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1 Summary of Objectives and Results

This research has concerned optimal and adaptive control and adaptive identification of
distributed systems. Most of the research has focused on digital control and identification
methods, to allow for real-time implementation.

Both new mathematical theory and new numerical methods have been primary objec-
tives and results of the research. Most of the new optimal control theory has concerned
optimal control of distributed systems. The adaptive control methods had concentrated on
adaptive disturbance rejection, or noise cancellation. The adaptive identification research
has contributed both novel mathematical theory for parameter estimation and new fast
numerical algorithms for adaptive filtering.

The methods for adaptive identification and disturbance rejection have been demon-
strated by experimental application at Wright Patterson AFB and the Jet Propulsion Lab-
oratory in Pasadena, CA.

2 Optimal Control of Distributed Systems

The research on optimal control of distributed parameter systems covered two basic areas:
numerical methods and convergence theory for optimal control of flexible structures (6, 7, 8],
and integrated design of controllers and distributed sensors for smart structures (3, 10, 18].

2.1 Numerical Methods and Convergence Theory

The research in numerical methods and convergence analysis in [6, 7, 8] continued work
begun under a previous AFOSR grant. This work developed approximation methods for
design of finite-dimensional compensators based on distributed models of highly flexible
structures such as space antennae and satellites with large flexible solar arrays. The main
results of the approximation theory were various necessary and sufficient conditions for
a finite-dimensional compensator to converge to an optimal compensator for the infinite-
dimensional model as the order of the compensator increases.

2.2 Integrated Design of Controllers and Distributed Sensors

The goal of the research in [3, 10, 18] is to guide the integrated design of “smart structures”
and low-order compensators for smart structures. In the approach taken in [6, 7, 8], the
order of a near-optimal compensator might be very large for a highly flexible structure.
This drawback motivated the research in 3, 10, 18], which was initiated under this grant.
This new approack leads to very low-order compensators (sometimes of dimension 1) when

certain distributed sensors are designed to measure the correct functionals of the distributed

state vector. While the work in [3, 10, 18] emphasizes fiber optic sensors, the same approach
applies when piezo-electric films are used as distributed strain gauges.

Whether fiber-optic or piezo-electric sensors are used, the methods developed in (3,
10, 18] can be used to design flexible components for smart structures, and this was the
primary motivation for the research. In this approach to the design of smart structures,
the distributed sensors are embedded in the flexible beams and rods that are connected to

.
! ! ’
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construct a large complex structure. Embedding fiber-optic and piezo-electric sensors in
composite materials is now a proven technology.

3 Adaptive Filtering and Identification

The research on adaptive filtering and identification has included derivation of fast, nu-
merically stable algorithms for real-time parameter estimation, as well as new theoretical
methods for the study of the asymptotic properties of adaptive parameter estimates and
the derivation of a new generation of adaptive filters.

3.1 Adaptive Lattice Filters

As far as useful software is concerned, the most important research under this grant was
the development of new lattice filters [1, 2, 16] for adaptive identification and filtering of
multichannel systems. We believe that the lattice filter in [2] is the best on the market for
systems with many input and/or output channels, especially when the parallel architecture
developed in [2] is used.

Least-squares lattice filters are fast algorithms for adaptive identification of linear digital
input/output models. In addition to efficiency, important characieristics of lattice filters are
numerical stability, order-recursiveness and suitability for parallel architectures. Recently,
an new unwindowed, or covariance, lattice filter was introduced in {1} for solving the problem
of exact initialization. An unwindowed lattice usually achieves much faster convergence than
prewindowed lattices when the data has nonzero initial conditions.

In estimating & process with p channels, most lattice filters, including the lattice in [1],
require inversion of p x p covariance matrices. The unwindowed lattice filter developed in [16]
and used in this paper incorporates a Gram-Schmit procedure that renders the covariance
matrices diagonal. This improves both the numerical stability and the efficiency of the
lattice.

It has been demonstrated in previous literature that lattice filters can be effective
for adaptive identification of flexible structures, but the previous literature used prewin-
dowed lattices and primarily single-input/single-output models and data. The results in
[11] demonstrate the advantages of an unwindowed, multi-channel lattice for identification
of complex structures.

The multichannel least-squares lattice filter in {16) is used to estimate parameters for
an ARX (autoregressive with exogenous input) model

n n
y(t)+ ) Aiy(t—i) =Y Biu(t - i),
i=1 =1
t=0,1,2,..., (3.1)
where y(t) is an p-vector, u(t) is a m-vector, and the ARMA coefficients A; and B; are,
respectively, p X p and p X m matrices.

It should be noted that the basic residual-error lattice involves reflection coefficients
rather than the ARMA coefficients A; and B;. The ARMA coeflicients are generated from




the output of the residual error lattice by an auxiliary algorithm, which need not be run at
each time step.

One of the most important features of the lattice filter developed in [16] is its suitability
for VLSI realization. The forward-propagating and backward-propagating quantities on
which the new lattice is based allow the lattice to be realized with wavefront arrays, which
are among the most efficient VLSI architecture’s. New wavefront arrays designed for the
unwindowed lattice filter are presented in (16, 2].

The lattice filter in {2, 16] was used for adaptive identification of large experimental
aerospace structures from input/output data in {11, 9]. The paper [11] resulted from our
collaboration with Wright Patterson AFB, and [9] resulted from our collaboration with the
Jet Propulsion Laboratory.

3.2 Identification of an Experimental Truss

The structure shown in Figure 1 is an experimental truss in the Flight Dynamics Laboratory
at Wright Patterson Air Force Base. The truss is 12m high. Eight actuator/sensor pairs
and a disturbance actuator are attached to the truss as shown. Only the actuators and
sensors located on the top of the truss were used for [11].

The results reported in [11] were obtained by using the multichannel lattice filter to
estimate the coefficients in (3.1) adaptively. To generate the data used for this paper, the
disturbance actuator and actuator 2 excited the truss simultaneously with broad-band force
sequences. These two input sequences and the corresponding output sequences from the
four sensors were sampled and recorded at 50Hz, and the lattice filter was used to fit the
data with ARMA models of all orders n between 1 and 40. The natural frequencies and
damping ratios of the truss are estimated by computing the poles of the estimated ARMA
model.

Because the geometry of the truss is almost invariant with respect to 90° rotations, the
bending modes occur in pairs with almost repeated frequencies. For any one of the four
sensors, certain bending modes are highly observable and certain other bending modes are
marginally observable. Therefore, accurate identification of all of the modes is possible
only by using all four sensors simultaneously. Figure 2 shows adaptive frequency estimates
obtained using all four sensors as output channels with n = 30.

3.3 Adaptive Minimax Estimation and Filtering

In [4, 14, 15), we introduced a new class of parameter estimation problems, in which the es-
timated parameters are minimizing solutions to minimax problems for quadratic fit-to-data
criteria. Whereas the asymptotic parameter estimates produced by least-squares methods
are Markov parameters of Kalman filters, the asymptotic parameter estimates produced by
the order-recursive minimax problem in [4] are Markov parameters of discrete-time H, fil-
ters. We believe that the ideas and results in [4] constitute the theoretical foundation for a
new generation of adaptive filters that will be robust to disturbances, unmodeled dynamics,
and parameter variations in the plant. We are pursuing these new adaptive filters in our
current research sponsored by AFOSR.




4 Adaptive Control and Disturbance Rejection

There are many aerospace and aeronautical applications of adaptive disturbance rejection,
or noise cancellation. For example, the optical instruments used in aerospace telescopes
typically are mounted on flexible structures in which vibrations are excited by both external
disturbances and internal engines used for attitude control and other mission purposes. The
optical instruments must be isolated, often actively, from such vibrations to maintain optical
pathlength errors at the submicron levels required for space telemetry [9]. Also, cabin noise
generated by aircraft engines and aerodynamics can be reduced significantly by active noise
cancellation methods.

Under our current AFOSR grant, we have developed a8 new method for adaptive distur-
bance rejection, based on a new way of incorporating a disturbance model in an expanded
plant model (17, 12, 13, 5]. While the controller design presented in {17, 13, 5] uses an inter-
nal model of the disturbance, it differs from previous disturbance-rejecting controllers based
on internal disturbance models because it separates the design into two parts: design of a
basic stabilizing controller for the plant, and design of a disturbance-rejecting augmentation
to the basic stabilizing controller. The basic stabilizing controller for the plant is designed
independently of the disturbance, and the part of the control law that stabilizes the plant
is not filtered through the disturbance dynamics as in previous disturbance-rejecting con-
trollers. Also, the disturbance-rejecting augmentation for the controller can be redesigned
efficiently without changing the basic stabilizing controller. The ability to redesign the
disturbance-rejecting part of the controller quickly is important for adaptive disturbance
rejection in applications where the plant remains constant but the disturbance changes over
time.

The method that we developed in [17, 13, 5] for adaptive disturbance rejection has
performed well in simulations in {17, 5] and in an experimental application [9], where the
disturbance-rejecting controller isolated a high-precision optical instrument from sinusoidal
disturbances acting on a flexible truss in the JPL Phase B Test Bed (Figures 3 and 4). The
test bed was developed to demonstrate sub-micron control for optical instruments to be used
in future space missions. The new disturbance-rejecting controller was used to reduce optical
path-length error when the structure was subjected to sinusoidal disturbances. Figure 4
shows open-loop and closed-loop path-length errors.
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Optimal Design of Fiber Optic Sensors for Control of Flexible
Structures *

C.-L. Meng and J.S. Gibson
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University of California, Los Angeles 90024-1597

June 23, 1994

Abstract

This paper presents methods for designing fiber optic sensors for control of flexible struc-
tures. The sensors are designed so that a first-order observer, instead of a high-order state
estimator, can be used to construct feedback control laws based on distributed or high-order
finite-dimensional models of the structure. Design methods for the sensors and the observers are
developed for two types of priolems: first, where the sensors extend over the entire structure,
and second, where the sensors extend over one or more subregions.

*This research was supported by AFOSR Grant 910016.




1 Introduction

Active control systems often are required to reduce vibrations in flexible space structures. Recent
research (2], [3], (4], [5), [9), [10], [11], [12], (16], [17]) has shown that fiber optic sensors can be
embedded in composite materials to measure spatial integrals of strain along the length of the fiber
and that such measurements can be used in feedback control systems to damp structural vibrations
actively. Modal domain fiber optic sensors, discussed in (3], appear tc be best suited for such
applications. As shown in [11], the output of a fiber optic sensor can be represented by a weighted
spatial integral of strain. Also [11] showed that, for a single actuator, a first-order dynamic observer
can be used in the feedback loop to construct an arbitrary linear control law based on any finite
number of structural modes. The first-order observer uses the output of two fiber optic sensors that
must be tapered appropriately.

According to distributed-system theory, optimal control laws for flexible structures usually re-
quire weighted spatial integrals of strain and velocity [6). Constructing such control laws from the
measurements of local positions, velocities, accelerations, and strains using conventional point sen-
sors requires infinite dimensional state estimators. These estimators are approximated by high-order
finite dimensional estimators in implementation. Section 2 of this paper presents the design theory
for a first-order functional observer that constructs control laws derived from distributed system
theory. This observer design in general requires the sensors to be distributed over the entire length
of the structure. Numerical examples in Section 2.4 illustrate the theoretical resultsc presented in
Section 2.1. The results in Section 2 were developed in (8, 13].

In applications, it may not be possible for the fiber optic sensors to be distributed over the entire
31gth of a structure. When the fiber optic sensors extend only over portions of a flexible structure
vhere will exist some error between the output of the first order functional observer and the control
law that the observer is designed to construct. In this case, the design problem is to find the optimal
sensor gains so that the error is minimized and the control system can achieve high performance.
Section 3 discusses the design method for fiber optic sensors and the corresponding observers when
the sensors extend over a portion of the structure. Section 3.3 presents the numerical examples. The
results in Section 3 were developed in [13].

2 Sensors Spanning the Entire Structure

2.1 Plant Model and Energy Space

For the forced linear vibrations of flexible structures, the common abstract evolution equation is
(1, 6, 7, 15)

w(t) + Dot(t) + Aow(t) = Bou(t). (2.1)
The generalized displacement w(t) and By are in the real Hilbert space /. The forcing function u(t)
is a real valued function of t. The stiffness operator Ay is a coercive self-adjoint linear operator with
domain dense in H. The damping operator Dy is a nonnegative linear operator bounded relative to

Ao.
The natural strain energy space is V=Dom(A:,’ %) with inner product

(A? - A% . (2.2)
The natural state space for first order form of (2.1) is the total energy space

E=VxH. (2.3)




2.2 A First-order Functional Observer
Theorem 1 Let fy €V and f2 € H, w(t) de the solution of Eq.(2.1) and define

y=(Nh,w(t)v + (f2,w(t))n. (2.4)
Let k) € V and k3 € V. The two measurements y, and y; are defined as:
n() = (ky,w(t))
n® = (auO)y. (25)

For any 8 € R, the real-valued function z(t) is the solution of the following equation:

#(t) = —z(t) + y1 + Bu(t). (2.6)
Define
e=2()+y~y. 2.7)
Then ¢ satisfies:
€+e=0 (2.8)
if and only if
eV (2.9)
kr = fi+ (45 - A7' D)) fa (2.10)
bhi+tkr=fi-fo (2.11)
B = (f2,Bo)n. (2.12)

Proof Conditions (2.10)-(2.12) follow from writing the equation é = —¢ in detail and substituting
the V-inner product in the terms involving y; and y». The inner product in the strain- energy space
Vis

(2 W= A ). (2.13)

The condition (2.9) comes from the domain requirements of the operators Ag, A:,/ 2. Do and their
adjoints.
In applications, (f2, w(t))y in (2.4) can be represented as

(it = [ 'tz (2.14)

Measurements in (2.5) are spatial integrals of strain:
n = /o ' kYw'(t)dz (2.15)
B2 = /o ‘ kyw'(t)dz. (2.16)

These last two measurements can be made by fiber optic sensors. Theorem 1 says that an
exponentially convergent first-order observer can be used to construct a bounded linear functional
of the distributed state vector (w, w) from fiber optic sensor data if and only if the velocity weighting
f2 is in the strain-energy space V. According to condition (2.9), f2 must satisfy smoothness and
boundary conditions for functions in V. These conditions will require a certain number of L,
derivatives and that the generalized displacement function w(t) satisfy certain geometric boundary
conditions.




In applications, (2.10)-(2.12) must be computed numerically with finite element or modal ap-
proximation schemes. Such numerical methods project the infinite dimensional problem from the
energy space E onto a sequence of finite dimensional subspaces E,, = V,, x V,,, where V,, € V. The
operators Ap and Dy are approximated by Ao, and Dy, in V,,. The weighting functions f, and f,
are approximated by fi, and fa, in V,,. The functional sensor gains k; and k, are approximated by
kyn and k3, in V,, which satisfy

k2n = fin + (A5) — Aga Di) fan (2.17)

kin + k20 = fin — fon. (2.18)

According to (6], fin and fa, will converge in V—norm to the functional control gains f, and fa,
respectively, in the infinite dimensional control problem. Also k), and k3, will converge in V to the
functional sensor gains k; and kj, respectively.

2.3 Finite Dimensional Model

Consider the lateral vibration of a simply-supported uniform Euler-Bernoulli beam. The finite
dimensional modal approximation scheme is used. The space can be spanned by {¢1, ¢2,---,¢n},
where ¢; is the ith mode shape, an V,, = H,. If w(t) is the solution of (2.1) and satisfies the
boundary conditions. w(t) can be approximated as

w= " n(t)es (2.19)

i=1

where 7;(t) is the modal coordinate of the ith mode.
Defined the state to be

q
=1 2.20
x=[2] (220)
where q(t) is
3
Nt
q(t) = N (2.21)
7a(2)
The state equation is
x = Ax 4+ Bu (2.22)
where 0 )
A= [ —Agn  ~Don ] (2.23)
0
B= [ bon ] . (2.29)
The stifiness matrix Ao, is:
w} 0 0 --- 0
0 w2 0 --- 0
Agn = . . . . (2.25)
0 0 0 -+ W2

where w; is the natural undamped frequency of the ith mode. There are two kinds of damping
matrix Don: col and coA:,{f. The choice of Dy, will influence the convergence of sensor gains.




The matrix bg, is an n x 1 column vector whose elements are the projections of the actuator
function By(z) onto mode shapes.

Suppose two fiber optic sensors extend over the entire length of a beam. Since k,,, and &, are
in V,,, k1n and k3, can be represented as linear combinations of eigenfunctions:

kia(z) = ) &5(2) (2.26)
1
ka(z) = ) 0;65(2). (2.27)
1
The two measurements y; and y, are
nt) = (ki wt)y, = j: faw"(t)dz (2.28)
w) = (baw®v, = [ (). (2:29)
Define
3} oy
kn=| ©| kgas= 1 (2.30)
&n (4

(2.28) and (2.29) are equal to:

n(t) = kinTAomq (2.31)
n(t) konT Aong. (2.32)

Let fln € Vn and f!n € Vn» and
y = (fln,w(t))v. + (f?n)'b(t))"-

= fin" Aonq+f2n"q (2.33)
where
TN 61
72 b2
fin=] . fin=1{ . (2.34)
In on

and v; and §; are the Fourier coefficients of fi, and f2, on ith mode shape respectively.
The first order functional observer for this model is

2(t) = —z 4+ y1 + Bu(t). (2.35)
Define

e=z(t)+y—-y (2.36)

and e satisfies
€=c. (2.37)
Substituting (2.31), (2.32), (2.33) and (2.36) into (2.37), one can have the following matrix equations
k2p = fin + (45, — Aga Din)f2n (2.38)
kln + k2n = fln - f2n (2.39)
B = fg, T bon. (2.40)

So kyn, kap, can be solved.



2.4 Examples

Consider the simply supported Euler-Bernoulli beam. The real Hilbert space H = L;(0,1), V =
H3(0,1). The stiffness operator A is
Aod = ¢"". (2.41)

The actuator function is

_f sinSx(z-0.3) if03<z<05 '
Bo(z) = { 0 otherwise. (2.42)

Two cases of damping are considered
Case 1: Dy = coAL/? with co = 0.02
Case 2: Do = ¢ol with co = 0.02x2.

Figures 2.1-2.8 are generated using the finite dimensional model describes in Section 2.3, assuming
EI=1,m=1. Also Don = coA}/? in Case 1 and Dy, = col in Case 2.

2.4.1 Constant Velocity Weighting: A Counter Example

Suppose we want to build a first order functional observer to construct a spatial integral of transverse
velocity over a beam from two fiber optic sensors data. Let f; = 0 and f; = 1 in (2.4). For a simply-
supported beam, two of the geometric boundary conditions for functions in V' are zero at both ends,
so f, ¢ V. From Theorem 1, there exist no functional sensor gains k; and k; such that the desired
y(t) can be constructed.

In finite dimensional approximation, the vector f1,, is a zero vector and the vector fg,, is the
La-projection of f; = 1 onto V,. Then solving (2.39) and (2.38), one can get k1, and ka,,, which
are the modal coefficients vectors of k;, and k3,. A first order observer can be built by using two
fiber optic sensors designed according to ki, and ki, and the observer can construct the integral
over the beam of the projection of velocity tit) onto V,.

But as n increases, k), and k2, do not converge in V. As a result, k} and kj diverge in L,.
Figures 2.1 and 2.2 illustrate the divergence of k{ in both damping case.

2.4.2 An Optimal Control Problem

For both damping cases, let f; and f; be the functional control gains which minimize the performance
index:

7= [ (holly + iy + w2t (243)
0

In finite dimensional approximation, f;, and f3, can be obtained by solving the Riccati Equation.
[6] guarantees that fi, and fa, will converge to f, and f; in V and H, respectively. Also k;
and k; are approximated by k;, and k3, and can be obtained by solving (2.39) and (2.38). The
numerical results show that k) is two orders of magnitude smaller than ky. Therefore we conclude
that measurement of y, can be omitted.

Figures 2.3-2.8 show f}!,, fan and k{, with n increasing for two damping cases. For D = coAtl,/ 2,
Figure 2.4 shows that f,, converges to f, and f; € V. So condition (2.9) is satisfied and k,, k2
exist. Figure 2.5 shows that k{, converges to kf'.

For the case Dy = ¢ol, Figure 2.7 shows that f,, still converges to fa with fo € H,but fo € V.
Because at z = 0.3 and z = 0.5, f, has discontinuous derivative. This fact can be verified by the
plots for large n. So k; and ki do not exist according to the theorem. Figure 2.8 shows that kY,
diverges as n increases. Therefore k{ diverges.




R N=i 2,584

[ [ 2] 02 83 8¢ o5 s 0 es 0 ]

Figure 2.1: k{,, for f2 =1, Do = ¢ol, n = 5,21,31,41

Xl Ne3$ 21,304

L] [ A] 2 83 ¢ 85 65 07 s 0y 1
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3 Orftimization of Sensors Designs for Limited Sensor Spans
3.1 Sensors Extending Over Subintervals of a Beam

fiber optic sensors

z

Iy T2 x3 T4

}— =z

7577

Figure 3.9: Sensors extend over portions of the beam

Suppose the first fiber optic sensor is from z; to z2 and the second one is from z3 to z,, as shown
in Fig. 3.9. The outputs of the sensors can be expressed as:

"= / 2 2y (2, 1) dz (3.44)

1

v = / " k() (=, 1) dz (3.45)

The finite dimensional approximation of the sensor outputs can be obtained as in the following.
¢; is the ith mode shape of a simply supported beam. Define ¢; and ¢;,{ =1,...,n, in such a way
that

- ‘ ifz;y <z<
¢i(z) = { gt ® ot:;r;ise— = (3.46)
- i ifzg<z<
o= { g0 Bzzzs
The geometric boundary conditions are:
$(0) = &) = 0
A A 3.48
#0) = ) = o (3.48)
There are unique solutions of é; and é: for each i. k; and k3 can be approximated as
n -~
k=) ki é (3.49)
j=1
and
hid -~
k, = E ko &;. (3.50)
j=1

Let n;(t) be the modal coordinate of the ith mode. Then the lateral displacément is approximated
as

w= 3 ni();. (3.51)

j=1




Substituting (3.49), (3.50) and (3.51) into (3.44) and (3.45), the finite dimensional approximation
of the sensor outputs are

n =k TWiq(t) (3.52)
1 = ko T Waq(t) (3.53)
where q(t) is defined in (2.21) and ky, ko are
ky, k2,
k2 k22
ky = . kg = : (3.54)
kln k2n

and W; and W, are n x n matrices with elements

(Wilij = / T 4(2)8!(z)dz (3.55)
(Waij = f " #(2)8!(2)dz. (3.56)

Suppose we want to construct a functional observer whose output will converge to some control
law asymptotically. The state equation is defined in (2.20) and (2.22). The output of the system is

n = Cx = [C101xn)x (3.57)
where C; = leWI. The functional observer is defined as

{ z =Fz4+ Gy + Bu

3.58
¢ =z+mm (3.58)

Lety= flnTAo,.q+f2an be the control law that the functional observer is designed to construct.
Assume that G = 4 = 1, F = —1, and define the error between the output of the functional observer
and the control law to be

E=p—y. (3.59)
¢ satisfies
ét+e=0 (3.60)
if and only if
Wakg = Aonfin — Donfop + o (3.61)
Wlkl + Ao,,fzn = —Wzkz + Ao"fln (3.62)
2 = g0 Tbon. (3.63)

For the finite dimensional model, the unique solutions of k and ko can be obtained by solving
the above equations if W, and W> are nonsingular. So the finite dimensional functional sensor gains
k, and k2 can be obtained. As the number of modes that is uscd in modal approximation increases,
k; and k; will diverge because the sensors extend only over portions of the beam. As a result, the
error will always exist.

On the other hand, if sensors are distributed over the entire length of a beam, W, and W, are
both equal to the stifiness matrix Ag,, and the finite dimensional solutions kj and ko definitely
exist. The functional sensor gains will converge as long as conditions in Theorem 1 are satisfied
and error will go to zero asympuotically.

Suppose we allow the error to exist, the design problem now is to find the optimal functional
sensor gains k; and k2, which will converge and minimize the error in some sense.
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3.2 Optimization of the Sensor Gains

The open-loop design procedure for the optimal functional sensor gains k; and k, is presented, so
that the Lz norm of the error ¢ between output of the functional observer and the control law will
be minimized. Suppose the length of the beam is /. Define performance index to be:

00 ]
J= /o «(t)dt +r /o [("Y(2) + (E2)*(2))dz (3.64)

There are two reasons that we add the second integral to the performance index. The first
reason is to make ky and k7 smoother so that the manufacturing of fiber optic sensors is feasible.
Considering (3.44) and (3.45), the outputs of the fiber optic sensors are weighted spatial integrals
of strain over subintervals of a beam. Fiber optic sensors are tapered according to the vaiae of kY
and k7 along their distribution. Therefore smoother k{ and k7 can make the sensors easier to be
manufactured. Also, k' and kj can be interpreted as the sensitivity to local strain. If k{ and Lk are
not smooth, then there may be a abrupt change in sensitivity between two infinitely close points on
the beam. That will make it impossible to build the sensors.

The second reason is that penalizing (k)2 + (k5’)? in the performance index can make &} and

7 converge. From the discussion in Section 3.1, when the sensors extend over only subintervals of
the beam, error may always exist. So if we only penalize f:’ €(t)%dt, kY and kj will diverge. On the
other hand, just a small value of r can make them converge. Large r can make k{' and k7 smoother
and converge faster but will result in a large value of open-loop error in loop gain. So it is a design
trade off.

ky and ko are two finite dimensional column vectors whose elements are the coefficients of &,
and k, on each mode, respectively. Define

-k
k= [ kg ] | (3.65)
The performance index can be represented as a linear-quadratic functional of k.

3.2.1 Augmented Plant and L; Norm of Error

The state equation of the beam is defined in (2.22) and the first order functional observer is defined
in (3.58). The augmented state is defined to be:

%= [ x ] . (3.66)
Then the augmented state equation becomes:
x = Ak + Bu (3.67)
where
A= [ Eo ] (3.68)
B= [ g ] : (3.69)

Let y = 17q + 127q be the optimal control law where 1; and 1 are n x 1 vectors. The
measurements from the fiber optic sensors are y; = RITW;q and y» = szw,q, where W; and W,
are defined in Section 3.1. The output of the observer is ¢ = z 4+ 7y2. Then the error can be written
as: :

€ = -y

= Cx (3.70)
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where )
C={ (vkg™Wo-147) 1,7 1]. (3.71)

Suppose the input u(t) is an impulse function. Because the augmented system is stable, ¢(t) is
square Lebesgue integrable,

/ €(t)%dt < oo (3.72)
0
and ¢(t) € L2[0,00). The norm of ¢(t) in time domain space L,[0,00) is
00
el =1 etyats. (3.73)
0
Further assume that the initial state of the augmented system is zero. One can have
e(t) = CeA'B (3.74)
and o
lleli? = tr BBT / AT T CeAtay. (3.75)
0

Since A is asymptotically stable, the Lyapunov equation
ATQ+QA=-C7C (3.76)

has exactly one solution Q for each —C7C and this solution is
o L.
Q= / eA 'CTCeAtdt. (3.17)
0

Q is symmetric and nonnegative. Therefore the square of L, norm of ¢(t) is equivalent to

lle@)l3 = tr BBTQ. (3.78)

3.2.2 Frequency Domain

Let é(jw) be the Fourier Transform of the function ¢(t) € L;[0, c0). From the Parseval’s relation for
aperiodical signal,
edt = & [7 ijw)de < o (3.79)

therefore é(jw) is square Lebesgue integrable and é(jw) is in the frequency domain space La(—00, 00).

The Lz norm of é(jw) is

Gl =[5 [ eoraups. (3.80)

The meaning of ||é(jw)]|2 is the energy of the signal é(jw). Therefore minimize the energy of signal
é(jw) in frequency domain when the system is subject to sinusoidal input is equivalent to minimize
lle(®}l2 in time domain.

Under the previous assumptions of impulse input and zero initial augmented state, é(jw) is

é(jw) = C(jwI - A)~'B. (3.81)
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3.2.3 Solving the Lyapunov Equation

In order to minimize ||¢(t)|)3 in (3.78), we have to solve (3.76) first. Partition the solution matrix Q
in the following way:

_1 @ Q2 ]
Q= [ Qs Q4 (3.82)
where @), Q2, Qs and Q4 are 2n x 2n,2n x 1, 1 x 2n and 1 x 1 matrices, respectively. Then (3.78)
can be rewritten as )

() = ¢ BBTQ: +2B7Qu8 - 2. (3.83)

{3.76) becomes:

AT CGG  Q o Q A 0] s
[ ”Q; Q:] Q; Q:][GC F]"—CTC' (3.84)

After straightforward matrix multiplication, we can have the following equations:

ATQ+ Q1A=
[0 | [aigTwe-nT) T -GcTeTv@0) @8y
ATQy+CTGQu+ QoF = — [ ("W’k2 —h) ] (3.86)
Q:=Q3 (3.87)
Qu= ‘ (3.88)

where 7, G and F are all scalars. Define

H=[v?,2 g] D=["g‘ 8] 1:[:;] (3.89)

Q2 can be simplified to be a linear function of k:

Q: = (AT+FN™? ( - (‘7W21(122- L) ] +5CT )
= (AT 4+ I (=vHT + 5 =DT)k+1]

= Mk+M, (3.90)
where My = (AT + FI)"}(—yHT + % D7) and M3 = (AT + FI)~!1. (3.85) can be arranged to be

a Lyapunov equation .
ATQ,+Q1A=-R (3.91)

where R is defined as:

R = (¥*HTkkTH — yHTKIT — 1kTH +11I7)
+G(DTkT MT + M\kk" D + DTkMT + M,X" D). (3.92)

Since A is asymptotically stable, the solution of (3.91) is

00 S
Q = / ATt ReAtdt. (3.93)
4]
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3.2.4 Linear-Quadratic Functional of k
Consider (3.83) first. The term tr BBTQ, is equal to
tr BBTQ,
= v°kTH /0 " A BBTA 4t HTK

e o]
- 297 / eA'BBT A" dt HTk
000 T
+ 17 / eA*'BBT A dt ]
0

o0
+ GkTMT / eA'BBTeA 't DTk
0

[=+]
+ 2GM7] / e**BBT A 'dt DTk
0 .

o0
+ GkD / eA'BBT AT dt Mik.
o
Define
o0 T
V= / eA'BBT 4" Ydt.
i
Then V is the solution of the Lyapunov equation:
AV 4+ VAT = -BBT.
The second term in (3.83) is equal to
2B7 Q18 = 268BT(M\K + M,).

Therefore square of L, norm of error is a linear-quadratic form of k:

o0
/ «t)dt = KT(y*HVHT + GMTVD + GDVM,)k
]

— 2TVHT - GMTVDT - 8BT M)k
2
T T ﬁ
+ FV1+28B"M; - 5

where F, G and v are scalars.
Consider the term f; ((EY")?(x) + (k4')?(z))dz in performance index.

{ T2 (2]
[y + @gyendn= [ @+ [ ke
0 z

Define U; and U; such that .
ils = [ 661

il = ] " )oY (n)d.

v o
o=[% o]
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Define 2n x 2n matrix U as:

(3.94)

(3.95)

(3.96)

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)




So one have the following: '
[ 169+ @7nee = KT UK (3.103
0

Finally, the performance index is a linear-quadratic form of k:

00 {
1= [T eraer [0+ @0

0 [

= kTRk-2Pk+T (3.104)
where
R=+y*HVHT + GMTVD + GDVM, +rU (3.105)
P=y1"VHT - GMIVDT ~ BT M, (3.106)
2

.. T=VV1+28B™M, - ,f—F. (3.107)

According to standard results on linear-quadratic optimization, if R is nonnegative, kg minimizes
J if and only if
Rkg-PT=0. (3.108)
Since P7T is in range space of R, there exist at least one kg that minimize J. If R is positive definite,
kg is unique. From the numerical result, R is ill-conditioned, so kg is not unique. The singular
value decomposition method is used and kg is chosen to be the minimum norm solution.

3.3 Examples

The control law y = 1Tx is chosen to minimize

J= /:b( 90(@x, x) + ro{u, u) )dt (3.109)
where go/ro is 3000 and
Q= [ ‘43" 1,.‘1.. ] . (3.110)

The plant model and the functional observer are defined in Sections 2.3 and 3.1 respectively. The
length of the Euler-Bernoulli beam is 1.
Two sensors are distributed from 0.2 to 0.6. The actuator By is:

_f sindx(z-03) if03<z<05
Bo(z) = { 0 otherwise. (3.111)

Figures 3.11-3.14 demonstrate the influence of weighting r on ki and k3. Both k{ and k7 are
convergent due to penalizing r f; [(KY)?(n) + (k4)*(n)ldn in performance index. Larger r can make
them smoother but result in large open-loop error, as illustrated in Tables 3.2-3.3.

Let n be the number of modes in the finite dimensional model from which the optimal sensor
gains ky, ko are obtained and N be the number of modes of finite dimensional approximation for
the plant in application. Figures 3.15-3.17 are the open-loop magnitude response of the observer
output and the desired control law, n = N for each case. The difference between the two curves
in each of Figures 3.15-3.17 is the square of L norm of error ||é(jw)||3 in frequency domain. The
value of ||é(jw)l|3 is equal to |le(t)||2 and is shown in Tables 3.2-3.3 for different r and n (n = N).
The magnitude response is an open-loop response because the observer is only cascaded to the plant
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Figure 3.10: The actuator Bo(z) and the distribution of collocated sensors

and the observer output does not feed back to the plant. Therefore it is the open-loop error that we
minimize.

Figures 3.18-3.20 are the closed-loop magnitude response, with n = N. The input is ¢*“* acting
at the actuator function Bg. The output is the transverse displacement at z = 0.4. In each plot
the solid line denotes the response of the system whose compensator using a functional observer in
the feedback loop. The dotted line represents the ideal full state feedback control. Comparing two
curves, we know whether the observer is efficient or not.

Figures 3.23 and 3.24 are the closed-loop magnitude responses with n = 5N = 15 and n =
10, N = 15, respectively. In Figure 3.23, the first mode is lightly damped as compared to other
plots. It is because the real part of closed-loop eigenvalue of observer n = 5 is only 19.4% of that of
observer n = 15, as shown in Table 3.1.

At high frequencies, the observer achieve high performance. This can be verified by using different
r’s, n’s and N’s.

Il first mode eigenvalue
real part | imaginary part
n=5N=15 -1.220 8.120
n=10,N =15 -3.764 6.369
n=15,N=15 -6.285 6.671
full state feedback | -6.227 9.719

Table 3.1: First mode eigenvalues
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Figure 3.11: kY, r = 10712, n = 5,10,13,15
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Figure 3.12: k¥, r =102, n = 5,10,13,15
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lle]l3 =ERROR
H n=5N=5 0.013
n=10,N=10 38.644
ﬂ n=13,N=13 49.147
n=15N=15 49.701 i

Table 3.2: r = 1012
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Figure 3.13: kY, r=10"¢, n = 5,10,13,15
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Figure 3.14: k4, r=10"%,n = 5,10,13,15

|:z]l5 =ERROR
n=5N=5 0.711x10°
n=10,N=10 1.742x10°
n=13, N =13 1.963x10°
fn=15,N=15 1.982x10°

Table 3.3: r = 10~¢
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Figure 3.15: Open-loop magnitude
responses of observer output ¢ and
control lawy, n =5, N =5, r = 1012
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Figure 3.16: Open-loop magnitude
responses of observer output ¢ and
control law y, n = 10, N = 10, r = 10~12
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Figure 3.17: Open-loop magnitude
responses of observer output ¢ and
control law y, n = 15, N =15, r = 10~12
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Figure 3.18: Closed-loop magnitude
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Figure 3.19: Closed-loop magnitude
response, n = 10, N = 10, r = 10-12
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Figure 3.20: Closed-loop magnitude
response, n = 15, N = 15, r = 10~12
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Figure 3.21: Open-loop magnitude
responses of observer output ¢ and
control law y, n =5, N =15, r = 10-12
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Figure 3.22: Open-loop magnitude
responses of observer output ¢ and
control law y, n = 10, N = 15, r = 10~12
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Figure 3.23: Closed-loop magnitude
response, n = 5, N = 15, r = 10-12
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Figure 3.24: Closed-loop magnitude
response, n = 10, N = 15, r = 10-12
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4 Conclusions

A first-order functional observer for an optimal control law for the distributed model of a one-
dimensional flexible structure, such as a beam or rod, can be constructed if the outputs of two
properly designed fiber optic sensors are available. The sensor designs are determined by the func-
tional gains in the control law determined from control theory for distributed systems. Usually,
these sensors must extend over the entire length of the structure. Theorem 1 in Section 2 provides
conditions that the sensor gains must satisfly. The most important one is the existence condition.
If the existence condition is satisfied, it follows from [6] that the finite dimensional sensor gains will
converge as the number of modes in the approximation scheme increases.

When the sensors extend over subintervals of a structure, the sensors are designed to minimize
the error between the desired control law that the control law the firs-order observer constructs
from the sensor outputs. This design criterion leads to a quadratic optimization problem for any
finite number of modes in the model of the structure, and a small penalty (i.e., regularization) on
appropriate derivatives of the functions defining how the sensors are tapered guarantees that the
sensor designs converge as the number of modes in the model increase. Section 3 formulates the
optimization problem and demonstrates the design procedures in detail. The numerical examples
demonstrate that the resulting closed-loop control system achieves high performance.
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Abestract

This paper addresses the problem of fitting digital input/output models to data generated
by linear systems in the presence of white process and sensor noise. The systems of interest
have state-space realizations in Hilbert spaces. Both finite-dimensional and infinite-dimensional
input/output models are considered. The paper derives a number of new results for least-
squares estimation and filtering, and introduces a new class of minimax parameter-estimation
and filtering problems. The main results characterize the asymptotic values to which parameter
estimates converge with increasing amounts of data.
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1 Introduction

The linear systems, or plants, considered in this paper have time-invariant discrete-time realizations
in possibly infinite-dimensional Hilbert spaces. The plants are driven by unknown white process-noise
sequences and possibly by known forcing sequences. Also, the measured outputs are contaminated by
white sensor-noise. The objective of the paper is to characterize the asymptotic values of estimated
parameters in digital input/output models when such models are fit to the data according to least-
squares (LS) estimation criteria and according to new minimax estimation criteria introduced in the
paper.

We consider one-step-ahead output prediction, primarily with ARX models, which are models
containing linear regressions of measured outputs and known inputs. Also, two results are given
on least-squares estimation of FIR and IIR models, which use only histories of known inputs to
predict a measured output. The main results of the paper for LS estimation show that, under
common conditions, the asymptotic least-squares parameter estimates for ARX models are Markov
parameters of Kalman filters that would be constructed for the plant were the state-space model and
the noise statistics known. The hypotheses about the noise processes are consistent with those in
Kalman filtering theory for finite-dimensional systems and the analogous infinite-dimensional theory
[1, 2]. However, constructing a Kalman filter requires the plant and noise statistics to be known,
whereas, in the parameter estimation problems considered here, the plant and noise are unknown;
only input/output data is available.

Since we are concerned with the limits to which parameter estimates converge as increasing
amounts of data are used, we require that the plant be exponentially stable so that the response
approaches a steady state, or stationary response. Also, the known forcing sequence is required to
have asymptotically time-invariant statistics so that the system response will have asymptotically
time-invariant statistics. Most of the results require the known forcing sequence to be white. Such
conditions are realistic because it is common in experimental identification to excite a system with
a known white sequence or a band-limited sequence obtained by filtering a white sequence; in the
latter case, the band-pass filter used in obtaining the band-limited forcing sequence becomes part of
the plant to be identified.

An important result that does not require the known forcing sequence to be white concerns the
problem of using LS estimation to fit an infinitely-long ARX model to input/output data from a
plant of the class considered here. In this case, the asymptotic parameter estimates are the Markov
parameters of a steady-state (infinite-time) Kalman filter. This result is known for finite-dimensional
plants, and is the basis for the Observer/Kalman Identification (OKID) method developed in 3, 4, 5).
This paper obtains the corresponding result for infinite dimensions, but more important are the
results here for finite-dimensional ARX models, since only finite-dimensional models can be used in
practice.

It is shown that, under common conditions, using LS estimation to fit an ARX model of order
N to input/output data from either a finite-dimensional or an infinite-dimensional plant produces
asymptotic parameter estimates that are equal to Markov parameters of the discrete-time Kalman
filter that solves a certain minimum-variance state-space filtering problem on an interval of length
N. The dimension of this state-space filter equals the dimension (possibly infinite) of the plant gen-
erating the data (even though this dimension is not known to the parameter-estimation algorithm),
but the length of the time interval for which the state-space filter is optimal equals the order of the
ARX model identified. Hence, as the order of the ARX model becomes large, the corresponding
Kalman filter approaches the steady-state Kalman filter. (By Markov parameters for a filter with
time-dependent gains, we mean the coefficients of past input and output data in a prediction for-
mula, an obvious generalization from the time-invariant case. See Section 5.1.) Another important
point is that, while the asymptotic parameter estimates for the infinite-dimensional ARX model are
independent of the signal-to-noise ratio of the input/output data, this is not true of the parameter
estimates for a finite-dimensional ARX model. The results here show how the signal-to-noise ratio




affects the asymptotic parameter estimates for a finite-dimensional ARX model.

A pew class of parameter estimation problems is introduced in Section 4, where the estimated
parameters are minimizing solutions to minimax problems for quadratic fit-to-data criteria. The
parameters that solve the order-recursive minimax problem in Section 4 are Markov parameters
of a discrete-time H,, filter for a finite time interval. Qur purpose in introducing the minimax
parameter estimation problems is to establish the basis for adaptive filters that share the disturbance-
attenuation and robustness properties of H., filters designed for known state-space models [6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18].

In Section 4, we consider only finite-dimensional ARX models because numerical parameter-
estimation algorithms are possible for the finite-dimensional models only. Under the hypotheses of
Section 4, known results on linear-quadratic games imply that the Markov parameters of an Hoo
filter for a finite time interval approach the Markov parameters of a steady-state H,, filter as the
length of the interval becomes large. Therefore, it follows from the results in this paper that, as
the order of the ARX model becomes large, the minimax parameter estimates approximate Markov
parameters of a steady-state H, filter.

This paper does not address numerical algorithms for solving the parameter-estimation problems
analyzed here. There are, of course, many sophisticated methods for both adaptive and off-line least-
squares parameter estimation (adaptive lattice, transversal, and square-root filters, adaptive and
nonadaptive QR algorithms). For the minimax parameter-estimation problems introduced in this
paper, we have begun to develop adaptive (i.e., recursive) numerical methods, but no methods with
the efficiency and stability of modern numerical methods for LS problems exist yet for the minimax
problems. Fast, numerically stable algorithms should come soon. Meanwhile, the purpose of this
paper with regard to minimax parameter estimation is to define the new problems and characterize
the asymptotic properties of the solutions.

The analytical methods of this paper are influenced by the following practical questions, which
underlie the entire paper. When we run a parameter-estimation algorithm with a particular set of
experimental data, what happens? Do the parameter estimates converge? If so, to what? Although
our assumptions about the whiteness and independence of process and sensor-noise sequences are
essential to the methods and results, we view the central questions and answers of the paper as
fundamentally deterministic. Thus the analytical methods of the paper are purely deterministic. It
can be argued that the white-noise sequences that we assume are sample sequences from ergodic
stochastic processes, but the central questions of this paper—about what happens with a particular
experimental data sequence—can be answered in a deterministic framework. We believe that, by
stripping away the probabilistic machinery usually employed when studying problems with random
noise (see [19] for example), we cut more directly to the questions addressed here about what happens
with actual data.

We set up the basic analytical framework in Section 2 by defining correlation, independence,
and whiteness for scalar and Hilbert-space-valued sequences. These definitions, which involve time
averages, are standard for scalar sequences, and the generalizations to Hilbert-space-valued sequences
are straightforward. The novel component of this framework is a Hilbert space containing equivalence
classes of deterministic scalar sequences. The parameter-estimation problems are formulated and
analyzed in this space. Because we want to use the correlation of deterministic scalar sequences
as an inner product, the Hilbert space must contain equivalence classes instead of scalar sequences
themselves. Two scalar sequences are defined to be equivalent if their difference is asymptotically
zero in the mean-square sense. The correlation of two scalar sequences is the inner product of their
respective equivalence classes. In particular, uncorrelated sequences (i.e., sequences with correlation
0) belong to orthogonal equivalence classes.

We define and analyze parameter-estimation problems for infinite data sequences in Sections 3
(least-squares problems) and Section 4 (minimax problems). While the most important interpre-




tation of the paper’s main results is the characterization of the solutions to certain parameter
estimation problems for ARX models of an unknown plant in terms of Kalman and H, filters for
state-space models of a known plant, we do not employ state-space filtering theory, stochastic or
otherwise, in our basic analysis. Rather, the framework of white deterministic sequences estab-
lished in Section 2 makes it easy to show that the parameter estimation problems are equivalent
to certain linear-quadratic (LQ) control problems. The LS estimation problems are equivalent to
linear-quadratic regulator (LQR) problems, and the minimax estimation problems are equivalent to
linear-quadratic games.

Section 5 shows the precise relationships of the estimated ARX parameters to state-space filters.
This is the only section of the paper that uses any state-space filtering theory. It is most convenient
to characterize the solutions to the parameter estimation problems first in terms of the detailed
solutions to the corresponding optimal control problems: Riccati operators, closed-loop systems,
etc. (These details are not discussed in Sections 3 and 4.) The relationships of the estimated
parameters to Kalman and H,, filters follow then from the dual mathematical structures of optimal
linear-quadratic controllers and optimal state-space filters.

Section 6 discusses parameter-estimation problems with finite data sequences, the only parameter-
estimation problems that can be solved numerically. These problems are just restatements of the
problems in Sections 3 and 4 except that the objective functionals in Section 6 are defined for finite
data sequences. The main motivation for the framework set up in Section 2 is to allow the definitions
in Sections 3 and 4 of parameter-estimation problems to which the problems in Section 6 converge
as the lengths of the finite data sequences increase. According to the theor=m™s in Section 6, the
parameters that solve the problems with finite data sequences converge to the parameters that solve
the corresponding problems with infinite data sequences. This convergence follows easily from the
problem definitions in Sections 3 and 4.




2 Statistics of Deterministic Sequences
All sequences in this paper will have the form
v=wwnn..l (2.1)
The shift operator ¢~! is defined by
¢ ly=0wunw..) (2.2)

and ¢~" means (¢~!)" for any nonnegative integer n.
For y and v scalar sequences, we define

1]
(y,v) = lim % 3w, (2.3)
=0
Il = 3,0/ = [Jim 3 3 Il (24)
=0

when the limits exist. (We say that such limits exist only if they are finite.) Two scalar sequences y
and v have correlation a if the limit in (2.3) exists and equals the (finite) complex number o; y and
v are independent if g~™y and ¢~ "v have correlation 0 for all nonnegative integers m and n.

Let w and u be sequences in Hilbert spaces W and U, respectively. For each n € W,

ﬂw:'l]] = [(w0v ")W (wl’ﬂ)w (wz:'l)w ce ] (25)

is a scalar sequence. The sequences w and u have bounded correlation if, for eachn € W and £ € U,
the scalar sequences [w,n] and [u,£] have some correlation a. When this is the case, the Principle
of Uniform Boundedness implies that there exists a real number r such that

IKIu, &), T, 0l S P2l -l VneW, eV (26)

When w and u have bounded correlation, there exists a unique bounded linear operator R** from
W to U such that

{u, €], [w,n])) = (R*n,&)u. (2.7)

The operator R“” is called the correlation operator for u and w. The Hilbert-space-valued sequence
w has bounded autocorrelation if the conditions for w and u to have bounded correlation hold with
u = w. In this case, we write R¥ for R¥". The operator R" is called the autocorrelation operator
for w, and RY is self-adjoint and nonnegative. (Operators analogous to the correlation operators
here have been defined for Hilbert-space-valued random variables. See {1, 2] for example.)

The Hilbert-space-valued sequences w and u are independent if the scalar sequences [w,n] and
[u,£] are independent for all n € W and £ € U. Hence w and u are independent if and only if ¢"™w
and ¢~ "u have bounded correlation and zero correlation operator for all nonnegative integers m and
n.

A Hilbert-space-valued sequence w is white if w has bounded autocorrelation and w and ¢~"w
have bounded correlation and zero correlation operator for all positive integers n.

In the following sections, the input sequences to linear systems will satisfy at least the following
condition for a sequence u in a Hilbert space U:

¢~'u and ¢~ u have bounded correlation for all nonnegative integers i and j. (2.8)




Theorem 2.1 (Convolution) Suppose that u satisfies (2.8), R* < r? for some r >0, and a, € U
with

o0

D lai] < 0. (2.9)
=0
Define the scalar sequence y by
oo
w=) (w-ia), k=01, ..., (2.10)
=0

where uy_; = 0 when i > k. For this y, the limst in (2.4) ezists and the following sinequalities hold:

o0
l<r)lail (2.11)
§=0
n . o0
ly - Z[q"'u,a.-]l <r Z lai, n=20,1 .... (2.12)
i=0 t=n+l

If v is a scalar sequence with bounded autocorrelation and if v and ¢~ ‘u have bounded correlation
for all nonnegative integers i, then the limit in (2.3) ezists.

Proof Define
1¢ 1 o
(v, v): =?Ey.-1’),~, tylle = [;Zhﬁml/?, t=1,23, ..., (2.13)
=0 i=0
=) lefual, n=012 ... (2.14)
1=0

The Principle of Uniform Boundedness and (2.8) imply that there exists a real number p such that

Mo 'uw €l < pll VEEU,i20,t2>1, (2.15)
n
W -y"k<p ) lal, Vn>m, t>1 (2.16)
ft=m+1
Also, R* < r? implies ‘
e w, €l <rlEl VYV ix0, (2.17)
n
" -y™i<r Y Jal,  Vn>m, (2-18)
i=m+41

Hence, Jy"| converges to some real u. For m,n > 0,

vk = Bl < " = v ke + (W™ e = B0l + Iv™ - ¥"I. (2.19)

Since lim;_, o, Jy™ §: = Jy™| for each m, (2.16)—(2.19) imply that, as t — oo, jy"[; — Jy™| uniformly
in n. That the limit in (2.4) exists follows then from

p = limlim y™ [, = limlim y"}; = lim ly]; = Jy]l. (2.20)

Since lim, [ly"}; = Jy"l, (2.14), (2.17), and (2.20) imply (2.11). Then replacing y in (2.11) with
y — y" yields (2.12).




Since v and ¢~*u have bounded correlation for all nonnegative i, v and y™ have bounded correla-
tion for all m, and (2.18) implies that {y™,v) is a Cauchy sequence. For n > t, {y,v}: = {y",v):.
Let ¢ > 0, and choose m such that the right-hand side of (2.16) is less than ¢. Choose t such that
I€y™, v)s = {y™,v}| < ¢, and let n =t + m. Then

€y, vde = €y™, v}l < Y™ = 9™, bl + 1™ vde = W™, v} < (sup Ik + De. (2.21)

Therefore,
lim{y, v} = im{y™,v). O (2:22)

When u satisfies (2.8), we define S, to be the set of all scalar sequences y having the form in
(2.10) with a; satisfying (2.9). Then S, is a linear space, and Theorem 2.1 implies that (2.3) and
(2.4) define, respectively, a sesquilinear functional and a seminorm on S,,.

Definition 2.2 Two scalar sequences y and v are equivalent if Jy — v] = 0. Two sequences w and
W in a Hilbert space W are equivalent tf [w,n] and [, n] are equivalentVne W.

Theorem 2.3 If w and b are equivalent sequences in a Hilbert space W and u and i are equivalent
sequences in a Hilbert space U, then w and u have bounded correlation and correlation operator R*¥
tf and only if @ and @ have bounded correlation and correlation operator R¥Y.

When u satisfies (2.8), we define Sy to be the set of all equivalence classes of elements of S, so
that S, is an inner-product space, or pre-Hilbert space, with inner product and norm determined
by (2.3) and (2.4), respectively. If u and w are seauences in Hilbert spaces U and W, respectively,
if u and w each satisfy (2.8), and if ¢~*u and ¢~/ w have bounded correlation for all nonnegative
integers i and j, then S, & S, is an inner-product space with inner product and norm determined
by (2.3) and (2.4).

When u satisfies (2 8), we define the Hilbert space S, to be the completion of S,. Hence the
Hilbert space S, ®S,, is the completion of S, &S, (under the conditions stated for S, @ S,, to be an
inner product space). If u and w are independent, S, and S,, are orthogonal. Whether every element
of Sy is an equivalence class of scalar sequences is a_open question, which does not matter for the
rest of this paper because the only elements of S, ® S, encountered are obtained from convolutions
of the generating sequences u and w.

Henceforth, the notation in this paper usuzlly will not distinguish between a scalar sequence s
and the equivalence class of scalar sequences equivalent to s when s is a data or noise sequence. This
abuse of notation is similar to the common practice of referring to elements of the Hilbert space
L2(0,1) as square-integrable functions. On occasion, we will refer to the following condition for a
Hilbert-space-valued sequence u:

[9~"u,£] € ciosed span{flg7u,€]: i 20, #i} Vi>0and V¢, E€U, (2.23)

where u; € U (k= 0,1,2,...) and closed span{[g~7u,£] : j > 0, j # i} is a subset of S,. While
the technically correct interpretation of (2.23) requires that f¢g~*u,£] and [¢~ u, €] be interpreted as
equivalence classes of scalar sequences, the practical meaning of (2.23) is that, for any two elements
€ and € of U, the scalar sequence [¢~*u,£] cannot be approximated arbitrarily closely in the sense of
the seminorm in (2.4) by linear combinations of the scalar sequences [q"'u,fl, j # 1. The condition
(2.23) holds if, for example, u is a finite linear combination of periodic sequences and a nonzero
white sequence.

In the rest of this paper, ((-,-) and | - | will denote the inner product and norm on S, @ S.,
while (-, -) and |-|, without subscripts, will denote the inner products and norms, respectively, on all
other Hilbert spaces (including C, the complex plane). There should be no ambiguity about which
elements belong to which spaces.




3 Least-Squares Estimation and Prediction

We let U, W, and Y be Hilbert spaces, and we assume that there exist absolutely summable
sequences of bounded linear operators L]" € B(U,Y), LI¥ € B(W,Y) and absolutely summable
sequences c}* € U, c{* € W, a}* € U, and ayY € Y. For each k, we define A} € U’, A}Y € Y’,
L €U’ and LY € W’ by

At'n=(n01"), AYn=(na), t'n=(nct") 2n=(n,cf*), (3.1)

where, in each case, nis in U, W, or Y as needed. (When U, for example, is C", each a}* is an
n-dimensional column vector and A}* is the complex-conjugate of the transpose of a{¥.)
For u a sequence in U, we write

LY"u = [L1"uo L{"u; LY%u; ...}, Afu = [Aftup Afu; Aur ...), 3.2)

and similar equations for LY, L{¥, etc. We define the convolution operators L%, A*%, L¥¥, L*v,
L*“ and A*Y by

o0 oo
Yoy = Z L¥qFy, A%u= Z APqty, etc. (3.3)
k=0 k=0

Each of these operators maps sequences to sequences. Changing the order of summation in A*Y LY%u
and A’V LYYw yields

ALYy = f:[z APLY g tu= Z[q u, Z L¥":a"], (34)

=0 k=0 =0 k=0

A'"L""w—Z[ZA'"L._.Jq . s wZL.'_": g ! (3:5)

$=0 k=0 =0

where [, -] means a scalar sequence defined as in (2.5), and LY** and LY“* are the adjoints of LY*
and LY", respectively. Hence,

~ ATy AWy = Z[q"u [ef¥ — ot - 2 L¥a), (3.6)
=0 k=0

L w— ALYy E[q-'w [ - ZL:'L”; a1 (3.7)
i=0

The following hypothesis is implicit in all subsequent problems and theorems.

Hypothesis 3.1 There ezxist independent sequences u, w, and v in the Hilbert spaces U, W, and C™,
respectively. Each of these sequences has bounded autocorrelation, w is white, and u satisfies (2.8).
There ezist e Hilbert space Y and absolutely summable sequences L} € B(U,Y), LI¥ € B(W,Y),
et €U, v eW, Li* € U, and L} € W' with ci* related 1o L} and ¢} related to L}¥ as in
(3 1). The sequences L w ond LY w are mdependent of L{¥w and L}“w Vk > 1.

In the subsequent estimation and prediction problems, u is a known input sequence to a linear
system, w is an unknown noise sequence, and v is another unknown sequence, often to be estimated.
Process noise and measurement noise are components of w. The measurement-noise sequences are
L{*w and L§"w. The inner-product space Sy ® S, of equivalence classes of scalar sequences is
constructed as in Section 2.




From here on, the notation in this paper does not distinguish between a scalar sequence [¢~* v, n)
for n € W and the equivalence class of all scalar sequences equivalent to [¢g~'w,n]. The notation
is abused similarly for u and the output sequences y and s in the following problems. Under
Hypothesis 3.1, & = cf* — a* — Y .o LY la)Y and 5 = ¢ — Y i_o L!¥;a}Y are absolutely
summable sequences in U and W, respectively. Therefore, the right-hand-sides of (3.6) and (3.7)
are clements of S, and S,,, respectively.

Preblem 3.2 (LS: Infinite Length ARX) Let the Y-valued scquence y and the scalar-valued se-
gquence s salisfy

y=L"u+ [VWuw, (3.8)
s=L"u+ L"w+v. (3.9)
Find absolutely summable sequences a®¥ = [ag¥ @] ayY ...]inY anda’® =[af“ a}* a3 ... in U
to minimize
Je(a',a'™) = |A%Yy + A*Vu — s)? (3.10)
subject to
ay = 0. (3.11)

Probiem 3.3 (LS: Finite Length ARX) Assume the hypotheses in Problem 3.2. Let N be a
positive integer, and find sequences a® in'Y and a*% in U to minimize Jpn(a*Y,a®¥) = Je(a*Y,a’)
subject to (3.11) and

a;¥ =0, ai* =0, Yk>N. (3.12)

(The functional Jgx (a’Y,a*®) is just Jp(a*¥,a’*) defined for parameters a*¥ and a*“ that satisfy
(3.11) and (3.12).)

Problem 3.4 (LS: IIR) Assume the hypotheses in Problem 3.2. Find an absolutely summable
sequence a’ n U to minimize
Je(0,a%) = JA™ u — s]°. (3.13)

Problem 3.5 (LS: FIR) Assume the hypotheses in Problem 3.2. Let N be a positive integer, and
find an absolutely summable sequence a** in U to minimize Jgn(0,a*%) = Jg(0,a*%) subject to

a®*=0, VEk>N. (3.14)

In Problems 3.2-3.5, the parameter sequences a*¥ and a’* are chosen to miuimize the norm (i.e.,
I - [) of the prediction-error sequence

N N N ) N
e =Y AP+ AMu - s = Yl el + ) Lo 'u ) - s, (3.15)

=1 =0 i=1 §=0

(Recall (2.5) and (3.1)~(3.3)). The k'* term in this sequence is

N N
& = Z(yt-.',af”)-i-z:(u,_.-,a:“) - Sk, k>0, (3.16)
i=1

+=0

with ¥ = 0 and u; = 0 for i < 0 (recall (2.2)). In Problems 3.2 and 3.4, N = oo; in Problems 3.4
and 3.5, a*¥ = 0.




Problem 3.6 (LQR: Infinite Interval) L+t X be a Hilbert space and T € B(X, X), B* € B(U, X),
BY € B(W, X), CY € B(Y,Y), C* € X'. Let the spectral radius of T be less than 1, and let c** be
the element of X that satisfies

C'z=(z,c*) Vz. (3.17)

(The element ¢** is independent of z.) Find a square-summable sequence v in Y, with v = 0, such
that v minimizes

0 o0
Je(v) = Y (R¥BY*&,B“"&) + (LY R LY vi, vi) (3.18)
=1 =1
where the sequence £ in X satisfies
& = —c'%, 1 =T +C"ur VE2> 1. (3.19)
Problem 3.7 (LQR: Finite Interval) Assume the hypotheses in Problem 3.6. Find a sequence
vinY, with
v =0, ve=0 Vk>N, (3.20)

sucl that v minimizes

N N
Jon(v) =Y _(RYBY&,BY"&) + > (L¥* RU LY vi,vi) + (GéN+1, IN41) (3:21)

i=1 i=1
i where the sequence § in X satisfies (3.19) and
o0
| G =) _T[B*R"B"* + B'R*B*|(T*)". (3.22)
=0
The operator G in (3.22) is the unique element of B(X, X) that satisfies the Lyapunov equation
TGT* - G = -[B*RYB"“* + B"R"B**]. (3.23)

Theorem 3.8 Assume the hypotheses in Problems 3.2 and 3.6. Assume further that, for k > 1,
LY =CcvT*-lpY,  L¥¥ =CVT*-'BY, (3:24)
L =C'T-'BY, L =C'T*'Bv. (3.25)

If sequences a*¥ and a*“ solve Problem 3.2, then the sequence v = a*¥ solves Problem 3.6. Con-
versely, if a sequence v solves Problem 3.6, then the sequence a*¥ = v and the sequence

a.’" = "Bu‘fi - Lg'“l'i, 'Z l) aau = c(o)u. (326)

solve Problem 3.2. (The sequence £ is generated by (3.19).) If the autocorrelation operator LY R L§**
is coercive, there ezists ezactly one sequence v that solves Problem 3.6. If u satisfies (2.23), then,
for any pair of sequences a*¥ and a*® that solve Problem 3.2, (3.26) holds with £ generated by (3.19)
with v = a%.

Theorem 3.9 Assume the hypotheses in Problems 3.3 and 3.7, assume that (3.24) and (3.25) hold
for k > 1, and let u be white. If sequences a*Y and a** solve Problem 3.3, then the sequence v = a®¥
solves Problem 3.7. Conversely, if a sequence v solves Problem 3.7, then the sequence a*¥ = v
and the corresponding sequence a*“ given by (3.26) solve Problem 3.3. If LY R¥L¥"" is coercive,
there exisis exactly one sequence v that solves Problem 3.6. If R is coercive, then, for any pair of
sequences a*¥ and a’* that solve Problem 3.3, (3.26) holds with § generated by (3.19) with v = a*V.
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Theorem 3.10 Assume that (3.24) and (3.25) Aold for k > 1. If the hypotheses in Problems 3.2
and 3.6 hold, then

min _ Jg(v,a®) = min Jo(v) + (R¥c3¥, ct¥) + v’ (3.27)
{v:ve=0} v
If the hypotheses in Problems 3.3 and 3.7 hold and u is white, then
min _Jen(v,a®) = min Jon(¥) + (R¥c2¥, c2%) + Iv]®. (3.28)
{v:vo=0} v

Theorem 3.11 A solution to Problem 3.4 is a*% = ¢*%. If u satisfies (2.23), the solution to
Problem 3.4 is unique. If u is while, a solution to Problem 3.5 is

a®=c®, O0<E<N. (3.29)

If u is white with R* coercive, the solution to Problem 3.5 is unigue.

Proof of Theorem 3.8 Under the hypotheses in Problem 3.2,

Je(a*,a"") = JAY L¥"u + A®u — L*%u|® + A" [V w — L*“w]? + JvP?, (3-30)
o0 i
AL u+ A% — L% = 1) o~ u, [ef — af* = Y LI ai]]1%, (3.31)
=0 k=0
) =1 =1
AL w - LCwf? = Y (RU[Y = ) L¥sa) [ - ) L¥%a}Y))
i=1 k=0 k=0
o0
+ _(RULE"a¥, L3 ") + IL§ wl. (3.32)
i=0
Since cf*, cf¥, L{", and L}" are related as in (3.1), (3.25) implies
¥ = B*(T*)*1¢**, ¥ = B (T")*"'c**, k21 (3.33)
Since i
&=—(T") 1"+ ) (T k0w,  i>1, (3.34)
k=1

it follows from (3.24) that, if 1 = 0,

el - Z Li%w = =B"& — L¥™"v;, i>1, (3.35)
k=0
-1
* - LNwn=-B"% i21 (3.36)
k=0

Hence, if 1p = 0,
Je(,a*) = Jo(v) + (RV¢}”, §”) + Io?

00
+lls, et — a1+ D _la~"u, (B & + L v + o) JI°. (3.37)

i=1
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That L§* R¥ L§"* being coercive is sufficient for the existence of exactly one solution to Problem 3.6
is well known. All of the other statements in the theorem follow from (3.37). (o]

If u is white also, then
LAY LYy + A™u - L*¥u)® =

v, cg* - a5“1+ f:[q"u. (B*& + LYo + o) I = (3.38)
=1
(R*(co" — 6°): (e ~ ag")) + Z(R“(B"'f + L3 v + af*), (B* & + LT vi + a]*))
=1

where £ satisfies (3.19) with v = a*Y.

Proof of Theorem 3.9 When v, =0 Vk > N, (3.19) yields
LE=T"N-D¢ny  i>N+1L (3.39)
Then, when (3.11) holds, (3.37) with » = a*¥ and (3.38) yield
N N
JEN(G'”,G"‘) = ZUZWBW.&,BW‘&) + Z(L:OIWRWLVW- sy any)
=1 =1

00
+ _([B*R“B** + B*R*B*|T"¢n 41, T" €N 1) (3.40)

=0
N
H(RU(cl* — af), (cb" — a*)) + Y _(R*(B*"& + LY v + af*), (B* & + LY"*vi + a}*))
i=1
+(R¥c§”,c”) + Ivl?;
i.e., when (3.11) holds and u is white,

Jen(a*,a’) = Jcn(a"') +(R¥cg”,cg”) + Il + (R¥(c" — ag*), (c§* — i)

+Z(R“ B“& + L al + 0], [B¥& + Ly a}¥ + a}")). o (341)
i=1
Proof of Theorem 3.10 From (3.37) and (3.41). o

Proof of Theorem 3.11 With a*¥ = 0, (3.30) reduces to

Je(0,a*") = JA™u — L uf® + |L*“ w® + Jo|? (342)
o0
=1 la 7 u, (e — af I + UL wi® + o).
=0

When u is white,

N o0
Jen(0,a%%) = SO (RU (" — af), (e — af")) + 3 (RU,ct") + IL™w]? + [v}?. O (343)
i=0 i=N41
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4 . Minimax Estimation and Prediction

From here on, we assume Hypothesis 3.1, the hypotheses of Problem 3.6, and (3.24) and (3.25) for
k > 1. We also assume the following hypothesis.

Hypothesis 4.1 There erist a Hilbert space Z and sequences L{* € B(U,2) and L} € B(W, 2).
The sequence L§¥ w is independent of L}*w and L{Yw Vk > 1, and L w is independent of
LY*w Vk > 0. The sequence u is white.

We define operators L*“ and L*¥ as in (3.3). For each absolutely summable sequence a}* € Z,
we define a corresponding sequence of linear functionals A}* and an operator A** as in (3.1)-(3.3).
This section concerns the linear system in (3.8) and (3.9) with the additional, Z-valued measurment
sequence 2 satisfying

z2=L"u+ L*"w. (4.1)

In some applications, z = s.
We use the following notation for finite and infinite sequences

ajs = [aj" aj%, ...a}'], a3%41 = [0}% 0], = [ag’ a1’k 6341 Gi%2 -] (42)
For each positive integer N, we define the prediction-error sequence
2 Algtu+ Z APVqty+ Z Algtz — s, (4.3)
k=0

and the fit-to-data criterion
N
Jen(aily, abin,aiin) = lel? = 2 ) lai* %, (44)

where 7 is a nonnegative real number.
Definition 4.2 A real-valued function f(1¥,v%,1*) is coercive in vV if
f(uys""a”')=f0+fl(vy)uu:yz)"'f?(”yv"u,”l) (45)

where fy is a fized real number, fi(2¥,v%,v*%) ts a linear function of (VW,v¥,V*), and there exisis a
positive real number p such that
£2(1¥,0,0) > pp¥|2. (4.6)

If the corresponding condition holds for v* or v*, then f is coercive in V¥ or V¥, respeclively.

Problem 4.3 (Minimax: Finite Length AR.X) Suppose that Jpn(ay, N"’om“x N) is coercive

in a3’y and af¥y and that —Jpn is coercive in a}?y. Find sequences aj’y inY, afly in U, and aj’y

in Z that satisfy the saddle-point condition
Jen(ayin, aiiv, Vi) < Jen(atiy ol aiin) < Jen (YN Yon, alin) (4.7)
Jor all sequences vi.y in Z, v}y inY, and gy in U.

Next we define
s s
Jenn(ayin, aoin 81in) = JEN(a)!N, 85N, 61N)- (4.8)
For 1 < k < N, when Jgn k+1([a;f’,’a;+l] [ad% ak+1] [a3% a}%,]) is coercive in a3, and a}4, and
—JEN k41 is coercive in a}?, (for a}%, af¥, and af?, fixed), we define

Jenk(al%, 6%, a1%) = éf‘l( max Jen e+1([ath 77, [ag% n°} a3 9°)). (4.9)
nveU
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(According to (4.2), aj%, ., = [a3", a}’,,], etc.) We also define

JeENn0(0,a3",0) = "'peil)l, max Jena(n¥,[ag“n"), n*). (4.10)
n €U

Theorem 4.4 If Jena+1([a1l} ai%,) [ag% af%.) [}’ af’,)) is coercive in o}, and a}%, and
—JEN 41 18 coercive ina}’, VEk=0,1,...,N — 1, then for each such k there ezist bounded linear
operators KXY\ KX\, KX KNy, - - .. K3y and vectors ¢), ¢}, 4} such that

Jen (a1}, 61%, a1h) = Jen et ([0 at%y). [adh af%a), [af% af]) (4.11)
with
ayhy = KXot + KNadh + KX ai% + 41,4, (4.12)
ar41 = KN aih + KNGagh + KN pally + 6541, (4.13)
aihy = Ky path + KNadh + Kifralh + 641, (4.14)
a)y =0, aj’o=0. (4.15)

Furthermore, for each k, the a}%,,, a}4,, and a}%,, for which (4.11) holds are wnigue.

This theorem follows from the assumed coercivity and the fact that Jey is a linear-quadratic func-
tional.

Problem 4.5 (Order-recursive Minimax: Finite Length ARX) Suppose that
Jen r41([arly agh )i [agh aity). [ad% afi,)) is coercive in o}y, and ai%, and —JEN k41 15 coercive
inal’y, Vk=0,1,...,N — 1. Find a}’y and af'y such that a}* minimizes Jgn 0(0,al",0) and

ay = Kl + KXaghe + 68, 0<kESN-1, (4.16)
apt1 = Kalh + K¥%adh + 64,1, O0<kESN -1, (4.17)
ai%p = 0. (4.18)

Now we consider the optimal control problems of finding open-loop and closed-loop saddle-point
strategies for the performance index

N
Jen (AN, vin) = I (RUBY &, B} + (GEns1,En41)
i=1

N N
+ (LE“RULE VY, ) + (LR LY i, vf) - v D WP (419)

=1 =1
where G is the operator in (3.22) and the sequence £ in X satisfies
& = ~c'%, =T G+CV"V] +C™vi VE>1. (4.20)
We use the standard notions of saddle-point strategies for linear-quadratic games.

Problem 4.6 (Open-loop LQ Game: Finite Interval) Suppose that Jon (V. ,vi.n) 18
coercive in 1.y and —Jcn is coercive in vi.y. Find sequences al’y in Y and a}?y in Z that
satisfy the saddle point condition

Jen(aily, vin) < Jon(atln,aiin) < Jen(V.n,6iin) (4.21)

Jor all sequences v{.y in Z and v¥  in Y.
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We will define closed-loop saddle-point strategies in a way that is most relevant to Problem 4.5,
but our definition here is equivalent to the standard definition (see [6], for example) of closed-loop
saddle-point strategies for (4.19) and (4.20). We define

Jen NN Vin) = JeN (. VEN)- (4.22)

For 1 <k < N, when Jon41(, U1,,), [V, vi,1)) is coercive in 1], and ~Jcn sy i coercive
in v}, (for V'. and 1}, fixed), we define

Jena(Vaivfa) = Jnin, max Jenin (W P [ 0°)- (4.23)

Theorem 4.7 If Jenani(Wy Vg [Via vig,)) is coercive in v}, and —Jcn i4r 8 coercive in
Vign VE=0,1,...,N —1, then for each such k there ezist bounded linear operators F} , and F},,
such that

JCN-‘(”{:MVII:k) = JCN.E‘O'I([V{:E ”:+1L [Vl':k ”:+1]) (424)

with
Ve = —Fl 6, (4.25)
Vigr = =Fi 161 (4.26)

Also, the unique sequences a}¥y and a}’y that solve Problem 4.6 are a}’y = VY. and aliy = vi
with 1}y and v} generated by (4.25) and (4.26).

This theorem follows from the assumed coercivity and the fact that Jon is a linear-quadratic func-
tional. The feedback control laws in (4.25) and (4.26) are the pair of closed-loop saddle-point strate-
gies for (4.19) and (4.20).

Our formulation of the order-recursive minimax parameter-estimation problem and the closed-
loop saddle-point strategies for the control problem are motivated by the following standard results
on LQ dynamic games [6]. There exists a sequence of Riccati operators Py, generated by a Riccati
difference equation backward from the final condition Pn41 = G, such that

k
Jen k(g via) = Y_(RYBY 6, B &) + (Peyr€eer, €in1)

i=1
k
+E[(L‘y)wangt Y ) + (szRwL:wayx V')] _ 2 Z IV |2 (4_27)
i=1 i=1

for any sequences +{, and v{,. The gain operators FY,, and F},, in (4.25) and (4.26) can be
constructed from P‘,.H and the operators in (4.19) and (4.20). See Section 5.2. The standard results
on optimal control do not appear to provide an algorithm for solving the parameter-estimation
problem, but they make the solutions to Problems 4.6 and 4.8 trivial.

Problem 4.8 (Closed-loop LQ Game: Finite Interval) Suppose that the coercivily hypotheses
in Theorem 4.7 hold. Find the sequence v,y generated by

v = —Fl&, (4.28)
and (4.20) with vi.y =0.

Theorem 4.9 Suppose that the coercivity hypotheses in Problem 4.3 hold. Then the coercivity hy-
potheses in Problem 4.6 hold, and the finite sequences a¥y, af'y and a}?y solve Problem 4.3 if and
only if a}’y and a;fN solve Problem 4.6 and

—BYg — L3l — Lia,  i>1, e =cv. (4.29)
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Theorem 4.10 Suppose that the coercivity hypotheses in Problem 4. 5 hold. Then the coercivity
hypotlaesea in Theorem 4.7 hold, and the finite sequences a}’), and af’y solve Problem 4.5 if and
only if v}.y = a}’y solves Problem 4.8 and

-B**& - LY**a}?, i21, a*=cp. (4.30)

Proofs of Theorems 4.9—4.16 In (3.30)-(3.41), we include terms corresponding to the measure-
ment z in (4.1) to obtain

JsN(di'mﬂc':"max in) = Jon(ally, aliy) + (R*(cg” — ag"), (c5" - af*))

+Z<Ru B'“f. LU"' '! zuoau+aau] [B“‘E, yu-acy+ Lzu-au +am]) (4 31)
i=1

+(R%cg",¢f") + vl

where JcN(a1 N> ally) is given by (4.19), £ satisfies (4 20) with »¥ TN = ay’y and ¥{ v = af’y, and
(R“cp®,ch*) and Jv||? are constants independent of a}’y,, aj’y, and a}’y. The following lemma then
implies Theorems 4.9 and 4.10. The subsequent Theorems 4.15 and 4.16 follow from (4.31).

Lemma 4.11 Let H; (i = 1,2,...,5) be Hilbert spaces with L;; € B(H;, H;), ¢4 € Hy, cs € Hs.
Define J(-,-): Hy x Hs — R and J(-,-) : Hy x H3 x H3 — R by

J(hy, hs) = |Larhy + Lashs + caf? — ¥*|hs|?, (4.32)
J(h1, g, hs) = J(hy, h3) + |Ls1hy + hy + Leshs + cs[?, (4.33)
where v is a positive real number, and consider the saddle-point conditions
J(hy, h3) < J(h1,h3) < J(hi,hs) ¥ hy € Hy, hs € Hs, (4.34)
J(h1,ha,%5) < J(hy, ha, h3) < J(h1,ha,hs) ¥V by € Hy, by € Ha, b3 € Hs. (4.35)

Suppose that (4.35) holds for some (h,,h,,izs) € Hy x Hy x Hy. Then

hy = —(Ls1hy + Lsshs + cs), (4.36)

and the following one-lo-one correspondence ezists between saddle points of J and saddle points of
J: (4.34) holds for some (h1,h3) € Hy x Hj if and only if (4.35) holds for

-

hy = h,, ha = —(Lsihy + Lsshs + c5), hs = hs. (4.37)

This lemma follows from the first-order necessary conditions (normal equauons) for saddle points of
linear-quadratic functionals and the fact that J is concave in hg if J is.

Theorems 4.9 and 4.10 say that Problems 4.3 and 4.5 are equivalent, respectively, to Problems 4.6
and 4.8 when 7 is large enough for the appropnate objective functionals in Problems 43and 45 to
be coercively concave (i.e., —J coercive) in the maximizing parameters aj*y. Because of the term
on the second line of (4.31), ¥ generally must be larger for the coercivity hypotheses in Problems 4.3
and 4.5 than for the coercivity hypotheses in Problems 4.6 and 4.8. The following alternative
minimax parameter estimation problems have coercivity hypotheses that are equivalent to those in
the corresponding control problems.

We define

Jenn(afy, aii) = Jen(aily,aiin) = min Jgn (afiy, a0, 81 IN). (4.38)
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Problem 4.12 (Minimax: Finite Length ARX) Suppoae that Jen(a}? N»“x *v) 8 coercive in

a}¥y and that —Jjgn is coercive in aj’y. Find sequences ai'y in Y and ai’y in Z that satisfy
the saddle-point condition

JEN(dl N,Ul N) < JEN(al Nlal N) < jEN(Vlv:Nra;fN) (439)
Jor all sequences vi y in Z and v}.y in Y, and for this a}’y and a}?y, find al¥y such that
Jen(ally aiin) = Jen(aly, abty, ailv). (4.40)

For 1 < k < N, when Jene41([alY, a% ). [af% af%,]) is coercive in af%, and —JEn iy is
coercive in aj’,, we define

Jena(aly, 0fh) = min max Jewe+([alty 7). ol 0°))- (441)
Theorem 4.13 If Jen i41([a’%, a 1), et @i’y ]) s coercive in i’ | and —JEN k41 i8 coercive in
a1 VE=0,1,...,N—1, then for each such k there ezist bounded linear operators K}y, KX, K.,
K37, and vectors ¢, 4} such that

Jen (0t ath) = Jen e (ot ag%y), [al% af3,]) (4.42)
with : 3
ah = Klyvl:ka;?k + K¥ ot + ¢l (443)
aih = Kfvy,ka;?k + K alh + 641, (4.44)
A% =0, alf=0. (4.45)

Furthermore, for each k, the ai’,, and a}’,, for which (4.42) holds are unigue.

This theorem, like Theorem 4.4, follows from the assumed coercivity and the fact that Jey is a
linear-quadratic functional.

Problem 4.14 (Order-recursive Minimax: ante Length ARX) Suppose that
JEN g.H([a1 % °k+1] [af% al:+1]) is coercive in a,:_',1 and -JEN Jk+1 18 coercive in a}’,;
YVk=0,1,...,N-1. Fmdaleuch that

o, = R¥,a% +¢L,, O0<E<N-1, (4.46)
“;?o = 01 (447)

and for this a}¥y, find a'y such that
Jen(aily,0) = Jen(ally,ab%,0). (4.48)

Theorem 4.15 The coercivily hypotheses in Problem 4.12 hold if and only if the coercivity hypothe-
ses in Probl m 4.6 hold. When these hypothescs hold, the finite scqucnces a;’N, afly end ai’y solve
Problem 4.12 if and only if a}¥y and a}’y solve Problem 4.6 and al¥y is given by (4.29).

Theorem 4.16 The coercivity hypotheses in Problem 4.14 hold if and only if thc coercim'ty hy-
potheses in Theorem 4.7 hold. When thcsc hypotheses hold, the ﬁmte sequences a1’y and af’y solve
Problem 4.14 if and only if V¥ , = a}y solves Problem 4.8 and a}¥y is given by (4.30).
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5 Relationships to State-Space Filtering

5.1 LQR/Kalman Filter Representations of LS Parameters

We begin with the finite-order LS problem and the finite-time control and filtering problems. Ac-
cording to standard results on LQR problems, the solution to Problem 3.7 has the form

v = —Fps (5.1)
where
Fy = [L§“RYLY"* + CYPe 1 CY* "' CY Po i T (5.2)
and the Riccati operators P; are the nonnegative, self-adjoint elements of B(X, X) satisfying
Py = BYRYB"* + T(Piy1 — Piy 1 C** (LYY R*LY*" + CY Pi . C**]"'CY P, )T, (5.3)
PN+1 = G. (54)
The corresponding optimal sequence £ satisfies
G=Ti_\T;_,  Tg(-c*) 1<k<N+1, (5.5)
where _ .
T.=T- F;CY, 1<k<N, To=1. (5.6)
With (5.1) and (5.5), the solution to Problem 3.3 given in Theorem 3.9 becomes
of = BTy Ty, Tge**, 1<ESN, (5.7)
af* = B Ty_\Tp_,---Tge** — L§**aly, 1<k<N, adt = cg’. (5.8)

According to (3.1) and (3.17), the bounded linear functionals corresponding to the a;¥ and a}* in
(5.7) and (5.8) are ) L
A:y =C’Ty-- - Ti2Ti Fy, 1<k<N, (5.9)

A =C'To- Ty oTi1B* — AYLY  1<ESN, AQY = L§“. (5.10)

Under the hypotheses of Theorems 3.8 and 3.9, a state-space realization of the input/output
system in (3.8) and (3.9) is

Zi4+1 = Tz + Buz + B¥wuy, (5.11)
v =CVzx:e + Lgutu + ngwg, (5.12)
s =C'zg + Lg"ue + Lg" wi + v. (5.13)

(Recall that u is a known input sequence while w and v are unknown noise sequences.) If y is the
measured output, a Kalman filter for one-step-ahead prediction of 2341 has the form

241 = Tidr + Foye + [B* = B LY ]u, (5.14)
and the corresponding one-step-ahead prediction of si41 is
Sk41 = C’'Zpgr + L tkyr = (Z141,¢"°) + Lg% 41 (5.15)

(The £; here often is denoted by £;/;;. See [20], for example.) If the expected value of z; is
£y = 0, then

Eny1 = Fyyn +[B* — FyLY"[un
N-1
+ Z TnTv-1- Tnar-i(FN-iyn—i + [B* — Fn-iL§"Jun_s). (5.16)

i=1
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If the probabilistic error-covariance operator for #, is G, then
Fo=Fipe Ti=Tnpr-ey,  1<ESN, (5.17)

where F; and T} are the operators in (5.1)-(5.6). Substituting (5.16) into (5.15) and using (5.17),
(5.7), and (5.8) yield

N N
N1 = Z(VNH-.',O:V) + Z(uN+1-i,a:")
i=1 i=0

N N
=) APynsioi + ) AlMunga. (5.18)

i=1 =0

Thus the ARX coefficients that minimize the least-squares one-step-ahead prediction error in
Problem 3.3 are the coefficients in the probabilistic minimum-variance prediction of éy4, based on
the data y;,y2,...y~v and u;,uz,...un and the assumption that the initial state vector z, has zero
mean and covariance G, given by (3.22). This G is indeed correct for the steady-state statistics of
the state vector z; in (5.11) when T has spectral radius less than 1 and u;, and w; are zero-mean
stationary white noise sequences (in the probalistic sense) with covariance operators R* and RY,
respectively.

When we say that the parameters a;¥ and a!“, or equivalently A;Y and A!", are Markov pa-
rameters for a state-space filter, we mean that they are the coefficients in a prediction formula like

(5.18).

Now we turn to the infinite-order LS problem and the infinite-time control and filtering problems.
The solution to Problem 3.7 is given by (5.1)-(5.6) with Fi, P, and T} independent of k. Hence

Fr=F, P=P, Ti=T=T-FC", (5.19)
and the solution to Problem 3.2 given in Theorem 3.8 becomes
a)y = FT*¢=-Nesz k> 1, (5.20)
alt = BTNtz _ [¥uaqly k> 1, ag" = cp*. (5.21)
For the corresponding bounded linear functionals, (5.9), (5.10), and (5.17) yield
AY =C'T¢-VF, k>, (5.22)
AP =CTE-DBY - ANLY,  k>1, A =LY (5.23)

The linear functionals A}* and A}? in (5.22) and (5.23) should be recognized easily as the Markov
parameters for the steady-state Kalman filter for the system in (5.11)-(5.13) with measured output
y and predicted output s.
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5.2 LQ Game/H, Filter Representation of Minimax Parameters

According to standard results on LQ games (see [6] for example), the solution to Problems 4.6 and
4.8 have the form

o) = = -F&, (5.24)
ai’ = vg = -Fi&, (5.25)
where v
[ ﬁk; ] = [R+ CPey,C*) 'CPe T, (5.26)
k
_ [ Le*ReLE™” 0 _[cr
R = [ 0 (Lamesw. - 721) ’ C= C; ) (527)

and the Riccati operators P; are the nonnegative, self-adjoint elements of B(X, X) satisfying
P, = BYR¥YB"* + T(Pk+1 - Pk+1C.[R + CPg.HC‘]-lCPg.H)T‘ (5.28)

and the final condition (5.4). The corresponding optimal sequence § satisfies (5.5) with (5.6) replaced
by
To=T-F!'"CYV-F*C*, 1<k<N, To=1. (5.29)

The coercivity hypotheses in Theorem 4.7 }iold if and only if the operators [LE” RV L{Y" +CY Pi4,CY*)
and [y?] — LY RY L{¥* — C* Pr4+1C**] are coercive for 1 <k < N.

With (5.24), (5.25), (5.5), and (5.29), the solution to Problems 4.3 and 4.12 given in Theorems 4.9
and 4.15 becomes

of = FITy_\Ti_,--- Tgc**,  1<k<N, (5.30)
aj* = BTy T p- - Toc™ - L§*"a)! —Lg* ey, 1<kSN,  a*=c, (531
aff = FfTy_\Ti_,--Tge'*, 1<k<N. (5.32)
The corresponding bounded linear functionals are
AY =C'Ty---TecaTea FY*,  1<ESN, (5.33)
AP =C'Ty - TyoTe 1 BY — ALY — ALY 1<k<N, AM=LY, (5.34)
AP =C'To---To-aTeFi*, 1<k<N. (5.35)

By the standard results on LQ games, the operators F} in Theorem 4.7 and Problem 4.8 are those
in (5.25)—(5.29). Hence, by Theorems 4.10 and 4.16, the sequences a}’y and aj’y in the solution to
Problems 4.5 and 4.14 are given by (5.30) and (5.31) with a}’y = 0 and

Ty =T-F"CY, 1<k<N, To=1 (5.36)

The role of LQ game theory in Ho, control and filtering stems from the following well known
result, which is a corollary to Theorem 4.7.

Corollary 5.1 Suppose that the coercivity hypotheses in Theorem 4.7 hold, that v}y is generated
by the minimizing closed-loop saddle-point strategy in (4.25) and (5.24), and that &, = 0. Then

Jen(nVin) <0 V. (5.37)
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To interpret (5.37) in the most useful way for this paper, we assume that G can be factored as
G = BB* (5.38)
where B is a bounded linear operator from a Hilbert space X to X, and we define

E=Btnn (5.39)

and
m = R (BY€ + LY“"vY), 1<k<N, (5.40)

where R“/? is the nonnegative self-adjoint square root of R%. Then,

N N N
Y (RUBY*&, BY &) + (Génar, Ens1) + 9 _(LEYRVLE VY ) = Y Il + K. (5.41)

i=1 i=1 =1
If there exists a real number p such that
LYYRYLg™ > p, v>p, (5-42)
then (5.37) yields
N ) N
SR (-0 Wil (5.43)
=1

=1

Under the hypotheses of Section 4, a state-space realization of the input/output system in (3.8),
(3.9), and (4.1) is (5.11)~(5.13) with the additional output equation

2= Clzp + Li%wi + L% wy. (5.44)

If y is the measured output, a finite-time H, filter for one-step-ahead prediction of z;4; has the
form (5.14) and the corresponding one-step-ahead prediction of sx4; is given by (5.15), but the
Kalman and H, filters use different operators T: and Fy.

For the H filter that is related to the order-recursive minimax parameter estimation problems
in Section 4, the operators Ty and Fj are given by (5.17) with Fi and Ti generated by (5.26)-
(5.28) and (5.36). That these operators F and T, indeed yield an Ho filter will be established in
Theorem 5.2. But whatever the meaning of the state-space filter in (5.14) and (5.15) for this choice
of Fi and T}, the one-step-ahead prediction of sn41 by this filter, when £; = 0, can be written as
in (5.18) with the coefficients a;¥ and a{* given by (5.30) and (5.31) with a}’y = 0 and T} given by
(5.36)—and these are the same parameters a;¥ and a!* that solve Problems 4.5 and 4.14.

Theorem 5.2 Suppose that the coercivity hypotheses in Theorem 4.7 hold and that (5.42) holds.
Assume } _
z) = Bz, #, = Bz, (5.45)

wy = RY?w,, 1<k<N, (5.46)

with 2,2 € X and w, € W. Let 2.5 be generated by (5.14) with T: and Fy generated by (5.17),
(5.26)<(5.28), and (5.36), and define the prediction of z by

5y =C'2p+ L%, 1<kE<N. (5.47)
Then
N N
Ya-al (- lml +12-2) . (5.48)
k=1 k=1
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Theorem 5.2 follows from (5.43) and the following lemma.

Lemma 5.3 (Duality between Control and State Estimation) Let X, W, Z, and X be
Hilbert spaces with S, € B(X,X), B, € B(Z,X), Ck € B(X,W), D: € B(Z,W) (1< k< N) and
C € B(W,Z). Define

By =Clyr-ry Co=Byys
Dy = D)‘V+l-h S = S;\H,]_ga (5.49)
1<k<N.

Consider the two systems

Eep1=Si€e+ B, 1<ESN,
m=Cils+Dinn, 1<EkE<N, (5.50)
£=Ctnyr, 6 =0,

Serr =Sibx+ Bume, 1<k<
vi = Ciée + Dimp,
&L =C¢.

(5.51)

(The &, €, M, v in (5.50) have no relation to the &, £, m, v in (5.51), ezcept for belonging to
the same respective spaces.) Let LEB(ZxZ x --- x ZW x W x --- x W x X) be the operator
such that, for the system in (5.50),

(m:~n,§) =Ly (5.52)

andlet LEBW xW x --- xW xX,ZxZx - x Z) be the operator such that, for the system
in (5.51), i )
Vi:N = L (Yh;N, f) (553)

Also, let I" and IY be the isometric isomorphisms such that
(e ...ond, = .. mm) &), I’y ... on]l=lww ... 1pn] (554)

Then 3
L=I"L"I". (5.55)

Calculation of the adjoint operator L* yields Lemma 5.3.

Proof of Theorem 5.2 Let (5.50) be the closed-loop control system in the closed-loop LQ game
(Problem 4.8) and let (5.51) be the prediction-error system for the filter specified in Theorem 5.2.
Then (5.48) follows from (5.43) and the fact that L and L* have the same norm. (Related arguments
appear to be used in [6].) o
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6 Problems with Finite Amounts of Data: Convergence

V.. assume Hypothesis 3 1, the hypotheses of Problem 3.6, (3.24) and (3.25) for k > 1, and Hypoth-
esis 4.1. In this section, we assume also that the input space U and the output spaces ¥ and Z are
finite-dimensional. We do not assume that the noise space W or the state space X introduced in
Problem 3.6 are finite-dimensional.

6.1 Least-Squares Estimation and Prediction
For each t > 0, we define

t
1
TEM (v adin) = 3 3 lea(®) (6.1)
k=0
where
N N
ee(t) = ) (Wil + ) _(we-ir0f) — &, 0<k<y, (6.2)
=0 i=1

with y; = 0 and u; = 0 for i < 0. In this section, we write Jgn(a}’y, al% ) instead of Jen(a’V,a’")
for the objective functional in Probiem 3.3.

Problem 6.1 For t >0, find a’¥y(t) and al¥(t) to minimize JOX (a¥y, al%).

Theorem 6.2 If Jen(a®Y,a’") in Problem 3.3 is coercive in aj¥y and a’%,, then JS) (ai¥y,ad%
is coercive in 6}y and alty for sufficiently large t. In this case, if a1’y and al% solve Problem 3.3
and a}’y(t) and af¥y(t) solve Problem 6.1, then

Jim afy() = alty,  lim ad%(t) = afiy. (63)
The proof of Theorem 6.2 is a special case of the proof of Theorem 6.5.

Because of the finite dimensionality assumed in this section, all norms for a}¥, and a$’y are
equivalent, so that the limits in (6.3) and all other limits in this section are unambiguous.

6.2 Minimax Estimation and Prediction
For each ¢ > 0, we define Jg,)v(a;f’N,a(‘,f‘N,a;fN) by the right-hand side of (6.1) with

N N N
a(t) = Z(“k—iya:u)'*‘Z(yk-i,a:y) +Z(Zk-i,af') - &, 0<k<t, (6.4)
i=1

i=0 i=1

with % = 0, z = 0, and w; = 0 for i < 0. Also, we define ) (a2¥y,al*y) as in (4.38) with
JEn(a}y, 0., a32y) replaced by JE) (afly, a0, afiy).

Problem 6.3 Problem 4.3 with Jepn(alYy, i, ally) replaced by J$X (at¥y, al¥y, oty ).
Problem 6.4 Problem 4.12 with gy (at¥y,at%y) replaced by J3) (al¥y, alfy) and
Jen(aily, ali, alty) replaced by JE) (ally, afty, afiy)-

Theorem 6.5 If the coercivity hypotheses in Problem 4.3 hold, then the coercivity hypotheses in
Problem 6.3 hold for sufficiently large t. In this case, if a)’y, af'y, and a}’y solve Problem 4.3 and
a}’n (1), afin (1), and a}ly(t) solve Problem 6.3, then

Jim o'y (8) =afly,  lim ofN(t) = ogy,  lim afiy(t) = afly. (6.5)

Similarly for Problems 4.12 and 6.4.
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Proof Problems 4.3 and 6.3: Since U, Y, and Z are finite-dimensional, ay, a}’y, and aj’y can
be represented, respectively, by finite-dimensional column vectors a¥, a¥, and o, all of which can
be included in a parameter vector a € C", where n is the total number of scalar parameters in afly,
a’y, and a}’y. Then

Jen(aily,ab, aiin) = (Qa,a) + 2Re(B, @) + Jen(0,0,0),

T8 (a2 ad, o) = (Q(t)a o) +2Re(B(1), @) + JEX(0,0,0), (6:6)
where 3, 8(t) € C*, Q and Q(t) are n x n matrices and (., ) is the Euclidean inner product on c".
The coercivity hypotheses in the parameter-estimation problems mean that certain submatrices of

Q and Q(t) must be either positive definite or negative definite. When these conditions hold, Q and
Q(t) are nonsingular and the solutions to Problems 4.3 and 6.3 are (for sufficiently large t)

o= _Q‘lﬂa
a(t) = -Q7(1)A(). (6.7)

It follows from the definitions in Section 2, the operator definitions at the beginning of Section 3,
)

and the definitions of Jen(ayYy, afty,a}y) and Jg,)v(alf’N,agf‘N,a{fN) that the elements of Q and
B are the limits of the corresponding elements of Q(t) and f(t). Therefore, when @ is nonsingular,
lim;—, o @1(t) = Q! and lim,_, o, a(t) = a.

Essentially the same argument works for Problems 4.12 and 6.4. o

For 1 < k < N, we define Jg,{,,k(a;:”N,aaj‘N,a;fN) as in (4.8)—(4.10) but with Jpx replaced by
JE, in (4.8). Also, we define JU ,(al¥y, a3y) as in (4.38) and (4.41) with Jpn replaced by J$, in
(4.38). Theorems 4.4 and 4.13 hold with Jgn x and JEN,; replaced by Jg,)v , and J.g,)v &> respectively.
Problem 6.6 Problem 4.5 with Jgn x(ay'y, 68, a}in) replaced by Jg,)v.,‘(a;‘:'N,a(',‘:‘N,a;fN) in
Theorem 4.4 and Problem 4.5.
Problem 6.7 Problem 4.14 with Jpn x(a}%y,ai’y) replaced by jg,)\,’k(a;f’N,a;fN) in Theorem 4.13
and Problem 4.14 and Jpn(a}¥y,af%,0) replaced by Jg}v(a;f’N,aa':‘N,O).
Theorem 6.8 If the coercivity hypotheses in Problem 4.5 hold, then the coercivity hypotheses in

Problem 6.6 hold for sufficiently large t. In this case, if aj'y and agy solve Problem 4.5 ond
a}y() and a!y(t) solve Problem 6.6, then

Jim oy (1) = ain,  Jlim agiv(t) = agiv. (6.8)

Similarly for Problems 4.14 and 6.7.

Proof Problems 4.5 and 6.6: For 1 < k < N, all of the parameters in a}’, ag, and af’, can be
represented by a column vector a;, and

Jen 1(al%, ab%, i) = (Qear, o) + 2Re(B, ar) + JEN£(0,0,0),
ISk (0t 0l 01%) = (Qe(t)ar, ax) + 2Re(Ai(t), ax) + J$% 4(0,0,0). (6.9)

The matrix Q; and the column vector §; are obtained by a finite pumber of matrix multiplications,

additions, and inversions starting with submatrices of the Q and # in (6.6), and similarly for Q:(t)

and S (t). Hence Qi(t) and Bi(t) are continuous functions of Q(t) and B(t), so that Qi (t) and Bi(t)

converge to Q and f; as Q(t) and S(t) converge to Q and . It follows that, for each k, the solution

to the linear-quadratice minimax problem on the right-hand side of (4.9), with Jgn 141 replaced by

JS,{,_,, +1» converges to the solution of the original minimax problem on the right-hand side of 4.9).
Essentially the same argument works for Problems 4.14 and 6.7. s}
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7 Conclusions

From the way we use norms and inner products of equivalence classes of scalar sequences in defining
and analyzing the parameter-estimation problems, it follows that solutions to any of the parameter-
estimation problems in Sections 3 and 4 and the asymptotic values of the estimated parameters in
any of the problems in Section 6 depend only on the equivalence classes to which u, w, s, y, and z
belong. Therefore, the asymptotic parameter estimates are unaffected by changing a finite number
of terms in any of the measurement sequences or the known input sequence u or by changing the
initial state vector of the plant, since the plant is assumed to be exponentially stable. This is to be
expected, and the fact that it is an immediate consequence of our formulation suggests that Hilbert
spaces containing equivalence classes of deterministic scalar sequences provide a natural setting for
many parameter-estimation problems.

The class of least-squares problems in Section 3 includes many common problems in parameter
estimation and adaptive filtering and prediction, but to keep the discussion manageable, we have
omitted several classes of problems that can be analyzed by straightforward generalizations of the
methods here. For example, the results in Sections 3-6 can be generalized to problems with correlated
process and sensor noise and problems in which the summations over the y terms and u terms in
the ARX model have different limits N, and N, instead of the same limit N.

The results in Sections 3-5 characterize fully the asymptotic values of least-squares or minimax
parameter estimates, but there are only two possibilities for computing these limiting values for a
particular problem: (1) solution of the parameter-estimation problem for long input/output data
sequences, (2) solution of either the corresponding state-space control problem or the corresponding
state-space filtering problem, either of which requires complete knowledge of the plant and noise
statistics. Of course, if the information required for (2) is known, then there is no reason for
parameter estimation.

On the other hand, it often occurs that some rough estimates of plant and noise characteristics
are known but the a priori information is not sufficiently accurate for designing a filter or perhaps a
controller. In this case, the characterizations in this paper can be used to compute rough indications
of the results that will be obtained with the different parameter-estimation problems and for dif-
ferent ARX orders. For example, comparing Markov parameters for steady-state and finite-interval
Kalman filters computed for a priori models of the plant and noise should indicate how large a
finite-dimensional ARX model must be used in LS identification if the estimated parameters are to
approximate the Markov parameters of the steady-state Kalman filter for the true plant and noise.
Such a priori comparison should be useful in applying the OKID method for system identification
{3, 4, 5]. With a priori plant and noise models, (3.27) and (3.28) can be used to compare roughly
the performance levels to be expected of adaptive LS filters of different orders, since the optimal
values of the performance indices in the control problems are easy to compute with Riccati matrices.
Similar a priori comparisons between LS and minimax parameter estimation and filtering can be
obtained with (3.37) and (3.41). Also, the control problems in Section 4 can be used for a prior
models of the plant and noise to get rough a priori lower bounds for the values of v that can used
in minimax parameter estimation and filtering for the true plant.
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