an
Overlaying, either through the overlay statement or undisciplined approximation is available through the indi-

implicitly through user-packing, is a heavily used means rect array (indirect table). When an array is declared to
for bit-twiddling. In addition, CMS-2 supplies a parame- be indirect it functions as a surrogate for other, "real",
terized operator or pseudo-function (the BIT operator or arrays during execution. Thus it is very much like a
function) for accessing an anonymous bit substring. pointer.
There is another parameterized operator or pseudo-func-
tion (the CHAR operator or function) for accessing char- Specifying a designated object is accomplished by
acter substrings within a value; the value is not required using the CORAD pseudo-function. When a value is I
to be of character type. assigned to this pseudo-function its argument can only be

the name of an indirect array. That value then becomes
It is also possible to access individu! target-computer the memory address of the designated object for subse-

words of an object (word reference). The particular word quent references to the indirect array.
accessed might be only one of several making up the
object or it might contain several components of the ob- When the CORAD pseudo-function is used in other
ject. Again, the exact meaning of such an access is contexts, its argument must be a name that has an as-
known only by the programmer. signed memory address; it generates that address as its

value. Thus the statement
Bit strings can be manipulated by the conventional set

of bit operations: AND, OR, NOT, and XOR. Typed SET CORAD(XYZ) TO CORAD(ABC) $
operands of these operators become temporarily typeless.

148 I

means that for subsequent references, XYZ is to be used and so on. While these semantics could produce some
as a surrogate for ABC. surprising results for the unwary, in practice the over-

whelming use of this feature is to assign zero.
There is no requirement that the structure of the desig-

nated object be at all related to the structure specified in Different dialects of CMS-2 order the receptacle list
the indirect array's declaration. It is not even necessary differently, some from left to right and others from right
that the designated object be an array. It could be a to left.
simple variable, the "tail* of an array (by specifying the
address of one of that array's components), a switch, or 4.7 Array Assignment
even code! In all these cases of mismatch the indirect
army's structure rules; the designated object is accessed Array assignment is accomplished by transferring
as though its structure were that of the indirect array. target machine words, without regard to the structures of

the two arrays. If the receptacle array is shorter (in
One use of indirect arrays is to effect call-by-reference words) it is filled with the corresponding words from the

semantics in subprogram invocation. Because the CMS-2 beginning of the source array. If the receptacle array is
parameter passage mechanism is call-by-value (section longer only the words at its beginning that correspond to
4.3), if a formal parameter is an array then the entire tue words of source array receive those new values.
array must be copied as part of the invocation. It is Thus, if the arrays have identical structures the right thing
possible to specify a formal parameter as the address of happens, and if their components have identical structures
an indirect array (using the CORAD pseudo-function). but their sizes are different something understandable
By doing this, only the address of the actual parameter is happens. However, when their components have different
copied. structures, an insidious form of bit-twiudling occurs.

Because this pointer mechanism is specified as imple- 4.8 String Manipulation
mented using addresses, an executive could implement a
heap. Calls to its allocator would simply return the ad- In general, string assignment and string comparisons
dress of the newly allocated memory area. are accomplished through blank-padding and truncation.

String literals are handled specially. If the source of a
4.5 Array Initial Value string assignment is a literal, it is not padded when too

short (the value is sliced into the beginning of the recepta-
In specifying an initial value of an array, it is not cle) and it is not permitted to be too long.

necessary that the array be fully initialized. The array's
components must be of a record structure and the initial 4.9 Typed Records
value is specified in terms of values to be assigned to the
record's components in successive array components. If A record type in CMS-2 can be declared to have an
fewer values are specified than array components, only associated basic data type. When a variable of such a
the "first" array components are initialized; the values type is referenced as a whole, it has the semantics of a
assigned to the remainder are not defined by the language. variable of the associated type. As a benign example, a
(However, see section 5.1.) This initialization can be record type could be declared to have components corre-
ragged; different numbers of values can be specified for sponding to the characteristic and mantissa of a floating-
different record components. point value, positioned appropriately, and the floating-

point type as its associated type. For a variable of this
4.6 Multi-Receptacle Assignment type, the components could be used to create a floating-

point value, which could thereafter be used by referencing
An assignment statement can contain multiple recepta- the variable itself.

cles, the objects that receive the value. If the receptacles
are of different numeric types, implicit conversion of the Ada has no corresponding capability.
value being assigned is required. The semantics of a
multi-receptacle assignment specify that the value is as- 4.10 Boolean Constants
signed to the first receptacle, converted if necessary.
That possibly converted value is then assigned to the The boolean constants true and false are not defined in
second receptacle, where another conversion might be CMS-2; their functions are served by the numeric literals
needed. This value is then used for the third receptacle, 1 and 0, respectively. In practice, named number decla-

149

I

rations are often used to define the identifiers True and structions and declarations can be intermixed in any or-
False, as well as other convenient identifiers with boolean der.
overtones.

5. Usage of CMS-2 1
Because of the dual use of 0 and 1, it is possible to I5

have both boolean and numeric receptacles in a single In addition to the official semantics of CMS-2,
multi-receptacle assignment statement. sketched above, there are facts about the language that

might be called "informal semantics". These facts are
4.11 Enumeration Assignment and Comparison known and relied on by many users of the language, even

though they have no official sanction.
All enumeration types are considered compatible. I

Assignment and comparison of enumeration values is 5.1 Initialization to Zero
based solely on the compiler-generated encoding of the
symbolic values (0 for the first value, I for the second, All of the CMS-2 linkers set all data values to zero
etc.) unless they are explicitly initialized to some other value.

Some CMS-2 programs make use of this to avoid expend-
4.12 Data Local to Subprograms ing memory, which is often limited, on code that zeros

some uninitialized data.
CMS-2 is not a stack-oriented language; data local to

subprograms are statically allocated. Thus the values of 5.2 Linking by Name
these data at the end of execution of one invocation are I
present at the beginning of execution of the next invoca- CMS-2 linkers link by name; no semantic information
tion. Any initial values given to such data are only the is passed from the compiler to the linker. Occasionally
values at the beginning of execution of the program. this is "exploited" in creating a program from independent

compilations, when a name is given different attributes in
4.13 Conditional Compilation two or more of those compilations.

Conditional compilation is achieved through a blocking 5.3 Reuse of Named Numbers I
construct, where the block's header specifies a flag
(CSWITCH) whose value controls the compilation of the The names of named numbers are not passed to the
code in the block. The blocks can appear among both linkers by the compilers. Therefore it is possible-and it I
statements and declarations. does occasionally occur-for *the same named number"

to have different values in two independent compilations
If the flag setting is such that a block is not to be of a program.

compiled, the code in that block is ignored, other than
some minimal checking to detect the end of the block. 6. Intractable Translation Problems
Minimal checking has a number of implications, principal
among them being that the code being checked does not Certain of the features of CMS-2 give rise to transla- I
have to be syntactically or semantically correct. It also tion problems that cannot be solved by any translator, at
means that an identifier can be declared in any number of least not when the goals of the translation include main-
blocks, provided that only one of those blocks is corn- tainability and transportability, as they do for TRADA. I
piled.

4.14 Direct Code 6.1 Bit-twiddling

Any attempt to mechanically translate the various bit-
Assembly language statements can be included in a twiddling features of CMS-2 is doomed to fail for one of

CMS-2 program by enclosing them in a special block several reasons. The common thread to these reasons is
(direct code block). The programmer is given almost the that the exact meaning of the bit-twiddling cannot be
full freedom (license) available to an assembly language discerned from the CMS-2 source, as noted previously.
programmer: executing instructions can be placed among As an example, suppose that a bit string is being extracted
high-level data declarations, assembly data declarations from some datum (typically a machine word) to be used
can be placed among high-level statements, and the in- in a numeric context and that the numeric value being

extracted might possibly be negative. If the extraction of

150 I

the bit string is *correctly" translated, but the negative Finally, overlays can be used to create structures some-
representation of the target computer changes (the what like an Ada record with variant part. The key char-
AN/UYK-7 family of Navy computers uses 1 's-comple- acteristic of this kind of structure is that no component is
ment, while 2's-complement is currently the most popular ever read without first being explicitly written. While this
representation), the meaning of the program has been is perhaps the most benign use of overlays, detecting it is
changed by the translation. As a second example, sup- very difficult. At the least an algorithm built on top of a
pose that bit-twiddling is being used in a utility routine to global data flow analysis is required. Even if such an
create a floating-point value by building up its component algorithm is implemented, there is no guarantee that a
parts. Even if the translated code could mimic these particular structure of this kind can be translated into an
manipulations, the result is meaningless if the target ma- Ada record with variant parts. Consider the following
chine for the translated code does not support the same "variant record": it has a discriminant and three ordinary
floating point format. components; the discriminant can take on values 1, 2, and

3; component 1 is valid when the discriminant has value
"Doomed to fail" is too harsh a statement, of course. I or 2; component 2 is valid when the discriminant has

It might be possible to specify some relatively well-be- value 1 or 3; and component 3 is valid when the discrimi-
haved bit-twiddles that could be translated. In that case nant has value 2 or 3. This structure cannot be translated
the issue of cost-effectiveness arises: is it worthwhile to into an Ada record with variant part. The symbol table
design an algorithm to detect and translate these cases, of the CMS-2Y compiler is this kind of structure; it has
which are expected to be few, or would it be better to been carefully constructed to allow common components
allocate resources to other, more promising areas, and to be shared between almost random values of the dis-
leave all bit-twiddling for human intervention? criminant.

6.2 Overlays 6.3 Direct Code

Perhaps the greatest single benefit that could be ob- There seems to be a hope among those interested in
tained from a CMS-2 to Ada translator would be the using a translator to assist them in transitioning from
analysis of the rat's nest of overlays that are so typical of CMS-2 to Ada that it can figure out what the direct code
CMS-2 code and translation into clean Ada. Unfortunate- is doing and translate it into Ada. This simply cannot be
ly, that benefit is not to be had. done. One example should suffice: how can a translator

determine the meaning of an instruction that loads a regis-
To begin with, overlays are potentially bit-twiddles, as ter using indirection, where the indirect word used is

has been noted, and suffer from all of the problems of bit- constructed during execution?
twiddling. For example, the creation of a floating-point
value by constructing its components, mentioned above, The only approach that has any hope of success is to
can be accomplished using overlays, simulate the direct code as part of execution of the trans-

lated Ada. Basically, this means outputting-as part of
There are other uses of overlays that are not, strictly the translation-a simulator for the original target ma-

speaking, bit-twiddling. One such is to simulate a multi- chine. Even this is not foolproof, because much direct
level record structure-records within records within code depends on the way the program's data are allocated
records-which is not directly achievable in CMS-2. An by the CMS-2 compiler. A more fundamental challenge
algorithm to detect such a use of overlays is possible, but to this approach is: what is the point? Execution of an
then a second translation problem arises. If overlays are ISA simulator, albeit written in Ada, is not the purpose of
used in CMS-2 to simulate a record within a record, the translating CMS-2 to Ada.
larger record (the overlay parent) has a simple CMS-2
type, usually numeric. Since there is nothing correspond- 7. TRADA Translation Strategies
ing to this in Ada (a record type does not have an associ-
ated scalar type), it would be necessary to check all uses Most of the translations used by TRADA are straight-
of the larger record to see if it is truly being used as a forward: procedures are translated into procedures, func-
value of that type or if the type is simply a hook to hang tions into functions, assignment statements into assignment
the simulation on. Translation would be possible in the statements (usually), etc. There are also a number of
later case, but again the cost-effectiveness question must special translations used to overcome dissimilarities of the
be asked. two languages.

151

I

Even some of the problematic areas have relatively 7.2 Array Assignments I
straightforward translations. String manipulations (section
4.8) are handled through slicing and concatenating with The translation of a CMS-2 array is, in general, fairly
blanks. A multi-receptacle assignment (section 4.6) is straightforward. A type is generated to translate the I
translated into a sequence of assignments with the appro- array's component structure. A second type is generated
priate conversions, the only complication-and a very to declare the array type itself. (This type is uncon-
minor one at that-occurring when the receptacles are a strained.) This second type is then used to declare the
mixture of numeric and boolean. translated array object.

Among the straightforward translations are an exact Following this simple approach would result in trans-
duplication of the CMS-2 fixed-point scaling rules. Con- lating many otherwise acceptable CMS-2 array assign-
version between fixed-point types is by truncation by ments into invalid Ada, because the corresponding Ada
default, which means through the use of a TRADA-gener- array types would have different names. In order to
ated, inefficient, truncation function. The user can speci- translate array assignments whose CMS-2 semantics I
fy that a simple Ada type conversion is to be employed match those of Ada, TRADA analyzes the structure of all
instead. It is hoped that this option will be used only if array components and record type specifications in the
the user verifies that the algorithms being translated are program being translated to determine common structures.
not so finely tuned that a one-bit discrepancy would cause Using the information from this analysis, arrays that have
problems or if it is known that the Ada compiler being common component structures are translated using a
used generates code that does (always) convert by trunca- common array type and array assignments involving
tion. arrays whose components' structures are different are

flagged as being untranslatable.
7.1 Untranslatable Constructs

This analysis also uncovers assignments of arrays
As is common with translators, when TRADA encoun- whose components' structures are not identical. These

ters a construct it cannot translate, it outputs the construct assignments are flagged as untranslatable.
as a comment, along with a special comment indicating
that user intervention is required. The format of the The "smallest controls" semantics of CMS-2 array
comment makes it easy to locate using an editor. assignment (section 4.7) requires some array assignnients

to be translated using slicing or loops.
To follow this approach slavishly would reduce the I

effectiveness of a translation of CMS-2 because of the 7.3 Indirect Arrays
untranslatability of bit-twiddles. Many expressions, and
thus the statements in which they appear, would be Because the indirect array of CMS-2 has so many of I
marked as untranslatable. the properties of a pointer in other languages, it is trans-

lated as an object of an access type whose designated
When TRADA encounters a bit-twiddle while translat- object is the corresponding array type. The only transla-

ing an expression, it is translated into a generated object tion difficulty arises when an indirect array is set to point
with the appropriate type. For example, a word reference to a "real" array, one that is not indirect.
is translated into an object named Wordreference of a
type that is appropriate for the original target computer. TRADA's solution to this problem is to note all "real" I
Similarly, a reference to the BIT pseudo-function is trans- arrays that are pointed to at any point in the program
lated as Bitreferencelen, where len is the length of the being translated. They are then also translated into the
specified bit string. Through this technique, the other designated objects of an appropriate constant access ob-
semantics of the expression, such as any implicit type ject. The object declaration includes the allocator to
conversions, and the statement in which the expression create the designated object. If the real array includes
appears, are translated. The comment that user interven- initial values for some components, this initial value is
tion is required is also output, of course, supplied either as a qualified expression in the creating

allocator or by code in the initialization block of the ap-
The declarations of these generated objects are gath- propriate package body. (The choice is user selectable.)

ered into a single package. I
This translation strategy illustrates why it is necessary

to translate an entire program rather than a program

152 I

fragment. A program fragment might contain the declara- adherence to the rule that no hard-coded constants should
tion of a "real" array but no instances of its being pointed appear in a program.)
to. It would therefore be translated into a static object
and this translation could not be used with other parts of 7.6 Boolean 0 and 1
the program where its access value is needed.

All uses of CMS-2 named numbers are analyzed to see
(When translating into Ada 9X, the same analyses must if they are ever used in a boolean context. If so, they are

be done but the actual translation is somewhat simpler translated as boolean constants, rather than named num-
because of the aliased attribute.) bers. The cases

7.4 Common Enumeration Types TRUE EQUALS 1 $
FALSE EQUALS 0 $

Because of the very loose semantics of the CMS-2
enumeration types, TRADA must detect enumeration type are handled specially. They are not translated at all and
specifications that specify the same set of values in order references are translated into True and False from pack-
to effectively translate assignment and comparison of age Standard.
enumeration values. (This is quite similar to, but much
easier than, the problem of detecting common array com- In the unlikely but not impossible case that such a
ponent structures.) Common enumeration type declara- named number is also used as an integer, the form
tions are then used in the translated code.

Boolean'Val (Value)
If assignments or comparisons involve CMS-2 enumer- is employed. Other, more elegant, translations are possi-

ation types that do not specify the same set of values, ble, but the circumstance is so unlikely that is seems
TRADA translates by forcing a conversion of the Ada inappropriate to expend effort on it. (Code that uses the
encoding, using code of the form same identifier in both numeric and boolean contexts

Toý_type'Val (Fromtype'Poe(Value)). should probably be rethought.)

If the source type has more values than the destination 7.7 Subprogram Parameter Passing
type, execution of this expression could raise aConsraitype, erroe tion . Thithisexpssisn e ramle ofa Initially TRADA intended to mimic the CMS-2 param-C o ns tra in t -erro r ex cep tio n . T h is is an ex a m p le o f aet r p s a e f i h u l : ac M - s b ro a m w ld etranslation-that is possibly inaccurate, but the inaccurate eter passage faithfully: each CMS-2 subprogram would be
translation thatis detectabley on ather m . ttranslated into a parameterless Ada subprogram, eachinvocation of a subprogram would be preceded by assign-
7.5 Named Numbers ment statements mimicking the assignment of the input

parameters and followed by assignment statement mimick-

CMS-2 named numbers are translated to Ada named ing the assignment of the output parameters. This ap-
numbers, in general. For the most part, expressions proach would solve the problem of cross-parameter inter-numbrsference. However, it was recognized early on that it
using named numbers are left as expressions; they are not wouldcer H e Ada c ecquite a bt Ts as p t

foldd b TRDA ito tatc vaues Ths alowsthe would clutter the Ada code quite a bit. This was particu-folded by TRADA into static values. This allows the

named number to continue being used in Ada as a source larly true in evaluating an expression that contained more
code parameter. than one function reference, when it would be necessary

to evaluate the function references in the proper order into
The primary exception to this strategy arises when a temporary locations (which would need largely meaning-

named number is used to specify an attribute of a numeric less TRADA-generated names), each evaluation being

type, such as the number of fractional bits of a fixed-point preceded by the parameter assignment statements. This

type. To leave the type parameterizable in the Ada code clutter would conflict with the goal of producing code that
would require an elaborate translation. One aspect of this is at least as maintainable as the original CM5-2.

translation would be an execution-time interpretation of The strategy settled on is to have formal parameters of
the CMS-2 scaling rules. For this reason, the attributes mode IN corresponding to the CMS-2 input parameters
of numeric types are fixed at translation time, even if they and formal parameters of mode OUT corresponding to the
are parameterized in the CMS-2 code. (Often this param- CMS-2 output parameters. Subprogram invocations are
eterizing of numeric types comes from an ill-considered then translated in the straightforward manner. Execution

153

I
of the body of the subprogram begins with assigning the rameters, &-cording to the same scheme as for translating
formal input parameters to the external objects that are the procedure formal parameters. The body of the procedure
translations of the CMS-2 formal input parameters. contains a case statement or an if-elsif-else sequence to
Thereafter, those external objects are referenced rather accomplish the switch. The form of the body is deter-
than the Ada formal paiameters. For procedures, the mined by such considerations as switch value density, but
values of the external objects that are the translations of in general indexed switches give rise to case statements
the CMS-2 formal output pazameters are assigned to the and item switches give rise to if-elsif-else sequences.
corresponding Ada formal output parameters immediately
before returning. For an indexed procedure switch, the corresponding

procedure has an "extra" input parameter, which is the
This strategy translates the semantics of the CMS-2 value to be used in making the switch. I

subprogram invocation except in the case of cross-parame-
ter interference. TRADA analyzes all invocations for If the switch is ever invoked using an invalid clause,
such interference and outputs a warning message when it the corresponding procedure has an 'extra" boolean out-
is detected, calling for post-translation analysis and modi- put parameter, which is set according to the validity of the
fication. Cross-parameter interference occurs rarely and switch value.
is a poor programming practice when it is used. It is
better to handle it this way than to faithfully simulate it 7.10 Loops I
with elaborate code sequences that are difficult to main-
tain. Because of the free use that can be made of a loop

index in CMS-2, a simple indexing loop cannot be easily
7.8 Procedure Abnormal Exits translated into a FOR-loop in Ada, where the use of the

index is very restricted. Before such a translation could
Procedures with exit parameters are translated into be made, a heavy analysis of all uses of the index would

procedures with an "extra" parameter of mode OUT. have to be done, checking for such things as updating the
This parameter is of an enumeration type which has one index, accessing the index from within a subprogram that
value corresponding to each exit parameter and one value is invoked (directly or indirectly) in the loop, use of the
corresponding to a "normal" return. In the body of the loop value a&er loop termination, etc. Rather than invest U
translated procedure this parameter is set appropriately in this analysis, TRADA translates such loops into "infi-
depending on the return statement executed. The param- nite" loops, with explicit incrementation and termination
eter's value is then tested following each invocation to testing at the bottom.
determine the next statement to be executed.

A simple WHILE-loop in CMS-2 is translated into a
In order to avoid changing the values of the actual WHILE-loop in the obvious fashion. However, a loop-

output parameters when an "abnormal" exit is taken, the UNTIL must be translated into an "infinite" loop with an
mode of the formal output parameters is made IN OUT explicit test at the bottom. The "infinite" loop with ex-
and the assignment of the external objects to the corre- plicit termination tests must also be used when the CMS-2
sponding formal output parameters, described above, is loop has a combination of termination conditions, such as I
not done when an abnormal exit is translated. The mode multiple indexes, an index and an UNTIL-condition, etc.
ensures that the values are not changed for parameters
that use the copy in/copy back mechanism. (If the mode Even the "infinite" loop is too restrictive when the
were left as OUT, the uninitialized bit pattern that fills the CMS-2 loop is resumed from outside. In this case the
stack location allocated to a formal output parameter looping structure is controlled by goto statements, to
would be copied to its corresponding actual parameter at allow the translation of the resume statement to branch
the conclusion of execution. When the mode is IN OUT, into the loop.
that stack location is filled with the value of the actual
parameter at the beginning of execution.) 7.11 Labels, Goto Statements, and Label Switches

7.8 Procedure Switches Labels and goto statements are translated directly.
Because of the free transfer of control allowed in CMS-2,

A procedure switch is translated into a procedure, this can result in illegal Ada goto statements. The error
whose name is the switch name. The formal parameters messages produced by the Ada compiler will be an ade-
of this procedure correspond to the switch's formal pa- quate signal that human intervention is required.

I
154 I

In general, a label switch is translated as a case state- is also created, and a comment calling for user interven-
ment or if-elsif-else statement with a goto statement in tion is also output. References to the whole object are
each alternative. Whenever TRADA can verify that a then translated as references to the "shadow" object.
code sequence can only be reached by a transfer through
a label switch, that sequence is moved into the appropriate 7.15 Conditional Compilation
alternative of the case statement.

Two features of the CMS-2 conditional compilation
7.12 Data Local to Subprograms feature make translation into "parameterized" Ada impos-

sible: the fact that the code in a block being ignored might
In general, data local to subprograms are translated not be correct and the possibility of declaring an identifier

into regional data in the subprogram's package, in order multir'le times in distinct blocks. For this reason,
to preserve their staticness. Such a datum's name is TRADA translates only one configuration of the program,
modified by appending the subprogram's name in order to the one corresponding to the settings of the compilation
avoid name clashes, if necessary. flags at the time of translation.

To avoid this cluttering of names and to make effective 8. A TRADA Shortcoming
use of the Ada stack, TRADA identifies local data that
are always assigned before they are referenced. In the The unusual nature of subprogram formal parameters

translation, these data remain local to their subprogram. gives rise to one tractable problem that TRADA does not
attempt to handle. If an expression contains two or more

7.13 Initial Values function references, then the execution of one of those
references could affect the parameter passage of a subse-

Data that are given initial values in CMS-2 are given quent one. This can happen two ways: during the param-
those values in the TRADA output. For a variable of the eter passage stage of the earlier function reference or
basic types, the initial value is specified as part of the during execution of its body. At either of these times, a

corresponding object declaration. This technique can also value could be changed that plays a role in the actual
be used for an array, where the object declaration in- parameters of the later reference, either by changing an
cludes an aggregate specifying the initial value. For a actual parameter or by changing a value that is used to
large array, the aggregate might well exceed the capacity select an actual parameter, such as a value that occurs in
of the Ada compiler being used. To avoid this problem, a subscript expression.
a TRADA option allows the user to specify that arrays
should be given their initial values through the execution Although it is not possible to detect this inter-function
of assignment statements. For a global or regional array, parameter interference with 100% certainty, the problem
these executable statements are placed in the initialization could be solved by breaking the expression apart to make
block of the array's package and are thus executed only certain that the translated function references occur in the
at program startup. same order as in the CMS-2 code. As was discussed in

section 7.7, this can result in obscure code that is difficult
The user can specify whether data that are not given to maintain. Since using this "feature" is an unconsciona-

initial values should be left indeterminate or "zeroed", to ble programming practice and its uses are extremely rare,
mimic the de facto zeroing of the CMS-2 linkers. If it was decided to aim for the readability/maintainability
"zeroing" is chosen, numeric data are given the value goal rather than bulletproof translation in this case, even
zero, character data are given ASCII.NUL, and enumera- though it is not possible to give the usual warning that
tion data are given their type's first value, intervention is required.

When aggregates are used to initialize array compo- This is the only known case in which TRADA will
nents, the above -zeroing" technique is used for compo- generate possibly incorrect Ada without either a warning
nents that have no specified initial value, message, an Ada compiler error, or an exception during

execution of the translated code.
7.14 Typed Records 9. Summary

A record type that has an associated basic type is trans-

lated into an Ada record type. When translating an object TRADA is a translator driven by the goals of conser-
of this type, a "shadow" object of the translated basic type vative translation (either faithfully reproducing the seman-

155

I

tics of a construct or marking it as untranslatable, requir- Ada is defined in I
ing user intervention), producing maintainable code, and
producing transportable code. Of the three goals, conser- ANSI/MIL-STD-1815A-1983, Ada Programming
vative translation is the most important. With it, the Language, Department of Defense, Washington, D. I
user's part of the translation effort can be attacked without C., January 1983.
worrying about the part done by TRADA.

TRADA achieves its goals to a high degree. It often I
uses full knowledge of the entire program being translated
in order to chose its translation strategy, where relying on
only local knowledge might lead to an incorrect transla- I
tion. Choices between alternative translation strategies
have been made on the basis of maintainability and knowl-
edge of the de facto uses of the construct being translated. I
Lastly, it refuses to translate into non-portable Ada or to
translate CMS-2 constructs whose semantics are not fully
known.

Bibliography

The following documents define the various CMS-2
dialects and describe their compilers.

CM2Y-MAN-PGR-M5049-R04CO, CMS-2Y Pro-
grammer's Reference Manual for the AN/UYK-7
and AN/UYK-43 Computers, FCDSSA, San Diego,
1 October 1986.

CM2Y-MAN-PGR-M5045-R05C0, CMS-2Y Pro-
grammer's Reference Manual for the AN/UYK-20
and AN/AYK-14 Computers, FCDSSA, San Diego, I
1 December 1986.

CM2Y-MAN-PGR-M5047-ROICO, CMS-2Y Pro-
grammer's Reference Manual for the CP642 Com- I
puter, FCDSSA, San Diego, 1 October 1986.

CM2Y-MAN-PGR-M5044-R01C0, CMS-2Y Pro- I
grammer's Reference Manual for the Transferrable
Subset, FCDSSA, San Diego, 1 October 1986.

NAVSEA 0965-LP-598-8020, User Handbook for
CMS-2 Compiler, Revision 4, Change 1, Depart-
ment of Navy, Washington, D. C., 30 November
1993.

The San Diego FCDSSA (Fleet Combat Direction Sys-
tems Support Activity) was the U. S. Navy organization
responsible for the first four of the above documents when
they were created and is cited on their covers. The duties
of FCDSSA are now part of those of NRaD. I

156

i

Reengineering Concurrent Software
Into Adat

Noah Prywes*, G. Ingargiola,** I. Lee*, and M. Lee*
Computer Command and Control Company

2300 Chestnut St.
Philadelphia, PA 19103

Abstract lost performance with respect to the performance attainable

The paper describes a methodology for translating in an optimal ad hoc translation using a shared memory

concurrent software into Ada, where the concurrency is ex- model. Upper bounds on this performance cost can be de-

pressed in Operating Systems calls embedded in the source termined, and can be used to establish the characteristics of

software. There are two important advantages to such a the hardware required to achieve specific real-time dead-

translation. First, the understanding and analysis of concur- lines.

rency expressed through Operating System calls is very T, islation is based on the notion offinc-
complex and difficult. Translating these calls (as well as the tional equivalence of the source and target software. It is
sequential portions) into Ada greatly simplifies the analy- attained by adhering closely in the target Ada software to
sis, and understanding of the software by providing the op- the data, data layouts, software units and data transforma-
erational semantics of the calls. Second, the translation to tions in the source software. In some cases, additional in-
Ada eliminates dependence on Operating Systems. formation, typically found in a software specification, is

The focus of the paper is on translation of concurrency needed to achieve programs that are free of hardware and

related software portions of the source software into Ada. It scheduling dependencies.

is part of a larger system for translating both sequential and The translation uses an intermediate entity-relation-

concurrent aspects of real-time applications software. attribute graphic model of the target Ada software which is

Translating the sequential portions of the source code into created and progressively enriched. It serves as a repository

Ada has been documented separately in previous reports [4, for all the information extracted from the source software

13]. These reports provide background to the presently re- and the software specification. The graphic software model

ported work. is then used as a basis for generating the target Ada soft-
ware, for analysis and abstracting of the software and for

The immediate motivation for the work described generating an up-to-date software specification.
here is due to the need to automatically translate Navy soft- The concurrency translation to Ada is described in thisware in CMS-2 into Ada, where the concurrency is ex-
wares in cals into Ada, wheX-20ore the Operaing ysex- paper in sufficient detail for executing it manually, or im-
pressed by calls to the SDEX-20 or ATES Operating Sys- plementing it automatically. The methodology utilizes
tems. Much of the Navy mission-critical systems use these templates for data structures, tasks and procedures for trans-
languages. The translation to Ada is needed to modernize lating into Ada of multiple Operating Systems. Additional-
these systems. ly, for each Operating System call, it is necessary to com-

The methodology we propose for replacing Operating pose templates of procedures that execute the respective
System calls by equivalent Ada code uses a standard mes- protocols. The templates are placed in the Ada library, pro-
sage-based kernel oriented architecture. This architecture vided in [6]. It includes the generic templates and, as an ex-
is specialized for each Operating System and modularly ex- ample, templates for seven Unix calls. These templates
tended to represent the individual features (concurrency provide a general framework for the translation of concur-
control, input/output, etc.) supported by that Operating Sys- rency related Operating System calls to Ada.
tem. Within this architecture the determination of a generic
method for translating into Ada a new Operating System
call, though non-elementary, is not overly time consuming *Also affiliated with the University of Pennsylvania

(we estimate less than one week of programming for each "Also affiliated with Temple University

additional Operating System call). The use in the transla- Prepared under Contract N60921-92-C-0196 Naval Surface Warfare

tion of a standard message-based architecture has a cost in

157I

I

A concurrent software example in C using Unix Oper- lustrated in Figure 1 for the translation of CMS-2 to Ada.
ating System calls is provided in the Appendix. It illustrates They are as follows [14]:
synthesis of the Ada templates and generation of a complete (i) translation of sequential portions of the software intoi
Ada program. The choice of C and Unix is due to the famil- Ada o4 13];
iarity of readers with these languages. Ada [4, 13];

Needed future work is also described. It consists of: (ii) translation of the concurrency related statements of

hto distributed proces- the software, expressed in Operating System calls,(i) Extending the present approach t itiue rcs noAa(hsi h oi fti ae)
sing, using Ada-9X. (ii) Extending the target software to into Ada (this is the topic of this paper);

assure mutual exclusion, progress, and limited postpone- (iii) storage of a graphic model of the Ada target software
ment, independently of the hardware speeds and scheduling in a database and its display and modification [7,13];
that are used. (iii) Selecting new target hardware, to ensure (iv) generation of a software specification [5];
that timing requirements are met.i

(v) enhancing concurrent software so that its logical cor- I
1. Introduction rectness is independent of processor speed (requires

This paper describes the translation of concurrency- further work; see Section 6);

related Operating System calls to Ada. Concurrency-re- (vi) simulating scheduling of concurrent software to de-
lated Operating Systems calls generally have been infor- termine the, new hardware resources needed to meet
mally documented. This has made understanding and timing requirements [10). The hardware resources
analysis of such concurrent programs extremely difficult. may be in a distributed processors and communica- I
The translation to Ada greatly simplifies complete presen- tions network (requires further work, see Section 6).
tation and understanding of the role of concurrency. Fur- The paper focus is only on item (ii)-the translation of
ther, the software becomes independent of Operating Sys- concurrency expressed in Operating Systems calls into i
tems used with the hardware. Ada. The paper describes this step in sufficient detail to

The immediate motivation for the work described in have it performed manually, or to program it. Steps (i), (iii),
and (iv) have been implemented previously and are re-

this paper has been due to the need for automatic translation ard (in ha ve reen c Step (v) and areqre-
of concurrent real-time Navy software in CMS-2 into Ada. ported in respective references. Step (v) and (vi) requirefurther research.
Embedded in the CMS-2 code are concurrency-related
calls to ATES or SDEX-20 Operating Systems. Such pro- This paper contains the following sections. I
grams are widely used in Navy mission-critical applica- Section 2 is a technical problem statement. It esta-

tions. The translation is needed for modernization of these blishes the requirements for the translation by defining the
systems. functional equivalence of the source and target software.

Still another motivation has been due to the relatively Section 3 describes the graphic model of the software.
new field of Software Reengineering. Its objective is to pro- It is created as the output of translating the source software,
cess existing software automatically, or semi-manually, in adhering closely to its data, data layouts, software units I
order to obtain modern software for the same application or (tasks, procedure, functions), data transformations, and
new applications for execution on a high speed distributed their precedences and interactions. The use of a graphic
network. software model is important here because it is needed for

the progressive translation steps and because it is used later
The overall reengineering process involves code for analysis, understanding and creating an up-to-date

translation and creation of a software model that is used to specification of the software.
provide a number of capabilities. These include software Section 4 presents the translation process. It consists Uanalysis, facilitation of software understanding, documen- of generating Ada tasks and procedures to implement con-
tation of the software, reorganization and restructuring of currency-oriented Operating Systems calls. The transla-
the software and interfacing it with other software. tion replaces concurrency-related Operating System calls

The translation of concurrency-related Operating with respective Ada tasks, procedures and messages. It
System call is an integral part of providing these capabili- creates tasks for the source program processes and for syn-
ties.The translation of concurrency-related Operating Sys- chronizing these processes. I
tem calls to Ada is a step in a larger process. The software Section 5 describes the translation process in greater
translation process consists of several progressive steps, il- detail. It uses an Ada template library for synthesizing the

1 5S I

concurrent aspects of the code. The Ada library contains the source software. Functional equivalence is defined as fol-
code needed generally for translating concurrency-related lows:
Operating System calls and also example procedures for A Software specification defines legal input se-
translating several Unix Operating System calls. The Ada quences and respective outputs of the software, as well as
library is given in [61. The methodology is applicable to oth- additional requirements. Functional equivalence of the
er source software languages and Operating Systems (e.g. source and target software of the translation means that they
CMS-2 with ATES and SDEX-20). both conform to the software specification. They both con-

The translation of Operating System calls is only part- sume legal input sequences and produce respective legal
ly feasible in some instances. To illustrate this point, the pa- outputs. A software specification may not be reliable or
per includes in the Appendix an example of the translation even available. Instead, it is preferable to use the source
of the Unixfork call into Ada. The computational model of software whenever possible. The source software that is
Unix differs greatly from the computational model of Ada. used as input to the translation is assumed to be a well-
For example, Unix tasks are much "larger" granular objects tested, extensively used and highly reliable representation
than Ada tasks: a Unix task has its own address space and of the software specification, though it may be incomplete
maintains by default information about open files, related in some of the cases described below. If the source software
tasks, and signals; no such information is available by de- is modified prior to the translation, then it is required that it
fault with Ada tasks and in most implementations Ada tasks ism ed or to t translat the iisreuire tatit
share the same address space. More fundamentally, an Op- be tested or shown not to affect the respective computations.
crating System controls tasks switching and can make deci- (i) Sequential Software: In this case the source soft-
sions when dispatching a task from the Ready state to the ware is a complete representation of the specification (as-
Running state (examples of such decisions are to suspend or suming no timing requirements). The source software de-
to terminate a task). No such fine grained control is possible fines all the precedences and operations needed to process
in Ada since no facilities are provided by the language to legal input sequences and produce respective legal outputs.
control task switching (Ada 9X will correct to an extent this The target Ada software is then functionally equivalent to
problem); even the drastic "Abort" statement does not take the source software as it adheres to the latter's precedences
effect until the aborted task, on its own, reaches a synchro- and operations.
nization point. On.; objective of the work reported here is to (ii) Concurrent Software:
clarify and bridge over such differences. ftae

Sappnd x b rigefersuch differentes. forUnix(a) Source Software where the logical correctness
tempate fo Uni cocuren- Is independent of the hardware speed and Operating

cy-related calls. Seven of these calls are shown as having S Ind this cs the sorcware so define

been defined by respective procedures. The implementa- System: In this case the source software also defines all the

tion of procedures for all of the Unix calls and their place- concurrent execution threads and the synchronizations

ment in the Ada library, is required for attaining the full needed for accepting legal inputs and producing legal out-

translation of Unix into Ada. The appendix shows the use of puts, as defined in the software specification. For given in-

the Ada templates in the library for translating an example puts execution of the target Ada software may produce dif-

source software in C with Unix calls into Ada. ferent outputs from those produced by processing the source
software, but still the target software is functionally equiva-

Section 6 concludes the paper with a description of fu- lent to the source software as the outputs still comply with

ture needed research and development as follows. The ob- the software specification. For example, the source and tar-

jective of the translation is to be able to execute the pro- get software may execute a same sequence of inputs, the

duced Ada software on new distributed hardware. The fo re may produc e sequence of inputst the

currently presented translation is restricted to use of a single latter bty both cn f with et oftwar s he

processor and Ada. It needs to be extended to use of distrib-

uted processing and Ada-9x. It is also necessary to modify tion.
the target software to be logically independent of timing de- (b) Source Software where the logical correctness

pendencies due to the hardware. Finally, it is necessary to is dependent on the source hardware speed and Operat-
determine the processing and communication capacities ing System: The source software programmer may have re-
needed to satisfy the timing requirements. lied on delays, due to relative speeds of the hardware in

executing portions of the software, and has omitted entering
2. Technical Problem Statement explicitly the respective synchronizations in the code. In

The basic translation requirement is to produce Ada this case the source software is lacking some synchroniza-
target software which is functionally equivalent to the tion statements to retain the logical correctness independent

159I

I

of the hardware and Operating System used. These syn- on the software code which has been assumed to be a tested, i
chronization statements must be added to either the source tried--out, reliable, and machine-readable representation of
or the target Ada software in order to comply with the soft- the software specification. The information from the source
ware specification. (This is further discussed in Section 6.2, software is stored progressively in an Ada-oriented graphic
as future research.) software model.

(iii) Timing: The timing requirements are docu- Close adherence to the source software means that all
mented in the software specification, but typically not in the the entities, operations, and precedences of the source soft- I
source software. The needed capacity of the network's pro- ware are represented in the graphic software model using
cessors and communications, must be determined for Ada semantics. They are as follows.
executing the Ada target software while guaranteeing the
timing requirements (This is further discussed in Section (i) Declarations of same named variables as declared in

6.3, as future research). source software, using the same memory layout, and

Note that satisfying item (i) above is performed by same scope (same shared memory). I
translating the sequential software in the top box in Figure (ii) An Ada task and communications to perform the
1. It has been reported previously [4,13]. This is adequate functions of the Operating System calls used in

for purely sequential source software. However, by itself it source software. I
provides an incoherent concept of the software if the soft- (iii) Ada tasks to represent each of the concurrent pro-
ware contains concurrencies. Satisfying items (ii)(a) above cesses in the source software.
is performed in the next box in Figure 1. This is the main I
topic of this paper. Satisfying items (ii)(b) and (iii) above is (iv) Ada procedures and functions to represent respective
performed in the third and last boxes in Figure 1. They de- procedures and functions in the source software.
pend on the existence of information not directly available (v) Ada 1/0 to represent I/O devices in the source soft- I
by inspecting the source code. In particular (ii) (b) requires ware.
the availability of specifications that clarify what are the
concurrency constraints so that we can determine which are (vi) Ada transformation statements (executable state-
enforced by the source code, And which are voided by as- ments) for each data or control transformation state-
sumptions made about hardware speed and scheduling dis- ment in the source software. They perform the same
cipline. These items are ,Ascussed in Section 6 as needing operations in Ada in the same sequential order.
future research. The Ada-oriented graphic model also contains di-

To achieve functional equivalence, the translation is rected edges between the above nodes/entities to indicate

based on very close adherence to tht memory and trans- precedences in execution of statements as well as other rela-

formations of the sot roe software. Instead of relying on the tions enumerated below.

software specificatic n, we rely in items (i) and (ii)(a) above

I
I
I
I
U

160

I

CMS-2 and
ATES orr SDEX-

Source Pr

(i) Translation of Sc- uetaM-21
quential poutions o

CMS-2 i)Ads Transformation

IS-dawt
ATESISDEX-20

Calls
(iii) Creation of E.SL-Ada

TrT . graphic model of software

(Inerio Transatio
of embedded calls totuan

ATES or SDEX-20fo ncreyII

I(v) Enhancement Isrino
for independenceSycrnzto

of processor speeds

3AdaAd
ConIlation Cmie

(Vi) Analysis

of resources and

Figure 1: The Six Steps In Reengineering CMS-2 Software with Calls to ATES or SDEX-20
In to Ada

161

I
3. A Graphic Model of the Target Ada Soft- ing software abstractions for documenting the software. I
ware They will also be used for analysis of mutual exclusion and

The main translation activity consists of progressively simulation of the timing (see Section 6). They are as fol-

creating from the source software a graphic software model lows:

which employs Ada semantics. This model contains first (i) a relation between a statement that references or up-
the translation into Ada of the sequential portions of the dates a variable and a statement that declares the
source software. Then it is augmented by adding the variable (memory tuple);
translation of concurrency related Operating System calls.
Later the graph is further modified and extended progres- (ii) a relation between a procedure call statement and the
sively, without affecting the declarations or order of the op- procedure's declaration (call tuple);
erations of the source software. For example, changes are (iii) a relation between a message call statement and the
made to partition overall large-scale software into hierar- called entry point declaration (message tuple); this
chical software units. The graphic model is also reorga- includes synchronization calls; I
nized and restructured to conform to the object-oriented (iv) relation between an i/o call and the respective device
Ada programming paradigm. The graphic software model declaration; (//o tuple);
includes tracings to the source statements whose translation d
caused the respective target Ada statements. Although the (v) relation between a generic or type declaration and

target software may be reordered, the respective source respective instantiation statement (type tuple);

statements can be located and the translation remains ex- (vi) relation between a specification and its respective
plainable and justifiable. body declaration, or between with/use statement and

A summary of the contents of the graphic software the respective package declaration (context tuple).

model is given in the following: Each tuple/edge has attributes, such as its type, icon, I
The graphic model representation is called an Elemen- etc.

tary Statement Language for Ada (ESL-Ada). ESL-Ada is A specification of the sequential translation process,

a graphic language to describe Ada code (4]. Every Ada for a specific source language, requires that the syntax and U
statement forms a node in the graph. Thus, there are nodes semantics of each construct in the source language are given
for declarations of data, software unit types (tasks and pro- a syntactic and semantic representation in Ada. This has

cedures), generics and their instantiations. There are also been done so far for CMS-2 [4]. I
nodes for execution statements (e.g. assignments, condi- The translation of Operating System calls consists of
tions, loops, etc.). A node includes attributes of the respec- their representation in Ada in the graphic software model.
tive statement such as the parsed statement, a trace to a As will be discussed, the translation requires using Ada I
source statement, and an icon for the node's display. Thus, tasks and procedures for Operating System calls.
all the statements in the source software are represented The graph is stored as an Entity-Relation-Attributeprogressively in the graphic software model by nodes.TegrpistodasnEntyRain-tibt1

database [2], where the nodes are the entities and the rela-
An ESL-Ada graph contains edges which connect the tions between them are the edges. The graphic software

nodes to form a tree. A tree branch from a node to another model is stored in a graphic database. Retrieval queries and
node at the same software hierarchical level means that the display allow selective viewing of graphic views of the soft-
statement of the fist node immediately precedes the state- ware from different perspectives or of different granularity
ment of the latter node. A branch from a higher software of the code. These displays are critical to understanding of
hierarchical level block statement node to a chain of the the software. The retrieved views can be modified graphi-
next lower level nodes represents lexical containment. This cally by adding or deleting of nodes or edges.
type of edge is called a scope tuple. These edges specify all As noted, the ESL-Ada graph is the basis for software
the precedences derivable from the source program. abstractions and documentation. The overall graph is parti-

Additional edges are then created between pairs of tioned into subgraphs of hierarchical software units. These
nodes to represent binary relations between nodes. These subgraphs progressively portray the partitioned units of the
edges are also called tuples. There are six additional types software architecture. Separate graphs are produced for
of tuples indicating respective relationships. These tuples each hierarchical software unit. Each graph for a hierarchi-
are used in reordering and reorganizing code and for creat- cal software unit contains edges/tuples to nodes in other hi-

I
162 I

erarchical software units with which the unit interacts. Dia- controller It is shown at the top of Figure 2. It only per-
grams and text are then generated as listed below. They forms the concurrency related Operating System calls that
provide the abstractions of the software that constitute the are actually used in the source software. (Operating Sys-
software's specifications in accordance with DOD-STD tems error processing and I/O are not considered in this pa-
2167A [8]. per. The controller plays the role traditionally played by the

Hierarchical Decomposition Diagrams-showing de- kernel in Operating systems. That is, it provides the basic

composition of the overall software into hierarchical units. mechanisms for supporting task creation, interaction, and
(based on the scope tuples) termination, and for communicating with the program's en-

vironment.

Flow Diagrams-showing flow of data and controlwithin and between hierarchical units. (based on the The source Operating System also performs dispatch-
memory, call, message and i/o tuples) ing of processes and uses a variety of underlying systems.However, these services are provided by the Ada compiler

Interface Tables-showing the structure of inputs and when generating object code by inserting into the code Op-
outputs of each hierarchical unit. (based on the scope, call, erating System calls tailored for each vendor's Operating
message and i/o tuples) System hardware and communications. These capabilities

Object/Use Diagrams--showing for hierarchical units therefore are are not included in the translation. The sched-
where types or generics are defined and where they are uling by the source Operating System may differ from that
used. (based on the type tuples) of the target Ada Program but should not affect the correct-

ness of the software, although it may affect the timing (fur-
wh onethet Dagreuse bams-howing the ont art unis an ther discussed in Section 6.3). If the source Operating Sys-

where they are used. (based on the context tuple) tem supports priority assignments for processes, then

Comments Text-showing the comments in each hi- corresponding priorities are also generated for respective
erarchical unit. They are assumed to contain information on Ada tasks. If the source language or Operating System sup-
the hierarchical unit's capabilities, ports priorities for messages, then they are included in the

These diagrams can be retrieved and displayed (with operations of the mailbox tasks, as described below.

appropriate layout) based on queries that cite the desired The messages exchanged between tasks are of two
nodes and tuple types as parameters. kinds:

4. Strategy for Translating Concurrency-Re- (i) control messages for interpreting Operating System

lated Operating System Calls calls; these messages are exchanged by the controller

This section defines the Ada entities that are synthe- task and the functional tasks.

sized to accomplish the protocols of Operating System (ii) data messages for communicating variables among
calls. The translation replaces processes in the source soft- processes as specified in the source program; these
ware with Ada tasks called functional tasks. Additional messages are sent or received by tasks that represent
tasks are created for a controller to execute Operating Sys- source software processes (the functional tasks).
tern calls and for buffering of communications between oth- The Controller task contains in its body a main loop
er tasks. Procedures are added for each Operating System that:
call. They are illustrated in Figure 2 and discussed below.
Large rectangles in Figure 2 denote Ada tasks; bubbles de- (i) receives a control message from other tasks (via the
note task entries; communication paths denote flow of mes- controller's mailbox task) to perform the equivalent
sages (showing direction of the call and direction of the of an Operating System call
message); columns of small rectangles (inside tasks) de- (ii) calls a procedure that executes the protocol of the
note procedures for executing Operating System calls. Operating System call. The protocol may involve

The interprocess communication of the source soft- sending control messages to tasks and receiving ac-
ware Operating System is performed by an Ada task called knowledgements of protocol steps.

163

I
I

controller task

control msg. main

call Pro esso Procedures for Controller's part of
the protocols for executing
OS calls

_ _

controller's

contrl mailbo
msg. calls

control and data contol and data

msg. calls msg. calls

mailbox task mail abox task

procedure
>/

for mailbox ~' * , Icalls
protocol for L . i
executing OS 4

functional task functional task

sequential

code
for functional task control and data

executing OS calls I-f msg.

data msg. calls

mailbox task for data

control msg calls I
data msg. calls 3

Figure 2: Ada's tasks, procedures, and messages to implement OS Calls

I
164 I

Thus, the Controller task is implemented as a mono- For the reasons below, it was determined necessary to
lithic kernel in the sense that it can execute the protocol of a have all communications between functional tasks or be-
single Operating System call at a time. This should not be a tween the controller and a functional task to go via a mail-
problem since most of the work of the call is done outside box task. The mailbox task contains intelligence to handle
the Controller which only routes messages and updates task the following:
control information. If it will prove necessary, we will re-
consider the design of the Controller to become an interact- (i) recognizing and buffering variable length data mes-
ing family of tasks, each with a different priority, corre- sages

sponding to the priority of the callers and to specific (ii) recognizing and buffering control messages and giv-
segments in the execution of the call. The declaration of a ing top priority in delivery of control messages
controller task is inserted at the beginning of the target Ada (iii) delivering data messages in a priority order, in accor-
concurrent software. The controller is dynamically pro-
vided with data on each task being created. This data is sim- dance with the message priority requirements of the
ilar to a Process Control Block of an Operating System. It is source software Operating System. Same priority
called Task Control Block (TCB). data messages are delivered in rirst-in first-out or-der.

Processes created by Operating System calls in the (iv) acknowledging receipt or delivery of messages corre-
source program are translated into declarations of respec- sponding to requirements of the source software Op-
tive Ada tasks, the functional tasks. They are illustrated in crating System calls. Note that this can support both
the middle of Figure 2. The declarations of functional tasks guaranteed delivery of messages as well as servicing
are inserted in the places where there are calls to the Operat- blocked or unblocked communication commands.
ing System in the source software to create the respective
processes. Each functional task contains a main procedure (v) receiving, interpreting, and acknowledging control

that corresponds to the sequential execution code of the re- messages directed to the mailbox task itself. This is

spective process in the source program. In Ada, the sequen- necessary to suspend, continue or terminate a mail-

tial execution code is contained in the body of the functional box.

task. The functional task body may contain calls to proce- Mailbox tasks are created dynamically. They are re-
dures that send control messages to the controller task, thus ported to the controller for each control and functional task.
causing execution of the protocol of the respective Operat- A mailbox task is created at the initialization of the respec-
ing System call. A functional task may be assigned a prior- tive controller or functional task. Thus, there is one mailbox
ity, as indicated, by a respective source software Operating task for the controller task and one for the functional task.
System call. The inserted declaration of functional tasks An additional mailbox task may be created to establish a
create the tasks dynamically and their creation is reported to sending and receiving communication path between multi-
the cont;oller task. pIe processes in the source software. This task is also

created dynamically in the corresponding place where the
An originating task may call the controller task to source software communication path is declared in the

execute an Operating System call on a destination task. The source software. The mailbox tasks are also shown in Fig-
controller task then sends the command to the destination ure 2. Each mailbox task has an entry point for calls of in-
task. Each functional task must check periodically if it has a coming messages and an entry point for delivery of mes-
waiting command from the controller. If one exists, then the sages.
functional task must execute the command. An example of
such a command is a call in one functional task for suspend- of mailb tak may iat time a erhead
ing or terminating another functional task. When the des- of as much as double the communication time between
tination functional task receives the command, it suspends tasks. This overhead must also be compensated for by use
or terminates itself normally. The checks for existence of a of hardware that is considerably faster than the hardware

waiting message add overhead to the execution of these used by the source software.
commands. The required response time to these commands The selection of Ada primitives and their method of
determines the frequency of checking for such messages. It synthesis takes into account minimizing the overhead in
must be compensated for by using much faster hardware execution, and maintaining, or even improving the under-
with the target Ada software than the hardware used with standability of the graphic model of the software. We dis-
the source hardware. tinguish between two types of primitives: those that are ge-

165

I

neric to many Operating Systems. and those that are The first pass consists of: n
specific to a selected Operating System. There are somestructures and operations thac are common to a number of (i) scanning the ESL-Ada graphic model of the soft-n
O istrucr e ms . Teandslpations that are acm n tOperating Sys- ware to find: (a) the concurrency-related Operating
Operating Systems. The translation of each Oprtn y-System calls that are used in the source software. (b)
tern call requires composing its own procedures that imple- which calls create processes and therefore must be
ment the respective protocol of the call. Both the generic c functional task declarations, and (c) the
code and the Operating System call procedures are placed in replaced by of taskequetial thIr
the Ada library as discussed in Section 5. The procedures beginning and end of the sequential thread of execu-
that execute Operating System calls are shown in Figure 2, tion code performed in each of the source processes.

isdthrepciets This information is tabulated for use in Pass 2. nIinside the respective task boxes.

An Operating system call may not be fully translatable (ii) generating the controller task which contains calls toAn Oeraingsysem cll ay ot e fuly ranlatblethe procedures that interpret all the Operating Sys-

to Ada, or translatable only in a restricted way. For exam- ter calls that are used in the source software. As

pie, the Appendix refers to the Unix Fork call which in- noted above, the code in the library is for a single

volves creating a new process. It consists of copying an pocessor. Onl one cntrollerask is for the
exectabe iage cretin anappoprite askconrolprocessor. Only one controller task exists for the

executable image, creating an appropriate task control entire software. It is generated in place and not in-

structure, and rescheduling. This cannot be done in general cluded in the Ada library. The controller task decla-
directly in Ada. But it can be done in Ada if the code ration is generated in Pass 1. Its specification is in-

executed in the child thread consists of a call to a predefined serted at the beginning of the ESL-Ada model of the

pure procedure, i.e. all data used in the procedure is either software. It contains procedures for only the Operat-

local or an explicit parameter of the procedure (Out, and In

Out parameters of the procedure must have been copied be- ing system calls in source software.

fore the procedure is called). (iii) creating a mailbox task for the controller task.
The second pass consists of:

5. Implementing Translation Of Concurren-
(iv) inserting instantiations of respective functional taskscy-related Operating System Calls and their mailbox tasks in place of each Operating

AThe transl rofperisystm System call that creates a process. The inserted code
The translation of Operating System calls is shown in sends a control message to the controller task, report-

Figure I as a box titled "Insertion of Ada tasks and messages ing the created task control block. Ufor concurrency into ESL-Ada." The input of this process is

the ESL--Ada model of the software obtained from translat- (v) inserting an instantiation of a mailbox task for each

ing the source sequential code into Ada. It includes source Operating System call that establishes an intertask

Operating System calls embedded in the sequential Ada data messages channel.

code in the graphic software model. This concurrency (vi) Inserting in-place calls to procedures that execute
translation process replaces the source Operating System every other type of Operating System call.
calls in the ESL--Ada with Ada code. 5.2 Use of Ada Library

The translator process is illustrated in further detail in As shown in Figure 3, the creation of Ada tasks and
Figure 3. As shown, the ESL-Ada software model is up- procedures is simplified by instantiation of pre-defined ob- I
dated in two passes. jects in the Ada library. The Ada library is given in [6].

I
I
I

166I

I

Pass2
Pas 1 Generation of

Generation and functional task and
Insertion of Insertion of

Controller Task code Procedure calls for
respective OS calls

Figure 3: Conversion of Operating System Calls to Ada

Data declarations for use inr

mailbox tasks, for receiving, sending and buffering data

and control messages

generic package of a functional tasks.

controller task

11. "lTypes of procedures for:

interpreting the protocols of the source Operating System calls in the:

controller task

functional tasks

mailbox tasks

11. Types of tasks and generic package for:

mailbox task

generic package that contains a functional task

Figure 4: Summary of the Ada Library

167

I
I

The contents of the Ada library is outlined in Figure 4. envisaged to produce one controller task for each set of co-
lt contains the data declarations used in the tasks shown in located processors. Communication between distinct co-
Figure 2 (1). Next, the library contains procedures for the located processes will be mediated by their controllers. Use
Operating System calls (H) . Finally, the Ada library con- of Ada-9x will facilitate exchange of messages in a geo-
tains a declaration of a generic package for a functional task graphically distributed environment.
and a mailbox type (III). Since there may be a large number 6.2 Modifying the Ada Software For Indepen- I
of functional tasks, the use of the generic package for the
functional task facilitates the software understandability. dence of the Hardware
The instantiation of each functional task in Pass 2 requires In reengineering concurrent software it is necessary to

providing the generic package with parameters (i) a unique consider the possibility that the programmer of the source I
name for the task (ii) the name of the procedure that corre- software has relied on knowledge of relative computation

sponds to the code executed in the respective source pro- delays and omitted some synchronization statements based

cess, and (iii) the names of the procedures for interpreting on knowledge of the speed of the processors and the sched- I
the Operating System calls by the respective functional uling discipline of the Operating System used at that time.
task. [6] contains the Ada library. Therefore, some synchronization statements may not have

been made explicitly in the software. Such explicit syn-
The synthesis of Ada software for Operating System chronization commands must then be added to the software

calls is shown in an example in [6]. It illustrates the Pass 1 in order to attain logic-wise independence of the speed of
and Pass 2 processes through application of this methodolo- the processors used.
gy for a program in C for a Producers/Consumer application Finding and inserting missing synchronizations re-
using the Unix Operating System. This C Program appears quires the availability of specifications and an understand-
in Figure 5. Figure 6 has the correspondent Ada Program. ing of the software. We envisage employing an interactive
The execution of this program is also documented in (6]. man-machine procedure. The user may gain knowledge of

A briefer description of the example in C/Unix trans- the software requirements oy examining the display of the

lated into Ada is given in the Appendix to this paper. It graphic model of the software. In particular the data flow

shows both the C/Unix code input and the Ada code output graph may be useful (It was described in Section 3.). It

of the translation process. shows the flow of data and control between hierarchical
software units, such as tasks, procedures, or functions, as

6. Future Research And Development well as the shared global data structures, files, inputs, and I
The present paper is in a sense a progress report. As outputs. The data flow graph will then show in detail the

shown in Figure 1, while it reports on the translation of con- interactions of tasks with specific global data structures.
current source software into Ada for execution on a single The graphs will be examined in detail. The user will be able I
processor, it leaves to future research the problems of to check the existence, or lack, of the needed synchronizing
checking and modifying the software to attain indepen- messages to assure mutual exclusion. Missing synchroniza-
dence of the logic on the source hardware and distribution of tion commands can then be inserted in the graphic model of
the calculations. These problems are summarized in this the software. I
section. 6.3 Determining Required Processor and

6.1 Distributing Concurrent Software of Communication Capacity For Satisfying I
Large Scale Applications Real-Time Deadlines.

Large-scale concurrent software is envisaged as con- The cbjective is to determine the required capacities

sisting of large numbers of Ada tasks divided among soft- of network computing and communication resources 'hat

ware units. Further, the translation from large-scale source must be allocated to the concurrent software in order to

software is typically performed in pieces, producing one meet the real-time deadline requirements. The proposed

translation unit at a time (e.g. similar to an Ada compilation approach consists of a simulation of the schedule based on I
unit). Frequently communicating pairs of tasks should be the model of the software [3,10].

executed in co-located processors. Less frequently, com- The timing requirements are typically not specified in
municating tasks may be distributed geographically. It is the source cede. They must be obtained by the human user I
contemplated to have a controller task for each set of co-lo- of the software reengineering facility from the software
cated processors. The translation of distributed software is specification. An interactive procedure is envisaged here as

16,(I

I
well. The user will utilize the display of the data flow dia- Report Contract N60921-92-C-0196, December

I gram, on a selected level of detail. The timing information 1993.
may be added to the graph by identifying paths from starting 7. Cvetanovic, Z., "The Effects of Problem Partition-
to ending nodes and the required maximum delay. The data ing, Allocation and Granularity on the Performance
flow graph, with the timing requirements, is then used as in- of Multiple-Processor Systems," IEEE Transactions
put to a simulation system which computes the delay in a on Computers, Vol. C-36, No. 4, April 1987.
path and compares it with the required maximum/minimum 8. Digital Equipment Corporation, "DECdesign: User's
delays. The computation may be only an approximaticn if it Guide," AA-PABRB-TEp C atn, adegMA, May 199U1.H is based on the execution times of Ada instructions. The
simulation must be augmented with testing. 9. DOD, "Defense System Software Development,"

DOD-STD-2167A, September 1988.
The simulation may also be used iteratively in search- 10. DOD, "Military Standard Software Development and

ing systematically for near optimal allocation of computing Documentation (Draft)" DOD Harmonization Work-
resources and communications. It may also find possibili- ing Group, December 1992.

ties of bottlenecks 131.
11. Lock, E., Prywes, N. and Andrews, S. "Case For

7. References Development And Re-engineering Of Real-time
Distributed Applications," Fourth International Con-1. Chang, S., "Visual Languages and Visual Program- ference, Software Engineering and Its Applications,

mPToulouse, France, December 9-13, 1991.

2. Chen, P., "The Entity-Relationship Model: Toward 12. Naval Sea Systems Command, PMS 412, User Hand-
A Unified View of Data," ACM Trans. on Database book for CMS-2 Compiler, NAVSEA
Systems, May 1976. 0967-LP-598-8020, 30 March 1990.

3. Computer Command and Control Company, "Soft- 13. Naval Sea Systems Command, PMS 412, Program
ware Engineering Environment for Executing Paral- Performance Specification for CMS-2 Compiler,
iel/Concurrent Programs on a Computer Network," NAVSEA 0967-LP-598-9020 30, March 1990.
Contract No. N60921-89-C-0127, Philadelphia, PA., 14. Prywes, N., Liu, W. and Ge, X. "Software Reengi-

Nov. 1990. neering Environment," 3rd Reverse Engineering Fo-

4. Computer Command and Control Company, "Soft- rum, Sept. 1992.
ware Intensive Systems Reverse Engineering," Final 15. Prywes, N., Ingargiola, G. and Ahrens, J. "Automat-
Report, Contract No. N60921-90-C-0298, April ic Reverse Engineering of Software to Confirm/Up-
1992. date Requirements Specification," Computer Com-
Also project memoranda: Memo 2-Elementary mand and Control Company, Contract No.
Statement Language Internal Representation, June N00014-92-C-0242, Philadelphia, PA, 19103, June
29, 1992. Memo 3-CMS-2 to ESL Translation, 1993.I January 30, 1992. 16. Prywes, N., "Software Restructuring," Computer

5. Computer Command and Control Company, "Soft- Command and Control Company, Philadelphia, PA
ware Specification Assistant" : Status Manager and 19103, July 1993.
Step-by-Step Guide, Document Manager Guide,
Evaluation Guide and Installation Guide, Contract 17. Prywes, N., Lee, I. "Integration of Software Specifi-
N000 14-9 -1-C-0160, December 1992. cation, Reuse and Reengineering," Computer Com-

mand and Control Company, Contract No.
6. Computer Command and Control Company, "Reen- N60921-92-C-0194, Philadelphia, PA, 19103, June

gineering Concurrent Software into Ada," Technical 1993.

I

169

I
APPENDIX

PRODUCER-CONSUMER C/UNIX EXAMPLE EXPLANATION

This is a C/Unix program example for the Producer/Consumer problem. This
program consists of three entities: main, producer, and consumer. At runtime,
there are three processes running concurrently as follows:

18. A process executing the original main program that creates a PIPE,
and two child processes.

19. A process executing a copy of the main program in which a PRODUCER
function is being called.

20. 3) A process executing a copy of the main program in which a CONSUMER
function is being called.

The functions for these processes are called MAIN, PRODUCER, and CONSUMER
processes. The runtime structure of these entities and their relationships are
are shown as below. It includes PIPE and READ/WRITE operations on it.

MAIN

PRODUCER PIPE CONSUMER I

get write read put

In the following, each function and its respective operations are described.

1. MAIN : It creates a PIPE and processes that execute PRODUCER and CON-
SUMER functions. It passes a WRITE pointer to PIPE to PRODUCER and a
READ pointer to CONSUMER for communication of message between PRODUC-
ER and CONSUMER. Once both processes are active, it waits for ter- I
mination of both processes. After termination, it closes the PIPE and
terminates its execution.

2. PRODUCER: It is executed in a copy of the main() function. In execu- I
tion, a pointer to a PIPE is passed as a parameter to write mes-
sages. It writes on the PIPE a message which has been gotten from the

170

input, in each iteration of a loop. This loop continues until FLAG
condition is not met.

3. CONSUMER: It is executed in a copy of main() function. In execu-
tion, a pointer to a PIPE is passed as a parameter to read messages.
It reads from a PIPE a message which is to be written to the output,
in each iteration of a loop. This loop continues until FLAG condition
is not met.

4. PIPE : It is an IPC mechanism used in UNIX OS. This is one-way commu-
nication mechanism, with two pointers for READ and WRITE. It is
created by MAIN, and is passed to PRODUCER and CONSUMER for commu-
nication between them.

These entities are described by comments in the following C/Unix

I PRODUCER-CONSUMER C/UNIX EXAMPLE CODE

void PRODUCER(BUF) /* CONSUMER FUNCTION */
int BUF; /* WRITE PIPE */

char MSG[1]; /* Message to be written on PIPE
int FLAG = 1; /* Flag for wile iteration */

while (FLAG) /* Repeat until false */

gets(MSG); /* Input from Standard */
write(BUF,MSG,sizeof(MSG)); /* Write Msg on PIPE
/* reset FLAG */ /* Reset flag '/

exit(); /* Exit from execution *1

void CONSUMER(BUF) /* PRODUCER FUNCTION
int BUF; /* READ PIPE */
(

char MSG[l]; /* Message to be read from PIPE
int FLAG = 1; /* Flag for while iteration */

while (FLAG) /* Repeat until false

read(BUF,MSGsizeof(MSG)); /* Read MSG from PIPE */
puts(MSG); /* Output to Standard */
/* reset FLAG */ /* Reset flag

)
exit(); /* Exit from execution */

main() /* MAIN FUNCTION

int BUF[2I; /* READ/WRITE file descriptor of PIPE*/

pipe(BUF); /* Open a PIPE */

if (!fork()) /* Create a child process 'I

CONSUMER(BUF[O)); /*calling CONSUMER */

171

I

if (!fork()) / Create a child process / 3
PRODUCER(BUF[1]); /I calling PRODUCER/

wait(; /* Wait for a child terminated '/
wait(; /* Wait for a child terminated /
close(BUF); /* Close a PIPE */

STRUCTURE OF TRANSLATED ADA PROGRAM

The source software is translated into a procedure. One of the reason for this I
is to modularize each respective source software. This increases readability

and understandability of the generated Ada target code.

The structure of the translated Ada code is shown below Figure. It consists of

tasks: a controller tasks with mail box, functional tasks with mail boxes, and
a pipe.

ADAý_MA•N
PROCEDURE I I

CONTROLLER CMAIN

PRODUCER PIPE CONSUMER

get call to call to ut
RAD entr WRITE entry

Note that the reason for CMAIN to be instantiated as a task is due to UNIX

semantics that MAIN is a process.

TRANSLATED ADA PROGRAM

with LIBRARY_PACK; use LIBRARY_PACK;
with TEXT_IO; use TEXTIO;
with UncheckedConversion;

procedure ADAMAIN is

-- <Other Ada Code for Controller and Mail Box Tasks>

-- PRODUCER

172

procedure Producer(CtnlMBoxPtr in MAILBOXP;
FTMBoxPtr : in MAILBOXP;
ArgList : in MESSAGETAILT)

is
-- Local Variables:
MSG : CHARACTER;

FLAG : INTEGER := 1;

-- Conversion Dependent Local Variables:
LocalArgList : PRODUCERARGT:=ByteStr_T_2_ProducerArg_T(ArgList);
ByteStream : MESSAGETAILT;
N : INTEGER := MSG'SIZE;

RValue : INTEGER;
begin

while (FLAG = 1)
loop

-- For demonstration:

put(,Enter a character for PRODUCER(To terminate, enter IT'):');

get(MSG);

-- [C/UNIX] write(BUF,MSG,sizeof(MSG));

ByteStream := MSG_2_ByteStrT(MSG);
UNIXWrite(FTMBoxPtr,LocalArgList.BUF,ByteStream,N,RValue);

The 'write, OS call is translated into a call to a procedure

'UNIX-Write, defined in the library. This procedure

-- generates a DATA message to a PIPE mail box by calling an

-- WRITE entry. In writing, it waits for an acknowledgement from
-- the PIPE based on blocking information. In return, it receives

a number of bytes written on the PIPE.

end-- /* reset FLAG */
end loop;

-- [C/UNIX] exit();

-- UNIX_Exit(CtnIMBoxPtrFI'MBoxPtr);

The *exit' OS call is translated into a call to
-UNIXExit' procedure defined in the library. This
procedure generates a CONTROL message for this OS call and
passes it to Controller. when Controller receives this message,

it calls a procedure ISYSEXITRoutine- procedure defined
in the library. This procedure will perform the protocol ofI--I exit, OS call in the source software OS.

end Producer;

-- CONSUMER

procedure Consumer(CtnlMBoxPtr : in MAILBOX_P;
FTMBoxPtr : in MAILBOX P;

ArgList : in MESSAGETAIL-T)

173

isI
-- Local Variables:

MSG : CHARACTER;
FLAG : INTEGER := 1;

-- Conversion Dependent Local Variables: I
LocalArgList : CONSUMER_ARG_T:=ByteStrT_2_ConsumerArgT(ArgList);
ByteStream : MESSAGETAILT;
N : INTEGER := MSG'SIZE;
RValue : INTEGER; I

begin

while (FLAG = 1) 3
loop

-- [C/UNIX] read(BUF,MSG,sizeof(MSG));

-- UNIXRead(FrMBoxPtrLocalArgUst.BUFByteSt, amN,RValue);

SMSG:= ByteST_2_MSG(ByteStream);

The 'read' OS call is translated into a call to a procedure
-- I 'UNIXRead, defined in the library. This procedure

-- i gets a DATA message from a PIPE mail box by calling an READ
--I entry. In reading, it checks for the right message by the
-- • size and type of message.

put(MSG);

-- /* reset FLAG */

end loop;I

-- [C/UNIX] exit();

UNIXExit(CtnIMBoxPtrFrMBoxPtr);

The exit, OS call is translated into a call to
-- i 'UNIXExit- procedure defined in the library. This I
-- I procedure generates a CONTROL message for this OS call and
-- I passes it to Controller. when Controller receives this message,

it calls a procedure ISYSEXIT_Routine' procedure defined I
-- I in the library. This procedure will perform the protocol of

'--I exit* OS call in the source software OS.

end Consumer; 3
CMAIN

procedure C_Main(CtnlMBoxPtr : in MAILBOXP;
FTMBoxPtr : in MAILBOXP; I
ArgList : in MESSAGETAILT)

is
-- Local Variables:

174 I

BUF MAIL_BOX_P;

-- Conversion Dependent Local Variables:
ProducerArg PRODUCERARGT;
ConsumerArg CONSUMERARGT;
ByteStream :MESSAGETAILT;
FTTskPtr :STANDARD_TASK_P;
RVa lue :INTEGER;

Name NAMET;

ConsumerP : STANDARDTASKP;
ProducerP. : STANDARDTASK_P;

-- Instantiation of CONSUMER package:
package CONSUMER_PACK is new FUNCTIONAL_TASKPACK

(TaskBodyProcedure => Consumer);

-- Instantiation of PRODUCER package:
package PRODUCER_PACK is new FUNCTIONAL_TASK_PACK

(TaskBodyProcedure => Producer);

begin

-- pipe(BUF);

-- UNIXPipe(CtnlMBoxPtr,FTMBoxPtr,BUF,RValue);

The 'pipe, OS call is translated into an instantiation of
-- mail box. In instantiation, it makes a call to

-- 'UNIX Pipe' procedure defined in the library to
inform Controller about this new mail box task named PIPE.
This procedure generates a CONTROL message for new task and
passes it to Controller. when Controller receives this message,

-- it calls a procedure 'SYSPIPE_Routinel procedure defined
in the library. This procedure creates a new TCB for this
mail box.

[C/UNIX] if (!forko)) PRODUCER(BUF[I]);

IPrducerArg.BUF :=BUF;

B teStream := ProducerArg_T_2_ByteStrT(ProducerArg);
Name := Get_TaskName;

ProducerP := PRODUCERPACK.GenerateFunctionalTask(Name,FTMBoxPtr,

CtnlMBoxPtr,ByteStream);

3-The 'fork' OS call is translated into a call to a function in
PRODUCERPACK package, which is an instantiation of
package called 'FUNCTIONALTASKPACK'. This package is defined
in the library. This instantiation requires the body of
PRODUCER procedure to be passed as a parameter. A call to a
'GenerateFunctionalTask, function in this instantiated

-- package requires a set of proper parameters co be passed.
These parameters are used to generate a desired functional task.

These are 1) name of child task being created, 2) a pointer to
this task creating a new child task, 3) a pointer to the CONTROLLER
mail box, and finally 4) a list of parameteus for this PRODUCER
procedure in a stream of bytes. In instantiation, this newly

-- created child task generates its own mail box, informs a controller
-- about its own task and mail box, and finally calls the body

procedure of its own. When Controller receives messages about these
-- new tasks, calls 'NEW-TCB-Routine' procedure, in library, to create

175

i
a new TCB for this functional task and mail. This TCB is used
to inform parent task about its child task.

-- [C/UNIX] if (!fork()) (CONSUMER(BUF[0]);}

Name := Get_Task_Name;

ConsumerArg. BUF := BUF;
ByteStream = ConsumerArg_T_2_ByteStrT(ConsumerArg); 3
ConsumerP = CONSUMERPACK.GenerateFunctionalTask(Name,FTMBoxPtr,

CtnlMBoxPtr,ByteStream);

The 'fork' OS call is translated into a call to a function in i
CONSUMERPACK package, which is an instantiation of
package called 'FUNCTIONAL_TASKPACK'. This package is defined

-- in the library. This instantiation requires the body of
CONSUMER procedure to be passed as a parameter. A call to a
-GenerateFunctionalTask, function in this instantiated
package requires a set of proper parameters to be passed.
These parameters are used to generate a desired functional task.

-- These are 1) name of child task being created, 2) a pointer to
this task creating a new child task, 3) a pointer to the CONTROLLER

-- mail box, and finally 4) a list of parameters for this PRODUCER
-- procedure in a stream of bytes. In instantiation, this newly
-- created child task generates its own mail box, informs a controller
-- about its own task and mail box, and finally calls the body
-- procedure of its own. When Controller receives messages about these
-- new tasks, calls 'NEW_TCBRoutine' procedure, in library, to create
-- a new TCB for this functional task and mail. This TCB is used
-- to inform parent task about its child task.

-- [C/UNIX] wait(); I

UNIXWait(CtnlMBoxPtr,FTMBoxPtr,NULL,RValue);

-- i The 'wait' OS call is translated into a call to 3
-- I 'UNIX.Wait' procedure defined in the library. This

procedure generates a CONTROL message for this OS call and
passes it to Controller. when Controller receives this message,

-- I it calls a procedure 'SYSWAIT-Routine* procedure defined
-- i in the library. This procedure will perform the protocol of

'wait' OS call in the source software OS.

-- [C/UNIX] wait(); i

UNIX_Wait(CtnlMBoxPtr,FTMBoxPtr,NULL, RValue);

The 'wait' OS call is translated into a call to I
-UNIX_Wait' procedure defined in the library. This
procedure generates a CONTROL message for this OS call and
passes it to Controller. when Controller receives this message,

-- I it calls a procedure 'SYS.WAITRoutine' procedure defined i
in the library. This procedure will perform the protocol of

-- i 'wait, OS call in the source software OS.

-- [C/UNIX] close(BUF(l]);

UNIXClose(CtnlMBoxPtr,FTMBoxPtr,BUF,WRITEPIPE,RValue); 3
The 'close' OS call is translated into a call to 'UNIX_Close'
procedure defined in the library. This procedure generates a

-- I CONTROL message for this OS call and passes it to Controller. 3
176

-- I when Controller receives this message, it calls a procedure
ISYSCLOSE_Routine' procedure defined in the library. This

-- procedure will perform the protocol of 'close, OS call in the
-- I source software OS.

-- (C/UNIX] close(BUF[0));

UNIX..Close(CtnlMBoxPtr,FTMBoxPtr,BUF,READPIPE,RValue);

-- I The 'close, OS call is translated into a call to 'UNIXClose'
-- I procedure defined in the library. This procedure generates a
-- I CONTROL message for this OS call and passes it to Controller.

when Controller receives this message, it calls a procedure
-SYS-CLOSERoutine' procedure defined in the library. This

-- I procedure will perform the protocol of 'close, OS call in the
--I source software OS.

end Cjain;

-- Instantiation of CMAIN package:

package CMAIN-PACK is new FUNCTIONALTASKPACK

(TaskBodyProcedure => CMAIN);

begin
-- ADA_MAIN declares CMAIN as a FUNCTIONAL TASK by calling a
-- GenerateFunctionalTask functional defined in CMAIN_PACK
-- package.

declare
Name : NAMET;
ByteStream : MESSAGETAILT;
MainArg : MAINARGT;
C_Main_P : STANDARDTASK_P;

begin
Name := Get_TaskName;
ByteStream := MainArgT2_2ByteStr_T(MainArg);
C_Main_P := C_MAIN_PACK.GenerateFunctional_Task(Name,

ControllerMailBoxPtr,ControllerMailBoxPtr,ByteStream);
end;
NULL;

end ADA-MAIN;

177

I
Software Migration and Reengineering (SMR)

A Pilot Project in Reengineering

Stephen R. Mackey 1 and Lynn M. Meredith 2 2

1Microelectronics and Computer Technology Corp. (MCC) 2Computing Devices International
Advanced Systems & Networks U.S. Operations
3500 West Balcones Center Drive 8800 Queen Avenue South
Austin, TX 78759-5398 Bloomington, MN 55431-1996
mackey@ mcc.com Lynn.M.Meredith @cdev.com

Abstract technological advances have occurred. Some of these i
This paper describes the Software Migration and technological advances (e.g., improved sensors, multisen-

Reengineering (SMR) project being sponsored by the sor fusion) wifl translate directly into increased opera-

Embedded Computing Institute. The project is nearing the tional capability, while others (e.g., advanced software
Eenddofthed Computi phaseof tfout. phae proet. ise nerige o techniques, Ada, 32-bit microprocessors) will translate
end of the firsti a phase oa fo phase effort. The purpose of indirectly into increased operational capability because
the initial phase was to define the technical approach, they contribute to lessening maintenance expenditures. A
based on the expectations of the customer, investigation of key issue is how to take advantage of these technological
previous approaches, and the availability of existing tools, advances, maintain the current operational capability, and
The paper discusses information uncovered and describes prepare to deliver enhanced operational capabilities into
the technical approach that was developed based on this the next decade.
information. The unique contributions of this project are
expected to be in the areas of: recovery of design informa- Recognizing these advances, the U.S. Navy seeks to
tion from CMS-2M and AYK-14 assembler; investigation upgrade avionics systems from existing hardware plat-
of representations for the desired state of the system; inter- forms to those that better support the Ada language.
active capture, display, and modification of the recovered Because existing software is exhibiting limitations with
information by the user; and integration of the SMR respect to performance, maintainability, portability, and
toolset with the F/A-18 Software Engineering Environ- scalability, there is a need for effective and thorough soft- I
ment via population of a mainstream, commercially avail- ware migration and re-engineering mechanisms. With the
able CASE tool. current emphasis on cost and risk management, the solu-

tion to this problem must also support an incremental
1. Introduction approach.

The United States military is the world power of today; The Software Migration and Reengineering (SMR)
Thoeer pst-d StatesWmilary realitis thae s ed po eritay; project was established by the Embedded Computinghowever, post-Cold War realities have shifted American Institute (ECI) located at the Naval Air Weapons Center

policy from one of military buildup to one of extreme (N C) incChina the Calirni a pons Cente

downsizing. Part of the originally successful buildup (NAWC) in China Lake, California. It is a cooperative
research and development effort involving Computing

included the development and acquisition of highly capa- Devices International, Microelectronics and Computer
ble weapon systems. Although the current downsizing Technology Corporation (MCC), and the Embedded Com-
effort may save financial resources, it decreases or halts puting Institute.
weapon system procurement, thus promoting a possible p
drop in America's technological competitive edge. The 1.1. Current System State
U.S. military seeks to solve this dilemma by increasing
current weapon system capabilities with key technological This subsection discusses the current state of the F/A-
advances. 18 system. The major points are: system level, including

sensors, buses and mission computers; software, includingA specific example of this investment is the Navy's Fl a brief introduction into its structure; documentation, high-A-18 platform. While the operational capability of this lighting differences between existing documentation and1

particular weapon system was being fine-tuned to meet the that required by recent development standards; and main-

expectations of those whose lives depend upon it, other

17 Fi

I

tenance concerns, including the existence of several ver- It is unlikely that all of the kinds of information that
sions of the F/A-18 operational software. accompany a deployed system can be extracted from

source code alone. The next logical step is to look for doc-The ntie FA-18sysem s co~osd o a nmbe of umentation of the existing system. The existing documen-
subsystems, including a variety of sensors and two mis-

sion computers. These computers are interconnected via tation for the F/A-18 is a mixture of MIL-STD-1679

several MIL-STD-1553 buses. The SMR project is focus- documents, and documents created by the F/A-18 commu-

ing on the reengineering and migration of the software nity to meet specific operational needs. The existing docu-
residing in the mission computers; therefore, there will be mentation is for the most part complete and consistent;
no further discussion on the sensorsn however, there are no formal software requirements or

software design documents in MIL-STD-1679.

The current mission computers are reaching the limits Last it should be noted that the operational software for
of their capacity, and the need to employ multiple MIL- the F/A-18 has been in existence for a number of years. As
STD-1553 buses is an indication that they too may reach- is normal for deployed software with a long lifetime, sev-
ing their capacity limits. However, it is important to recog- eral versions of the operational programs are in existence
nize that redundant computers and busses may be present and must be maintained. Sources of variation include:
because of survivability requirements (e.g.. fault toler-
ance). Fault tolerance may be utilized to compensate for * Differences in aircraft configurations.
hardware failures, or battle damage. * Differences in mission requirements.

The existing software is implemented in AYK-14 • Different customers.
assembly language with some CMS-2M. The current oper- As is evident from the preceeding discussion, the "cur-
ational software possesses existing system properties (as rent state" of the existing system is conceptually very
defined in [2]): functionality, performance, and accuracy. large, extremely complicated, more than just source code,
We consider these properties as fundamental properties, and some of the representations are not amenable to auto-
which must be preserved by any reengineering approach. mated understanding.
These properties are a result of:

* Many years of engineering effort. 1.2. Desired System State

• Extensive interaction with the end users; that is, It is difficult to describe what the desired system state
pilots of the F/A- 18. should be with a high level of confidence. Many factors

• Use of the system in the actual deployed environ- contribute to this difficulty. For example:
ment; for example, Desert Storm. • What point in time should the desired state be

The existing "architecture" of the software is domi- achieved?
nated by global data (expressed as CMS-2M SYS-DDs), * What constitutes an acceptable desired state?
and functionally oriented modules (expressed as CMS-2M - Is it standards based?
subroutines). Although the software is laid out in terms of
CMS-2M constructs, almost all of the actual code is Instead of a definitive answer regarding the structure of
implemented in AYK-14 assembler using the direct fea- the desired state one is usually presented with "require-
tures of CMS-2M. When an assembler language module ments" like the following:
wishes to manipulate some global data, the references are - Retarget the software from 16-bit target hardware to
hard coded in the assembler modules. 32- or 64-bit target hardware.

This type of architecture, in addition to being difficult - Move that software to a more modern language (i.e.,
to understand, makes seemingly simple software changes Ada).
extremely difficult. For example, changes in the represen- - Enable more effective software maintenance.
tation of a particular data item can require changes in the
code of modules throughout the system. Another example • Lower cost.
is changes in computation may also require modifications An important part of any systems reengineering effort
to several modules. It is important to recognize that this is to create a definition of the desired state that meets these
style of architecture is typical of legacy systems, and was kinds of requirements. The concept is illustrated in Figure
required to achieve the performance that was required by 1, and the remainder of this section discusses several, but
the system. probably not all, completed or ongoing industry efforts

that had an influence on the concept. This concept has
been extremely useful in guiding the search for widely

179

I
accepted approaches to more detailed definition of the tory to the fundamental properties. For instance,
desired system state. abstractions may degrade performance. Finally, some of

these properties may be in conflict with each other. One

Application Software (Operational Flight Programs) example of potential conflict is the ability to achieve
seamless integration while employing COTS products or

Application Program Interfaces (APIs) reusing existing software. Based on the foregoing discus-
esting and sion, it is clear that these principles need more explicit def-

ardw Application User (onsole Fault Network inition
Resource Comni File Interface Mgtnt Mgmt

Mgmt M IManr (UCIF) - -.. Fortunately, there are a number of recently completed

D hatribut~eal-ThnTe, Secure Operating System Interface or currently underway efforts which address some of these

a R n Sissues. In the spirit of reuse, we are attempting to utilize
Ithe results of these efforts where feasible. Examples of

Re POSIX Interface these efforts are:

Real-Time POSIX Implementation • The Navy's Next Generation Computing Resources 3
Trusted Computing Base (TCB) (NGCR) Operating System Interface Specification

Device Control Software and Firmware [271. The-OSSWG has adopted the IEEE's Portable

Hardware Architecture Operating System Interface Specification (POSIX)
(22-261 as the operating system interface specifica-

tion.
Figure 1. A Layered View of the Desired State • The Domain Specific Software Architecture (DSSA)

The software engineering community at large has iden- program [5].
tified other desirable properties of a software system. * The Ada 9X effort [18].
These properties, which are also nicely summarized in [2], -
reflect software engineering principles, facilitate continu- The SEIbs Rate Monotonic Analysis (RMA) and I
ous change, and attempt to capture existing system know Distributed Real-T1me System Design Efforts (16,

how. 17].

Examples of these continuous change properties are: - lte SEt's Generic Avionics System Specification

modularity, standard interfaces, virtual machine abstrac- effort [15].

tions, localization of information about the application - Software requirements and design methods like the

domain and implementation technology, parameterization, Ada-based Design Approach for Real-Time Systems

use of Commercial Off the Shelf (COTS), and reuse. (ADARTS) [8].

Examples of software engineering properties are: porta- Each of these efforts contribute some insight into what

bility, structure, readability, testability, data independence, characteristics a system and software architecture should

documented system understanding, openness, interopera- possess. A more detailed description of the use of these

bility, and seamless integration. efforts by the SMR project will be presented in the meth-

Examples of existing system know-how properties are: ods definition section of the paper.

domain models, domain-independent software architec- Although not directly applicable to the architecture of
ture principles, domain-specific architectures, and adapt- the target software (i.e., the operational flight programs),
able components. substantial effort has been expended in the Software Engi-

neering Environment (SEE) area. This work is important
Many of these principles are well understood by some because it addresses requirements and design processes,

software engineers. Several observations can be made and the production of DoD-STD-2167A system and soft-
about these properties. First, the properties are not mua - ware documentation. For example, the DoD-STD-2167A

ally exclusive. For example, modularity, virtual machine Software Requirements Specification, and Software
abstractions, localization of information, structre, and Design Documents are targeted by specific tools in a SEE.
domain independent software architecture principles all Some of the more notable SEE efforts include:
hint at the same idea. Second, some of the properties are
not the result of a programming language per se. For - The Joint Integrated Avionics Working Group

example, use of high level languages makes software more (JIAWG) SEE, as exemplified by the F-22 program.

portable and more readable than the use of assembly han- * The Software Technology for Adaptable, Reliable I
guages. Third, some of these properties may be contradic- Systems (STARS) program.

180 1
I

"* The Navy's Next Generation Computer Resources tion, all functional and performance testing will be con-
(NGCR) Program Support Environment Specifica- ducted in the NAWC simulation facility.
tion Working Group (PSESWG). In addition to migrating the software, requirements in

"* The National Institute of Science and Technology the process also include the use of new development stan-
(NIST) environment work. dards (e.g., DoD-STD-2167A), more advanced software

These efforts have been defining reference models and techniques, and a more advanced SEE. These require-

standards in the SEE area. The SMR project will utilize ments mean that the information recovered by the SMR

these reference models and standards as integration toolset must be consistent with the information require-

requirements. The potential utilization of these efforts will ments of the chosen techniques, and that the SMR toolset

be discussed in the process definition, and tool selection must be integrated with the chosen toolset.

and creation sections of the paper. In the medium term, two to live years, there is a desire
to integrate new operational capabilities into the F/A-18,

1.3. Derived Requirements and to employ more COTS technologies. Both of these

The previous two subsections have briefly discussed require thorough understanding of the existing capabili-

the current and desired states of the F/A-18 system. In ties, and clear specification, design and implementation of

addition to this more technically oriented desirable proper- interfaces between the existing capabilities and the new

ties view, there is also a programmatic and acquisition ori- capabilities.

ented view. This view demands, because of the need to The long term objective is to provide a comprehensive
continue to serve the fleet and because of declining bud- set of tools for orderly incremental and semi-automated
gets, that the transition from the current system state to the migration of 16-bit CMS-2 and AYK- 14 assembly opera-
desired system state be evolutionary. tional flight programs (OFP) to a 32-bit RISC architecture

Evolution of the current state to the desired state will be with the Ada language. The SMR project will integrate

a multi-year effort, with several incremental improve- existing applicable process, methods, and tools while

ments to the current state. Evolution will occur in two developing missing elements for providing the additional

areas: capabilities and uniting the disparate pieces together.

" Product evolution. That is, the transition of the oper- Meeting the near, medium, and long term objectives

ational software from the current state to the desired and providing an integrated solution requires the SMR

state. project to address the following topics:

" Process evolution. That is, the transition of the pro- - Business case - investigate the cost-effectiveness of
cedures, methods, and tools used to create and main- re-engineering existing software versus new soft-
tain the operational system. ware development.

In the very near term, the perceived risk in converting - Processes - analyze the procedures that concern not

any part of the OFP to Ada is very high. This is due to a only migration and re-engineering but new function-

number of factors. First, because it is too expensive to ality additions, overall system architecture modifica-

convert the entire OFP to Ada, only a part of it will be con- tions, and interaction with systems engineering, test,
verted. The fact that only a part of the OFP will be con- and software reuse.

verted means that the structure of the existing OFP must - Methods - consider existing software understanding,
be very well understood so that the interfaces between the inter-language translation issues, current design rep-
"old" code and the "new" code can be clearly specified resentation, new analysis and design model usage,
designed, and implemented. Second, this initial conver- and reuse.
sion effort also involves moving from a 16-bit computer to * Tools - analyze software programs with capabilities
a 32-bit computer. of reverse engineering, design viewing, design re-

To mitigate this programmatic risk, the SMR toolset engineering, and forward engineering.
will be utilized to aid in understanding and identifying a The remaining sections of the paper address these four
subset of the F-18 avionics Operational Flight Program topics.
(OFP) to be modified and adapted. Part of the OFP will
continue to execute on an Advanced AYK-14 computer
containing a VHSIC Processor Module (VPM), and part of
the OFP will execute on an Intel 80960-based processor
module. To ensure effective operational test and evalua-

181

I

2. Business Case I
As discussed in [1], there is a reengineering decision Restructure Reverse1or then Redevelop Redevelop1

making process, which consists of four steps: 1) identify Redocument Forward

alternative strategies, 2) perform an economic assessment Restructure Reverse

of the alternatives, 3) select the preferred strategy, and 4) Restructure tev
imleen heseece sraeg.or Restructure Restructure thenimplement the selected strategy. Redocument Forward

2.1. Identification of Alternative Strategies Reformat Reformat Restructure Restructure

Several different reengineering "strategies" are identid-m
fled by [1]. The strategies, along with their definitions, are: LL~eave Alone Leave Alone Leave Alone Restructure

" Restructuring. The engineering process of trans-
forming the system from one representation form to T
another at the same relative abstraction level, while Table 1, Strategy Selection Matrix (Long Lifetime

preserving the subject system's external functional Remaining)

behavior. Although,-by strict application of this procedure,

"* Redocumentation. The process of analyzing the sys- restructuring was identified as the advised strategy, it was
tem to produce support documentation in various rejected because of the desire to transition to Ada.

forms including users manuals, and reformatting the Restructuring was viewed as the restructuring of the exist-
systems' source code listings. ing CMS-2 and AYK-14 assembler implementation.

"* Reformat. The engineering process of reformatting In addition, NAWC's desire is to possess th, current
the existing source code so that it is easier to under- OFP software, currently written in CMS-2/AYK-14
stand and maintain, while preserving the subject sys- assembler, rewritten in the Ada language. This conflicts
tem's external functional behavior. with the accepted restructuring approach of being in the

"• Reverse engineering. The engineering process of same relative abstraction level; both would be in software

understanding, analyzing, and abstracting the sys- languages but of very disparate types.

tem to a new form at a higher abstraction level. The two chosen alti'native strategies are reverse then

"* Forward engineering. Forward engineering is the set forward, and redevelop.
of engineering activities that consume the products
and artifacts derived from legacy software and new 2.2. Economic Assessment of the Alternatives
requirements to produce a target system. A very high level of economic analysis was performed

"* Redevelop. Redevelopment refers to developing using the COCOMO model with the 1988 Ada process
new software from scratch ignoring any existing model which~is consistent with DoD-STD-2167A. A
software. COCOMO model, with the size of the system estimated to

As part of the reengineering strategy selection process, be 50K of newly developed Ada software, to represent

a number of questions concerning product complexity, development of the system from scratch-this matches the

environmental risk, and system lifetime are used as a part "redevelop" strategy identified above. The effort multipli-

of the decision making process. As one of the initial tasks ers were set according to the characteristics of the product
in our reengineering effort, we applied this process and (high reliability and complexity), people (high application I
derived the following metrics: experience and analyst capability), and process (high mcd-

em programming practices and tools). This baseline model

"* Average Product Complexity Value = medium (the yielded a schedule duration of 16.5 months, effort of 150.6
actual score was 2.20). staff months, and productivity of 331.9 SLOCs per staff

"* Environmental Risk = medium (the actual score was month.
2.05). In order to calculate the potential savings from a

"* Remaining System Life = Long. reverse then forward strategy, some assumptions about the

Table I is the matrix from [1). The Y axis of this table effectiveness of the reverse engineering toolset. The

is product complexity, and the X axis is environmental assumptions were as follows:

risk. The highlighted area of the table shows the reengi-
neering strategies suggested by the selection procedure.

1312

I

I--- , Reverse Engineering ,-o Forward Engineering b-4----- Test ---

LeayRecover Rve/Generate Implement
Legacy . Design - Modify - Ada - and Unit

Baseline Baseline Design Source Test

Maint. p- HistrysTes

Ma~int. History Test W. Test /

H (manualy)C Suite

Figure 2. SMR Process Definition

High Level Design Reuse on a scale of 0.0 (no letting the people control the application of the processes,Sreuse) to 1.0 (full reuse). Since the current design is methods, and tools.
based on functional decomposition, and an object
based design is desired we set this factor to 0.25. 3. Process Definition

i Software Salvage on a scale of 0.0 (no salvage) to
1.0 (full salvage). This factor is an indication of the As with any other software system, an accurate processamount of low level design and existing code that must be defined. As illustrated in Figure 2, SMR defines
can be recovered. This factor was set to 0.50. well-structured process for migrating CMS-2/AYK-14

assembler to the Ada language. The following subsections
Translation Efficiency on a scale of 0.0 (no transla- describe the essential procedures for the SMR process def-
tion) to 1.0 (full translation). We arbitrarily set this inition and additional procedures that SMR takes into con-

to 0.7. sideration.
These assumptions lead to an Adaptation Adjustment

Factor (AAF) equal to 0.704875. The original SLOC esti- 3.1. Migration and Reengineering Procedures
mate of 50K lines is multiplied by the AAF and results in a Software migration provides a means for moving func-
SLOC estimate of 35244 which is fed back into the base- tionality representation from one software programming
line COCOMO model. This COCOMO model yielded a language to another. Re-engineering leverages the value of
schedule duration of 14.4 months, effort of 101.2 staff pre-existing system software assets to renovate or recon-
months, and productivity of 348.3 SLOCS per staff month. stitute it in a new form, while retaining and possibly aug-
Since savings are usually measured in effort saved we menting its essential functionality.
have 150.6 - 101.2 = 49.4 staff months saved.

Re-engineering encompasses certain aspects of both
2.3. Select Preferred Strategy reverse and forward engineering. The reverse engineering

process analyzes an existing system for generating itsWe believe that the strategy followed will be a reverse higher level abstractions [6]. The forward engineering pro-
then forward strategy. Even if a redevelop strategy was cess moves a high-level conceptual abstraction of a system
envisioned, the development staff will naturally go back to to its logical design and final physical implementationthe existing system, and reverse engineer some if not most (i.e., code).
of the functionality. Without the SMR toolset this reverse
engineering activity would be mostly manual. The initial step identifies the collection of software that

the software migration and re-engineering process will be
2.4. Implement the Selected Strategy implemented upon. Once identified, the next step involves

parsing the identified software for recovering the baseline
Implementation of the reverse then forward strategy is design into an alternate representation in a repository.

very much like a new development supplemented by the Applying a level of language specific heuristics during
reengineering environment. This includes integration of parsing provides the ability for interpreting the entire set
reengineering processes with the "normal" developmental of code. Once in this alternate representation, the recov-
processes; integration of reengineering methods with the ered information is better suited for supporting other
chosen development methods; and integration of reengi- migration and re-engineering procedures.
neering tools with normal developmental tools. The key is

1 3

I ... l l l I I i a t n n

I
Because the SMR project does not w.ut to conflict with A function of the design recovery step will aid the iden-

the steps identified in DOD-STD-2167A, careful consider- tification of these system architecture dependencies. By
ation involved this critical reverse engineering step. The recovering to an informative design state, the recovered
project decided that reverse engineering would only go to articles are viewed for their original implementation and
the preliminary design level. This decision was primarily then re-engineered to the desired design state. This design
based upon project life and resources and system/software state re-engineering allows for modification of the overall
requirements recovery complexity. system architecture.

The next step provides viewing and modification facili- 3.3. System Engineering Interaction I
ties of the recovered design. Static and dynamic analysis
assists in determining the various components and their Any system must contain a definition of requirements
interrelationships. This captured information can be and design. The logical steps for performing software
viewed through higher-level artifacts such as control-flow development implements the DOD-STD-2167A method-
diagrams, module structures, program invocation graphs, ology include system/segment requirements, system/seg-
stratified views, and variable access structures. Different ment design, software requirements, and software design. I
perspectives of the recovered information facilitates the When integrating reverse engineering with forward engi-
understanding of the system, its various components, and neering, the process must identify the logical insertion
their interaction. Applying domain knowledge, external point into the DOD-STD-2167A methodology. In addi-
information, documentation, deduction, or fuzzy reason- tion, successful reverse engineering promotes scalability
ing techniques to the recovered design information assists with system engineering processes.
the user in attaining a better understanding of the system T
to be re-engineered. The migration and re-engineering process implements I

steps for reverse engineering of an assembly-based appli-
While applying appropriate transformations the recov- cation, re-engineering of the recovered baseline design,

ered design information can be augmented by re-design, and forward engineering for implementation onto a new
structuring, modularization, and grouping. A level of hardware architecture. The current focus of the SMR
semi-automation accelerates the re-engineering activity, project performs reverse engineering to an abstracted
At this time, available maintenance histories can be evalu- design state. This abstracted design state relates to the pre-
ated and applied to the re-engineered design. Design re- liminary software design for DOD-STD-2167A software I
engineering provides the means for taking advantage of development. The next logical reverse engineering steps
the target language constructs during code generation. recovers software requirement and then system require-
Once the re-engineering of the design is complete, the Ada ment/design information.
language representation is generated.

The code generation procedure must not only create 3.4. Maintenance Processes
fully compilable Ada code, it must also adhere to the cur- Ideally, a software system will have a long lifetime,
rent MIL-STD-1815A for the Ada programming language. maximizing the benefit of the initial development. Re-

The next step implements the generated code through designs, upgrades, and extensions require knowledge of
compilation, linking, and run-time execution facilities, the implemented system. Usually, this knowledge can be
The implementation will be performed hand-in-hand with lost when the original implementors are no longer avail-
unit test, the first step for testing DOD-STD-2167A soft- able. Therefore, maintenance should always be a contrib-
ware systems. As a parallel activity, test case generation uting factor when defining a software system process.
allows for subsequent system level testing of the migrated The SMR project realized the necessity of a strong
and re-engineered application, maintenance process because of the underlying purpose of

3.2. Overall System Architecture Modifications reverse engineering a legacy system. SMR's identified
process provides an increase of future maintenance effi- I

Some programming languages require specific hard- ciency by providing a scalable and adaptable design repos-
ware considerations before implementation, especially itory. Current trends in software engineering practices for
assembly type languages. This dependency could have software system development show programming evolv- I
directed the original design and implementation of the ing to designing. Once the design is complete and stored in

application. Therefore, migration of applications from one a repository, a code generator can be utilized for the target
programming language to another must consider the over- software application, reducing the burden upon specific I
all system architecture. programming language Klnowledge.

I
134 I

3.5. Testing

Another integral part of a software migration and re- Existing F/A-18 Reverse Engineering
engineering process includes testing. Testing provides the OFP Tools
feedback for securing the integrity of the developed soft- (CMS-2/assm)
ware system. As described in section 5, the SMR toolset Entity-Relailonship?S provides reverse engineering while the F/A- 18 SEE pro--btatSmx

vides forward engineering and testing. Therefore, the
- A8

SMR toolset will not have any impact on the normal unit Intermediate Data Flow?
and system testing procedures. epresentation

3.6. Documentation

A comprehensive process must provide a means for ReengineeredU sufficiently documenting the migrated and re-engineered Forward Engineering (Aa

software system. At each step of the SMR process, a path Tools Generate (Ada)

provides production of the necessary documentation.
Good documentation aids in knowledge retention and Figure 3. High-Level View of Reongineering
future maintenance.

Although we may expect a significant amount of the
3.7. Reuse intermediate representation can be automatically gener-

The defined SMR process will hopefully further pro- ated by the reverse engineering tools, we must recognize
mote the notion of reuse. By including an object-oriented that there are key pieces of information that will be manu-
design repository, the SMR process promotes reuse of ally entered into the intermediate representation by the

software design objects. In addition, creating the target people working on the SMR project. Given the limited
application with the Ada language supports reuse of its financial resources of the SMR project, it is not our desire
software modules. to create a new intermediate representation. For at least

these reasons, the choice of the intermediate representa-
4. Methods Definition tion must leverage mainstream commercial Computer

Aided Systems or Software Engineering (CASSE) tools.

Figure 3 depicts a highly simplified view of a re-engi-
neering example based on the SMR problem. At this level, 4.1. Software Understanding
reengineering seems deceptively simple. It seems as In order to achieve the maximum "return on invest-
though it should be possible to write computer programs ment" from the existing system, there are a number of
that can understand the existing F-18 Operational Flight things we wish to abstract from the existing software.
Program(s), which are written in a mixture of CMS-2 and Among them are:
AYK-14 assembly language, and generate some interme-
diate representation. From this intermediate representation - Data items.
one could then forward engineer to Ada source code. - Subroutines.
However, very few, if any, high-level design decisions can - Data reference patterns.
be captured by examining existing source code. It seems Processes.
that this is true, independent of the implementation lan-
guage. One of the first tasks in understanding the existing sys-

tem is to identify what the major data items are; that is,
what are the major variables. Initially, it is only important
to discover the names of the variables and their relative

size. At a later time-when more is understood about how
the variables are used --decisions can be made as how to
represent them in Ada; that is, what type to use.

Another task is to identify the subroutines that exist in
the current implementation.

With these two pieces of information, an important
ingredient is to identify what the reference patterns of sub-

1I35

I

routines to data items are. The importance of this type of oriented concepts, there seems to be a need to move I
information has been cited several times in the literature towards knowledge-based representations. One the key
[4, 12], and appears to be important regardless of source ingredients in iepiresentation is flexibility.
and target language choices. This information is important
for at least two reasons. 4.3. Inter-Language Translation Issues

First, from the point of view of constructing an "object- One of the principle arguments against inter-language
based," or "object-oriented" design' it is important to translation approaches is that they do not take advantage

understand what subroutines use what data and what kind of the power of the target language. Because the target lan-

of use it is (i.e., read or write). This will promote a modu- guage is Ada. the features discussed in the following para-
lar design approach based on information hiding [14] con- graphs possess the "power" that the SMR design recovery

cepts, rather than functional decomposition. approach will take advantage of:

The second, more detailed, tidbit of understanding this Packages are one of the most powerful features of the
enables has to do with how the subroutines use the data Ada language, because they enforce many of the software
structures. It is hypothesized that this type of understand- engineering principles cited in section 1.3. Examples of
ing will support the selection of types (e.g., records, the principles packages directly support are: modularity,
arrays), and perhaps some representation issues (e.g., information hiding, and standard interfaces.
memory layout) as well. Use of packages coupled with the use of strong typing

Another piece of information which is important to will increase the reliability and readability of the opera-
know in order to understand is the existence of "pro- tional software. In particular, private and limited private
cesses." Many systems, both real-time and non real-time, types will be key to the SMR design recovery approach. I
are measuring physical parameters. Examples of this occur Effective use of these Ada features will facilitate data
when the software is implementing things like differential independence and localization of information about the
equations, integrals, or kalman filters. These types of implementation technology. Since implementation tech-

mathematically oriented applications have time-depen- nology is changing rapidly, localization of information
dent, cyclic behaviors that are extremely important to rec- pertaining to the current implementation technology will

ognize in order to more fully understand the existing be a key factor in adhering to the continuous change prop-

software. erty.

There may be several other more hardware oriented Ada tasks are also an important feature since they allow
pieces of information that need to be recognized in order the expression of concurrency. Concurrency in real-time

to create a more robust approach to software understand- systems has been a major source of concern over the past

ing. An example of this is addresses that correspond to few years. The SMR design recovery approach will utilize
memory-mapped I/O. The approach used for software Ada tasking and rate monotonic analysis concepts in order

understanding will need to remain flexible enough to to facilitate recovery of the concurrent aspects of the exist- I
incorporate these pieces of information. ing design.
4.2. Current Design Representation Issues Finally, if the new software is expected to be reused in

other applications, Ada generics may be an important fea-

One of the more difficult choices is how to represent ture to utilize. Some recent work has cited generics as
the information extracted from the current state. As indi- being key to reusable Ada software.
cated in Figure 3, the information could be represented as
entity-relationship diagrams, abstract syntax trees, data 4.4. New Analysis and Design Model Usage

flow diagrams, and so forth. When performing a transformation from a source foru

Many different approaches to the intermediate repre- to some target form, it is important to understand both

sentation have been tried [10,111. As we move to represen- forms. Sections 4.1 and 4.2 dealt with the definition of the I
tations that attempt to capture more of the semantic source. This section deals with the definition of the target
content of the existing state; for example, problem domain form.

It is important to remember that in addition to support- I
ing the reengineering and migration of the F/A-18 soft-

I. It is no(our desire to debate the merits of object-based vers.us object- ware from CMS-2M/AYK-14 assembly to Ada upgrading
oriented design. The purpose of this phrase is to let the reader know the documentation to DoD-STD-2167A is also desirable.that we understand that there is a subtle difference between 1he two,

and that Ada 83 is more object-based than it is object-oriented.

I
1.86

I

Fortunately, substantial work has already been done in this because of the inherent Ada structure graph qualities that
area. the target software programming language.

Analysis and design methods and notations have been
in existence for many years. Within the last ten years or so, 5. Tool Selection and Creation
many CASE tools have emerged to assist in the implemen- As with any other software system, the SMR project
tation of these methods and creation of the associated needs computer models for supporting the defined process
notations. There are a number of SEE efforts that are try- and methods. Through software tools, the computer mod-ing to create integrated collections of these tools. els provide the semi-automated means for assisting the

A prime example of these efforts is the F-22 SEE. user through the defined process. The following sub-sec-
Although its definition may not be entirely complete, sev- tions provide a high-level description of the F/A-18 SEE
eral leading CASE tools focusing on analysis and design and SMR's relationship with it, describe the process for
are a part of that SEE. Examples include: Ascent Logic's tool selection, identify the additional software necessary,
RDD-100; l-Logix' Statemate; Cadre's Teamwork; IDE's and present the SMR toolset solution.
Software through Pictures; and SES/Workbench.

Personnel from the SMR project have investigated each 5.1. F/A-18 Software Engineering Environment

of these tools, either through previous experience or The F/A-1g Software Engineering Environment (SEE)
through current work at their respective organizations. contains a collection of software engineering tools for sys-
Because of customer preferences, and the desire to reengi- tem analysis and design, software analysis and design,
neer the existing software to an Ada-based design repre- code development, compiling, debugging, configuration
sentation, we have decided to concentrate on Cadre's management, documentation, requirements traceability,
Teamwork/Ada product. and project management. The F/A-18 SEE provides the

Each CASE tool implementation is trying to support foundation for future F/A-18 new software development.S the automation of one (or more) technical methodologies. While being comprehensive for forward engineering (i.e.,

For example, there are different versions of Cadre's Team- systems analysis through code generation and testing), the
work. Teamwork/SART supports the Hatley/Pirbhai meth- SEE lacks reverse engineering for information capture of

odology [19], Teamwork/OOA supports for Object- existing applications.
Oriented Analysis [20], and Teamwork/Ada supports the The SMR project solves the reverse engineering
Buhr notation [21]. There is also a version of Teamwork dilemma by integrating the SMR toolset to the F/A-18
that supports the ADARTS methodology [81, which basi- SEE. SMR provides the reverse engineering and design re-
cally integrates concepts from Hatley/Pirbhai and Buhr engineering capabilities for existing CMS-2/AYK-14
(unfortunately we have been unable to evaluate this prod- assembly based applications. The solution interfaces the
uct). SMR design representation to the SEE equivalent, Cadre

Each methodology has a preferred style of representing Teamwork/Ada. Cadre Teamwork/Ada is a design level

information about requirements, design, or both. The software tool represented with an Ada structure graph

methodology usually specifies a number of graphical sym- notation. Te SMR toolset provides a natural enhancement

bols, the problem domain concept that the symbol stands to the F/A-18 SEE.

for, what other information may be associated with each As seen in figure 4, the F/A-18 SEE provides a refer-
symbol, relationships among symbols, and rules for con- ence model defining a foundational platform for presenta-
structing representations that contain many symbols. tion, process, control and data elements. The platform

For example, the Hatley/Pirbhai methodology uses data allows software tools to be configured and integrated

and control flow diagrams as the primary representations, within the SEE. The SMR toolset fills another slot in the

and includes state transition diagrams. ShlaerfMellor uses reference model.

a form of entity-relationship diagrams, supported by data
and control flow diagrams.

The goal for SMR is to perform design recovery back
to one of these representations. It may be possible to
recover to several of these representations; however, due
to funding limitations, the project team decided upon one
option, the Buhr notation. This notation was chosen

1897

I. . . i II

I
4. Generate first-pass liller criteria - basic SMR scope

level including programnming languages (i.e. CMS-2
Data Integration or Ada), reverse engineering, design viewing, design

ToolsControl Integration re-engineering, and forward engineering,
5. Perform more in-depth technical evaluation - hands- i

on usage, in-depth discussions with vendor's techni-
cal department, collaborative discussions,

V Prowess Itntegration J6. Generate second-pass filter criteria - interfaces to
Presentation Integration I other tools, tool scalability, platform and environ-

ment, collaboration openness, industry standards
conformity, and

7. Propose tool(s) for SMR solution.

After the first two steps, it was apparent that much
research and development in the software migration and

Platform Integration Platform Integration re-engineering field has resulted in many supportive soft-
_ ware tools. In ay event, 87 software tools were identified

that conceptually relate to the SMR project. Further inves-Figure 4. SEE Reference Model tigation showed many of these tools aid in migrating and

5.2. Investigation of COTS Tools [28] re-engineering software written in FORTRAN, COBOL,
C, and Pascal to other languages. A few CMS-2 to Ada

Software engineering tools provide an expanding vari- translators exist, but none are capable of handling the

ety of capabilities for automating manual software engi- assembly language portions of the system.
neering process and methods. These software tools have After steps three and four, 29 tools did not require fur-
evolved from prototypes to powerful, fully supported ther evaluation due to the vendor's market focus (i.e.,
commercial tools for small and large scale development.In MVS/Cobol business application market). Another 40
addition, tool vendors have modified their attitudes from tools were marked for contingency evaluation, such as a
single point solutions to integrated toolsets. Commercial broadening in SMR scope or necessity for acquiring addi-
tools are increasingly addressing previous gaps in cover- tional technical approach and knowledge. A group of 18
age, especially those in program understanding and tools or toolsets were nominated for further evaluation.
reverse engineering. The following is a listing of those tools nominated for

Collectively, over a hundred software companies pro- more in-depth technical evaluation:
duce hundreds of various software tools that relate to most Advanced Systems Technology Corp. - Astec's 2167A
of the SMR domain. A rigorous evaluation of currently Tool Set is an extension to the CaMERA's semantic data- i
available software tools is therefore required to identify base repository capabilities for producing DOD-STD-

those most applicable and effective for the SMR project. 2167A documentation.
In addition, the evaluation survey assesses the current Ac
technology state, uncovers emerging standards, and pro- Ascent Logic Ascent Logic's RDD-t00 tool provides
vides proper information for proposing the solution. full requirements analysis and traceability, behavioral

In order to decrease the amount of evaluation time and modeling and simulation, and component allocation.
increase evaluation efficiency, the SMR project defined an CACI - CACI's GenEleC generates complete reusable
evaluation survey process: Ada packages from CASE component specification via

1. Collect vendor/tool prospects - sources include in- data element specifications.

house knowledge, trade magazines, marketing Cadre - Cadre's CASE tools contain the Teamwork
advertisements, STSC list, Ada Letters, and CASE series, providing graphical representation of software sys-
Product Guide, tems for analysis, design, and code generation. Cadre pro-

2. Contact vendors - this step obtains the technical motes the CDIF data repository protocol which allows
information needed for product evaluation, interfacing to other CDIF compliant software tools.

3. Evaluate product information (first phase) - first Carleton University - TimeBench is a CAD tool for the

phase evaluation provides SMR relevancy informa- design of real-time systems and supports an extended ver-

tion in order to down-select, sion of Buhr's "MachineCharts" diagramming notation.

188

I

DDC-I - DDC-I provides a CASE tool box for software
development life-cycle support from requirements defini- Naval Surface Warfare Center - The NSWC has On-
tion to maintenance. Line Tools (Ol.Tools), a collection of report generation

utilities for program designs involving ('MS-2 source
Hewlett-Packard - liP's SoflBench3.0 framework is a files, Target System Files, and AEGIS SYSBILD/7 specifi-

tool integration platform which combines SoftBench pro- cation files, amongst others.
gram construction tools, encapsulated (hird-party develop-
ment tools, and one's own custom development tools. Oregon State University (OSU) - OSU has a parser as a

fronit-end to a compiler for CMS-2 and AYK- 14 assembler
Hill AFB Software Technology Support Center - The code.

STSC has the JOVIAL Re-engineering Tool Set (IRETS),
which automatically analyzes JOVIAL source code and Purdue University - The Purdue Compiler-Construction
extracts design information. Tool Set (PCCTS) provides a set of tools for constructing

compilers and code-to-code translators.
i-Logix - i-Logix 's CASE tool, Statemate, is a systems

engineering tool permitting the graphic modeling and the Quantasm Corp. - Quantasm has the ASMFiow Profes-
design of complex, reactive systems. sional, an assembly language flow charting and source

Interactive Development Environments (IDE) - IDE's code analysis tool for the IBM PC.

CASE tools include Software through Pictures (StP), pro- Reasoning Systems - Reasoning Systems supports and
viding graphical representation of software systems for licenses two customizable software and maintenance and
analysis and design. Integrated with IDE's Ada Develop- re-engineering tools, Software Refinery and REFINE.
ment Environment. the user can generate Ada code. Software Refinery allows for building automated software

processing tools, while REFINE provides source codeMcCabe & Associates - McCabe has the Battlemap analysis and re-engineering.

Analysis Tool (BAT), a software reverse engineering and

maintenance tool which analyzes system level source code Performing steps five and six allowed die SMR project
and calculates McCabe complexity metrics, team to concentrate on three tools: Cadre Teamwork/Ada,

MCC DESIRE, and OSU parser. In addition to these tools,Mark V Systems - Mark V Systems' CASE tools other tool finalists include IDE Software through Pictures

include ObjectMaker and Adagen. ObjectMaker is a user- and Reasoning Systems Software Refinery.

tailorable CASE workbench, while Adagen provides the

Ada 00 component with Ada code generation. 5.3. The Integrated Toolset

MCC - Previous consortial research at MCC generated Although COTS tools were selected for the SMR
design information recovery (DESIRE) technology. toolset, they do not provide a 100% solution to the process
DESIRE contains software for scanning and parsing pro- definition. In addition, the tools are not currently compati-
gramming languages, intermediate object base representa- ble and need to be integrated together. The SMR project
tion, graphical entity relationship modeling, design intends to leverage previous research on software engi-
viewing, and object-oriented design representations.

Forward Engineering

SMR Toolset CASE Tool
Recovered Design Design

Information Design

Understanding Re-elfineenng
Tool

Intermediate Representation Intermediate Dat CDIF
Generation Tool Represeutation Transmission Compliant
Lagr Kepository Tool Interface

JNew Software r_7 COTS Tools Standards Protocol

Figure 5. Integrated SMR Toolset

189

neering processes and methodologies with the three COTS solution. This integrated solution creates a mechanism to
tools to provide an integrated toolset. capture and take advantage of pre-existing engineering

The SMR toolset, illustrated in Figure 5, integrates cur- awareness and domain expertise for the current version of

rently available software and COTS tools with project the avionics software. Automating the capture of this

developed software. The developed software includes information provides the means for an increase in effi-

intermediate representation generation, recovered design ciency in migrating future avionics software.

information understanding, design re-engineering (includ- In addition, the SMR project advances research in the
ing object clustering), intermediate representation to software migration and re-engineering domain. Since
CASE tool transmission, and interactive graphical user much legacy code is assembly based, these legacy system
interface software. owners and maintainers gain an automated means for cap-

Since the OSU parser is a front-end to a compiler, the turing program knowledge. Interfacing the design infor- I
software does not have capability for stand-alone execu- mation recovery with forward engineering offers a method
tion. Therefore, the parser will be integrated with Interme- for migrating legacy software to modern and future ian-

diate Representation Generation Tool software that loads guages.
the recovered information into the Intermediate Represen-
tation Repository (IRR). The IRR represents the recovered 7. References
information in an object base format and organized to
reflect the lexical structure of the program source [291. I. Joint Logistics Commanders, Joint Policy Coordination

Group on Computer Resources Management. First Software
For information retrieval, the SMR project creates and Reengineering Workshop, Santa Barbara I. "Back to the

exercises a Recovered Design Information Understanding Future Through Reengineering," 21 September - 25 Sep- I
Tool, software for understanding the recovered design tember 1992.
information. This tool interprets the IRR and then gener- 2. Feiler, P.H., Reengineering: An Engineering Problem

ates graphical views and slices for program and design (CMU/SEI-93-SR-5). Pittsburgh, PA.: Software Engineer- I
understanding. i ing Institute, Carnegie Mellon University, July 1993.

Since the recovered information will not be conducive 3. Department of Defense, Reengineering Economics Hand-
to object-oriented or Ada design notations, the SMR book (MIL-STD-REH), Draft. March 1, 1993 (appears as an

project provides a Design Re-engineering Tool. This tool, addendum to reference 1).
in conjunction with the understanding tool, provides a 4. Wilde, N., Understanding Program Dependencies (SEI-
semi-automated method for clustering recovered informa- CM-26). Pittsburgh, PA.: Software Engineering Institute,

tion into the appropriate design notation. For example, the Carnegie Mellon University, August 1990.
user would have the ability to select variables or program
modules and associate them as objects. In addition, this . Mettala, E. and Graham, M.H. (editors), The Domain-Spe-9)tool would permit a functional re-design of the recovered ciftic Software Architecture Program (CMU/SEI-92-SR -9). I
information. Pittsburgh, PA.: Software Engineering Institute, Carnegie

Mellon University, June 1992.
The last tool developed for the SMR project is a Data 6. Chikofsky, E.J., and Cross II, J.H., "Reverse Engineering

Transmission Tool, software that interprets the intermedi- and Design Recovery: A Taxonomy," IEEE Software, Janu-
ate representation repository and exports data to CASE ary. 1990, pp. 13-17.
tool via a CDIF interface protocol. The CASE tool pro-
vides code generation as a part of the F/A-18 SEE and is 7. Harrison, W., Magel, K., Kluczny, R., and DeKock, A.,

compliant with CDIF. "Applying Software Complexity Metrics to Program Main-
tenane," IEEE Software, September 1982, pp. 65-79.The SMR toolset is exercised through a highly interac-

Thieerisdthrouheahi8. Gomaa. Hassan. Software Design Methods for Concurrent
tive graphical user interface (GUI). The X-window system and Real-Thne Systems, Addison Wesley, 1993.
and Motif graphical widget set's inherent object capabili-
ties enriches the human interaction with the toolset. 9. National Research Council, Computer Science and Technol-

ogy Board. Scaling Up. A Research Agenda for Software

6. Conclusion Engineering. National Academy Press. Washington, D.C.. I
1989.

The SMR Pilot Project contributes many benefits to the 10. Biggerstaff. T.J., Hoskins, J., and Webster, D., DESIRE: A

F/A-18 community and in the software engineering System for Design Recovery. Microelectronics and Com- I
domain. By integrating the SMR toolset into the FIA-18 purer Technology Corporation (MCC), Software Technol-
SEE, the software development branch receives a cohesive

190

I

ogy Prolam, MCC Technical Report STP-081-89, April 25. IEEE POSIX, Draft Standardfor Information 7Tchnol••y-

1989. Standardized Application Environment Profile-POSIX

11. Pettengill, R.C., DOOD:- DESIRE Objeci-Oriented Design, Real-time Application Support (AEP). P1003.13/1)5, Insti-

La.ttenguage I.n.,dendeSt Object-Oriented Design , Utute of Electrical and Electronic Engineers (IEEE), FebruaryLanguage Independent Object-Oriented Design Using 1992.

GERM Views. MCC Software Technology Program. MCC

Technical Report STP-193-90, September 19, 1993. 26. Meyers, C.B., Interface Requirements for Real-Time Dis-
tributed Systems Communications (SEI).Working Paper.

12. Hutchens, D.H, Basili, V.R., "System Structure Analysis: Versiot 5.0, Septembe i 7, 1993.

Clustering with Data Bindings," IEEE Transactions on Soft-

ware Engineering, Vol. 11. No. 8, August 1985, pp. 749- 27. Juttlestad, D.P., Operational Concept Document for the

757. Next Generation Computer Resources (NGCR) Operating

13. Coguen, J.A., "Reusing and Interconnecting Software Com- Sys:?m Interface Baseline, Naval Underwater Systems Cen-

ponents," IEEE Computer, February 1986, pp. 16-28. ter (NUSC) Technical Document 6998, 1 April 1991.

28. Mackey, S.R., Mitbander. B., Meredith, L.M., Software1.4. Parnas, D.L., "On the Criteria to be Us'.d in Decomposing Migration and Re-engineering, An Evaluation Survey of

Systems into Modules," Communications of the ACM, Vol. Pro and Tools, Tnical rep AN
15,1972.Processes, Methods. and Tools, Technical Report ASN-

15, 1972. SMR-119-93(P), Microelectronics and Computer Technol-

15. Locke, C.D., Vogel, D.R., Lucas, L., and Goodenough, J.B., ogy Corpoi-o6n, November 4, 1993

Generic Av~onics Software Specification (CMU/SEI-90-TR- 29. Pettengill, R. C, The DESIRE 2 Intermediate Data Base,
8). Pittsburgh, PA.: Software Engineering Institute, Can- 2.PteglR ,TeDSR nemdaeDt ae

Technical Report STP-MT-450-91(P), Microelectronics and
egie Mellon University, December 1990. Computer Technology Corporation, December 31, 1991

16. Sha, L. and Goodenough, l.B., Real-Time Scheduling The-

ory and Ada (CMUISEI-89-TR-14). Pittsburgh, PA.: Soft-

ware Engineering Institute, Carnegie Mellon University,

April 1989.

17. Sha, L. and Sathaye, S.S, Distributed Real-Time System

Design: Theoretical Concepts and Applications (CMU/SEI-

93-TR-2). Pittsburgh, PA.: Software Engineering Institute,

Carnegie Mellon University, March 1993.

18. Ada 9X Project Report (Draft), Volumes I and II, March

1992, Intermetrics, Inc.

19. Hatley, D.J. and Pirbhai, I.A. Strategies for Real-Time Sys-

tem Specification. Dorset House, New York, NY, 1987.

20. Shler, S. and Mellor, S.J. Object Lifecycles: Modeling the

World in States. Yourdon Press Computing Series, Engle-

wood Cliffs, NJ, 1992.

21. Buhr, R1..A. System Design with Ada. Prentice-Hall, Engle-

wood Cliffs, NJ, 1984.

22. IEEE POSIX, Draft Standard for Information Technology-

Portable Operating System Interface (POSIX)-The Open

Systems Environment. P1003.0/D16, Institute of Electrical

and Electronic Engineers (IEEE). August 1993.

23. IEEE POSIX, Draft Standard for Information Technology-

Portable Operating System Interface (POSIX)-Part 1: Sys-

tem Application Interface (API) Amendment 1: Real-time

Extensions. P1003.4/DI4, Institute of Electrical and Elec-

tronic Engineers (IEEE), May 1993.

24. IEEE POSIX, Draft Standard for Information Technology-

POSIX Ada Language Interfaces-Part 2: Binding for Real-

time Extensions, P1003.20/D2, Institute of Electrical and

Electronic Engineers (IEEE), April 1993.

191

Reverse Engineering Complex Databases
to Support Data Fusion

R. D. Sernmel' and R. P. Winkler'

The Johns Hopkins University 2 U. S. Army Research Laboratory
Applied Physics Laboratory Adelphi, MD 20783
Laurel, MD 20723 winlder@adelphi-assb01.army.mil
rds@aplcomm.jhuapl.edu

Abstract databases. In particular, users must be aware of logical-level I
query languages as well as underlyu.g logical structures

Large information systems often require the fusion of and fusion links. For complex systems, queries may be
multiple databases to achieve desired functionality. In this elaborate, and may take many hours (and iterations) to
paper, we focus on how automated query formulation write. Query formulation problems are exacerbated when
capabilities may be realized over a set of fused databases. the participating databases are large, and multiple logical
Reverse engineering issues related to database design and models are employed. Yet, by using reverse-engineered I
fusion are discussed, and a query formulation and design conceptual schemas, it is possible to abstract user interaction
system known as QUICK is described. A case study is from the logical level to the conceptual level. Furthermore,
presented in which the logical schemas for two independent with appropriate meta-level abstractions, the need for
U. S. Army databases are reverse engineered into conceptual conceptual-level knowledge can be significantly reduced.
schemas that are subsequently used for data fusion and
automatic query generation. In addition, enhanced methods In this paper, we focus on how queries can be
that employ meta-level conceptual constructs to support automatically generated from high-level requests posed over I
reverse engineering, data fusion, and query formulation are a set of fused databases. In the next section, a system
described. known as QUICK (for "QUICK is a Universal Interface

with Conceptual Knowledge") is described. QUICK I
supports database reverse engineering and automated query

1. Introduction formulation by modeling global logical schemas at the
conceptual level. In Section 3, reverse engineering issues

In the course of reengineering a large information system, are discussed and the implications of data fusion are
it is often necessary to fuse multiple databases to provide considered. In Section 4, relevant portions of two U. S.
desired functionality. From a systems engineering Army databases are described, and corresponding portions
perspective, database fusion should be modeled explicitly of the reverse-engineered conceptual schemas are presented. I
to facilitate information system development and Then, in Section 5, ,pecific data fusion issues regarding
maintenance. As a minimum, database logical schemas the U. S. Army databases are described. Finally, in Section
should be modified to ensure consistency among attributes 6, some enhanmements are proposed to improve the
and to foster interaction among participating databases. In performance 'i QUICK for complex systems reengineering
many cases, however, modification of existing databases and development.
is not feasible (e.g., operational or legal constraints preclude
database design modification). In such cases, participating 2. Query Formulation and Contexts
databases must be associated in a nonintrusive manner.
To a great extent, such association can be accomplished Formulating queries over a complex database is a
by reverse engineering logical schemas into conceptual cognitive activity that requires extensive knowledge of the I
schemas and relating participating databases via appropriate syntax of a database query language and the structure of
meta-level representation constructs. the underlying database. While query language details can

be masked by high-level interfaces, requirements for
Even when database fusion is realized, however, it is knowledge of the structural associations are not so easily

often difficult for users to formulate queries over participating hidden. For example, most graphical user interfaces require I
192 I

that users specify P-plicit navigational paths and join in a reverse engineering environment. In particular,
criteria [4,221. However, for complex databases, there additional EER constructs have been introduced in QUICK
may be many ways to associate data, and only some of that facilitate reverse engineering a conceptual schema from
those ways may be semantically meaningful. In addition, a logical schema.
graphical interfaces become ,"ifficult to use with large
databases that require many screens for representing high- QUICK is able to generate queries efficiently by
level aggregate database objects; in such cases, a user preprocessing an EER conceptual schema into maximal
must navigate among bcreens as well as database objects. acyclic subgraphs of strongly associated objects. These

maximal subgraphs are referred to as contexts [15,16].
An alternative to graphical interfaces is the universal The theory underlying contexts assumes that a single

relation (UR) interface approach [10,12,20]. With a UR database is being modeled. Yet, it is often the case that
ratertace, a user is given the impression that all database information systems are composed from multiple databases.
aributes am represented in a single relation. Thus, querying Thus, the notion of contexts must be extended to take into
requires only the specification of attributes and high-level account possible data fusion requirements. In many cases
constraints, and the interface is responsible for determining (e.g., federated database systems [181), it is not feasible to
semantically reasonable associations and inferring develop a unified global conceptual schema, as the individual
appropriate joins, databases continue to exist and be queried. Thus, context

regeneration over a global schema may not be appropriate.
Several approaches have been developed for developing In such cases, a designer will have to identify explicit

UR interfaces [9,13]. One of the more popular approaches gateways that can be used to fuse the participating databases
is based on the notion of maximal objects [11], where and thus allow global querying. These gateways often can
associations among attributes are inferred based on specified be identified when the participating logical schemas are
functional dependencies. While based on sound principles, reverse engineered into richer conceptual schemas.
there are several problems with the approach. First, it
fails to use the constructs with which a database designer 3. Reverse Engineering from a Logical
is most familiar. Thus, a separate knowledge base is Schema
required that is orthogonal to that used for design. Second,
the exponential behavior of the approach does not scale As information systems incorporate multiple databases,
well as system complexity increases: this is particularly the need for effective data fusion becomes essential.
disturbing in a data fusion environment where the However, fusing databases is fraught with problems relate.
participating databases may be large. Finally, because of to disparate logical models, data redundancy, and potential
its low level of abstraction, the approach does not lend inconsistencies. To facilitate communication among system
itself to reverse engineering, designers, a high-level semantic data model [7] often is

chosen into which logical models are reverse engineered.
A more promising approach to constucting UR interfaces From a database perspective, the EER model is often the

is based on using the knowledge captured in a high-level target model. The EER model is independent of a logical
semantic data model. In the QUICK system, an Extended implementation and supports mappings to a variety of
Entity-Relationship (EER) model is used [3,17,19] for logical models (e.g., relational, network, hierarchical, and
formulating queries. In particular, QUICK segments the object-oriented). Moreover, when the reverse-engineered
EER conceptual schema into overlapping subgraphs of conceptual design is completed, it can be enriched with
strongly associated conceptual schema objects, and then additional knowledge (e.g., constraints that can be used for
selects appropriate subgraphs of the EER conceptual schema automated query formulation).
that are mapped to logical-level constructs.

Many techniques have been developed for reverse
By operating at the EER level, QUICK overcomes engineering a logical-level schema into an EER conceptual

many of the limitations that hamper the maximal object schema [2,5,8,141. For example, Batini et al. [1] describe
approach. First, by using EER constructs, conceptual a process for converting a relational database schema that
database design knowledge can be used directly. Second, entails identifying primary relations (i.e., relations with
though certain aspects of behavior may still be exponential, primary keys that do not contain keys of other relations),
analysis of the conceptual schema is performed over weak primary relations (i.e., relations with primary keys
aggregate objects and conceptual-level constraints are applied that contain primary keys of other relations), and secondary
to reduce the time it takes to identify strongly associated relations (i.e., relations with primary keys that are the
sets of objects. Finally, the approach can be used effectively concatenation of primary keys of multiple relations). Once

103

I

the relations are classified, they can be mapped into EER that interaction with the user is needed to refine the request I
objects. For example, primary relations are mapped into before the final query can be generated. However, given
entity types, weak primary relations are mapped into weak the semantics of an optimization relationship type, the
entity types, and secondary relations are mapped into query formulator can infer that such actions would be
relationship types. Then, the designer can make decisions superfluous.
regarding inheritance associations among created EER
objects, and can further customize the design to satisfy QUICK also supports meta-level constructs. For
additional system constraints that may exist. example, a meta-generalization construct is provided that

allows an entity type instance to be a child of multiple
Because of the sparse representation at the logical level, instances of a parent entity type. For example, a parent

the process of reverse engineering from a logical schema instance concerning some type of target may contain I
into a conceptual schema cannot be fully automated. For information uniquely identified by the key attributes
example, heclassification of relations may require renaming TARGET IDENTIFICATION, DATE, and TIME. In turn,
of candidate and foreign keys so that syntactic matching some of those parent instances may be further described by
may be performed. Similarly, without explicit inclusion a child instance that depends only on
dependency constraints, it is not possible to identify TARGET IDENTIFICATION. Note that weak entity types
inheritance lattices. Structural constraints on relationship could not be used in this case because the actual child
types (e.g., cardinality ratio and participation constraints) would have to be considered a parent in the weak entity
can sometimes be inferred, but must often be provided by type association.
the designer. These problems are exacerbated if the logical-
level design is not in an appropriate form (e.g., relations 4. Description of U. S. Army Databases I
should be in at least third normal form), as it is difficult
to infer nontrivial dependencies within an object. The U. S. Army Research Laboratory (ARL) is directing

a program designed to integrate heterogeneous databases so
When multiple databases must be fused, the reverse that high-level requests may be posed by users unfamiliar I

engineering process is further complicated. Issues regarding with the underlying conceptual or logical designs of the
data redundancy and consistency across databases must be participating systems. In the final system, a wide variety
resolved. Furtnermore, decisions must be made regarding of lop,.ý models will be employed (e.g., relational, inverted I
changes to existing databases. In many cases, changes fist, semantic network, and object-oriented). However, for
may be restricted due to operational constraints. In such illustrative purposes, only portions of a relational database
cases, the reverse-engineered model must preserve the and an inverted list database are described below. To I
mapping to the logical level while representing at the further simplify discussion, only basic EER model
conceptual level such logical-level limitations. From an constructs are used.
automated query formulation perspective, this means that
attribute disambiguation must occur across databases as Figure I shows a portion (i.e., approximately 10 percent)
well as within a single database. of the EER conceptual schema for the ARL Flectronic

Intelligence (ARL-ELINT) relational database. To avoid
QUICK provides substantial support for reverse cluttering the diagram, attributes are not shown, though it I

engineering. For example, an optimization relationship should be noted that both entity types and relationship
type has been introduced that enables logical-level types may have attributes. ARL-ELINT is used for gathering
denormalization decisions to be representl, at the conceptual and correlating low-level electronic and imaging intelligence
level. In particular, a long path of EER objects may be information (e.g. tracking a mobile radar unit via
circumvented by a short path that can produce the same characteristics such as pulse width and operating frequency).
result Given a high-level request, the shorter path is used High-level tactical information is not represented. As the
in lieu of the long path if all of the requested attributes are ARL-ELINT logical schema was well-designed, it was
covered. On the other hand, if intermediate objects are straightforward to reverse engineer it into an EFR conceptual
needed, the long path is used. Note that if an optimization schema. The process described in Section 3 was used, and
relationship type were modeled as a basic relationship only minimal changes to the logical schema were necessary U
type, then, syntactically, the conceptual schema would to produce the schema shown in Figure 1.
imply that distinct paths connected two or more entities.
Consequently, given a request involving attributes of the Automating query formulation for ARL-ELINT is
connected entities, a query formulator might consider a straightforward. First, contexts are produced, and then
union of subqueries to be appropriate or it might determine high-level requests are posed. In this particular case, the

I
194 I

EER conceptual schema is acyclic, and there exists only a with relation information, specify a FROM clause, or
single context. Thus, formulating a query entails pruning include natural join criteria).
the leaves of the context (i.e., the conceptual schema
shown in Figure 1) until all leaves cover requested attributes. Upon receiving the request, QUICK identifies the
Then, the resulting subgraph is mapped to a set of relational contexts in which the requested attributes reside. As Figure
schemas, natural joins are inferred, and the final query is 1 contains a single context (i.e., the complete conceptual
produced. schema), QUICK prunes the context of extraneous leaves.

In particular, the following EER objects are pruned: EOB-
E [-$ft Site, Parent-Site, Det ected-Scan -Rate, and ELINT-

Scan-Rate. Note that while attributes are not shown inI01 Figure 1, each leaf in the pruned context covers at least
one requested attribute. After mapping the EER objects in
the pruned context to logical schema objects and determining
a natural join order based on explicit EER associations,
the following sequence of relation schemas is produced:

[I (elint_report,ejint_rf,elintprf,elintpw)

At this point, attributes are qualified with relation and
database information, natural join criteria are inferred, and
the final query is generated:

SELECT
arl_elint..elint prf.prf,
arlelint..elint rf.rf,

I "NFROarl elint..elint w.pw

FROM

c@01 al _elint. .elint-report,
arl elint..elint rf,
arl-elint..elint prf,

D-oft •PW arlelint..elint pwI #WHERE
arl elint..elintreport.elnotid

"ABC123411 AND
E NT arlelint..elintrf.elint_reportdb id =

arl elint..elint report.
elintreportdbid AND

arl elint. .elint prf.
Figure 1. Portion of ARL-ELUT7 database. elint report db id =

arlelint..elint_report.
As an example, suppose that a request were made to elint_reportdbid AND

list the known operating characteristics (i.e., the pulse arl elint..elint pw.elint_reportdb id

repetition frequency [PRF1, the radio frequency [RF1, and arlnelint. .elint report.
the pulse width [PW])ofelectronicdevice ABC1234. Using elint_report dbid

QUICK directly (i.e., without a higher level interface),
this request could be expressed as follows: The query above is more complicated than its

corresponding USQL request. In fact, in complex databases,

Select prf, it is Pot unusual to generate SQL queries that are more
rf, than 100 lines in length from USQL requests that are only
PW a few lines in length. It should also be noted that USQL

Where elnot id - "ABC1234" was not designed for direct use in an interface. Instead, it
was designed to facilitate the construction of higher level

The notation above is referred to as USQL because it interfaces, such as those based on direct manipulation or
resembles SQL, but assumes a universal relation view of natural language. Such interfaces accept requests expressed

the database (i.e., it is not necessary to qualify attributes in a user-friendly form, convert them to USQL, and pass

195

the converted requests to a system such as QUICK for level to the logical level. The revised conceptual schema I
query generation. Significantly, as a result of the capabilities was then provided as input to QUICK, which performed
provided by automated query formulation systems, interface context analysis and generated queries in response to high-
designers can focus on user interaction instead of on stuctural level requests. I
aspects of the underlying databases.

Figure 2 shows a portion of the Military Intelligence
Integrated Data System and Integrated Database
(MIIDS/IDB), which is an inverted file database that
integrates data contained in the Automated Intelligence
File and the Defense Intelligence Order of Battle System.I
While all the systems contain data to support command,
control, and communications, MUIDS/IDB also is used to
support war planning and fighting at multiple levels (i.e., I
national, theater, tactical, and operational levels).

SL
T7he heavy line in Figure 2 corresponds to one of theMI

five (overlapping) contexts that comprise the MHIDS/IDB 0-
EER conceptual schema. Two rules were used to include
EER objects in the context shown. First, any entity type
that can be functionally determined (via N: i and 1: 1 ,W
relationship types) from EQUIPMENT-TYPE and that does
not introduce a cycle at the EER level is included with its (.
associating relationship type. This follows from a theorem
in relational database theory which says that if one relation
functionally determines the attributes in another, then the
two relations can be natural joined in a lossless manner
[21]. Consequently, a strong association is implied and I
context inclusion is justified. Second, the recursive
relationship types are included because their participating
entity types are included. This follows from the fact that Figure 2. Portion of MIIDS/lDB database with one many recursive relationship type relation can be joined in a context shown.
lossless manner with its participating entity type relation,
and thus is strongly associated with that entity type. It was after several queries were generated that the

magnitude of the problems associated with the MIIDS/IDBDue to the violation of various relational design design were revealed. In particular, the formulated queries
guidelines, reverse engineering the conceptual schema of did not correspond to the likely intent of a typical user.
MIIDS/IDB using the techniques described in Section 3 However, when analyzed individually, the rationale for N
was not straightforward. For example, attributes were QUICK's behavior was apparent. Consequently, a decision
inappropriately propagated from entities to relationships, had to be made as to whether the generated set of contexts

thus complicating database updates and violating normal should be discarded in favor of a manually created set orform guidelines based on functional dependency whether further redesign was justified. Upon careful analysis,
specifications [6,21]. In addition, some relationships it became apparent that the EER conceptual schema was
actually represented sets of relationships with variant flawed and should be revised. After several iterations of
primary keys. Thus, entity integrity [6] was violated as revision, the generated queries were deemed reasonable,
there was no standard primary key that did not contain null reionthgnradquiswreemdraoab,uesore wasnome sta dpr r kimplying that the new contexts effectively represented sets
values for some tuple, of strongly associated EER objects.

Because of the problems associated with the logical The iterative process involved in the redesign of
schema, a decision was made by ARL designers to abandon MIIDS/IDB demonstrated that QUICK can play a valuable
the logical schema and to create instead a more idealized role in validating either a new design or a reverse-engineered
conceptual schema. However, to the extent possible, an design. In particular, an EER conceptual schema can be
attempt was made to preserve the mappings from the EER given to QUICK for analysis. Then, typical high-level1

196

requests can be posed, and the generated queries can be echelon,

analyzed. If the queries are deemed inappropriate, then the act ivityname,
conceptual schema is evaluated by designers and modified mobility_status,

accordingly. The process iterates until no more changes equipcode,

are necessary or until the designers feel that no more equip-quantity

changes are justified. In the latter case, the generated Where allegiance = ENEMY And

contexts can be manually modified so that the resultant pr = 50

queries are consistent with the likely intent of typical In turn, the generated query is as follows:
users. In practice, manual context modification has not
been necessary for well-designed EER conceptual schemas. SELECT

miids. .site.sitename,
S. Fusing the U. S. Army Databases miids..unit.unitname,

miuds. .unit.unitrole,

Though logically disjoint, the ARL-ELINT and miids..unit.echelon,
MIIDS/]DB databases are conceptually associated. As a miids. unit. activityname,

result, decision makers would like to pose requests that miids. .unit.mobility_status.
integrate data from the two systems. Achieving the miids..equipment type.equip code,

appropriate level of data fusion between the databases miids. .equipment .equip quantity

straightforward. Specifically, a gateway relationship type FROMmiuds., equipmnent,

was introduced that explicitly linked SITE in MIIDS/IDB miids..unit,
with EOB-SITE in ARL-ELINT. Figure 3 illustrates this miids..site,
relationship, and identifies the explicit natural join arl _elint..eobsite,

specification between the corresponding entity types. Note arlelint..eobcomponent,
that the ELINT-MIIDS-SITE relationship type is virtual arlelint..elint-report,
in the sense that its only purpose is to serve as a gateway arl _elint..elint_prf,
for database fusion. It does not map to a logical-level muids.. equipment type

structure. WHERE
(miids nnit.allegiance

"ENL.-iY" AND

arl _elint..elintprf.prf =

EU4-SSb 50) AND
miuds..equipment.unit_name

Ile miids..unit.unit name AND
,*t..,t•--miids..equipment.unit-role=

A*tL.f 115, G Y MHOS " miids..unit .unit-role AND
miids.,equipment.echelon -

Figure 3. Gateway relationship type between ARL- miids., unit. echelon AND
E dy miids..equipment.,site_name =

miids.,site. sitename AND
arl elint..eobsite.eob site name

With the gateway relationship type in place, contexts miids.,site.site name AND
were regenerated, and queries were formulated in response ar I elint.. eob_component.
to high-level requests. In particular, it became possible to eob site db id =

generate queries that required data fusion between low-level arlelint.. eob site.

electronic intelligence information and high-level tactical eob._site db id AND

information. For example, suppose that a request were arlelint..elint_report.elnotid =

made concerning the last-known activities, mobility status, arlelint..eob-component.elnotid AND

and equipment types and quantities of any known enemy arlelint..elint_prf.

unit associated with an EOB site where a pulse repetition elint_report db id =

fIquency (PRF) of 50 Hz has been detected. In USQL, arl elint..elint-report.freqenc (PR) o 50elint report db id AND
the request could be expressed as follows: mids..equipment.equip_code A

I ~miids. , equipment~ tpequipcd

Select site name, muds. .equipment type.equip code

unitrname, The resultant query is quite a bit more complicated than! unit role,

197I

m

its corresponding USQL request, and demonstrates the When a large number of gateways exist, cycles may be 3
seamless fusion capabilities supported by QUICK. introduced between participating databases. As a result,
Conceptually, the query was formulated by finding the context regeneration may be inappropriate, as context
appropriate subgraphs in each of the corresponding databases inclusion rules involving cycles can change the sets of
(i.e., the pruned conceptual schema of Figure 1 and the strongly associated objects in an individual database. Thus,
pruned context shown in Figure 2), explicitly connecting in the general case, a different approach is needed to associate
the found subgraphs via the gateway relationship type, contexts among databases. One possibility being considered
mapping to the logical level, inferring join criteria, and involves introducing meta-level constructs that enable
generating the final query. As desired, the user did not explicit specification of gateway relationship types, but
have to be concerned with the underlying structures of the that do not affect individual database contexts. A significant
individual systems, and did not have to be aware that advantage to this approach is the savings in processing I
multiple systems were required to respond to the request. time required for context generation. The approach is also

intuitively appealing as it retains the strong associations
6. Enhancing the Approach found within individual databases. However, issues

regarding query disambiguation arising from the multiple
When the information contained in distinct databases is paths among the fused databases must still be resolved.

disjoint or almost disjoint (e.g., as was the case with the
ARL-ELUNT database and the MIIDS/IDB database), the 7. Summary and Conclusions l
process of query generation via explicit data fusion
specification is relatively straightforward. However, in As information systems grow in complexity, the need
cases where a large number of attributes are duplicated or to integrate multiple databases is often required and effective I
where the participating databases may be fused via multiple data fusion becomes essential. In this paper, we have
gateways, alternative approaches must be considered. focused on how retrieving data across databases is

complicated by potential inconsistencies among similar
When a large number of duplicate attributes exist, actions data elements, as well as by the burden placed on users to

must be taken to resolve potentially conflicting information be familiar with the underlying logical schemas of
and to ensure that consistent results will be produced. As participating databases. We also presented a system known
with the UR approach, QUICK does not allow duplicate as QUICK, which has been designed to counteract some of
attributes, and warns designers if such attributes are found the problems discussed.
when multiple database schemas are analyzed. In turn,
designers are given the option of renaming attributes at QUICK facilitates reverse engineering of logical schemas
the conceptual level while retaining duplicate logical-level into knowledge-rich EER conceptual schemas and supports
names. Consequently, high-level requests that specify the automated query formulation. By using an EER model,
appropriate conceptual-level attribute will result in a QUICK is not dependent on a particular logical model, and
semantically reasonable logical-level query. can be used for unified conceptual design. Furthermore,

QUICK's ability to formulate queries efficiently provides
Requiring knowledge of different attribute instances calls a mechanism for validating both new and reverse-engineered

for some sophistication on the part of the user. This conceptual schemas. QUICK's capabilities were U
stems from the fact that it is difficult to infer an appropriate demonstrated with portions of two independent U. S. Army
instance based on, for example, measures of nearness. A databases, and it was shown how logically disjoint, but
promising compromise entails listing the ambiguous conceptually related database systems could be fused and
attributes with brief descriptions so that the user can make queried. In addition, enhanced methods that employ meta-
appropriate selections. However, the approach requires a level conceptual constructs to support reverse engineering,
sophisticated interface that is able to interact intelligently data fusion, and query formulation were discussed.
with users about the meanings of different attributes. A
somewhat simpler approach has been successfully used in Currently, QUICK is being extended to handle additional
the StarView intelligent interface developed by the Space meta-level constructs. For example, consideration is being
Telescope Science Institute [171. StarView lists all attributes given to supporting an abstract generalization type that I
associated with relations, and allows users to select the realizes its existence through the existence of its children.
desired set of attributes. Based on the attributes chosen, Such a capability would allow a designer to specify a set
specific attribute instances are identified. Given this set of of related entity types that share the same relational structure,
instances, QUICK is able to select contexts unambiguously but that correspond to different conceptual entity types.
and generate the final query. Semantic query optimization techniques are also being

I
1 93 I

I

I developed to ensure that the queries generated by QUICK [121 Maier, D., Ullman, J. D., and Vardi, M. Y. 1984.
will execute efficiently. Finally, extended gateway On the Foundations of the Universal Relation Model.

I relationship types are being explored. A CM Transactions on Database Systems 9, 2, 283-
308.

8. References [13] Markowitz, V. M., amd Shoshani. A. 1990.
Abbreviated Query Interpretation in Extended Entity-

[11 Batini, C., Ceri, S., and Navathe, S. B. 1992. Relationship Oriented Databases. In Entity-
Conceptual Database Design: An Entity-Relationship Relationship Approach to Database Design and
Aproach. Benjamin/Cummings, Redwood City, Querying, Lochovsky, F. H., Ed. North-Holland,

CAmstedam, pp. 325-343.

(21 Briand, H., Habrias, H., Hue, J. F., and Simon, Y. [14] Navathe, S. B., and Awong, A. M. 1987. Abstracting
1985. Expert System for Translating an ER Diagram Relational and Hierarchical Data with a Semantic
into Databases. In Proceedings of the Fourth Data ModeL In Proceedings Sixth International
International Conference on the Entity-Relationship Conference on the Entity-r, nship Approach,
Approach, IUn, J., Ed. IEEE Computer Society, March, S., Ed. North-HollannChicago.Chco [15] Semmel, R. D. 1992. QUICK: A System that

[31 Chen, P. P. 1976. The Entity-Relationship Model Uses Conceptual Design Knowledge for Query
-Toward a Unified View of Data. A CM Transactions Formulation. In Proceedings of the Fourth
on Database Systems 1, 1, 9-36. International Conference on Tools with Artificial

Intelligence. IEEE Computer Society Press, Los
[4] Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Alamitos, CA, pp. 214-221.

Embley, D. W. 1990. A Graphical Data Manipulation
Language for an Extended Entity-Relationship Model. [16] Semmel, R. D. 1993. Discovering Context in an
Computer 23, 3, 26-36. Entity-Relationship Conceptual Schema. Journal of

5 DComputer and Software Engineering (in press).I [5] Dunupala, S. R., and Atora, S. K. 1983. Schema
Translation Using the Entity-Relationship Approach. [17] Semmel, R. D., and Silberberg, D. P. 1993. An
In Entity-Relationship Approach to Information Extended Entity-Relationship Model for Automatic
Modeling and Analysis, Chen, P.P., Ed. North- Query Generation. Telematics and Informatics 10,
Holland. 3, 301-317.

[6] Elmasri, R., and Navathe, S. B. 1989. Fundamentals [18] Sheth, A. P., and Larson, J. A. 1990. Federated
of Database Systems. Addison-Wesley, Reading, Database Systems for Managing Distributed,
MA. Heterogeneous, and Autonomous Databases. A CM

Computing Surveys 22, 3, 183-236.
M7] Hull, R., and King, R. 1987. Semantic Database

SModeling: Survey, Applications, and Research Issues. [19] Teory, T. J., Yang, D., and Fry, J. P. 1986. A
A CM Computing Surveys 19, 3, 201-260. Logical Design Methodology for Relational Databases

Using the Extended Entity-Relationship Model. A CM
[8] Johannesson, P., and Kalman, K. 1988. A Method Computing Surveys 18, 2, 197-222.3 for Translating Relational Schemas into Conceptual

Schemas. In Proceedings of the Seventh International [20] Ullman, J. D. 1983. Universal Relation Interfaces
Conference on the Entity-Relationship Approach, for Database Systems. In Proceedings of the IFIP
Batini, C., Ed. North-Holland, pp. 279-294. 9th World Computer Congress, pp. 243-252.

I [9] Korth, H. F., Kuper, G. M., Feigenbaum, J., Van [21] Ullman, J. D. 1988. Principles of Database and
GeOder, A., and Ullman, J. D. 1984. System/U: A Knowledge-Base Systems, Vol. 1. Computer Science
Database System Based on the Universal Relation Press, Rockville, MD.
Assumption. ACM Transactions on Database
Systems 9, 3, 331-347. [22] Zhang, Z., and Mendelzon, A. 0. 1983. A Graphical

Query Language for Entity-Relationship Databases.
[10] Leymann, F. 1989. A Survey of the Universal In Proceedings of the 3rd International Conference

Relation Model. Data & Knowledge Engineering 4, on Entity-Relationship Approach, pp. 441-448.
4,305-320.

[11] Maier, D.,andUllman, J.D. 1983. Maximal Objects
and the Semantics of Universal Relation Databases.
A CM Transactions on Database Systems 8, 1, 1-14.

I 199

I

VHDL Board-Level Modeling to Expedite Redesign

L.J. Ceder
Naval Research Laboratory, Washington, DC 20375-5320

Charles Rogers, Louie Kitcoff, James Michaud, R
David Broadhead, Lindsay Skidmore

Naval Air Warfare Center - Aircraft Division (NAWC - AD)
Indianapolis, IN

John Miles, Gary Hout, Ed Woods, Darin York
Naval Surface Warfare Center (NSWC), Crane, IN 47522I

Peter Everitt
CACI, Inc. - Federal

Advanced Manufacturing Technologies I
222 W. Coleman Blvd.

Mt. Pleasant, SC 29464 1
Obsolescence of electronic components in military Objectives

systems is becoming one of the most expensive problems
of the Department of Defense (DoD), costing millions of The DoD has set as its goals the movement from
dollars a year in component reengineering, special orders, physical inventory to design-to-shelf products. The
volume buys when only single products ame required, ad concept of design-to-shelf is that new technology
re-design costs. For this reason, the need for new innovation can be deveoped and prototyped and then held
techniques to reduce the maintenance cost of older systems in a low or pre-production state until the need is
is especially important as funding is reduced and weapon established. The availability of programmable logic
system life cycles are increased. The Standard Hadwam components, such as Programmable Array Logics (PALs),
Acquisition and Reliability Program (SHARP) and the Programmable Logic Arrays (PLAs) and Field
Flexible Computer Integrated Manufacturing (FCIM) Programable Gate Arrays (FPGAs), provides an attractive
program office put together the Technology Independent vehicle to implement this methodology. If a standard
Representation of Electronic Products (TIREP) program to module based on this technology were available, I
address these problems. The main purpose of the TIREP inventories would only require a small number of different
program is to develop and demonstrate a method to part types, which would be personalized for specific
recreate an equivalent physical manifestation of an functions as needed. Also, commercially available
electronic circuit assembly from a digital functional standard components which provide equivalent
behavioral description such as the Very High Speed functionality could be procured at a fraction of the cost of
Integrated Circuit (VHSIC) Hardware Description special component buys. The saving would be both
Language (VHDL). economical and compress the time to customer for

delivery of electronics. This concept would have obvious
In this paper we will describe the efforts of the TIREP life cycle cost advantages.

program in recreating form-fit, electronic equivalents of l
several Standard Electronic Modules (SEMs). Through Modeling the subsystem using VHDL, we can develop
this effort we intend to develop a methodology for a technology independent, functional representation of it.
redesigning obsolete components and subsystems quickly From this model, we can then synthesize a functionally
and cost effectively, using VHDL and related standards. equivalent circuit that is "plug compatible" with the rest

of the system, using whatever technology is currently
Ms. Ceder's work was supported by Dr. lngham Mack. Office of available. If a programmable logic device (PLD) is to be
Naval Rmarch
The work of peroael from NSWC and NAWC was funded by Dave used, the VHDL model can even generate the bit-stream to
Fisher, SHARP Program office. program the PLI).

I
200

I

I

other larger format SEMs and commercial format
A major objective of the TIREP Program is the modules.

documentation of the business rules and processes requiredI to share the information between multiple organizations. The TIREP Program emphasizes useability through
While the VHDL standard defines the representation of the the use of industry standards such as VHDL (IEEE Std.
behavioral and structural information, actual 1076), Waveform and Vector Exchange Specification
implementation variation or styles can impede successful (WAVES, IEEE Std. 1029.1), EIA 567 Commercial
use of this standard information. The development of a Component Specification, the VHDL Data Item
UserGuide which specifies the business rules, using and Description (DID, DI-EGDS-80811), and the multi-value
structuring the various information, will be a deliverable logic system interface package (IEEE Std. 1164). If a
of the TIREP Program. This User Guide will assist standard set of rules by which to model the components is
organizations in developing VHDL compliant datasets that not established, the specification is open to a variety of
will be supported through the life cycle of the product. interpretations and implementation techniques. By

definig a standardized modeling approach and testing the
Another important requirement of the TIREP implementation by exchange of the models, these models

Program is the development of a VHDL-to-manufacturing can be used again in the future to synthesize new
interface. The design or storage of VHDL models without components and subsystems.
the ability to efficiently transfer the information to the
manufacturing facility is non-productive. It is essential In order to maintain a technology independent
that the functional definition and the physical constraints representation of the SEM, the models were developed

I can accurately be transferred to the production facility. As along the guidelines of EIA 567. This implementation
part of the development of this interface, the TIREP requires a functional "core" model with electrical,
Program includes the actual production of "format A" physical, and timing characteristics defined in VHDL
Standard Electronic Modules (SEM "A"s). The Rapid packages. These packages are wrapped around the core
Acquisition of Manufactured Parts (RAMP) Printed model and values are passed down from the top "board
Wiring Assembly (PWA) facility at NAWC - AD will be level" as generics. Therefore, the "core" model remains
the primary production site. purely functional and can be used in the synthesis of

subsequent components. The EIA 567 standard packages
There are other objectives defined for the TIREP contain definitions of object types to facilitate assigning

Program that will assist in the development of a DC parametrics and timing information. The logic levels
methodology for the representation and storage of are defined in IEEE Std. 1164, the nine-level logic
technology independent electronic products. These package, and the test bench and test vectors are written in
objectives include: IEEE Std. 1029.1, the WAVES dataset packages.
* Documenting the modeling process

* Recommendations to the Repository of Electronic After the VHDL models were written, they were
Components Designs exchanged among members of the group for review,

* Virtual prototyping of Electronic Designs simulation, and evaluation. This was done to verify the
* Improved representation of timing values and test information was modeled correctly, portability between
vectors different VHDL toolsets was upheld, and to evaluate any

* Dual-use technology transfer differences in the way component modeling was

* Integration and cooperation with other programs such as interpreted or approached. Each model was evaluated
GEM. using a common "measuring stick" which was developed

using criteria required by the DID (DI-EGDS-8081 1) and
Approach EIA 567. Points of discrepancy and misunderstanding

with the models were raised as issues and discussed in
The TIREP Program selected thirteen SEM "A" order to determine the procedure the "standardized" models

modules of medium to high obsolescence. These modules are going to use. This paper will address those issues
were chosen because of the urgency of the need for later.
replacement parts and also for their simplicity. They are
purely digital and range in complexity from 2-input Once the VHDL models are revised to reflect the
NAND gates to basic functional units such as standard methodology by which to model components, the
multiplexers and ALUs. After a methodology for redesign "core" model will be used to synthesize the new
is developed and proved by the manufacture and test of component. This synthesis may result in a new module
these smaller parts, the same procedures can be applied to which implements a one-for-one replacement of the IC's,

3 201

U
if ICs can be found that implement the functionality, A standard convention for VHDL file names and direcwry
timing, and DC parametrics of the obsolete component. structures needed to be established in order to interface I
One of the major problems with redesigning a component with the RAMP Product Data Translation System
into a new technology, however, is matching the timing (RPTS). The following are the VHDL file conventions
constraints. If this is a concern, then the designer may which are recommended for use with the subject databases. I
want to consider a PLA, PLD, or FPGA that can * All VHDL filkG shall reside in the "VHDL" subdirectory
implement the correct timing delays. of a specified job. It is recommended that there be no

additional directory structure under "VHDL", although this
The proof of our efforts in developing a methodology is not prohibited. It has been noted that directory

for redesign of obsolete parts is going to lie in the actual structures can complicate file transfers between computer
production, and then test, of the new parts. Upon systems.
completion of the validation effort, the models will be * There shall be no constraint on the number of files I
provided to the Rapid Acquisition of Manufactured Parts present in the "VHDL" directory.
(RAMP) facility at NAWC, Indianapolis for manufacture. * A VHDL model file shall be named according to the
We have only begun to investigate the design-to- following convention. The <filename> shall be genmd I
manufacture interface. At this point we have provided the by the design engineer and should be consistent with the
RAMP facility with a complete parts list included on the naming conventions for VHDL identifiers. The
new module. In addition to the list of new components, <filename> should not exceed 8 characters in length. The
this includes the frame and connector numbers from the <extension> is a 3 character file extension as defined
old part in order to maintain the same form-fit as the old below.
part. <filename>.<extension>
A summary of this process is shown in figure 1. * All files contained in the "VHDL" directory shall have

one of the following file extensions: I
DESIGN MANUFACTURING PRODU ON S

PACXA

-- -- I

%- I

I

Summary of Design-to-Manufacture Process
for TIREP 3

Figure 1 U
202 U

S. I I It I I

Power and Ground
Extension File Type/Description

.VHD VHDL source tile The represcntation of power and ground is another

.WAV VHDL WAVES source problem we addressed. It was agreed that power and
file. It is not require that ground need to be represented for netlisters and for accurate
this extension be used for documentation of the part. Synthesis tools, however,
WAVES files. It is have different methods of implementing power and
acceptable practice ground. Since one of our goals is the VHDL-to-
to use .VHD for these manufacturing interface, which includes synthesis, we

files. decided not to include power and ground in the
.DAT model specific data file. synthesizable "core" modeL Power and ground may be

Examples of data files implemented in the component model at the discretion of
include the vetor file for bie the design engineer if functionality of the component
WAVES testbench, depends on iL In this case., however, power and ground
component programming file, should still be represented as a structural shell built around
etc. the synthesizable core model. In all other cases, power

.TXT An ASCII text file which and ground should be included as nets on the printed
contains information about circuit assembly (PCA) model and, when appropriate, as
VHDL model, it's use and pins on the PCA connector. Implementation of power
application, and ground in the WAVES testbench has yet to be

* All VHDL model files shall contain only ASCII text. determined and may rely on software development to
* DI-EGDS-80811, paragraph 103 dictates the mxesce of generate test programs from the testbench.
7 or more text files (.TXT extension) which contain
model content information. These files shall be included Decomposition of Component for Modeling

-with all VHDL models. R is manene that these files
be named as follows: The architecture of the "core" VHDL model should be

FILEI.TXT logically modeled as a decomposition of functional
FI.EL2.TXT blocks, in order to maintain technology independence. In
FRLE3.TXT some case, this decomposition may result in an actual
etc. correlation to the decomposition of components on the

board and component level models may be used. The
Issues Encountered During VHDL Model designer, however, is not constrained by component
Evaluations boundaries when developing the modeL

Data Sheet Requirements If, at the discretion of the designer, the component or
subsystem is modeled using a structural architecture that

One of the modeling issues that was adhmssed during breaks down to models of actual, technology dependent,
evaluations of the VHDL models was the way DC physical components, this model must be used to
parametrics and other Mil-Spec Data Sheet requirements establish a baseline against which the redesign will be
are applied to the functional model. We found limitations evaluated. A VHDL model that documents the new design
with the way VHDL can model these requirements, thus must also be developed and should be technology
making it impossible to write a true electronic data sheet independent, whenever possible, to facilitate synthesis
(EDS) for the SEM "A" boards using VHDL. It was into future technologies. When the model of the original
decided that DC parametrics would be captured using the design is used only as a development tool and may not be
EIA 567 electrical view approach. This will provide a representative of the redesigned circuit, it is not necessary
standardized modeling approach which may be used in the that this model be compliant with the DID, DI-EGDS-
development of customized software directed at the 80811. The new, potentially synthesizable VHDL model
generation of DC parametric test and evaluation. Also, in that is developed, that also serves as documentation of the
accordance with EIA 567, voltage and temperature levels redesigned part, should follow all the standards and
out of range will be flagged with assertion statements. guidelines we have listed, including DI-EGDS-80811, as
Other requirements that can't be modeled in VHDL, such closely as possible.
as isolation and output crosstalk, will be documented in
the VHDL software with comments. Each component or subsystem that is modeled in

VHDL should be accompanied by a high level behavorial

203

I
model for future redesign efforts. However, limited * In order to meet the requirements of DI-EGDS-8081 1,
documentation or component complexity may limit the nominal component delay values may be modeled as the i
design engineer's ability to develop high level behavorial average of the minimum and maximum delay values,
models within a reasonable amount of time and effort. when known. In those instances where only the
Therefore, it is decided that development of a high level maximum delay is specified, it will be necessary to
behavorial model should be addressed, by the design generate a recommended approach for determining the
engineer, on a case byc -;e basis. minimum and nominal delays.

Conclusion
Testbenches and Test Vector Sets

TIREP was established to address the costly issue of
Test benches and test vector sets were developed using component obsolescence in military systems. By using I

the WAVES standard. Test benches should be provided industry standards such as VHDL and WAVES in the
with at least two test vector files. The first one should redesign of obsolete components we not only make full
validate a good model that is error free. The second vector use of synthesis tools that are available today, but we also I
file should be seeded with errors to test that the model address problems of future obsolescence. The efforts of
flags the proper assertion statement upon receiving an TIREP in developing a set of business rules and
error and to test for proper functional operation. The processes with which to represent "staltlzdki' I
"erar seeded" vector file should be adequately doutmented behavioral and structural information and develop a design-
with comments to indicate which error conditions it is to-manufacture interface is not complete. VHDL
testing. modeling guidelines are currently in the process of being

developed and documented. With the interfaces that exist
Unresolved Issues between VHDL and PLAs, PLDs, and FPGAs, systems

can be redesigned with greater part redundancy, resulting in
During the evaluation of the VHDL models, several inventories with smaller number of part types. 1

issues were brought up that remain unresolved. Eventually with the shift to programmable logic
* The implementation of power and ground in the components, we may even see component consolidation

WAVES testbench has yet to be deternined and may rely in systems which would not only greatly reduce redesign-
on software development to generate test programs from for-obsolescense costs, but may as well reduce system
the testbench. failure rates as the number of fallible components
* Guidelines must be established to detail the manner in deeases.
which multiple timing constraints on a single pin will be I
handled

III
I
I
I
I

204 I

Using the CIM Software Systems Reengineering
Process Model in Navy Reengineering Efforts

Tamra K. Moore
Defense Information Systems Agency

Joint Interoperability Engineering Organization
Center for Information Management

Arlington VA 22204-2199.

This paper introduces the Center for Information reuse activities. Utilization of common low-level system
Management (CIM) Software Systems Reengineering components minimizes redundancy in the embedded, real-
Process Model [8] and explores its use in planning and time system domain and provides cost-benefits in terms of
implementing Navy reengineering efforts. The Model maintenance and system development. Reuse and domain
provides guidance for reengineering automated analysis programs within various Navy organizations arc
information systems within the Department of Defense addressing these issues. The second concept guiding
(DoD). This Model addresses many issues concerning software reengineering is conformance to new regulations,
large-scale, complex systemswhich impact Navy real-time policies, standards, and guidelines for software acquisition
system modernization efforts. The intended audience for and support. This concept also drives most Navy
the Model is any organization within DoD tasked to modernization efforts today. Such standards include using
reengineer information systems, however, Navy efforts to a common programming language (MIL-STD- 1815A Ada
define a reengineering process model for real-time Programming Language), moving towards open software
embedded systems may find the Model a useful starting systems (FIPS 146-2 Government Open-Systems
point. Interconnection Protocol), and maintaining compliance

with a common operating system interface (FIPS 151-1
Portable Operating System Interface Exchange, POSIX).

Background Guidelines include integrating Commercial Off-the-Shelf
(COTS) products where possible, including Computer-

The purpose of the CIM Software Systems Aided Software Engineering (CASE) tools.
Reenginecring Process Model is to capture the essence of
software reengineering as it applies in the DoD Model Overview
Information Management (IM) community. Two broad
concepts guide software reengineering for DoD IM. The The CIM Software Systems Recenginecring
first concept is the prevention of duplication by joint use Process Model is represented using the IDEF, method [3,
of personnel, information systems, facilities, and services p58]. IDEF0 is used to produce a structured representat ion
across DoD. For the IM community, multiple software of activities or functions and the relationship between
systems often provide similar services which may be those activities. IDEF, models arc composcd ofactivitics
consolidated and reduced to a single system through and interfaces, including inputs, controls, outputs, and
software reengincering. This holistic view of reuse does mechanisms (Fig. I).
not apply to Navy embedded systems for which a
reduction in duplication at the component level drives

I
205I

The Model's context diagram provides a I
CONTROLX* WNWdam Um

gum@ or m ,tftb wframework for reengineering by identifying the interfaces

to external activities (Fig. 2). The names of these
interfaces and their sponsoring activities reflect the

M k Model's intended use in the IM community. Comparable
4f ACTI•r activities constrain and guide the reengineering process for

the Navy. In this paper, the names of these interfaces
oeji*um.,. I~d~t have been modified to facilitate the Model's use in Navy

applications. The original IM names are listed in 3
parenthesis immediately following the modified names for

ME t s.reference when applicable.
p demitf tw or I'wt #

arpom fn~ftInputs

Fig. 1 IDEF Activity Model

The inputs to the reengineering activity include 3
act pivities ar arerewsented g as d b esavn the the New Requirements (Business Requirements), Existing

interfaces are depicted as arrows, entering and leaving the System (Automated Information System), Feasibility
boxes. Inputs enter from the left and outp~uts leave from Analysis Results, and Reusable Assets. The Ncw •I

the right of the box; the activity transforms inputs into ReqyiRements, are opio able Anspeif n ewf
outpts.Conrolsentr a thetopof he bx; hey Requirements are optional and specify new functionality

outputs. Controls enter ad the top of the box; they for the known existing system. The Existing System will
provide direction and constraint. Mechanisms, be reengineered. Feasibility Analysis Results summarize I
representing the means used to perform the activity, enter preliminary s esichl may have been perfre

fro th btto. ctiites ndther elaioshis re otpreliminary studies which may have been performed,
from the bottom. Activities and their relationships are not including a cost/benefit analysis, technical feasibility

related to or limited by time. study, and a risk analysis. Reusable Assets are software i
Software Systems Reengineering Process work products, including source code, documentation,

designs, test data, and specifications. Reuse components
The CIM Software Systems Reengineering for Navy are stored in a DISA-sponsored repository for

Process Model deSc sthe a ities s nrtingt Navy efforts in Washington D.C. supported by
Process Model describes the activities supporting the NAVCOMTELCOM. Reusable assets are also available
development and maintenance of automated information from NUWC, NAVSEA, and FCDSSA, Dam Neck VA.
systems based on the examination and utilization of
existing software system resources. The guidance Controls

provided by the Model for reengineering information I
systems is applicable to Navy reengineering efforts. Two Controls on the reengineering process include the

differences between reengineering automated information DoD Enterprise Model [41; Functional Area Models,

systems and Navy embedded, real-time applications are Regulations, Policy. Standards. and Guidelines- Resourcc

(1) the level of effort spent in each of the reengineering Limitations; Technical Architectures; and Available

activities, and (2) the methodologies and tools supporting Reengineering Technology. Many of these controls 3
these activities. Since the CIM Model does not specify primarily impact automated information systems.

levels of effort nor identify specific methodologies and However, similarguidelines may exist forembedded, real-

tools, this model may be useful in planning the time systems. The DoD Enterprise Model provides the I
reengineering of embedded, real-time applications. The

CI Mde poI dsafawokunwhc high-level vision of the mission area for the reengineeredCIM Model provides a framework upon which system, while Functional Area Models govern the business
information on specific methodologies, tools, and case domain in which this system will operate. For embedded,studies presented during the Systems Reengineering real-time applications functional area models woulddefine

Technology Conference can be integrated.

206 I

the rules governing a class systemls. Regulations, Policy, Available Reengineering Tcchnology identifies proposed
Standards, and Guidelines are the documents containing methodologies and tools available foi rcenginecufflLg The
the principle rules designcd for governing and influencing technology available for reengiulecring automated
decisions and actions during software engineering information system is well-publicized and commcrcially
activities included in recnginecring. Resource Limitations available. For Navy applications, the available
scope the reengineering project by estimating the reengineering technology is often program-specific and
manpower, funding, schedule deadlines, and computer difficult to identify. Naval Sea Systems Command
resources available. These limitations are usually imposed contains a database of available tools for supporting CMS-
on the organization performing the reengineering by an 2 and AN\UYK series computers. Reengineering
external sponsoringorganization. Technical Architectures technology development programs in the Navy, include
describe the computing and communications environment the Engineering of Complex Systems program at NSWC.
in which the Reengineered System must execute. For the Others include China Lake (assembler issues), NUWC
Navy, this control would be synonymous with a (reuse projects), NRaD, SBIRs, NAVSEA, FCDSSA, and
description of the target environment for the system. the Naval Information System Management Center

(NISMC).

I.i M tActt ~~ iI/Z.* fl : wiI.la~ , ALA3CE
1w~LgIM*~ .Y *vpl ~i-i- C I" C ~ "'

Ieej 4 1•It Tir I4 • 1 ~e M.em&habe~~W. lt4j~~ ...

--) F no AModel
Fu AimModibs

'- dvk iAWA dxedos
AIv-T * PsrineiTedvwigy

Fig.f2 Reengii neeriPngC nex Digermn

2 0:ýn w nfra ructure

Fig. 2 Reengineering Context Diagram

207

I

Outputs been developed for specific Navy projects and iden'iyit I

them, their capabilities, and acquiring them tot use oil

The recngineering effort produces Candidate Navy systems other than the ones for which they wcic 3
Reuse Assets, Recommendcd Changes to Controls, and developed can be very difficult. Reenginecring sttl)1)011

the Reengineered System. Candidate Reuse Assets are for Navy embedded real-time systems is primarily a

produced and sent to a reuse certification program. These manual effort, integrated with CASE tools. CMS-2 to 3
assets include design models, system specifications, metric Ada translators include those developed by APL, CCCC,

data, data models, process models, design decisions, and MITRE, and NRaD.

test procedures. Other assets include reengineering 3
strategies, improved . :ntenance procedures, and new Repositories are mechanisms for storing and

business practices. As experience in reengineering retrieving information or reusable assets. Examples of'

increases, the lessons learned will improve the process. Tool Repositories include those maintained by ECS, i
The impact of integrating new technical architectures NAWC-China Lake, SPC, and STSC. Repository-based

during the recngineering activity and adhering to new technology may also be used to store and retrieve

regulations, policy, standards, and guidelines during information generated during reengineering, including I
reengineering may promote new reengineering strategies. system components, Reverse Engineered Products,

The Reengineered System, generated from activities components of the Reengineered System, reports defining

described within the Model, consists of the application Available Reengincering Technology, and Reusable I
software, data, technical infrastructure, and all associated Assets.
documentation.!

The members of the Project Team for IM include

Mechanisms reengineering experts, maintainers, functional personnel,
and the users of the system. For the Navy, the Project

Reengineering is supported by Tools, Team would primarily consist of the maintainers and the

Repositories, the Project Team, Methodologies, and the users of the systems. The Project Team should include

Technical Infrastructure (Computing and Communications experts in the following areas: software/systemn

Infrastructure). Tools are automated mechanisms used to engineering, technical infrastructure, function/mission of'

improve productivity in software reengincering. T!'e the system domain, application softwvare usage, and

types of tools needed for software reengineering include reengineering technology. Matching skills with the 3
project management, restructuring, reverse engineering, activities described in this model insures productivity and

and fornvard engineering tools. Reverse engineering tools minimizes risk. The users of the system should be

include souize code analyzers, design recovery and involved with the Project Team throughout thei3

redoc.umentation tools. Forward engineering tools include reengineering effort. Methodologies are systems of

code generators, requirements analysis, design support principles, procedures, and practiees applied to the

tools, test case generators, and integration support tools. development, operation, reengincering and S1)lX)rt of a 3
The tools available for supporting automated information software system.

systems and Navy embedded systems are very different

due to the programming languages and hardware Methodologies for reenginecring include reverse

platforms upon which these tools operate. The 1h 1 and forward engineering methodologics. These

(lomain has many tools which are commercially available Methodologies support a variety of sof•wvarc ,ngine rino

to support the predominant languages and hardware activities, which should be investigated to minimize

platforms for both development and execution of impact on the sponsoring organization's SEE

alitofnatcd information systems, There are very few Reengineering met',odologies for Navy embedded

commercially available tools Which support reengineering rcal-timc systems are pri,narily informal, project-

Navy embedded, real-time systems. Many tools have dependent, and devised by the prime contractor.

2
208

I

I

I
The Technical Infrastructure is the environment The Objectives may change based on the scope

in which the reengineered system operates. The IM of the reengineering effort. Recommended Changes to

infrastructure is a service utility that provides common Objectives may result from the Available Reengineering
shared computing and communications capabilities, Technology, Resource Limitations, and New
including data bases, common networks, electronic Requirements. Development of concrete measurable
messaging, and computing platforms. For Navy systems, Objectives is an essential step in establishing the
testbed facilities are used to insure that the system will Reengineering Project Plan.I operate when deployed.

The Project Team will identify the configuration

Reengineering Process Activities items which comprise the current System as the Baselined
System. These items include the application software,

Software reengineering is composed of three data, technical infrastructure, and all associated
major activities: Define Project, Reverse Engineer, and documentation. The Baselined System will not undergo
Forward Engineer (Fig. 3). The Model diagrams which any modifications outside the scope of the reengineering
refine these activities are not included in this paper, but project. The activity of identifying the baseline does not

are in the CIM Software Systems Reengineering Process include the analysis of any configuration items, but simply
Model [8]. identifies the system upon which the reengineering

activities will be performed. The Objectives may control
Define Project the identification of the Baselined System by requiring the

reengineering of a specific version or the consolidation of
The Project Team defines the Reengineering multiple versions of the same system.

Project Plan which serves as the controlling document for

the reengineering project. The Project Plan should be The Define Reengineering Project Plan activity is
flexible enough to handle modifications based on results performed in four parts, including Develop Reengineering

I of both the reverse and forward engineering activities. Strategy, Identify Methodologies and Tools, Allocate
Analysis Deliverables from forward engineering may Resources, and Develop Reengineering Project Plan.
provide information about the New Requirements which

impact the Project Plan. Reverse engineering provides a The reengineering strategy identifies

complete understanding of the existing system which may reengineering alternatives for incorporating new
also impact the reengineering effort. Define Project is technology and approaches, and the use of methodologies

composed of the following activities: Define Objectives, and tools. Possible alternatives include restructuring and
Identify Bascline, and Define Reengineering Project Plan. redocumentation. The alternatives are evaluated with

respect to objectives, risks, impacts, and requirements.

The Objectives identify the organizational goals The project strategy drives the identification and
of the reengineering effort, including objectives for using utilization of methodologies and tools for software
the system, supporting the system, and applying reengineering. The strategy also identifies and describes

reengineering technology. The objectives for using the the structure of the products expected from the

system include performance issues and user interface reengineering effort.

requirements. Improvements in the maintenance process
and extending the life expectancy of existing systems are

typical objectives for supporting the system. The
objectives of applying reengineering technology include3 proofs-of-concept, proofs-of-utility, and identification of
risks which might impede the reenginecring process.

l 209

I

_ _ _ _ _ _ _ _ - - ~ I
UI

-C,
JU

'a I
S~I

U

I
I C

21 0I

. , , ,

I
Proposed methodologies and tools are identified The Analyze Documentation activity analyzes

through an analysis of Available Reengineering existing documentation to extract a system specification,
Technology. The proposed methodologies and tools must technical infrastructure capabilities, and system design
integrate into the sponsoring organization's SEE and decisions.
support the activities defined in the project strategy. The
Allocate Resources and Develop Reengineering Project The Analyze Application Software activity
Plan activities may require revisions to the proposed analyzes the existing application software to extract the
methodologies and tools to comply with the controls and software specification, functional requirements, metric

New Requirements. data, data models, process models, and software design
decisions.

The project resources are allocated forperforming

the reengineering project. Project resources include The Analyze Data activity analyzes the existing
personnel, computer resources, tools, and the necessary data to extract data products that are used to define the3 training. These resources must remain within the design model, system specification, functional
constraint of the Resource Limitations. requirements, metric data, data models, and data design

decisions.
A structured plan is developed for accomplishing

the reengineering under the direction of Regulations, The Analyze Technical Infrastructure activity
Policy, Standards, and Guidelines. The plan includes the analyzes the existing technical infrastructure to extract
project strategy, project resources, and selected tools and technical infrastructure products that define its capabilities
methodologies for implementing the reengineering. and related design decisions. A good understanding of
Revisions to the project resources are based on constraints the existing technical infrastructure is imperative, since

from Regulations, Policy, Standards, and Guidelines, or many reengineering efforts integrate new operating
inconsistencies between the project strategy, systems and hardware platforms. The current
methodologies, and tools. infrastructure provides capabilities to the existing system

which must be captured during reverse engineering in
Reverse Engineer order to have a complete understanding of the current

system. These capabilities may still be supported in the
The Project Team analyzes the documentation, Reengineered System.

application software, data, and the technical infrastructure
of the baselined system. This analysis is performed to The Integrate Extracted Products activity

identify the system components and their integrates the information from the extracted products to
interrelationships, and to capture these components in form the Reverse Engineered Products which are forward

representations that provide a better understanding of the engineered. Reverse engineering can be used to identify
system. Reusable Assets should be used to compose these whether any New Requirements are supported in the
representations when possible. Any new representations existing system. Recommended Product Revisions are
of these components should be designed for reuse as generated when an inconsistency is detected between one

Candidate Reuse Assets. Reverse Engineered Products or more of the extracted products. These inconsistencies
must be manageable and usable in the subsequent forward must be reconciled as part of the reverse engineering
engineering activities. Reverse Engineer is composed of process.

the activities called: Analyze Documentation, Analyze
Application Software, Analyze Data, Analyze Technical Forward Engineer3 Infrastructure, and Integrate Extracted Products.

Within the context of reengineering, forward

engineering is the software engineering activities that

3 211

consume the products of reengineering activities the design model, data models, process models, and

(primarily reverse engineering) and reuse, along with new design decisions.

system requirements to produce a target system. Forward 3
Engineering is composed of activities called Analysis, In the Build activity, the Design Components are

Design. Build, Integrate, and Test. used to generate the Build Components. Build Results

confirm that the Build Components have been constructed

Reverse Engineered Products are input to the or request clarification on a design issue that is preventing

Analyze and Design activities. Reusable Assets should be the completion of the Build activity. The Build
used throughout the Forward Engineer activity when Components are the constructed system parts to be
possible. The Reengineering Project Plan; and interfaced during the Integrate activity.
Regulations, Policy, Standards, and Guidelines concerning

application software development guide this activity by In the Integrate activity, any number of Build
defining the structure of the expected components and Components are combined to form Integrated
results. Candidate Reuse Assets may be generated during Components. The Integrate activity insures the interfaces

the Analyze, Design, Build, and Test activities. Each between Build Components are correct and complete. I
activity produces the documentation required by Integration Results confirm that the Build Components
applicable standards, including DoD-STD-2167A, DoD- have been interfaced successfully or request clarification

STD-7935A, and the proposed MIL-STD-SDD. The DoD on an interface or build issue that is preventing the i
Enterprise Model and Function Area Models are completion of the Integrate activity. The Integrated

employed. The life-cycle management is guided by DoD Components are the interfaced Build Components

7920.1 for the Life-cycle Management of Automated representing part or all of the system. I
Information Systems.

In the Test activity, the Integrated Components

In the Analyze activity, the New Requirements are verified using a test plan developed from the i
and the Reverse Engineered Products are analyzed during requirements for testing defined in the Analysis

this activity to generate the Analysis Deliverables. The Deliverables. Every Build Component is tested according

Analysis Deliverables include requirements for the Test to the individual component specification. The Test
activity and a formal specification of the analyzed New Results confirm that the tests were successful and describe

Requirements addressed in the existing system. The the test procedure. The principal products from this 3
principal Analysis Deliverables are the business rules, activity are the tested Reengineered system and the Test

system specifications, design decisions, and test Results.

procedures. IConclusion

In the Design activity, the Analysis Deliverables

and the Reverse Engineered Products conceming Design Ultimately, the process of software reengineering 3
generate the Design Components during this activity, must support the high-level goals of any organization: (1)

Design Components are modules representing a design of eliminating non-essential products and processes; (2)

the system parts to be constructed during the Build increasing the value of those remaining; and (3) increasing

activity, including the required documentation the efficiency through streamlining, simplification and/or
summarizing the results of the design activity. Design automation [9]. Software reengineering technology
Results confirm that the Design Components have been provides a myriad of capabilities which support a variety i
constructed according to specification or they request of software engineering activities.
clarification of an analysis issue needed to complete the

Design activity. The principal Design Components are Future plans are to validate the CIM Software I
Systems Reenginecring Process Model by applying it in

I
212 3

I
software reengineering efforts. Previous efforts served as [6] "Lessons Learned: Re-engineering the Weighted

I the framework for the development of the Model and Airman Promotion System for the CIM
subsequent efforts will prove its effectiveness. The Model Environment," MITRE Corporation, Reston VA, Sept
represents the software reengineering process from the 1992.

I software engineer's viewpoint; additional models currently (7] T. K. Moore, Information Systems Criteria for
under development at CIM which represent software Applying Software Reengineering.Technical Report,
reengineering from alternative viewpoints include software Center for Information Management, Arlington VAU management and acquisition. 22204, Jan 1993.

[8] T. K. Moore, CIM Software Sstems Reengineering
Reengineering emerges as a strategy for bringing Process Model. Version 1.0, Technical Report,

the cost of developing and maintaining software under Center for Information Management, Arlington VA
control. The need for a comprehensive plan to apply 22204, Aug 1993.
reengineering technology is the driving force in the CIM [9] L. Roomets, "Integrating CASE with Business
Software Systems Reengineering Program. The CIM Process Re-Engineering," Proceedings CASE
Software Reengineering Process Model will assist WORLD, Sept 30 - Oct 2, 1992, pD9-l to D9-13.
program managers facing this situation. 110] M. K. Ruhl and M. T. Gunn, "Software

SReengineering: A Case Study and Lessons Learned,"
Acknowledgement NIST Special Publication 500-193, National Institute

of Standards and Technology, Sept 1991.
I The author would like to thank G. Russomano,

C. Wright, J. Smith, and M. Gross of the Center forE Information Management for their contribution to the
development of the CIM Software Systems Reengineering
Process Model.

I References

[1] E. J. Byrne and D. A. Gustafson, "A Software
Reengineering Process Model," Conferengcon
Computer Software and Applications (COMPSAC,
Sep 1992, Chicago, IL.

[2] E. J. Chikofsky and J. H. Cross, "Reverse
Engineering and Design Recovery: A Taxonomy,"
IEEE Software, pp. 13-17, Jan 1990.

(3] Functional Management Process for Implementing
the Information Management Program of the
Department of Defense, DoD 8020.1-M (Draft), Aug

1992.
[4] The DoD Enterprise Model* A White Paper,

February 1993, OASD(C3I)/DDI, 1225 Jefferson
Davis Highway, Suite 910, Arlington VA 22202.

[5] R. L. Hobbs, J.R. Mitchell, and G.E. Racine, Sym3 Re-engineering Project Executive Summar, ASQB-
GI-92-003, Nov 1991.

3 213

I

c0Ua

dc

la41

IK Ora
(Da

o0 1
£ ~:33

< 00
-=- R_

U~ S~a INo

CD,

Z w
U'C

C214

I 7.-
0

a-

-E

a 0

40

ccS U _____

C 6

c' fit In

-~ 0
0 __

C, Ii

- -li~u215

I

Software Reengineering Assessment Handbook I
(MIL-HDBK-SRAH)

John Clark, COMPTEK Federal Systems, Inc.
John Donald, Air Force Cost Analysis Agency

Barry Stevens, COMPTEK Federal Systems, Inc.
Sherry Stukes, Management Consulting & Research, Inc.

February 1994 I

Legacy software is a valuable DoD asset which should be leveraged to the greatest degree possible. There is an
immediate need for DoD guidancefor conducting technical, economic, and management analyses to determine when

reengineering techniques are beneficial to conduct. Such guidance has been developed under the auspices of the
Joint Logistics Command and the U.S. Air Force. This paper introduces the key concepts of the new draft Software
Reengineering Assessment Handbook (MlL-HDBK-SRAH) which defines a process for conducting an effective
technical, economic, and management assessment to determine whether and how to reengineer legacy software.

WInODUCTION programs (or, in the first case above, the single
The decision to reengineer legacy software is based program) is subjected to a technical assessment
on a number of technical, economic, and management process including a set of technical questions Ifactors. Ile new draft Software Reengineering designed to disclose the need to reengineer. The

Assessment Handbook (MIL-HDBK-SRAH) responses to the question set are used to determine
organizes these factors into a decision-making process the need to reengineer and to develop a set of
which is targeted for the following two cases: candidate strategies for that program.

e A single software program needs to be assessed to An economic assessment process is used to determine
determine if, and how, it should be reengineered. the preferred strategies for each program. For each
The SRAH process develops a recommended strategy, comparative total life cycle cost estimates I
reengineering strategy for that program, if warranted, are developed. Parametric cost estimating models
and an estimated return on investment and breakeven may be used to estimate reengineering,
point for that strategy. redevelopment, and continued maintenance/support

costs. Cost risk and parameter sensitivity
* A set of software programs within the organization assessments should be considered.
needs to be assessed to determine which, if any,
should be reengineered and which reengineering A management decision process is used to select the I
strategy(ies) should be used. The SRAH process single recommended strategy for each program and to
develops a recommended strategy for each program, prioritize the list of programs. Selection and
if warranted, and prioritizes the list of programs prioritization are based on the composite results of
based on the need to reengineer, estimated return on the technical and economic assessments and
investment, the estimated breakeven point, and management considerations. Evaluation of the need
management considerations. to reengineer, return on investment, breakeven point,

and management objectives and constraints results in
The SRAH process is depicted in Figure 1 and the recommended course of action.

consists of technical, economic, and management
decision processes. The SRAH process begins with IDENTIFY POTENTIAL PROGRAMS FOR

the identification of programs within the organization REEGINEERING

and the application of a quick screening filter to When evaluating a set of programs within the

remove programs from consideration which are least organization for reengineering, the MIL-HDBK-

likely to show a return on investment through SRAH process begins with listing the potential I
reengineering. The resulting list of candidate programs for reengineering. This list could contain

I
216

I,

Tachnca Assesstmen Economic Assestmet Management Decision-
ALL POTOITIAL PROOMM3

P 477 P- CANDIATE IMN00-T

least~~~ ~~ ton*i any prory whw specie orbmI Ier =E b so EM

Figure 1- MIDSR pro1e-s Proce4k

allethenprograer in sgethed oranzatin betsholt ()I the remavA i ningSour fe Lies leoes orFtha n threiyeas.

legamst f containdaeram which isprcetied to beac o p

I w~~hwch requir oniverstwomaneattreatoug maintain,. be reaingged onThpe litidrd . Eorabhirgaiztio

adPrograms whose rmetainy n iei o ve theolwn reter may Deietdevelopeits P ownscriteri
myear sholmntd be ron the list. o addts .Prga ult rn

I< RENIIJIGQEICONNAR

CR4PROGRAMS FO EZGNEIG h edtV enine svee s ucino h

t Fptobo system A og

I subjectedure to theHB- A ProHBcSAeprcessAquc

all the programs w icghe mee eany then follwiv g e at D) G. DevelopMaient Poecess Ustity

Initial Operational Capability (pOC) or program H. Documentation State

ideployment; I. Impact of System Failure
J. Personnel Factors.

(2) If the annual maintenance budget for software is"less than $250,000 per year or less than two Twenty-five questions are answered for each
imanyers per year; or candidate program. The questions are designed to

disclose the need to reengineer. Figure 2 shows the

5 217

I

I

SYSTEM FACTORS S
Factor A - Size
1. SLOC. How many Source Lines of Code (SLOC) exist in the candidate software?

2-Less than 15K 4-Between 15K and 100K 6-More than 100K I
2. Function Points. How many function points exist in the candidate software?

2-Less than 500 4-500 to 2500 6-More than 2500 II
Factor B - Complexity
3. Average SLOC/CSU. What is the average number of Source Lines of Code per Computer Software

Unit (CSU) in the candidate software?
3-Less than 50 6-500 to 200 9-More than 200 I

4. Average Cyclomatic Complexity. What is the statistical average of the Cyclomatic complexity per
module?

3-Ten or less 6-Between 10 and 20 9-More than 20
5. Average Essential Complexity. What is the statistical average of the Essential complexity per

module?
3-Five or less 6-Between 5 and 10 9-More than 10 3

6. Data Complexity. Which response best characterizes the state of system data?
3-Data is managed by relational database(s) which is/are in at least 3rd Normal Form or an object-
oriented database. The data dictionary is current. Data relationships are clearly documented. A
high degree of data name rationalization exists. I
6-Data is managed by relational database(s) in less than 3rd Normal Form. The data dictionary and
data relationship documentation (such as Entity-Relation diagrams) are mostly current; some catch-
up may be required to support major enhancement. Some cryptic names for relation tables or U
columns exist.
9-Data is managed as flat files. Some data is no longer used by the program, although some effort
would be required to determine which. Usable documentation of data definitions and logical
relationships do not exist.

Factor C - Language
7. 4GL/3GL/Assembler. What is the system's principal language level? I

2-4GL 4-3GL 6-2GLIAssembly Language
8. Number of Languages. How many programming languages does the system use?

2-One 4-Two 6-More than two I
9. Language Portability. Which situation best characterizes the need to change source languages?

2-No need because: An approved HOL is being used, adequate software support tools (compilers,
etc.) exist, and the implementation language permits adequate selection from a number of host
processors.
4-Some need. One of the conditions for answer #1 is not true. There is some resulting motivation
to change languages.
6-Strong need. More than one of the conditions for #1 is not true. Continued software evolution is S
being constrained by the current language.

Factor D - Development Strategy Discipline 3
10. Development Process Followed? The system was created using a development process that was:

2-Rigidly followed 4-Sometimes followed 6-Not followed
11. Change Control Discipline Followed? The change control procedure for the system has been:

2-Strictly enforced 4-Loosely enforced 6-Ad hoc or does not exist

Figure 2 - MIL-IDBK-SRAH Question Set 3
218 1

I

i

Factor E - Quality Trend
12. Number of Errors Trend. Over the last 6 months, has the number of errors:

3-Decreased 6-Leveled off 9-Increased
13. Maintenance Backlog. Does the system have a maintenance backlog?

3-No 6-Yes, but steady or decreasing 9-Yes and increasing
14. Perceived Quality Trend by Customer/User. Do the system's users think the system quality is:

3-Improving 6-Remaining the same 9-Declining

Factor F - System Age
15. Age Since First Release. What is the system's age as measured from the first release?

I-Less than 2 yearm 2-2 to 7 years 3-More than 7 years

Factor G - Level of Maintenance Activity
16. Annual Change Traffic (Past 12 Months). What is the annual change traffic of the system within the

past 12 months?
2-Less than 5% 4-5 to 10% 6-More than 10%

17. Number of Change Releases (Past 5 Years). How many change releases have been released within
the last 5 years or since the last reengineering effort, whichever is lesa?

2-Less than 5 4-5 to 10 6-More than 10

Factor H - Documentation
18. State of Documentation. The system's documentation is best characterized as:

3-Complete and current
6-Mostly complete and mostly current
9-Non-existent or inaccurate

ORGANIZATIONAL FACTORS
Factor I - Impact of System Failure
19. Effect of System Failure. If the system failed what would be the effect?

3-Uittle or no damage 6-Significant damage 9-Permanent damage, major financial
loss, or potential loss of life

20. Contingency Plan. Is there a contingency plan (current, recently tested, and ready at a moment's
notice) which could be used if the system fails?
3-Yes or not needed
6-Yes, but with some difficulty and significant loss of efficiency
9-No

21. Contribution to User's Mission. How much does the candidate software contribute to the using
organization's mission?
3-Not at all 6-Small percentage 9-Significant percentage

Factor J - Personnel
22. Percent of Maintenance Personnel With In-depth System Knowledge. For the staff currently

maintaining the system: What percentage of the maintenance personnel have in-depth experience with
the system?
3-More than 30% 6-5 to 30% 9-Less than 5%

23. Maintainer Experience. What is the average number of years experience as a maintenance
programmer for those who maintain the existing system?
3-More than 5 years 6-2 to 5 years 9-Less than 2 years

Figure 2 - M ,L-HDBK-SRAH Question Set (Cont.)

219

"I l II II

!

24. Maintainer Turnover. What is the percentage of maintenance personnel turnover per year? U
3-Less than 5% 6-Between 5 and 30% 9-More than 30%

25. Original Developers Available? Are the original developers available for consultation?
3-YesI

6-Yes, but the system is over 5 years old, or the original developers are not easily accessible
9-No I

Figure 2 - MIL-HDBK-SRAH Question Set (Cont.) I
question set. In MIL-HDBK-SRAH, a questionnaire ECONOMIC ASESS4DENT
form is provided for marking responses for each At this point in the MIL-HDBK-SRAH process, a set
question. The average response for each factor is of candidate reengineering strategies has been I
recorded. The resulting points are totaled to provide identified for each program being considered. The
a quantitative result representing the need to remainder of the process is designed to perform an
reengineer. Programs are then rank-ordered by their economic assessment of the strategies and to execute
need to reengineer, a management decision process to select one strategy I

per program and prioritize the list of programs.
The question set grew out of efforts at the Software
Technology Support Center. In [STSC92], Chris The purpose of the economic assessment process is to
Sittenauer and Mike Olsem introduced a set of provide accurate, traceable, and credible comparative
questions to assist in determining if a program needed cost information, in a consistent format for each
to be reengineered. Minor modific=zs occurred program, to allow rank ordering of the candidate I
during the process of gaining technical consensus strategies according to breakeven point (BP) and
among panel members during [SB-I] and in the return on investment (RO0).
following months. As with the entire SRAH process,
a wider consensus on the question set is now being The economic assessment approach is direct,
sought. repeatable, and logical. Each program is analyzed

separately and independently. For each program, the
IDENI~FY REENGINEIG S72RATEGIES candidate strategies are evaluated by estimating totalNow that the candidate programs with the greatest remaining life cost (RLC), which is the sum of

need to be reengineered have been identified, investment (development) and support costs for the
candidate reengineering strategies
can be generated for those
programs. The Reengineering
Strategy Selection Matrix, shown REJ INEENO RSULTS OF QUESTION SET

in Figure 3, identifies candidate STRATEGIES Consider if ... Probably need not consider if..

strategies ba.md on the responses aw- - Contnu
made to the question set in the of e fsm

previous section. mat Docmnuut.im Stb PbFacto Ž 2 DoeumentuteM Stab Flactr < 2

e code IM a Language Fa•tr a 2 tanae Facto < 2

)m0140 Daf comptaxity QuestM.. >2 Data Compaxgty Questo <2 I

Compuue complxity Factor Z 2 Canmplxiy Facto < 2

vege. then forward System Factom Ž 36 System Factor < 36

* dealp anM code System Factorz! 36 System Factom < 36
oexkig nwodremeg b and ramailug systemWe 2t years or rmaktn gsystem 3-< 5 years

Figure 3 - Reengineering Strategy Selection Matrix

220 3
U

defined remaining lifetime of the software. For estimating and model calibration may be found in
reengineering strategies, RLC also includes the cost source documents listed in SRAH.
of supporting the legacy software during the
reengineering development time. All estimates for The following list identifies the models which have
each program will be based on the same parametric been identified for use in the SRAH economic
model and the same general assumptions to allow the assessment process:
results to be compared. The preferred strategies are
defined as those strategies whose breakeven point is e COCOMO * SEER-SEM
less than the remaining life of the legacy software. o PRICE S 0 SUM

e REVIC e SOFTCOST
COST ELEMENT StrUCTURE (CBS)

Each economic assessment will first establish a CES A Reengineering Size Adjustment (RESIZE) model is
to be used for the analysis. Tle CES may be similar included in SRAH as an Appendix and describes a
to that shown in Figure 4 or may be tailored to method of adjusting source lines of code for a
satisfy any of the following requirements: reengineering project for input to a cost model.

(1) To match the CES from a useful and earlier ECONOMIC INDICATORS
estimate for this program, The economic assessment of candidate strategies for

each program depends on estimating and comparing
(2) To match the CES output from the parametric economic indicators (RLC, RLC Savings, ROI, and
cost estimating model used (the situation experienced BP) for each strategy, using the same estimating
in the above example), or model. Figure 5 is an illustrative example of a

summary of the economic assessment of five
(3) To highlight a particular cost sensitivity, e.g., to strategies for a single program. Strategy #1,
provide more granularity into the maintenance
estimate.

1.0 Investment (Development)
Since the economic assessment is a comqparative 1.1 Software Development
process, it is not necessary to establish an exhaustive I.1.! Requirements Analysis

CES, particularly where the cost of the elements 1.1.2 Preliminry Design
would be the same or similar for all strategies 1.1.3 Detailed Designw1.1.4 CSU Code and Test

(facilities or utilities, for example). Costs may be 1.1.5 CSC Intgration and Test
estimated at the CSU, CSC, or CSCI level and 1.1.6 CSCITesting
aggregated to program level. 1.1.7 System Integration and Tes

1.1.8 Operational Test & Evaluation

MIL-HDBK-SRAH leads the analyst through a 1.1.9 Site preparation
1. 1.10 Development Tools

process to consider applicable ground rules and 1.1.11 Program Management
assumptions which need to be documented with the 1.1.12 Documentation

results of the assessment. * 1.2 Site Preparation
1.3 Training
1.4 Development ToolsU MODEL SELECTION AND DATA GATHERING 1.5 Hardware Development

Software estimates are normally made by level of 2.0 Support
effort, analogy, or parametric methods. For the 2.1 Reengineered Software
handbook, only parametric methods (cost models) are 2.1.1 Software Maintenance
considered. Examples using several parametric 2.1.2 System Operations

2.1.3 Hardware Maintenancemodels are provided as Appendices in MIL-HDBK- 2.1.4 Training

SRAH. Reasons for selecting a particular model may 2.2 Legac Software
be familiarity, availability of the model or particular 2.2.1 Software Maintenance

input data, suitability of the model CES, or a desire 2.2.2 System Operations
to be comparable with an earlier estimate. In any 2.2.3 Hardware Maintenance

case, the same model should be used for all estimates 2.2.4 Training

to be compared. General information on model FIgure 4- Generic CES

221

I . . .'i i l

continued maintenance (Maintain Status Quo) of the From the illustrative example in Figure 5, the
legacy software, is the baseline against which the following conclusions can be drawn:
other strategies are compared. Each of the three
reengineering strategies (#2, #3, #4) would require an * Strategy #1 (Maintain Status Quo) is a low risk
investment (development cost) to achieve the savings candidate (no investment), but its ROI (arbitrarily set I
shown. The final strategy (#5) would require full at zero) places it lower than the preferred candidates.
replacement of the legacy software and would incur All other strategy RLCs will be compared to its
the greatest investment of all candidate strategies. RLC. 3
The RLC Savings is defined as the RLC of Strategy a Strategy #2 (Redocument) has the lowest
#1 minus the RLC of the strategy under investment of all strategies, but only moderate RLC
consideration. The breakeven point is defined as that Savings (as compared to #1) over the remaining life. I
point in time when the RLC of a strategy equals the The ROI ranking is the same as the BP ranking.
RLC of Strategy #1, i.e., the cost of reengineering
equals the cost of continuing to maintain status quo. * Strategy #3 (Translate) is a poor choice, I
A detailed version of the worksheet is contained in demonstrating a higher RLC than #1, the highest
MIL-HDBK-SRAH. investment, and negative ROI values. Note also that

the BP (12.8) yerse exceeds the remaining life (12
In this example, the Cost Element Structure (CES) years). This is not a preferred strategy. I
was summarized (rolled-up). Risk and sensitivity
assessments were excluded from this example for • Strategy #4 (Restructure) is clearly the preferred
simplicity. The SRAH process provides a detailed choice, showing the best ROI and the earliest BP. n
method for including risk and sensitivity assessments
into the economic analysis.

""Ro :It Canddate StrategiesIiu__CseP a l t SK Maintain Rodocument Translate Restructure Redevelop
FY54 $K Status Quo Source Code

-a "Ito
SLOC 31.574 31,574 31,574 31,574 315,74
oesign Modified (CM) 0% 0% 0% 10% 50%

Code Modified (CM) 0% 0% 10o% 20% 80%
Integ & Test Modified (IM) 0% 0% 100% 100% 100%
New Documentation (ND) 0% 100% 20% 50% 80%
Equiv SLOC (ESLOC) 0 6,946 19.386 14,556 24,975
Annual Chg Traffic (ACT) 20% 19% 18% 16% 15%
Remaining Years fY) 12.0 12.0 12.0 12.0 12.0
Reengineering Years (YR) 0.0 0.6 0.9 0.8 1
Support Years (YS) 12.0 11.4 11.1 11.2 11.0

Cost b CES
1.0 Investment $0 $344 $1,179 $836 $1,597

2.0 Support $4,232 $3.650 $3,136 $2,496 $2,098
2.1 Reengineered Software $0 $3,435 $2,818 $2,210 $1,746
2.2 Legacy Software $4.232 $215 $319 $286 $35'i

Economic Indicators
1. Remaining Life Cost (RLC) $4.232 $3.994 $4,315 $3,331 $3,695

2. RLC Savings va 01 so $239 ($83) $901 $537
3. Return On Investment (ROI) I

a. Investment ROI (RO1) 0 0.69 (0.07) 1.08 0.34
Rank yder 4 2 5 1 3

b. Total ROI (ROI,) 0 0.06 (0.02) 0.27 015
Rank Order 4 3 5 1 2

4. Annual Support (AS) $353 $301 $254 $197 $159 I
5. Annual Support Savings $0 $52 $99 $156 $194
6. Breakeven Point (BP) in Years 12.0 7.2 12.8 62 8.2

Rank Order 4 2 5 1 3
7. Preferred Reengineering Strategy NIA Yes No Yes Yes

Figure 5 - Summary Comparison Worksheet for a Single Program (Example) 3
222

3 * Strategy #5 (Redevelop) is clearly the greatest a Investment cost within budget
investment, provides only modest RLC Savings, but * High confidence in estimate and schedule
still displays a BP within the remaining life. It may * Remaining life confirmed
also incur the greatest cost and schedule risk, e Legacy software has the highest support cost
something that should be investigated in accordance e High probablilty of project success.
with procedures described further in MIIL-HDBK-
SRAH.

HISTORY OF MIfl,-HDBK-SRAH
Ranking of strategies is assigned in ascending order The Joint Logistics Commanders (JL.) Joint Policy
of BP or ROI, with the preferred strategies being #4, and Coo-4inating Group (JPCG) on Computer
#5, #2, and #1 in that order. Resources Management (CRM) initiated the first draft

of this handbook at the First Software Reengineering
cosr RISK AND SENSITIVITY Workshop [SB-I] in September 1992. The handbook

MIL-HDBK-SRAH includes a process for was developed by the members of the Reengineering
reevaluating the results of the economic assessment Economics Panel at the workshop and was entitled
and assessing the associated cost risks and parameter Reengineering Economics Handbook (MIL-HDBK-
sensitivities. Guidance for documenting the economic REH). In April 1993, Comptek Federal Systems,
assessment process is provided. Inc. and Management Consulting & Research, Inc.,

refined and enhanced the handbook under contract to
MANAGEMENT DECISION PROCESS the Air Force Cost Analysis Agency. Refinement

At this point in the MIL-HDBK-SRAH process, a set and use of MIL-HDBK-SRAH continues under Joint
of preferred strategies has been identified for each Logistics Command and Air Force Cost Analysis
program being considered. The remainder of the Agency direction.
process is to select one strategy per program and
prioritize the list of programs. Selection and FOR FURTHER INFORMATION
prioritization are based on the composite results of Further information regarding MIL-HDBK-SRAH
the technical and economic assessments and may be obtained through the Air Force Cost Analysis
management considerations. Evaluation of the need Agency (AFCAA) from Mr. John B. Donald,
to reengineer, economic indicators, and management AFCAA, 1111 Jefferson Davis Hwy, Suite 403,
objectives and constraints results in the recommended Arlington, VA 22202; phone: (703)746-5865 or
course of action. (703)692-0006; MILNET: donald@afcost.af.mil.

Copies of SRAH may be obtained from the Air
While the technical and economic assessment Force Software Technology Support Center (STSC),
processes are well defined in SRAH, the management Hill AFB, Utah; phone: (801)777-8045; or Mr.
decision process is more sensitive to less well defined Chris Sittenauer at the STSC; phone: (801)777-9730.
and less tangible program considerations and is based Comments regarding the handbook are particularly
primarily on judgement. Non-quantifyable program solicited and should be sent to Mr. John Clark,
considerations include perceived risk, resource COMPTEK Federal Systems, Inc., 2877 Guardian
availability, requirements realism, estimate Lane, Va Beach, VA, 23452; phone: (804)463-8500;
credibility, and schedule uncertainty. clark@comptek.mhs.compuserve.com..

i The primary objectives of the management decision REFERENCES
process are to reduce software support cost, improve [SB-Il Workshop Proceedings, JLC-JPCG-CRM
software quality, and meet other management or First Software Reengineering Workshop, Santa
organizational objectives. Barbara I, 21-25 September 1992

The ideal choice for the highest priority program [STSC92] Chris Sittenauer and Mike Olsem, "Time
would be if all of the following were true- to Reengineer?" CrossTalk, Issue 32, March 1992.

* Greatest technical need to reengineer
* Earliest BP within the remaining life

* Highest ROI

3 223

I

System Reengineering Evaluation:
A Design Dependent Parameter Approach -

Wolter J. Fabrycky, Ph.D., P.E. n
Lawrence Professor of Industrial and Systems Engineering

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Abstract guide redesign efforts toward a preferred solution. This !
evaluation procedure can also be useful in identifying

Mutually exclusive reengineering design alternatives systems that need to be reengineered. A systematic
for modifying or extending complex systems must be reengineering procedure is illustrated in Figure 1.
evaluated rigorously before the most attractive option can Block I in Figure I shows the deficiency in the system
be identified for implementation. This paper presents a to be the genesis of the reengineering process. This
Design Dependent Darameter (DDP) approach utilizing a deficiency in the existing system should be the stimulus
general Design Evaluation Function (DEF) to guide the that begins the process of reengineering. The deficiency
search through the redesign space. Selection of the best must be clearly identified so that the reengincering effort
reengineering alternative is aided by the use of a Design can truly focus on the need.
Evaluation Display (DED) incorporating multiple criteria. (1) (5 1
Both the DEF and the DED will be explained and Deficiency or Gnrt
illustrated for hypothetical systems of deployed repairable Need for Reenglneering
equipment. Reengineering Alternative(s)

L The system reengineering process* Identi (2)r Pdltstlate n

A reengineering design effort is needed whenever a AC •ia Dependent
deficiency is recognized in an existing system, or when CdtePamete
the system fails to perform its intended mission I
satisfactorily. Deficiencies occur and may be revealed for (3)
several reasons: Quantity Apply Design

1) The actual observed performance of the system after Criteria Evaluation 3
deployment does not fully meet the performance In i

requirements for which it was designed.
2) The performance requirements change, or are ,(4)

expanded, after the system has come into being and Baseline the Apply Design
the system does not meet these new requirements. Existing Evaluation

3) The operating environment for which the system was System Display
originally designed has changed, making the existingsystem inadequate for its intended mission.

System reengineering evaluation requires the 3
systematic application of a rigorous procedure that can Done Alceptibe?

ySyt-m reengineering should be pusued as an integral part of the
"sy•em engineering procest. A sydtem engineering poceas model is being U
developed at Virginia Tech by Blanchard, Bowea4 Fabrycky, Nance, and

Verma under NSWC Contract #N60921-89-A239-0027. Figure I - A Systematic Reengineering Procedure

2
224 I

I This deficiency, or need for reengineering, arises incorporate these factors in order for the system
because the system does not satisfy specific mission or deficiency to be accurately identified.
design criteria. These criteria must be identified as After baselining of the existing system is complete, the
indicated in Block 2 of Figure 1. Criteria will usually be process of reengineering design may begin. The
both economic and noneconomic, effectiveness of these designs must be evaluated so that

Multiple criteria considerations in life-cycle comparison with competing design alternatives and the
reengineering analyses arise when both cost and baseline is possible. Only when each reengineering
effectiveness elements are present in the evaluation as design has been evaluated can the best option be selected
shown in Figure 2. Effectiveness is a measure of mission for implementation.
fulfillment for a system in terms of the stated operational
need. Mission fulfillment may be expressed by one or IL Reengineering design evaluation
more figures of merit, depending on the type of system
and mission objectives. -ng ri design evaluation is part of the systemI 01OWN" reengincering process of Figure 1. Blocks 5 through 8 in

S....Figure I Miushat the remaining steps.
After defciencies in the existing system have been

I.,6Cot 8)f'** stdi 6 identified, changes (reengineering design options) must

IR.Oem,. WJ-,, 1 I .Awdm be developed and presented as mutually exclusive
.p awn .cad = * I alternatives. Cost and effectiveness measures for these

1 " 'a'A " I c .(,,,. alternatives are generated using the established criteria.
_ "__ iEach alternative is then displayed beside the baselined

I 4A- -Logc SUPPOrt E.mi existing system, and the lowest cost alternative that most
ilmWN, no, Y•' -WmO o I closely meets other criteria is selected as the best

j SPWO"k T ut,* ,,reengineered system design.
,U"=dr ., Figure 3 illustrates a concurrent approach to the

redesign generation and evaluation portion of the system
Figure 2 - Elements for Cost-Effectiveness reengineering process. In Blocks I and 2 of Figure 3,

human designers (using CAD/CAE tools) develop
Next, multiple criteria must be expressed as reengineering design alternatives. This activity

quantifiable goals for the reengineered system. This corresponds to Block 5 in Figure 1.
important process is identified in Block 3 of Figure 1 and Block 6 in Figure I identifies the activity of estimating
should embrace the elements in Figure 2. and predicting Design Dependent Parameter values for

Quantification is a not an easy task. Most systems each alternative (see also Block 3 in Figure 3), These
have multiple purposes that significantly complicate the parameter values provide a basis for comparison with
measurement Criteria such as availability, reliability, established design criteria to determine the merit of each
maintainability, etc. are usually used since they are more alternative. They may be passed to Block 1 in Figure 3 as
easily quantified than utility, merit, gain, etc. Also, it is appropriate.
appropriate to establish the means with which to quantify
criteria for each alternative. Indirect experimentation
techniques utilizing mathematical and simulation models Humn CA E 2a
come into play here. D Tools

As indicated by Block 4 of Figure 1, the existing --- V- --
system must be baselined against established design E_ MCI K a, cost..- DESIGN

criteria. This baselining should illuminate the deficiency 3

in the system. Baselining is used as a basis for Evaluators Estimytorsl
comparison with proposed reengineering design E E"X; Y, Y,) - d Predictors

alternatives. In the case of an existing system, design i4
dependent parameters such as reliability, design life,
weight, etc. are fixed by the current design. If the system I Economic and Physical 6
deficiency is caused by an operating environment change L Data Bases

(e.g., higher operating costs, mission change, higher
shortage costs), the baselining of the system must Figure 3 - Concurrent Engineering Morphology

I
225I

Redesign alternatives must also be judged from a with a system under development or with one that already
system life-cycle perspective. In Block 7 of Figure 1, the exists. The primary use of simulation in any system
cost-effectiveness of each alternative is determined by reengineering effort is to explore the effects of alternative
using a life-cycle oriented evaluation function (also see system characteristics on system performance and
Block 4 in Figure 3). Only after each alternative has been effectiveness, without actually producing and testing each
rigorously evaluated can the least costly be selected which candidate system.
satisfies all other criteria. In system reengineering, mathematical models may be

The evaluated alternative is compared to the baseline used during design evaluation of the baseline (existing
(or to the best alternative at this point) as shown in Block system). T11hen, these models can be invoked for each
8 of Figure I (also see the link between Block 4 and Block redesign alternative. Design Dependent Parameters
I in Figure 3). In these situations, decision evaluation is (DDP) are the key. These parameters are design
facilitated by the use of a decision evaluation aid visually characteristics inherent in the physical equipment which
exhibiting both cost and effectiveness measures. Life- are subject to manipulation by the designer during the
cycle cost and one or more effectiveness measures may be process of seeking the best design. When imbedded in
displayed simultaneously as an aid in decision making. A models, these parameters are the key to indirect
Decision Evaluation Display (DED), as shown in Figure experimentation during the system reengineering process.
4, is one way of doing this. Design evaluation in terms of life-cycle cost and
Efectivens system effectiveness can be facilitated by utilizing the
a pufAarame AMIwns Design Evaluation Function (DEF) shown in Figure 5.

This function is a mathematical way to link design
Enwftd actions with operational outcomes. It incorporates Design I
values Dependent Darameters. From the following definitions of

terms in the DEF, the structure for system redesign

E -etiveness optimization should be evident:

E = a life-cycle complete evaluation measure
(usually equivalent life-cycle cost)

X = design variables (e.g., number of deployed
units, armor thickness, retirement age, repair
capacity, rated thrust, etc.)

EQUIVALENT LCC Yd = design dependent parameters (e.g., weight,
reliability, design life, load capacity,
producibility, maintainability, etc.)

Figure 4 - The Decision Evaluation Display Yi =i design independent parameters (e.g., cost of

Note that effectiveness requirements (or thresholds) are money, labor rates, material cost per unit,

shown on the DED. These are useful to the decision shortage cost penalty, etc.)

maker in assessing (subjectively) the degree to which each
alternative satisfies effectiveness criteria. Each
alternative is displayed with its effectiveness measures To Optimally Achieve
shown in relation to the established criteria. Life-cycle
cost, shown on the horizontal axis, is an objective ACQUISITION/UTILIZATION

measure. The goal is to select the alternative with the I
lowest life-cycle cost that best satisfies important Mathematlcaily Ank
performance and effectiveness measures. DESIGN / OPERATIONS 3
DI. Reengineering evaluation theory utilizing The

Models and the process of indirect experimentation DESIGN EVALUATION FUNCTION (DEF)
provide a convenient means for obtaining factual
information about a new system being designed, or an For Choosing Among Design Alternatives
existing system which needs to be improved. In most
design and operational situations, the objective sought is E Y f(X; Y0)
the optimization of effectiveness measures economically.
Rarely, if ever, can this be done by direct experimentation Figure 5 - The Design Evaluation Function

226

I The Design Evaluation Function, with its Design The second example is a situation where the system
Dependent Parameters and design independent requirements change (tougher performance criteria or
parameters, facilitates optimization within each new criteria) from the requirements used in the original
alternative. It provides the basis for a classification of the design. This situation is shown in Figure 7, where actual
true difference between redesign alternatives (a design- values of the baseline's measures no longer meet all of the
based choice) and optimization (a search-based choice). new criteria (Case B). As represented in Figure 7 by a

Reengineering of the system can take many forms. movement down of one of the horizontal lines, one of the
The system might be reengineered by reoptimizing the design specifications changes. This will cause the system,
current design's logistics support system. Increasing the which may have met all original requirements, not to
number of units deployed, or the number of repair meet all new requirements
channels, might provide the needed change to overcome ENSruMM.
the deficiency. However, the examples presented here are a pwfatmnce
for cases where reengineering consists of redesign of the " aseln
physical equipment to change Design Dependent
Parameter values.

Two cases are considered The first example is av
m situation where the reengieeig problem arises bemuse)

actual observed performance measures of a system do not .

meet established criteria. As shown in Figure 6, the & p* rnce

m baseline's estimated performance does not accurately requkom

predict the actual effectiveness and performance of the
system and its life-cycle cost (Case A).

Effectlveness
a peffomance Baseline Baseline EQUIALENT LCCMeanures Estimate Actuals

4 Figure 7- DED fr Redesign Case B

-* Both cases outlined above will be illustrated by a

I ecttwas hypothetical situation involving a population of repairablem~ peff•• aorman, equipment which is deployed to meet a demand. This
mrequrmerts hypothetical example situation is called the Repaiarble

Equipment Population System (REPS).

IV. Hypothetical reengineering examples

EQUIVALENT LCC • Two hypothetical, but realistic, REPS examples will be
presented in this section. These were fashioned toI/

e6- DED for Redesign Case A illustrate how modeling and indirect experimentation for
Figure system optimization applies to system reengineering

For this reengineering case, design requirements are design evaluation for both a Case A and a Case B
assumed not to change since the original design effort, but situation.
the actual deployed system fails to meet one or more of
the requirements. Thus, reengineering of the system is REPS example overview
indicated. Redesigned system alternatives should be
offered to compete with the baseline (the existing system). Consider the following situation: A finite population

In this situation, the methods of predicting of repairable equipment is maintained in operation to
performance measures used during design need to be meet a demand. As equipment units fail or become
redeveloped. Since the system failed to perform as unserviceable, they are repaired and returned to service.
predicted, the prediction methods are probably deficient. As they age, the older units are removed from the system
These methods must be corrected to account for errors in and replaced with new units. The problem is to
the original design predictions and estimates. The determine the population size, the replacement age of
methods used need to be refined so that estimated units, and the number of repair channels for a given
performance matches actual performance. design alternative, or set of design dependent parameter

227

values, so that requirements will be met at a minimum Figure 9 illustrates, graphically, the optimization
life-cycle cost. process based on three REPS design variables: number of I

A general schematic of REPS is shown in Figure 8. deployed units (N), retirement age (n), and number of
Repairable equipment systems exist in many operational repair channels (M). Various combinations of values for
settings. Both the military and the airlines operate and these system design variables are searched until the I
maintain aircraft with these system characteristics. In lowest life-cycle cost for the alternative is found. This
ground transit, vehicles such as rental automobiles, taxis, life-cycle cost results from the optimal mix of values for
and commercial trucks constitute repairable item systems. the design variables for this alternative. I
Production equipment types such as autoclaves, drill
presses, and weaving looms, are populations of equipment f EALCCI
which fit the repairable classification. Additionally, both
military and commercial organizations maintain
populations of repairable system components such as
motors, pum valve etc.

o• 0 - Figure 9 - REPS Alternative Optimization

t udtU -Indirect eon with REPS may proceed on
e8- Repairable Equipment Population System the basis of the Design Evaluation Function of Figure 5,

Figure 8RE - fX; Yd Yi). For REPS, annual equivalent life-cycle

Table 1 summarizes the design variables and system cost (AELCC) will be used as the economic metric. I
parameters for REPS. The Design Dependent Parameters AELCC is the total of population annual equivalent cost
of unit cost (Cu), reliability (MTBF), and maintainability (PC), repair facility annual cost (RC), annual operating
(MTTR), are central to the system design problem. DDP cost (OC), and annual shortage cost (SC), expressed as:
values are inherent in the design of the equipment itself AELCC - PC + RC + OC + SC.
Design independent parameter values depend solely on
the operating environment of the equipment. They Population Annual Equivalent Cost is PC = C.(N)
include demand (D), shortage cost (Cs, interest rate (), where C., (P-BXA/P, I, n) + B(i). This annual I
etc. Design variables, on the other hand, are those factors equivalency formula uses first cost per unit (P) and its
that are adjustable and used to optimize within each book value at retirement (B). In these examples, book
design alternative to find the lowest life-cycle cost. value is determined using salvage value and straight-line I

depreciation. Repair Facility Annual Cost is RC - Cr(M).
Table I - Design Variables and System Parameters Annual Operating Cost is OC - (EC + LC + PMC +

- - Other)(N); energy costs, labor costs, preventive
Variables/Parameters Design D h'V' D maintenance costs, and other. Annual Shortage Cost is

va . •'- •. SC = C,[E(S)] where E(S) is the expected number of units
D - demand in unit X short. E(S) is found by multiplying the number of units
N - number of units to deploy X short by the probability of that occurrence and summing I
M - number of mif,,tenae amnels X across all instances. Refer to the Appendix for detailed
a - retiremen age X derivation of elements comprising AELCC.
Cu-annul equivalent units cwe pe. uit X Calculations are done repeatedly with various
Cr - a•ual equivalent clamnet cog per haiel X combinations of N, n, and M until an optimum AELCC is
Ar - &mual ovedhead cot per channel X achieved for each alternative (each instance of DDP
Cs = hotage cost per unit shod per year X values). Each alternative can then be compared to the
MTBF = mean time between failure X current best to determine if all criteria have been met with
M'IR = mean time to repair a unit X AELCC reduced as far as possible.

I
228 I,

REPS redesign example (Case A) Table 3 - Parameter Values for Alternative

Consider a deployed REPS for which the system Parameter Value
attributes are as listed in Table 2. Suppose that these are Cost of equipment unit $52,000
the actual performance measures experienced by REPS Salvage value $7.000
after deployment Also, assume that the crtera for this Desig life in years 6
system during its original design are still in effect. They Operting costs 51,750are as follows: cohorts M F MM

1) Design to cot - the deployed population shall have a 0-1 0.20 0.03

first cost not exceeding S 1,0001C. 1-2 0.24 0.04

2) Probability of shortages-the probability of oue or 2-3 0.29 0.05
more equipment units short of demand shall not 3-4 0.29 0.05

exceed 0.38. 4-5 0.26 0.06

3) Equipment reliability - the mean time between failure 5-6 0.22 0.07

for equipment units shall not be ls thn 0.20 year3 Table 2- Attributes for Baslne Desig Table 4 - Points In the Optimum Region

Attributes Baseline Actuals Retirement Number of Number of •rqm diame M
Design Variable Values: age, n units, N 2 3 4
Population, N 20
Repair channels, M 4 3 19 5598K 5466K $469K
Retirement age, n 4 4 19 56K S463K $464K
Independent Parameters: 20 $610K 8467K S469K
Demand 15 19 8643K 5467K 4669

Shante cost per year $73,000 5 19 $643K $40K $467X
PI~ hnnue l r te 14000 calculations are given in the Appendix for detailed
Repa channel cost S4 0 consideration and study.
Dependent Parameters: Table 4 shows points around the optimum region. As
Design life in years $43,000 shown, the point for AELCC - $463K is optimum for this
salvage value y5,000 alternative, since all others are higher. A summary of the
Design life in years 6 calculated and optimal design variables for the alternative

Operating costs d2,3: design is shown in Table 5 (also see the Appendix).
srob.nedr ocshote: 07This REPS alternative meets all established criteria

Prob. one or more aort 0.27 according to the estimating methods used. Care must be
AELCC T468K taken, though, to investigate the source of the original
Average MFTR 0.045 error in predicting the MTBF. If this prediction error is

MV'aio aMauerita Table 5 - Summary Outputs for Redesign
The actual reliability does not meet the specified

criteria. During the original design effort, the system Output Item Value
performance estimates met all the requirements.
However, after deployment, a deficiency was discovered Population first cost 5988,000
in the MTBF prediction. The equipment did not perform Annual operating cost 533,250
as well as predicted (a Case A situation). It is Annual repair fpaility cost 5135,000
experiencing a MTBF of only 0.22 years. A penalty cost 573,484

I A redesign alternative must be offered to compete with Expected (AELCC) $463,350
the baseline to correct for the deficiency. Table 3 shows
the alternative's redesign dependent parameters. The Mean MTBF 0.26
independent parameters are not exhibited, since they am Probablity of one or more short 0.38
the same for both the baseline and the alternative. Deployed units, N 19

Optimization of the REPS system for the alternative s Repair channels, M 3
of design dependent parameters follows. The needed Retirement age, n 4

229

not corrected for use in the reengineering effort, the Table 6- System Attributes for Case B
alternative may perform no better than is being Baseline H_

experienced with the existing design. System Parameters Actuals AlL I AlL 2
Comparison of the alternative design and the baseline Independent Parameters:

is now possible. It is facilitated by a Design Evaluation Demand 10 10 10
Display (DED). As the DED shown in Figure 10 Sihogage cost per day $50,000 $50,000 S50.000
illustrates, the existing system (baseline) does not satisfy latere rate 10% 10% 10%
the established criteria. However, the reengineered Repir channel cost S10,o00 $10,000 $100.o0
design alternative does meet the criteria. Although the Dependent Parameters:
initial procurement cost increased by $128K, the AELCC De.i life in year 5 5 5
decreased by $5K per year. Salvage value $7.000 $6,500 $7,500

Gam" Cost of equipment unit $60.000 $68.000 $72.000
A ~Ays. Opeasting costs $1,500 $1,500 $1,200

Avenae MTBF 0.200 0.285 0.330

...... o o1,000,000 Aveage MTMR 0.032 0.037 0.032

S0 .Table -Optimized Output forAlternatives

*0.22 Oputiem ie Aut erntiv I Altrnaiv 2
.0.. Populati cost 748,000 0,000

027 Repair facility cost $30,000 $20,000
Shortage penalty cost $29,000 $24,000S...... •..I. M (K(A [C$ 60 002 30 0

I II Expected (AELCC) $260,000 $253.000

$4"3K $468K AELCC Probability of oe or mome short 0.376 0.297
./ Mean MTBF 0.38 0.30

Figure 10 - Design Evaluation Display for Case A Deployed units, N 11 II
Repair channels, M 3 2

REPS redesign example (Case B) tetirment a5 5I

The system requirements for this example are as since both redesigns improve the system MTBF. Design

follows: variables were optimized to find the lowest life-cycle cost
follwsin tfor each alternative. Table 7 shows the optimized

f) Design to cost - the deployed population shal have a effectiveness measures and calculated values for both

first cost not exceeding $800K. alterntves.
2) Probability of shortages - the probability of one or A comparison of the two alternatives with the baseline

more equipment units short of demand shall not is shown in Figure 11. As this DED shows, the baseline
exceed 0.30. design does not meet the changed MTBF criteria.

3) Equipment reliability - the mean time between failure Alternative I, while meeung the MTBF criteria, fails to
for equipment units shall not be less than 0.25 years. achieve a low enough probability of one or more units

In this case, suppose that the existing system must be short. Alternative 2, however, meets all criteria and
reengineered because one of its mission requirements should be selected as the best redesign alternative.

changed from a MTBF of at least 0.2 years to a MTBF of I
at least 0.25 years. Since the baseline system has an V. Other reengineering issues
MTBF of 0.2 years, the current deployed system does not .i p
now meet all effectiveness criteria (a Case B situation). This paper deals with those aspects of system

The system attributes for the baseline design, and reengineering where Design Dependent Parameter values
candidate alternatives, are given in Table 6. The of deployed equipment is the main focus. However,

baseline's MTBF is shown to be 0.20 years, which violates reengineering efforts can concentrate on other system

the new requirement It must be at least 0.25 years. The factors, such as system design variable values, so as to

alternatives are offered for comparison with the baseline, optimize the system in operation.

230 I
I

O4*m Al 2 AltI optimization is recognized and implemented as part of the
reengineering process.

Optimization may be formalized for redesign by the
792K $800,000 identification of Design Dependent Parameters and the

use of the Design Evaluation Function. By incorporating

Ilifc-cycle factors into this function, reengneering
3 0 alternatives can be compared equivalently. System

.... 10.25 improvements through redesign may be identified forJMimplementation by use of the Design Evaluation Display.
.... 0.21 0.30 +0.30Rfrne

OK 1 1. Blanchard, B. S. and W. J. Fabrycky, Systems
angineering and Analysis, Second Edition, Prentice-

Hall, Inc., 1990.
$U4K $263K $26OK AELCC 2. Fabrycky, W. J. and B. S. Blanchard, Life-Cyce Cost

and Economic Analysis, Pretice-Hall, Inc., 1991.
Figure 11 - Design Evaluation Display for Case B 3. Fabrycky, W. J., "Indirect xon for System
Reengtnen~g of a system because of a deficiency may Optimization: A Paradigm Based on Design

not always mean redesigning the Dependent Parameters Proceedings, Second Annual
itself. For example, if a system is found to need International Symposium, National Council on
reengineering, one approach may be to deploy more units, Systems Engineering Seattle, Washington, July 1992.
add to the repair capability, or otherwise change the 4. Oien, M. R. and C. Sittenauer, "Reengineering
support environment so that mission requirements are Technology Report*, STSC, Hill Air Force Base, Utah,
more closely met. It would be desirable (and probably August 1993.
less costly) for a system deficiency to be resolved by
reoptimizing the support subsystem. However, this is not
feasible if the deficiency in the system is one traceable to Theraute stent in A roSpace Lng neein
a major flaw in design, or to a mission change. The author wishes to thank Mr. Shaw Looney, an

Also of consideration, but not discussed hue, is the helpig with tude s an AeparatEngioeering.pfor
extent to which the existing system is deployed. It must helping with the examples and preparation of this paper.
be determined what costs for the existing system are sunk Credit for the PC software behind the REPS
and which ones are not. All sunk costs cannot be Deengineering examples is due the Systems Engineering
considered when comparing the baseline to competing Design Laboratory. Copies of the REPS software are
alternatives. Likewise, the costs of the alternatives may available for educational use, without charge, from:
not include a total initial deployment cost if the Systems Engineering Design Laboratory
alternative is a retrofit of the existing system. For the ISE - 146 Whittemore Hall
case of a total redeployment of equipment as the Virginia Polytechnic Institute and State University
alternative, the salvage value of the existing equipment Blacksburg, Virginia 24061
can be taken as the first cost of the new equipment to help
determine the cost of the redesigned alternative.

APPENDIXI VL Summary and ConclusionsU This Appendix details a sample calculation of Annual
In these times of tight defense budgets, the military Equivalent Life-Cycle Cost (AELCC) for the alternative

services are searching for ways to gain a sustainable in the hypothetical example (Case A) of Section IV. The
utilization advantage for existing systems. System AELCC calculation will utilize independent parameters
reengineering design, embracing system optimization by from Table 2, the dependent parameters from Table 3,
indirect experimentation, has an excellent chance of and optimum values for design variables from Table 4.
enhancing system acceptability through the integration of Recall that Annual Equivalent Life-Cycle Cost is:
important design consideration (performance, cost, and AELCC=PC+OC+RC+SC
quality). But these desiderata may not be attainablA3 unless the importance of system evaluation involving Each component of AELCC is derived next.

231

II
Annual Equhvadt Ppul•to,, Ces.,- nilume o failed units. In the birth-death process, the

state ofthe system is the number of failed units (state - 0,
Compute the abok value, B, of the nits at a 4 year ,. N). Te rates of change between the states are the

retireBmnt ag, - 4 in 0 7t = $2. breakdown rate, X.a and the repair rate, N. This gives

B2152,00($5P00 6
5 00)=S2,o0 .a: N. (N- I)IL (N-M*2);. (N-M+I)).% I

staw~ 0 1 2 ...M-2 M-1 M ... N-I N
C, - (P-BXA/P, i. n) + B(i) ,-

C. - ($52,000 - $22,000X0.3155) + $22,000(0. 10) JM: 21A (M - I)A, MA MP

-$16,404 - 54,740 - $11,664

PC - C1u(N) Assuming staysaeoperation of the system, this yields

PC - $I1,664(19) = $221,616 N'LPo= I,
Anuual Opradng Cos.: NLP. + 2&iP2 = [p& +(N - I)X]P1

OC - (EC + LC + PMC + Other)N) (N- I)XP, +3pP3 = [2p +(N- 2))]P2
OC - S 1,750(19) = $33,250

(N-M + 2);LPm_ + MpiP =[(M - l)j +(N - M + 1)L]Pu, IAnnual Rw& F, cifit CoA-

RC - Cr(M 2 ~g-._ + Mp. (+Mi)P._,
RC =5$45,000(3) - $135,000 ;LPN- =MA,

Annual Shortage Cost: Additionally, N

Shortage Cost is SC.- C[E(S)], where E(S) is the -1
expected number of units short. The expected number of
units short can be found from the probability distnrbution Soling thew baln equations gives
of nv units short, P,,. Let

N - number of units in the population
M - number of service channels in the repair facility E= .

,- failure rate of a unit, I/MTBF
IL repair rate of a repair channel, I/MTT=whr

"n number of failed units
P0P - steady-state probability of n failed units
P0 - probability that no untis failed N__f___0 , ,..
Mp - maximum possible repair rate (N-n)lnl P
Xx - failure rate when n units already failed C, -

gn- repair rate when nunits already failedNIin=M+ ,+2..N
The failure rate of a unit is expressed as X = I/MTBF (N-n)IMIM-" i,

and the failure rate of the entire population when n units
already failed can be expressed as Xn = (N - n)X, where These can now be used to find the steady-state probability

N - n is the number of operational units, each of which ofn failed units as Pn - POCn for n - 0, 1, 2,..., N.

fails at a rate of X. Similarly, the repair rate of a repair Define the quantity N - D as the number of extra units

channel is expressed as p = I/MTPR, and the repair rate to be held in the population. For n = 0, 1, 2,..., N - D

of the entire repair facility when n units have already there is no shortage of units. However, when

failed can be expressed as n=N-D+l a shortage of I unit exists

{nýt ifnr•l,2,...,M-1 n=N-D+2 ashortageof 2unitsexists I
Mg= Mp ifnrM, M+1...,N n=N-D+3 ashortageof3unitsexists

An analysis using a birth-death processes is employed I
to determine the probability distribution, P,, for the n=N ashortageofDunitsexists

232 I

U The expected number of units short, E(S), can be found
by multiplying the number of units short by the Now XC. 27.9390
probability of that occurence and summing across all -a
instanes = 0.0358

E(S) = yjc(._,,) a0.0390

The calculation of the shortage cost for the alternative Px for n - 1, 2,.... N can now be computed from
in the Case A ample is bosd on the WiTBF and MIT"R P. 1POC - (0.03583) as

i values in Table 3 ft years I to 4. Frmn then values, the - 0.0358 x I - 0.0358
average MTBF and MMrR for the population can be Pl- 0.0358x3.1665 - 0.1134
computed as

MTBF - (0.20 + 0.24 + 0.29 + 0.29)/4 - 0.2550 P5 - 0.0358 x 3.3224 - 0.1189
P6 - 0.0358 x 2.5840 - 0.0925

MMFR - (0.03 + 0.04 + 0.05 + 0.05)4 - 0.0425

IThe failure rate of a unit and the repair rate at a repair Pi8 - 0.0358 x 0.0000 - 0.0000

channel are given by P19 - 0.0358 x 0.0000 - 0.0000

1=.=L =3 9 2 15 The opoed of units short can be calculated as

MTBF 0.2550 D is

I 1- 2359B(S) - YjPIN-,, =Y. fl4..I MTWR=0.0425 -J1
yielding V/= 1/6. - 1(0.1891+2(0.0925)+.-..+15(0.000)

Then, compute C, for n- 0, 1,...,3 as = 1.00663

1910/6)' From which Annual Shortage Cost is
S19101 Sc- Cs[ES)]

,19 6)---- 3 SC - $73,000(1.00663) - $73,484
C,- M.3.166518111

c2 -191(1.6). The Annual Equivalent Life-Cycle Cost is now

17121 $221,616 + $33,250 + $135,000 + $73,484 - $463,350

191(I/6)'I (• = • = 4.456•
161 31 The shortage probability distribu:ion can be calculated

from the Pn values and plotted as a histogram of Pr(S = s)
Next, compute C, for n - 4, 5,....19 as N - D + s. In this example, Pr(S - s) - P4 +

19(/ Pr(S -0) - 0.622

C6 = 3.9813 PI(S - 1) - 0.119
C5 := 151313= PS =2) - 0.093I' 91V) = 3.3224 Pr(S -3)-0.6

C ___ =254 Pr(S = 5)- 0.027

1313133 l'S = 6) - 0.015
Pr(S = 7) = 0.003

Cs=191(1/6)'1 = 0.0000 Pts = 8) = 0.003
I Cm=1l313"5 The probability of one or more units short can be found to

C19 =19(1/6)'9 = .00be
0!313 16 1 - Pr(S = 0) = I - 0.62 = 0.38

as was shown in 5.

233

METRICS FOR REENGINEERING OF SOFTWARE SYSTEMS I
by

Annette R. Ashton (K52) & William H. Farr (B10)
Naval Surface Warfare Center, Dahlgren Division I

Dahlgren, VA 22448-5000 I
INTRODUCTION requested. measurements can be made, impact

assessed, and implementation decisions made. The

With the impending budget cuts hanging over us more we understand the impact, the less risk we I
many federal agencies, especially In the Defense take when making each change and the better that

Department, re evaluating the efficiency of their we can control software degradaton resulting from
development process. Reengineering of al or pan changc." [Ff190i
of a current software system is becoming a way of
life. Billions of dollars have been invested in the This paper will give some basic definitions of

development of systems that may need to be software metrics and their role in the software

modified and extended to respond to changing development lifecycle with special emphasis on I
requirements. Reengineering technology is how they may be used in making decisions related

necessary if we are to benefit from these extensive to reengineering principles. We will further give

investments. definitions, tips on using the metrics in your day-
to-day tasks, and graphical representations of the

Robert Grady in his book on software metrics for metrics to help evaluate your software development
projet and process improvement, [G92, states process. In addition, the paper will provide some

"proBectuse wecand procssoimprovementy [re e sats metrics that are useful for determining when an
"Because we cannot economically replace all our existing software system has deteriorated to the

old software, we must find better ways to manage point when reengineering must be considered.needed changes. Until we do, software maintenance

will continue to represent a large investment and To set a framework for our metrics discussion we
software quality will not improve." Grady further will break the software development process into
states that we spend 2 to 3 times as much effort the five traditional system development phases:
maintaining and enhancing software as we spend
creating new software. In order to achieve feats of 1. neluiroemt definition and analysis
reusing current software systems one must better 2. design development
define his software development process and an 3. deand unit testing

integral part of this process improvement is the 4. system integration and testing

collection, analysis, and feedback of software 4. veraintration and validation
metrics. 5.vrfcto advldto

m6. delivery and operational use

"Most of the total change to the software system Questions that need to be addressed for each phase
will be located in only a few modules" was the will be given along with the associated metrics to
finding of Warren Harrison. He further stated that help answer those questions. More detailed"we were surprised to find that 10% of the modules hepase hs ustos oedtie
"that were changised aouintd fort over10% of the mexplanations of the metrics as well as examples of
that were changed accounted for over 60% of the how they can be used to evaluate the software
maintenance activity." [Hat90] T7his is a good system and/or its development process are providedexample of where collecting simple metrics gave in the appendix. This paper is not intended to

the developer an insight he might not overwise provide an all inclusive list of metrics, but ones
have had. that we have found useful within our software

"Management can use metrics to understand and development environment. The important
"Manatemanent consideration is to use those metrics that are most
control the maintenance process. As changes are appropriate to your environment and the

234

I

I development process it follows. The reader can these metrics and illustrates in more detail how
select any or none of the metrics considered here. they can be employed.
For those selected, the reader is free to adapt the
definitions and implementation to their own DESIGN DEVELOPMENT PHASE
process. The issue is to get a handle on the
development process and the products produced, The following questions that might arise during the
otherwise demonstrated improvement is not design deveopment phase of the lifecycle:
possible. Measurement provides a basis of
showing you where you are, where you've come I. "Given this set of requirements changing, can
from, and it provides a road map to lead you to we complete our design within our given
where you want to go! sclieduze with our reduced staff"

REQUIREMENT'S DEFINITION 2. "What percentage of the software design can
AND ANALYSI PHAbe reused given the changed nqurementsY"AND ANALYSIS PHASE 3. "If we achieved 40 rese last year, what can

"Defective requirements are a dominant cause of y

cost and schedule overrun in defense and aospc Metrics that could help answer these questions are:
programs." [Hal93] Using measurements to track
progess and quality of your requirents may help a. Design Size (DESSIZE) - the number of
answer some of the following questions: design units of a CSCI. By a design unit we

might mean the number of lines of Program
1. "Can we include all these new maintenance Design Language (PDL) or the number of

requirements and still meet our schedule w i t h bubbles/arcs within a Data Flow Diagram for
our reduced saff?" the proposed changes. You need some type

2. "What percentage of the software modules can of size measurement along these lines to
be reused if only these requirements again detemine the magnitude of the changes.

if'tications aro made?" b. Design Changes (DESCHG) - the percent of
3. "If our goal is to reuse 40% of the system's the original design that has changed

resources, can we accomplish all the needed (modified, added, or deleted) from one
modifications to meet the requirements?" baseline/revision to another. The same

design units considered for DESSIZE are
Some specific requirement metrics that could help employed here.
answer these questions are

Again these metrics allow one to assess the impact
a. Requirements Size (REQSIZE) - the number of the changes for staffing, schedule, and cost

of requirements for a given Computer determination. (See the Appendix for further
Software Configuration Item (CSCI), and elaboration.)

b. Requirements Changes (REQCHG) - the
percentage of requirements of a specific CSCI It is at this stage that performance analysis may
that have changed (modified, added, or also be addressed in the reengineered system
deleted) from one baseline/revision to through the use of rapid prototyping and
another c simulation. A number of new tools are under

development (NSWCDD's DESTINATION,Using these metrics one could determine the Advanced System Technologies' QUEST and
magnitude of the change and on the basis of that Conceptual Software Systems' ExpeR/T among

detrmine resource allocations for design, coding, others) that will take a design and generate a
and testing. To aid in this determination one simulation representation of the system for
should establish a metrics database to store these analysis purposes.
types of metrics so that better estimates can be
obtained using past similar development projects.
The Appendix contains a detailed description of

I 235

I

I
CODE/UNIT TEST AND SYSTEM e. The Size of documentation (DOCSIZE)
INTEGRATION/TEST PHASES f. The Percentage of documents that have I

changed (DOCCHG)
With the design in place, unit coding and testing
begins followed by the system's integration and its All of these metrics are addressing questions related
associated testing. Using reengineering technology to assessing the impact of the change. Whether the
brings the challenge of pulling together old and inipact is viewed from a cost, schedule, staffing,

new code into one software product. Keeping track testing, or reuse perspective. These metrics all I
of which modules are reused and which are updated provide the system's developer an idea of the size
is one way toward raising the awareness of the and complexity of the changes being made. If
reuse issue. An awareness of the current only 10% of the CSU's are being reused from the

development status and your well-defined goals, previous version, the management decisions made
will often show you what reengineering steps relating to the effort will be much different than the
must be taken to achieve those goals. ones if 90% were being reused.

Metrics that could help here am: VERIFICATION AND
VALIDATION PHASE

a. The software program's size. Some specific
examples that we use are: KSLOC - the HP reported that "you will find I defect post-release
number of executable lines of code divided by for every 10 you find pre-release during test."
1000 and KTLOC - the total number of lines [Gra92] By collecting and analyzing a simple
of code, (including blanks and comments) metric such as number of defects in HP's system, a
divided by 1000. Many different very valuable statistic was established. During
measurements can be used for sizing other verification and validation (V&V) is a good point
than the ones presented. The important point in the development lifecycle to formally keep track I
is to decide on a common definition and then of software defects.
use it consistently within the organization so
that a common frame of refe.ence is obtained. In preparation for the V&V lifecycle phase, I
These measurements can also be further questions relating to staffing and the level of
broken down to whatever level is appropriate testing are often asked. Among the questions are:
for the software system. For example, the
Computer Software Unit, (CSU), the 1. "How many people should be assigned to this
smallest compilable set of code, may be software system V&V since only 10% of the
appropriate. requirements changed and 25% of the design

b. The number of modules or CSU's, dwgecd?"
(NUMMOD). 2. "How much testing needs to be done to insure

c. The percentage of CS U's changing the code matches the requirements?"
(MODCHG). This metric is especially
important in the reengineering process if Beside employing the metrics described in the code
reusability is emphasized. and integration testing, since the system is now

d. The percentage of CSU's tested and the under some type of configuration management
percentage of requirements tested. These control one could collec, metrics relating to I
metrics can be gathered at the unit test level quality. These may incluck ,uch metrics as:
or at system's integration testing to insure
that all requirements have been incorporated a. Number of defects (NUMPR) per U
into the code and adequately tested. Every test baseline/revision.
case must cover at least one requirement and b. A metric that rates the criticality of the defect
vise-versa. These metrics are plotted against (ERROR SEVERITY) (An example rating I
time to determine development progress. At scheme is enclosed in the Appendix where we
the conclusion of this lifecycle phase, both employ a 1 to 6 level rating with I being the
metrics should be at or near 100%. worst.) 3

236

I

I c. Some type of metric that characterizes the 1. "Has the quality of the system degenerated to
defect type (ERROR CLASSIFICATION). the point that an entire new development
"This allows the user to better understand the effort is indicated?
development process and the kinds of defects 2. "How fast are changes being made to the
that are being made. If one particular type is system?"
predominating, the developer could 3. "What level of support is required to maintain
specifically target process improvement steps the existing system?"
in this area. (A sample classification scheme
that we employ for software systems is Metrics to address these questions would include all
enclosed in the Appendix.) of the quality metrics discussed in the verification

d. Number of defects per KSLOC (DEFECT and validation phase plus some of the requirements
DENSITY). This metric can be used to through design metrics. This latter set would cover
determine if the system is ready for release. any maintenance activities on the operational
Too high a value may indicate problems. software. In addition some other metrics that can

be used include.
These are just a sampling of the types of metrics
that can be collected. In addition, the metrics can a. System Reliability - The probability the
be cross tabulated against one another providing the system will operate without failure for a
user an additional perspective. An example would specified time under a specified environmenL
be number of defects broken down by error b. Mean Time To Failure (MTTF) - The
severity, expected time to the next failure of the

system.
DELIVERY AND OPERATIONAL c. Availability - The probability the system will
PHASE be operational during a specified time and in a

specified environment.
The delivery/operational phase of the lifecycle will
be the time to collect the final set of metrics on the These various metrics can be plotted against time
product. They will be collected for both before it during the operational use to determine if quality is
goes to the end user (delivery) and during its going down. For example, if the operational
operational use. This type of information is used reliability of the system has reached a point that is
to compare back to the metrics collected earlier in no longer acceptable, a decision will need to be
the lifecycle and during its use to monitor changes. made if continued upgrading is feasible or whether
For example, at delivery one might collect design it is more cost effective to simply reengineer the
size and compare it with the size at the completion entire system.
of the design phase. Has the design size changed?
It shouldn't have but many times changes are made An interactive computer program called the
further down in the lifecycle then they should be. Statistical Modeling and Estimation of Reliability
Both a process and product problem are indicated if Functions for Software (SMERFS), [Far93], is
the size change is substantial. After delivery the available to estimate both Reliability and MTTF,
quality of the product can be monitored. If the among others, for the software components of the
quality begins to go down to the point that further system. The program is completely machine
maintenance is not advisable, reengineering of the transportable and incorporates eleven of the most
entire system may be warranted. As a system is well known software reliability models appearing
updated in the maintenance phase with new in the literature. It allows the user to do a
enhancements and corrections to existing faults, the complete reliability analysis using either the
risk of error introduction and greater demands for number of software faults per unit of time or the
resources to make the updates increase dramatically, elapsed time between fault occurrences. Using

either of these two data types, the user can input
Questions that are often asked at this point in the the data via keyboard or file, edit it if necessary,
development process are: transform it, plot it, do a preliminary analysis of

the most appropriate model, model the data,

3 237

I

analyze the resulting model fit, and then do is not all inclusive. It is intended to be illustrative
reliability predictions and trade-off analyses. A of the type measurements that one would be
sample plot is shown to illustrate how this interested in. The metrics selected in this paper are
program could be used in a reengineering illustrative of the ones collected in our
framework, development process. Little metrics have been

given relating to cost, security issues, nor
Figure 1 is a plot of the predicted operational performance. The emphasis has been on quality,
reliability of a program over a 1 year period. As scheduling, and staffing issues. These areas are
one can see the reliability, because of the changes deemed important within our environment. The
that have been made to the software over this time important consideration is to define a set of
period, has degraded to the point that a rework of objectives for your development effort and then to
the entire system may be necessary. select a set of metrics that will provide quantitative

measures of how well those objectives are being
1.0 met.

R
0.8 REFERENCES

0.6 [Faz93] W. Farr,"Statistical Modeling and
Estimation of Reliability functions for

1 0.4 Software (SMERFS) User's
Guide",NSWCDD TR 84-373, September
S1993.

] Y 0.S [Gia92] R. Grady, Practical Software Metrics For

0 2 4 6 8 10 12 ProjectManagement and Process
Months Improvement, P T R Prentice HallInc.,1992.

Figure 1 Reliability [Hal93J J. Halligan, "Requirements Metrics: The
Baisof Infoamed Requiremn~ts

Some additional metrics that can be collected over of Mn ageRequireen gs
all hase incude:Engineering Maugemet', Proceeding of

all phases include: the 1993 Complex Systems Engineering

a. Engineering months (NUMMON) - the actual Synthesis and Assessment Technology

number of months the project took. Workshop, July 1993.

b. Staffing time (NUMPEO) - the number of [HM0 "Insights on Improving the Maintenance
full time people engaged in the development Process Through Software Measurement,
effort. This includes support personnel as Proceedings T irog Conference on Software
well as management time. Maings Nom ber 1990.

c. Average Staffing (AVSTAFF) - NUMPEO M November 1990.
divided by NUMMON [Pfl90] S. Pfleeger, S Bohner, "A Franework for

The above metrics can be broken down by phase of Software Maintenance Metrics",

the lifecycle and used to determine scheduling and Proceedings from Conference on Software

staffing requirements for similar reengineering

efforts.

CONCLUSION

This paper has provided suggested metrics for the
various phases of a reengineering effort. This list

238

I
* APPENDIX: METRICS

This section will elaborate some of the metrics Defect density indicates the number of software errots
discussed ealier by illustrating how they can be used in (where error severity is I - 6) per KSLOC per program.
the re-engineering process. In this section we will This metric is a measure of code quality and testing
provide the metric name. its definition as it relates to adequaty.
our development environment, and how it can be used
to relate back to the product and/or process. An Sunnortilig DeflnitionU
example is provided where appropriate to illustrate the
usage. KSLOC - the number of executable lines of code

(excluding blanks or comments) of a program divided by
Metric: AVSTAFF 1,000.

Error Severity - a seven level rating system for
Doguriajjti evaluating the severity of software eors.

I The metric AVSTAFF is the average effort (person- FeedhneklanalSilt!
month) expended per month for a program. It is
calculated from two other metrics, NUMPEO and Defect density provides an idea of the complexity of the
NUMMON. It is useful for determining the level of code or the reliability of the code. It also provides an
staffing required for future development efforts and for indication of the level of Quality Assurance testing that
tracking curent efforts. was performed. A high defect density may indicate poor

code quality or a low density might indicate inadequate
Fledbaek/annlyqi-" testing was performed. Management can use this

measurement to evaluate the quality of the software and
AVSTAFF would be used by project leaders to decide on a future course of action. Figure A-2
determine how well actual staffing meets the original illustrates how the defect density can be tracked over
projection. Previous values can also be used as data time for a given program, to determine how the quality
points to create scheduling and staffing estimates for is changing over time.
future endeavors. Figure 3-2 shows how the average
staffing effort for program X has increased over its This metric can be plotted against a baseline (revision
development history, peaking in the critical design or yearly) for a given program to see if the quality of
phase. The plotting of this metric could represent a the program is going up or down. The following figure
particular phase (e.g. coding and unit testing) or the shows what a report of this nature might look like:
entire life cycle history of a program.

14'

0 12

A s
V • • iII t

SV s
S
T L0

F 2 3__

F
W14

o m •U3mY "AT Figure A-2: DEFECT DENSITY FOR
PROGRAM X

Figure A-I: AVSTAFF SIZE AS A From this plot one can see that the defect density of

FUNCTION OF TIME FOR PROGRAM X Program X was steadily decreasing over the first 3
Metric: DEFECT DENSITY baselines (revisions). It then suddenly went up on

3 baseline 4. Management would then need to investigate

A-I

m 239

I

what led to this sudden change (e.g., extensive new to 40% of the DESCHG value.
cpabilities added, more testing perfonred in contrast to
earlier versions). If this trend persisted, more detailed Metric: DESSIZE
tracking of this program would be required andp corrective action taken. DcriphiaL

Metric: DESCHG DESSIZE: Number of design units (e.g., PDL.=lines,
DFD~bubbleWarcs) of a CSCI.

Feedbhmek/annlvis.
Percent of software design that has changed (modified,
added or deleted) from one baseline/rvision to another, DESSIZE is used to calculate DESCHG. Knowing the
e.g. Program Design Language (PDL), Data Flow relative sizes of the software design is important when
Diagrams (DFD). used in conjunction with other metrics to make an

overall assessment of the software piocesslAruct.
DESCRO L= U x 100 Figure A-4 illustrates how DESSIZE might be used

DESSIZE with NUMPEO.

DESCHG may be used to evaluate program stability
and to estimate resources needed by knowing how much I
of the code must be changed. It will be used in D

conjunction with MODCHG and REGCHG to estimate s
how many modules in a program will be changing in 11
the future. Caution: Don't try to compare DESCHG S
across different software. Programmers design software
in many different styles. The level of detail the
programmer chooses will often vary. Also, don't ,.----------"r_
assume that because the percent of requirements change
(REGCHG) is a small number that the DESCHG will WUrW[
also be smalL Figure A-3 illustrates how DESCHG I
might be used with NUMPEO. FIGURE A-4: DESSIZE

The figure displays historical information about
pervious baseline efforts for similar pieces of software.
Using this figure the developer could predict an

€W "=1ý,, estimated NUMPEO basing the estimate on DESSIZE.

o Metric: DOCCHG

FIGURE A-3: DESCHG
The figure displays historical information about
previous maintenance efforts for a piece of software.
Using this figure the developer could predict that for DOCCHG: Percent of mades of a sdecilic document that
DESCHG values < 30, NUMPEO is roughly half the has changed (modifie, added. or deleted) from one
DESCHG value. For values > 30, NUMPEO is closer baseline-vision to another.

A-2

240

I

DOCCHG= 8OFCHANGEPAGFS X o00
DOCSIZE

0Sunnorting Dneinitionci c

DOCSIZE: Number of pages of a specific document. NFcedhneklnnnlvgI:T i

DOCCHO will be used to evaluate software stability
and to estimate resources needed by knowing how much
of the documentation has been changed. FigureA-5
illustrates how DOCCHG might be used. FIGURE A-6: DOCSIZE

Tie figure displays information about three documents.
Using this figure the tester might conclude that more
time should be set aside for reviewing document one

o sine DOCSIZE is higher for that document. If tf
0C progams are comparable, it may also indicate that

program one is better documented than program three.

3 7 T Metric: ERROR CLASSIFICATION

3 Error Classification is a code that categorizes the type of
software eror that was made. The code will be made up

FIGURE A-5: DOCCHG FOR PROGRAM X of five majorfields. Each code conveys information

The figure displays the percentages that three documents about the error. The scheme is as follows:

describing Program X have changed. Using this figure How did the error manifest itself to the user?

the tester could conclude that more time should be set 01 abort

aside for reviewing document two since DOCCHG is 02 program produced wrong answer
higher for that document. 03 code reading

04 erroneous error message produced
Metric: DOCSIZE 05 using supporting documentation

06 using an analysis tool

D
07n other

I DOCSIZE: Number of pages of a specified document. Type of error
Feedhaelkanalvsin s 01 incorrect logic

02 incorrect equation

DOCSIZE is used to calculate DOCCHG. Knowing 03 invalid subscript or counter used
the relative size of a document is important when used 04 data read in incorrectly

in conjunction with other meuics to make an overall 05 data written incorrectly
assessment of the software process/product. When used 06 variable not initialized properly
independently, DOCSIZE could indicate when there is 07 incorrect variable type

insufficient documentation for a software 08 module called with incorrect parameters

process/product. Figure A-6 illustrates how DOCSIZE 09 standard violation

might be used. 10 database

* A-3

241

11 documentation of the other 5 subgroups (error manifestation, found by,
12 peneration problem how found, test cae classification, time error
13 violated system constraints introduced).

Found by whom?
01 associated development team
02 associated IV&V team D -
03 NSWCDD user
04 non-NSWCDD user 2,: WOO ---- No..

How foud? - -'- do ft--'-----

0l olperational use TM U... " shad"...

02 product inspection
03 by convertingexecuting program for/on
another platform
04 testing Figure A-7: ERROR CLASSIFICATION by
Test Case Classification (use only if 04 is TYPE for Program X

01 Operational - lest that uses real Each of these may be report separately or in
dam, and r•l sequences of events combinations. They can be reponed either in tabular or
02 Surss - test that simulates a plot form. For example, the plotting of the *Error was
program's full load capability introduced at what point in de life cycle" against phase
03 Boundary - test that uses of the life cycle would be especially revealing. This
maximum or minimum boundary data would show where the errors were being introduced so
04 Ravndoized - test that uses that appropriate corrective action to the process could be
randomly chosen real data applied. Also, the information from the various reports
05 Robustness - test that uses invalid can be used in conjunction with one another. An
dama or procedures example would be a high number of enors introduced in

Error was inroduced at what point in life cycle? the requianemnts pse and were also primarily logic
01 requirements definition type errors. This information might be useful in I
02 design determining the type of corrective action to take. Cross
03 coding tabulations of the above categories would therefore
04 maintenance proide additional infiormation.3

Fcedhncklanmlvalin Further information can be derived by breWki this
information down by each program. If a particular

Error Classification can be used to determine whether program was experiencing difficulty relating to quality
the particular project requires more or less people and/or or meeting deadlines, analysis of the above error
time resources. It can also be used by the configuration classification type might help pinpoint the problem.

n eme board and the Software Process
Improvement team to identify areas where process
improvements would be beneficial. This metric can be Metric: ERROR SEVERITY
used to determine if new initiatives aimed at eliminating
certain errors ar successful. For example, this rsriptiont
information can be used to determine what types of
diagnostic tools might be helpful, and to evaluate the Error Severity is a seven level rating system for
effectiveness of these tools. Additionally, this metric evaluating the severity of software errors. i
can be used to determine what types of testing are
yielding what types of errors. 1. Critical - Program cannot be used until error is

corrected. Program aborts abnormally, or produces
Figure A-7, a pie chart, is an example of how the unreliable results.
distribution of error types might be reported for
Program X. Similar charts can be constructed for each 2. Serious - Some necessary portion of program

A-I

242 I

cannot be used until error is corrected. It is still possible Figure A-8 is an example of a graphical report ofzhis
to use other portions of the program. metrics for Program XX. Ideally the graph should have

no errors of severity I or 2. For Prgram XX there are
3. Noe¢-crital - Program does not perform correctly a total of 11 such errors. Management may question
for non-typical test cases. Some nonessential feature of the reasons for this count.
the program caunot be wed. These types of errors can3 ~be worked avroud and are typically placed on a shopping
list or corrected as time allows, rather than immediately.
Program is still usable.n ""
4. Stande Welaaia - unjustified violation of i
sandards Violations that are intentionally introduced I
for a reason are not eros. (Intentional violations must a : .

I be documented, giving the reason why they are
necessary.) These erno are not visible to the end user. FIGURE A-8: ERROR SEVERITY FOR

5. Clerial - typographical errors, misspellings, PROGRAM XX

grammatical eom in the code dtat do not prevent the Metric: KSLOC
reader frm understanding what is wrinten. If the user is
mile by the eror, then it gets a higher severity rating. Dsrpin
Umecesary code and variables would be included in
this category. KSLOC is the number of executable lines of code

6. DCwnxNtWk - any error, (typographical efors (excluding blanks and comments) of a program divided

misspellings, etc.) that appears in the supporting by 1000.

documentation, (Software Design Document, User's
Guide. etc.), for a progrmn. If the user is seriously Foodbarklsnalledg-

misled by the documentation error, then it should get a can be applied todiffemt programming
languages and compared to outsie orgnizations~~~~especialy incomparing estimate for workthtitob

0. No error - problem reparts submitted because of

incorrect input, user .isundertandings, etc. contracted out. KSLOC can be used in conjunction with
NUMMON d estimate future program

nNote: Eros of severity level 1, 2 at 3 must be development resource allocation/staffing. It also can be
submitted am per problem repo1 For level 43 5, or 6 used to calculate other metrics (e. g. DEFECT

errors, multiple problems may be submitted as a single DENSITY). Knowing the relative sizes of programs is

problem reporL important when used in conjunction with other metrics
to make an overall assessment af the software

Feedh meklsinstlvgia! pr •oes prdut.C
Error Severity can be used by a manage or group leader

when scheduling tasks. This metric indicates whether a
particular project requires more or less people and/or
time resources. It can also be used by the IV&V team
for the same reason. The Software Process
Improvement Team and the CM board will use it to
id'•ntify areas where process improvements would be
beneficial. This might be used to detenrine if new
initiatives aimed at eliminating certain errors are
successful.

* A-5

243

I
Figure A-9 illustrates how KSLOC might be used to
compare programs. These programs might be different
software items or they might be the same program
tracked over different years. The data can also be used to 40

estimate the size of future efforts. If a new program is I
being developed that is roughly comparable to programs r. ULOC
2 and 3, a developer could estimate a KSLOC of 25 for o-
the new program based on this data. ,. M

3 0 0

201 POGRAM

20 1
0 iFigure A-10: EXAMPLE KTLOC AND

C 10 KSLOC REPORT COMBINED

I , Notice how Program I has very little in-line comments

0 : and/or blank lines while Program 3 has about 50%.

1 2 3 Program 1 may be difficult to maintain and/or test.

PROGRAM Metric: MODCHG

Figure A-9: KSLOC Sample Report De.i nn!

Metric: KTLOC Percent of modules within a program that have changes

(modikied, added, or deleted) from one b&einrevision
to another.

KTLOC is the total number of all lines of code of a I of modules chane too
program divided by 1000. MODCHG l # of modules cNUMMOD)

Feedbaek/anallsi.t" Feedback/analIsis:

KTLOC may be used in connection with KSLOC to MODCHG will be used to evaluate program stability
determine how well a program is documente. It may and to estimate resources needed by knowing how many
be used in determining future program development modules have changed. It will be used in conjunction
resource allocation and staffing. with requirements changes to estimate how many

The following figure is an example report that could be modules in a program will be changing in the future.

generated comparing the KTLOC from three programs. Figure A-Il illusagra ics reporofMODCHG.I
In addition this report could combine the report of From this report the V&V group can determine whetherKSLOC to indicate how many non-executable Fo hsrpr h & ru a eemn hte
statements there are. From this comparison one could testing should be performed and, if so, the extent.
setatemnts therea reh o m m thin s coumetarison onedcould From the Figure, the testing group might decide to put
get an idea of how much in-line documentation and/or little or no effort into Program I while Program 2 is a
blank lines were being put into a program and how this good candidate for a complete V&V effort. Program 3
number varied acrs pmay need some testing depending upon the nature of the

changes.

I

244 I

I
Ia

100
Sso m

I w60'

c 40 am

20 am

1 2 3 m, a 1,1

Figure A-11: Example Report for Figure A-12: MTTF
MODCHG
Ii Metric: NUMMODI Metric: MTTF

flzscrigtina
The number of modtules within a program. Do not

I
Mean time to software failure occurrences of a software include any external library routines in your count of
progam. modul

I FeedhackLamlvysis% FeedbackLanalVsis:

MIT can provide an indication of the quality of the NUMMOD provides program sizing information. It
softwore. It can thus be used to determine both the will be used in conjunction with KSLOC to estimate
testing effort required and the release time from V&V complexity for evaluation of design, development, or
testing. For example, if the MTTF is low, additional V&V resource allocation of a progrun. In Figure A-13
testing many be required in order to increase iL In one can see that the number of modules steadily grew
addition, management can use this metrics to determine through three revisions and then dropped slightly for
how much additional testing is required to achieve a revision 4. For the V&V team the amount of testing
desired level for this metric. This metric can be could reflect this same behavior, ie. testing increases
computed from the Statistical Modeling and Estimation through revision 3, then drops for revision 4.
of Reliability Functions for Software (SMERFS)
developed by one of the authors.I IpThis metric can be compared across program revisions 1
to aid in determining maintainability issues. Figure A- rn.s
12 illustraw a plot of this metrics for three software r
revisions. As can be seen MnTF is going down. This -,
indicates the quality appears to be degrading, requiring x
additional testing effort andor possible rewrite of theI software.

. SO* he.1 1S@ 450 ***)

FIGURE A-13: NUMMOD FOR PROGRAMI xx

Metric: NUMMON

i A-7

245I

I
J] i8 u time AVSTAFF continually increased until November. 3

If this was not expected, the development manager
The metric NUMMON is the number of elapsed time would investigate what caused this spike in the figure
(in calendar months) it takes to complete a project. The (changing requirements, time management, planning
metric will also be used with NUMPEO to determine was too crude, etc.) What should especially be
AVSTAFF. questioned is the large value for NUMPEO beginning

with coding. Poor scheduling may be indicated.
Feedhark/analysi a:

NUMMON would be used by the project leaders to wI NUWION PHASE

determine how well actual scheduling meets the original Nu, 2 A VsTaF i Ay

projection. This metric can also be used as data points t' 1 10 0i.°o•'
to create scheduling and staffing estimates for future oct 6 3 2.0 5aumin .aion&.atTehinh

S6 2 3.0 Vai d
endeavors. Now: calendar months with no effort are t 6 3 0ol a-d h
counted in NUMMON.

Figure A-15: STAFFING INFORMATION
For this example given in Figure A-14, the program FOR PROGRAM X
was in the requirements/design phase until April, and
completed testing for implementation by December. Metric: NUMPR
The number of months and staffing during the design
phase was relatively low but increased after April. The DegerJ i
management might question why this occurred
especially in the later phases of the lifecycle. The number of problem reports (PRs) submitted against

a CSCI.

NUh4PE AVSTAW
Ian 2 2 1.0 Re%.1fa" and Adnalysi Feedhaek/atskaaivsi!
Apr 3 3 1.0 Dedge Dovelopenoua
Nov 6 2 2.0 -Vatmatar and .VTalin Analysis of this metrics will highlight anomalies that
Doe 6 3 2"0 lazv and c require further investigation. e.g., an unusually high

Metric: NUMPEO number of PRs in a given period of time could indicate
requirements changes are still being made afte , ersion

Sbaseline is established. Use this metrics to evaluate
program stability- the key is that an unusally large

The metric NUMPEO is the total number of person- number of PRs warrants a more detailed look at the

months used to complete a program. Be sure to include software developmeent process to see if corrective action

manager's time spent reviewing work on tasks as well is justified.

as any contractor support given to tasks. The metric
will also be used with NUMMON to determine Metric: RELIABILITY I
AVSTAFF.

Feedhack/analysis" Probability the software will not fail in a specified time i
NUMPEO would be used by the project leaders to within a specified environment.

determine how well actual staffing meets the original
projection. This metric can also be used as data points Feed ,dckanalysis:
to create scheduling and staffing estimates for future
endeavors. Reliability can provide an indication of the quality of

software. It can thus be used to determine both the

For this example given in Figure A-15, the testing effort required and the release time from V&V

program was in the design phase until April, and testing. If the reliability is low additional testing may

completed implementation by December, during which be required in order to increase it. In addition, 3
A-8 3
246 I

I

management can use this metric to determine how much
additional testing is required to achieve a desired level
for this metric. This metric can be computed from the
Statistical Modeling and Estimation of Reliability
Functions for Software (SMERF) developed by one of

the authors.

Th"s metric can be compared acrss program revisions
to aid in determining maintinability issues. Figure A-
16 illustrates a plot of tibs metric for three revisions. um"

As can be seen the Reliability is going down. This
indicates iat the quality yhg 2q be degrain. FIGURE A-17: REQCHGreurn addiionl testng effort aror possible rewrite

of die aftwarI The fi historical ie about previous
maintenance efforts for a project. Using this figure the
developer could predict that NUMPEO is roughly equal
to REQCHG.

L •Metric: REQSIZE

L °., iltin.
REQSIZE: Number of requirements of a CSCI.

U, 2 1 Feedback/analvsls:

FIGURE A-16: RELIABILITY REQSIZE is used to calculate REQCHG. Knowing the
number of requiremens of a CSCI is important when

Metric: REQCHG used in conjunction with other metrics to make an
overall assessment of the software process/prodnc.

DUT.J•dIgU Figure A-18 illustrates how REQSIZE might be used
with NUMPEO.

Percent of requirements of a specific CSCI that has
changed (modified, added, or deleted) frm one
baselinefevision mother.

Feedhbck/analysiq: o

II
REQCHG will be used to evaluate software stability

I ~ ~and to estimate resotw=e needed by knowing how many "

of the requirement have chianed. Figure A- 17 .L
illustrates how REQCHG might be used. Me

FIGURE A-18: REGSIZE

The figure displays historical information about
previous baseIne efforts for similar pieces of software.
Using this figure the developer could predict an
estimated NUMPEO based on REQSJZE.

* A-9

2147I

II

Customized Software Evaluation Tools:
Application of an Enabling Technology for Reengineering

Lawrence Markosian, Russell Brand and Gordon Kotik'

Abstract reducing the likelihood of defect introduction during
maintenance.I

This paper describes a new approach to developing tools The coding standards may be based on published stan-
for verifying source code compliance with coding stan- dards such as the Software Productivity Consortium'sIdards. The approach is based on an enabling technol- ddsuhasheSfwrPoutityCsrim'
od frds. softe ealuro athisbaeon and reengeing. tehe- Ada Quality and Style: Guidelines for Professional
ogy for software evaluation and reengineeing. The Programmers [1] for Ada, or they may be based onkey technical ideas underlying the technology are to corporate guidelines. Often there are project-specific
represent source code in the form of abstract syntax guidelines that deliverable code must comply with.
trees in an object-oriented database, and to use a li-
brary of utilities to analyze software represented in this Coding standards typically cover a wide range of cod-
way. This enabling technology supports rapid imple- ing practices including commenting style, formatting,
mentation of project-specific coding standards. Coding identifier naming, language standard, coding idioms,
standards verification tools implemented this way can file organization, and use of libraries. I
be used for evaluating legacy systems that are being
reengineered, as well as for performing quality assur- While the simplest of such coding standards may be
ance on the reengineered systems. A major focus of the checked by regular expression-based text analysis tools,
paper is the enabling technology, which is applicable others require a deeper model of the implementation
to other reverse engineering and reengineering tasks. language.
The paper also discusses several examples of coding he great variety of possible coding standards, in-istandards implemented using this technology. Finally, Th gravritofpsblcdngtaadi-we stmmarize our experience using this approach. , cluding project-specific standards, makes it difficult to

find an adequate commercially-available, off-the-shelf f
(COTS) automation tool. Also, there is often little sup-

I Introduction port for the old languages and dialects in which legacy
I o tapplications were written.

A key component of a software evaluation process is This paper describes an approach to building software

a procedure for checking source code for conformance evaluation tools that makes it feasible to implement a

with coding standards. Prior to reengineering a legacy wide range of coding standards, including those that re-

system, this procedure can be used to help determine quire semantic analysis of the program being analyzed.

whether the system should be reengineered and, if so, Section 2 describes Software RefineryTM and the Re-
what reengineering approach should be used. For ex- fine Language ToolsTM, products from Reasoning Sys-
ample, the procedure can help identify modules that tems that support this approach.
must be redesigned or rewritten by hand. Another I
goal is to ease maintenance of the reengineered sys- Section 3 contains examples of specific coding stan-
tem by making the code more understandable and by dards implemented using this approach. We provide

"Reasoning Systems, Inc., 3260 Hillview Avenue, Palo Alto, examples for C. We give an informal characterization
CA 94304 of each coding standard and show its implementation

I
248 I

I
* in Software Refinery. * a very-high-level language for analyzing and

Section 4 summarizes industrial experience with soft- transforming software in this database,

ware evaluation tools implemented using this approach. * a library of utilities for operating on code in the
database,

* an X Windows-based graphical user interface
2 Enabling technology toolkit, and

9 a programming environment t-at permits seamless
We use a new, enabling technology for reengineering integration with existing UNIX tools and network-
in building tools for coding standards verfication. The ing utilities.
central technical ideas underlying the technology are:

Figure I shows the major components of Software Re-

* represent software in the form of abstract syn- finery. A complete description of Software Refinery is
tax trees (ASTs) in a persistent object-oriented provided in [3, 4, 5, 6].
database;

DLALEC7TM is an LALR(I) parser generator. It pro-
* use libraries to analyze and transform code repre- vides a mechanism for handling non-LALR(I) lan-3 sented in this form. guages such as COBOL.

Parsers developed using DiALECr retain surface syntax,
The coding standards verification tools are built us- which includes comments and formatting information.
ing Software Refinery and the REFINE Language A coding standards verification tool can make use of
Tools, reengineering products from Reasoning Sys- this information-for example, to determine whether

i terns that incorporate this technology. These products indentation conventions are followed. Also, during
S run on SPARCstationTM, IBM RS/600 0TM and s the code conversion process, code that is transferred
9000t700TM workstations. into the reengineered system without modification can

i The remainder of this section describes the features of be printed exactly as it appears in the original source

Software Refinery and REFINEICTM, the REFINE Lan- program.
guage Tool for analyzing C programs. This section Software Refinery's very high level lanTiage,
also discusses the data model that REFNEC uses for REFINOTM is the implementation language for our cod-representing C programs. ing standards verification tools. REFINE includes:

I 2.1 Software Refinery * symbolic mathematical operations including first-
order logic and set operations,

Software Refinery is an environment for developing * a library of tree operations such as copy, compare,
reengineering tools. We used Software Refinery to traverse and substitute,

I build the REFINE Language Tools, including REFIN/C.
For building the C coding standards verification tools, * a transformation operator for specifying modifica-
we used Software Refinery to customize REFINE/C. tions to source code, and

I Software Refinery provides: * pattern-matching against ASTs in the objectbase.

* a parser and printer generator, The REFINE compiler supports unit-level incremental
compilation and dynamic linking, which speeds up the

* a persistent object-oriented database, edit-compile-run loop.

I
249I

S.. . . . , , i I I I I I ! '1' -

I I
I

"• DIALE.T"r Programmiable language parser/printer
"* REFINE11 Software analysis and transformaion system
"" MERVISTAT" X Window-baed graphical user interface toolkit

Input

Source -

IParsenDingsplay ~e
DIALECT REFINE INTER VISTA

Figure 1: The major components of Software Refinery

2.2 REFDWEC 0 navigating from any report directly into the corre-

RERFINEC is aC reengineering work-bench developed by s eporting touraeforad-engnein;AEol

Reasoning Systems using Software Refinery. REF C exporting to a forward-engineering CASE tool;

supports: * PostScriptTM or ASCII printing of reports; and

" modelling C source code as ASTs in the REFINE * handling large C programs.object base; I
oREFINEC has a graphical user interface with pull-down

"* associating variable definitions with their refer- menus, on-line help, multiple windows displaying text,
ences; tables and graphs, and hyperlinking among reports and

" generating graphical reports for each C program, source code.

including: The programmer's guide for REFINE/C documents its

- structure chart, application programmer's interface (API)[2]. The API

- data-flow diagram, supports customization and extension of the tool's ca-data-fow digrampabilities.
- function control-flow diagram and cyclo- I

matic complexity report, The next section gives an overview of the representation

- coding standards report, of C code in REFINE/C. This data representation is used
- functions table, by analysis tools in REFINE/C such as coding standards

verification.- variables table, and

- types table; I
250

I__ I I II I IIIII

I
2.3 Representation of C code in REFINE/C (players [player] bet = 0

* return;

This section gives an overview of how C programs are
i represented in REFINE/C.

s in the if statement.
The AST of a C program is the basic data structure usedE during program analysis and transformation steps. RE- The parser creates these objects and sets the values of
FINE/C provides an object-oriented model for C abstract their attributes when it parses the original if statement.
syntax. Object classes correspond to non-terminal The top part of the AST for the i f statement is shown as
nodes in the AST. Attributes (slots) hold subtrees. a diagram in the lower-left window (labelled "Abstract

Figure 2 shows three views of the REFINEC represen- Syntax Tree" in Figure 2. The full AST for this if

tation of the following C if statement: statement is shown in Figure 3.

The complete abstract syntax for C is provided in the
if (players[player] .dollars == 0) REFINEC API.

(players[player].bet = 0
return ;

3 Implementation of coding standards

I The upper-left window contains the "Pretty Print" view
of the statement-the surface syntax as it appears in a This section describes several related coding standards

* source code file. The lower-left shows a diagram of for C code and how they are implemented in REFINE/C.
part of the AST of the same statement. The upper-right The first coding standard we discuss is the follow-
window shows the "Frame Print" view of the statement ing: "Do not use an LVAL unnecessarily on the left

* as an object in the database. This object is the root of side of a comparison." An "LVAL" is a variable
the AST that REFINEC creates when it parses the C if or other construct that can be assigned a value. in
statement. The lower-right window is a history window C, these other constructs include array elements (for
that assists in navigation, example, a (i]), pointer dereferences (*ptr). and

REFINEC models C if statements with the component selectors (EmployRecord.name and

if-statement object class. The first line in EmployRecord->name). The motivation for this

Frame Print window says that the particular state- coding standard is that during maintenance, the com-

ment being viewed is an instance of this object class. parison operator could be incorrectly edited to become
The if-statement object class has three attributes an assignment. This editing error would not be detected

that hold subtrees: if-condition, then-part by the compiler, would not always generate a runtime
and else-part. They are shown in the Frame error, and could "silently" cause incorrect answers to

Print window. Since there are no else actions be generated by the program. For example, x ! = 8

in the example if-statement, the value of the might be edited incorrectly to become x = 8 when x

else-part attribute is undefined. The value of == 8 was intended. Usually this incorrect edit will not

the if-condition is an instance of the equality generate a compiler error. However, if the original ex-

object class that represents the condition pression had been 8 ! = x and this had been changed
to 8 = x, a compiler error would be generated.

I players [player] . dollars == 0 The condition in the if statement that we examined
above violates this coding standard because *t contains

in the if statement. a component selector, which is an LVAL, on the left
I side of the equality test.

Similarly, the value of the then-part is an instance

of the block object class that represents the block Figure 4 shows the REFINE/C representation of the

2
251I

Fe Pocba Hes"Iele Opftam Windaws

. IPlkW I ba. - 0 A g1

if-.(If-.t. 4" 4 O ut

4.01U* No . J1

W 8b _ _ _ _ _ _ _ _ _ _ _

EQMIDdM~Ii

NO ., ~ .i 3

15G;e-amUS,

- -
I -

Re Pedadw Kw"a~ 0p0s Whidow

IDE) VWWAO

[DID
EIB
093 V1 1 VSO
EQ0 - -OM-

Figure 3: The AST for an IF statement

252

I
FR Pues KWo" Opt- Wkwdow

' EG4AN d~iJTY(o4N A Im i •IiJ1Y (eN

.I, C ,&I C SAC.i -. r l

oa- W

~hom"" wmbal

I Irl.m 4 l~llI. m•Iti~'r •. ,..•

ILIL
I4dt -- a_1_ _

Figure 4: REFINE•C representation of an equality expression

U equality expression in the if-statement. Note Here is a nile that checks whether its argument, a node in
that the value of the argi attribute of the equality a CAST, is an equality that violates the coding standard.
is a direct-component-selection.

I The following REFINE function is a predicate that re rule check-for-lhs-lV'al

turns true if its argument is an LVAL: (node: c-obj ect)
<node, ' check-for-ihs-ival>

- in *already-.checked*

& EQUALITY (node)
function is-an-ival? (node: c-object) :

Iboolean =& is-an-ival? (ARG1 (node))UIDENTIFIER-REF(node) & ~is-an-lval? (ARG2 (node))

or SUBSCRIPT-EXP (node) <node, "check-for-lhs-lval>
Ior DIRECT-COMPONENT- SELECTION (node) in *already-.checked*

MI

or DEREFERENCE (node) & <node, ' check-f or-lhs-lval>
IDENTIFIER-REF, SUSCRIPT-EXP,i

IX

DIRECT -COMPONENT - SELECTION and
DeEFERENCE are names of REFINE object classes This rule has a single argument, a node in an AST. The

i in the abstract syntax of C. They are used as predicates rule contains a transform, as indicated by the transformU in the definition of is-an-lval.?, arrow, -- >. On the left hand side of the transform are
the preconditions for the transform to fire. The precon-I Since the value of the argl attribute of the equality ditions include tests that the node is an instance of the

is a direct-component-selection, equality object class, and that the argi attrbuteof
is-an-lval? returns true for this node, the node is an LVAL while the arg2 attribute is not.

I
253

I

"~~~<oe check-for-lhsl-lval>II I

On the right hand side of the transform are postcondi- in *already-checked*
tions that will hold in the state that results if the rule
fires. One of the postconditions is that the offending This rule can be generalized to work with all types of
node and the name of the rule that it violates are placed comparison operations.
in a set of violations.

The example rule above can be generalized to detect
other similarly error-prone uses of LVALs: 4 Experience with the approach

rule Software Refinery users have implemented coding stan-
check-binary- expr (node: C-OBJECT) dards for a number of languages including Ada, C, FOR-

<node, 'check-binary-expr> TRAN, COBOL and the PL language family [7, 8).
-in *already-checked*

& BINARY-EXPRESSION (node) As part of a project to automate a quality assurance pro-
& -LOGICAL-AND (node) cess forC developers using Microsoft/WindowsTM, we

& TLOGICAL-OR (node) recently implemented 12 coding standards in REFINE/C.
& ARGI (node) = the-argl The rules were based primarily on a client's corporate
& ARG2 (node) = the-arg2 style guideline document. The riles are being used in
& (is-an-lval? (the-argl) a batch processing environment to simplify the client's

or ASSIGNMENT (the-argl)) review and acceptance process for code developed by
& ~is-an-lval? (the-arg2) its vendors. Implementation of these rules took two

days.
<node, check-binary-expr> We used REFINF/COBOLTM to implement coding stan-

in *alreadyc checked* dards for analyzing control flow in COBOL programs us-
& <node, check-binary-expr> ing PERFORM statements. Different dialects of COBOL

treat nested PERFORM statements differently. This
leads to a number of porting difficulties. Also, leav-

Code that violates a coding standard can, in many cases, ing and reentering PERFORM ranges by way of GOTOs
be converted into equivalent code that conforms with leads to unpredictable results.
the standard. For example, the following rule corrects
the order of elements tested in equality comparisons:

References
rule flip-equality-comparisons

(node: c-object) [1] SOFTWARE PRODUCTIVITY CONSORTIUM. Ada
<node, Quality and Style: Guidelines for the Professional

•flip-equality-comparisons> Programmer, SPC-91061-CMC, Version 02.01.01,
-in *already-checked* Software Productivity Consortium, Herndon, Vir-

& EQUALITY (node) ginia, 1992.
& rhs = ARGI (node)
& lhs = ARG2 (node) (2] REASONING SYSTEMS. REFINE/C Programmer's

& is-an-lval? (rhs) Guide. Reasoning Systems, Palo Alto, California,

& ~is-an-lval? (ihs) 1992.

-- > [3] REASONING SYSTEMS. REFINE User's Guide. Palo
lhs = ARGI (node) Alto, CA, 1992

& rhs = ARG2 (node)
& <node, (4] REASONING SYSTEMS. DIALECT User's Guide. Palo

flip-equality-comparisons> Alto, CA, 1992

254

I
(51 REASONING SYSTEMS. INTERVISTA User's Guide.

Palo Alto, CA, 1992

[6] REAsoNING SYSTEMS. WORKBENCH User's
Guide. Palo Alto, CA, 1992

(71 BUSS, E., and HENSHAW, J. "Experiences inE Program Understanding," Technical Report TR-
74.105, IBM Canada, Toronto, Canada, 1992

S [8] TROSTmR, J., "Assessing Design-Quality Met-
rics on Legacy Software," Technical Report TR-
74.103, IBM Canada, Toronto, Canada. 1992

I
I
I
I
I
I
I.
U
I
I
I
I
I

255

I

Using Design Knowledge to Extract Real-Time Task Models

Lester Holtzblatt, Richard Piazza, Howard Reubenstein, Susan Roberts
The MITRE Corporation

Bedford, MA 01730
lester@mitre.org

Abstract In spite of the potential of these tools, the utility of
these tools for many DOD software systems is limited

The utility of most commercially available reverse by their ability to extract only information concerning
engineering tools is limited by their ability to extract the sequential execution of a computer program. Real-
only information concerning the sequential execution time military systems frequently consist of individual
of a computer program. With the exception of tools units of execution (tasks) that can operate concurrently
that support Ada and its explicit tasking constructs, on different processors or by interleaving their
reverse engineering tools fail to capture information functioning on the same processor. These concurrent
concerning the flow of information between tasks. tasks typically exchange both control information as
One of the primary reasons for this situation is that well as data through a variety of mechanisms.
reverse engineering tools only extract information that However, with the exception of tools that support Ada
is explicitly represented in the syntax of the and its explicit tasking constructs, reverse engineering
programming language. Since older programming tools fail to capture information concerning the flow of
languages do not explicitly represent tasking information between tasks. As a result, these tools
constrtre;ts, reverse engineering tools for these provide limited support for understanding the structure
languages fail to capture information concerning how of real-time systems
these tasks interact. In this paper, we describe an One of the primary reasons for this situation is that
approach for extracting extra-linguistic information understanding design constructs relevant to the
from the source code. This approach was used to execution of concurrent tasks requires more than an
support the recovery of task flow information from a implementation level understanding [1] of the software.
command and control system written in CMS-2. The syntax of programming languages, particularly

older legacy languages such as CMS-2 or Fortran, do
1.0 Introduction nct make constructs such as inter-task communication

and task synchronization explicit. Instead, the inter-
Commercially available reverse engineering tools task behavior of a system often depends on the design

extract certain aspects of the design of a software of the specific operating system and the way in which
system from source code. These tools can provide the application code interacts with ti,, operating
maintainers good insight into the structure of a system. SinC7 reverse engineering tools only extract
program particularly when analysis reports are coupled information that is represented explicitly in the syntax
wid. good source code navigational aids. For example, of the programming language, tools for sequential
using one of the family of tools available from programming languages can only extract information
Reasoning Systems (Refine/C, Refine/Ada, concerning the sequential execution of individual tasks.
Refine/Fortran, Refine/Cobol), a software maintainer These tools will fail to capture information concerning
can interactively navigate through code by selecting how these tasks interact.
different portions of code to view from a structure However, people can often extract knowledge about
chart. A maintainer may also begin to gain insight how concurrent tasks interact from the source code of
into the potential impact of changes he plans to older systems, even though such information is not
introduce into a program by using these tools to explicitly available in the syntax of a programming
identify areas of the program that may be affected by language. Capturing this information requires
his change. In each of tlese cases, reverse engineering knowledge about the type of processing model used by
tools may improve the productivity of a software the system software and how this processing model has
maintainer both by providing insight into the structure been implemented in a particular system.
of a program and by making relevant portin- 4C a In addition, it is also necessary to understand the
program readily accessible. idiosyncratic techniques used by a system to implement

these constructs. For example, although tasks may not

256

N be explicitly represented through syntactic constructs in focused primarily on developing techniques for
the code, specific recurring patterns of code may be determining which tasks schedule other tasks although
used to represent a task in a particular application. As this approach can be extended to recover information
a result, it may still be possible to recognize those regarding other types oi operating system calls.
specific portwsns of code that implement a particular Determining the flow of tasks within MCE requires
task. Similarly, the specific actions through which extracting information that is not directly available in
these tasks communicate with each other may be the MCE source code. Extracting the task flows
implemented through particular types of calls to the requires extracting the two primary pieces of
real-time operating system. Interpreting how specific information required to understand any task flow: who
tasks communicate with each other will depend on called a task and what task was called. Neither piece of
being able to interpret the meaning of these specific information is explicitly represented in the source code.
calls. The following two sections will describe the overall

As can be seen, the ability of a person to manually strategy that was required to automatically extract this
extract extra-linguistic information from the source information from MCE.
code of a program depends on his ability to use
knowledge about how specific design constructs are 2.1 Determining Tasks Called by RTOS
implemented in the source code. Reverse engineering
tools are not designed to make use of such meta-design The task scheduled by an RTOS call is uniquely
knowledge. However, unless techniques are developed determined by a set of arguments passed to RTOS by
to make use of meta-design knowledge, reverse the RTOS call. These arguments identify a module and
engineering tools will fail to extract more than the the task contained in that module. A module/task pair
implementation level detail of a program. As long as uniquely identifies a task in the MCE system.
tools can only provide limited visibility into the In order to determine the task spawned by an RTOS
structure of a program, they will not be able to provide call, it is ,.,essary to determine the state of the two
the insight required to understand the design of a real- variables Jiat uniquely identifies this task at the
time system. particular point in the program when an RTOS call is

made. In some cases determining the value of these
2.0 Recovering Task Flows for the variables is relatively straightforward since these values
MCE System are set once and then remain constant throughout the

execution of that module. Other variables, however,
Although one of the goals of this work has been to are set multiple times within a module. In these cases

develop techniques to recover the inter-task behavior of it is necessary to statically evaluate a portion of the
real-time systems in general, our initial efforts have program that determines the state of the variables.
centered on recovering this information from one When a variable is not preset, its state can be
system in particular, the Modular Control Equipment determined by identifying and evaluating the set of
(MCE) system MCE is a command and control statements that may impact the value of that variable.
system written in the Navy source language CMS-2. Algorithms for identifying the minimal set of
It also contains a relatively small amount of embedded statements that may impact the state of a variable are
assembler language. The assembler code is less than known as program slicing [31. We implemented a
ten percent of the system and is predominately located program slicing algorithm to use in identifying the
in the real-time operating system (RTOS). The MCE minimal set of statements impacting the module and
software runs in a distributed, multiple CPU hardware task variables within an RTOS call. For our purposes,
environment. The software consists of 14 functional this technique assumed that the state of the module and
subprograms that comprise 44 CMS-2 modules. The task variables was completely determined within the
software modules are distributed across the different scope of a task since the program slicing algorithm
CPUs. RTOS enables the software on different CPUs does not trace data dependencies across task boundaries.
to communicate, sharing both data and control (task This assumption was valid for all but one module in
invocation), the MCE system.

Tasks in MCE are executable units within a module For any particular RTOS call, module and task
and are comprised of many different procedures. Tasks variables may assume different values in different
spawn a variety of actions on themselves or other tasks contexts. Because a program slice contains the set of
through procedure calls to RTOS. These actions all statements that may influence the state of a
include scheduling a task, terminating a task, or variable, only a subset of these statements may
removing a previously scheduled task. We have actually be executed under a particular context. In order

257

I

to evaluate each program slice under each possible for a module. Once the entry-procedure for a module
context, each syntactically possible execution thread was identified we could identify the root procedure for
within a module that may reach a designated RTOS call each task contained in that module.
is evaluated. Each of these evaluations derives a The identification of the root-procedure for each task
distinct value for the module and task variables for the provided the knowledge necessary for identifying the
particular RTOS call. These values identify the context of an RTOS call. As noted in Section 2.1, a
maximal set of tasks that may be called by a specific specific RTOS call may be made within different
source code RTOS call. contexts, resulting in different values for the module

and task variables and hence spawning different tasks.
2.2 Determining the Calling Task Each calling environment contains a root procedure that

corresponds to the calling task. Therefore, determining
RTOS calls are made within the context of a the task that spawned a new task requires determining

particular task. A task is said to spawn some action on the calling environment for a particular RTOS call
another task when an RTOS call is made within the passed a specific set of module/task values. This was
context of that task. One of the difficulties in done as part of evaluating each execution thread
determining task flows is in determining which task through a program slice.
spawned a particular action. This is because there
exists no syntactic structure, such as a procedure, that 2.3 Recognizing Design Constructs m
corresponds to a task in CMS.2. Therefore, one cannot
simply read the source code to determine the task The overall strategy for determining task flows
containing a particular RTOS call. required the implementation of a set of recognition U

Although no syntactic structure exists in CMS-2 rules that identified a small set of design constructs
that corresponds to a task, it is possible to determine (e.g., tasks and modules) in the MCE code. This
which task spawns another through a call to RTOS by information was then supplemented with techniques for
identifying the calling context for that call. Because evaluating the states of specific variables in the code
this calling context is associated with a task, once the that identified the tasks spawned by a particular RTOS
calling context is identified, the task that spawned this call. These evaluations required determining the
call can be identified. To do so, we needed to define a program slice for the module and task variable in each m
set of recognition rules that could be used to identify RTOS call. This program slice was evaluated within
occurrences of MCE tasks. These recognition rules the calling environment of each task within the module
were based on our understanding of how tasks were containing the RTOS call. This evaluation returned a
implemented in MCE. value for the module and task variables together with

Tasks are activated in MCE when an "entry- the calling environment in which these values were
procedure" for a module is called by RTOS. This computed. These values identified the task spawned by
entry-procedure is implemented by a CMS-2 construct a particular RTOS call and the calling environment m
known as a p-switch, which will pass control to one of identified the task spawning the new task. In this
a set of procedures depending on the value of the section, we will describe the approach we implemented
argument passed by RTOS to the p-switch. Each for recognizing design constructs in MCE source code. m
procedure to which an entry procedure can pass control In the following sections, we will describe how
represents the root procedure of a different MCE task. program slicing was implemented and how a program
A task continues executing in MCE until the root slice was evaluated to determine the task flow.
procedure terminates. The purpose of design construct recognition is to m

To recognize the occurrences of tasks, we needed identify instances of the design constructs implemented
first to identify objects in the code that represented in a software system and their interrelationships. We
"entry-procedures" for modules. Once these entry- created a domain model that identifies both a small set
procedures were recognized the root procedures for each of design constructs in the MCE code (e.g., tasks and
task could be identified by tracing through the p- modules) and a small set of events through which tasks
switch. In order to recognize these entry-procedures we interact with each other (e.g., task spawning). The m
used information extracted from external current implementation hard codes recognition rules for
documentation. Since this documentation was these design constructs. Each recognition rule creates
available in a structured format, we wrote a parser to an instance of an abstract design construct or
extract the relevant information from the determines the value of one of its attributes.
documentation. We used this information to select the Because of the difficulty of recognizing these
p-switch in a file that functioned as the entry-procedure abstract design constructs from information contained

"258

solely in the source code, we implemented recognition containing information for that type of call. The fields
rules that operated on both design documentation and in the table vary depending on the type of RTOS call
the parsed representation of the source code. We were invoked. For example, if the RTOS call schedules a
able to identify a portion of the on-line documentation task, then the table includes two fields which contain
for MCE which described each of the 44 modules of the the information necessary for the operating system to
system. For each module, the module's name and a determine which task to schedule. For each RTOS call
list of tasks was listed. A list of files relevant to the identified in the code, the first argument identifying the
module and the file that contained the entry procedure type of RTOS call is accessed and the appropriate event
for the module were also identified. object is created to represent the event. Our algorithm

Although this documentation was written in then determines the task invoking this event and the
English, it was fairly structured. Thus, with a values of designated fields in the table to determine the
minimal amount of editing, we were able to value of the event's attributes. This is done by
automatically parse the documentation using a computing and evaluating a program slice for the
recursive-descent parser written in Refine. The parser relevant fields in the table.
automatically created module and task objects for each
module and task identified in the documentation. The 2.4 Implementing Program Slicing
module and task names, and the list of relevant files for
each module, were also set automatically during A program slice on some variable v, or set of
parsing. variables, at statement n consists of those statements

After obtaining as much information about modules that contribute to the value of v just before statement n
and tasks as possible from the documentation, we is executed. In the current implementation, we
turned to the source code to complete the model. As compute a program slice from a data flow graph.
noted in Section 2.1, each module is associated with an A data flow graph is constructed by identifying a set
entry procedure. Because the documentation only of "reaching definitions" for each variable used in a
identifies the name of the file containing a module program. Statement m is a reaching definition for
entry procedure, we needed to find this procedure from variable v used by statement n when statement m
the source code. This is done by generating the defines the value of v actually used at n through some
procedure calling hierarchy. The module entry execution path. Note that a variable v in statement n
procedure is equivalent to the root procedure in the may have several reaching definitions under different
procedure calling hierarchy. To avoid orphan execution paths. n "backward depends" on m, and m
procedures, the root of the largest disconnected "forward depends" on n. A backward (forward) program
subgraph is used. As stated in Section 2.2, the module slice is computed on statement n by taking the
entry procedure contains a CMS-2 construct called a p- transitive closure of all backward-depends (forward-
switch. The p-switch passes control to the entry depends) relations on statement n.
procedure for a particular task depending upon the value
of the p-switch variable. Therefore, from the p-switch 2.4.1 Intra-procedural data dependence
we were able to determine the names of the task entry analysis: The first step needed to generate an intra-
procedures for each of the tasks in that module. procedural data flow graph is to generate a control flow

Once modules, tasks, and their entry procedures graph (CFG). A control flow graph for a procedure is a
have been recognized, it is possible to determine the directed graph that contains an initial node which
behavior of each task by identifying and interpreting represents the entry point for a procedure and a final
RTOS system calls used by a task. Our domain model node which represents the procedure's exit point and a
represents each of the events produced via an RTOS set of remaining nodes that each represent sequences of
call and its associated attributes. We implemented simple statements in the procedure represented by the
event recognition algorithms that identify occurrences CFG. Each edge in the graph represents a possible
of these events. flow of control.

The first step is to find all of the RTOS calls in the The next step in data dependence analysis is to
source code. This is easy to do by traversing the identify the reaching definitions for each location used
abstract syntax tree and testing for the name RTOS in in a procedure. The term location is used instead of
each procedure call object encountered. The next step variable because it is necessary to keep track of arrays
is to evaluate the value of the arguments used by and data structures. Each node in a CFG is mapped to
RTOS to determine the task behavior the RTOS call a set of locations defined and a set of locations used in
represents. An RTOS call has two arguments, the type the statement represented by a node. There exists a
of the RTOS call and a table (a CMS-2 data structure) reaching definition between a definition and a use of a

259

location if there is a path in the CFG between the node If the variable is a formal parameter, and is not
that contains the definition of the location and the node defined within the procedure then the reaching
that contains the use of the location. Since a location definition must be the one implicit in parameter
may be defined multiple times within a procedure, there passing. Therefore all of the calls to the procedure are
are many potential candidates for the definition that the reaching definitions. This will work for call by
actually reaches a use of a location at a statement. It is value parameter passing. The issue of aliases (call by
possible for a location to have several reaching reference) or other parameter passing schemes has not
definitions because the definitions for that location are been investigated.
in the body of conditionals. However, one definition An example of a program slice is shown below,
can also cancel another, eliminating the canceled with emphasis on the inter-procedural data flow.
definition as a reaching definition for all subsequent
uses of that location. int some_global_variable;

2.4.2 later-procedural data dependence int p()
analysis: We extended the concept of reaching {
definitions to take into account reaching definitions int i = 0, z, x = 1, y =2;
between statements contained in different procedures. z = x * y;
Our extensions only consider reaching definitions if(i = 0)
contained within the scope of a single task. Reaching I
definitions that occur between tasks are not considered i = 5;
by our algorithm. Inter-procedural data flow analysis
considers both global variables and parameter passing else
between procedures. I

In order to support inter-procedural data flow i = 6;
analysis, the process is done in several steps. First, }
the control flow graph is generated. Second, within 00);
each procedure the definitions and uses of a location are z = i + some-globaL-variable;
computed. Third, reaching definitions are computed for return z;
all locations used in a procedure. Finally, the relations
forward-depends and backwards-depends are computed.
During this process the reaching definitions for global int t(x)
variables are found. Each step is done for all int x;
procedures, via a post-order traversal of the procedure
calling hierarchy. someglobal_variable = 1;

The inter-procedural reaching definitions for a global I
variable use can be in found one of three places: within
the procedure (an intra-procedural reaching definition), The program slice on z at return z is:
in a procedure called by the procedure, or in a procedure
which calls the procedure. Each of these are considered p: i = 5
in order. First, the reaching definitions within the p: i = 6
procedure are considered. If the reaching definition is a p: t(O)
regular assignment statement, that statement is p: z = i + some-global-variable I
returned. Second, a procedure call contains the reaching p: return z
definition, if the global variable was defined within that t: someglobal_variable = 1
called procedure. The called procedure must be
investigated to find the assignment statement which is In this program the value of z at return z is

the actual reaching definition. The intra-procedural computed using the previous statement, therefore the
information for all global variables defined within a value of z depends upon someglobal variable and i.
procedure is summarized in the unique exit node of the The value of i depends only on statements in procedure
CFG, so it is easy to access. Finally, if no definitions p. i is set conditionally, so both assignments appear
are found within the procedure or a called procedure, in the slice. If conditionals were included in the slice,
then all procedure calls related to the procedure must be i == 0 would also appear. Note that even though it is
investigated. This process is a recursive one, easy to determine that i does equal 0 and therefore i = 5
traversing the calling hierarchy as needed. is executed and not i = 6. both still appear in the slice

260

U because there is no way, in general, to determine 2.6 Results
statically what will happen when the program is
executed. The value of someglobal variable is set We have evaluated task flows for 29 of the 44 MCE
in procedure t which is called by p. Therefore the call modules (the others contain classified information).
to t and the assignment are included in the slice by The results so far are very encouraging. The capability
using inter-procedural data flow analysis. described above has produced the completely correct

graph for 8 modules. For 14 modules we generated a
2.5 Evaluating Execution Threads Through a graph that is slightly different (-90 % similarity) from

Program Slice the graphs produced by hand. Results are not currently
available for the other 7 modules.

Once a program slice is available it is possible to There are several factors to account for the
evaluate the slice to determine the possible values of discrepancies in these results:
the table fields used by an RTOS system call.
Evaluation of a slice is made somewhat easier in CMS- 1. Bugs in the program slicer or evaluator.
2 because procedure invocation does not introduce a The program slicer and evaluator are under
new scope. All variables in a CMS-2 program, development and could still contains bugs.
including formal arguments of procedures, are global.

Inputs given to the evaluator are the variables of 2. Limitations of the program slicer or
interest, a list of the variables for which values are evaluator. The program slicer and evaluator
requested, and the statement of interest (i.e., the do not handle all conditions. For example,
statement in the slice for which the variable values the program slicer does not include conditional
should be evaluated). The execution of a slice is guided statements in a slice. When the slice is
by a pre-order traversal of the procedure calling evaluated without these conditionals, this
hierarchy. As it is traversed, each procedure that is could cause certain possible variable values to
encountered may contain some statements that are be eliminated, which could easily explain
found in the slice. They are evaluated in the order in missing arcs in the graph. Another limitation
which they occur in the procedure (i.e., statements are is that the wrogram slicer currently does not
sorted by line number) and their values are saved for handle recursive procedures. This makes it
use in other computations of the evaluator. When the impossible to generate graphs for two
statement of interest (the RTOS call in this case) is modules.
encountered, the values of the variables of interest are
checkpointed. If the statement is encountered again, 3. Limitations of the tasking graph generator.
the values at that time are also checkpointed. Sets of In at least one module there exists an RTOS
checkpointed values together with the calling call whose table argument is a variable, not a
environment for each set are returned from the pointer to a table. To handle this discrepancy
evaluator, a second program slice must be generated,

Given the values for the module/task pair and the which currently is not done. Also, as stated
calling environment, it is possible to compute the before, this technique assumed that the state of
calling tasks and the called tasks of the RTOS call. A a module and task variable were completely
calling task is one whose entry procedure is contained determined within the scope of a task. This is
in the calling environment. A called task is the one not the case in at least one module. Both of
that corresponds to the module/task pair. If the module these limitations cause missing arcs in the
is the same as the one under investigation, the task module's graph.
number is an index into the module's entry procedure
p-switch statement, which can be thought of as a list 4. Modules are too large. Currently, we do
of all intra-module task entry procedures. If the module not have enough computer resources to
number corresponds to another module, then generate the data flow information for four of
information from the documentation is used to the modules. For example, one of these
determine the name of the task so that it can be modules has a parse tree on the order of 100
displayed in the task flow graph or table. megabytes of memory, before data flow

information is generated.

5. Incorrect hand generated tasking graphs.
For at least two modules the graphs produced

261I

I

automatically were correct and the hand can be obtained when a small amount of design
generated ones were missing arcs. knowledge regarding a system is encoded into a

powerful set of tools and then applied in an analysis
We are investigating all of these avenues in order to across the entire system. The current implementation

improve our results. The program slicer is currently hard codes recognition rules for a small set of MCE
being enhanced to handle recursive procedures. With relevant objects (e.g., tasks and modules) and a small
respect to assignments in conditionals, we are set of MCE relevant events (e.g., tasking spawning via
investigating a measure to recognize when this is RTOS calls). The notion of "objects" of interest in a
occurring. Eventually both the program slicer and the program and "events" of interest that relate objects to
evaluator must be enhanced to handle conditional code. each other 12) is a generic way to view the design of a
Additionally, the tasking graph generator must be software system. In the future, we intend to build a I
extended to handle table specifications in RTOS calls framework that supports the recognition of objects and
via variables. To handle the modules that are too large events in an attempt to capture what can be termed the
we are adding more memory for our machines. The architecture of a software system. This recognition
main area of focus, however, will be to make the data framework will support the specification of recognition
flow analyzer more efficient in its use of resources. rules for object and event types (versus hard coded
We also need to investigate more of the graphs to see if system specific rules) and provide powerful
the hand generated graphs are indeed correct. Lastly, we visualization facilities for the set of events recognized
continue to fred and fix bugs. in a program.

There are several factors that can be used to measure The techniques used in the current system are all
the success of this effort. First, automating the static analysis techniques and thus are inherently
process to generate task flow graphs reduces the level limited by the degree to which static analysis can be
of effort required to generate these graphs. The process used to evaluate run time behavior. We have
described above will take less than an hour to produce a implemented a program slicing technique that enables
graph once the data flow analysis has been done. The static evaluation of program values where feasible.
time required to produce the same graph by hand is on This capability is currently limited in its ability to deal
the order of several days to weeks. The reduced level of with name aliasing (an intractable problem) but we are
effort to generate task flow graphs will be particularly continuing to increase its abilities to resolve aliases I
useful during maintenance of the MCE system. New and statically evaluate resulting program slices.
versions of the source code are being released on a By applying powerful program analysis capabilities
regular basis. When the new version of the source code in concert with recognition rules derived from some
becomes available it could be a matter of several days basic system design knowledge a significant level of
to automatically regenerate all of the graphs for each system design recovery can be achieved. The
module. If these graphs needed to be generated by hand information is derived directly from the source code and
it could require significantly more time for a maintainer traceable back to that source code. As software
to notice how changes between versions impact the baselines change, design recovery can be reapplied to
task flow. produce current design information, yielding a form of

Second, the discrepancies between automatically "living" documentation that can reliably aid in program I
generated documentation and the manually generated maintenance and understanding.
documents point to possible errors in the manually
generated reports. As a result, automatically generating References
documentation will ensure that the documentation that
is available to the maintainer is more reliable than may [1] T. Biggerstaff
otherwise be possible. Design Recovery for Maintenance and Reuse

Finally, this process generates on-line IEEE Computer, July 1989
documentation for maintainers which is integrated with
the source code listing. As a result, it can be used for [21 M. Harandi and J. Ning
source code navigation and can be integrated into other Knowledge-Based Program Analysis I
reports via hyperlinks. IEEE Software, 7-1, 1990

3.0 Conclusions [31 M. Weiser
Program slicing. IEEE Transactions on Software

The real-time tasking tool implemented for MCE Engineering, SE-10(4):352-357. July, 1984
demonstrates that a significant level of design recovery

262 I

Maintenance Process Reengineering:
Toward a New Generation of CASE Technology

Judith Ahrens1, Noah Prywes2 and Evan Lock
I Computer Command and Control Company

Philadelphia, PA

Business process reengineering is generating consid- Business process reengineering has achieved radical break-
erable interest in the business community because it can re- throughs in solving seemingly intractable organizational
duce costs and increase an organization's responsiveness to problems (Hammer and Champy, 1993; Stewart, 1993;
competitive challenges and opportunities. The software Hall, et al., 1993). This article describes the application of
maintenance crisis - escalating costs and sluggish respon- BPR thinking to the intractable problem of maintenance in
siveness to changing requirements - is not unlike the corpo- the software life cycle.
rae problems business process r-engineering has been BPR is defined as the findamental rethinking and rad-
turning around. This article applies business process re- en- ical redesign of business processes to achieve dramatic im-
gineering principles and insights to the problem of software provements in performance measured in such areas as cost,
maintenance. Three of its principles are explored in depth: quality service, and speed (Hammer and Champy, 1993).
surfacing tacit assumptions and rules, defining processes, A process is defined as a collection of activities that takes
and using information technology as an enabler. In particu- one or more kinds of input and creates an output that is of
lar, three integrated, multi-tool CASE environments are value to the customer. We begin the fundamental rethinking
proposed as the enabling technological infrastructure for of maintenance in Section 2 by applying the BPR principlemaintenance process re-engineering. These environmentsmaincludeathe Sroftw reSpecification E environment, theSo of examining tacit assumptions and rules for error, obsoles-
include the Software Specification Environment, the Soft- cence or irrelevance. This examination revealed that pre-
ware Engineering Environment, and the Software Rvailing assumptions about software maintenance regard itneering Environment. Scenarios of operation illustrate how either as separate and distinct from software development

the integrated environments leverage human resources, not activities, or as an activity that can be accomplished largely
only for maintenance activities, but also for the phased for- through redesigning software and generating new code with
ward development method described in DoD- forward CASE tools. Consequently, CASE technology has
STD-2167A., for the prototyping and evolutionary develop- been neglected that integrates domain and application engi-
ment methods proposed in the Software Design Document neering for software ruse and forward engineering, with(DoD-STD-SDD), and for software development based on the maintenance activities of re-engineering, i.e. reverse
domain reuse libraries, engineering, program understanding and restructuring. 3

1. Introduction Fundamental rethinking is continued in Section 3

Maintenance consumes up to 70-75 percent of a soft- where we apply the BPR principle of defining processes.

ware system's cost over its lifetime, dwarfing the phases of This resulted in a fundamental reconceptualization of mod-

requirements analysis, specification, design, implementa- __ iu e n nr e r,tion, testing, and production (Bloom, 1990; CSTB Report, 3 R--enptinerng includes reverse engineering, program resatrcturing, soft-
ware understanding and translating legacy software into modern program-

1990). This statistic is even more stunning when combined ming languages. Reverse engineering is the recovery of program design in-
with the opportunity cost of diminished funds for replacing formation from its code. Reengineering not only recovers designinfornration from existing software, but may involve program restucturing.existing systems and lengthened payback periods for justi- In program restructuring, the software engineering uses reverse engineered
fying new systems. Escalating costs and an inability to re- design information to alter or reconstitute the existing system in an effort to

improve its overall quality. In most cases, r•engineered softwar reimple-
spond quickly to changing requirements also characterize mentsthefunctionoftheexistingsystem. But atthesametime.thesoftware
many problems found in business organizations. Squeezed- developer also as new function andfor improves overall performance

(Pressman, i992). Program restructuring requires software understanding.by rising costs and global competition, many corporations To achieve software understanding, programs need to be understood from a

have turned to business process re-engineering (BPR). number of viewpoints, e.g. scope of variables, concurrent structure, sequen-
have t eo s sr stial and temporal execution behavior. This reduces the intellectual difficulty

of conceptualizing large, complex software systems (Brown et al., 1992)
1Also affiliated with Drexel University Re-engineering also comprehends conversion of legacy software into
AIso affiliated with DreelUniversity ofPenmodem programming languages, such as Ada and C++. (Pressman, 1992).

2Also affiliated with University of Pennsylvania

263I

I

em software practices and the capabilities required for their tem (Ford and Gibbs, 1989). While new software develop- I
support. Re-engineering, i.e. maintenance processes, are ment control is mandated by distinct developmental ph&ses
seen to be present in domain and application engineering defined in military standards, (e.g. DoD-STD-2167A,
and in forward engineering's iterative phases. Although the 1988). software maintenance is problematic at best.
reasons for initiating these activities differ, they employ For example, software developers know that change
identical technical processes. According to BPR, there is no occurs from the earliest design stages as initial expressions
justification for separating software development from of customer requirements are refined. After implementa-
maintenance with respect to soitware engineering jobs and tion, controlling changing requirements involves control-
organizational structures, management and measurement ling ongoing iterations that mix old code (typically with in-
systems, and values and beliefs. adequate documentation of original specifications as well I

After fundamental rethinking comes radical redesign, as modifications made over time), new programmers, and
where the third BPR principle, use information technology new technology. The control process is ad hoc and the prob-
as an enabler, is applied. Secion 4 describes the capabili- lem grows over time" the larger the installed base of legacy I
ties of a new generation of CASE technology and the three code, the more formidable the problems.
advanced prototype environments that implement these ca- At
pabilities: the Software Specification Environment, the Assumption 3: Forward CASE technology can perform al- I
Software Engineering Environment, and the Software Re- most all maintenance
engineering Environment. Section 5 illustrates the re- en- Under this assumption, maintenance is understood to
gineered processes and Section 6 summarizes and con- involve not only fixing bugs, but also responding to changes
cludes the article, in customer requirements, to new technology, to changes in

2. Examine Assumptions for Errors, the external environment. e.g. regulatory changes. Thus,
maintenance is viewed as a component of the forward de-

Obsolescence, or Irrelevance velopment process, involving modifications to require-

Assumption 1: Maintenance starts after software release ments specifications, designs, and source code, testing, and
performing configuration management. Most mainte-

In the software engineering literature, several authors nance, therefore, can be performed with the same tech-
have criticized the prevailing assumption about software niques and products used during forward software develop-

maintenance because it portrays software practice in an un- ment, but some more specific tasks must be approached
realistic manner (Paul and Simon, 1989). This assumption, with ad hoc techniques and tools such as reverse engineer- I
which originated with the Waterfall model (Pressman, ing (Fuggetta, 1993). Since technology now permits code
1992), views maintenance as a separate software life cycle to be generated directly from design specifications, most
that begins after software enters production. That is, before "maintenance" activities can be accomplished through for-
the first release of the software, all software activities are ward redesign and code generation.
assumed to be associated with forward engineering. Discussion of maintenance assumptions
Assumption 2: Maintenance is defined by administrative This section discusses the consequences of the three I
concerns assumptions. Assumption I seems to have legitimized the

In assumption 2, technical similarities between devel- high costs, poor technological support, and poor manage-
opment and maintenance activities are recognized, but the ment of maintenance activities (CSTB Report, 1990). For I
separation is justified based on administrative concerns. example, the management of the same software system may
Both new software development and perfective, adaptive, be split between a development manager and a maintenance
and preventive maintenance (described in Section 3) in- manager. Similarly, the development and maintenance
volve requirements analysis, specification, design, imple- tasks are frequently allocated to different developmental
mentation, and testing. Nevertheless, the difference in how and maintenance software engineers. In general, mainte-
these activities are constrained and controlled justifies their nance work is perceived as less desirable than new software
separation. development, ind few programmers aspire to a career in

New software development is constrained by custom- maintenance.

er requirements, as well as by their budgets, existing re- BPR views this condition as a symptom of the indus- 3
sources, and acquisition policies. Additionally, software trial organization structure introduced by Adam Smith.
maintenance is constrained by a preexisting software sys- This structure is characterized by the specialization of I

264

il

I

work, which is broken down into simple tasks and assigned practice thus requires a new generation of integrated CASE
to separate organizational units. When work is reengine- technology that supports the complete software life cycle
ered into processes, several jobs that cut across organiza- process.
tional boundaries are combined into one, and generalists
performing multidimensional work replace specialists Accomplishing this objective requires coordinated
(Hammer and Champy, 1993). managerial and technological support. Integrated tools that

support both software development and maintenance acti-
Rather than dividing software into specialized devel- vities could provide the technological foundation, but im-

opment and maintenance activities, we should instead con- proving administrative controls can come only from stan-
ceptualize software as a process that originates with cus- dards that recognize the reality of change in the software life
tomer need and ends with software that meets that need. cycle.

* Co•ceptualizing all software as a process will change the
structure of software engineering jobs, the associated man- SDD - A step in the right direction
agement and measurement systems, and people's values The new DoD draft standard for software develop-I and beliefs about the significance of their work. ment, Software Design Document (SDD), is a step in this

According to BPR, Assumption 2 errs by organizing direction (DoD-STD-SDD, 1992). SDD, in addition to en-
processes around administrative concerns rather than couraging software reuse, permits the 2167A life cycle

I around the work itself. This leads to a process that is severe- model to be supplemented or replaced with alternative
ly fragmented imo specialized jobs and administrative and models that explicitly recognize change as inherent in large
control procedures. Each separate task requires a "handoff" systems. Thus, both mission critical and information sys-
to the next task. Each handoff in turn requires administra- tems development under SDD could follow the spiral
tive coordination or control, adding to process overhead. (Boehm, 1988), the evoiutionary (Gilb, 1988), or the proto-
The integrated tools described in Section 4 will eliminate typing model (Boar,1984). These alternative models are

the necessity of both administrative and technical handoffs. realistic because they recognize the necessity of iteration
Additionally, assumption 2 is weak because once new soft- within and between life cycle phases.
ware enters testing, a software system exists. The evolving SDD standard provides an excellent op-

Assumption 3 suffers from a common failure of BPR portunity for the software engineering community to recon-
efforts, that of defining a process too narrowly (Hall et al., ceptualize the role of maintenance activities in the software
1993). For example, bugs that appear during testing or after life cycle. Once it is recognized that maintenance activities
the software is released may be at too low a level than that include an intensive mix of forward and re-engineering
provided by program design specifications. Hence it is nec- processes, integrated tools and environments can be devel-
essary sometimes to understand software at the level of oped that reduce the time needed to transition among these
code. Ideally, the software engineer could reverse engineer activities. Administrative controls linked to technology use
from the code to a low level abstraction, correct or restruc- can then be introduced to monitor and control maintenance
ture the abstraction, and then forward engineer new code. costs.
However, assumption 2 does not propose the integration ofI tools for forward and reverse engineering (Fuggetta, 1993). 3. Define Processes

These assumptions may have influenced developers This section identifies the capabilities required to sup-
of CASE technology to neglect tools that support mainte- port maintenance processes in the software life cycle.

nance processes in favor of tools that support forward soft- Maintenance and new software development are shown to

ware development processes (Chen and Norman, 1992). require many common capabilities, indicating the need for

Consequently, the current generation of CASE technology integrated toolsets and environments. Maintenance pro-
does not support software engineering activities present in cesses have been studied by the National Institute of Stan-

the entire life cycle. dards and Technology (NIST) (CSTB Report, 1990). A de-
scription of each maintenance process and the percentage of

To support the entire life cycle, integrated tools are time devoted to each follows:
needed having capabilities not only for software specifica-
tion, design, code generation and testing, but also for re- Perfective maintenance, or enhancements (50% or more)
verse engineering, re-engineering legacy software, and introduces major transformations in form, functions, an(
evaluating components in a reuse library. Modem software objectives.

265

Adaptive maintenance, (25%) responds to changes in the Maintenance Process
external environment, including conversion of legacy code Per- Adap- Cor. Preven-
ir'o modem programming languages. Required Capabilities fective tive reftve tve

(50%) (25%) (20%) (5%)
Generate current software X X X X

Corrective maintenance, (20%) includes diagnosis and abstractions (specifications)
correction of design, logic or coding errors. from implementea software.

Generate/revise/confirm X
software specifications from

Preventive maintenance, (5%) improves future maintain- a specification reuse
ability and reliability, repository.

Reengineedupdate a domain X X X X

Along the horizontal axis of Table I are listed the pecifi
Analyze commonality/ X X

maintenance processes and the percentage of time devoted variability in the domain to
to each. Along the vertical axis are listed the capabilities engine the application.
required by a software engineer from CASE tools in order to Query. retrieve, analyze, and X

understand reuse repositoryperform these processes effectively and efficiently. Note of code specifications.
that some capabilities, such as testing, understanding the Generate code from X X X X
existing system's software architecture and interfaces, and specifications.
configuration management, apply to multiple processes. Perform software X X X X

concurrency analysis.

Software engineers spend most of their time thinking Perform sof.are x X x X

about software. A perusal of these capability requirements sting. X X X X

suggests that software engineers could devote less time to ofrtin m e X X X X

maintenance processes if tools were available for facilitat- Confromacag- X X
Convert from legacy lang-- X X

ing the understanding of complex software relationships unge to modem language.
and the performance of thought-intensive cognitive tasks. Understand conved X X
For example, tools for software understanding could reduce legacy software.
the time needed for all maintenance processes. Tools for Restructure system bound- X X
creating and updating requirements specifications could re- ates to support partial

retirement of legacy sys-
duce the time devoted to perfective and adaptive mainte- tens.
nance. Tools for automating the translation of legacy soft- Reorgani/restructure X X
ware into modem programming languages could converte legacy code into

new programming para-significantly impact adaptive maintenance. digms, e.g. object-oriented

Extract components from X X
4. Use Information Technology as an Enabler legacy systems for reuse

libraries and/or new sys-

BPR success depends upon information technology. tems.
Integrated databases, networks, computer-supported coop- Migrate to new development X
erative work environments, client-server architectures and and production environ-

expert consultative systems provide BPR infrastructure. ments, e.g. open systems.
Understand code visually, X X X X

Maintenance process reengineering requires a CASE (i.e. graphically) from
technology infrastructure. This section proposes such an in- different perspectives.
frastructure based on the research and development work at Manipulate visual code X X X X
Computer Command and Control Company (CCCC). representations.

CCCC has been engaged in developing software reengi- Generate new code from X X X X

neering and specification technology as part of the research - - - -

and development programs at the Navy Surface Warfare Table 1: Maintenance Process/Required
Center (NSWC) and the Joint Logistics Commanders Capabilities Matrix.

266

(JLC). These types of tools are being integrated with the ments of retrieved answers can be extracted for inclusion as
forward softwareengineering tools of the Domain Specific updates to relevant new documents. SSE leads the inexperi-
Software Architecture (DSSA) (Mettala and Graham, enced specifier in a "step-by-step" manner and provides
1992) and with the ARPA/STARS Software Engineering traceability to the source documents used to update specifi-
Environment (SEE) (Foreman, 1992). cations. SSE has been used in a demonstration project for

Figure I shows how these environments are integrated the Tactical Air Mission Planning System (TAMPS) pro-
to support the complete software life cycle processes. gram at the Naval Air Warfare Center, Warminster, PA.

Software Specification Environment (SSE) SSE subsystems include-

The SSE appears at the top left of Figure 1. SSE facili- * Document Manager: This is used by the data adminis-
tates the creation and updating of software specifications trator to create and catalogue documents in the reposi-
conforming to DoD Standard 2167A (DoD-STD-2167A, tory
1988). Subsystems store, compose, and update Data Item * Assignment Manager. This is used by the manager to
Description (DID) documents, including the System/Seg- enter the work plan for subordinates who compose or
ment Specification, the System/Segment Design Docu- update documents
ment, the System Requirement Specification, and the Inter- 0 Step-by-step: This is used to guide specifiers in
face Requirements Specification. searching previous documents and composing or up-

The inclusion of SSE reflects the of soft- dating requirements and DIDs
Theinluio o SE efecs heimportance ofsft Evaluate: This is used to provide feedback on comn-

ware specifications for an orderly software life cycle. SSE is plute:Tsis D sd toverag e

an integrated set of information repositories and tools. SSE pleteness of DID coverage

guides, instructs and informs staff in composing, updating These subsystems are supported with commercial off-the-

and evaluating preliminary requirements and specifica- shelf software (COTS):
tions. Typical users of SSE are Development Managers, 0 Document loading and publishing - Interleaf
Software Support Activities, or Contractors. SSE allows a * Editor - MS WORD and Wordperfect
user to manage, query and update its application system re- Wordcerfect
pository. Staff may ask complex technical questions about • Search - Zyindex
the software specifications and retrieve answers. Frag- 0 CASE - depends on use by Program Office

Soft-l or--E*-- SE)mFA

*Mý Spdr tm~nn rc

DoqW6Mrah-,0 Aardtw twoRue j~

Iw T" Sc-*Um

Soft-~~~om~ R-nonwV &&a- ME p

Figure 1: Overview of Integrated Toots for the Software Life Cycle

267

" rA ,,
_rI

I

Software Engineering Environment (SEE) & Context diagram: This graph shows the library units
The SEE (Foreman, 1992) is shown at the top right of and where they are used

Figure 1. SEE incorporates new software development a Comments text: This text records the software corn-
technology for software reuse and for automatic program ments found in each hierarchical unit. They are as-

generation, following ARPA's Domain Specific Software sumed to contain information about the hierarchicalunit's capabilitities
Architecture (DSSA) Program (Mettala and Graham, the capabilities

1992. Te ARA SARS EE or NVAI PMA205in-The capabilities of the hierarchical software units de-
19)Tes Domain STAineerSng SDEE, fo h enaVR Pa 2 in- termine commonality and variability among them. It is pos-
cludes Domain Engineering (DE), which enables a domain sible to navigate through the domain hierarchy tree by refer-
engineer to define the process of producing software for aclas ofreltedapplcatonsin doainandAppicaion ring to capabilities and selecting hierarchical software units
class of related applications in a domain, and Application based on commonality and variability of their respective ca-
Engineering (AE), which enables an application engineer to pabilities. Hierarchical software units may be parameter-
produce software for an application that belongs to the pdo- ized and a code generation tool may be used to select param-
main (SPC, 1992). The Domain Engineering and Applica- eters of generic software. Alternatively, hierarchical units
tion Engineering (DE/AE) facilities are language indepen- may be completely generated based on models of their func-
dent. tionality. A series of tools is also available in the DE/AE for

DE/AE facilities are employed as follows. A specific application modelling, unit testing, and conversion to con-
domain is comprised of software for a closely related family current operations.
of applications. Once a domain software architecture The SEE also contains PTECH (PTECH, 1992).
(Agrawala, 1992) is developed, applications can be gener- PTECH permits a software engineer to design object-ori-
ated. Domain Engineering contains a repository of reuse ented software and to generate object-oriented programs in
software artifacts and associated tools. The creator of a do- Ada and in C++ automatically.
main architecture is called the Domain Engineer. The DE/
AE facilitates selection of reuse software and generation of Finally, the SEE incorporates met. tools for tool in-
software to create a specific application system. The user of tegration.
the repository and of the tools is called the Application En- Software Reengineering Environment (SRE)
gineer (SPC, 1992). The SRE (CCCC, 1992) is shown at the bottom left of

The reuse software is part of the DEJAE repository Figure 1. The SRE incorporates the technologies of soft-
ware visualization and visual programming. Software visu-(see Figure 1). The reuse software is organized as a hierar- aiaioovrmethesnilivsbityie.o-alization overcomes the essential invisibii'ay (i.e. non-

chy of software artifacts that follow the domain architec- physical quality) of software by representing the program
ture. For example, DoD software follows a standard hierar- structure, control flow, and data graphically. An abstract,
chical tree structure of software units called System, graphical representation can facilitate a software engineer's
Segment, Computer Software Configuration Item (CSCI) visual perception and cognitive understanding of complex
and Software Unit (DoD-STD)-2167A). Each software unit software during debugging, monitoring, and especially,
in the hierarchy has a specification of its position in the ar-
chitecture hierarchy, its capabilities, interfaces and depen- 1990).
dencies on other software units. Six types of Software Ab-
straction Documents are created to document the Visual programming is a methodology of program-
architecture. These include: ming as well as of program maintenance. In visual pro-

gramming, a graph is composed and edited on the screen of
" Hierarchical decomposition diagram: This graph a terminal, primarily through use of a pointing device. This

shows the decomposition of the overall software into is contrasted with conventional textual programming of
hierarchical units keying-in textual statements.

" Flow diagram: This graph shows the flow of data and To date, software visualization and visual program-
control within and between hierarchical units ming technologies have been developed for forward soft-

" Interface table: These tables show the structure of in- ware engineering, f.icilitiating software design to be fol-
puts and outputs of each hierarchical unit lowed by implementation. The design diagrams in these

" Object/Use diagram: This graph shows, for each hier- systems also produce software code, partially automatically
archical unit, where types or generics are defined and and partially manually. In contrast, the SRE derives design
where they are used diagrams automatically from software code. In this way,

26,

maintenance can be performed on the reverse engineered (iii) Software capture and its transformation to
design which is consistent with the old code, and the entire Ada
new code can be produced automatically. The SRE translates CMS II code, statement by state-

The SRE has three main capabilities: ment, into a pseudo-Ada, called Elementary Statement
SSLanguage (ESL) Ada. Next, the ESL-Ada programs areI(i) Software understanding: transformed into the Ada programming paradigm in a series

Software Understanding consists of query and retriev- of passes that achieve 100% translation to Ada. Each pass
al of graphic diagrams that illustrate the software from vani- translates different aspects of the programming paradigm of
ous perspectives. These diagrams are used to visualize spe- the source language into the Ada programming paradigm
cific aspects of the software. The diagrams are first divided (e.g., object declarations and execution statements). During
into in- the-large and in-the-small diagrams. In-the-large the transformation process, seven different sets of relations,
diagrams help a software engineer to visualize declarations each defining a different view of the associations among
of objects. In-tie-small diagrams help a software engineer programming objects, are generated. At the end of the
to visualize execution statements within individual pro- transformation process, these relations are converted intoE gram units. graphic structures in the form of Entity-Relation-Attribute

Ada program diagrams are stored in a graphic form in (ERA) diagrams. The ERA representation is the main ve-

the repository of a customized CASE system. A graphic hicle for graphic program analysis and visualization. Visu-

I query language is provided for ad-hoc browsing of the Soft- alization is used for query, retrieval, understanding, restruc-

ware Abstraction Documents in the graphic repository. turing and generating the documentation of programs.

These graphs show relations between high or low level hier- The integration of the SSE, SRE, DE/AE and PTECH
I archical units. This facilitates the understanding of the soft- is accomplished through two interfaces, also shown in Fig-

ware's architecture as well as its detailed code. Changes to ure 1. Their descriptions follow:
the program for debugging or program restructuring can bemade via the graphics used for visualization. Initerface between SRE and SSE:

d vThis interface is shown at the middle left of Figure 1
Examples of graphic query retrieval capabilities in (Prywes et al., 1993). This interface provides a reverse pro-

the SRE for understanding and creating reusable software cess to produce information for the software requirements
include: and specifications and other documentation from program

* Display Base View code. SSE receives the documentation from SRE. The Soft-

- Query Base View to create Subview ware Abstraction Documents map into specific paragraphs

e of the 2167A/SDD specifications, as shown in Table 2. ForI* Select root node, e.g. "within Package x..." example, Table 2 shows that the Hierarchy graph can be
* Select node type, e.g. "show me all of the proce- used for the System Architecture diagram required in para-

dures..." graphs 3.1 and 3.2.3 of the System/Segment Specification

* Select relations, e.g. "and their Input/Output" of 2167A and SDD.

• Select depth, e.g. "any children...7" Interface between SRE and SEE

Query subviews as needed for progressive graphical This interface is shown in the left-hand portion of Fig-
browsing ure I (Prywes and Lee, 1993). The SRE provides DE/AE

* Save subviews as needed for documentation and PTECH with software documentation in the form of

* Generate Ada code from any view high-level graphic views of the architecture as well as de-

tailed graphic views of algorithms. The SRE can process
(ii) Software abstraction and documentation legacy code as well as reuse code from the DE/AE reposito-

SRE partitions the software into multi-level hierar- ry. The SRE generates key parts of the specifications of
chical software units conforming to the 2167A standards for each hierarchical software unit (Table 2). The capabilities
describing the software architecture. Software Abstraction of each hierarchical software unit in the specifications are
Documents are then generated that describe the architecture employed to establish commonality and variability among
of these units from different perspectives, the domain architecture's hierarchical software units.

I 269

I

Tools for the SSE and SRE environments and their in- and simulation. The Specifier, with the aid of SSE. uses the
terfaces were developed by CCCC. requirements to compose hierarchically structured specifi-

cations. The capabilities are then communicated to the Ap-
Abstraction SSS System S/SDD SRS IRS plication Engineer who uses the specifications to select ar-
Document i/egment System CSCI S chitecture units from the domain and to generate new code

-Se-e-tto create application software. If unable to do so, the Do-
Hierarchy Par. 3.1, Par. 4 Par. 3.1 Par. 3.1.
Diagram 3.2.3 System CSCi CSCI main Engineer may be called to expand the scope of the do-

System Architec- External Internal main. Expanding the scope of a domain requires under-
Architecture tur• Interface Interface
Diagram Diagram Diagam Diagram standing the impact of commonality wid variability in

Par. 3.3 capabilities of each architecture unit and its code. In either
Diagram CSCi case, the SRE tool will be used to document and display theInternal

Interface new domain and/or application software. Software Ab-
DI)agrams stractions will be reverse engineered from the code, giving

Interface Par. 3.3 Par. 3.x.1 the architecture of the application software. The Software
Table CSCI Data Abstractions are next used by the Specifier, who employs

'Internal EBementInterace Table SSE to update the specifications. The Domain Engineer

Diagrams will use the Software Abstractions to verify and update the
Contest For Ada Compilation domain software. The Application Engineer will use the re-
Diagam verse engineered software abstractions to document the ap-
ObjectfUse For Object Orienaion plication software. This cycle may be repeated a number of

atg For times until satisfactory application software is realized.
Text Table 2: Mapping Software Abstraction The SRE can process software from the variousDocuments into Software Specifications, sources (domain, application, legacy) and augment the do-main architecture to satisfy new capabilities. Visualization

The required maintenance capabilities listed in Table graphs and Software Abstractions portray the architecture
I are now mapped into their respective environments in of the system as well as Ada code artifacts. The Software
Table 3. Abstractions are communicated to the SSE so that the Spec-

ifiers can incorporate them in updated specifications. The
S. Illustrations of Re-Engineered Life Cycle abstractions and code are communicated to the Domain En-
Processes gineer who can use them to update the domain. The abstrac-

Several scenarios illustrating iterative use of the tools tions and program visualizations are communicated to the
shown in Figure I are possible. The scenarios depend on the Application Engineer who can use them to create documen-
history of software development, previous life cycles and tation of the implemented application software.
maintenance upgrades. Typically, the tools will be used it-
eratively until a desired new or maintained application sys- Facilitating re-creation of software specifications
tem is obtained. The following two scenarios illustrate the Reverse and re- engineering capabilities can also play
need for integrated forward, reverse, and reengineering ca- a significant role in the interim before domain and applica-
pabilities throughout the software life cycle. The first sce- tion engineering become a reality. For example, the reverse
nario illustrates how the integrated capabilities facilitate engineering capability can be used to confirm software
software development with DE/AE reuse repositories. The specifications developed by outside vendors. In the context
second illustrates how the integrated capabilities facilitate of new software development, DoD Standard 2167A (1988)
the re-creation of software specifications. prescribes that software specifications for mission critical

software be partitioned into Computer Software Configura-
Facilitating software development with domain tion Items (CSCIs). CSCI development is contracted to out-
and application engineering reuse repositories side vendors. Mandated periodic reviews determine wheth-

Assume that totally new application software is de- er the code under development meets the original
sired. The preliminary requirements have been generated specifications. Program Offices receiving delivery of new
by the application's Program Manager. The platform to be code, as part of a review, need to confirm conformance of
used and its dynamics may be derived through modelling code to specifications.

"270

I

Software Specification Software Engineering Software Reengineering
Environment Environment Environment

Duinmw Au.. Slep- Eval- DsA@W ApML. 0er m DOmmda CATire Um "- ADamra-

Mrnaped CaaiiisM" by- miW Eagi Easi.- Spedfic R-m SW - andig M

Generate current software abstractions X X soflwsf
(specifications) from implemented MAmasm

software.

cations fomnonaspecificat io n theuxse
repository.I
Reengineedupdate a domain from X

sperifoimcotwesionl.o

I u to e niinen the ag.licstion.
Query, retrieve, analyze, and undenstse X Ono X

muse rpsitory ofcode specifications. X, &

GConerst• cfom legpacyagaiont. x
UPerfamd softnWvKenedrency analysis. X
Perfcmstre systeimulation. X
Testing.
Coniurto managemnt. x x x X x x x

Convert from legacy systemge to modern Xlanguage.I

rUnderstand conver convkee l egacy o Xww.XXX X
Retutr systemn boundstie to support xX x oms0k Yrmdbaum
Partial retirement of legacy systems. qW a mfrom

Vitevai pecapecives
IReorgsnize/restucture converted legacy X X x X X

code into new programming paradigms,
e.g. object-oriented.
Extract components from legacy systems Ssafia PrMCC X X X X X X
for reusc libraries and/or new systems, f. M

Reponaxy____NMigrate to new development and produc- X X X

otio environments, e.g. open systems.

Understand code visually. (i.e. graphical- X X X
ly) from different perspectives.
Manipulate visual code representations. X X

Generate new code from X
visual representations,

Table 3: Required Capabilities/CASE Technology Matrix.

This confirmation can be accomplished by reverse en- Newer software life cycle methods, such as those that
gineering the delivered software and comparing the soft- include prototyping, joint application development, and

ware abstractions to the original specifications. The earlier evolutionary development, will increase the frequency with
deviations are found, the greater the future savings in devel- which the reverse specification capability will be needed
opment time and cost. The reverse specification capability because these methods do not assume the existence of a
would also enable more objective formal reviews during complete set of requirements before design and program de-
software development because the Software Abstraction velopment begins. Additionally, changes typically are
Documents can be compared to the original specifications. made quickly at a user's request at the level of code, not

271I

specifications. Therefore, Software Abstractions generated technology having capabilities supporting all software life
automatically from evolutionary or prototype software can cycle processes. These capabilities include:
keep the specifications current at very little cost. 0 generating, revising, and confirming software specifi-

The reverse engineering capability is also needed for cations,

the software maintenance activity of updating obsolete 0 generating new software,

specifications or creating specifications for undocumented 0 performing domain and application engineering to se-
software. Software managers are continually confronted by lect, analyze and generate software from reuse li-

problems associated with outdated or unavailable software braries,

specifications. Updates to specifications typically lag up- • reengineering legacy software into modern program-
dates to software. Pressured by time and budget constraints, ming languages,

it is convenient to make modifications to the code and ne- * visualizing, understanding and restructuring software
glect the corresponding changes to the respective software for maintenance and quality improvements,

specifications. This is a critical problem since the specifica- * reverse engineering software to recapture its design.
tion plays a central role in the contracting, scheduling, plan- Three advanced prototype environments that imple-
ning, design, implementation and post-deployment sup- ment these capabilities were described: the Software Speci-
port. The reverse specification capability will make it fication Environment, the Software Engineering Environ-
easier for software program managers to update obsolete ment, and the Software Reengineering Environment.
specifications and create specifications where none existed.

Illustrations of the reengineered processes described

6. Summary and Conclusions how the integrated environments leverage human resources

This article described the application of three business not only for maintenance activities, but also for the phased

process reengineering principles to the problems of soft- forward development method described in DoD-

ware maintenance within the software life cycle. The first STD-2167A, for the prototyping and evolutionary develop-

principle, examine tacit assumptions and rules for error, ob- ment methods proposed in the Software Design Document

solescence or irrelevance, revealed that prevailing obsolete (DoD-STD-SDD), and for software development based on

assumptions about software maintenance regard it either as domain reuse libraries.

separate and distinct from software development activities, In conclusion, these integrated environments have the
or as an activity that can be accomplished largely through potential to enable the DoD to realize the maintenance per-
redesigning software and generating new code with forward formance improvements in cost, quality, service and speed
CASE tools. The case was made for technology that inte- promised by BPR. This article demonstrated that the main-
grates DE/AE for software reuse and forward engineering, tenance process can be re-engineered. However, imple-
with the maintenance activities of re-engineering, i.e. re- menting a re--engineered process requires concomitant
verse engineering, program understanding and restructur- changes in the job descriptions, organizational structures,
ing. management and measurement systems, and values and be-

e sliefs of the organizational participants. Certainly, the Capa-
The second pnnciple, define processes, resulted in a bilities Maturity Model deserves close examination for its

fundamental reconceptualization of modern software prac- contribution to the management and measurements aspects

tices. Re-engineering, i.e. maintenance processes, were (Humphrey, 1989).

shown to be present in software development, i.e., domain

and application engineering for software reuse and forward Although BPR can be a formidable implementation

engineering's iterative phases. Although the reasons for task, the new generation of CASE technology described

initiating these activities differ, they employ identical tech- above can provide the infrastructure needed to begin revers-

nical processes. According to BPR principles, there is no ing the maintenance crisis.

justification for separating software development from References
maintenance with respect to process definition, software Agrawala, A., et al, "Domain-Specific Software Architec-
engineering jobs and organizational structures, manage- tures for Intelligent Guidance, Navigation & Control,"
ment and measurement systems, and values and beliefs. Proceedings of the DARPA Software Technology Con-

ference 1992, Los Angeles, CA, April 1992.
The third principle, use information technology as an Bloom, P., "CASE Market Analysis," Volpe, Welty and Co.,

enabler, was employed to describe the design of CASE San Francisco: 1990.

272

Boar, B., Application Protolyping, Wiley-Interscience, Humphrey, W. Managing the Software Process, Addison
1984, Wesley, Reading, MA: 1989.

Boehm, B., "A Spiral Model for Software Development and Mettala, E., and Graham, M. "Domain Specific SoftwareEnhancement," IEEE Computer, Vol. 21, No. 5, May Architecture Program," Proceedings of the DARPA Soft-

1988, pp. 61-72. ware Technology Conference 1992, Los Angeles, CA,
Brown, A, Earl, A, and McDermid, J., Software Engineer- April, 1992.

ing Environments: Automated Support for Software En- Meyers, B., "Taxonomies of Visual Programming and Pro-
gineering, McGraw-Hill, London, 1992. gram Visualization." J. Visual Languages and Comput-

Computer Command and Control Company, Technical Re- ing, Vol. 1 No. 1, 1990, pp. 97-123.
port, "Software Intensive Systems Reverse Engineer- Nielsen, J., "Non-command User Interfaces," CACM (36),
ing", prepared under Naval Surface Warfare Center Con- No. 4, April 1993, pp. 83-99.
tract N60921-90-C-0298, April 1992. Paul, J. and Simon, G. "Bugs in the system: Problems in fed-

Chen, M., and Norman, R., "A Framework for Integrated erl government computer software development and
CASE," IEEE Software, March, 1992, pp. 18 - 2 2. regulation," U.S. Government Printing Office, Washing-

CSTB Report, "A Research Agenda for Software Engineer- ton, D.C., September, 1989.
ing," CACM Vol. 33, No. 3, March 1990, pp.281-293. PTECH Design and PTECH Code, Release 3.5, Tool User's

DoD-STD--2167A, 1988, "Defense System Software De- Guide," Associative Design Technology, March, 1992.
velopment," September, 1988. Pressman, R. Software Engineering: A Practitioner's Ap-

DoD-STD-SDD, 1992, "Software Design Document," proach, 3rd ed,McGraw Hill, NY: 1992, pp 680-683.
Draft December, 1992. Prywes, N., Ingargiola, G., and Ahrens, J., "Automatic Re-

Ford. G., and Gibbs, N. "A Master of Software Engineering verse Engineering of Software to Confirm/Update Re-
Curriculum," IEEE Computer, September, 1989, quirements Specification," Computer Command and
pp.59-70. Control Company, Philadelphia, PA, 19103, June, 1993a.

Foreman, J. "STARS: State of the Program," STARS '92 Prywes N., Lee, I. "Integration of Software Specification,
Conference, 1992, pp. 20-41. Reuse and Reengineering," Computer Command and
Conference, 1, pp. ClssControl Company, Philadelphia, PA, 19103, June 1993b.
IFggettaE A., "A Classification of CASE Technology," Roman, G. and Cox, K. "A Taxonomy of Program Visual-IIEEE Computer, December, 1993, pp. 25- 38. ization Systems," IEEE Computer, December, 1993, pp.

Gilb, T. Principles of Software Engineering Management, 11-24.
Addison-Wesley, 1988. SPC "Domain Engineering Guidebook," Technical Report

Goldman, Si.. and Roger N. Nagel, "Management, SPC-92019-CMC, Software Productivity Consortium,
Technology, and Agility: the Emergence of a New Era in December 1992.
Manufacturing," International Journal Technology Man- Stewart, T., "Reengineering: The Hot New Managing
agement, Vol. 8, No. 1/2, pp. 18-38, 1993. Tool," Fortune, pp 41-48, August 23, 1993.

Hall, G., Rosenthal, J., and Wade, J. "How to make reengi- Texas Instruments and Price Waterhouse, "Reengineering
neering really work", Harvard Business Review, Novem- for Information Engineering White Paper," October 5,
ber-December, 1993, pp. 119-133. 1992.

Hammer, M. & Champy, J. Reengineering the Corporation,
A Manifesto For Business Revolution, HarperCollins,
1993.

I
I
I
I
I 273

I

A Syntax-Directed Tool for Program

Understanding and Transformation*

William G. Griswold Darren C. Atkinson

Department of Computer Science & Engineering, 0114
University of California, San Diego

San Diego, CA 92093-0114 USA

Abstract the original implementation. Modifications unantici-
pated in the design sometimes are not easily integrated

Software maintenance is often too expensive. Part into the existing implementation, requiring changes to
of the problem is that the repeated modifications of a multiple modules in the system to complete a single
software system degrade its structure, making it dif- change [19]. As repeated modifications are made, the
ficult to understand and modify. Semantically-rich design and implementation become increasingly less
techniques can help restore the structure of a system, understandable until maintenance becomes unaccept-
but they may require concurrency analysis, timing ably expensive, and the only solutions are to reimple-
analysis, or dependence analysis on pointers, which are ment the system or restructure it [3][2, p. 113].
difficult to implement efficiently. We propose a fast, An example of a system experiencing this problem
programmable tool that can perform syntactically- is the Comprehensive Health Care System (CHCS),
oriented text processing tasks for use in program un- an on-line system for keeping track of hospital pa-
derstanding and transformation. Because our tool is tient records, billing, communication, and prescrip-
syntactically-oriented, the tool user must find ways to tion ordering. After evolving from an initial proto-
discover the required semantic information. However, type, it is now eight years old and consists of approx-
we believe that syntactic information complemented imately 600,000 lines of code. Currently, to make a
by design and domain knowledge is often sufficient to single enhancement to the system costs a minimum of
obtain the needed semantic information. However, to $100,000.'
do so may entail iteratively refining a query to find Semantics-based techniques are one method of im-
the right information, requiring a fast tool. We take proving the maintainability of such systems. For ex-
a "traditional" compilers approach to the problem to ample, a technique called tool-assisted program re-
provide a tool with the flexibility and speed of UNIX structuring can help improve a system's degraded
tools like awk. Early performance measurements sug- structure [10). A restructuring tool user, based on the
gest that this approach can produce results substan- needs of the desired enhancements of the system, uses
tially faster than previous approaches. the tool to transform the system (while preserving its

meaning) to a more appropriate structure-in partic-
ular, one in which the enhancements can be made as

1 Introduction local changes to the system, rather than as changes
throughoutt the system. There are two benefits of this

Software is perceived to be too expensive relative approach. First, the structure of the system is im-

to its quality. Since maintenance is the dominant proved, allowing changes to be made more easily. Sec-
phase in the program life-cycle [161, substantially re- ond, the tool performs all the global changes required
ducing the cost of software requires lowering the cost to make a structural change, and ensures that the
of maintenance. A significant part of this cost is due to input-output behavior of the program is unchanged,
the fact that as useful software ages, modifications to guaranteeing no errors are introduced by the restruc-
meet the needs and demands of users are layered upon turing and freeing the programmer to concentrate on

choosing the appropriate structure. If the tool cannot
*This work supported in part by SAIC and NSF Grant CCR-

9211002. Emmett Burke, SAIC, Personal Cornmunication.

274

I

perform a transformation so that it. preserves meaning, and flexible. If the tool is not fast, programmers some-
it prohibits the structural transformation and reports times will not use the tool for reasons of expediency,
the source of the problem. increasing the chance of incorrect changes. A tool

Unfortunately, the cost of implementing and run- that is fast will encourage programmers and design-
fning such tools can be prohibitive. The restructuring ers to pose "what-if" queries to freely explore possible

techniques use global data flow analysis, which is at enhancements and design alternatives. Also, the is
best difficult to implement efficiently and precisely in a complex relationship between syntactic inform, on

the presence of pointers. Furthermore, in a system and semantic information, so several syntactic queuies

such as CHCS, which is implemented in MUMPS [15], may have to be performed and successively refined to

an execute command is frequently used to translate a obtain the desired semantic information. If it is not
text string into code that is then executed. CHCS also easy to specify program understanding and transfor-
uses concurrency. Such features make cheap, precise mation tasks, programmers will again be tempted not
data flow analysis untenable. For example, execute to use the tool. If the tool is not flexible, then it is
commands might invoke any instruction on any data likely to be outgrown, so more time and effort must
structure. Unless the cost cf implementing such anal- be invested in other tools.

yses can be amortized over several systems, the cost Existing tools, such as TXL [81 and REFINE [7],
may not be warranted. provide much of the needed functionality, but em-

However, our investigations of how programmers ploy computational paradigms that compromise per-
and designers work have led us to hypothesize that formance, ease of use, or flexibility, limiting their abil-
there may be alternative or complementary ap- ity to perform quick queries or extensive analyses on
proaches that are easier to implement and also support large systems. Our hypothesis is that both flexibil-
a variety of important tasks in software maintenance. ity and good performance can be achieved by under-
First, we believe that much of the semantic informa- standing what programmers and designers need, and
tion that is expensive to compute, such as data flow in- by using existing compiler technology. As Johnson ar-
formation, can be inferred straightforwardly from the gued, the theory and practice -f compilers have yielded
program source if some additional information can be tools, insights, and heuristics that significantly sim-
obtained from the design of the system or details of the plify the construction of a compiler [131. We em-
application domain. For example, if it is known that ploy standard, highly-optimized parser tools such as
the execution of an execute command in CHCS never lex [14] and yacc [12], and build Abstract Syntax Trees
causes side-effects, then it can be inferred that they (ASTs) in a low-level language (C) to achieve good
have no impact on pointer dependences. Second, we performance and compact representation. Because lex
believe programmers and designers frequently want to and yacc generate much of the C code, and the ba-
perform tasks related to restructuring-that is, tasks sic technology for describing, building and searching
that are global but semantically constrained-but for ASTs is well-understood, it is not a burden to use a
which no specialized tool exists. However, if the in- low-level, efficient language like C for the implemen-
formation required to make the change can be found tation of such a tool. Only the scripting language
inexpensively, the programmer knows how to system- provided to the tool user needs to be high-level, and
atically make the changes, perhaps with the help of a this can be implemented in C directly on top of the
tool. abstract interface to the AST. The language's compu-

Our approach, then, is to design a syntax-directed tational model is inherently imperative so that it is

program understanding and transformation tool that easy to use by traditional programmers.
depends on the tool user to employ design and do- Our goal, then, is to provide low-cost program un-
main information to make up for the lack of detailed derstanding and transformation with a flexible, effi-

data flow information. Such a tool reads in a script cient tool in the style of the UNIX tool awk [1], except
that specifies a program understanding or transforma- with syntactic, rather than lexical processing. The
tion task to be performed, reads in the system to be matching and transformation features of our tool's
processed, and then performs the task on the system. scripting language make straightforward tasks easy to
Because the task can be specified on the spot, it, can specify, but the general-purpose features of the lan-
use characteristics of the system known to the pro- guage allow performing more complicated tasks such
grammers (but not readily inferred from the program as graphics. Because the task language of the tool
text) to cheaply acquire needed semantic information, is generic and the parser and AST are adaptable, it

Such a tool must be exceptionally fast, easy to use, can easily accommodate a variety of programming lan-

275

guages. designer may have to use domain and design informa-
Preliminary results indicate that our tool can per- tion to customize the search to inexpensively resolve

form a simple interrogation of the 1 million MUMPS ambiguities. In fact, the designer might have to per-
commands of CHCS in under 10 minutes, includ- form several related queries to derive all the necessary
ing parsing, AST construction, and simple matching. information, examining the last query and formulat-
Other techniques require orders of magnitude more ing a new one to augment the prior results. At the
time or space to perform the same task. extreme, the designer can use the transformation com-

In the following we examine two typical scenarios ponent of the tool to modify the existing system so
in which a program understanding and transformation that it records dynamic control flow and the contents
tool can be expected to be used. We then discuss the of pointers to verify hypotheses about the system. In
designs of two existing tools, describe the design and particular, extra statements can be added to perform
implementation of our tool, and its customization to dynamic tracing of what addresses are being derefer-
a specific programming language. enced and what statements are being executed. Run-

ning the modified system on the existing test suites
can then provide intuition about how the system is

2 Tool use and design put together.

2.2 Programmer's scenario
We have identified two key scenarios in which a pro-

gram understanding and transformation tool might be The programmer's scenario is more bottom-up.
used. These have helped identify key requirements When a programmer is making changes, there are at
and have driven our design choices. We use this anal- least three concerns. First, the written code must
ysis to examine the design decisions of two existing perform the right calculation. Second, any non-local
tools. effects of this calculation must be assessed. For ex-

ample, are any global variables being affected by the
2.1 Designer's scenario change, and is this intended? Third, any effects on this

calculation by other calculations must be assessed. For
A designer may wish to discover how various parts example, are the actual inputs to the calculation the

of the system are related in order to assess the dif- ones that the programmer desires? These last two con-
ficulty of proposed enhancements and to plan evolu- cerns require non-local reasoning about the program's
tion of the system's structure in order to accommo- behavior; they can be thought of as backward- and
date those enhancements. For example, the designer forward-slices [23][18] of the new code, respectively.
might wish to know the set-use properties of the sys- Using a syntax-directed tool, the programmer would
tem, that is, which functions use which global vari- specify a backward (or forward) search from the pro-
ables. Potential modules can be inferred by cluster- posed new component, looking for references to vari-
ing functions according to how they share information ables that the new component reads (or writes). For
via variables [211. Using a syntax-directed tool, the most languages, the structure of the program provides
designer needs to specify a one-pass traversal over the fairly accurate control flow information, and the sym-
AST to find the variable references in each component, bol table provides precise scope information, ensuring
recording in a table all references to global variables, a reasonable dependence analysis. But, as with the de-
When the entire program has been processed, the tool signer's scenario, alias information has to be handled
would print out a two-dimensional array, with global carefully. Note that on large projects such as CHCS,
variables on the rows and functions on the columns. there are dozens of programmers who need to perform
Each cell of the array contains the number of sets and such calculations.
uses of a variable by a particular function. An en- In either of these scenarios, the next step might be
hancement of this task might include a hypertext view to use the tool to perform non-local program trans-
of the array-built from a standard graphics library- formations to make structural changes to help make
that allows perusing the program source by clicking on enhancements.
various cells, components, or variables.

Unfortunately, determining aliasing (i.e., with Analyzing these scenarios reveals that the fre-
pointers) of local variables to global structures is a quency of use or the number of iterations for each use
potentially complicated calculation, as is inferring the demand that a program understanding and transfor-
effects of execute commands and concurrency. The mation tool have good performance. Otherwise, the

276

tool will not be used, likely leading to a more ad hoc implemented in Common Lisp 122). Although the re-
software maintenance process. Furthermore, a pro- suiting tool is compiled, Common Lisp is still slower
gram understanding and transformation tool must be and uses more space for data compared to lower-level
able to perform quick "what-if" queries of the pro- compiled languages such as C. Like TXL, REFINE's
gram and have an extendable scripting language that scripting language uses the concrete syntax of the Ian-
allows the tool user to easily write and extend such guage for specifying pattern matching, Although RE-
queries and transformations. Because traditional pro- FINE allows using abstract syntax, some of the spe-
grammers are expected to use these tools, the queries cial features associated with concrete syntax match-
must be expressible in a familiar paradigm, such as ing are then not available. Like TXL, REFINE has
an imperative programming language. Existing tools its own parser-generator based on Extended Backus-
meet some, but not all, of these requirements. Naur Form (EBNF), although it handles a more stan-

dard subset of the context-free languages.
2.3 Existing tool designs REFINE allows storing of the ASTs and other com-

puted information as objects in persistent storage for
TXL is a program transformation tool based on a later retrieval. This can be useful for managing very

tree rewriting computational paradigm [8]. Basically, large structures when the swap space of the machine
the TXL rewriting engine applies a rewrite rule to the is inadequate to store them. It also allows saving data

parse tree of a program until there are no more con- that is costly to recompute (such as data flow infor-
structs in the parse tree that are applicable to the mation) between uses of the tool. Retrievals from the
rule. This paradigm, however, complicates searches, database are performed on a per-file basis, and retriev-
one-pass transformations, or other tasks outside the ing files is estimated to be 5 times faster than enter-
rewrite paradigm. Although there are hooks to the un- ing files.3 Space may be conserved by a specification
derlying : -guage for more general tasks, the awkward of what subset of AST attributes to preserve. Tuning
interface discourages frequent use. TXL's matching the storage size, however, can be a complicated task.
language uses concrete syntax for specifying pattern Many of REFINE's problems are accidental in na-
matching. Although appealing, this approach compli- ture, and a few essential [6]. For example, it imple-
cates access to a part of a program that is in a deeply ments the core of its paradigm, sets, with linked-lists,
nested construct, because all of the surrounding text although with some additional effort they could be
to the desired part must be specified. It can be difficult implemented more efficiently as hash tab'es. On the
to create an abstract interface to the program source other hand, the use of the very high-level REFINE
to overcome this problem. Finally, TXL's custom- language for the REFINE tool and its instantiatior, to
built parser-generator accepts ambiguous grammars, operate on a particular language poses inherent risks
resulting in slow processing of the program source. because of the complexity of compiling a high-level

REFINE is a more general matching and transfor- language to an efficient form. However, REFINE's

mation tool based on a strongly-typed first-order set- implementors are now working on retargeting the RE-
theoretic logic [7]. Although this paradigm is elegant FINE language to generate code for a low-level lan-
and powerful, it requires users to learn a new computa- guage rather than Common Lisp. They are also be-
tional paradigm, and complicates performing higher- ginning to use techniques for improving the selection
order operations. According to estimates provided of representations for high-level data types [4].
by REFINE's implementors, entering CHCS into RE-
FINE would require about 8 hours. 2 Although a sub- 2.4 Design choices for a new tool
system has to be reentered only when it is changed,
some subsystems in CHCS would require 9 minutes Achieving both flexibility and good performance,
to reenter. In order to ensure accurate global anal- regardless of the chosen software architecture, is dif-
yses, several files might have to be reentered several ficult. Flexibility typically demands the use of elab-
times a day as they evolve. An AST may is about orate constructs that can be inefficient. Our primary
20-40 times larger than the program text, depending challenge, then, was determining exactly where flex-
on what attributes are specified for the AST nodes. ibility or performance could be sacrificed in favor of

To provide its many flexible features, REFINE is the other, in order to achieve both in typical uses of
implemented in the REFINE :anguage, which itself is the tool. This goal can be achieved by understanding

2 Lawrence Markosian, Personjal Communication. This es- what the scenarios above require, and by using exist-
tirnate is based on REFINE applications for FORTRAN and

COBOL. 3 Philip Newcomb, Personal Coztnnnication.

* 277

ing compiler technology. The theory and practice of can be overcome with sufficient effort, but this ,iegates
compilers have yielded tools, insights, and heuristics the benefits of object-orientation.) To minimize the
that can significantly simplify the design and imple- storage required for an AST node, non-intrinsic infor-
mentation of a program understanding and transfor- mation is typically not stored in the node. Instead,
mation tool, because such a tool is quite similar to a the scripting language provides a relation data type
compiler. The following describes the impact of using for mapping from AST nodes to non-intrinsic infor-
a compilers paradigm for the design of our tool. ination.

To further decrease memory requirements and im-

Parsing: We found that lexing and parsing do not prove paging behavior, for one-pass scripts we incor-

need to be especially flexible, but they have to he ef- porated the ability to process ASTs as they are con- I
ficient since processing every character in a program structed, rather than waiting for a program's entire

is I/O and compute intensive. Nearly all program- AST to be constructed. This interleaving allows dis-

ming languages in use can be lexed and parsed by carding an AST fragment as soon as it is processed. I
existing, fast parsing tools such as hex and yacc, and Consequently, memory requirements are greatly re-

any language constructs that are difficult to process duced, and the accompanying paging time, which can

can be handled by incorporating extra semantic ac- be substantial, is eliminated. In some cases the actual I
tions triggered by these tools. The declarative input. AST computation time is also reduced. Currently, this

to these tools and programmers' familiarity with them feature requires the script programmer to specify the

make them easier to use than other parsing techniques. granularity of processing. In practice this has not been

Also, many lexer and parser descriptions are publicly an onerous responsibility.

available for commonly used languages such as C and
Ada. Matching and transformation language: The

main challenge in providing both flexibility and perfor- I
ASTs: Similarly, we found that flexibility is not a mance is designing the language constructs provided
key concern in implementing ASTs. ASTs have a reg- to the tool user for manipulating the AST. The tool
ular tree structure that is analogous to the language user does not want to be distracted by memory man- I
grammar. This relationship guides the design of the agem,.nt, search strategies, typing, or complex syntax.
AST, and the actions of the grammar's parsing rules Typicaily, eliminating such distractions via a high-
can straightforwardly construct an AST for a program. level computational paradigm comes at the expense

To make the programming of AST constriction ac- of performance or generality of the language. Such a

tions even easier, we have implemented a preproces- paradigm also may be difficult for a traditional pro-
sor, that extends the syntax of yacc using additional grammer to use, indicating that an imperative pro-
parsing directives. The new directives allow for creat- gramming paradigm might be appropriate. In fact, we
ing new subtrees directly, or indirectly by invoking a have found that many scripting tasks, such as coding
user-defined action. The preprocessor can also gener- standards checking (i.e., syntactic and static semantic
ate a header file of function prototypes and templates checking) and flow analysis, are well-known compiler I
for the user-defined actions and for routines that can problems and have been shown to be relatively easy to
print the AST. code efficiently in a traditional imperative language.

To avoid the need for special techniques for storing Also, a high-level paradigm compromises the ability
ASTs off-line, the space consumed by an AST needs to use existing C code for graphics and other complex
to be minimized. An AST representation may be 10 tasks. Although calling from a high-level to a low-
times larger than a textual representation, even when level language is not always difficult, storing high-level
care is exercised in its design. (Significant space can types in the low-level language presents probhtns, as
be saved by optimizing the representation of the leaves does performing callbacks to the high-level language.
of the AST, but this can complicate accesses and up- Callbacks are common technique in systems like the
dates to it.) Consequently, we were led to design ASTs X window system [17]. I
in C, which ensures compact representation of struc- We believe that the advantages of scripting)an-
tures. Also, using C for constructing ASTs integrates guages are usually limited to small programs, since
well with lex and yacc. (We had considered using an they emphasize simplicity, making large programs dif-
object-oriented language, such as C++, but. rejected ficult to write. For large programs, typing, modular
it because of persisting problems with the technology, structure, and good performance become more impor-
such as space and execution overhead. These problems tant, but supporting such needs complicates writing

278 8

i
I

smaller programs. Thus, simple programs are more tines to assemble an AST and fill the symbol ta-
easily written in the scripting language, but more corn- ble. Note that the layers above determine how the
plex programs are more easily written in C or C++ parser is invoked. For example, the parser may
and called from a script. This approach also allows be invoked to assemble an AST one file, routine
using the growing number of existing C code libraries, or statement at a time. The lexer and parser are

Our approach, then, which is still under develop- different for each programming language, and are
ment, is to create a simple imperative scripting lan- generated from declarative lexical and syntactic
guage that can be translated directly to C. Only a few descriptions using lex and yacc (See Section 2.6).
high-level facilities are provided, such as a simplifiedsyntax, goal-directed searching, tables, sets, bit-sets 3. Abstract syntax interface: The abstract inter-
(e.g., for flow analysis), AST printing, and memory face to the AST consists of basic access, update,
S management. By keeping the number of high-level and searching functions for the AST. It also al-
features small, a simple translator can produce effi- lows a request to build a new AST, add one to
cient code. Types of variables need not be declared by the existing tree, or controlling the granularity of
the programmer, but the translator infers type decla- the AST on one pass-algorithms (Section 2.4).
rations for a variable from the type of the initializing 4. Matching and transformation language:
value of the first of its definitions. The types of built-in This layer provides high-level linguistic mecha-

functions and linked-in C functions, which are known, nisms for examining and transforming the AST.
also contribute to the inference process. Memory man- These mechanisms include the abstract inter-
agement is provided by a conservative collector [5], al- face to the AST, memory management, dynamic
though the AST is treated specially. To provide an typing, and goal-directed pattern matching, in3 interactive environment for using our tool, the shared addition to more standard language constructs.
library features of many UNIX platforms can be used Straightforward translation to C supports access-
to implement dynamic linking and execution of scripts ing existing code such as graphics libraries.
written on the fly.

5. User script: The highest layer of the tool is the
2.5 Tool architecture tool user's script, written in the matching and

transformation language. A script implements
Because our tool consists of many components of a specific program understanding or transforma-

various levels of functionality, we chose a layered de- tion task such as determining set-use information
sign for our tool. Layering is useful, since successively or performing dead-code elimination. A sophis-
higher layers can incrementally provide more expres- ticated user can write his or her own script, but
sive functionality. Since a higher layer cannot be more a novice user may perform only simple actions or
efficient than its underlying layers, the lower layers borrow scripts from others.
must be especially efficient. The challenge is to pro-
vide successively more expressive layers without corn- Note that the AST module spans two non-adjacent
promising performance. layers (1 and 3). This division permits controlling the

The following are the layers of an instance of our granularity of AST construction without introducing
tool for a specific language, listed from the lowest to circularities between the layers or forcing the AST into

the highest layer. Note that the lower layers are not two different modules [11][20].
always strictly layers in that each also has the full
power of the implementation language available to it. 2.6 Generic infrastructure
They are layers in the sense of the new service provided In order to amortize the costs of building an in-b y t h a t l a y e r .I n o d r t a m r i e t e o s s o b u l n g n i -

stance of this tool for a specific language, it is advan-
1. AST construction: The lowest layer of the tool tageous to develop a generic tool infrastructure-like

is the AST construction layer. It consists of defi- that provided by TXL and REFINE-that can be eas-

nitions for the basic AST node types, constructor ily adapted to a specific language. Thus there are re-
functions, and functions to link subtrees. Symbol ally two tools, the generic framework for creating a
table construction is also performed in this layer. tool for a specific language, and the tool for a specific

language.
2. Lexer and parser: The lexer and parser read in The generic tool includes the scripting language,

the source files and call the AST construction ron- the UNIX tools hex and yacc, the yacc-preprocessor

279

I
I

that provides concise parsing directives for AST con- tli- grammar unacceptably or introduced parsing con-
struction, and the symbol table and AST datatypes. llicts that could not be resolved satisfactorily by yacL's
The tool retargeter is responsible for providing the LALR(l) parsing strategy. Consequently, we settled I
standard lexical and syntactic descriptions to lex and on the the approach of interleaving processing with
yacc, along with the appropriate AST node and sym- AST construction (Section 2.4).
bol table entry definitions, AST linking directives arnd The problem of inserting processing actions into the
symbol table actions for building an AST for a pro- grammar is an example of a broader class of issues cre-
gram in the target language. Finally, the retargeter ated by using standard, highly optimized tools such
must design an appropriate abstract interface to the as lex and yacc. For one, these tools were not created
AST, which becomes the set of built-in procedures of with tasks such as AST printing and AST interface
the matching and transformation language. This in- design in mind. For example, both lexical and syn-
terface needs to be carefully chosen to faithfully con- tactic information is needed to create an AST printer.
vey the language syntax and to allow easy access to However, because lex and yacc are separate tools, and I
nested constructs. some of their processing is handled by C code rather

than declarations, insufficient information is available
to successfully automate the generation of an AST

3 Discussion printer. Also, their underlying algorithms and input
syntax were designed primarily for performance at the

3.1 Design history expense of other needs. For instance, a yacc grammar
is best written in a left-recursive fashion to minimize I

Our early efforts in designing this tool focused on stack depth. Unfortunately, such an encoding of a
discovering the tradeoffs between performance and grammar does not necessarily yield a grammar that
flexibility. Our first attempt at implementing a parser is suitable for automatic derivation of abstract inter-
and ASTs used Icon (9]. We chose Icon because of faces.
its support for goal-directed pattern matching, flexible Our experience so far indicates that the time re-
aggregate data structures, dynamic typing, garbage quired to program components such as AST printing
collection, rapid edit-compile-execute cycle, and opti- and the AST interface is acceptable, especially since
mizing compiler. Additionally, we believed it could be they are programmed just once for each retarget of
more efficient and expressive than Common Lisp for the tool to a new language. On the other hand, once
the tasks we wanted to perform. However, we found the tool is retargeted, it will be used repeatedly in I
that yacc-like bottom-up parsing in Icon was too slow contexts where fast performance is paramount.
and the resulting code was difficult to compile. Like-
wise, although the ASTs were reasonably compact, 3.2 Performance results
they were still twice as large as ASTs implemented
in C. Overall, Icon was about 5-10 times slower than On a Sun Sparc 10 model 41, with 96MB of RAM
what we finally achieved in C. and 500MB of swap space, the resulting prototype

After this failed attempt, we realized that perfor- parses MUMPS code at 250,000 lines per minute. It I
mance outweighed most of our concerns about flexi- can parse code and produce an AST at 67,000 lines
bility. Much of the flexibility we desired is available per minute. If the AST is discarded as it is traversed
by using lex and yacc, whose declarative syntax eases (See Section 2.4), our tool can proceed at 110,000 lines
making small changes during development. Likewise, per minute due to reduced paging overhead. An AST
we found that the analogous structures of the AST node requires 24 bytes (for application data, pointers
allowed implementing ASTs in a relatively declarative to parent, children, and siblings). Our tool can con-
fashion. struct an AST for CHCS-consisting of 600,000 lines

Once we implemented the basic tool, we sought ad- of code-in about 9 minutes using 250MB of storage.
ditional techniques to speed processing. For example, REFINE, with its current technology, parses code and
some queries are simple enough that they can be per- builds ASTs at about 1200 lines per minute. With es- I
formed during parsing without an AST. Hence, we timates based on a Sparc 10 with 500MB of RAM, it
wanted to provide a mechanism for specifying that a could construct a full AST for CIICS in about 8 hours
query should occur as part of a parsing action. How- using about 600MB of storage.
ever, we found the approach impractical. The rules A simple set-use computation on CHCS, which can
that would have to be added to the grammar to accom- be performed at. the granularity of a MUMPS com-
modate the on-the-fly processing either complicated niand, takes 10 minutes (about. 6 minutes for parsing

280

and 4 minutes for the set-use computation). At this suggest that using traditional compiler techniques in
granularity, the AST never exceeds 4KB of storage. an established technology base can provide substantial
In a scenario in which there are many programmers performance benefits and ease of use.
on a project, this permits several programmers on the
same machine to run one-pass scripts simultaneously.
Although the time to parse and reconstruct the ASTs Acknowledgments
dominates for simple operations, it is small enough to
permit reconstructing the AST for each script. When We are grateful to Philip Newcomb of Boeing for
several script runs are anticipated, it is possible that providing detailed information on his experience with
building the whole AST and then running scripts in- REFINE, and to Lawrence Markosian of Reasoning
teractively inside our tool might provide better per- Systems regarding key details of REFINE's implemen-
formance. For a scenario with several programmers, a tation. Thanks to James Cordy for detailed informa-
client-server approach to allow sharing the AST might tion on TXL. Thanks to Jennifer Schopf for her com-
be best. However, it is difficult to assess how effective ments on a draft of this paper.
these techniques will be in the typical case because
of the tradeoff between reconstructing the AST and
swapping due to the increased memory requirements. References
The amount of RAM available and the anticipated size
of the data structures are key. [1] A. V. Aho, B. W. Kernighan, and P. J. Wein-

The performance of our tool is adequate for per- berger. Awk - a pattern scanning and processing Ian-
forming "what-if" queries and repeatedly refining guage. Software--Practice and Experience, 9(4):267-

queries to converge on a desired solution. For in- 280, April 1979.

stance, the set-use computation was refined from a [2] L. A. Belady and M. M. Lehman. Programming sys-
naive script into a usable form over several iterations. tern dynamics or the metadynamics of systems in

If the script were tested on the whole system (which maintenance and growth. Research Report RC3546,
is necessary in some cases to reveal certain omissions IBM, 1971. Page citations from reprint in M. M.

Lehman, L. A. Belady, editors, Program Evolution:and performance problems), the script could be tested Processes of Software Change, Ch. 5, APIC Studies

6 times per hour (not including coding time). in Data Processing No. 27. Academic Press, London,

1985.

4 Conclusion [3] L. A. Belady and M. M. Lehman. A model of
large program development. IBM Systems Journal,
15(3):225-252, 1976. Reprinted in M. M. Lehman, L.

mAutomating semantically-precise techniques for A. Belady, editors, Program Evolution: Processes of
manipulating programs can help maintain large sys- Software Change, Ch. 8, APIC Studies in Data Pro-
tems, but they can be too costly to implement or cessing No. 27. Academic Press, London, 1985.
use. An alternative is to use a simpler, faster, syntax- [4] L. Blaine and A. Goldberg. DTRE-A Semi-
directed tool that captures much of the needed infor- automatic Transformation System, pages 165-204.
mation. However, missing information must be pro- North-Holland, Amsterdam, The Netherlands, 1991.
vided by the tool user, perhaps by repeatedly running [5] H. J. Bochm and M. Weiser. Garbage collection in an
the tool with a variety of related queries. Designing uncooperative environment. Software-Practice and
such a tool with enough performance and flexibility Experience, 18(9):807-820, September 1988.
to offset its semantic shortcomings is difficult. How- [6] Frederick P. Brooks. No silver bullet: Accidents and
ever, by taking advantage of the theory, experience, essence of software engineering. IEEE Computer,
and tools of traditional compiler and language design, pages 10-19, April 1987.
this goal can be met. [7] S. Burson, G. B. Kotik, and L. Z. Markosian. A

We have implemented the lower layers of our tool program transformation approach to automating soft-
but are still designing the programming layer. Once ware re-engineering. In Proceedings of the Fourteenth
we have completed our tool, then we can verify our Annual International Computer Software and Appli-

hypothesis about how programmers and designers can cations nConferwncc, pages 312-322, 1990.
use domain and design information to permit using [8] J. R. Cordy, C. D. lialpern-Hainu, and E. Promislow.
syntactic analysis for cheaply acquiring and using se- Txl: A rapid prototyping system for programming
mantic information. Use of the tool on CIICS will language dialects. Computer Languages, 16(I):97-

be used in the evaluation. Ilowever, our early results 107, 1991.

281

I
I

[9] Ralph E. Griswold and Madge T. Griswold. The Icon (16] B. Lientz and E. Swanson. Software Maintenance

Programming Language. Prentice-Hall, second edi- Management: A Study of the Maintenance of Corn.

tion, 1990. puter Application Software ail 487 Data Processing

[101 W.G. Griswold and D. Notkin. Automated aassis- Organizations. Addison-Wesley, Reading, MA, 1980.

tance for program restructuring. ACM Transactions [17] J. McCormack, P. Asente, and R. R. Swick. X toolkit
on Software Engineering and Methodology, 2(3), July intrinsics-c language x interface. Technical report,

1993. Massachusetts Institute of Technology, 1988.
[11] A. N. Habermann, L. Flon, and L. Cooprider. Modu- [18] M. Moriconi and T. C. Winkler. Approximate

larization and hierarchy in a family of operating sys- reasoning about the semantic effects of program
temns. Communications of the ACM, 19(5):266-272, changes. IEEE Transactions on Software Engineer.
May 1976. ing, 16(9):980-992, September 1990.

[12) S. C. Johnson. Yacc-yet another compiler compiler. (19] D. L. Parnas. On the criteria to be used in decom-
Computing Science Technical Report 32, AT9LT Bell posing systems into modules. Communications of the

Laboratories, 1975. ACM, 15(12):1053-58, December 1972.

(131 S. C. Johnson. A portable compiler: Theory and prac- (20] D. L. Parnas. Designing software for ease of exten-
tice. In Proceedings of the 5th Symposium on Princi- sion and contraction. IEEE Transactions on Software
pies of Programming Languages, pages 97-104, Jan- Engineering, SE-5(2):128-138, March 1979.
uary 1978. [21] R. W. Schwanke and M. A. Platoff. Cross refer-

[14] M. E. Leak. Lex-a lexical analyzer generator. Com- ences are features. In 2nd International Workshop
puting Science Technical Report 39, AT&T Bell Lab- on Software Configuration Management, pages 86-95,
oratories, 1975. Princeton NJ, 1989.

[15] J. M. Lewkowicz. The Complete MUMPS: An Intro- [22] Guy L. Steele. COMMON LISP, the Language. Dig-
duction and Reference Manual for the MUMPS Pro- ital Press, Burlington, MA, 2nd edition, 1991.
gramming Language. Prentice Hall, Englewood Cliffs, [23] M. Weiser. Program slicing. IEEE Transactions on
N.J., 1989. Software Engineering, SF-10(4):352-357, July 1984.

II
I
I
I
I
I

282 I

I

SOFTWARE REENGINEERING IN THE SF FRAMEWORK

Alfs T. Berztiss

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
(e-mail: alpha@cs.pitLedu; fax: +412-624-8854)

and
SYSLAB, University of Stockholm, Sweden

ABSTRACT: The SF (Set-Function) specification and of the combined system are taken over by the host,
prototyping language has numerous properties that functional reliability can be improved because duplica-
make it an attractive intermediate language for the reen- tion of hardware components allows hardware reliabil-
gineering of embedded control systems. An existing ity to be increased to an arbitrarily high level. On the
control system is mapped to SF, changes are made to other hand, if performance needs to be improved, the
the SF prototype, and the new prototype is then boundary has to be shifted in the other direction.
transformed into an implementation in the language of o Controller enhancement. An existing system is
the user's choice. We show how a fairly major redesign enhanced when more of the tasks that were originally
task to an elevator controller was very rapidly intro- performed by human operators or were not performed at
duced into the SF prototype. all are taken over by the controller.

e Host modification. An existing host is
1. Introduction modified, necessitating a change in the controller. This

is a common problem facing developers of controllers
In general, software controls a process, provides access under concurrent engineering, but often modifications
to information, or changes the form of data, and we continue to take place after release of the system. Host
speak of a control system, an information system, or a replacement by a new model is an extreme case of
data transformer. Examples of the three kinds: an modification.

elevator controller, an inventory information system, The reengineering process can be applied directly
and a program that transforms cartesian coordinates into to existing code, e.g., a controller written in a mix of
polar coordinates. Most systems are composite Fortran and assembler language may be adapted to new
software-hardware hybrids, which may be supervised conditions using these same languages, but we cannot
by a human operator. For example, a milling machine recommend such an approach. There are several rea-
transforms a piece of metal, but is controlled by sons why it is preferable to derive a specification from
software selected by an operator, the software in turn the existing code, make the required changes in this
refers to tables in an information base, and this informa- specification, and then translate the specification into
tion has to be put into an appropriate form by a data executable code. First, the existing software has to be
transformer. For simplicity, here we shall restrict our- thoroughly understood before a change is made. Pro-
selves to systems that consist of a software controller gram understanding has been estimated to account for
embedded in a hardware device to be controlled. We 40% of maintenance costs [1]. Although there exist
shall refer to the two components of the system as con- tools to aid in program understanding [2], and these
troller and host. tools could in principle be used to help a software reen-

Even when discussion is limited to controller-host gineering team to make changes in the existing software
systems, numerous types of change that necessitate directly, it has to ;)e established that the altered code
reengineering have to be considered. We list three corresponds to sponsor expectations. This is easier
broad categories of such changes. done in specifications than in code. Second, when the

e Shift of the controller-host boundary. The change also entails a language switch, e.g., from Jovial

boundary is shifted to alter the balance between system to Ada, the need for thorough validation by the sponsor

reliability and system performance. If more functions assumes even greater importance. Third, once a

283

I
specification has been derived, future modifications will data types is a natural choice.
be much easier to carry out and validate in the 5. The language is to require that the specification
specification than in code. Hence the writing of of a module consists of distinct parts that deal with the
specifications can be regarded as preventive mainte- structural aspects of its information base, its behavioral I
nance. This presumes, though, that the specification aspects, and the actual control process. This contributes
language is appropriate for the task. to the clarity of a specification and allows the

specification of a module to be developed by several
2. Properties of specification languages members of a reengineering team working in parallel.

6. The language is to enforce the principles of
In what follows we shall be concerned with formal data abstraction - a data type is to consist of a set and of
specifications of software systems, i.e., specifications functions defined on this set.
written in a language with a well-defined syntax and 7. The language is to allow easy representation of
semantics. A formal specification is a bridge between integrity constraints on the information base of a
system sponsors and the people who develop, maintain, module.
and reengineer the system. A formal specification of a
controller must be an unambiguous statement of the 8. The language is to provide mechanisms for
expectations of the sponsors, but expressed in such a linking individual processing tasks finto control
way that they can make sure that their expectations are processes, and is to allow easy definition of interactions
in fact being met. It follows that the mode of presenta- of a controller with its host, including real-time interac-
tion of a formal specification has to satisfy four criteria:
requirements must be expressed unambiguously, they 9. The language is to be supportive of an evolu-
must be verifiable, they must be understandable by tionary development of specifications, i.e., it should
sponsor representatives with little effort, and their form allow easy modification and augmentation of an initially
must allow a sponsor representative to indicate clearly incomplete specification. Under reengineering this
any changes that are to be made to the specifications. means that the specification can be derived from exist-
Simply put, specifications must be at the same time pre- ing controller software in incremental steps.
cise and readable, and this is difficult to achieve. We 10. The language is to support reuse. For exam- I
shall nevertheless attempt to achieve both goals with ple, it should not require much effort to convert the
SF, to be described further down. This language will be specification of an existing controller into a controller
found to satisfy the following ten properties of for a similar application.
specification languages. The properties are consistent
with the principles of specification and prototyping 3. An introduction to SF
languages listed in [3-61.

1. The language is to be totally unambiguous so The specification and prototyping language SF (short
that system developers and maintainers have a precise for Set-Function) has been developed over the past eightunderstanding of the system . This m eans that theye r . T e l n u g wa i t od c on n 19 6 [; alagugemuthae oudthortialfunaton.years. The language was introduction in 1986 [5]; a Imlanguage must have sound theoretical foundations.lae vrso (om w t si p fed in e h n) slater version (somewhat simplified since then) is

2. The language is to allow a reading knowledge described in [11]; examples of SF specifications can be
to be acquired with little training. There is to be an found in [12]. A specification in the SF (Set-Function)
economy of concepts. language is composed of segments, which correspond to I

3. The language is to allow the specification of a data types. A segment has three parts: a schema that
conceptual model of a controller without having to describes an information base, events that change the
define a detailed design or implementation model. information base, and a control component, which con-
However, it has been found that some intertwining of sists of transactions that allow events to be joined
specification, design, and implementation of software is together into a process. The schema definition identifies
inevitable [7-91. the set of interest for the segment and defines functions

4. The language is to encourage development of a that map from this set. A control process is built up by
specification in the form of modules. Of the ten most means of signals that are either "on" or "off", and that
serious sources of risk in the software development pro- link events and transactions within and across segments.
cess, seven can be managed by incremental modular Events switch signals on; transactions switch them off.
software development [10]. Modularization based on A transaction may be implemented in software or

hardware, thus providing a high degree of flexibility. A I

284 I

signal may be a carrier of additional information that is and embody integrity criteria for the information base of
to be sent from one segment to another, or merely from the segment. Postconditions are divided into datacondi-
one event to another. Hence switching on a signal is in Lions and sigconditions. Dataconditions indicate the
effect the sending of a message. changes that sets and maps undergo in consequence of

We shall use a library system to provide us with an event taking place. Sigconditions send signals to

an example of a schema. We do so because schemas transactions. An event is regarded is atomic, i.e., the

for realistic controller-host systems are much too large objects with which the event deals are not accessible to

for an introductory exposition (a schema for an elevator other events until the event is done with them. We give

controller can be found in [121). Moreover, we shall at two events of an elevator controller as examples. Event

times deviate from the rules of SF to avoid getting dis- Moveddle is initiated by a dispatcher segment. Its pur-

tracted by technical detail of little relevance in such an pose is to move an idle elevator e to a holding floor f

exposition. There can be several copies of the same selected by the dispatcher. The elevator has an agenda
title in the library, so there is a need for a copies and a of floors to visit. For an idle elevator the agenda has

titles segment There is also a borrowers segment. been empty, and it now becomes the set I f). The

Only the schema for copies will be considered here. elevator goes from the idle state into a halt state, and
signal S'SednMotion will cause it to be set in motion

SEGMENT Copies; toward floorf. Note that there are two halt states: from
IMPORTEDSIGNAL TitleFixed(Copy, Title); one the next state transition will be into an upward
SIGNALS motion state; from the other it will be into a downward

CatalogCopy(Copy, -Title); motion state.
AddTitle(Copy, Title); When a set or a function is changed as a result of
AdjPstCop' t(Borrower, Ineger); an event, the prime symbol denotes the changed object.

TYPE Copy; Equation S' = S op r tells that S', the set after the event,
SET C (SUBSETS: AV, CO, BR, L, R); is S, the set before the event, modified by X accordfxig to
FUNCTIONS the operation op. With equation fun'(x) = t there can

Boo kd: C - Title; be two cases. If function fun already contains some pair
History: C (Borrower x Da;e)-set <x, s>, then <x, t> replaces this pair;, if not, then pair <x,

ENDTYPE; t> is simply added to the function.

EVENT Movddle(e: Elevator,f: Floor);
The set for data type Copy is C, and it is parti- DATACONDITIONS

tioned into subsets AV, CO, BR, L, and R. A copy is in Agenda'(e) = If ;
the corresponding subset if it is available for borrowing, f> FloorNow(e) - Stae'(e) = "uphalt";
checked out, being repaired, lost, or removed, respec- f< FloorNow(e) -- State'(e) = "dhalt";
tively. For each copy, function Bookld tells to what title SIGCONDITIONS
this copy bekngs, and History gives its complete bor- (S-SetdnMotion(e))ON;
rowing history. Three signals originate in this segment, ENDEVENT;
and one is imported into it (from segment Titles). Sig-
nal AddTitle is raised when the first copy of a title EVENT OpenDoor(e: Elevator);
arrives in the library, and there no information about PRECONDITIONS
this title in the catalog. The Titles segment picks up the State(e) E ("idle", "uphalt", "dhalt"};
signal, updates the catalog, and sends back signal Title- DATACONDITIONS
Fixed, which initiates the introduction of the copy infor- Clock'(e) = Time. Now',
mation into the catalog. Signal CatalogCopy has the SIGCONDITIONS
same effect as TitleFixed, but is raised if this is not a (S-ProcessHalt(e))ON;
first copy, i.e., it is raised in the Copies segment itself if (DoorOpen(e))ON;
the title information is already in the catalog. The ENDEVENT;
remaining signal causes adjustment of the count of
copies held by a borrower.

The specification of events consists of precondi- Event OpenDoor is essential so that people can
tions and postconditions. Preconditions determine get out who somehow find themselves in an idle eleva-
under what circumstances an event may take place. tor; raising the flag S-ProcessHalt ensures that the
They serve as a check on the feasibility of input values, opened elevator door will ultimately close again. An

285

event takes place only if all its preconditions are The separation of the action of sending out a mes- I
satisfied. Here we have just one precondition: the sage (i.e., switching on a signal as part of an event)
elevator is to be idle or in a halt state, i.e., pressing the from the definition of the ultimate effect of this message
"Open Door" button has no effect if the elevator is in (in a transaction, which may reside in a differen! seg-
motion. The purpose of Clock is to measure the time ment) has several attractive features. First, events can
for which the elevator door is to remain open; be defined independently of transactions, and all deci-
Time. Now is the identifier of a function Now, which sions regarding the precise effect of a message can be
belongs to type Time and returns the current clock read- postponed. Second, because messages are not
ing. addressed, more than one transaction can pick up a mes-

Let us now look at what happens to signals. A sage, which adds to the flexibility of the entire system.

signal is raised by an event, and is then picked up by a For example, the availability of a resource can be made
transaction in the same or another segment. A signal known to several processes that may wish to use this

remains alive until it is explicitly turned off. A signal resource, without naming the processes. Third, all indi-
may be raised in just one segment, which we call its cations of the time dependence of the effect of a mes- I
home segment, but it can be turned off in more than one sage belong to the definition of transactions, i.e., the

segment, by any applicable transaction that picks up the specification of time-related aspects of the system is
signal first. The need for signals to have a home seg- confined to transactions. Fourth, all iterative actions are

ment was the reason for having the two signals confined to transactions, which means that events are
CatalogCopy and TideFixed in the library example. given a particularly simple structure.
Suppose segment A wants segment B to perform some Also in the interests of simplicity we have elim-
action. It makes the request by raising a signal. This inated a nunber of features that were to be found in ear-
signal is exported by segment A and imported by seg- lier versions of SF, in particular sensors and mechan-
ment B, where it triggers a transaction. Our example of isms. A sensor is a device that supplies information,
a transaction is triggered by a signal that originates in e.g., a thermocouple supplies a temperature reading. As I
the dispatcher segment, and it initiates an event in the regards an elevator, an indication of the floor at which it
elevator segment. finds itself could be provided by a hardware sensor or

TRANSACTION; by a software function that is adjusted each time the I@(): ON(S'Moveidle(e, floor))OFF: elevator passes a floor. Therefore, at a sufficiently high
Moveldle(e, floor); level of abstraction, there is no essential difference

ENDTRANSACTION; between sensors and functions. A mechanism is a dev-

ice that interfaces with the external world, e.g., causes
an elevator door to be opened. Again, there is no essen-

Consider the components of this transaction. All tial difference between a signal that causes a software

transactions have times associated with them. Thus change and a mechanism that causes hardware change. I
@(7:15) indicates that every day at 5:15 pm a check is We therefore eliminated the latter, and DoorOpen
made whether the transaction so marked is enabled. became a signal.
The time marker @() requires the check to be made Prompting transactions point out tasks that are I
continuously. Transactions are enabled if the signals in candidates for automation. A prompting transaction
their definitions are on, or if no signal is shown. The knows that an event is to take place, but cannot supply
signals are switched off, and actions are performed. In all its arguments. If the supplying of the arguments is
our example the action is the automatic initiation of an taken over by an expert system, the transaction can ini-
event. Actually, @(a) is an abbreviation for @(a, a), tiate the event on its own. If all the activities of an
and @(a, b) indicates that the transaction must take organization are specified in SF, then prompting tran-
place within the time interval (a, b); @() is an abbrevi- sactions indicate all opportunities for the introduction of I
ation for @(Time. Now, Time. Now). expert systems, in each instance a cost-benefit analysis

Sometimes a situation arises in which a transac- can be made, the opportunities ranked according to the

tion realizes that an event is to take place, but cannot results of the analysis, and expert systems developed I
initiate the event because the necessary arguments have incrementally in order of the ranking. If full automation
to be supplied by a human operator. It then prompts the is not called for, a decision support system can be made
operator to initiate the event. A third alternative is a to assist the human decision maker arrive at the

reminder - a transaction can remind a human operator appropriate inputs to the event to be initiated. When

of anything at all. full or partial automation is introduced by means of an

I
I

expert system or a deci)n support system, the new elevator is consulted, and, if the next floor in the direc-
process will probably be more complex than the tion of motion of the elevator is on its agenda, the eleva-
approach it replaces. Reengineering does not always tor will be halted at the floor. Under the new design
mean simplification - usually it means increased effec- these actions still need to be performed, but now, in
tiveness, but this may require a more complex process addition, the value of FloorNow is changed: if elevator
structure. e is moving up, the value of this function for e is incre-

The only way to remove ambiguity from mented; if it is moving down the value is decremented.
specifications is to use a language based in mathematics. These changes are. defintd by the assertions
Necessarily, this is also the case with SF, but we have State(e) = "up" --
tried to make the mathematics not too forbidding. Thus, FloouNow'(e) = FloorNow(e) + 1;
although all preconditions and dataconditions are asser- State(e) = "down" --

tions in logic, the notation is not obmrive. The asser- FloorNow'(e) = FloorNow(e) - 1;
tions use operations on sets, finite func~ions, and numer-
ical and boolean data types. All such operations have
well understood mathematical definitions. Signals As a design rule, we recommend that initially as
relate events and transactions: only an event can switch much as possible of the system be specified in the form
on a signal; only a transaction can switch it off. This of software capabilities. Then the event PassingSensor
follows the Petri net formalism in which places are would contain the assertions that define the changes in
linked with transitions, but no two places or two transi- value of FloorNow from the very beginning, and, in
tions may be directly linked. The nets are actually vari- implementing the design under which the value of
ants of time Petri nets [13, 141 because of the use of FloorNow is supplied by a hardware indicator, these
time markers of the form @(a, b). Manipulation of sig- assertions would be changed into comments. This has
nals corresponds to the movement of tokens. The two advantages. First, these assertions-comments
theory of Petri nets thus provides mathematical founda- express the semantics of FloorNow. Second, if a
tions for SF processes. change from a hardware to a software implementation is

to be made, as we were considering it above, this is
4. Categories of change and SF accomplished by changing the comments back into

assertions. It seems that whenever a function can be
implemented by hardware or software, ultimately there

In Section 1 we introduced three categories of change: is a need for sensors. Thus, the software implementa-
shift of controller-host boundary, controller enhance- tion of FloorNow still depends on next-floor-sensors.

ment, and host modification. We shall now relate the Even if the value of FloorNow were to be worked out
features of SF to these categories. Under the first EvnithvauofForwweeobeokdot
featuresgofy S tota systheem atsegories U and uthe rby reference to the time an elevator is in actual motion,
category the total system, as seen by an outside this would require consulting a clock, which is again a

observer, has unchanged functional capabilities, but the kind of sensor.

capabilities of its software component have either

increased or decreased. Controller enhancements do aot affect the
hardware-software interface, i.e., every change is either

Let s cnsier n eampl. Te dterinaion a modification of existing software or an addition to
of the current position of an elevator can be established existing software. This means that there are not to be

by means of a hardware floor indicator or by counting any changes to functions that are implemented as sen-

floors as the elevator moves up and down. e SF sors, signals that activate mechanisms, and sensors that

schema contains the function FloorNow, mapping from rse signals tet ucoide thensyst compoents
elevtor tointger. I th vales f tis uncionare raise signals. Let us consider the system componentselevators to integers. If the values of this function are that may change. The structure of the information base

supplied by hardware floor indicators (sensors), then the is very likely to change with the addition of entire new

making of changes to this function is no concern of the segm ents change in sb e artition of extinet

software reengineering team. But suppose now that in orgadntio ofanew func tions in existing sets.

the future the values of FloorNow are to be adjusted by most radical change is the addition of new segments,

software. We stipulate that there exist sensors between but, because of communication by signals, this does not
floors in every elevator shaft, and that a signal affect existing segments to any great extent. It may
NextFloorSensor(e) is raised whenever elevator e hpetogta h e emn ed nomto

passes one of the sensors. In the specification of the happen, though, that the new segment needs information
that has not been gathered in the past, and that the logi-elevator controller this signal initiates the event Pas- cal place for holding some of this information is in the

singSensor. Under the present design the agenda of the

2H,7

I

segments already there. Wherever the new functions never came. The new strategy: when an up or a down I
may be located, they are likely to undergo changes, and button is pressed, the floor is added directly to the
the changes have to be made explicit in the definition of agenda of every elevator, when an elevator visits this
events. Moreover, new processes may have to be floor, the floor is taken off the agendas of the other I
defined, which is done by stringing together events, elevators. Even with a dispatcher-elevator communica-

Although usually changes are enhancements, tion break we have a fail-safe situation - elevators will
there can be exceptions. Suppose that our library is to stop at some floors unnecessarily, but nobody will be I
be "downsized", meaning that in the future books will forgotten.
no longer be lent ouL The changes brought about by The required changes to the specification of the
this decision are easily implemented: segment Bor- elevator module were made in less than an hour. The
rowers disappears; segment Titles is not affected; in following changes were made:
segment Copies signal AdjustCount and function His- 0 Two "pickup" agendas for up and down requests
tory are eliminated, as are the events that deal with the were defined as extensions of the existing agenda.
borrowing and return of copies. This list indicates also Let us call them up-agenda and down-agenda,
the full extent of the changes that would have to be respectively. Events AddToUp and AddToDown
made in the reverse direction to effect an enhancement were provided for making additions to these
that changes a non-lending library to a lending library. agendas. However, in contrast to the existing I

The most complicated changes take place when agenda, of which there is one for every elevator,
the host system is modified. Our recommendation is there is just one up-agenda and one down-agenda.
that such a modification be considered in two parts. 0 The signal from the dispatcher that added a floor
First, the host change brings about changes in the inter- to the agenda of an elevator is now redundant -
face between host and controller. Second, the interface hence the transaction that picked up the signal,
changes necessitate changes in the software system. and the event that made the actual change to the l
The difficult part is to deduce what changes of the agenda were deleted.
second kind are to arise from changes of the first kind. age wre deleted.
Once this has been determined, the modification of the * The pressing of an up (down) button was inter- -
controller follows the same pattern as controller (AdD -tat i f e
enhancement.

0 In event PassingSensor one of the "pickup" agen-

S. Case study: an elevator controller das is to be consulted in addition to the existing
agenda.

Consider a system that consists of a bank of k elevators. 0 Events TakeFromUp and TakeFromDown were

There are two modules, the elevator module and a defined. When an elevator stops at floor k in I
dispatcher module. The set of the elevator module con- upward (downward) movement, floor k is taken
sists of the k elevators. One of the functions is agenda, off the up-agenda (down-agenda) by event
which is set-valued, and consists of all the floors the TakeFromUp (TakeFromDown).

elevator is to visit. When a person inside the elevator Since the up- and down-agendas are common to
presses a floor button, this floor is entered into the all elevators, the dispatcher does not have to be con-
agenda. When a person arrives at the bank of elevators cerned with taking floors off age:idas, so that the change
and presses an up or down button, this is registered by has simplified the interactiei between the dispatcher
the dispatcher. The dispatcher selects the elevator that and the elevator modules. The simplification can be
is to visit this floor, and adds the floor to the agenda of taken even further. Instead of an idle elevator being
the elevator by means of a signal. The dispatcher has moved to a holding floor and taken out of the idle state, I
two further functions: when an elevator becomes idle, an empty elevator just remains at the floor at which it
the dispatcher decides on a holding floor to which this becomes empty, and any addition to the up- or down-
elevator is to be moved, and it reactivates an idle eleva- agenda reactivates the elevator. There is then no need
tor when a need for its services arises. A full SF for the dispatcher module at all. However, the simpler
specification of the elevator module can be found in system introduces one minor inconvenience. With the
[121. elevator selection under the control of the dispatcher,

Now a change was proposed. Because there had precisely one elevator would have stopped at a particu- I
been communication breaks between dispatcher and lar floor to pick up riders. Now more than one elevator
elevators, people had been waiting for elevators that may stop there before this floor is taken off the

288

appropriate agenda. Further, to minimize the effect of working with diagrams supported by text, and for them
possible communication breaks, each elevator should Statecharts are probably the most appropriate notation.
have its own processor, and its own copy of the elevator Others may feel happier working with text supported by
module - this raises consistency problems, but the diagrams. They may find the SF formalism more to
maintenance of consistency of this distributed system is their liking.
not our concern here. The specification language Z 118]. A Z (pro-

nounced "zed") specification consists of a declaration of
6. SF and other specification languages the components of a datt• base, an expression in logic

that defines valid states of the data base, and definitions

Past efforts at the specification of software systems have of operations. Operations change data base states.
rarely managed to combine properties I and 2 of the list Some background in discrete mathematics allows a

of Section 2, and where they have done so, their reading knowledge of Z to be acquired fairly easily, but

domains of applicability have been rather narrow. They this does not mean that Z specifications are always easy
certainly have not satisfied all ten requirements. In fact, to understand. The problem is that the state into which
there seems to be a polarization, with a multitude of an operation brings the data base need not be a valid
diagramming conventions at one pole, and sophisticated state, so that additional implicit operations may be
mathematical notations at the other. Let us look now at needed to restore validity. Consequently Z

a few specification methodologies that have found some specifications are mathematically elegant, but are not
measure of acceptance in industry, particularly in Great easy to validate by potential system users who often
Britain, and that go beyond inadequately interpreted lack the required mathematical sophistication. More-
diagramming techniques. over, Z lacks facilities for dealing with real-time

embedded systems. The emphasis that Z puts on states
Jackson System Development [15t. A JSD rather than types implies that there is no natural base for

specification makes use of diagrams, but the diagrams the modularization of large Z specifications.

are not intended to do much more than help :rrive at an

intuitive understanding of a system. The actual Vienna Development Method (VDM) [19, 20].
specification resembles a program. The specification Originally developed for precise definition of program-

defines a distributed network of processes that commun- ming language constructs, VDM has become a widely

icate by message passing. However, the interpretation used specification language. In VDM data are struc-

of the meaning of JSD constructs is left largely to the tured into records, and these records can serve as a base
user's intuition, which makes it difficult to tell the pre- for modularization. However, just as with Z, there are
cise nature of the message-passing mechanism. A seri- no real-time facilities. We regard SF as a moderniza-
ous flaw of JSD is its extreme process orientation, tion and extension of VDM.
which leaves the data aspect underemphasized. First,
this hinders modularization. Second, when a JSD sys- 7. An agenda for the future
tern refers to a data base, the data base is regarded as
being outside the system. Data base constraints and We have accumulated considerable experience regard-
operations are therefore the concern of a data base ing the effect of major design changes on SF
administrator rather than the developer of a controller. specifications. The modular structure of an SF
In the 1970s this was considered an advantage, but specification, and communication by message passing
today we realize that data base constraints are rarely have ensured that in all cases the changes could be car-
absolutes, i.e., that they are for the most part determined ried out cleanly and rapidly. There are two major tasks
by the processes that make use of data. to be undertaken. First, a methodology has to be

The Statechart visual formalism [16, 17]. Sta- developed for transforming an existing software system
techarts are process diagrams with very elaborate into an SF specification. This is a very difficult task,
diagramming conventions that allow a controller and its and the transformations will require investment of
interaction with its host to be described in rigorous significant amounts of time by system personnel, but the
terms. The emphasis is on states, and on transitions investment will pay off in the long run. As we noted in
between states. Transitions carry labels. On the Section 2, it is to be regarded as preventive mainte-
diagram the labels are represented in a shorthand nota- nance.
tion, but a dictionary contains them in a fully expanded There are also reliability considerations. The reli-
form, and the expansions are written in a formal ability of a software system is the probability that it will
language. Some process designers may feel happy not fail during a given time interval of execution, where

289

I ! I

by failure is meant a deviation from requirements. Methodologies: Improving the Practice, I
Unfortunately this definition presents difficulties. First, T.W.Olle. H.G.Sol, and A.A.Verrijn-Stuart
failure of a controller need not be due to deviation from (Eds.), North-Holland, 1986, pp.107-144.
requirements - the situation that leads to the failure may [6] Luqi, The role of prototyping languages in CASE. I
not have been anticipated. Second, a controller is often Mnt. J. Software Eng. Knowledge Eng. 1 (1991),
a reactive system, and execution time is then not the 131-149.
appropriate metric for the reliability computation. We [71 Guttag, J.V., and Horing, J.J., Formal
have begun to address these difficulties. specification as a design tool. Proc. 7th Symp.

However, the main problem is how to preserve POPL, 1980, pp.251-259.
reliability when controllers of very high reliability are [8] Swartout, W., and Baler, R., On the inevitable
being adapted to a changing host and changing operat- intertwo f s., and implementable
ing conditions. It has been demonstrated that the relia- intertwining of specification and implementation.
bility of software of ultra-high reliability cannot be C
determined by testing [21]. However, for software that [91 Berztiss, A., Programming with Generators. Elh I
has been in the field at multiple sites over a period of Horwood, 1990.
several years, the reliability can be determined - for an [10] Boehm, B.W., Software risk management: princi-
operating system that supports a monitoring system cou- pies and practices. IEEE Software 8, 1 I
pled to a nuclear reactor, a history of failures gathered (Jan.1991), 32-41.
at 5000 sites allows prediction of a future reliability of [11I Bertiss, A.T., The specification and prototyping
0.9 per 1000 years of operation under two different reli- language SF. SYSLAB Report 78, Department of I
ability models [22, p.205]. Such software should be Computer and Systems Sciences, The Royal Insti-
adapted in a way that preserves its known reliability. Lute of Technology and Stockholm University,

The second major task is translation of SF Electrum 230, S-16440 Kista, Sweden, 1990.
specifications into programming languages, e.g., Ada or [12] Berztiss, A., Formal specification methods and
C. Although a pilot project has shown that SF can be (12] Berztiss A. Frmal s ficat mtodsand
translated into C [231, it is intended for prototyping ming Systemsi S.-K. Chang (Ed.), Prentice-Hall,
alone. Extensive real time features allow easy expres- Englewood Cliffs, NJ, 1989, pp.231-290. Hall
sion of performance requirements in SF, but an SF
implementation is unlikely to be sufficiently efficient to [13] Merlin, P., and Farber, DJ., Recoverability of

allow these requirements to be satisfied. We need, communication protocols - implications of a

therefore, to develop a methodology for making an ini- theoretical study. IEEE Trans. Commun. COM-

tial implementation (in Ada, say) more efficient by 24 (1976), 1036-1043.

means of source-to-source transformations. [14] Berthomieu, B., and Diaz, M., Modeling and
verification of time dependent systems using time
Petri nets. IEEE Trans. Software Eng. 17 (1991),

References 259-273.

[15] Cameron, J.R., JSP and JSD: The Jackson

[1] Sneed, T.H., The myth of "top-down" software Approach to Software Development, 2nd Ed.

development and its consequences. Proc. IEEE IEEE Computer Society Press, 1989.
Conf. Software Maintenance, 1989, pp.22-29. [16] Hare!, D., On visual formalisms. Comm. ACM 31

[2] Van Zuylen, H.J., Understanding in Reverse (1988),514-530.
Engineering: the REDO Handbook. Wiley, 1992. [171 Harel, D., Lachover, H., Naamad, A., Pnueti, A.,

[3] Balzer, R., and Goldman, N., Principles of good Politi, M., Sherman, R., and Shtull-Trauring, A.,

software specification and their implications for Statemate: a working environment for the
specification languages. Proc. IEEE Conf. development of complex reactive systems. IEEE

Specifications Reliable Software, 1979, pp.58-67. Tic.- Software Eng. 16 (1990),403-414.

[4] Roman, G.-C., A taxonomy of current issues in [18] Potter, B., Sinclair, J., and Till, D., An Introduc-
requirements engineering. Computer 18, 4 (April tion to Formal Specification and Z. Prentice-Hall,

1985), 14-23. 1991.

[5] Berztiss, A., The set-function approach to con- [19] Jones, C.B., Systematic Software Development

ceptual modeling. In Information System Design Using VDM. Prentice-Hall, 1986.

290

[201 Cohen, B.W., Harwood. W.T.. and Jackson, M.I.,
The Specification of Complex Systems. Addison-
Wesley, 1986.

(21] Butler, R.W., and Finelli, G.B., The infeasibility
of experimental quantification of life-critical
software reliability. Proc. ACM SIGSOFT '91
Conf. Software for Critical Systems (Software
Engineering Notes 16, 5 (Dec. 1991)), 66-76.
[Reprinted IEEE Trans. Software Eng. 19 (1993),
3-12.]

[22] Musa, J.D., lannino, A., and Okumoto, K.,
Software Reliability - Measurement, Prediction,
Application. McGraw-Hill, 1987.

[23] Berztiss, A.T., and Liu, C.-T., The prototyping
language SF and its implementation. Proc. 2nd
Internat. Conf. Software Eng. and Knowledge
Eng., June 1990, pp.51-57.

I29
I
I
I
I
I
I
I
I
I
U 291

I

Efficient Methods for Validating Timing Constraints
in Multiprocessor and Distributed Systems*

Jane W. S. Liu and Rhan Ha

Department of Computer Science
University of Illinois

1304 West Springfield Avenue
Urbana, Illinois 61801

Abstract they are critical to the system's ultimate success." I
This paper discusses the difficulties in validating This statement by Salasin and Waugh [1] is especially

timing constraints of dynamic multiprocessor and dis- true for real-time systems. Traditionally, when build-
tributed systems. Some worst-case bounds and effi- ing or reengineering a real-time system, one first fo-

cient algorithms now exist for the special case where cuses on its functional requirements. Whether the

jobs are independent. These results are summarized. system can meet its real-time requirements is checked
only after most of the design decisions have been made

I Introduction and, often, after parts of the system have been imple-

In a real-time system, many jobs are time-critical; mented. Timing constraints are validated by exhaus-
their execution must meet certain timing constraints. tive simulation or testing. This approach is time con-
The term job refers to a unit of work to be scheduled suming and costly. To ensure that the system can be
and executed. A job may be the computation of a con- reliably tested, one is forced to restrict the choices of
trol law, the transmission of an operator command, scheduling strategy, operating system, and underlying I
the retrieval of a file, etc. To execute, it requires a system architecture. For this reason, modern schedul-
computer, a data link, a disk, respectively; we refer to ing paradigms that lead to easy-to-modify/maintain
them all as processors. The length of time a job re- systems are not used. Almost all real-time systems I
quires to complete if it were to execute alone is called that support critical applications use clock-driven or
its execution time. In the simplest form, the timing cyclic scheduling strategies. Such a system is brit-
constraint of a job are specified in terms of its release tie, difficult to maintain and extend. Because a small
time and deadline: the job cannot begin to execute change in the application software or the underly-
until its release time and must complete its execution ing hardware and system software can produce un-
by its deadline. The failure of a job to complete by predictable timing effects, the system must be tuned
its deadline is considered to be a time fault, and a and tested exhaustively after every change.
real-time system functions correctly only in the ab- This situation has improved in recent years. There
sence of time faults. To validate a real-time system, are now reliable and tractable validation methods for
its builder must be able to demonstrate convincingly static multiprocessor and distributed systems [2-7].
not only that the system meets all of its functional By static system, we mean a system in which jobs
requirements but also that every time-critical job in it are statically assigned and bound to processors and
always completes by the job's deadline, are migrated among processors on a relatively infre-

"Non-functional, or quality, aspects of large sys- quently basis. Jobs on each processor are scheduled
tems are often treated in an ad hoc manner, even when according to a uniprocessor scheduling algorithm. A

"This work has been partially supported by ONR Contract new generation of analysis and validation tools built
Nos. N00014-89-J-1181 and NOOO-92-J-1815 and NASA Grant on these recent theoretical advances are now beginning
No. NAG 1-1613. to emerge. (An example is PERTS [8].)

292

I
I

In contrast, efficient methods for validating dy- completion time of a set of jobs can be later when
namic multiprocessor and distributed systems are not more processors are used to execute them and when
yet available. In a dynamic system, jobs ready for jobs have shorter execution times and fewer dependen-
execution are placed in a common queue and are dis- cies. When jobs have arbitrary release times and share
patched and scheduled on available processors in an nonpreemptable resources, scheduling anomalies can
event-driven manner. Although numerous dynamic occur even when there is only one processor and the
scheduling algorithms are available, the lack of effi- jobs are preemptable. These anomalies make ensuring
cient, reliable and provably correct ways to validate full coverage in simulation and testing difficult when-
that all deadlines are met in dynamic systems pre- ever there are variations in job execution time and
vents the practical adoptions of these algorithms, resource requirements and jitters in job release times.

This paper first gives an overview of existing ana- Unfortunately, these variations are often unavoidable.
lytical and efficient methods for validating static sys- Given an arbitrary scheduling algorithm, there is no
tems built on well-known scheduling algorithms. It efficient way to find the worst-case completion time
then describes several new worst-case bounds and ef- of each job. This is why exhaustive simulation and
ficient algorithms for validating dynamic systems that testing are impractical and unreliable when used to
cannot be validated using existing methods. The spe- determine whether all jobs always complete in time in
cial cases of the validation problem considered here large and dynamic systems.
are concerned with independent jobs that have ar- Figure 1 shows an illustrative example. The sim-
bitrary release times, arbitrary deadlines, and vari- pie system in this figure contains 4 independent jobs
able execution times. Jobs are scheduled according and 2 identical processors. The release time, deadline
to a priority-driven algorithm. A scheduling algo- and execution time of job Ji are denoted by ri, di and
rithm is priority-driven if it does not leave any re- ei, respectively. These job parameters are listed in
source idle intentionally. Such an algorithm can be the table. In this example, the execution times of all
implemented by assigning priorities to jobs and plac- the jobs are known except for J2 . Its execution time
ing all jobs ready for execution in a queue ordered can be any value in the range [2,6]. The scheduling
by their priorities. The available processor(s) is (are) algorithm in this example is preemptive and priority-
allocated to the job(s) at the head of this queue. driven; the priority order is J1, J2, J3 and J 4 with J1
Priority-driven algorithms differ from each other in having the highest priority. A constraint is that jobs
the rules they use to assign priorities to jobs. Al- are not migratable. In other words, once a job beginsI most all commonly used event-driven scheduling al- execution on a processor, it is c- "strained to execute
gorithms, such as FIFO, LIFO, shortest-processing- on that processor until completion. We want to vali-
time-first, earliest-deadline-first, rate-monotonic, and date that all deadlines can be met, assuming that the
deadline-monotonic algorithms are priority-driven, scheduler works correctly, that is, it never schedules

Following this introduction, Section 2 discusses the any job before its release time. A naive way is to sim-
difficulties in validating timing constraints in dynamic ulate the system twice: when the execution time of J2
systems and gives a formal definition of the validation has the maximum value 6 and when it has the min-
problem considered here. Section 3 gives an overview imum value 2. The results are the schedules shown
of methods for validating static systems. Section 4 in parts (a) and (b) of Figure 1. By examining these
summaries the worst-case bounds and efficient algo- schedules, we would conclude that all jobs can con-
rithms for validating timing constraints of indepen- plete by their deadlines. This conclusion is incorrect
dent jobs in dynamic systems. Section 5 discusses the because the simulation test does not give us full cover-
work that remains to be done in order to build a com- age. This fact is illustrated by the schedules in parts
prehensive strategy for validating dynamic systems. (c) and (d). The worst-case schedule is shown in (c);
2 Vthe completion time of J4 is 21 when the executionI2 Validation Problem time of J2 is 3. The best-case schedule is shown in

It is well-known that a system in which jobs are (d); J4 completes at time 15 when the execution time
scheduled in a priority-driven manner may exhibit of J2 is 5. To find the schedules in (c) and (d) by
scheduling anomalies. Graham [9] has shown that the simulating the system, we need to exhaustively try all

293

I
I

possible execution times of J 2 . Variants of the Validation Problem

We characterize the workload to be scheduled and,

job r, I di ei hence, analyzed as a set J = {JI, J2,.. -, Jn) of jobs.
[0 10 5 Each job Ji is defined by its release time ri, deadline
J2 0 I10 [2,61 d, and execution time e,. When there is jitter in its re-

o3 15 ,68lease time, ri can have any value in the range [r- , r+]

where rt and rt are the earliest release time and the
o iolatest release time of Ji, respectively. Without los of

generality, we assume that r,- 2> 0 for all i, that is, no
0 5 10 15 20 job is released before t = 0. We say that the jobs have

fixed release times, or there are no jitters, when r- =

P, [I [I ri = r+ and that they have identical, or zero, release
times when r," = r+ = 0 for all i. The actual execu-

" I 'a I -T I tion time ei is in the range [e7, et] and therefore can

(a) be as small as its minimum ezecution time e7 and as
' , Jlarge as its maximum execution time et. fr-, r+] and

[e7, et] are given parameters of Ji. Ji's actual execu-
P 2 l J2 I -3 l 14 tion time ej may depend on its input data, as well as

(b) the underlying hardware configuration and run-time

P ' F -7i7- environment, and may be unknown until the job's ex-
ecution completes. Similarly, the actual release time

P2 I J. 141 1 4 A ri of Ji becomes known when A, is released.
(C) The jobs in J may be dependent; data and control

PI 13 I is dependencies between them impose precedence con-
straints in the order of their execution. A job Ji is

SI 12 Id a predecessor of another job Jj (and Ji is a successor
of Ji) if Jj cannot begin execution until the execution

Figure 1: An example illustrating scheduling anoma- of .1 completes. Two jobs J1 and .1 are independent

lies if they can be executed in any order.

We confine our attention here to off-line schedul-

Our objective is to find analytical expressions and ing. In other words, the scheduler knows the param-

efficient algorithms with which we can determine re- eters [r,', r+], [eC7, et] and di of every job Ji before

liably whether every job can meet its deadline. In any job begins execution. The scheduling algorithm

other words, given a set of jobs, the set of resources is priority-driven. It assigns fixed priorities to jobs.

available to the jobs, and the scheduling (and resource It may assign priorities to jobs based on the known

access-control) algorithm to allocate processors and job parameters. Some algorithms, such as the FIFO

resources to jobs, we want to find in polynomial time algorithm, assign priorities to jobs according to their

an upper bound of the completion time of every job. actual release times. However, none of the algorithms

Because jobs have different properties and there are considered here assign priorities to jobs based on their
different rules governing resource usage, this problem actual execution times.

has many variants. The periodic-task schedulability Therefore, the given scheduling algorithm is com-
analysis problem whose solutions are summarized in pletely defined by the list of priorities it assigns to
Section 3 is a variant. This section describes other the jobs. Without loss of generality, we assume that
variants of this problem that remain to be solved, as the priorities of jobs are distinct. We will use the
well as the variant solved by the results presented in list (J1 , J2 ," -", J,) in decreasing priority order except
Section 4. It also introduces the notations that will be where it is stated to be otherwise. In other words, we
used later. always index the jobs so that Ji has a higher priority

294 I

than J. if i < i. Ji = {J1 ,J2, ',Ji} denotes the migratability of jobs. It can be either "M", for mi-
subset of jobs with priorities equal to or higher than gratable, or "N", for nonmigratable. The third lettLr
the priority of J.. describes the release time characteristics. It can be

In a dynamic system containing m identical proces- either "Z", for zero release times, or "F", for fixed ar-

sors, the scheduler maintains a common priority queue bitrary release times, or "J", for jittered release times.
and places all jobs ready for execution in the queue. For example, by jobs being P/M/F (or P/M/F jobs),
There are the following three cases: we mean jobs that are preemptable and migratable

and have fixed arbitrary release times. N/N/Z jobs are
(1) preemptable and migratable: In this case, a job nonpreemptable (and therefore not migratable) and

can be scheduled on any processor. It may be pre- have zero, or identical, release times.
empted when a higher priority job becomes ready.
Its execution may resume on any processor. Definitions and Notations

Let J+ denote the set {J+, J+,..., J+4) of jobs in
(2) preemptable and nonmigratable: As in case (1), which every job has its maximum execution time. Sirm-

each job can begin its execution on any processor ilarly, Ji- denotes the set UJj, J', ... , Ji } in'
and is preemptable. However, it is constrained every job has its minimum execution time. We

to execute to completion on the same processor. to the schedule of Ji produced by the given algor it,
Figure 1 gives an example of this case. as the actual schedule Ai and the schedule of Ji+ (or

(3) nonpreemptable: Each job can be scheduled on Jj-) produced by the same algorithm as the maximal
(3) onpeempabl: Eah jb ca bescheule on (or the minimal) schedule A+ (or A7') of J,.

any processor. Some or all of the jobs are non-Le miia) bthe Ant of tim at wic
preemptable. Let S(Ji) be the instant of time at which the ex-

ecution of Ji begins according to the actual schedule

In addition to processors, the system may also have A,. S(Ji) is the (actual) start time of J.. Let S+(J.)
a set of serially reusable resources. A job may require and S-(Ji) be the observable start times of Ji in the

some of these resources, as well as a processor, in order schedules A+ and A;, respectively. Clearly, for jol s

to execute. When some of the resources required by with fixed release times, S+(Ji) and S-(Ji) can easily

two or more jobs are the same, the jobs are said to be be found by constructing the maximal and minimal

in resource conflict. We assume that a resource access- schedules and observing when 3, starts according to

control protocol is used to resolve resource conflicts these schedules. In contrast, S(Ji) is unknown until

among jobs, and this protocol controls priority inver- Ji actually starts. Moreover, because of varied exe-

sion and prevents deadlock. Therefore the length of cution times, Ji may start at different times when we

time any job Ji may be blocked from execution due to repeatedly simulate the system. We say that the start

resource conflict is bounded from above. This bound is time of Ji is predictable if S+(Ji) _> S(Ji) >_ S-(Ji).

called the worst-case blocking time of Ji and is denoted Similarly, let F(J,) be the instant at which Ji com-

by bi. For a given resource access-control protocol, b, pletes execution according to the actual schedule An.

is given for every job Ji. We need not be concerned F(J,) is the completion time of Ji. The response
with the specific details about the protocol. time of a job is the length of time between its re-

The validation problem has four dimensions. Two lease time and its completion time. Let F+(Ji) and

dimensions are whether jobs are dependent and F-(Ji) be the observable completion times of Ji ac-

whether they share any resource. Section 4 is con- cording to the schedules A+ and A., respectively.

cerned only with independent jobs that do not share The completion times of Ji is said to be predictable if

any resources. The other two dimensions of the prob- F+(Ji) >_ F(Ji) __ F-(Ji).

lem are the release-time characteristics of jobs and We say that the execution of Ji is predictable if both
rules in scheduling. Each special case based on these its start time and completion time are predictable.
two dimensions is referred to by three capital letters When the execution of Ji is predictable, the corn-
separated by "/". The first letter denotes preempt- pletion time F+(Ji) in the schedule A+ minus the
ability. It can be either "P", for preemptable, or "N", minimum release time r- of Ji gives Ji 's worst-case

for nonpreemptable. The second letter defines the response time. Ji meets its deadline if F+(Ji) <_ di.

295

I
I

Let wi(t, t'), for time instants t < t', denote the server is created to handle the execution of a stream of
sum of execution times of all the jobs in the set Ji jobs whose release times and execution times are ran-
whose release times are in the interval [t, t']. The dom variables. Jobs handled by each server are placed
job Ji and all jobs with higher priorities than it re- in a priority queue. Whenever the server is scheduled
quire at most wi(t, t') additional units of processor and allocated the processor, the job at the head of this
time in the interval [t, t']. We call wi(t, t') the incre- queue executes. Each server T, is characterized by its
mental (processor) time demand of Ji in the interval period p., execution time (budget) e+, and relative
[t, t']. wi(t) = w,(O, t) is, therefore, the total (pro- deadline 6.. The scheduler treats each server as a pe-
cessor) time demand of Ji before t. It is equal to the riodic task with these parameters. Therefore when we U
amount of processor time required by all jobs that are try to bound the completion times of jobs in periodic
in Ji and have release times at or earlier than t. Sim- tasks, there is no need to treat the servers differently.
ilarly, let w+(t, t') (or w,-(t, t')) be the sum of the The precedence constraints between jobs in the
maximum (or minimum) execution times of all jobs same task, if any, are naturally taken care of by mak-
that are in Ji and have release times in [I, t']. Let ing the release time of every predecessor job equal to
w+(t) = w+(0, t) (or w7'(t) = w-(0, t)). wt(t) (or or earlier than its successor jobs and by executing jobs
w• (t)) is the mazimum (or minimum) time demand in the task in the FIFO order. Similarly, data and con-
of Ji before t. Clearly, ws-(t) < wi(t) <_ wt(t) for all trol dependencies between jobs in different tasks can
i and t. be taken care of by adjusting the phases of the tasks

so that the deadline of every predecessor job is earlier
3 Methods for Validating Static Sys- than the release times of its successor jobs. In this

tems way, we can ignore precedence constraints and treat I
Again, almost all existing analytical and efficient all jobs as if they are independent.

methods for bounding the worst-case completion times In our notation, most of the jobs are P/N/J jobs;
are for static systems. In this case, a general strategy they are scheduled preemptively (and are not mi-
is to first determine how late each job Ji can be de- grated). Their resource accesses are controlled by a
layed from start and completion by jobs that are as- protocol (such as the ones in [6, 7]) that ensures the
signed on the same processor with it and, then, take blocking time of every job in Ti due to resource con- I
into account of additional delays due to synchroniza- flicts with all jobs in the system is never more than
tion with jobs on all processors. bi. For such systems, there are several sufficient con-

The best known and the moat comprehensive set ditions, which, when satisfied by a task, allow us to
of bounds and algorithms are those based on the conclude that all jobs in it always complete by their
periodic-task model [2-7]. In this model, the set of deadlines. An example is the inequality
jobs assigned and executed on each processor is parti-
tioned into n subsets, each called a task. Some tasks

are periodic; each periodic task Ti is a sequence of jobs u& + bi/pi < i(2'/' - 1) (1)
whose release times are spaced nominally at regular in- k=1 3
tervals. There may be jitters, but the lengths of these assuming that we index the tasks so that pi < p2 <
intervals are never less than pi, called the period of ... < p,. When there is only one processor and tasks
the task. The release time f. of the first job in a task are scheduled on the rate-monotonic basis (that is, the

Ti is called its phase. The length of time 6i between shorter the period, the higher the priority) and syn-
the release time of every job in Ti and its deadline is chronized according to the priority-ceiling protocol (6],
called the relative deadline of Ti. 6i is usually equal all jobs in Ti with 6i = pi always complete by their
to or less than pi. With a slight abuse of the notation, deadlines as long as (1) is satisfied. Similar conditions
we use et to denote the maximum execution time of are known for many other fixed-priority algorithms
each job in Ti. ui = e+/pi is the maximum fraction of (which assign the same priority to all jobs in each task
time the jobs in T, use the processor and is called the and schedule the jobs in the same task in the FIFO
utilization of the task Ti. order) and for arbitrary values of 6i less than or equal

Some tasks are (periodic) servers [4]. A periodic to pi. Bounds also exist for the earliest-deadlinc-f,-st

296

I

algorithm, when there is oaly one processor and a pro- cessor are scheduled by themselves, a way to ensure
tocol such as the stack-based protocol [7] is used. It is that the scheduler can always enforce the given prece-
straightforward to generalize the conditions to account dence constraints is to work with the effective dead-
for the effect s of nonpreemption if some jobs are not lines and release times of jobs rather than their given
preemptable. It is also straightforward to use these deadlines and release times. A job with successors
conditions to bound the worst-case completion times must be completed before them. Hence, the effective
of jobs in periodic job-shops and flow-shops where each deadline of the job is the earliest deadline among its
job consists of subjobs which execute in turn on two deadline and the deadlines of its successors. Similarly,
or more processors and have end-to-end deadlines [10]. its effective release time is the latest time among its

The known sufficient conditions, such as (1), are release time and the release times of its successors.
particularly robust. Specifically, the values of the pe- Working with effective release times and deadlines al-
riods and worst-case execution times of jobs in tasks lows the scheduler to temporarily ignore the prece-

T2, T ,..-, T do not appear in the left-handed side dence constraints between jobs and make scheduling
of (1), only their utilizations. Moreover, (1) assumes decisions as if the jobs are independent. To validate
that the job being an &lyzed is released at an instant whether every job completes before its deadline, we
between which and the deadline of the job the total can use the algorithms for validating independent jobs.
processor time demand of all higher-priority jobs is the Unfortunately, this method does not work when the
largest. Therefore if the job were actually released at system is dynamic. For this reason, the results on in-
this instant, it would have the largest response time. dependent jobs presented in the next section cannot
Because of this assumption, the conclusion that a job be readily extended to deal with dependent jobs in
can complete before its deadline based on such a suffi- dynamic systems.
cient condition remains true no matter what its actual When the release times of jobs are arbitrary, rather
release time is. than periodic, it is slightly more complicated to de-

However, a test based on a sufficient condition like termine the values of release times that maximize the
(1) is sometimes pessimistic. If (1) fails to hold for Ti, potential demand for time in the interval between the
for example, its jobs may nevertheless always complete release time and deadline of the job being analyzed.
in time. An algorithm that makes use of the known pa- This can be done efficiently, however, and Algorithm
rameters pi and et can give a more accurate prediction ZPMJ presented in Section 4 for transforming a set
of the worst-case response times. Such algorithms are of jobs with jittered release times to fixed release times

used in PERTS [8]. They are based on a more exact can be used for this purpose.
characterization [5] of the rate-monotonically sched-
uled periodic tasks. To determine whether any job in 4 Methods for Validating Dynamic
a task Ti can meet its deadline, the algorithm takes Systems
the release time of the job as the time origin 0 and We now focus our attention on dynamic multipro-
computes the maximum time demand w+(t) betweenccessor systems. Specifically, the performance boundsS0 and its deadline at 6.. To compute w+t), the algo- and algorithms presented are for jobs that are indepen-

rithm uses as phases of the other tasks the values that dent and do not share any resources. Proofs of the-
e (t) for all t. (Usually, the choices are orems in this section and examples to illustrate them

fk = 0 for all k.) The job completes for sure at the can be found in [11).
earliest time instant t when wt(t) + bi < t. In other
words, the worst-case completion time of the job is Conditions for Predictable Ezecution

w+(t) + bi after its release time. It is easy to find the worst-case and best-case com-
We note that this approach of checking when the pletion times of independent P/M/F jobs. In partic-

supply of time meets the demand for time is general ular, the following theorem and corollary allow us to
enough that it can be generalized and applied to vali- conclude that the execution of independent P/M/F

date most static systems. Many systems do not fit the jobs is predictable. To find the worst-case (or best-
periodic-task model; jobs have arbitrary release times case) response time of a job Ji in a set Jn of inde-
and precedence constraints. Because jobs on each pro- pendent P/M/F jobs with arbitrary and fixed release

297

times, we apply the given scheduling algorithm on the (3) Step 3 schedules Ki according to the given pre.-
set J+ (or J.-) where all jobs have their maximum (or emptable, migratable, priority-driven algorithm.
minimum) execution times. The response times of Ji An upper bound of the completion time F(Ji) of
according to the resultant schedule A+ (or A-) is its Ji is equal to the completion time of Ki in the
largest (or smallest) possible response time. We are resultant schedule A.
sure that Ji always meets its deadline if it meets its I
deadline in the maximal schedule A+.Because K , is not a subset of K, K needs to bed constructed for every job Ji. Consequently, the com-

Theorem 1 The start time of every job in a set plexity of Algorithm ZPMZT is 0(n2). The following I
of independent P/M/F jobs is predictable, that is, theorem allows us to conclude that if Ki can complete
S+(J.) _ S(J.) a S-(Ji). by the deadline di of Ji in the schedule AV generated

Corollary 1 The completion time of every job in a by the ZIPMJ algorithm, then Ji is schedulable for all

set of independent P/M/F jobs is predictable, that is, possible combinations of release times and execution

F+(J,) >_ F(Ji) >_ F-(J,). times.

When there are jitters in release times, whether Ji Theorem 2 The completion time F(Ji) of Ji is no I
is schedulable depends not only on its own release time later than the completion time of the transformed job
and execution time but also on the release times and Ki in the observable schedule Aý of Ki generated by
execution times of all the higher-priority jobs. In try- Algorithm IPM 3. I
ing to find the worst-case completion time of a job, In the special case when independent jobs have
we cannot simply choose the earliest or the latest re zero, or identical, release times and jobs have fixed
lease times of higher-priority jobs. Algorithm TPM AJ priorities, preemption and migration can never occur.
is based on this observation. This algorithm tries to Therefore, it does not matter whether preemption and
find bounds of start times and completion times of migration are allowed or not. The following theorem
independent P/M/J jobs, by considering one job at follows straightforwardly from this observation.
a time, from the job with the highest priority to the
job with the lowest priority. It transforms Ji and the Theorem 3 The execution of the independent

jobs that have priorities higher than Ji into jobs with N(P)/N/Z jobs is predictable. I
fixed release times as follows. Let Kk denote the job When jobs have arbitrary release times and are not
transformed from J1 and Ki denote the set of trans- migratable, their execution behavior is no longer pre-
formed jobs {KI, K 2 , .-. -, Ki,. Algorithm 21PMJA has dictable. This fact is illustrated by the example in
the following three steps: Figure 1. While the execution of independent P/N/F

(1) Step I computes the parameters of the trans- jobs is not predictable for arbitrary priority assign-
formed job Ki from the parameters of Ji. Specif- ments, it is predictable when the jobs are scheduled
ically, Ki's execution time is equal to Ji's max- in the order in which they are released. This fact is
imum execution time, et, plus the length of its stated formally in the following theorem.
jitter interval, (rt - r7-). Ki's release time is Ji's Theorem 4 When the priorities of independent
earliest release time, ri. P/N/F jobs are a.,tigned on the FIFO basis (that is,

(2) Step 2 computes the parameters of KL for each the earlier the release time, the higher the priority), I
of k = 1, .. ., i - 1. Kt's execution time is e+, the execution of the jobs is predictable.
that is, the maximum execution time of J.. KL 's
release time is chosen among r-, r+ and r- so Completion Times of P/N/F Jobs

that the overlap between the feasible intervals of When independent P/N/F jobs are not sched-

Ki and K1 is as large as possible. Specifically, if uled on the FIFO basis and their execution is no
r- < r- < r+, Ku's release time is r-; if r+ < longer predictable, we can bound their start times

r-, Kk's release time is r+ (as late as possible); and completion times according to the following the-
and if r- > r-, Kt's release time is r- (as early orem. We note that when we want to determine
as possible). whether Ji is schedulable, there is no need to consider

293

Ji+lJi+2,'" "*,Jn, since jobs are preemptable and in- minimal observable starting sequences according to
dependent. Therefore, we can confine our attention to At and A7, respectively. We say that a sequence X is
JA. The theorem is stated in terms of the set Di; Di a subsequence of a sequence Y if Y contains X and the
is a subset of Ji in which each job Jk is released after elements in both X and Y appear in X and Y in the
some job in Ji with a priority lower than itself (that same order. In Figure 1, p;(S- (J4)) = (V1, 2, J4) is
is, J4) and is not scheduled to start and complete be- a subsequence of p+(S+(J4)) = (JI, J2 , J3 , J4). SiM-
fore Ji on the same processor as Ji in the maximal ilarly, p+(S+(Js)) = (Ji, J2, Js) is % subsequence of
schedule. In the example in Figure 1, D,, D, and D3 Pi(S_(4s)) = (J1 ,J2, J4, J3).
are null. D4 is {J03. When we want to determine whether Ji is schedu-

lable, we first examine whether there is preemption in
Theorem 5 S(J,) < S+(J,) + j e+, and the maximal schedule. In the simpler case; no job in

JOGD Ji is preempted in the maximal schedule At+. Then,
r(1) <_ r+(J,) + 3 e+ - (et - e,). we examine whether the two observable starting se-

J.&CD quences pt(S+(Ji)) and p:7(S-(Jj)) are identical. If

The worst-case bound of completion time given by the two sequences are identical, we can conclude that
this theorem is sometimes too pessimistic. For exam- no job in Ji is preempted and the orders in which
pie, this theorem tells us that the completion times of jobs start execution are the same, according to all the
the jobs in Figure I are no greater than 5, 6, 13 and 24, schedules of Ji for all combinations of execution times
respectively. The bound for F(J 4) is pessimistic. As of jobs in Ji. Therefore, the latest completion time of
another example, we consider a simple system con- Ji is F+(Ji). This fact is stated in Theorem 6.
taining m independent jobs and m identical proces- Theorem 6 If no job in Ji is preempted ac-
sors. The -release times of the jobs J, J2,* ..- , J, are cording to At and the two observable starting se-
such that rm < rm-.I < ... < rl. The priority order quences p+(Ji)) and p7(S-(Ji)) are identical,
is J1, J 2 , - ",Jm with J1 having the highest priority. then F-(JS) < F(J)) a F+(Ji)a
Obviously, every job Ji can be scheduled immediately) -
after its release time and can always complete at or be- Obviously, the upper bound of F(Ji) given by this
fore its observable worst-case completion time F+(Ji). theorem is tight. For example, for the system in Fig-
The bound of the worst-case completion time of Jm ure 1, no job in J 3 is preempted according to the
computed from Theorem 5 can be as large as m times maximal schedule A+, and p+(S+(Ja)) is identical
the actual completion time of Jm, and is therefore not to p; (S- (J3)). Consequently, we can conclude that
useful. the completion time of J3 is never later than F+(J3),

Sometimes, we can use the information provided by which is 13 according to Figure I (a). Similarly, for
the two observable schedules to der,"e more accurate the system consisting of m jobs that is mentioned ear-
predictions of job completion times. For example, we lier, no job in Jm is preempted according to the max-
consider tests that begin by examining the sequences imal schedule A+, and p+ (S+(Jm)) is identical to
in which the jobs start execution according to the min- p-(S- (J.)). Hence the completion time of each job
imal and maximal schedules. Let pt (t) (or p7 (t)) be Ji is at most equal to F+(Ji).
the sequence of jobs whose observable start times are A natural question to ask at this point is whether a
at or before t according to the maximal schedule At tight bound can be derived in a similar manner for
(or minimal schedule Ai-) of Ji; the jobs in the se- the case when there is no preemption in the max-
quence appear in order of increasing start times. For imal schedule and p7 (S-(J.)) is a subsequence of
example, in Figure 1, Pj+(S+(J4)) is (Ji,J2, J3 , J4) p+(S+(Js)). Figure 2 illustrates the impossibility.
and pý(S-(J4)) is (Ji,J2, J4). Similarly, let pi(t) Parts (a) and (b) show the maximal and minimal
be the corresponding sequence of jobs in increasing schedules, respectively. Part (c) shows a possible ac-
order of their actual start times according to the ac- tual schedule. J1, J2, J3 and J4 have the same param-
tual schedule Ai, including all jobs whose actual start eters as the ones in Figure I except that the execu-
times are at or before t. We call pi(t) the actual start- tion time of J2 is in -he range [1,6] and the release
ing sequence, and pt(t) and p-(t) the mazimal and times of J4 is 2. The parameters of J5, 16 and J7

299

are listed in the table in Figure 2. p7(S-(J7)) = fore the completion time of Ji in the maximal sched-

(Jr, J 2 , J7) is a subsequence of p+(S+(J7)) = ule, the actual starting sequence may be different from

(J1, J2, J3, J4, J1, J1), but the actual starting sequence the observable starting sequences, even though the two
p7 (S(J7)) = (J 2, J 4 , J3, J6 , Js, 17), is not. Further- observable starting sequences are same. When some
m-,re, the set of jobs in the actual starting sequence job(s) in J. is preempted before the completion time of

p,(S(Jr)) is not a subset of the set of jobs in the Ji in the maximal schedule, the start time and comple-
maximal starting sequence p+(S+(J7)). (Js is not in tion time of A, may be unpredictable, even though all

p- (S+ (J7) but is in pr(S(JT)).) The actual start time the starting sequences are same. In the actual sched-

of 17 is larger than the maximal start time S+(J 7), il- ule, a job may be preempted by a different job from the
lustrating that the start time is not predictable in this one in the maximal schedule, even though all the start-
case. Moreover, according to both A7 and A', no job ing sequences are same. Examples illustrating these
is preempted before the start time S(J 7) ot J7, but 14 facts can be found in (121. These examples lead us to
and 16 are preempted before S(J 7) according to the believe that it is unlikely for us to find tighter bounds
actual schedule in Figure 2 (c). than the one given by Theorem 5 when there is pre-

emption in the maximal schedule. In many examples, I
in fact, the completion times of the jobs are accurately

.job II ", I d, J , predicted by the upper bounds given by Theorem 5.
J1 0 10 5 Completion Times of N/N/F Jobs I
J2 0 10 [1,6] We now consider the case when all jobs are nonpre-
J3 4 15 8 emptable and the release times of all jobs are arbitrary
J4 2 20 10 but fixed. A lower-priority nonpreemptable job whose

S 18 25 3 release time is earlier than Ji may be executed to com-

16 5 200 100 pletion after 1i in the observable schedules but before
J7 0 , 22 2 Ji in the actual schedule. Consequently, we cannot U

ignore such lower-priority jobs when trying to find the
0 S 10 15 20 start time and the completion time of Ji. Let N de-

note the set of nonpreemptable jobs and Ni denote

P, 1 13 A the subset of nonpreemptable jobs that have release
times earlier than Ji and priorities lower than Ji. Let

S 12P 14 P.- be a schedule of J.- constructed according to the I
given scheduling algorithm, but assuming that all the

P1 •7 Tj T " jobs are preemptable and migratable. Let Bi denote
the set of jobs in Ni which start before Ji in P.-.

P, A A V4 14 It has been shown [11] that any job J1 not in Bi
(b) cannot start before Ji in the actual schedule A,. Al-

P, J0 I J. gorithm ZNA Y makes use of this fact to eliminate
some of the lower-priority jobs in Ni from considera-

I2 I J, 4 J,41 tion when trying to bound the worst-case completion

(c) times. It considers one job at a time, from the job with
P 1 , 1J 3 I. the highest priority to the job with the lowest priority.

P, __ J2 AIn order to find the worst-case completion time of J.,
'" i /2 I I 71 I J7l Algorithm K.A/'V" transforms J, and jobs in Ji-,. In

(d) this transformation, every job is transformed into two

Figure 2: An example illustrating unpredictable start jobs. Let G& and Hk denote the two jobs transformed

times and completion times from Jk. Algorithm INAWY" has three steps:

(1) In Step I the parameters of the transformed jobs
Similarly, when some job(s) in Ji is preempted be- Gi and Hi are computed from those of 1,. Gi's

300

execution time is equal to the largest of the max- all the jobs in Gi as nonpreemptable, (2) Lk in Li-,
imum execution times of jobs in Bi, if Bi is as preemptable (nonpreemptable) if Jk is preemptable
nonempty and is equal to zero if Bi is empty. Gi's (nonpreemptable), and (3) Hi as preemptable (non-
release time is release time ri of Ji. Hi's execution preemptable) if Ji is preemptable (nonpreemptable).
time is equal to Ji's maximum execution time et Figure 3 illustrates how Algorithm IY./'Ai'1 predicts
and Hi's release time hi is ri plus Gi's execution the worst-case completion time of the job Js. The
time. Let 0 be a priority that is higher than the schedules in parts (a), (b) and (c) are the maximal
priority of J1. The priority of Gi is 0 and the schedule, the actual schedule, and the schedule gener-
priority of Hi is equal to that of Ji. Gi simulates ated by Algorithm l"/KY., respectively. In the actual
the job that may block Ji, and Hi simulates Ji schedule, J 4 blocks J3 , and J3 delays J5 since it has
blocked by Gi. Step 1 also computes the parame- a higher priority than Jis. In other words, Js's start
ters of Gk and Hlk for each JA for k = 1,..-, i- 1. time is delayed because -J4 blocks J3. In the schedule
G& has release time rk. Its execution time is equal generated by Algorithm 2IA/NK/', the blocking of J3 by
to the largest of the maximum execution times of J4 is accounted for by its blocking job G3 which has
jobs in Bk if Bk is nonempty and is equal to zero release time r3 and execution time e+.

if Bt is empty. Gk's priority is equal to 0. Hk is r r2 r4 r3 r,

a job with jittered release time [h. , h+] where h"
is equal to rk and h+ is equal to rk plus the ex- P' A .' .15

ecution time of Gk. H&'s execution time is equal
to e+ and its priority is equal to that of Jk. P2 .12 .13 .14

(a)

(2) Step 2 uses Algorithm ZPMJ presented earlier
and transforms each job Hk into a job Lk with P1 J3 is

a fixed release time, for k = 1,..-, i- 1. Let Gi 22

and Li-, denote the sets of jobs {G,, Gi } and (b)

{Li, • * ", Li-I)}, respectively.

(3) In Step 3, Gi, Li-, and Hi are scheduled accord- P Li L, L 14

ing to the given nonpreemptable, priority-driven P, I L2 J G3

algorithm. An upper bound of the completion (C)
time F(Ji) of Ji is equal to the completion time
of Hi in the resultant schedule. Figure 3: An example illustrating Algorithm INAKA/Y

Li-, is not a subset of Li; Li needs to be constructed In the case where some jobs are nonpreemptable
for every job Ji. Consequently, the complexity of Al- and some jobs are preemptable but not migratable,
gorithm 1,A/'A/' is O(n2). The following theorem al- the actual start time and completion time of Ji may be
lows us to conclude that if Hi can complete by the postponed beyond S+(Ji) and F+(Ji) by two kinds of
deadline di of Ji in the schedule generated by TAKY jobs. A nonpreemptable lower-priority job may block
algorithm, then Ji always completes by di. some jobs in the actual schedule but not in the maxi-

mal schedule. Some higher-priority jobs may preemptlater than the completion time of the transformed job some jobs in the actual schedule but not in the maxi-late thn te cmpltio tim ofthetrasfomedjob mal schedule.
Hi in the schedule of Gi, Li-, and Hi generated by a hedule.Algorithm TK/.N'. When preemptable jobs are not migratable, a lower-

priority job in Ni but not in Bi can start before Ji in
Because lower-priority preemptable jobs do not the actual schedule. We must consider all the jobs in

block any job, we can use Algorithm TAirrY with Ni when trying to bound the completion time of Ji.
very little change to find the completion times of all Also, the schedule of J," constructed by assuming all
jobs when some jobs are preemptable and migratable. the jobs are preemptable and nonmigratable gives us
Specifically, Step 3 of Algorithm IA/AN Y treats (1) no information on which lower-priority jobs can actu-

301

I
I

ally start before Ji. Algorithm IN .Y - N can be of nonpreemptability and nonmigratability. These re-
used to bound the completion times in this case. It suits constitute a small part of the theoretical basis
consists of two steps. Step 1 considers the delays in needed for a comprehensive validation strategy that is I
the start time of each job Ji by nonpreemptable lower- capable of dealing with dynamic distributed real-time
priority jobs. It uses Algorithm YNK" to construct systems. Much of the work on this problem remains
a schedule for each Ji, using the set Ni instead of Bi to be done. For example, we must be able to deal I
in Step I of Algorithm "NK ". Let F,+(Ji) denote with dependencies between jobs. Ways to reliably pre-
the completion time of Hi in this schedule. Then it dict the worst-case completion times of jobs that have
computes the delays in the completion time of Ji due precedence constraints and/or share resources are yet
to higher-priority jobs which may preempt Ji, or some not available. This, as well as the work on predicting
job starting before Ji, in the actual schedule. Step 2 the completion times of jobs in heterogeneous systems
makes use of Theorem 8, stated below. This theorem is a part of our future work. I
is stated in terms of the set Ei; E, is a subset of Ji Acknowledgement
in which each job J4 is released after some preempt- ackn owledgeme nt
able job in Ji with a priority lower than itself (that is, The authors wish to thank Drs. C. L. Liu and W.
J4), and Lk (the job created in Step 2 of Algorithm K. Shih for their comments and sugestions.
Z"A,'W) is not scheduled on the same processor as References
Hi to complete before Hi in the schedule constructed [1] J. Salasin and D. Waugh. An approach to ana- I
by Algorithm A1./KY. The complexity of Algorithm lyzing non-functional aspects during system defi-
ZAKAKYF - N is 0(n 2). nition. Proceedings of July 1993, DSSA Meeting. II
Theorem 8 F(J,)_ F.(J,) + E + -(et - [2] C. L. Liu and J. W. Layland. Scheduling al-

ei). 4,L&CE. gorithms for multiprogramming in a hard-real-
time environment. Journal of ts/e Association

5 Summary and Future Work for Computing Machinery, 20(1):46-61, January

In this paper, we have discussed some of the chal- 1973.
lenges in validating timing constraints of dynamic (31 J. Leung and J. Whitehead. On the complexityI
multiprocessor and distributed systems. In recent of fixed-priority scheduling of periodic, real-time

years, many load-balancing and scheduling algorithm tasks. Performance Evaluation, 2:237-250, 1982.
that dynamically dispatch and schedule jobs on avail- I
able processors have been developed. These algo- [4] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic
rithms often achieve better response times and fuller task scheduling for hard-real-time systems. The
resource utilization than the traditional algorithms Journal of Real-Time Systems, 1:27-60, 1989.
that statically assign and bind jobs to processors.
Unfortunately, analytical methods and efficient algo- [5] J. P. Lehoczky, L. Sha, and Y. Ding. The rate

rithms for validating that all jobs always complete monotone scheduling algorithm: Exact charac-

by their deadlines in dynamic systems do not exist, terization and average case behavior. In Pro-

and exhaustive simulation and testing are unreliable ceedings of IEEE 10th Real-Time Systems Sym-

and expensive. Until reliable and efficient valida- posium, pages 166-171, December 1989.

tion methods become available, the modern scheduling [6] L. Sha, R. Rajkumar, and J. P. Lehoczky. Prior-
paradigms cannot be used in hard real-time systems. ity inheritance protocols: An approach to real-

We have presented here several worst-case upper time synchronization. IEEE Transactions on I
bounds and efficient algorithms. They can predict Computers, 39(9):1175-1185, September 1990.
reliably the worst-case completion times of indepen-
dent jobs in homogeneous dynamic distributed sys- [7] T. P. Baker. A stack-based allocation policy for
tems. One of the algorithms allows us to take into ac- real-time processes. In Proceedings of IEEE 11th
count release timesjitters. The others assume fixed ar- Real-Time Systems Symposium, pages 191-200,
bitrary release times but take into account the effects December 1990. 3

302 I

[8] J. W. S. Liu, J. Redondo, Z. Deng, T. Tia, [11] J. W. S. Liu and R. Ha. Theoretical foundations
R. Bettati, A. Silberman, M. Storch, R. Ha, of efficient methods for validating real-time con-
and W. Shih. PERTS: A prototyping environ- straints. to appear in Principles of Real-Tame
ment for real-time systems. Technical Report Systems, ediied by S. Son, Prentice Hall.
UIUCDCS-R-93-1802, University of Illinois atUrbana-Champaign, 1993. [121 R. Ha and J. W. S Liu. Validating timing con-

straints in multiprocessor and distribucd real-
(9] R. L. Graham. Bounds on multiprocessing timing time systems. Technical Report UIUCDCS-

anomalies. SIAM J. Appl. Math., 17(2):416-429, R-93-1833, University of Illinois at Urbana-
March 1969. Champaign, 1993.

[10] R. Bettati. End-to-End Scheduling to Meet Dead-
lines. PhD thesis, University of Illinois at Urbana-
Champaign, 1994.

303

I
I

Massively Parallel Systems Design for Real-Time Embedded Applications 3
Thomas C. Choinski and Chin-Hwa Lee

Naval Undersea Warfare Center Naval Postgraduate School
Newport Division Monterey, CA 93943
New London, CT 06320

Abstract cost or technology upgrades. Specifically, the approach

entails: I
This paper describes a generic approach to mitigate

risk when reengineering for high throughput massively 1. defining the system requirements,
parallel systems. The approach entails baselining the 2. sizing an architecture using static benchmarks, I
existing system, capturing the functional requirements,
estimating initial processing requirements through a high 3. allocating resources using systems engineering
level analysis, benchmarking a subset of the functionality tools,
on a low throughput computer, and modeling the high 4. developing a full scale model,
throughput application to determine the detailed
processing requirements for scaling. 5. validating the full scale model with dynamic

benchmars,

1: Introduction 6. assessing the compatibility of the architecture
with the real-time embedded applications, and 3

"Once the architecture begins to take shape, the sooner 7. selecting the appropriate design approach based
contextual constraints and sanity checks are .nade on on a trade-off analysis.
assumptions and requirements, the better."

The tradeoff analysis incorporates an assortment of
Eberhardt Rechtin, Systems Architectin_: design tools to expedite and facilitate the decision making
Creating & Building Complex Systems (11 process. Examples of tools used to date include: VHSIC

Hardware Description Language (VHDL), RDD-100 and I
Commercial massively parallel processing (MPP) OMTool. The approach will integrate the systems

architectures offer a solution to TERAFLOP (one trillion engineering tools developed under the direction of the
operations per second) computing applications in the Naval Surface Warfare Center (NSWC) within the Office I
Navy. Computing density (TERAFLOP/cubic foot) and of Naval Research's (ONR) Engineering of Complex
cost (dollars/TERAFLOP) have decreased in recent years; Systems (ECS) Block Program as they become available.
however, the challenge of real-time embedded processing The generic approach suits a myriad of applications
requirements p•ses a high risk for complex systems. The ranging from radar to sonar systems. Accordingly, air,
high risk relates to: inefficient match of applications to surface and subsurface platforms can benefit from the
architectures, low availability of high throughput approach outl-ed in this paper. This paper uses the case
architectures, the accuracy of forecasted downward study method to showcase the approach. I
spiraling price projections, and immature software The case study method applies the generic approach to

development tools (e.g., parallelizing compilers). a practical application. This paper discusses one case
This paper proposes a generic approach to mitigate the study to demonstrate the utility of the approach. The I

risk when investing in a specific MPP architecture. The research will explote additional case studies as interest
approach proposes a series of intermediate steps to assess arises.
the compatibility of the architecture and the requirements. This paper describes the case study, outlines the
Each step refines the assessment and leads to the final generic systems engineering design approach, presents
tradeoff study. The approach embodies reengineering high level architectural sizing techniques, and discusses
considerations when pursuing new implementations for detailed modeling and requirements allocation issues. The

304 I

I
I
I ' m equalized

daraes WAsf data oeam data fCompx brad

II

Inoad te am. etqualizer shimfBut

• lu~at Cluaondeciate

F aigur 1.rWA Procssin

W(ingp ro Array ss tem canppr ea

F'M beamddtt

i e P a e e Cormotgram th Nava
SraeWrInaeCnolen Te WorAA full dteton c

De Clclaimoan d ChonslandpbihdiyA fiin

ary(Fen aclspnig beam dt

Figure 1. WAA Processing

Wide Aperture Array (WAA) beamforming problem Array system can provide an attractive capability. In
serves as the initial case study for the application of the addition, current fiscal requirements within the Navy (i.e.,
sgeneric approach. The approach will evolve based on the the New Attack Submarine Program) have created the need
comments, suggestions and progress of research performed to significantly reduce the cost of the existing WAA
in the ECS Program under the direction of the Naval system.
Surface Warfare Center (NSWC). The WAA full detection concept conceived byS~DePrimo and Choinski, and published in "An Efficient

2: Overview of WAA case study Approach to Systems Evolution (EASE)" [4], offers a
cost effective way to implement the inboard electronics

C NUWC chose the WAA in-board electronics with additional full detection capability. This
application for two reasons. First, reengineering the WAA implementation serves as the case study for this paper.
system contributes to the incremental insertion of The implementation uses commercial massively

commercial off-the-shelf equipment (COTS) into parallel processing technelogy developed within the High
submarine warfare aybref des.iSecond, o te Performance investing and Communications (HPCvC

implementation for the WAA inboard electronics suite Program and made available under the Director of Defense
would fulfill the Navy's need to reduce cost, as well as Research and Development's (DDR&E) Defense

Salign with the Director of Defense Research and Modernization Plan.

Development's (DDR&E) thrust areas. Two of DDRE's Figure I illustrates the WAA signal processing

seven thrust areas emphasize Affordability, ans se a nd saniyf c kfor the reengineering process. The signalSControl and Undersea Superiority [3]. Therefore, the processing includes additions to the existing WAA

reengineering of the existing WAA system responds to system.
changing cost and commercial technology requirements. This paper proposes a generic approach to mitigate the

This paper provides a brief description of the Wide risk when investing in a massively parallel architecture.
Aperture Array full detection system. As interest arises, The approach concentrates on the importance of constraints

the approach will incorporate diversified case studies and sanity checks throughout the design process.
based on other existing Naval systems.

The cost effective implementation of the in-board 3: System engineering approach
electronics for a Wide Aperture Array full detection
system serves as the primary objective for this case study. Figure 2 embodies the intent of Rechtin's heuristic, as
The WAA system can perform the detection function for a quoted at the beginning of the paper, by setting up a
submarine. Sea test data indicates the Wide Aperture process to assess the compatibility of the architecture and

305

I

I
INADEQUATE

SELECT T S sEnRgATE ARCHITECTUREIT NEOUSIPJ

DOMAIN ALLOCATE
PUBLISHED SPECIFICFUCIN

BENCHMARKS BENCHMARKS FCTIOACITECUR

(STATIC)/00 EMNT4I

the requirements throughout the design process. Each step analysis consists of a combination of modeling, simulation
progressively refines the assessment. The approach and dynamic benchmarking.I
includes re~engineering considerations when systems Dynamic benchmarking entails the implementation ofI
engineers pursue a new implementation for cost or a processing subset on a scaled down MPP architecture.
technology upgrade reasons. In this manner, dynamic benchmarking reduces risk. The

The process starts with the definition of functional move from using a single processor to multiple processors I
requirements and the selection of a candidate architecture. differentiates dynamic benchmarking from static
For reengineering problems like the Wide Aperture Array, benchmarking. Dynamic benchmarking also introduces
the process includes a step to characterize the existing partitioning, input/output (I/0) issues, and event drivenI
system. The existing system characterization provides the processing attributes.I
baseline for the tradeoff analysis. In addition, the dynamic benchmarks validate the

An object oriented software design follows the detailed architecture models simulated in this step. TheI
functional specification. The inclusion of the object concept of using modeling, simulation and benchmarkingI
oriented design step translates functional requirements to for architecture validation was first introduced by Muffoz
objects suitable for software design. This step will of the Naval Undersea Warfare Center [5]. Figure 3
determine if object oriented design facilitates software elaborates on the allocation process identified in figure 2. I
portability and reuse. In practice, a systems designer could After allocating the functions, the final tradeoff
bypass this step in favor of functionally based software analysis uses a set of previously defined metrics to
design, compare the performance of the proposed implementationI

The sustained throughput and data rate estimates to the existing baseline system. The results of the tradeoffI
follow the object oriented design. The throughput and analysis determine whether to accept, modify or eliminate
data rate estimates enable a preliminary architectural sizing the candidate architecture.
using the performance data from existing libraries or staticI
benchmarks. Static benchmarks provide single processor 3.1: Metrics
performance data for metrics like efficiency. Therefore, theI
architecture sizing obtained at this point allows for an The basis of the trade~off analysis rests with the I
initial assessment of the instantaneous throughput levels extraction and comparison of metrics. Modeling and
quoted by manufacturers. simulation permit measurement of the metrics for the

Given the preliminary architectural sizing, the systems proposed system. The measured data can be compared to •
designer can perform a detailed analysis of the architectural the existing system baseline data. I
requirements for the given application. The detailed Numerous metrics have been identified for

consideration in the tradeoff analysis of MPP I

306I

I
I ____ _ __ _ _ __ _ _

m TO ALLOCATE

I

Figure 3. Functional Requirements Allocation

architectures. Table I presents the MPP metrics and their first documented the WAA functional requirementsIdefinitions. These metrics have been discussed in detail previously depicted in figure 1.
by Lee [6] and the team of Sweetman and Mufioz [7]. A systems engineering design tool like RDD-l00 can
The design capture view metrics outlined by the ECS capture the functional requirements and facilitate
research block can also be added to this general list, traceability throughout the design process. Initially, a

word processor was used to capture the WAA
4: High level architectural sizing requirements; however, NUWC will also use tools like

RDD-100.
The high level architectural sizing provides the RDD-100 brings several capabilities to the designIpreliminary estimate for the size and configuration of a process including: requirements capture, functional

compatible architecture. The high level architectural sizing behavior modeling, full scale architecture modeling,
consists of four parts: resource allocation, dynamic analysis and documentation

of results. Other tools are also available to provide this
1. capturing functional requirements, capability.

2. baselining the existing system, 4.2: Baseline system characterization

I 3. generating an object oriented design,
Ideally, the systems design engineer should baseline

4. establishing a preliminary architectural sizing the existing system using metrics necessary to complete
from static benchmarks. the tradeoff analysis. Under these conditions, the designer

Once completed, these four steps lead to a detailed completes the tradeoff analysis by comparing the new and
architectural design and development. Unlike the detailed existing systems on equal footing.Idesign, the high level architectural sizing does not address Unfortunately, even the best documentation from a
software issues or partitioning of the functions. military system will fall short of supplying all the

previously defined metrics for the tradeoff analysis.
4.1: Functional requirements definition Design engineers document their work for developmentU and not reengineering purposes. Therefore, the tradeoff

The functional requirements definition phase of the analysis will embody comparisons between similar but not
generic system engineering design approach results in equivalent metrics.
system level specifications for the application. For the The reengineering process was initiated by using the
case study highlighted in the paper, a systems engineer design capture views established by the ECS Block to

capture the implementation of the existing WAA

307

I

Table I. Metrics 3
1. Computation Bandwidth A description of the frequency of operations per unit time measured in

MFLOPS/second.

2. Communication Bandwidth A description of the 1/0 rate measured in MBytes/second.

3. Memory Bandwidth A measure of the memory access requirements per unit time
represented by Bytes/second.

4. FLOPS-I/O Ratio A ratio which compares the computation load(MFLOPS) to
the I/O (Bytes/sec) load.

5. Latency- FLOPS Product A characterization of the ability to support communications
requirements versus the computational bandwidth requirements of a module or
architectural element.

6. Power/Weight(Volume Values used to characterize the physical attributes of a
system. Power is characterized by Watts, weight by pounds (Ib) and volume by

cubic feet (ft3).

7. dB/Watts A measure which combines process gain (dB), algorithm
efficiency, dB/gate-Hz, technology cost, gate - Hz/watts, architecture efficiency,

and percent duty cycle. An alternative is to use noise recognition differential I
(NRD) instead of process gain for a measure of sonar system performance.

8. Architecture Diameter An integer which represents the maximum number of
communication paths that a message or data may be required to travel from
processor to processor.

9. Architecture Latency The maximum time, in seconds, a message takes to propagate
acmoss the path that determines architecture diameter.

10. Processor Memory Ratio A ratio that captures the memory available to an individual
processor. For local memory systems the ratio would be the local memory per
processor. For shared memory systems the ratio would be computed by dividing
the total system memory by the number of processors and adding the amount of
local cache memory per processor.

11. Average Message Size A value computed by dividing the total number of message

per Processor bytes sent during the time it takes to execute an algorithm, divided by the number
of processors.

12. Response Time The time in seconds that is required to execute an algorithm.
The time begins when the first processor starts executing and ends when the last
processor stops executing.

13. Processor Utilization A percentage computed by dividing the sum of the individual
times that the processors are executing by the total time it takes to execute the

algorithm, times the number of processors in the system.
=tl +t2+t3 + tn

NT

14. Program Size The size in bytes of the program.

15. Speed Up A value computed by dividing the response time for an
algorithm executing on a single processor by the response time for an algorithm
executing on several nodes in a system.

30,9I

9% 22% 13% 2%I ASICS 68000 ASICS 68000

I14%0 21%
TMS3200 TMS320C 64%

55 56000

56000

Figure 4. Processors Figure 5. Throughput

16% 5%
Data Management 21% Data Management 16%

23% 9% 30% 11%
__ 9 * Tm origa rck

Beamforming Track Beamforming

31% 38%
Detection DetectionI

Figure 6. Processor/Function Figure 7. Throughput/Function

I system. The information presented in figures 4-7 takes place with the assistance of an object oriented design
illustrates the types of data documented for the existing tool like OMTool. Future versions of products like
system. These figures represent a sample of the data used OMTool will perform the functional to object oriented
for the baseline characterization of the Wide Aperture translation automatically; however, OMTool cannot
Array System case study. perform the translation at this time.

Although the existing baseline uses a distributed OMTool provides functional, object and data flow
processing architecture, some of the experiences can be views for a given application. In addition, the tool
carried over to the massively parallel processor produces C++ code. This paper neither endorses nor
architecture. For example, since trackers do not require denounces the use of OMTool. Engineers working on the
large amounts of throughput, the MPP implementation for WAA case study use OMTool because of the features
trackers probably would not change significantly. Figures available for the given price range.
4-7 present four different views of the Wide Aperture Figure 8 illustrates the object oriented array system
Array System. Partitioning functions to resources has design. Figure 9 expands the object oriented beamformer
become the focal point for the case study because of its design. These diagrams represent a synopsis of the object
significance in massively parallel array architectures. oriented design which will be used to reengineer the WAA

system. Note that although the object oriented design
4.3: Object oriented design started with the WAA application in mind, the high level

software suits any array processing problem using a 2
The object oriented software design follows the stage time delay bearnformer.

functional specification, and the existing system baseline. In the future a systems engineer specifying the
The inclusion of the object oriented step translates functional level requirements could expedite the object
functional requirements to objects suitable for software oriented design if a link was developed between tools like
design. Object oriented design should facilitate the reuse OMTool and RDD-100. The link could further automate
and portability of software. the design process. In addition, the link would also

Once the functional requirements have been designed, ensure the consistency of requirements between object
a software engineer determines the set of software objects oriented and system design tools.
necessary to achieve the desired functionality. An analysis

309

I
I

S~I
AggregatePat

PROCS PR SSO

sENsOR DATA SAM i TXRACVJNGSSENSOR DATA SAMPLE

{SENSOR DATA:FLOAT) I

IBEAM DATA RECRDS(BEAM DATA'.IOAT, BEAM INDIEXID TYPE
SECr BEA•ABEAM INDEX:ID TYPEAEAM DATA'LOAT

4O~rPU BEAM DATAMEAM DATA:FLOAT, BEAM NDiEX:W TYPE)

Indr af amltrbufs,
+ Imhcsu tWcimafL.

Figure 8. Object Oriented Array System Design I
BEAMFORMER

#BEAM DATA RECORDS(BEAM DATA:FLOAT, BEAM INDIEX ID TYPE
+SELECT BEAM(BEAM INDEX:ID TYMBEAM DATA.FLOAT
+OUTPUT BEAM DATA BEAM DATA&FLOAT, BEAM INDEX:ID TYPE)

I One to Many
BEAM

#BEAM INDEX:ID TYPE
#BEAM DATA VALUE.FLOAT
+CREATE BEAM DATA(BEAM INDEX:ID TYPE, BEAM DATA VALUE) I
+S BEAM DATA FROM ROWS ROW BEAM DATA, BEAM DATA VALUE)

ARRAY ROWI

#ROW NO:INTEGERRO
#ROW BEAM DATA ECORD(SENSOR NO:ID TYPE, SENSOR DATA:FLOAT)
#SHADING COEFFICIENT:INTEGER
#ROW SUM:FLOAT

+CREATE ROW BEAM(ROW NO. ROW BEAM DAT+INPUT SENSOR DATA SAMPLE FROM QUEUF.•SENSOR ID, SENSOR DATA)
+APPLY SHADING(SENSOR DATA)
+DO ROW SUM(SENSOR DATA SAMPLES, ROW SUM)
+APPLY VERTICAL SHADING TO ROW SUM(ROW SUM)

I__

SENSOR

#INTERPOLATED SENSOR DATA SAMPLE:FLOAT.
#DELETE SENSOR:BOOLEAN
#SENSOR ID:INTEGER

+INPUT SENSOR DATA SAMPLE(DATA SAMPLE)
+STORE DATA SAMPLE(SENSOR ID, DATA SAMPLE)
+DO FINE TIME DELAY INTERPOLATION(SENSOR DATA[2]:FLOAT, BEAM INDEX)
+OUTPUT DATA SAMPLE(SENSOR ID, DATA SAMPLE)

+APPLY DELETE(DELEITE SENSOR)

Indicates atnbutes.
+ Indicates functions.

Figure 9. Object Oriented Beamformer Design

310

4.4: Instantaneous Load Estimation and Static 2. software partitioning,
Benchmarking 3. full scdle modeling, and

A preliminary sizing for the WAA case study 4. dynamic benchmarking.
demonstrates the application of instantaneous load
estimation and static benchmarking. The number of Technology independence means that it is possible to
floating point multiply and addition operations were retarget the software. Partitioning involves dividing the
calculated for the functions identified in figure 1. The processing into pieces which can run on individual
sustained throughput estimates in Table II reflect these processing elements.
multiply and addition estimates coupled with input data Massively parallel architectures can have an assorted
rates. collection of heterogeneous analog or digital processors.

Intel Corporation provided the efficiency and peak The program that runs the real-time embedded system
numbers in Table II based on Paragon single processor typically can have hundreds of thousands of lines of
implementations written in Fortran. The peak numbers do source code. The system is generally very complex,
not reflect scaling effects due to 1/0 and partitioning. As a difficult to design, and hard to maintain.
result, efficiencies for a final massively parallel version Large combat systems historically use a number of
would probably be lower. Therefore, Table II presents the heterogeneous processors connected in a distributed
results of a static benchmarking effort and represents a network structure. Continuing this trend would lead to
preliminary sizing for the WAA processing problem. expansive custom MPP architectures.
Basically, initial estimates indicate the WAA processing Custom MPP architectures have thousands of
requires a massively parallel architecture capable of processors connected as nodes in some kind of network
providing 36 GFLOPS of peak throughput. structure. Commercial processors like the Intel i860, Sun

Sparc, or DEC Alpha chip perform the processing
Table II. Static Benchmarking Load Estimation [8] functions in the nodes. Hypercube, mesh, hierarchical ring,

or tree topologies form the basis of the networks.
Dzratlkn Sustained Eft P1ak Companies like Intel, Thinking Machines and Kendall

Square Research have developed the MPP architecturesDeamforming 7.50 32% 23.44 into commercially available systems. These systems may

FIR Filters 0.54 25% 2.16 have homogeneous or heterogeneous processing elements.
The difference between commercial and custom MPP

Complex FFTs 2.02 56% 3.61 architectures lies in the user base. System engineers

Cross PSD 0.23 14% 1.64 optimize custom architectures for one specific application
for a limited market. Companies build commercial

Auto PSD's 0.16 14% 1.14 architectures as products for a more generic user
Integrate Auto Spectra 0.01 14% 0.07 community. The commercial architectures may not fit a

particular application as well as a custom architecture;IInverse Complex FF1 1.01 56% 1.80 however, the commercial architecture will fit a broader
Normalized XCOR/ 0.25 14% 1.79 range of applications. Table ImI characterizes custom and

commercial architectures.
Up Sample and

Interpolate FIRs Table Ill. Custom Versus Commercial MPP

Total GFLOPS 11.72 35.65 Architectures

5: Detailed modeling and requirements N"P E/W S/W
allocation Architecture Cos fosti

Cusomhigh high none

The detailed level modeling and requirements Commercial medium medium-high partial

allocation method provides a specific design for a MPP

architecture. The method presented in this paper addresses If MPP markets develop successfully, the hardware
four issues: cost of commercial MPP architectures will shrink faster

1. technology independence, than custom MPP architectures. The softwaredevelopment costs of the custom architectures are

311

I
I

Tetargetable
MPP Architectures

DSP Sin l 1ow HotEucc tion inrttio
Appica o ra= Entity Procedural l gan t

Future

I
Figure 10. Technology Independent Application

prohibitively high. Life cycle costs for custom
architectures are also high because of lack of portability. Scalability and partitioning are correlated. Good I
With appropriate research and development in the software partitioning methods generally lead to good
engineering of complex systems, the software for scaling. Generally, the efficiency and scalability increase
commercial MPP architectures can achieve lower cost with effective software development techniques. Note
through partial portability. One objective of the however, that this relationship is not linear and is
Massively Parallel System Design task is to address algorithm dependent.
detailed level MPP software mapping and portability. I

Despite continuing research efforts in parallel 5.1: Technology independence
processing, two challenges exist for MPP architectures:

Technology independence presents a significant
1. The MPP scalability problem presents a major hurdle to real-time embedded MPP architectures. Figure

obstacle. Efficiencies from benchmarks with large 10 shows one approach for attaining technology
(thousands of processors) MPP architectures independence. In general, the objective and procedures are
measure less than 10%. For vector processors similar to other previous works. The uniqueness lies in
like the Cray supercomputer, the efficiencies the details of the methodology. The method concentrates
measure higher than 10%. These inefficiencies on using commercially available tools whenever possible.
create a high incentive to increase the speed-up of Many of these tools have graphical user interfaces. I
MPP systems. Graphical interfaces facilitate the use of signal flow

graphs for representing real-time embedded applications.
2. The MPP programming problem necessitates a Node labels represent computation loads in the signal flow

significant up front development effort for graph. Directed edges symbolize data dependency in the
partitioning. Software engineers cannot program graph. Edge labels characterizes the communication delay
MPP architectures easily. One dominating issue of signals from node to node. Simple FIFOs between the
relates to the mapping process. The mapping nodes can represent communication delays for some target I
process determines partitions and allocates architectures.

functions on MPP architectures. The absence of This kind of programming method uses block
automated mapping tools requires software diagrams, large grained data flow graphs, and synchronous

engineers to manually complete the mapping data flow graphs. The graphics facilitates the entry of a

process. digital signal processing (DSP) application. The task

I
312 I

software may be written in any procedural language so that 1. task level function module parallelization (coarse
simulation of the function can be done on host processor grain),

before it is mapped into a target MPP system. 2. high level procedural language and messaging
This method meets the scalability and portable passing,

software challenges. Software engineers can use one of
three different techniques to program MPP architectures. 3. portable software for different MIMD MPPs, and
The first one takes a regular sequential program and
compiles it for a MPP system. This technique is referred
to as the parallelizing compiler approach. The second After graphic entry and host function simulation a
recodes the program in a parallel language such as mapping procedure is required before the program can run
LINDA, FORTRAN 90, or functional (applicative) on a MPP system. Figure 10 shows a set of MPP
language. This technique is called parallel languages. The architectures. MIMD with distributed memory and
first technique does not require a large effort when message passing are our target systems. The Mapping
rewriting software. A parallelizing compiler capable of Procedure consists of partition and allocation.
dealing with thousands of lines of code simply does not For MIMD with distributed memory and message
exist, and the ones available for small programs suffer from passing, scheduling may be done at the compile time.
performance problems. The second approach requires a Unlike real-time scheduling, compile time scheduling is
new culture for programmers. However, using parallel the most straightforward way to handle the real-time
language still falls short of acceptable performance. requirement which dominates military applications.

The third approach follows the message passing
methodology which involves explicit parallel environment 5.2: Partitioning
control. Hence, the third technique is called message
passing. The programming takes place in an environment The Calibrated mapping performance prediction
like PVM or EXPRESS with utilities to handle parallel paradigm (CMPP) leads to detailed modeling allocation.
message passing. The last technique requires some user The CMPP paradigm is discussed in this section of the
awareness of the topology of the MPP architecture, but it
can achieve the highest scalability and efficiency. Table Because of a large and multidimensional solution
IV describes the software techniques. space, heuristic methods provide the first pass solution.

b Therefore, automation and design aids would expedite a
Table IV. MPP Software Approaches broader search of a good solution for the total system

E~kiea Mal~ing design.
Main design.Technology independence depends also on the MPP

Parallelizing Compiler Not Proven Automatic mapping procedure. Mapping involves partitioning and
allocating function modules on the MPP architecture. The

Parallel Language : 0.01% Automatic absence of parallelizing compilers and languages leaves

Message Passing 1% - 10% Manual only design aids to ease the mapping process. The user
has to couple the procedural modules with message

Unfortunately, automatic mapping technology for passing operations. The process is slow when the user has

partitioning and allocation does not exist. Good to do a manual mapping for all the pieces (thousands), as

performance in programming MPP architectures relies on well as run the MPP execution to decide whether the

tedious manual mapping methods. mapping works. Figure II shows this mapping procedure

Single Instruction Multiple Data (SIMD) MPP and in detail. This cycle will be repeated to optimize each

the Multiple Instruction Multiple Data (MIMD) MPP performance metric.
architectures further complicate the portability challenge. This paper proposes a calibrated mapping
SIMD MPPs encompass the connection machine and the performance prediction paradigm. Figure 12 illustrates the
MASPAR architectures. MIMD MPPs consist of the paradigm. The key idea concentrates on performance
iPSC 860, CM-5, DSP-3, and Paragon shown in Figure model simulation. Rather than do a functional execution
10. This paper concentrates on MIMD architectures. on full scale MPP to collect dynamic performance metric

The four salient features for the portable massively data, the benchmark is collected from model simulation.

parallel systems design (MPSD) method discussed in this The full scale model then provides estimates of the

paper include: architectural performance in terms of the previously
defined metrics.

313

I
I1000's.. ..

S•A] Alocation to Execution On
Host ~New OeMPP Coupled With MPWt

Program - PrionProcessor MGPsigExpress

Perfomnance
BenchmarkI

•o•~II

Figure 11. Detailed Mapping ProcedureI

Functional

Hot Tet andEX_

Program Veification Load Estimaton
(StatiSc Benchmar) /~ r

Partition of - In A Graphics Structure Performance (Dynamic
The Program 1000 Replication Model Benchmark)

No
Satisfactory

Metrics?

Yesye

Figure 12. Calibrated Mapping Performance Prediction Paradigm

314 1
I

The FLOPS-I/O ratio characterizes the proportion of
5.3: Full scale modeling computation done versus communication (1/0) required in

the partition. The ratio can characterize the architecture
The performance model requires two kinds of element once maximum throughput requirements are

modules: the execution module (EXEC), and the fulfilled. If the peak FLOPS-I/O ratio of an architecture
communication module (COMM). The execution time eiement is less than that of the application module, it is
metric as the initial focus, since execution time is directly possible to fit the application module into the element. If
related to the speed up in MPP architectures. EXEC load, the peak FLOPS-I/O ratio of an element is greater than the
EXEC bandwidth, COMM load, and COMM bandwidth application module, the partition will encounter problems.
characterize these modules. The host program estimates Essentially, the FLOPS-I/O ratio characterizes
the EXEC load and COMM loads for all the partitioned computational activities relative to communication
pieces of a specific mapping. The collected data become activities. With this metric, it will be easier to analyze the
model parameters to annotate the performance model before results of different mapping processes by examining
simulation. Each new partition requires repetition of the granularity. One definition of fine grain tasks refers to
load estimation and extraction process. Any automation small FLOPS-I/O ratios. Fine grain application modules
that can be added would be desirable, can only be efficiently accommodated in fine grain

EXEC modules and COMM modules are used to architecture elements.
build the performance model with token networks. The The FLOPS-I/O ratio metric makes it possible to find
token network handles multiple transmitters like real a common partition of an application for a set of MPPs.
network situations. Presently the model can only handle The common partition usually can not achieve the best
Ethernet simulation. Construction of the performance speedup and efficiency in a specific MPP, but the partition
model is done in the graphics mode. The VHDL feature can be accommodated in a number of MPPs. Further
simplifies the replication of thousands of identical development of the CMPP paradigm will demonstrate this
modules. The Calibrated Mapping Performance Prediction situation in the future.
(CMPP) paradigm hides many of the details of message A collection of Sparc workstations on an Ethernet
passing so that the designer can concentrate on the was used to demonstrate the CMPP approach during 1993,
partition and allocation problems. The right environment since the researchers did not have access to a commercial
enables replication the modules many times. This MPP architecture. The researchers also used a message
environment reduces the problem of scaling to thousands passing development environment called EXPRESS.
of processors. EXPRESS addresses the portability challenge for the

The CMPP paradigm discussed in this paper used the CMPP paradigm.
VHDL environment. Note that VHDL is not used here for The development consists of three parts. First, the
hardware design; instead VHDL allows the designer to EXEC module characterizes a piece of the execution that
construct the structure, simulate the performance, and occurred in the architecture element of the MPP. EXEC
collect metric data. Both PC's and workstations support modules represent a source that generates a load token, a
VHDL environments at low cost. VHDL will be available feed-through that accepts input tokens and produces
for hardware and system design for a long time. In output tokens, or a sink that consumes a load token. The
addition, constructs of the VHDL language can replicate following VHDL parameters characterize EXEC modules:
modules as shown in Figure 12 in a straight forward
manner. VHDL generic constructs also help annotate INST => unique module name
model parameters before simulation. The manual Unit => I Kbytes
EXEC/COMM load estimation and extraction is a Sizeinfo => statistic size in units
disadvantage of the CMPP paradigm. An automatic Throughput-info => (#/sec) statistic throughput rate
procedure would strengthen the CMPP paradigm. Latencyinfo => statistic delay (usec.)

The CMPP paradigm allows the partition and * Duty_cycle_info=>(#/sec) statistic duty
allocation results to be portable to different types of cycles
MPPs. Remapping is necessary due to different network * Only relevant for source EXEC modules.
bandwidths, topologies and throughput rates in different
MPPs. However the CMPP minimizes the portability Figure 13 shows a VHDL structure for the modules.
effort as much as possible. The CMPP paradigm reduces The left most block depicts a source EXEC module, and
the effort needed to run a real-time embedded application the right most one a sink EXEC module. The INST
on different MPP architectures. generic describes a unique name for the module in the

model. The size *unit characterizes the load of execution.

315

I

The term "unit" represents the basic data size such as in The ebiu is in turn built from two sub modules: Local I
bytes or Kbytes. The throughput characterizes the speed and Globalnet. The sub module structure is shown in
of this EXEC module. The latency feature permits a more Figure 14. The VHDL environment can build these
accurate delay account. Duty cycle is relevant if the entities, module structures, and sub module structures U
EXEC module is a source that generates periodic loads, hierarchically. Graphics windows permit editing,

checking, and simulation. The bottom level behavior of
the EXEC or COMM modules are written in VHDL.

[jHG~b 5.4: Dynamic benchmarking~ebiu~r M- iplayI

______ LDynamic benchmarking helps to validate the full scale I
STAT models. The data from the dynamic benchmarks help

refine the simulation models to reduce the risk associated
with the scaling process. Due to the lack of availability of

Figure 13. A Structure of EXEC Modules, COMM a commercial MPP architecture during 1993, the Naval
Modules, and Ethernet Postgraduate School researchers explored the CMPP

paradigm using Sun Workstations connected by EtherneLt
Figure 13 shows two COMM modules called ebiu. One important feature in the CMPP paradigm

The COMM module can receive or transmit to or from a involves the calibration process for EXEC/COMM model
local port. The data transfer on the global port is also bi- parameters. The calibration process requires dynamic
directional. The following VHDL generics characterize the benchmarking for fine tuning. The EXEC/COMM I
COMM module: parameters are extracted from a functional program. The

results enable calibration of the model. The calibration
INST => unique module name process refers to the adjustment of parameters by I
bw_unitpersec => unit size (byte) comparing a benchmark from the CMPP prediction to the
bandwidthjnfo => statistic bandwidth (byte/sec) parameters from the actual execution. The calibration
Txlatencyinfo => statistic transmit latency deliy process ensures the validity of the model.

(usec)
Rx_latency_info => statistic receive latency delay

(usec) MeaIred
Bus_timeout_info => statistic time-out (usec) 700-
Ack_time_info => statistic acknowledgment time

(usec)
_00

Bandwidth and bw unit-per._sec characterize the I
channel limitation of the bus. For the case of Ethernet,
part of the Ethernet features reside in the COMM module,
and the other features like arbitration reside in the token
signal resolution function. 100

The VHDL resolution function is a special facility 1000 10000 100000

available in the VHDL language that handles multiple Message Size (bytes)
signal drivers. The signals in this model are all data token
types. A special VHDL resolution function is
implemented to model the Ethernet. Figure 15. Ethernet Delay for Versus Message Size

The crucial step for the experiments developed during
IB Rcv - RCV Data0 GB 1993 was to model and characterize the Ethernet correctly.cc Data0 The aforementioned calibration process tuned the COMM

Local Tx - Tx Global modules (ebiu). Figure 15 presents the actual message
delays and the model predictions. The message size varied
from 1 Kbyte to 32 Kbytes. The predicted and measured
data matched very well. The model parameters that yielded

Figure 14. Ebiu Sub Module Structure this prediction consist of:

I
316 I

bw_unit_rper._sec => byte are executed in the host. The diagram shows that the
bandwithinfo => 48,000 largest execution load occurred in the Vector-Matrix
Txlatency-info => 41.280 ms module. The heaviest traffic on the Ethernet was the
Rxlatency-info => 10.000 ms message shuffle between the FFT and Vector-Matrix
Ack_timejinfo => 41.280 ms modules. The information in figure 17 was accumulated
bustimeout_info => 10 sec using the Sun operating tcov command. COMM loads

were estimated using EXPRESS profilers.
In addition to the Ethernet modeling, two The parallel EXPRESS environment can also provide

beamformers were coded and tested. One beamformer used an event profile which shows the communication
a frequency domain algorithm, and the other a time domain activities, and the execution activities of the processors.
algorithm. The time domain algorithm reflects the type After the analysis, the next step is to construct a
used in the Wide Aperture array system. partition structure in the VHDL environment that

The frequency domain beamformer demonstrated the simulates the performance. A structure for the 8-node
advantage of using MPP systems. The hypothetical partition was developed. The objective is to be able to
beamformer assumed 96 sensors in the system. Beam predict performance such as execution time shown in
response covered 0 to 180 degrees with 1 degree figure 16. Progress is ongoing and encouraging.
resolution. A host program in FORTRAN 77 was written
and checked with the test data to assure correctness. The communication
mapping procedures outlined in this paper were used to Execution Load Load
partition and execute the application under the parallel (FLOPs) (Bytes)
EXPRESS environment. The metric plotted in figure 16
is the execution time. This mapping procedure was 203 Host 6,888
repeated for 1, 2, 4, 6, and 8 architecture elements on the I/P
network of workstations. The results show that increasing ,
processing elements decreases the execution time. 1,828,052 FFr 43,008

100000,

80000-

8000 Vector
5,544,362 Matrix 23,040

j60000 Product

Host
20000Display

0' Y
0 2 4 6 8 to Figure 17. EXEC and COMM Loads for an 8-

Number of Processors Processor Partition

A single panel of the WAA beamformer was also
programmed during 1993. The WAA program includes

Figure 16. Execution Time Versus Number of test data generation, time delay memory, 1:3 interpolation,
Processors full beam vertical shading, and beam summation. The

program has been tested and verified.
Figure 17 exhibits the computational and EXPRESS will be used to map the application to the

communication loads for the frequency domain Sun Workstation environment. Table V reveals
beamformer. The loads were estimated and extracted as preliminary execution time data for the WAA beamformer
described in the CMPP paradigm in Figure 12. These program on three high speed computers: the Sparc 630MP
estimates represent the loads for each processor. (2 processors), the Navy TAC-3 (HP 900/730), and the

The two main execution modules are: the FFT module Cray YMP/EL. The Cray yielded the best execution time,
and the Vector-Matrix product module. The other modules but the TAC-3 yielded the smallest execution code size.

317

I

The TAC-3 is about 10 times slower than the Cray 4. scalability of massively parallel architectures,

YMPIEL, but requires 25 times less code. 5. availability of commercial massively parallel

TABLE V. Time Domain Beamformer Benchmark architectures, and

6. suitability of the massively parallel systems

Execution Execution design approach to other case studies.

Research will continue to pursue the massively
Sparc 630MP (2 p~rocessors) 833.8 237,568 parallel system design framework discussed. Plans

TAC-3 (HP9000/730) 339.6 32,768 encompass implementation, modeling, benchmarking and

simulation of the Wide Aperture Array functions. A
Cray YMP/EL (4 processors) 35.4 802,320 continued focus will be placed on using tools like VHDL,

RD-100 and OMTool, in addition to integrating tools
6: Summary emerging from the Engineering of Complex Systems

Block Program. Il
This paper proposed a generic approach to mitigate

the risk when investing in a specific MPP architecture. Acknowledgment
The approach proposes steps to assess the architecture and I
requirements compatibility which include: defining the The authors acknowledge several individuals for their
system requirements, sizing ;a• architecture using static significant contributions to this paper: Daniel Organ f-"
benchmarks, allocating resources using systems the characterization of the existing WAA system, Warren I
engineering tools, developing a full scale model, Axtell for the object oriented design, and Adam Siconolfi
validating the full scale model with dynamic benchmarks, for the WAA functional requ:rements specification. In
assessing the compatibilty of the architecture with the addition, the authors would like to thank Dr. Jos6 Mufioz
real-time embedded application, and selecting the for his helpful comments and suggestions, and John
appropriate design approach based on a trade-off analysis. DePrimo for providing the technical review of the paper.
The approach embodies reengineering considerations for

cost or technology upgrades. References U
The Wide Aperture Array case study demonstrated the

approach's usefulness. This paper presented a functional [(1 Eberhardt Rechtin, Systems Architecting: Creating and
specification, existing system baseline, object oriented Building Complex Systems, Prentice-Hall, 1991, p.4 8.

[2) Thomas C. Choinski, "Economical Development of
design and a series of benchmarks for the WAA Complex Computer Systems," Proceedings of the

application. Complex Systems Engineering Synthesis and
In addition to the WAA case study, the paper also Assessment Technology Worksbop July 1992.

included detailed modeling and simulation data for a [31 Director of Defense Research and Engineering, Defense.

frequency domain beamformer implemented on several Sun Science and Technology Strte, July 1992.
[4] Thomas C. Choinski and John J. DePrimo, "An

Workstations networked with Ethernet. This test Efficient Approach to Systems Evolution," Proceedings

demonstrated the utility of the Calibrated Mapping of the Complex Systems Engineering Synthesis and
Performance Prediction Paradigm. The information Assessment Technoloa Workshop, July 1993.

presented included an explanation of the detailed VHDL [5] Jos6 L. Mufioz, et al., "An Architecture Assessment
Environment for Massively Parallel Computations,"

models that a researcher fine tuned to reflect the actual Proceedings from the IEEE International Conference on

operation of the network. Systems. Man. and Cybernetics. Volume 11 of Ill,
Several issues surfaced during the course of the November 14-17, 1989.

research described in this paper. These issues offer [61 Chin-Hwa Lee, "Massively Interconnected Models for a
Beam Former," Proceedings of the 1992 Complex

possibilities for extended research in the future. The Systems Engineering Synthesis and Assessment
issues include: Technology Workshop. July 1992.

[71 Denman E. Sweetman and Jose Mutioz, "Measures of

1. compatibility between engineering tools (e.g., Effectiveness (MOEs) for Parallel Architectures,"
RD-100, OMTool, etc.), Proceedings from the IEEE International Conference on

Systems. Man. and Cybernetics. Volume II of III,

2. portability of object oriented design software, November 14-17, 1989.
(81 Thomas C. Choinski and John J. DePrimo, "An

3. technology independent software for massively Efficient Approach to Systems Evolution," Procedings
pare achn yinpetuents o e oof the Complex Systems Engineering Synthesis and
parallel architectures, Assessment Technology Workshop, July 1993.

318 I

I
I

I Knowledge-Based, Metalanguage-Based Object Abstraction
for Automatic Program Transformation

I Romel Rivera
Member, IEEE

3 Xinotech Research, Inc.
1313 Fifth Street Southeast, Suite 213

Minneapolis, MN 55414
romel@xinotech.com

Abstract "We might well ask, why this phenomenal growth in
the cost of software? There are several major reasons. One

This paper describes Xinotech Research's knowledge is the fact that the requirements for new software systems
based, metalanguage-based programming environment to are more complex than ever before. ,\ second reason for the
support automatic program transformation and object ab- rising cost of software is the increased demand for qualified
straction for forward and reverse engineering. In this envi- software professionals. A third reason, is the fact that our
ronment, both knowledge extraction and knowledge ab- software development tools and methodologies have not
straction are metalanguage-based and thus language inde- continued to dramatically improve our ability to develop
pendent. The transformation engine is accessible through software.
the interactive syntax-directed tools for program construc- "...It has for a long time been recognized that one
tion or for massive reengineering. This transformation fundamental weakness of software creation is the fact that
infrastructure is operational for Ada, and can be applied to an entirely new software system is usually constructed
transform existing programs to support object-oriented 'from scratch'. This is clearly an unfortunate situation, as
methodologies, to port existing software to new libraries studies have shown that much of the code of one system is
and platforms, to translate automatically between lan- virtually identical to previously written code. For example,
guages, to change the meaning of programs, or to enforce a study done at the Missile Systems Division of Raytheon
the semantics of applications or programming standards. It Company observed that 40-60 percent of actual program
also supports specification and prototyping languages, and code was repeated in more than one application [I I].
can be retargeted to other programming languages. Therefore the idea of reusability would seem to hold one

answer to increasing software productivity. And yet the
simple notion of reusability (i.e., code reusability) has been

I. Introduction considered by computer professionals over the years but
has never been entirely successful." [12]

"By now it is hard to imagine that any computer Methodologies for reusability must be seamlessly in-

professional has not become aware of the bottleneck in tegrated into the design, coding, testing and maintenance
software development. For both commercial and govern- phases of the software cycle, which according to E. Horowitz
ment applications, the annual bill for software is rising at a [12], account for 87% of the total life-cycle effort.
rapid pace. For example, the U.S. Department of Defense Any methodology that can be proposed, could fail to
(DoD) spent over $3 billion on software in 1980 and their be implemented if it is not supported by tools that synthe-
expenses are projected to grow to $30 billion per year by size software understanding and automate the transforma-
1990 (DoD Annual report FY '81). Moreover, these costs tion of programs so that reusability and modernization
are only the tip of the iceberg, as the impact of faulty techniques can be applied automatically and on a large
software, delayed software, and continuing maintenance scale. The task of manual application of evolutionary
costs drive, the real costs even higher" [12]. transformations on large software systems would be found

Ten years later, K.A. Banniuck confirms the above overwhelming and quickly discarded. The problem is that
prediction. His study estimates that software expenditures in order to create these tools, they need to be supported by
in 1990 were over $185 billion worldwide with approxi- an environment infrastructure with the following proper-
mately $90 billion being spent in the U.S., and of that, $27 ties:3 billion spent by the DoD. [2] 1. Structural and semantic knowledge of the program-

319

I

ming language (e.g. Ada). guage does the task of specifying a vast evolving library of I
2. Reusable language knowledge that: patterns and their transformations become feasible, allow-

i. Supports quick fabrication of a multitude of lan- ing pattern specification to become an application-oriented
guage tools outside the realm of language transla- task.
tion, and XPAL makes use of a complete semantic notation and

ii. Allows customization of the created tools. a comprehensive semantic library. Because XPAL is a
3. Formal Specifications. The production of language component of XML, the extraction meta-language, XPAL I

tools requires that the realization of structural and has access to XSSL (XML's semantic notation) as well as
semantic language rules be available to the tool de- all of the semantic equations written to properly define a
signer so that they can be applied to implement par- particular programming language. For example, writing
ticular transformations, measurements and analyses, patterns that require the use of language scoping rules can
infer or complement other rules, etc. For example, a be done by simply referring to the corresponding semantic
successful environment must provide the ability to equations.
specify new applications such as transformations to XPAL transformations can also be used as the vehicle
modularize source code, thus complementing the typi- to formalize and document the implicit relations needed to
cal, hard-coded, predefined functions of object code abstract object oriented (00) models from non-00 pro-
generation. Language knowledge reusability is best grams. I
supported by a system where languages can be defined The environment is designed to support interactive
with formal specifications, independent and separate softwaredevelopment, including syntax-directed construc-
from the application tools. tion, graphical abstraction, and standards and guidelines

4. If forward and reverse engineering tasks are to be detection and enforcement. All these tools are built on top
unified, it is essential that certain tools be interactive, of the metalanguage engine. Pattern transformations are
This means that the formal mechanisms to manipulate available interactively through these tools' user interfaces.
language structures must be incremental. Tradition- Transformation libraries have been developed to support I
ally, incrementality has been supported through do- object orientation, conversion to Ada 9X from Ada 83, and
main-dependent, algorithmic approaches. For the sake translation to Ada from CMS-2 and Jovial.
of generality, it is desirable that incrementality be I
derived from the semantics of the metalanguage.
From these requirements, it is clear why language- Ill. XML, the Xinotech

based tools to automate the otherwise impossible task of Met-LangageI
manual transformation of source code have not proliferated
and matured. The language-based, language-independent infrastruc-

ture of the Xinotech environment is provided by the imple-
mentation of XML. XML is a highly-readable language for I

1I. The Xinotech Environment specifying the abstract grammar, external syntax (views)
and semantics of languages. XML is an environment meta-The environment is designed to be language-indepen- language, because it supports the design, implementation,I

dent. Knowledge extraction (e.g. parsing, creating abstract embedding, revision and evolution of the various Ian-

syntax trees, and deriving semantic attributes) is expressed embeddin avsontand evolont vionmen -

using a formal notation called XML, the Xinotech Meta- guages used in a software development environment, such

Language. Knowledge abstraction (the process of recog- testing, and configuration languages. XML provides sup-

nizing program patterns and transforming them into higher- port for quick language prototyping, reusable language

level structures) is expressed through an XML component descriptions through module decomposition and inherit- l

called XPAL, the Xinotech Pattern Abstraction Language. ande, inter- and intra-language transformations, and sepa- I
The system can thus be retargeted for other languages and atin o bd and annoatianguages. It pri

applcatons t afracionof te oiginl cst.ration of embedded and annotation languages. It provides
applications at a fraction of the original cost. an open architecture for integration to other traditional

XPAL is designed to express complex program pat- semantic analysis tools such as STARS ASIS for Ada. I
terns and to specify transformations of these patterns into XML supports modules for the hierarchical decompo-
more cohesive higher-level concepts. The alternative ap- sition of languages. Modules are collections of related
proach of using an intermediate "universal" language to symbols. Modularization allows the language designer to

which programs are first transformed, causes the unneces- logically divide the specification to enhance its readability. I
sary loss of theoriginal model andstill does not provide the A language specification can import modules from other
means to tailor transformations. Only with a pattern Ian- XML specifications. This encourages reusability when

320 1

U

prototyping new languages. has the advantages of full access to the abstract grammar
A construct is defined in terms of its intrinsic language and semantics of the programming language, access to a

properties, such as abstract grammar, views (unparsing general semantic notation, the use of XML extraction
syntax) and semantics. Other clauses describe details for mechanisms, such as parsing views, to express tree patterns
the environment, such as menus, placeholders, etc. textually, and the use of multiple views which allow syn-

XSSL, the Xinotech Semantic Specification Language, tactical transformations to be expressed in the syntax of the
is a component of XML. XSSL is a general notation: it programming language.
supports, e.g., the expression of Ada scoping rules, type
checking, data flow relations, and language translation.
XSSL supports structured types and generalized lists, and V. The Xinotech Program Composer
it incorporates efficient abbreviation schemes to reduce the
complexity of expressions due to explicit semantic flow. It The Composer is the central application tool built on
uses object-oriented encapsulation to achieve the reuse of top of the XML language infrastructure. It is a syntax-
semantic structures throughout multiple constructs. XSSL driven, interactive semantic tool for tme design and con-
supports incremental evaluation as well as the semantics of struction of programs. Programs are managed as abstract
inter-compilation-unit relations, syntax trees (AST), with multiple textual representations

or views. An incremental parser and an incremental unparser
provide the mappings between the textual and the AST

IV. XPAL and Pattern Abstraction representations. One of the main areas of concern during
the design of the Composer was the functionality and

Pattern abstraction is the transformation process of behavior of its incremental bottom-up parser. This parser

automatically condensing or abstracting low-level source was designed to support a smooth left-to-right insertion
code patterns found in existing software into high-level while providing full interactive language support such as
program concepts. XPAL, the Xinotech Pattern Abstrac- automatic template generation, placeholders, menus, and
tion Language, a declarative, constraint language, is the formatting while typing. The user can select levels of
vehicle to express these program patterns and their trans- template generation during insertion. Templates are non-
formations. Since XPAL is a component of XML, the intrusive, since the user can type over to skip optional
Xinotech Meta-Language, these transformations can be clauses. Text files not created with the Composer are
written for any language specified with XML. Therefore, automatically imported the first time they are opened.
the entire mechanism is language independent. Views can be used to create multiple formatting

Pattern abstraction is valuable because it recognizes schemes, or to combine or isolate programs with embedded
implied or concealed relationships in low-level source documentation and/or PDL structures. The Composer sup-
code and, by representing them with existing higher-level ports browsing through libraries, and provides program
structures, makes the relationships explicit and conceptual, outlines from any point in the program.
and the code more cohesive and less fragmented. This
reduces the complexity of the representation while increas-
ing the expressive power of the resulting programs, thus VI. The Graph Abstractor
enhancing its maintainability, understandability and reus-
ability. This process is the inverse of top-down synthesis, The Graph Abstractor is an analysis and maintenance
such as program compilation. tool designed to display XSSL-generated semantic rela-

In XPAL, patterns can be specified in terms of other tions. These relations can be displayed graphically or
patterns. Because XSSL, a component of XML, is a general structurally. The Graph Abstractor is designed to minimize
notation for expressing the semantics of languages, pat- the size complexity of graphs and isolate the relations of

terns can use or complement these semantic equations. The current relevance.
approach traditionally taken in designing reengineering
environments is that of providing some semantic capabili-
ties through a limited set of hard-coded functions. In the VII. The Guideliner
XMv' Family, graph operations, such as transitive closures
for data and control flow, can be specified on the relation- The Xinotech Guideliner is an interactive program

ships characterized by XSSL equations. A language this analyzer. It verifies adherence to programming guidelines,

comprehensive makes pattern abstraction very powerful. standards and metrics, and transforms programs automati-

Advantages of having XPAL as a component of XML. cally to comply with these guidelines. These guidelines are
Because the XPAL notation is embedded within XML, it written using XPAL. The design goals of the Guideliner

321

I

were as follows: implicit, global relationships can be identified and ab- i
I. To provide an integrated, incremental capability to stracted into explicit higher-level constructs. XPAL was

prevent and/or detect and flag user-defined guideline designed to support such abstraction. These are some
deviations during interactive program construction examples of XPAL applications when converting CMS-2 I
with the Composer. to Ada:

2. To provide batch processing to obtain detailed and I. Patterns can be defined to map different operating-
statistical reports regarding non-compliance with user- system dependent multi-tasking models in CMS-2 to
defined guidelines and standards. This can be useful the construct-based tasking model in Ada. These trans-
during the quality assurance phase of code acceptance formations can be done very effectively since they are
from contractors. a classic example of implied relationships made ex-

3. To provide the automatic translation of source code to plicit by the abstractor. Patterns can be written for the
comply with user-defined guidelines and standards. following:
This process can be applied to any sourcecode, regard- i. Building the task structures out of CMS-2 mod-
less of whether it was created with the Composer. ules and entry point tables. I

4. To provide a wide range of metrics measurements that ii. Building the "MessageCenter" task out of the
can be requested by the user as part of the guidelines specification of the message broadcasting table
and standards to be analyzed. for the linker.

iii. Abstracting critical regions by localizing and en-
capsulating the shared data into tasks, from theVIII. Reengineering Applications fragmented test-and-set protected access found in
CMS-2. Such abstraction supports code migration

XPAL is a general language for program recognition towards an object-oriented methodology.
and transformation. It can be used to: iv. Customizing patterns to support the direct transla-
1. Translate programs from one language to another, tion of CMS-2 library procedures for some of I

such as CMS-2 or Jovial to Ada. these functions (e.g. critical regions), if they exist.
2. Detect and correct violations of user-defined guide- 2. Abstracting block structure such asfor, while and exit-

lines and standards. based closed loops from goto-based control flow.
3. Transform existing non-QO programs into object- 3. Creating procedures to modularize code or to elimi-

oriented programs. nate unstructured loops, and creating enumeration
4. Port existing programs from one supporting library to types from sets of constants and related variables.

another. This helps automate migration to newer stan- I
dard libraries, or to different operating systems and These are some of the advantages of XPAL-based
hardware platforms. As new libraries are created, translation:
existing applications can be searched for potential I
matches, so that the application can be modernized and 1. Fully Customizable. This is a requirement for the case
expressed in terms of the new reusable components. of CMS-2 or Jovial to Ada, since the translation will

5. Modify the meaning of programs. Transformations depend on the dialect, the executive in use, and library
can be written to modify existing programs so that they and other environment dependencies, as well as on the
perform new functions, thus helping create new appli- customization of the translated code to Ada guidelines
cations from existing ones. such as the STARS Ada Reusability Guidelines.

6. Apply isolated transformations interactively. XPAL 2. Fully reusable during subsequent system evolution. I
libraries can be created to generate bodies out of Components developed for translation, since they are
package specifications, to split packages or proce- language-independent, can be used interactively dur-
dures, improve module decomposition, etc. ing continuing Ada development (as Ada-to-Ada re-

8.1 Language translation engineering tools).
3. Powerful dual translation and development environ-

Typically, language conversion is an abstraction pro- ments. Part of the success of the reverse-engineering

cess, very much the opposite of top-down synthesis or process (i.e. translation) depends on how well it is I
compilation. This is the case whenever the target language integrated with the forward-engineering process (i.e.

is a higher-level language, as in the case of translating development). Such integration dictates the success of

CMS-2, Jovial or FORTRAN to Ada. Compilation tech- the translation system for interactive use. I
nologies do not lend themselves well to this process, and 4. High-quality of the resulting code. By devising so-

pattern abstraction is highly desirable so that low-level, phisticated schemes for code abstraction, the transla-

322 I

i
I

tor designer can make more comprehensive use of the I. Transforming a package into a hierarchy with children
features of the target language (e.g. Ada). This results packages. This supports improved modularization by
in more condensed and readable code. By not discard- allowing the direct sharing of declarations among a
ing the original implementation through a very-high- closely-related family of packages.
level intermediate language, this approach is able to 2. Transforming Ada structures to support explicit Ada
maintain comparable efficiency levels. 9X vectorization. A few of these cases can be detected

5. Predictability. The Xinotech approach, using external automatically. Conversely, the user is able to invoke
specifications for the translation, allows the user to these transformations interactively.
verify and approve in anticipation, the ways in which 3. Transforming a synchronization model into one with
source language structures have been chosen to be explicit protected records. In some cases, the old
translated. In a system where the implementation was synchronization model can be derived from the usage
discarded, the efficiency of the resulting code would of a particular library.
be completely unpredictable. 4. Transforming record types with variants to tagged

6. Life Cycle Orientation. The XPAL-based approach types with extensions. This transformation is requested
takes into account the fact that the translated system by the user for a particular record type with variants.
will continue to evolve, so tailored patterns can pre- The particular record type is analyzed to determine if
pare it for further growth, by supporting 2167A docu- the transformation is possible, and if so, the transfor-
mentation generation and traceability with the PDL of mation is performed. This transformations takes ad-
choice, extraction of high-level graphs, and compli- vantage of multiple dispatching to enhance the read-
ance with user-defined standards. ability, object-orientation, and rcusability of the code.

7. Formally Specified Translation. Another advantage of The simplest such case involves a record with a single
using formal specifications is that they provide a variant whose discriminant is a value of an enumera-
highly modular and functional decomposition of the tion type.
translation system, resulting in an accessible mecha-
nism for verifying the translator's reliability. 8 Real-time prototyping environments

8. Low-risk development path. This is the result of two XPAL can be applied to support specification or
factors: predictability, and the fact that this technology prototyping languages such as Luqi's PSDL. [191, [22]
is implemented progressively, with practical appre- Besides providing an integrated, interactive front-end fur
ciable benefits available from day one. These benefits PSDL, XPAL can be used to verify adherence to design
continue to grow in proportion to the resources in- methodologies, to synchronize graphical with structured
vested in the project. Its success can be measured and editing, and to map between specification and implemen-
monitored throughout the development effort. tation languages.

8.2 Support for Ada 9X compliance and Ada 9X 8.4 Object abstraction
philosophy

e tObject abstraction is the process of recognizing rela-
The Xinotech transformation environment includes a tionships in existing, non object-oriented (00) Ada pro-

set of Ada 9X transformation libraries to support Ada 9X grams, and transforming these programs into a higher-
compliance as well as Ada 9X philosophy. In turn, these level, object-oriented architecture with reusable compo-

libraries are managed by the Guideliner's user interface. n e ctsa

Support for Ada 9X Compliance. The environment 00 design methodologies have been in use for some

provides alibrary of transformations to automatically trans- time, and are very useful in helping to understand the

9 late the 9X violations in existing Ada 83 sources to the Ada behavior of systems and relationships between compo-I9X standard. These transformations can be applied interac- nents (objects). It seems natural that obtaining an object-
tively or in batch mode: the result is compilable Ada 9X oriented design view of existing non-OO source programs
code. This library is used to translate to 9X for compliance, through reverse-engineering will:
even though the resulting code may not be object oriented I. Help us understand the intended behavior of a system
(00) or otherwise embody Ada 9X philosophy in any way. and its relationships.

SupportforAda 9XPhilosophy. An additional library 2. Allow us to capture this 00 design in an 00 design
transforms 9X-compliant programs into a model support- language that can be manipulated textually or graphi-
ing 00 and 9X philosophy. The 00 Ada 9X programs cally by design tools, thus making it possible to use
resulting from these transformations take advantage of 9X- forward engineering (FE) technology to analyze,
specific features for modularization, object-orientation, modify and browse through the design.
parallelism and synchronization. Examples: 3. Allow us to restructure or redesign the existing code so

323

EU. edit Ow warh ob~vUctur Tools ption.- Window. Bo'

-xrl -Iefr
name: tring;type name-Tjype Is limised private.

bitLnh.Idal Date; typo N~rtri dateType Is un*We private:
en record; peclutge Person mbt Is

funictioun Age (p: In Person) return INTEGER; type Person Is tagged Whilted private,
e001d PersonJnto; function Getjiame (p: In PersonXCLASS)
procedure Wtioj...An (p : in Out Person) Is procedure SeLname (p :In cut Person'CLASS;

boon value :namejType);

"Yeer;fucMion Get-bintdate (p: In PersonrA~ASS)
retur birth..datejype,

Procedure SeLbirtti..date (p :In out PersonXXASS;

Me Vslil Varimbaisfunction Age (p: In Person'CLASS) return INTEGER;

record
name: namn-.Type;
birth-~date: bwrtttdatejype,

~ -. and record;
and Person Jnlo.
package body PersonjInfo Is

GeLnamne is.-
-~ $~ * ~ Procedure GOLNam~e is..

Procedure Set-name (p In out PersonVCLASS;
value: namre-Typo) Is

bon
p.namse:. value;

end SeLnamne;

e.W Peson Into,
procedure YWhoJ,4 (: in out Person);

Projo.SeLname (p. 1myser);

Fig. 1. The package In the left window Is automatically t ransformed Into a private object class.
Transformation rules (not shown) are specified In XPAL, the Xinotech Pattern Abstraction Language.

that it conforms to the 00 recaptured design. IX. Benefits
Examples of XPAL for object abstraction:

1. Transforming exported data objects into abstract data 9.1 Benefits for Ada 9X
types. Data objects will be hidden, and made available
only through access methods (procedures). This in- This environment represents a rather extensive solu-
cludes the automatic creation of initialization and tion for Ada reengineering, because it automates the evo-I
finalization methods for the data types. lutionary migration, from the legacy systems written in the

2. Transforming program units into reusable blueprints proprietary languages of the sixties, towards the full, ob-
(e.g. generic units in Ada). ject-based, design philosophy of Ada 9X. For example, itI3. Transforming sets of variables into object classes by can be used to:
hiding them in structured types with access methods. 1. Translate CMS-2 or Jovial programs into Ada.

4. Transforming variant record types into a base class 2. Translate Ada 83 programs into Ada 9X.
with subclasses (e.g. Ada 9X tagged types with exten- 3. Support the object-orientation of existing Ada code,I
sions). These transformations will take advantage of according to the philosophy of the new Ada 9X fea-
multiple dispatching to enhance readability, object- tures, thus enhancing reusability.
orientation and reusability. 4. Automate the porting of existing Ada applications to newI

Ada 9X standard libraries, thus enhancing the inter-
changeability of the application components.

324

5. Automate transformations to change the meaning of [61 P.T. Breuer and K. Lano. Creating Specifications from
existing programs, thus supporting the adaptation of Code: Reverse-engineering Techniques. Journal of Soft-
existing programs to new applications, ware Maintenance: Research and Practice, John Wiley

and Sons, 1991. Reprinted in Software Reengineering, by
9.2 Gnera benfitsRobert S. Arnold. IEEE 1993.

9.2 General benefits inthGieCcu.PatCardiera, Victor Basili. Identifying and Quali-

Support for All Languages in the Life Cycle. Pattern fying Reusable Software Components. IEEE Computer,
Feb 1991. Reprinted in Software Reengineering. by Rob-

abstraction can be applied to all the languages in the ert S. Arnold, IEEE 1993.
software life cycle, from specification languages, to 00 181 G. Canfora, A. Cimitile, and U. de Carlini. A Logic-
design languages, to annotation languages, programming Based Approach to Reverse Engineering Tools Produc-
languages, etc. XPAL may be used to automate top-down tion. IEEE Trans. on Software Eng., Vol. 18, No. 12,
translation during program development, or to abstract December 1992.

g[91 A. Cimitile and U. de Carlini. Reverse engineering:
design and specifications during reverse engineering. Algorithms for Program Graph Production. Software

Interactive Transformation Environment. Transfor- Practice and Experience, Vol 21, pp 519-537, 1991.
mations can also be applied interactively during program [10] W. Cunningham, K. Beck. Constructing Abstractions for
construction. Forward and reverse engineering are thus Object-Oriented Applications, Journal of Object-Ori-
integrated in a single homogeneous environment. ented Programming, 2.2,17-19, August 1989.

i[11 W.L. Frank. What limits to software gains ?Support for Multiple Programming Languages. Computerworld, pp 65-70, May 4, 1981.

Through XML, the same homogeneous language-based [12] E. Horowitz, J.B.Munson. An Expansive View of Reus-
environment is available for many programming languages. able Software. Software Reusability, Vol. I, Edited by
This is particularly attractive for translation between dia- T.J. Biggerstaff and AJ. Perlis. ACM Press, 1989.

lects. The Xinotech environment can also be instantiated [13] S. Horwitz and T. Teitelbaum. Generating Editing Envi-
ronments Based on Relations and Attributes. ACM Trans.

(very cost effectively), for specialized languages, such as on Programming Languages and Systems, Vol 8, No 4,
VHDL and database languages. Oct 1986.

Open Architectures. The existing Xinotech environ- [14] Ivar Jacobson, Fredrik Lindstrom. Re-engineering of old
ment supports the client-server model of an open heteroge- systems to an object-oriented architecture. Proc. OOPSLA,

neous architecture with a graphical user interface. 1991. Also reprinted in Software Reengineering, by Rob-I Uert S. Arnold, IEEE 1993.An Integrated Environment. Xinotech's approach was [15] Gail E. Kaiser, Simon Kaplan. Parallel and Distributed

to create an integrated semantic environment for syntax- Incremental Attribute Algorithms forMultiuserSoftware
U directed program construction, as well as for analysis and Development Environments. ACM Transactions on Soft-

transformation. Forward and reverse engineering aie indis- ware Engineering Methodology, January 1993, Volume
2, Number 1.tinguishable. Vast transformation libraries can be expressed [161 K. Koskimies, 0. Nurmi, J. Paaki. The Design of a

and customized with a metalanguage for pattern abstrac- Language Processor Generator. Software -Practice and
tion. Experience, Vol. 18 (2), Feb. 1988.

[17] Richard D. Linger. Software Maintenance as an Engi-
neering Discipline. Proc. Conf. on Software Mainte-
nance, pp 292-297. Reprinted in Software Reengineer-X.BibliographyX. Bing, by Robert Arnold, IEEE 1993.

(18] S.S. Liu, and K.R. Johmann. A Tool Specification Lan-
[1] Ada 9X Project. Ada 9X Requirements. Office of the guage for Software Maintenance: Part I -Language

Under Secretary of Defense for Acquisition, Washing- Design, Part 1I -Usage. SERC Technical Report 36F,
ton, D.C., December 1990. CSci Dept., University of Florida at Gainsville, Novem-

[2] K.A. Bannick. Breakdown of Software Expenditures in ber 1989.
the Department of Defense, United Staets and in the [19] Luqi, V. Berzins, R. Yeh. A Prototyping Language for
World. Master's Thesis, Naval Postgraduate School, Real-Time Software. IEEE Trans. Soft. Eng., vol. 14,
Monterey, CA, Sept. 1991. October 1988.

[3] B. Barding, C. Thompson. Composable Ada Software [20] D. Maier, and D.S. Warren. "Computing with logic", The
Components and the Re-Export Paradigm -Parts 1 and Benjamin/Cummings Publishing Co. Menlo Park, CA,
2. ACM SIGAda Letters VIII (1); pp. 58-79, 1988. 1988.

(4] Boyle, J.M., Muralidaran, M.N. Program Reusability [211 B. Meyer. Software Reusability: The Case for Object-
Through Program Transformation. IEEETransactionson Oriented Design. IEEE Software 4(2), 50-64, 1987.
Software Engineering, vol. SE-10, no.5, September 1984 [221 F. Naveda. Specifying a Prototyping Language in the

[5] C.L. Braun, J.B. Goodenough, R.S. Eanes. Ada Reusabil- Cornell Synthesizer and the Xinotech Program Com-
ity Guidelines. Technical Report 3285-2-208/2, SofTech, poser for an Integrated Programming Environment. Pro-
Inc., Waltham, Massachusetts, Revised 1991. ceedings 2nd IEEE International Conference on Systems

Integration, IEEE, June 15-18, 1992.

I
i 325

[231 D. Parnas, P. Clements, D. Weiss. Enhancing reusability [27) Robert W. Schwanke. An intelligent tool for re-engineer-
with information hiding. In Proc. Workshop Reusability ing software modularity. Proc. Int'l Conf. on Software
in Programming, Sept. 1983, pp 240-247. Engineering. IEEE 1991. Also reprinted in Software

[24] William W. Pugh Jr. Incremental Computation and the Reengineering, by Robert S. Arnold, IEEE 1993.
Incremental Evaluation of Functional Programs. Ph.D. [28) 1. Silva-Lepe. Abstracting graphed-based specifications
Dissertation, Cornell University, 1988. of object-oriented programs. Tech. Report NU-CCS-92-

[25] T. W. Reps, T. Teitelbaum, A. Demers. Incremental 4, College of Computer Science, Northeastern Univer-
Context-Dependent Analysis for Language-Based Edi- sity, March 1992.
tors. ACM Transactions on Programming Languages and [291 A.I. Wasserman, P.A. Pircher, R.J. Muller. The Object-
Systems, Vol. 5, No 3. July 1983. Oriented Structured Design Notation for Software De-

[26] D.S. Rosenblum. A Methodology for the Design of Ada sign Representation. IEEE Computer, March 1990.
Transformation Tools in a DIANA Environment. IEEE [30] Waters, R.C. Program Translation via Abstraction and
Software 2(2):24-33, March, 1985. Also as Stanford CSL Reimplementation. IEEE Trans. on Software Eng., Au-
Technical Report 85-269, February. 1985. gust 1988

I
I
I
I
I
I
I
I
I

I
I

326 I
I

1
Issues in Re-Engineering from Procedural to Object-Oriented Code

Ricky E. Sward Dr. Robert A. Steigerwald
Department of Computer Science Department of Computer Science

USAF Academy, CO 80840 USAF Academy, CO 80840
rsward@cs.usafa.af.mil steiger@cs.usafa.af.mil

This paper presents issues in re-engineering There are certain issues to consider before re-
includingfwmiliarity, completeness, existing designs, and engineering a system. These issues of familiarity,
when to re-engineer. The issues are discussed and a completeness, existing designs, and when to re-engineer
reverse engineering method based on natural language are covered fully below. Organizations have many
descriptions of procedural code is described in detail, options for re-engineering, and discussing these issues
These descriptions provide an appropriate level of will direct an organization toward some re-engineering
abstraction of the procedural code and can be used as the method. Our analysis shows most organizations should
basis of object-oriented forward engineering using any choose a method that reverse engineers to some
Object-Oriented Analysis and Design methodology. intermediate abstraction, and then forward engineers to

object-oriented code.

Introduction This paper proposes a method for the reverse
engineering portion of this process. Our method provides

The appeal of object-oriented programming with it's a way to reverse engineer procedural code into an
extensibility, maintainability, and reusability has enticed abstract form that can be forward engineered into object-
many considering development projects. Organizations oriented code. It provides an abstraction that is
with millions of lines of aging procedural code we also appropriate for doing any form of object-oriented forward
looking into object-oriented programming. As systems engineering, using any of the current object-oriented
become more complex and fragile, the strengths of the methodologies. The form of our abstraction is natural
object paradigm become more appealing. language descriptions of the services provided by the

existing system. These natural language descriptions are
The organizations with millions of lines of code also derived from the procedural code in the existing system

have millions of dollars invested in that code. If they are as described below.
to switch to the object paradigm, will they just abandon
the investment they have made in the procedural code? Before describing our method, we look at the
Should they just start over and re-design the system from previous research in this area and the rationale for using
scratch? If at all possible, the organizations prefer to natural language descriptions. After the method is
achieve the benefits of the object paradigm without presented in detail, we discuss conclusions and future
buying a replacement system or building one from research.

S~scratch.s c
Previous Research

This paper presents issues in re-engineering
procedural code to the object paradigm. Re-engineering Much work has already been done in the field of
is the process of examining an existing system and Object-Oriented Analysis (OOA) and Object-Oriented
implementing that system in some form, typically a new Design (OOD). Booch [Booch91]. Coad and Yourdon
programming language. [Chikot90] This is in contrast to [Coad91], Jacobson [Jacob92], and Wirfs-Brock
normal forward engineering which proceeds from (Wirfs90] (to name a few) present methods for building
requirements to a design. A specific re-engineering 00 designs from requirements specifications. These
process may involve reverse engineering of the existing methods rely solely on the 00 designer's ability to
system. Reverse engineering is the process of examining extract objects from the requirements specifications.
an existing system to 1) find the system's components and These methods work for systems that are built from
their inter-relationships and 2) create representations of scratch, implementing specific requirements. They do
the system at some higher level of abstraction. not work for systems that are being re-engineered from
[Chikof9O1

327

procedural code, i.e., using these methods, one cannot task of finding the objects in the formal design diagram I
extract objects directly from procedural code. created from the reverse engineering.
Other methods (Alabiso88, Bailin89] have combined
some sort of structured analysis and OOD. They provide Re-Engineering Issues I
mappings from data flow diagrams (DFDs) and data
dictionaries to objects and classes. The methods rely on There are certain issues that organizations must
the 00 designer's ability to extract the objects from the consider before re-engineering a system. These issues I
structured analysis of the requirements as shown in the include familiarity, conpleteness, existing designs, and
form of DFDs and data dictionaries. These methods have when to re-engineer.
some application in the re-engineering environment. If
the DFDs and data dictionaries can be extracted from Familiarity. A pervasive issue in re-engineering a system
existing code using a reverse engineering tool [STSC92], is how familiar you should become with the procedural
then the DFDs and data dictionaries can be used to system. If you have been using the system, you will
develop an OOD. A discussion of this technique follows already be familiar with the system, its overall purpose, I
in the 'issues' section below. functionality, and general features. But, how much

familiarity with the low-level functions of the system is
There has been some work in automatically required? To what level of detail should you analyze the I

converting code from one procedural language to another system?
[Olsem93]. The Re-engineering Technology Report
[Olsem93l provides a long list of source-code translators Jacobson [Jacob9l] proposes a procedural system
from different vendors. For example, some systems must be reverse engineered all the way back to a formal
convert from Fortran to C or C++, and others convert design before the conversion. This could be a lengthy
from Pascal to Ada. Even if these translators convert to process for a large system, but it will help you become
an object-oriented language, they do not recognize familiar with the system. Using this method (even with I
objects during the conversion, so they are not building the incremental nature of the method) the reverse
object-oriented code. They are simply converting to engineering process alone could take years for large
procedural style code written in a hybrid object-oriented systems. Is it really necessary to know the system in this U
language such as C++. much detail? Is it necessary to have an exact fomial

design diagram for the system? How do you know that
Ong and Tsai [Ong931 have developed a method for you are familiar enough with the system to begin the

extracting classes and objects directly from procedural conversion?
code (Fortran). Some objects can be found with hints
from the user, and others are pulled directly from the If you already have a formal design of the system,
common data block of the Fortran code. Their method then you may want to use that design. If there is not one I
relies on data flow analysis of the Fortran code to extract available, it is our opinion that an exact formal design
methods from Fortran code. These methods are placed in diagram is not needed. The person doing the conversion
the objects extracted earlier. They do not build an (the converter) must be somewhat familiar and
intermediate representation of the Fortran code, but go comfortable with the functions of the system, but the
directly from Fortran to C++ code. Their prototype level of this familiarity can be quite fuzzy. Some of the
system generates C++ code for the classes and methods familiarity will come from the iterative nature of the
extracted. conversion process. The more the converter works with

the procedural code, the more familiar he/she will
Recent work by Jacobson [Jacob9l] provides an become.

incremental method to re-engineer procedural code to
object-oriented code. Using this method, a part of the As the converter becomes more familiar with the
existing system is selected for re-engineering, and an system, they should be looking for things that may later
interface to this new object-oriented part of the system is become objects in the object-oriented code. Can these
developed. During the conversion, the designer reverse objects be found only in requirements specifications?
engineers to a formal design diagram and extracts the Many OOA methods [Booch9l, Coad9l] start only from
objects from this formal design diagram. Jacobson's requirements specifications. If the objects can be found
method develops an intermediate representation of the only in requirements specifications, then the converter
procedural code before converting that representation to must look for requirements of the system when becoming
object-oriented code. The designer is still left with the familiar with the system.

32 R

If objects can be found in other places than the designer should not use an existing design to build an
requirements specifications, then the converter should object design because the functional decomposition that
look for other things while becoming familiar with the was done to build the existing design will taint the object
system. Ong and Tsai [ong93] use the data structures design.
found in Fortran code to extract objects. Objects are
often found in other things than just the requirements, so The existing design can be used to become familiar
the converter should be looking for other things than just with the system. The converter can look at an existing
requirements. The converter should be looking for the design to find out how procedures interact. The designer
services being performed by the modules of the may even be able to find high level services that the
procedural system. These services will be used to system is providing by looking at the design.
identify the behavior of objects in the new system.

When to re-engineer. Sittenauer and Olsem [Sitten92]
So, when you are becoming familiar with a present a model to estimate whether or not an

procedural system, should you be looking for organization should re-engineer or not. The question is a
requirements or just services of the system? It is our good one. How does an organization know when to re-
opinion that you should look for services of the system. engineer? Are there measurable indications of the
These services will tell you the current functionality of appropriate time to re-engineer? The Sittenauer and
the system, and will help you determine the objects Olsem model examines the complexity, importance, and
required in the system. The services will also help lifetime of a candidate system. These indicators are
document the progress of the conversion as described measured and graphed to help the organization determine
below. if the system should be re-engineered.

Completeness. An important question for the converter is All of these issues must be considered before re-
"When is the conversion done?" The converter must be engineering. The next section presents our rationale for
able to measure the progress of the conversion and using natural language descriptions when becoming
determine when the job is complete. One measure of this familiar with the procedural system.
is whether all the services or requirements of the original
system are in the converted system. Rationale for Natural Language

If the converter has access to the original After an organization has determined it is time to re-
requirements document, they can reference this document engineer, the first step is to become familiar with the
to measure progress of the conversion. Of course, if the system and determine the services provided by the
converter has the original requirements document, they system. We are proposing that these services are best
may want to do OOA on the original requirements. described using natural language for the following
These requirements may not accurately reflect the reasons: 1) natural language will capture the terminology
functionality of the current system, so the converter may of the problem statement that has been instilled into the
need to rely on the services identified while becoming procedural code, 2) natural language provides an
familiar with the system. appropriate intermediate level of abstraction, and 3)

natural language descriptions will provide an input into
If no requirements are available, the converter must object-oriented forward engineering.

rely on the services found in the system to measure the
progress and completeness of the conversion. A list of Terminology. As the converter of a system becomes
the services should be compiled by looking at the familiar with that system, they need to learn the
existing code. Our method, presented below, includes terminology of the system. The terminology of the
this step. system holds clues to the objects that will be built in the

object-oriented system. One way to learn this
Existing Design. What if there is already an existing terminology is to write natural language descriptions of
procedural design for the system? To what extent should the services provided by the system. Representing
the converter use this design? Alabiso's method services in natural language forces the converter to
[Alabiso88l converts a DFD to an object design. But, discover the terminology of the procedural system. More
using the functionally decomposed design can cause the importantly, it helps the converter discover the
designer to miss some of the objects that should be built terminology of the original problem statement. As the
into the object design. [Sward93] If at all possible, the converter describes the services of the system in natural

329

I

language, they may begin to get a feel for some of the a similar form to requirements statements, so OOA on the I
objects that will appear in the object system. descriptions is a similar task.

Level of Abstraction. In the process of reverse Another benefit of the natural language descriptions 1

engineering we develop an intermediate representation of is that designers already familiar with OOA
the existing system. This representation must be at the methodologies do not need to learn a new methodology
right level of abstraction. If it is not abstract, there may to design from the descriptions. The expertise gained
still be remnants of the procedural design in the already in finding objects can be used to find objects in
representation and these will surface in the object design. the descriptions. Thus, organizations will not need to
If the representation is too abstract, it may be too time spend more money training their designers.
consuming to build without providing much added value.

We have analyzed the issues in re-engineering
Alabiso's method [Alabiso88] of converting DFD's presented earlier and for die above reasons have chosen

and data dictionaries to objects does not provide an natural language descriptions as the abstract I
appropriate level of abstraction. If the DFD's and data representation produced from our reverse engineering
dictionaries are extracted from the procedural code, they method. Our method is described fully below.
will still be tainted with the functional decomposition I
done to build the designs. Ong and Tsai's method The Method
(Ong93] is also tainted by the functional decomposition
when it looks for objects in the data structures of Fortran. This section presents a method for becoming familiar
The objects in the object design are not necessarily tied with a procedural system so that it can be converted to
to the data structures in Fortran. The data structures can the object paradigm. The method helps the user develop
give us clues to the objects in the object design, but there natural language descriptions of the services of the
is no one-to-one correlation. procedural system. These natural language descriptions

provide the raw material for OOA.

Jacobson's method [Jacob9l] on the other hand,

requires we build a formal design describing the existing . Descrbe the data structures
system. To develop a design at this level of abstraction II. Describe the procedurestakes a considerable amount of work. This may be too

time consuming for large systems without providing Figure I - Phases of the Method
much more capability in the design. We need a
representation that is somewhere in between these two The method is split into two phases as shown in
levels of abstraction. figure 1. The first phase involves describing the data

structures and listing where the data structures areOur method provides this intermediate level of dlefineed. The second phase looks at the procedures and

abstraction by using natural language descriptions of the desibes the seceng perfore by them.

services of the existing system. Natural language describes the services being performed by them.

descriptions do not have any procedural flavor to them, Phase 1. This phase of the method lets the converter
and they are not time consuming to construct. They become more familiar with the data structures and the
provide an acceptable level of abstraction for information being stored. Figure 2 shows the thee steps
representing procedural code and can be used for object- of Phase i. b
oriented forward engineering. The descriptions are built
using the data structures and procedures in the existing 1. List the data structures
system. Objects do not come directly from these data 2. List where the data structures arestructures or procedures, but come from OOA on the defineddescriptions of the services provided by them. 3. Write a natural language description

Forward engineering. The natural language descriptions of the data structures

that are built will be used as input to object-oriented
forward engineering. Most OOA methodologies use Figure 2 - Steps In Phase I

requirements statements written in natural language. The
natural language descriptions built with our method take The first step is to list all the data structures in the

procedural system. These may be defined in several

330 I

different units of the system or in a separate unit just for 4. List all the procedures in the system
definitions. The next step is to list where these data 5. List the parameters for each of the
structures are located. This list is used for future procedures
reference. The third step is the most important one of this 6. Focus on one data structure
phase of the method. In this step, the converter writes a 7. List the parts of the data structure
natural language description of each data structure. As each procedure uses
described above, this type of description helps the 8. Write a natural language description
converter become familiar with the terminology of the of the processing for each procedure
procedural system. 9. Describe the impact on the selected

data structure using natural language
Since the natural language description is important, 10. List any services found

we provide an example description of the following 11. Repeat steps 6-10 until all the data
Pascal data structme: structures have been considered

12. Write natural language descriptions
ModuleList - RECORD for any remaining procedures

miist ARRAY[1..MaxModules] OF
ModulePtr; Figure 3 - Steps In Phase II

mcnt iNTEGER;
END; In step 4, the converter lists the unit and procedure

names. This is simply a reference list for the converter to
The natural language description of this data make sure all the functions in the system have a natural

structure might be: language description. The next step is to add to the list
of procedures all the parameters for the procedures. This

Module list is a record with two fields: is another list that helps the converter become familiar
1) a list of pointers to modules stored in with the processing and terminology of the system. An

an array from 1 to the maximum example list is shown below.
number of modules and

2) an integer that points to the last Predum Parameters
module pointer in the array. edit_name designjrec

editauthor design rec
Once the natural language descriptions are built for

all the data structures, the converter proceeds to Phase U1. In step 6, the converter picks one data structure and
focuses attention on it. We suggest starting with data

Phase I. This phase of the method deals with the structures that have multiple attributes such as a Pascal
procedures of the existing system. In this phase, the record structure or a C struct structure. Which data
converter tries to extract the services being performed by structure to focus on is not crucial to the conversion
the procedures. The steps of this part of the method are process, but we recommend starting with large data
shown in figure 3. structures because they tend to be central to more system

processes.
In this phase of the method, the converter should get

a sense of the entire procedural system. As the converter An example of a Pascal record structure is shown
builds the natural language descriptions of the procedural below.
processing, he should better understand the services that
the procedural system accomplishes, designrec = RECORD

dname STRING[30];
fdir : STRING[8];
modules module listtype
author STRING[301;

In step 7, the converter lists the parts of the data
structure each procedure in the system uses or modifies.

331

I

The converter should prepare a list with each procedure The procedure that edits the name of a I
name followed by the parts of the data structure used or design is passed the entire design record. It
modified in the procedure. changes the value of tho name of the design

by prompting the user for a new value and
It may be tie case that the procedure passes the then setting the design name to this new

entire data structure into the procedure, but only uses part value. The new value is checked against all
of the structure. It is at this point the converter should the old design names to assure no
make every effort to partition out this tramp data. Tramp duplicates are permitted.
data is data extraneous to the processing of the procedure.
The converter should list only those parts of the data
structure that are used or modified in the procedure. The next step, step 9, is to expand the descriptions

The lst of procedures and parameters built 5 built in step 8. The descriptions are expanded by

is helpful her. The converter can look on the list 5 including the impact on the data structure by eachis hlpfl hre.The onvrte ca lok onthelis tosee procedure. This is where the converter can show exactly
if the selected data struct. -, is included in the parameter to what extent the data stucture is changed by thext

list for a procedure. If it is, the converter examines the t w trm data can e ineed c y in
extnt hedat srucur isusd o mdifedin he procedure. Any tramp data can be delineated clearly in

extent the data structure is used or modified in the this step. By now, the converter should have a good feelproedure. Th.• p arts of the data structure that arz. used or for the terminology of the procedural system and the
modified should be included in the list built for this step. services being performed on the selected data structure.

An example is shown below for the editname An example of the natural language generated for

procedure. The entire design rec data structure is passed
as a parameter to edit-name. However, the only part of The procedure that edits the name of a
the designarec data structure that is modified in design is passed the entire design record. It
edit-name is dname. changes the value of the name of the design

edit name dname by prompting the user for a new value and
then setting the design name to this new

At this point, the converter will be getting a better value. The new value is checked against all

idea about what parts of the selected data structure are duplicates. 1

used in the different procedures. It is a logical next step This procedure does not change the

to describe the processing of these parts of the data entire design record. Only the name field of

structure in natural language. In step 8, the converter the design record is modified. The entire o

takes the lists of procedures and parts of the data processing involves the name of the design

structure as defined in step 7 and writes natural language and the list of all the other design names.

descriptions for each of the procedures.

Step II in this phase of the method is iteration. In
The converer should use only natural language to this step, the converter repeats steps 6 through 10

describeuthe processing of the procedure and avoid short- choosing a new data structure to focus on (from step 6
cutscsuch as using the procedure name or the data This iteration continues until all the data structures ha, e
structure name. If there are any procedures that are Iencniee.I ol etecs htsm
called from inside this procedure, the converter should been considered. It could be the case that some

develop natural language descriptions of these prcdue procedures do not have parameters and will not be
bevflopntre movingon.eThis -pllows ofthe ponvertedr e tofconsidered in steps 6-11. Step 12 provides for this bybefore moving on. This allows the converter to follow requiring the converter to make sure all procedures haveI
and understand the processing going on in the procedure. requringuage deritons all for haem

An example of the natural language description of natural language descriptions built for them.

edit_name is shown below. After step 12, the converter has natural language I
descriptions of all the data structures and procedures in
the procedural system. The converter can now proceed to
forward engineer the system using whatever OOA and I
OOD method they prefer.

332 I

I

Conclusion [Jacob92l Jacobson, Ivar, et al., Object-Oriented Software
Engineering. A Use Case Driven Approach,

The reverse engineering method presentedi t Addison-Wesley Pub Co, Wokingham,

paper provides an intermediate representation of England, c1992

procedural code. This representation is at an appropriate [Olsem931 Olsem, Mike and Sittenauer, Chris, Rk-
level of abstraction in that it is not too close to the E T Renr, Vol 1, Aug
existing procedural code or so abstract that it takes great 1993, STSC Hill AFB UT
amounts of work to create. The natural language
descriptions are built during the time a converter is [Ong931 Ong, C. L. and Tsai, W. T., Class and Object
becoming familiar with the system. The descriptions Eraractionfrom Imperative Code, JOOP Mar-
help the converter become more familiar with the Apr 1993, pgs 58-68
services provided by the system. These services define
the completeness and functionality of the new object- [Sitten92] Sittenauer, Chris and Olsem, Mike, Time to Re-
oriented system. The descriptions provide a medium to Engineer?, Crosstalk, March 1992.
forward engineer using an object-oriented methodology
with which the converter is familiar. [STSC92] STSC, Sittenauer, Chris, Olsem, Mike, and

Murdock, Daren, Re-Enineering Tools Re&Zort

Future Research Ap19922 Rev-A, 6 Apr 1992, STSC Hill

AFB, UT

In the future, we hope to partially automate our [Sward931 Sward, Ricky, Pitfalls in Re-Engineeringfrom
reverse engineering method. The generation of the fists Structured Code to the Object Paradigm,
in steps 1, 2, 4, and 5 can easily be automated, whereas Conference Proceedings, Software Technology
the generation the natural language descriptions is a Conference '93
somewhat more difficult artificial intelligence problem.

[Wirfs90I Wirfs-Brock, Rebecca, Wilkerson, Brian, and
References Wiener, Lauren, Designing Oje-Oriented

Software, Prentice Hall Pub Co, Englewood

[Alabiso88] Alabiso, B., Transformation of Data Flow Cliffs, NJ, c1990
Analysis Models to Object-Oriented Design,
Conference Proceedings, OOPSLA '88, pgs
335-353

[Bailin89] Bailin, S., An Object-OrientedRequirements
Specification Method, Communications of the
ACM, May 1989, Vol 32, Number 5, pgs 608-
623

[Booch9l] Booch, Grady, Object-Oriented Design with
ApllicatiJon, Benjamin Cummings Pub Co,
Redwood City, CA, c1991

lChikof90l Chikofsky, Elliot J. and Cross, James H. IT,
Reverse Engineering and Design Recovery: A
Taxonomy, IEEE Software, Jan 1990, pgs 13-17

[Coad9l] Coad, Peter and Yourdon, Edward, bioL
Oriente Anais. Yourdon Press, 1991.

[Jacob9l] Jacobson, Ivar and Lindstrom, Fredrik, Re-
Engineering of Old Systems to an Object-
Oriented Architecture, Conference
Proceedings, OOPSLA '91, pgs 340-350

333

I
I

An Object-Based Framework for Reengineering
Avionics Software

Noble N. Nkwocha and John J. Zenor

Naval Air Warfare Center Weapons Division
Embedded Computing Technology Office

Code C21C
China Lake, California 93555-6001

Abstract a recent upgrade to the hardware used by an OFP,
redevelopment of the operational weapon systems software

We present results from a case study on the use of for a new computer was deemed too risky and costly.
object oriented techniques to reengineer the Ballistic Consequently, new hardware was developed to emulate the
Trajectory Algorithm (BTA) software. The BTA obsolete mission computer in order that the current software
software is used in the Operational Flight Programs could be run with limited changes in the new hardware.
(OFPs) of several Navy attack and fighter aircraft to Possible concerns are
determine the release point for ballistic weapons. i. Long change cycles on the order of 18-24 months to I
Though the algorithm itself is simple, the nature of fix errors and enhance functionality
its implementation in space and time-limited OFPs
has resulted in an extremely complex 2. Expensive, labor-intensive, error-prone procedures to
implementation-typical of OFP code. The structure analyze, design, code, and test changes
of the basic algorithm is entirely hidden by the
embedding of the integration method and scheduling 3. Difficulty in restructuring the software to
considerations into the algorithm and by the large accommodate significant modifications I
number of special cases introduced to handle specific
weapons. Existing documentation of the basic 4. Chronic shortages of sufficient processor throughput
algorithm is totally inadequate for understanding the and memory, since the fragility and machine-specific
actual program. This paper provides a demonstration nature of the software inhibit migration to new
of how object-oriented properties such as inheritance hardwre
can be used to control the complexity of the
implementation, yielding a much more In the case of the Ballistic Algorithm, the program is I
understandable, maintainable, and reusable program, currently stable, and "maintenance" in the sense of fixing
and describes the methodology used and lessons bugs is not really a problem. The real problem is that
learned in the reengineering effort. several characteristics of the OFP (e.g., scheduling period, I

integration algorithm, and specific weapon types) are built
into the code, such that the code is so complex that it is not

1 Introduction feasible to consider improving the methods used in the
ballistic algorithm. This results in time-critical code that I

Since the first airborne digital computers were introduced cannot be improved, even though more up-to-date numerical
in operational Navy attack aircraft in the 1960s, significant methods that could improve performance are available.
amounts of resources have been invested in the design, Considerable man hours are spent integrating new weapon I
development, and maintenance of avionics software systems, types into the program, due primarily to a largely manual
most of which are written in assembly language and all of process of curve fitting for lift, drag, and other data, where
which run on obsolete computers by today's standards. The changes to the method used in the basic algorithm might
existing engineering data, which include the assembly codes, eliminate the need for this process entirely. The complexity
structured flowcharts (called math flows), detailed test of the code has increased with time as new weapons are added
procedures for safety of flight and Fleet certification, and and as it is nearly impossible to remove anything from the
tactical manuals, are insufficient to support redevelopment code because of the possible side effects of removing
using modern software engineering technologies. Indeed, for obsolete code.

334 I

I
I

Because of the smaller defense budget, the recent need to airborne digital computers aboard tactical Navy attack aircraft
cut operational costs within the Navy and the Department of is the prediction of range and time of fall for these ballistic
Defense in general has provided additional incentive to weapons, given the following:
develop techniques for reengineering deployed avionics
software to reduce life-cycle costs. This paper examines the 1. Position of the target relative to the aircraft

I contribution that object-oriented programming (OOP) 2. Velocity of the aircraft relative to the air mass
technology can make to reengineering legacy systems. Our 3. Direction and magnitude of gravity
reengineering expectations for an end-product are 4. Velocity of the air mass relative to the ground

5. Velocity of the target relative to the groundI 1. Reengineering techniques that form the foundation
necessary as a first step towards reengineering These sensor-supplied quantities makeup the weapon-

avionics software in real-time release conditions as supplied by aircraft sensors (e.g.,
inertial platforms, air data sensors, radar or laser trackers,

2. A simpter, less complex code structure that is easier target tracking devices).
t understand

Given the above weapon-release conditions, the
3. Reduced effort required to add new and/or modify successful release of a ballistic weapon so that it impacts at

existing avionics software functionalities, weapon a desired point on the ground requires an a priori prediction
types, or release conditions of the weapon's trajectory. This problem is illustrated inSFigure 1.__ _ _ _ _ _ _ _ _ _ _

4. Retention of the same or higher degrees of accuracy as Figure_1.
currently provided in the existing avionics software

5. Reduced life-cycle costs of current avionics software ('D

6. An existence proof that it is feasible to contemplate
reengineering deployed avionics software using
modem software engineering technologies to reduce v
life-cycle costs. G

As representative of the computationally intensive ILVACTPONT

operational software in Navy aircraft, the BTA software was /7
selected as the target for reengineering. Our paper presents / X (Weapon groXndtange
results from a case study to (1) investigate and evaluate DOWNRANGE f om reeleas [fi)
techniques for reengineering the BTA software using detailed
requirements and design information extracted from the V: Twol velocity of weapon [ff/mac]

existing programs and (2) demonstrate these techniques on 0: Gro,•tsonal force
selected components of the BTA software. We first describe
the BTA software, and then discuss its analysis and redesign
in the reengineering process. Our experiences and results in
the reengineering process are presented. Figure 1. Ballistic Trajectory In the X-Y Plane

Ballistic trajectory algorithm As depicted in Figure 1, everything necessary is assumed
known about the release poinL The impact range and time of

Most unguided, free-fall, air-to-ground weapons launched flight are to be computed. The BTA software provides this
o aimportant functionality. Initially, the BTA software wasfrom aircraft to attack targets on the ground or surface, e.g., designed for single-stage, free-fall bombs, but has been

bullets, drogued or retarded bombs, cluster munitions, modified over the years to accommodate newer,

streamlined bombs, and unguided rockets, can be described as t o gic aed weaps sc ascocke nee-

ballistic weapons [1]. Forces considered on these weapons technologically advanced weapons, such as rockets and free-

after release from the aircraft are lift, gravity, and

aerodynamic drag. A computational requirement imposed on

I
1 335

I

Currently, two versions of the BTA software exist. The _ I
first is the actual real-time version written in assembly ALGO (A)
language for the airborne digital computers aboard the Language: Fortran
tactical attack aircraft. The second version consists of 76 Design Graph SuperimposedCycloiratlc 151I
FORTRAN routines. The FORTRAN version is used Ccontla1537

mainly to fine-tune weapon coefficients for the real-time Deign 15
version and is also used as a test program for safety of flight D 1
and Fleet certification.

While the BTA software has been used successfully since
its development in the late 1960s, several of the computing
constraints (e.g., speed, storage capacity, numerical
algorithms) that confronted its design at the time no longer
exist today. As currently designed and implemented, the--
BTA software does not provide sufficient flexibility to allow .•I•..•.,,,I
easy modification of weapon types or release conditions. - . , .-
One consequence has been that, over its 25-year life span, .
only small modifications have been attempted. The result is
code tangled from years of patchwork.

Given the investigative nature of our task and the time
and other resource constraints that are attributable in part to
limited funds, we selected the ALGO subroutine component
of the BTA software as the target for reengineering. ALGO
is the 'main' subroutine that forms the heart of the
FORTRAN version of the BTA software. Though of
moderate size, the high degree of complexity (illustrated in Figure 2. Complexity Analysis of ALGO
Figure 2), inherent in the ALGO subroutine is representative subroutine component of the BTA software
of both the BTA software and the existing avionics software
systems in general.

In analyzing the ALGO subroutine component, we
examined the 751 lines of FORTRAN code line by line to

3 Analysis recover the design and requirements information. This
process was both time- and labor-intensive. In one instance

Our main task in the reengineering process was the for example, recovering the implementation of a second-
analysis of the BTA software. The motivation behind the order Runge Kutta numerical integration method took in
analysis is twofold- excess of 40 man-hours. This intrinsic complexity, depicted

in Figure 2, stems from the original design.
I. To recover and capture the essential design and U

requirement information necessary for redesign and re- The cyclomatic complexity value of 151 (Figure 2),

development represents a measure of the ALGO subroutine's decision
structure. The essential and design values of 37 and 15

2. To identify the presence of software engineering represent the degree to which the module contains
anomalies (e.g., non-modularity, code/data unstructured constructs (i.e., branching in and out of loops
dependency, and lack of clarity) in the existing code and decision nodes) and the complexity of the module's

calling patterns respectively. According to McCabe, a I
A common barrier to software reengineering is the difficulty module whose flow graph has e edges and n nodes has a
of understanding the design assumptions and constraints cyclomatic complexity of e - n + 2 [3]. A cyclomatic
embedded in a piece of code (2]. Our own experience complexity value between 12 and 20 is considered to be
confirms this; the design and requirement information about within the norms of traditional software engineering.
what the BTA software does is inextricably embedded in the
code. The code itself, tangled from years of patchwork, The analysis effort on the ALGO subroutine was a five-

describes not what was done, but rather how it was done. step process.

336

U

I
In the first step, all loops and code blocks within the

executable pat of the subroutine were identified and assigned
names and/or block labels.

In the second step, we identified all input/output (I/O)I processing and separated this from the non-I/O processing.
The set of actual I/O data, including data structures, was also
identified. The data structures identified in this step included M& . , M
(1) five two-dimensional REAL arrays, (2) a one- "•mi" z-MM"I T

dimensional REAL array, and (3) two one-dimensional I
INTEGER arrays. :; a V

In the third step, all hard-coded literals and constants in % z

the executable part of the code were identified. The intent - -
was to decouple physical data from the actual code. Named-

I constants were then declared, and the literals and constants %

within the executable part that could be replaced were then ..-. . .-...
replaced with named-constants.

In the fourth step, all variable references throughout the
code were reconciled. The objective was to identify exactly
where and how, in the source code, each variable was

I referenced. This was particularly helpful in identifying the
variables that were used only for specific weapon types and U-, a - N•,,• "
also facilitated the design of our object-class structure in the

Finally, in the fifth step, all commonly duplicated blocks %
of code, as exemplified in Figure 3, were identified forI elimination by the establishment of reusable methods in the

ksign phase. %

Once analysis of the code was complete, the redesign and J

subsequent redevelopmen, in SmallTalk-W* was initiated.
The intent was not to introduce yet another language such as
SmallTalk into the long list of languages used for Navy
software, but rather to use SmallTalk as a prototyping
language for the design and initial implementation portion
of our reengineering task and then complete the actual Figure 3. A revised cross section of the BTA

I implementations in C++ and Ada to see how many of the showing commonly duplicated code
beneficial Object Oriented concepts of SmallTalk-80 could
be retained in the final implementations.I

I

• SmallTalk-80 is a registered trademark of ParcPlace
Systems Inc., Sunnyvale, CA 94086

I 337

U

4 Redesign

Our choice to redevelop the BTA software and to
demonstrate the reengineering efforts in SmaliTalk-80 is
threefold

1. Of all the OOP languages and systems to appear over
the past decade, SmallTalk-80 remains one of the few
'pure' OOP languages that possess all of the object-
oriented concqts [4].

2. The class, object, and method browsers provided in
SmallTalk-80 fulfill our need for a tool that assists in
navigation through the resulting object-class library.

3. The SmallTalk-80 system provides an excellent
environment for incremental development and testing
of classes and methods as they are developed without
the need for development of complex test drivers.

Although the initial redesign task is complete, the F i
subsequent programming task is still ongoing and is ki d C
theirfore not discussed at great length here.

Some disadvantages to the use of SmaliTalk-80 for
initial implementation of this type of software include the WRM CNN
following: 3

1 . Methods were not available to read in the large data
files of integer and floating-point data necessary for
testing that were produced by FORTRAN formatted I
1/0. However, these methods were rapidly constructed
from methods available in the class libraries provided.

2. Methods for handling common scientific data types Figure 4. Inheritance structure of the I
such as two-dimensional arrays were not directly redesigned ALGO classes
available and had to be constructed from more
primitive methods. 4.1 BtalnitModel class

3. A very steep learning curve is required to use The BtalnitModel class is an abstract superclass for all
SmallTalk-80 and its tool suite, ballistic weapon objects modeled in ALGO. Its relationship i

with the other classes is based on the premise that for every

Our main challenge in the redesign process was the ballistic weapon trajectory, it is necessary to initialize the
derivation of an object-class structure that supports a high working variables to their initial values based on the
degree of modularity, encapsulation, and ease of maintenance weapon's release conditions. The BtalnltModel class
for the ALGO component of the BTA software. In deriving contains class-instance variables used for every ballistic
the object-class structure, we first identified the physical weapon and implements methods for the initializations
objects being modeled by the BTA, and then we determined necessary at the beginning of each trajectory. These I
the fundamental distinctions between these physical objects, initializations include
as well as the commonalties among them. This information
was then used in the derivation of the class hierarchy shown 1. Initializations required to account for the effects of
in Figure 4. altitude fuzing

I
338 U

2. Initializations required to account for the effects of 4. ComputedMethod: computes the step size as a
time fuzing constant based on the number of integration steps left in the

trajectory and the total escimated time of fall.

3. Initializations required to account for the dynamic

calculation of the number of integration steps needed 5. TimedMethod: computes step size as a constant based
in the first phase of the weapon's trajectory on the number of integration steps in the phase and the total

time of that phase.
4. Method used for expressing the weapon's drag as a

function of its release velocity 6. RootingMethod: computes step size as a variable
based on the number of integration steps left in the

4.2 NumericalSolver dass--subclass of BtalnitModel trajectory and the weapon's altitude.

The NumericalSolver class implements numerical Each ballistic weapon's trajectory is divided into a
methods used for each ballistic weapon in the BTA software. number of phases depending on the ballistic weapon type.
As currently implemented, the BTA software uses a second- Associated with each phase are methods implemented to

I order Runge-Kutla numerical integration method for solving compute
ballistic trajectory equations. This functionality is provided
by the methods implemented in the NumerlcalSolver 1. The integration step sizes
class. The separation of the functionality provided by this 2. The maximum number of integration steps for that
class from that provided by the BallistlcWeapon class is phase
intended to provide flexibility for future enhancements,
especially for easy incorporation of new integration and The number of phases, values of all phase parameters,
other numerical analysis methods. and the type of each phase for a particular weapon are

determined by analysis outside of the ballistic trajectory
4.3 BallisticWeapon class-subclass of algorithm.

I NumericalSolver 4.4 Base classes

The BallisticWeapon class implements methods for

The DrougedBomb, Stream LinedBomb,
1. Determining integration step sizes ClusterBomb, Flares, Cbu87, UnguldedRocket, and
2. Computing accelerations attributable to gravity, TlimeDependentDragBomb classes form the base classes

thrust, and the weapon's drag for the various weapon types in the BTA software. Each of
3. Making final corrections in the computed trajectory, these classes implements methods that depend strictly on

using either the straightLineMethod or the that particular weapon type, and which also are necessary to
trajectoryExtrapolationMethod adapt the algorithm to handle that particular weapon type.

4. Sequencing the various functionalities One of these methods is the resetParameter method, which
resets the parameters (e.g., drag functions, step-size

The six different methods, each of which may be used for parameters, and number and size of phases) that change when
determining the step sizes within each phase, implemented choice of weapon changes.I in the BalllstlcWenpon class are

The objects shown in circles (Figure 4), are actual
1. SpeciftedMethod: computes step sizes as predefined instances of the various weapon classes. For example,

arithmetic progression. Mk 83 (bomb with a BSU85B ballute retarding device),
forward-fixing aircraft rocket (FFAR) (2.75-inch), and B61 a

2. VelocityMethod: computes step size based on the bomb with a 17-ft parachute are each instances of the
weapon's velocity at the beginning of the step. D rouge d Borm b, U ngu id•d Rocket, and

STlmeDependent DragBomb cass epcicy

3. PressureMethod: computes non-constant step size

based on the reciprocal of the dynamic pressure beingI experienced by the weapon.

339

m
S Summary and conclusions Regarding SmallTalk-80 and its tool suite, our 3

experience indicates that the benefits of using SmallTalk-80
Our findings relate to the reengineered BTA, the to redesign an object-oriented model of the ALGO

SmallTalk-80 system and its tool suite, and the subroutine component of the BTA far outweigh the steep I
reengineering process itself. learning curve experienced in the reengineering process. A

necessary condition for the effective maintenance of a system
Regarding the reengineered BTA, we found that the is a level of understanding of that system sufficiently mature

present difficulty in restructuring the existing BTA software to support its maintenance. It is true that our object-based
to accommodate significant modifications stems from the approach may lead to a reengineered BTA software that
tight coupling of code, data, and methodology as evidenced exhibits a high degree of modularity and elasticity.
in the ALGO subroutine component. Much of the However, it presents new challenges to the maintainers. The 1
complexity inherent in the BTA code had been added to the maintainers need to understand the reengineered system to
relatively simple BTA as a result of the constant handling maintain it effectively. Inheritance derived from our object
and testing of special cases for individual weapon types. The classes and the dispersal of the redesigned system's
tight coupling of code, data, and methodology contributes to functionalities in the form of methods necessitate the need
the relatively high (3 man years per year) maintenance costs. for tools to assist in navigation through the object-class

structure. We feel that the class, object, and method
As we began analyzing the ALGO subroutine code, one browsers provided in SmallTalk-80 fulfill this need.

consideration began to emerge: "Would our object-based
approach lead to a solution that is better than that currently The rigid, object-oriented discipline enforced by the
provided by the existing BTA software and at the same time SmallTalk-80 system resulted in a reverse engineered ALGO l
fulfill the reengineering expectations?" component that is much simpler and promises to be better,

at the least, in terms of design. The availability of a large
Our results thus far suggest that the object-based reusable class library of existing methods coupled with the

approach offers potential for success. Overall, our object- mature environment for browsing and the incremental I
based framework resulted in a redesigned ALGO with far less development and testing of methods as they are developed
complexity, and commonly duplicated blocks of code was invaluable.
eliminated by the establishment of reusable methods, thus, I
resulting in fewer lines of code to maintain. Regarding the reengineering process, one concern with

the development of any new approach to reengineering
The use of inheritance in our object-class structure legacy code such as that for the BTA is how to get the

promises to provide considerably greater physical current users to accept the ideas and incorporate them into
localization of all special code pertaining to any particular their work. Our experience suggests that getting the current
weapon type. The inheritance feature allowed special code for users involved in the reengineering effort is the best
specific weapon types to be physically located within the approach, although historically this has not proven
weapon class rather than being included as a special case in sufficient to overcome the inertia and pressures of the
the basic algorithm code. The result is that, methods in the moment encountered by the current users. Given our
weapon class are automatically used in preference to the perception that the risks of a reengineered software blur the
general method for the algorithm, thus eliminating the need intent of the reengineering process, we suggest that
for continual testing of special cases in the algorithm code. demonstrating the reengineering paradigm on (several,
The use of inheritance allows the physical grouping of all whenever possible) sub-components of existing systems
code for a specific weapon, making future modifications or allows current users to become comfortable with the process
even removal of the code for any weapon simple and while considering the end-product. In particular, we contend
possible without the fear of unforeseen side effects. Our that demonstrating the software reengineering process on
object-class structure for the redesigned ALGO component sub-components of existing OFPs will serve to alleviate the
promotes the derivation of new classes from working, tested, risks, both real and perceived.
existing classes. The derived classes inherit existing methods
while extending and enhancing the base functionalities, all I
without modifying their base classes. This extensibility
reduces the effort required to add new and/or modify the
existing functionalities and, indeed, forms the core of our
object-based framework.

I
340 I

Acknowledgments References

We are grateful to Brian McMahon, Randy Christensen, 1. Duke, A. A., Brown, T. H., Burke, K. W. and Seeley, R.
e Phil Niebuhr, custodians of the BTA software; and to B. A Ballistic Trajectory Algorithm for Digital Airborne

Bob Westbrook, Lee Lucas, and Dick Nuckles-staff Fire Control, Tech. Pub. (TP) 5416. Naval Weapons
scientists at the Embedded Computing Institute and Center, China Lake, Calif., December 1972.
Embedded Computing Technology Office at the Naval Air
Warfare Center Weapons Division (NAWCWPNS) for their 2. Arango, G., Schoen, E. and Pettengil, R. "A Process for
isighmts and contributions to the reengineering process. Consolidating and Reusing Design Knowledge," in

Proceedings of the Irvine Research Unit in Software
Research Symposium, University of California, Irvine, Fall
1993.

3. McCabe. T. J. and Assoc. "McCabe Tools Demo Manual
OPEN LOOK®," Tech. Pub. McCabe & Associates, Inc.,
Twin Knolls Professional Park, Columbia, Md., 1993.

4. Lea, R. C., Jacquemot, C., Pillevesse, E. "COOL:
System Support for Distributed Object-Oriented
Programming," in Communications of the ACM, Special
Issue on Concurrent Object Oriented ,agramming, Vol. 36,
issue 9 (September 1993), CS-TR-93-68. 1993.

341

l
I

An Object-Oriented Paradigm for Reengineering Complex
Real-Time Systems

Kwei-Jay Lin*

Department of Electrical and Computer Engineering
University of California, Irvine I

Irvine, California 92717

Abstract In this paper, we propose an object-oriented I
paradigm for reengineering complex real-time systems.

Many have studied the issues on building systems Using the object-oriented approach allows us to apply
using the object-oriented paradigm. Others have the principles of hierarchial structuring and compo-
worked on how to design and implement kard real- nent abstraction, which are essential in building any
time systems; i.e. systems which are used to control complex system. In addition, the object-oriented ap-
and respond to real-time events. Relatively few have proach promotes component reusability which makes
tried to use the object-oriented paradigm for design- systems easier to maintain and to modify. To meet
ing and building complex real-time systems. In this the strong requirement of graceful system degradation
paper, we investigate the issues of reengineering hard in safety-critical real-time systems, we propose to en- I
real-time systems using the object-oriented paradigm. hance the adaptability and flexibility of real-time ob-
We propose an object-oriented real-time model which jects. Finally, our proposal has a sound theoretical
provides predictable scheduling framework and flexi- foundation on the scheduling model so that real-time
ble performance real-time objects. With the model we systems are guaranteed to have a predictable perfor-
may guarantee the real-time capability in reengineered mance.
systems and achieve desirable performances. 3

Our contribution in this work is that we extend
1 Introduction the conventional object-oriented paradigm to include

the considerations for distributed and real-time appli-
It has been well recognized that real-time system cations. Our methodology has special measures tar-

problems cannot be completely handled by fast pro- geted toward system reengineering. This is in contrast
cessors alone. Although high speed is desirable in to most object-oriented methodologies that are more
most real-time systems, high speed by itself cannot suitable for building systems from scratch. When I
solve all the issues in real-time systems. Real-time reengineering a complex system, we should reuse ob-
systems in general must utilize their resources in a ject structures and implementations as much as possi-
more intelligent way, taking into account of both sys- ble. For this reason, most conventional object-oriented
tem capacities and job deadlines. In addition, real- analysis and design methodologies fail to provide a sat-
time systems must be flexible so that they can pro- isfactory reengineering solution. Our methodology, on
vide timely responses to dynamic real-world events, the other hand, utilizes theoretically-sound real-time
Resiliency in face of abnormal events is especially im- scheduling algorithms as the system design backbone,
portant, since some real-time systems are the sole con- so that the system schedulability can be constantly
trollers of safety-critical applications and failures to monitored during the reengineering process. We also
provide timely responses could cause unthinkable dis- apply the concepts of imprecision [4] and polymor- I
asters. Therefore, real-time systems must be fast, pre- phism [3] to the performance capability of real-time
diclable and flexible, objects, so that a real-time object can provide different

"supported in part by the Office of Naval Research under performances under different circumstances. We thus 1
grant N00014-94-1-0034 and by the National Science Founda- believe that our object-oriented methodology may pro-
tion under grant CCR-89-11773. vide a better reengineering solution.

I
342 I

2 Reengineering Complex Real-Time dence constraints. Workloads may also be structured
Systems as and/or trees. Each branch of the tree requires a

different amount of time and resources, and also gives

To help systems make intelligent and flexible de- a different degree of rewards. The system design and

cisions, real-time software must be able to express, scheduling issue is then to select the optimal subset of
to , M eaintainmandeven toftwar ust timing b stoeratss, the workloads which gives the best reward using onlyto maintain and even to adjust timing constraints, the available time and resources.

Conventional system design languages do not specify In real-time systems, the approach can be imple-

timing constraints, as time usually is not a factor in mentea in several ways. A computation may actively

deciding the system's correctness. In real-time sys- evaluate its timing constraints to select the execution

tems, the notion of timing constraint is needed to trig- path with the most desirable response time. The run-t

ger and to schedule real-time computations. Express- tith tem, desirabl spheduing The ray

ing timing constraints is thus an important feature of time system, given global scheduling knowledge, may
real-time sonstware.aintsithsain timinportnstreaitue bind a real-time request dynamically to a server withreal-time software. To maintain timing constraints, appropriate time and resources available. Finally, a

scheduling algorithms are used to make decisions on coputation ay resor rcin imprecise r
resorcemangemnt.By arefllyselctig te rght computation may resort to producing imprecise resultsresource management. By carefully selecting the right if no feasible alternative exists and some response must

job (e.g. job with the earliest deadline) to execute ill be alterate in a nd se rent m ust

first, a system may satisfy more real-time constraints. still be generated. In all these different implementa-

Finally, many external disturbances or interruptions tions, the execution time of a computation is modeled
Finyllysmanysysternal distouerload es ineerrptiming as a first-class object so that it can be evaluated ormay cause a system to overload. Whenever a timing modified if necessary. By unifying the models of time,constraint cannot be satisfied, the system must uti- resource and normal objects, the timing property of a

lize its built-in flexibility to contain the failure and to resource comalio be bethe controped.

adjust the actions and possibly the timing constraint real-time computation can be better controlled.

itself. In many applications which deal with control
problems, timing constraints can be modified by tak- 3 Object-Oriented Paradigm
ing necessary actions. For example, the deadline for bjtitd system, all entities in the
stopping a car from hitting an obstacle may be ex-tended by slowing down the car or by switching to a system are defined as objects. An object may in-
lower gear. voke methods defined in itself or other objects for theservices needed, which in turn may invoke methodsWhen reengineering real-time systems, another im- in other objects. Each object is defined by a spe-
portant requirement is the predictability of system cific class. Classes may form a hierarchy where some
performance, whenever the target environment is classes inherit certain methods from their parent class.
changed or the system functionality is modified. Con- Cardelli and Wegner [2] have defined the three basic
ventional approaches on building real-time systems at- required elements of object orientation as:
tempt to set up systems so that they may operat ?c-
ceptably even in the worst-case scenario. To achieve object oriented =
that, they are often hard-coded or hard-wired for those data abstraction + object types +
special situations. Such real-time systems are very type inheritance
fragile and also very difficult to reconfigure both stat-
ically and dynamically, since even a minor change may The definition of object orientation has been ex-
disrupt a previously well-tuned execution schedule and tended in [6] for distributed systems:
cause some deadlines to be missed. object oriented =

A better approach to enhance the flexibility of real- encapsulation + abstraction +
time software is to change the computation structure polymorphism
so that the amount of work performed is based on
the amount of time and resources available. In other In the above definition, encapsulation means data
words, instead of defining a fixed amount of work to be hiding and access control, abstraction means object
performed, we can define a set of workloads which are grouping according to certain properties, and poly-
candidates for execution. During run-time, a subset morphism means the overlapping and intersections of
of the workloads is executed using only the amount object functions. Objects form a natural model for
of time available. Some of the workloads may have distributed systems since each object has its natural
dependencies between them when one cannot be exe- boundary due to the physical distribution, plus a well-
cuted until another is finished. This defines the prece- defined interface and also the message passing facility.

343

m

In engineeing or reengineering complex systems, two to be specified and realized incrementally. Each sub-
issues must be addressed: znterconnectivity and in- class represents additional knowledge about the ob-
teroperablhty. Distributed object structure provides jects that are instances of the subclass. The binding
a nice framework in finding the solutions for both is- of resources to requests can sometimes be performed
sues. Moreover, the object structure naturally accom- statically (by using static typing and complete type
modates the heterogeneity and automony in most dis- specification), although many object-oriented systems
tributed systems. also allow for dynamic binding. I

For complex real-time systems, the above definition
of object orientation can be extended further to cover 4 Scheduling Issues in Performance
the requirement of predictable performance: Polymorphism

Real-Time object oriented =

encapsulation + polymorphism + In real-time systems, the polymorphism concept
predictable performance can be generalized further to include the execution

performance as one of the binding parameters. The

There are two components in performance: the re- flexibility is required for a number of reasons when
sponse time in method execution and the system long-lived systems are being considered. First, sys-
schedule for meeting deadlines. Both must be pre- tems may be reconfigured, and the loads on the sys-
dictable in an object-oriented real-time system. We terns may change. New versions of a system also may
have discussed the predictable response time issue in be developed to enhance system capability. Moreover,
the previous section. For the rest of this paper, we new environmental constraints, e.g. modifications to
discuss the predictable scheduling issue. a performance specification, may arise from time to

When designing real-time systems, system schedul- time.
ing should not be left as the last step in the system The concept of polymorphism has been used for dif- I
development process. We believe that scheduling con- ferent purposes in the object-oriented paradigm. This
siderations should be integrated into the structures of substitution based on architectural or performance cri-
real-time objects as well as the whole complex sys- teria is a form of polymorphism that has not been
tem. Moreover, it must be considered early in the considered in conventional systems. Instead of having
system design when objects are being grouped and de- multiple procedures that perform the same action on
fined. For example, when structuring transportation objects of different type, we now have multiple proce-
vehicles, one can group passenger cars and buses in dures that perform the same function based on differ-
the same class since both have more than two wheels. ent environmental constraints. This model of perfor-
However, from performance's point of view, it may be mance polymorphism provides a powerful system prim-
more appropriate to group motorcycles and passenger itive in structuring flexible real-time software. I
cars together since both may provide a similar kind of Formally, given a function F that must be per-
performance in terms of speed and convenience. For formed. For this function, we have several implemen-
real-time systems, the class hierarchy defined in terms tations F1, F2 ,... , F! that may be chosen. Choosing
of performance capability may be more appropriate, one of these implementations makes a resource com-

Object-oriented programming facilitates modular mitment. In the packing model for system schedul-
management of resources. Each object provides its ing, it chooses a block of particular dimensions, in
users with certain resources in the form of methods resources and time. For the purposes of studying the
that constitute the interface of the class. Some meth- dimensions of the block, we need consider only the vec-
ods may be provided by other objects; these methods tor (r1 , r 2 , . . ., r,, t) describing its resource and time
are bound based on the class hierarchy, and some- requirements. Note that at this point, the time re- I
times by the parameters of the invocation. For ex- quirement need not be distinguished from any other
ample, when a '+' method is requested, the actual resource requirement; we have reduced the problem
operation executed may depend on the types of the to an arbitrary set of coordinates, one of which hap-
objects presented as operands and as the result. The pens to be time. Without loss of generality, we
binding process and the service provided may differ therefore describe the resource vector henceforth as
for integer numbers and for real numbers. In tradi- R = (ri, r2 , . . ,r

tional object-oriented systems, the actual realization Each of the choices Fi, therefore, represents a single
chosen depends on the class of the object and parame- point Ri in this configuration space. The availability
ters, and the class hierarchy. Inheritance allows classes of resources is modeled by a set of constraint inequal-

344 U

ities, which will generally be of the form, 0 < ri < M; easily facilitate system transition, reuse and integra-
such an inequality corresponds to assertion, "At most tion.
M units of resource rj may be used." (Obviously,
more complicated constraints are possible; they can References
fit easily into the scheme.) If the point R, satisfies all
the constraints, then Fi may be bound to the invo- [1] J. R. Brown. The sharing problem. Operations
cation F. If not, then Fi is unacceptable, in that it Research, 27(2):324-340, March-April 1979.
consumes an excessive amount of some resource, and
we must consider a different F. [2] Luca Cardelli and Peter Wegner. Understand-

It may happen that several of the F,'s satisfy all of ing types, data abstractions, and polymorphism.
the resource constraints. To choose among them, we ACM Computing Surveys, 17(4):471-522, Decem-
assign to each choice a scalar q, that represents the ber 1985.
filure of merit associated with making that choice. (3] Kevin B. Kenny and K. J. Lin. Structuring real-
When jobs are performance polymorphic computa- time systems with performance polymorphism. In
tions, jobs do not have a fixed amount of execution time systems withaperformanseemolymo sium ,
time, but can be executed for a variable amount of Proceedisngs of Real- Time Systems Symposium,
time. Each version defines a reward function which pages 238-246, Orlando, Florida, December 1990.
specifies how much reward can be received for a given
execution time. In some systems, we often want to [4] K. J. Lin, S. Natarajan, and J. W.-S. Liu. Impre-
evenly allocate resources (especially CPU time) to jobs cise results: Utilizing partial computations in real-
such that all jobs have about the same reward. In time systems. In Proceedings of the Eighth Real-
other words, we often want to maximize the minimum Time Systems Symposium, pages 210-217, San
reward for any job in the system. This is known as the Jose, Calif., December 1987.
knapsack sharing problem. Brown [1] has proposed an
efficient algorithm that requires 0(n3) operations for a [5] C. L. Liu and J. Layland. Scheduling algorithms
problem with n continuous tradeoff functions, and fur- for multiprogramming in a hard real-time environ-
ther extended it to handle the cases where the tradeoff ment. Journal of the ACM, 10(1):46-61, 1973.
functions are piecewise functions.Another possible objective is concerned with the [6] J.R. Nicol, C. T. Wilkes, and F. A. Manola. Object

Anloather possiblesobjcto maism ned wthe totalhvue orientation in heterogeneous distributed comput-allocation of resources to maximize the total value ing systems. IEEE Computer, 26(6):57-67, June
among all reward functions. It is known as the knap- 1993.
sack problem which is NP-complete in general. Heuris-
tic algorithms have been used to solve the knapsack [7] L. Sha and S.S. Sathaye. A systematic approach
problem. to designing distributed real-time systems. IEEE

5 Conclusions Computer, 26(9):68-78, September 1993.

In this paper, we present an object-oriented
paradigm targeted for real-time systems reengineer-
ing. The paradigm includes flexible performance and
predictable scheduling so that real-time objects can be
reused easily. We are currently working on the system
design and implementation tools for the methodology.

One of the issues in adopting the object-oriented
paradigm for system reengineering is that most ex-
isting systems were built by other models. There-
fore, many believe that it is impossible to provide a
smooth transition into a new paradigm. However, us-
ing our performance polymorphism model, a new sys-
tem could coexist with an old one by treating the old
components as another candidate computation to pro-
vide the required functionality but with an alternate
performance. In this way, we believe our model can

345

I

Next Generation Computer Resources Program:
Strategic Direction

Rex A Buddenberg

Naval Postgraduate School
Monterey, Ca 93943 I

budden@nps.navy.mil

I
The Navy's Next Generation Computer Joint Maritime Command Information System
Resources Program (NGCR) is now formally (JMCIS) evolution is a good example.
five years old and about seven or eight in
conception. The author wasasked to review Unification thread
the program for strategic direction; this paper is
adapted from that review.

The opinions and recommidations are The unifying thread that runs through this I
those of the author's. taxonomy is how each layer treats an atom of

The entire paper (less illustrations) is data.
available for anonymous ftp on • how the communications system treats a
budden.nps.navy.mil in the/pub/Necessary packet or message,
directocy. • and passes this chunk of data to the

operating system's file system,
• how the database management system I

NGCR program organzes the data into tables and relations,
- how a correlator fuses different atoms of

The program was organized in SPAWAR as a data into molecules of information, and
vehicle to adopt, adapt and otherwise reuse • how this information is displayed and
commercial interface standards for missi operated on, and

critical applications including C31 and combat • how the necessary security attributes

direction systems. NGCR differs from other remain attached to the data at each stage in the

standardization efforts within DoD in these process.
respects: Underanding of this thread allows us to

• focus is on commercial standards (FDDL cut to the core of the both interoperability and
GOSIP, POSIX, Futurebus+, SQL, PCoMn multi-level security problems and identify

Sdifferent than the traditional Mil-Std those truly central issues. It also allows us to
- erethan trelegate several standards issues to 'important.approah,.u eodry tts

- standards working groups include but secondary' status.

industry participation, some of which is
program-funded. Most Navy labs are involved. c
Participation from other services has been
welcome from the beginning. I

-strategy is to target standards as they are

formed within industry rather than adoption Interface .w
after they are finished. I

istabmoos Mmauwast 11lotsa

Assessment Methodology

A pyramid model was used to judge the NGCR In
program. This model was arrived at by
viewing the evolution of tactical decision /
support systems as they are evolving from
purpose-built stovepipe constructions to a
more general purpose, sustainable form. Te Figure 1. Anatomy of Decision Support

Systems 3
346

What's Right
Figure 1 illustrates our building-block

anatomy 1. The NGCR Operating System Standards
• Layer 1. All decision support systems Working Group and Database Standards

have a means of communications in order to Working Group appear to be squarely targeting
receive incoming data and to transmit the the respective layers.
decision makers orders. Additionally, the Program Support

Layer 2. Computer systems require an Environment Working Group should provide
Operating System which schedules tasks for useful help for the Decision Aids area.
the central processing unit, organizes and In each case, the assessment is on the
maintains a file system, and controls relevancy of the NGCR work, not on its
communications input/output, quality as that seems to be uniformly good

- Layer 3. The central function of a throughout.
decision support system is to file data in a The Backplane Working Group suffers for
database and then extract appropriate views of irrelevancy reasons which become clear only
the database for the user. In our anatomy when we proceed to the second part of the paper
illustration, the layers under the database on models.
management system are concerned with feeding The SAFENET working group did a fine
data into the database. Those layers over the job in the local area networking standards but
DataBase Management System (DBMS) are suffers greatly from lack of scope.
tasked with preparing the data and presenting a
picture to the decision maker. What's Missing

- Layer 4. The Graphical User Interface
(GUI) is the means for making bits into Three areas are of particular concern in the
graphics. When creating a tactical picture in assessment of NGCR's standards adoption,
the mind of a decision maker, graphics are far adaptation and influence effort. Two deal with
more effective at human communications than the scope of existing NGCR work:
the written word so a powerful GUI is a pretty - inadequate scope in the networking
essential requirement in nearly all 031 decision standards work,
support systems. • scant attention to the critical problem of

The Correlator is the process that fuses, or software recycling in the correlator and decision
links, chunks of data in the database to each aids areas where COTS software products will
other. This is the essential process of only be of limited value,
transforming data into information. The third problem is the observation that

• Layer 5. Finally, the Tactical Decision even f the NGCR program places ideal
Aids are those processes that help the decision standards into the Navy inventory, these tools
maker operate on the information and produce will be of limited use without some serious
decisions. These aids allow operators to attention to the rest of the information systems
visualize 'what if or they extrapolate existing architecture problem. This modularization half
trends and events into the future. Tactical of the architecture problem is the subject of the
decision aids are those which suggest resources second half of this paper.
to dispatch to a certain incident based on
knowledge of resources, their capabilities and
positions, probabilities of incidents and other Correlator and Decision Aid
factors. shortcomings

If NGCR is doing its standards job

correctly, then there is something to fill in The correlator and tactical decision aids
each block and the set of standards hang modules cannot be defined by use of
together as a whole. commercial standards and implementations are

likely to have high proportions of government-
owned software indefinitely. Because the Navy
will carry the software maintenance burden, it
is vitally important that the Navy modularize

1 Resemblances this software properly to gain economies
SCommon e between this description and the through software recycling and sharing ofComnOperating Environment, DODUlS modules amongst programs.

Technical Reference Model and the DISA
Technical Reference Model are somewhat more Far more important than the simple
than coincidental importation of COTS products, this part of the

3L,7

I

modularization problem is vital to controlling Pr, 1 '3 ,,1 " , m 199,,6 1997

software costs and maximizing a sustainable Ec u/
combat capability that our sailors can actually Cu1
use. 8

The correlator is the module that links NIPS

different chunks of data in the database T£C-Ksc
together, thereby transforming the data into M
information. The correlator is dependent on the POST NUS9I ' 111909 I)
sensors and the nature of the data to be fused. or - i
So we need different correlators for different FNT
sets of sensors. M. ess

himilar k•srS Imlegr st

"Rate maFigure 3. JMCIS program development
path

mining deft flae"in def bThe commercial information systems
industry does seem to be producing useful
standards for this problem. It appears that the
Distributed Computing Environment (DCE) as
produced by the Open Systems Foundation

,,,,51" (OSF) is highly applicable to enabling the kindMaker of software interchangability that the Navy
mow cannot afford to be withOUL
s--- Computer language design that allows
"Maker separation of module declarations and

implementations is also highly useful. This I
feature is common to Modula-2, C, and Ada

Figure 2. Correlator amongst other languages as this feature enables
the ability to distribute modules across clients

The tactical decision aids are highly and servers on a network using remote

dependent on the specific C31 requirements. procedure calls.

Some of those that a destroyer needs may not Nbe appropriate for a CinC's command center Networking shortcomings
ashore. And the decision aids needed by a

destroyer engaged in support of a littoral A somewhat more egregious NGCR
peacekeeping operation are different than those shortcoming is the Navy's failure to come to
needed by a destroyer protecting a convoy. But grips with its multiple stovepipe
the library of tactical decision aids has room communications link problem. There is no
enough for all, and there still will be a lot of apparent analog to the JMCIS Figure 3 above
overlap, so we don't necessary need wholly for Navy communications systems: I
different pieces of software. Indeed a multi-
platform, multi-mission decision support
software product is entirely practical.

The JMCIS Darwinian consolidation
tactic, with a common library of decision aids,
may indeed prove to be a sound approach.

I
348 i

I

o~c,.s •scope is inadequate for terrestrial and radio

ssC INS ? based Wide Area Networks (WANs) and for
RUM.ACS wireless LANs. SAFENET's scope and means

I PT CTI >also did not adequately cover upper layer
IF*. 0 protocols which provide critical logical

Link 14 interfaces for the operating system, database
S :TMO0 100 management system and decision aid layers.
HIT/BOSH

STU III ,

ftWOS1UOC0P1->Be so
Dow

"I COMMAPS(wrdt aerCNN(we fU

Figure 4. Convergence (??) of Navy
Communications

This shortcoming is critical: as programs
develop, requirements become better understood r WwN

and articulated. And requirements change. And L

the need for the information systems of
different systems to communicate with each m.,,siftow
other becomes more evident. All these / et"r
requirements shortcomings have reasonably
straightforward growth path solutions if the Command Center
network is done right. On the other hand, if "ter

the communications is done wrong, this
evolutionary growth path is forever tortuous
and stunted. Figure 6. Internet Connectivity

A further goad should be the rapid Development
evolution in radio-based communications from
a situation where DoD owns the connectivity Missing is the Navy's influence in Frame
to one where the military will simply purchase Relay and Asynchronous Transfer Mode (ATM)
the services from commercial vendors. The standards development. ATM appears destined
rapid rise in commercial satellite connectivity to be the protocol of choice in both terrestrial
planned for the rest of this decade indicates that WANs and radio WANs and DoD will probably
the Navy-owned circuits, and Navy-unique have to use the protocol as industry provides it.
protocols, will rapidly become unaffordable Missing also is Navy influence in the
relics of the past. IEEE 802.11 committee which is attempting

For the communications layer, the Navy's to produce standards for wireless LANs which
needs and the commercially used reference have great potential in military applications.
model - the ISO Reference Model - are And missing is Navy understanding and
highly coincident. The internet approach - a influence of the upper layer protocol

complex interconnection of networks of development, particularly in the areas of secure
networks, yielding a highly survivable electronic messaging.
substrate that shares the scarce bandwidth Correcting these sins of omission would
resouce -- is ideal for a Navy. provide the basis for completing Figure 4

above.

Figure 5. Intemetwork reference model

SAFENET does a fine job within this context
- for local area networks. But SAFENET's

349

I
Modularization - Part the Complexity
Second

Complex information systems may find these
In the first half of this paper, we presented a models either:
'reference model' or a layered architecture - nested inside each other. A weapon may
approach to the NGCR standards effort. In this be the Act node in a combat direction system.
second part, we address a more concrete It may also have an entire Sense-Decide-Actproblem, more typical of those that confront view within itself, particularly if it has someprogram managers producing information autonomy (i.e. fire & forget) requirements.

systems 2 . o chained together. The output of one
Sense-Decide-Act sequence may be the input of I
another. What one information system views
as 'action' may be providing the 'sensory' data
to another.

The model also is neutral regarding I
Decid e numbers if we do the modularization job

correctly. A decision support system will
usuaily have many sensors feeding it;--mu--t conversely a sensor may feed multiple decision

Communicate RCt support nodes.

Communications substrate I
Figure 7. A Concrete Model of Information These end systems (Sense, Decide and Act) all
Systems are attached to a communications substrate that I

carries the output of one node to the input of
the succeeding. Use of an intemetworked

Sense- D cide-Act communications substrate again renders the
network neutral regarding numbers - any

Le's use this Sense-Decide-Act model as or number of sensors, decision support nodes and
modularization guide. A typical information action entities can be attached to the network
system is made up of end systems that include: providing it is sized appropriately.

- sensors or data collection nodes. These
range from radars to human lookouts on a ship, Sense a Dci

to humans capturing data and filling in a form.
, decision support nodes. These nodes are Act

in the business of transforming data into

information into knowledge into wisdom. The
term 'decision support' is used deliberately,
connoting that the human decision maker I
remains an integral part of most systems.

-action nodes which carry out the [e•eSesdecisions made in the decision support

function.
• a network that connects the three kinds of Figure 8. Network substrate

nodes above together.
The interface definitions that get codified One of the advantages of current

as standards are those between the modules. internetwork technology is that this capacity

problem is fairly easily assuaged - it is
usually quite practical to increase the bandwidth I

2-A purist would point out that the modularization of the network arbitrarily and incrementally.
notion - the reason for interface definitions - Without requiring a system rebuild, and
should preceed the standards which are the means
for articulating the interfaces. Indeed, the two I
must go together and DoD, by concentrating on
standards without the acompanying models has
the chicken without the egg.

350 I

transparently to the end systems attached to improved correlation algorithms can be inserted
it3 . in new software releases without requiring

sensor changes. Avoid multiple-sensor
Abstract to concrete integration functions within the sensors

themselves.

Ihe following chart is offered as a prposed Data management. The critical item is

allocation of function amongst the different the sensor must provide data in a format

amodules. suitable for direct insertion in the decision
support system's database. A data

Sne @cdsa cstandardization problem.
Most sensors will contain some kind of

LSma,,operating system (and perhaps a DBMS).
W ee ., " to'" New,,,,,, °,, Many sensors lack the complexity needed for a" "a so a" • general purpose operating system like Unix.

.w"mha ft" =almost m... °ow In most cases, the OS used is up to the
Manorfoams, supplying vendor - since it is wholly

contained within the sensor module and the""I o t1maidles £ataaelm NmowcMI. * N supported code is the vendor's - not the
government's - responsibility, this is quite

so" aut Mateallsa Noae samw acceptable.
M - a' Communications. Each end system,

I sperat laisa Staaized maMfa Uwe including sensors and the DBMSs within the
a%&- -al,.MV Wartsb" ,,t,-,,u decision support system, should contain a

messaging interface. The ubiquitous choice
I .m.a - PN.•-.-•a - ssamge - P.osseig - .m should be an electronic mail one. If additional

""" -t.MN" -LoN -Law - not options are needed for special purposes, theylotlsCs Ito.. m -esn can be added but any additions should be done
-1tMII -ItMol -"I MIN without compromising the common

denominator.
Figure 9. Function Mapping End systems should generally interface

only to a LAN and leave wide area
The next few sections are amplifying communications (both terrestrial and radio-
discussion to the chart, based) as a function wholly encapsulated within

the network module.
Sensor Module End systems, especially sensors, need a

management interface. Management
GUI and decision aids. For information can be categorized into:

integration purposes, a sensor need not contain • get-info (querying a sensor),
any user interfaces and hence no GUI. In a a set-info (controlling the sensor and its
practical sense, however, most sensors have configuration),
some sort of command/display unit allowing 0 traps (the sensor initiating messages
autonomous local operation; there is no about itself).
objection to this. Local operation often means Given the state of network management
that decision aids also reside in the sensor, technology, it makes the most program
again, there is no objection, but the issue is development and logistics sense to extend the
irrelevant to the larger systems problem. network management information bases to

Correlation. The sensor should contain include the end systems, particularly as the
a complete data reduction capability so that an network management protocols have been
updated sensor can be added to the system designed to allow this4.

without also requiring upgrades within the
decision support system.

Conversely, the multiple sensor 4If the communications interface is built, as
integration functions should reside wholly described, then the backplane within any sensors
within the decision support system so that is irrelevant. The backplane is of concern for

logistics and sensor upgrade, but not
interoperability reasons. For this reason, we3The appropriate truism here is that amateurs talk judge the NGCR Backplane Working Group with

about capacity while professionals discuss high marks for execution, but low ones for
availability, relevancy.

351

I

network to transport data and not this network

Action entities to transport track data, that network to
transport intelligence data and the other

Those instruments effecting actions upon the network to transport EW data.

environment, whether weapons or some other This modularization allows:

actuator, need a defined interface with the • incremental additions to the network to

decision support system, but it can be extend connectivity, increase capacity or
somewhat sparser. improve availability (robustness) of the

All of the functions above the network are network without affecting any of the attached

either vacuous or wholly contained within the end systems,

action entity and therefore not germane to our * allows the end systems to evolve

interoperability problem with the exceptions of independent of network developments.
the data elements which must be standardized.

The network interface should again be a Installed base
LAN connection, a messaging interface and a I
management information base. Updates to the installed base are often

implemented with little thought to gaining or
Decision support systems maintaining the modularity described5 . One of

the most persistent sins is to violate the
The decision support system is likely to be the correlation partitions - rather than update a
most complex module and is likely to contain sensor and equip it with improved data
most of the functions. Decision aids, a GUI, reduction processing horsepower, the path of
the DBMS, and a complex operating system least resistance may be to try to sandwich that
will all be found here. improved data reduction into the next release of

Correlator. The partitioning of the data the decision support software.
fusion function as noted in the sensor Over the long term, such expediencies cost I
paragraph should persist. This is a key more than they save. This is especially true
division in maintaining an open system: itfs when a sensor is recycled and feeds data to
one easily transgressed and hard to fix multiple decision support systems - a
retroactiv.y. But if the data reduction function common case with specialized military
remain, in the sensor and the data fusion equipment.
functron stays wholly in the decision support A common understanding of how Navy
syst.m, both can evolve independently and information systems are modularized will help
in rementally. multiple, often rather independent, component

Network interface. The same managers produce and maintain components
r todularization guidance: a messaging interface, that can be assembled into usable systems.
a LAN physical interface and a management Recommendation: Every time a radar l
i iformation base should all be part of the or other device is field changed and every time a

i etwork interface. piece of decision support softw&a is upgraded
to a new release, this incremental improvement

Networking substrate should include progress toward the partitioning I
of functions as outlined here.

"T1 e networking structure that connects all the
at 3ve end systems should contain the local area These things we must fix
ar d wide area networking segments required, a

management information qane to maintain The Navy requires an authority with
control of the network, and robust messaging architectural responsibility. Included:
support. * defining between-program interfaces (e.g.

The network should not have any between Aegis and NTCS-A),
requirements in any of the other layers as far as • defining the interfaces between the
the specific information system is concerned Copernicus Pillars (which will place a clear
(these elements may well appear internally to modular separation between decision support
the network as part of the network management systems and an underlying network substrate).
function). The network function should be
confined to transporting data and the network I
should not be linked to the content of any 5 The software industy is well aware of the effects

particular data. In other words, we use the of the Second Law of Thermodynamics; but it
happens to hardware and to modularization too.

352

* focus on a "Top Half Dozen' programs. Navy's labs7 . And if the Navy intends to be
This focus on architecture should be serious about cooperation with industry, this

distinct from the programmatic and budget educational opportunity must be made available
bureaucracy because it all too easily gets to contractor and potential contractor personnel.
subordinated to that exercise. This is The educational approach should be applied
particularly true when the architect is throughout an officer or civil servant's career.
physically located in the same command as The executive agent must have
program managers, such as a SysCom. management influence over an education budget
Additionally, locating this authority within a and educational infrastructure to carry out this

particuL-i SysCom is insufficient as duty.
information systems are produced by all of • Technical intelligence. The Navy
them. too often reinvents things available COTS

The scope must extend to at least the because it is unaware that solutions already

combat direction system, C3 1 system, and exist in the commercial sector. The Navy
management information system development needs a KGB - in the Andropov incarnation
communities. These unions tend to view - to keep both it, and the program managers
themselves as isolated from the others but: it services, current in our galloping

I each is dealing with the same information technology.
information system architecture problems, Such an intelligence system need not be

- information systems created and evolved clandestine or in any way covert. Open sources
by each community must interoperate with will do nicely.
those of the others. Simple intelligence gathering is

insufficient; an ability to evaluate, fuse, and
Authority effectively disseminate finished intelligence in

a manner responsive to the customer's needs is
The authority must be seen as one improving vital. The intelligence community working in
the Navy's information systems capability (and the national security arena has excellent tools

thereby, its combat capability) and not as and methodology, along with a good

another stumbling block on a program understanding of what finished, evaluated,

manager's critical path: intelligence means - we need to apply thaw

- The authority must manage an methodology here to our own national

education program, particularly of program technology base.

personnel, in open systems, layered * Program planning. Many of the

architectures, and appropriate modularization of architectural sins in Navy programs are

systems. This education should focus on committed before the Tentative Operational

problem analysis (education) rather than Requirement is ever signed out of the

solution building (too often training). The Pentagon. Many more of them are committed
education should be career-oriented - not a by the time the Navy's labs get their tasking.

one-time deal. Like software engineering, errors committed
Note that Fm using the term education as the earliest are the hardest and most expensive

distit fto correct. Therefore, the architectural
distinct from training6 . A training approach authority must be privy to program planning at
would be to say 'ere's a standard, go use it its ezr•iest stages - that is the most effective
bAn educational approach would provide the and least painful place to outline an open
background to outline requirements and then systems pattern to build the system to.

select an approinate mod•ulaezaton and set of The authority should apply the limited

The target audience must include senior rograms that we dgeoas to thelNavy.

uniformed and civilian personnel on the N-staff This schwerepunkt approach says that if these

gan the SysComs. It must alsonnel inuein half dozen programs are all delivered as open,
igetrdepth, mid-grade personnel in the evolvable systems based on the same model,

mand engineering personnel at the then the rest of the Navy's information systems
will come along of their own accord. (This

7As a data point. Naval Postgraduate School
6 Webster: education is a systematic study of provides a one-time shot (no continuing
problems, methods, and theories Training is education) that is limited almost entirely to
instruction to make proficient or qualified, uniformed naval officers at the LtlLcdr level.

353

I
focused approach does not, of course, prohibit
on-request help to other programs).

An informal poll suggests the following
as a Top Half Dozen:

- AEGIS Combat System Mk7 - fleet
and I i Mndl l area air defense

- ACDS Model 5 and NTU/ACDS Model

4 block 0 - combat direction systems
"* CSSjC2P/Link 16 - the radio-WAN
"* BSY-I/BSY-2 - submarine combat

direction system
- JOTS/GOTS/NTCS-A/JMCIS

dcision support system- OSS -- decision support system

Conclusion m

Admiral Nelson and the Royal Navy achieved
mastery of the seas when Nelson threw the
doctrinaire Fighting Instructions overboard and
replaced them with a shared corporate ethic and
understanding of how to defeat the enemy.
Open systems cannot be achieved by a I
directive-oriented, standards-only approach. We
must build - through an educational process
- a shared understanding of how program
components are modularized if we wish to
achieve a building-block open systems
arcittectne.

Please note that we are dealing with a
dramatically changed environment from twenty
years ago in information systems - the bulk
of the technology is dual use. If the US Navy
doesn't do this first, the same technology is
available to other navies.

Recommendation 1 - organizationalcommitment. Someone in the Navy needs to1

take charge of the Navy's information system
architecture. A simple program advocating
standards is not enough.

Recommendation 2 - education of
our people. The Navy needs a strong
educational program that teaches program
management personnel about how to analyze,
and modularize information systems problems. I

Recommendation 3 - the Navy needs

to adopt a modularizaon scheme common to
all information systems expressly to foster the
production of recyclable building blocks.

3I
354 I

I

I Reuse-based Reengineering:
Notes From the UndergroundI

Frank Svoboda
Unisys Government Systems Group

Reston, Va.

Abstract vironment. To this end, the Demo Project enacts simulta-
This paper describes the reengineering process and neous Domain Engineering and Application Engineering

lessons learned to-date for the Army/STARS/Unisys De- cycles to create and utilize software assets for reengineer-
monstration Project (the Demo Project) Application ing and subsequent maintenance phases. A fundamental
Engineering Team (AET). The Demo Project combines difference between these modes of operation is that Do-
elements of reengineering and reuse through simultaneous main Engineering identifies applicable systems for a given
Domain Engineering (domain modeling and asset' domain, while Application Engineering identifies applica-
creation) and Application Engineering (reengineering, ble domains for a given system.
maintenance, and new development). Figure 1 depicts the traditional roles of Domain

Although traditionally asswning the passive role of Engineering and Application Engineering. This model
consumer for Domain Engineering (DE) products, Applica- implies that Domain Engineering and Application Engi-
tion Engineering (AE) can actively support reuse (reuse- neering are tightly coupled, executing in a strictly
based reengineering). The concurrent nature of the Demo sequential manner.
Projectds DE/AE work affords unique possibilities for lime
sharing of information and modeling techniques that mightI not otherwise occur when the two activities are distributed
across space and time. The AET process defined in this Domain
paper addresses issues related to systematized reuse during Engineering EngineeringIreengineering and continuing software maintenance.A

IntroducitionA"NwSse

Megaprogramming is the STARS vision of process-

driven, domain-specific reuse-based, technology-supported Figure 1: Tradhtion DomaIn/ApplIcatlon

systems development The purpose of the Army/STARS/- Engineering Roles

Unisys Demo Project is to show the benefits of megapro-
gramming in an Intelligence/Electronic Warfare (IEW) en- The Domain Engineering (DET) selected an IEW

sub-domain - Emitter Location Processing and Analysis
(ELPA) - as its domain of focus (DOF). The DOF pro-

An artifact is data existing on physical media that vides the scope for domain modeling and asset creation.
conveys information about a software system. A work-product The AET, in turn, uses assets developed by the DET for
is a planned artifact. An asset is an artifact of potential value
within a given domain (i.e., an area of related knowledge or ac- reengineering within the DOF. Figure 2 depicts the Demo
tivity). Assets have either been developed for reuse, reengi- Project's model of concurrent Domain Engineering and
neered for reuse, or certified for reuse as-is.

355

I

Application Engineering. Here, AE can operate indepen- a. the definition and enactment of a repeatable S/W 1
dently of DE in non-DOF areas, coordinating at asset maintenance process supported by an integrated
hand-off. software engineering environment (SEE)

Time b. the utilization and assessment of software assets

Time c. sharing of information and modeling techniques

"with the Domain Engineering Team

Domain

Engineering At the time this paper was drafted, the AET had

completed Reverse Engineering of a selected non-DOF
IGRV subsystem. The sequence of activities for this Re-

Now System engineering phase and the conceptual underpinnings of the I
s AET Reengineering process are described below.

AET Reengineering Process I
The components of the AET Reengineering process are

Reverse Engineering, Improvement, Restructuring, and

Forward Engineering I1. We distinguish maintenance as

Figure 2: Concurrent DomalnlAppllcation "modification of a system's functionality" from I
Engineering reengineering as "modification of a system's form." In

full-cycle reengineering, requirements serve as the linchpin
Additionally, the AET has chosen a broader between a legacy system and its reengineered counterpart.

reengineering scope that encompasses interfacing In this case, the first significant issues addressed during

sub-systems and non-contiguous application areas as well. Forward Engineering are those relating to architecture.
Within this broader scope, the AET is reengineering not The identification and adoption of standard architectures I
only for near-term maintainability, but also to capture are important components of Reengineering between the

tradeoffs, decisions, and underlying rationales. Providing life-cycle phases of Requirements and Design.

this information about non-DOF areas to future Domain
Engineering completes the DE/AE cycle. It is envisioned R•O...........g

Reverse __ _ __ onwasrdthat domain engineering and maintenance will eventually E mor Engiieen•
be integrated, so that the asset base will continue to evolve Requirements

through successive maintenance iterations. Architecture Architecture -

Application Engineering Goals Design e Design

The AET's prime objective is the reengineering of a Implementation/. . .lmplementaton

target IEW system - Improved Guardrail V (IGRV) - as-is to-be

to improve maintainability, flexibility, and evolvability (the Figure 3: Reengineering Process Framework
ability of a system to suffer modification). Incorporating I
the STARS megaprogramming vision into this effort ex-
pands these objectives to include the following goals that Figure 3 (adapted from Byrne [21 and Chikofsky/Cross

support systematic reuse for subsequent maintenance [3]) depicts the continuum of activities that comprise the

cycles: AET's Reengineering process. As indicated, abstraction

356

is the underlying mechanism for Reverse Engineering, "Hard" artifacts such as code and supporting
while refinement serves the same purpose for Forward En- documentation are gathered and organized to ease

gineering. The Reverse Engineering and Forward Engi- retrieval. System knowledge and informal feature

neering phases are "mirror images" of each other, progres- descriptions are captured as artifacts.
sing backwards and forward, respectively, through the b. Analyze and model system artifacts. Determine

life-cycle steps of Requirements, Architecture, Design, and grouping criteria. Interpret artifacts and group into

Implementation. The AET Reengineering approach higher-level abstractions. Artifact models, when

incorporates improvement and restructuring within the recorded, become the artifact input for the next

body of the Forward Engineering phase. Separate life-cycle step in the reverse engineering process

activities for Reverse Engineering are given in the (e.g., Structure Charts, as code models, typically

following text. represent the functional decomposition of design).
c. Evaluate the artifact models. Determine evaluation

Reverse Engineering Process criteria and evaluate the artifact models against
these. For example, if Structure charts derived

The AET Reverse Engineering process consists of during code modeling do not convey any signifi-

activities that represent IGRV artifacts at increasing levels cant information, then it may be desirable to elim-

of abstraction. This process requires techniques that inate selected portions from the overall model.

progress backwards conceptually from relatively concrete d. Consolidate the artifact models. Reconcile the

code artifacts to more abstract requirements artifacts. artifact models with any existing artifacts at the

The goal of Reverse Engineering is to model and un- same level. For example, after creating Structure

derstand an existing (as-is) system. Since Reverse Engi- Charts, examine any legacy design artifacts and

neering is also pan of Domain Engineering, both the DET combine these to produce a complete, accurate, and

and the AET can exploit this similarity through similar understandable set.

representations, tools, and processes. The scope of

Reverse Engineering will vary between eams, however: Reverse Engineering Process Scenario:
Application Engineering models a single system, while

Domain Engineering models commonality and variation I. Preparation
acrus multiple systems in a given domain. A. Perform line-of-business analysis. Define and scope

The first step in defining our reengineering process con- reengineering effort. Set reengineering context and

sisted of defining a procedural model that applies to each objectives.

life-cycle phase. The Reverse Engineering Process B. Collect and catalog legacy system artifacts. This
Template below describes this model, which incorporates includes baselining code, design, architecture, and
Byrne's Reverse Engineering Procedure [4] and the Plan- requirements models, trouble reports, test cases and

Enact-Learn Cycle of the CFRP [5]. The Reverse Engi- procedures, and supporting documentation.

neering Process Scenario is an expansion of the template C. Interview domain experts and record system
across the entire life-cycle. The Demo Project used this knowledge.
scenario to specify tool use and team interaction at given D. Interview users and record informal features of the

process steps- system.

Reverse Engineering Process Template HI. Code -+ Design
A. Collect code artifacts and organize according to

For each life-cycle step backwards from code through reverse engineering needs (e.g., map task/function
requirements, the following steps are performed: to directories/subdirectories). Derive and capture

a. Collect, organize, and understand system artifacts. understanding of the artifacts.

357

I

B. Identify criteria for design partitioning and group according to user needs. Assess informal features I
code modules as design units. Record module (implicit requirements) through user interviews.

invocation and data coupling among code modules Derive and capture understanding of the artifacts.

(e.g., via Structure Charts, cross-reference, etc.). (Note: since legacy test artifacts [e.g., plans, proce-
C. Create representation of internal module processing dures, cases, results] were used to validate/verify

and data access using textual description, tables, the original system, these artifacts may provide in-
and/or graphic notation. sight into system requirements.)

D. Update code documentation, including headers, B. Identify criteria for requirements model partitioning

embedded commentary, and other supporting and group architectual units into data transforma- I
documents. doins or control transformations (data/control flow

E. Generate Data Dictionary. Perform balancing and diagrams). Identify external data sources/sinks.

consistency checks on data dictionary. C. Identify state/mode actions, events, and triggering U
F. Determine evaluation criteria for design artifacts. mechanisms (behavioral modeling). Depict these

G. Evaluate design artifacts to determine usability, via textual description, tables, or graphic notation

accuracy, and coverage. Hold internal reviews and (e.g., State Transition Diagrams, Statecharts, Event
walk-throughs. Record results and recommended Diagrams, etc.).

actions for rework. D. Depict data organization via textual description,

H. Consolidate design work-products with legacy tables, or graphic notation (Data Structure
design artifacts. Diagrams, Entity-Relationship Diagrams).

E. Update architecture documentation.

llI. Design -# Architecture F. Update data dictionary. Perform balancing and

A. Collect design artifacts and organize according to consistency checks on data dictionary. U
user needs (e.g., map task/function to directories/- G. Determine evaluation criteria for requirements

subdirectories). Derive and capture understanding model artifacts.

of the artifacts. H. Evaluate requirements model artifacts. Hold

B. Identify criteria for architectural partitioning and internal reviews and walk-throughs. Record results I
group code modules as architectural units that and recommended actions for rework.

describe functionality, connections, and interface I. Consolidate requirements model work-products

mechanisms. Create representation of architectural with legacy artifacts, recorded domain knowledge,

units using textual description, tables, and/or and informal features.

graphic notation. J. Update legacy requirements documentation.

C. Update design documentation.
D. Update data dictionary. Perform balancing and Lessons Learned

consistency checks on data dictionary.
E. Determine evaluation criteria for architecture The following items informally describe some lessons

artifacts. learned during the enactment of the Reverse Engineering

F. Evaluate architecture artifacts. Hold internal process. I
reviews and walk-throughs. Record results and

recommended actions for rework. * Choose common terms (domain lexicon) and agree on

G. Consolidate architecture work-products with legacy definitions (glossary). When terms are adopted that
architecture artifacts. take on a specific meaning, it is of critical importance

to communicate the meaning of those terms to all
IV. Architecture --, Requirements stakeholders. This step should be performed early and I

A. Collect architecture and test artifacts and organize often. A set of canonical domain terms should be

351 I

defined and shared. Continuing efforts should feed confirmed with domain experts. For a better designed

back information into the lexicon. system, the Structure Chart --* Architectural unit pro-

gression may have been easier. The AET may use

"0 There is no substitute for domain/system expertise. The Structure Charts created during Reverse Engineering to

Demo Project was blessed with readily available identify and reduce module complexity during Forward

domain/system experts and information. In assessing Engineering.

artifact quality, in modeling system functionality, and

in identifying implicit requirements, expert help greatly * The AET did not choose to perform complexity

enhanced productivity, analysis on legacy code. Although this analysis could

As with typical legacy systems, additional IGRV identify maintenance problem areas, the AErs

information sources included code and requirements decisions on which areas to reengineer were based

documentation only. Current executable code and its more on user needs and economic factors.

corresponding source code as well as accurate code

documentation (headers, embedded commentary) were * By looking ahead at requirements as a goal, the AET

still intact. Neither design nor architecture artifacts used legacy requirements as heuristics for determining

existed. Requirements artifacts included the system architectural and requirements grouping criteria. This

requirements specification (of questionable accuracy) technique enhanced productivity, but tended to inhibit

ard the system operator's manual. traceability between life-cycle work-products.

"* Closer interaction between the DET and AET was anti- * Dealing with scoping and boundary issues is an

cipated than what occurred. Due to different goals (the important part of Reengineering context setting.

DET needed to model commonality and variation of Although intuition suggests that coarse-grained

multiple systems within the same domain; the AET architectural improvements may provide the best long-

needed to model multiple subsystems within a single term return on investment, available resources may

application), different tools were chosen and interaction dictate an incremental approach. The scope of Reverse

diverged. Certain efforts have benefited from Engineering may differ from the scope of Forward
cross-fertilization. Design modeling of some low-level Engineering.

units was shared between the DET and AET. The DET

architectural modeling group performed reverse engi- * The following were identified as sources of

neering using representations to those used during AET requirements:

Reverse Engieeng. a. "Hard" requirements from legacy documentation

Use of similar tools and representations eases b. Reverse-engineered requirements

sharing of information across Domain Engineering and c. Informal features - implicit requirements from a

Application Engineering teams; different tools inhibit user's point-of-view; at a minimum, a reengineered

sharing. Bridge utilities (i.e., those that enable informa- system must provide the capabilities of its

tion sharing between tools) can help narrow the gap be- predecessor.

tween tools, if the underlying representations are con-
gruent to each other.

* Some typical reengineering steps did not prove as

effective as originally thought. Structure Charts were

not as useful to architectural grouping as originally

thought. Architectural grouping criteria were extracted

from requirements and supporting documentation and

359

I

Conclusion References I

For any engineering effort, reuse and reusability should be 1. 'Toas I. Remaley. "Reengineering of Software-

embraced as first principles. New development should driven Systems", Proceedings: Paramax (Unisys)
Systemns and Software Symposium, November 1992.

occur only as a last resort. Opportunities to share

knowledge should be planned for and explored at every 2. Eric J. Byrne. "A Conceptual Foundation for Software I
possible step. As Domain Engineering becomes more Re-engineering", Proceedings: IEEE Conference onpossbleste. A DoainEngieerng ecoes oreSoftware Maintenance, 1992.

accepted, tools, processes, and training will evolve to S

support coordinated D_/AE efforts. At a human support 3. Elliot Chikofsky and James Cross. "Reverse Engineer-
level, our experience has shown the value of commonality ing and Design Recovery: A Taxonomy", IEEE

in language, concepts, and representation. Common Software, January, 1990.

waderstanding is at the core of reusability. Through closer 4. Eric J. Byrne. "Software Reverse Engineering: A Case
interaction and more effective communication among Study', Software - Practice and Experience,

systen/domain stakeholders, we can evolve our December 1991.

engineering practices and improve the quality and 5. Software Technology for Adaptable, Reliable Systems
adaptability of the software-intensive systems we develop. (STARS). Conceptual Frameworkfor Reuse Processes

(CFRP). Volume I: Definition, Version 3.0, STARS-
VC-A018/001/00, 25 October 1993.

I
I
I
I
I
I
I
I
I
I

360

I

I
I

I Reengineering as an Engineering Problem: Conceptual
Framework and Application to Community ProblemsI

Peter Feller, Walter Lamia, Dennis Smith
Software Engineering Institute1

Carnegie Mellon University

Abstract: This paper discusses a plan that problems, a number of technology solutions have
addresses how the Software Engineering Institute sprung up under a variety of labels, including reengi-
(SEI) may assist the Department of Defense (DoD) in neering, reuse, recycling, modernization, renovation,
reengineering its large software-intensive systems.
This plan is based on a view of reengineering as an reconstitution, reverse engineering, design recovery,
engineering problem to improve the cost-effective redocumentation, respecification, redesign, restruc-
evolution of large software-intensive systems. This turing, and retargeting. For a summary of software re-
view of reengineering, which takes the whole engineering technology, the reader is referred tosoftware engineering process into account, fosters a

growth path by leveraging promising emerging [Arnold 93].
software engineering technologies. The paper also
highlights the results of an October, 1993 workshop
conducted by the SEI, and discusses how the 1.1 Definition
workshop themes relate to the issues discussed in the
paper. In this paper we are building on Chikofsky's work on

a taxonomy [Chikofsky 90], the results of the First
Software Reengineering Workshop of the Joint Log*;,-

I 1tics Commanders Joint Policy Coordinating Group on
1 Introduction Computer Resources Management [Santa Barbara

92], as well as insights from ARPA sponsored work in-
In the last few years, the world has realized that the cluding STARS, DSSA and from European efforts
number of large systems being built from scratch is sponsored under the auspices of ESPRIT, Eureka
rapidly diminishing while the number of legacy sys- (Eureka Software Factory), and the Institute for Sys-
tems in use is very high. New system capabilities are tems and Software Technology of the Frauenhofer
created by combining existing systems. At the same Gesellschaft [ISST 92].
time, the context in which these systems have been
built has changed. Changes range from changes in Definitions for reengineering found in the literature in-
the application environment in which these systems dude:
operate (e.g., new sensors) to changes in hardware • the examination and alteration of an existing
and software technologies (e.g., dramatic increases system to reconstitute it into a new form and the
in processor speed and memory, high-level languag- subsequent implementation of the new form;
es, improved methods). Some of the technologies • the process of adapting an existing system to
used when these systems were built can hinder the changes in its environment or technology without
system's ability to evolve to meet ever-changing de- changing its overall functionality;
mands in a cost-effective way. As a result of these * modification and possible further develop-

ment of an existing system;

I
1. The Software Engineering Institute is sponsored by the U.S. Department of Defense. This report was funded by the U.S.

Department of Defense 361

I

improvement of a system through reverse en- existing system into a new form through a combina-
gineering (and restructuring) followed by forward tion of reverse engineering, restructuring, and forward
engineering. engineering.

Figure 1-1 illustrates a taxonomy of terms related to
reengineering by Chikofsky. In this commonly-accept- Reengineering relates closely to maintenance, which

ed taxonomy, software system abstractions are rep- is generally viewed as consisting of corrective, per-

resented in terms of life-cycle phases. Shown are fective, preventive, and adaptive maintenance. Ac-

requirements, design, and implementation. The tradi- cording to ANSl/IEEE Std 729-1983, software

tional process of developing a system by creating maintenance is the "modification of a software prod-

these abstractions is referred to as forward engineer- uct after delivery to correct faults, to improve perfor-

ing. Reverse engineering is the process of analyzing mance or other attributes, or to adapt the product to a

an existing system; identifying system components, changed environment.u In this paper we use the term

abstractions, and interrelationships; and creating the system evolution to include software maintenance.

respective representations. Redocumentation anddesign recovery are two forms of reverse engineer- For the purposes of this paper, we take an encom-I
desin rcovry re to frmsof evere eginer- passing view of reengineering as addressing the en-

ing. Redocumentation refers to the creation and revi- gineering as addrov ing t-efen-sion of representations at the same level of gineering problem of (improving) cost-effective
abstraion, whilepdesentatigns rea the ueli- o evolution of large software intensive systems, bothabstraction, while design recovery refers to the utiliza- existing and future, through appropriate application of

tion of extemal information including domain knowl- existing and-future trghaporiate a no
edge in addition to observations of the existing effective best-practice engineering methods and
system to identify meaningful higher levels of abstrac- tools. Evolution of many existing systems is consid- 3
tion. The third process component of reengineering is ered as not being cost-effective and cannot keep
restructuring. Restructuring is the transformation of pace with changes in the application (domain) envi-

representations at the same level of abstraction while ronment and changes in the computing environment

preserving the system's external behavior. Reengi- and software engineering technology. The term lega-

neering is an engineering process to reconstitute an cy system has been attached to systems with such
characteristics. Changes in the application environ-
ment (the external environment the application sys-
tem operates in) as well as in the implementation
environment (the hardware/software platform) have

R

e____ Forward Engineering U
n Requirements Design F Implementation

g ig ~ Design •Design R•

n Recovery Recovery Redocument I
e (cturing ring Restructuring

r -__
I Reverse Engineering
nI
g Figure 1-1: Common View of Reengineering

362 I

I

to be assumed as a given and have to be accommo- Successful improvement of legacy systems through
dated (engineering for change). This need for engi- reengineering also requires attention to improve-
neerng for change applies to both existing systems ments in the acquisition process and to legal con-
and new (or future) systems. cerns. The Joint Logistics Commanders Joint Policy

Coordinating Group on Computer Resources Man-
1.2 Context agement is holding a workshop series to address ac-

quisition issues at the policy level. For further

The focus of this paper is on technical aspects of re- discussion of these and other inhibitors to successful
engineering. However, economic, management, and transition of improved software engineering practice
acquisition aspects play as important a role in the suc- see the work done on transition models by SEI and
cessful improvement of the capability to reengineer others [Przybylinski 91; Leonard-Barton 88].
legacy systems.

The cost of incremental change to a legacy system
needs to be reduced. Criteria for deciding on the need
for reengineering range from heuristics such as age of
code and excessive maintenance personnel training
cost (as found in a 1983 NIST document) to parame-
terized cost models (see [ISST 92, Santa Barbara
92]). Improvement in this cost is anticipated by invest-
ing more than the minimal amount into reflecting the
requested change. The additional investment would
go into improving the way the system has been engi-
neered with the result of smaller incremental cost in
the future. If several legacy systems have to be re-
engineered, their similarities can be captured in a
common reusable architecture, treating them as a
family of systems rather than isolated point solutions.
The cost models for reengineering, together with bet-
ter understanding of the effectiveness of different en-
gineering techniques, will allow software engineers to
make reasonable engineering tradeoffs as they
choose a particular evolutionary reengineering strate-
gy for a legacy system.

Engineering effectiveness is influenced by how well
an organization is able to manage its engineering pro-
cess and improve its engineering capability. SEI has
provided leadership for government and industry to
improve these organizational software process capa-

bilities through work on the Capability Maturity Model
(CMM) and its use as an assessment and improve-
ment tool. In the context of this paper we assume that
the reader understands the relevance of such capa-
bilities for an organization's ability to systematically,
efficiently, and effectively reengineer legacy systems.

363

I

2 A Reengineering the context (e.g., technical changes such as promis- I
Framework ing new technologies or economic changes such as

budget reductions or increases).

In this paper we have cast reengineering as an engi- 2
neering problem. Problem solving involves an under- 2.1 The Curren System State
standing of the problem, i.e., a clear understanding of The root causes for the lack of cost-effective evolution
the root causes in terms of its existing state, an under- fall into two categories: management of the engineer-
standing of the desired state, and a path (plan) to ing process and the engineering process itself. Man-
evolve from the current state to the desired state. Fig- agement of the engineering process is addressed by
ure 2-1 illustrates this. The current state reflects prop- SEI's work on CMM and will not be elaborated here.
erties of the existing system and the process by which The second category represents technology root
the system is engineered (developed and main- causes, i.e., the engineering process, methods, and
tained). A subset of those properties is undesirable, tools. It will be the focus of further discussion.
reflecting the problem to be solved. System under-
standing reflects the process of creating and main- The technology root causes manifest themselves in a
taining an understanding of a system (through number of ways. Some examples are:
analysis, elicitation, and capture). System evolution Ir•Jn•,•h: h• •nir~rin n~~viv n rnirnfnn h• Data structures not cleanly implemented. As-
represents the engineering actity of migrating the sumptions that a specific element of shared

existing system to the desired state. Based on an un- memory (e.g., Fortran COMMON) is used as the
derstanding of the current and desired system state communication mechanism.
and available (re)engineering technology, an analysis . System representations such as architectural
making engineering tradeoffs by considering techni- and design descriptions reflecting the application
cal, management, and economic risks and con- domain and the implementation approach may
straints results in a (re)engineering plan. During the never have been created or documented; the

execution of this plan (i.e., the actual evolution of the documentation (and sometimes even the source

system through engineering activity), the plans may code) is out of date.

be reassessed taking into consideration changes in

(> Systm 'Understiinding~;

Current Plan Desired Future

System System SystemS

Figure 2-1: Reengineering Problem Solving

164I

I

Assumptions about the application environ- 2.2 The Desired System Statement have been hardcoded in the implementa-

tion. Examples include assuming a point solution The desired system state is a combination of proper-including fixed number and types of real-world ties of the existing system to be maintained, proper-objects. ties expected of a system as part of state-of-the-art

* The computing environment evolved through software engineering practice and implementation
several generations. For example, early hard-
ware platforms were memory-limited, resulting in technology, and properties that have their roots in

a number of sometimes (in today's view) convo- changing environments and are reflected in the sys-
luted implementation "tricks,= such as overlay, tem history, but may not have been explicitly ex-
instruction reuse, and cryptic user interaction, pressed by the system user. Examples of maintained
No operating system support was assumed. To- properties are functionality, performance, and accura-
day's computing environments typically consist
of COTS standard operating systems, DBMS, cy. Examples of properties resulting from best prac-
window systems, and networking support, and tice software engineering and implementation
are geared toward a high degree of interactive- technology include portability, modularity, structure,
ness and "user-friendliness.3 readability, testability, data independence, document-
* The Implementation technology has evolved ed system understanding, openness (open system),
from machine code with absolute addressing; to interoperability, and seamless integration. Properties
symbolic assembler, high-level algorithmic lan- that address continuous change and provide flexibility
guages (COBOL, FORTRAN, ALGOL); to lan-
guages supporting data abstraction, modularity, include localization of information regarding certain
information hiding, concurrency support, data different types of change in both the application do-
modeling capabilities, etc. Design and imple- main and the implementation, introduction of virtual
mentation methods have been coming and go- machine abstractions, and parameterization (dynam-
ing, each leaving its trademark in the code of leg- ic as well as generation technology), COTS, and re-
acy systems. This code may or may not accom-
modate the changes demanded from systems use of components. Properties that encourage reuse

today. of existing engineering know-how include the exist-

Legacy systems also have a number of properties ence of domain models, domain-independent soft-

that are worth preserving. Examples include: ware architectural principles, domain-specific
architectures, and adaptable components.

I * Legacy systems are deployed and have un-
dergone the scrutiny of real users with respect to The desired system state may be known to system
their functionality meeting their real needs. users, system maintainers, original system builders,

I Nonfunctional properties such as perfor- and best software engineering practice experts. The
mance and accuracy have been fine-tuned, customer (user) may not necessarily be aware of all

• Corrective maintenance has resulted in the potentially desired properties and may only be
"hardened" code and a wealth of test and valida- willing and able to invest in some. Some desired prop-
tion capabilities. erties can be provided with proven technology, while

* System history exists in the form of original others depend on emerging technology whose matu-
designers, current and past maintainers, as well rity for practical application has not been demonstrat-
as bug report and change order records. ed.

In many cases some of the root causes and their im-
plications may be understood by some experts, but 2.3 System Understanding
are not documented and available to the majority of
software engineers. Information about systems is The current state of an existing system and its desired
quite limited, usually to the source code and/or exe- state represent an understanding of the system. This
cutable, an operations manual, and people maintain- understanding is based on artifacts of the existing
ing the system. system; knowledge and experience with the system

365

as it may exist in users', maintainers', and original that document system representations at different
builders' heads; and documented system history in levels of abstraction. This is complemented with ratio-
the form of bug reports and change records. Figure 2- nale for design decisions, the software engineering
2 illustrates the sources of information for system un- process and methods used, and the evolution history. I
derstanding. The artifacts are source code, manuals, Let us first elaborate on models of (software) sys-
and the executing system. The knowledge and expe- tems.
rience with the system include understanding of engi- I
neering decisions, rationale, and possible or
considered alternatives, as well as undocumented
history and (typically nonfunctional) properties such I
as performance, robustness, work-arounds, etc. His-
tory provides insight into robustness of system com-
ponents, types, and frequency of changes in the
environment (and implementation).

System Artifacts S stem Experts System History I
Source code Developers Error log
Manuals Maintainers Change ordersI
Running system Users

II
Figure 2-2: Creating System Understanding

Capture, representation, currency, and accessibility
of this system understanding is a big challenge. Fig-
ure 2-3 illustrates a framework for representation of I
such system understanding. A central component of
system understanding is the system design records

~ System Oesign Record

Models
rDomain Architecture Rationale
models I
Performance Design ProcessmodelsRelisility Implementation History I
,modiels .

Figure 2-3: Representing System Understanding

366 I

U

These representations are models of the system. ficient through reimplementation (i.e., transformation
Models reflect views of the system focusing on certain into a modeling notation that more appropriately sat-
aspects with different degrees of detail. The purpose isfies the need).
of a model is to present a view that is understandable,
i.e., not too complex. This is accomplished by the As more than one system is considered, models can

model capturing those abstractions that are relevant show their similarities and differences. Systems can

from a particular perspective. Some models focus on be grouped into families. Some models focus on infor-

i architectural issues while other models focus on data mation about the application domain (domain models)

reprsentaton, behavioral, reliability and perfor- while others focus on the implementation architec-

mance aspects of a system. Examples of models are ture. Domain models and domain-independent archi-

domain models, domain-specific architectures, real- tectural modeling principles are combined to create

time timing models such as rate monotonic analysis domain-specific architectures. Those architectures

(RMA), performance models based on queuing dho- are populated with components and adapted to the
i /, etc. particular application needs. The result is a technolo-

gy base of models that can be (re)used for a number
Models have different degrees of formality and may of systems, leveraging existing engineering know-
have the ability to be executed. The models may re- how. Domain analysis and architectural analysis con-
fIect designs (i.e., the notation they are expressed in tribute to the population of this technology base, while
needs to be transformed into executable Implementa- application engineering can get adapted to utilizing
lions), or they may be executable and capture all the these models (see Figure 2-4). Furthermore, the tech-
desired user functionality and can act as prototype im- nology base can be expanded by the emergence of
plementations, which can be made more robust or ef- new modeling concepts, e.g., safety modeling.

U Technology Base

mom• Ba"

'•Domin • Rationale
Doai Architectural

Models Principles 'i Process

am-Specific Architectures Experience

components History

Current Eouin Desired
System - System

Figure 2-4: Engineering Technology Base

367

While some models represent the executing system changes into the system. The reengineering case
itself, other models reflect constraints the system study by Britcher [Britcher 90] nicely illustrates that no
must satisfy. Those are models used to validate de- single approach is appropriate, but engineering trade-
sired system behavior. Examples of such models are offs need to be considered.
assertions validated in design reviews or verification,
or translated into test suites and test data validating Legacy leverage refers to the ability to utilize (recycle)
the behavior of the running system. When reengi- as much as possible of the existing system in the pro-

neering a legacy system, such test and validation cess of evolving to the desired system. Both the exist-

models exist and have stood the test of time. They ing and the desired system can be described in terms

can be leveraged for verification and validation of the of a collection of models. For the legacy system, code

desired system. Depending on the particular migra- exists. Other models may have to be derived from the

tion path to the desired system, alternatives to full re- code or other information sources. Certain abstrac-

gression testing may be considered. One example is tion may not exist in the legacy system or may reflect

validation of functional equivalence at a certain level undesirable properties. The goal is to eliminate unde-

of abstraction through comparison of event traces sirable properties while at the same time introduce

[Britcher 90]. desirable properties. Choices have to be made as to
which legacy system models to ignore, which ones to

Engineering decisions, rationale, and alternatives transform, and which ones to leave intact. This is illus-
complement these models. They may be captured trated in Figure 3-5. The choices are driven by our un-
through elicitation processes such as IBIS [Micro- derstanding of the legacy and desired system
Computer Corporation (MCC)]. The models together properties as well as their reflection in the different
with the engineering knowledge are known in other models. In concrete terms this means that in some
engineering disciplines as experience modules. cases, undesirable properties of legacy systems can

be eliminated by massaging the code or transforming
In this idealized view, the amount of engineering infor- the data representation, while in other cases a new
mation available to the engineer grows tremendously, architecture or data model has to be developed and
resulting in information overload. In order to cope with only a few system components can be translated into I
this situation an intelligent intermediary (intelligent en- the new implementation language.
gineering assistant or engineering associate) will be-
come essential to the successful utilization of the The change can be introduced in a number of ways. I
system understanding. Technologies that are poten- The following are three classic approaches, but hy-
tial contributors to this notion of intelligent assistant in- brid approaches are possible:
clude case-based reasoning and intelligent tutoring. I

•Big Bang Approach: The desired system

may be built separately from the legacy system,
2.4 Evolutionary Migration Path although parts of the legacy system may have

been recycled. Once completed the new system I
The understanding of the system, both the current is put into operation while the old system is shut
and the desired system state, is the technical basis for down.

determining the particular reengineering strategy to • Phase-out Approach, also known as Incre-
be chosen. It requires analysis, considering altema- mental Development: The architecture of the

tives, and making engineering tradeoffs. Such a tech- desired system may be created and a skeleton

nical engineering analysis consists of two major implementation developed. A mapping between
the data representation of the legacy and the de-

components: choosing the degree of legacy leverage, sired system, implemented as a two-way trans-
i.e., what can be taken over and what has to be newly formation filter allows the skeleton desired sys-

created; and choosing the approach for migrating tem to run as a shadow of the "live" legacy sys-

over to the desired system, i.e., how to introduce the

368

) Architecture

I Design

I 0____ Code

Existing System Desired System

Figure 2-5: System Evolution

tem, WnHe parts oT me aesirea system
implementation are completed and incrementally • Ability to eliminate or reduce undesirable sys-

I added to the skeleton. This approach incremen- ter properties
tally phases out pieces of the legacy system. • Maturity of technology inserted into the sys-

i Phase-In Approach, also referred to as Ev- tem

olutionary Development: The legacy system * Introduction of new technology to system

code may be restructured to introduce modulari- maintainers (reengineers)
ty and partitioning. Desired system properties • Impact of introduction of the reengineered
are incrementally introduced into the existing system
system resulting in an incremental evolution of • Impact of system changes on performance
both the architecture and the system compo- and robustness
nents. • Cost and time of reengineering

Validation of the desired system can utilize existing In summary, reengineering is an engineering activity
testing capabilities. Validation can be decomposed that involves system understanding and evolution
into validating that the desired system still provides through application of appropriate engineering prac-
equivalent functionality and detection of bugs in the tices. The framework outlined here does not promote
reimplementation. particular techniques but accommodates emerging

I The choice of the particular reengineering strategy is technologies as they mature.
affected by the risks the alternative approaches.
Risks to consider are:

• Perceived and actual undesirable and desir-
able system properties

369

I

2.5 An Engineering Framework open systems are modularity and standard inter-
faces. These are desirable properties of both

The framework presented above in the context of re- legacy and future systems as they reduce sys-

engineering can be used as an engineering frame- tem cost. I
work for software intensive systems. A full discussion • Reuse: Reuse is an engineering activity that

of this point is beyond the scope of this paper. The fol- focuses on the recognition of commonalities of

lowing characterization of different software engineer- systems within and across domains. It consists
of the creation of models with different abstrac-

ing processes and paradigms serves to quickly bions (ranging from code components to domain
illustrate the validity of this claim: models) and their use during the engineering of

an application. Thus, the focus is on the growth
New system development: The system to and utilization of the technology base.

be improved in the application environment may * Evolutionary development: Evolutionary
be a system performing without computer sup- development focuses on designing the architec-
port. This legacy system has desirable proper- ture of a system in such a way that the capabili-
ties to be maintained and undesirable properties ties offered to the user can grow incrementally.
to be overcome. For example, for many informa- New capabilities may be introduced through pro-
tion systems the data model of the legacy sys- totyping of new system components (possibly
tem, though not documented, may be directly utilizing different implementation technology).
applicable to the desired system. In traditional Such prototypes interoperate with the operation-
life-cycle terminology this is referred to as the re- al system and may get hardened through incre-
quirements phase. Software recycle is applica- I

ble only if parts of the legacy system are comput- mental reengineering.
er-based. For the introduction of the new system • Megaprogramming: Megaprogramming fo-
the same migration altematives may be consid- cuses on recognition of system commonalities at
ered as discussed in the context of reengineer- high levels of abstraction (e.g., architecture) and
ing. creation of system instances through parameter-

* Reengineering of future systems: Change ized automatic composition or generation. I
in the application environment and the imple- • Model-Based Software Engineering
mentation environment are givens. When a new (MBSE): The objective of MBSE is to improve
system is being defined, customers often focus the effectiveness and efficiency of producing I
on the functionality needed to address their par- software intensive systems through better utili-
ticular problem at that time. Many of the types of zation of engineering experience and system un-
changes that will occur over the lifetime of the derstanding. MBSE focuses on the use of engi-
system and their implications on desirable sys- neering product models as the primary means
tem properties are not considered during re- for improving the construction and maintenance
quirement definition. Reengineering of future of software.
systems implies that engineering for change and I
up-to-date maintenance of a system understand-

ing (system design records) occurs from the out-
set. Engineering for change requires an under-
standing of commonly-accepted changes as well
as an anticipation of paradigm shifts due to new
technology and localization of assumptions
about certain environment constants.

* Open systems: The open systems concept
has gained momentum over the last few years,
as reflected in organizations such as X-Open, I
Open Systems Foundation (OSF), and the User
Alliance for Open Systems. This concept permits
interoperability, allows rapid technology insertion
and upgrade, encourages alternative solutions
to be applicable, and provides one solution appli-
cable in a number of systems. Characteristics of

37n I

3 SEI Workshop: October, sues are SEI and DSSA. In addition, this is a

promising area for cross fertilization with

1993 STARS, DoD reuse initiatives, PRISM and
CARDS.

The SEI conducted a reengineering workshop on Oc- * Engineering process models. A number of

tober 26-27, 1993 to identify work which is underway, organizations and companies have developed

and to develop an understanding of needs which are process models for reengineering. These pro-
cess models offer a certain degree of common-

currently unmet and which can be addressed by the ality. An analysis of the coverage of the different
SEI or others. Invited participants included broad rep- process models, together with empirical data on

resentatives of the DoD, commercial and academic experiences with these models can be of strong

community. Although a large number of themes were benefit to the rest of the community.

discussed, there was broad consensus on a number • Economic and cost benefit analysis, and

of basic needs, together with some ideas on logical metrics. There is a strong need for better data
on cost benefits, a better understanding of re-

ne~xt steps. engineering economics issues, together with
more refined and easily accessible metrics. A

The October workshop will be followed up by a larger draft reengineering economics handbook (MIL-

workshop in May, 1994 at which a number of initial HDBK-REH, Draft, 93)has been developed by

themes will be developed in greater detail, and at the Reengineering Economics Panel from the

which additional community resources will be identi- Santa Barbara workshop. This handbook pro-

fied. vides an important baseline for economic issues
and will be refined based on experience. In addi-
tion, empirical data on actual uses of cost benefit

The needs expressed by the practitioner community analyses and the application of metrics pro-

were quite consistent with the overall approach out- grams are urgently needed.

lined in this paper. Some of the major points dis- 0 Decision support systems and project se-
cussed at the workshop are outlined below, together lection criteria. A recurrent theme concerned

with preliminary ideas on where the work may be fol- the requirement for better decision support mod-
lowed up. els including a consideration of technical, eco-

nomic and transition issues. There is a need for

The expressed needs included the following: comprehensive work to integrate these perspec-
tives into a common model to help in decision

* Definition of conceptual frameworks and making on when and how reengineering can pro-

reference models. Several groups are begin- vide benefit.

ning to develop a common conceptual under- * Case studies and lessons learned. Practi-
standing, including IEEE and follow-up work to tioners cited the potential usefulness of being
the JLC Santa Barbara workshop (Santa Bar- able to learn from the successes and failures of
bara 92).There is a need for continuing efforts by those who have attempted similar efforts in the
these groups to help clarify the fundamental con- past The follow-up workshop will discuss the
ceptual issues of reengineering. The concepts of feasibility of organizing such a program. System-
evolutionary migration path and the model based atic case studies can represent one step toward
approach outlined in this paper can offer some the development of an organized community of
contribution to these efforts. reengineering practitioners.

* Domain engineering perspective. Consis- • Management and transition Issues. A
tent with the approach outlined earlier in this pa- number of critical success factors which distin-
per, the workshop identified the need for and po- guish between successful and unsuccessful
tential benefit of incorporating the perspectives projects have been management and transition
of domain engineering and architectures into an issues, including the management of expecta-
overall understanding of reengineering. These tions. A number of the insights gained from tran-
perspectives offer promise for helping to evolve sition management and CASE adoption are rele-
from an ad hoc orientation to the planned, evolv- vant and can be codified for application to the re-
able engineering of legacy systems. Among the engineering domain.
groups which are currently focusing on these is-

371

I

4 Conclusion [IEEENews] Software Engineering Technical
Committee Newsletter, IEEE Computer
Society/TCSE, Editor: Samuel T. Redwine, Jr.,

Reengineering has been presented as an engineer- Vol. 11, No. 3, January 1993. 3
ing problem. As such, reengineering draws from a [ISST92] Witschurke, R., "Wiederverwendung in der
number of software engineering technologies. Ad- Informationsverarbeitung: Re-use, Re-
vances in best practice of (re)engineering benefit engineering, Reverse Engineering," ISSN 0943- [
from innovative research (i.e., creation of new tech- 1624, Institut fur Software und Systemtechnik,
nology solutions); analytical research (i.e., recogni- Universitat Dortmund, Germany, December 1992.

tion of promising technologies and technology [Leonard-Barton88] Leonard-Barton, Dorothy,
trends); and engineering research (i.e., the matura- *Implementation as Mutual Adaptation of
tion of technology into engineering use). Evolution of Technology and Organization.! Research Policy,

conceptual frameworks for subareas of software engi- 17 (5), pp. 251-267, October 1988. I
neering can be successfully leveraged through tech- (MIL-HDBK-REH Draft93] Department of Defense,
nical leadership in selected community forums. In the Reengineering Economics Handbook, Draft,

context of reengineering, a model outlines a roadmap September 1993. I
for improvement in the effectiveness and efficiency of [R-EvHa90] Rock-Evans, R.; Hales, K.: Reverse
reengineering systems. Engineering: Markets, Methods and Tools.

London: Ovum LTD. 1990.I

[Santa Barbara92] Santa Barbara 1, "Back to the
Future Through Reengineering," Joint Logistics
Commanders Joint Policy Coordinating Group on I
Computer Management, Santa Barbara, CA,
November 1992.

References [SEISymposium92] Capability Matunty Model (CMM) I
Real-Time Extensions, Daniel Roy, Software
Engineering Symposium, Carnegie Mellon
University, Software Engineering Institute, I

[Arnold 93] Arnold, R.S., Software Reengineering, Pittsburgh, PA, September 1992.
IEEE Computer Society Press, Los Alamitos, CA, [SPCNCOE92] Reuse Adoption Guidebook, SPC-
1993. 92051-CMC, Version 01.00.03, Software

[Britcher90] Britcher, R.N., "Re-engineering software: Productivity Consortium Services Corporation,
A case study," IBM Systems Journal, Vol. 29, No. 1992.
4, 1990., pp. 551-567.

[Chikofsky90] Chikofsky, E.J. & Cross II, J.H.,
"Reverse Engineering and Design Recovery: A
Taxonomy," IEEE Software, January 1990, pp. I
13-17.

[Przybylinski9l] Przybylinski, S.R., Fowler, P.J., and
Maher Jr., J.H., "Software Technology Transition," I
a tutorial presented at the 13th International
Conference on Software Engineering, Austin, TX,
May 12,1991.

[IEEE90] IEEE Software, Editor-in-Chief: Ted Lewis,
Published by the IEEE Computer Society, Elsevier
Science Publishing Co. Inc., New York, NY, May I
1990.

I
372 I

Current STSC Reengineering Projects:

MIL-HDBK-RAH Application Findings,
Reengineering Project Planning Process,
and STSC Reengineering Survey Results

Michael R. Olsem' and Chris Sittenauer2

'Science Applications International Corp. 2USAF Software Technology Support Center

OO-ALC/TISEC
7278 4th Street

Hill AFB, UT 84056-5205

RAIl Analysis in another paper at this conference.

In early 1992, the STSC published a Reengineering Surveys
process for matching legacy softwa, ; systems
with reengineering strategies. Since then, Besides testing the draft RAH by
the DoD's Joint Logistics Commanders assessing reengineering projects, the STSC
Workshop on Reengineering in Santa has initiated an in-depth analysis of the
Barbara, California (September 1992) used correlation between reengineering strategy,
this process as the basis for the reengineering maintenance environment, and potential
strategy selection section of the draft DoD return-on-investment (ROI). We have
MIL-HDBK-RAH (Reengineering developed two surveys for DoD
Assessment Handbook). Comptek is now reengineering projects. Over 100 DoD
under contract to the USAF Cost Agency to reengineering projects have been identified
produce version 1.0 of the RAH by and are participating in this survey.
December 1993.

The first survey targets reengineering
The authors have been using a draft projects still being planned or underway.

version of RAH while assessing various This survey tries to understand the reasons an
legacy software systems for reengineering at organization attempts a reengineering
several USAF and DoD organizations project. We correlate this information with
nationwide. Based upon our findings, we are the reenguieering strategy the organization is
proposing changes to the RAH. But overall, most likely to use versus what RAH would
we find the results of the RAH analysis to be suggest.
pretty consistent with those reengineering
strategies we would have chosen without the The second survey targets completed
handbook. reengineering projects. This survey looks at

how "successful" the reengineering project
This paper won't dwell on the details was in terms of maintenance efficiency and

of the RAH as that subject is being discussed reduced cost,.

373

I

Both surveys are now being mailed In order, the reengineering preparation steps I
out and results should be firm by the are:
February time frame of the NSWC
conference. Copies of both surveys have 1. Evaluate your organization's
been added as an addendum to this paper. business needs
The reader's comments would be most
welcome. 2. Define your organization's

development/maintenance
Planning environment I
The actual reengineering is easy. The 3. Form a reengineering team
planning for successful reengineering is hard.

4. Create a standard set of
Matching an appropriate reengineering software metrics
strategy to legacy software systems is but one
of the last steps necessary for a successful 5. Ensure your standard
reengineering project. The planning and testbed/validation suite is
preparation prior to the actual reengineering current and complete
is absolutely critical. Unfortunately, most of
the USAF organizations we advise are far to 6. Analyze your legacy systems I
eager to rush right out and buy a (This is where the RAH
reengineering tool. This, we believe, is becomes useful)
analogous to shopping for groceries without l
a list of projected meals. Not only do you 7. Analyze the available
rarely return with all you need, but you end COTS/GOTS reengineering
up purchasing items you don't need at all. tools. (Something the STSC

will gladly help you with.)
In STSC's 1993 Software Reengineering
Technology Report, we propose a 9 step 8. Create a reengineering
preparatory planning process for implementation plan
reengineering projects. (We've included a 1
copy of this process as an addendum to this 9. Train your reengineering
paper.) We will be delivering a half-day team, users, and maintenance
tutorial based on this process at the DoD's staff I
1994 Software Technology Conference
(STC) in Salt Lake City, Utah and at the
12th Annual Natiional Conference on Ada
Technology (ANCOAT) in Williamsburg,
Virginia.

I
374 I

I

I
Preparing to Reengineer and goals. Although this is the beginning ofPgnbusiness reengineering, it's also very

(Extract from STSC's 1993 Software important to your software reengineering

Reengineering Technology Report) projects. Your organization's business needs
(or the outcome of your organization's

Introduction business reengineering process) should
dictate what your development/maintenance

r iprocess will look like. Besides making
nThere is a core proess that every logical sense, tailoring your process to meet

organization should follow when your business needs is the only argument that
o resengineering. Automation and tools it. will carry any weight with upper
only support this process, not preempt it. management. You know them. They're the
Again, this comes back to the realization that ones that will ultimately fund your efforts

lreengineering is not a silver bullet that will and back you up during the initial dark days
solve all of your maintenance problems. The when the enemies of change will be charging

i real work must come from you. Don't make at you from all sides.

the same mistake the software community

made with CASE, Al, OOA, etc. Good Step 2 - Create Your
technologies do not necessarily make for Step m2 n/M Create Your
good software. Reengineering, without a Development/Maintenance Process
target maintenance environment (i.e. well-
defined and consistent with your Input to this creation process should
organization's CMM goals), will waste your come from users, programmer/analysts, and
time and money, leaving you with the same managers. Consult the programmers
problems you now face and possibly worse working on the current
off if your experienced maintenance staff development/maintenance process. Even if
must now contend with code they no longer the current maintenane processis informal,Sunderstand, it should have merit. Change always has a

better chance at success when it fits in with
Reengineering tools will prove a great the organization's cultural norms. But the

help in moving your legacy systems to a users may want faster modification turn-
new, hopefully better, maintenance around. And the managers are frustrated
environment. But you, and your with their inability to make the software

I organization, must define this environment, change as quickly as the business
and how to move your legacy systems there. environment they are facing.
We propose the following core process, orUapproach, to preparing for any software The creation of a
reengineering project, development/maintenance process is clearlySpjbeyond the scope of this article. It is much

Step 1 - Evaluate Your better covered by SEI's CMM. But be aware
that this step is time-consuming and must be
done prior to reengineering. If your

organization already has a well-defined, well-
To begin with, you need to seriously regulated development/maintenance process,

look at your organization's business needs then clearly this step is redundant.

375

I

Step 3 - Form Your Reengineering post-reengineered system. I
Team

Step 4 - Select a Standard Set of
Create a reengineering team Software Metrics

composed of those programmer/analysts,
users, and managers that are knowledgeable You must know where you are before
and open-minded enough to at least look at you can get to where you want to be. Upper
technical change to solve their maintenance management will demand this. You must
problems. Choose carefully. They should show them what they got in return for their
be technically competent, credible, patient, money and support. For your own career's
possess good social skills, and know the security, you need metrics to prove to the
organization's culture well enough to doubting Thomas's that process control and
function successfully. This team will: reengineering was worth all the pain youcaused them.I

0 Understand the current environment

and business needs But beyond the political concerns,
metrics helps you find out what is wrong and 1

0 Establish goals, strategies, and action how to fix it. Think of software as you
plans would an ill patient in a hospital. No

competent doctor would think of treating a
0 Provide cost justification patient without knowing all the symptoms

and test results. Similarly, you shouldn't
* Test new tools treat your ill and dying software without

knowing what symptoms your software is
* Purchase tools suffering. Metrics and software analysis

tools gather this data for you. But just as
* Provide internal marketing, your family doctor keeps a record of your

consulting, and service health over the years, you should continue to
gather metrics on your systems for their

0 Train others entire lifecycle. You and your doctor need
to know what is normal in order to react I

0 Continue to research and evolve instantly to abnormal signs.
technologyn

One last warning about metrics.
* Provide vendor liaison - partnerships They must be non-threatening to the troops.

to advance technology Don't use them for personnel appraisals,
judgments, or budgets - just use metrics for

* Improve their own processes using process improvement and continued health of
client satisfaction surveys your software systems. Otherwise, they'll 3

start reporting what they think you want to
Be sure the user community is well- hear. In order to reward quality, we require

represented. Besides their expertise, you honest, accurate, and consistent data from them
need their support and buy-in. In addition, troops.
they need to help in the validation of the

376 I

I
Step 5 - Create a Standard Testbed Step 6 - Analyze Your Legacy

I or Validation Suite Systems

This is a terribly overlooked part of Each target system will have different
the reengineering process. How do you reengineering needs and a different
prove the end product of reengineering is reengineering strategy. Some systems may
functionally equivalent to the input source have sufficient documentation but your
code? Whether you reformatted, maintenance process requires capturing the
restructured, translated, or generated code design information to a repository. Another
from captured design data, you need to system may have missing or inaccurate
validate the functionality of the resulting documentation so it needs redocumentation
software. Critical systems, in particular, and reverse engineering to a repository.
need to demonstrate unchanged functionality
after reengineering. (This is a key reason Another reason to analyze your legacy
why it is extremely unwise to propose any systems is to discover their unique aspects
functional changes until after the regarding eventual reengineering. Is the
reengineering process is stabilized.) So system comprised of several programs linked
check your current validation suite for the by JCL? Does it use any embedded DBMS

I target software system. Ask yourself if it's or Assembler macro calls? Are other
current and complete. If not, take the time languages embedded or called? What about
to create a complete testbed for the target any online screens? Are there any implied
software system. If the target software "dynamic" (i.e. execution time) requirements
system is rather large and you decide to such as response time constraints, available
adopt an incremental approach to its memory, etc.? This must all be catalogued
reengineering, then you ca:. validate/create a prior to the next step of finding the right
validation suite incrementally based only reengineering tool(s). Moreover, Nhis
upon those parts of the system to be information must also be captured within the
reengineered. design repository. When picking your

repository or reengineering tools, find out if
Traceability is also important. they can handle such data.

Design functionality must be associated with
the source code. This is your only link During this process step, gather
between the new, repository-based design whatever requirements data you can find.
representation and the old source code. Currently, reengineering tools cannot supply
When looking at reengineering tools, ask the you with requirements information from
vendors about traceability, source code. But you need requirements data

to effectively maintain your software
For a much more in-depth discussion systems. Talk to the maintainers, users,

of testing strategies, we strongly recommend management, and anyone else who's worked
you read two other STSC reports: Test with the system from the time it was
Preparation, Execution, & Evaluation developed. Then ask the vendor whether
Software Technologies Report and Source their repository can store requirements data.
Code Static Analysis Technologies Report.

7There are numerous tools to helpy

i 377

I

in gathering analysis data on your legacy reengineering goals. They should also fit the I
systems. These tools will help you analyze needs of your target systems as defined
the complexity of your software, check the above. Be aware that there may not be a
system's degree of structuredness, evaluate COTS reengineering tool that satisfies your
the impact of a given modification, and requirements. Your source code language
identify standards violations (e.g. non- may not have a sufficiently large user base to [
initialized variables, dead code, etc.). This warrant any vendor creating a reengineering
data will help during the validation phase and tool. Or there may exist reengineering tools
supply objective data to support your for your target source code language but they I
selection of the most appropriate won't capture JCL, screen, DBMS calls,
reengineering strategy applicable to the target macros, etc. You may then need to decide
software system. Program analysis tools do whether the discrepancies between the tool's
not modify source code. Running program functionality and the legacy system's
analysis tools before and after reengineering characteristics are sufficiently small to still
provides a means of measuring the make the tool usable.
effectiveness of the reengineering. These
tools are described in much more detail You may have to "massage" your
(along with a list of such tools) in the legacy software so that your reengineering
STSC's 1993 Test Preparation, Evaluation, tools can process it. This may take several
and Execution Software Technologies Report forms: I
and Source Code Static Analysis
Technologies Report. * Most reengineering tools run on

workstations or PC's. Thus, if your U
Step 7 - Reengineering Tools software resides on the mainframe,
Analysis there is the issue of downsizing or

porting your legacy software from
All the preceding steps should be your mainframe.

accomplished prior to your initial efforts at iIreengineering tools analysis. Only within * If the tool will only process COBOL
such a context can reengineering tools help 85 and your legacy systems areSwritten in COBOL 74 and COBOL
your maintenance process. "Buying software 68, use a translator to upgrade your
tools the way most software development COBOL us e to 85 first.
organizations do is like going to the grocery
store without a list - when you get home, not I
only do you not have everything you need, embfyoudleacy sys t he
you have a lot of stuff you don't need" embedded macros, DBMS calls, other
(remark made by Denis Meredith during the language calls, etc., and your
8th International Conference and Exposition reengineering tool cannot process
on Software Maintenance & Re-engineering, anything outside the primary sourese
Washington, DC, USPDI, Silver Spring, code language, then stub out these
MD, 5-9 August 1991). areas.

Find the reengineering tools that will Tool integration is also an important n
accomplish your maintenance and consideration. As discussed above, no single

reengineering tool will match all your

37.I

requirements. But where one tool may fall application. The advantage to this strategy is
short, another may pick up the slack. So that the system is brought into the newly
check whether the reengineering tool can defined maintenance environment all at once.
integrate with other reengineering tools, your A disadvantage is the amount of risk your
chosen repository, the hardware organization runs. The full system, after
platform/OS, and the target maintenance reengineering, must work flawlessly. But
process/tools. can you guarantee that? Is the functionality

intact? Were any bugs introduced during the

Step 8 - Create a Reengineering reengineering? Remember, there is a good

Process deal of human intervention with any
reengineering project. If you're confident

Based on the preceding steps, you you can control these potential problems,

must now define your reengineering process. then systems reengineering will allow you to

Step by step, decide what needs to be done, quickly switch over from the old system to

taking into account the legacy software the reengineered system. Otherwise, perhaps

characteristics (starting point), your new one of the following strategies would be

maintenance process (finish point), and all better.

intervening steps such as validation, metrics,
tool integration, training etc. Set up a viable
schedule with milestones to report back tomanagement. Parts of the system are reengineered as

needed thus creating a new "version" of the

One cautionary note: it is very system. When a system modification is

tempting to include requirements required, take the opportunity to reengineer

modifications during the reengineering only those parts of the system that need to be

process. DON'T!!! This creates problems changed. The advantage to this approach is

with functional validation and complicates a reduced risk when switching over to the

the whole project immeasurably. Wait until new system. Only portions of the system
the reengineering project is complete and were changed and these portions were clearly

stable (i.e. functionally validated) before identified. Should a problem occur, it's
changing and implementing modifications, origin can be clearly traced. The

disadvantage lies in the number of interim

It is at this point that you must make versions of the system generated until the
a basic decision regarding your reengineering entire system is reengineered eventually.

process - evolution vs. revolution. There are Each version would contain some

three fundamental strategies to approach reengineered code and some not.

reengineering: Configuration control considerations are
critical for this strategy to work.

3 Systems reengineering 0 Partial reengineering

An entire system is reengineered. Systems
reengineering can be used for one-time Functionally cohesive sections of the system
reengineering pjcts whersed you oneeditoare reengineered as needed. This is similarreengineering projects where you need toto b h sy em an i cr e tl
solve an immediate problem for a particular to both systems and incremental

reengineering. When a system modification
I 379

I

is required, only those parts of the software Because of the training and time
affected by the modification (e.g. sub- investments in your reengineering team, you
program or called routine) are reengineered. should seriously consider making the team
But the rest of the system is left alone - until permanent. Reengineering is an ongoing
the next modification. The advantage to this process. Any moderate to large software
strategy is the inherent advantage of modular organization will have more than enough
design. If a problem occurs after switch legacy software to keep such a team busy for
over, just re-implement the old module. The the next several years at least.
disadvantage lies in interface issues. If one
or more modules reside in a repository but Summary
the remainder of the system is executed the
same old way, they must interact flawlessly. Reengineering requires a core process
Other questions to consider include: will of manual tasks prior to buying your first
there be any response time degradation that tool. There is no avoiding these tasks. They
is unacceptable (particularly for real time are common throughout all successful
systems); and will the generated code (either reengineering projects. Obviously, short-
from a repository or restructurer) interface term, heavy-duty resources must be allocated
correctly with the remainder of the legacy up front to gain the cost savings over the
source code? long haul. Decide now whether you can

gather the support for this level of
If reengineering is viewed as the path commitment. Smaller pilot projects are

to long-term software maintenance usually a good way of proving reengineering
improvement for your organization, then we concepts and their cost savings. But
recommend incremental or partial whatever political strategy you employ, don't
reengineering. But if you need a short-term attempt reengineering without each of the
solution to an immediate problem for a steps outlined above.
particular application, then systems
reengineering might be the better strategy.

Step 9 - Train, Train, Train...

Train your reengineering team. They
need to understand several key concepts:

0 How to manage technological change

* The basics of reengineering

• How to use the selected reengineering
tools

0 How to use the target
development/maintenance process

380

I

INTRODUCTION: A ROAD MAP GUIDE TO SOFTr'ARE REENGINEERING TECHNOLOGY

(© 1993 IEEE. Reprinted with permission from Software
Reengineering, R. Arnold, ed., IEEE CS Press, Los Alamitos,
Calif., 1993, pp. 3-22. Further copies may be obtained by calling
800-272-6657.

A Road Map Guide to
Software Reengineenng Technology

Robert S. Arnold

Purpose and Structure

This paper introduces the reader to software reengineering definitions and technology. Software eengineering
technology supports three major themes: (1) understanding software, (2) improving software, and (3) capturing,
preserving, and extending knowledge about software. This paper will help the reader see the boundaries of
reengineering technology and appreciate some of its risks.

The reader is assumed to be interested in the maintenance, improvement, orunderstanding of existing source code.
This interest may be of itself, or part of a larger task, such as converting software from one operating system toanother. This paper will help reengineering nonexperts appreciate reengineering issues. Experts will see a fresh

contemporary viewpoint

The paper is structured a, follows: "Reengineering Definitions" defines reengineering terms and places them in
context.'he Significance of Reengineering" discusses why reengineering is significant and worthy of the reader's
time and study. "Reengineering Technology" discusses reengineering technology themes and connects technology
areas with the themes. It briefly discusses the importance and significance of the technology areas. "Reengineering
Strategies and RiskMitigation" discusses risks and cautionsin using reengineering technology. "FutureAdvances"
discusses future research issues for reengineering. Appendix A provides a procedure for classifying a software
transformation consistent with the reengineering definition used here.

I Reengineering Definitions

Software reengineering is any activity that

I (1) improves one's understanding of software, or
(2) prepares or improves the software itself, usually for increased maintainability, reusability, or

I evolvability.

In this definition, the term "software"includes - in addition to source code - documentation, graphical pictures,
and analyses. The analyses are about source code, designs, specifications, test data, and other documents directly
supporting software development or maintenance.

3S1

INTRODUCTION: A ROAD MAP GUIDE TO SOFrWARE REENGINEERING TECHNOLOGY I

Part 1 ofthis definition includes activities such as browsing, measuring, drawing pictures of software, documenting, I
and analyzing. Part 2 includes activities designed to improve static qualities of software, usually so the software
is easier for people to work with. i
Part 2 tends to exclude modifications whose purpose is not for maintainability, reusability, evolvability, or
improving one's understanding of the software. For example, optimizing code or restructuring it purely for
performance is not commonly thought of as reengineering.I I

Reverse engineering pertains to part I of the reengineering definition. Reverse engineering generates.
information about a software representation (such as source code) to help one understand it or to facilitate I
its processing.

Other reengineenng definitions

Different people or groups seem to have different meanings for reengineering. For example, GUIDE defines
reengineering as

the process of modifying the internal mechanisms of a system or program or the data structures of
a system or program without changing its functionality [GUIDE89].

Chikofsky and Cross define reengineering as

the examination and alteration of a subject system to reconstitute it in a new form and subsequent
implementation of that form [Chikofsky9O].

Forreferencein this discussion, thereengineeringdefinitiondescribedintheprevious section,theGUIDEdefinition,
and the Chikofsky and Cross definition will be called definitions A, G, and C, respectively. Both definitions G and
C are valuable and useful. The reengineering definition one uses depends on one's perspective. Reengineering
definition A is used in this paper for several reasons.

Frst, definition A centers on the purpose of reengineering activities, rather than on their means or processes. This
recognizes thatreengineering activitiescan use technology that, inothercontexts, may notbe called "reengineering."
For example, impact analysis and software testing are used in software maintenance, but not always in the context
of reengineering.

Second, on close examination, definitions G and C allow different activities to be called "reengineering." Definition I
A is more inclusive. For example, under definition C one might classify a software functionality change as
reengineering. But under definition G one would not. Under definition A one could classify a functionality change
as reengineering, provided it was for the purposes mentioned.

As another example, definition G does not consider creating information about software as reengineering,
unless the information is used to support modification. Definition C does define creating information about I
software as reengineering, 2 but only if it is on the path to reimplementation. Definition A allows the creation
of information as an end in itself as part of reengineering. For example, definition A considers as
reengineering the creation of information about software to facilitate understanding or to promote I
maintainability, reusability, or evolvability.

I
'The context of reengineering is expanding so rapidly, however, that some people include even these as reengineering -

improving suitability for use - of the code.

'If we equate the information with "a new form" in definition C. I
382 I

INTRODUCTION: A ROAD MAP GUIDE TO SOFTVARE REENGINEEI ,G TECPNOLOGY

Third, &iinition G tends to focus on changes to source code. Improvements of non-source code items, such as
documentation and specifications. may alsobe considered as reengineering. Such activities are allowed indefinition
A, and may be allowed in definition C.

This discussion should not be taken to imply that one reengineering definition is better than another. The definitions
capture different perspectives. Perspective change is common in a rapidly evolving field such as reengineering.
Because of the proliferation of reengineering definitions, the reader should ask people what they mean by
reengineering when more than a general understanding is important.

The discussion in this paper embodies an approach to classifying reengineering and similar activities, relative to
reengineesing definition A. In this approach, a written definition of reengineering is created. (This was done in the
"Reengineering Detfiitions" section.) Then the context of reengineering and related terms is diagrammed. The
diagram features various views of uiformation and the transitions among the views. (Figure I is such a diagram,
and isdiscussed in "The Contextof Reengineering.") The transitions in the diagram are classified in a table. Finally,
a decision procedure is created for classifying an activity using the table. (Table A2 and the decision procedure
appear in Appendix A.)

Ree•&neng spellis and related term

Just as dmre are no universally accepted reengineeing definitionss, de ame no universally aocepted spellings for
nginminM Th ost comronm spellings are iengneenrg and r-ginen '1 g ing" is ed in this paper.

Synonyms for reengineering abound, often with nuances reflecting a specific reengineering purpose:

improvement
renewal
renovation

refurbishing
modernization
redevelopment engineeringreclamation

reuse engineering

The terms improvement, renewal, renovation, refurbishing, and redevelopment engineering all have similar
meaning: improving software for evolvability and further use. Modernization includes improvement of software,but may go beyond by improving software development and maintenance activities surrounding the software.
Reclamation and reuse engineering refer to reengineering to make source code more reusable.

The context of reengineering

Figure 1 illustrates a framework for understanding reengineering and related terms. The figure, an update
to a similar one in [Chikofsky90], reflects evolving connotations of terms. Five ideas are shown in Figure
1:

(1) views of software,
(2) information base,
(3) decomposition,
(4) composition, and
(5) transformation.

'As in negotiating contracts for reengineering work.

383

INTRODUCTON: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY I

Heengineenng
View class 1: iView class Al:
Non-procedural andlor meta. Analyses
E.g.. specificationsIReverse engineenring, design Fnorwaern

recovery. reenginerlog engieeng

Infor- View class 2: Reeglinewngcl

mation Pseudo-Procedural and/or Viw class A2:

bass ~~architectural. Aaye
4 * 2 E.g., PDL. data flow diagrams

fReverse engineering, design Forward
recovery, reengineeulng engineering

View class 3: restructuring View class A:Procedural Aaye
E.g.. source code 2 Analyses

01 Cormpoition. view generation.
•2 Decomposition, capture.

Cepydsii 0 IM5 by obbot S. Arnkld. used by lionlftefl

Figure 1. Reengineering and related terms. Reengineering and related technology may be viewed as transforming Information
In one software view to Information In another software view. The transformation may move Information Into and out of the
Information bae,.

Understanding these ideas helps distinguish the terms presented in Figure 1.

A software view is a representation of software or a report about software. A software view may be for human
viewing or not, but it typically is a significant interim representation of software that humans may want to see. In
this discussion, the word view refers to the type of view (e.g., a data flow diagram). View information means the
specific information in a view (e.g., a specific data flow diagram D), or the information base of knowledge
decomposed from information in the view.

Examples of software views are specifications, source code, measurements, reports derived from static source code I
analysis, and test data used to characterize software behavior. Figure 2 has several sample views, with possible
view information shown as pictures. When a view is supported by a tool, it nearly always comes with a view editor,
to support entering, browsing, and changing view information.

As implied by Figure 1, views can be grouped into four classes:

384

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY

Specifications Hierarchy charts Flowcharts

View editor View editor View editor

Data flow diagrams Petri nets ERA diagrams Traceability matrices

Dog I Req I Req2

Foot ToohJ
I ~ Prg3

View editor View editor View editor View editor

Information bae"

Cop- 0 111011aby lilabst&5 Awold. Us"d bylopmislehla.

Figure L. Multiple software views. Many reengineering tools, especially CASE tooleets, support several different views of
software. No tool as yet supports all the views above, but this gives an Idea of what can be found In a view.

Class 1: Nonprocedural- and/or meta-oriented views.
Class 2: Pseudoprocedural- and/or architectural-oriented views.
Class 3: Hfighly procedural views, or close derivatives.
Class A: Analysis views that may accompany any other view.

Class 1 contains views that are nonprocedural and/or meta." Software specifications and conceptual
schemas fall into Class 1. Class 2 contains views that are pseudo-procedural or architectural. Designs,
program design language descriptions, and software architecture diagrams (such as calling hierarchies or
data flow diagrams) fall into this class. Class 3 contains highly procedural information, information closely
associated or derived from this information, or direct information about representations. Source code,
program slices, data, data definitions in source code, objects and relationships decomposed from views, and
syntax trees are in this class.

Class A contains analysis views derived from any of the other views. For example, software metrics ame derived
by analyzing software. An analysis view can appear with information in any of the other views. Class A can be
divided as follows:

Class Al: Analyses pertaining to Class I views.
Example: Fog index of specification text.

'A "meta" view is a view about something. The intent here is nonprocedural meta views, such as data schemas or decision
tables.

385

INTRODUCTON: A ROAD MAP GUIDE TO SOFrWARE REENGINEERING TECHNOLOGY m

Class A2: Analyses pertaining to Class 2 views.
Example: Coupling levels of source modules.

Class A3: Analyses pertaining to Class 3 views.
Example: Number of modules in source code.

In practice, view classes 1, 2, 3, and A are not disjoint. For example, some people may place a program design
language (PDL) description in Class 3, others in Class 2. However, it is assumed for the rest of the discussion that I
it is possible for an individual to create disjoint classes for himself or herself, if needed. For the rest of the paper,
it is assumed that the classes are disjoint.

The information base is the repository of information about the software. It is loaded in three ways:

(1) Decomposing software into objects and relationships,
(2) Incrementally building up objects and relationships through tools that build on or add to

knowledge in the information base, and
(3) Importing information from other information bases.

Decomposition is the process of transforming a view into objects and relationships stored in the information base.
For example, compilers commonly decompose programs into abstract syntax tree representations.

Composition generates view information from information in the information base. The composer (the tool or
person that does the composition) assembles view information by finding relevant objects and relationships in the
information base, then adding view formatting as needed to display the view information. For example, the back
end of a compiler commonly generates code by traversing a semantic graph of the program, or some equivalent.

The notion of transformation is central In Figure 1, reengineering t-.nsforms, in effect, information from one i
software view into information in another view, at the same or earlier view class.'

Examples of reengineering transformations are transformations from source code (Class 3) to restructured source m
code (Class 3), updated designs (Class 2), conected specifications (Class 1), or computed static measurements
(Class A3). The reengineering transformation usually "improves" the information in the view according to some
criterion.6 Software restructuring is reengineering centered on ti ansforming the source code's structure (syntax and I
semantics).

Transformation also underlies reverse engineering and design recovery. Reverse engineering is like reengineering,
except the origin and target views are different, the target view normally being in an earlier view class. Transforming
source code, forexample, into structure charts may be either reengineering or reverse engineering. But transforming
source code to restructured source code is reengineering or restructuring, not reverse engineering. Updating I
embedded source code comments is reengineering.

Reverse engineering has other meanings, though these are not used here. For example, it can mean to analyze a
detailed representation todiscoverits inherentdes-gn. One sometimes hears that people perform reverse engineei mng
to determine source code from object code. For other meanings of reverse engineering, see [Rekoff85].

Design recovery, a subset of reverse engineering, generate, ".iformation about software. Often the information is

'Even though some reengieerng tasks, such as purely manual inspection and improvement of source code, do not involve a;i online
information base, they can still fit this model. Just substitute information in the person's head for information in the information base.

6A frequent criterion is that reengineering should change form but not function. For example, restructuring code to improve
readability is also reengineering.

386

U INTRODUCTION: A ROAD MAP GUIDE TO SOFIWARE REENGINEERING TECHNOLOGY

Hanooff of software
from development to Event
maintenance Change Change Change

batch 1 batch 2 batch N

• I Designs

=Person who knows about [=well-structured/understandiable software

I sotwae rlatinshps =poorly structured/not understandable

software

I ~Copyrigh a 1"12 by Robort S. Amold. Used by pemission.

Figure 3. Dynamics of maintenance and Information loss. Maintenance tends to make software harder to change through loss
of Information about how to modify It Fewer and fewer people know left aind less aibout the software. This happens because

I people lseve who understand the software, and because the software Itself becomes harder for now programmers to

understand. Mental connections are Iosit

not easily extractable from the software and associated documentation, and requires considerable effort to deduce.
I Mthre examplfs are generating rationales describing why the software is in its current form, generating

specfications from source code, and generating black box test data sets for software without documentation that
is current. Appendix A gives another interpretation of design recovery in terms of views.

I Forward engineering is a transformation, usually from an earte,-r to a later view class. For example, generating

source code from a data flow diagram is usually a forward engineering activity.

I Reengineering can be considered in other ways besides transformations of view. The following section discusses

the pupoe behind reengineering.

I Siginifficance of Reengineering

i Reengineering is important for several reasons:

(1) Reengineering can help reduce an organization's evolution risk.

I ~ To extend software capabilities, organizations can build new software, evolve existing software, re~engineer and

evolve existing software, use application generators, or obtain software parts or packages. When the latter two
options are not available, organizations are faced with building new software or evolving existing software. Simply

i manually evolving existing source code tends, in current practice, to make the software harder to change, or less
reliable when changed (see Figure 3). Buidding software from scratch can be expensive and uncertain.
Reengineering software and evolving it sometimes offers less change risk. It can help safeguard an organization' s

I software investment better than building software from scratch or simply evolving it through traditional
maintenance.

W

I

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY

ioDocumentation 1 [Analyses

= Sour•Graphics _____ I
cde tmat°soreDesigns Seifications

Copyrigh 0 190 by R~bw S. Afnod. Umd by pamleslon.

Figure 4. Reengineerlng and CASE toolsets. Most CASE toolsets started as forward engineering tools. For added value, CASE
toolmakers have added reengineering and reverse engineering capabilities. Most entry points to these capabilities currently
depend on source code only.

(2) Reengineering can help an organization recoup its investment in software. I

Companies have spent hundreds of thousands of dollars building software. The software industry has spent
billions. Rather than ignore existing software, companies can use reengineering to partially recoup their I
software investment. Reengineering helps organizations build on existing software.

(3) Reengineering can make software easier to change. I
Improving software can pay rich dividends. It speeds productivity of the maintenance programmer by making
code easier to understand or work with, It gives an organization more flexibility because its software can be I
modified more quickly to accommodate business changes. Reengineering extends an organization's options.

(4) Reengineering is big business.

The 1990's market for reengineering services and tools has been estimated to be in the billions. As reported
in [Computerworld 91], the estimated expenditures allocated to reengineering services in 1990 was $4.6
billion. For 1995 the estimate is $11.9 billion. The estimated expenditures allocated to reengineering
products, including back-end CASE tools, was $.8 billion in 1990. For 1995 the estimate is $2.7 billion.
Many software systems, and system parts, need updating. Software contractors and service companies are
pursuing work in this area. Many organizations are looking for reengineering techniques, tools, and processes I
to use.

(5) Reengineering capability extends CASE toolsets. 3
Reengineering helps new techniques and tools to be applied to old software. This has several benefits. For
maintainers, it allows newer and more powerful tools to help them maintain software. Reengineering may be seen
as a kind of technology transfer vehicle, allowing old systems to be brought into frameworks of new, more powerful I
tools. For CASE tool vendors, adding reengineering tools to their toolsets opens new markets of existing software.
It also gives important added value to their previously forward-engineering-only toolsets (see Figure 4).

33q3 I

-- INTRODUCTION: A ROAD MAP GUIDE TO SOFrWARE REENGINEERING TECHNOLOGY

I Decomposer

•iInformation represented I

=Composer: [in an intermediate form

I

New view(s) of work product View composer(s)
" Foemat
-Graphics

"* Documentation
"* Metrics
" Logic
* Reports

Copyright 0 IMU by Robut S. AnohLd Usmed by perwilsslor.

Figure 5. Automatic reengineering process. Reenglneering tools tend to follow a common framework. They pare.
Information Into an Information base. Views are then generated from the Information base to reflect different Information3 about software.

(6) Reengineering is a catalyst for automating software maintenance.

I Most reengineering tools follow the pattern of Figure 5. They are essentially repositories, with specialized ways
to get information into and out of them. An important part of this is parsed information stored in the information
base. The parsed information is valuable for analysis, automation, and research in software maintenance. The
firamework in Figure 5 also provides clear points of evolution within any of its parts.

(7) Reengineering is a catalyst for applying artificial intelligence (Al) techniques to solve software
reengineering problems.

As discussed earlier, reengineering has a basis in transformations. Historically, the field of automated
transformations is an outgrowth of work in Al, such as the rule-based production systems [Davis76] and
language processing. Earlier, transformations grew out of formal logic and mathematical rewrite systems.
Reengineering is supplying Al workers with a fruitful field in which to apply their work (e.g., [Rich9O],
[Hartman91]).

F;orthepreceding reasons, reengineering has been significant andlikely will remain soduring the next 5 - 15 years.
Experience with reengineering will provide ways to improve software development and maintenance. Ideally,
progress in reengineering, development, and maintenance will lessen the need to reengineer in the first place.

Reengineering Technology

There are several themes underlying software reengineering technology: improving software, understanding
software, and capturing, preserving, and extending knowledge about software. Table I shows these themes
and their associated technology. The following sections discuss these technology areas. They briefly
describe each technical area and its significance, and list two or more references for further study. The reader
will find the discussion useful for quickly appreciating reengineering technology. This discussion, being
brief, is not comprehensive of all reengineering technology or all relevant work.

389

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY I
Table 1. Reengineering Technology

Reenglneewng theme Associated technology I
Improving software Restructuring

Redocumenting, annotating, updating documentation
Reuse engineering
Remodularization
Data reengineering
Business process reengineering
Maintainability analysis, portfolio analysis, economic

analysis

Understanding software Browsing
Analyzing, measuring
Reverse engineering, design recovery

Capturing, preserving, Decomposition
and extending knowledge Reverse engineering, design recovery
about software Object recovery

Program understanding
Knowledge bases and transformations

Tedology for improving software I
Software restructuring. Software restructuring is the modification of software to make it easier to understand or
easier to maintain [Aniold89bJ. Nowadays th temconnotes changing the source code control structure. Restructuring is3
ignifieantbecauseitisoneoffthoklest(e~g,[Bdk61)andmostrefinedreengieerigwechnque& Resmrcuiwasonie

of the first reengieeing tasks to be ftly automatecL Developing automated restruuciers has led the way to other
reengneeing tools [Amold9(b]. Informative references on restructuring ame [AmoldB~bl (MilMz8, and [Caliss88].

Redocumenting, wnotating, and updating documentation. Redorcruning software is the creation of updated,
corret: information about software Redocurnenting code is a transformation forom code (and othier do~cumients and

Up knowledge) into new or updated documentation about code. Normlly this documentation is textal (e~g.,
embedded comments), but it can be graphca as wvl. Software imnpovenent by updating kovunentaim (embedded

isimpot becausemainaind todependongoodineicommnenGass8l]asguidepoststowhatithecdeisdoing.

Annotating connotes adding documentation to source code when there is little useful documentation to begin with.
Annotating is particularly important for understanding assembly code. [Landis88] is an informative work on
redocumentation. Success in redocumentation depends heavily on automated tools. [Philips84] tells a horror story
about rying to perform redocumentation without tools. I
Reuse engineering. Reuse engineering is the modification of software to make it more reusable, usually aiming
to find software parts and rebuild them so that they can be put into a reuse library. Several authors describe processes
for finding and reusing parts ([Amold9lb], [Caldiera88]). Prospecting metrics and heuristics are described in
[Amold9Oa], [ReynoldsWO], and [Caldiera9 11. Specific techniques for making existing software reusable are described in
[Bailey%]. Reengineering code into more object-oriented forms is related to reuse engineering, and is discussed below. I
Legacy systems is a subfield of reuse engineering that decomposes existing systems into objects and relationships
that may be reassembled (reused) in new systems. [Theby91] discusses finding and storing objects and relationships
for legacy systems. The term "legacy system" may also refer to a system of enduring value.

390

I
INTRODUCTION: A ROAD MAP GUIDE TO SOFiWARE REENGINEERING TECHNOLOGY

Remodularization. Software remodularization is the changing of the module structure of a system. Often this
depends on cluster analysis of system component characteristics and coupling measures. Recent work in this area
is [Schwanke9l] and [Sneed88]. Criteria for modularization are discussed in [Card85].

Data reengineering. Data reengineering improves a system's data. Schemas may be reorganized and updated,
multiple schemas maybe lidated into schema, datadictionay entries maybe made semantically cxsis ,
and invalid data may be removed. Data remegineering is often a prelude to other tasks, such as migratng data to another
data base manaeMent system. Informative rfernes on data reenneing ame [Ricketts89] and [HevneM9]

IBusneprocess riengineen. With today's newer, flexible software architectures and information technology
automation possibilities, there is a trend to make software fit the business, rather than business fit the software.
Experience has shown that powerful productivity improvements can somedmes come from rethinking the business
processes automated by software ([Hammero], [Davenport90]). This rethinking may result in new software
designs that can become the basis for reengineering, migrating, or evolving a software system

I Mainai t analysis, portfolio analysis, economic analysis. Software maintainability anau, important
for discovering what parts of a system should be reenginmeere Typically the majority of maintenance work is
centered on a relatively few modules in a system. Maintainability analysis helps to locate the high maintenance
system parts. These parts have the biggest initial impact on maintenance costs.

[Peercy8l] defines a methodology for determining program maintainability. More recently, [Oman92a] and
[Oman92b] describe what maintainability is and metrics for assessing it To decide when and where to reen•,meer,
[Husmann90] discusses the use of portfolio analysis, [Sneed9l] discusses the use of cost-benefit models, and
[Connel187] describes reengineering criteria.

Tedmology for understanding software

Browsing. Browsing of software, such as with a text editor, is perhaps the oldest means for understanding it.
Recently browsing has become more advanced, withtheuse ofhypertext [Conklin87] to make connections between
related parts and multiple view systems [Cleveland89] to provide different views at the click of a mouse (see Figure
2). Cross-reference tools are another important part of browsing.

Analyzing, measuring. Analysis and measurement are also important technologies for understanding program
properties such as complexity. A large literature on metrics has accumulated (such as [Cote88]). Relevant
techniques for reengineering are program slicing [Weiser8 11, control flow complexity measurement [McCabe76],
coupling measures [Myers75], and many others (for example, [Harrison82J, [Rombach891).

I Reverse engineering design recovery. As indicatedabove, reverseengineering and design recovery generate new
information about software, usually in adifferent view.This technology has become popular, butdetermining some
kinds of design information (like design rationales) is still quite risky [Corbi90].

More commonly, reverse engineering generates structure charts or data flow diagrams from source code. These
tools rely heavily on information readily available or analyzable fiom the code itself. The January 1990 issue of
IEEE Software has a good collection of papers on reverse engineering and design recovery.

Capturing, preserving, and extending knowledge about software

Decompos Won. Program decomposition takes a program and makes objects and relationships out of it. These
objects and relationships are stored in an information base. The objects and relationships facilitate analysis,
measurement, and transformation and extraction of further information. Working on a decomposition rather than
directly on the source code saves the work of having to parse the program and create objects and relationships for
use by a tool. This task, though straightforward for most languages, is time-consuming to solve from scratch. For

I 391

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY I

most languages it is easier to rely on off-the-shelfdecomp ,ordecomposer generators such as lex and yacc on Unix.

Decomposition is not confined to reengineering. It is used in integrated programming support environments and
stnicturededitors. Good references on decomposition are [Chen90], [Lyle88], and [Gopal881 - and there are many more. U
Object recovery. Object recovery obtains objects from source code. This allows one to view previously nonobject-
oriented source code in an object-oriented way. The object-orientation (classes, inheritance, methods, abstract data I
types, etc.) may be partial or complete.

Migrating sourcecode toobject-oiented fofn has beenrieceiving attention. An object edprogramstcture may offer
mnm prograim undeistanding, migration, and impac reduction possibilities than nonobject-onented code. There has been
prvww evxenence with object orientation when converting systems from C to C++. [Breuer9 1], [Dietric9 11,
[Jacobson9l I Duinn9 1], and [Byme91] describe mrcent experience and ideas for discovering objects in source code.

Program wadenku0ng. Program understanding takes several forms. One is manual or automated techniques for
programmners to gain a better understanding of the software. The other is a body of work that stores information about
pmgrmuningandxusesthisinfonnationtofindimtancesofpmgrnmingknowkdgeinthecode. Underaandingisevidenced
by the extent to which the software is matched with the tool's base ofprogratmming knowledge. [Robson911 gives a quick
overviewofbothfomisofpmimudersadng.hIancesofdtelr wodkar[Hartman91],[Rich9OI,and [Hantnd9O].

Knowwdge bases adtran formaions. Knowledge bases (forexample, [HarAndi90) and program transformations (e.g.,
[B3On•])D are foundational to much reengineering technology today. The information base, associated transformation
engine, and programmed transformations drive the powrofthe rengineering too l.Te transformations work on program U
graphs andobjpec s stored in the knowle base. Objct•b ,tranM itala ctes formengineeing tools
(e.g., [Bwrson90]) am attractive for building new reengineering tools (for example, see [Kozaczynski89]).

Reengineering Strategies and Risk Mitigation

Being able to apply reengineering technology is as important as knowing what it is and what it can do. Much i
experience has been accumulated.

Reengineering process 3
The reengineering process takes many forms, depending on its objectives. Sample objectives are code cleanup,
redocumentation, migration, capture of information in an information base, and reengineering code for reuse.

Case studies are frequent sources of reengineering processes. For example, [Slovin9l] describes the improvement
of the modular structure and maintainability of a system having high maintenance costs. [Bfitcher90] describes
a reengineering feasibility project in which a Federal Aviation Administration terminal approach control system
was reengineexed to operate on more modem hardware and in Pascal (instead of assembly code).

Others have tried to systematize the reengineering process. Such an approach has been described in [Ulrich90 - U
91].Themajorprocess stepshereare inventory/analysispositioning,andtransformaTif' inventory and analysisphase
establishes a software components base and evaluates emegineeingoptionsbasedonthis inventory. Positioning improves
software quality without necessarily affecting existing functionality or architecture. Positioning improves the software to n
facilitate change, or analysis to support change. The transformation phase creates a new architecture from the existing one.

Reengineering evaluation 5
There isconcem abouttheempirical effectiveness ofreengineering. Theevidence forreengineering falls into anecdotes, case
studies, lessons learned, and experiments. A good discussion of cost-benefit analysis issues for reengineering can be found
in [Sneed91]. Experiments such as [FSMSC871 and [Sneed90] imply that software restnrcturing and reengineering,

392

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY

respemtvely, can be helpful An eady casesuy ([SrcW841) sixdnuedmilcost-tbfit • • t• ssno u • afurn
workbeingdone for thefirsttime. Larcasestdies (i.e., [Slovin91 I] and [Britch90) showed posifivereengineeting rsults.

Reengineering risk analysis and mitigation

Reemgineering is not something that one simply "does." It is easy to waste time and dollars on ineffective appaches. As
pointed out in Mlich9O],one s d x dapp aichrennng widiaplan.Tbe plan can then beevaluazeda arisks assmwd

(Arnold9 la] cataloged several typical reengineering risk areas, associated risks, and mitigations. Table 2 shows
some of these areas and their associated risks.

3 Table 2. Reenglneering Risks
(from [Amold9la])

3 Risk Area Risks

Process Risks Extremely high manual reengineering costs.
Cost benefits not realized in required time frame.
Cannot economically justify the reengineering effort.
Reengineering effort drifts.
Lack of management commitment to ongoing reengineering solution

(UlrichSoa].

I Personnel Risks Programmers Inhibiting the start of reengineering.
Programmers performing less effectively to make an unpopular

reengineering project look less effective.

Application Risks Reengineering with no local application experts available.
Existing business knowledge embedded in source code is lost

([Koka9l], [Ulfich9Oa]).
Reengineered system does not perform adequately [Koka9 1].

Technology Risks Recovered information is not useful or not used [Chikofsky9l].
Masses of (expensive) documentation produced.
Reverse engineering to representations that cannot be shared.
Reengineering technology inadequate toaccomplish reengineering goals.
Reengineering where there is little reengineering technology support.

Tools Risks Dependence on tools that do not perform as advertised.
Not using installed tools.

Strategy Risks Premature commitment to a reengineering solution for an entire
system.

Failure to have a long-term vision with interim goals [Ulrich90a].
Lack of global view: code, data, process reengineenng.
No plan for using reengineering tools [Ulrich9Oa].

393

INTRODUCTION: A ROAD MAP GuIDE TO SOFTWARE REENGINEERING TECHNOLOGY I

The message here is to respect reengineering and have contingencies for mitigating risk. In many cases mitigation
means trying reengineering on a small scale (e.g., a small subset of programs) and assessing risks before committing
to a wholesale reengineering effort.

Future Advances

Several advances in reengineering technology can be expected, and are discussed briefly below. Some of the areas
are already supported, and are being extended with CASE tools. Often CASE tool vendors are leading the way in(internal) research because of the product infrastructure that they own.7

Software mekuranment

There is interest in developing suites of metrics for finding hard-to-maintain code. This code could be a prime
candidate for reengineering. Several maintainability metrics and frameworks exist (e.g., [Amold83], U
[Arnold82], [Peercy8l]). However, more recently, newer maintainability frameworks have emerged
([Oman92a], (Oman92b]).

Rcost benefit models

A medium or large reengineering effort often requires cost-benefit justification. There is a need for
organizations to input their maintenance parameters and get a reasonable estimate of the costs, benefits, and I
timeframe for payoff. More work is needed in making these estimation tools available ([Arnold89],
[Sneed9l], (Sittenauer92]).

Expert systems for reengineering tasks

Much expertise now exists about reengineering. A logical next step is to capture this expertise in an expert system
rules base. The rules base can then be embedded into an existing CASE tool to enhance the value of the tool for
users. Example areas where expert systems can be useful are prospecting for reusable parts in source code
[Knight92], finding objects in source code, and remodularizing systems.

Reverse engineering into models

Model-based maintenance deals mainly with nonprocedural diagrams that together model an application. The
source codeis generated, usually with aCASE tool, from the diagrams.Maintenance of source code is done through U
the diagrams, not directly on the source code. This maintenance paradigm holds great promise for reducing
maintenance costs and facilitating software evolution. 3
CASE tools already exist for model-based maintenance. Methodologies have been developed and are being refined
for migrating existing systems into model-based systems. There is room for extending and automating parts of this 3
work.

Software process instrumentation for maintenance

The software process needs to be instrumented to capture software change. This will allow change histories
for software to be animated and "played back" to maintainers. This goes beyond configuration management.
The change histories must be captured in ways that semantically make sense to maintainers that are browsing 3
then.I

'rTying to create a CASE tool infrastructure from scratch, without tool-building tools, can be time-consuming and expensive. U
However, powerful tool-building technology and off-the-shelf tools are now available that can speed the creation of a tool

infrastructure.

394 1

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY

I Summary

The major points made here are

(1) Software reengineering is any activity designed

to improve one's understanding of software, or
to improve the software itself, usually fur increased maintainability, reusability, or evolvability.

(2) There is no universally accepted definition of reengineering. Several definitions exist that reflect different
persmpectiveson whatreen ineering is. The approachembodied in the section tided, 'Ibe Contextf •Renmgmring,"
and Appendix A can be used to more precisely characterize definitions of reengineering, reverse engineering, and
other terms.

(3) Transformation is central to reengineering and related terms. Key elements of transformations are views of
software, an information base, decomposition of software information into objects and relationships in an
infonnation base, and composition of views from information in the information base.

(4) There are several reasons why reengineering is significant:

Reengineering can help reduce an organization's evolution risk.
Reengineering can help an organization recoup its investment in software.
Reengineering can make software easier to change.
Remegineeing is big business.
Reengineering capability amplifies CASE toolsets.
Reengineeing is a catalyst for automating software maintenance.
Reengineering is a catalyst for applying artificial intelligence (A[) techniques to solve software
reenoeering problems.

(5) Reengineering technology has three basic themes:

Improving software,
Understanding software, and

Capturing, preserving, and extending knowledge about software.

(6) Reengineering risks exist, but they can be planned for and mitigated.

395

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY I
Appendix A

A decision procedure for classifying a software transformation

To decide if a given transformation (or procedure), transforming information in view D into information in view
C, is reengineering, reverse engineering, design recovery, or forward engineering, do the following:

1. Put view D and view C into one of the view classes (1,2,3, A 1, A2, A3). (See Figure 1 and the discussion
of it in the section titled, "The Context of Reengineering".) If D and C cannot be classified, then this
decision procedure cannot be used.8

2. Classify the transformation according to the following table. A label of "open" in the table
means the transformation is not classified. (A transformation not listed in the table is also "open.") It
may or may not be an instance of the other terms. More information is needed.

Example

Each example is assumed to meet the necessary conditions of Table A2. 1

Table Al. Example Transformation Classifications

Transformation View D, Class View C, Class Classimfication from Table

Source code--> Source code, 3 Decision table, 1 Reverse engineering, design 3
Decision table recovery, reengineering

Data flow diagram Data flow Textual Reverse engineering, design 3
-> Textual diagram, 2 specifications, 1 recovery, reengineering
specifications

Source code --> Source code, 3 Lines of code Open
Lines of code measurement, A3
measurement

Source code --> Source code, 3 Pretty printed source Restructuring, reengineering
Pretty printed code (same program
source code and language), 3

Source code Source code inline Revised source code Reengineering
Inline comments --> comments, 3 inline comments, 3
Revised source
code inline comments 1
Raw data in Raw data in Logical data Reverse engineering, design
database --> database, 3 schema, 1 recovery, reengineering
Logical data
schema

___ I
'It is also assumed that the classification has intuitive validity. For example, source code is not placed view class i,

nonprocedural specifications.

3963

i1NTRODUCTION: A ROAD MAP GUIDE TO SOFTWARiE REENGINEERING TECHNOL(G'ý

Table A2. Classification of Transformations in Figure 1.

Classification View class of D View class of C Other conditions'

Forward 1 A2, 3. or A3
engineering

Open I orAl Al

Reengineenng 1 1 V

Forward Al 1, 2. A2, 3, or A3
engineering

Reverse 21 orA V
engineering,
design recovery,
reengineering

Reengineering 2 2 V

Open 2orA2 A2

Forward 23 or A3
engineering

Reverse A2 1 V
engineering

Open A2 Al

Forward A2 2, 3, or A3
engineering

Reverse 3 1.2, A, or A2 V
engineering,
design recovery,
reengineering

Reengineenng 3 3 V

Restructuring 3 3 V, and both D and C
are source code in
the same language

for the same
__________ ___________program.

Open 3 orA3 A3

Forward A3 3
engineering

Reverse A3 2 or A2 V
engineering,
design recovery,
reengineering

"Note: V means that the transformation meets the following conditions:
(1) Improves one's understanding of software, or
(2) Prepares or improves the software itself, usually for increased maintainability, reusability,

or evolvability.

The "or' is an inclusive "or."

397

INTRODUCTION: A ROAD MAP GUIDE TO SOFTWARE REENGINEERING TECHNOLOGY I

References 3
The papers reprinted in this book are marked with an asterisk (*). Papers marked with a pound sign (#) were

reprinted in [Arnold86].

#[Arnoldg2] R.S. Arnold, and D.A. Parker, "'The Dimensions of Healthy Maintenance," Proc. Sixth Int'l Conf. on Software Eng..

IEEE Computer Society Press, Los Alamitos, Calif., Sept. 1982, pp. 10-27.

(ArnoldB3] R.S. Arnold, On the Generation and Use of Quantitative Criteria for Asjessing Software Maintenance Quality, U
doctoral dissertation, Univ. of Maryland, College Park, Md., 1983.

[ArnoldS6] R.S. Arnold, Software Restructuring, IEEE Computer Society Press, Los Alamitos, Calif., 1986.

[Arnold89a] R.S. Arnold, "Software Reengineering," private seminar notes, Herndon, Va., 1989. I
*[Amold89bl R.S. Arnold, "Software Restructuring," Proc. IEEE, Vol. 77, No. 4, Apr. 1989.
(Arnold90a] R.S. Arnold. "Heuristics for Salvaging Reusable Parts from Ada Source Code," Tech. Report: Ada Reuse Heuristics-

9001 I-N, Software Productivity Consortium, Herndon, Va., Mar. 1990.

jArnoid90b] R.S. Arnold, "Software Restructuring: Foundation for Reengineering," Proc. Reverse Eng. Forum, St. Louis, Mo.,
Apr. 1990.

(Arnold90cJ R.S. Arnold, "Tools for Static Analysis of Ada Source Code," Tech. Report: Ada Static Tools Survey-90015-N,

Software Productivity Consortium, Herndon, Va., June 1990. I
[Amold91al R.S. Arnold, "Risks of Reengineering," Proc. Reverse Eng. Forum, St. Louis, Mo., Apr. 1991.
*[Arnold9lb] R.S. Arnold and W.F. Frakes, "Reuse and Reengineering," Final draft (1991) of a paper appearing under the same Ititde in CASE Trends, Feb. 1992.

[Arnold92J R.S. Arnold, "Software Reengineering," seminar notes, Software Evolution Technology, Herndon, Va., 1992.*[Bailey9O] J.W. Bailey and V.R. Basili, "Software Reclamation: Improving Post-Development Reusability," Proc. Eighth Ann.

Nat'! Conf on Ada Technology, U.S. Army Communications - Electronics Command, Fort Monmouth, N.J., 1990, pp. 4 77.
498.

[Bohm66] C. Bohm and G. Jacopini, "Flow Diagrams, Turing Machines, and Languages with Only Two Formation Rules."
Comm. ACM, Vol. 9, No. 5, May 1966, pp. 366-371.

*[Breuer9l] P.T. Breuer and K. Lano, "Creating Specifications from Code: Reverse Engineering Techniques," J. Software
Maintenance: Research and Practice, Vol. 3, 1991, pp. 145-162.

*[Britcher90] R.N. Britcher, "Re-engineering Software: A Case Study," IBM Systems J., Vol. 29, No. 4, 1990, pp. 551-567.
*[Burson90] S. Burson, G.B. Kotik, and L.Z. Markosian, "A Program Transformation Approach to Automating Software Re-

engineering:" Proc. COMPSAC, IEEE Computer Society Press, Los Alamitos, Calif., 1990, pp. 314-322.
*[Byrne9l] EJ. Byrne, "Software Reverse Engineering: A Case Study," Software-Practice and Experience, Vol. 21, No. 12,

Dec. 1991, pp. 1349-1364.
[Caldiera88] 0. Caldiera, and V.R. Basili, "Reusing Existing Software," Tech. Report CS-TR-2116, Computer Science Dept.,

Univ. of Maryland, College Park. Md., Oct. 1988.
*[Caldiera91J G. Caldiera and V.R. Basili, "Identifying and Qualifying Reusable Software Components," Computer, Vol. 24,

No. 2, Feb. 1991, pp. 61-70. 1
[Calliss88] F.W. Calliss, "Problems with Automatic Restructurers," SIGPLAN Notices, Vol. 23, No. 3, Mar. 1988, pp. 13-21.
(Card85] D.N. Card, G.T. Page, and F.E. McGarry, "Criteria for Software Modularization," Proc. Eighth Int'l Conf Software

Eng., IEEE Computer Society Press, Los Alamitos, Calif., 1985, pp. 372-377.
*[Chen90] Y.-F. Chen, M. Nishimoto, and C.V. Ramamoorthy, "The C Information Abstraction System," IEEE Trans. Software

Eng., Vol. 16, No. 3, Mar. 1990, pp. 325-334.
*[Chikofsky90] E. Chikofsky and J.H. Cross, "Reverse Engineering and Design Recovery: A Taxonomy," IEEESoftware, Jan.

1990, pp. 13-17.
[Chikofsky91 E. Chikofsky, lecture notes on reverse engineering and design recovery, Feb. 1991.
*[Cleveland89] L. Cleveland, "A Program Understanding Support Environment," IBM Systems J., Vol. 28, No. 2,1989, pp. 324-

344. I
[Computerworld 91] Computerworld, Vol. XXV, No. 12, Mar. 25, 1991, p. 68.

[Conklin87] J. Conklin, "A Survey of Hypertext," Computer, Vol. 20, No. 9, Sept. 1987, pp. 17-41.
[ConneIU87] J. Connell and L. Brice, The Professional User's Guide to Acquiring Software. "Identifying Systems that Need

Rework", Ch. 2, Van Nostrand, N.Y., 1987.
*[Corbi89] T. Corbi, "Program Understanding: Challenge for the 1990s," IBM Systems J., Vol. 28, No. 2, 1989, pp. 294-306.
[Cote88] V. Cote, P. Bourque, S. Oligny. and N. Rivard, "Software Metrics: An Overview of Recent Results," J. Systems and

Software, Vol. 8, 1988, pp. 121-131.

398 3

INTRODUCTION: A ROAD MAP GUIDE -1O SOI-WARE REENGINE`RING TECHN[OtXJ'G

*[Davenport90] T.H. Davenport, and J.E. Short. "The New Industrial Engineering: Information Technology and Business

Process Redesign," Sloan Management Rev., Summer, 1990, pp I 1-27.
[Davis76] R. Davis. and J. King, "An Overview of Production Systems." In E.W. Elcock and D. Michie, eds. Machine

Intelligence, 1976, Wiley, N.Y., pp. 300-332.

*(Dietrich89] W.C. Dietrich. Jr., L.R. Nackman, and F. Gracer, "Saving a Legacy with Objects." Proc. OOPSLA, Association

for Computing Machinery. N.Y., 1989. pp. 77-83.

*[Dunn9l] M.F. Dunn and J.C. Knight, "Software Reuse in an Industrial Setting: A Case Study," Proc. 13th Int'l Co.-f. on

Sofjware Eng.. IEEE Computer Society Press, Los Alamitos, Calif., 1991, pp. 329-338.

*!FSMSC87] Fed. Software Management Support Center. "Parallel Test and Evaluation of a Cobol Restructuring Tool." Office

of Software Development and Information Technology. Falls Church, Va., Sept. 1987.

[Glass81) R.L. Glass and R.A. Noiseux, Software Maintenance Guidebook, Prentice-Hall, N.J., 1981.

*[Gopal88] R. Gopal and S. Schach. "Using Automatic Program Decomposition Techniques in Software Maintenance Tools."

Proc. Conf. on Software Maintenance. IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp 132-141.

[GUIDE89) "Application Reengineering," Guide Pub. GPP-208. Guide Int'l Corp., Chicago, 1989.

*[Hammei9O] M. Hammer, "Reengineering Work: Don't Automate, Obliterate," Harvard Business Rev., July-Aug. 1990, pp.

104-112.

*[Harandi90] M.T. Harandi and J.Q. Ning, "Knowledge-Based Program Analysis," IEEE Software, Vol. 7, No. 1. Jan. 1990. pp.

74-81.

[Hartman9l1 J. Hartman, "Understanding Natural Programs Using Proper Decomposition," Proc. 13th Int'l Conf. on Software

Eng., IEEE Computer Society Press, Los Alamitos, Calif., May 1991, pp. 62-73.

#[Harrisong2l W. Harrison, K. Magel, R. Kluczny, and A. DeKock, "Applying Software Complexity Metrics to Software

Maintenance," Computer, Vol. 15, No. 9, Sept. 1982, pp. 65-79.

[Heninger78J K. Heninger, J. Kallander, D. Pamas, and J. Shore, "Software Requirements for the A-7E Aircraft," NRL

Memorandum Report 3876, Nov. 1978.

#[Hevner89] A.R. Hevner and R.C. Linger, "A Method for Data Re-engineering in Structured Programs," Proc. 22nd. Hawaii

int'l Conf. on System Sciences, IEEE Computer Society Press, Los Alamitos, Calif., Jan. 1989, Vol. 2, pp. 1024-1034.

(Husmann90] H.H. Husmann, "Re-Engineering Economics," Eden Systems Corp.. Carmel, Ind., 1990. Also appeared in System

Development, Feb. 1991.

*[Jacobson9l] I. Jacobson, "Re-Engineering of Old Systems to an Object-Oriented Architecture," Proc. OOPSLA, Association

for Computing Machinery. N.Y., 1991, pp. 340-350.

(Knight92] I. Knight, personal communication, telephone conversation between John Knight and Robert Arnold, June 1992.

[Koka9 1] R. Koka, "Mainframe Realities," Software Magazine. Jan. 10, 1991.

*(Kozaczynski89] W. Kozaczynski and J.Q. Ning, "SRE: A Knowledge-Based Environment for Large-Scale Software

Reengineering Activities," Proc. 11th int'l Conf. on Software Eng., IEEE Computer Society Press, Los Alamitos, Calif.,

1989, pp. 113-121.

*(Landis88] L.D. Landis, P.M. Highland, A.L. Gilbert, and A.J. Fine, "Documentation in a Software Maintenance Environ-

ment." Proc. Conf on Software Maintenance, IEEE Computer Society Press, Los Alamitos, Calif., 1988.

*(Lyleg8I J.R. Lyle and K.B. Gallagher, "Using Program Decomposition to Guide Modifications," Proc. Conf. on Software

Maintenance, IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp. 265-269.

(McCabe76I T. McCabe, "A Complexity Metric," IEEE Trans. on Software Eng., Vol. SE-2, No. 2. Dec. 1976.

[Miller87] J.C. Miller, and B.M. Strauss, "Implications of Automatic Restructuring of Cobol," SIGPLANNotices, Vol. 22, No.

6. June 1987, pp. 76-82.
(Myers75J GJ. Myers, Reliable Software through Composite Design, Van Nostrand Reinhold Co., N.Y., 1975.

(Oman92a] P. Oman, J. Hagemeister, and D. Ash, "A Definition and Taxonomy for Software Maintainability," Tech. Report

#91-08 (revised version), Software Eng. Lab., Univ. of Idaho, Jan. 1992.

[Oman92b] P. Oman andil. Hagemeister, "Metrics for Assessing Software Maintainability," Tech. Report #92-01, Software Eng.

Lab., Univ. of Idaho, Mar. 1992.

#[Peercy8l] D.A. Peercy, "A Software Maintainability Evaluation Methodology," IEEE Trans. on Software Eng., Vol. SE-7,

No. 4, July 1981, pp. 343-352.

#[Philipss4] J.C. Philips, "Creating a Baseline for an Undocumented System - Or What Do You Do with Someone Else's

Code?" in Record of the 1983 Software Maintenance Workshop, R.S. Arnold, ed., IEEE Computer Society Press, Los

Alamitos, Calif., 1984, pp. 63-64.

[Rekoff851 M.G. Rekoff, Jr.,"On Reverse Engineering," IEEE Trans. Systems. Man, and Cybernetics, Mar.-Apr. 1985, pp. 244-

252.

399

INTRODUCTION: A ROAD MAP GUIDE TO SOVrWARE REENGINEERING TECHNOLOGY

[Reynolds901 R.G. Reynolds and J.C. Esteva, "Learning to Recognize Reusable Softwkare by Induction." White paper, Wayne 3
State Univ.. Detroit, Mich., 1990.

*[Rich9OJ C. Rich, and L.M. Wills, "Recognizing a Program's Design: A Graph-Parsing Approach," IEEE Sofrware, Vol. 7, No.

1, Jan. 1990, pp. 82-89. I
*[Ricketts89] J.A. Ricketts, J.C. DelMonaco, and M.W. Weeks, "Data Reengineering for Application Systems," Proc. Conf. on

Software Maintenance, IEEE Computer Society Press, Los Alamitos, Calif.. 1989, pp. 174-179.
*[Robson9l] D.J. Robson, K.H. Bennett, B.J. Cornelius, and M. Munro, "Approaches to Program Comprehension," J. Systems

and Software Vol. 14, Feo. 1991, pp. 79-84.

[Rombach89] D.H. Rombach and B.T. Ulery, "Improving Software Maintenance through Measurement," Proc. IEEE, Vol. 77,

No. 4, Apr. 1989, pp. 581-595.
*[Schwanke9 Ij R.W. Schwanke, "An Intelligent Tool for Re-engineering Software Modularity," Proc. 13th Int'l Conf. on

Software Eng., IEEE computer Society Press, Los Alamitos, Calif., May 1991, pp. 83-92.

(Sittenauer92] C. Sittenauer, M. Olsem, and D. Murdock, "Software Re-engineering Tools Report," Software Technology

Support Center (STSC), Hill Air Force Base, Utah, Apr. 1992.

*[Slovin91] M. Slovin and S. Malik, "Reengineering to Reduce System Maintenance: A Case Study," Software Eng., July/Aug.

1991, pp. 14-24.

#[Sneed841 H.M. Sneed, "Software Renewal: A Case Study," IEEE Software, Vol. 1. No. 3. July 198,,, pp. 56-63.

(Sneed881 H.M. Sneed and G. Jandrasics, "Inverse Transformation of Software from Code to Specification," Proc. Conf on

Software Maintenance, IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp. 102-109.

*(Sneed90] H.M. Sneed and A. Kaposi, "A Study of the Effect of Reengineering upon Software Maintainability," Proc. Conf.

on Software Maintenance, IEEE Computer Society Press, Los Alamitos, Calif., 1990, pp. 91-99. m
*[Sneed91l H.M. Sneed, "Economics of Software Re-engineering," J. Software Maintenance: Research and Practice, Vol. 3,

No. 3. Sept. 1991. pp. 163-182.
*[Ulrich9Oa] W.M. 1llrich, "The Evolutionary Growth of Software Reengineering and the Decade Ahead," Am. Programmer,

Vol. 3, No. 10, Oct. 1990, pp. 14-20. i
*(Ulrich9O-91] W.M. Ulrich, "Reengineering: Defining an Integrated Migration Framework," CASE Trends, 4-part series. NovJ

Dec. 1990; Jan./Feb. 1991; Mar./Spr. 1991; Summer, 1991.

[Theby91] S. Theby, "Mapping Cobol to Objects," Proc. Reverse Eng. Forum, St. Louis, Mo., Apr. 1991.

[WeiserSl] M. Weiser, "Program Slicing," Proc. Int'l Conf. on ,Software Eng., IEEE Computer Society Press, Los Alamitos,

Calif., Mar. 1981.

I
U
I
U
I

I
U

400 I

I Authors' Index
I

A J
Judith Ahrens 263 Farnam Jahanian 91
Paul Arnold 120 W Lewis Johnson 57
Robert Arnold 381
Annette R. Ashton 234 K
Darren C. Atkinson 274 Nicholas Karangelen 19

Louie Kitcoff 200
B Gordon Kotik 248IA. T. Berztiss 283 Ara Kouchakdjian 120
Russell Brand 248
Rex Buddenberg 346 L

Walt Lamia 361
C John Leary 25
Grady H. Campbell, Jr. 77 Chin-Hwa Lee 304
Joe Caruso 44 Insup Lee 157
L. J. Ceder 200 Moon Lee 157
Thomas C. Choinski 304 Kwei-Jay Lin 342
John Clark 216 Kenneth Littlejohn 83

Jane W S. Liu 292
D Evan Lock 263
John Donald 216 Joseph P. Loyall 83

E M
Peter Everitt 200 Stephen R. Mackey 178
Wolter J. Fabrycky 224 Lawrence Markosian 248
William H. Farr 234 Michae! W Masters 44
Peter Feiler 361 Lynn M. Meredith 178

James Michaud 200
G John Miles 200
Joe S. Ganes 97 Tamra Moore 205
William G. Griswold 274

N
H Cuong Nguyen 19
Rhan Ha 292 Noble N. Nkwocha 334
Robert L. Harrison 44
NgocDung Hoang 19 0
Lester Holzblatt 256 Michael R. Olsem 373
Gary Hout 200 Daniel J. Organ 136
Steven Howell 19

P
I Richard Piazza 256
Giorgio Ingargiola 157 Marc J. Pitarys 83

Noah Prywes 157. 263

* 401

I

I
R Barry Stevens 216
James P Rahilly 107 Alexander D. Stoyenko 44
Vaclav Rajlich 67 Sherry Stukes 216
Howard Reubenstein 256 Frank Svoboda 355
Romel Rivera 319 Ricky E. Sward 327
Susan Roberts 256
Charles Rogers 200 W
Jay Roske 97 Lonnie R. Welch 44

Daniel E. Wilkening 83
S Richard W. Williams 97
Andrew P. Sage 1 R. Winkler 192
Charles H. Sampson 143 Ed Woods 200
Antonio L. Samuel 44
R. D. Semmel 192 Y
S. Wayne Sherer 120 Darin York 200
Joao Silva 67
Chris Sittenauer 373 Z
Dennis Smith 361 John J. Zenor 334
Robert A. Steigerwald 327

I
I
I
U
I
I
I
I
U

402

I

