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Abstract

Types have been used to describe the size and shape of data structures at compile time. In polymor-
phic languages or languages with abstract types, this is not possible since the types of some objects
are not known at compile time. Consequently, most implementations of polymorphic languages box
data (i.e., represent an object as a pointer), leading to inefficiencies. We introduce a new compi-
lation method for polymorphic languages that avoids the problems associated with boxing data.
The fundamental idea is to relax the requirement that code selection for primitive, polymorphic
operations, such as pairing and projection, must be performed at compile time. Instead, we allow
such operations to defer code selection until link- or even run-time when the types of the values
are known.

We formalize our approach as a translation into an explicitly-typed, predicative polymorphic A-
calculus with intensional polymorphism. By "intensional polymorphism", we mean that construc-
tors and terms can be constructed via structural recursion on types. The form of intensional
analysis that we provide is sufficiently strong to perform non-trivial type-based code selection, but
it is sufficiently weak that termination of operations that analyze types is assured. This means
that a compiler may always "open code" intensionally polymorphic operations as soon as the type
argument is known - the properties of the target language ensure that the specialization will al-
ways terminate. We illustrate the use of intensional polymorphism by considering a "flattening"
translation for tuples and a "marshalling" operation for distributed computing. We briefly consider
other applications including type classes, Dynamic types, and "views".
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1 Introduction

Types may be thought of as descriptions of data. Compilers for monomorphic languages have
considerable leeway in choosing data representations, using types at compile time to guide code
selection. For example, a Pascal or C compiler typically uses a "flattened" representation of struc-
tures (records) in which consecutive fields are physically adjacent, and in which nested structures
are layed out "in line". Access to these structures is determined by the type which determines
the size and location of the components of the structure. This allows the programmer to gain
considerable control over the representation of data structures, facilitating interaction with ambi-
ent hardware and software systems. It is also easy to support a type-safe form of cast whereby a
compound data structure may be viewed as a value of a number of different types, provided that
all such types describe the same sequence of atomic values.

Extending this flexibility to languages like Modula-3 or Standard ML (SML) is rather more
difficult because the type of a value is not always statically apparent. For example, in Modula-3 it is
possible to manipulate values of an abstract type that is defined in a separate compilation unit. The
compiler cannot determine the representation of the value because the implementation type of the
abstraction is unavailable (at least until link time). Similarly, in Standard ML unknown types arise
not only because of separate compilation, but also because of the module system polymorphism.
For example, when compiling the body of a functor whose parameter declares a type and operations
on that type, it is unknown (and fundamentally unknowable!) what is the representation of that
type. Similar problems arise with ML-style polymorphism - the type of a variable may be only
partially constrained, leaving the exact shape of its value underdetermined.

As a result current compiler technology for polymorphic languages precludes affording the pro-
grammer the same degree of control over data representation that is routinely provided in monomor-
phic languages. Modula-3 imposes the restriction that values of unknown types must be pointers
in order to ensure that the representation of values of unknown type is uniform across instances.
Most implementations of ML impose a similar restriction, requiring that values of unknown type be
"boxed" (stored on the heap and represented by a pointer). Early implementations used a LISP-like
representation in which all values are boxed [5]; later implementations [31, 32, 30, 24, 43] seek to
minimize boxing by taking advantage of whatever type information is manifest in the program.
Despite these recent improvements, current implementations still resort to pointer representations
for unknown types. Furthermore, current implementations make use of tag bits on values to assist
garbage collection [5] and to define polymorphic equality [5, 6, 18]. Thus representations are further
compromised by making it impossible to have 32-bit integers or tag-free tuples with contiguous
layout of components.

In this paper we introduce a new compilation method for polymorphic languages that avoids
the difficulties introduced by boxing and tagging techniques. The fundamental idea is to relax the
requirement that code selection must be performed at compile time. In a monomorphic language
code generation for primitive operations such as pairing or projection is determined by the type. For
example, different code is generated for the second projection at type float * float than for int * int
since float's typically take more space than int's. In a polymorphic language it is necessary to
compile functions such as Ax.Ay.(x, y), in which the types of x and y are unknown. Which pairing
operation should be used? Using boxing the compiler ensures that x and y are represented by
pointers, for which pairing can be compiled uniformly. We propose instead to defer code selection
to link- or even run-time when the types of x and y are known. This requires a type-passing
interpretation of polymorphism (as suggested by Harper and Mitchell [21]), together with suitable
operations for performing code selection based on type parameters.

Our approach is formalized as a translation into an explicitly-typed, predicative polymorphic



A-calculus with intensionalor structural (18] polymorphism. By "predicative" we mean that mono-
types and polytypes are separated, with quantifiers ranging only over monotypes. By "intensional
polymorphism" we mean that type parameters are not necessarily treated uniformly, as in the
parametric case [45], but rather can significantly affect the course of computation. Following Con-
stable [13, 14] we consider primitive operations for performing intensional type analysis [13, 14] in
the form of structural recursion on types at both the term and the type level. Intensional type
analysis is required at the type, as well as the term, level in order to track the type of intensionally
polymorphic operations. This feature distinguishes our approach from other approaches based on
typecase [49, 28].

The form of intensional analysis that we provide is sufficiently strong to perform non-trivial
type-based code selection, but it is sufficiently weak that termination of operations that analyze
types is assured. This means that the compiler may always "open code" intensionally polymorphic
operations as soon as the type argument is known - the properties of the target language ensure
that the specialization will always terminate. We illustrate the use of intensional polymorphism
by considering a "flattening" translation for tuples and a "marshalling" operation for distributed
computing (based on Ohori and Kato [42]).

This paper is organized as follows. In Section 2 we describe our approach to compilation as
a type-based translation from the source language, Mini-ML, to the target language, Aý-vL. The
basic properties of AML are stated, and a few illustrative examples are given. In Section 3 we
give a translation from Mini-ML to AiL in which nested binary products are represented as right-
associated binary products. In Section 4, we consider the controlled re-introduction of boxing into
our framework. In Section 5 we cast Ohori and Kato's distributed ML compilation in our setting,
using intensional polymorphism to determine external representations of types. In Section 6 we
briefly consider other applications including type classes, dynamic types and "views". In Section 7
we discuss related work, and in section 8 we summarize and suggest directions for future research.

2 Type-Directed Compilation

In order to take full advantage of type information during compilation we consider translations of
typing derivations from the implicitly-typed ML core language to an explicitly-typed intermediate
language, following the interpretation of polymorphism suggested by Harper and Mitchell [21]. The
source language is based on Mini-ML [12], which captures many of the essential features of the ML
core language. The target language, AfML, is an extension of AML, also known as XML [22], a
predicative variant of Girard's F, [15, 16], enriched with primitives for intensional type analysis.
A compiler is specified by a relation A; P t> e, : r =,. et that carries the meaning that A; F c> e, r

is a derivable typing in Mini-ML and that the translation of the source term e, determined by
that typing derivation is the AiML expression et. Since the translation depends upon the typing
derivation and in general there are many typing derivations of an expression, it is possible to
have many different translations of a given expression. However, all of the translation schemes we
consider are coherent in the sense that any two typing derivations produce observationally equivalent
translations [8, 29, 21].1 Our translations will have the property that IAI; 1IFI - et : Ir- is derivable
in A•ML for a suitable translation of contexts and types into AML. This allows us to track the typing
properties of the translation, and admits consideration of multi-stage type-directed compilation.
The exact definitions of the term and type translations will vary from case to case, but the general
flavor is to make type abstraction and type instantiation explicit, and to exploit this type-passing
interpretation through the use of intensional type analysis in both types and terms.

1We omit explicit consideration of the coherence of our translations here.
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2.1 Source Language: Mini-ML

The source language for our translations is a variant of Mini-ML [12]. The syntax of Mini-ML is
defined by the following grammar:

(monotypes) r ::= t lint I r, -+ r2 I r x r 2

(polytypes) a ::- r [Vt.o

(terms) e ::= x ii (ee 2 ) I rie I 7 2 e
Ax. e e1 e2 I let x = vine

(values) v :: X l fl(vI,v 2) l Ax.e

Monotypes (r) are either type variables (t), int, arrow types, or binary product types. Polytypes (a)
(also known as type schemes) are prenex quantified types. We write VtI, t2 , .. , t,,.r to represent
the polytype Vtl.Vt 2. .-. .. Vt,,.r. The terms of Mini-ML (e) consist of identifiers, numerals (h), pairs,
first and second projections, abstractions, applications, and let-expressions. Values (v) are a subset
of the terms and include identifiers, integer values, pairs of values, and abstractions.

We write [r/t]r' to denote the substitution of the type r for the type variable t in the type
expression r'. We use A W± A' to denote the union of two disjoint sets of type variables, A and A'.
Similarly, we use r w• {x : a} to denote the type assignment that extends F so that x is assigned
the polytype a, assuming x does not occur in the domain of F.

The static semantics for Mini-ML is given in Figure 1 as a series of inference rules. The rules
allow us to derive a judgement of the form A; r c> e : r where A is a set of free type variables and
F is a type assignment mapping identifiers to polytypes.

The two most interesting rules are the var and let rules. The var rule allows us to conclude
that the variable x has type r' under r and A if F assigns to x the polytype Vtl,..., tn.7 and T'

is obtained from r by subtstituting "well-formed" types for tl,..., t,,. These types are well-formed
if their free type variables are bound in some outer scope. The scope of type variables is tracked
explicitly using A, so the type is well-formed if its free type variables are contained in A. The let
rule allows us to assign a polytype (VtI, . . ., t,.r) to the variable x within the expression e provided
the following conditions hold: First, the expression bound to the variable x must type-check with
type r under the context that extends the type variables in A with tI, . .. , t,,. Second, the variable
x must be bound to a value, v, instead of an arbitrary expression. This "value restriction" on
polymorphism [20, 33, 52] is needed for our translation. Wright has determined empirically that
the value restriction does not affect the vast majority of ML programs [52].

2.2 Target Language: A,!L

The target language of our translations, A\YL, is based on \ML [21], a predicative variant of Girard's
F, [15, 16, 44]. The essential departure from the impredicative systems of Girard and Reynolds is
that the quantifier Vt.a ranges only over "small" types, or "monotypes", which do not include the

quantified types. This calculus is sufficient for the interpretation of ML-style polymorphism (see
Harper and Mitchell [21] for further discussion of this point.) The language AML extends AML with

intensional (or structural [18]) polymorphism, that allows non-parametric functions to be defined
by intensional analysis of types.

The four syntactic classes for AYiL, kinds (k), constructors (ys), types (a), and terms (e), are

3



(var) FTV([ri,..., r, 1/ti, ... , t,]r) C aA; k r { fx : Vt1,..., t,•.r} c x : [rl, . .... r,/tl, .. .,t ]r

(pair) ;rel r A; e2 :r2 A;Fr, e : r, x r.
A;r>(el,e2):r, x r2 A;I rc ir e :ri

A;Ftr x{:r 1 }I>e:r 2  (app) ;re : r' -- r A;Fr >e 2 "r'
(abs) ;r Az. e : r -+ r? A; r el e2 : r

A• {t .. ,}r• v : r'

(e ) A ; F { + X : VtJ, .. . t,t. .T'} > e : r
A;rcrletx= vine :r

Figure 1: Mini-ML Typing Rules

given below:

(kinds) X ::= I -+ K 2

(con's) L ::= t l Int I -+(ILI, tt2) I x(Pl,u 2) I At::. I III[A2]
Typerec(/A;/ui;Ax; p/--,)

(types) a ::= T(p) lint I a, - a2 I a x a 2 I Vt::n.a
(terms) e ::= x I (el, e 2 )G'G2 I 7`e"' e Ax:a,. e el e2

At::r. e I e[y] I typerec[t.a](ju; ei; ex; e_,)

Kinds classify constructors, and types classify terms. Constructors of kind Q name "small types"
or "monotypes". The monotypes are generated from Int and variables by the constructors -+ and

X. The application and abstraction constructors correspond to the function kind i1 --ý K2. Types
in A~fL include the monotypes, and are closed under products, function spaces, and polymorphic
quantification. We carefully distinguish constructors from types, writing T(f) for the type corre-
sponding to the monotype A. The terms are an explicitly-typed A-calculus with explicit constructor

abstraction and application forms.

The official syntax of terms shows that the primitive operations of the language are provided with
type information that may be used at run time. For example, the pairing operation is (e1, e 2 )" °2,
where ei : ai, reflecting the fact that there is a pairing operation at each pair of types. In a typical
implementation the pairing operation is implemented by computing the size of the components

from the types, allocating a suitable chunk of memory, and copying the param tcrs into that space.
However, there is no need to tag the resulting value with type information because the projection

operations, (ir"IIa2 e) are correspondingly indexed by the types of the components so that the
appropriate chunk of memory can be extracted from the tuple. Similarly, the application primitive

(W el e2 ) is indexed by the domain type of the function 2 and is used to determine the calling
sequence for the function. We use a simplified term syntax without the types when the information
is apparent from the context. However, it is important to bear in mind that the type information

is present in the fully explicit form of the calculus.

The Typerec and typerec forms provide the ability to define constructors and terms by structural

induction on monotypes. These forms may be thought of as eliminatory forms for the kind Q at

2 1n general, application could also depend upon the range type, but our presentation is simplified greatly by

restricting the dependency to the domain type.
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the constructor and term level. (The introductory forms are the constructors of kind Q; there are
no introductory forms at the term level in order to preserve the phase distinction [9, 22].) Nt the
term level typerec may be thought of as a generalization of the typecase operation associated with
the type dynamic [1] that provides for the definition of a term by induction on the structure of a
monotype. At the constructor level Typerec provides a similar ability to define a constructor by
inductiorn on the structure of a monotype. As will become clear below, it is crucial to provide type
recursion at both the constructor and term level so that the type of an intensionally polymorphic
operation can itself be defined by intensional type analysis.

The static semantics of AML consists ef a collection of rules for deriving judgements of the
following forms, where A is a kind assignment, mapping type variables (t) to kinds, and F is a type
assignment, mapping term variables to types.

"A C> y :: K y is a constructor of kind r
"A tI • -2 :: K p•1 and Y2 are equivalent constructors
"A C> a a is a valid type
"A C al --E 2 a, and a2 are equivalent types
A;Fr>e:a e is a term of type a

The formation and equivalence rules for constructors are given in Figures 2 and 3. The
formation rules are largely standard, with the exception of the Typerec form. The constructor
Typerec(A; Ai; Ax;p.,.) has kind x if 1 is of kind Q (i.e., a monotype), Ai is of kind K, and /.., and
M. are each of kind Q -- Q -+ K -4 x -4 K. The constructor equivalence rules (Figure 3) axioma-
tize definitional equality [47, 34] of constructors to consist of /-conversion together with recursion
equations governing the Typerec form. The level of constructors ,Lnd kinds is a variation of Gidel's
T [17]. Every constructor, M, has a unique normal form, NF(A), with respect to the obvious notion
of reduction derived from the equivalence rules of Figure 3 [47]. This reduction relation is confluent.
from which it follows that constructor equivalence is decidable [47].

The type formation and equivalence rules for A/YL are given in Figure 4. The rules of type
equivalence define the interpretation T(M) of the constructor 1 as a type. The term formation
rules are standard (see Figure 5) with the exception of the typerec form, which is governed by the
following rule:

A t>/ ::Q A W• {t:.al} > , a A; r >• ei : [Int/t]or

A; r t> e, Vt1, t2::Q2.[t/t]a -- [t2/t]a -- [--+(tl, t2)/tla

A; F > e. : Vt 1 , t2 ::Q.[tl/t]a- [t2 /t]a [x(t 1 , t2 )/t]a

A; r > typerec[t.a]((p; ei; ex: e,) : [A/t]a

The argument constructor A must be of kind Q, and the result type of the typerec expression is
determined as function of the argument constructor. Typically the constructor variable t occurs in
a as the argument of a Typerec expression so that [u/t]a is determined by a recursive analysis of p.

Type checking for \•ML reduces to equivalence checking for types and constructors. In view of
the decidability of constructor equivalence, we have the following important result:

Proposition 2.1 (Decidability) It is decidable whether or not A; r t> e : a is derivable in A;,IL.

To fix the interpretation of typerec, we specify a call-by-value, natural semantics for A)•L, as a
relation of the form p I- e =* v where e is a AML expression, p is an environment mapping variables
to semantic values, and v is a semantic value. Semantic values and environments are defined as
follows:

(semantic values) v ::= n I (vI, v2) (p, Ax:a. e) I (p, At::n. e)
(environments) p ::= {x1 P-+ v, ",Xn 1- vn}

15



A W It ::p2 : :t A > Int :: Q

A r> -+"1, P2) :: :: AC (Al,42) :: Q

WIt 1 -'(>,A ::• K2, X(P, :: :K -4K A>/ 2  K

A >, At :: j./j :: i K 2 A P, I :2[1] :: ::

A > .. :: £2 --+ £ --+ K -4• K -4+ K
A {>/Cx :: i2 -> K -4: K -* K

A > Typerec(/o;/ui;px;•,p+) :: K

Figure 2: Formation Rules for Constructors

A LI {t :: K') C> .0 :: K 11 C,> P2 PC'

A (At :- [P/t]i IC

AK -4 K
A t x :: £ --+ £ P - K-- K -4 K

A r> Typerec(Int;/i;/ px; p_) -/i K : K

A L>/ 1 :: £2 Ar, p2 ::£2
A > UAt> i/:

A)/ :: £2 --4 £2 -4 K -4) K -4) K

A . : p £ -- £2 -4 K -4 K -C K

> Typerec(-->(/,/);/;/x;/A..-)=P-+, 1A /A2 (Typerec(/u; pi;/•x; ji,)) (Typerec(p 2;p i;p×iu_)) ::K

> Typerec(X(Al , /2);/ji;/Px;/A2)-/x P1 P2 (Typerec(pi;/Pi;/x;P)) (Typerec(P 2 ;Pj;/Ax;pA-) ::K

Figure 3: Equivalence Rules for Constructors

A rb :: £2 A > int
A > T(p)

o r, C>• 0'2• > 0'2 Ar Ar, I•A t :: K} )C C
A > a1 x , 2  AC a rl -+ "2  A C> Vt::K}0.

A> T(Int) = int A >p, > A 2 ::£Q Ar>p1 :: AC>P 2
A >T(--+(/•, P2)) --- T(/pz) --+ T(/P2) A >) T(x (pi,/P2)) =- T(pj) x T(P2)

Figure 4: Type Formation and Equivalence

6



The semantic values differ from AýVL syntactic values in that no type information is needed on data
structures, such as pairs, and closures ((p, Ax:a. e) and (p, At::K. e)) are used instead of meta-level
substitution for value application. Figure 6 defines the evaluation relation using a series of axioms
and inference rules. We use p W• {x '-+ v} to denote the extension of environment p so that x is
mapped to v, assuming that x is not in the domain of p.

The semantics is standard except for the evaluation of a typerec expression. First, the normal
form of the constructor argument is determined. For a well-formed program, we only need to
determine normal forms of closed constructors of kind Q and these are never of the form Typerec(...),
so finding the normal form amounts to evaluating the argument constructor. Once the normal form
is determined, the appropriate subexpression is selected and applied to any argument constructors.
The resulting function is in turn applied to the "unrolling" of the typerec at each of the argument
constructors.

In order to state a type preservation property for the static semantics with respect to our
dynamic semantics, we define a typing judgement for semantic values, > v : a, and a judgement for
environments, r> p : r, as follows:

(int) > n :int (pair) >VI :6 1  >V2 :a2

C> (VI, V2 ) : al X a2

(cbs) :' 0; r > Ax:a.e : o1 -- a2
C, (P, ,•X:a. e) : al --+ a2

c , p : F 0; r > At::K. e : Vt::n.a

C> (p, At::,.. e) : Vt::K.a

(e v)C Vl : C71 ... C> Vn : Oan

C> {1X '-+ V1, * ', Xn '-+ V,} : X1 : al, -*, X, : an}

Proposition 2.2 (Type Preservation) If 0; 0 r> e : a and 0 - e =4 v, then r> v : a.

By inspection of the semantic value typing rules, only appropriate values occupy appropriate types
and thus evaluation will not "go wrong". Furthermore, programs written in pure Al. L (i.e., without
recursion operators or recursive types) always terminate.

Proposition 2.3 (Termination) If e is an expression such that 0; 0 > e : a, then there exists a
semantic value v such that 0 I- e • v and > v : a.

A few simple examples will help to clarify the use of typerec. The function sizeof of type Vt::Q.int
that computes the "size" of values of a type can be defined as follows.

sizeof = At::Q.typerec[t'.int](t; ei; ex; e_,)

where
ei =1

ex = At1 ::Q.At 2::f2.Axl:int.Ax 2:int.xI + x 2
e_- = Atl::Q.At 2::Q.Axl:int.Ax 2 :int.1

(Here we assume that arrow types are boxed and thus have size one.) It is easy to check that sizeof
has the type Vt::Q.int. Note that in a parametric setting this type contains only constant functions.



(var) AIIiza'~:. (nt) A; F c> h :Ant

A~~f~~Aer1  w t 0;' 1 >e2 :u 0'ceo'xr

(pair) A;Ir c>(ei,e:)al A 2 :ux 0'2 00 A rc eotIX') i ,2

(b)A C 'o1  A;rF {Iz: 0',1}r>e : a,
A;ba) A; Ax:0.1.e : al-+ 02

(app) A ~; r c> e @.o' - eorA1 rt e2 : 0"

A C> p::x

(tas) __w_______re:_o__ tpp A; r >e : Vt::PK.o
(tb)A; I' > At::,c. e :Vt::ic.o tap A; r > efjA] : [M/tb',

A oý.p :Q A w ft:12J c,.o. A; r> ei [Int/tfr
A; r' c, e.. Vt I, t 2 ::f2.-[t1I/t] 0' -+[12/110 -4 [-4(1k, t2)/tbo

(te)A; r" c ex Vt 1, t 2 ::f2.[tl/tlff -+ t2 /t]O' [- [X (t 1 , t2 )/tjO'
A; r c> typerec (t.al](p; ei; e,, ; e. ) [p/tl1-

Figure 5: Term Formation

(var) p x-=>p(x) (int) pF- ii => n

(pi)pF- el >v, p-e2 => V2  (p) pF-e =(Vi, V2) (i =1,2)
ar) p F- (el, e2)I "2 => (V1, V2) to)p x" "' 0 e => vi

p F- el *ý (p',Ax:'. e) pIF- e2 *V' p F-e *: (p',At::tc. e')

ap )p' w fx -+ v'}F- e = v (tap) P p'- [A /tle '*ýv
(ap pF- @' ele 2 =>V pý l]=

(trec-int) p F- ei *v (NF(p) = lot)
p F- typerec,'t.aj(IA; ei;e .; e, ~

p F- (@[A2/t]0 (@[AI /t]0'(e. [pl)[P2I)

(trec-po]air)e.e+))tyeecto](leie,;~l (NFp) Xvap)
(trec-pair)p - typerec[t.o'](u; ei; ex ; e.) => v (F

p~ F- 4[;42/t]O #", /t]0 (e-..[Pi][P2])
(trec-fn) (typerec[t.o'](pl; ei; ex;e..)))(typerec~t.ou](pil; ei; e) ; e.) => v (NF(p)=

p F- typerec~t.o'](p; ei; e x; e,) => v

Figure 6: Natural Dynamic Semantics for AOL
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As another example, Girard's formulation of System F [15] includes a distinguished constant O0
of type r for each type r (including variable types). We may define an analogue of these constants
using typerec as follows:

zero = At::Q.typerec[t'.T(t')](t; ei; e x; e_+)

where
ei = 0

ex = Atl::f7.At 2::f2.AzI:T(tl).Az 2:T(t 2).(zI, z2)
e, = Ati::{I.At 2::Q•.Azi:T(tl).Az 2:T(t 2).Ax:T(tj).z 2

It is easy to check that zero has type Vt::f?.T(t), the "empty" type in System F and related systems.
The presence of typerec violates parametricity to achieve a more flexible programming language.

To simplify the presentation we usually define terms such as zero and sizeof using recursion
equations, rather than as a typerec expression. The definitions of zero and sizeof are given in this
form as follows:

sizeof[Int] = 1
sizeof[x (p6, p 2)] = sizeofp I] + sizeof[1 2]

sizeof[-+(A 1,p2 )] = 1

zero[Int] = 0
zero(x (A,, A2)] = (zero(pi], zero[/A2 ])

zero[-+ (1, /A2)] = Ax:T(jpi).zero[A2]

Whenever a definition is presented in this form we tacitly assert t,,,t it can be formalized using
typerec.

3 Flattening

We consider the "flat" representadion of Mini-ML tuples in which nested tuples are represented by
a sequence of "atomic" values (for the present purposes, any non-tuple is regarded as "atomic").
To simplify the development we give a translation in which binary tuples are represented in right-
associated form, so that, for example, the Mini-ML type (int x int) x int will be compiled to the
AML type int x (int x int). The compilation makes use of intensional type analysis at both the term
and constructor levels.

We begin by giving a translation from Mini-ML monotypes to AML constructors, written 1T1t:

Itit = t
lintIt = Int

Irl -+ T2It = -4(I-rdt, 1r21t)
In- x '21t - Prod[IlJit][Ir2It]

Here Prod is a constructor of kind Q -+ Q -- Q defined below. The translation is extended to
polytypes as follows:

Irl. = T(IrIt)
IVt.a, = Vt :: 9.1al,

Finally, we write IAI for the kind assignment mapping t to the kind Qi for each t E A, and Irl for
the type assignment mapping x to Ir(x)I for each x E dom(r).

Proposition 3.1 The type translation commutes with substitution:

I[7 ,., 7n/t ,..., t.] lt = [171,It, - -.-, I-r lt/tI ., tn] 171t.



FTV([ri.... r, /t, ..... t,,]r) C A
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a; r c (el, e2) : r x r2 mkpair[lr1 Itl[Ir21It e' el

(0 A;F r> e :r x r2 =o e'
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A; I {x : r, } > e : r2 => e'(abs)
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•,,,....t.,'.(,\x : w •, .. .,t,, Q: .lr'10. e2)(At,, .. . , tn : ejx)

Figure 7: Flattening Term Translation

The translation maps Mini-ML types to their counterpart constructors in AýIL, except that
product types are computed using the constructor Prod. which is defined as follows:

Prod[Int][}] = x(Int,y)
Prod[--+(p.a,pb)][p] = X("+(p/a,/b),yI)

Prod(x (p.=,) = x(/I,Prod(Mb6]U])

Informally, the constructor Prod computes the right-associated form of a product of two types. For
example,

l(int x int) x intit = Prod[Prod[Int][Int]][Int]

and
lint x (int x int)(t = Prod[Intj(Prod(Int][Int]]

and the equatioi.

A > Prod[Prod[Int][Int]][Int] - Prod[Int][Prod[Int][Int]] :: Q

is derivable in ,ML
The term translation is given in Figure 3 as a series of inference rules that parallel the typing

rules for Mini-ML. The var rule turns Mini-ML implicit instantiation of type variables into A.,JL

explicit type application. The let rule makes the implicit type abstraction explicit. The translation
of the primitive operations for product types makes use of three auxiliary functions, mkpair, proj1
and proj2, with the following types:

mkpair : Vt1 , t2 :: Q.T(t) --+ T(t2 ) -+ T(Prod[tt][t1 ])
proji :Vt, t2 :: .T(Prod[ti][t2]) -+ T(ti)

proj2 : Vt1 , t2 :: QLT(Prod[tj[t2 j]) -+ T(t 2 )

10



The mkpair operation is defined as follows, using the "unofficial" syntax of the language:

mkpair[Int][r 2] = Ax : T(Int). Ay: T(r 2). (x,y)
mkpair[-+(r0 , rb)][r2] = Ax: T(-+(r,, rb)). Ay: T(r 2). (x, y)
mkpair[x (re, rb)][r2] = \x : T(x (.a, Tb)). Ay: T(r 2). (ri x, mkpair[rb][r 2](ir 2 x) y)

The verification that mkpair has the required type proceeds by case analysis on the form of its first
argument, relying on the defining equations for Prod. For example, we must check that mkpair(Int][r]
has type

T(Int) -+ T(r) -+ T(Prod[Int][r])

which follows from the definition of mkpair[Int][r] and the fact that

T(Prod[Int](r]) =_-int x T(r).

Similarly, we must check that mkpair[x (r, rb)][r] has type

T(x (rT, rb)) -+ T(r) -+ T(Prod[x (r., rb)][r]

which follows from its definition, the derivability of the equation

T(Prod[x (r., nb)][r]) T(r.) x T(Prod[rb][r]),

and, inductively, the fact that mkpair[rb][r] has type rb -+ r -+ Prod[rbJ[r].
The operations proj1 and proj2 are defined as follows:

proj 1[Int][r 2] = Ax: T(Prod[Int][r 2]).rfix
proj1 [--+(r.,rb)][r2] = \x: T(Prod[-+(ra, rb)][r 2]). •i x
projl[x(ra, n)][r2] = Ax: T(Prod[x (ra, rb)][r2]). (7rlx, projl[rb][r2](7r2 x))

proj2[Int][r 2] = Ax: T(Prod[Int][r 2]). r2 X
proj 2[-+(r., rb)][,r2] = Ax: T(Prod[-+(-r,,rb)][r 2]).'r 2 X
proj 2[x (7a, i)][r2] = Ax : T(Prod[x (rT, Tb)][r2]). prOj2 [rb][r2](7r2 X)

The verification that these constructors have the required type is similar to that of mkpair, keeping
in mind the equations governing T(-) and Prod[-][-].

The translation given in Figure 3 may be characterized by the following type preservation
property.

Theorem 3.2 If A; F c e : r =; e', then IAI; IFt1 > e' : IrIt.

The right-associated representation does not capture all aspects of "flatness". In particular,
access to components is not constant time, given a standard implementation of the pairing and
projection operations. This may be overcome by extending \ML with n-tuples (tuples of variable
arity), and modifying the interpretation of the product type as follows:

Prod[pl][A2] = Append [Tuple(ToList t )] [Tuple(ToList i1L)]

The Tuple constructor has kind Q* -+ R, where rK* is the kind of lists whose elements are constructors
of kind K. The Prod constructor coalesces the product of two tuple types into a single tuple type
whose components are obtained by appending the fields of the two tuples. Otherwise the ordinary
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pair (i.e., 2-tuple) of the types is formed. The constructors Append and ToList are defined using
Typerec and Listrec as follows:

Append[Nil][p] = M
Append [Cons(ui, /)]Lu] = Cons(pi, Append[/1] [y])

ToList[Int] = Cons(lnt, Nil)
ToList[-+(jii, M2)] = Cons(-+(/i1 ,1p2), Nil)
ToList(Tuple(p)] = M

A rigorous formulation of the target language extended with n-tuples is tedious, but appears to be
straightforward.

4 Boxing

When type arguments to polymorphic functions are passed explicitly, it is no longer necessary to use
boxing to implement polymorphism. For example, the polymorphic function Ax.Ay.(x, y) compiles
to Atl::Q.At 2 ::f2?.x 1 :tl.Ax 2 :t2 .(x, y)T(t1),T(t 2), where the pairing primitive is indexed by the types
of the components. When using "flat" representations for types, the components of a pair can be
large, and the cost of creation or projection can be considerable. An advantage of a "boxed" over a
"flat" representation is that large aggregates can be handled atomically. It would seem. then. that
the type-passing interpretation of polymorphism is more costly than the boxing interpretation for
some applications.

Fortunately, boxing is not incompatible with type-passing. In particular, we can make boxing
explicit in the source and/or target languages (as suggested by Peyton Jones and Launchbury [30]
and Leroy [32]). This allows the programmer (or compiler) to make controlled use of boxing to
satisfy either layout requirements (at the cost of certain operations being more expensive) or access
requirements (at the cost of introducing indirections).

Boxing may be made explicit in AML by introducing the following primitives:

Box :: Q -+ Q

box: Vt::Q.T(t) -* T(Box[t])

unbox : Vt::Q.T(Box[t]) -+ T(t)

In addition we enrich the type language with types of the form boxed(a) and define T(Box(fl])
boxed(T(/p)). The Typerec and typerec forms are extended to include a case for "boxed" types as
follows:

Typerec(Box(p]; pi;/1x ;/P-;/b) -- A (Typerec(p; Ai; Mx A-+; PO

E[typerec[t.a](Box[ji];ei; e×;e_,;eb)] E[0[u/tla (ebl]) (typerec~t.a](/•; ei; e×;e_,;eb))1

with the obvious associated kind and type rules.
In the presence of explicit boxing we gain precise control over data layout. For example, we

may introduce two forms of product types in Mini-ML, a "flat" form, Trl x× 72 , and a "non-flat"
form, r, x r 2 , with the following translations:

Itr x 'r2it = Prod[Box[irnit]][Box[lr(2 t]]

In, x× r~li = Prod[Irilt][In21t]
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The constructor Prod is extended to treat boxed types atomically:

Prod[Box[pi]][P 2] = x (Box[pi],P 2 )

Through the use of boxing we may control the trade-off between time and layout constraints.

The interpretation of the boxing and unboxing primitives is left unspecified. The simplest inter-
pretation is heap allocation - values of type boxed(a) are pointers to values of type a. As pointed
out by Leroy [32, Section 4], this simple interpretation is not always adequate. The "recursive"
wrap and unwrap operations considered by Leroy may be defined as follows:

wrap[Int] = box[Int]
wrap[Box[p]] = identity[Box(p]]

wrap[X (I ,/2)] = box[x (Wrappi], Wrap(P2])] o (wrap[pl] x wraP[p 2])
wrap[-+ (pl, P2)] = box[-+(Wrap[p1 ],Wrap•p2])] o (unwrap[PI] -+ wrap[21])

unwrap[Int] = unbox[Int]
unwrap[Box[j]] = identity[Box[p]]

unwrap(x(s14,/=2)] = (unwrap[p/] x unwraPfp2]) o unbox[x(Wrap[pil, Wrap[p 2])]
unwrap[-+(P/l, P2)] = (wrapfpi] -+ unwrap[P 2]) o unbox[--(Wrap[pi],Wrap[P 2])]

(where o is function composition and product and function spaces are extended to functions in the
usual way). These definitions can be encoded in a single typerec that returns a pair consisting of
the two functions. The constructor Wrap :: fQ -+ Q is defined as follows:

Wrap[Int] = Box[Int]
Wrap[Box[p]] = Box[p]

Wrap[x(A1,, p2)] = x(Wrap[p1 ],Wrapl9 2])
Wrap[-+(pi,P/2)] = -+(Wrap[p1 ],Wrap[p 2j)

With this definition in mind, it is easy to check that

wrap : Vt::Q.T(t) -+ T(Wrap[t])
unwrap Vt::!Q.T(Wrap[t]) -+ T(t)

5 Marshalling

Ohori and Kato give an extension of ML with primitives for distributed computing in a hetrogenous
environment [42]. Their extension has two essential features: One is a mechanism for generating
globally unique names ("handles" or "capabilities") that are used as proxies for functions provided
by servers. The other is a method for representing arbitrary values in a form suitable for trans-
mission through a network. Integers are considered transmissible, as are pairs of transmissible
values, but functions cannot be transmitted (due to the hetrogenous environment) and are thus
represented by proxy using unique identifiers. These identifiers are associated with their functions
by servers that may be contacted through a primitive addressing scheme. In this section we sketch
how a variant of Ohori and Kato's repre3entation scheme can be implemented using intensional
polymorphism.

To accommodate Ohori and Kato's primitives the AMIL language is extended with a constructor
Id of kind Q -+ Q and a corresponding type constructor id(a), linked by the equation T(Id[p])
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id(T(p)). The Typerec and typerec primitives are extended in the obvious way to account for
constructors of the form ldf[]:

Typerec(Id[p];i;#Ax;Al;Aid) = idiTyperec(p; A;px;#_-;#id)

E[typerec[t.a](Id•y]; el; ex.; e.,; eid)] E[@[A/t` (eidly]) (typerec[t.a] (y; ei; e x; ;e,; uid))]

The primitives newid and rpc are added with the following types:

newid : Vtz::Q.Vt 2::ft.(T(Trans[tj]) -+ T(Trans[t2])) -+ T(Trans[-+(tl, t 2 )])
rpc : Vt1::Q .Vt2 ::fQ.(T(Trans[-+(t1, t 2)])) -4 T(Trans[t1 ]) --+ T(Trans[t 2 ])

From an abstract perspective, newid maps a function on representations to a representation of the
function and rpc is its (left) inverse. The name newid stems from the representation scheme, which
is defined as follows:

Trans(Int] = Int

Trans[-+(pi, A2)] = Id[-+(Trans[p1 ], TranS[ 2])1
Trans[X (pi, P2)] = x (Trans[it], Trans[A2])

Trans[Id[,]jj = ld[p]

A value of type T(Trans[p]) has no arrow types. Instead, --+(41,p2) is replaced with an Id[-]
constructor. It is easy to check that Trans is a constructor of kind Q -+ Q.

Operationally, rpc takes a proxy identifier of a remote function, and a transmissible argument
value. The argument value is sent to the remote server, the function associated with the identifier
is applied to the argument, and the result of the function is transmitted back as the result of the
operation. The newid operation takes a function between transmissible values, generates a new.
globally unique identifier and associates that identifier with the function.

The compilation of Ohori and Kato's distribution primitives into this extension of AML relies
critically on "marshalling" and "unmarshalling" operations that convert values from a type to its
transmissible representation and vice-versa. These are defined simultaneously as follows using the
unofficial syntax:

M :Vt :: £.T(t) -- T(Trans[t])

M[Int] = A t : .
M[--(AA2)]= A,: T(-+(yi,p 2)).newid[/p][ 2](Ax : T(Trans[pi]).

M[# 2](f (U[ 11] X)))
M[X(,,2)]= Ax: T(x(p1 ,, 2 )).(M[, 1](7r, 4), M[p 2 ](7r 2 X))

M[Id[yp]] - Ax T(Id•y]).x

U : Vt :: Q.T(Trans[t]) -+ T(t)

U[Int] = Ax int.x
U(-+(Pi, P2)] = Af: T(Id(-4(Trans(p]j, Transfp 2])]).

Ax : T(y1 ). U[p 2](rpc[p1 ][A2] f (M[p1 ] X))
U[x (A1, A2)] = Ax : T(x(Trans[pi], Trans(A 2])).(U[yt](7ri X), U[p 2 ](7r2 X))

U[Id[p]] = Ax T(Id~p]).x

At arrow types, M converts the function to one that takes and returns transmissible types and then
allocates and associates a new identifier with this function via newid. Correspondingly, U takes an
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identifier of arrow type and a marshalled argument, performs an rpc on the identifier and argument,
takes the result and unmarshals it.

The M and U functions are used in the translation of client phrases that import a server's
function and in the translation of server phrases that export functions. The reader is encouraged
to consult Ohori and Kato's paper [42] for further details.

6 Other Applications

In this section, we sketch several other applications of intensional polymorphism.

6.1 Type Classes

The language Haskell [25] provides the ability to define a class of types with associated operations
called methods. (See [51, 27, 49, 7] for various papers related to type classes.) The canonical
example is the class of types that admit equality (also known as equality types in SML [36]).

Consider adding a distinguished type void (with associated constructor Void) in such a way that
void is "empty". By empty, we mean that no closed value has type void. We can encode a type class
definition by using Typerec to map types in the class to themselves and types not in the class to
void. In this fashion, Typerec may be used to compute a predicate (or in general an n-ary relation)
on types. Definitional equality can be used to determine membership in the class.

For example, the class of types that admit equality can be defined using Typerec as follows:

Eq ::Q-•t

Eq[lnt] = Int
Eq[Bool] = Bool

Eq[x(p1,A 2)] = x(Eq[pl],Eq[A2])
Eq [--(M1, A2)] = Void

Eq[Void] = Void

Here, Eq serves as a predicate on types in the sense that a non-Void constructor #I is definitionally
equal to Eq[p] only if I is a constructor that does not contain the constructor -- (-, -).

The equality method can be coded using typerec as follows, where we assume primitive equality
functions for int and bool:

eq[Int] = eqint
eq[Bool] = eqbool

eq[x (04, A2)] = Az:T(Eq[x (p1, p2)]).Ay:T(Eq[x(/ip,/P2)]).
eq[Eq[jz]](irj x) (inr y) and eq[Eq[p 2]](7r 2 x) (7r2 y)

eq[-+ (/1, /2)] = Ax:void.Ay-void.false
eq[Void] = Ax:void.Ay.void.false

It is straightforward to verify that:

eq : Vt::Q.T(Eq[t]) -+ T(Eq[t]) -+ bool

Consequently, eq[p] el e2 can be well typed only if el and e2 have types that are definitionally equal
to T(Eq[I]). The encoding is not entirely satisfactory because eq[-+(jul,/t2)] can be a well-typed
expression. However, the function resulting from evaluation of this expression can only be applied
to values of type void. Since no such values exist, the function can never be used.
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A w• 1C::} C> a A PC/ : A C> 0, A; r c> ei : 3t::Pc o'
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L; r > pack e with p as 3t::K.c : 3t::K.o, A; r c> abstype el is t::K, z:a' in e2•end :o

Figure 8: Typing Rules for Existentials

6.2 Dynamics

In the presence of intensional polymorphism a predicative form of the type dynamic [2] may be
defined to be the existential type 3t::Q.T(t). Under this interpretation the introductory form
dynamic[r](e) stands for pack e withr as3t::Q.T(t). The eliminatory form,typecase(d; ei; ex ; e_),
where d : dynamic, e, : o, and ex, e,+ : Vt 1 , t 2 ::1.a, is defined as follows:

abstype d ist::Q, x:T(t) in typerec[t.oi](t; el; e'; e',) end

Here e'x = Ati::Q.At 2 ::Q-.Xl:ac.)X 2 :o,.e×[tl][t 2], and similarly for e+. (The typing rules for pack
and abstype are given in Figure 8.)

This form of dynamic type only allows values of monomorphic types to be made dynamic,
consistently with the separation between constructors and types in AML. The possibilities for
enriching A$fL to admit impredicative polymorphism (and hence account for the full power of
dynamic .yping) are discussed in the conclusion.

6.3 Views

One advantage of controlling data representation is that it becomes possible to support a type-safe
form of casting which we call a view. Let us define two Mini-ML types 71 and r 2 'to be similar.
T- :z r 2 , iff they have the same representation - ie, iff 1il1t is definitionally equivalent to IT2lt in

tML. If r, i- "2 , then every value of type -r1 is also a value of type r 2 , and vice-versa. For example.
in the case of the right-associative representation of nested tuples, we have that 71 7-2 iff r, and 72

are equivalent modulo associativity of the product constructor, and a value of a (nested) product
type is a value of every other association of that type.

Let us extend the source language with a construct for imposing views. If e has type r and

r t r', then the expression vieweasr7' has type 7T. By our definition of similarity, no coercion or
copying is implied by the imposition of a view. This follows from the fact that similar Mini-ML
types are represented by definitionally equal A\ML types, and the fact that types are passed to
primitive operations to determine their behavior. For example, in the case of the right-associative
representation of tuples, we may change views by merely changing the ascribed type, for then the
projection operations are given the type of the view, and adjust their behavior according to the
imposed view.

In contrast to coercion-based interpretations of type equivalence, such an approach to views is

compatible with ref types in the sense that r1 ref is equivalent to r.2 ref iff rl is equivalent to -r2. This
means that we may freely intermingle updates with views of complex data structures, capturing
some of the expressiveness of C casts without sacrificing type safety.
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7 Related Work

There has traditionally been two interpretations of polymorphism, the explicit style (due to
Reynolds [44]), in which types are passed to polymorphic operations, and the implicit style (due
to Milner [35]), in which types are erased prior to execution. In their study of the type theory of

Standard ML Harper and Mitchell [21] argued that an explicitly-typed interpretation of ML poly-
morphism has better semantic properties and scales more easily to cover the full language. Harper
and Mitchell formulated a predicative type theory, XML, a theory of dependent types augmented
with a universe of small types, adequate for capturing many aspects of Standard ML. This type

theory was subsequently refined by Harper, Mitchell, and Moggi [22], and provides the basis for
this work. The idea of intensional type analysis exploited here was inspired by the work of Con-
stable [14, 13], from which the term "intensional analysis" is taken. The rules for typerec, and the
need for Typerec, are derived from the "universe elimination" rules in NuPRL (described only in
unpublished work of Constable).

The idea of passing types to polymorphic functions is exploited by Morrison et al. [40] in the
implementation of Napier '88. Types are used at run time to specialize data representations in
roughly the manner described here. The authors do not, however, provide a rigorous account of
the type theory underlying their implementation technique. Ohori's work on compiling record
operations [41] is similarly based on a type-passing interpretation of polymorphism, and was an
inspiration for the present work. Ohori's solution is ad hoc in the sense that no general type
theoretic framework is proposed, but many of the key ideas in his work are present here. Jones [26]

has proposed a general framework for passing data derived from types to "qualified" polymorphic
operations, called evidence passing. His approach differs from ours in that whereas we pass types
to polymorphic operations, that are then free to analyze them, Jones passes code corresponding to
a proof that a type satisfies the constraints of the qualification. From a practical point of view it
appears that both mechanisms can be used to solve similar problems, but it is not clear what is
the exact relationship between the two approaches. Recently Thatte [49] has suggested a semantics

for type classes that is similar in spirit to the present proposal, but lacks the capability to perform
intensional type analysis at the constructor level, a crucial feature for tracking the typing properties
of intensionally polymorphic operations.

A number of authors have considered problems pertaining to representation analysis in the
presence of poylmorphism. The boxing interpretation of polymorphism has been studied by Peyton
Jones & Launchbury [30], by Leroy [32], by Poulsen [43], and by Henglein & Jorgensen [24], with the
goal of minimizing the overhead of boxing and unboxing at run time. Of a broadly similar nature
is the work on "soft" type systems [3, 11, 23, 48, 53] which seek to improve data representations
through global analysis techniques. All of these methods are based on the use of program analysis
techniques to reduce the overhead of box and tag manipulation incurred by the standard compilation

method for polymorphic languages. Many (including the soft type systems, but not Leroy-s system)
rely on global analysis for their effectiveness. In contrast we propose a new approach to compiling
polymorphism that affords control over data representation without compromising modularity.

Finally, a type-passing interpretation of polymorphism is exploited by Tolmach [50] in his
implementation of a tag-free garbage collection algorithm. Tolmach's results demonstrate that
it is feasible to build a run-time system for ML in which no type information is associated with
data in the heap3 . Morrisett, Harper, and Felleisen [39] give a semantic framework for discussing
garbage collection, and provide a proof of correctness of Tolmach's algorithm.

3However, types are passed indpendently as data and associated with code.
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8 Directions for Future Research

We have presented a type-theoretic framework for expressing computations that analyze types at
run time. The key feature of our framework is the use of structural induction on types at both the
term and type level. This allows us to express the typing properties of noib-trivial computations
that perform intensional type analysis. When viewed as an intermediate language for compiling
ML programs, much of the type analysis in the translations can be eliminated prior to run-time.
In particular, the prenex quantification restriction of ML ensures good binding time separation
between type arguments and value arguments. The "value restriction" on polymirphic functions,
together with the well-founded-ness of type induction, ensures that a polymorphic instantiation
always terminates. This provides important opportunities for optimization. For example, if a type
variable t occurring as the parameter of a functor is the subject of intensional type analysis, then
the typerec can be simplified when the functor is applied and t becomes known. Similarly, link-time
specialization is possible whenever t is defined in a separately-compiled module. Inductive analysis
of type variables arising from let-style polymorphism is ordinarily handled at run-time, but it is
possible to expand each instance and perform type analysis in each case separately.

The type theory considered here does not address analysis of recursive types. Recursive types
may be added to A\L by enriching the constructor level with a constant Rec of kind (0 -+ Q) -+ Q,
and adding constants representing the isomorphism between Rec[A] and p(Rec[p]). Extending
typerec and Typerec to handle recursive types is problematic because of the negative occurrence of
Q in the kind of Rec. In particular, termination can no longer be guaranteed. For the application
to data layout, this difficulty is not prohibitive because values of recursive types are "boxed" (by
the isomorphism mediating the recursion) and hence not further analyzed. However, it may be
important in other applications to analyze recursive types. The most obvious approach is to define
evaluation of typerec at a Rec constructor so that the unrolling is done "lazily". In the case of
well-founded recursive types such as lists and trees, this approach is viable because the values
themselves are well-founded. However, in general, we lose termination, which presents problems
not only for optimization but also for type checking (since Typerec would no longer terminate).

The restriction to predicative polymorphism is sufficient for compiling ML programs. More
recent languages such as Quest [101 extend the expressive power to admit impredicative polymor-
phism, in which quantified types may be instantiated by quantified types. (Both Girard's [15] and
Reynolds's [44] calculi exhibit this kind of poylmorphism.) It is natural to consider whether the
methods proposed here iray be extended to the impredicative case. Since the universal quantifier
may be viewed as a constant of kind (Q -- Q) -+ Q, similar problems arise as for recursive types.
In particular, we may extend type analysis to the quantified case, but only at the expense of ter-
mination, due to the negative occurrence of Q in the kind of the quantifier. Ad hoc solutions are
possible, but in general it appears necessary to sacrifice termination guarantees.

Compiling polymorphism using intensional type analysis enables data representations that are
impossible using type-free techniques. Setting aside the additional expressiveness of the present
approach, it is interesting to consider the performance of a type-passing implementation of ML as
compared to the type-free approach adopted in SML/NJ [5]. As pointed out by Tolmach [50], a
type-passing implementation need not maintain tag bits on values for the sake of garbage collection.
The only remaining use of tag bits in SML/NJ is for polymorphic equality, which can readily
be implemented using intensional type analysis. Thus tag bits can be eliminated, leading to a
considerable space savings. On the other hand it costs time and space to pass type arguments at
run-time, and it is not clear whether type analysis is cheaper in practice than carrying tag bits.
An empirical study of the relative performance of the two approaches is currently planned by the
second author, and will be reported elsewhere.
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The combination of intensional polymorphism and existential types [38] raises some interesting
questions. On the one hand, the type dynamic [2] may be defined in terms of existentials. On
the other hand, data abstraction may be violated since a "client" of an abstraction may perform
intensional analysis on the abstract type, which is replaced at run-time by the implementation type
of the abstraction. This suggests that it may be advantageous to distinguish two kinds of types,
those that are analyzable and those that are not. In this way parametricity and representation
independence can be enforced by restricting the use of type analysis.

The idea of intensional analysis of types bears some resemblance to the notion of reflection [46, 4]
- we may think of type-passing as a "reification" of the meta-level notion of types. It is interesting
to speculate that the type theory proposed here is but a special case of a fully reflective type theory.
The reflective viewpoint may provide a solution to the problem of intensional analysis of recursive
and quantified types since, presumably, types would be reified in a syntactic form that is more
amenable to analysis - using first-order, rather than higher-order, abstract syntax.

It is important to investigate further the relationship between intensional polymorphism and
type classes [51, 27]. The primary difference between the two approaches appears to be a trade-
off between passing types, from which methods can be chosen based on intensional type analysis,
and passing the methods themselves. Passing types seems to give a better handle on the typing
properties of non-parametric operations (through the use of Typerec at the constructor level), but
it is not clear what are the exact costs and benefits of each approach.
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