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opdrachtnr. -

IWP-nr. 760.3
rapportnr. FEL-94-B 195

Dit rapport is het eerste van een serie van 3 rapporten over diffractierekening met behulp van
hoogfrequent technicken. Het werk waarover in deze rapporten versiag wordt gedaan is vemrcbt
door L.J. v. Ewijk tijdens zijn detachering bij het Defense Research Establishment Ottawa
(DREO) in Canada van september 1992 tot en met augustus 1993. Het werk heeft daar onder
andere geleid tot de ontwikkeling van drie codes die gebruikt kunnen worden op het gebied van
RCS berekening.
Dit rapport geeft een afleiding van een veelbelovende diffractietechniek uit de literatuur. De
reden dat deze afleiding bier gegeven wordt, terwiji deze ook in de literatuur te vinden is, is dat
de afleiding in de literatuuir verspreid is over verscbeidene artikelen en bier integraal gegeven
wordt. Bovendien worden hier enkele singulariteiten nader bescbouwd, en verholpen, terwiji dat
in de literatuur niet het geval is. Zonder een volledig inzicht in de afleiding is deze
singulariteitenanalyse, niet eenvoudig te volgen.
De totale afleiding is weergegeven in een bijiage. De hoofdtekst van bet rapport bevat een
inzichtelijk overzicbt van de methode, een vergelijking met gemeten resultaten en de conclusies
die uit deze vergelijkingen kunnen worden getrokken.
In het algemeen kan worden gesteld dat de gekozen metbode goed voldoet en de gebruikelijke
reflectieberekeningen sterk kan verbeteren. Dit is vooral zo in het geval van verstrooiing aan
scherpe randen waarbij de invalsrichting van bet veld loodrecbt staat op, de rand. Bij schuine
inval is de invloed van het berekende diffractieveld minder sterk.
De combinatie van boogfrequent rekenmet, oden die in dit rapport wordt bebandeld is in staat
omn voor vele situaties d,: radardoorsnede van objecten te berekenen. Voor die gevallen waar,
volgens de vergelijkingen met meetresultaten die in dit rapport gepresenteerd worden, de
methode nog tekort schiet wordt aangegeven wat een mogelijke verbetering zou kunnen zijn.
Deze bestaat uit bet simuleren van de "surface travelling wave" door bet meermalen toepassen
van de diffractiemetbode. De implementatie hiervan wordt in de overige twee rapparten, zoals
hierboven vermeld, bebandeld.
Het in dit rapport bescbreven werk heeft geleid tot beter inzicht in de fysische achtergronden van
het verstrooiingsproces aan scberpe randen, de verbetering van een van de incest veelzijdig
toepasbare diffractietechnieken en de implementatie van deze metbode in een rekenprogranima.
Met dit rekenprogramma is bet nu mogelijk amn de diffractie aan scherpe randen te berelkenen
voor bijna alle invals- en observatiericbtingen. Slechts Un ricbting vertoont nog een singulier
gedrag, hetgeen problemen oplevert als men het verstrooide veld wit berekenen in de richting
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van de voortzettingr van de invallendle straal langs een van de oppervlakken van de wig indien die
invallendle straal van buiten de wig, komt.
De toegevoegde waarde van de berekening van diffractieverschijnselen ten opzichte van
uitsluitend retlectieversc hijnse fen komnt het best tot uiting bij de analyse van objecten met lage
radardoorsnede. De hierboven genoemdle uitbreiding zal deze toe-evoegde waarde nog doen
toenemen.
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INTRODUCTION

The Method of Equivalent Currents (MEC) finds its origin in the fact that any finite current
distribution yields a finite result for the scattered field when that contribution is summed in the
radiation integral [I1. So, when the proper current distribution can be found, the problems with
axial caustics, as in the Geometrical Theory of Diffraction (GTD), can be avoided. Furthermore,
by using equivalent currents it is possible to determine the scattered field outside the directions
defined by the Keller cone.
The approach in the MEC currents is to assume the existence of filamentry electric and magnetic
surface currents in the neighbourhood of surface discontinuities, such as edges, and to add these
currents to the far-field radiation integral. It is emphasised here that the equivalent currents are

not to be confused with real physical currents. They are not really present at the edge, but are

merely a mathematical aid to correctly represent the scattered field. This is clear when we notice

for instance that these currents are dependent on the observation direction, which is impossible

for physical currents.

An overview of the MEC can be found in [I1. The method is used by many authors, see for

instance Millar [2), [3] and [4], Ryan and Peters [5], Knott and Senior [6] and Sikta [7]. In these

articles the MEC is used for various scattering problems and in some of them the results are

compared to the results of other techniques.

Knott and Senior [6] adjusted the equivalent current prescription by requiring that a stationary

phase evaluation of the radiation integral yields the GTD result for directions on the Keller cone.

In order to extend the expressions to general bistatic conditions they replaced some terms to

invoke dependency on the incidence and observation direction, a method later criticised by

Michaeli [8].

Sikta [7] used the equivalent currents for flat plates which he divided in strips with width that

approached zero.

Michaeli [8] and [9] proposed a more rigorous way to derive expressions for the equivalent

currents. He stated that the usual expressions were based on GTD-like expressions and were

therefore only valid for directions on the Keller cone. He then derived new expressions based on

the identification of the MEC line integral with the asymptotic edge contribution to the Physical

Theory of Diffraction (PTD) surface integral. From this resulted the equivalent currents

expressed in terms of the PTD surface currents. These integrals were then evaluated, resulting in

the equivalent currents that could be used to determine the scattered field by an arbitrary edge

[8]. Later he improved his expressions by using a different integration variable in the evaluation

of the afore mentioned integrals [9]. He also split his equivalent currents into fringe equivalent

currents, accounting for the fringe scattered field, and Physical Optics (PO) equivalent currents,

accounting for the PO scattered field. The fringe currents, or non-uniform currents as they were

named originally by Ufimtsev, are defined as the difference between the total currents on a

surface and the PO currents [10]. The step to split the equivalent currents into fringe equivalent

currents and PO equivalent currents was initiated by Knott [I11. He had compared the equivalent

currents with the method of Incremental Length Diffraction Coefficients (ILDC), derived by

Mitzner in 1974. Knott pointed out that the difference between MEC and ILDC was caused by

the fact that Michaeli used the total surface currents and Mitzner the non-uniform currents only,

so their results differ by terms due to the PO currents. Although Mitzner derived his theory in
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1974, his report was only available in limited distribution for a long time, so Micha0li and

Mitzner reached their results independently.
Because the equivalent currents are now known as fringe equivalent currents and PO equivalent
currents they are very suitable to use in a high-frequency Radar Cross Section (RCS) prediction
program. We can for instance always apply the PO integral to an object of which we want to
determine the RCS but only apply the method of equivalent currents to those edges that are
expected to give a significant contribution to the total scattering. This last step can decrease the
computational time considerably because a calculation using equivalent currents is far more
computation intensive than using PO. It also implies, however, that a priori knowledge is
necessary to decide whether an edge gives a significant contribution or not and such knowledge
is not always available.
In chapter 2 the method of equivalent currents is rederived following Michaeli [81, [9] and
casted in a form comparable to other techniques and with the same variables as used in other
reports. Chapter 3 will show some results obtained with the computer program in which the
MEC is implemented compared to measurement results.
The work described in this report has been done while the author was at the Defence Research
Establishment Ottawa (DREO) in the framework of the Canadian Defence Research Fellowship
Program, The author had his office at the David Florida Laboratory of the Canadian Space
Agency, where much of this kind of work is done for DREO, and was guided by Dr. S. Mishra.
The measurements that are used for the comparisons in chapter 3 are done at the DDARLING
facility at DFL by C. Larose.
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2 THE METHOD OF EQUIVALENT CURRENTS

As mentioned in the introduction this chapter contains a derivation of the equivalent currents,

following the way Michaeli did.

This is done by identifying the non-uniform currents, known from the PTD, with a magnetic and

electric current flowing at the edge under consideration. An expression can then be found for

these currents after which they will be used in the radiation integral in order to compute the

scattered field. This will only be the edge-diffracted field because the uniform part of the

induced total currents is omitted explicitly from these expressions. When one wants to compute

the total scattered field one has to add the contribution to this field by the uniform currents, for

instance by means of a PO computation.

2.1 The equivalent currents

In the following we use the co-ordinates and angles as shown in figure 2.1. The suffixes to the

angles are I and 2, instead of i and s, because they are related to one of the planes of the wedge.

The suffixes i and s ususally denote angles related to the co-ordinate axes. When the edge is

aligned with the z-axis these angles are equal, but generally they are not.

When the suffixes I and 2 are used in conjunction with any other parameter they denote the

facenumber that the parameter is related to.

Direction of incidence
Observation direction

Fig 2.1I: The general confliguration of tlie wedge used to determine the equivalent currents. The
angles shown in this picture are related to one of the planes that compose the wedge.
The faces are nmmbered I and 2.

When wc assume electric and magnetic currents flowing along an edge C we can determine the

scattered field caused by these currents from the radiation integral, see for instance [(131 or [ 14]:
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where the vector I denotes an equivalent current, as opposed to J, a physical current. In this

equation only integration along the edge is necessary because this is the only source for the

currents. This equation can also be expressed as:

Ed = ik f [I'k'~'i I~ k'ixt}V(Y' Yd (2)

where the unit vector t denotes the direction of the edge under consideration and le and Im are

now complex numbers instead of vectors. The equivalent currents are always directed along the
edge.

We also know that th-w sc~mtered field can be expressed in terms of the physical currents as:

E, = ik ' J J ,,k,x(k)xt ls(r', r)dS (3)
E S
n~l

for a pci,. condoctihg v,1zd,,e. Thz" :',ummatinn in eq (3) is taken over both faces of the

wedge.

Eq. (3) can be reduced, in the high frequency limit, asymptotically to a sum of ray field

contributions from isolated stationary phase points and a boundary contribution expressed by a

line integral along C. This latter integral should then be identified with eq (2).

We will assume that the edge diffraction is caused by surface currents on narrow strips, S1 and

S2, along C. Let ol and a-2 be the vectors from C. perpendicular to C in the direction of the

grazing diffracted ray on face I and 2 respectively, see figure 2.2.
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Direction of incidence

xS

//

Fig 2.2: The direction ol the gra.zng diiftracted ray is denoted by. a or (T the area where the
equivalent currentit- flow is denoted hy SI or S2- (Note that S7 actuallv is not visible). The

suffix (I or 2) to these paramzeters. indicate the corresponding plane of the wedge, see

fig 2.1.

We then write this integral in such a way that only the asymptotic endpoint contribution for the
a-integration is taken into account, i.e. the contribution at 0=0. so the edge. Gicen's function can
be approximated by this function evaluated at the edge multiplied by exp(ikoiks). This gives for
the edge diffracted part of the scattered field from eq (3):

Ed= 1k f fk,,, )ljc. "x)l i.c sin(O)dadl (4)

where the summation is taken over the two faces of the wedge.
By comparing eq (2) and (4) and some vector calculus we can find expressions for the
equivalent currents in terms of the integral of the current on the wedge. These currents are taken
to be the fringe currents, or non-uniform currents, only. The solution is then found by an
asymptotic end point evaluation of these integrals, by using the solution of the canonical wedge
problem and theorems from complex function theory. This evaluation is done in Appendix A.
The result of this is given in eq(5) and (6):



TNO-'r,

FEL-94-B195 Page

10

Im 2iZH,,
Nksin(0, )sin(O()

N sin((p,) U(it - (P,) N sin(Nn - q(,)U ((1 - N)7t + (p,)
- ++cos((0, )+ pt cos( N~r - (p,• ) + B2

....tc - U• tE - Ut•
sin(----) sin(--)- sin(Ni-(p.

N - aiN +N) + N
COS( •- "x ) Cos(- T, sn o s, ( TI -- 0 , ) + cos(!p , sin( (x,

N N N N

(5)

and

-E,_ sin(qp )t'Ut-( ) sin(NT-(p, )ULJ((1-N)nt+ p,)
ksin 2 (0 ) cos(q ) )+u cos(N t- (p,) + g,

sin((-' -' 1s1 jT+
N 7T i- (, cs (P, T i- (X

CS(•s( - )-c( Cos) cos ..--- )+-O-)+co )SN N N

2iHt,) cos( 0 (os gp, )U( it - ( ) cos(N t - (p, )U(( I- N))t + (p),

ksin(O, ) sin(O} ) CoSK P, ) +p-, cos(Nn- - (p )+ + +

N sil(oL,) p, cos((p) +N Cos( 7z --- cl,),( tan 0,) tai• )N -C _.Cos(

N N
7E - U,

N_ sintc,) C A 2 cos(NT -(p92-N TL U It-PL, ta , tan (0,
N cos(-- -----)+cos(-)[

N N
(6)

where p is given in eq (A. I i ) as:

sin(,) sin(, ) cos((P ) + cos(o ) cos(0 2 ) -cos 2() (7)

sin2 (O|)
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and ot=arccos(P). These equations look very complex and cumbersome to use, but they only
involve simple goniometric functions that cause no problems in a computer program. The arccos
that must be calculated can sometimes result in a complex number, however, so care must be
taken to use the correct expression for this, see Appendix C.

2.2 The diffracted field

With eq's (2). (5) and (6) we can compute the edge scattered field, or diffracted field, caused by

the fringe currents. The radiation integral is easily solved, because the only dependency of 1e
and Im on r' is through the incident field. This term can be kept under the integral, while the
other terms can be taken outside the integral. When writing the solution in terms of diffraction
coefficients [12] we get:

1, 2iE,, D k 2ill ,
I k-Zsin2(O, ) +k sin(O'

I n i 2 iZ 1. (),
k sIn(0 ) sin (0 )

with D., Dx and Dil as tbllowing from eq's (5) and (6). By using the radiation integral and

expressing the incident field as we did in the derivation of Physical Optics, we find:

ii D• + D-](k'x(k xt))+

4itR0  [ kZsin:(0) ksin(0)
(9)

2 iZ HI O , z D ( k x i )) } e - ' '- '' r* 'Idl '

k sin(00 ) sin(0.,)

The integral can be solved easily by using a parameter representation of the edge:

dl'= Aa ds, 0<s<l

F= ao +s Ai 
(10)

with a0 the start point of the edge and Aa the vector along the edge with length equal to the edge.

After evaluation we find:

I= Aa sinc k(k,-k) e 2  (11)

During the evaluation of eq (I1) we had to restrict ourselves to an observation direction away
from the Keller cone. This restriction is only mathematical, however, and the sinc function in eq

(I I) ensures the correct result for these directions of observation as well.
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Substitution of eq (11) in (9) and by omitting some terms which would cancel anyway when

calculating the RCS results in:

ik 2iE0 2iZH ,
Ed -• (i[ -°' D, + 1D. ](klx(kxt)) +

2It ksin O (0) ksin(01 )
2iZH,,• ,, kxt

ksin(O, )sin(0,)

A e-ik•,i -i, Ad,•

Aasinc[k(k, - k, ).--]e
2 (12)

2.3 Singularities in the dliffiraction coefficients

From eq (5), (6) and (8) the diffraction coefficients can be found easily. Also, some singularities
in these expressions can be pointed out. This is done in Appendix B where the way to

circumvent these singularities is described as well. One of the mentioned singularities will be
shown here as well, as an example.
From the expression for Dill we can find that this co,,iicient becomes singular when:

cos((P,) = -p.,

cos(Nnc - p), -p,

Cos( E cos( (P) (13)
N N

cos(-TE ) = - cos(.T!)

N N

When the observation direction is on the Keller cone [ I1, these singular directions coincide with

the shadow and reflection boundaries of face I and face 2 of the wedge respectively, see
Appendix B. When the observation direction is outside the Keller cone the singularities occur as
well, however, so it is not possible to change to different diffraction coefficients, which would

be the easiest solution.
The way to prevent these singularities is by evaluating Dm when glt approaches the value given
by eq (13) infinitely close. This evaluation is given in Appendix B for all singularities, given by

eq (13), as well as for all the singularities in De and Dx. The resulting expressions are used in

the developed computer program whenever the combination of incidence and observation

direction is chosen such that the coefficient would become singular.
After the removal of these singularities only one singularity will remain. This is called the

Ufimtsev singularity by Michaeli [8) and it only occurs when computing forward scattering.
This singularity will therefore only rarely pose problems when calculating RCS.
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3 COMPARISON OF COMPUTED AND MEASURED RESULTS

With the computer program that applies the MEC as derived in chapter 2 it is possible to
compute the diffracted field of general edges. These edges must be defined in a suitable way of

course, but there is no restriction on the external wedge angle of the edge. Any value between 0
and 2i1 can be used. The diffracted field can be computed as function of aspect angle, frequency

or bistatic angle. The edge is assumed to be perfectly conducting.
To show the capabilities of the method a set of objects is chosen for which measured data was

made available. The improvement by the MEC on the scattering computation by PO will be

made clear as will the shortcomings of a single diffraction theory in general.
The objects used for this analysis are:

* square plate

* square rod
* equilateral triangular plate

* pyramid

• circular cylinder

The size of the objects is such that they can be treated by high-frequency methods in the
frequency range that is used in the measurement facility at DFL.
The graphs shown in this chapter display RCS values as function of the incident angle, usually

the azimuth angle. The vertical axis displays the RCS in dB m2, the horizontal axis displays the
incident angle. The scale that is chosen to be consistent for each object under consideration so
the various results for any object can be compared easily. The pictures always contain 3 graphs,

PO results only, PO+MEC results and measured data respectively.

The co-ordinate system as used in the computations is shown in fig 3.1. When the orientation of
the objects is discussed in the next sections, the axes as shown in this figure will be referred to.

;Z

direction of incidence

Y

--x ----

Fig 3. 1: The co-ordinaie system as used for the compurations in this chapter. The angles 0 and
tp denote the spherical co-ordinates and are used as elevation angle and azimuth angle
respectively. In case of vertical polarisation, the electric field vector is directed as EV. in
case of horizontal polarisation as Eh.

In fig 3.1 the x-, y- and z-axis are given as a right-hand co-ordinate system. With horizontal
polarisation is meant that the electric field vector is perpendicular to the direction of incidence
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and the z-axis, Eh in fig 3.1. Vertical polarisation indicates that the electric field vector is
directed perpendicular to the direction of incidence and Eh, as shown by Ev in fig 3.1.

3.1 Square plate

The square plate used in this section has a sidelength of 17.78 cm (7") and measurements have
been performed using various frequencies, from 5 to 18 GHz and for both linear polarisations.
Results for 5 GHz and 10 GHz will be shown, also for both linear polarisations, displaying the
capability of the high-frequency methods to compute results over a wide frequency range. For
the lowest frequency used the plate only is about 3X by 3?., just within the high-frequency
region. The reason that no measured results are given at a higher frequency than 10 GHz is that
the plate is not completely in the far field anymore at those frequencies, which would distort the
comparison.
During measurements and computations the plate is located in the yz-plane with its vertical
edges in the direction of the z-axis.

RCS (dB m2)
20

10 ------- .. .. • . .... . ....... . ...... . ....... ......... -"M • , l

-30 -

= -10 ........ ... ..... .. .... . . . , . ...r . ..' " . ... .....

-20 ........ .... ..

0 10 20 30 40 50 60 70 s0 90
aiuth angle (deg)

Fig 3.2: Measured and computed results for a square plate. Frequency used is 5 GHz.
polarisation is V- V. The variable parameter in this case is the azinguth angle.
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RCS (dB m2)
20-

* . --.PO+MEC.

10 . . . . . .. . . ... . ... . . ... . . . .. I . . . . . . . . . ... . .. - M e ed

0-

-30-
0 10 20 30 40 so 60 70 80 90

azimuth angle (deg)

Fig 3.3.: Measured and computed resultsfor the square plate. Frequency usd is 5 GH:
polarisation is 11-H.

When comparing fig 3.2 and fig 3.3 it immediately becomes clear that the computed results for
P0 and MEC don't show any dependency onl polarisation. This phenomenon is known for PO for
all objects. The MEC only displays this kind of behaviour when applied to a flat plate, in all
other cases different results will be found for the two linear polarisations. The measured data
shows a broad and relatively high lobe at near grazing incident angles for horizontal

polarisation. This lobe is caused by a travelling wave, see I11, a high-frequency scattering

phenomenon that cannot be modelled accurately by any single diffraction theory.

RCS (dB m2)
20-

10 . . . . .. . . .. . . ... . ..

0-

-1 - -- .. ... . .. . . . I .. ... ... .. I' . . . .. . . .

... .. . .. . ---...

0 10 20 30 40 so 60 70 s0 90

azimuth angle (deg)

Fig 3.4: Measured and computed results for the square plate. Frequency used is 10 GHz.

polarisation is V-V.
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Fig 3.4 shows a comparison of a computation with PO and MEC with measured data at a

frequency of 10 GHz. The size of the plate, 6 , for this frequency, assures us to be well in the

high-frequency region. Therefore, the computed results compare better to the measured data than

they did in fig 3.2. The computational result of PO+MEC differs only a few dB from the

measured data at maximum.

RCS (dB m2)
20-

*--P0+MEC

10 . . ........ .

0-

• -1 0•: " .. . . .. . .. . . -- -- -- -- --. . .. ...

0 10 20 30 40 50 60 70 so 90

azimuth angle (deg)

Fig 3.5: Measured and computed ,esults for the square plate. Frequency used is 10 GHz.

polarisation is 1-H.

Fig 3.5 shows a similar deviation in the results of the computations, when compared to the

measured result, at low grazing angles as fig 3.3. Again this difference is caused by the

travelling wave. Despite this rather large defect the improvement of applying PO+MEC instead

of PO alone is obvious.

3.2 Square rod

In this paragraph the measured and computed results for a square rod are given. Comparisons

between results for 5 GHz and 15 GHz and for both linear polarisations will be given. Again,

like in the case of the square plate, all dimensions are chosen similar for all pictures so as to ease

the comparison. The size of the square rod is 7.1 cm by 7.1 cm by 17.78 cm (2.8" x 2.8" x 7").

Although it is not clear from the presented results it is noted that the measurements are
performed with the rod lying down whereas the computations are performed with the rod

standing upright. A difference that only results in the two linear polarisations being changed
from measurement to computation. The plots show the results as function of elevation angle

(note that this is related to the computations), so at 0' incident angle the top of the rod is

illuminated perpendicularly.
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RCS (dB m22)

40

-20 -- - - -

-30 .. . . . . . . . .. . ... . .. . . .. .

- PO+MEc

-- Measured
-50 - - - - -T

0 10 2D 30 40 so 60 70 s0 90

elevation angle (deg)

Fig. 3.6: Measured and computed resultsfor the square rod. Frequency used is 5 GHz,
polarisation is V-V

In figure 3.6 we can see that, although the top of the rod only measures IX. squared, the high-
frequency techniques predict the RCS at these incident angles remarkably well. At higher
incident angles some deviation is noticeable, up to 5 dB at a peak level, but Just as we saw
before, the MEC improves the PO prediction at those incident angles where P0 shows large
discrepancies.

RCS (dB m2)
10o-

0-1

- PO4MEC

-Measured I

0 0 20 30 40 so 60 70 s0o 9

elevation angle (deg)

Fig 3.7 Measured and computted results for the square rod. Frequency used is 5 GHz,
polarisation is H-H.
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In the case of horizontal polarisation, fig 3.7, the usual lobe structure, that is found in almost all
RCS plots of simple shapes, is absent in the measured data. The difference between the PO and
PO+MEC result shows that the MEC takes care of the removal of this lobe structure that is, of
course, present in the PO result. It can easily be understood that, especially in the low incident
angle region, MEC has a large influence on the total result, because a leading edge is illuminated
by an electromagnetic field with its electric filed vector directed along the edge. This shows in
fig 3.7 as well.

RCS (dB m2)
10-

0-

-10

-0 to , 0 • 0 40 so 60.. . . . . 7,. so .90

Fi .:.esre n c m ue r esls o th sq ar rod Frq ec usdi, 5G z

20,

-.0 ..

-40 PO .
PO+.MEC

-- Measured
-50-

0 10 20 30 40 so 60 70 80 90

elevation angle (deg)

Fig 3.8: Measured and computed resulhsfor the square rod. Frequency used is 15 GHz.
polarisation is V-V.

RCS (dB si2)

10

-30 . .. . . .. . ,

.,40 - r

-- PO+MEC
-' Measured

0 0 20 30 40 50 60 70 80 90

elevation angle (deg)

Fig 3.9:" Measured antd computed results for tihe square rod. Frequency used is IS GHz,

polarszation is H-H.
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Figures 3.8 and 3.9 are similar comparisons as 3.6 and 3.7. The frequency used now is 15 GHz,
so we can be sure the use of high-frequency methods is valid. This is clear as well from the
results. MEC improves on PO as it did before. The eye-catching difference in lobing structure
between fig 3.8 and 3.9 is again caused by the surface travelling wave, as explained in section
3.1. Note that the MEC, although it doesn't take into account this surface travelling wave,
predicts the RCS reasonably well.

3.3 Equilateral triangular plate

The equilateral triangular plate in this section has a side length of 17.78 cm (7") and is located in
the yz-plane during measurements and computations. Results are presented for 5 GHz and 15
GHz for both linear polarisations.

RCS (dB -2)
10--

0P
a- PO+MEC

Measurod

-10 ..... . ! ". ... . . i.... ... . .. . .. .. ! . . . .... .. . ...." . . . ...... .. . :..... ..

-20 . . . . . . . .. . . .

-30 -- - - - - --. .. . . . . . . .. . . . . .

-4 4 . .. . . . . . . . . . . .. - -, . . . \ . ... . .. .: '.. . . . .. :.. . . .. , . . . . . ... , . . . . . ..

-40 - " - ' ', 1

.50-

-60-

0 10 20 30 40 so 60 s0 80 90
aziimuth angle (deg)

Fig 3. /0: Measured and coinputed results for the equilateral triangular plate. Frequency used is 5
GHz. polarisation is V-V
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RCS (dB m2)

50

.3 - . . . .. . . . . . . .

0 10 20 30 40 s0 60 70 s0 90

azimuth angle (deg)

Fig 3. 11: Mleasured and( computed resultsf.Tr the equilateral triangular plate. Frequency used is 5
GHz. polarisation is Hl-1.

RCS (dB m2)

150

0 10 20 30 40 50 60 70 80 9

Fig 3.12: ~~~~~~~~~~~~~~~~~MeasuredadconptdrslsfrteeqlaeatraglrpaeFeueyuedi
-10 . 1 .. .. .... .. .... ... .. .. .. .. .. . .. .. .. ... ....V.
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RCS (dB m2)

-10

i : : • : : -PO

0 -- PO+WEC

-,o ' : '" '.................." ........ :.% ......

~ ~~i At" T lt: : '
,,60 -

0 10 20 30 40 so 60 70 so 90

azimuth angle (dog)

Fig 3.13: Measured and computed results fir the equilateral triangular plate. Frequency used is
15 G4z. polarisation is 1-1.

For the lowver as we)) as the higher frequency the MEC doesn't influence the total result as much
as it did in the results presented in tile sections above. A reason for this might be the fact that the
edges at which the field diffracts are slanted, as opposed to upright as they were before, which
decreases the magnitude of the diffracted field. The results for H-H polarisation, fig 3.11 and
3.13, emphasise the need for a method to conmpute the surface travelling wave.

3.4 Pyramid

The pyramid that is considered in this section has a base length of 10 cm and the angle between

the faces and the bottom is 40'. This makes the height approximately 4 cm. Because
measurement results are only available at 10 GHz, this means that the pyramid does not fulfil the
high-frequency requirements.
The bottom of the pyramid was placed in the xy-plane with of t0wan d the an bepositive

z-axis.
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RCS (dB m2)
-10-

--P0+MEC2

-20 - -- .. .. .. ..-- M e.. . . .

-30. . ....... .......... ...... -.

.5 . . .. . . . .. . . .... " - -".. .... . . . . € : . ., . ,. .. • , *

, , .- .. •

-60-

0 10 20 30 40 50 60 70 a80 90

azimuth angle (deg)

Fig 3.14: Measured and computed re ultsf jr the pyramid. FrequenOY used is 10 GHz.

polarisation is V- V

RCS (dB m2)

-20 --..+ME..

-20 .... ....... .. ....... ..... . -- M ... r..

360
.. . _ , ,. .! .2 . .. I

S. I I . " | I l

I tl I i I I

0 to 20 30 40 so 60 70 so 90

azimuth angel (deg)

Fig 3.15: Measured and computed results for the pyramid. Frequency used is /0 GHz
polarisation is H-H.

From the results presented in fig 3.14 and 3.15 it will be clear that the methods used in this
report are completely unable to predict the scattering from this pyramid. The reason for this is
not obvious, but there are a few possibilities. Because the peak levels at 0,. 450 and 90' are
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predicted quite well, it is not likely that one of the methods used fails for this object. It is more
probable, however, that different phenomena, like the surface travelling wave, for instance, play
an important role in the case of scattering by a pyramid. Another possibility might be the fact
that the size of the pyramid is not sufficient to allow high-frequency approximations to be used.
It cannot be stated with certainty what the reason for the discrepancy is, but in my personal
opinion the latter reason is the more obvious one.

3.5 Circular cylinder

The cylinder used has a length of 17.178 cm (7") and a radius of 7.1 cm (2.8"). It is located
along the z-axis with its centre at the origin of the co-ordinate axes. Like in the case of the
square rod, see section 3.2, the cylinder was located differently during the measurements, but

again this does not pose a noticeable difference.

RCS (dB m2)
0-

-10 ,. . . .

-40 . . . . . ..- ,- . . . . . . ... . . . . . ..... 'I I. . . . .. . . . .. . ... .7 . . . - - -

-so - - " o ............. . .. ..... . . ... ... . .. . .

-PO+MEC
-" Mcuared "

-60-

0 10 20 30 40 50 60 70 80 90

clevamdon wele (deg)

Fig 3.16: Measured and comiputed results for the circular cylinder. Frequency used is 5 GHz.
polarisation is V- V.
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RCS (dB mn2)
0-

-20 . . .. . . .. . . . . . . .. . . . . . . .

-30.. . .. . . . ..V. . .

-50 - O. . ... . .

-PO+MEC

--Meamued

0 10 20 30 40 so 60 70 so g0

elevation angle (deg)

Fig 3.17: Measured and (aamptlt(' results fir [lie circular c'vindc'r. Fre'quencY used is 5 Gil:.
po)larisation1 is l/-Il.

RCS (dB m2)
0-

-60

0 t0 20 30 40 so 60 70 so 90

elevation angle (deg)

Fig 3.1J8: Measured and compjnac~l resiih'sfor the~ circular cinhder. FrequencY uscd is 15 GHz.
polarisation is V- V.
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RCS (dB m2)
0~

-10

-2 -- --- .. I ..... , ...... .. i i"..... ........ .. ........ /
I.... ...

-PO.-MEC

0 10 20 30 40 so 60 70 80 90

elevation angle (deg)

Fig 3.19: Measured and computed results for the circular cylinder. Frequency used is 15 G!Iz,
polarisation is 11-1l.

The circular cylinder displays a simil ar behaviour as does the square rod. This is not surprising

because the dimensions are closely related. The MEC improves the PO prediction and even for

the lower frequency the total result agrees well with the measured data, although the results for

the square rod at the lower frequency are better. Also the more pronounced lobing structure for

the 15 GHz V-V results are predicted to a reasonable degree of accuracy.

3.6 Summary of the comparisons

It is not a trivial or simple conclusion that can be drawn from the large amount of comparisons

presented in this chapter. For the square plate, for vertical polarisation, the improvement of PO

by MEC is very good, whereas for horizontal polarisation it is rather poor. For other shapes the

difference between the two polarisations is not as pronounced and in general the results of

measurement and computation are in agreement to a comfortable level.

Bad extremities are displayed by the equilateral plate and the pyramid. Possible reasons for this

are given in sections 3.3 and 3.4.

The main concern at this moment is the fact that, for simple shaper, the surface travelling wave
can give an important contribution to the total scattering. It is strongly believed that an

implementation of this scattering phenomenon will improve most of the results given in this

chapter.

Finally a word on the choice of the objects used for the comparisons. This selection is made out

of a much larger set. The reason that these specific objects are chosen is that they display the
widest possible variety of shapes, like straight , slanted and sharp edges as well as flat and

curved surfaces. This way a fair and objective judgement of the method can be made, see section

4.1.
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4 CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The MEC was derived in the same rigorous way Michaeli did. The expressions found reflect the

non-uniform currents only and therefore the computed scattered field is only the diffracted field.

The advantage of this, over an expression reflecting the total currents, is the capability to

investigate the contribution of the diffracted field to the total scattered field.

The method is made almost completely uniform in that the last remaining singularities, at the

shadow and reflection boundaries, are removed as well. These singularities prevented the

method to be used at these aspect angles and were not treated in literature before. The only

remaining singularity is the so-called Ufimtsev singularity, occurring when one wants to

compute the diffracted field in the direction of the grazing diffracted ray and the incident field

comes from outside the wedge. This situation only occurs in forward scattering.

From the results shown in chapter 3 it can be concluded that the method is capable of computing

the diffracted field by any edge for all directions of incidence and observation, excluding the one

mentioned above, and that such a computation can provide a valuable supplement to for instance

PO. The method seems to provide better results for fields incident perpendicularly to an edge

than otherwise, which is something that needs more research.

Furthermore it is shown that the combination of PO and MEC, although physically only valid in

the high-frequency region, provide valid results for simple objects as small as only a few

wavelengths. The polarisation dependent scattering is not modelled very well by the MEC,

although better than by PO alone, which completely ignores this dependency. A method to

improve on this is mentioned in section 4.2.

4.2 Recommendations

Because of the problems that the MEC encounters at grazing incidence for parallel polarisation

it is strongly recommended that the method will be adjusted or extended in order to overcome

these failures. This can be done by adding the capability to compute multiple diffraction which

accounts for the interaction of the diffracted field with another edge. In general this is not

possible by applying the MEC again at the other edge, because the diffracted fields do not

always display a ray-optical behaviour at the other edge which is a necessary requirement for the

application of the MEC. Other diffraction theories have the same problems and in the case of the

UTD this was overcome by a spectral analysis of the diffracted field. Although this hasn't been

done with the MEC yet, it seems feasible to perform such a spectral analysis with the MEC as

well.

This interaction of the diffracted fields with other edges is a simulation of the surface travelling

wave, the high-frequency phenomenon that causes the discrepancies of any diffraction theory at

low Rrazing angles.

WhLn such an improvement is implemented the combination of PO and MEC can be expected to

be able to give accurate results for all kinds of objects in a large frequency region. Especially the

RCS prediction of not to complex, low-RCS objects will benefit from this.
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APPENDIX A: DERIVATION OF THE EQUIVALENT CURRENTS

By comparing eq (2) and (4) in the main text we see that:

x (k, xik~)) - (ixk W f [(k~x(kxj))Wve k(d6nký)dxn[ J.1(A.I)

By taking the scalar product of eq (A. 1) with ksx(ksxt) or (ksxt) we arrive at an expression for Ie
or Im respectively:

= k2 , .[(ixk" )x"Ji(o sin(e,),ocos(O,))e k6 do]

(A.2)

I - ----- 2. [k xJ J(c sin(0, ), cos(0, ))e'k"a k)d ]( .sin -(0 )

So the evaluation of 1e and In can now be completed by an asymptotic end-point evaluation of
the current integral in eq's (A.2) for a canonical wedge problem. When we use the following
property of the 3-dimensional solution of the canonical wedge problem, see James [13]:

J(x, z) = j(x,0)e-1k°c0s(0 , (A.3)

and evaluate the vector products in eq (A.2) we arrive at:

% f z cos(O,)cos(tp,_ ) Jx k (d,_ s.o (O, ) d._.
sin(0,) (A.4)

In, = -Zsin( 2 ) J e ik(d i--osl,,)) sin(0,)do
sin(0 2 )

The currents, J, in these expressions are supposed to be the fringe currents, or non-uniform
currents, only and not the total surface currents and are evaluated at (asin(o1j), 0).
We can, in the usual way, express the currents as the cross product of the surface normal, (0, 1,
0), and the magnetic field at the surface. Then, with Maxwell's equations and the expressions for
the incident fields at the surface:
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Vx= -io[• (A.5)

and

Ei= EOe ik~ r. = toled9 
(A.6)O

FH i= = -ik(k jj) = -ik(x.sinio0)cosIQ )+zcos(0t))

we can easily find an expression for H, as function of Ez and Hz, which is needed in the
expression for the current. This equation is:

H, iksin_(0)L- -- + cos(0 ,- (A.7)
iksn ( 1) IDy ax

From James we now use the canonical wedge solution to relate Ez and Hz to Eiz and Hiz as:

Ez = Eoj, [u(X, W- P, ) - u(X,W + )] (A.8)

H = Ho,,[u(X, V - (p, ) + u(X,LI + )]A

with

X = kc sin 2-(0)

sin( )ex o'f

u(X,O) N -~N~ Nd
cos(-) N cos( )N

and 0 the polar angle of the field point in the xy plane, so for our purposes 0=0.
By substituting eq (A.7), (A.8) and the expression of the surface current in terms of the magnetic
field in (A.4) we get the expressions for the electric and magnetic equivalent currents. This will

be done first for the magnetic current.
From the definition of u following eq (A.8) we see that u(X,-4)=u(X,O) because 0 is only present
in the cos term. Also, with the definition of X, we can change to X as the variable of integration.

This yields:

I= -Z sin(q2)1 H.,f [u(X,-op ) + u(X,•( )]sin(e, )eiko(ok'-cOs 2(°eda (A.9)
sin(0 2 )
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In -2ZHo-,, sin(q)2 ) j uLI(X, )eiPx (A.10)
k sin(0,) sin(02 )

with p following from the comparison of eq (A.9) and (A.10) as:

ka(& - - cos2 (0, ))
ko sin 2 (0,))

sin(0,) sin(0,) cos(p,)+cos(0)cos(0,)-cos-(0,)

sin 2 (o0)

The derivation of Ie is a little more complex, but we can make use of the expression for Im from
eq (A. 10).
In terms of the surface currents we have:

le = fJze'ko(i i-co°(O ) sin(O, )do

cos(02, cos(p) e _ sin(0,)dcP (A.12)

sin(0 2 )

The second term, including the minus sign, is equal to cos((p2 )/(Ztan(0 2 )) In, with Im as given
in eq (A.10). We therefore only have to elaborate the first term in eq (A.12). We know that Jz
can be expressed in terms of Hx and with eq (A.7) and (A.8) in terms of Eiz and Hiz. We then
find for the z-component of the surface current:

& u(X,-q|,) au(X,(P,

+ cos(0 ,I ) H o,[ , I(X,-(P ) +]
ax ax

Because X=kosin 2 (81) and x=osin(81) we can replace dx by dX/(ksin(0 1) and also, from
geometrical point of view:

au I au
3y7 pdp,)

ksin(e,) au
X dp,
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From the definition of u, following eq (A.8) we can deduct:

All this substituted in eq (A. 13) gives:

'E ksin(e1 ) Du(X,ý,)
J= iksin 2(0, Ftý1 X a(P t (A. 14)

+2H0,,k sin(0 )cos(O ) Du(XP)DX

So we have for the first term of eq (A. 12):

2i E-D-Ei ii - u x.d

- 1' dX + 2iH cos(0)D-eu dX (A.15)
ksin (0,) X tp, ksin ( a) x

with p as defined in eq (A. I1).

The second term of eq (A.12) follows easily from eq (A.10). see text following eq (A.12) and
reads:

cos(0,) 2Ho,. sin(q)2) f u(X,Tr)e'X'dX

Ztan((p2) ksin(O, sin j(O (A.)16)

2H0 iz cos@P2 )cos(0 2 ) J u (X, p , )eIxl dX
k sin(8 ) sin(1i,)

We now have found the expressions for the electric and magnetic equivalent currents in eq
(A. 15)+(A. 16) and (A. 10) respectively.
The integrals in these equations will be evaluated by using the method of stationary phase,
resulting in their asymptotic end-point value at the edge [8]. The function u is defined as a
contour integral in the complex plane, see figure A. I for the contour.
From eq (A.10), (A.15), (A.16) and the definition of u following eq (A8) we see that we must
compute three different contour integrals. We will do this starting with the one that is given in
eq (A.10). When we substitute the definition of u in this equation and omit the term in front of
the integral for now, we have:

L... ....



TNO-report

FEL-94-BI95 Page
Appendix A A.5

U JJ N iNd (A. 17)
cos( -- ) - Cos(-

N N

______________Re~

I'I '

S. . . . .. ...........

7r1 71"

Fig A.I. The contour of integrafion for the canonical wedge problem, denoted by the dashed line,
when only the fringe currents are involved.

The contour shown in figure A.] is the same as the distorted contour that Michaeli used in his
derivation of the total equivalent currents. The exponential term converges on the contour when
X approaches infinity for every ý, therefore we may reverse the order of integration, see [8].
We integrate eq (A.17) to X, using only the value at the edge, and arrive at:

1 _i sin(_ -)

, INN N +IA.8

When the contour is now closed at infinity, this integral can be computed with the residue
theorem.
The poles of the function are located at the positive x-axis and are given by:

cos(L) = cos( 9) (A.19)
N N
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and

cos(ý,) =-

= rt - arccos(p) (A.20)

= 7T- (X

The residues in the poles given by eq (A.19) can be calculated with:

isin(N)
Res = irn(ý-ý )- N (A.21)

-2sin(,2 sin( p ) sin(5_- °,
2N 2N

which follows from elementary goniometric relations and the solution of eq (A. 19). The residue
at the pole given by eq (A.20) is:

isin(-)
Res= lim(•- ) N•,• • . 1- •1 ))

"fcos(-) -cos( -- )](-2sin( I+ )sin( I

(A.22)

-isin( T )

- N

[cos( - ( ) cos(-)] sin(ca)
N N

According to the residue theorem the integral evaluates as 2iTi times the sum of the residues
when the direction of the contour is counter clockwise around the poles, which is the case here.

So the final result for this integral (eq (A. IS) can now be written as:

'7t - (
1 N sin(-A-).1

u = ( - N (A.23)
N cos(q 1,)+g cos(T_ )_cos(.-.)sin(x)

N N

The remaining two integrals are computed in the same manner.
The differentiation of U to X in eq (A. 15) can be performed without difficulty and results in an
equation that resembles eq (A.17) very much. This equation can be treated exactly as is done

above and results in:
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f -'- Jix•e.dX

1sin( (A.24)

I cos((X) N

N sin(c) Cos( E )- X Cos( ýD)
N N

The integral with the differentiation of u to (p can be solved if the term with this differentiation is
first integrated by parts [81, which results in:

Sau _ N sin(N)e'xco'( dý (A.25)X acp, 276iN fr COS" - Cos/ 91
Co(N N

With this substitution we call find:

u = 1Z auJ eAdXaX &P,

sin(-) (A.26)
N

Cos(-)-Cs
N N

The expressions for the integrals are now known, so they can be used in the expressions for the
equivalent electric and magnetic currents. So we substitute eq (A.24) in (A.10) and (A.24),
(A.25) and (A.26) in (A. 15) and (A. 16) and sum the last two, resulting in:

2iZHo, sin((P,) NU(T-(p,) sin( 1

Nksin(e,)sin(0 2 ) COS(•P)+.t• cs(- )-cs(-) sin(x,) (A27)

N N

and
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2iEoiz N sin((pl )U(Ttp,)_ sin(•-) 1
NkZsin-2 (0,) cos((p,) + Pt, cos(.FE)a _ Cos(

NN

2iHl,, cos(01 ) cos((P,)U(r -(p,) sin(-O-N-)

Nk sin 2(0,) cos((p ) + [L' cos( - ) - cos(•-) sin(o)

It

+ 2iH 1 cos(qp) NU(rL - +) sin( -N

Nk-sin(0,)tan(0,) cos((p,)+ýt, cos(f_•)_cos((P_) sin(u,)F N
(A.28)

Eq (A.27) and (A.28) give the equivalent currents flowing on face I of the edge. The currents on
face 2 can be found by performing the following substitutions in these equations:

(p, = Nn-

0, = ,1 - 0, (A.29)

z =-Z

We can then determine the equivalent currents on the second face of the wedge and subtract this
from the value of the first face in order to find the complete expressions for the equivalent
currents. These expressions are given in the main text, in eq's .(5) and (6).
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APPENDIX B: REMOVING SINGULARITIES FROM THE EQUIVALENT

CURRENTS

In this chapter we will show how the diffraction coefficients, derived in the main text, can be

made uniform. The way they are given now still contains non-uniformities that become apparent

at, for instance, the optical boundaries. Although this can be circumvented quite easily in a

computer program, it is far more appealing to have expressions that can be used for every angle

of incidence and observation.

This is done in this chapter by determining the limiting value of every expression that becomes

singular. In the computer program, where these coefficients are used, one must switch between

the original expression and the limiting one when an optical boundary is approached. Because

the original expressions only become singular at the optical boundary itself, the mentioned

switch can be made as close as 0.01 or 0.001 degree from the boundary, depending on the

numerical accuracy of the computer used.

First the expressions for the diffraction coefficients are given again and the singularities are

pointed out. Further we look more specifically at the terms that actually become singular. In the

main text we can find Din, De and Dx and slightly rewritten they read:

sin((p2_) U(ir- (P) sin(N - (P,) U((M- N)Tr + pq,
cos(P ) + [t, cos(Nn - p ) + ý.,

sin( cT - t)

+ N Sin()P2

N[cos( T ) -cos(- ()]" sin(cQ
N N

sin( -C -sU2
Nt sin(Nor-p,)

N(cos( - )+cos(L'-)] sin(,

N N

(B.1)

De sin(pI)U(n -p,) sin(NME- p)U((1-N)7E+ )p)
cos((, ) + gu, cos(Nic - p, )+4t 2

sin(__ _) sin(ý-) (B.2)

N[cos( )E-a,-Cos(-i9) N~cos( 7 X2)+cs!')
N N N N



TNO-report

FEL-94-B195 Page

Appendix B B.2

+ -cos((,)U(pT- l t1 ) cos(N•T-(p,)U((I-N)7r+(p,
tan(, ) cosin(, ) + pt) cos(N1c- q), )+ 12

+ I -cos(() U(T- p, ) cos(NCt-92))U((I- N )L+ ,

tan(0 i cos((p, ) + 1t cos(NTr- p,) + 12
sin(ct

2)- °O IN A•, cos(92

N C S [- t- ct] Co ( ' s' ( tan (0,) tan (0,.

+ Ncs ,--• 2 coos() sinc 92

tar0 , n0O,+N[cos(-[(2) + Cos( )'N sin((:/.,)

(B.3)

Starting with the expression for Dill we can see that this coefficient is singular when:

cos(N ) - - p,

Cos(N• -r U , COS .](.4

COS(-• =1( COS(-•- (B4)

cos(N -) = - cos(•-)

N N

From these equations we can find the values of o:I and aX2 for the singular directions:

PI = -+ , (1(B .5)

x, =T -NT+ (p, v +NT-tp,

The values of (xi in the first line cause the terms for face I to be singular and the values of 02 in
the second line cause the terms for face 2 to be singular.
When the observation direction is on the Keller cone of directions and we express 92 in terms of

a 1 or aC2 , we see that these singular directions coincide with the reflection and shadow boundary
of face I and face 2 respectively. In general, however, these singularities exist outside the Keller
cone as well, so we don't make any a priori statement about (p2.
The components of Dm that become singular for a I = ±__. I are taken together and we then try
to determine the value of this combination when otI approaches one of these values infinitely
close. These terms are:
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2 sill( (v.N 
sin(p,)tz = +(B.6)

Nsin(a, )[cos(--- -)-cos(NýL)] A cos LP)+cos(cX)
N N

When we substitute o1 = 7T-(pl+8 in equation (B.6) and take the limit for 6 approaching 0 we
arrive at:

sin( - )sin( P , )t: )tK .)co N ' + p cos()-o s(6

Nsin(9o-6)! Cos(g--8)-cos(-)
( N N

When the sum of the two cosines in the denominator is expanded we get terms that contain 6/2.
For later use we therefore introduce these same terms in the numerator as well in the following
way:

2 6/2
"si N N ) sin((P, - 22- 6/2)

5 N 8/2 L/2 2 sin((p, - 8/2)sin(8/2)

N -N
(B. 8)

We now expand the terms in the numerator and divide equals terms out so that we reach:

siny, Cos( -)2 Cos( 8/) O(P,-62
t I= ur 1 n(p, N Nco(p-/)

S-0" sin-(p• • 2Nsin(ý-) 2Nsin(I' -8/2) 2sin(p, -8/2)

(B.9)

In the limit we can simply set 8 equal to 0 in almost all terms, except in those where the term
would become infinite by doing so. This happens in the two terms with sin(B/x) in the
denominator. For 5 very small, however, we can replace sin by its argument and cos by i. When
we do this we see that the singular terms cancel exactly and we get for the limit:
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sin(p.,) 2 1N tI1t' + 2,an(Up{

K N

When a,1 =t+(pl+8 is substituted in eq (B.6) and we follow the same derivation we arrive at

exactly the same expression for the combination of the singular terms.
This expression should therefore be used instead of the original one when 0.1 is near one of the

above mentioned values.
When (o- is near one of the values given in eq (B.5) we must determine the limit for two

different terms and for c02 = i+Nrn-(pl+5 or (x2 = 7t-Nt+(p!+6, with 5 approaching 0 in both

cases. The singular terms are in this case:

i1 r o- U2
"sin( ) sin( Nn - p.

N I + sin(Nn - T 2 )

N sin( ,, )[cos( ----- ) + cos( ý±')1 cos( Nn] - p + cos(a,

-N N
(B. 11)

By Substituting one of the values of cv2, taking the limit for 8 approaching 0, introducing terms
with 6/2 in the numerator as before and evaluating the resulting expression we arrive at:

sin(Nrt- p2 ) + (B. 12)
t-sin( N7Z- ,)[2)N tan~q'( 2 a(Nv p

N

This expression is valid for both values of W-2 that cause these terms to become infinite.

By now we have expressions for all singular terms of Dm, so it is now possible to compute the

correct value of this coefficient for every angle of incidence and observation. Following the

same procedure for De we find for the singular terms of face I:

sin(•- (inPI )

tN =sin( (B.13)
N [cos( 1E - ( _cos(!b.-)] cos(o,)+ cos(ot,

N N

and when the limit is computed this results in:
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1 1
C'+ 2 t (B.14)

2N tan(- ) 2Ntant)

For face 2 the singular terms are:

si() sin(Nit - qo•)sin(

t7  -1 i- ., (P cos(Nn- p)+cos(a,) (B.15)
N[cos( -- ) + cos(-)j

N N

and their limits are:

1 1

+ (B.16)

2N tan(.-) 2 tan(Nnt- p,)
N

As possible singular terms in Dx we have for face 1:

sill( E-( I)
s9 N cos(ou,) cos(q,)

Nsin(atX)Lcos(T i) -Cos
S(g.17)

__________ Fco[ p cos(p.,) 1
+ coj ((P, + -t "

cos(p)+cos(u. ) tan(0,) tan(O)

These terms can be treated similar as Drn and De above with only one small difference. In this

case we arrive at:
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t'__=__im_1 cos( ý ) 2 Cos( 
) .2

.9 = slim N N cOS((PI 8) +cOS((P)-

8-0Osin ((P, 2Nsin(ý/-) 2Nsin(P' -8/2) tan(0,) tan)(0,

LN N

Ccos(8/2 cos(P ,- 8/2) V cos( 1  COS(T 2 )
2sin(8/2) 2sin(p, -- 8/2) , tan(0,) tan(,-- )

('3.18)

Now those terms with sin(5/x) in the denominator do not cancel out as before. The reason for
this is that they are not multiplied by tile same factor although in the limit, when 8 goes to zero,
these factors are equal. When cos((pl-6) is expanded and the goniometric functions are replaced
by their small argument values %vnere appropriate we finally get for this limit:

~ sin(pp, ) + InI cos(P, ) cos(P 2  (B.19)t sinl(q),)tan(0,) 2 tan((p,) 2N tan(-' tan-- , an()

LN i
Again, as we saw before with Dll and D., this limit is vilid for both singularities.
The ýing,lar terms for face 2 are:

sin( - ) osx)co Ni-)1
N ____________n- (p

F t- cc, I tan(0,) tan (0,)N sin(cu, )cos( + cos( N

_____________ cos•(Nit -p, ) cos(Nit-p 2 )1
I + c (B.20)

cos(Nt - (p, ) + cos(•, ) I tan(0,) tan(0,) J

and following the same way as above, we find for the limit of these terms approaching one of the
optical boundaries:
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I sin(Nrt - (p) + 1cos(N -(p, + cos(NT-p)
sin(Nit - (p,) tan(, 2) ¶Nta()2tan (Nit -p1  tan (01) tan (0,

(B1.21)

which is valid at both singular directions.

We have determined the values of all pertinent singular terms in the coefficients Dm, De and

Dx. These expressions, together with the original ones, can be used to compute the diffraction
coefficients for all angles of incidence and observation, with the exception of the Ufimtsev

singularity. Whenever the observation direction is chosen such that one of the diffraction

coefficients becomes singular one has to use the appropriate limit. A reasonable estimate is to

change from one expression to the other at 0. 1 degree from the singular direction.
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APPENDIX C: COMPUTING THE INVERSE COSINE FOR ALL
ARGUMENTS

When computing the inverse of the cosine in the programs that apply the MEC it is possible that
the result is a complex number. Not every computer can handle this in a correct manner, so in
oider to prevent problems we will use an unambiguous expression for this function. Such an
expression can easily be derived, as will be shown in this chapter. We start with:

cc = arccos(4)

= cos(cX) (C.l)

=2[e +e'•]

In the usual way we can express sin(o) as a sun of exponential functions and combination with
the last line of eq (C. I) results in:

ICEo -i l+(C.2)

As long as ýt lies between -1 and I the square root in eq (C.2) can be evaluated in a
straightforward manner. When the value of Lt goes beyond these ...... however, one has to be
careful. In accordance with Michaeli (8, we make the following choice for (x in those cases:

a*=- lnlbt +V --1-1},(l < It

0• =-i n {a - q/• l- }, - /< !• )(C.3)

Eq (C.2) will be used in the other cases.
With this choice of sign we are assured that for any gt:

sin(x) = l-l Wt (C.4)
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