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13. Abstract (cont'd)

hit-miss topology and complete lattice structure on U. Relative to these structures,
the set M(U) of translationally invariant (TI) USC transformations of U can be taken
to define the morphological transforms of U. One can, moreover, give M(U) a natu-
ral hit-miss topology and complete lattice structure by taking advantage of the kernel
theories of Matheron and Maragos; in fact, it is shown here that the kernels of the
transforms in M(U) are completely characterized by two properties: namely, K is the
kernel of a transform in M(U) if and only if X is a closed subset of U that is also
up-closed (i.e., f is a member of /C if and only if f + t is likewise a member for all
positive t). This is the first extension obtained.

For the second extension, the lattice space of morphological (i.e., TI and USC)
mappings of U to the closed subsets of W1+1 is first introduced and developed. It is
then shown that this space isomorphically includes and considerably generalizes M (U),
and is also a proper setting in which to generalize the representation theorems of Banon
and Barrera (which apply to TI set mappings) to apply to morphological mappings of
the functions in U.
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1 Introduction

A number of image-processing methodologies are available for the de-
velopment of algorithms to perform the functions required for auto-
matic/aided target recognition (ATR). Each is supported by a mathe-
matical theory whose extent and coherency limit or define the rational
application of that methodology in developing algorithms. This is not
to say that a given methodology cannot be profitably used in intu-
itively motivated ways that transcend the boundaries of its established
theory. But a result arrived at intuitively will have general practical
utility only when it becomes clear how the result issues from the prin-
ciples of application of the method. In a recent report,' I reviewed and
amplified on the theory that supports the use of closed-set or euclidean
morphology in processing binary images. In both that report and this,
my main objective is to provide (to the extent now possible) a coherent
and rigorous treatment of the principles of application of mathematical
morphology to the image-processing tasks required to achieve ATR. I
have pursued this objective by first reviewing the relevant concepts in
the existing mathematical morphology literature, and then attempting
to use these concepts to form a coherent body of principles for the ap-
plications sought. In this attempt, I have had to further develop some
of the existing theory.

This report addresses the morphological processing of greyscale im-
ages. This case is of singular importance because the synthetic aper-
ture radar and infrared imagery of greatest interest for ATR is gener-
ally greyscale. The first step in the development of a greyscale-image
morphology is the choice of an appropriate set of mathematical func-
tions to represent images. The most general and satisfactory form of
greyscale theory is based on the umbra method that evolved in the work
of Matheron,2 Sternberg,3 and Haralick et al.4 For the representational
role, this method chooses the bounded nonnegative members of the set
U = U(R") of extended real valued (ERV) upper semicontinuous (USC)
functions of n (a positive integer) real variables. The rationale for this
choice is based on various considerations.

First of all, the greyscale images typically encountered in practice can

'D. W. McGuire, The morphological processing of binary images, Army Research Laboratory, ARL-TR-28
(1993).2G. Matheron, Thdorie des ensembles aliatoires, Ecole des Mines de Paris (1969).

3S. R. Sternberg, Parallel architecture for image processing, Proc. Third International IEEE Compsac,
Chicago, IL (1979).

4 R. M. Haralick, S. R. Steinberg, and X. Zhuang, Image analysis using mathematical morphology, IEEE
PAMI-9, 4, 532-550 (1987).

5



be described as bounded, nonnegative, real valued functions of two
variables that show occasional abrupt jumps but are in the main con-
tinuous. There is, however, no compelling reason to limit the dimension
of the image field to two, and there are important technical reasons for
allowing the functions at issue to assume the values oo and -oo. Since
the mathematical concept of semicontinuity adequately captures the
range of discontinuities exhibited, the choice made is at least reason-
able. There is more justification than this, however.

As indicated in my earlier report,' closed-set morphology can be ap-
plied to the processing of binary images (and thereby yield a theory
of their morphological processing) because we can choose to represent
binary images as topologically closed subsets of the image field. If we
allowed the set of points where the image has a nonzero intensity to
be arbitrary, only the algebraic part of set morphology would be avail-
able, and we would therefore have no concept of a morphological image
metric, a concept that seems indispensable. If the nonzero-intensity
set is required to be closed, however, then the morphological image
topology (i.e., the hit-miss topology) of Matheron5 becomes an inte-
gral and highly useful part of the theory. Now, if a closed-set binary
image is regarded as a function, say f, then f is a real valued USC
function whose only values are zero and one. The more general ERV
USC functions f are precisely the ones whose cross sections or threshold
sets Xt(f) = Ix : f(x) > t} are closed; equivalently, they are precisely
the ones whose umbrae (loosely speaking, the set of points on or un-
der the graph of f) are also closed. It is indeed the closedness of the
cross sections of image functions that makes the well-known threshold
decomposition method6,7 effective in defining certain "morphological"
transforms of greyscale images, and it is precisely the closedness of the
umbrae of image functions that makes it possible to apply closed-set
morphology directly to greyscale images.

Having chosen the bounded nonnegative functions in U to represent
greyscale images, the next theoretical task is to determine what can
be usefully meant by a morphological transform--what I will call an
M-transform-of a greyscale image. The umbra method achieves this
end by defining the M-transforms of greyscale images analogously to
the corresponding transformations (the translationally invariant USC
transformations) of closed sets and by more generally defining these
transforms on U.

1G. Matheron, Random Sets and Integral Geometry, John Wiley & Sons (1975).
6J. Serra, Image Analysis and Mathematical Morphology, Academic Press (1982).
7P. Maragos, A representation theory for morphological image and signal processing, IEEE PAMI-9, 4,

532-550 (1987).
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The essence of the umbra method is as follows. The umbra of a function
is, as mentioned, the set of points on or under the function's graph.
Since the graphs of USC functions are generally not closed sets, and
their umbrae invariably are, the idea is to use umbrae to represent
such functions by closed subsets of the space S in which the graphs
reside. In this way, one obtains a class of umbrae that (1) forms a
subspace of the space of closed subsets of S (the field of operations of
closed-set morphology) and (2) is in one-to-one correspondence with
U. Closed-set morphology theory can then be applied directly to the
umbra subspace, and by means of the one-to-one correspondence thence
to U. The technically definitive umbra method emerges in the detailed
pursuit of this roughly sketched program. This pursuit, carried out
in rigorous detail in sections 2 and 3, forms about two-thirds of the
substance of this report.

Specifically, the umbra and USC-function spaces that form the basis of
the umbra method are treated in detail in section 2. Here the relevant
hit-miss and myopic topologies are carefully defined and the various
algebraic operations (the lattice operatiors and the Minkowski sum and
difference) are incorporated into the appropriate topological framework.
The morphological transforms of U (the M-transforms) are defined in
section 3. Here I extend the existing theory by using the kernel theory
of Matheron5 and Maragos7 to establish the morphological transform
space M(U) of U by determining its natural hit-miss topology and
complete lattice structure.

In section 4, I introduce and develop the space 7H(U) of morphological
(i.e., translationally invariant and USC) mappings of U to the space
F(R"+') of closed subsets of R,+'. Here it is shown that W(U) iso-
morphically includes and considerably generalizes M.(U). This more
general space has not, to my knowledge, been considered by other mor-
phology theorists; moreomer, it turns out to be a proper setting in
which to generalize the representation theorems of Banon and Barrera
(sect. 1.4) to the realm of greyscale morphology.8 Section 4 concludes
with the details of this generalization.

The remainder of this introduction is a terse (despite its length in pages)
review of the needed concepts and results from my earlier report.' This
review is intended only as a ready reference; the reader should consuht
the earlier report for further details and depth of understanding.

SG.J.F. Banon and J. Barrera, Minimal representations for translational-invariant set mappings by math-
ematical morphology, SIAM J. Appi. Math., 51, No. 6, pp 1782-1789 (1991).
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1.1 Ordered Topology

§ 1.1 Let (X, <) be a poset. Then the set {(x,y) e Xx X :x - y} is
called the graph of :_ on X. If X has a topology -r, and if the graph of
-< on X is a closed subset of the product space X x X, then -< is called
a closed order in X, and (X, r, -_) is called a topological ordered space.
A topological ordered space is called a (locally) compact ordered space if
its topology is (locally) compact.

§ 1.2 If (X, -<) is a poset and A C X, then A is called a decreasing
(increasing) set if x E A and y "< x (x - y) ==* y E A.

§ 1.3 Every topological ordered space is Hausdorff.

§ 1.4 Let (X, A, V) be a lattice and let -< denote its induced ordering
(i.e., the ordering defined by x - y 4 x A y = x). Then if (X,'r, -)
is a topological ordered space, we call (X, r, A, V) a closed-order lattice.
A closed-order lattice whose topology is (locally) compact is called a
(locally) compact closed-order lattice.

§ 1.5 A one-to-one mapping of a topological ordered space (closed-order
lattice) onto another is called a topological-ordered-space (closed-order-
lattice) isomorphism if the mapping is both a poset (lattice) isomorphism
and a homeomorphism. Similar definitions apply to (locally) compact
ordered spaces and (locally) compact closed-order lattices.

§ 1.6 If (X, r, -<) is a topological ordered space, then the class -r, of
open decreasing subsets of X and the class re of open increasing subsets
of X are topologies on X called its decreasing and increasing topologies,
respectively. If (X,-r, -_) is a compact ordered space, then ru U r7 is a
subbase for %.

§ 1.7 A topological ordered space (X, r, -_) whose increasing and de-
creasing topologies together form a subbase for r is called order resolv-
able. Compact ordered spaces and their subspaces are order resolvable.

§ 1.8 If (X, r, --<) is order resolvable, then two topoloqies Ig and A on X
such that pz U A is a subbase for -r, p. C r-,, and A C re are called upper
and lower topologies for (X, r, -).

§ 1.9 Let Q be a topological space, let X be an order resolvable space,
let it and A be upper and lower topologies for X, let w be a point in Q,
and let A map ! to X. Then (where LSC means lower semicontinuous)

8



1. A is called p-USC (A\-LSC) [at w] if A is continuous [at w] with
respect to p (A).

2. A is p-USC (A-LSC) 4==* A is p-USC (A-LSC) at every w.

3. A is continuous [at w] ] A is both p-USC and A-LSC [at w].

§ 1.10 Let R denote the set of real numbers, let

A = R0, (-o0, t): t C W1,

and let A = {R, 0, (t, oo) : t E R}. Then p and A are topologies on 3W
pt U A is a subbase for the usual topology r- of 3, (3, 7r, <) is a locally
compact ordered space, and pA and A are its maximal upper and lower
topologies. Let R(e) denote the set of extended real numbers, let

A, = f R(e) 0, [-_0, t) : t

and let = {3?(e),0,(t, C.] : t E R(e)}. Then pi and Ae are topologies
on R(e), pA.U A is a subbase for the usual topology Te of R(e), (<?e),r�,<)
is a compact ordered space, and 1L and \, are its maximal uppcr and
lower topologies. [(3, -r, inf, sup)] (R(e), 7-e, inf, sup) is a [conditionally]
complete, [locally] compact closed-order lattice.

§ 1.11 1ff is an ERV function on a topological space X, then

1. f is USC 4== {x X :f(x) <t} is open in X for all t E (e).

2. f is LSC I {x E X : f(x) > t} is open in X for all t E R(e.

§ 1.12 If t - R(e) and f is ERV on X, then the horizontal cross sectioii
of f at t is defined as Xt(f)= {x E X : f(x) > t}. Also,

Xt(f) {x E X: f(x) > t}.

§ 1.13 If f is ERV on X, then

(1) f is USC if and only if Xt(f) is closed in X for all t c_ RCe).

(2) f is LSC if and only if Xt (f) is open in X for ail t E R(r.

if X is a first countable Hausdorff space, then

(3) f is USC <==* f(x) > limsip f(xi) V x E X and V {x,} in X
with limit x.

(4) f is LSC €==} f(x) < liminff(xi) V x E X and V {x,} in X with
limit x.

9



Conditions (3) and (4) come up again and again in different guises and
settings as criteria for semicontinuity. I refer to them and their relatives
as the usual semicontinuity criteria.

Bh'i.hoff, Kelley,'° and Nachbin" are general references for the mate-
ial of this section.

1.2 Closed-Set Morphology

§ 1.14 Let S be a locally compact, second countable Hausdorff (LCS)
space and let F(S), G(S), and K(S) respectively denote the classes of
closed, open, and compact subsets of S. Then (F(S), C) is a poset and
(F(S), n, u) is a complete distributive lattice with induced ordering C.

§ 1.15 Let FK={FEF(S):FfnK=@} and let

F = {F E F(S): FAnG 40}.

Then the hit-miss topology " of F(S) is generated by

{FK: K E K(S)} U {Fg: G E G(S)}.

r is compact, second countable, and Hausdorff. C is a closed order
in F(S), (F(S),-r, C) is a compact ordered space, (F(S),-r, n, u) is a
compact closed-order lattice, {FK : K E K(S)} U 0 is a base for an
upper topology of (F(S),T,C), and {FG : G E G(S)} U F(S) is a
subbase for a companion lower topology.

§ 1.16 Let KF = {KE K(S): KnfF=0} and let

Kc= {K E K(S) : K nG#0}.

The topology v generated on K(S) by

{KF: F E F(S)} U {KG: G E G(S)}

is called its myopic topology.

The following are basic results about v and its relation to r.

9G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publications (1948).
1oJ. L. Kelley, General Topology, D. Van Nostrand (1955).

"L. Nachbin, Topology and Order, Van Nostrand Math. Studies No. 4, D. Van Nostrand (1965).
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1. (K(S),v) is an LCS space.

2. If S is not a compact space, then neither is (K(S),v), and v is
strictly stronger than the relative hit-miss topology of K(S).

3. If KI is a v-compact subset of K(S), then the relative hit-miss
topology of KI and the relative myopic topology of C coincide.

4. A subset KI of K(S) is v-compact if and only if C is closed in F(S)
and there exists a Ko E K(S) such that K0 D K for all K E K1.

5. (K(S),v, C) is an order resolvable locally compact ordered space
and (K(S),v, n, U) is a locally compact closed-order lattice.

6. (K(S),v, n, U) is distributive and has the universal lower bound
0 C S. It has no universal upper bound, unless S is compact.

7. If C C K(S) is not empty, then inf IC exists in K(S) but supKC
need not, unless S is compact.

For the time being, the S will be dropped in F(S), K(S), etc. With
regard to convergence in F and K, the following theorems hold.

Theorem 1.1 A sequence {F,} in F converges to F E F if and only if
(1) G C S is open and G nl F # 0 ===ý G fl F, # 0 V but at most finitely
many F, and (2) K C S is compact and K n F ==* K n F, = V
but at most finitely many F,.

Theorem 1.2 A sequence {F1 } in F converges to F E F if and only if
(a) for each x E F there exist x, E F, for all but at most finitely many
i such that xi -- x and (b) if {Flkl is a subsequence of {FJ}, then every
convergent sequence xi, E F1k has its limit in F. In addition, (a) and
(b) are respectively equivalent to (1) and (2) of Theorem 1.1.

I refer to (a) and (b) of this theorem as Matheron's convergence criteria.

Theorem 1.3 A sequence {K,} in K converges in the myopic topotogy
to K E K if and only if RA -* K in the hit-miss topology of F and there
exists a KO E K such that Ko D K, for ail i.

§ 1.17 Let {F,} be a sequence in F and let C({FI}) denote its set of
limit points. Then the lower and upper limits of {F,} are defined by

1. Lim F, = fl{F: F E C({F,})}.

2. Ti-'• Fi = U{F : F c C({F,})}.

11



Theorem 1.4 (Upper-lower limit theorem) 1/ {F1 } is a sequence in F,
then (a) Lira F, is the largest F E F that satisfies (a) of Theorem 1.2,
(b) Tim F1 is the smallest F E F that satisfies (b) of Theorem 1.2, and
(c) F, - F 4-€ Lim F, = Lim F, = F.

The lower limit lies in F by definition and the upper limit lies in F
by (b) of this theorem. The following is another instance of the usual
semicontinuity criteria.

Theorem 1.5 If T : X - F and X is a first countable Hausdorff
space, then %F is USC at x E X -#== T (x) D Jirn TI(xi) V {xi} in X
that converge to x and TI is LSC at x E X 4==* TI(x) c Limn '(xi) V
{xj} in X that converge to x.

§ 1.18 If A and B are any subsets of Wn, then their Minkowski sum is
defined by AeB = {x: x=y+z,y E A,z E B}; if A orB is empty,
thenA(B =-0. If A C R" andx c R', thenA+x=- Aefx}. The
symmetric A of A C -Rn is defined as {x: -x E A}.

§ 1.19 If A and B are subsets of Rn, then

1. A, B E K(Rn) ==* A (D B E K(Rn).

2. A E F(Rn) and B E K(Rn) ==> A (D B c F(NR).
3. A) B E F (Rn) V=ý A E) B e F (Rn).

§ 1.20 The Minkowski difference A E B of two arbitrary subsets of R"

is defined by A E0 B = (AC (D B)C where the c denotes complementation.

§ 1.21 Regardless of the topological character of B, the following hold.

1. If A is closed, then A E) B is closed.

2. If A is compact, then A E0 B is compact.

The following also hold.

1. E) is continuous on F x K and K x K to F and K, respectively.

2. E) is only a USC mapping of F x K, K x K and F x F into F, K
and F, respectively.

3. U is a continuous operation in F(S) and K(S), but n is only USC.

4. The mapping F , Fc of F(S) to itself is LSC.

12



5. If S is locally connected, then the mapping F a OF (the bound-
ary of F) of F(S) to itself is LSC and K - OK is an LSC
mapping of K(S) to itself.

Matheron5 and Serra 6 are general references for the material of this and
the next section.

1.3 Transformation Space Theory

A mapping * of F = F(R'") to itself is called a transformation of
(or on) F. The transformation type to be focussed on I call an M -

transformation. The order preserving (increasing, isotone) members of
this class are more commonly known as morphological filters. In what
follows, the shorthand P = P(R") is used for the power set of Rn.

§ 1.22 A mapping * : F o7 P is called translationally invariant (TI)
if I(F + x) = %F(F) + x for all F E F and x E Rn. A TI mapping is
called an M-transformation if it is into F and USC. The kernel of a
TI mapping i : F ) P is the set ker(T) = {F E F : 0 E '(F)}.

§ 1.23 If %F is a TI mapping of F to P and F E F, then

%F(F) = {x E F: F- x c ker(ýV)}.

If K is any subset of F, then F h {x E R" : F- x E K} defines a TI
mapping of F to P whose kernel is 1C.

Theorem 1.6 (Matheron's closed kernel theorem) A TI mapping 'I of
F to P is into F and USC if and only if ker('') is closed in F.

There is thus a one-to-one correspondence between the TI mappings
of F and P(F), and there is also a one-to-one correspondence between
the class of M-transformations of F and the class of closed subsets of
F, i.e., F(F). Since F is an LCS space, the class of M-transformations
can be identified with F(F) (understood to have its hit-miss topology),
thus giving rise to the space M (F) of M-transformations.

§ 1.24 The transformation space M(F) has a natural lattice structure
that it acquires from F(F) through the correspondence qI - ker(',).
If %P and V' are transformations in M(F), then the transformations
TI n V' and %P U V' are defined in terms of their kernels by

ker(q' n T'I) = ker(TI) n ker(*') and ker( V U V') = ker(xI) U ker(VI).

13



For all T, V' E M(F), it is clear that 1P n q'I, q, U V' E M(F). Indeed
it follows that (M(F), n, U) is a lattice and that T 1-) ker(%') is a
lattice isomorphism of (M(F), n, U) onto (F(F), n, U). Consequently,
(M (F), n, u) is complete and distributive.

§ 1.25 The ordering C induced in M(F) by its lattice operations can
be characterized as follows: If T and V' are transformations in M (F),
then %P C V' T '(F) C %'(F) for all F E F 4 ker('I) C ker(%P').
In addition, if {','} is any set of transformations in M(F), then

1. inf{•,'} fln',' has the kernel nl, ker(xP',) and

(no,,)(F) = nfcA,(F) V F E F.

2. sup{%0  =_ U,,*', has the kernel U,, ker('I',) and is the least M-
transformation such that (Ua'I'a)(F) D Uc,%I,(F) for all F E F.

3. If {I} = {(Pk} is a finite set of M-transformations, then

(Uk'Pk)(F) = UkJk(F) for all F E F.

§ 1.26 In the following, the hit-miss topologies of F(F) and M(F) are
both denoted v. Under the correspondence +-+:

1. (M(F), g) is poset isomorphic to (F(F), C).
2. (M(F),v,,C) is compact-ordered-space isomorphic to the compact

ordered space (F(F),v,c).

3. (M(F),vfl, U) is isomorphic as a compact closed-order lattice to
(F(F),v,A, u).

Therefore, U is a continuous operation in M(F), but n is only USC.

§ 1.27 If q, maps F to P', then Tp is called increasing (decreasing) if
T (E) D T (F) (T (E) C T (F)) whenever E,F E F and E D F. Order
preserving and order reversing are synonyms for increasing and decreas-
ing. The mappings T0 : F ) 0 and q/' : F !-, R (each for all
F E F) are M.-transformations that are both increasing and decreasing.
They are called the trivial transformations.

§ 1.28 If T is a TI mapping of F to 1', then T1(O) is either 0 or 3?",
and likewise for jp(R"). If %P is nontrivial and increasing (decreasing),
then TI(0) = 0 (Rn) and lp (R") = 3" (0). TI E M(F) is increas-
ing (decreasing) if and only if ker(') is an increasing (decreasing) set.
The subspace M.T (F) (M.I (F)) of increasing (decreasing) T1 E M.(F) is
closed in M(F).
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§ 1.29 If E E F is fixed, then the following are M-transformations:
Fi F, F - FeE, F -4 FOE, F 1 EOF, and F - EGF.
The first three are increasing and the last two are decreasing. The
transformations F @ b F E) E and F i )-P E F are written CE and
bE, respectively, and are called erosion and antidilation by E.

1.4 Supremum Representations

Matheron's 5 well-known supremum representation theorem for the in-
creasing T E eM(F) can be stated as follows.

Theorem 1.7 If %P E M1 T(F), then T = UEEker(*) EE; that is, T is
the supremum of the set of erosions {EE E E ker(T)}. Moreover, if
F E F, then %P(F) = U{EE(F): E E ker(T)}.

If T E MT(F) and is not trivial, then Maragos7 defines the minimal
basis kernel KIn, (I) of %P as the collection of minimal elements of ker(%P)
relative to C. This concept leads to Maragos' minimal representation
version of Matherons's result, namely:

Theorem 1.8 If T E M It(F), then q = UEEX.Pn (41) LE. Moreover, if
F E F, then T(F) = U{CE(F): E e IC. n(T)}.

Banon and Barrera8 have developed versions of the foregoing theorems
for arbitrary T E M(F). If E, H E F and E C H, then [E, H] =
{F E F: E C F C H} and is called a closed interval of F; moreover, it
follows that all closed intervals of F are closed subsets of F. In terms
of this concept, one of the general representation theorems of Banon
and Barrera can be expressed as follows.

Theorem 1.9 If TI E M(F), then T = U[E,H]cker(*I) E fn )H-. More-

over, if F E F, then TI(F) = U{E(F) fl )H(F) : [E, H] C ker(I)}.

Banon and Barrera' define the basis Bp of a general TI E M(F) as
the collection of maximal closed intervals of F contained in ker(I).
This concept leads to the minimal representation theorem of Banon
and Barrera that generalizes Theorem 1.8, namely:

Theorem 1.10 If T E M(F), then T = U[E,HIEB.I, £EfnH. Moreover,

if F E F, then q'(F) = U{eE(F) AlH (F) : (E,H] E Bp}.
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2 Umbra and USC-Function Spaces

There are two candidates for the resident space of the umbrae of the
f E U, namely, Rn x R = Rn+' and Rn x R(,) (where R(W) denotes the set
of extended real numbers). Although Rn x R(e) is the resident space of
the graphs of the f E U, one is at liberty to define the umbrae of these
f as subsets of either of the foregoing product spaces. The two choices,
moreover, give rise to apparently different theories that are, in fact,
equivalent. In the exposition that follows, I develop both theoretical
lines in parallel so that they can be compared in their details at various
points. I begin with the choice R,+.

2.1 The Umbra Space U C F(Rn+')

Distinguish a t-axis in 3,'+' by denoting its points

{(x,t) :x En,,t CE R}.

Definition 2.1 If A C R,+1 is nonempty, then the umbra of A, de-
noted T(A), is the subset of R,+' given by {(x, t) : (x, t') E A, t < t'};
if A = 0, let T(A) = 0. A subset of Rn+' that contains (x,t) whenever
it contains (x, t') with t' > t will be called umbral.

T maps subsets of Rn+1 to umbral subsets of R+'. Note that if A is
umbral, then T(A) = A. T can be regarded as operating on subsets of
R"i x R(e) if the above definition is extended as follows.

Definition 2.2 If A is a nonempty subset of Rn X R(e), then

T(A) = (x, t) E Rn+1 : (x, t') E A, t < t'}.

Note that the more general T continues to produce subsets of R'•+
exclusively. The more general understanding of Definition 2.2 is needed
to define the umbra of the graph of an f E U.

Definition 2.3 Iff E U, then GC1 = {(x, f(x)) E Rn x R(e) : x E R'}

is called the graph of f.

The umbra of the graph of f is accordingly

T(Gf) = {(x,t) E Rn+R : t < f(X)}.
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Definition 2.4 Let F(R"+1 ) denote the space of closed subsets of R•+',
where F("•'•+) is assumed to be carrying its hit-miss topology r, and
let U denote the set of umbrae in F(3n+,). Then U inherits a topology
w from (F(Rn+'),r) that we will call the hit-miss topology of U.

Definition 2.5 If A is a subset of Rn+l, then let

UAfU E U: U A= 0} and UA = {U E U: U nA# .

Proposition 2.1 w is generated subbasically on U by

{UK : K E K(n'•+)} Ut {UG : G E G(n+')}

where K(Rn+l) and G(Rn+l) are, respectively, the classes of compact
and open subsets of R,+'.

Proof An upper topology for F(?"+1) has the base

{FK : K E K(Rn+l)} U 0

and a companion lower topology has the subbase

{FG: G E G(Rn+l)} U F(n'•+).

The relative upper topology of U in F(3?+ 1) therefore has the
base {UK : K E K(R"+')} U 0, where 0 now refers to the empty
collection of subsets of U. Similarly, the relative lower topology
of U in F(R"n+) has the subbase {Uc G E G(Rn+1 )} U U.

Theorem 2.1 (Matheron) (U,w) is a compact LCS space closed un-
der arbitrary intersections and finite unions, (U, n, u) is a complete
distributive lattice with induced ordering C, and T(Gf) E U V f E U.

Proof Since (U,w) is a subspace of a second countable Hausdorff space,
it follows that w is second countable and Hausdorff. To prove
compactness, moreover, it is enough to show that U is a r-closed
subset of F(Rn+'). Accordingly, let U1 -- F in F(3?+') where each
U1 E U. We show that F E U, i.e., (x, t) E F whenever (x, t') E F
with t' > t. Put 6 = t'-t. There are (xi , tý) E Ui for all but at most
finitely many i such that (xi, t') -, (x, te). Thus (xi, tý -6) E U1 for
all but at most finitely many i and (xi, t - 6) -- (x, t'- 6) = (x, t).
Hence (x, t) E F and it follows that F is a closed umbra. (U,w)
is therefore a compact LCS space.
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Because arbitrary intersections and finite unions of umbrae (closed
sets) are umbrae (closed sets), it follows that U is closed under
arbitrary intersections and finite unions. Moreover (U, n, U) is
clearly distributive and obviously has the induced ordering C.
Now a lattice with a universal upper bound in which every subset
has an infimum is necessarily complete.9 Since U is closed under
arbitrary intersections, it follows that every subset of U has an
infimum. Completeness thus follows from the fact that (U, n, u)
has the universal bounds R'+' and 0. To prove that T(G,) is a
closed subset of F(Rn+') for all f E U, let {(x,, ti)} be an Rn+l_
convergent sequence in T(Gf) with limit (x, t). We easily see
that f(x) Ž t because f is USC and f(xi) >_ t1 for all i, so that
f(x) > lim sup f(xi) > t. This completes the proof.

Corollary 2.1 Hence we have the following:

1. (U,w, C) is a compact ordered space.

2. (U,w, n, u) is a compact closed-order lattice.

Remark 2.1 Since U C F(Rn+ 1 ) is closed, we have the following char-
acterization of convergence in U:

1. U1 E U and U1 -- U in F(Rn+,) ==* U E U and U1 -- U in U.

2. Conversely, Ui --- U in U ==* U1 -- U in F(Rn+').

Matheron's convergence criteria for sequences in U now follow readily:

Theorem 2.2 A sequence {U1 } in U converges to U E U if and only if
(a) for each (x, t) E U there exist (xi, ti) E U1 for all but at most finitely
many i such that (xi, ti) -- (x, t) and (b) if {Uik} is a subsequence of
{ Ui}, then every convergent sequence (xik, tik) E Uj, has its limit in U.

Remark 2.2 If {U1} is a sequence in U (a U-sequence), then its limit
points relative to F(R'+1 ) coincide with its limit points relative to U.

Lower and upper limits may therefore be defined as follows.

Definition 2.6 Let {U1 } be a sequence in U and let C({Ui }) denote
its set of limit points. Then we define Lir Ui = n{U: U E £({U1 })}
and Tim- U1 = U{U: U E £({U1 })}.
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Remark 2.3 The upper (lower) limit in F(R"+') of a U-sequence is
equal to its upper (lower) limit in U.

With these results we can readily establish the upper-lower limit theo-
rem and the usual semicontinuity criteria (Thm. 2.4) for U.

Theorem 2.3 (Upper-lower limit theorem for U) If {U1} is a sequence
in U, then (a) Limr U1 is the largest U E U that satisfies condition (a) of
Theorem 2.2, (b) Lm U, is the smallest U E U that satisfies condition
(b) of Theorem 2.2, and (c) U1 -- U in U if and oly if

Lim U= Lir U, = U.

Theorem 2.4 If 4) : X -) U and X is a first countable Hausdorff
space, then 4) is USC at x E X <=: 4)(x) D Lrm 4)(x,) V {x,} in X
that converge to x, and 4) is LSC at x E X == 4,(x) C Lim 4)(xi) V
{x 1} in X that converge to x.

The following result gives technically useful criteria for verifying the
semicontinuities of a mapping into U; it follows from Theorems 2.2,
2.3, and 2.4.

Remark 2.4 If X is a first countable Hausdorff space, then

1. 4, : X -- U is USC 4=-> xi -- x in X, (k, 7-k) E 4ý(xtk) V k,
and (ýk, 7k) - (ý, r) ==* (, -r) E -I)(x).

2. 4ý : X i U is LSC €=}xi --, x in X and (ý, 7) E 4),(x) =€

there exist (•, r1 ) E (D(xi) for all but at most finitely many i such
that (C1 , -ri) -- (C,r).

It is not generally true that T maps closed subsets of R"+1 to closed
umbrae. Consider, for instance, the closed subset

F = {(x, tanx) : x c [0, 7r/2)}

of V. There is no point in T(F) with the x-coordinate 2' but for all
real t there are sequences in T(F) that converge to (!, t). We therefore
have the following.

Remark 2.5 T maps F(3?•'+) onto a proper supset of U.
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2.2 The Umbra Space V c F(•P' x [-oo, oo])

I now turn to the candidate R' X R(e). Let R(') have its usual compact
topology and let £ denote the product space R" x R('). Denote the
points of 6 by (x,t), where x E R" and t E R(').

Definition 2.7 If A is a nonempty subset of E, then the umbra of A,
denoted Te(A), is the subset of E given by {(x,t) : (x,t') c A,t < t'};
if A = 0, let TE(A) = 0. A subset of E that contains (x,t) whenever it
contains (x, t') with t' > t is called umbral.

Tr maps subsets of E to umbral sabsets of E. Note again that if A is
umbral, then Te(A) = A and that if f E U, then

T•(Gf) = {(x,t) E E: t < f(X)I,

which is generally not the same as T(Gf).

Definition 2.8 Let V denote the set of umbrae in F(E) and let e de-
note the hit-miss topology of F(E). Then V inherits a topology o from
(F(C),e) that we will call the hit-miss topology of V.

o, has a subbasic structure similar to that of w.

Definition 2.9 If A is a subset of E, then let

VA {U E V:U nA= } andVA = {U E V: UnA#:0}.

Remark 2.6 a is generated subbasically on V by

{VK : K E K(S)} U {Vc: G E G(C)}.

With a bit more work, we can also obtain the following counterpart of
Theorem 2.1 and its corollary.

Theorem 2.5 (Matheron) (V,u) is a compact LCS space closed un-
der arbitrary intersections and finite unions, (V, n, u) is a complete
distributive lattice with induced ordering c, and T,(Gf) E V V f E U.
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Proof Since (V,or) is a subspace of a second countable Hausdorff space,
it follows that a is second countable and Hausdorff. To prove
compactness we show that V is an e-closed subset of F(C). Ac-
cordingly, let U, - F in F(6) where each U. E V. We show
that F E V, i.e., (x,t) E F whenever (x,t') E F with t' > t.
First assume that te and t are finite and put 6 = t' - t. There
are (xi, t') E U1 for all but at most finitely many i such that
(xi, t,) -- (x, t). Thus (xi, e - 6) E U1 for all but at most finitely
many i and (xi, t - 6) -- (x, t - 6) = (x, t). Hence (x, t) E F. If
t = -c0, we note that (xi, -c0) E U1 for all but at most finitely
many i and that (xi, -co) -- (x, -oo). Hence (x, -co) E F. If
t' = co, there are still (xi, t') E U1 for all but at most finitely many
i such that (xi, t,) -* (x, t' = oo), and we have the two cases t E R

and t = -co to consider. If t E .?, there is clearly a sequence {-r}
such that ri < tý and Ti -* t. Thus (x,, r,) E U1 for all but at most
finitely many i and (xi, r,) - (x, t) E F. Likewise, (xi, -c0) E U1
for all but at most finitely many i and (xi, -co) --- (x, -c) E F.
We have thus proved that F is a closed umbra, and this shows
that V is a closed and therefore compact subset of F(.). Hence
(V,o') is a compact LCS space.

Because arbitrary intersections and finite unions of umbrae (closed
sets) are umbrae (closed sets), it follows that V is closed under
arbitrary intersections and finite unions. Moreover (V, n, u) is
clearly distributive and obviously has the induced ordering C. Re-
call that a lattice with a universal upper bound in which every
subset has an infimum is necessarily complete. Since V is closed
under arbitrary intersections, it follows that every subset of V
has an infimum. Completeness thus follows from the evident fact
that (V, n, U) has the universal bounds C and 0. To prove that
Tr(G,) is a closed subset of F(6) for all f E U, let {(xz, ti)} be
an C-convergent sequence in Te(G1 ) with limit (x, t). Since f is
USC and f(xi) >_ t1 for all i, we see that f(x) Ž lim sup f(xi) >_ t.

Corollary 2.2 Hence we have the following:

1. (V,or, C) is a compact ordered space.

2. (V,o', n, u) is a compact closed-order lattice.
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Remark 2.7 Since V c F(C) is closed, we have the following charac-
terization of convergence in V.

1. If U, E V and U, - U in F(E), then U E V and U, -- U in V.

2. Conversely, if U, -- U in V, then U, -* U in F(E).

Matheron's convergence criteria for sequences in V again follow readily
from this characterization:

Theorem 2.6 A sequence {U,} in V converges to U E V if and only if
(a) for each (x, t) E U there exist (x,, t,) E U, for all but at most finitely
many i such that (x,, t,) --- (x, t) and (b) if {U,, } is a subsequence of
{U,}, then every convergent sequence (x,, ti,) E Uj, has its limit in U.

Remark 2.8 If {U,} is a sequence in V (a V-sequence), then its limit
points relative to F(E) coincide with its limit points relative to V.

Definition 2.10 Let {U,} be a sequence in V and let L({U,}) denote
its set of limit points. Then we define Lira U,= f{U: U E QjU,})j
and Lim U, = U{U: U E £({U,})}.

Remark 2.9 The upper (lower) limit in F(E) of a V-sequence is equal
to its upper (lower) limit in V.

With these results we can readily establish the upper-lower limit theo-
rem and the usual semicontinuity criteria (Thm. 2.8) for V.

Theorem 2.7 (Upper-lower limit theorem for V) If {U,} is a sequence
in V, then (a) Lim U, is the largest U E V that satisfies condition (a) of
Theorem 2.6, (b) Lirm U, is the smallest U E V that satisfies condition
(b) of Theorem 2.6, and (c) U, - U in V if and only if

Lim U, Lim U, = U.

Theorem 2.8 If 4) : X -t V and X is a first countable Hausdorff
space, then 4, is USC at x E X # 4)(x) D Lim "P(x,) V {x,} in X
that converge to x, and ,) is LSC at x E X 4==* (,(x) C Lim 4,(x,) V
{x,} in X that converge to x.

We therefore obtain the following counterpart of Remark 2.4.
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Remark 2.10 If X is a first countable Hausdorff space, then

1. : X - V is USC x -- x in X, (Ck, rt) E 4,(x,,) V k,
and (Ck,Trk) -~ (C r) (C,-r) E 40 (X).

2. i, : X -+ V is LSC = x -- x in X and (C,-r) E 41(x) ==

there ezist (&, r1) E 4ý(x) for all but at most finitely many i such
that (&,,) -. (Cr).

Here the development deviates from that of Section 2.1. Indeed T, has
a more elegant topological relation to the spaces F(E) and V than T
does to F(R"+1 ) and U. Compare the following with Remark 2.5.

Proposition 2.2 Te is a continuous closed mapping of F(6) onto V.

Proof First we show that YT maps F(E) onto V. For this it is sufficient
to prove that Te(F) E V for all F E F(E). Let {(x1 ,t1 )} be a
convergent sequence in Te(F) with limit (x, t). We show that
(x, t) E Te(F) and hence that TE(F) is a closed umbra. Since
each (xi,ti) is in TY(F), there are rT _> t1 such that (xi,"-r) E F
for all i. Since {T- } is a sequence in R(e), it follows that there is a
subsequence {7-,} such that Tik - -r > t. Thus (xikI,&) - (x,'r)
and since F is closed, it follows that (x, T-) E F. Since r > t, we
may therefore conclude that (x, t) E TY(F). Thus TE maps F(E)
onto V. To prove that this mapping is continuous, we let {F1 }
be a convergent sequence in F(C) with limit F, and demonstrate
that T-(Fi) - Te(F) in V by appeal to Theorem 2.6.

Suppose that (xik, ti) E Te(Fk) for all k and (xtk, tk) i- (x, t).
By showing that (x,t) E Tz(F), we establish condition (b) of
Theorem 2.6. There are ri, _> tik such that (xk,,•-r) E Fik for
all k. Since {lri.} has a convergent subsequence with limit 7- > t,
and since F1 --+ F in F(6), it follows that (x, r) E F and hence
that (x, t) E Te(F). To establish condition (a) of Theorem 2.6,
suppose that (x, t) E TI(F). Then (x,Tr) E F for some T > t, and
it follows that there are (x,, ri) E F, for all but at most finitely
many i such that (xi,T-1 ) --- (x,,r). If r = t, we are done. If
t = -oo, then (xi, -eo) E Te(F1) for all but at most finitely
many i and (xi, -cc) -- (x, - o) = (x, t) and we are again done.
If r = oo > t > -oo, it is clear that (xi, t) E TE(F,) for all but
at most finitely many i and (xi, t) --* (x, t). The remaining case
requiring consideration is oo > 7- > t "> -cc. Let r - t = 6 > 0.
Then (xi, r7 - 6) E Te(F1 ) for all but at most finitely many i and
(xi, r, - 6) -- (x, t). Hence Tt maps F(E) continuously onto V.
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We note that a mapping is called closed if the image of each closed
domain set is closed in the range of the mapping. Now every closed
subset of F(C) is compact because F(E) is a compact space. It is,
moreover, generally true that a continuous image of a compact set
is compact and that the compact subsets of a Hausdorff space are
closed. Since V is a Hausdorff space, it is accordingly clear that
Te is a closed mapping, as stated. This completes the proof.

The continuous umbra mapping of F(E) onto V is an instance of the
general situation that leads to the concept of a quotient topology. In
fact, or is the quotient topology of V relative to the mapping T, and
the topology e of its domain. This can be seen as follows.

Definition 2.11 Let (X, -r) be a topological space, let Y be a set, and
let A map X onto Y. Then the quotient topology of Y relative to A and
7- is the strongest topology on Y for which A is continuous.

From general topology'0 we have the following result.

Theorem 2.9 If A is a continuous mapping of a topological space
(X, r) onto a topological space (Y, r') such that A is either a closed
or an open mapping, then r' is the quotient topology.

Corollary 2.3 a is the quotient topology of V relative to T, and e.

2.3 The Umbra Subspace V c V

Definition 2.12 The closed supports in Rn of the members of U, V,
and U, together with related notions, are defined as follows.

1. If U E U, then the support of U, denoted AU, is the closed subset
x: (X,t) U} of ".

2. If U E V, then the support of U, denoted AU, is the closed subset
{x: (x,t) E U,t > -oo} of Rn.

3. If f E U, then the support of f, denoted Af, is the closed subset
{x : jf(x) > - 00} of Rn.

4. If U E V, then the subset U of U defined by

(J = {(x,t) : (x,t) E U,x E AU}

will be called the core of U, and the supset U = U U (Rn, -oo) of
U will be called the full augmentation of U.
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5. When AU C R" is compact, we say that U has compact support.

6. If f E U and Af C R'" is compact, we likewise say that f has
compact support.

Remark 2.11 If U and V are umbrae in V, then

1. U and V are in V.

2. C V C U == = andV=zU.

Definition 2.13 Let V be the set of distinct full augmentations of the
umbrae in V, and let " be the relative hit-miss topology of V in V. If
A is a subset of E, then let

VA={UEV:UOA=0} andVA = {U E V: UOA 01}.

Remark 2.12 The topology & is generated subbasically on V by

{VK : K c K(£)} U {Vc : G E G(E)}.

Now observe that V C V C F(C) and that each space is a closed
subspace of one(s) following it. We therefore obtain a theorem and
corollary for the space V that are virtually identical to Theorems 2.1
and ".5 and their corollaries, namely:

Theorem 2.10 (V, &) is a compact LCS space closed under arbitrary
intersections and finite unions, (V, n, U) is a complete distributive lat-
tice with induced ordering C, and TE(Gf) E V for all f E U.

Corollary 2.4 Hence we have the following:

1. (V,&, C) is a compact ordered space.

2. (V,&, n, U) is a compact closed-order lattice.

Indeed the rest of the material following Corollary 2.2 u• to and in-

cluding Remark 2.10 continues to be valid for the space (V,&) relative
to both F(E) and V. Now consider th- following.

Definition 2.14 Let A be the mapping of V onto V given by U • U.

Proposition 2.3 A is a continuous closed mapping of V onto V.
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Proof To prove continuity, first suppose that (x, t) E U. If (x, t) E U,
then since U, --+ U in V, there are (xi, ti) E U, C OU for all but at
most finitely many i such that (x,, ti) - (x, t). If (x, t) V U, then
(x, t) = (x, -oo) E L'i for all i. On the other hand, if (xik, tik) E Ui
and (xik, tj) -" (x, t), then either infinitely many of the (xkI til)
are in the corresponding Uj, in which case (x, t) E U C U, or dall

but finitely many of the (xik, tk) = (xik, -oo) -- (x, -oo) E U.
This proves continuity.

Because V is a Hausdorff space, we again see that the closedness
of A follows from the compactness of the domain space V and the
facts that (1) a continuous image of a compact set is compact and
(2) the compact subsets of a Hausdorff space are closed.

Corollary 2.5 Hence we have the following:

1. & is the quotient topology of V melative to A and ou.

2. A o Tg is a continuous closed mapping of F(E) onto V.

2.4 Topological Equivalence of U and V

If U E U, let fO(U) = U U H(-oo), where the overbar denotes closure
in E, and H(-oo) denotes the subset (3? n, -co) of 6.

Remark 2.13 fl is one-to-one onto V, and if V E V, then

S= {(x,t) E V: t E R}.

Lemma 2.1 ni-' is continuous, and fn is USC.

Proof Let V1 -- V in the &-topology of V. Then if t E R and (x, t) E
V, it follows that there are (xi, ti) E Vi for all but at most finitely
many i such that (xi, ti) --* (x, t). Moreover, since t is real, all but
at most finitely many of the t, must be real. Hence {11-'(Vi) } and
0i-'(V) satisfy condition (a) of Theorem 2.2. Suppose, then, that
(XI,,tk) E i•-(V~k) for all k and that (xk, tk) - (x,t) in Rn+,.

Then (x,t) E V and t E R, and it follows that W -I(Vi) - fl-I(V)
in the w-topology of U. Hence fl-1 is continuous.

For the second part, let U, --+ U in the w-topology of U, and
suppose that (Xk, tk) E C1(Ui,) = U• U 1I(-oo) for all k. We show
that if (xk, tk) I (x, t) in E, then (x, t) E fl(U) = U U fl(-oo).
If t = -oo, there is nothing to prove. If t E 3, then all but
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finitely many of the tk E R, and it follows that (x, t) E U C f(U).
Suppose, finally, that t = oo. Since either infinitely many of the ti
are real, or all but finitely many of them are oo, we have without
loss of generality the following two cases to consider: (1) tk E R
for all k and (2) tk = oo for all k. In both cases, given any
r E R, there is a real sequence {Tr} such that (xk, rk) E Ui, and
(xk,Tr) --+ (x, r). Hence (x,r) E U for all real r, and it follows
that (x, 00) E U. This completes the proof.

Theorem 2.11 fl is a homeomorphism of U onto V.

Proof By the last lemma, it is sufficient to show that fl is LSC. Let
Ui -+ U in the w-topology of U and let (x, t) E fl (U). It is clear
that if t # oo, then there exist (xi, ti) E 0(Ui) for all but at most
finitely many i such that (x, ti) --- (x, t) in E. The rest of the
proof is to show that the same implication holds when t = 00. For
this, the following is first established: If B,(x) is the open ball in
Rn with radius c > 0 and center at x, and if (x, oo) E fl(U), then
for each positive c and A, it follows that Be(x) x (A, 0o] n Ui =# 0
for all but at most finitely many i. To see this, note that (x, 00) E
U implies that (x, t) E U for all t E R. Hence the open set
S•,s(x, t) = B.(x) x (t - 6, t + 6) hits all but at most finitely many
of the Ui for all positive c and 6, because U1 -. U in the w-
topology of U. The italicized assertion now follows from the fact
that BE(x) x (A, oo] D S,,6(x, t) for some real t and positive 6.

For each positive integer k, let Ck = k- 1 and let Ak = k. By what
we have just shown, for each k there is a positive integer Ik such
that Ui n B,, (x) x (Ak, oo005 0 for all i > Ik. For

P-- II, Il + 1,...-,I12- I

let (xp,tp) E UpfnBe,(x) x (A 1, oo]. For

P= I2, 12 + 1,...,I3- 1

let (xp, tp) E Up n B2 (x) x (A2, 00]. Continuing in this way, we
define a sequence { (xi, ti)}, i > I, such that

(xp, tp) E Up n Bek(x) x (Ak, 001 for p = I, Ik + ,...,Ik+1 - 1.

Since this sequence has E-limit (x, oo), the proof is complete.
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2.5 Hit-Miss Topology of U

I now prove two very similar theorems (given by Serra,6 but without

distinguishing U from V) that provide us with one-to-one moppings,
r and f', of U and V onto U. Each of these bijections induces upon
U the topology that makes the bijection a homeomorphism. In view of
Theorem 2.11, the two topologies induced in this way must be identical,
and this is how the hit-miss topology of U is obtained. We begin with
some preliminaries. We call the set [1(t) _= (R', t) the horizontal plane
in R"'•+ (respectively C) at altitude t. If we let H,, denote the projection

mapping Hl,((x, t)) = x for all (x, t) C R,+ I (respectively E), we then
obtain the following result.

Proposition 2.4 lnn is a closed mapping of £ to R'; i.e., it maps
closed subsets of £ to closed subsets of 3?".

Proof Let F E F(£) and let {xi} be a convergent sequence in [In(F)
with limit x. Then it follows that there are tj E R(e) such that
(xi, ti) E F for all i. Since {ti} is a sequence in a compact space, it
follows that there is a subsequence {ik} such that ti, -, t E R(e).

Therefore (xik, tik) -- (x, t) E F because F is closed. Conse-
quently x E Iln(F), and it follows that [In(F) is closed in 3R?.

Note, however, that [,I is not a closed mapping of ?n+" to 3R?.

Theorem 2.12 Each U E U induces an fu E U by means of the
formula fu(x) = sup{t : (x, t) E U} (x E 3n). Moreover, T(Gi,) = U,

Afu = AU, and Xt(fu) = lnn (U n [I(t)) V t E 3R.

Proof The supremum formula clearly defines an ERV function on

3Rn. We must show that fu is USC. We do this by showing that
the horizontal cross sections of fu are closed in 3Rn. Note that
Xr(fu) = {x: fu (x) > r}. Thus if - = -oo, then XT(fu) = '?,

which is clearly closed. If -r E R, then

X,(fu) = {x: sup{t : (x,t) E U} > r} =

{x: (x,t) E U for some t > 7} = {x: (x,r) E U}.

Since {x : (x, -r) E U} = [I, (U nl [1(,r)), we see that

Xt(fu) = ln (U n 11(t)) V t E R.

Let {xi} be a convergent sequence in 3?" such that (xi, r) c U for
all i and let xi -, x. Then since (xi, r) - (x, r) in 3?n+I and U

28



is dosed, it follows that (x, r-) E U. Hence X,-(fu) is also closed
when r is real. If r = oo, then Xoo(fu) = {x : fu(x) = oo}.
Let {xi} be a convergent sequence in 3" such that fu(x,) = oo
for all i and let x, --* x. Given any real r, there are t, such that
(xi,ti) E U for all i and (x,,ti) -- (x, '-). Thus (x,r) E U for all
r E R, and it follows that fu(x) = oo; hence Xoo(fu) is closed
and the proof that fu E U is complete.

By definition,

T(G,,) = {(x,t) c R"+' : fu(x) > t} =

{(X,t) E R,+' : sup{r: (x,r) E U} > t}.

It is therefore clear that T(Gfu) D U. On the other hand, if
(x,t) E T(Gfu), then sup{r : (x,7-) E U} > t. If t is less than
the supremum, then there is a 7r > t such that (x, r) E U, and
we see that (x, t) E U. If t = sup{r : (x, r) E U}, then there is
a sequence {ti} such that (x, ti) E U for all i and tj -- t. Hence
(x,t) E U, because U is closed, and T(Gif) = U.

We must finally show that Afu = AU. We have by definition
that Afu = {x: fu(x) > -oo} and AU = {x: (x, t) E U}. It is
clear that if fu(x) > -oo, then there is a real t such that (x, t) is
in U. Thus {x : fu(x) > -oo} C {x : (x,t) E U}. It is equally
clear that (x,t) E U =4- fu(x) > -oo, since t is real. Hence
{x: fu(x) > -o0} = {x: (x,t) E U}, and the proof is complete.

Corollary 2.6 The mapping r : u i fu of U is one-to-one onto U.

Theorem 2.13 Each U E V induces an fu E U by means of the
formula fu(x) = sup{t : (x,t) E U} (x E 3"). Also, Te(Gfu) = U,

/Afu = AU, and Xt(fu) = Hn (U n 11(t)) V t E R(e).

Proof The supremum formula continues to define an ERV function on
3". We show that fu is USC by showing that the horizontal cross
sections of fu are closed in 3". We again have that X-oo(fu)
3?", which is clearly closed. If -r E R, then X,(fu) = [In(UAn(r))
as before. Since UflH(r) is closed in £, it follows that 1,,(Ufl1(r))
is closed in 3". If T = oo, then again

Xoo(fu) = {x: fu(x) = 0o} = {x: (X,oo) E U} = ln.(UnnI(oo)),

which is clearly closed. Hence fu E U. It is now obvious that

Xt Mu) = 11n (0 n rn(t)) V t E R?(e)
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By definition,

Tc(Gfu) = {(x,t) e F: fu(x) > t}

{(x,t) E C: sup{r : (x, r) e U} > t}.

Therefore Te(Gf.) D U, and, since Tc(Giv) D l(-oo), we see
that T,(Gf,) D U. On the other hand, if (x, t) E T,(Gfu), then
sup{r : (x, 7-) E U) > t. If t = -oo, it is clear that (x, t) E U. If
t > -oo and less than the supremum, then there is a T- > t such
that (x, r) E U, and we see that (x, t) E U. If t = sup{7- : (x,Tr)E
U}, then there is a sequence {tj} such that (x, ti) E U for all i and
t -* t. Hence (x, t) E U, because U is closed, and it follows that
Te(G1 ) = U.
We must finally show that Afu = AU. We have by definition that
Afu= {x: fu(x) >-oo} and AU = {x: (x,t) E U,t > -oo}. It
is clear that if fu(x) > -0o, then there is a real t such that
(x,t) e U. Thus {x: fu(x) > -o) C {x: (x,t) E U,t> -00}.
It is equally clear that t > -oo and (x, t) E U ==4 fu(x) > -0o.
Hence {x: fu(x) > -)o} = {x: (x, t) c U,t > -co}.

Corollary 2.7 The mapping r : U ' fu of V restricted to V is
one-to-one onto U.

We now have two ways to endow U with a hit-miss topology and thereby
obtain a setting in which the M-transforms of the functions in U can
be defined similarly to the M-transformations of F(3?"). We may give
U the hit-miss topology of either U or V by declaring either r or
f a homeomorphism. But we have already seen that the topologies
acquired by U in this way are identical. Indeed we have the following.

Proposition 2.5 fn --
1 o r.

Proof If U E U, then r-'ot(U) = F-(fu) D UUH(-oo). Moreover,
for (x,t) to be in r-'(fu), it must be true that fu(x) >_ t. If
(x, t) ý U D U and t > -0o, then it follows that

fu(x) = sup{r : (x, r) E UI < t.

Thus (x, t) • f-'-(fu) and the proposition follows.

Corollary 2.8 Let -y denote the topology induced on U by declaring
r a homeomorphism. If U is carrying the y'-topology, then f is a
homeomorphism of V onto U.
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With respect to -y, then, r and f are homeomorphisms of U and V, re-
spectively, onto U. Henceforth we call -y the hit-miss topology of U. To
clarify the character of the space (U,'y), we will use the homeomorphism
1 to translate the theory of convergence and semicontinuity from (V,&)
to (U,-'). In doing this we focus on establishing the (U,'y)-versions of
Matheron's convergence criteria (Cor. 2.9 and Thm. 2.15), the defini-
tion of upper and lower limits (Def. 2.15), the upper-lower limit theorem
(Thm. 2.16), and the usual semicontinuity criteria (Thm. 2.17). The
"y-convergence of a sequence {fi} in U (a U-sequence) to an fE U will
be denoted f, --4 f = lir f,. First I state, for reference, the V-version
of Matheron's convergence criteria.

Theorem 2.14 A sequence {U,} in V converges to U E V if and
only if (a) for each (x, t) E U there exist (xi, t,) E U, for all but at
most finitely many i such that (x,, ti) - (x, t) and (b) if {U,,j is a
subsequence of {Ui}, then every C-convergent sequence (xi,, ti,) E Ui,
has its limit in U.

If we put fi = f(Uj) and f = f(U), then this result can be restated in
terms of the fi and f as follows.

Corollary 2.9 If {f t } is a U-sequence and f E U, then ft -* f in U
if and only if both of the following hold:

(i) For each (x, t) E E such that t < f(x), there exist (xi, ti) E C for
all but at most finitely many i such that

t f< (x,) and (xi, ti) - (x, t) in C.

(ii) If {Jf} is a subsequence of {f t }, then Xik - x E ?", tik < fk(xik)

V k, and tik --- t in R(1) together imply that t < f(x).

I will call conditions (i) and (ii) Matheron's first and second convergence
criteria for (U,-y). Serra6 has indicated the somewhat different pair of
convergence criteria given in the next theorem.

Theorem 2.15 If {f,} is a U-sequence and f E U, then fi -+ f if and
only if (a) for each x E 3R" there exist x, E Rn such that xi -- x and
fi(xi) -- f(x) and (b) if {f tk} is a subsequence of {f t }, then Xik --- x
in Rn implies that lim sup fil(xik) < f(x).
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Proof By applying Corollary 2.9, we first show that (ii) and (b) are
equivalent. For (ii) ==> (b), let fi, be a subsequence of f,, let
Xk -- x, let fik, xik) -- t, and put fiki(xik.) = ti.. It is now an
immediate consequence of (ii) that iM sup fik(xik) <_ f(x). Hence
(ii) ==* (b). For (b) ==> (ii), let fi• be a subsequence of f, and
let (xiI,tik) - (x, t) with tik •_ fik (X) for all k. Since by (b)
f(x) Ž lim sup fik(xtk) and lim sup fikix(i) > lr sup tik = t, it is
clear that (b) ==* (ii).

We now show that (i) and (ii) imply (a). Let fi -- f in U and
choose t = f(x) in (i) so that ti --- f(x). Since ti <_ fi(x1), we have
that lim sup fi(xi) > lim inf fii(x) _> f(x). If lim sup fi(xi) > f(x),
then xi has a subsequence xik such that fAk (xk) -.- > fWx). Since
this contradicts (ii), we have

f(x) = limrsup fi(xi) >_ liminf fi(xi) > f(x).

Hence f,(x,) -- f(x).

We finally show that (a) implies (i). First suppose that t = f(x)
in (i), let xi be the sequence converging to x given by (a), and
put ti = fi(xi). Thus (i) follows from (a) in this case. Continuing
with the same xi, suppose that t < f(x) < 00 in (i). Then we can
choose (putting 6 = f(x) - t) ti = f1(xi) - 6 -, f(x) - 6 = t. Thus
(i) again follows from (a). Finally, if t < f(x) = oo in (i), then
there are ti < fi(x,) such that ti - t because f,(xi) is tending to
oo. This completes the proof.

Corollary 2.10 The following are results of the proof just given.

1. Condition (a) ==> Matheron's first convergence criterion.

2. Condition (b) 4=* Matheron's second convergence criterion.

The V-version of Definition 2.10 gives us the following definition of
upper and lower limits. (Note that the (partial) ordering < defined in
U by f < g -==, fi(x) < g(x) V x E Wn makes (U, <) a complete poset.
If {f.} is any set of functions in U, then inf{fJ} (the greatest lower
bound of {f,} relative to <) is given for each x E n'• by inf{f,(x)},
i.e., by the pointwise infimum. It is not generally true, however, that
sup{f,0 } (the least upper bound of {fj} relative to <) is given by the
pointwise supremum.)

Definition 2.15 Let {fi} be a sequence in U, and let C({fi}) denote
its set of limit points. Then for each x E 3?" we define

(Lir ft )(x) = inf{f(x) : f E E({f1 })}
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and
(rim fi)(x) = sup{f (x) : f E (i}) 1

Lim ft E U is immediate and Lim f j E U follows from Theorem 2.16.

Definition 2.16 Let {ft} be a sequence in U and let f E U.

1. If {fj} and f satisfy Matheron's first convergence criterion, then
we say that fi lower semiconverges to the lower semi-limit f.

2. If {ft } and f satisfy Matheron's second convergence criterion, then
we say that f, upper semiconverges to the upper semi-limit f.

This terminology is handy for stating the following (U/,Y)-version of the
upper-lower limit theorem.

Theorem 2.16 (Upper-lower limit theorem for (U,-y)) If {f,} is a se-
quence in U, then (a) Lim f, is the supremum of the lower semi-limits
of fi, (b) Lira fi is the infimum of the upper semi-limits of fi, and (c)
fi -f if and only if Lim f =Lim ft = f.

This theorem follows from the V-version of Theorem 2.7; moreover,
note that the terms infimum and supremum are used relative to the
poset (U, <). I conclude this section with the (U,y)-version of the
usual semicontinuity criteria.

Theorem 2.17 If 4 : X U U and X is a first countable Hausdorff
space, then P) is USC at x E X 4=#- (D(x) > Lirm 4)(xi) V {x,} in X
that converge to x, and 4, is LSC at x E X 4==> ,)(x) < Lim 4)(xj) V
{xj} in X that converge to x.

We also have the following counterpart of Remarks 2.4 and 2.10.

Remark 2.14 If X is a first countable Hausdorff space, then

1. 4) : X )f U is USC €===} x, -- x in X, (ýk, •k) -- (ý, r) in C,
and 4)(xij)(k) •: -r kfor all k together imply that 4)(x)(C) > -r.

2. 4) : X - U is LSC xi- x -- xin X, (,r) E , and
P (x)(C) > r ==* there exist (•,, T) E E such that 4)(xz)(Cj) > r7
for all but at most finitely many i and (C, -i") - (, Tr) in S.
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2.6 Myopic Topology of the Spaces Vc, Vc, and U,

Because of the compactness of the t-axis of E, it follows that the core
of every U E V with compact support is a compact subset of E. Con-
versely, every compact U E V has compact support and consists of the

core of U in union with a compact subset of fl(-oo).

Definition 2.17 Let V, be the set of compact U E V (the set of um-
brae in K(C)), and let p be the relative myopic topology of V, in K(£).

Henceforth assume that V, is carrying its p-topology.

Remark 2.15 The following results are easily obtained:

1. If U, E V, and U1 -- U myopically in K(E), then U E V. and
U1 --+ U in V,.

2. Conversely, if U1 -- U in V,, then U1 -- U my. .'cally in K(E).

3. V, is a myopically closed subspace of K(E).

4. If IC C Vc, then IC is closed (compact) in V, 4==* K is closed
(compact) in K(6).

5. V, is an LCS space.

6. T, maps K(E) onto Vc.

Proposition 2.6 A subset K of V, is p-compact if and only if IK is
o-closed in V and 3 a V E Vc, such that U C V for all U E KC.

Proof For ==o let KI be a p-compact subset of Vc. Since K is then
a v-compact subset of K(C), it follows that K is closed in F(E)
(and therefore in V), and there exists a K E K(C) and therefore a
V E V, (namely TC(K)) such that U C V for all U E KI. For -==
suppose that KI is u-closed in V (and therefore closed in F(E)),
and there exists a V E V, such that U C V for all U E KI. Then
it follows that KI is a p-compact subset of V,.

This result leads to the following myopic convergence criteria.

Proposition 2.7 A sequence {Uj} in V, converges myopically to U in
V, if and only if U, -- U in the hit-miss topology of V and there exists

a V E Vc such that U1 C V for all i.
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The myopic topology of K(tF) is generated by

{KF: F E F(C)} U {Kc: G E G(E)}

where KF = {K E K(t) : K n F = 0} and

Kag { K EK(E): K nfG$}.

Introducing the obvious definitions [V,]F = {U V,: U f F = 0} and
[Vole = {U E V, : U n G # 0}, we accordingly obtain the following:

Remark 2.16 The topology generated on V, by the collection

{[VlIF : F E F(E)} U {[V,]c: G E G(E)}

is precisely the (relative) myopic topology of Vc (in K(E)).

Since the relative hit-miss topology of V,. in V is generated by

{[VIK:K E K(c)} U {[Vc], : G E G(C)}

and since this collection is strictly smaller than

{[VC]F : F E F(E)} U {[Vole : C E G(E)}

we see that the myopic topology of Vc is strictly stronger than its
relative hit-miss topology. We may thus conclude the following:

Remark 2.17 The one-to-one identity mapping U • U of (Vc,p)
into (V,u) is continuous.

Since a continuous image of a compact set is necessarily compact, we
see that every p-compact subset K of Vc is a a-compact and therefore a
o-closed subset of V. Since every p-closed subset of K) is p-compact, it
follows that every p-closed subset of Vc is a u-closed subset of V. Hence
the myopic and hit-miss topologies agree on the p-compact subsets of
Vc. Conversely, if F C Vc is u-closed, and the myopic and hit-miss
topologies agree on F, then F is p-compact. In other words,

Proposition 2.8 K is a p-compact subset of Ve if and only if KS is
a-closed and the relative hit-miss and myopic topologies agree on K.

Corollary 2.11 V E V, ==• {U E Vc: U C V} is p-compact.
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It is clear from all this that p has essentially the same properties as the
myopic topology of K(C). Letting V, = Vn f V, I now show how to
put a myopic topology on V,.

Definition 2.18 Let Vc = {U E Vc : U =}.

Note that V. is not a subset of Vc; indeed, there is no umbra in Vc
that lies in V,. The cores of the umbrae in VC are compact, however,
and we see that V¢ is a subset of Vc and has the natural one-to-one
correspondence U --. U with the umbrae in Vc. The relative myopic
top~ology of Vc in V, may therefore be transferred by identification
to V,. This quite clearly also gives a myopic topology to the set of
f E U with compact support. In view of Proposition 2.7, we have the
following characterization of myopic convergence in V,.

Proposition 2.9 A sequence {Uj} in IV, converges myopically to U in
V- if and only if (a) for each (x, t) E U there exist (xi, ti) E U1 for all
but at most finitely many i such that (xi, ti) - (x, t) in C, (b) if {Ulk} is
a subsequence of {U,}, then every C-convergent sequence (xk,, tik) E Uik
has its limit in U, and (c) there exists a V E V, such that U, C V V i.

Definition 2.19 We denote the set of U E U (f E U) with compact
support by Uc (U•).

Remark 2.18 r maps U, one-to-one onto U4.

Note that no U E U, lies in K(nn+'). We nonetheless have the follow-
ing lateral compactness condition.

Remark 2.19 If {(x 1 ,tI)} is a sequence in U E Uc, then {xi} has a
convergent subsequence.

To obtain a myopic topology for Uc, we may simply note that the
mapping of U, given by U i U, where the overbai denotes closure
in C, is one-to-one onto V•. We may thus endow U, with a myopic
topology by identifying it with V1•. This again gives a myopic topology
to U., indeed the same one it acquired above from V,. Translating
Proposition 2.9 to U•, we obtain the following:
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Proposition 2.10 A sequence {U 1 } in U, converges myopically to U
in Uc if and only if the following hold:

(a) For each (x,t) E U there exist (xi, tj) E U, for all but at most
finitely many i such that (x,, t,) --, (x, t).

(b) If {Ui,} is a subsequence of {U,}, then every convergent sequence
(xik,tik) E Ui. has its limit in U.

(c) There exists a V E Vc such that U, c V for all i.

Myopic convergence in U, therefore has the following characterization.

Proposition 2.11 A sequence {.i} in Uc converges myopically to f in
dit if and only il the following hold:

(a) For each x E Af and t < f(x), there exist (xi, t,) for all but at
most finitely many i such that

x, E Af,,, !5 f,(x,), and (x,, ti) -- (x, t) in E

(b) If Xjt E Afik V k, tik <_ fk(xij) V k, and (xik,tik) -- (x,t) in £,
then x E Af and t < f(x).

(c) There exists a g E Uc such that f :! g for all i.

2.7 Lattice/Poset Structures of V, U, and U

It is readily seen that (U, nl, U) is a sublattice of (F(R'+'), n, u); like-
wise, it follows that (V, f, U) is a sublattice of (F(£), O, U). Both
lattices are therefore distributive and induce the ordering C. Since
(U, n, U) has the universal bounds 0 and Rn+1, since (V, n, U) has the
universal bounds ll(-oo) and £, and since U and V are closed under ar-
bitrary intersections, it follows that both lattices are complete. If we let
V and A respectively denote the pointwise supremum and infimum in U
(i.e., if f, g E/U, then (f Vg)(x) =- sup{ f (x), g(x)} = max{f (x), g(x)} V
x E Rn, and (f Ag)(x) _ inf{f(x),g(x)} = min{f(x),g(x)} V x E Rn),
it easily follows that (U, A, V) is a lattice with induced ordering <_. Since
fuuu, = fu V fu' and fuu' = fu, A fu' for all U. If' r_ U [U, U' E V],
it follows that r If] is a lattice isomorphism of (U, n, U) [(V,_A, u))
onto (U, A, V) and, of course, a poset isomorphism of (U, C) [(V, C)]
onto (U,<_). Thus (U, A, V) is distributive and complete. Indeed, U,
U, and V are topologically, lattice algebraically, and poset equivalent.
The universal bounds of (U, A, V) are Hto and RR., where (V x E •R)
NO(x) = -oo and NRn(x) = oo. Thus IF(O) = F(H(-oo)) = No and

-=r(E) =
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Theorem 2.18 If {Uj} is any subset of U or V, then

1. inf{Ua} - n,,U, and sup{U`} = UcU 0.

2. inf{fu.} A~fu, and (Afua)(x) = inf{fu, (x)} for all xE Rn".

3. sup{fu}= V.fu. and V`,fu. is the least function in U such that

(V.,fu.)(x) _> sup{fuo (x)} for all x E R".

4. If {U,,} is a subset of U, then

(a) r(inf{U,}) = inf{fu,}.

(b) r(sup{U.}) = sup{fu}j.

5. If {Uj is a subset of V, then

(a) f(inf{U,,}) = infiffu}.

(b) f(sup{U.}) = sup{ff.}.

Corollary 2.12 r If] is a complete lattice isomorphism of (U, n, U)

[(V, n, u)] onto (U, A, V); i.e., r [f] preserves the infima and suprema
of arbitrary subsets. (Actually, all lattice isomorphisms are complete.)

Theorem 2.19 The topological properties in U of the ordering relation

< and the lattice operations A and V are as follows:

1. < is a closed order in U; i.e., {(f, g) E U x U : f < g} is closed.

2. V is a continuous mapping of U x U onto U.

3. A, however, is only a USC mapping of U x U onto U.

Moreover, a similar result holds for U [V], c, n, and U.

Remark 2.20 (U,7y, <) is a compact ordered space and (U,'y, A, V) is
a compact closed-order lattice; hence,

1. f and r are compact-ordered-space isomorphisms, respectively, of
(V,&, C) and (U,w, c) onto (U,7y,<).

2. f and r are closed-order-lattice isomorphisms of (V,&, r, U) and
(U,w, n, U), respectively, onto (UI, ,y V).

38



2.8 Minkowski Sum and Difference in U and U

We can also define a Minkowski sum (a)) and difference (e) of umbrae-
indeed, more straightfowardly in U than in V. The Minkowski differ-
ence turns out to be such that U is closed under E0; however, for the
Minkowski sum to lie in U, one of the summands must have compact
support. This parallels the case with F(R?"); i.e., we can Minkowski
sum two sets in F(Rn) and obtain a set in F(3'n), provided that one
of the summands is compact. We can, moreover, isomorphically define
0 and E( in U using the identification r. As with F(Rn), it turns out
that E3 is USC from U x U to U. Unlike with F(R'"), however, it is not
true that E) is continuous from U x Uc or Uc x U to U, even when we
use the myopic topology of U,. These matters are considered in detail
in what follows.

IfU,V EU, then U(V =- {(x+y,t +r) : (x,t) E U,(y,r) E V} and
U E) V - {x : x - y E U V y E V} are well-defined subsets of ,,+1. In
this light, consider the following.

Proposition 2.12 If U and V are in U, then

I. U (D V and U E) V are umbrae in Rn,•+.

2. UeVEU.

3. If either U or V is in U,, then U ED V E U.

Proof Assume that (x, t') E U ( V and that t' > t E R. We show
that (x, t) E U (D V. There are (ý, u) E U and (77, A) E V such
thatC+il=xand A+A=t'. Let 26 = t'-t. Then26isreal
and positive, and it follows that (C, I - 6) E U and (77, A - 6) E V.
Thus (x, t' - 26) = (x, t) E U ED V, and it follows that U ED V is
an umbra in R,+'. Now suppose that (x, t') e U e V and that
t' > t E R. We show that (x, t) E U E) V. By definition,

(,7,A)E•U e3V = (7-C,A--•)EUV(ý,-r)CV.

Thus (x-ý,t'-r) E Uforall (C,r) E V. Let t'-t =6 > 0.
Then (x - ý, t'- 6 -- r) = (x - C, t - 7) E U for all (ý, r) E V, and
it follows that (x, t) E U 0 V. Thus U 0 V is an umbra in Rn+,.

To prove (2) it is sufficient to show that U E) V is closed in n,3+.
Suppose accordingly that (xi, ti) is in U E V for all i and that
(xi, ti) - (x, t) in Rn"+. For each i it follows that for all (ý, r) E V
we have (xi - C, tj - r) E U. Since U is closed in 3"+• and
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t -- t e R =: (xi - C ti - 'r) -* (x - C, t - 7) in R,+ I for all

(C, r) E V, we see that (x, t) e U E V. This proves (2).

To prove (3), suppose that (xi, t,) e U ( V for all i and that
(xi, t) --+ (x, t) in Rn,+'. There are (&, A) e U and (77j, A,) e V
such that & + ri = xi and It• + Ai = ti. Since either U or V is in
U, it follows that there is a subsequence {ik} such that 6, - ý
in R", 71j, -- 1 7in R", C + 77 = x, uiL, -- /u in R, Aik --* A in R,
and u + A = t. Since U and V are closed in Rn"+I, it follows that
(x, t) E U E V. This completes the proof.

If U E U and V E U., we define their commutative Minkowski sum as
U E V = V E) U. Likewise, if U and V are in U, we let U e V and
V E U define their Minkowski differences. The Minkowski sum is thus
a mapping (U, V) i-+ U D V of either U x U, or U, x U to U, and the
Minkowski difference is a mapping (U, V) m-? U E V of U x U to U.

Definition 2.20 We define D and e in U with IF as follows.

1. Iff EU and g e U,, then

f ( g = g f --- r[r-'(f) r-'(g).

2. If f, g e U, then

f e g - r[r-'(f) e r- 1 (g)].

Remark 2.21 r is an isomorphism relative to E and 9. In addition
and in particular, we have the following.

1. If either U or V is empty, then U E V = 0; equivalently,

fE Ro = Rof = N V f EU.

2. U 0E =n+ I ; equivalently, f e RO = RRn V f E U.
3. If V 0 0, then 0 e V = 0; equivalently,

f E U and f # 1o ===: o E f = No.

Theorem 2.20 0 is a USC mapping of U x U to U.
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Proof Let U, - U and V, -- V in U. We show that

(xik, tik) E UiA E V1k V k and (xik, tij) - (x, t)

==0 (x,t) E U E V.
Note that (xik, ti,) E Uj, E V4 , is equivalent to

(xk - y, t, - T) E Uj, for all (y, -r) E Vk.

Let (C, A) be any point in V and let (5, N) E V4 (for all but at
most finitely many i) converge to (1,Li). Since

(, - kt - -N (X - t -

shows that (x - C, t - At) E U V (C, JL) E V, it finally follows that
(x, t) u e v.

Corollary 2.13 E is a USC mapping of U x U to U.

Theorem 2.21 ED is an LSC mapping of either U x Uc or U, x U to
U with respect to the relative hit-miss and myopic topologies of U,.

Proof Let U, -- U in U and let Vi --+ V in the relative hit-miss or
myopic topology of Uc. We show that if (x, t) E U (e V, then
there is a sequence (xi, ti) E U, E) V1 for all but at most finitely
many i such that (xi, ti) --* (x,t). There are (C, p) and (77, A)
in U and V, respectively, such that (C + 77, p + A) = (x, t). For
all but at most finitely many i, there are thus (Ci, 14) E U, and
(77j,A ,) E Vi (V) such that (Ci, pi) -- (Cus) and (77,A, ) -+ (77, A).
In the case of myopic convergence, since A E R, it follows that all
but at most finitely many of the Ai E R, so that (tb, A,) E Vi for
all but at most finitely many i. Hence in either case and for all
but at most finitely many i, we have (Cj + r77, pi + A,) E U, E V1
and (C + 71j, pi + A) -- (x, t).

Corollary 2.14 (D is an LSC mapping of either U x U, or U,, x U to
U with respect to the relative hit-miss and myopic topologies of U,.

Proposition 2.13 ED is not USC on U xU, relative to either the myopic
or relative hit-miss topology of U,.
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Proof Define the functions f,, i = 1,2,3, ... , and f as follows:

1 if 0<x <1
f(x) = -i if 1 <x< 2{-o otherwise

and { 1 if 0< x <1
f(x) -= otherwise.

Then fi --+ f in the myopic topology of U,. Let

g) -c 0 if x # 0

0 c if x=0

and for all i let g, = g. Then

g -- 9 in U

(gi MW f,()--- 0c if 0 < x < 2

-oc otherwise

and
( (D f) (x){ co if 0< x <1

-oo otherwise.

This completes the proof.

If we let L denote the set of ERV LSC functions defined on ', then the
mapping f a-i -f of U is one-to-one and onto £. One defines the dual
topology y* on £ by declaring this mapping to be a homeomorphism.
The duality theory associated with F(R") and G(3") 5", manifests itself
in the function setting in the pair of spaces (U,-y) and (4,,Y*) and in
the lattice- and Minkowski-algebraic duality between them.

2.9 Translations of Umbrae and Functions

If A is a nonempty subset of 3n+' and (x, t) E R+1, then we define
A + (x,t) = {(y,Tr) + (x, t) : (y,r) E A}. Note that if U E U and
(x,t) E 3,?+, then the translate U + (x,t) of U by (x,t) is an umbra
in U. Indeed, if U is any umbral subset of "+•,, then U + (x, t) is an
umbra in Rn+I. The translates of functions are defined so that

fu+(x,t) = fu + (x,t).
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Definition 2.21 If f E U and (y, t) E R'+', then f + (y, t) denotes
the function g in U whose graph is {(x + y, f (x) + t) : x E Rn}, that is,

g(x) = f(x- y) + t V x E Rn.

We of course have a similar definition of f + (y, t) when f is merely an
ERV function defined on R.

Proposition 2.14 If f --* f in U and (xi, t,) -, (x, t) in 3?+', then
fi + (xit 1 ) -- f + (x,t) inmU.

Proof Let g, = f±+(xi,t1 ) and g = f+(x,t). For each • E n'• we then
have g,(ý) = fi(C- x,) + t, and 9() = f( - x) + t. If - ,
then lim sup gi, () = lim sup [fi•k(k - xik) + tik] •

limsup fk(4k - Xi.) + t < f(ý - X) + t = g

Thus condition (b) of Theorem 2.15 is satisfied. For condition (a)
of that theorem, we can show that there exists a sequence & ---,
such that gi(C) = fi(Ci - xi) ± t1 --4 f(C - x) + t = g(C). For this,
it is enough that there exist & -- C such that

M&(• - Xi) - f (C- X).

Since r -C -x exist such that ft (71j) -+ f(C-x), let, = 7 xi.

Corollary 2.15 Iff • U and (xi,ti) , (x,t) E Rn+', then

f- (x,,ti) - f- (x,t) inmU.

Remark 2.22 Let fx, t denote the function in U, defined by

f,t(y)= -oo for all y : x and fx,t(x) = t.

If t is finite, then f E) f,,t = f + (x, t) for ali f E U.
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3 The Transform Space M(U)

I now take up the central issue of defining and analyzing the M-
transforms of U, the set of which I denote by M (U)). The definition of
the M-transforms will allow us to use the kernel theory of Maragos7 to
obtain a version of Matheron's closed kernel theorem for M(U). This
will in turn lead to a hit-miss topology that converts M(U) into a
transform space with a complete lattice structure.

Definition 3.1 Let Pu (Pu) denote the class of umbrae in R,+" (ERV

functions on Rn). A mapping 4) : U -- % Pu is said to be TI if

4I(U + (x, t)) = 4,(U) + (x, t) for all U E U and (x, t) E Rn+'.

A mapping 4P : U - Pu is said to be TI if

4,(f + (x,t)) = 4,(f) + (x,t) for all f E U and (x,t) E R,+".

Definition 3.2 An M-transformation of (or on) U is a TI USC map-
ping of U to itself. We denote the set of M-transformations of U by
M(U). An M-transform of (or on) U is a TI USC mapping of U to
itself. The set of all such transforms will be denoted M (U).

3.1 Maragos' Kernel Theory

Definition 3.3 If 4): U -- Pu is TI, then

ker(4)) =_ {U E U: (0, 0) E 4D(U)}.

If 4): U - Pu is TI, then

ker(4) = {f E U: 41(f)(0) > 0}.

The first part of this definition is the obvious analog of the defini-
tion of the kernel of a TI mapping of F(R"). Note that to each
4) E M(U) there corresponds a unique F(4)) E M (U) such that
r(4))(fu) = r(4q(u)) for all U E U. Every transform in M(U), more-
over, is the correspondent in this way of a unique transformation in
M (U). Thus r : M (U) ). M(U) is one-to-one and onto. The sec-
ond part of the above definition is framed so that 1'[ker(4)] = ker[r(4))]
V TI 4) on U; i.e., so that r becomes a kernel isomorphism of M(U)
onto M(U). From now on the discussion is restricted to M (U). Note,
however, that there are M(U)-versions of all the results to follow.
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Proposition 3.1 If K is the kernel of a TI mapping of U to Pu, then

f E K =-- f + (O,t) E KA V t > 0.

Definition 3.4 A subset IC of U that satisfies

f E /C f + (O,t) E I V t > 0

"will be called up-closed.

Proposition 3.2 If 4): U b- Pu is TI, then (f E U and x E R')

-t(f)(x) = sup{t: f - (x,t) E ker(4))}.

If IC is any up-closed subset of U, then (f E U and x E R')

4)(f)(x) = sup{t: f - (x,t) E )C}

defines a TI mapping (P of U to Pu whose kernel is KC.

3.2 Closed Kernel Theorem

Remark 3.1 IfA C R"+', letbUA = {f ebU: P-'(f) nA = 0} and let
UA = {f EU: r-'(f) n A # 0}.

1. 7 is genemted subbasically on U by

{UK : K E K(R"+')} U {bU: G E G(Rn+1)}.

2. {UK : K E K(3'?+l)} U 0 is a base for an upper y-topology of U.

3. {UG : G E G("n+,)} U U is a subbase for a companion lower
y-topology of U.

To prove a function analog of Matheron's closed kernel theorem, it will
be convenient to approach the result sought (Thin. 3.1) in several steps.

Lemma 3.1 If 4) is a USC TI mapping of U to U, then ker(qD) is a
closed subset of U.

Proof Let K E K(n'?+1) and note that UK is the complement of UK
in U and is therefore closed in the upper -y-topology of U noted
in the above remark. Thus if 4) is into U and USC, it follows that
'-`(UK) is closed in U. Since {I} ={(0, 0)} E K(Rn+,) and

4-'(%6) = D-1 ({f E U : T(G 1 ) nl {6} # 0}) =

{f E U: 4)(f)(0) > 0} = ker(4)),

it finally follows that ker(4)) is closed in U.
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Lemma 3.2 If 4ý is a TI mapping of U to Pu and ker(4)) is closed in
U, then 4 is into U.

Proof We show that f E U, x E n'•, and x, , x in R" imply that

4)(f)(x) > limsup4Q(f)(x,)

or equivalently that

sup{t: f - (x,t) E ker(4))} >

limsupsup{1r- f - (x,,r,) E ker(4))}.

Put s, = 4)(f)(x,) = sup{r, f - (x,, r,) E ker(4)) }. If lim sups, =

-oo, there is nothing to prove. We can therefore assume without
loss of generality that s, > -oc for all i. We then have two cases
to consider: (1) all but finitely many (without loss of generality
all) of the si < oo and (2) infinitely many of the s, = co.

In case (1), it follows from Corollary 2.15 that f- (xi, si) E ker(4)
for each i because ker(f) is closed. Case (1) has the two subcases:
1 (a) lim sup si < oo and 1(b) lim sup si oo. Letting

sj" - lira sup si =

we have in case 1(a) (again because ker(4)) is closed) that

f- (x,s) E ker(4)) ý=P 4(f)(x) >8 .

This disposes of 1 (a). For 1(b), there is a subsequence s, -- 00,
and here we must show that 4)(f)(x) = co. We now observe that

4)(f)(x) = oo . f - (x,t) E ker(4)) for all t E 3?

because ker(4)) is up-closed. For the same reason,

f - (xi,,t) E ker(I)) for all t E (-00, Sik].

Since sjk, - oo, it follows for any given t E R that there exist
tk < si, such that ti , t. Thus f - (xi,, tk) E ker(4)) for all

k and f - (xi,,tk) - f - (x,t) in U by Corollary 2.15. Since
ker(4ý) is closed, it follows that f - (x, t) E ker(4)) for all real t.
This disposes of case 1 (b). For case (2), there is a subsequence
{si4 = oo}. We now observe that f - (xi,, t) E ker(f) for all
t 6 (-o0, oo). Since s, -- oo, it follows for any given t E R that
there exist ti < sik such that tk - t. Thus f - (xi,, tk) E ker(f)
for all k and f- (xi,,tk) - f- (x,t) in U by Corollary 2.15. Since
ker(f) is closed, it follows that f - (x, t) E ker(4)) for all real t.
This disposes of case (2) and shows that 4) is into U.

46



Theorem 3.1 (Closed kernel theorem) A TI mapping 4, of U to Pu is
into U and USC if and only if ker(4)) is closed in U.

Proof It is sufficient to show that a TI 4) with a closed kernel is USC.
To prove that 4) is USC, we show that gi -- g in U, 4 ,(gi,)(xk) Ž_ tk
for all k, and (Xk,tk) - (x, t) together imply that 4)(g)(x) > t.
We consider three cases: (1) t = -00, (2) t E R, and (3) t = oo.
In case (1), there is nothing to prove. In case (2), all but at most
finitely many of the tk are real. For these k, let fA = gik (Xk, tk).

Then 4,(fk)(0) = [4 )(gS,) - (xk, tk)](O) = 4)(.qi,)(xk) -tk 0 and it
follows that fk E ker(l)). Since ker(l)) is closed and fk -- g - (x, t)
in U, we see that g - (x, t) E ker(4)), i.e., 4,(g)(x) - t > 0. This
disposes of case (2). Case (3) resolves into two subcases: (a)
infinitely many of the t, are real and (b) all but finitely many of
the tk = oo. For subcase (a), let {tk, E R} be a subsequence of
{tkj} and put fj = glk. - (Xki, tk.). As before, it follows that each
fj E ker(4)) and hence that gi,, - (xk,, tk, - r) E ker(4)) for all

,r > 0, because ker(4ý) is up-closed. Given any real number A,
there is a positive sequence -,- , 0o such that tk, -j - VA. Thus
g - (x, A) E ker(4)) for all A E R or 4,(g)(x) Ž A for all real A, and
it follows that 4)(g)(x) = oo. This proves subcase (a).

Suppose, then, that all but finitely many of the tA = oo. For all
such k, we have that 4)(gSk)(xk) = 00 and hence that there are real
rk - oo such that D(gij)(xk) Ž rk. This puts us in the situation
of subcase (a) and completes the proof.

3.3 Identification of M(U) with FT(U)

According to the closed kernel theorem, there is a one-to-one corre-
spondence between the elements of M(U) and the U-closed, up-closed
subsets of U. Let us denote this class by FT (U). Because U is a compact
LCS space, we may give F(U) the usual hit-miss topology and topol-
ogize M.(U) - FT(U) with the hit-miss topology that FT((U) inherits
from F(U); this we call the hit-miss topology of M(U).

Theorem 3.2 FT(U) is a closed (and therefore a compact) subspace
of F(U) and is closed under intersections and finite unions.

Proof Let {K 1i} be a sequence in FT(U) such that KC -, KI in F(U).
We show that C is up-closed, i.e.,

f E 1 4= f + (O,t) E C V t > O.

47



If f E IC, there exist f, E IC, such that f1 - f in/U. If t > 0,
then fj + (0, t) E rC. and fj + (0, t) ---* f + (0, t) in U, so that
f + (0, t) E K1. On the other hand, if f E U and f + (0, t) E IC for
all t > 0, then f + (0, ti) E 1C and f + (0, ti) -- f in U whenever
{t,} is a positive sequence tending tu zero. Hence f E IC, and the
first part of the theorem is proved.

For the second part, let {K.} be a family of elements of FI (U). It
is clear that AC _= nfAC 0 E F(U). To see that KA is up-closed, first
note that the validity of

f E KC =* f + (0, t) e C V t > 0

is obvious. Suppose, on the other hand, that f E U and that
f + (0, t) E KA V t > 0. If {t4} is a positive sequence with limit
zero, then f + (0, t4) E IC for all i and f + (0, ti) -- f in U. Since
AC is closed in U, it therefore follows that f E AC. The proof for
finite unions is similar.

Corollary 3.1 (FT((U), n, U) is a complete distributive lattice with in-
duced ordering C.

Proof It follows from Theorem 3.2 that (FT (U), n, U) is a lattice. That
this lattice has induced ordering C and is distributive is obvious.
Note again that a lattice with a universal upper bound in which
every subset has an infimum is complete. Since U is up-closed, it
follows that (FI (U), n, U) has the universal upper bound U. Since
FT(U) is closed under arbitrary intersections, it follows that all its
subsets have infima. This completes the proof.

3.4 Lattice/Poset Structure of M(U)

As with M(F), the transform space M(U) has a natural lattice and
poset structure that it acquires from F T (U) through the correspondence
t ,-- ker(Q). If 4' and V' are members of M(U), then the transforms
4! A V' and ib V V, are defined in terms of their kernels by

ker(4' A 4') = ker(4') n ker(4') and ker(4' V V') = ker(4') U ker(4').

Thus It is clear that 4' A V) 94 V V9 E M (U). Indeed it follows that
(M (U), A, V) is a lattice and that 4' i & ker(4') is a lattice isomor-
phism of (M (U), A, V) onto (FT (U), n, U). Consequently, (M (U), A, V)
is complete and distributive.
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Theorem 3.3 The ordering _ induced in M.(U) by its lattice opera-
tions can be characterized as follows: If 4 and V9 are transforms in
M (U), then

C) -< 4C' *=ý (f) < 49(f) for all f EU l ker(4C) C ker(49).

In addition, if {14} is any subset of M(U), then

1. inf{•.A}j A0$,b has the kernel n, ker(). 0 ) and

(A.4ý)a(f) = A.a4.(f) V f E U.

2. sup{ }-- V4,), has the kernel u, ker(l),) and is the least M.-
transform such that

(V04))(f) >_ VA. (f) for all f E U.

S. If {fD} = {I ) k} is a finite set of M-transforms, then

(Vk 4 k)(f) = Vkl )k(f) for all f E U.

Let -rT denote both the hit-miss topology of M(U) and the relative
topology of FT(U) in F(U).

Corollary 3.2 The poset (M.(U), j) is isomorphic as such to the poset
(FT((U), C) under the correspondence +--. In fact, (M(U),-r T, -) is a
compact ordered space and is isomorphic as such to the compact ordered
space (F' (U),-r',c); moreover, (M(U),TT,A,V) is a compact closed or-
der lattice that is isomorphic as such to the compact closed order lattice
(F T (U),'r t ,, u).

Theorem 3.4 The topological properties in M (U) of the ordering re-

lation -< and the lattice operations A and V are as follows:

1. -< is a closed order in M (U)).

2. V is a continuous mapping of M (U) x M (U) onto M (U).
3. A, however, is only a USC mapping of Ml(U) x×M (U) onto M.(U).
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3.5 Increasing Transforms

Unlike the case with TI set transformations, it is not profitable to
entertain the notion of a purely decreasing TI function transform, as
this turns out to be a nearly vacuous concept.

Definition 3.5 If 4) : U - Pu, we say that 4- is increasing if

41 (f) (X) >! 41(g) (X) V x ER

whenever f and g are in U and f(x) > g(x) V x E R". Order preserving
is a synonym for increasing.

The corresponding definition of a decreasing transform would require
that 4D(f) >_ 4(g) whenever f < g. But since f < f + (0, t) V t > 0 is
true for all ERV functions, and we are interested only in TI transforms
4t, it follows that 4)(f + (0, t)) = 4Q(f) + (0, t) _> 4P(f) for all t > 0 and
all f E U. A decreasing transform 4) would therefore have to satisfy
4,(f) + (0, t) = 4)(f) for all f E U and all t > 0, and this shows that our
only two candidates are 4)(f) - No and 4ý)(f) =_ R., which are indeed
(trivially) decreasing (and increasing too). It is clear, then, that the
meager concept of a decreasing TI transform is virtually useless.

Remark 3.2 The mappings f i oN and f &i- s,, both V f E U,
are increasing M-transforms. We denote them 4)0 and 4),- and call
them the trivial transforms.

Theorem 3.5 If 1 is a TI mapping of U to Pu, then 4)(H0 ) is either
No or RH., and likewise for 4) (NRn). Furthermore, if 4) is nontrivial and
increasing, then 4I)(R) = H0 and 4)(HRn) = Rn.

Theorem 3.6 A transform 4) E M(U) is increasing if ai,d only if
ker(4)) is an increasing set.

Maragos' has established the analogs of Theorems 1.7 and 1.8 for in-
creasing M-transforms (Thm. 3.7 and Cor. 3.3 below) by means of the
following natural definition of function erosion.

Definition 3.6 If g is ERV on R', let S(g) = {x : g(x) > -oo}. If

f, g E U, then define (f, g) i-f £(f, g) by

£(f,g)(x) = sup{t : t + g(y - x) < f(y) for ally - x E S(g)}.

£(f,g) is ERV on R' and is called the erosion of f by g.
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Theorem 3.7 (Maragos) Let MI(U) denote the subspace of increasing

transforms in M (U). If 4, E M.I (U), then for all f E U

41(f) = V{(f, h): h E ker(4ý)}.

The minimal basis kernel 12 K/i.(4)) of a transform 4) E MI(U) is the
collection of minimal elements of ker(4)) under the ordering <, i.e., the
set of h E ker(A)) such that no f E ker(ýD) is strictly less than h. The
nonempty existence of this collection for ker(4)) # 0 is guaranteed by
Zorn's lemma and the fact that ker(4)) is closed in U. In fact,

Lemma 3.3 If C is a totally ordered subset of U, then A L and V L lie
in the closure of C.

Proof Banon and BarreraO have shown that if V' is a totally ordered
subset of F(S), then inf V' and sup C' lie in the closure of V'.
C, =- r- 1() is a totally ordered subset of U and hence of F(3Rn+,).
Thus the infimum and supremum of r-'-(C) (which lie in U) lie in
the U-closure of r- 1(c). Since r-1 is both a poset isomorphism
and a homeomorphism, the lemma follows.

Theorem 3.8 If IC is a nonempty increasing closed subset of U, then
the set MA of minimal elements of KC in IK is nonempty and such that
K = {f EU: A< f, •E MA}. Similarly, if K is a nonempty decreas-
ing closed subset of U, then the set My of maximal elements of K in KC
is nonempty and such that K = {f E U : f < As, Az E Mv}.

Proof Let h be an element of K and let Ah = {f E KC: f _< h}. Every
totally ordered subset of Ah has an infimum in U. Because KI is
closed in U, it follows from the above lemma that said infimum
lies in KC and hence in Ah. We accordingly see that every totally
ordered subset of Ah has a lower bound in Ah; hence, by Zorn's
lemma, .Ah has a minimal element that is also a minimal element
of K. Let MA be the set of all such minimal elements as h ranges
over KC. Since KC is increasing and every h E KI is bounded from
below by a A E MA, we see that KI = {f E U : A <- f,A E MA}.
The proof for decreasing K is similar.

Corollary 3.3 (Maragos) If 4) E Mt(U), then for all f E U

4)(f) = V{E(f,h): h E Ki,(O)}.

12p. Maragos, A unified theory of translation-invariant systems with applications to morphological analysis

and coding of images, Ph. D. thesis, Georgia Inst. of Tech., Atlanta, GA (1985).
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4 Morphological Mappings of U to F(nn+l)

This final section introduces and develops the space R(U) of morpholog-
ical mappings of U to F(n"+t). It is shown that h(U) isomorphically
includes and considerably generalizes M (U), and is a proper setting
in which to generalize the Banon-Barrera representation theorems to
apply to morphological mappings of the functions in U.

4.1 The Morphological Mapping Space 7R(U)
Definition 4.1 A mapping a : U _ p(R,,+) is TI if

a(f + (x, t)) = a(f) + (x, t) for all f E U and (x, t) E -,n+1.

Ifa : U _ p(3,n+l) is TI, then ker(a) =_{If EU: (0,0) E a(f)}.

With this we obtain a result analogous to §1.23 of section 1.3 and
Proposition 3.2.

Proposition 4.1 Ifa : U p(Rn+l) is TI and f E U, then

a(f) = {(x,t) E :n+: f- (x,t) E ker(a)}.

If K is any subset of U, then f - {(x,t) E Rn+1 : f - (x,t) E K}
defines a TI mapping of U to p(R,•+) whose kernel is K.

As in the analogous instances, then, there is a one-to-one correspon-
dence a ,-- K = ker(a) between the TI mappings of U to p(Rn+,)
and the subsets of U. In addition, the following version of Matheron's
closed kernel theorem is easily obtained.

Theorem 4.1 A TI mapping a of U to p(Rn+,) is into F(Rn+') and
USC if and only if ker(a) is closed in U.

The set of USC TI mappings of U to F(Rn'+l) will be denoted 'H(U).
According to the above theorem, then, there is a one-to-one correspon-
dence a IC K = ker(a) between the a E 7-W(U) and the closed subsets
of U. ?t(U) thus obtains its hit-miss topology 0 by identification with
F(U). Let us now observe that the closed subsets of U, together with
the intersection (n) and union (U) operations, form a complete dis-
tributive lattice. An isomorphic lattice structure is thus imposed on
7-(U) by the one-to-one correspondence a - ker(a). This is essentially
the same situation as those respectively outlined in sections 1.3 and
3.3 for M(F) - F(F) and M(U) - F t (U). With (it is hoped) no
confusion, the imposed lattice operations in H-t(U) will be denoted by
n and U.
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Theorem 4.2 The ordering C induced in 'H-(U) by its lattice operations
can be characterized as follows: If a and a' are maps in R(U), then

a C a' a = T(f) C a'(f) for all f c U 4==* ker(a) C ker(a').

In addition, if {a,.} is any subset of (i(U), then

1. inff{a.} =nfa•, has the kernel nfl ker(a,o) and

(n.fa.)(f) = nfa,(f) V f E U.

2. sup{a.} U,,a,, has the kernel 01, ker(ao) and is the least map in
1"t(U) such that (Ua,)(f) D UaG(f) for all f E U.

3. If {U.} = {ora} is a finite subset of R-t(U), then

(Ukak)(f) = Ukak(f) V f ( U.

Corollary 4.1 Hence we have the following:

I. (W(U),9,C) is a compact ordered space.

2. (R(U),O,n,u) is a compact closed-order lattice.

Corollary 4.2 The mapping a @ i ker(a) is a complete lattice isomor-
phism of (7"H(U),fn,u) onto (F(U),fn, u); i.e., a 1-o ker(a) preserves
the infima and suprema of arbitrary subsets. (See Cor. 2.12.)

Theorem 4.3 The topological properties in 2H(U) of the ordering rela-
tion C and the lattice operations n and U are as follows:

I. C_ is a closed order in 7-W(U).

2. U is a continuous mapping of 7-((U) x 2-(U) onto R-t(U).

3. n, however, is only a USC mapping of -i (U) x 7-N(U) onto 7R (U).

Proposition 4.2 Let {oa} be a family of mappings in R-(U) such that
U0 ker(a,) is U-closed. Then U, oa(f) is closed for all f e U and
(U~ao)(f) = Ua 0(f) for all f E U.

Proof Note that if f E U, then

Uaa,(f) = U. {(x, t) E cRn+ : f - (x, t) E ker(ao)}.

If {(xi, ti)} is an Rn+I-convergent sequence in the above union,
then {f - (xi, t1)} is a U-convergent sequence lying in U,, ker(a,).
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Since U. ker(aa) is closed, it follows that f - (•, -) E U. ker(aa)
where (C,r) = lim(xi,ti). Thus (C,r) E Uaa(f), and it follows
that U,,a.(f) is closed for all f E U. The mapping A of U given by
f 1 1 Uaa%(f) is TI and ker(A) Z U, ker(o'0 ) = ker((UOa,,)). But
since Uoaa satisfies (U~a0,)(f) U,,a,,(f) for all f E U, it also
follows that ker(A) C ker((Ua 0 )). Hence ker(A) = ker((Ua 0 ))
and the proposition follows.

Proposition 4.3 If a : U , p(Rn+1) is a TI mapping with an up-
closed kernel, then a is into PU. A TI mapping a U: U F(Rn+,) is
into U if and only if ker(a) is up-closed.

Proof First suppose that

f E ker(a) 4=* f + (0, t) E ker(a) V t > 0.

We show that a(f) E PU for all f E U. Let (x,t) E a(f) and
suppose that t' < t. Since

a(f) = {(x,t) E Rn,+ : f - (x,t) E ker(ur)}

it follows that f - (x, t) E ker(a) and therefore that

f- (x, t) + (0,,r) E ker(u) for all r > 0.

Since f - (x, t) + (0,•r) = f - (x, t -,r), we see that f - (x, t') is in
the kernel of a. Hence (x, t') E o'(f) and a(f) E PU. Now assume
that a(f) E PU for all f E U. If f r ker(a), then (0,0) E ao(f).
Since a(f + (0, t)) = ao(f) + (0,t) and (0,,r) E a(f) for all r < 0,
we see that (0, 0) E a(f + (0, t)) for all positive t. Hence

f E ker(oa) ==, f + (0, t) E ker(a) V t > 0.

If, on the other hand, f + (0, t) E ker(o) V t > 0, then

(0, 0) E a(.f) + (0, t) for all positive t;

i.e., (0, -t) E a(f) for all positive t. Thus if a(f) E F(R"+,), then
(0,0) E a(f) and f E ker(a). This completes the proof.

Corollary 4.3 The a E 7"L(U) with range in U are precisely those
whose kernels lie in Ft(U).
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Let A(U) denote the set of TI USC mappings of U to U. Since the
bijection 'i o r-1 oi of M(U) onto M (U) serves to define the latter
as a compact closed-order lattice, isomorphic as such to M (U), we see
that there is essentially no difference between the spaces M (U) and
M,(U). According to the corollary, then, the closed subspace of 'Hi(U)
identified with FT (U) is precisely the space M i(U). It is therefore clear
that W-(U) is essentially an extension of M (U) to a larger space of
morphological mappings.

4.2 Banon-Barrera Representations

Definition 4.2 Let g, h E U and let g < h. Then we define the bracket

mapping oa[t,hl(.) = - A (g, h) for all f E U by

o',9,h](f) = f A (g,h) = {(x,t) E •R, 1 : g <_ f- (x,t) • h}.

Lemma 4.1 If g, h E U and g < h, then {f E U : g < f < h} is a
closed subset of U.

Proof Let ft --* f in/ Uand suppose that g • fi _< h for all i. We
employ the convergence criteria of Theorem 2.15 for {fj} to show
that g _< f < h. For each x E R", there is a sequence xj E Rn
with limit x such that fi(x1) -- f(x). Since f4(x 1 ) • h(x1 ) for
all i, we see that f(x) • limsuph(x1 ) < h(x) because h is USC.
On the other hand, since g(x) :_ fi(x) for all i, it follows that
g(x) < limsup f(x) < f(x).

Definition 4.3 If g, h E U and g < h, then

[g,h] - {f E U: g!< f ! h}

is called a closed interval of or in U.

Remark 4.1 afg,hr E 7-(U) and ker (o[g,hJ) = [g, hJ.

As with the set-mapping case, the Banon-Barrera representation theory
for ?i(U) stems from the following simple lemma.

Lemma 4.2 IfI C U, then K = U{[g, h] : [g,h] C K}.

Proof K D U{[g,h] : [g,h] C C} and f E• C == [f,f] C C.
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The Banon-Barrera representation of the a E 1-(U) is now easily ob-
tained. We simply reproduce their proof in the present context.8

Theorem 4.4 If a E Wl(U), then a = U{algj] : [g,h] C ker(a)}.
Moreover, if f E U, then a(f) = U{aL%,hl (f): [g, h] C ker(a) }.

Proof By the last lemma, ker(a) = U{[g,h] : [g, h] C ker(or)}. Since
ker(ar,,hl) = [g, h], it therefore follows that

ker(a) = U {ker (aL%,hj) : [g, h] C ker(a)}.

We may now obtain a = Ula[ 1,hl : [g, h] C ker(a)} from the fact
that a & o ker(a) is a complete lattice isomorphism (Cor. 4.2).
Moreover, since

U {ker (u[,, 1') : [g, h] C ker(a)} = ker(a)

is closed, the rest of the theorem follows by Proposition 4.2.

We now derive the minimal-representation form of this theorem.

Definition 4.4 If a E 7"(U), then a collection S of closed intervals
contained in ker(a) is said to satisfy the representation condition for a
if every closed interval contained in ker(a) is contained in an interval of
B. The class of maximal closed intervals contained in ker(a) is denoted
B(a) and is called the basis of a.

Proposition 4.4 If a e 7-E(U) and if B satisfies the representation

condition for a, then for all f E U

a(f) - U{aL,hj(f): [g,h] E B).

Proof Since [g, h] E B == g, h] C ker(a), Theorem 4.4 shows that

a(f) D U{aoL,hl(f) : (g,h] E B} V f E U.

On the other hand, since every closed interval contained in ker(a)
is contained in an interval of B, we see that

a(f) C U{a0L,hl(f) : [g, h] E B} V f E U.

Remark 4.2 If a E W7(U), then 8(a) is contained in every B that
satisfies the representation condition for a.
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Banon and Barreras have shown that the basis of each ýY E M (F)
satisfies the representation condition for T by establishing three lemmas
which we now proceed to show are valid in the present setting. The
first is Lemma 3.3. The second and third are as follows.

Lemma 4.3 Let {gi} and {h.} be sequences in U such that g, I g in
U, h, T h in U, and gi _ hi for all i. Fu'rther, suppose that f E U
is such that f E [g, h'. Then there is a sequence {fj} in U such that
fj E [gi, k.] for all i and f, -- f in U.

Proof Following Banon and Barrera, we let fi = (gi V f) A gi. Then
for all i we see that fi E U, gi < fi < hi, and ft = gi V (f A hi).
Thus it follows that fi --+ f.

Lemma 4.4 Let A C U and let C be a totally ordered set of closed
intervals of U contained in A. Then V C lies in the U-closure of A.

Proof Following Banon and Barrera, we let

C= {f E U: 3(g E U)[([f,g] E C) V ([g, f] E C)]}.

First we prove that £2 is totally ordered. Let f, f' E £. Then there
are g, g' E U such that one of the following holds:

1. [f,g] E C and [f',g'] E C.
2. [f, g] E C and [g', f'] E C.

3. [, f] E C and [f', g'] E C.

4. 9,f] EC and [g',f'] EC.
Since C is totally ordered, we see in any case that either f < f'
or f' < f. By Lemma 3.3, A £ and V £ lie in Z. There are thus
sequences {gi} and {hi} in U such that gi I A £ in U and hi T V £
in U; moreover, the gi and hi can be chosen so that 9i :_ hi for all
i. Let f E V C. Then A £ <_ f < V £, and it follows that there
is a sequence {fi} converging to f in U such that gi _< fi :_ h,.
It furthermore follows that there is a closed interval in C that
contains [ga, hi]; hence, f, E A for all i and f E A.

The minimal-representation form of Theorem 4.4 can now be stated
and proved as follows. (Again, we simply reproduce the proof of Banon
and Barrera' in the present setting.)

Theorem 4.5 If a E 7H(U), then B(a) satisfies the representation con-
dition for a; hence, a(.) = U{1 A (g, h) : [g, h] E B(o)} is a minimal
representation of a as a supremum of bracket mappings.
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Proof Let [g, h] E ker(a). Since there is a totally ordered set L of
closed intervals contained in ker(a) such that [g, h] E L, it follows
by Lemma 2.1 of Maragos12 that there exists a maximal totally
ordered set K of closed intervals contained in ker(a) such that
£ C N. Therefore, VMA is a closed interval [g', h'] of U such that

[g,h] C Vic VK= [g',h'].
By the last lemma and the closedness of ker(a) in U, it finally
follows that [g', h'] E B(a). This completes the proof.

5 Conclusion

This report has given the results of my research aimed at discovering
and clarifying the fundamentals of greyscale-image morphology for its
application to the image-processing tasks of ATR. Specifically, the re-
port develops the elements of a topologized greyscale-image morphology
on the basis of closed-set morphology by rigorously pursuing the umbra
method. I conclude with a summary retracing of the path followed.

First it was shown that the set U of ERV USC functions of n real vari-
ables (whose bounded nonnegative members were chosen to represent
greyscale images) can be given a morphologically characteristic hit-miss
topology and complete lattice structure by being identified with either
of two spaces of umbrae of the functions in U. One is the subspace U
of umbrae in F(R?+ 1 ) (the closed subsets of 'n+l equipped with Math-
eron's hit-miss topology), and the other is a certain subspace V of the
subspace V of umbrae in F(R' x R(e)) (the closed subsets of R x ()
equipped, likewise, with Matheron's hit-miss topology). Recall that V
consists of the umbrae in V that include the entire horizontal plane
in R' x R(e) at -oo. I demonstrated that U admits a unique mor-
phological structure consisting of a natural hit-miss topology and a
similarly natural (complete) lattice algebra by showing (1) that U and
V are topologically equivalent and lattice isomorphic under the natu-
ral correspondeince between the elements of these spaces, and (2) that
the mappings of U and V to U provided by the supremum formula
fu(x) = sup{t : (x, t) E U} are each not only one-to-one onto U, but in
fact the same bijections relative to the above natural correspondence.
Apart from the myopic topology considerations of section 2.6, this was
the accomplishment in place at the end of section 2.7. The remainder of
section 2 was devoted to the establishment (in U and U) of an algebra
of Minkowski sums and differences, and, equally importantly, to the
determination of the semicontinuity properties of this algebra relative
to both the hit-miss and myopic topologies of U and U.
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Next, and on the basis of the foregoing, the morphological transform
space M(U) was defined and studied in section 3. As with the mor-
phological transformation space M.(F) of euclidean morphology, M (U)
consists of the TI USC transformations of U. Indeed, the parallelism
between M(F) and M(U) is quite far reaching. By taking advantage
of the kernel theory of Maragos, I showed that the transforms consti-
tuting M (U) are characterized by two features of their kernels, namely,
up-closedness and topological closedness in U. In other words, there is
a one-to-one correspondence between M.(U) and the subspace Ft (U) of
up-closed elements of F(U) (the space of closed subsets of U). Because
FT (U) is both topologically closed in F(U) and a complete sublattice of
(F(U), n, U) (results proved in sect. 3), the kernel-based correspondence
between FT(U) and M (U) invests the latter with a hit-miss topology
and a complete lattice structure. Again, the parallelism with M(F) is
evident. Section 3.5 continued to pursue this parallelism by going on
to establish Maragos' extension to the increasing transforms in M(U)
of the Matheron-Maragos representations of the increasing transforma-
tions in M (F).

Finally, in section 4, the space W-(U) of morphological mappings of U to
F(Rn+,) was introduced, developed, and shown (a) to isomorphically
include and considerably generalize M (U) and (b) to be a proper set-
ting in which to generalize the Banon-Barrera representation theorems
to the realm of greyscale morphology. This generalization, detailed in
section 4.2, is perhaps the most important contribution of this report. It
now remains to use (,(U) and the generalized Banon-Barrera represen-
tations to increase and clarify the capabilities of greyscale morphology
for the image-processing tasks of ATR.
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