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Abstract:
The dynamics of waves in deep water and in shallow water are

quite different. In shallow water, we have shown experimentally the
existence of a family of finite-amplitude waves that propagate
practically without change of form in shallow water of uniform
depth. The surface patterns of these waves are genuinely two-
dimensional, and periodic. The waves are easy to generate
experimentally, and they seem to be stable to perturbations. They
are described with reasonable accuracy by an 8-parameter family of
exact solutions of the Kadomtsev-Petviahsvili equation.

The situation is quite different in deep water, where much of
our knowledge is based on numerical simulations. An approximate
model of one-dimensional, nearly monochromatic waves in deep
water is the nonlinear Schr6dinger equation. We find that for certain
ranges of parameters in initial data, numerical solutions of the
equation are so unstable that long-time simulations of the equation
are not reproducible, and are quite unreliable. The equation is
integrable, and not chaotic, but numerical simulations of the equation
are chaotic. We call this "numerically induced chaos".
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Nonlinear Ocean Waves
Final report: 1/1/92 - 9/30/94

The scientific study of water waves dates back to the works of
Newton, the Bernoullis, and Euler, but the observations and
speculations of ancient mariners long preceded these works. The
mathematical problem of invisicid water waves was first posed
properly by Stokes (1845; see Stoker, 1957, p. 16). Stokes' equations
are nonlinear, but Stokes also linearized his equations and found
both linear and weakly nonlinear approximate solutions, for waves of
small amplitude. Nekrassov (1921) and Levi-Civita (1925) showed
that Stokes' approximate solutions represent exact solutions of the
nonlinear problem.

Stokes' small-amplitude solutions notwithstanding, nonlinearity
plays an essential role in the dynamics of almost all water waves. In
shallow water, waves have wavelengths longer than the mean depth
of the fluid, and nonlinearity leads either to wavebreaking (Airy,
1845) or to the formation of solitary waves (Russell, 1838, 1844). In
deep water, waves have wavelengths shorter than the mean depth of
the fluid, and Benjamin & Feir (1967) showed that the plane waves
studied by Stokes and others are subject to a nonlinear instability.
Thus, nonlinearity plays an essential role in the formation of almost
all waves that are observed in the ocean, no matter what their
wavelengths.

During the nearly three-year duration of this grant, four
principal investigators (Mark Ablowitz, James Curry, Joe Hammack,
Harvey Segur) and their colleagues have studied aspects of nonlinear
water waves, in both shallow and deep water. Phenomena in deep
water differ significantly from those in shallow water, and our
studies in these two areas are distinct. These studies combine
mathematical analysis, laboratory experiments, numerical
computation, and field observations. In this report, we summarize
our major published conclusions, and we outline briefly the current
status of work in progress.

A. Shallow water
1. Published work
The focus of our work has been on spatially periodic waves of
permanent form that appear to be stable in shallow water. A full
discussion on this work, which will appear in the Journal of Fluid
Mechanics, can be found in Appendix A of this report. Our main
conclusions are as follows.
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Laboratory experiments demonstrate the existence of a family of
gravity-induced, finite-amplitude water waves that propagate
practically without change of form in shallow water of uniform
depth. The surface patterns of these waves are genuinely two-
dimensional, and periodic. The basic template of a wave is
hexagonal, with six wave crests forming the boundary of a cell that
repeats itself over and over on the water's surface. Figure 1 shows
overhead photographs of two such hexagonal patterns. These waves
are easy to generate in the laboratory, and they seem to be stable to
perturbations.
-A nonlinear partial differential equation due to Kadomtsev &
Petviashvili (1970),

Dx(atu + 6 ui)u + a8 3U) + 3 ay2u = 0, (KP)

is known to describe approximately the evolution of waves in
shallow water. The equation is completely integrable, and Krichever
(1977) showed that it admits huge families of exact solutions,
including an eight-parameter family of solutions (called "genus 2
solutions") that are spatially periodic and have pelmanent form.
Segur & Finkel (1985) conjectured that this family of KP solutions
ought to describe all spatially periodic waves of permanent form in
shallow water of uniform depth. Our experimental results support
that conjecture. We have developed an algorithm to find the eight
parameters of the KP solution that best fits given wave-gauge
measurements for a spatially periodic wave of permanent form. For
every experiment we ran, the KP solution so obtained described the
measured waves with reasonable accuracy, even when the waves
violated some of the hypotheses underlying KP theory. As an
example, Figure 2 shows the contour lines of a KP solution of genus 2
superposed on the overhead photgraphs of an observed periodic
waves in shallow water. As a second example, Figure 3 shows
twenty seconds of data from an array of nine wave gauges,
measuring the surface displacements of a spatially periodic wave of
permanent form as it swept by the gauges. Also shown in Figure 3
are the corresponding surface displacements predicted by the KP
solution of genus 2 that best fits these data. Both figures show good
agreement everywhere, but not perfect agreement. The reader can
find more information about this study in Appendix A.
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2. Work in progress
(i) Obliquely reflected waves

The waves shown in Figures 1-3 were created with a specially
designed, complicated, segmented paddle at the Waterways
Experiment Station in Vicksburg, MI (see Scheffner, 1988, for a
description of the experimental facility there). The complexity of
this facility makes one wonder if the waves require so much
complexity for their generation, or if simpler mechanisms might also
produce spatially periodic waves of permanent form.

Figure 4 suggests another mechanism to produce these waves.
The figure is a mosaic of two simultaneous, overhead photographs of
the water's surface, illuminated by a light shining towards the
wavemaker. In the figure, a train of nonlinear plane waves (i.e., a
cnoidal wavetrain) entering the picture from the upper left, and
reflects obliquely off a straight vertical wall on the far right. The
incident and reflected waves interact to produce a two-dimensional
wave-pattern that is spatially periodic (over a limited spatial region)
and that propagates along the wall with little apparent change of
form. Because oblique reflections of plane waves are common, such a
mechanism would suggest that stationary, hexagonal wavepatterns
like those shown in Figures 1-3 might also be common.

With this mechanism, the incoming cnoidal wave should
determine the outgoing hexagonal wave, and one should be able to
deduce of the parameters of the outgoing wave from those of the
incoming wave. One would also like an estimate of how much
distance down the wall is required for this transformation from
(incoming) cnoidal waves to (outgoing) hexagonal waves.

Detailed analysis of the wave-records for the waves shown in
Figure 4 indicate that the hexagonal waves observed in the figure are
slowly evolving as they propagate along the wall. [This evolution is
not obvious in the figure, but it can be seen in the corresponding
wave-records.] Apparently the test section in the experiment shown
in the figure is not long enough for the waves to reach a steady state.
Plans to repeat these experiments in a different, simpler but longer
facility are now under way. (See (iv) below.)
(ii) Analysis of ocean data

The KP equation predicts the existence of spatially periodic
waves of permanent form in shallow water of uniform depth, and
laboratory experiments show reasonably good agreement with these
predictions. However, neither of these statements necessarily
implies that waves like these occur in real oceans. For this, one
needs actual oceanic measurements. Fortunately, oceanographers at
the U.S. Army Engineer Field Research Facility (FRF) in Duck N.C. have
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spent several years measuring, recording and cataloguing the waves
incident on their relatively flat beach. Among their data are
measurements from an array of eight gauges, located about 915 m.
offshore, in about 8 m. of water.

In July, 1994, we went to FRF in search of wave-records
showing spatially periodic waves of permanent form. Analysis of the
data is still in progress, but the first comparison is shown in Figure 5.
[We are grateful to Dr. Chuck Long of FRF for allowing us to use his
data for these comparisons.] The figure shows the surface
displacements measured at eight gauge locations, with about 100
seconds of data at each gauge. Also shown are the predictions of the
best KP solution for these data. The agreement is not perfect, and it
is worse than that for the laboratory experiments. In particular, the
KP solution seems to get the phase information about right, but it
consistently underestimates the peak amplitudes.

Even so, we find the results in Figure 5 quite encouraging.
These are actual ocean waves, measured in the field, with no
averaging of wave-records. Figure 5 shows that a single KP solution
of genus 2 simultaneously approximates the data from all eight
gauges with reasonable accuracy. The comparison suggests that a
comparatively simple model might explain some of the complex
wave patterns observed nearshore. This work is continuing.
(iii) Waves of genus 3

All of our work in shallow water to date has involved spatially
periodic waves of permanent form, approximated by KP solutions of
genus 2. However, the KP equation is integrable, so it also admits
more complicated solutions. In particular, Krichever (1977) showed
that the equation admits explicit, quasiperiodic solutions of any
(integer) genus. A solution of genus N represents a quasiperiodic
function with N independent phases. For N > 3, these solutions are
typically unsteady in every coordinate system, so they ought to
provide interesting predictions about the time-dependent dynamics
of nonlinearly interacting waves in shallow water.

In practice, a KP solution of genus N is defined by an N-fold,
nested Fourier series, and just calculating the solutions efficiently is
nontrivial. In fact, no general algorithm is known that enables one to
truncate the N-fold series to within a predetermined bound on the
truncation error. A more complicated problem is to infer the
parameters of the KP solution from given measurements of the wave.
Bobenko & Bordag (1989) have developed a numerically efficient
procedure to calculate these series for certain ranges of the
parameters. Whether their procedure works over the entire range of
parameters is much less clear. We have developed an alternative
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procedure for waves of genus 3, which is based on earlier work of
Dubrovin (1981), and which we are now implementing numerically.
The disadvantage of our procedure is that it is restricted to waves of
genus 1, 2 or 3, while that of Bobenko & Bordag is not so restricted.
Its advantages are that it provides rigorous bounds on truncation
errors, and that it computes the KP solution with as few terms as
possible. A more comprehensive comparison of the two procedures
awaits the completion of the numerical code for our procedure.
(iv) Experimental work

An 8-axis wavemaker control and power system has been
configured, purchased, and integrated. The system comprises:
(1) 8 brushless DC motor/drive packages, each capable of a
continuous torque of 14.2 oz.in. at speeds up to 175 rev/s; and
(2) a Programmable Multi-Axis Controller (PMAC) from Delta Tau
Systems. The controller is a state-of-the-art system that exploits DSP
(digital signal processor) technology to obtain a significant
improvement in motion-control over traditional servo-controllers.

Commanded motion profiles for each axis can be calculated
within the PMAC, which has a sophisticated real-time multi-tasking
operating system, or they can be loaded into its dual-ported memory
along a VME bus. The controller uses encoder feedback from each
motor to obtain the instantaneous position, velocity and acceleration
of each axis's motion. This information is used in on-the-fly
computations to command the motor for the next profile move.

The 8-axis motion control will be used to drive eight piston-
type wavemakers in an existing laboratory basin. (The mechanical
wavemaker apparatus is still under development.) The need for this
new facility is twofold. First, the large facility at the U.S. Army
Coastal Engineering Research Center (Vicksburg, MS) is no longer
available. Second, the high degree of control enables us to scale the
experiments down in size so that more flexibility is permitted in
planning and changing experiments (at much lower costs). Moreover,
the smaller scale will enable us to use an existing high-speed imaging
system that measures the time evolution of the water surface
topography. These measurements are particularly important for
investigating 2-D water-wave theories such as the KP equation.

The first set of experiments planned for the new wavemaker
system involve oblique reflections of plane waves, as discussed
above. The second set of experiments planned involve investigations
of KP solutions of genus 3, also discussed above. Because KP
solutions of genus 3 do not have permanent form, the surface
imaging measurements will be particularly useful for comparing with
KP theory.
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B. Deep water
1. Published work

Numerical simulations provide much of the current knowledge
of the dynamics of waves in deep water. Consequently, we have
focussed our attention to date on the reliability of numerical
simulations. Our work has appeared in five published papers:
(i) Ablowitz, M.J., Schober, C.M. and Herbst, B. Phys. Rev. Lett., 71,

pp. 2683-2686, 1993.
(ii) Ablowitz, M.J. and Schober, C.M. "Effective Chaos in the

Nonlinear Schr6dinger Equation" in Contemporary Mathematics
172, Eds. P.Kloeden and J.Palmer, AMS 1994.

(iii) Ablowitz, M.J. and Schober, C.M. "Hamiltonian Integrators for
the Nonlinear Schroedinger Equation"in Computational Physics,
Ed. J. Potvin, 1994.

(iv) Ablowitz, M.J. and Schober, C.M. "Numerical Stochasticity,
Hamiltonian Integrators and the Nonlinear Schroedinger

Equation", in the Three Dimensional Dynamical Systems
Workshop, Ed. Dr.Kandrup, N. Y. Academy of Sciences, 1993.

(v) Ablowitz, M.J. and C.M. Schober, "Homoclinic Manifolds and
Numerical Chaos in the Nonlinear Schroedinger Equation", in
Math, and Computers in Simulation on Nonlinear Wavelike
E Eds. Vichnevelsky, Taha, Newel. Elsevier Science, 1993.

The first of these is included in this report as Appendix B. Our main
results are the following.
- The (focussing) nonlinear Schrodinger equation in one spatial
dimension,

iatA + ax2A + 2 IAI2A = 0, (NLS)

arises in several physical contexts, including as an approximate
evolution equation for the complex envelope of one-dimensional,
nearly monochromatic waves in deep water (Zakharov, 1968). The
equation is known to be integrable (Zakharov & Shabat, 1972), so its
solutions are not chaotic.
- Even so, for certain parameter ranges of the intial data, small
errors on the order of roundoff (i.e., 10-16) grow rapidly in numerical
simulations and saturate at values comparable to the main wave.
Because NLS is integrable, it admits several constants of motion, and
these constants are preserved to a very high accuracy during the
simulations. Thus, the growth of these numerical errors cannot be
attributed to standard problems like inadequate numerical resolution
or poor time-integration strategies.
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* Instead, the numerical errors grow because of a phase instability in
the numerical simulations. The instability is associated with
homoclinic solutions nearby the computed solution. Similar
instabilities occur in other integrable equations that admit homoclinic
solutions (e.g., focussing mKdV, sine-Gordon), but not in integrable
equations that admit no homoclinic solutions (e.g., defocussing NLS,
defocussing mKdV, KdV, KP).
- The instability leads to chaotic behaviour in the numerical
simulations, so one observes "numerically induced chaos". In other
words, even if NLS itself is not chaotic, a perturbed NLS equation is
chaotic, and tiny numerical errors produce enough chaos to
completely change the character of the solution. This example
demonstrates the danger of inferring that a Hamiltonian dynamical
system is chaotic on the basis of numerical simulations of the system.
0 To relate these results to problems in water waves, we note that
the sign difference between focussing and defocussing NLS is the sign
difference that determines whether or not the Benjamin-Feir
instability is operative. Thus, we would expect numerically-induced
chaos in numerical simulations of waves in deep water, but not for
waves in shallow water.

2. Work in progress
For focussing NLS, by changing a parameter (M) in the initial

data we can excite an arbitrary number of linearly unstable modes.
When M=2-3 we have observed that at intermediate values of the
mesh size, the standard numerical schemes break down and develop
a serious spatial and temporal chaotic response (Herbst & Ablowitz,
1989, Ablowitz & Herbst, 1993). However, we have developed an
algorithm that is based upon the Inverse Scattering Transform and
that we call the integrable discrete NLS equation or IDNLS, which is
fast and effective. In this parameter regime the IDNLS scheme does
not show any signs of the joint spatial-temporal chaos that exists in
the standard schemes. When the mesh is sufficiently refined, the
standard schemes eventually converge to the same values as those
obtained via the IDNLS scheme, although they require considerably
finer mesh size.

When the number of unstable modes is larger, e.g. M=6-8, we
have found that the numerical simulations over moderate time
intervals are extremely sensitive. It is difficult to compute accurate
solutions even though we use an extremely refined mesh and our
numerical algorithm accurately preserves the underlying constants
of motion (Ablowitz, Herbst & Schober, 1993). We find that
numerical instabilities and chaos are excited even by tiny errors on
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the order of roundoff. The reason is that the initial data in this
parameter regime is extremely close to the homoclinic manifolds of
the N'LS equation. In order to show this, one needs to analyze
carefully the inverse spectral theory associated with the NLS
equation (Ablowitz & Schober, 1993). Perturbations in the
neighborhood of homoclinic manifolds allows frequent homoclinic
crossings and the ensuing chaotic dynamics. On the other hand,
when we consider the defocusing NLS equation, theory tells us that
there is no linear instability of the basic wavetrain and there are no
associated homoclinic manifolds. In this case our numerical
algorithms work well and there is no indication of a chaotic response.
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Figure Captions
Figure 1. Mosaic of two overhead photographs, showing surface
patterns of waves in shallow water. Experiment: (a) KP400203-
300303; (b) KP220203-110403. Each of these wave patterns has a
basic hexagonal template; one such template is shown in Figure 1 a.
Figure 2. For experiment KP220203-110403, contour lines of the
best KP solution are superimposed on the photograph shown in
Figure lb. The direction of propagation of the entire pattern is also
shown.
Figure 3. Detailed comparison of measured wave records with the
best KP solution, for 20 seconds of data from experiment KP220203-
110403.
Figure 4. Mosaic of two overhead photographs, showing a cnoidal
wavetrain from the upper left impinging obliquely on a vertical wall
at the far right. The incident and reflected waves interact to produce
a hexagonal wave pattern that has nearly permanent form as it
propagates along the wall towards the bottom of the photo.
Figure 5. This figure shows 105 seconds of data, measured on 23
September, 1990 at 8 wave gauges situated in 8 m. of water offshore
of FRF in Duck, N.C. Also shown superposed on these data are the
predictions of a KP solution of genus 2. The KP solution was chosen
to fit the data, and this solution is compared to the data from all 8
gauges simulatneously.
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Appendix A

Two-dimensional periodic waves in shallow water
Part 2: Asymmetric waves

by Joe Hammack, Daryl McCallister,
Norman Scheffner, and Harvey Segur

to appear in the Journal of Fluid Mechanics

11



Two-dimensional periodic waves in shallow water
Part 2: Asymmetric waves
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Abstract:
We demonstrate experimentally the existence of a family of

gravity-induced, finite-amplitude water waves that propagate
practically without change of form in shallow water of uniform
depth. The surface patterns of these waves are genuinely two-
dimensional, and periodic. The basic template of a wave is
hexagonal, but it need not be symmetric about the direction of
propagation, as required in our previous studies (e.g., Hammack e t
al, 1989). Like the symmetric waves in earlier studies, the
asymmetric waves studied here are easy to generate, they seem to
be stable to perturbations, and their amplitudes need not be small.
The Kadomtsev-Petviashvili (KP) equation is known to describe
approximately the evolution of waves in shallow water, and an eight-
parameter family of exact solutions of this equation ought to describe
almost all spatially periodic waves of permanent form. We present
an algorithm to obtain the eight parameters from wave-gauge
measurements. The resulting KP solutions are observed to describe
the measured waves with reasonable accuracy, even outside the
putative range of validity of the KP model.
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1. Introduction:
An earlier paper by Hammack, Scheffner & Segur (1989,

hereinafter called Part 1) reported an experimental study of gravity-
induced waves that propagate practically without change of form in
shallow water of uniform depth. Those waves had finite amplitudes,
and their surface patterns were periodic in two spatial dimensions
and in time. The spatial pattern of the waves was a hexagon that
was symmetric about the direction of wave propagation. The waves
were predicted with reasonable accuracy by a family of exact
solutions of an equation due to Kadomtsev and Petviashvili (1970):

(ft + 6 ffx + fxxx)x + 3fyy = 0, (KP)

where subscripts denote partial derivatives. In a second set of
experiments (Hammack, Scheffner & Segur, 1991), more effort was
made to reduce depth-variations in the laboratory basin, and the
theoretical-experimental agreement improved further. Both of these
studies were preceded by Peregrine (1985), who also observed
hexagon-like waves of permanent form but who argued against that
interpretation.

Within the KP equation, almost all real-valued, spatially
periodic waves of permanent form are characterized by a family of
exact solutions with eight free parameters: six dynamic parameters
associated with wavelengths and wave amplitudes, plus two
arbitrary phases (cf. Segur & Finkel, 1985). Typically, these waves
have asymmetric surface patterns. The two experimental papers
cited above tested only a subset of these waves, called symmetric
waves, which have only (3 + 2) parameters. Figure 1 shows
photographs of both symmetric and asymmetric water waves.

In this paper, we describe an experimental study of two-
dimensional, spatially periodic, asymmetric waves that propagate
practically without change of form in shallow water of uniform
depth. [In the terminology used in this paper, surface waves are
either "one-dimensional" or "two-dimensional", depending on the
nature of their surface patterns. The velocity fields associated with
the waves are one dimension higher.] Our three main results for
asymmetric waves are consistent with our earlier results for
symmetric waves:
1) In shallow water of uniform depth, there exist spatially periodic
waves with finite amplitudes and fully two-dimensional surface
patterns. These waves are easy to generate, they propagate with
nearly permanent form, and they seem to be stable with respect to
perturbations in initial conditions and to weak external forcing (e.g.,
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due to viscosity or to variations in bottom depth). The amplitudes of
the waves need not be small.
2) The basic template of the two-dimensional wave pattern is a six-
sided figure (i.e., a hexagon), with a broad, flat trough surrounded by
six narrow wave crests (e.g., see Figure 1). Wave crests opposite
each other in this hexagon are parallel, they are equal in length and
in wave amplitude, and they can be identified with each other in
order to reproduce the periodic pattern.
3) Over the range of parameter values that we tested, these water
waves are predicted with reasonable accuracy by the full, eight-
parameter family of KP solutions of genus 2. This range extends well
beyond the putative range of validity of the KP equation as an
approximate model of waves in shallow water (i.e., beyond the range
of nearly one-dimensional waves of small amplitude in shallow
water). In this sense, the KP model provides a convenient means to
learn about hexagonal waves of permanent form, but their
mathematical existence and stability seem to be independent of the
KP model.

Our primary objective in this study is to establish experimentally
the existence and properties of asymmetric hexagonal waves of
permanent form in shallow water of uniform depth. To this end, we
present the results of fifteen experiments, which exhibit some of the
variety of waves of this form. Our secondary objective is to
determine how accurately the full, eight-parameter family of KP
solutions of genus 2 describe the measured waves. To this end, we
present an algorithm that uses measurements from an array of
wave-gauges to obtain the eight parameters of the KP solution that
"best" fit the ineasured waves. By design, the algorithm uses only
wave-gauge measurements (ignoring the known data used to
program the wavemaker) so that it can be applied to gauge-array
data in more complex wave environments in the laboratory and in
the field. Fifteen experiments are far too few to determine the
parameter range for KP theory to be applicable, and our experiments
were not chosen with that objective in mind. In fact, most of our
experiments have parameters that lie outside the putative range of
validity of KP theory. (Some of our waves have near-beaking heights
and strongly two-dimensional surface patterns.) We reiterate our
belief that the KP model is convenient but not essential to describe
periodic waves of permanent form in shallow water.

A summary of the contents of this paper is as follows. In §2, we
review the main ideas needed to compare KP solutions of genus 2
with experimental data on waves in shallow water. We describe
experimental procedures and results in §3. The procedures are
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similar to those used in Part 1, but the experimental data here are
more complicated. The main theoretical problem addressed in this
paper is the following. Given wave-gauge data from a particular
experiment, find the eight parameters of the KP solution of genus 2
that best fits these data. We present an algorithm to solve this
problem in an Appendix to the paper, and we use the algorithm in §4
to compare KP theory with the results of fifteen different
experiments. In a sense, our procedure can be viewed as a
complicated form of surface-fitting (i.e., two-dimensional curve-
fitting), with no demonstrated predictive power. However, we
recorded more data than we used to find the KP solution, and in §4
we also test the accuracy of some concrete predictions of the theory.
The hexagonal waves studied in this paper and in part I seem to be
the simplest nontrivial waves of permanent form that are periodic
and two-dimensional in shallow water. This identification suggests
that they ought to occur frequently in natural oceanic settings. In §5,
we present some observations of oceanic waves similar to those
discussed in this paper.

2. Review of KP theory

The KP equation,

(ft + 6 ffx + fxxx)x + 3fyy = 0, (KP)

describes approximately the slow evolution of gravity-induced
waves on water of uniform depth when the waves are assumed:
(i) to have horizontal lengthscales much longer than the fluid depth
(this assumption is also called "shallow water"); (ii) to propagate
primarily in one direction (the x-direction), with only weak
variations in the transverse y-direction; and (iii) to have small-to-
moderate amplitudes. The KP equation is not well-posed as it stands
(f 0 and f = t both solve KP, and they coincide at t = 0), and one
must interpret {Dx-1) in order to integrate (KP) in time. All of the KP
solutions discussed in this paper satisfy a constraint:

f f(x, y, t) dx =0, (1)

and this constraint eliminates the ambiguity of interpreting {[x-1.
Ablowitz and Villarroel (1991) studied this and related constraints.
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A detailed derivation of the KP equation can be found in Segur
& Finkel (1985), or elsewhere. Briefly, one begins with Stokes'
(1847) equations for surface waves on an inviscid, incompressible
fluid resting on a horizontal bed under a constant gravitational force,
g. Imposing the three assumptions above yields at leading order the
linear, one-dimensional wave equation, whose solution consists of
left-going and right-going waves, each travelling with speed fgh,
where h is the mean depth of the fluid. Each set of waves, of course,
has permanent form at this order (i.e., for short times). Over longer
times, in a coordinate system moving with (say) the right-going
waves, one observes that the right-going waves evolve slowly, due to
the three small effects that were neglected at leading order. The last
three terms in the KP equation represent the effect on this slow
evolution of (i) weak nonlinearity, (ii) weak dispersion, and (iii) weak
two-dimensionality.

Let (X, Y, Z) represent spatial coordinates in a fixed laboratory
frame with Z vertical, let T be time, let ' (X, Y, T) measure the
elevation of the fluid surface above its mean level, and let E * 1 be a
formal small parameter related to the assumptions above. The
scaled variables in (KP) can be related to the laboratory coordinates
as follows:

x =fX -ighT)th, y = eYh,
(2)

t = E2X/6h, f = 3ern2h + O(E2 ).

This change of coordinates can be performed in more than one way;
the choice used here is slightly unconventional, and it differs from
that in Part 1: ordinarily one sets t = e3 2ghT/6h. Either choice leads
to a KP equation, but the solution must be interpreted slightly
differently in the two cases. The current choice is more natural for
our experimental configuration, but the main motivation for this
choice is that it simplifies the surface-fitting algorithm presented in
the Appendix.

As noted above, the KP equation is an approximate model of
water waves for C • 1. In order to compare with definite
experiments, we set e = 1 in this paper. To justify this prescription
(e=1), we note that the KP equation is invariant under the scaling:

x -+ ax, y -+ a 2y, t -- a 3t, f --+ a 2f. (3)
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Applying this scaling to (2) without the 0(e2 ) terms, with a 2 = e,
amounts to setting e = I there. As a consequence, some free
parameters in the solutions described below must be small for the
validity of the approximation.

Krichever (1977) showed that the KP equation admits a huge
family of exact solutions in the form

f(x, y, t) = 2 a. 2 1n 0, (4)

where 8 is a Riemann theta function of genus N. Here N identifies
the number of independent phases in the solution, and f is a quasi-
periodic function of these N phases. (Recall that "quasi-periodic"
means that f is periodic in each of the N phases, if the other N-i
phases are held fixed.) In the simplest case, N = 1 and (4)
reproduces the familiar cnoidal wave (e.g., Wiegel, 1960). The
solutions of interest in this paper have N = 2, and 8 is given by a
double Fourier series:

O(91, 4q; B)= • exPlJ(m2b + 2mnbk + n2(bK2+ d)) + i(m4i + n2)], (5)

where the phases * 1 and *2 are given by

j = jx + vjy + Cjt + Ol(j= 1,2) (6)

( 1, �0 2 ) are arbitrary phase constants, and the real-valued

parameters {b, X, d), which define the elements of the Riemann
matrix (see Segur and Finkel, 1985), satisfy the following constraints:

-00 < b< 0, 0<)L< 1, -co < d<: b(1 -)L2). (7)

Actually, the constraint on X. can be tightened to [0 < X < 1/2]. Even

so, we use (7) because it allows us to assume that A 1/It2 Ž 0, which
simplifies the algorithm in the Appendix. For solutions of genus 2,
formal asymptotic validity of the KP model of water waves requires
the limit ({jj -4 0, with (vj/gj 2 ) and (COj/Iuj 3 ) finite). However, we will
demonstrate reasonable agreement between theory and experiment
even for values of ({tP, 1t2) that are not very small.

The eight free parameters of a real-valued KP solution of genus
2 are {b, X, d, 91, It2, v2; 01, 021. As noted by Dubrovin (1981) and by
Segur & Finkel (1985), the parameters can be selected as follows:
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(i) choose [b, X, d) to satisfy (7);
(ii) choose p.2 as an arbitrary positive number, and v2 as an arbitrary
real number;
(iii) choose (gl/412) so that a sixth-order polynomial in (l91/492) is
positive (the polynomial can be found in Dubrovin (1981) or in Segur
& Finkel (1985)); then the square root of the polynomial yields vj;

(iv) once v i is known, then onl and (02 can be found explicitly in terms
of (91, 112);
(v) choose {0i, 02) as arbitrary real numbers, but since they are
phase constants, it is sufficient to permit only

0 < Oj < 2z. Q=,(j =,2)

Every such choice of parameters yields a KP solution of genus 2
that is real-valued, that is periodic in two spatial directions and in
time, and that propagates without change in form. The velocity of
propagation (in KP coordinates) is given by

d& = V0-2 - V2_01 dy = •0• - 92(01
dt 9t1V2 - 2VI' dt p 2VI - 91 V2  (8)

We obtain KP solutions using a FORTRAN code named DELTA. The
code is available to interested readers through an anonymous ftp
site; see Appendix A for details.

Symmetric solutions of genus 2 are obtained by imposing three
additional restrictions on these parameters:

d = b(1-42), (9.1/9 2) = 1, V2 = -Vl. (9)

It follows from these that M 2 = co1, and that the KP solution is
invariant under the transformation (y -+ -y, x -+ x, t -+ t). Among the
KP solutions of genus 2, symmetric waves are special in at least three
ways:
(i) a symmetric wave propagates purely in the x-direction, because
dy/dt = 0 in (8);
(ii) a symmetric wave is specified by only (3+2) free parameters,
instead of by (6+2), because of (9); and
(iii) a symmetric wave is periodic in the x- and y-directions.
Symmetric solutions were the main focus of the work in Part 1, but
not here.
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3. Experimental program & typical results
The experimental program was similar to that described in

Part 1 and identical to that described briefly in Hammack, Scheffner
& Segur (1991). Experiments were performed at the Coastal
Engineering Research Center (CERC), U.S. Army Engineer Waterways
Experiment Station, Vicksburg MS. We used a basin, whose planform
is shown schem "cally in Figure 2, that comprised a uniform-depth
section 12.55m long and 26.52m wide, and a section with a gently
sloping (1:30) beach that absorbed most of the incident wave energy.
In the uniform-depth section, the still water depth was 20cm + 3mm.

A segmented wavemaker with 58 piston-type paddles, each
45.7 cm wide, spanned the wide wall opposite the beach. The
wavemaker was described in detail by Scheffner (1988), and the
wavemaker motion was described in Part 1. Briefly, the wavemaker
was programmed to generate a superposition of two cnoidal
wavetrains with different directions of propagation. In the current
experiments, we allowed the wavelengths and/or amplitudes of the
two cnoidal waves to differ, so that the resulting two-dimensional
wave patterns would be asymmetric. The nomenclature of our
experiments, e.g. KPaabbcc-AABBCC, is based on programming
parameters for the wavemaker. The aa and AA represent the phase
lags in degrees between adjacent paddies of the segmented
wavemaker for each of the cnoidal wavetrains; the bb and BB are the
wavelengths in meters for each of the cnoidal wavetrains; and the cc
and CC are crest amplitudes (i.e., maximum elevations above the
mean water level) in cms for each of the cnoidal wavetrains.
Ordinarily, the wavelengths and amplitudes of the two-dimensional
wave patterns that resulted from these inputs differed slightly from
these values. A lOs-ramp was applied to the start of each command
signal driving the wavemaker to protect the mechanical system from
sudden starts. Hence, there is a 10s transient period at each site in
the basin before the programmed waves arrived.

Our primary means of wave measurement was a linear
array of nine wave gauges that was Darallel to, and 8m from, the
wavemaker astride the basin centerline. (See Figure 2.) The nine
capacitance-type gauges, spaced at 2m intervals, measured the
elevation of the water surface. A second array of similar gauges was
placed normal to the wavemaker along the basin centerline. It
contained eight gauges (one shared with the first array) in the
uniform-depth section; seven spaced at 0.5m intervals beginning
6.5m from the wavemaker, and one 2m from the wavemaker. (This
array also contained two gauges in the sloping-beach section; data
from these gauges are not reported here.) The wave gauges were
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calibrated and recording began in a quiescent basin immediately
prior to starting the wavemaker. Continuous-time signals for lOOs
were obtained from all 18 gauges; these signals were low-pass
filtered using an 8-pole butterworth filter with a 10Hz cutoff, and
then digitized to produce 25Hz discrete-time data. The algorithm to
fit KP solutions to wave data, described in detail in Appendix B, is
based solely on data from the nine-gauge array; i.e., we make no use
of the wavemaker parameters, which are given in the experiment
label. As stated earlier, the algorithm was designed in this way so
that it could also be used for waves of unknown origin. Data from
the second array are used in §4 to test predictions of the fitted
solutions.

Wavefields were also measured qualitatively using two
Hasselblad cameras, placed 6m apart astride the basin centerline and
7m above the nine-gauge array. The cameras took simultaneous
overlapping pictures of the water surface in a darkened room using
four 880 W-s strobe lights located on the beach and pointing toward
the wavemaker. (The wave gauges were removed from the basin
during photography.) The two photographs were then combined to
form a mosaic, like those in Figure 1. All photographs were printed
so as to maintain the same horizontal scale, which is indicated by the
(+) marks painted on the basin floor at 1 m intervals. The small, but
measurable, differences in spacing between (+) marks apparent in
Figure 1 resulted from optical distortions by ýhe waves, which acted
like moving lenses. This distortion prevented us from using the
overhead photographs to measure spatial wavelengths
quantitatively.

Fifteen experiments on asymmetric waves were conducted in
the set under discussion. In each experiment, a two-dimensional,
spatially periodic wave pattern was created at one end of the tank.
The entire wave pattern propagated across the tank with nearly
permanent form, it was recorded as it swept by the array of gauges,
and then it was mostly absorbed on the sloping beach.

Figure 1 shows clear photographic evidence that two-
dimensional, approximately periodic waves exist in shallow water.
Photographs of three different wave patterns, corresponding to three
experiments, are shown. Each wave pattern propagates from top to
bottom in the photos; the front of each wave crest appears bright,
while the back appears dark. Some of the bright-dark boundaries in
Figure la are particularly sharp, indicating that these wave crests
are particularly steep, and close to breaking. Close inspection of
Figure la also shows that on the front faces of these steep waves are
capillary waves that appear to be radiating from the crests, as
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expected for near-breaking waves. Thus, even though the KP
equation is asymptotically valid only for waves of small amplitude,
Figure la clearly demonstrates that two-dimensional, approximately
periodic waves exist even at large amplitudes. The existence and
stability of these waves seem to persist well beyond the putative
range of validity of the KP model.

The wave pattern in Figure l a is symmetric, like those discussed
in Part 1, and the pattern propagates directly downward in the
photograph, i.e. in the x-direction. The wave pattern in Figure lb is
slightly asymmetric, and that in Figure Ic is strongly asymmetric.
Asymmetric waves propagate in directions oblique to the x-direction.
A feature common to all of the waves in all of our experiments,
including those in Figure 1, is the basic hexagonal shape of the wave
pattern. The basic template has a broad, flat trough surrounded by
six relatively narrow wave crests. One such hexagon is drawn in
Figure lb. The wave crests opposite each other in this hexagon are
parallel, they are equal in length and in wave amplitude, and they
can be identified with each other in order to reproduce the periodic
pattern, i.e., one can tile the plane with copies of this basic hexagon.

Figure 3 shows typical data obtained from the nine-gauge
array for three experiments on asymmetric waves, including two
that were photographed in Figures lb,c. (Note that the waves shown
in Figures lb,c represent about 3 seconds of data in Figures 3a,b.)
The 100s records show an initially quiescent water level and the
subsequent arrival of the generated wave pattern, whose first 10s
exhibit a transient caused by the ramped start of the wavemaker.
Data taken during these intervals are excluded in subsequent
analysis. (We note also that some wave reflection undoubtedly
occurs on the 1:30 sloping beach, leading to small standing-wave
components in the wave records. No attempt has been made to
remove reflected waves from the data.) At first glance, data at each
gauge site may appear to be periodic, especially in Figure 3b;
however, careful examination shows that the periodicity is not exact,
which is characteristic of quasi-periodic waves.

Figure 4 shows the amplitude-frequency spectrum of each
of the wave records shown in Figure 3b. [The spectral amplitude is
the modulus of the fast Fourier transform, or FFT, of the data. For
convenience, we will refer to these amplitudes as FFTs.] To save
space, we omit the spectra for the other experiments shown in Figure
3, but these spectra are qualitatively similar to those shown here.
Figure 4 shows clearly the characteristic signatures of two-
dimensional, nonlinear, two-phase waves: each of the three FFTs
shows two dominant frequencies, plus their harmonics and some
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sum- and difference-frequencies. As one moves from the FFT of one
wave record to another within each experiment, the amount of
energy (i.e., square of the spectral amplitude) at each frequency
changes, but the total energy is always distributed among the same
two frequencies, plus their harmonics. In this way, the FFTs for each
experiment show that all of the gauges measured one-dimensional
slices through the same two-dimensional wave pattern. The
photographs in Figures lb,c show clearly the spatial pattern of two-
dimensional, two-phase waves, so one expects temporal FFTs like
those in Figure 4. However, based solely on the FFTs of wave-gauge
data we could infer the following information directly:

(i) the wave pattern has two phases (or possibly more than
two in degenerate cases, but with only two independent
frequencies among the phases);

(ii) the wave pattern is nonlinear, because energies at
harmonics as well as at the sum- and difference-
frequencies are significant.

The fact that the same two frequencies are measured at every gauge,
with different energy levels, suggests that the wave pattern might be
two-dimensional, but it does not establish the two-dimensionality
conclusively. If the wave pattern is genuinely two-dimensional with
exactly two phases, then necessarily it is stationary in some
uniformly translating coordinate system; i.e., it must be a wave of
permanent form.

Figure 4 also lists the numerical values of the two fundamental
frequencies measured in the experiment. The two-dimensional wave
patterns shown in Figure 1 are periodic, but the one-dimensional
wave records in Figure 3 are not periodic unless these two
frequencies are rationally related. Since the frequencies listed in
Figure 4 were obtained numerically, they are necessarily rationally
related. However, for experiment KP220203-110403, the period
implied by the two frequencies exceeds 600 seconds, so this exact
periodicity is irrelevant for the 100 seconds of recorded data, which
are effectively quasi-periodic.

We note finally that quasi-periodic functions also arise in the
theory of dynamical systems (e.g., Guckenheimer & Holmes, 1983),
where quasi-periodic behaviour often suggests incipient instability
and chaos (Piexoto, 1962). No such instability is suggested from the
quasi-periodicity seen in Figure 3. These data are quasi-periodic only
because the data are taken from a doubly periodic function, along a
line at an irrational angle from a direction of periodicity. The water
waves being measured seem to be remarkably stable.
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4. Comparison of theory and experiment
In Appendix B, we present an algorithm to find the KP solution of

genus 2 that best fits experimental data like those shown in Figure 3.
Here is a brief summary of the algorithm. Recall from §2 that a KP
solution of genus 2 is specified by eight real-valued parameters.
Four of these (91, 92, vi, V2) are wavenumbers that determine the
overall spatial structure of the wave pattern. Two of them are easy
to find: (91, 92) are proportional to the two frequencies identified in
Figure 4. Once the spatial structure is known, then one varies (b, d,
%) in order to match (as closely as possible) the observed maximum
and minimum amplitudes, and the known spatial structure. Then
one determines the two phase constants (O1, 42) by minimizing the
rms (or L2 ) error for the entire wave pattern. Finally, with good
approximations to the eight KP parameters determined in this way,
one selects final values for all eight parameters by minimizing the
rms-error for the wave pattern again. (Thus, the KP solution found
in this way is "best" in the sense of least rms-error.)

This algorithm was used to find the best KP solution for each of
fifteen experiments with asymmetric wave patterns. We begin our
discussion of results with the question: How accurately does the best
KP solution represent the data used to select that solution? For
conciseness, we concentrate on the three experiments shown in
Figure 3.
a) Surface-fitting

For the experiment shown in Figures lb and 3a, Figure 5 shows a
comparison between the measured data with the best KP solution at
the same locations, for 20 seconds of data, and for all of the gauges in
the nine-gauge array. (Most of our comparisons begin 30 seconds
into the recorded data in order to exclude the quiescent and
transient intervals, and last for 20 seconds. The agreement between
theory and experiment is largely independent of when we start the
comparison and how long we compare.) The agreement between KP
theory and experimental data in Figure 5 is perfect nowhere, but it is
fairly good everywhere. The KP solution captures the overall
structure of the wave pattern; it describes the phase information,
such as zero-crossings, particularly well. Note especially the
amplitudes of the waves in Figure 5. From Figure 3, the maximum
crest-to-trough height (H) for this wave pattern is 11.23 cm., which
corresponds to a wave height-to-depth ratio (H/h) of 0.56. Peregrine
(1983) discusses criteria for wave-breaking in shallow water (e.g.,
H/h = 0.77 at breaking). The wave pattern shown here is not
breaking, but it is not far from the range of breaking waves;
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certainly the wave amplitudes are not especially small. This result is
similar to that found in Part 1 for symmetric waves: KP theory
agrees well with experimental measurements well outside its
putative range of validity.

Figure 6 shows another comparison of theory and experiment,
for the wave pattern shown in Figures Ic and 3b. This pattern is
strongly asymmetric, but again the best KP solution gives good
agreement everywhere. Figure 3b shows that these waves are
almost periodic, with an almost-period of about 20 seconds. Figure 6
shows that the KP solution has essentially the same behaviour. [In
fact, the comparison-time of 20 seconds was chosen to contain the
almost-period of these waves.) Because this experiment was also
photographed (in Figure Ic), we can compare the KP solution with
the photograph as well. In Figure 7, contour lines of the best KP
solution are superimposed on the photograph. This comparison
contains different information than that in Figure 6: X is held fixed
while T and Y vary in Figure 6, whereas T is held fixed while X and Y
vary in Figure 7. Moreover, the photograph was not used to find the
KP solution, so Figure 7 is not surface-fitting. Even so, Figure 7 leads
to a conclusion similar to that obtained from Figures 5 and 6: the best
KP solution describes the observed wave pattern with reasonable
accuracy everywhere.

The last detailed comparison, for KP300102-30.803, has been
included because the wave records from gauges 3 and 7 showed a
slow increase in amplitude over the course of this experiment, as
seen in Figure 3c. While it is clear that the data in Figure 3b are
almost periodic, this is much less clear in Figure 3c, so this
experiment provides a strong test of the theory. Figure 8a shows a
comparison of the measured wave records with the best KP solution,
for 20 seconds of data starting at 30 seconds. These waves have
smaller amplitudes than those in other experiments in this series, so
the waves are more nearly sinusoidal, and the agreement between
theory and experiment is slightly better than average. Note that the
wave amplitudes for gauges 3 and 7 increase, even in this 20-second
interval. Note also that for gauge 3, the KP solution captures this
behaviour.

Figure 8b shows a second comparison for the same experiment,
KP300102-30-803, starting at 70 seconds. It is important to note
that the KP solution used here is the same KP solution as that in
Figure 8a, except that the two phase variables, 01 and 02, were re-
optimized for the new data, which were measured during a different
time interval. In other words, Figure 8b is not a surface-fit; it is a
prediction of the theory, based on the surface-fit shown in Figure 8a.
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Figure 3c shows that the data measured at 20 seconds differ
considerably from those measured at 70 seconds, but the same KP
solution describes both data sets with reasonable accuracy. This
good agreement implies that the data in Figure 3c are almost
periodic, but the almost-period is so much longer than the 80
seconds of data that this feature is not apparent in the measured
data. We mention that we also applied the optimization algorithm to
the data in Figure 8b, to find the best KP solution for those data. The
KP solution found was nearly identical with that obtained from the
data in Figure 8a, except for changes in 01 and 02.
b) Analysis of errors

Table I summarizes the comparisons between KP theory and
experiments for fifteen experiments involving asymmetric waves.
The parameters of the best KP solutions are listed, as well as the
maximum and minimum measured wave amplitudes, and two
measures of error, which we now define.

For a given experiment, let u(x, y, t) denote the measured wave
amplitude at location (x, y, t), normalized as in (2), and let f(x, y, t)
denote the value of the best KP solution at the same location. One
measure of their discrepancy is a, where

±J [f(x,yt) - u(x,y,t)12dx

a2 
0

• [u(x,y,t)]2dx (10)

the sum is taken over the wave records from the nine-gauge array,
and L is the length of the measured wave records. (We generally
used 20 seconds of data, but varying the length of the data string did
not significantly affect a.) A second measure of error is fmax/Umax,
the ratio of maximum wave amplitudes according to theory and
experiment. (Step 4 of the optimization algorithm effectively
minimizes (l-fmaxlUmax) 2 , but then the last step of the algorithm
usually forces it away from its minimal value, leaving fmax/Umax as a
nontrivial measure of error.)

According to Table 1, the KP model along with the optimization
algorithm consistently underpredicted the maximum wave
amplitude. This error was more serious in some experiments than in
others, but the model predicted a maximum amplitude that was too
small in every experiment. This consistent underprediction was
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apparently caused by using the norm in (10). In Part 1 we used a
different norm, and matched the maximum amplitudes well. Beyond
this simple observation, we found no striking trends in the data. For
all fifteen experiments, a stayed within a fairly narrow range:
0.235 < a < 0.402, with a mean value of E(a) = 0.302. (For
comparison, note that the trivial theory, in which f(x, y, t) a 0, gives
0=1 in (10).) We do not suggest from this relatively narrow range of
values that the theory never breaks down, but only that our
experiments did not demonstrate the breakdown.

As mentioned in §2, the KP model of water waves is based
on three assumptions: (i) moderate wave amplitudes; (ii) shallow
water; and (iii) nearly one-dimensional wave propagation. An
important question is how a depends on each of these three effects.
Consider first the wave amplitudes, which we characterize by the
maximum crest-to-trough height, divided by the undisturbed water
depth, which was 20 cm in these experiments. (This choice is based
on the columns entitled Tlmax and 7imin in Table 1, and is somewhat
arbitrary. We also tried using r7m ax, with similar results. Using a,
instead of 02 or some other measure of error, is also arbitrary.) For
the jth experiment, let

Aj := [Tmax, j - Timin. jJ/h. (11)

From Table 1, 0.341 < Aj < 0.561, with a mean value, E(A) = 0.492.
The correlation coefficient between A and Y in our fifteen
experiments is

15

p(A, a) := 15 [Aj=E(A)]*[o;jE(a) = 0.39.
[1: [Aj_E(A)]2,1 [oGj.E(oa)]2} 1/2 (12)

This positive correlation shows that KP theory becomes less accurate
as wave amplitudes increase, as expected.

It remains to test the assumptions of shallow water, and of
nearly one-dimensional waves. Unfortunately, our data set (based
on fifteen experiments) was too small to carry out these tests
conclusively.
c) Predictions

Knowing that the KP model provides reasonably accurate
descriptions of the measured wavefields, we now turn to other
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comparisons between theory and experiments. For each experiment,
the best KP solution is now fixed, with no remaining free parameters;
hence, the comparisons that follow involve predictions of the theory,
rather than just surface-fitting.

A fundamental assertion in this paper is that the waves under
study propagate with nearly permanent form. Yet data from the
nine-gauge array cannot test this assertion, because all nine gauges
are the same distance from the wavemaker. Limited insight into
possible wave evolution is provided by the second gauge array,
which was placed perpendicular to the first array (see Figure 2). We
show next that to within our experimental error, the waves did not
evolve significantly over the 7.5 m span of the second array. Again,
for simplicity, we concentrate on the three experiments shown in
Figure 3.

For each experiment, the second gauge-array provides eight
wave records like those in Figure 3. Figure 9 shows the temporal FFT
of each of the seven new wave records for experiment KP220203-
110403, featured in Figures lc, 3b, and 4. (Note from Figure 2 that
gauge 5 was included in both arrays. In presenting the data from
the second array, we omit gauge 5 because its data were already
presented. We also omit the data from the other experiments, which
data were qualitatively similar to those shown in Figure 9.) Note
that every gauge in the second array recorded the same two
dominant frequencies, and therefore the same values for g±l and l12;
in other words, gti and 9i2 showed no measurable evolution as the
waves propagated away from the wavemaker.

Figure 10 shows the actual wave records from the seven new
gauges, for experiment KP220203-110403. The KP solution that was
already selected, based on data from the nine-gauge array, predicts
the data that each of these seven gauges should measure; these
predictions are also shown in Figure 10. We emphasize that no free
parameters were available in the comparisons in Figure 10; these are
predictions rather than surface-fits. The overall error (Ox) for the
seven-gauge array is comparable to that for the nine-gauge array (a),
even though data from the latter array were used to select the KP
solution. For all fifteen experiments on asymmetric waves, Table 2
lists an overall error (a) for the nine-gauge array used to select the
KP solution, and another (ax) for the seven-gauge array, whose
measurements were predicted by that KP solution. Within each
experiment, these errors are comparable; usually ax is slightly larger
than a, but for experiment KP400203_300303, the error for the
seven-gauge array (ax) is actually smaller than that for the nine-
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gauge array (a). This comparison supports the claim that the
measured waves did not evolve significantly over the length of our
test section.

Approximate wavelengths in the X-direction for a KP solution
can be obtained from (91, IL2}, using Li - 2xh/i. For experiment
KP220203_110403, this gives X-wavelengths of about 2 m and 4 m,
consistent with the cnoidal wavelengths input to the wavemaker.
Note that gauge 10 is only 2 m. from the wavemaker, so Figure 10
shows that the wave being measured achieved its apparently
permanent form within one wavelength of the wavemaker, and then
retained that form at least for the length of the test section of the
tank (7.5 m). In all fifteen experiments, we always found that the
wave patterns achieved their apparently permanent form within 2 m
of the wavemaker, and then retained that form over the length of
our test section. We found no clear evidence of wavt, evolution.

Next, we consider the (constant) velocity of propagation of the
waves. This velocity cannot be inferred from the photographs in
Figure 1. The KP model predicts it, in (8), and the velocity vector
shown in Figure 7 was found in this way. However, the velocity also
can be obtained directly from the wave records, without using (8), as
follows. For a particular experiment, find the KP solution that best
fits the data measured during a 20 second interval starting at time
(T). If the wave has permanent form, then at a slightly later time
(T + AT), this wave pattern will have translated in space, and what
had been observed at location (X - A X, Y - A Y) in the fixed
(laboratory) frame now will be observed at (X, Y), for some (AX, AY).
In order to measure [AX, AY), use (2) to replace (6) by

*j = pj(x - AX/h) + vj(y - AY/h) + coj(t - AX/6h) + Oj, (j = 1,2) (13)

and then minimize 0 2 at the new time (i.e., over 20 seconds starting
at T + AT) by varying [AX, AY), holding fixed all the other parameters
of the solution. In this way, one obtains empirically (AX, AY) for a
given AT. For a wave of permanent form, (AX/AT) and (AY/AT) do
not depend on AT, and it follows from (2) that

£J& =6(1 -f g-h-41,L Y X= 6 -41. (4dt AX dt AX

Because the KP solution is spatially periodic, [AX, AY) are ambiguous
in the sense that one can add to them an integer number of spatial
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periods of the wave pattern. One eliminates this discrete ambiguity
by requiring that AX -+ 0, AY -+ 0 as AT -+ 0; then (AX, AY) are
unambiguous for AT small enough. On the other hand, small
measurement errors become relatively important if AT is too small.
Balancing these competing effects, we chose AT = 1.2 seconds for
these experiments.

Table 2 lists the two components of the velocity of
propagation of the wave pattern, according to KP theory (8) and
according to direct measurement (14), for all fifteen experiments.
The agreement is remarkably good; in many cases, the two velocities
agree to within a few percent. The agreement becomes even more
impressive when one recalls that these velocities are themselves the

small deviations from the basic wave speed, fgh, which is inherent in
the (moving) KP coordinate system.
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5. Oceanic observations of hexagonal waves in shallow water
The central point of this paper is the following. In shallow

water of uniform depth, there exist two-dimensional periodic waves
with finite amplitudes and nearly permanent form. The spatial
pattern of these waves is hexagonal, as shown in Figure 1. The
waves are easy to generate in the laboratory, and they are
apparently stable.

KP solutions of genus 2 describe these waves with reasonable
accuracy over a range of parameters that is larger than the putative
range of validity of the KP model. The robustness of the KP model is
a pleasant surprise, but we suspect that the existence of these waves
is independent of the validity of the KP model. Rather, we conjecture
that the hexagonal wave pattern observed in Figure 1 is the basic
qualitative pattern for periodic waves of permanent form in shallow
water. More precisely, we conjecture that if one seeks genuinely
two-dimensional wave patterns of finite amplitude that are periodic
and that propagate with permanent form in shallow water of
uniform depth, then one will almost certainly find hexagonal wave
patterns with flat troughs and narrow crests, like those in Figure 1.
If this conjecture is correct, then one would expect to find waves like
these in oceanic settings. In this section, we present some oceanic
observations suggesting that wave patterns like these actually occur.
Remark: Some apparent counter-examples to this conjecture are
actually limiting cases of it. We mention specifically: (i) cnoidal
waves, in which the wave period in one direction becomes infinitely
long; (ii) waves of infinitesimal amplitude, for which the hexagon
degenerates to a parallelogram, and the waves become sinusoidal;
and (iii) the oblique interaction of two solitons, which is not periodic,
but is another limiting case of hexagonal waves.

The first example, shown in Figure 11, is an aerial photograph
of the coastal zone taken near Jones Inlet on Long Island near New
York City. At the top of the photograph one can identify a road, some
buildings, the beach, and the surf zone in which waves are breaking.
Beyond the surf zone, in the bottom half of the photograph, one sees
clearly that the surface wave patterns are two-dimensional and
approximately periodic, like the waves in Figure 1, and that many of
the wave patterns are hexagonal.

The second example, shown in Figure 12, is a now well-known
photograph taken by Terry Toedtemeier of two waves interacting in
shallow water off the Oregon coast. This photograph is often shown to
illustrate the interaction of two solitons, with the required phase
shift (i.e. a spatial shift of each wave crest as a result of the nonlinear
interaction of the two waves). However, each of the most prominant
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wave crests in Figure 12 is actually part of a train of periodic waves.
The next crest in each train is discernible in the figure, but the
strongest evidence of the periodicity of the wavefield is that Mr.
Toedtemeier told us that the waves were periodic. He also noted that
none of the other wave interactions, before or after the one shown in
Figure 12, was nearly as dramatic as the one shown. Thus, these
waves were only approximately periodic, but they were certainly
two-dimensional, and they exhibited flat troughs and sharp crests. In
our model, the two long crests and the one short crest shown in the
figure should be viewed as the sides of two adjacent hexagons.

The last example, shown in Figure 13, is an aerial photograph of
waves off the outer banks of North Carolina taken by Carl Miller
during a major storm (the "Hallowe'en storm of 1991"). The waves in
this photograph were enormous-wave gauges located in 10m deep
water measured waves with heights exceeding 5m and periods of
20s. If we take the wave speed to be #g as a rough approximation,
then a wave period of 20s corresponds to a wavelength of about
200m. (Assigning a width of 5 m. to the road visible along the coast
and then scaling also suggests wavelengths on the order of 100-200
m.) The photograph itself suggests that virtually every wave crest
was breaking, and that the beach on the right of the photo was
completely flooded. These waves were apparently far outside the
range of validity of the KP model. Moreover, these waves
undoubtedly did not have permanent form, so that KP solutions of
genus 2 would be too simple to describe them. Nevertheless, the
waves in Figure 13 exhibit some of the same features that we have
now seen repeatedly: two-dimensional, wave patterns with flat
troughs and sharp crests, and with many of the crests forming
hexagonal wave patterns.

The photographs in Figures 11, 12 and 13 suggest that
approximately periodic, hexagonal wave patterns occur in the ocean.
Without a systematic study of oceanic observations of waves in
shallow water, we do not know whether these waves are common or
uncommon. We suspect that they are more common than is usually
believed.
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Appendix A: To obtain the program DELTA
The KP solutions used in this paper were computed using a

FORTRAN program named DELTA. The following instructions show
how to use the UNIX ftp utility to transfer the file "delta.f" from the
anonymous site "ftp.colorado.edu:/cuboulder/appm". The indented
lines are keyboard commands, with <cr> = carriage return.

To log onto the ftp site, type
ftp ftp.colorado.edu <cr>

You should get a prompt for a username. Type
anonymous <cr>

You will then be prompted for a password. Enter your complete
email address. At this point, you should be logged onto the ftp site.
You need to go to the subdirectory /cuboulder/appm. Type

cd cuboulder/appm <cr>
To transfer the file, type

get delta.f <cr>
To quit the ftp utility, type

quit <cr>
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Appendix B: An algorithm to find the best KP solution for a set of
wave-gauge data

A KP solution of genus 2 is defined by (6+2) parameters
(b, X, d, pi, 112, v2; 01, 02), from which the other parameters of the
solution [vI, M)1, (02) can be deduced. The objective of this Appendix
is to provide an effective algorithm to identify a "best" set of KP
parameters for a given set of wave records, like those in Figure 3.
The algorithm has six steps, and it makes explicit use of the fact that
the time-variation of a quasi-periodic function, like that of (5) and
(6), corresponds to straight-line motion on a two-dimensional torus.
Step 1: Find pju and i'2.

If the measured wave amplitudes can be represented by a KP
solution of genus 2, then it follows from §2 that we seek a function of
the form

f(x, y, t) = F(glix + vIy + colt, 92x + v2y + C2 t),

where F is periodic in each argument. Without loss of generality, we
can require that each period be 2x; otherwise, the precise form of F
does not affect step 1. In terms of laboratory coordinates, after using
(1) with e = 1,

f = F(j 1(X - lgh'T)/h + vY/h + coX/6h, g2(X - YhT)/h + v2Y/h + o2XI6h). (15)

Each wave gauge records data as T varies, with X and Y fixed. If it
records a function in the form (15), then the FFT of the wave record
shows energy at two frequencies, #fiiip1 and f-/h 2, plus harmonics
and sum- and difference-frequencies. In other words, one can read
Iill and 1921 directly from FFTs of the wave records, like those in
Figure 4. Because of (7), one can always require A11/2 > 0. Because
0 is even [)(01, 02) = W(-01, -02)], one can always take Azl > 0, A2 > 0.
These two symmetries allow us to determine Ail and A2 from FFTs.
Remark: The advantage of the choice of variables in (2) is that it
permits direct measurement of Al and 92. With the usual choice,
t =e 3t2v'g~hT/6h, the FFTs yield (g I - ( 1/6) and (92 - CO)2/6) and one must
solve to find g1I and 9 2. We have tried both approaches; the final
results differ only slightly, and the logic of the current approach is
simpler.
Step 2: Find /vl and fv21.
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In these experiments we used only nine gauges at different
locations in Y, so a Fourier transform in Y of the data at fixed (X, T)
would yield only crude estimates of Iv l and 1v21. We obtain more
precise estimates of lvil and Iv21 when the wave height is a quasi-
periodic function of two variables, as follows.

Let F(4,, 02) be continuous and quasi-periodic. Along the line
[01 = a02 + P3] in the (01, 02)-plane, F(O1, 02) is periodic if and only if a
is rational. If a is irrational, then along this line F(01, 02) never
repeats exactly, but it comes arbitrarily close to t "ery value taken
by F(Ol, 02) in the periodic square. Now compare this situation to
that in Figures 1 and 3. Figure 1 shows a periodic function of two
variables, and each wave record shown in Figure 3 is taken along a
straight line defined by the direction of travel of the wave pattern as
it sweeps past the gauges. It follows that if the data in each record
are not periodic, then a sufficiently long string of data from a single
gauge would eventually record the entire two-dimensional wave
pattern, to any desired accuracy. Moreover, the nine gauges sweep
out nine parallel line-segments in the (01, 02)-plane. If the data are
not periodic, then to any desired accuracy, one can think of these
nine line-segments as segments on the same (infinite) line, with
different starting points.

For example, in Figure 3b, the data recorded on gauge 9 nearly
coincides with that recorded on gauge 3, but with a time-shift of 36.8
seconds. This can be seen directly, by laying a record from gauge 9
over that from gauge 3 (but shifted by 36.8 seconds) and observing
that the data nearly coincide. More quantitatively, the two data sets
(with the first 20 seconds of each data-set deleted, to remove
quiescent and transient intervals) have a correlation coefficient of
p = 0.966, where

Jo ,(16)7I~ t ij.(t) d
[ 71,l(t)2 dt f nj(t)2 dt] 1/2

and where Tpi(t) and ilj(t) each have zero mean. Moreover, using the
same time-shift (36.8 seconds), the data from gauge 8 correlate with
those from gauge 2 (with p = 0.966), and gauge 7 reproduces the data
from gauge 1 (with p = 0.975). In other words, with an error
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corresponding to a correlation coefficient of about 0.97, a shift in Y of
12 m (the distance between correlated gauges) is equivalent to a
shift in T of 36.8 seconds. We have just demonstrated this with
three pairs of gauges: 9-+3, 8-+2, 7-* 1. By this reasoning, had there
been a "virtual" gauge 10 in the shore-parallel array, it would have
measured a signal (nearly) equal to that measured by gauge 4, but
shifted by 36.8 seconds. Moreover, virtual gauge 11 would have
measured a signal corresponding to that of gauge 5, and so on.
Eventually, when we return to gauge 9 (at virtual gauge 15), we
could start over by comparing its signal to that of gauge 3 again.
This entire process can be repeated until we have shifted (in time) to
the end of the data-records. In addition, the data from a single
gauge can be matched to itself in a second, independent way, and
between these two shifts we can extend the data indefinitely.
Referring again to Figure 3b, note that the data from any one gauge
are almost periodic, with an almost-period of 41.84 seconds. In
particular, in Figure 3b the correlation coefficient between the data,
and the data shifted by 41.84 seconds, averages about 0.99 for
gauges 4-9. By making use of these two kinds of shifts, one can
create as many virtual gauges as desired. Each shift introduces a
small error, whose size is related to (1 - p). In principle, one should
stop adding virtual gauges when the accumulation of these errors
exceeds the increased precision obtained from adding more gauges.
Preliminary tests suggested that the break-even point for these data
occurs at about 200 gauges; in practice, we always stopped at 200
gauges, including the 9 original gauges.

Now take a FFT in Y at fixed (X, T), based on 200 data; the
results are shown in Figure 14, for experiment KP220203-110403.
As in Figure 4, the energy is concentrated in two dominant
"frequencies", plus harmonics and sum- and difference-frequencies.
Assuming that the data represent a function of the form (10), then
these dominant frequencies are located at Ivl/hl and Iv2/hl. In this
way, the procedure provides direct measurement of Iv1l and Iv21. This
procedure does not specify which of the two values should be
associated with gi, and which with 912. Until this has been resolved
(in step 3), let us call the two values Ival and lvbi, with IVal - IVbl.

Step 2a: Symmetric waves
The essential requirements for step 2 are that the data be

quasi-periodic, but not strictly periodic. If the data are periodic with
a sufficiently short period, then the wave records from two different
gauges might never look alike, for any time-shift. In particular,
symmetric waves produce periodic wave records, and the records
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from different gauges look alike only if two of the gauges happen to
be an integer number of Y-wavelengths apart. For symmetric (or
nearly symmetric) waves, we estimate the Y-wavelength from a FFT
based on only nine gauges. This estimate is necessarily crude.
Consequently, for some experiments with symmetric waves, we
found it necessary to admit two or three "candidate values" for IVal

(= lVbl for a symmetric wave), chosen from the range allowed by the
nine-gauge FFT.

The remaining steps of the algorithm assume that the wave
pattern is asymmetric, that the data are not strictly periodic, and
that step 2 has successfully provided IVal and IVbN. [For symmetric
waves, 9 2 = 9 1, v2= v 1 , so step 3 is unnecessary. Then step 4
simplifies, because d = b(l - 2).]

Step 3: Identify v1 and v2

The next step is to find the signs of va and Vb, and to determine
which value goes with g., and which with 92. The basic idea for this
step is the following. The nine-gauge array lies in the y-direction,
and the data from it determine Ival and Ivbl. If the array were rotated
slightly in the x-y plane, then the gauges would record slightly larger
y-wavelengths for waves coming from one side, and slightly smaller
y-wavelengths for waves coming from the other. By comparing the
values of Ival and IvbI obtained from the orginal and the rotated
gauge-arrays, one could determine whether the associated waves
came from the left or the right; i.e., one could determine the signs of
Va and Vb.

We do not actually move the gauges to obtain the second data
set, but we achieve approximately the same effect by processing data
from successive gauges at successively later times. Specifically,
instead of using the data from all nine gauges at the same time To,
we use the data from the jth gauge that was recorded at time:

Tj = To + (j -1)AT,

where AT is the time between successive measurements. (AT =0.04
seconds for the 25 Hz sampling rate used in these experiments.)
These data correspond approximately to data taken from a linear
gauge-array whose orientation in the x-y plane is rotated from the
y-axis through an angle

13 = tan-lfgh AT/AYI, (17)
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where AY is the spacing between gauges. In these experiments,
AY = 2 m, so 03 = 0.028 rad (P3=1.60). With the data rearranged in this
way, we repeat step 2 to obtain Ivi+l and lvj+l. The same procedure
based on (-AT) yields Ivi-l and Ivj'l. From all of these, one can identify
1Iav-, lvy+l) and (IVb-, lVb+l), because

Ival - IVa+l - Ival - Ival, IVbl - IVb+l- lvb'1 - tVb1. (1 8)

The direction of effective rotation (P3) is known, so knowing whether
[Iva.l < Ival < 'va+l) or (Iva'l > Ival > Ira+l) determines the sign of va; one
also finds the sign of Vb in this way. [Note: If Ival is small enough,
then {Va+, Va, Va-l are not all of the same sign, and no combination of
measured values satisfies (18). In this case, one finds that either

Ival + Iva+8  - Iva.l - Iv1a, or Ival - IVa+l - IVa'l + Ival.

If both Ival and lvb1 are small, then (18b) must be modified as well.]
The v-values obtained in this way also provide estimates for

[•9a, 1±b), based on

Ia - (va* - vacos 13)/sin P3.

By comparing these estimates with the values for Igi and 1±2 obtained
in step 1, one determines 11±1, vj) and {A2, v2).
Step 4: Estimate (b, A, d)

Once ({•i, 12, v1, v21 are known, then the spatial structure of the
wave pattern is fixed, and one can draw a period parallelogram in
the (x, y)-plane. Next, one would like to choose, among all KP
solutions of genus 2 with the same period parallelogram, the one that
minimizes the rms error,

if [f(x,y,t) - u(x,y,t)]2dxdy (19)
=

fJ [u(xyt)]2dxdy

where u(x, y, t) represents the measured data (normalized as in (2)),
f(x, y, t) represents a KP solution, and the integrals are taken over a
period parallelogram. In step 6, we do essentially this.
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Unfortunately, 32 apparently has many local minima in parameter
space, so that it is necessary to start the minimization routine close to
the global minimum. The purpose of steps 4 and 5 is to obtain good
starting values for the minimization in step 6.

Let umax denote the measured maximum value of the
(normalized) wave amplitude over the entire data set for an
experiment, and umin the measured minimum value. If the waves
were exactly periodic, then the wave amplitude would attain its
maximum and minimum values once within each period
parallelogram. As discussed in §2, specifying {b, X, d, A 1, 9 2, V2)

specifies a KP solution of genus 2, up to a translation. In particular,
these parameters determine the maximum (fmax) and minimum (fmin)

values of the solution, and they determine v1. Denote by vl.Kp the
value of v, obtained from a particular KP solution, and by v l, the
value of v I measured in steps 2 and 3. Step 4 is to minimize

(I = VK-,2 + (-ma f~2 + (I

V1.m Uma Umin (20)

by varying [b, X, d), subject to (7), while holding ({9l, 9L2, V2) fixed at
the values obtained in steps 1-3. We do this numerically, using
ODRPACK as described by Boggs, Byrd, Rogers, and Schnabel (1992).
Step 5: Estimate 01 and 02

The KP solution is now completely specified except for a spatial
translation fixed by the phase constants 01 and 02. These constants
could be obtained directly from an overhead photograph of the
wavefield, such as those in Figure 1, by making a contour plot of the
KP solution with the same horizontal scales as the photograph, and
then sliding one over the other until the phases match optimally. In
the absence of such a photograph, we minimize a quantity like that
in (19), by varying (O1, 02) while holding fixed (b, X, d, g 1, 9 2, v2).
However, we cannot integrate over the entire period parallelogram,
as in (19), but only over the nine wave records. Using ODRPACK
again, we minimize

± J[f(x,y,t) - u(x,y,t)]2dx

9 I L
[u(x,y,t)12dx (10)
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where L is a length of the wave record, and only {1i1, (D2) are varied.
Typically, we used L = 20 seconds.
Step 6: Find final values of all eight parameters

The final step is to minimize 02 again, allowing all eight
parameters (b, X, d, It1, It2, V2; 01, 02) to vary simultaneously. In this
paper, therefore, the "best" KP solution for a given experiment is
defined to be the one that minimizes C2. (In Part 1, we used a
different definition for "best" fit of symmetric waves.) As mentioned
above, C2 has several local minima in this larger space, but we start
near what we believe to be the global minimum by starting at the
values for these parameters found in steps 1-5.

Our experience has been that this six-step algorithm found the
best KP solution for each of the fifteen available data sets for
asymmetric waves. The results of the algorithm are discussed in §5.
(It also converged to the best solution for the data from sixteen other
experiments on symmetric waves. We will present these results
elsewhere.)

Our justification for this algorithm is that it works: for each
experiment on which we tested it, the algorithm found a best KP
solution, with an acceptable error (a). However, Boris Dubrovin has
suggested another possible justification for the algorithm, as follows.
[The rest of this paragraph is a series of speculations, which we hope
to verify eventually.] Subject to some extra conditions like (1), the
KP equation is a completely integrable Hamiltonian system, along the
lines discussed by Dubrovin (1991, pp. 79-92). Every exact
reduction of KP to a finite-dimensional system ought to be
completely integrable as well. A KP solution of genus 2 is such a
reduction, it has two phases, so it ought to correspond to an
integrable Hamiltonian system with two degrees of freedom.
Therefore, a specification of the general KP solution of genus 2 ought
to contain two "action"-type variables, and two "angles". Steps 1-3 of
this algorithm specify the spatial structure, ({1±, It2, v, V2}. The other
four variables (b, d; 01, 02) describe the dynamical system. Step 4,
which ignores phase information, apparently finds action-type
variables {b, d), while step 5 finds angles ({1, 02). This argument
suggests that step 4 would also work if the maximum and minimum
values of the data set were replaced by two conserved integrals of
the KP equation. In fact, it might work better.
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Figure Captions
Figure 1. Mosaic of two overhead photographs, showing surface
patterns of waves in shallow water. Experiment: (a) KP38.50204;
(b) KP400203-300303; (c) KP220203-110403. Each of these wave
patterns has a basic hexagonal template; one such hexagon is drawn
in Figure lb.
Figure 2. Schematic (planform) view of the wave basin, showing its
segmented wavemaker (MN), uniform-depth section (h = 20 cm),
and 1:30 sloping beach section. The locations of of the wave-gauges
were as follows:
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gauge X(m) Y(m) gauge X(m) Y(m) gauge X(m) Y(m)
1 8 -8 2 8 -6 3 8 -4
4 8 -2 5 8 0 6 8 2
7 8 4 8 8 6 9 8 8

gauge X(m) Y(m) gauge X(m) Y(m) gauge X(m) Y(m)
10 2 0 11 6.5 0 12 7 0
13 7.5 0 14 8.5 0 15 9 0
16 9.5 0 17 13 0 18 16 0

Figure 3. Data from the nine-gauge array, for three asymmetric
wave patterns, including two shown in Figures lb, c. Experiment:
(a) KP400203-300303; (b) KP220203-110403;
(c) KP300102-30-803.
Figure 4. FFTs (periodograms) in T of the wave records shown in
Figure 3 for experiment KP220203-110403. Every FFT shows energy
at the same two frequencies (fI = 0.36 Hz, f2 = 0.67 Hz), plus their
harmonics. The dominant harmonics have been identified in one FFT.
Figure 5. Detailed comparison of measured wave records with the
best KP solution at the same locations, for 20 seconds of data from
experiment KP400203-300303. The comparison began 30 seconds
into the experiment.
Figure 6. Detailed comparison of measured wave records with the
best KP solution, for 20 seconds of data from experiment KP220203-
110403, beginning at 30 seconds.
Figure 7. For experiment KP220203-110403, contour lines of the
best KP solution (identified in Figure 6) are superimposed on the
photograph of Figure 2c. The experiment and the KP solution are the
same as in Figure 6, but different data are compared. The direction
of propagation of the entire wave pattern, based on (8) is also shown.
Figure 8. For experiment KP300102-30-803, a detailed comparison
of measured wave records with the best KP solution, during two
different time intervals, a) 20 seconds of data beginning at 30
seconds; b) 20 seconds of data beginning at 70 seconds.
Figurn. 9. Temporal FFTs of the seven wave records obtained from
the •econd gauge array, for experiment KP220203-110403.
Figure 10. Superposition of the measured wave records from the
seven-gauge array, and the wave pattern predicted by the KP
solution chosen to fit the data from the nine-gauge array, for
experiment KP220203-110403.
Figure 11. Aerial photograph of waves off the southern coast of Long
Island. The beach is between Lido Beach and Point Lookout, west of
Jones Inlet. Beyond the surf zone, the wave patterns are two-
dimensional, and approximately periodic. They have flat troughs,
sharp crests, and approximately hexagonal shape.
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Figure 12. Oblique nonlinear interaction of two waves in shallow
water, off the coast of Oregon. The interaction occurred in water
about 1 m. deep. [Photograph courtesy of T. Toedtemeier]
Figure 13. Aerial photograph of waves in shallow water, south of the
Oregon Inlet on Pea Island, off the coast of North Carolina.
[Photograph courtesy of C. Miller]
Figure 14. FFTs in Y of the wave records for experiment KP220203-
110403, after extension as described in the text.
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The focusing nonlinear Schr6dinger equation is numerically integrated over moderate to long time in-
tervals. In certain parameter regimes small errors on the order of roundoff grow rapidly and saturate at
values comparable to the main wave. Although the constants of motion are nearly preserved, a serious
phase instability (chaos) develops in the numerical solutions. The instability is found to be associated
with homoclinic structures and the underlying mechanisms apply equally well to many Hamiltonian
wave systems.

PACS numbers: 03.40.Kf, 02.60.-x, 02.70.-c, 02.90.+p

In this Letter we discuss extensive moderate to long (e.g., [6] and references therein). We use two numerical
time numerical experiments which we have carried out on schemes to demonstrate that the results obtained are due
the focusing nonlinear Schr6dinger (NLS) equation with to the extreme sensitivity of the periodic focusing NLS
periodic boundary conditions. The NLS equation is a equation (in the parameter regime described below) and
well known Hamiltonian nonlinear wave system which not the particular details of the numerical schemes em-
arises in many areas of physics, and is special among such ployed. To be brief we mainly discuss the calculations of
problems since a large class of solutions can be computed IDNLS. The FSS algorithm yields analogous results.
via the inverse scattering transform (IST) (e.g., [1l); the In earlier work we have shown that initial data which
NLS equation is said to be "integrable." There are two are nearby low dimensional "homoclinic manifolds"
cases of physical interest-the focusing and defocusing trigger numerically induced joint spatial and temporal
NLS. In the focusing case, when periodic boundary con- chaos in nonintegrable numerical schemes at intermediate
ditions are imposed, the NLS equation has complicated values of the mesh size [21. This chaos disappears as the
homoclinic structures which under perturbations can pro- mesh is refined. In this Letter we concentrate on a more
duce chaotic dynamics (e.g., [21). The periodic NLS troubling aspect of numerically induced chaos. We show
serves as a useful model describing unstable wave phe- that temporal instabilities and chaos can be easily excited
nomena (e.g., instability in deep water waves) and has by very small perturbations-on the order of roundoff.
been the subject of numerical simulations and laboratory Although our discussion centers on the NLS equation, we
experiments (e.g., [31). have observed analogous behavior in other problems such

In our investigations, we employ two numerical as the sine-Gordon and modified Korteweg-de Vries
schemes which have been used extensively and effectively (KdV) equations. We believe that similar results will be
by researchers studying the NLS equation: (a) the in- found in many other Hamiltonian systems. The NLS
tegrable discrete NLS (IDNLS) equation (e.g., [2,41) equation is an excellent paradigm system to study since
and (b) the Fourier split-step (FSS) algorithm (e.g., (51). we have a great deal of analytical knowledge about this
The IDNLS equation is an integrable differential-dif- equation, and it is reasonably straightforward to com-
ference equation [41 and is implemented using a high or- pute.
der time discretization. The FSS algorithm, although not We begin by summarizing our main observations.
integrable, preserves the underlying symplectic structure (I) Tiny numerical errors (i.e., 10-16) grow rapidly,
of the NLS equation and, as such, is in the class of sym- eventually saturate, but significantly alter the solution
plectic integrators which have been used as a means of after moderate times. For example, spatially even initial
tracking the long time behavior of Hamiltonian systems values must evolve in an even manner. However, without
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imposing evenness as a separate constraint, we find that mal (i.e., closest to 21a 2).
an odd component is excited and develops into a size To solve the NLS via IST we use the associated linear
comparable with the "main wave." Alternatively, calcu- scattering problem
lating in mathematically but not computationally equiv-
alent ways (e.g., simply by reordering terms in the equa- - 2
tion) shows that small errors on the order of roundoff 1'2x--.L'2 -su *(x,t)t'1 , (3)
grow rapidly and eventually destroy the "true" solution.

(2) In the Hamiltonian framework, the periodic spec- where u is the complex conjugate of u and the parame-
trum (see below) provides the "actions" in an action- ter X is an eigenvalue once boundary values are specified.
angle description and they are constants of the motion. The spectrum of this linear operator is invariant under
We verify that these constants are preserved by the nu- the NLS flow and the periodic or antiperiodic eigenvalues
merical scheme to very high precision. JX)}'-I provide sufficient invariants to establish the in-

(3) The sensitivity is due to the proximity to the under- tegrability of the NLS. The conserved integrals fS-ZT,
lying homoclinic orbits of the NLS equation. It turns out xdx-C,.il,2_... such as the L 2 norm TI- ul, the
that for the range of initial values we have chosen the momentum T2-uua*, and the Hamiltonian T3 -nu.I2

splitting distance between suitable complex eigenvalues of + ju14 are related to the above eigenvalues.
the periodic spectrum is extremely small. Such initial The IDNLS equation is given by 12,4)
data occur naturally and can be associated with the evo- -0
lution of nearly elementary plane waves as well as waves
which evolve into complicated nonlinear states. (4)

(4) After the growth of the small errors, the corre- with u.( )W-u(nh,t), u.-N12(t)-Un++N/2(1), n-O,
sponding state evolves, but not in a quasiperiodic tem-
poral manner as might have been expected based on the I,....N (N even), h -L/N, s - ± I. Since IDNLS is

integrability of NLS. The power spectrum of the associ- integrable, it possesses the special properties inherent in

ated evolution has a slowly decaying "tail" whose size such systems. As h-- 0 (4) converges to (I) with accu-as the number of linearly unstable modes (i.e., the racy 0(h 2). In our numerical simulations the time in-grows ait he number oinealu nstase tegration of this system of ordinary differential equations
suit Anable gous co lex tigenues) inresefcs, a is performed by the adaptive Runge-Kutta-Merson rou-(5) Analogous solutions of the defocusing NLS are tine (DO2enF) in the NAG (numerical algorithms group)

stable. They are nct sensitive, and we have no difficulty twae lib We sei anemel high tolrn
in computing the solution over long times, using either software library. We specify an extremely high tolerance
IDNLS or FSS. The power spectrum remains compact to ensure that the results are not dependent upon the time
and, computationally, the solution is quasiperiodic in integration. For a description of the FSS algorithm see,
time. The inverse scattering theory of the focusing NLS for example, [5). We only remark that in each partial
equation with periodic boundary values is significantly step of the FSS algorithm, the canonical symplectic
different from the defocusing NLS or the KdV equation structure of the NLS equation is preserved, hence the
[7]. Defocusing NLS and KdV are analogous to finite di- FSS algorithm is a symplectic integrator.

We first discuss our calculations associated with themensional Hamiltonian systems whose underlying geo- initial data g(x,e) -a ( +E•cos6p•x), where a "1.5, p•

metric structures are compact tori. In these cases, -2til d -t r2, and e-O-t2 Fro whe a-1.5,ory

without homoclinic structures, symplectic integrators are -2ir/L, L-4)rvl, and -- 10 12. From the linear theory
effective, discussed above, we see that g(x,e) contains eight unsta-

We consider the NLS equation in the form ble modes. In Fig. I we plot the results of IDNLS where
we use 512 grid points. In Fig. I(a) we plot the growth

iu,+u,, +2s$uIu -0, (I) of asymmetry [from (I) note that g(x,e) is an even func-
tion and should have evolved in an even manner). The

where s ± I (+ I focusing, - I defocusing), with asymmetry is measured by log1I96 -h-i-6 where f 6 is the
periodic boundary conditions u(x-L/2)-u(x+L/2) sixth Fourier harmonic [u -_fmexp(ipmX)]. The asym-
and initial values u(x,O) g(x). In the focusing case, metry grows exponentially fast; for a while the rate of
the plane wave solution, uo(x,0)-aexp(2ilaJ2i), is growth is consistent with that predicted by the maximum
linearly unstable. When considering small perturbations growth rate of the linearly unstable plane wave (i.e.,
of the form u(x,t)"uo(x,t)[I +e(x,)1, one can estab- asmaz"4.5). Note that the asymmetry reaches 0(l) be-
lish that the perturbation is separated into solutions of fore it saturates. In Fig. I(b) an averaged amplitude of
the form F(x,I) Gexp(igl.x)exp(a. 1 ), where it.-2rn/L the Fourier transform is depicted. Let 6j(k) be the
and the growth rate ocr is given by on-,u. -,/4aiI-'p. Fourier transform of uj(l) [uj(t) is evaluated at every
Consequently, the solution is unstable provided 0<,u2 At -0.21; we plot the average: fae(k) -Y- 1 I 14j(k)I/N
< 41aj 2. The number of unstable modes is the largest in- vs k. We note that the Fe :ier spectrum has a slowly de-
teger M satisfying 0 < M < JaIL/Or. The fastest growth caying asymptotic "tail" which is inconsistent with the
rate corresponds to a value n(pu.) for which o, is maxi- expectation of a quasiperiodic temporal flow. Note espe-
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(b) FIG. 2. The growth in the difference of solutions for I DNLS

with g(x, - 10-').

,OO

100

•" less than 0.01%. As we vary t in g(x,,F) we find similar0results; although for significantly larger e (e.g., e - 10(b) F• it takes longer before the asymmetric perturbations "or-

o • ganize" into rapid growth.

As a crude model of roundoff effects we add to the
solution [e.g., g(xE) with e-10-'] a small random per-
turbation at each time step: efr(xt), where 0 < r < I (r

0o o . .. . .. . ... is obtained via a random number generator) for a range
0 50 o00 ISo 20o 2so of e: 10-8, 10-9, . . . 10-14. The main features ob-

__served before hold: rapid growth of asymmetry, a slowly

0- -decaying tail in the power spectrum, etc.
Even if we impose evenness as a constraint, errors on

the order of roundoff grow rapidly. For example, consid-
"-5 er IDNLS with the initial values g(x,e) with e-10'

and u-(t)-u,,() imposed. We first calculate IDNLS
in precisely the way Eq. (4) is specified for t-0-100

"10-io --call this solution u."). Next we calculate (4) only by
o distributing the nonlinear terms, i.e., using sludI2 u.+,

+slu1 2u,.-,. Call this solution u. . The logarithm of
the averaged difference between the solutions,

(c) f-/4logI0gujl)(t)_-u! 2)(t)I/(N/2+l), grows rapidly
-20 . (Fig. 2) and, as was the case with asymmetry, the solu-

o 20 40 6o0 o 100 tions become drastically different. We note that the

y try fpower spectra of each is broad banded and different from
FIG. I. (a) The asymmetry for IDNLS with g(x,-10-'2 ), one another as well (not plotted here).

(b) The power spectrum for IDNLS with g(x,e--0-02 ). (c) Strongly nonlinear states are unstable and experience
The growth in the difference of solutions for IDNLS with the same loss of predictability associated with the above
g(xf-10-12)" phenomena. For initial data g(x,e) wit1 , e-10-1 we

calculate the solution via IDNLS for 1 -0-25. At t -25
cially the comparison with the Fourier spectrum of the we are into the fully nonlinear regime and using these
defocusing NLS equation (Fig. 4). In Fig. I (c) we plot values as initial data, we then calculate the two solutions
the logarithm of the averaged difference of two solutions: (above): u R"(z),u.2 )(t) from t-25 to t -225. Again
logioX'Lojuj(t) -aj(t)I/(N + I ) where uj(t) is the solu- (Fig. 3) the solutions deviate significantly, although the
tion calculated on (-L/2,L/2) and •ij(t) is the solution growth rate of the difference is smaller than in the previ-
calculated on (0,L/2) with symmetry imposed, i.e., ous case. Furthermore, imposing a small random pertur-
u -,( ) -u.(t) (i.e., we calculated on half the lattice). In bation at each time step (for ! - 25), we find a more rap-
these calculations the "dominant" complex eigenvalues in id growth of the deviation to an 0( ) value.
the upper half plane were nearly isospectral. The relative For defocusing NLS all the difficulties encountered in
change of the first five oonserved quantities {C} 15.-I was the focusing case disappear. The power spectrum of a
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FIG. 3. The growth in the difference of solutions for IDNLS FIG. 4. The power spectrum for defocusing IDNLS with
for the nonlinear regime. g(x,e-10-).

typical solution (compare with Fig. I (b)] is plotted in simulations which test the stability of small odd perturba-
Fig. 4 where we take g(x,e),e- I0-1. We observe no tions, rearrangements of terms, complex nonlinear states,
growth of asymmetry and both algorithms IDNLS and such as those mentioned in this Letter, can demonstrate
FSS show no growth in the difference between solutions the existence of serious underlying numerical instabilities
u.") and u.(2). Recall that the periodic defocusing NLS even when known constants of the motion are seemingly
does not have homoclinic structures. Small errors do not well preserved. A more complete account of the work de-
grow rapidly and IDNLS and FSS are accurate predic- scribed here will be published in a future paper.
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