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1 Summary of Objectives and Results

This research has concerned optimal and adaptive control and adaptive identification of
distributed systems. Most of the research has focused on digital control and identification
methods, to allow for real-time implementation.

Both new mathematical theory and new numerical methods have been primary objec-
tives and results of the research. Most of the new optimal control theory has concerned
optimal control of distributed systems. The adaptive control methods had concentrated on
adaptive disturbance rejection, or noise cancellation. The adaptive identification research
has contributed both novel mathematical theory for parameter estimation and new fast
numerical algorithms for adaptive filtering.

The methods for adaptive identification and disturbance rejection have been demon-
strated by experimental application at Wright Patterson AFB and the Jet Propulsion Lab-
oratory in Pasadena, CA.

2 Optimal Control of Distributed Systems

The research on optimal control of distributed parameter systems covered two basic areas:
numerical methods and convergence theory for optimal control of flexible structures [6, 7, 8],
and integrated design of controllers and distributed sensors for smart structures [3, 10, 18].

2.1 Numerical Methods and Convergence Theory

The research in numerical methods and convergence analysis in (6, 7, 8] continued work
begun under a previous AFOSR grant. This work developed approximation methods for
design of finite-dimensional compensators based on distributed models of highly flexible
structures such as space antennae and satellites with large flexible solar arrays. The main
results of the approximation theory were various necessary and sufficient conditions for
a finite-dimensional compensator to converge to an optimal compensator for the infinite-
dimensional model as the order of the compensator increases.

2.2 Integrated Design of Controllers and Distributed Sensors

The goal of the research in [3, 10, 18] is to guide the integrated design of "smart structures"
and low-order compensators for smart structures. In the approach taken in [6, 7, 8], the
order of a near-optimal compensator might be very large for a highly flexible structure.
This drawback motivated the research in 13, 10, 18], which was initiated under this grant.
This new approach leads to very low-order compensators (sometimes of dimension 1) when
certain distributed sensors are designed to measure the correct functionals of the distributed 7'r
state vector. While the work in [3, 10, 18] emphasizes fiber optic sensors, the same approach [4
applies when piezo-electric films are used as distributed strain gauges. .9

Whether fiber-optic or piezo-electric sensors are used, the methods developed in 13,
10, 18] can be used to design flexible components for smart structures, and this was the
primary motivation for the research. In this approach to the design of smart structures,
the distributed sensors are embedded in the flexible beams and rods that are connected to ....
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construct a large complex structure. Embedding fiber-optic and piezo-electric sensors in
composite materials is now a proven technology.

3 Adaptive Filtering and Identification

The research on adaptive filtering and identification has included derivation of fast, nu-
merically stable algorithms for real-time parameter estimation, as well as new theoretical
methods for the study of the asymptotic properties of adaptive parameter estimates and
the derivation of a new generation of adaptive filters.

3.1 Adaptive Lattice Filters

As far as useful software is concerned, the most important research under this grant was
the development of new lattice filters [1, 2, 16] for adaptive identification and filtering of
multichannel systems. We believe that the lattice fiter in [2] is the best on the market for
systems with many input and/or output channels, especially when the parallel architecture
developed in [2] is used.

Least-squares lattice filters are fast algorithms for adaptive identification of linear digital
input/output models. In addition to efficiency, important characteristics of lattice filters are
numerical stability, order-recursiveness and suitability for parallel architectures. Recently,
an new unwindowed, or covariance, lattice filter was introduced in [1] for solving the problem
of exact initialization. An unwindowed lattice usually achieves much faster convergence than
prewindowed lattices when the data has nonzero initial conditions.

In estimating a process with p channels, most lattice filters, including the lattice in [1],
require inversion of p x p covariance matrices. The unwindowed lattice filter developed in [16]
and used in this paper incorporates a Gram-Schmit procedure that renders the covariance

matrices diagonal This improves both the numerical stability and the efficiency of the
lattice.

It has been demonstrated in previous literature that lattice filters can be effective
for adaptive identification of flexible structures, but the previous literature used prewin-
dowed lattices and primarily single-input/single-output models and data The results in

[11] demonstrate the advantages of an unwindowed, multi-channel lattice for identification
of complex structures.

The multichannel least-squares lattice filter in 116] is used to estimate parameters for
an ARX (autoregressive with exogenous input) model

n n

Y(t) + jAi~y(t - i) = BjBu(t - i),
1=1 1=1

t = 0, 1, 2,..., (3.1)

where y(t) is an p-vector, u(t) is a m-vector, and the ARMA coefficients Ai and Bi are,

respectively, p x p and p x m matrices.
It should be noted that the basic residual-error lattice involves reflection coefficients

rather than the ARMA coefficients Ai and Bi. The ARMA coefficients are generated from
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the output of the residual error lattice by an auxiliary algorithm, which need not be run at
each time step.

One of the most important features of the lattice filter developed in [16] is its suitability
for VLSI realization. The forward-propagating and backward-propagating quantities on
which the new lattice is based allow the lattice to be realized with wavefront arrays, which
are among the most efficient VLSI architecture's. New wavefront arrays designed for the
unwindowed lattice filter are presented in [16, 2].

The lattice filter in 12, 16] was used for adaptive identification of large experimental
aerospace structures from input/output data in [11, 9]. The paper 11] resulted from our
collaboration with Wright Patterson AFB, and [9] resulted from our collaboration with the
Jet Propulsion Laboratory.

3.2 Identification of an Experimental Truss

The structure shown in Figure 1 is an experimental truss in the Flight Dynamics Laboratory
at Wright Patterson Air Force Base. The truss is 12m high. Eight actuator/sensor pairs
and a disturbance actuator are attached to the truss as shown. Only the actuators and
sensors located on the top of the truss were used for [11].

The results reported in [11] were obtained by using the multichannel lattice filter to
estimate the coefficients in (3.1) adaptively. To generate the data used for this paper, the
disturbance actuator and actuator 2 excited the truss simultaneously with broad-band force
sequences. These two input sequences and the corresponding output sequences from the
four sensors were sampled and recorded at 50Hz, and the lattice filter was used to fit the
data with ARMA models of all orders n between 1 and 40. The natural frequencies and
damping ratios of the truss are estimated by computing the poles of the estimated ARMA
model.

Because the geometry of the truss is almost invariant with respect to 900 rotations, the
bending modes occur in pairs with almost repeated frequencies. For any one of the four
sensors, certain bending modes are highly observable and certain other bending modes are
marginally observable. Therefore, accurate identification of all of the modes is possible
only by using all four sensors simultaneously. Figure 2 shows adaptive frequency estimates
obtained using all four sensors as output channels with n = 30.

3.3 Adaptive Minimax Estimation and Filtering

In [4, 14, 15], we introduced a new class of parameter estimation problems, in which the es-
timated parameters are minimizing solutions to minimax problems for quadratic fit-to-data
criteria. Whereas the asymptotic parameter estimates produced by least-squares methods
are Markov parameters of Kalman filters, the asymptotic parameter estimates produced by
the order-recursive minimax problem in [4] are Markov parameters of discrete-time H. fil-
ters. We believe that the ideas and results in 14] constitute the theoretical foundation for a
new generation of adaptive filters that will be robust to disturbances, unmodeled dynamics,
and parameter variations in the plant. We are pursuing these new adaptive filters in our
current research sponsored by AFOSR.
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4 Adaptive Control and Disturbance Rejection

There are many aerospace and aeronautical applications of adaptive disturbance rejection,
or noise cancellation. For example, the optical instruments used in aerospace telescopes
typically are mounted on flexible structures in which vibrations are excited by both external
disturbances and internal engines used for attitude control and other mission purposes. The
optical instruments must be isolated, often actively, from such vibrations to maintain optical
pathlength errors at the submicron levels required for space telemetry 191. Also, cabin noise
generated by aircraft engines and aerodynamics can be reduced significantly by active noise
cancellation methods.

Under our current AFOSR grant, we have developed a new method for adaptive distur-
bance rejection, based on a new way of incorporating a disturbance model in an expanded
plant model [17, 12, 13, 51. While the controller design presented in 117, 13, 51 uses an inter-
nal model of the disturbance, it differs from previous disturbance-rejecting controllers based
on internal disturbance models because it separates the design into two parts: design of a
basic stabilizing controller for the plant, and design of a disturbance-rejecting augmentation
to the basic stabilizing controller. The basic stabilizing controller for the plant is designed
independently of the disturbance, and the part of the control law that stabilizes the plant
is not filtered through the disturbance dynamics as in previous disturbance-rejecting con-
trollers. Also, the disturbance-rejecting augmentation for the controller can be redesigned
efficiently without changing the basic stabilizing controller. The ability to redesign the
disturbance-rejecting part of the controller quickly is important for adaptive disturbance
rejection in applications where the plant remains constant but the disturbance changes over
time.

The method that we developed in [17, 13, 5] for adaptive disturbance rejection has
performed well in simulations in (17, 51 and in an experimental application 191, where the
disturbance-rejecting controller isolated a high-precision optical instrument from sinusoidal
disturbances acting on a flexible truss in the JPL Phase B Test Bed (Figures 3 and 4). The
test bed was developed to demonstrate sub-micron control for optical instruments to be used
in future space missions. The new disturbance-rejecting controller was used to reduce optical
path-length error when the structure was subjected to sinusoidal disturbances. Figure 4
shows open-loop and closed-loop path-length errors.
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Appendix

Publications [3] and [4]

All other publications have been provided separately.



Optimal Design of Fiber Optic Sensors for Control of Flexible
Structures *

C.-L. Meng and J.S. Gibson
Mechanical, Aerospace, and Nuclear Engineering
University of California, Los Angeles 90024-1597

June 23, 1994

Abstract

This paper presents methods for designing fiber optic sensors for control of flexible struc-
tures. The sensors are designed so that a first-order observer, instead of a high-order state
estimator, can be used to construct feedback control laws based on distributed or high-order
finite-dimensional models of the structure. Design methods for the sensors and the observers are
developed for two types of pr,,olems: first, where the sensors extend over the entire structure,
and second, where the sensors extend over one or more subregions.

*This research was supported by AFOSR Grant 910016.



1 Introduction

Active control systems often are required to reduce vibrations in flexible space structures. Recent
research [2], [3], [4], [5], [9], [10], [11], [12], [16], [17] has shown that fiber optic sensors can be
embedded in composite materials to measure spatial integrals of strain along the length of the fiber
and that such measurements can be used in feedback control systems to damp structural vibrations
actively. Modal domain fiber optic sensors, discussed in [3], appear to be best suited for such
applications. As shown in [11], the output of a fiber optic sensor can be represented by a weighted
spatial integral of strain. Also [11] showed that, for a single actuator, a first-order dynamic observer
can be used in the feedback loop to construct an arbitrary linear control law based on any finite
number of structural modes. The first-order observer uses the output of two fiber optic sensors that
must be tapered appropriately.

According to distributed-system theory, optimal control laws for flexible structures usually re-
quire weighted spatial integrals of strain and velocity [6]. Constructing such control laws from the
measurements of local positions, velocities, accelerations, and strains using conventional point sen-
sors requires infinite dimensional state estimators. These estimators are approximated by high-order
finite dimensional estimators in implementation. Section 2 of this paper presents the design theory
for a first-order functional observer that constructs control laws derived from distributed system
theory. This observer design in general requires the sensors to be distributed over the entire length
of the structure. Numerical examples in Section 2.4 illustrate the theoretical resultz presented in
Section 2.1. The results in Section 2 were developed in [8, 13].

In applications, it may not be possible for the fiber optic sensors to be distributed over the entire
i •gth of a structure. When the fiber optic sensors extend only over portions of a flexible structure

there will exist some error between the output of the first order functional observer and the control
law that the observer is designed to construct. In this case, the design problem is to find the optimal
sensor gains so that the error is minimized and the control system can achieve high performance.
Section 3 discusses the design method for fiber optic sensors and the corresponding observers when
the sensors extend over a portion of the structure. Section 3.3 presents the numerical examples. The
results in Section 3 were developed in [13].

2 Sensors Spanning the Entire Structure

2.1 Plant Model and Energy Space
For the forced linear vibrations of flexible structures, the common abstract evolution equation is
[1, 6, 7, 15]

6(t) + Dotb(t) + Aow(t) = Bou(). (2.1)

The generalized displacement w(t) and B 0 are in the real Hilbert space I!. The forcing function u(t)
is a real valued function of f. The stiffness operator A 0 is a coercive self-adjoint linear operator with
domain dense in H. The damping operator Do is a nonnegative linear operator bounded relative to
A 0 .

The natural strain energy space is V=Dom(Alo2) with inner product

(AO .o/ ",A o/". (2.2)

The natural state space for first order form of (2.1) is the total energy space

E= V x H. (2.3)



2.2 A First-order Functional Observer

Theorem I Let fi E V and 12 E H, w(t) be the solution of Eq.(2.1) and define

Y = (1,,W(t))v + (U2, u(t))H. (2.4)

Let k, E V and k2 E V. The two measurements V, and V2 are defined as:

m(t = (k 1 ,W(t))v (2.5)
Y2(t) = (02,,W(t))v.

For any/ E R, the real-valued function z(t) is the solution of the following equation:

z(t) = -z(t) + pl +/•u(t). (2.6)

Define
f = z(t) + - Y. (2.7)

Then c satisfies:
i + =0 (2.8)

if and only if
12 E V (2.9)

k2 = fj + (A-' - A-1 D*)f 2  (2.10)

k1 + k2 = fh -f2 (2.11)

P = (f, Bo)H. (2.12)

Proof Conditions (2.10)-(2.12) follow from writing the equation = -c in detail and substituting
the V-inner product in the terms involving yp and p2. The inner product in the strain- energy space
Via

(.)V = (Al/ 2 .,A 1/2 . )H. (2.13)

The condition (2.9) comes from the domain requirements of the operators Ao, A•1 2 , Do and their
adjoints.

In applications, (12, wt(t))H in (2.4) can be represented asI
(f2,6 (t))j = jf 2 w(t)dz. (2.14)

Measurements in (2.5) are spatial integrals of strain:I'
P1 = j 5',w"(t)dz (2.15)

Sft = j54w"(t)dz. (2.16)

These last two measurements can be made by fiber optic sensors. Theorem I says that an
exponentially convergent first-order observer can be used to construct a bounded linear functional
of the distributed state vector (w, w) from fiber optic sensor data if and only if the velocity weighting
12 is in the strain-energy space V. According to condition (2.9), 12 must satisfy smoothness and
boundary conditions for functions in V. These conditions will require a certain number of L2
derivatives and that the generalized displacement function w(t) satisfy certain geometric boundary
conditions.
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In applications, (2.10)-(2.12) must be computed numerically with finite element or modal ap-
proximation schemes. Such numerical methods project the infinite dimensional problem from the
energy space E onto a sequence of finite dimensional subspaces En = V. x Vn, where V" E V. The
operators A0 and Do are approximated by Aon and Do. in V.,. The weighting functions f, and 12
are approximated by fin and f2. in V.. The functional sensor gains ki and k2 are approximated by
kin and k2. in V. which satisfy

k2n = fin + (A-' - Ao•Do,)f 2s, (2.17)

kin + k2- = hin - 2n.- (2.18)

According to [6], fin and f2. will converge in V-norm to the functional control gains fi and f2,
respectively, in the infinite dimensional control problem. Also kin and k2, will converge in V to the
functional sensor gains k, and k2, respectively.

2.3 Finite Dimensional Model

Consider the lateral vibration of a simply-supported uniform Euler-Bernoulli beam. The finite
dimensional modal approximation scheme is used. The space can be spanned by {J0, •2, - ,),

where 4i is the ith mode shape, an 1,, = Hn. If w(t) is the solution of (2.1) and satisfies the
boundary conditions. w(t) can be approximated as

n

w = E il(t)4, (2.19)
i=I

where ri(t) is the modal coordinate of the ith mode.
Defined the state to be

q (2.20)

where q(t) is

q(t) 11•2(t). (2.21)
17n (0

The state equation is
S=Ax + Bu (2.22)

where

A= [-Aon -Don

B 6 0.] (2.24)B On "

The stiffness matrix AO. is:
2 O0... 01

Ao. =2 (2.25)

wnJ

where wi is the natural undamped frequency of the ith mode. There are two kinds of damping
matrix Don,: cO _ and coA 2./ The choice of Do. will influence the convergence of sensor gains.
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The matrix b0o is an n x I column vector whose elements are the projections of the actuator
function Bo(z) onto mode shapes.

Suppose two fiber optic sensors extend over the entire length of a beam. Since kil. and k2n are
in V., kI. and k2. can be represented as linear combinations of eigenfunctions:

ki0(z) = W (2.26)
1

n

k2.(Z) = . (2.27)

The two measurements y, and y2 are

y =(t) (kin,W(t))v. - fo k' w"(t)dz (2.28)

Y2 (t) = (k2.,w(t))v. V k 2 ,,w"(t)dz. (2.29)

Define

I2 .'n (2.30)

Ufn

(2.28) and (2.29) are equal to:

yi(t) = kinTAAonq (2.31)

y2 (t) = k2 nTAonq. (2.32)

Let fin E Vn and f2n E Vn, and

IY = (fi, ,w(t))V. + (f2n, t(t)),M.

= flnTAo.q + f 2 nT4 (2.33)

where

fnf = • (2.34)

and %y and 6i are the Fourier coefficients of fi and f2n on ith mode shape respectively.
The first order functional observer for this model is

i(t) = -z + Y1 + Pu(t). (2.35)

Define
C= z) + Y2 - Y (2.36)

and c satisfies
C =. (2.37)

Substituting (2.31), (2.32), (2.33) and (2.36) into (2.37), one can have the following matrix equations
k2n = fln + (A-' - A-D'T)f 2 n (2.38)

k1 n + k 2 n = fin - f 2 n (2.39)

S= f2n TbO.. (2.40)

So k 1 n, k2 n can be solved.
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2.4 Examples

Consider the simply supported Euler-Bernoulli beam. The real Hilbert space H = L2 (0, 1), V =
H02(0, 1). The stiffness operator Ao is

A0o = 0"". (2.41)

The actuator function is

Bo(z) sin 5wr(z - 0.3) if 0.3 < z < 0.5 (2.42)BOZ)= 0 otherwise. (.2

Two cases of damping are considered

Case 1: Do = coAoI with co 10.02
Case 2: Do = coi with co = 0.02T 2.

Figures 2.1-2.8 are generated using the finite dimensional model describes in Section 2.3, assuming
E = 1, m = 1. Also Do. = coA 1/

2 in Case I and Do" = c0I in Case 2.

2.4.1 Constant Velocity Weighting: A Counter Example

Suppose we want to build a first order functional observer to construct a spatial integral of transverse
velocity over a beam from two fiber optic sensors data. Let f, = 0 and f2 = I in (2.4). For a simply-
supported beam, two of the geometric boundary conditions for functions in V are zero at both ends,
so 12 i V. From Theorem 1, there exist no functional sensor gains k, and k2 such that the desired
y(t) can be constructed.

In finite dimensional approximation, the vector fln is a zero vector and the vector f2n is the
L2-projection of f2 = I onto Vn. Then solving (2.39) and (2.38), one can get k 1 n and k2n, which
are the modal coefficients vectors of kin and k2n. A first order observer can be built by using two
fiber optic sensors designed according to kin and k2n and the observer can construct the integral
over the beam of the projection of velocity tb(t) onto V1.

But as n increases, kin and k2n do not converge in V. As a result, k"' and k0' diverge in L 2.
Figures 2.1 and 2.2 illustrate the divergence of k"1 in both damping case.

2.4.2 An Optimal Control Problem

For both damping cases, let f, and f2 be the functional control gains which minimize the performance
index:

S= j (lwllr , + I1M11 + u2)dt. (2.43)

In finite dimensional approximation, fl. and f2n can be obtained by solving the Riccati Equation.
[6] guarantees that fin and f2n will converge to f, and 12 in V and H, respectively. Also k1

and k2 are approximated by kin and k2. and can be obtained by solving (2.39) and (2.38). The
numerical results show that k"2 is two orders of magnitude smaller than k"'. Therefore we conclude
that measurement of y2 can be omitted. _ ,1/2

Figures 2.3-2.8 show f,, f2 and k" with n increasing for two damping cases. For Do = c- 0
Figure 2.4 shows that f2n converges to 12 and f2 E V. So condition (2.9) is satisfied and kI, k2
exist. Figure 2.5 shows that kn converges to k"s.

For the case Do = c0l, Figure 2.7 shows that f2. still converges to f2 with f2 E H, but 12 V V.
Because at z = 0.3 and z = 0.5, f2 has discontinuous derivative. This fact can be verified by the
plots for large n. So k, and k2 do not exist according to the theorem. Figure 2.8 shows that k'1

1
,

diverges as n increases. Therefore k' diverges.

5



-If

N.m

Il l l,•4 Itt

S .!," ... -,l

-,4, 0.1 O•02 , 0'.4 03 U V, GJ 0.9 1

Figure 2.1: k'" for 12 1, Do = col, n = 5,21,31,41

al H.S. , 1.41i

we

"mO0 Av0, .4 0.5i4 p L ,8 e.

o1/2

Fiur .2k" fof=,DIcon52,14

I-6



Onl N- S. 3L S 46 4M~ AM N,.3.LO
eq

All 4

4

--

46

A"-
4d4 owlw

Figure 2.3: fl"., Do = coA 1/1, Figure 2.6: fl"n Do = col,
n = 5, 20, 30, 400 n = 20, 30, 40u 4-u

4.

INSS

GAU

I &I6 *a 03 4L4 &S $A4 W7 U. M. 1 & 1 6. 3 Si L4 63 U. . 1 &

Figure 2.4: f2,, Do = coAl12 Figure 2.7: f•n, Do = coI,

n = 5,20,30,40 n = 20,30,40

dal dI N3031.

U 36.3~O.N.MO.

4,

30 =-,me0 0 0,3,4

4m

61/

In In

n = 520,3,40 n= 2030,4

a'7



3 Optimization of Sensors Designs for Limited Sensor Spans

3.1 Sensors Extending Over Subintervals of a Beam

fiber optic sensors

z

S Z I /X2 3 X4 ...

Figure 3.9: Sensors extend over portions of the beam

Suppose the first fiber optic sensor is from x, to X2 and the second one is from z 3 to z 4 , as shown
in Fig. 3.9. The outputs of the sensors can be expressed as:

YJ = k'1'(x)w"(z, t) dx (3.44)

and

Y2 = k"'(x)w"(z, t)d (3.45)

The finite dimensional approximation of the sensor outputs can be obtained as in the following.
,0i is the ith mode shape of a simply supported beam. Define 4i and 4i, i = 1,..., n, in such a way
that

{ o'(Z) if z1<z _<X•['(-) = f0 otherwise otewie(3.46)

0j()if Z35 X < X4 (.7
W'(x) = { '(z)otherwise. (3.4<)

The geometric boundary conditions are:

O)= •() = 0 (3.48)

4,(0) = 4,(1) = 0.

There are unique solutions of ýi and 4i for each i. ki and k2 can be approximated as

k, = E kii ;j (3.49)
3=1

and

k2 = E kj ýj. (3.50)
j=1

Let in(t) be the modal coordinate of the ith mode. Then the lateral displacement is approximated
as a

w = rb(t)4. (3.51)
j=1
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Substituting (3.49), (3.50) and (3.51) into (3.44) and (3.45), the finite dimensional approximation
of the sensor outputs are

V- = klTWiq(t) (3.52)

V2 = k2 TW 2q(t) (3.53)
where q(t) is defined in (2.21) and kl,k 2 are

kil k•l
k12  k 2 = (3.54)

kj. k2 ,

and W, and W2 are n x n matrices with elements

[W1lij = .'(x)O67(z)dx (3.55)

[W2]o = #;'(z)4,(x)dx. (3.56)

Suppose we want to construct a functional observer whose output will converge to some control
law asymptotically. The state equation is defined in (2.20) and (2.22). The output of the system is

YI = Cx = [C1 0I.x]X (3.57)

where C1 = kITWI. The functional observer is defined as

{ = (3.58)

Let Y = flnTAOnq+f 2 nT4 be the control law that the functional observer is designed to construct.
Assume that G = -y = 1, F = -1, and define the error between the output of the functional observer
and the control law to be

ip= ' - Y. (3.59)

c satisfies
i += 0 (3.60)

if and only if
W2k2 = Ao-fn - Do-f 2 n + f2n (3.61)

W~kj + Aof2n = -W 2k2 + A0ofln (3.62)
f = Tbo. (3.63)

For the finite dimensional model, the unique solutions of k1 and k2 can be obtained by solving
the above equations if W1 and W2 are nonsingular. So the finite dimensional functional sensor gains
k, and k2 can be obtained. As the number of modes that is usc, in modal approximation increases,
k, and k2 will diverge because the sensors extend only over portions of the beam. As a result, the
error will always exist.

On the other hand, if sensors are distributed over the entire length of a beam, W, and W2 are
both equal to the stiffnes matrix A0o, and the finite dimensional solutions k, and k2 definitely
exist. The functional sensor gains will converge as long as conditions in Theorem 1 are satisfied
and error will go to zero asymptotically.

Suppose we allow the error to exist, the design problem now is to find the optimal functional
sensor gains k, and k2 , which will converge and minimize the error in some sense.

9



3.2 Optimization of the Sensor Gains

The open-loop design procedure for the optimal functional sensor gains k, and k2 is presented, so
that the L2 norm of the error c between output of the functional observer and the control law will
be minimized. Suppose the length of the beam is I. Define performance index to be:

j (t) 2 di + r [(k'- )2(Z) + (k") 2(z)Jdx (3.64)

There are two reasons that we add the second integral to the performance index. The first
reason is to make k"' and kV smoother so that the manufacturing of fiber optic eensors is feasible.
Considering (3.44) and (3.45), the outputs of the fiber optic sensors are weighted spatial integrals
of strain over subintervals of a beam. Fiber optic sensors are tapered according to the vaide of k"'
and k" along their distribution. Therefore smoother k" and kV can make the sensors easier to be
manufactured. Also, k'1' and k"' can be interpreted as the sensitivity to local strain. if k"' and k'0' are
not smooth, then there may be a abrupt change in sensitivity between two infinitely close points on
the beam. That will make it impossible to build the sensors.

The second reason is that penalizing (k' 1 )2 + (k121)2 in the performance index can make kj" and
k2 converge. From the discussion in Section 3.1, when the sensors extend over only subintervals of
the beam, error may always exist. So if we only penalize f0 C(t) 2 dt, k's' and V' will diverge. On the
other hand, just a small value of r can make them converge. Large r can make k"' and k' smoother
and converge faster but will result in a large value of open-loop error in loop gain. So it is a design
trade off.

k1 and k2 are two finite dimensional column vectors whose elements are the coefficients of k,
and k2 on each mode, respectively. Define

k k,] (3.65)

The performance index can be represented as a linear-quadratic functional of k.

3.2.1 Augmented Plant and L2 Norm of Error

The state equation of the beam is defined in (2.22) and the first order functional observer is defined
in (3.58). The augmented state is defined to be:

S= [ . (3.66)

Then the augmented state equation becomes:

X = A + Bu (3.67)

where
A=[ 0 (3.68)

b B . (3.69)

Let y = l1Tq + 12 T"4 be the optimal control law where I1 and 12 are n x I vectors. The
measurements from the fiber optic sensors are yi = klTWIq and y2 = k2 TTW~q, where WI and W 2

are defined in Section 3.1. The output of the observer is ip = z + y2. Then the error can be written
as:

W =

= C (3.70)
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where
= [ (-yk 2 TW 2 - 11 T) - 12 T 1] (371)

Suppose the input u(t) is an impulse function. Because the augmented system is stable, t(t) is
square Lebesgue integrable,

f•j0 )2 d < 0o (3.72)

and f(t) E L2[0,oo). The norm of c(t) in time domain space L2 [0,oo) is

11(112 = [ (t)2 dt ]1/2. (3.73)

Further assume that the initial state of the augmented system is zero. One can have

f(t) = CeAZb (3.74)

and

IkI+I = tr A 0T e (Tcýe.tdt. (3.75)

Since A is asymptotically stable, the Lyapunov equation

ATQ + QA = _ffe (3.76)

has exactly one solution Q for each _eTe and this solution is

Q - 0 ej AT ITCCeA'dt. (3.77)

Q is symmetric and nonnegative. Therefore the square of L2 norm of e(t) is equivalent to

IIf(t)j2 = ir BB TQ. (3.78)

3.2.2 Frequency Domain

Let i(jw) be the Fourier Transform of the function f(t) E L2 [0, oo). From the Parseval's relation for
aperiodical signal,

fo* c(t) 2dt = - f--0 i(jW) 2 dW < 00 (3.79)

therefore 1(jw) is square Lebesgue integrable and i(jw) is in the frequency domain space L2 (-oo, oo).
The L2 norm of 1(jw) is

/?I12 = [-L i(jUw) 2 d,] ]1/ 2. (3.80)

The meaning of II+(jW)112 is the energy of the signal 1(jw). Therefore minimize the energy of signal
i(jw) in frequency domain when the system is subject to sinusoidal input is equivalent to minimize

1Ic(it)IJ in time domain.
Under the previous assumptions of impulse input and zero initial augmented state, i(jw) is

i(jw) = C(jwI -A)B. (3.81)



3.2.3 Solving the Lyapunov Equation

In order to minimize Ikj(t)Ijj in (3.78), we have to solve (3.76) first. Partition the solution matrix Q
in the following way:

Q [Q1 Q2] (3.82)Q 3 Q Q4I

where Q1, Q2, Q3 and Q4 are 2n x 2n, 2n x 1, 1 x 2n and 1 x 1 matrices, respectively. Then (3.78)
can be rewritten as

Ik(t)rI - t BBTQI + 2BTQ 2# - 2(3.83)2F"3.3

(3.76) becomes:

[ T CTG][Q1 Q2+[Q Q2][c A 0 (3.84)

After straightforward matrix multiplication, we can have the following equations:

ATQ 1 + QIA =

-[(W 2 l 2 - 11) (,k 2 TW2 _ 11 T) 12 T G(CTQ2 + Q2C) (3.85)

ATQ 2 + CT GQ 4 + Q2 F (-yW2 k~2 -I1)] (3.86)

Q2 =QT (3.87)
-1

Q4 = 2-F (3.88)

where y, G and F are all scalars. Define

H= W2 0 D= 0 0 1= 12.

Q2 can be simplified to be a linear function of k:

Q2 -(A T + FJI)(- [ (,yW 2k2 -1 1 ) ]+ _CT)

= (AT + FI)-I[(--fHT + 2•DT)k +1]

= Mk +M 2  (3.90)

where Mi = (AT + FI)-l(--iHT + .DT) and M 2 = (AT + FI)-11. (3.85) can be arranged to be
a Lyapunov equation

ATQ 1 -Q 1 A= -R (3.91)

where A is defined as:

R = (92HTkkTH - yHTklT - 7 1kTH + IIT)

+G(DTkkTMT + MhkkT D + DTkMT + M 2kT D). (3.92)

Since A is asymptotically stable, the solution of (3.91) is

q2 = 0e A7fAt&d. (3.93)
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3.2.4 Linear-Quadratic Functional of k

Consider (3.83) first. The term tr BBTQJ is equal to

tr BBTQI (3.94)

= 7
2 kTH J eAtBBTeArTdt HTk

- 2vlT jo cA'BBTCATtdt HTk

+ iT j eAIBBTeA T7dt I

+ GkTMT f CAiBBTeArT dt DT k

+ 2GMT j eAt BB T eA"dt DTk

+ GkTD j 00eAtBBTeArtdt Mik.

Define
V = ej A'BBTA TrdI. 

(3.95)

Then V is the solution of the Lyapunov equation:

AV + VAT = -BBT. (3.96)

The second term in (3.83) is equal to

2BTQ 2,6 = 2/3BT(M 1 K + M 2). (3.97)

Therefore square of L2 norm of error is a linear-quadratic form of k:

j C() 2dt kT(-f 2HVHT + GMTVD + GDVM1 )k (3.98)

- 2(YITVHT - GM2TVDT - ,BTMI)k

+ ITvI+2,6BTM2-f

where F, G and 7 are scalars.
Consider the term f•[(k'")12(X) + (kI")2(z)]dz in performance index.

+ (k..")2 ()]diJ -j (k;') 2 (z)dz + . (k _)2(z)dZ (3.99)

Define U, and U2 such that

(U[l], = (3.100)

[U2]= I. = (q)+(/)dq. (3.101)

Define 2n x 2n matrix U as:

U UO 01 (3.102)
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So one have the following:
j[(k"1)2_(z) + (k"0)2(z)]dz = kT Uk (3.103)

Finally, the performance index is a linear-quadratic form of k:

=e(t) 2dt + r]((k .. )2(-) + (k"I )2(_)]dZ

= kTRk-2Pk+T (3.104)

where
R = f2 HVHT + GMTVD + GDVMI + rU (3.105)

P = -flTVHT - GM2VDT - PBTMI (3.106)

T = ITVI + 20BTM 2  2F" (3.107)

2F'
According to standard results on linear-quadratic optimization, if R is nonnegative, k0 minimizes

J if and only if
Rk 0 _ pT = 0. (3.108)

Since pT is in range space of R, there exist at least one k0 that minimize J. If R is positive definite,
k0 is unique. From the numerical result, R is ill-conditioned, so k0 is not unique. The singular
value decomposition method is used and k0 is chosen to be the minimum norm solution.

3.3 Examples

The control law y = ITx is chosen to minimize

J= 0 (qo(Qx, x) + ro(u, u) )dt (3.109)

where qO/ro is 3000 and

QAo . ]0 (3.110)

The plant model and the functional observer are defined in Sections 2.3 and 3.1 respectively. The
length of the Euler-Bernoulli beam is 1.

Two sensors are distributed from 0.2 to 0.6. The actuator B0 is:

Bo(z) sin 5w(z - 0.3) otherwise.3 < < 0.5 (3.111)

Figures 3.11-3.14 demonstrate the influence of weighting r on k"' and V'. Both k"I and kV are
convergent due to penalizing rfo [(k'1") 2(q) + (k ..")2 (q)]dij in performance index. Larger r can make
them smoother but result in large open-loop error, as illustrated in Tables 3.2-3.3.

Let n be the number of modes in the finite dimensional model from which the optimal sensor
gains kj, k 2 are obtained and N be the number of modes of finite dimensional approximation for
the plant in application. Figures 3.15-3.17 are the open-loop magnitude response of the observer
output and the desired control law, n = N for each case. The difference between the two curves
in each of Figures 3.15-3.17 is the square of L 2 norm of error 111(jW)lI2 in frequency domain. The
value of U (jW)(II2 is equal to 1t1(t)l11 and is shown in Tables 3.2-3.3 for different r and n (n = N).
The magnitude response is an open-loop response because the observer is only cascaded to the plant
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two fiber optic sensors

Figure 3.10: The actuator Bo(z) and the distribution of collocated sensors

and the observer output does not feed back to the plant. Therefore it is the open-loop error that we
minimize.

Figures 3.18-3.20 are the closed-loop magnitude response, with n = N. The input is ei'W acting
at the actuator function B0 . The output is the transverse displacement at x = 0.4. In each plot
the solid line denotes the response of the system whose compensator using a functional observer in
the feedback loop. The dotted line represents the ideal full state feedback control. Comparing two
curves, we know whether the observer is efficient or not.

Figures 3.23 and 3.24 are the closed-loop magnitude responses with n = 5, N = 15 and n =
10, N = 15, respectively. In Figure 3.23, the first mode is lightly damped as compared to other
plots. It is because the real part of closed-loop eigenvalue of observer n = 5 is only 19.4% of that of
observer n = 15, as shown in Table 3.1.

At high frequencies, the observer achieve high performance. This can be verified by using different
r's, n's and N's.

first mode eigenvalue
real part imaginary part

n = 5,N = 15 -1.220 8.120

n = 10, N = 15 -3.764 6.369
n = 15, N = 15 -6.285 6.671

full state feedback -6.227 9,719

Table 3. 1: First mode eigenvalues
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j c12l=ERROR fi__ :2=ERRoR

n =5,N=5 0.013 n_=_5, N_=_5 0.711x103

n = 10, N = 10 38.644 n = 10,N = 10 1.742x10
n = 13,N = 13 49.147 n = 13,N = 13 1.963x10 3

n = 15,N = 15 49.701 n = 15,N = 15 1.982x 10

Table 3.2: r - 10-12 Table 3.3: r = 10-6
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Figure 3.17: Open-loop magnitude Figure 3.20: Closed-loop magnitude
responses of observer output jo and response, n =15, N = 15, r = 10-12

control law y, n = 15, N = 15, r = 10-12
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4 Conclusions

A first-order functional observer for an optimal control law for the distributed model of a one-
dimensional flexible structure, such as a beam or rod, can be constructed if the outputs of two
properly designed fiber optic sensors are available. The sensor designs are determined by the func-
tional gains in the control law determined from control theory for distributed systems. Usually,
these sensors must extend over the entire length of the structure. Theorem 1 in Section 2 provides
conditions that the sensor gains must satisfy. The most important one is the existence condition.
If the existence condition is satisfied, it follows from [6] that the finite dimensional sensor gains will
converge as the number of modes in the approximation scheme increases.

When the sensors extend over subintervals of a structure, the sensors are designed to minimize
the error between the desired control law that the control law the firs-order observer constructs
from the sensor outputs. This design criterion leads to a quadratic optimization problem for any
finite number of modes in the model of the structure, and a small penalty (i.e., regularization) on
appropriate derivatives of the functions defining how the sensors are tapered guarantees that the
sensor designs converge as the number of modes in the model increase. Section 3 formulates the
optimization problem and demonstrates the design procedures in detail. The numerical examples
demonstrate that the resulting closed-loop control system achieves high performance.
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Abstract

This paper addresses the problem of fitting digital input/output models to data generated
by linear systems in the presence of white process and sensor noise. The systems of interest
have state-space realizations in Hilbert spaces. Both finite-dimensional and infinite-dimensional
input/output models are considered. The paper derives a number of new results for least-
squares estimation and filtering, and introduces a new class of minimax parameter-estimation
and filtering problems. The main results characterize the asymptotic values to which parameter
estimates converge with increasing amounts of data.
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1 Introduction

The linear systems, or plants, considered in this paper have time-invariant discrete-time realizations
in possibly infinite-dimensional Hilbert spaces. The plants are driven by unknown white process-noise
sequences and possibly by known forcing sequences. Also, the measured outputs are contaminated by
white sensor-noise. The objective of the paper is to characterize the asymptotic values of estimated
parameters in digital input/output models when such models are fit to the data according to least-
squares (LS) estimation criteria and according to new minimax estimation criteria introduced in the
paper.

We consider one-step-ahead output prediction, primarily with ARX models, which are models
containing linear regressions of measured outputs and known inputs. Also, two results are given
on least-squares estimation of FIR and IIR models, which use only histories of known inputs to
predict a measured output. The main results of the paper for LS estimation show that, under
common conditions, the asymptotic least-squares parameter estimates for ARX models are Markov
parameters of Kalman filters that would be constructed for the plant were the state-space model and
the noise statistics known. The hypotheses about the noise processes are consistent with those in
Kalman filtering theory for finite-dimensional systems and the analogous infinite-dimensional theory
[1, 2]. However, constructing a Kalman filter requires the plant and noise statistics to be known,
whereas, in the parameter estimation problems considered here, the plant and noise are unknown;
only input/output data is available.

Since we are concerned with the limits to which parameter estimates converge as increasing
amounts of data are used, we require that the plant be exponentially stable so that the response
approaches a steady state, or stationary response. Also, the known forcing sequence is required to
have asymptotically time-invariant statistics so that the system response will have asymptotically
time-invariant statistics. Most of the results require the known forcing sequence to be white. Such
conditions are realistic because it is common in experimental identification to excite a system with
a known white sequence or a band-linited sequence obtained by filtering a white sequence; in the
latter case, the band-pass filter used in obtaining the band-limited forcing sequence becomes part of
the plant to be identified.

An important result that does not require the known forcing sequence to be white concerns the
problem of using LS estimation to fit an infinitely-long ARX model to input/output data from a
plant of the class considered here. In this case, the asymptotic parameter estimates are the Markov
parameters of a steady-state (infinite-time) Kalman filter. This result is known for finite-dimensional
plants, and is the basis for the Observer/Kalman Identification (OKID) method developed in [3, 4, 5].
This paper obtains the corresponding result for infinite dimensions, but more important are the
results here for finite-dimensional ARX models, since only finite-dimensional models can be used in
practice.

It is shown that, under common conditions, using LS estimation to fit an ARX model of order
N to input/output data from either a finite-dimensional or an infinite-dimensional plant produces
asymptotic parameter estimates that are equal to Markov parameters of the discrete-time Kalman
filter that solves a certain minimum-variance state-space filtering problem on an interval of length
N. The dimension of this state-space filter equals the dimension (possibly infinite) of the plant gen-
erating the data (even though this dimension is not known to the parameter-estimation algorithm),
but the length of the time interval for which the state-space filter is optimal equals the order of the
ARX model identified. Hence, as the order of the ARX model becomes large, the corresponding
Kalman filter approaches the steady-state Kalman filter. (By Markov parameters for a filter with
time-dependent gains, we mean the coefficients of past input and output data in a prediction for-
mula, an obvious generalization from the time-invariant case. See Section 5.1.) Another important
point is that, while the asymptotic parameter estimates for the infinite-dimensional ARX model are
independent of the signal-to-noise ratio of the input/output data, this is not true of the parameter
estimates for a finite-dimensional ARX model. The results here show how the signal-to-noise ratio
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affects the asymptotic parameter estimates for a finite-dimensional ARX model.

A new class of parameter estimation problems is introduced in Section 4, where the estimated
parameters are minimizing solutions to minimax problems for quadratic fit-to-data criteria. The
parameters that solve the order-recursive minimax problem in Section 4 are Markov parameters
of a discrete-time H., filter for a finite time interval. Our purpose in introducing the minimax
parameter estimation problems is to establish the basis for adaptive filters that share the disturbance-
attenuation and robustness properties of H,, filters designed for known state-space models [6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 181.

In Section 4, we consider only finite-dimensional ARX models because numerical parameter-
estimation algorithms are possible for the finite-dimensional models only. Under the hypotheses of
Section 4, known results on linear-quadratic games imply that the Markov parameters of an Hoý
filter for a finite time interval approach the Markov parameters of a steady-state Hýo filter as the
length of the interval becomes large. Therefore, it follows from the results in this paper that, as
the order of the APRX model becomes large, the minimax parameter estimates approximate Markov
parameters of a steady-state H., filter.

This paper does not address numerical algorithms for solving the parameter-estimation problems
analyzed here. There are, of course, many sophisticated methods for both adaptive and off-line least-
squares parameter estimation (adaptive lattice, transversal, and square-root filters, adaptive and
nonadaptive QR algorithms). For the minimax parameter-estimation problems introduced in this
paper, we have begun to develop adaptive (i.e., recursive) numerical methods, but no methods with
the efficiency and stability of modern numerical methods for LS problems exist yet for the minimax
problems. Fast, numerically stable algorithms should come soon. Meanwhile, the purpose of this
paper with regard to minimax parameter estimation is to define the new problems and characterize
the asymptotic properties of the solutions.

The analytical methods of this paper are influenced by the following practical questions, which
underlie the entire paper. When we run a parameter-estimation algorithm with a particular set of
experimental data, what happens? Do the parameter estimates converge? If so, to what? Although
our assumptions about the whiteness and independence of process and sensor-noise sequences are
essential to the methods and results, we view the central questions and answers of the paper as
fundamentally deterministic. Thus the analytical methods of the paper are purely deterministic. It
can be argued that the white-noise sequences that we assume are sample sequences from ergodic
stochastic processes, but the central questions of this paper-about what happens with a particular
experimental data sequence-can be answered in a deterministic framework. We believe that, by
stripping away the probabilistic machinery usually employed when studying problems with random
noise (see [19] for example), we cut more directly to the questions addressed here about what happens
with actual data.

We set up the basic analytical framework in Section 2 by defining correlation, independence,
and whiteness for scalar and Hilbert-space-valued sequences. These definitions, which involve time
averages, are standard for scalar sequences, and the generalizations to Hilbert-space-valued sequences
are straightforward. The novel component of this framework is a Hilbert space containing equivalence
classes of deterministic scalar sequences. The parameter-estimation problems are formulated and
analyzed in this space. Because we want to use the correlation of deterministic scalar sequences
as an inner product, the Hilbert space must contain equivalence classes instead of scalar sequences
themselves. Two scalar sequences are defined to be equivalent if their difference is asymptotically
zero in the mean-square sense. The correlation of two scalar sequences is the inner product of their
respective equivalence classes. In particular, uncorrelated sequences (i.e., sequences with correlation
0) belong to orthogonal equivalence classes.

We define and analyze parameter-estimation problems for infinite data sequences in Sections 3
(least-squares problems) and Section 4 (minimax problems). While the most important interpre-
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tation of the paper's main results is the characterization of the solutions to certain parameter
estimation problems for ARX models of an unknown plant in terms of Kalman and H., filters for
state-space models of a known plant, we do not employ state-space filtering theory, stochastic or
otherwise, in our basic analysis. Rather, the framework of white deterministic sequences estab-
lished in Section 2 makes it easy to show that the parameter estimation problems are equivalent
to certain linear-quadratic (LQ) control problems. The LS estimation problems are equivalent to
linear-quadratic regulator (LQR) problems, and the minimax estimation problems are equivalent to
linear-quadratic games.

Section 5 shows the precise relationships of the estimated ARX parameters to state-space filters.
This is the only section of the paper that uses any state-space filtering theory. It is most convenient
to characterize the solutions to the parameter estimation problems first in terms of the detailed
solutions to the corresponding optimal control problems: Riccati operators, closed-loop systems,
etc. (These details are not discussed in Sections 3 and 4.) The relationships of the estimated
parameters to Kalman and H., filters follow then from the dual mathematical structures of optimal
linear-quadratic controllers and optimal state-space filters.

Section 6 discusses parameter-estimation problems with finite data sequences, the only parameter-
estimation problems that can be solved numerically. These problems are just restatements of the
problems in Sections 3 and 4 except that the objective functionals in Section 6 are defined for finite
data sequences. The main motivation for the framework set up in Section 2 is to allow the definitions
in Sections 3 and 4 of parameter-estimation problems to which the problems in Section 6 converge
as the lengths of the finite data sequences increase. According to the theor-',s in Section 6, the
parameters that solve the problems with finite data sequences converge to the parameters that solve
the corresponding problems with infinite data sequences. This convergence follows easily from the
problem definitions in Sections 3 and 4.
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2 Statistics of Deterministic Sequences

All sequences in this paper will have the form

Y = [YOVl Y12 ... ]. (2.1)

The shift operator q-1 is defined by

q- 1Y = [0 yO y1 Y12 ... ], (2.2)

and q-" means (q-1)" for any nonnegative integer n.
For y and v scalar sequences, we define

(p'V) = li (2.3)
i=0

1 0 lt, 12]1/2 (2.4)
itO

"Bi'I = (it it))1/2 = [(,l~n j ,=o~~2 1 2  24

when the limits exist. (We say that such limits exist only if they are finite.) Two scalar sequences y
and v have correlation a if the limit in (2.3) exists and equals the (finite) complex number a; y and
v are independent if q-'y and q-nv have correlation 0 for all nonnegative integers rn and n.

Let w and u be sequences in Hilbert spaces W and U, respectively. For each 1) E W,

[w,uiI=(,Wo,,G)w (W,,q7)w (W2,,7)w ... ] (2.5)

is a scalar sequence. The sequences w and u have bounded correlation if, for each q E W and t E U,
the scalar sequences [w,qj] and [u, f have some correlation a. When this is the case, the Principle
of Uniform Boundedness implies that there exists a real number r such that

I(Iu,tJI~w,Y])l- I r 2 ll. 171 Vl E W, ( E U. (2.6)

When w and u have bounded correlation, there exists a unique bounded linear operator Ru' from
W to U such that

([••u, l[, [,l)) = (Ru""q, )u. (2.7)

The operator Ru'w is called the correlation operator for u and w. The Hilbert-space-valued sequence
w has bounded autocorrelation if the conditions for w and u to have bounded correlation hold with
u = w. In this case, we write R' for R"i. The operator RW is called the autocorrelation operator
for w, and R' is self-adjoint and nonnegative. (Operators analogous to the correlation operators
here have been defined for Hilbert-space-valued random variables. See [1, 2] for example.)

The Hilbert-space-valued sequences w and u are independent if the scalar sequences jw, i7] and

Iu,f] are independent for all q E W and f E U. Hence w and u are independent if and only if q-ow
and q-nu have bounded correlation and zero correlation operator for all nonnegative integers m and
n.

A Hilbert-space-valued sequence w is white if w has bounded autocorrelation and w and q-nw
have bounded correlation and zero correlation operator for all positive integers n.

In the following sections, the input sequences to linear systems will satisfy at least the following
condition for a sequence u in a Hilbert space U:

q-iu and q-ju have bounded correlation for all nonnegative integers i and j. (2.8)
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Theorem 2.1 (Convolution) Suppose that u satisfies (2.8), Ru < r 2 for some r > 0, and a, E U
with

ooaI I < oo. (2.9)

Define the scalar sequence y by

00

Al = D uk-i,,i), k = 0, 1, ... , (2.10)
i=O

where uk-i = 0 when i > k. For this y, the limit in (2.4) exists and the following inequalities hold:

00

IyI _< r E jaI, (2.11)
i=O

n 00

y- •_ [q-'u,ai] < r , jal, n= : 0,1 (2.12)
i=0 i=n+l

If v is a scalar sequence with bounded autocorrelation and if v and q-'u have bounded correlation
for all nonnegative integers i, then the limit in (2.3) ezists.

Proof Define

1= t 1 Yf iy4 [i E = y,12],12 t= 1,2,3,... (2.13)
ti=0 Ito

n

yl = Iq-'u,ai,, n = 0,1,2, (2.14)
i=O

The Principle of Uniform Boundedness and (2.8) imply that there exists a real number p such that

Illq-'u,t], _< pitl Vt• E U, i _> 0, t >_ 1, (2.15)
ft

lyn - Ym 1, <5 P E lI,1, Vn > rn, t _> 1. (2.16)
i=m+1

Also, Ru < r 2 implies
fl[q-u,•]J _<ril V i > 0, (2.17)

ly" - y'l <5 r E lIl,, vn >_ rn, (2.18)
i=m+1

Hence, Ilyn I converges to some real p. For m, n > 0,

[llelh - IV'II _< ly - "I1, + IIylhm - IV"II + Ilfm 
-_iI. (2.19)

Since lim_.o0 iym it = fly m I for each m, (2.16)-(2.19) imply that, as t --- o, Iyni,' --* IY] uniformly
in n. That the limit in (2.4) exists follows then from

p = limlim ly 1", = limlim, , 1yn = lim llyy = jyj. (2.20)
nt t t nft

Since limt Ilyi"I, = lyn , (2.14), (2.17), and (2.20) imply (2.11). Then replacing y in (2.11) with
y - yn yields (2.12).
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Since v and q-iu have bounded correlation for all nonnegative i, v and y"' have bounded correla-
tion for all m, and (2.18) implies that (y"', v) is a Cauchy sequence. For n > t, (y, v)t = WI, V) t-
Let e > 0, and choose m such that the right-hand side of (2.16) is less than e. Choose t such that

y'", v))t - (yr,,v)I < e, and let n = t + m. Then

IY, vt,- (Y 4v)l _< (6"-Y" OtlI+ Ryl _)<- (Y" 0)I < (sup Ivl, + l)e. (2.21)

Therefore,
lim((y,v), = lim(y',v)). 3 (2.22)

When u satisfies (2.8), we define Su to be the set of all scalar sequences y having the form in
(2.10) with aj satisfying (2.9). Then S, is a linear space, and Theorem 2.1 implies that (2.3) and
(2.4) define, respectively, a sesquilinear functional and a seminorm on S,.

Definition 2.2 Two scalar sequences y and v are equivalent if ly - v[ = 0. Two sequences w and
ib in a Hilbert space W are equivalent if [w, 1q] and [b, v7] are equivalent V q E W.

Theorem 2.3 If w and dv are equivalent sequences in a Hilberl space W and u and ii are equivalent
sequences in a Hilbert space U, then w and u have bounded correlation and correlation operator RUW
if and only if t7 and ii have bounded correlation and correlation operator R"'.

When u satisfies (2.8), we define Su to be the set of all equivalence classes of elements of Su, so
that Su is an inner-product space, or pre-Hilbert space, with inner product and norm determined
by (2.3) and (2.4), respectively. If u and w are Requences in Hilbert spaces U and W, respectively,
if u and w each satisfy (2.8), and if q-iu and q-jw have bounded correlation for all nonnegative
integers i and j, then Su e Su, is an inner-product space with inner product and norm determined
by (2.3) and (2.4).

When u satisfies (2.8), we define the Hilbert space Su to be the completion of Su. Hence the
Hilbert space Sgu S,. is the completion of SuE S,-S (under the conditions stated for Su OS. to be an
inner product space). If u and w are independent, Su and S,. are orthogonal. Whether every element
of Su is an equivalence class of scalar sequences is a open question, which does not matter for the
rest of this paper because the only elements of ju E S. encountered are obtained from convolutions
of the generating sequences u and w.

Henceforth, the notation in this paper usually will not distinguish between a scalar sequence s
and the equivalence class of scalar sequences equivalent to s when s is a data or noise sequence. This
abuse of notation is similar to the common practice of referring to elements of the Hilbert space
L2 (0, 1) as square-integrable functions. On occasion, we will refer to the following condition for a
Hilbert-space-valued sequence u:

[q-'u,f] V closed span{[q-ju,J] : j Ž 0, j 6 i} Vi > 0 and Vý,4 E U, (2.23)

where uk E U (k = 0,1,2, ... ) and closed span{[q-ju,J] :j ? 0, j $ ij is a subset of Su. While
the technically correct interpretation of (2.23) requires that [q-'u, f] and [q-j u, 4] be interpreted as
equivalence classes of scalar sequences, the practical meaning of (2.23) is that, for any two elements
f and 4 of U, the scalar sequence [q-du,f] cannot be approximated arbitrarily closely in the sense of
the seminorm in (2.4) by linear combinations of the scalar sequences [q-ju,4], j : i. The condition
(2.23) holds if, for example, u is a finite linear combination of periodic sequcnces and a nonzero
white sequence.

In the rest of this paper, ((.,-) and f • [ will denote the inner product and norm on &, E S.,
while (., .) and I -1, without subscripts, will denote the inner products and norms, respectively, on all
other Hilbert spaces (including C, the complex plane). There should be no ambiguity about which
elements belong to which spaces.

6



3 Least-Squares Estimation and Prediction

We let U, W, and Y be Hilbert spaces, and we assume that there exist absolutely summable
sequences of bounded linear operators LlU E B(U, Y), Ly" E B(W, Y) and absolutely summable
sequences 4" E U, 4'" E W, a'" E U, and aU E Y. For each k, we define Ak" E U", Ah E Y',
Lo" E U', and L." E W1 by

Asu As (,,a') = (,a', Lou cou), Low= ,I (3.1)

where, in each case, q is in U, W, or Y as needed. (When U, for example, is C", each a'u is an
n-dimensional column vector and Asu is the complex-conjugate of the transpose of at".)

For u a sequence in U, we write
Lyk"u - [LIU'Uo La.uu 1 Lk'u 2 ... ], A'"u = [A."uo A."tui A"'u, ... ), (3.2)

and similar equations for Lyw, L.", etc. We define the convolution operators Ly", As", Lyw, L°w,
Lou, and AIN by

0 0D 
0 0

-' q-U, A .u u = qA k u , etc. (3.3)
k=O k=O

Each of these operators maps sequences to sequences. Changing the order of summation in AlyLY"u
and AYLy~tw yields

00 00

A 1' L Au = F ks- U =Elq-' E L•ta'k] (3.4)
i=0 k=0 i=O k=0

00 i 00 i

A'YL'w -= E[E A'Yw -q-'w = E'q-'w, 1, Lyw'aoyI, (3.5)
i=O k=0 i=0 k=0

where •., .J means a scalar sequence defined as in (2.5), and L•u" and LP" are the adjoints of Li"
and LVw, respectively. Hence,

00 5
L"ut - A"'u - AL 1 "u = E[q-'u, [c:" - a" - E L=u'k"] 1, (3.6)

i=O k=O

00
Uw - A 1 L1"w = E[q-iwc[w - Z L"j'ay1_ .. (3.7)

i=0 k=O

The following hypothesis is implicit in all subsequent problems and theorems.

Hypothesis 3.1 There exist independent sequences u, w, and v in the Hilbert spaces U, W, and Cn,
respectively. Each of these sequences has bounded autocorrelation, w is white, and u satisfies (2.8).
There exist a Hilbert space Y and absolutely summable sequences Ly" E B(U, Y), Lkw E B(W, Y),
4"u E U, c4w E W, Lou E U', and Low E W' with c'" related to Lou and cow" related to Lk" as in
(3.1). The sequences L"'ww and Ly"w are independent of Li" w and Lk'°w Vk > 1.

In the subsequent estimation and prediction problems, u is a known input sequence to a linear
system, w is an unknown noise sequence, and v is another unknown sequence, often to be estimated.
Process noise and measurement noise are components of w. The measurement-noise sequences are
Lo"w and LO"w. The inner-product space Su @ S,, of equivalence classes of scalar sequences is
constructed as in Section 2.
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From here on, the notation in this paper does not distinguish between a scalar sequence [q-'w, y]
for q E W and the equivalence class of all scalar sequences equivalent to [q-'w, q]. The notation
is abused similarly for u and the output sequences y and s in the following problems. Under
Hypothesis 3.1, u, = c" au -a ' -• L0u•ak'V and r,~ = cj"' - E'=0 LV-*a'V are absolutely
summable sequences in U and W, respectively. Therefore, the right-hand-sides of (3.6) and (3.7)
are elements of Su and S., respectively.

Problem 3.2 (LS: Infinite Length ARX) Let the Y.valued bcquence y and the scalar-valued se-
quence s satisfy

Y = Ly"u + Ly'w, (3.8)

s = L'uu + Laww + v. (3.9)

Find absolutely summable sequences a'" = [a' a'Y a7 ... ] in Y and a"' = [as" at" as" ... 1 in U
to minimize

JE(a'y,a&U) = [A3y + A'u _ s82 (3.10)

subject to
S= 0. (3.11)

Probiem 3.3 (LS: Finite Length ARX) Assume the hypotheses in Problem 3.2. Let N be a
positive integer, and find sequences a'1 f in Y and a'u in U to mirimize JEN("Y, a'u) = JE(a'y, a'u)
subject to (3.11) and

aly = 0, aku = 0, Vk > N. (3.12)

(The functional JE, (a'y,a"'u) is just JE(a'y,a"u) defined for parameters a's and a"u that satisfy
(3.11) and (3.12).)

Problem 3.4 (LS: IIR) Assume the hypotheses in Problem 3.2. Find an absolutely summable
sequence a"u in U to minimize

JE(0,a"') = IA"'u - 812. (3.13)

Problem 3.5 (LS: FIR) Assume the hypotheses in Problem 3.2. Let N be a positive integer, and
find an absolutely summable sequence a"' in U to minimize JEN(0, a"u) = JE(O,a"u) subject to

a'ku = 0, Vk > N. (3.14)

In Problems 3.2-3.5, the parameter sequences a'V and au' are chosen to miTimize the norm (i.e.,
. |) of the prediction-error sequence

N N N N

A = EAs'q-'y+EA:uq-'u - s = Elq-'y,a"'] +E[q-'u,atij - s. (3.15)
i=1 i=0 i=1 i=O

(Recall (2.5) and (3.1)-(3.3)). The kth term in this sequence is

N N

ek = E(yk_,,a:') + Z(uk_.,,a:") - sk, k > 0, (3.16)
i=1 s=0

with y, = 0 and u, = 0 for i < 0 (recall (2.2)). In Problems 3.2 and 3.4, N = 0; in Problems 3.4
and 3.5, a'Y = 0.
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Problem 3.6 (LQR. Infinite Interval) Lp X be a Hilbert space and T E B(X, X), B" E B(U, X),
BW E B(W,X), Cy E B(.Y,Y), C8 E X'. Let the spectral radius of T be less than 1, and let cv be
the element of X that satisfies

C'z = (z,c") Vt. (3.17)

(The element e, is independent of x.) Find a square-summable sequence Y in Y, with r'o = 0, such
that V minimizes

00 00

Jc(v) = E( BW'*4, BW'*f) + 1>90w Rw L•"mi, v) (3.18)
i=1

where the sequence f in X satisfies
tj = -c", f+ = T4•= + C`'&,vuk > 1. (3.19)

Problem 3.7 (LQR. Finite Interval) Assume the hypotheses in Problem 3.6. Find a sequence
V in Y, with

VOo=0, va=O Vk>N, (3.20)

suc!. that L, minimizes

N N

JCN(M) = Z (RwBwJ d,Bw*i) + E(LowRwLYow*, v,v') + (GýN+1,Zrq+i) (3.21)
i=1 i=1

where the sequence t in X satisfies (3.19) and

00

G = EZT [BwRWBW" + BURUB"*](T*)'. (3.22)
i=O

The operator G in (3.22) is the unique element of B(X, X) that satisfies the Lyapunov equation

TGT" - G = -[BUJRw Bw" + BuRuBu*]. (3.23)

Theorem 3.8 Assume the hypotheses in Problems 3.2 and 3.6. Assume further that, for k > 1,

Lku = CyTk-lBu, Lkw = CGITk-&Bw, (3.24)

Lsu = CsTk-IBu, Lsw = CT&-.Bw. (3.25)

If sequences a'1' and a'u solve Problem 3.2, then the sequence v = a0, solves Problem 3.6. Con-
versely, if a sequence v solves Problem 3.6, then the sequence a'1 = v and the sequence

a,. = -B"', - Lua*vi, i > 1, as" = c'U. (3.26)

solve Problem 3.2. (The sequence f is generated by (3.19).) If the autocorrelation operator LoW RWLyw"
is coercive, there exists exactly one sequence v that solves Problem 3.6. If u satisfies (2.23), then,
for any pair of sequences a'1 and alu that solve Problem 3.2, (3.26) holds with t generated by (3.19)
with v = a'V.

Theorem 3.9 Assume the hypotheses in Problems 3.3 and 3.7, assume that (3.24) and (3.25) hold
for k > 1, and let u be white. If sequences a'1 and aau solve Problem 3.3, then the sequence V = a',,
solves Problem 3.7. Conversely, if a sequence Y solves Problem 3.7, then the sequence a'1 = 'V
and the corresponding sequence a"' given by (3.26) solve Problem 3.3. If Ls7wRWLYr * is coercive,
there exists exactly one sequence v that solves Problem 3.6. If R" is coercive, then, for any pair of
sequences a'1 and asu that solve Problem 3.3, (3.26) holds with t generated by (3.19) with V = a'1'
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Theorem 3.10 Assume that (3.24) and (3.25) hold for k >- 1. If the Aipotheses in Problems 3.2
and 3.6 &old, then

miin JB(b',a") = Min jc(v) + (Re4,,C,,) + IV12. (3.27)

(I03%n0) if

If the hypotheses is Problems 3.3 and 3.7 hold and u is white, then

miin JBN(m,au") = miJ JCN(Q)+ ( aec',c4y) + Ivl 2. (3.28)
{I:Vo=O a

Theorem 3.11 A solution to Problem 3.4 is a"' = c". If u satisfies (2.23), the solution to
Problem 3.4 is unique. If u is white, a solution to Problem 3.5 is

4" =4 o", o <- <N< . (3.29)

If u is white with R" coercive, the solution to Problem 3.5 is unique.

Proof of Theorem 3.8 Under the hypotheses in Problem 3.2,

JE(a", a,') = IA'1 L"uu + A'uu - L 'Suf 2 + IA#YLww - L"owfU2 + IV12, (3.30)

00 i
IA"YL 1"u + A'uu - L'ou 12 = I F•q-u, [c:" - a," - • L•_"a. 1]I1N1, (3.31)

=O k-=0

00 i-I i-I

IA"LI"w - L"wI 2 = ( [cw - " Ly"a], [c"" "
i=1 k=0 k=O

00

+ Z(RwLy''*a:-, Lyw'a'v) + IL"wi2 . (3.32)
s=0

Since 4", e, L'", and L"a are related as in (3.1), (3.25) implies

4" = B"(T)5 -1 c", cSUP = B"'(Tr)k-1 c's, k > 1. (3.33)

Since i-1

( = -.(T)i-lc + "(T*)i-l-kCy*Vk, i > 1, (3.34)
k=1

it follows from (3.24) that, if v0 = 0,

,- Lg = -B"*• - L-"VI, i> 1, (3.35)
k=0

-i--

Cw- E Lyv = -Bw*ti, i > 1. (3.36)
k=0

Hence, if o = 0,

J-(•,v )= Jc () + (R"'4', •") + I011l
00

+ -[u,c - a"j + I[q-'u, (B"u4 + L0"*'v + a,)1]l. (3.37)
i=1
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That LVo"RvLYO" being coercive is sufficient for the existence of exactly one solution to Problem 3.6

is well known. All of the other statements in the theorem follow from (3.37). 0

If u is white also, then

IAV LPuu + A"ui - LVu =12

00Ilu, c•" - a•"]+ "Iq-u, (Bu'• + Lo'"'o: +au'")12 = (3.38)
d=1

(RU(CU - a•u),.(CSU - a1u)) + Z(Ru(Bu•, + Lou',v, + a'"),(Bu'i + Lyu v, + aou))
0a0

where t satisfies (3.19) with v, = a'y.

Proof of Theorem 3.9 When vk = 0 Vk > N, (3.19) yields

t, = T'(i-N- l)tN+l i > N + 1. (3.39)

Then, when (3.11) holds, (3.37) with Y = a'1 and (3.38) yield

N N

JEvN(a'Y,a'u) = Z(RW B"*j,,BW'%,) + '(LOw Rw L•wua:P,a8Y)
i=1 i=1

00

+ -([BW R" Bw* + B" Ru Bu*]T"iN+l,T itN+1) (3.40)
i=0

N

+(Ru(c4"u - ao ), (ca" - asu)) + Z'(Ru(BUt* + Lyu a,, + au), (Bu4t, + LI`v, + au))

+(Rwc0,c0 + fvm'l;

i.e., when (3.11) holds and u is white,
JEN("a', au) = JCN(a*") + (Rwc'w, c o) + wvf

2 + (Ru(csu - s"u), (C"u - •))

N

+ Z(R"L[Bu*, + Lyuasy + a"], [Bu*', + Lyua~ v + au 0 (3.41)
5=1

Proof of Theorem 3.10 From (3.37) and (3.41). 0

Proof of Theorem 3.11 With a'1 = 0, (3.30) reduces to

JE(0,a'u) = IA'uu - L'u 12 + ILwW12 + 1v112  (3.42)
00

= I [q-'u, (cu - a,)lu + ILwwl2 + iv12.

5=0

When u is white,

N 00
JEN(0,a") = (R"(c" - a•u), (ciu - a")) + FI (RIcI,cU) + ILawl2 + Iv12 . 0 (3.43)

i=O ifN+l



4 Minimax Estimation and Prediction

From here on, we assume Hypothesis 3.1, the hypotheses of Problem 3.6, and (3.24) and (3.25) for
k > 1. We also assume the following hypothesis.

Hypothesis 4.1 There exist a Hilbert space Z and sequences LzU E B(U, Z) and Li" E B(W, Z).
The sequence L'"w is independent of L•'w and L•"'w Vk•> 1, and L'ww is independent of
Llk w Vk 0 0. The sequence u is white.

We define operators L'u and LZw as in (3.3). For each absolutely summable sequence ak' E Z,
we define a corresponding sequence of linear functionals A•5 and an operator A" as in (3.1)-(3.3).
This section concerns the linear system in (3.8) and (3.9) with the additional, Z-valued measurment
sequence z satisfying

z = LZUu + L"ww. (4.1)

In some applications, z = s.
We use the following notation for finite and infinite sequences

k=[aj" a1 I ... a""], k + I [a,' a", a~ = [a"y a*,k a?+i a, ... 1. (4.2)

For each positive integer N, we define the prediction-error sequence

N N N

u + 1 - 8, (4.3)
k=O k=1 k=1

and the fit-to-data criterion

N
JEN(al'N,aO:N,a :N) flII _ Z Ia•'12, (4.4)

k=1

where - is a nonnegative real number.

Definition 4.2 A real-valued function f(vy, vu, v') is coercive in vy if

f(, 0, V) = fo +fh(W, Vu, V) + f2(WVu,IVz) (4.5)

where fo is a fired real number, f1 (vy,vu,vz) is a linear function of (vy, u, Z), and there exists a
positive real number p such that

f2 (V, 0,0) > pl1p1 2 . (4.6)

If the corresponding condition holds for uU or 0., then f is coercive in vu or v', respectively.

Problem 4.3 (Minimax: Finite Length ARX) Suppose that JEN(al a :N Nsin aiNNa1:N ,aO:.a:N in Uoandaive%
in a*7N and ao.u and that -JEN is coercive in a*,"N. Find sequences a',! nO:N se:eNe aN in Y, auN in U, and al..

in Z that satisfy the saddle-point condition
JEN(a:N, a'u, V1:N) - JEN(a':N, ao: , a':N) - JEN(ti:N, 1 0:N, ai.N) (4.7)

for all sequences 'v:N in Z, M11:N in Y, and V':N in U.

Next we define
.NP au a" N au (4.8)JEN,Na':N, aO:N, l:N) = JEN(ai:N'aO:N, a:N).For I < k < N, when JEN,k+j([a'l.• ay,],s [aro'ý Iu kFor1 < < , wen ENk+1(a 'a•"o],(a at 1 ], [aj,• a4+1 ]) is coercive in at+1° and at+',u and

-J£N,k+l is coercive in a4 1 (for a ' anu .k fixed), we define+a O:ka .u , a n d a ' i e d , w d f n
J E N , k( ', al/ su a *, ' ra4 .9)"a

JEk(ai:k,aot k,az) = min max JEN,k+l([a7•:I ,EYj, iio , [alk k,t f]. (4.9)

,,'EY IEZ
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(According to (4.2), a'.! .a' J, etc.) We also define

JEN,o(0, a", 0) = min max JEN,I( O, [a'" 1"], rf). (4.10)
,i'ey 'IEZ
ui'EU

Therem4.4IfJEN*+1a.k a" jja,"' ak",, 41J'ak O+.]) is coerciv~e in a'v and ak+ andTheorem 4.4 I JUN,k+1([a'j' k+ 04 :k k

-JEN,k+l is coercive in a" 1 V k = 0, 1,... ,N - 1, then for each such k there ezist bounded linear
operators MYNK.N N .N k and vectors 0, 4k, O'. such thatopeatos KN,k , Ky-~ , K N~k , K;k -~ I.. K•,k

JE Ika11 ss I

A k a"' ], ta' ai 1], [a.. a,' I) (4.11)

with
at = .-- + Kyrua' + Kyraj 5 +l -++, (4.12)N'NktOlktN, k,+t YO+t

atu] - ",ka',.k + Krk, alu.. +~ K kat + O•+,, (4.13)

a•-l = Kl�Ntal + Ku, asu + K.!,kaj,, + ++1, (4.14)

a*:0 = 0, a,- = 0. (4.15)

Furthermore, for each k, the aT, a+ ,, and ak4, for which (4.11) holds are unique.

This theorem follows from the assumed coercivity and the fact that JEN is a linear-quadratic func-
tional.

Problem 4.5 (Order-recursive Minimax: Finite Length ARX) Suppose that
JENk+1([at1k a"'], 0a:t aku], [a'!,t ak.1 ]) is coercive in a"I and au, and -JENk+l is coercive
in asl. V k = 0,1,..., N - 1. Find ai: N and ao.N such that a+u minimizes JEN,o(0, au, 0) and

a+ = ++"+ 0 < k < N - 1, (4.16)"",,,'N,k '0'kk +NOyao I

a'+] = K,":kaI + Kua + 04+1, 0 < k < N - 1, (4.17)

a,!0 = 0. (4.18)

Now we consider the optimal control problems of finding open-loop and closed-loop saddle-point
strategies for the performance index

N
JCN(VI:N. V:N) = j-(RwBw*4 , BW'*) + (GýN+1, N+1)

i=1

N N
+E[(LyowRw Ly vi) + (LwRw L* v', v)] _ _,2 EIV; 12  (4.19)

where G is the operator in (3.22) and the sequence t in X satisfies

6 = -cs, 6+1 = T*"f + C*Vk + CiV4 Vk > 1. (4.20)

We use the standard notions of saddle-point strategies for linear-quadratic games.

Problem 4.6 (Open-loop LQ Game: Finite Interval) Suppose that JCN( 1:N, V•:N) iS
coercive in {Y1:N and -JCN is coercive in V4 :N. Find sequences a*.N in Y and ai.N in Z that
satisfy the saddle point condition

.N, as- )V :5 JC #Va( .1

JCN(aOiN, Vl:N) < JCN(aN,a' N) <_ JCN(:N14N,a7N) (4.21)
for all sequences iv1:N in Z and L41:N in Y.
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We will define closed-loop saddle-point strategies in a way that is most relevant to Problem 4.5,
but our definition here is equivalent to the standard definition (see [6], for example) of closed-loop
saddle-point strategies for (4.19) and (4.20). We define

JCN,N(&'I:N, "':N) = JCN(4:N, Iv:N) (4.22)

For I < k < N, when JCN,&+I([Vyl:k V I, [V•: 1:& b+]) is coercive in '4.+l and -JCN,&+l is coercive
in v,4+. (for 0:, and &:h fixed), we defne

JCN,k(01k,1 1:4) = Min mm ax JCN.h+:([a{, I?], [V:&"D ]). (4.23)
VIEY QiEZ

Theorem 4.7 If JCN,k+1(['L:k 1144]' [l:k 4+1]) is coercive in t.+ and -JCN,k+l is coercive in
14+1 V k = 0, 1, ... , N - 1, then for each such k there exist bounded linear operators Fl 1+, and Fk+1
such that

JCN,k(t4:Ith, I':k) = JCN,k+1 ([Vl:4h &ik+ ], [14:k V4+ 1]) (4.24)

with

VV+: I -Fk"+g4 ,+1 , (4.25)

V&+, =--Fk1+1k+1" (4.26)

Also, the unique sequences a11' and a',' that solve Problem 4.6 are a'IN = ,:N and :lN = V1:N
with 4{N and *4 N generated by (4.25) and (4.26).

This theorem follows from the assumed coercivity and the fact that JCN is a linear-quadratic func-
tional. The feedback control laws in (4.25) and (4.26) are the pair of closed-loop saddle-point strate-
gies for (4.19) and (4.20).

Our formulation of the order-recursive minimax parameter-estimation problem and the closed-
loop saddle-point strategies for the control problem are motivated by the following standard results
on LQ dynamic games [6]. There exists a sequence of Riccati operators Pk, generated by a Riccati
difference equation backward from the final condition PN+j = G, such that

k

JCN,k(Vl4:k,14ll) = :(R'Bw*f, BW*fi) + (P,4. 1C,4 1 ,f, 4 . 1 )
i=1

& k

+ yv[(LioR'LRo''wy) + (LLwRw'Lu'i*i , V.Z)]-72 Z -'4 2 (4.27)
i---1 i---1

for any sequences VIN and V':k. The gain operators FkV+' and F,+, in (4.25) and (4.26) can be
constructed from Pk+1 and the operators in (4.19) and (4.20). See Section 5.2. The standard results
on optimal control do not appear to provide an algorithm for solving the parameter-estimation
problem, but they make the solutions to Problems 4.6 and 4.8 trivial.

Problem 4.8 (Closed-loop LQ Game: Finite Interval) Suppose that the coercivity hypotheses
in Theorem 4.7 hold. Find the sequence VV:N generated by

t' = -Fk1,, (4.28)

and (4.20) with V4 :N = 0.

Theorem 4.9 Suppose that the coercivity hypotheses in Problem 4.3 hold. Then the coercivity hy-
potheses in Problem 4.6 hold, and the finite sequences al.N, ao:N and a', solve Problem 4.3 if and
only if a":N and all" solve Problem 4.6 and

a~u = -B'fi - Lou*asy - LM"ua!', i > 1, asu = cou. (4.29)
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Theorem 4.10 Suppose that the coercivity hypotheses in Problem 4.5 hold. Then the coercivity
hypotheses in Theorem 4.7 hold, and the finite sequences aGN and a"N solve Problem 4.5 if and
only if fLN = a',!N solves Problem 4.8 and

a:" = -BVfi - Lvu"a:', i > 1, as" = C4. (4.30)

Proofs of Theorems 4.9-4.16 In (3.30)-(3.41), we include terms corresponding to the measure-
ment z in (4.1) to obtain

SU) SU - U)

JEN (aGI :N ,aOO:N ,aGI :N) = JCN(a lN,a;'N) + (R" ( -- aa',),"(c -

N
+ E(Ru[Bu + i + L"a:' + Ls"ua:5 + au], [Bu*& + L~ou"a:1 + L""als + a:.]) (4.31)

i=1

+(Rwco,,Ceo) + Ivl 2

where JCN (al1N,a"N) is given by (4.19), t satisfies (4.20) with myN = a0N and VP:s as,'N, and

(Rww, 4 and 112 are constants independent of a1'N, a•j, and a'N. The following lemma then
implies Theorems 4.9 and 4.10. The subsequent Theorems 4.15 and 4.16 follow from (4.31).

Lemma 4.11 Let Hi (i = 1,2,...,5) be Hilbert spaces with Lij E B(Hi,Hi), c4 E H4, cs E Hs.
Define J(.,.) HI x H3 -. * R and j(-,-) : H, x H2 x H3 --+ t by

J(hl, h3) = IL41hl + L43 h3 + c4 12 
- 912h312, (4.32)

i(hi, h2 , h3 ) = J(hl, h3) + IL51hi + h2 + Lwhs + c512 , (4.33)

where y is a positive real number, and consider the saddle-point conditions

J(hl,h3) < J(h1 , h3 ) 5 J(h 1 , h3) V 41 E H1 , h3 E H3 , (4.34)

J(h 1 , h 2 , 1) _5 J(h1 , h2 , h3 ):5 J(hi, h2, h3 ) V hi H H1 , h2 E H2 , h3 E H3 . (4.35)

Suppose that (4.35) holds for some (hl, h2 ,i 3 ) WE H, x H2 x H3 . Then

h2 = -(Ls5 hi + Ls3ah3 + Cs), (4.36)

and the following one-to-one correspondence exists between saddle points of J and saddle points of
J: (4.34) holds for some (hl, h3 ) E H, x H3 if and only if (4.35) holds for

hi = hi, h2 = -(L 51 hI + Ls3 h3 + cs), h3 = h3. (4.37)

This lemma follows from the first-order necessary conditions (normal equations) for saddle points of
linear-quadratic functionals and the fact that J is concave in h3 if i is.

Theorems 4.9 and 4.10 say that Problems 4.3 and 4.5 are equivalent, respectively, to Problems 4.6
and 4.8 when -/ is large enough for the appropriate objective functionals in Problems 4.3 and 4.5 to
be coercively concave (i.e., -J coercive) in the maximizing parameters a*'. Because of the term

on the second line of (4.31), 7 generally must be larger for the coercivity hypotheses in Problems 4.3
and 4.5 than for the coercivity hypotheses in Problems 4.6 and 4.8. The following alternative
minimax parameter estimation problems have coercivity hypotheses that are equivalent to those in
the corresponding control problems.

We define

JEN,N(a'N,a;'N) = a N(4.38)
15 00IN N, ao)Nmia(," (4.38)

15



Problem 4.12 (Minimax: Finite Length ARX) Suppose that JEN(a'N,a;:N) is coercive in"a8in and thtaEN: N n tastsf
Nand that - is3 coercive in a*' Find sequences a1  in Y and a', in Z that satisfy

the saddle-point condition

JEN(GN, 'I:N) S JEN(a:N,Gal:N) ) JEN(&I:N,Oa'N) (4.39)

for all sequences 'v:N in Z and 4 :IN in Y, and for this a,!N and a 2N, find a•U. such that

JEN(aG:N, iN ) :N EN(Ga:N :N (4.40)

For 1 < k < N, when JENk+1([a'' a"' 1 ],[a,'/ a,+ 1]) is coercive in ak1 and -JEN,.+l is

coercive in akl+, we define

jEN~k(a,!k, a',' min maXJEN~k+:([a'k 11  [as,'k qZ])- (4.41)
17'EYnIEZ

Terakm 4., [a',k ak- 1 ]) is coercive in and iJEN,k+I s coercive in
Theorm 4.3 IfEN~kI([aj! sEN~k

a"Z Vk=0, 1..., N-1, then for each such k there exist bounded linear operators Kfy,, f K,k,Kz

k"k and vectors such that

JEN,k(al:•yark) = JENk+l([al:"k aG ),[a*,' ak4:]) (4.42)

with

ak+l = kXN,ka'l:k + kN,kal.k + •I+ (4.43)
ak+. I N~)'t a:', + KNzkalz + +1, (4.44)

a,% = 0, a*' = 0. (4.45)

Furthermore, for each k, the a'+ and ak+1 for which (4.42) holds are unique.

This theorem, like Theorem 4.4, follows from the assumed coercivity and the fact that JEN is a
linear-quadratic functional.

Problem 4.14 (Order-recursive Minimax: Finite Length ARX) Suppose that

VlJ[a'y a' 1], [t'lGk askl]) is coercive in a and -jEN,k+I is coercive in ak'+4
V k =0,1,... ,N - 1. Find aG:N such that

k+= -N,k ka +Yk, 0< k < N-1, (4.46)

a*,o = 0, (4.47)
and for this a', :

aatN, find aou. such that
E N aY N a" , 0). (4.49)

JEN(aI'N, 0) = JEN(aGN, O:N, ("

Theorem 4.15 The coercivity hypotheses in Problem 4.12 hold if and only if the coercivity hypothe-
ses in Probl m 4.6 hold. When these hypotheses hold, the finite sequences 1"•N, a and aN solve
Problem 4.12 if and only if a"IN and a'N solve Problem 4.6 and a"N is given by (4.29).

Theorem 4.16 The coercivity hypotheses in Problem 4.14 hold if and only if the coereivity hy-
potheses in Theorem 4.7 hold. When these hypotheses hold, the finite sequences a1.YN and a solve

.N solves Problem 4.8 and a'" is given by (4.30).Problem 4.14 if and only V Ply: N = aY1
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5 Relationships to State-Space Filtering

5.1 LQR/Kalman Filter Representations of LS Parameters

We begin with the finite-order LS problem and the finite-time control and filtering problems. Ac-
cording to standard results on LQR problems, the solution to Problem 3.7 has the form

k= F(5.1)

where
- [L R " LYU + C6Pk+,CY.]-iCyPk+lT (5.2)

and the Riccati operators P& are the nonnegative, self-adjoint elements of B(X, X) satisfying

Pk = BwRYB'" + T(Pk+, - Pk+,Cv*[Lo'1RwL'"" + C'Pk+jl'i]-1 CYPk+j)T", (5.3)

PN+j = G. (5.4)

The corresponding optimal sequence 4 satisfies

th= k-I(c-2"" 8o -C") 1 <k < N + 1, (5.5)

where
T= T- FkC1 , 1 < k < N, TO = I. (5.6)

With (5.1) and (5.5), the solution to Problem 3.3 given in Theorem 3.9 becomes

asy" * k[l-"•Carl 1 _< k _< N, (5.7)

= B"tk.-'1_._ 2 ... to% - L'-"a i <k < N, aA" = u. (5.8)

According to (3.1) and (3.17), the bounded linear functionals corresponding to the askV and asu in
(5.7) and (5.8) are

A = C'T0o'. .T&.. 2k- ...lFZ, 1 < k < N, (5.9)

= Cat... ! 2 tk-Bu - A'YL'0" 1 < k < N, As = L. (5.10)

Under the hypotheses of Theorems 3.8 and 3.9, a state-space realization of the input/output
system in (3.8) and (3.9) is

Xk+1 = Tzk + B"Un + Bwwk, (5.11)

Yk = Cy zk + LV"Utk + L•o" wk, (5.12)

Sk = C'Zk + L"uUk + L W•,w + V. (5.13)
(Recall that u is a known input sequence while w and v are unknown noise sequences.) If y is the
measured output, a Kalman filter for one-step-ahead prediction of Xk+1 has the form

4+1 = Tik + AFYk + [B" - PSLylUk, (5.14)

and the corresponding one-step-ahead prediction of 8 k+1 is

ik+1 = C'ik+i + L'"us+x = (4k+1, ca) + La"u&+,. (5.15)

(The hk here often is denoted by ik/k_,. See [20], for example.) If the expected value of z, is
il = 0, then

ZN+l = FNyN + [Bu - PNLY"]UN

N-1
"+E TNTN-I... tN+÷-i(FN-iYN-I + [Bu - FN-jL"u]UN-I)" (5.16)

i=1
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If the probabilistic error-covariance operator for ij is G, then

F = F,+,_., Tk = TN+1.-., 1 < k < N, (5.17)

where Fk and Tk are the operators in (5.1)-(5.6). Substituting (5.16) into (5.15) and using (5.17),
(5.7), and (5.8) yield

N N
iN+1 = Z(yN+1-,,:'y) + Z(uN+l_,,a:U)

i=1 i=0

N N

= ZAj8YN+1•i +E A:,UN++•. (5.18)
i=1 i=O

Thus the ARX coefficients that minimize the least-squares one-step-ahead prediction error in
Problem 3.3 are the coefficients in the probabilistic minimum-variance prediction of iN+l based on
the data yl, y2, ... YN and Ul, U2,... UN and the assumption that the initial state vector zx has zero
mean and covariance G, given by (3.22). This G is indeed correct for the steady-state statistics of
the state vector zx in (5.11) when T has spectral radius less than 1 and uk and wk are zero-mean
stationary white noise sequences (in the probalistic sense) with covariance operators Ru and RIO,
respectively.

When we say that the parameters a:1 and afu, or equivalently A'Y and A.u, are Markov pa-
rameters for a state-space filter, we mean that they are the coefficients in a prediction formula like
(5.18).

Now we turn to the infinite-order LS problem and the infinite-time control and filtering problems.
The solution to Problem 3.7 is given by (5.1)-(5.6) with Fk, Pk, and Tk independent of k. Hence

Fk = F, Pk = P, Tk = T= T- F*CV, (5.19)

and the solution to Problem 3.2 given in Theorem 3.8 becomes

"y = Ft*(k-l)c"x, k > 1, (5.20)

as" = Bu*- "-)c" - L"ay k > 1, aou = cs". (5.21)

For the corresponding bounded linear functionals, (5.9), (5.10), and (5.17) yield

A -k = CsT-O1)F, k > 1, (5.22)

Asu = C-•f(k- )Bu AoyLyu, k > 1, AOU = Lsu. (5.23)

The linear functionals Asu and A': in (5.22) and (5.23) should be recognized easily as the Markov
parameters for the steady-state Kalman filter for the system in (5.11)-(5.13) with measured output
y and predicted output s.
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5.2 LQ Game/H,. Filter Representation of Minimax Parameters

According to standard results on LQ games (see [6] for example), the solution to Problems 4.6 and
4.8 have the form

a = t = -F~k%, (5.24)

a'k' = vy- = -FkG, (5.25)

where

[ F I [R + CPk+C]- CPk+T'F-, (5.26)

R= L4WLW (L0RMJLO/ ' _ yo7
2 j) ] C= [" , (5.27)

and the Riccati operators Ph are the nonnegative, self-adjoint elements of B(X, X) satisfying

Pk = BW RW BW* +T(Pk+1 - Pk+lC*[R+CPk+IC*]-FCPk+I)T (5.28)

and the final condition (5.4). The corresponding optimal sequence t satisfies (5.5) with (5.6) replaced
by

tk = T - Fr*C' - FkC 2 , 1 < k < N, 1o=I. (5.29)

The coercivity hypotheses in Theorem 4.7 iold if and only if the operators [Lw Rw L0w*+CVPk+lCi*]

and [9y1 - LaWRWLzw* - CzPk+1Cz*] are coercive for 1 < k < N.
With (5.24), (5.25), (5.5), and (5.29), the solution to Problems 4.3 and 4.12 given in Theorems 4.9

and 4.15 becomes
a = F#ik- tkI- 2 ... t;c", 1 < k < N, (5.30)

a;U = Butktk 2 .-2. Toc1 - Lua - Lua 2  1 < k < N, aou = C*oX, (5.31)

ai' = F T;_tk-_2 ... Toc, 1 < k < N. (5.32)

The corresponding bounded linear functionals are

A"=' = C'T0 .. "Tk-2Tk-I.Fr, 1 < k < N, (5.33)
Asu = CsT0"- "7- 2Tk-..lBu - AsYLy4u - AskzLzu 1 < k < N, Asu = Lsu, (5.34)

Asz = CsT0 ' ." t- 2 Tk- IlFk, 1 < k < N. (5.35)

By the standard results on LQ games, the operators Fk' in Theorem 4.7 and Problem 4.8 are those.Nu and a•'u in the solution to
in (5.25)-(5.29). Hence, by Theorems 4.10 and 4.16, the sequences al'N an
Problems 4.5 and 4.14 are given by (5.30) and (5.31) with a,'N = 0 and

Tk = T- Fk°GCY, 1 < k < N, T 0 = I. (5.36)

The role of LQ game theory in Ho, control and filtering stems from the following well known
result, which is a corollary to Theorem 4.7.

Corollary 5.1 Suppose that the coercivity hypotheses in Theorem 4.7 hold, that V
4 :N is generated

by the minimizing closed-loop saddle-point strategy in (4.25) and (5.24), and that ýi = 0. Then

JCN(VI:N, V•:N) < 0 V Vf:N. (5.37)
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To interpret (5.37) in the most useful way for this paper, we assume that G can be factored as

G=BB (5.38)

where f is a bounded linear operator from a Hilbert space X to X, and we define

- BN+l (5.39)

and
'1k = R- l2(B'% + L•o"'a, 1 < k < N, (5.40)

where Rw/ 2 is the nonnegative self-adjoint square root of Rw. Then,

N N N

,(R'B'°,,B'*&) + (GN+1,,N+1) + _(LVowRwL'0"YjV,P) = 11h 12 + Ie12. (5.41)
i=1 i=1 S=1

If there exists a real number p such that
LzwRwLzw* > p, (5.42)

then (5.37) yields
N N

1q, 12 + I&I2 < (_2 - 2)Y Iv:12. (5.43)

Under the hypotheses of Section 4, a state-space realization of the input/output system in (3.8),
(3.9), and (4.1) is (5.11)-(5.13) with the additional output equation

Zk = CzXk + uUk + LoWW. (5.44)

If y is the measured output, a finite-time H. filter for one-step-ahead prediction of zk+j has the
form (5.14) and the corresponding one-step-ahead prediction of 8k+1 is given by (5.15), but the
Kalman and H,, filters use different operators Tk and Pk.

For the H,, filter that is related to the order-recursive minimax parameter estimation problems
in Section 4, the operators Tk and Fk are given by (5.17) with Fk and Tk generated by (5.26)-
(5.28) and (5.36). That these operators Pk and Tk indeed yield an Ho filter will be established in
Theorem 5.2. But whatever the meaning of the state-space filter in (5.14) and (5.15) for this choice
of -Pk and T&, the one-step-ahead prediction of sN+l by this filter, when ;i = 0, can be written as
in (5.18) with the coefficients ai and a!" given by (5.30) and (5.31) with a," = 0 and t"k given by
(5.36)-and these are the same parameters ai' and aU that solve Problems 4.5 and 4.14.

Theorem 5.2 Suppose that the coercivity hypotheses in Theorem 4.7 hold and that (5.42) holds.
Assume

x1 = i}, = P1, (5.45)

W = Rw/2 tb,,, 1 < k < N, (5.46)

with i,I E .X and fvk E W. Let Z:N be generated by (5.14) with TL. and F,, generated by (5.17),
(5.26)-(5.28), and (5.36), and define the prediction of z by

ik = C-ik• + LzoU Uk, I <_ k < N. (5.47)

Then
N N

Iz,,-,,=< (9 - p)(Z Iw,,+ Ix-t1) • (5.48)
k=1 k=1
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Theorem 5.2 follows from (5.43) and the following lemma.

Lemma 5.3 (Duality between Control and State Estimation) Let X, W, Z, and X be
Hilbert spaces with Sb E B(X, X), Bk E B(Z, X), Ck E B(X, W), Di E B(Z, W) (1 < k < N) and
C E B(W, Z). Define

5k= D - ,b-k = S,+Ik, (5.49)
1 <k < N.

Consider the two systems

6+= Sk + BkVk, l < k < N,

'7bCkb&+Dkvk, <1 k<N, (5.50)
S= ¢ +i, l =0,

and

6k+1 =Sk& + b'k, 1 < k < N,

Vi ekCk&+Dk'7b, 1 :5k<5N, (5.51)
t, = &.

(The fk, f, 7k, v'k in (5.50) have no relation to the G, f, '7k, Vb in (5.51), except for belonging to
the same respective spaces.) Let L E B(Z x Z x ... x Z,W x W x ... x W x X) be the operator
such that, for the system in (5.50),

(171:N, L L:N (5.52)

and let i EB(W x W x ... x W x f,Z x Z x ... x Z) be the operator such that, for the system
in (5.51),

yi:N =L (,7:N, •). (5.53)

Also, let I" and I' be the isometric isomorphisms such that

"([71 172 ... 7N], ) = ([17N ... r/2 '711,,[V), V2"[ .'. IN] = [VN ... V2 • 1]. (5.54)

Then

L = 1L1?l.(5.55)

Calculation of the adjoint operator L" yields Lemma 5.3.

Proof of Theorem 5.2 Let (5.50) be the closed-loop control system in the closed-loop LQ game
(Problem 4.8) and let (5.51) be the prediction-error system for the filter specified in Theorem 5.2.
Then (5.48) follows from (5.43) and the fact that L and V have the same norm. (Related arguments
appear to be used in [6].) 0
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6 Problems with Finite Amounts of Data: Convergence

, assume Hypothesis 3 1, the hypotheses of Problem 3.6, (3.24) and (3.25) for k > 1, and Hypoth-
esis 4.1. In this section, we assume also that the input space U and the output spaces V and Z are
finite-dimensional. We do not assume that the noise space W or the state space X introduced in
Problem 3.6 are finite-dimensional.

6.1 Least-Squares Estimation and Prediction

For each t > 0, we define

Y N (a'I, : N ) = ! I (t)12 (6.1)
k 0

where
N N

ck(t)= Z(.._,,a'u)+Z(y._,,sf) - Sk, 0 < k < t, (6.2)
i---- i---1

withy, = 0 and ui = 0 for i < 0. In this section, we write JEN,(aNYaj'N) instead Of JEN(a,, a)

for the objective functional in Problem 3.3.
a.N(t) and aouN(t) to minimize J) aEN•'I:N, aON "

Problem 6.1 For t > 0, find a,! a ON t i :N

Theorem 6.2 If JEN(au3,a~u) in Problem 3.3 is coercive in a,:N and ax, tO:N .1 and a•?N solve Problem 3.3•
is coercive in a'N and aGN for sufficiently large t. In this case, if al'N a N l
and aN(t) and a"0N(t) solve Problem 6.1, then

aim alN(t) = lir a'uN (t) = a'N. (6.3)
t 00 N 00 N O

The proof of Theorem 6.2 is a special case of the proof of Theorem 6.5.

Because of the finite dimensionality assumed in this section, all norms for a and ao:N are
equivalent, so that the limits in (6.3) and all other limits in this section are unambiguous.

6.2 Minimax Estimation and Prediction

For each t > 0, we define J)(a#3N, aO.N, ai.N) by the right-hand side of (6.1) with

N N N

(k:i) Z(uk-i,a.u) + Z(yk._,ay) + --(zk-_,a") - sj, o < k < t, (6.4)
i=0 i=1 i=1

with yi = 0, zi = 0, and ui = 0 for i < 0. Also, we define JE(a':Na:N) as in (4.38) with

sy,
JEN(aG:N, aO:N, ai.N) replaced by J(') a*l:N, a0:N, a'.N)•

Problem 6.3 Problem 4.3 with JEN(a','! (O) (as'N, aso , #INa'u EN •:N •0:N' 1:N ]

Problem 6.4 Problem 4.12 with jEN(a" ,• "N pe N(a)) aN
JEN(aG7N, a" , a3 N) replaced by J()," N,"O0 N, aI.N)"

Theorem 6.5 If the coercivity hypotheses in Problem 4.3 hold, then the coercivity hypotheses in
Problem 6.3 hold for sufficiently large t. In this case, if a•'N, a!N, and a•N solve Problem 4.3 anda'1'Nt) aau (t), an a,
al:N(t), a0:N,,, and a:N(t) solve Problem 6.3, then

,im a•N(:N) = al.N, lim a0"N(t) = N" lim a,"N(t) = a*.," (6.5)lim~~~~~ ~ a''() 0*! : :N,: :
t_0 100 t_00

Similarly for Problems 4.12 and 6.4.
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°:N t4 and a',' can
Proof Problems 4.3 and 6.3: Since U, Y, and Z are finite-dimensional, a'"N, a:N, a N

be represented, respectively, by finite-dimensional column vectors au, a1y, and a', all of which can

be included in a parameter vector a E C", where n is the total number of scalar parameters in aGu

ai.N, and aa'.N Then
j EN~a1 NaO:N, a:N) (Qa, a) + 2 e(/3, a) + JEN(0, 0,0),

7(t)" (Q(t)a, a) + 2 + e(/3(t), a) + 7(')(0, 0, 0), (6.6)ON 1I:N),%:N?1:NJ = +

where ft, f(t) E C', Q and Q(t) are n x n matrices and (.,.) is the Euclidean inner product on C".

The coercivity hypotheses in the parameter-estimation problems mean that certain submatrices of

Q and Q(t) must be either positive definite or negative definite. When these conditions hold, Q and

Q(t) are nonsingular and the solutions to Problems 4.3 and 6.3 are (for sufficiently large t)

a =
a(t) = _Q-10(t)/(. (6.7)

It follows from the definitions in Section 2, the operator definitions at the beginning of Section 3,
and the definitions of JEN(a',N, a"'N, al:N) and 'EN"(:N, aO:N, a'-) that the elements of Q and

Sare the limits of the corresponding elements of Q(t) and 6(t). Therefore, when Q is nonsingular,

lirnt-. Q-(t) = Q` and limt...• a(t) = a.
Essentially the same argument works for Problems 4.12 and 6.4. 0

.(t) a, ,y a,' -(.0 btwtoNrplcdb

For 1 < k < N, we define JNk N aO:N, N as in (4.8)-(4.10) but with JEN replaced by
JEq in (4.8). Also, we define J (•)k(a1 N, aG N) as in (4.38) and (4.41) with JEN replaced by At) in

(4.38). Theorems 4.4 and 4.13 hold with JEN,,k and JEN,k replaced by JE(k and A(t) respectively.
ou~ ~ ~ ~~~~: a . (t° aUal:N) in

Problem 6.6 Problem 4.5 with JEN.k(a':N," 0N,a,:N) replaced by 7Nt) :N,a•

Theorem 4.4 and Problem 4.5.

Problem 6.7 Problem 4.14 with JEN,k(aa'N,al:N) replaced by (ata'y r,1-v a 0y ,z 0)N~ repace :b, At) () i ,hoe 0.13

and Problem 4.14 and JEN(al:N,ya N,O) replaced by J(:)(a1 Na•t,0).

Theorem 6.8 If the coercivity hypotheses in Problem 4.5 hold, then the coercivity hypotheses in

Problem 6.6 hold for sufficiently large t. In this case, if alj: and ao. solve Problem 4.5 and

aIN(t) and aojN (t) solve Problem 6.6, then

lim a °N(t) = a°N lim a:N(t) -= asuN. (6.8)
t-0 N .c:N 

,:

Similarly for Problems 4.14 and 6.7.

Proof Problems 4.5 and 6.6: For 1 < k < N, all of the parameters in a,:, and a can be

represented by a column vector ak, and

JEN,,(al, a0kk, a :&) -- (Qkak, ao) + 2 Re(flk, a) + JEN,h(O, O, 0),

(a," ,a ' (Qk(t)akak) + 2+ 0,0). (6.9)

The matrix Qk and the column vector 6k are obtained by a finite number of matrix multiplications,

additions, and inversions starting with submatrices of the Q and / in (6.6), and similarly for Qk(t)

and ftk(t). Hence Qk(t) and /3&(t) are continuous functions of Q(t) and /(t), so that Q&(t) and 3k (t)

converge to Qk and flk as Q(t) and P(t) converge to Q and ft. It follows that, for each k, the solution

to the linear-quadratice minimax problem on the right-hand side of (4.9), with JEN,k+l replaced by

jENk+1' converges to the solution of the original minimax problem on the right-hand side of (4.9).

Essentially the same argument works for Problems 4.14 and 6.7. 0
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7 Conclusions

From the way we use norms and inner products of equivalence classes of scalar sequences in defining
and analyzing the parameter-estimation problems, it follows that solutions to any of the parameter-
estimation problems in Sections 3 and 4 and the asymptotic values of the estimated parameters in
any of the problems in Section 6 depend only on the equivalence classes to which u, w, s, y, and z
belong. Therefore, the asymptotic parameter estimates are unaffected by changing a finite number
of terms in any of the measurement sequences or the known input sequence u or by changing the
initial state vector of the plant, since the plant is assumed to be exponentially stable. This is to be
expected, and the fact that it is an immediate consequence of our formulation suggests that HUbert
spaces containing equivalence classes of deterministic scalar sequences provide a natural setting for
many parameter-estimation problems.

The class of least-squares problems in Section 3 includes many common problems in parameter
estimation and adaptive filtering and prediction, but to keep the discussion manageable, we have
omitted several classes of problems that can be analyzed by straightforward generalizations of the
methods here. For example, the results in Sections 3-6 can be generalized to problems with correlated
process and sensor noise and problems in which the summations over the y terms and u terms in
the ARX model have different limits N. and Nu instead of the same limit N.

The results in Sections 3-5 characterize fully the asymptotic values of least-squares or minimax
parameter estimates, but there are only two possibilities for computing these limiting values for a
particular problem: (1) solution of the parameter-estimation problem for long input/output data
sequences, (2) solution of either the corresponding state-space control problem or the corresponding
state-space filtering problem, either of which requires complete knowledge of the plant and noise
statistics. Of course, if the information required for (2) is known, then there is no reason for
parameter estimation.

On the other hand, it often occurs that some rough estimates of plant and noise characteristics
are known but the a priori information is not sufficiently accurate for designing a filter or perhaps a
controller. In this case, the characterizations in this paper can be used to compute rough indications
of the results that will be obtained with the different parameter-estimation problems and for dif-
ferent ARX orders. For example, comparing Markov parameters for steady-state and finite-interval
Kalman filters computed for a priori models of the plant and noise should indicate how large a
finite-dimensional ARX model must be used in LS identification if the estimated parameters are to
approximate the Markov parameters of the steady-state Kalman filter for the true plant and noise.
Such a priori comparison should be useful in applying the OKID method for system identification
[3, 4, 5]. With a priori plant and noise models, (3.27) and (3.28) can be used to compare roughly
the performance levels to be expected of adaptive LS filters of different orders, since the optimal
values of the performance indices in the control problems are easy to compute with Riccati matrices.
Similar a priori comparisons between LS and minimax parameter estimation and filtering can be
obtained with (3.37) and (3.41). Also, the control problems in Section 4 can be used for a priori
models of the plant and noise to get rough a priori lower bounds for the values of -7 that can used
in minimax parameter estimation and filtering for the true plant.
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