AFIT/GLM/LAL/95M-1

9 .

EVALUATION OF AIR FORCE AND NAVY DEMAND FORECASTING SYSTEMS

THESIS

Christian J.H. Dussault, B.S.

AFIT/GLM/LAL/95M-1

Approved for public release; distribution unlimited

1

0

The views expressed in this thesis are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

and the second second

(All states)

Accesion For
NTIS CRASH V
DTIC T/S
Usanoor and
Justrication
By Distribut/
$I_{(VS)}(x) = \frac{1}{2}$
Dist Spaces
A-1

AFIT/GLM/LAL/95M-1

EVALUATION OF AIR FORCE AND NAVY DEMAND FORECASTING SYSTEMS

THESIS

Presented to the Faculty of the Graduate School of Logistics and Acquisition Management of the Air Force Institute of Technology Air University In Partial Fulfillment of the Requirements for the Degree of Master of Science in Logistics Management

> Christian J.H. Dussault, B.S. Captain, Canadian Armed Forces

> > March 1995

Approved for public release; distribution unlimited

Preface

The purpose of this study was to perform a comparison between the Navy Statistical Demand Forecasting system and the Air Force Requirements Data Bank forecasting system. The results of this research may help the Air Force managers and the Joint Logistics System Center managers to obtain a better understanding of the implications in using one system versus the other.

An extensive search of existing literature was conducted to gain an understanding of the basic algorithms of each system. A simulation model of the Requirements Data Bank system was developed to generate Air Force forecasts. The actual Statistical Demand Forecasting system was used to generate Navy forecasts.

The completion of this research would not have been possible without the help of several people to whom I am deeply indebted. I would like to thank my advisor, Major Terrance Pohlen, for his knowledgeable advice, patience, inspiration and guidance throughout the process.

I would like to thank my other advisor, Dr. Craig Brandt, for his continuing support while I was pursuing my course work as a part time student.

The completion of this thesis is due primarily to Mr. Victor Presutti, Mr. Curt Neumann, and every one of my co-workers who have, in some way or another, provided me with some assistance in completing my thesis.

I would also like to thank my sponsor, Mr. Jean-Guy Mathieu, for believing in me and sending me to the US Air Force Materiel Command as a Canadian Exchange Officer.

Most of all, I am forever grateful to every member of my family for their unwavering love and support.

Christian J.H. Dussault

ii

Table of Contents

	Page
Preface	ü
List of Figures	vii
List of Tables	viii
Abstract	ix
I. Introduction	1-1
General Issue.	1-1
Background	1-1
Specific Problem	1-3
Purpose of the Study	1-4
Contributions and Implications for DOD Managers.	1-4
Research Questions	1-5
Research Hypothesis.	1-6
Research Approach.	1-7
Scope and Limitations	1-7
Reparable Items	1-8
Population Size and Sample Size	1-8
Forecasting Techniques	1-9
Assumptions	1-9
Chapter Summary and Organization of the Research	1-10
II. Literature Review	2-1
Introduction	2-1
Magnitude of the Air Force Reparable Items Inventory	2-1
Time Series Components.	2-2
Forecasting Techniques.	2-4
Moving Average.	2-5
Exponential Smoothing	2-5
Double Exponential Smoothing	2-6
Linear Regression	2-7
Recoverable Consumption Item Requirements System (D041).	2-7
Requirement Data Bank System.	2-9
Introduction.	2-9
Replacement of Existing Systems by RDB	2-10
RDB Sub-systems.	2-10

Page

.

RDB Recoverable Item Sub-system	2-10
RDB Moving Average	2-13
RDB Double Exponential Smoothing.	2-13
RDB Predictive Logistics	2-14
Statistical Demand Forecasting System.	2-15
Module 0 - Administrative Lead-time	2-16
Module I - Time Forecasts	2-17
Module 2 - Rates Forecasts.	2-18
Module 3 - Filters and Trends.	2-19
Demand Filters Test.	2-20
Stability Region.	2-20
Instability Region.	2-21
Outlier Region	2-21
Trending Test	2-23
Bias Tests	2-24
Runs Test	2-25
Cumulative Error Tests	2-26
Student Confidence Interval Test	2-27
Module 4 - Quantity Forecasts.	2-27
Module 5 - Procurement Problem Variable Forecast	2-27
Chapter Summary	2-28
III. Methodology	3-1
Introduction	3-1
Type of Research Design	3-1
Research Questions.	3-3
Research Question I.	3-3
Research Question II.	3-4
Deservation III	
	3-4
Research Hypotheses.	3-4 3-4
Research Hypotheses.	3-4 3-4 3-6
Research Hypotheses	3-4 3-4 3-6 3-6
Research Hypotheses	3-4 3-4 3-6 3-6 3-7
Research Question III	3-4 3-4 3-6 3-6 3-7 3-7
Research Hypotheses	3-4 3-6 3-6 3-7 3-7 3-7
Research Question III	3-4 3-6 3-6 3-7 3-7 3-7 3-7
Research Question III	3-4 3-6 3-6 3-7 3-7 3-7 3-7 3-8 3-9
Research Hypotheses. Instruments. Forecasting Error Measurements. Mean Absolute Deviation. Mean Square Error. Mean Absolute Percentage Error. Mean Percentage Error. Student Paired Difference Test. Aircraft Sustainability Model.	3-4 3-6 3-6 3-7 3-7 3-7 3-7 3-8 3-9 3-9
Research Hypotheses	3-4 3-6 3-6 3-7 3-7 3-7 3-7 3-8 3-9 3-9 3-9 3-11
Research Question III	3-4 3-6 3-6 3-7 3-7 3-7 3-7 3-8 3-9 3-9 3-11 3-11

Page

Approach Three	3-14
Population Size	3-16
Sample Size and Data Collection	3-17
Sample Size for Air Force Data.	3-17
Variance-to-Mean Ratio	3-18
Sample Sizes for Time Series Components.	3-20
Implementation of the Research Design	3-20
Phase One	3-20
Phase Two	3-21
Phase Three.	3-22
Chapter Summary	3-23
IV. Results and Analysis	4-1
Introduction	4-1
Annroach One - Time Series Components Pacults	
Requirements Data Bank Results	
	4-2
Second	4-2
Cuclical	4-J 13
Dandom	4-J 1 2
	4-5 1 1
Statistical Demand Forecasting Decults	4-4
Trend	4-4
Seasonal	4-4
Cuclical	4-5
Dandom	4-5
	4-5
Comparative Desults of Approach One	4-0
Trend	4-0
Seasonal	4-0
Cyclical	4-7
Pandom	4-0 1 V
	4-0
Approach Two Actual Air Force Date Begulta	4-9
Paquirements Data Results	4-10
Statistical Damand Econocating Decults	4-11
Comporative Desults of Approach Two	4-12
Comparative Results of Approach 1 wo	4-12
Approach Inree - Aircraft Availability Results	4-15
Requirements Data Bank Results	4-14
Statistical Demand Forecasting Results.	4-14
Comparative Results of Approach Three	4-15

Page

.

•

•

.

	Chapter Summary	4-16
V. Conclusio	n and Recommendation	5-1
	Introduction	5-1
	Specific Problem	5-1
	Purpose of the Study	5-1
	Research Questions	5-2
	Results and Management Implication for Research Question One.	5-2
	Forecast Accuracy Results for Time Series Components.	5-2
	Management Implication.	5-3
	Results and Management Implication for Research Question Two.	5-4
	Forecast Accuracy Results for Actual Air Force Data	5-4
	Management Implication.	5-4
	Results and Management Implication for Research Question Three.	5-4
	Aircraft Availability Results	5-5
	Management Implication.	5-5
	Observations on the Forecasting Systems	5-5
	Requirements Data Bank System	5-6
	Statistical Demand Forecasting System	5-7
	Recommendations For Future Studies and Analyses.	5-9
	Conclusions	5-10
	Research Summary	5-10
Appendix A:	Times Series Components Generator Programs	A-l
Appendix B:	Sample Sizes Computation.	B-1
Appendix C:	RDB Eight Quarter Moving Average.	C-1
Appendix D:	Data Elements for SDF and RDB	D-1
Appendix E:	Aircraft Sustainability Data Values.	E-1
Appendix F:	Forecasting Measurement Errors Results	F-1
Appendix G:	Aircraft Availability Results.	G-1
Bibliography.	E	31B-1
Vita		Vita-1

List of Figures

Figure		Page
1-1.	Joint Logistic Systems	1-2
2-1.	Time Series Components	2-3
2-2.	Repair Turn-Around-Time	2-18
2-3.	SDF Statistical Control Chart - Filters Test	2-20
2-4.	Demand Filters Tes	2-23
2-5.	Demand Trending	2-24
2-6.	Runs Test.	2-25
3-1.	Variance-to-Mean Ratio of the Recoverable Items Population Size	3-19
3-2.	Variance-to-Mean Ratio of the Recoverable Items Sample Size	3-19

List of Tables

.

.

•

.

Table		Page
2-1.	Landing Gear Demands	2-8
2-2.	Current Air Force Systems Replaced by RDB	2-11
2-3.	RDB Sub-systems	2-12
3-1.	Paired Difference Test.	3-9
3-2.	Design of Analytical Approach One	3-12
3-3.	Design of Analytical Approach Two	3-14
3-4.	Design of Analytical Approach Three	3-16
4-1.	RDB Forecasting Errors With Time Series Components.	4-2
4-2.	SDF Forecasting Errors With Time Series Components.	4-4
4-3.	Trend Paired Difference Test	4-7
4-4.	Seasonal Paired Difference Test	4-7
4-5.	Cyclical Paired Difference Test	4-8
4-6.	Random Paired Difference Test	4-9
4-7.	Outlier Paired Difference Test	4-1()
4-8.	RDB Forecasting Errors With Air Force Data.	4-11
4-9.	SDF Forecasting Errors With Air Force Data.	4-12
4-10.	Air Force Data Paired Difference Test	4-13
4-11.	RDB Aircraft Availability	4-14
4-12.	SDF Aircraft Availability	4-15
4-13.	Aircraft Availability Paired Difference Test.	4-15

Abstract

In March 1993, the JLSC selected the Navy's Statistical Demand Forecasting System as the standard DOD forecasting system. The purpose of this study was to evaluate and compare the performance and accuracy of the Navy Statistical Demand Forecasting system, relative to the Air Force Requirements Data Bank forecasting system in an Air Force environment. To compare the performance of each forecasting system, the research used three different approaches.

The first approach looked at time series components and evaluated how each forecasting system reacted to different data patterns. From this approach, it was found that under the presence of a trending component, the Statistical Demand Forecasting system generated more accurate forecasts than the Requirements Data Bank system did. It was also found that under the presence of outliers, the SDF system computed more accurate forecasts than the RDB system did.

The second approach looked at the actual Air Force data and evaluated the forecast accuracy established by each forecasting technique. The results demonstrated that there was no significant difference in the forecast accuracy between the two forecasting systems.

The third approach looked at how each forecasting system would affect aircraft availability. It was found that under the presence of trending data and outliers, there was a significant difference in aircraft availability between the two forecasting systems. However it was found that under the presence of actual Air Force data, there was no significant difference in aircraft availability between the two forecasting systems

Contrary to the RDB system, the SDF system performs well in detecting outliers and trending component data. However it was found that with actual Air Force data, the

ix

SDF system and the RDB system generate forecasts with approximately the same level of aircraft availability. These results demonstrate that either system represents a good approach to generate forecasts that will provide relatively the same level of aircraft availability.

EVALUATION OF AIR FORCE AND NAVY DEMAND FORECASTING SYSTEMS

I. Introduction

General Issue

The military services use large inventory systems to manage many items of varying attributes or characteristics. Forecasting demand for and acquiring spare parts is an important facet of inventory systems.

Although results obtained from different forecasting methods may vary slightly, a one percent difference can represent millions of dollars of investment (Roberts, 1991:4). Over 70 percent of the Air Force's computed gross requirement for reparable spares is computed by forecasting the expected number of component failures. Because or the size of the computed demand-based gross requirement (\$43 billion in procurement and \$4 billion in repair), a small percentage error in forecasted demands can translate into a large dollar amount (Bachman, 1993:1). It is important to ensure that the forecasting method selected is the most appropriate and accurate, because overestimated demands will cause the requirements system to drive unnecessary buys and repairs, while items with underestimated demands will cause backorders which translate into bad supply performance (Bachman, 1993:3).

Background

A logistics management information system consists of an extensive network of interrelated sub-systems which manages the procurement, distribution, repair and maintenance of spare parts to support weapon systems (Bond, 1989:1). For many years, the Air Force, the Army, the Navy and the Defense Logistics Agency have each spent millions of dollars to design, develop and maintain logistics systems. Although each service has its own specific logistics system, the objectives of each system remain the

same. For this reason, the Department of Defense gathered that it would be more cost effective to maintain one standard DOD logistics system than to maintain four. On February 13, 1992, the Assistant Secretary of Defense approved the charter for the Joint Logistic System Center (JLSC) (Klugh, 1994a).

The JLSC has been tasked with the highly complex and complicated mission of developing and implementing standard materiel management and depot maintenance automated business systems across the Department of Defense (DOD) (Klugh, 1994b). The JLSC's main mission is to evaluate and select the sub-systems from each service's logistics system to produce a standard DOD logistic system most appropriate to the Air Force, Navy, Army, and DLA (Defense Logistics Agency) (Klugh, 1994b). The difficulty lies in determining which sub-systems DOD should keep for all four organizations, especially when each service has developed different approaches for similar sub-systems. Figure 1-1 illustrates the integration of the sub-systems into a standard DOD Logistic System.

Figure 1-1. Joint Logistic Systems

One of the elements studied by the JLSC is the sub-system which forecasts demand for reparable spare parts. This sub-system determines the worldwide requirements for reparable spare parts to satisfy future operational goals for weapon systems. In November 1992, the JLSC approved the Statistical Demand Forecasting System (SDF) as a near term initiative to be implemented at the Defense Logistics Agency Inventory Control Points (Moore, 1994). In March 1993, the JLSC selected the Navy's Statistical Demand Forecasting System as the standard DOD forecasting system (Moore, 1994).

Another element studied by the JLSC is the database sub-system which maintains data on consumable and recoverable items. The JLSC selected the Air Force's Requirements Data Bank (RDB) information system as the database sub-system for the standard DOD Logistics System (Moore, 1994). Along with its database capacity, the Requirements Data Bank information system also contains various materiel management processes and functions used to manage the Air Force inventory (Searock, 1992:Ch 1, 2). One of the processes or sub-systems of RDB used to compute recoverable items' requirements is the Recoverable Item Process. The Recoverable Item Process implicitly contains an integrated forecasting approach. Since the RDB information system has already incorporated an integrated forecasting approach, the Air Force Material Command is questioning the adoption of the Navy's Statistical Demand Forecasting System (Gitman, 1994).

The JLSC recently decided to temporarily keep the RDB forecasting component for the Air Force (Moore, 1994). The decision to allow the Air Force to use its RDB forecasting approach is implicitly contained in the JLSC Requirements Determination Business Process Model (Moore, 1994).

Specific Problem

Since the JLSC selected the Navy's Statistical Demand Forecasting System as the standard DOD forecasting system, the Army and the Defense Logistics Agency have both performed analyses to measure the impact of using SDF within their own organization (Wehde, 1994b; Roberts, 1994). The specific problem is that the Air Force has not analyzed or studied how SDF could affect its operational requirements. Therefore the

effect of SDF on USAF requirements determination remains unknown. This is a problem because budget allocation across items depends on solving the statistical problem of forecasting item demand rates (Sherbrooke, 1987: v).

Purpose of the Study

The purpose of this study is to evaluate and compare the performance and accuracy of the Navy forecasting system, Statistical Demand Forecasting, relative to the Air Force forecasting system (Requirements Data Bank Forecasting) in an Air Force environment.

Contributions and Implications for DOD Managers

The purpose of this research is to compare the Air Force forecasting approach to the Navy forecasting approach. This comparison analysis provides the Air Force and the Joint Logistic Systems Center the following contributions:

1. Observations on the forecasting approaches' weaknesses and strengths. The implications associated with this contribution are that the managers will have greater understandings of the forecasting systems and will know the areas where they can concentrate efforts in developing and improving the forecasting systems.

2. Recommendations on which forecasting approach would be most accurate and useful to the Air Force. One of the implications associated with this contribution is that the Air Force managers will be able to decide whether to keep the RDB forecasting approach or accept the SDF forecasting approach. The forecasting approach on which Air Force managers will concentrate their efforts to improve requirements determination accuracy, is another implication associated with this contribution.

3. Information for the JLSC concerning their decision on SDF. JLSC selected SDF as a near term initiative (Moore, 1994). The implication connected with this

contribution is that it will help the JLSC managers decide whether they should invest in the development and improvement of the RDB system versus the development and improvement of the SDF system. The selection of the appropriate forecasting system is also important because requirements determination is based on forecasts of past demands. If the forecasts are not accurate, DOD managers could buy the wrong parts and degrade weapon system availability as a result.

Research Ouestions

The research questions support the comparison between the Navy forecasting system and the Air Force forecasting system. To address forecasting accuracy and robustness, the following research questions are developed:

1. How does each forecasting system perform with different data pattern components?

a) What is the difference between the RDB average forecasting error and the SDF average forecasting error when a trending component is present in the data?

b) What is the difference between the RDB average forecasting error and the SDF average forecasting error when a cyclic component is present in the data?

c) What is the difference between the RDB average forecasting error and the SDF average forecasting error when a seasonal component is present in the data?

d) What is the difference between the RDB average forecasting error and the SDF average forecasting error when a random component is present in the data?

e) What is the difference between the RDB average forecasting error and the SDF average forecasting error when an outlier/spike component is present in the data?2. How accurate are the forecasts computed by each forecasting technique subject to actual Air Force demand data?

a) What are the mean, variance and standard error of the forecasting errors?

b) Are the forecasts responsive to actual observations?

c) What is the difference between the RDB average forecasting error and the SDF average forecasting error?

3. What effects do the forecasts, computed by each forecasting approach, have on aircraft availability?

a) What is the difference between the aircraft availability achieved with SDF stock levels and the aircraft availability achieved with the RDB stock levels?

Some of the possible moderating variables that may affect the results of the research questions are:

1) Two vs. three level maintenance (procedure change).

2) Variance in the actual demand data due to new world situations (wartime).

3) A reduction in peacetime flying due to budget cuts (less demands).

Research Hypotheses

To answer the first research question, an hypothesis is developed for each time series components. Considering each data pattern component, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting error mean (μ_2) at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

To answer the second research question, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

To answer the third research question, the evaluation of aircraft availability, the null hypothesis to be tested is that the average aircraft availability (μ_1) achieved with the

RDB forecasting approach is equal to the average aircraft availability (μ_2) achieved with the SDF forecasting approach at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

Research Approach

Three analytical approaches are used to evaluate and compare the Air Force forecasting method (RDB) to the Navy forecasting method (SDF):

 The first approach measures the performance of the two forecasting techniques in terms of accuracy and stability under the influence of different data pattern components.
 Forecasting measurement errors are used to measure the stability and accuracy of the forecasts.

2. The second approach measures the performance of the forecasting techniques in terms of accuracy and stability under the influence of real Air Force data. Forecasting measurement errors are used to measure the stability and accuracy of the forecasts.

3. The third approach consists of computing the aircraft availability achieved when demand is estimated by one of the forecasting techniques and the Aircraft Availability Model is constrained by a specific funding level. The Aircraft Availability Model is used to compute the associated aircraft availability.

Scope and Limitations

This research limits its analysis to the range of reparable spare parts. For this reason, the sample size of the reparable spare parts includes items that are specific and common to different weapon systems. Although the Navy Statistical Demand Forecasting approach and the RDB Forecasting approach contain various forecasting techniques, this

study also limits itself to the comparison of the moving average technique used by each system.

Reparable Items. There are two types of spare parts -- consumable spare parts and reparable spare parts. A consumable spare part is an item that is normally expended or used beyond recovery, in the use for which it was designed or intended (Pohlen, 1994; Gluck, 1970:105). A reparable spare part is an item which can be reconditioned or repaired for re-use when it becomes unserviceable. Such items are usually high valued items (Pohlen, 1994; Gluck, 1970:377).

The purpose of the Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts (Gitman, 1994). Although RDB will have the capability of managing consumable items in the future, the Air Force currently manages consumable items using the Economic Order Quantity Buy Budget Computation System (D062) (Gitman, 1994). Since a comparison is made to address Air Force concerns, this research only limits its analysis to the range of Air Force reparable spare parts.

Population Size and Sample Size. The population size of the reparable items for the Department of Defense is approximately 600,000 items (Lucas, 1994; Maitland, 1994b; Wehde, 1994a). The population size of the reparable items for the Air Force is approximately 185,000 items (Lucas, 1994). The demands for every item and for every weapon system are totaled from each base and reported as an overall worldwide quantity.

There are two types of items: specific items and common items. Specific items represent items that have application to one weapon system. Common items represent items that have applications to two or more weapon systems. Eighty-five percent of the total reparable items' population are specific to weapons systems while fifteen percent are common to different weapon systems (Lucas, 1994).

The data sample consists of 245 reparable items. Specific items and common items are included in the analysis. Chapter Three of this thesis details the computation of

the sample size. The secondary demand data were gathered from the Recoverable Consumption Item Requirements (D041) System. The demand data cover four years of historical data and are specific or common to different weapon systems. It included quarterly information such as the quantity demanded and the flying program for each item.

Forecasting Techniques. The Navy Statistical Demand Forecasting approach and the RDB Forecasting approach offer a variety of forecasting techniques to predict demands. For example, the Navy Demand Forecasting approach offers various forecasting techniques such as exponential smoothing, double exponential smoothing, moving average, and linear regression (Urban, 1993c). The RDB Forecasting approach uses linear regression, exponential smoothing and moving average as forecasting techniques (Lucas, 1993).

Both forecasting systems have three forecasting techniques in common: moving average, double exponential smoothing and linear regression. The technique most often used by each system, approximately 90% of the time, is the moving average forecasting approach (Searock, 1993:Ch 3, 4; Maitland, 1994a). For this reason, this research limits itself to the comparison of the moving average technique used by each system.

Assumptions

The analysis of this research adopts the following assumptions:

1) The reparable spares demands are correlated with flying hours. This assumption is important because the Air Force forecasts demand rates and not actual demands. The demand rates are computed by dividing the number of demands by the number of flying hours.

2) The actual spare part demand data are assumed to be specific to one fictitious weapon system. Since the sample size includes items from different weapon systems, it would be difficult to measure a significant aircraft availability for each weapon system. For this reason, it is assume that all items are part of an imaginary or fictitious weapon system.

3) The actual spare part demand data are assumed to be all LRUs (Line Replaceable Units) with a quantity per application equal to one.

4) The probability of having x units in resupply follows a negative binomial probability distribution (Rexroad, 1992:6).

5) The reparable demand process follows the Palm's Theorem. The Palm's Theorem is described as:

If demand for an item is a Poisson process with annual mean λ and if repair time for each unit is independently and identically distributed according to any distribution with mean T years, then the steady-state probability distribution for the number of units in repair has a Poisson distribution with mean λ T. (Sherbrooke, 1992:21)

6) The model structure and its parameters stay the same during the forecast period. This implies that the forecast-generating process is in control and that the forecast errors are normally distributed over time (Abraham and Ledolter, 1983:374).

Chapter Summary and Organization of the Research

This chapter presented the problem of comparing the Air Force's Requirements Data Bank forecasting approach to the Navy's Statistical Demand forecasting approach. This chapter also described the specific problem, reviewed the research questions and delineated the scope of the research. Chapter Two describes the current Air Force Requirements System, the future Air Force Requirements Data Bank System and the Navy's Statistical Demand Forecasting System. Chapter Three discusses the research methodology. Chapter Four presents the results and analysis of the data collected. Finally, Chapter Five provides the conclusions and recommendations derived from the research.

II. Literature Review

Introduction

This chapter discusses the current forecasting concepts and presents different logistics systems implicated in the research. First, the chapter gives a description of the magnitude of the Air Force reparable items inventory. Then, time series components are presented and different forecasting techniques are discussed. Finally an overview of the current Air Force D041 system, the Requirements Data Bank System, and the Statistical Demand Forecasting System is presented.

Magnitude of the Air Force Reparable Items Inventory

The United States Air Force is one of the largest buyers of goods and materials in the world (Sysdek, 1989:5). Approximately 185,000 reparable items are stocked in the Air Force Materiel Command (AFMC) inventory for support of weapon systems (Lucas, 1994). With such large purchasing needs lies the inherent responsibility to manage assets in an "effective and efficient" manner (Department of the Air Force, 1987:Ch 2, 45).

Once an item is purchased, it is either used or held in inventory until needed or deemed in excess to requirements (Sysdek, 1989:5). Too little inventory may harm the Air Force operational needs in both peace and war because of stockouts (Searock, 1992:Ch 1, 1). On the other hand, too much inventory increases operating costs (Sysdek, 1989:5; Ammer, 1980:255-257). As Ammer notes, inventories act as a protection against uncertainties in supply and demand (Sysdek, 1989:5; Ammer, 1980:257). Inventory is an important aspect of efficient materiel management because the major goals of materiel management are to minimize inventory investment, maximize customer service and assure efficient operation of the organization (Tersine, 1988:16). The Air Force currently uses the Recoverable Consumption Item Requirements System (D041) to manage its reparable

items (Department of the Air Force, 1991:32). Because today's technological advances offer opportunities for improvement to the current system, D041 is technically archaic (Searock, 1992:Ch 1, 1-2). In July 1982, the AFMC established the Logistics Management Systems (LMS) Modernization Program. In June 1985, the Secretary of Defense directed the services to strengthen their weapon systems management approach. The new Requirements Determination System (RDB) is one of the Air Force programs that implemented that directive. Since 1985, the Air Force has been developing RDB to manage 807,000 consumable spares, recoverable spares, repair parts, and equipment items with an inventory valued at \$59 billion (Searock, 1992:Ch 1, 1-2). The Air Force plans to replace the current D041 system with the Recoverable Item Process of RDB (Department of the Air Force, 1988:Ch 2, 1).

Time Series Components

A time series component is a pattern produced by a set of time ordered observations found during successive and equal periods (Tersine, 1988: 41). John E. Hanke and Arthur G. Reitsch stipulate that two considerations are involved in producing an accurate and useful forecast of a time series. The first consideration is to collect data that are relevant to the forecasting task. The second consideration is to choose a forecasting technique that will utilize the information contained in the time series components to its fullest (Hanke and Reitsch, 1992:90).

Time series components can be decomposed into patterns such as trend, cycle, seasonality, and randomness known as time series components (Hanke and Reitsch. 1992:91). The four components are illustrated in figure 2-1.

The trend is the long-term component that represents the growth or decline in the time series over an extended period of time. The basic forces that affect and help explain the trend component are population growth, price inflation, technological change, and

productivity increases (Hanke and Reitsch, 1992:92). In a military environment, an increase or a decrease in operational activities could explain the trend component. The cyclical component is the wave-like fluctuation around the trend, usually affected by general economic conditions (Hanke and Reitsch, 1992:92).

Figure 2-1. Time Series Components (Adapted from Tersine, 1988:42)

The seasonal component is the pattern of change that repeats itself year after year. Seasonal variation may reflect weather conditions, holidays, or length of calendar months (Hanke and Reitsch, 1992:92). The random component measures the variability of the time series after the other components have been removed (Hanke and Reitsch, 1992:93). Random variations are those in the data which cannot be accounted for otherwise and have no identifiable pattern (Sysdek, 1989:18).

Forecasting Techniques

The Requirements Data Bank System and the Statistical Demand Forecasting System contain alternative forecasting techniques. Item managers may select a certain forecasting technique depending on the pattern projected by the data.

The current Air Force D041 System uses an eight quarter moving average and PRELOG (Predictive Logistics) as forecasting techniques. The USAF decided on the eight quarters moving average technique for two reasons: the users can easily understand the model, and the technique provides stable forecasts under fluctuating demand (Rexroad, 1993a). The USAF decided on Predictive Logistics technique for its capability to detect and respond to a trend (Department of the Air Force, 1991:585).

The Requirements Data Bank System possesses four different forecasting techniques: moving average (four and eight quarters), double exponential smoothing. linear regression known as PRELOG (Predictive Logistics), and manually input estimates (primarily used for new items) (Searock, 1992:Ch 4, 2). These four forecasting techniques were selected to create greater flexibility for the item manager or the equipment specialist to respond to changing demand patterns (Searock, 1992:Ch 4, 2).

The Statistical Demand Forecasting System (SDF) has a variety of forecasting techniques for different demand patterns: moving average, exponential smoothing, double exponential smoothing, linear regression, non-parametric. Sen median regression, damped, and composite forecasting (Urban, 1993c). These forecasting techniques were selected to create greater flexibility for the item manager or the equipment specialist to

choose an appropriate technique depending on the demand pattern components (Maitland, 1994b).

Although both forecasting systems have several forecasting techniques, the technique used approximately 90% of the time is the eight quarters moving average forecasting approach (Searock, 1993:Ch 3, 4; Maitland, 1994a).

Moving Average. The moving average is a forecasting technique where a constant number of data points can be specified at the outset and a mean computed for the most recent observations. As each new observation becomes available, a new mean can be computed by dropping the oldest value and including the newest one (Hanke and Reitsch, 1992:134). The moving average technique can be very responsive to big changes in the data pattern if the number of periods in the moving average is small. On the other hand, the technique can be very stable if the number of periods in the moving average is large. The rate of response to changes in the underlying data pattern depends on the number of periods in the technique. The moving average model performs best with stationary data; however, it does not handle trend or seasonality very well (Hanke and Reitsch, 1992:134-135). Equation 1 provides the formula for the moving average forecasting technique (Hanke and Reitsch, 1992:134).

$$F_{t+1} = (Y_t + Y_{t-1} + Y_{t-2} + \dots + Y_{t-n+1}) / n$$
(1)

where

 Y_t = Actual datum in quarter t F_{t+1} = Forecast made in quarter t for t+1 n= number of terms in the moving average

Exponential Smoothing. Exponential smoothing is a method based on averaging (smoothing) past values of demands in a decreasing (exponential) manner. The observations are weighted with more weight given to more recent observations (Hanke and Reitsch, 1992:140). One advantage of exponential smoothing is that it is a simple

technique and requires very little historical data (Evans, 1993:740). It is very responsive to changes in data patterns because more weight is given to the most recent observation. Equation 2 demonstrates the exponential smoothing equation (Hanke and Reitsch, 1992:140).

$$F_{t+1} = \alpha Y_t + (1 - \alpha)^* F_t$$
⁽²⁾

where

 Y_t = Actual datum in month t F_{t+1} = Forecast made in month t for t+1 F_t = Forecast made in month t α = Smoothing Constant (0< α <1)

Double Exponential Smoothing. The double exponential smoothing technique, often referred to as Brown's Method, is used as an exponential smoothing technique for forecasting demand data that have a linear trend (Hanke and Reitsch, 1992:146). A disadvantage with double exponential smoothing is the initialization of the smoothed series variables and the trend adjustment variable. Also, if no trend is present in the data, the forecast may be underestimated or overestimated (Hanke and Reitsch, 1992:150). Equation 3 demonstrates the double exponential smoothing technique (Hanke and Reitsch, 1992:146).

$$\begin{aligned} A_t &= \alpha Y_t + (1 - \alpha)^* A_{t-1} \end{aligned} \tag{3} \\ A'_t &= \alpha A_t + (1 - \alpha)^* A'_{t-1} \\ a_t &= 2A_t + A'_t \\ b_t &= (\alpha / 1 - \alpha)^* (A_t - A'_t) \\ F_{t+p} &= a_t + (b_t^*p) \end{aligned}$$
$$Y_t = \text{Actual datum in period t} \\ F_{t+1} &= \text{Forecast made in period t for t+1} \\ F_t &= \text{Forecast made in period t} \\ \alpha &= \text{Smoothing Constant } (0 < \alpha < 1) \\ A_t &= \text{new smoothed value} \end{aligned}$$

where

Linear Regression. Once a linear relationship is established, knowledge of an independent variable can be used to forecast a dependent variable (Hanke and Reitsch, 1992:178). The method used to determine the regression equation is called the method of least squares (Hanke and Reitsch, 1992:180). Although the model is very responsive to any type of trend patterns, one disadvantage with linear regression is that it is complex and not easily understood by the user (Searock, 1992:Ch 3, 2). The mathematical formula for the regression equation is illustrated in Equation 4 (Hanke and Reitsch, 1992:181).

$$Y = a + bX$$

$$a = \overline{Y} - b\overline{X}$$

$$b = (\sum X_i Y_i - n \overline{X} \overline{Y}) / (\sum X_i^2 - n \overline{X}^2)$$
(4)

Recoverable Consumption Item Requirements System (D041)

The previous section discussed about a variety of forecasting techniques that can be used to forecast future demands. This section describes the current Air Force requirements system and discuss which forecasting techniques it uses to forecast future demands. The current Air Force requirements system known as the Recoverable Consumption Item Requirements System (D041) has been designed to support the reparable requirements function for the Air Force. It has the following functions (Department of the Air Force, 1992:32):

1. Computes spare parts requirements for recoverable items.

2. Accomplishes the routine clerical, mathematical, and statistical workload involved in computing recoverable item requirements.

3. Forecasts gross and net requirements using past and future programs, usage history, and asset information maintained within this system.

4. Produces reports for management evaluation and action.

5. Produces information for logistics systems.

It uses an eight quarter moving average as a forecasting technique to predict future spare part requirements for weapon systems (Department of the Air Force, 1992:583). D041's eight quarter moving average computes a demand rate known as the Organizational Intermediate Maintenance Demand Rate (Department of the Air Force, 1992:556). The demand rate is then multiplied by planned future flying hours to compute future spare part requirements. The equation for the eight quarter moving average technique in D041 is demonstrated in Equation 5 (Lucas, 1993).

$$F_{t+1} = (\sum D_i / \sum P_i), \quad i = (t) \text{ to } (t - 7)$$
(5)
Demand $_{t+1} = (Number projected to fly at t+1) \times (F_{t+1})$

$$F_{t+1} = \text{Forecasted value for quarter } t+1$$

$$D_i = \text{Demand value at quarter } i$$

$$P_i = \text{Number of flying hours at quarter } i$$

$$t = \text{Quarter } i$$

To further explain the eight quarter moving average, the following example is considered. A type of aircraft in the Air Force is projected to fly 150 hours in the next quarter. What would be the requirement for landing gears in the next quarter? Table 2-1 gives more information pertaining to past demands on the landing gear.

Courter	Landing Gear	Riving Hours
	Demands	100
1	2	100
2	3	100
3	4	75
4	1	125
5	2	75
6	2	100
7	3	150
8	3	75
Total:	20	800
9	Projected 3.75	Projected 150

Tueste a transmig over sentences

F₉ =
$$(\sum D_i / \sum P_i)$$

= $(20 / 800) = 0.025$ Demands per flying hour

D₉ = 0.025 x 150 flhrs = 3.75 landing gears projected for quarter 9
 PRELOG (Predictive Logistics) is another forecasting technique incorporated into
 D041. Although the technique is available for use, it is rarely used to compute factors or
 rates because of its complexity (Rexroad, 1993a). The technique is discussed in the
 description of the RDB System.

Deficiencies within the D041 system addressed by the RDB system are (Searock. 1992:Ch3, 2-10):

- 1) Forecasting techniques for recoverable items are limited in scope.
- 2) No capability to recompute requirements to reflect a changing environment.
- 3) Historical data are not readily accessible.
- 4) There is no capability to accommodate surge in processing requirements.
- 5) Stock list changes are not received in a timely manner.
- 6) Access to data is not adequately controlled in current systems.

Requirements Data Bank System

Introduction. Because technological advances offer opportunities for material management improvement, the current AFMC logistics systems, developed in the 1950s and 1960s, are technically archaic. For this reason, the Requirements Data Bank is part of a modernization program known as the Logistics Management Systems (LMS) Modernization Program initiated by AFMC in 1982. RDB is currently being developed by the Air Force and consists of automated and manual functions to forecast and control procurement and repair requirements of assets needed for logistics support of USAF weapon systems (Searock, 1992:Ch 1,1). It is designed to compute requirements for buy and repair for 807,000 consumable spares, recoverable spares, repair parts, and equipment

items with an inventory valued at \$59 billion (Searock, 1992:Ch 1, 1-2). One of the RDB objectives is to improve the accuracy, visibility and timeliness of data, thus reducing paperwork and increase asset visibility (Department of the Air Force, 1988:2-17).

Replacement of Existing Systems by RDB. The Air Force uses many logistics information systems to manage their assets. One of the functions of materiel management is the Materiel Requirements Process. The Air Force Materiel Requirements Process computes procurement requirements for equipment, spares, and repair parts, and determines depot maintenance repair needs. Searock defines requirement as "the function or process of applying available or projected inventory against a forecasted need to determine it a shortage or excess exists, or if the items in an optimum position." (Searock, 1992;Ch3,1). The RDB provides such a system for the Materiel Requirements Process, which is divided into six major functional areas: Recoverable; Equipment; Expense: Finance; Repair; and Support (Searock, 1992;Ch 3, 1). Table 2-2 illustrates the current Air Force systems of the Materiel Requirements Process that RDB will replace (Searock, 1992;Ch 3, 1-2).

RDB Sub-systems. The RDB is being developed using a relational data base management system. A relational data base management system represents the newest technology in data base management (Searock, 1992:Ch 4, 10). The Requirements Data Bank system is made up of multiple physical processes, referred to as sub-systems, or CPCIs (Computer Program Configuration Items). These sub-systems, together, make the RDB system and replace the current Air Force systems illustrated in Table 2-2. Table 2-3 demonstrates the twenty-one CPCIs or sub-systems that compose the RDB system.

<u>RDB Recoverable Item Sub-system</u>. The Recoverable Item Sub-system (D200.A) is one of the processes that compose the RDB system. This study only discusses the RDB Recoverable Item Sub-system because the research focuses on the forecasting aspects of this sub-system. The Recoverable Item Sub-system computes repair, acquisition, and

	States Description			
CO17	Special Tooling and Special Test Equipment System			
D039	Computation of Requirements for Equipment Items			
D041	Recoverable Consumption Item Requirements System			
D041A	Recoverable Consumption Item Requirements System			
D049	Aaster Material Support Record			
D055	tock Fund War Requirements			
D058	Economic Order Quantity (EOQ) Wartime Requirements Computation Gunnery Equipment			
D062	Economic Order Quantity (EOQ) Buy/Budget Computation System			
D067	Defense Materiel Utilization and Disposition Program Management System			
D072	Other War Reserve Materiel Requirements			
D073	Repair Requirements Computation System			
D085	Air Force Requirements Forecasting System			
DI41A	Base Consolidation Inventory Status & Transaction Report Table III Items			
D141B	AF Consolidated Inventory Status & Transaction Report Table III			
G033J	Past Programs Data System			
G035B	Central Management of Depot Level Maintenance			
G072E	Depot Level Maintenance Requirements and Program Management System			
G079	Systems and Equipment Modification/Maintenance Program			
K004	Program Data for Input to Consumption Requirements Computation			
APIS	Application Program Information System			
IRCMIS	Initial Requirements Computation and Management Information System			
WARS	Wartime Assessment and Requirements Simulation (WARS) Model			

Table 2-2. Current Air Force Systems	Replac	eu p	Y KUB
--------------------------------------	--------	------	-------

Process #	Process or Sub-System	Process #	Process or Sub-System
D200.A	Recoverable Item Process	D200.L	Equipment Item Requirements Inventory Analysis Report
D200.B	Expense Item Process	D200.M	Economic Order Quantity Depot Data Base
D200.C	Equipment Item Process	D200.N	Recoverable Item Strautication
D200.D	Repair Process	D200.O	Economic Order Quantity Item Stratification
D200.E	Requirements Items Identification Data Process	D200.P	Past/Projected Programs Data
D200.F	Application & Programs Indenture Process	D200.1	Administration and Support
D200.G	War Readiness Spares Kit/Base Level self- sufficiency Spares Process	D200.2	Computations Methods Management
D200.H	Initial Requirements Determination Process	D200.5	Data Base Management System
D200.I	Retail Item Stratification	D200.9	Planning, Programming, Budgeting System
D200.J	Special Tooling and Special Test Equipment Process	D200.7	User Problem Report System
D200.K	Disposal Process		

Table 2-3. RDB Sub-systems

retention requirements for reparable items (Searock, 1992:Ch 1, 10). The major functions of the Recoverable Item Sub-system are (Searock, 1992:Ch1, 11-12):

- 1. Collect, maintain, and retrieve item data.
- 2. Collect, maintain, and retrieve weapon system/end item data.
- 3. Coilect, manage financial data.
- 4. Perform management analysis.
- 5. Compute item gross/net requirements by forecasting factors.
- 6. Compute stock levels using Aircraft Availability Model.

The RDB Recoverable Item Sub-system contains four different forecasting

techniques: moving average (four & eight quarters), double exponential smoothing, linear

regression known as PRELOG (Predictive Logistics), and manually input estimates

(primarily used for new items) (Searock, 1992:Ch 4, 2; Lucas, 1993).

RDB Moving Average. The formula for the moving average technique in the Requirements Data Bank System (RDB) is identical to the eight quarter moving average technique presented in the Recoverable Consumption Item Requirements System (D041) (Department of the Air Force, 1988:Ch C, 286). The only difference is that the equipment specialist or the item manager has the flexibility of choosing among a four quarter moving average technique or an eight quarter moving average technique (Department of the Air Force, 1988:Ch C, 272). The eight quarter moving average will compute a more stable forecast and the four quarter moving average will be more responsive to changes in the data pattern.

<u>RDB Double Exponential Smoothing</u>. The double exponential smoothing technique, often referred to as the Brown's method, is used for forecasting demand data that have a linear trend (Hanke and Reitsch, 1992:146). The formula for the double exponential smoothing is illustrated in Equation 6 (Hanke and Reitsch, 1992:147).

$$F_{t+1} = a_t + (p)b_t$$

$$a_t = 2S'_t - S''_t$$

$$b_t = (\alpha/1 - \alpha) (S'_t - S''_t)$$

$$S'_t = \alpha(Y_t) + (1 - \alpha) (S'_{t-1})$$

$$S''_t = \alpha(S'_t) + (1 - \alpha) (S''_{t-1})$$
(6)

where

 F_{t+1} = Forecast made for period t+1 a_t = computed value for period t b_t = computed value for period t p = number of period forecasted ahead Y_t = Actual datum in period t S'_t = S-Prime S''_t = S-Double Prime α = Smoothing Coefficient Contrary to the moving average technique, which sums demand over four or eight quarters, the double exponential smoothing technique uses past Organizational Intermediate Maintenance demand rates as input data (Department of the Air Force, 1988:Ch C, 274). The double exponential smoothing technique in the RDB Recoverable Item Sub-system will compute five different forecasts using five different smoothing coefficients and will retain the forecast having the lowest MAD (Mean Absolute Deviation) value (Department of the Air Force, 1988:Annex C, 274).

RDB Predictive Logistics (PRELOG). Predictive Logistics (PRELOG) is a forecasting system which checks up to twelve quarters of past demand rates for a significant trend and generates regression forecast estimates (Department of the Air Force. 1991:585). The Predictive Logistics technique is a tool to be used by the equipment specialist, along with the advice of an actuary, to forecast future demand rates. Working as a team, the equipment specialist and the actuary apply their experience and knowledge to promote optimal use of the Air Force resources (Department of the Air Force, 1980:Ch 9, 9).

PRELOG uses regression analysis to make a forecast and performs two types of testing (Department of the Air Force, 1991:587):

1. The first test uses the method of least squares to compute the best fit line for data. This test is designed to determine if the slope of the computed line is significantly different from a horizontal line.

2. The second test measures the error involved in using the moving average to forecast the demand rate. Each quarterly demand rate is compared with the immediate preceding moving average.

If the results of either of these tests equals or exceeds the Air Logistic Center determined levels, the item is selected for evaluation. A list of the items selected is provided to the actuary and the equipment specialist for review. They, together, decide
whether demand rates should be changed manually to forecast requirements more accurately (Department of the Air Force, 1991:587).

Statistical Demand Forecasting System

The Statistical Demand Forecasting (SDF) approach was developed in 1992 by the Navy to forecast its recoverable and consumable requirements for program and nonprogram related items (Urban, 1994a:Ch 2, 1). SDF was developed to reduce wholesale operating cost by improving forecast accuracy and reducing inventory level instability. The SDF approach employs statistical process control charts to detect demand instability and is designed to improve forecast accuracy and to reduce level instability (Wehde, 1994b:1). SDF offers eight different demand forecasting techniques for different types of commodities (Urban, 1994a:Ch 2, 3)

The Statistical Demand Forecasting model forecasts the mean and variance of the net demand during the procurement lead-time and the net demand during the repair turnaround-time (Urban, 1994a:Ch 2, 1). Past observations and current forecasts on each item are entered in the SDF system and both values are compared using statistical tests (Wehde, 1994b:2) When past observations are processed through SDF, the most recent observation will be processed through a series of filters and tests to ensure that it is consistent with the most recent forecast. If the most recent observation is consistent with the most recent forecast, then SDF will not change its current forecast and will keep the same forecast for the next period (Wehde, 1994b:2). However, if a significant difference is found, then a new forecast is calculated for the next period. If a major difference is found between the current forecast and the most recent observation, the SDF system will download the item demand information to a Personal Computer Exception Tool to advise the item manager of the situation. The item manager will then be given the opportunity to evaluate the situation through the Personal Computer Exception Tool (Maitland, 1994b).

It is not unusual for each item or a group of items to have different demand observation patterns. A demand pattern may demonstrate a trending component, a seasonality component, a cyclical component and/or an irregular component (Hanke and Reitsch, 1992:91-93). Different forecasting techniques will perform better than others depending on the data demand pattern. SDF is flexible in that it has a series of forecasting techniques for different demand pattern situations. These include (Urban, 1994a:Ch 2, 1):

- 1. Moving Average5. Non-Parametric
- 2. Exponential Smoothing 6. Linear Regression
- 3. Double Exponential Smoothing 7. Sen Median Regression
- 4. Damped 8. Composite Forecasting

In more detail, the Statistical Demand Forecasting System is divided into six modules (Urban 1993c):

- 1. Module 0: Administrative Lead-time
- 2. Module 1: Time Forecasts
- 3. Module 2: Rates Forecasts
- 4. Module 3: Filters and Trends
- 5. Module 4: Quantity Forecasts
- 6. Module 5: Procurement Problem Variable Forecast

The modules are independent of each other and SDF can be run using only one module or a combination of any modules (Urban, 1993c). Each module computes the values for specific variables, which can then be used to feed other modules within the SDF system.

<u>Module 0 - Administrative Lead-time</u>. This module computes the administrative lead-time for each item (Urban, 1994b; Urban, 1994c:3-4). Module 0 takes contract information and computes the administrative lead-time prior to contract initiation (Urban, 1994b; Urban, 1994c:3). This information is computed by item, by group of items or by program. The administrative lead-time depends on the dollar value of the item(s) or the contract(s) (Urban, 1994a:Ch 3, 5). When the computation is completed, the administrative lead-time is fed to SDF.

Module 1 - Time Forecasts. The purpose of this module is to compute the procurement lead-time and the repair-turn-around lead-time (Urban, 1994b; Urban, 1994c:5).

The Procurement Lead-Time: This variable represents the time necessary to procure an item. The procurement lead-time is computed by adding the Administrative Lead-time (computed in module 0) to the Production Lead-time (Urban, 1994a:Ch 3, 5). The production lead-time is defined as the time necessary to generate an item (Urban, 1994a:Ch 3, 6). It is generally identified and specified by the Navy (Urban, 1994b). The production lead-time is forecasted using an exponential smoothing technique (Urban, 1994a:Ch 3, 6).

The Repair Problem Average: Also known as the Repair Cycle Time, this variable represents the time required to repair an item (Urban, 1994a:Ch 3, 10; Urban 1994b). The repair problem average is computed using the following variables (Urban, 1994a:Ch 3, 4):

1. Remain in Place time. The length of time until a serviceable item is available as a prerequisite for the removal of an unserviceable from the end item as measured from the time the unserviceable item is determined to be beyond the repair capability of an organizational/intermediate maintenance activity (Urban, 1994a:Ch 4, 3).

2. Retrograde time. Time it takes for an item to be shipped from the base to the depot (Urban, 1994a:Ch 3, 4).

3. Overall Retrograde Time. Remain in Place + Retrograde Time (Urban. 1994a:Ch 3, 4).

4. Administrative time. Time to prepare the item for repair (Urban, 1994b).

5. Depot Maintenance time. Repair time (Urban, 1994a:Ch 3, 9).

6. Depot Repair Problem Average Time. Administrative + Depot Maintenance (Urban, 1994a:Ch 3, 10).

7. Depot Repair Cycle time. Overall Retrograde Time + Depot Repair Problem Average time (Urban, 1994a:Ch 3, 4)

Figure 2-2 illustrates these variables.

Figure 2-2. Repair Turn-Around-Time

Module 2 - Rates Forecasts. SDF computes the following rates to determine the number of regenerations expected from repair (Urban, 1994a:Ch 3, 11):

1. Final Recovery Rate (FRR). This rate represents the percentage of items inducted into the repair program that can be anticipated to be returned to a usable or serviceable condition.

2. Unserviceable Return Rate (URR). This rate represents the percentage of the total items issued expected to be turned in for repair.

3. The Washout/Condemnation Rate (WCR). It is an expression of the percentage of total items den.anded that never return to a reparable condition.

4. Serviceable Return Rate (SRR). This rate represents the percentage of total items which are returned to the supply system in a reparable condition.

5. Nonrecurring Demand Rate (NDR). The NDR is the percentage of nonrecurring demands.

Module 3 - Filters and Trends. This module represents the main component of the Statistical Demand Forecasting system (Urban, 1994b). It consists of five independent statistical process control tests used to measure demand forecast stability (Wehde, 1994b:2; Urban; 1994b). These tests determine whether the most current forecast is still a good demand predictor of the future (Wehde, 1994b).

The main objectives of the five statistical tests within this module are the evaluation of the following elements (Urban, 1994a:Ch 3, 14-15):

1. Stability of the forecast. Determine whether the current forecast is still a good predictor of the future.

2. Possibility of a trend. Determine whether a trend component exists in the demand data even though past observations appear to be stable for several consecutive periods.

3. Possibility of biased demand. Determine if observations have drifted away from the mean forecast even though demands are stable and non-trending.

The most recent observation will be compared to the most recent forecast using the five statistical parametric tests. If one of the statistical tests determines that the forecast is not a good predictor, SDF computes a new forecast. However, if all the tests determine that the current forecast is still a good predictor, the current forecast becomes the next period's forecast (Wehde, 1994b:1-5; Urban, 1994b).

The five independent statistical parametric tests that SDF uses are: The Demand Filters Test, the Trending Test, the Bias Test - Runs Test, the Bias Test - Cumulative Error Tests, and the Bias Test - Student Confidence Interval Test (Urban, 1994c:7-10, Wehde, 1994b:1-5). Demand Filters Test. To measure the stability of the forecast, SDF uses a statistical control test known as the Demand Filters Test. The purpose of the Demand Filters Test is to determine whether the current forecast is a good predictor of the future. If the test demonstrates that the current forecast is not a good estimation, then it will reforecast the demand data to obtain a new forecast more representative of the demand pattern (Urban, 1994a:Ch 3, 15; Wehde, 1994b:2).

SDF uses a control chart with a mean forecast and regions surrounding the mean. Those regions are known as filters. Figure 2-3 illustrates the control chart.

Figure 2-3. SDF Statistical Control Chart - Filters Test

The three regions on the control chart are the stability, instability and outlier regions (Wehde, 1994b:3). The region into which a given demand observation falls determines if a decision is made about whether to reforecast demand at this point or to defer the decision pending the outcome of the four remaining statistical process control tests.

Stability Region. The mean on the control chart (figure 2-3)

represents the forecast currently being used to forecast demand. The stability region is the

area around the mean. Its boundaries are defined by (Mean+Y*SD) and (Mean-Z*SD) where Y and Z are constant values defined by the item manager and SD is the standard deviation of the forecasted mean (Urban, 1994a:Ch 3, 15: Wehde, 1994b:3). The default value of Y and Z is one (Maitland, 1994a). When the most recent observation falls within the stability region, the current forecast is considered to be a good predictor of the future. The observation passes the Filters test and continues on to the Bias tests (Wehde, 1994b:3). Points A and A' on the control chart are examples of observations falling into the stable region.

Instability Region. The instability region is the region above and below the stability region (Wehde, 1994b:3). The instability region is defined as the region between (Mean+Y*SD) and (Mean+W*SD) and the region between (Mean-Z*SD) and (Mean-X*SD). Y, W, Z and X are constant values that must be set and SD is the standard deviation of the mean (Urban, 1994a:Ch 3, 15; Wehde, 1994b:3). The default value of X and W is three (Maitland, 1994a). A demand observation falling into the instability region is a signal that the current forecast is unstable with the most recent observation. Therefore, the current forecast is no longer representative of the demand pattern and demand has to be reforecasted using the forecasting technique selected by the item manager (Wehde, 1994b:3). Points B and B' on the control chart in figure 2-3 are examples of observations falling into the instability region.

Outlier Region. The outlier region consists of the region above and below the instability region. The outlier region is defined as the region above the value of (Mean+W*SD) and the region below the value of (Mean-X*SD) (Urban, 1994a:Ch 3, 15; Wehde, 1994b:3). When an observation falls within the outlier region, it is considered as an outlier and two options are possible (Maitland, 1994a). One of the two options can be set by the user as a parameter.

In the first option, when a single consecutive observation falls in the outlier region, it is marked high (above mean) or low (below mean). The outlier is dampened or reduced/increased to a value equal to the unstable outer limit. The forecast is updated using the dampened value. Points C and C' on the control chart (figure 2-3) are examples of observations falling into the outlier region. They are dampened to CO and C'O respectively.

In the second option, the first occurrence of an outlier is ignored. When a single consecutive demand observation falls in the outlier region, it is considered to be an error or the result of a series of events or conditions that do not occur with a high probability. They are not likely to occur again in the future at any time soon. Therefore the observation is ignored. The forecast is not updated and the observation will go through the Bias tests.

SDF considers two consecutive demand observations falling in the same outlier region to be strong evidence that the true demand has changed in a significant way. Therefore demand is reforecast when two consecutive outliers on the same side of the current forecast are observed (Wehde, 1994b:5). However, the standard forecasting technique selected by the item manager is not used in this instant. A four quarter moving average step forecast is computed to give more weight to the two outliers. If a set dollar value is met, the item demand information is then downloaded to the PC exception tool for the item manager to review (Maitland, 1994b).

Figure 2-4 illustrates the Demand Filters test. Instability is shown in Zone-1, outliers are found in Zone-2, and stability is displayed in Zone-3. The scenario starts in Zone-1 with a current quantity forecast of 9. Demand observations 11, 8, 10, 7 and 11 fall in the stable region. Demand observations 2 and 16 fall within the outlier region and are ignored because they are not consecutive. Because demand observation 13 falls in the instability region, a new forecast is computed. The new current forecast (Zone-2) takes

the value of 10 = (11+8+10+7+11+13)/6. In Zone-2, because of two consecutive outliers, a new forecast is computed using a four quarter moving average. The new current forecast (Zone-3) takes the value of 7 = (10+12+3+3)/4.

Figure 2-4. Demand Filters Test (Adapted from Wehde, 1994b:5)

<u>Trending Test</u>. The Demand Filters Test is followed by the Trending Test. Observations of demand are tested to determine whether there is a significant trend in the system demand pattern (Urban, 1994a:Ch 3, 16). Although demand displays stability, a trending component in the observations could exist. Figure 2-5 illustrates this situation.

SDF uses the Kendall "S" statistic to make statistical inferences about the presence of a trend. To determine if a trend exists, SDF will compute Kendall "S" statistics for observations falling in either the stability region or the instability region (Urban, 1994a:Ch 3, 16; Urban, 1993c:8-11). Kendall Trend Detection is used to determine the likelihood or probability that a trend exists in a series of demand observations observed during some time period. The Kendall "S" statistics is by design robust, invariant procedures, which together, provide an integrated capability to make realistic and statistically sound inferences about the presence of a trend and its expected impact or affect on the average or forecast demand (Urban, 1994a:Ch 3, 16; Urban, 1993c:8-11).

If it detects a trend, SDF will use the Sen Median forecast technique or a four quarter moving average technique to adjust the forecast to the demand pattern and then return to the original forecasting technique. The adjustment procedure is known as a step increase or step decrease forecast.

Figure 2-5. Demand Trending

Bias Tests. For stable non-trending items, the forecasting system performs a series of tests to ensure that the observations have not drifted away from the mean forecast. The Bias tests are the Runs Test, the Cumulative Quantity Difference Test or the Cumulative Percentage Difference Test, and the Student Confidence Interval Test (Urban, 1994a: Ch 3, 16). These tests are conducted only if the Filters test has categorized the current forecast as being stable. It is not conducted if the Filters test caused the system to reforecast a new forecast (Wehde, 1994b:6). The bias tests are conducted because it is possible for demand observations to be stable but still suggest that demand should be reforecast (Wehde, 1994b:6). For example, a series of stable demand observations that fall consecutively above the mean suggests that the forecast is too low. SDF's Bias tests are conducted using an average quarterly demand which is computed over a one or two year period (Wehde, 1994b:6).

Runs Test. If the current forecast is a good estimate of future demand, then it is expected that future demand observations will be uniformly distributed above and below the current forecast serving as the mean. In the Runs Test, for every time period, SDF compares the average quarterly demand (DemCur) to the current demand forecast (DemFor) (Wehde, 1994b:6). If demand observations are consecutively recurring above or below the mean, then the Runs Test is failed. If the Runs Test fails, demand is reforecast (Wehde, 1994b:4).

Figure 2-6. Runs Test

Figure 2-6 illustrates such a situation. The length of a run (X) is compared to a parameter value set by the item manager. It is reset to zero when:

1. DemCur equals DemFor.

2. DemCur changes from being less than DemFor to being greater or vice versa.

3. Demand is reforecast.

In the Runs Test, items are also classified as low, medium and high dollar value items. The constant value parameter to which the length of run is compared is set according to the dollar value of the item. A high dollar value item may have a length of run set to four [4] and a low dollar value item may have a length of run set to ten [10]. Figure 2-6 illustrates a situation where the length of run is seven [7].

Cumulative Error Tests. There are two cumulative error tests: the Cumulative Quantity Difference Test and the Cumulative Percentage Difference Test. The Cumulative Quantity Difference Test is used for low demand items. This test is conducted only if the demand originally fell in the Stability Region and then passed the Runs Test. During this test, SDF takes the absolute difference between the current observation and the current forecast. A running total of the errors is kept. When the cumulative sum of the forecast error grows to be larger than some set parameter, then demand is reforecasted (Urban, 1994a:Ch I, 1; Wehde, 1994b:8). The Cumulative Quantity Difference equation is shown below.

Cumulative Quantity Difference = $\sum |Obs(t) - For(t)|$ (7)

where

Obs(t) = Observation at period tFor (t) = Forecast for period t

The Cumulative Percentage Difference Test is the same as the Cumulative Quantity Difference Test but it is used for high demand items. This test is conducted only if the demand observation originally fell in the Stability Region and then passed the Runs Test. With this test, SDF takes the absolute percentage difference between the current observation and the current forecast. A running total of the percentage errors is kept. When the cumulative sum of the forecast error grows to be larger than some set parameter, then demand is reforecast (Urban, 1994a:App I, 2; Wehde, 1994b:8). The Cumulative Percentage Difference is shown below.

Cumulative Percentage Difference = $\sum \{|Obs(t) - For(t)| / For(t)\}$ (8)

where

Obs(t) = Observation at period t

For (t) = Forecast for period t

<u>Student Confidence Interval Test</u>. A confidence interval is computed using a Student-t test. The mean current forecast is used to compute the confidence interval. If the average quarterly demand is outside of the confidence interval, the test fails and a new demand forecast is computed (Urban, 1994a:App I, 2).

Module 4: Quantity Forecasts. In this module, SDF performs quantity forecasts for different variables. These variables will help to compute the net procurement lead-time demand and the net demand during repair turn-around-time (Urban, 1993c:18; Urban, 1994b). These variables are:

1. Demand Forecast

2. Program Related Values

3. System Forecasts

4. System Requisition Average

5. Regenerations Forecast

6. Activity Demands and Requisition Average Forecast

7. Fixed Allowance Demand, Repair Completion, and BCM Forecasting (System) <u>Module 5: Procurement Problem Variable Forecast</u>. The purpose of this module is to aggregate all variables computed in the previous modules to compute the net demand during lead-time and the net demand during repair turn around time (Urban, 1993c:20; Urban, 1994b).

Chapter Summary

This literature review presented descriptions of the data pattern components, the current Air Force Recoverable Consumption Item Requirements System (D041) forecasting approach, the future Air Force Requirements Data Bank System forecasting approach and the Navy's Statistical Demand Forecasting System.

Data can be decomposed into components known as trend, cycle, seasonality, and randomness. The current Air Force forecasting approach uses an Eight Quarter Moving Average as a forecasting technique to predict future spare part requirements for weapon systems. The future Air Force forecasting approach contains three different forecasting techniques: Four to Eight Quarter Moving Average technique, Double Exponential Smoothing technique, and Predictive Logistics known as the PRELOG technique.

The Statistical Demand Forecasting System was developed by the Navy Aviation Supply Office to forecast its recoverable and consumable requirements for program and non-program related items. The SDF system contains statistical process control charts to detect demand instability and is designed to improve forecast accuracy and to reduce level instability. SDF also contains several forecasting techniques which include Moving Average, Exponential Smoothing, Linear Regression, Dampened, Non-Parametric, and Composite Forecasting techniques. The next chapter discusses how the actual research was conducted. It also describes how the data were obtained and analyzed.

III. Methodology

Introduction

The purpose of this study is to provide a comparison of the performance and accuracy of the Navy forecasting system (SDF) relative to the Air Force forecasting system (RDB) in an Air Force environment.

This chapter describes the type of research design, the research questions, the null hypotheses, and the instruments pursued to do the comparison analysis. The analytical approach, population size, sample size, data collection, and limitations used to perform the study are also discussed. Finally, this chapter highlights the actual research plan.

Type of Research Design

A research design represents the blueprint for the collection, measurement, and analysis of data. It is a structured outline conceived to obtain answers to research questions (Emory and Cooper, 1991:138). The research design may be viewed from different perspectives such as the method of data collection, the design of the research, the purpose of the research, and the topical scope (Emory and Cooper, 1991:139).

The method of data collection depends on whether the research is observational or survey. An observational research refers to the study of activities of a subject or the nature of some material without interacting with the subject or material. The subject or the material is being observed (Emory and Cooper,1991:140). A survey research refers to the study of responses obtained from questions asked to the subject (Emory and Cooper,1991:140). This research falls into the category of an observational research. The two forecasting systems are being observed under different scenarios to determine which system is most appropriate to forecast Air Force demand.

The design of the research depends on whether the researcher has control over the variables being studied. The two types of research designs are the experimental design and the ex post facto design. Experimental design is appropriate if the researcher has the ability to manipulate the variables to determine whether the variables affect other variables (Emory and Cooper,1991:140). In the ex post facto design, the investigator has no control over the variables. It is difficult to manipulate the variables because the researcher can only report what happened (Emory and Cooper,1991:140). This thesis research deals with an ex post facto research design. The research design measures and compares the forecasts of the forecasting systems.

The purpose of the study depends on whether the research is descriptive or causal. The purpose of a descriptive study is to answer the questions: what, when, where or how much (Emory and Cooper,1991:141). It deals with a question or hypothesis being stipulated concerning the size, form, distribution or existence of a variable (Emory and Cooper,1991:148). A causal study deals with learning why or how one variable affects another. It tries to explain the relationship that can exist among variables (Emory and Cooper,1991:141). This research is a descriptive study and it answers the following question: What forecasting approach is most accurate to forecast Air Force demand?

The topical scope of the research is defined as the breadth and depth of the study (Emory and Cooper,1991:139). The research may represent a case study or a statistical study. A case study refers to the analysis of a limited number of events or conditions and their interrelations (Emory and Cooper,1991:142). A statistical study deals with capturing the characteristics of a population by making inferences from a sample of items. In general the hypotheses tested are quantitative (Emory and Cooper,1991:142). This thesis research is a statistical study. It tries to determine which forecasting approach is best suited to forecast Air Force recoverable items demands.

The design of this thesis research is described as follow: the method of data collection is observational; the design of the research is ex post facto; the purpose of this study is descriptive; and the topical scope of the study is statistical. The implementation of the research design is described at a later point in this chapter.

Research Ouestions

To evaluate the forecasting systems and to address forecasting accuracy and robustness, the following research questions are developed:

 How does each forecasting system perform with different time series components?
 How accurate are the forecasts computed by each forecasting technique subject to actual Air Force demand data?

3. What effects do the forecasts, computed by each forecasting approach, have on aircraft availability?

Research Ouestion I. The first research question is: How does each forecasting system performs with different data pattern components? The purpose of this research question is to determine how well the forecasting systems react to different times series components. Times series components can be encountered in the demand data and it is important to understand how well the forecasting systems will respond to them. To answer the research question, the following investigative questions are developed: 1. What is the difference between the RDB average forecasting error and the SDF average forecasting error when a trending component is present in the data? 2. What is the difference between the RDB average forecasting error and the SDF average forecasting error when a cyclic component is present in the data? 3. What is the difference between the RDB average forecasting error and the SDF

3-3

average forecasting error when a seasonal component is present in the data?

4. What is the difference between the RDB average forecasting error and the SDF average forecasting error when a random component is present in the data?

5. What is the difference between the RDB average forecasting error and the SDF average forecasting error when an outlier/spike component is present in the data?

Research Question II. The second research question is: How accurate are the forecasts computed by each forecasting technique subject to actual Air Force demand data? The main purpose of this approach is to verify and evaluate how well each forecasting approach performs when subject to real world data. To answer the research question, the following investigative questions are developed:

1. What are the mean, variance and standard error of the forecasting errors?

2. Are the forecasts responsive to actual observations?

3. What is the difference between the RDB average forecasting error and the SDF average forecasting error?

Research Question III. The third research question is: What effects do the forecasts, computed by each forecasting approach, have on aircraft availability? The main purpose of this approach is to verify and evaluate how each forecasting approach affects the aircraft availability achieved.

1. What is the difference between the aircraft availability achieved with actual demand rates and the aircraft availability achieved with the RDB forecasted values?

2. What is the difference between the aircraft availability achieved with actual demand rates and the aircraft availability goals achieved with the SDF forecasted values?

Research Hypotheses

To answer the research questions, null hypotheses were constructed to make inferences about the forecasting systems. This research hypothesizes that the the Air Force Requirements Data Bank system's forecasts are as accurate as the Navy Statistical Demand Forecasting system's forecasts.

To answer the first research question, a hypothesis is developed for each time series components. Considering each data pattern component, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting error mean (μ_2) at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

The test is a two-tailed test and tries to determine whether there is a significant difference between the forecasting errors generated by the RDB system and the SDF system. The 90% confidence level was selected because if there is no significant difference at 90%, there won't be a significant difference at 95% either.

To answer the second research question, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

The test is a two-tailed test and tries to determine whether there is a significant difference between the forecasting errors generated by the RDB system and the SDF system. The 90% confidence level was selected because if there is no significant difference at 90%, there won't be a significant difference at 95% either.

To answer the third research question, the evaluation of aircraft availability, the null hypothesis to be tested is that the average aircraft availability (μ_1) achieved with the RDB forecasting approach is equal to the average aircraft availability (μ_2) achieved with the SDF forecasting approach at the 90% confidence level.

Ho:
$$\mu_1 = \mu_2$$

Ha: $\mu_1 \neq \mu_2$

The test is a two-tailed test and tries to determine whether there is a significant difference between the forecasting errors generated by the RDB system and the SDF system. The 90% confidence level was selected because if there is no significant difference at 90%, there won't be a significant difference at 95% either.

Since the analysis involved two populations, a Paired Difference Test is used to test each of the null hypotheses mentioned above.

Instruments

The forecasts for the Air Force RDB system are computed using a simulation model of the RDB Forecasting approach. The simulation program uses FORTRAN coding and is shown in Appendix C. The forecasts associated with the SDF system are computed using the actual Navy's SDF System.

To compare the SDF forecasting performance to the RDB forecasting performance, three instruments are used: forecasting measurement errors, Paired Difference Test, and Aircraft Sustainability Model.

Energy Error Measurements. The purpose of this instrument is to compare the forecasts to the actual observations. The accuracy of forecasting methods is frequently judged by comparing the original observations to the forecast of these observations. Several methods have been devised to summarize the errors generated by a particular forecasting technique (Hanke, 1992:112). Most of these measures involve averaging some function of the difference between an actual observation and its forecast value. These differences between observed values and forecast values are often referred to as residuals (Hanke, 1992:113).

Four methods used to evaluate the forecasting errors associated with each forecasting technique are: Mean Absolute Deviation (MAD), Mean Square Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Percentage Error (MPE).

Mean Absolute Deviation. The Mean Absolute Deviation (MAD) measures forecast accuracy by averaging the magnitudes of the forecast error. MAD is most useful when the analyst wants to measure forecast error in the same units as the original series (Hanke, 1992:113). The MAD formula is presented in Equation 9 (Hanke, 1992:114).

$$MAD = \frac{\sum |Y_t - F_t|}{n}$$
(9)

where

 Y_t = Actual value at time t F_t = Forecast at time t n = number of periods

Mean Square Error. The Mean Square Error (MSE) is an alternative method for evaluating a forecasting technique. Each residual is squared. This approach provides a penalty for large forecasting errors. Equation 10 demonstrates the Mean Square Error formula (Hanke, 1992:114).

$$MSE = \frac{\sum (Y_t - F_t)^2}{n}$$
(10)

where

 Y_t = Actual value at time t F_t = Forecast at time t n = number of periods

Mean Absolute Percentage Error. Sometimes it is more useful to compute the forecasting errors in terms of percentages rather than amounts (Hanke, 1992:114). The Mean Absolute Percentage Error (MAPE) provides an indication of how large the forecast errors are in comparison to the actual values. In the MAPE equation, the residual is divided by the actual demand to obtain a percentage. Sometimes, for different items, the true quarterly demand is zero. If the true demand is zero, then the MAPE becomes undefined. For this reason, if the true demand is zero, the demand observation should be ignored (Sherbrooke, 1987:5). Equation 11 demonstrates the Mean Absolute Percentage Error formula (Hanke, 1992:114).

$$MAPE = \sum \{|Y_t - F_t| / P_t\}$$
n
(11)

where

 Y_t = Actual value at time t F_t = Forecast at time t P_t = Y_t n = number of periods

Mean Percentage Error. Sometimes it is necessary to determine whether a forecasting method is biased (consistently forecasting low or high). The Mean Percentage Error (MPE) is used in this case (Hanke, 1992:114). For the purpose of this research, the MPE equation was slightly modified. In the MPE equation, the residual is divided by the actual demand to obtain a percentage. If the true demand is zero, then the MPE becomes undefined. For this reason, if the true demand is zero, the demand observation should be ignored (Sherbrooke, 1987:5). Equation 12 demonstrates the Mean Percentage Error formula (Hanke, 1992:114).

$$MPE = \sum \{ (Y_t - F_t) / P_t \}$$
(12)

where

 Y_t = Actual value at time t F_t = Forecast at time t P_t = Y_t n = number of periods <u>Student Paired Difference Test</u>. The purpose of the Student Paired Difference Test is to compare the difference between two population means (McClave and Benson, 1991:421). The assumptions of the test are (McClave and Benson, 1991:424):

1. The relative frequency distribution of the population of differences is normal.

2. The differences are randomly selected from the population of differences.

Table 3-1 illustrates the Paired Difference Test (McClave and Benson, 1991:424).

<u>Aircraft Sustainability Model</u>. Aircraft availability is defined as the percentage of aircraft which are available, or fully mission capable. If an aircraft is not missing a reparable component due to repair, it is considered available (O'Malley, 1983:Ch1, 1). Inventory stockage models, used to optimize the aircraft availability, are: METRIC, Mod-METRIC, Aircraft Availability Model, Vari-METRIC, Dyna-METRIC and Aircraft Sustainability Model (Pohlen, 1994:4-5).

Table 3	3-1.	Paired	Difference	Test

Two Tailed Test			
Hypotheses	Ho: µ1-µ2 = Ha: µ1-µ2 ≠	: 0 0	
Test Statistic	$t = (\mu_D - D_0) / (S_D - Square Root(n_D))$		
	where	μ _D = Sample mean of differences S _D = Sample standard deviation of differences	
		n_D = Number of differences	
Rejection Region	$t < -t_{\alpha/2}$ or	$t > t_{\alpha/2}$	
	where $t_{\alpha/2}$	has (n _D -1) df	

For the purpose of this study, the Aircraft Sustainability Model was selected to measure the aircraft availability achieved. The reason for selecting this model versus the

other models is because of its simplicity. This model is easier to use than the others and can run quickly on a micro-computer (Klinger, 1994:48).

The Aircraft Sustainability Model is a "two-indenture, two-echelon requirements model for a single weapon system." (Slay and King, 1987:Ch 2, 2). Given the stock levels for the parts being modeled over a period of time, it projects aircraft availability rates. The user can also specify the desired aircraft availability goals and funding constraint (Klinger, 1994:42-43). To compute the aircraft availability rate, the expected backorders must first be calculated. Backorders are defined as unfilled demands. They are the number of holes in an aircraft, or the number of missing items on an aircraft (Klinger, 1994:13). Using a pure Poisson distribution, the expected backorders are computed as follows (Sherbrooke, 1992:25):

$$EBO(S_i) = \sum_{x=S+1}^{\infty} (x-S) p(x|\lambda T)$$
(13)

where

S = stock level

$$x = S+1$$
 to ∞
 λT = mean number of units in resupply

Using the expected backorders, the aircraft availability is then computed as follows (Sherbrooke, 1992:25):

$$A = 100 \prod_{i=1}^{I} \{1 - EBO_i(s_i)/(NZ_i)\}^{Z_i}$$
(14)

where

N = the number of aircraft Z_i = quantity per application EBO_i(s_i) = expected backorders The research assumptions used with the Aircraft Sustainability model are as follows:

1. An aircraft is down upon failure of an LRU for which no spare is available (Klinger, 1994:43).

2. If a part cannot be repaired at the base, it is shipped to the depot for possible repair (Klinger, 1994:43).

3. A replenishment from the depot is requested immediately. Both the base and the depot operate under (s-1, s) inventory policy (Klinger, 1994:43).

4. All failures occur at the base (Klinger, 1994:43).

5. For all items, the quantity per aircraft is equal to one.

6. There are no SRUs.

7. All items belong to a fictitious weapon system.

8. If a part is condemned, a replenishment from an outside source of supply is requested (Slay and King, 1987:Ch 2, 2).

Analytical Approaches

To support the research design, and to answer the research questions cited in Chapter One, three analytical approaches are used to evaluate and compare the Air Force forecasting method (RDB) to the Navy forecasting method (SDF):

Approach One. The first approach measures the performance of the two forecasting systems, subject to the influence of different time series components, in terms of accuracy and stability. The main purpose of this approach is to verify and evaluate how well each forecasting approach reacts when subject to different time series components. A FORTRAN program was built to generate each type of data pattern. The code for the FORTRAN program is contained in Appendix A. Forecasting measurement errors are used to measure the stability and accuracy of the forecasts. Separate scenarios are

constructed for each of the time series components: trend, cycle, seasonal, random and outlier. Under each scenario, forecasting measurement errors (MAD, MSE, MAPE and MPE) are computed to measure the performance of each forecasting system (SDF versus RDB). A Paired Difference Test at the 90% confidence level is conducted for each scenario and for each type of forecasting error. Table 3-2 illustrates the design of each scenario. Considering each data pattern component, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 90% confidence level.

Ho: $\mu_1 = \mu_2$: RDB forecasting error mean = SDF forecasting error mean Ha: $\mu_1 \neq \mu_2$: RDB forecasting error mean \neq SDF forecasting error mean

Forecasting. Eknow	Trend Component	Seasonal Component	Cyclical Component	Kandom Compone	Outlier/Spike Component	
MAD	Ho: $\mu_1 - \mu_2 = 0$					
	Ha:µ ₁ -µ ₂ ≠0	Ha:µ ₁ -µ ₂ ≠0	Ha:µ1-µ2≠0	Ha:µ1-µ2≠0	Ha:µ ₁ -µ ₂ ≠0	
	Paired	Paired	Paired	Paired	Paired	
ł	Difference	Difference	Difference	Difference	Difference	
	Test	Test	Test	Test	Test	
MSE	Ho: $\mu_1 - \mu_2 = 0$					
	Ha:µ1-µ2≠0	Ha:µ ₁ -µ ₂ ≠0	Ha:µ ₁ -µ ₂ ≠0	Ha:µ1-µ2≠0	Ha:µ1-µ2≠0	
	Paired	Paired	Paired	Paired	Paired	
	Difference	Difference	Difference	Difference	Difference	
	Test	Test	Test	Test	Test	
MAPE	Ho: $\mu_1 - \mu_2 = 0$	Ho:µ ₁ -µ ₂ =0				
}	Ha:µ ₁ -µ ₂ ≠0	Ha:µ ₁ -µ ₂ ≠()				
	Paired	Paired	Paired	Paired	Paired	
ł	Difference	Difference	Difference	Difference	Difference	
	Test	Test	Test	Test	Test	
MPE	Ho: $\mu_1 - \mu_2 = 0$					
	Ha:µ ₁ -µ ₂ ≠0	Ha:µ ₁ -µ ₂ ≠0	Ha:µ ₁ -µ ₂ ≠0	Ha:µ1-µ2≠0	Ha:µ1-µ2≠0	
	Paired	Paired	Paired	Paired	Paired	
ł .	Difference	Difference	Difference	Difference	Difference	
	Test	Test	Test	Test	Test	
μ1:	Mean forecasting error for RDB					
μ ₂ :	Mean forecasting error for SDF					

Table 3-2. Design of Analytical Approach One

For each test where a significant difference exists between the two forecasting error means, a One-Tailed Paired Difference Test at the 95% confidence level is conducted. The null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 95% confidence level.

Ho: $\mu_1 = \mu_2$: RDB forecasting error mean = SDF forecasting error mean

Ha: $\mu_1 > \mu_2$: RDB forecasting error mean > SDF forecasting error mean, or

Ha: $\mu_1 < \mu_2$: RDB forecasting error mean < SDF forecasting error mean

Approach Two. Subject to real Air Force data, the second approach measures the performance of the forecasting techniques in terms of accuracy and stability. The main purpose of this approach is to verify and evaluate how well each forecasting approach performs when subject to real world data. Four years of historical data from the Air Force D041 system was used to feed both forecasting systems. The first three years were used to make forecasts for the fourth year. The forecasts were then compared to the actual demands occurring in the fourth year. This approach measured the performance of the forecasting systems in terms of accuracy and stability subject to the presence of real Air Force data. Forecasting errors (MAD, MSE, MAPE and MPE) were computed to measure the performance of each forecasting approach (SDF versus RDB). A Paired Difference Test at the 90% confidence level is conducted for each forecasting error. Table 3-3 illustrates the design of Approach Two. The null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 90% confidence level.

Ho: $\mu_1 = \mu_2$: RDB forecasting error mean = SDF forecasting error mean Ha: $\mu_1 \neq \mu_2$: RDB forecasting error mean \neq SDF forecasting error mean

Recorded Street	Als Porce Data
MAD	Но:µ1-µ2=0
	Ha:µ ₁ -µ ₂ ≠0
	Paired Difference Test
MSE	Ho: $\mu_1 - \mu_2 = 0$
	Ha:µ ₁ -µ ₂ ≠0
	Paired Difference Test
MAPE	Ho: $\mu_1 - \mu_2 = 0$
	Ha:µ1-µ2≠0
	Paired Difference Test
MPE	Ho: $\mu_1 - \mu_2 = 0$
	Ha:µ ₁ -µ ₂ ≠0
	Paired Difference Test
μ ₁ :	Mean forecasting error for RDB
μ2:	Mean forecasting error for SDF

Table 3-3. Design of Analytical Approach Two

For each test where a significant difference exists between the two forecasting error means, a One-Tailed Paired Difference Test at the 95% confidence level is conducted. The null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting mean (μ_2) at the 95% confidence level.

Ho: $\mu_1 = \mu_2$: RDB forecasting error mean = SDF forecasting error mean

Ha: $\mu_1 > \mu_2$: RDB forecasting error mean > SDF forecasting error mean, or

Ha: $\mu_1 < \mu_2$: RDB forecasting error mean < SDF forecasting error mean

Approach Three. The main purpose of this approach is to verify and evaluate how each forecasting approach affects the aircraft availability achieved. Accuracy in terms of demand is important. However accuracy in terms of aircraft availability is even more important because the aircraft availability is the Air Force primary measure of system level performance (Sherbrooke, 1992:27). Approach three has five stages:

1. Using the RDB forecasted demand rates and setting a specific funding level, use the Aircraft Sustainability Model to compute stock levels for all items.

2. Using the actual demand rates and the stock levels determined by RDB in stage one, use the Aircraft Sustainability Model to compute the aircraft availability percentage. The model is constrained by a specific funding level. The funding constraint is \$80,000 for times series components and \$700,000 for the real Air Force data. These funding constraints were selected to give a fair aircraft availability for the mixed of items found in the sample data.

3. Using the SDF forecasted demand rates and setting a specific funding level, use the Aircraft Sustainability Model to compute stock levels for all items.

4. Using the actual demand rates and the stock levels determined by SDF in stage three, use the Aircraft Sustainability Model to compute the aircraft availability percentage. The model is constrained by a specific funding level. The funding constraint is \$80,000 for times series components and \$700,000 for the real Air Force data.

5. Compare the aircraft availability achieved in stages two and four with a Paired Difference Test. The null hypothesis to be tested is that the average aircraft availability (μ_1) achieved with the RDB forecasting approach is equal to the average aircraft availability (μ_2) achieved with the SDF forecasting approach at the 90% confidence level.

Ho: $\mu_1 = \mu_2$: RDB average aircraft availability = SDF average aircraft availability Ha: $\mu_1 \neq \mu_2$: RDB average aircraft availability \neq SDF average aircraft availability

The average aircraft availability achieved is computed over a period of four quarters, using the Aircraft Sustainability Model. This approach is repeated for the time series components' scenarios and the real Air Force data scenario. Table 3-4 illustrates the approach.

Stage	Trend	Seatonal	Cyclical	Random	Outlier/ Solite	Air Force Date
I. Compute RDB Stock Levels	Stock Levels RDB	Stock Levels RDB	Stock Levels RDB	Stock Levels RDB	Stock Levels RDB	Stock Levels RDB
II. Compute Aircraft Availability with RDB Stock Levels	Average Aircraft Availability (µ1)	Average Aircraft Availability (µ1)	Average Aircraft Availability (µ1)	Average Aircraft Availability (µ1)	Average Aircraft Availability (µ1)	Average Aircraft Availability (µ1)
III. Compute SDF Stock Levels IV. Compute Aircraft Availability with SDF Stock Levels	Stock Levels SDF Average Aircraft Availability (µ2)	Stock Levels SDF Average Aircraft Availability (µ2)	Stock Levels SDF Average Aircraft Availability (µ2)	Stock Levels SDF Average Aircraft Availability (µ2)	Stock Levels SDF Average Aircraft Availability (µ2)	Stock Levels SDF Average Aircraft Availability (µ2)
V. Compare Aircraft Availability	Ho: μ_1 - $\mu_2=0$ Ha: μ_1 - $\mu_2\neq 0$ Paired Difference Test	Ho: μ_1 - $\mu_2=0$ Ha: μ_1 - $\mu_2\neq 0$ Paired Difference Test	Ho: μ_1 - μ_2 =0 Ha: μ_1 - $\mu_2 \neq 0$ Paired Difference Test	Ho: μ_1 - $\mu_2=0$ Ha: μ_1 - $\mu_2\neq 0$ Paired Difference Test	Ho: μ_1 - μ_2 =0 Ha: μ_1 - μ_2 ≠0 Paired Difference Test	Ho: μ_1 - $\mu_2=0$ Ha: μ_1 - $\mu_2\neq 0$ Paired Difference Test

Table 3-4. Design of Analytical Approach Three

For each test where a significant difference exists between the two average aircraft availability means, a One-Tailed Paired Difference Test at the 90% confidence level is conducted. The null hypothesis to be tested is that the RDB average aircraft availability (μ_1) is equal to the SDF average aircraft availability (μ_2) at the 95% confidence level.

Ho: $\mu_1 = \mu_2$: RDB average aircraft availability = SDF average aircraft availability

Ha: $\mu_1 \neq \mu_2$: RDB average aircraft availability > SDF average aircraft availability

or Ha: $\mu_1 < \mu_2$: RDB average aircraft availability < SDF average aircraft availability

Population Size

This study is limited to the forecast of reparable items only. As discussed in Chapter One, the purpose of the Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts (Gitman, 1994). Although RDB will have the capability of managing consumable items in the future, the Air Force currently manages consumable items using the Economic Order Quantity Buy Budget Computation System (D062) (Gitman, 1994). Since a comparison is made to address Air Force concerns, this research limits its analysis only to the range of Air Force reparable spare parts. The population size of the reparable items in D041 is approximately 185,000 items (Lucas, 1993). However, about 40,000 of those reparable items are active (items that are used on a regular base) (Rexroad, 1993a).

Sample Size and Data Collection.

This discusses the computation of sample sizes for actual Air Force demand data and time series components demand data. Equation 15 demonstrates the formula used to compute the sample size necessary to estimate the mean to within a bound, with a 90% confidence level (McClave and Benson, 1991:320). Appendix B presents the Excel Spreadsheet that computes the sample sizes.

$$n = [(Z_{\alpha/2})^2 \sigma^2] / B^2$$
(15)

where

n = sample size $Z_{\alpha/2}$ = Z-value at 90% level confidence = 1.96 σ^2 = Variance of the beginning sample size B = The bound within the mean

Sample Size for Air Force Data. The data sample consists of 245 reparable items. Specific items and common items are included in the analysis. The secondary demand data were gathered from the Recoverable Consumption Item Requirements (D041) System. The demand data cover four years of historical data and are either specific or common to different weapon systems. The demand data include information such as Base RTS (Reparable This Station), Base NRTS (Not Reparable This Station), Base Condemnations and Flying Programs.

Variance-to-Mean Ratio. The presence of variability in demand data makes it impossible to forecast future demands without error (McClave and Benson, 1991:810). The VTMR (variance-to-mean ratio) is a measure of the variability, hence the error source of the demand process (Crawford, 1988:3). Since demand variability affects forecasting outputs more than demand mean does, the use of the variance-to-mean ratio becomes an important factor in the computation of a sample size for demand data (Maitland, 1993a). To ensure that the sample size is really representative of the population size, it is essential that the variance-to-mean ratio distribution of the sample size resembles the variance-to-mean ratio . istribution of the population size (Abell, 1994). To illustrate the VTMR distribution of the population size, the VTMR was computed across 6500 items of the population size. The mean VTMR was 2.3626 and the median was 1.3267 across the 6500 items. These results were validated by John B. Abell who stipulated that worldwide demands generally have a VTMR approaching 1.5 (Abell, 1994). Figure 3-1 illustrates the VTMR distribution of the population size.

To select an appropriate sample size, a beginning or starting sample size of 600 items is first selected from the population size to compute the mean, variance, and variance-to-mean ratio for each item. The mean and variance are computed by weighting the demand by the number of flying hours. The variance-to-mean ratio is then computed using equation 16 (Crawford, 1988:3).

$$VTMR = (the variance of the number of demands per unit time)$$
(16)
(the expected number of demands per unit time)

The overall VTMR mean and overall VTMR standard deviation of the beginning sample size are computed. Using the VTMR standard deviation with equation 15, the final Air Force sample size is computed within a bound, being the VTMR standard deviation of the population size. Equation 15 demonstrates the formula used to compute the sample size (McClave and Benson, 1991:320). Appendix B presents the Excel Spreadsheet that computes the final sample size.

To illustrate the VTMR distribution, the VTMR was computed across the 245 items of the sample size. Figure 3-2 illustrates the VTMR distribution of the sample size.

Figure 3-2. Variance-to-Mean Ratio of Recoverable Items Sample Size

Figure 3-1 demonstrates the VTMR of the recoverable items distribution of the population size and figure 3-2 illustrates the VTMR of the recoverable items sample size. Figure 3-1 and figure 3-2 confirm that the sample size is representative of the population size.

Sample Sizes for Time Series Components. The sample size for each time series component's scenario consists of forty items. The time series component data are generated by FORTRAN programs shown in Appendix A. To determine the sample size for each time series component (trend, cycle, seasonal, randomness, and outlier), data is first generated to create a beginning sample size. The mean VTMR and standard deviation VTMR of the beginning sample size are computed to determine the final sample size for each of the time series components. Each time series component sample size computed had a value lower than forty. However to be on the safe side, a sample size of forty was used. Appendix B presents the Excel Spreadsheet that computes the time series components sample sizes.

Implementation of the Research Design

To perform the comparison analysis between the Air Force Requirements Data Bank forecasting approach and the Navy Statistical Demand Forecasting approach, the implementation of the design is divided into three phases. The purpose of each phase is to answer the three research questions.

<u>Phase One</u>. The purpose of this phase is to answer the first research question: How does each forecasting system performs with different time series components? The following steps are used to answer the research question:

1. Build FORTRAN programs that generate time series components. Appendix A demonstrates the coding of the programs.

2. Compute a sample size for each time series component to do the analysis. Appendix B demonstrates the calculation of each sample size.

3. Build a FORTRAN program that simulates the Requirements Data Bank forecasting approach. Appendix C demonstrates the coding of the program.

4. Use the simulation model to analyze the demand data and to compute forecasts.

5. Compare the observed values to the forecasted values and compute the forecasting error measurements (MAD, MADE, MAPE & MPE) to evaluate the accuracy and the stability of the Air Force RDB Forecasting system. The RDB forecasting measurement errors are computed with the help of the RDB simulation program shown in appendix C.

6. Use the actual SDF system to analyze the demand data and to compute forecasts.

7. Compare the observed values to the forecasted values and compute the forecasting measurement errors (MAD, MSE, MAPE & MPE) to evaluate the accuracy and the stability of the Statistical Demand Forecasting system. The SDF forecasting errors are computed with the help of a FORTRAN program shown in appendix D.

8. Use a Paired Difference Test to test the following hypothesis: Subject to the presence of each data pattern component, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting error mean (μ_2) at the 90% confidence level.

<u>Phase Two</u>. The purpose of this phase is to answer the second research question: How accurate are the forecasts computed by each forecasting technique, subject to the presence of actual Air Force data? The following steps are used to answer the research question:

1. Compute the sample size necessary to represent the Air Force demand data at the 90% confidence level. Appendix B demonstrates the calculation of the sample size.

2. Collect four years of historical demand data from the D041 system. The items selected are either specific or common to different weapon systems. The time period for the data is from January 1989 to December 1993. Appendix D illustrates the data formats created to run both the RDB system and the SDF system.

3. Use the RDB simulation model to analyze the demand data and compute forecasts.

4. Compare the observed values to the forecasted values and compute the forecasting error measurements (MAD, MSE, MAPE & MPE), to evaluate the accuracy and the stability of the Air Force RDB Forecasting system. The RDB forecasting errors are computed with the help of the RDB simulation program shown in appendix C.

5. Use the actual SDF system to analyze the demand data and to compute forecasts.

6. Compare the observed values to the forecasted values and compute the forecasting measurement errors (MAD, MSE, MAPE & MPE) to evaluate the accuracy and the stability of the Statistical Demand Forecasting system. The SDF forecasting errors are computed with the help of a FORTRAN program shown in appendix D.

7. Use a Paired Difference Test to test the following hypothesis: subject to the presence of actual Air Force data, the null hypothesis to be tested is that the RDB forecasting error mean (μ_1) is equal to the SDF forecasting error mean (μ_2) at the 90% confidence level.

<u>Phase Three</u>. The purpose of this phase is to answer the third research question: What effects do the forecasts, computed by each forecasting approach, have on aircraft availability? The following steps are used to answer the research question:

1. Using the RDB forecasted demand rates and setting a specific funding level, use the Aircraft Sustainability Model to compute stock levels for all items. Stock levels are computed for each time series components' scenarios and the Air Force item sample
scenario. The funding level is \$80,000 for the time series components and \$700,000 for the actual Air Force data.

2. Using the actual demand rates and the stock levels determined by RDB in stage one, use the Aircraft Sustainability Model to compute the aircraft availability percentage. The model is constrained by a specific funding level. The funding level is \$80,000 for the time series components and \$700,000 for the actual Air Force data.

3. Using the SDF forecasted demand rates and setting a specific funding level, use the Aircraft Sustainability Model to compute stock levels for all items. Stock levels are computed for each time series components' scenarios and the Air Force item sample scenario. The funding level is \$80,000 for the time series components and \$700,000 for the actual Air Force data.

4. Using the actual demand rates and the stock levels determined by SDF in stage three, use the Aircraft Sustainability Model to compute the aircraft availability percentage. The model is constrained by a specific funding level. The funding level is \$80,000 for the time series components and \$700,000 for the actual Air Force data.

5. Compare the aircraft availability achieved in stages two and four with a Paired Difference Test. The null hypothesis to be tested is that the average aircraft availability (μ_1) achieved with the RDB forecasting approach is equal to the average aircraft availability (μ_2) achieved with the SDF forecasting approach at the 90% confidence level.

Chapter Summary

This chapter discussed the approach used to compare the Air Force forecasting system to the Navy forecasting system. Three analytical approaches are used:

1. The first approach consists of measuring the performance of the two forecasting systems, subject to different time series components, in terms of accuracy and stability.

2. The second approach consists of measuring the performance of the two forecasting systems, subject to historical Air Force demand data, in terms of accuracy and stability.

3. The third approach consists of measuring the effects of the two forecasting systems on Air Force aircraft availability.

This chapter gives a description on the type of research design, the research questions, the null hypotheses, and the instruments used to do the comparison analysis. It also presents the analytical approach, population size, sample size, data collection, and limitations used to perform the study. Finally the chapter highlights and explains the implementation of the research plan. The next chapter presents the results and analysis of implementing the research methodology.

IV. Results and Analysis

Introduction

This chapter presents the results and analysis of this comparison research. The chapter is separated into three sections. The first section discusses the forecasting measurement errors associated with the time series components. The forecasting errors are computed for each forecasting system. The second section discusses the forecasting measurement errors associated with actual Air Force data. The forecasting errors are computed for each forecasting system. Finally, the third section presents the aircraft availability results achieved with each forecasting system.

Approach One - Time Series Components Results

This section presents the results obtained to answer the first research question: How does each forecasting system performs with different time series components? The purpose of this research question is to determine how well the forecasting systems react to different times series components. To answer the research question, time series component data sets are generated. The forecasting error results obtained explain how the RDB forecasting system and the SDF system react to different time series components. However the errors computed are not representative of how the RDB system or the SDF system generally performs with rew world data. The results demonstrate that when there is a trending component in the data, the SDF system provides more accurate forecasts at 95% level confidence than the RDB system does. The results also demonstrate that when there are outliers in the data, the SDF system generates more accurate forecasts than the RDB system. However the results illustrate that with the remaining time series component, there is not enough evidence at 90% level confidence to show that there is a significant difference between the SDF system and the RDB system.

This section is divided into three parts. The first part presents the forecasting measurement errors obtained with the Requirements Data Bank system for each time series component. The second part presents the forecasting measurement errors obtained with the Statistical Demand Forecasting system for each time series component. Finally the third part provides the comparison findings between the two forecasting systems.

Requirements Data Bank Results. Table 4-1 illustrates the mean and variance of the forecasting measurement errors for each time series component. Appendix F presents an Excel spreadsheet which demonstrates the mean and variance computations.

	Trend	Seasonal	Oyelica	Rendem	Outlier
Observations	40	40	40	40	36
Average MAD	13.1625	1.5969	3.1938	2.4844	17.9514
Variance MAD	44.0178	0.3057	1.2227	0.6184	82.8150
Observations	40	40	40	40	36
Average MSE	216.17	3.9641	15.3563	8.5395	915.12
Variance MSE	35042.21	6.0671	97.0734	18.9599	480952.83
Observations	40	39	40	40	36
Average MPE	4.33%	-0.0065%	-1.32%	0.069%	2.57%
Variance MPE	6.46%	0.0001%	0.62%	0.310%	3.63%
Observations	40	39	40	40	36
Average MAPE	4.33%	0.6021%	1.32%	0.98%	5.27%
Variance MAPE	6.46%	0.1363%	0.62%	0.31%	19.40%

 Table 4-1. RDB Forecasting Errors With Time Series Components

Trend. With a sample made of trending component data, the Requirements Data Bank obtained a Mean Absolute Deviation of 13.16 and a Mean Square Error of 216.17. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of 4.33% demonstrates that the RDB system over-estimated the trending component demands by 4.33%. The Mean Absolute Percentage Error demonstrates that the RDB system creates an average error of 4.33%. The positive MPE indicates that the stronger trends in the data set are going upward.

Seasonal. With a sample made of seasonal component data, the Requirements Data Bank obtained a Mean Absolute Deviation of 1.59 and a Mean Square Error of 3.96. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of -0.0065% demonstrates that the RDB system under-estimated demands by 0.0065%. The Mean Absolute Percentage Error demonstrates that the RDB system provides an average error of 0.6021%. The small percentage error indicates that the demand is large and that the errors are minor compared to the actual demands.

Cyclical. With a sample made of cyclical component data, the Requirements Data Bank obtained a Mean Absolute Deviation of 3.19 and a Mean Square Error of 15.35. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of -1.32% demonstrates that the RDB system under-estimated the seasonal data set demands by 1.32%. The Mean Absolute Percentage Error demonstrates that the RDB system provides an average error of 1.32%. The small percentage error indicates that demand is large and that the errors are minor compared to the actual demands.

Random. With a sample made of random component data, the Requirements Data Bank obtained a Mean Absolute Deviation of 2.48 and a Mean Square Error of 8.53. This demonstrates that the RDB system and the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of 0.069% demonstrates that the RDB system over-estimated the seasonal data set demands by 0.069%. The Mean Absolute Percentage Error demonstrates that the RDB system provides an average error of 0.98%. The small

percentage error indicates that demand is large and that the errors are minor compared to the actual demands.

Outlier. With a sample made of data with outliers, the Requirements Data Bank obtained a Mean Absolute Deviation of 17.95 and a Mean Square Error of 915.12. This demonstrates that the forecasting errors are not very stable since the MSE approach provides a large penalty for large individual errors. The Mean Percentage Error of 2.57% demonstrates that the RDB system over-estimated the seasonal data set demands by 2.57%. The Mean Absolute Percentage Error demonstrates that the RDB system provides an average error of 5.27%.

Statistical Demand Forecasting Results. Table 4-2 illustrates the mean and variance of the forecasting measurement errors for each time series component. Appendix F presents an Excel spreadsheet which demonstrates the mean and variance computations.

	A REAL ROOM	1000020000		mobiles	Quitier
Observations	40	40	40	40	36
Average MAD	7.3125	1.6025	3.3113	2.5600	14.3750
Variance MAD	13.5857	0.3120	2.1501	0.7739	59.0625
Observations	40	40	40	40	36
Average MSE	66.72	3.9653	17.0248	9.5103	897.92
Variance MSE	3338.17	6.0688	259.4047	31.6613	484870.54
Observations	40	39_	40	40	36
Average MPE	2.41%	-0.0036%	-1.35%	0.036%	4.01%
Variance MPE	1.99%	0.0003%	0.72%	0.598%	10.99%
Observations	40	39	40	40	36
Average MAPE	2.41%	0.6036%	-1.35%	0.988%	4.01%
Variance MAPE	1.99%	0.1359%	0.72%	0.312%	10.99%

 Table 4-2.
 SDF Forecasting Errors With Time Series Components

Trend. With a sample made of trend component data, the Requirements Data Bank obtained a Mean Absolute Deviation of 7.31 and a Mean Square Error of 66.72. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of 2.41% demonstrates that the SDF system over-estimated the trend data set demands by 2.41%. The Mean Absolute Percentage Error demonstrates that the SDF system provides an average error of 2.41%. The positive percentage error indicates the stronger trends in the data set are going upward.

Seasonal. Using the seasonal component data set generated, the Requirements Data Bank obtained a Mean Absolute Deviation of 1.60 and a Mean Square Error of 3.96. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of -0.0036% demonstrates that the SDF system under-estimated the seasonal data set demands by 0.0036%. The Mean Absolute Percentage Error demonstrates that the SDF system provides an average error of 0.6036%. The small percentage error indicates that the demand is large and that the errors are minor compared to the actual demands.

Cyclical. Using the cyclical component data set generated, the Requirements Data Bank obtained a Mean Absolute Deviation of 3.31 and a Mean Square Error of 17.02. This demonstrates that the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of -1.35% demonstrates that the SDF system under-estimated the seasonal data set demands by 1.35%. The Mean Absolute Percentage Error demonstrates that the SDF system provides an average error of 1.35%. The small percentage error indicates that demand is large and that the errors are small compared to the actual demands.

Random. Using the random component data set generated, the Requirements Data Bank obtained a Mean Absolute Deviation of 2.56 and a Mean Square Error of 9.51. This demonstrates that the SDF system and the forecasting errors are very stable since the MSE approach provides very little penalty for individual errors. The Mean Percentage Error of 0.036% demonstrates that the SDF system over-estimated the

seasonal data set demands by 0.036%. The Mean Absolute Percentage Error demonstrates that the SDF system provides an average error of 0.98%. The small percentage error indicates that demand is large and that the errors are minor compared to the actual demands.

Outlier. Using the outlier component data set generated, the Requirements Data Bank obtained a Mean Absolute Deviation of 14.37 and a Mean Square Error of 897.92. This demonstrates that the forecasting errors are not very stable since the MSE approach provides very large penalty for individual errors. The Mean Percentage Error of 4.01% demonstrates that the SDF system over-estimated the seasonal data set demands by 4.01%. The Mean Absolute Percentage Error demonstrates that the SDF system provides an average error of 4.01%.

<u>Comparative Results of Approach One</u>. The Comparative results demonstrate that when there is a trending component in the data, the SDF system gives a more accurate forecast than the RDB system does at 95% level confidence. The results also demonstrate that when there are outliers in the data, the SDF system gives a more accurate forecast than the RDB system does at 95% level confidence. However the results show that for the remaining time series components, there is not enough evidence at 90% level confidence to present a significant difference in terms of accuracy between the SDF system and the RDB system.

Trend. Table 4-3 illustrates the results obtained with the paired difference test when the forecasts were made with data containing a trending component. Appendix F demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that there is enough evidence at 90% level confidence (two-tailed test) and at 95% level confidence (one-tailed test) that when there is a trending component in the data, the SDF system gives a more accurate forecast than the RDB system does. This demonstrates that the RDB system is more stable when a trending component is found in

demand observations. It also demonstrates that the SDF system is more responsive than the RDB system. The reason for this is that the SDF system uses a four quarter moving average technique to make forecasts when a trend exists in the data. Therefore it is more responsive to a trending component.

						One-Tall Zan Offici	Results
MAD	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	13.16	7.31	4.8749	1.6450	1.6450	Enough Evidence to Reject Ho
MSE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	216.17	66.72	4.8247	1.6450	1.6450	Enough Evidence to Reject Ho
MPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	4.33%	2.41%	4.1891	1.6450	1.6450	Enough Evidence to Reject Ho
MAPE	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	4.33%	2.41%	4.1891	1.6450	1.6450	Enough Evidence to Reject Ho

 Table 4-3.
 Trend Paired Difference Test

Seasonal. Table 4-4 illustrates the results obtained with the paired

difference test when the forecasts were made with data containing a seasonal component. Appendix F demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significant difference in the level of accuracy provided by each

Re-cession Re-cession	g Hypothesis	Mean	Mean	Z.Valee	Two-Tail Z -s 000	One-Tail	Results
MAD	Но:µ ₁ -µ2=0 На:µ1-µ2≠0	1.59	1.60	-0.0453	1.6450	1.6450	Not enough evidence to Reject Ho
MSE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	3.96	3.96	-0.0022	1.6450	1.6450	Not enough evidence to Reject Ho
MPE	Но:µ1-µ2=0 На:µ1-µ2≠0	-0.006%	-0.004%	-0.9210	1.6450	1.6450	Not enough evidence to Reject Ho
MAPE	Но:µ1-µ2=0 На:µ1-µ2≠0	0.602%	0.603%	-0.0176	1.6450	1.€450	Not enough evidence to Reject Ho

 Table 4-4.
 Seasonal Paired Difference Test

forecasting system. In other words, the SDF system and the RDB system provide approximately the same level of accuracy, when seasonal component demand observations exist in the data set.

Cyclical. Table 4-5 illustrates the results obtained with the paired difference test when the forecasts were made with data containing a cyclical component. Appendix F demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significant difference in the level of accuracy provided by each forecasting system. In other words, the SDF system and the RDB system provide approximately the same level of accuracy, when cyclical component demand observations exist in the data set.

	a di grandi andia.	Mises 1999	Mitana SEDE	Z. Value	Teos Itali Zal 90%	OperTail Z at 95%	Repuits
MAD	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	3.19	3.31	-0.4046	1.6450	1.6450	Not enough evidence to Reject Ho
MSE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	15.36	17.02	-0.5589	1.6450	1.6450	Not enough evidence to Reject Ho
MPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	-1.32%	-1.35%	-0.2213	1.6450	1.6450	Not enough evidence to Reject Ho
MAPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	1.32%	1.35%	-0.2213	1.6450	1.6450	Not enough evidence to Reject Ho

 Table 4-5. Cyclical Paired Difference Test

Random. Table 4-6 illustrates the results obtained with the paired

difference test when the forecasts were made with data containing a random component. Appendix F demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significant difference in the level of accuracy provided by each forecasting technique. In other words, the SDF system and the RDB system provide approximately the same level of accuracy, when random component demand observations exist in the data set.

Torecasting. Eccur	Hypothesis	Mean RDB	Mean SDF	Z-Value	Two-Tall Z at 90%	One-Tali Z at 95%	Results
MAD	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	2.48	2.56	-0.4052	1.6450	1.6450	Not enough evidence to Reject Ho
MSE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	8.54	9.51	-0.8630	1.6450	1.6450	Not enough evidence to Reject Ho
MPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	0.068%	0.036%	0.2173	1.6450	1.6450	Not enough evidence to Reject Ho
MAPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	0.99%	1.01%	-0.1952	1.6450	1.6450	Not enough evidence to Reject Ho

Table 4-6. Random Paired Difference Test

Outlier. Table 4-7 illustrates the results obtained with the paired difference test when the forecasts were made with data containing outliers. Appendix F demonstrates the results of the paired difference test at a higher level of detail. Table 4-7 illustrates that when comparing the MAD means, the SDF system is more accurate at 95% level confidence. However, when comparing the MPE means, the paired difference test demonstrates that the RDB system is more accurate. Also, when comparing the MSE means and the MAPE means, there is not enough evidence to demonstrate that there is a significant difference between the error means.

To explain these results, it is important to understand that outliers usually create large variances around the forecasting error means. The paired difference test takes into consideration the size of the variance. The insignificant results of the paired difference test for the MAPE and the MSE can be explained by the fact that there are large variances around the MAPE means and the MSE means.

The results obtained with the paired difference test for the MPE can also be explained. Demand outliers in the data set were either larger than the average forecast or lower than the average demand. The average size of forecasting errors for RDB were larger than the average size of forecasting errors in SDF. The direction of the error, negative or positive, canceled each other to create a small MPE. The MAPE is larger than the MPE because it takes the absolute percentage instead of the actual percentage. Therefore the MAD demonstrates that there is enough evidence at 90% level confidence (two-tailed test) and at 95% level confidence (one-tailed test) to show that the SDF system gives more accurate forecast than the RDB system. This demonstrates that the SDF system is more stable when outliers are found in the observations. The reason for this is that the SDF system ignores outliers on the first occurrence, making it more stable.

Rorecaeting Error	: Rypothesis	Mean RDB	Mean SDF	Z-Value	Two-Tall Z at 99%	One-Tall Z at 95%	Results
MAD	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	17.95	14.38	1.8015	1.6450	1.6450	Enough evidence to Reject Ho
MSE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	915.16	897.92	0.1051	1.6450	1.6450	Not enough evidence to Reject Ho
MPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	2.57%	4.004%	-2.2574	1.6450	1.6450	Enough evidence to Reject Ho
MAPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	5.27%	4.004%	1.3740	1.6450	1.6450	Not enough evidence to Reject Ho

Table 4-7. Outlier Paired Difference	Test
--------------------------------------	------

Approach Two - Actual Air Force Data Results

This section presents the results obtained to answer research question two: How accurate are the forecasts computed by each forecasting technique subject to actual Air Force demand data? The main purpose of this approach is to verify and evaluate how well each forecasting system performs when subject to real world data. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significance difference in the level of accuracy between the SDF system and the RDB system.

This section is divided into three parts. The first part presents the forecasting measurement errors obtained with the Requirements Data Bank system. The second part presents the forecasting measurement errors obtained with the Statistical Demand Forecasting system. Finally the third part provides the comparison findings between the two forecasting systems.

Requirements Data Bank Results. Table 4-8 illustrates the mean and variance of the forecasting measurement errors obtained with Air Force sample data set. Appendix F presents an Excel spreadsheet report which demonstrates all the mean and variance computations.

	Air Force
	Data
Observations	245
Average MAD	6.88
Variance MAD	141.53
Observations	245
Average MSE	246.75
Variance MSE	1229284.67
Observations	245
Average MPE	-26.39%
Variance MPE	4922.41%
Observations	245
Average MAPE	61.99%
Variance MAPE	3151.37%

Table 4-8. RDB Forecasting Errors With Air Force Data

The Requirements Data Bank obtained a Mean Absolute Deviation of 6.88 and a Mean Square Error of 246.75. This demonstrates that the forecasting errors are not very stable since the MSE approach provides a large penalty for individual errors. The Mean Percentage Error of -26.39% demonstrates that the RDB system under-estimated the seasonal data set demands by 26.39%. The Mean Absolute Percentage Error demonstrates that the RDB system creates an average percentage error of 61.99%.

Statistical Demand Forecasting Results. Table 4-9 illustrates the mean and variance of the forecasting measurement errors obtained with the Air Force sample data set. Appendix F presents an Excel spreadsheet which demonstrates the mean and variance computations.

The Requirements Data Bank obtained a Mean Absolute Deviation of 7.36 and a Mean Square Error of 312.69. This demonstrates the forecasting errors are not very stable since the MSE approach provides a large penalty for individual errors. The Mean Percentage Error of -23.31% demonstrates that the RDB system under-estimated the seasonal data set demands by 23.31%. The Mean Absolute Percentage Error of 61.04%.

	A to Borne
Observations	245
Average MAD	7.36
Variance MAD	198.22
Observations	245
Average MSE	312.69
Variance MSE	1923245.47
Observations	245
Average MPE	-23.30%
Variance MPE	5851.61%
Observations	245
Average MAPE	61.04%
Variance MAPE	3829.83%

Table	4-9.	SDF	Foreca	asting	Errors
	Wit	h Air	Force	Data	

<u>Comparative Results of Approach Two</u>. Table 4-10 illustrates the results obtained with the paired difference test when the forecasts were made with the actual Air Force

data. Appendix F demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significant difference in the level of accuracy provided by both the SDF system and the RDB system. In other words, when using actual Air Force data, the SDF system and the RDB system provide approximately the same level of accuracy.

Roccession Records	g Bypothesia	Missin RDB	Mean SDF	Z.Value	Two-Tail Z at 90%	Ome-Tail Z at 95%	Results
MAD	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	6.88	7.36	-0.4072	1.6450	1.6450	Not enough evidence to Reject Ho
MSE	Но:µ1-µ2=0 На:µ1-µ2≠0	246.75	312.69	-0.5813	1.6450	1.6450	Not enough evidence to Reject Ho
MPE	Но:µ1-µ2=0 На:µ1-µ2≠0	-26.39%	-23.31%	-0.4662	1.6450	1.6450	Not enough evidence to Reject Ho
MAPE	Ho:µ1-µ2=0 Ha:µ1-µ2≠0	61.99%	61.04%	0.1791	1.6450	1.6450	Not enough evidence to Reject Ho

 Table 4-10. Air Force Data Paired Difference Test

Approach Three - Aircraft Availability Results

This section presents the results obtained to answer research question three: What effects do the forecasts, computed by each forecasting approach, have on aircraft availability? The main purpose of this approach is to verify and evaluate how each forecasting approach affects the aircraft availability achieved. The results demonstrate that when there is a trending component in the data, the SDF system achieves a higher aircraft availability at 95% level confidence than the RDB system does. The results also demonstrate that when there are outliers in the data, the SDF system achieves a higher aircraft availability than the RDB system does. However the results illustrate that with the remaining time series component and the real Air Force data, there is not enough evidence at 90% level confidence to show that there is a significant difference between the SDF system and the RDB system. This section is divided into three parts. The first part

presents the aircraft availability achieved with the Requirements Data Bank system. The second part presents the aircraft availability achieved with the Statistical Demand Forecasting system. Finally, the third part provides the comparison findings between the two forecasting systems.

Requirements Data Bank Results. Table 4-11 illustrates the average aircraft availability achieved when forecasts are made by the RDB system. The aircraft availability is shown for four different quarters under each of the time series components and the actual Air Force data. Aircraft Availability is computed with the Aircraft Sustainability Model with funding constraint of \$80,000 for times series components and \$700,000 for the real Air Force data. Appendix G presents an Excel spreadsheet which demonstrates the results.

	There		Cyclical	(étailet	Random	Air Force
Average Aircraft	74.30%	78.93%	86.98%	83.25%	91.88%	79.84%
Availability -Quarter 1						
Average Aircraft	74 270	78 710	86 620	82 00 <i>0</i> .	99 760	80 2817
Availability -Quarter 2	14.21%	/6./1%	80.03%	02.79%	00.30%	80 . 26 <i>%</i>
Average Aircraft Availability -Quarter 3	74.10%	78.92%	86.64%	83.15%	91.00%	80.36%
Average Aircraft Availability -Quarter 4	74.12%	78.90%	86.90%	82.85%	90.77%	80.59%

Table 4-11. RDB Aircraft Availability

Statistical Demand Forecasting Results. Table 4-12 illustrates the average aircraft availability achieved when forecasts are made by the SDF system. The aircraft availability is shown for four different quarters under each of the time series components and the actual Air Force data. Aircraft Availability is computed with the Aircraft Sustainability Model with funding constraint of \$80,000 for times series components and \$700,000 for the real Air Force data. Appendix G presents an Excel spreadsheet which demonstrates the results.

	Dere	Successi	6 Concertain	Onthior	Random	Air Force
Average Aircraft Availability -Quarter 1	75.08%	80.93%	87.25%	84.05%	90.63%	78.73%
Average Aircraft Availability -Quarter 2	74.98%	79.13%	86.57%	83.97%	90.55%	80,50%
Average Aircraft Availability -Quarter 3	74.95%	78.97%	87.23%	83.98%	90.45%	80.66%
Average Aircraft Availability -Quarter 4	74.90%	80.31%	86.83%	84.04%	90.51%	80.33%

Table 4-12. SDF Aircraft Availability

Comparative Results of Approach Three. Table 4-13 illustrates the results obtained with the paired difference test used to compare the aircraft availability achieved with each forecasting system. Appendix G demonstrates the results of the paired difference test at a higher level of detail. The results demonstrate that when there is a trending component in the data, the SDF system achieves a higher aircraft availability at 95% level confidence than the RDB

Data	Hypothesis	Mean DENR	Mean	t-Value	Two-Tail	One-Tail t at 95%	Results
Trend	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	74.20%	74.98%	-26.6226	3.1824	3.1824	Enough evidence to Reject Ho
Seasonal	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	78.87%	79.83%	-2.1723	3.1824	3.1824	Not enough evidence to Reject Ho
Cyclical	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	86.79%	86.97%	-1.1481	3.1824	3.1824	Not enough evidence to Reject Ho
Random	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	90.50%	90.54%	-0.0449	3.1824	3.1824	Not enough evidence to Reject Ho
Outlier	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	83.06%	84.01%	-10.6221	3.1824	3.1824	Enough evidence to Reject Ho
Air Force	Ho:µ ₁ -µ ₂ =0 Ha:µ ₁ -µ ₂ ≠0	80.27%	80.06%	0.6514	3.1824	3.1824	Not enough evidence to Reject Ho

Table 4-13. Aircraft Availability Paired Difference Test

system does. The results also demonstrate that when there are outliers in the data, the SDF system achieves a higher aircraft availability than the RDB system does. However the results illustrate that with the remaining time series component and the real Air Force data, there is not enough evidence at 90% level confidence to show that there is a significant difference between the SDF system and the RDB system.

Chapter Summary

This chapter discussed the results obtained for each of the analytical approaches to answer the three research questions. In the case of time series components, it was found that the SDF system provided more accurate forecasts than the RDB system, when there was a trend component or an outlier component in the data. It was also found that was no significant difference in the level of accuracy between the two forecasting systems when there was a seasonal component, a cyclical component or a random component in the data. In the case of actual Air Force data, it was found that was no significant difference in the level of accuracy between the two forecasting systems.

Finally, in the case of aircraft availability, it was found that the SDF system generated higher aircraft availability percentage than the RDB system, when there was a trend component or an outlier component in the data. However it was found that there was no significant difference in the aircraft availability achieved by each forecasting system with seasonal component data, cyclical component data, random component data or actual Air Force data. The next chapter presents the conclusions and recommendations of this forecasting comparison research.

V. Conclusion and Recommendation

Introduction

The purpose of this chapter is to present the conclusions and recommendations of this research. First the chapter restates the specific problem, the purpose of the research and the research questions. Then, for each research question, the chapter summarizes the results and presents an interpretation of their management implications. Some observations made regarding the forecasting systems during the research are then presented. A section on recommendations for future studies and analyses is then provided. Finally the chapter gives a conclusion and a summary of the research.

Specific Problem

Since the JLSC selected the Navy's Statistical Demand Forecasting System as the standard DOD forecasting system, the Army and the Defense Logistics Agency have both performed analyses to measure the impact of using SDF within their own organizations. The specific problem is that the Air Force has not analyzed or studied how SDF could affect its operational requirements. Therefore the effect of SDF on USAF requirements determination remains unknown. This is a problem because budget allocation across items depends on solving the statistical problem of forecasting item demand rates (Sherbrooke, 1987: v).

Purpose of the Study

The purpose of this study is to evaluate and compare the performance and accuracy of the Navy forecasting system, Statistical Demand Forecasting, relative to the Air Force forecasting system, Requirements Data Bank Forecasting, in an Air Force environment.

Research Ouestions

The research questions support the comparison between the Navy forecasting system and the Air Force forecasting system. To address forecasting accuracy and robustness, the following research questions are developed:

1. How does each forecasting system perform with different data pattern components?

2. How accurate are the forecasts computed by each forecasting technique subject to actual Air Force demand data?

3. What effects do the forecasts, computed by each forecasting approach, have on aircraft availability?

Results and Management Implication for Research Ouestion One

This section summarizes the results obtained from the analysis of time series components and explains the management implications that they may have for the Air Force.

Forecast Accuracy Results for Time Series Components. The results demonstrate that when there is a trending component in the data, the SDF system provides more accurate forecasts at 95% level confidence than the RDB system does. The reason why the SDF system performs so well when there is a trend in the data is that it has the capability of detecting the trend when it exists in the data. When a trend is found in the data, the system will either use a regression technique or a four quarter moving average to react to the change in the data. The RDB system does use a technique known as PRELOG to detect a trend, but the system does not do use a different forecasting technique to account for the trend unless specified by the item managers or the equipment specialist.

The results also demonstrate that when there are outliers in the data, the SDF system generates more accurate forecasts than the RDB system. The reason why the SDF system performs so well when there are outliers in the data is because of the filters test. If the filters test detects an outlier, it will either ignore it or reduce it to a lower value. Therefore the forecast generated by the SDF system will remain stable with the actual future demand. The RDB system does not have any measure to detect outliers. Therefore the full value of the outlier is taken into account to compute a forecast. This causes the forecast to be unstable.

The results illustrate that with the remaining time series component, there is not enough evidence at 90% level confidence to show that there is a significant difference between the SDF system and the RDB system. Both forecasting systems generate forecasts with approximately the same level of forecasting error.

Management Implication. Occasionally Air Force data include time series components such as trend or outliers. An increasing program data will cause the demand data to increase also. An unexpected and short operational exercise may cause the occurrence of many demands for some items. The first situation demonstrates an example of a trending component. In that example the forecasting technique is required to be very responsive to the increase in the demand. The second situation illustrates an example of an outlier. Since it is a one-time occurrence, the forecasting technique is required to be very stable. The RDB system can be responsive to the trending component through PRELOG, but the process is complex and requires the assistance of an item manager or equipment specialist. Contrary to the RDB system, the SDF system is autonomous. It does not require the help of an item manager or equipment specialist to respond to the trend. The SDF system is also very good in detecting outliers and generating stable forecasts. The RDB system cannot detect outliers and a bad forecast may cause the system to think that there is an increase in the demand data. For USAF item managers.

this aspect becomes very important when the time comes to determine what items to buy to maintain good aircraft availability.

Results and Management Implication for Research Ouestion Two

This section summarizes the results obtained from the analysis of actual Air Force data and explains the management implications that they may have for the Air Force.

Forecast Accuracy Results for Actual Air Force Data. The results demonstrate that there is not enough evidence at 90% level confidence to show that there is a significant difference in the level of accuracy between the SDF system and the RDB system. The data includes one major time series component known as the random component. Although there may be outliers and trending components in the data, they are very minimal compared to the random component. Since the RDB system and the SDF system generate relatively the same level of accuracy when a random component exists in the data, the results are not surprising with the actual Air Force data.

Management Implication. The SDF system and the RDB system generate forecasts with approximately the same level of accuracy with actual Air Force data. These results demonstrate that either system represents a good approach to generate forecasts with a fair level of accuracy. The Air Force requires a forecasting system that will generate forecasts that are relatively stable. The question becomes which forecasting is more cost effective to implement and easiest to understand.

Results and Management Implication for Research Ouestion Three

This section summarizes the results obtained from the analysis of aircraft availability and explains the management implications that they may have for the Air Force. Aircraft Availability Results. The results demonstrate that when there is a trending component in the data, the SDF system achieves a higher aircraft availability at 95% level confidence than the RDB system does. The results also demonstrate that when there are outliers in the data, the SDF system achieves a higher aircraft availability than the RDB system does. However the results illustrate that with the remaining time series component and the real Air Force data, there is not enough evidence at 90% level confidence to show that there is a significant difference between the SDF system and the RDB system.

These results demonstrate that the more accurate the forecast is, the greater is the aircraft availability. In the case of outliers and trending components, a higher aircraft availability is achieved.

Management Implication. The SDF system performs well in detecting outliers and trending component data. The RDB system cannot detect outliers and a bad forecast may cause the system to think that there is an increase in the demand data. For USAF item managers, this aspect becomes very important when the time comes to determine what mix of items to buy to maintain a high aircraft availability.

With actual Air Force data, the SDF system and the RDB system generate forecasts with approximately the same level of aircraft availability. These results demonstrate that either system represents a good approach to generate forecasts that will provide relatively the same level of aircraft availability. The Air Force basically requires a forecasting system that will generate forecasts that are relatively stable. The question becomes which forecasting system is more cost effective to implement and easiest to understand.

Observations on the Forecasting Systems

The purpose of this section is to illustrate some of the advantages and disadvantages of each forecasting technique observed during the analysis study. This

section first discusses the advantages and disadvantages of the Requirements Data Bank system and then discusses the advantages and disadvantages of the Statistical Demand Forecasting system.

Requirements Data Bank System. The Requirements Data Bank system is designed to compute requirements for buy and repair for 807,000 consumable spares, recoverable spares, repair parts, and equipment items. The Requirements Data Bank system is made up of multiple sub-systems which interface through a relational database.

Some of the observed advantages associated with the Requirements Data Bank are:

1. The Requirements Data Bank is being developed using a relational database management system. The relational database creates more efficient data management and a better interface between the sub-systems. Therefore, data access and retrieval are easier for the system's users.

2. The eight quarter moving average used by the RDB system is simple and easy to understand. Since item managers deal with forecasts on a day to day basis, an understanding of what makes the forecasts leads to better decisions.

3. The double exponential smoothing method used by the RDB system produces a forecast with five different alpha values. A mean absolute deviation associated with each forecast produced is also computed. This helps the item managers to make a better decision as to which forecasting technique could be used.

Some of the disadvantages observed on the Requirements Data Bank system are:

1. The double exponential smoothing, planned to be used by the RDB system, is a forecasting technique that performs well when there is a trend in the data. However this technique has to be selected by the item manager or the equipment specialist to perform a forecast. Once selected, it will remain the forecasting technique until the item manager or the equipment specialist switches the forecasting technique back to the original forecasting

technique. The double exponential technique will perform poorly with any other type of time series components. The disadvantage is that the RDB system already uses a forecasting technique known as PRELOG for trending components. Therefore the double exponential technique is not really required for the RDB system. As Sherbrooke mentioned in his technical report, the Evaluation of Demand Prediction Techniques, the single exponential smoothing is a good technique to forecast recoverable items (Sherbrooke, 1987: 17). The use of a single exponential smoothing technique instead of a double exponential technique would be more appropriate.

2. The Requirements Data Bank system uses a technique known as Predictive Logistics to depict trending in the data observations. Although the method is a good technique, it is not user friendly and very complex. Therefore, the technique is rarely chosen by item managers or equipment specialists to make forecasts with trending data.

3. The development of the Requirements Data Bank system started in 1985. To this day, there are still some processes or sections of the RDB system that have not been developed. An example of this is the double exponential technique.

4. The concept of the RDB system is very complex. It involves many algorithms and sub-systems. Although the RDB system has its own functional description documents, very few reports and analyses exist on the description and purpose of the RDB system. A descriptive paper on the RDB system would help to clarify and strengthen the position of the RDB system in the DOD environment.

Statistical Demand Forecasting System. The Statistical Demand Forecasting system is a forecasting system designed by the Navy to forecast both consumable and recoverable item demands. It is a system which includes a series of statistical control tests to detect whether the data observations are changing radically or not over time. Some of the advantages of the SDF system are:

1. The SDF system consists of a variety of forecasting techniques that can be selected by item managers depending on the demand data pattern. Such techniques are single exponential smoothing, double exponential smoothing, regression, moving average, naive method and composite forecasting

2. The SDF system consists of a series of statistical control tests that can depict observations that are statistically inconsistent with previous observations. These inconsistencies could be: a trend in the data; the existence of outliers; bias forecasts; or unstable observations. This gives the SDF system and the item managers the flexibility to make a stable forecast when necessary or make a responsive forecast when required.

3. The SDF system possesses an interface with the item manager's personal computer known as the PC Exception tool. When SDF finds some inconsistencies with the data such as outliers, the system downloads the information to the item managers to review. At that point, the item manager has the flexibility to determine whether the observations are valid and decide if he / she should choose a different forecasting technique.

Some of the observed disadvantages associated with the SDF system are:

1. The program related items entered into the SDF system are not processed through all the statistical control tests. For example the trend test is not currently used for program related items. The Navy intends to change the SDF system in the future so that program related items can be processed through the trend test (Maitland, 1992a).

2. The SDF system is a complex system. The system consists of many statistical functions and algorithms. Unless item managers have a statistical background, it may be difficult for them to understand the functions of the SDF system.

3. The SDF system contains a multiple of parameters that must be set for the system to operate. Although default values exist, these parameters can be set by item managers. The values of these parameters greatly affect the forecast that will be generated

by the system. Therefore, parameter setting becomes important. There is no method or approach that exists at this point to evaluate an optimal parameter setting.

Recommendations For Future Studies and Analyses

As discussed above, the research demonstrates that there is no significant difference between the two forecasting systems. The question on whether the Joint Logistics System Center should maintain its decision on using the Statistical Demand Forecasting system as the DOD standard forecasting system does not depend on forecasting accuracy, but on the costs involved in integrating one system versus the other and the flexibility of implementing the forecasting system.

It is recommended that a cost analysis of integrating and implementing one system versus the other be done. Factors such as system interface, system maintenance, system flexibility and system complexity should also be considered. Perhaps, the integration of some of the SDF algorithms into the RDB system would be an ideal solution.

Studies or analyses related to this research that could be done are:

1. SDF possesses other forecasting techniques other than the moving average technique to generate forecasts. A comparison on comparing the SDF exponential smoothing technique to the RDB moving average would be interesting.

2. The RDB system does not have any statistical control tests to detect data patterns. An analysis on using statistical control tests with the RDB algorithm is an area which could improve RDB forecasting.

3. The RDB forecasting system uses the Mean Absolute Deviation as a measure of forecasting performance. A study on using aircraft availability as a forecasting performance instead of the MAD could improve aircraft availability.

Conclusions

Dealing with forecasting remains a very complicated matter because no one can predict the future and be one hundred percent accurate. As the French author Eugene Inonesco says: "You can only predict things after they have happened" (Augarde. 1991:110). Many factors can affect demand such as economic conditions, political decisions, weather conditions, number of flying hours, number of sorties and so on. For this reason, a level of uncertainty exists. To reduce the level of uncertainty, one forecasting technique may be good at one point and another forecasting technique may be better at another point in time.

The results of this research demonstrate that in general there is no significant difference in the forecasts provided by the RDB system versus the forecasts provided by the SDF system. However the SDF system did provide more accurate forecasts than the RDB system did in the case of data that included trending components or outliers.

Research Summary

This research presented the problem of comparing the Air Force's Requirements Data Bank forecasting approach to the Navy's Statistical Demand Forecasting approach. The research consisted of five chapters. The first chapter introduced the purpose of the research and the background surrounding it. The second chapter presented some of the concepts discussed throughout the research. The third chapter illustrated the methodology used for the research. Chapter four provided the results and analysis of the study. Finally, this chapter made some recommendations for future studies.

Appendix A: Times Series Components Generator Programs

1) Trend Times Series Component

```
***********
** The purpose of this program is to generate trend times series
                                                                  * *
** component data.
                                                                   * *
                  ******
       PROGRAM TREND
** Variables **
       CHARACTER LINE*190, NSN*17
       INTEGER RECORD, X, J, I, VALUE(16), FLH(16), PROG(25)
       X=100
       J=2
       Y=1
** Format **
       FORMAT(12,A190)
1000
1001
       FORMAT (A17)
       FORMAT (A2, A17, 4X, 15, 15(2X, 15))
1002
1003
       FORMAT (A2, A17, 4X, 15, 24 (2X, 15))
1004
       FORMAT(A2, A190)
** Opening Files **
       OPEN(1,file='SDFRDB1.TXT',form='formatted',status='UNKNOWN')
       OPEN(2,file='TREND.TXT',form='formatted',status='UNKNOWN')
** Reading Input File for NSNs information only **
  10
        READ (1,1000, end=999) RECORD, LINE
        IF (RECORD.EQ.01) THEN
           WRITE (2,1004) '01', LINE
        ENDIF
** Generating Demand **
        IF (RECORD.EQ.02) THEN
          READ (LINE, 1001) NSN
          DO 20 I=1,16
             VALUE(I)=X+J
             J=J+Y
  20
          CONTINUE
          X = X + 10
          J=INT(RND()*10)
  25
          Y = INT(RND() * 10)
          IF ((Y.LT.1).OR.(Y.GT.5)) THEN
            GOTO 25
          ENDIF
** Writing Demand **
          WRITE(2,1002) '02', NSN, VALUE(1), VALUE(2), VALUE(3), VALUE(4),
                VALUE(5), VALUE(6), VALUE(7), VALUE(8), VALUE(9), VALUE(10),
    &
    &
                VALUE(11), VALUE(12), VALUE(13), VALUE(14), VALUE(15),
                VALUE(16)
    &
        ENDIF
```

```
** Generating Flying Program **
         IF (RECORD.EQ.03) THEN
           READ (LINE, 1001) NSN
           DO 30 I=1,16
                FLH(I) = 2000 + X
   30
           CONTINUE
           WRITE(2,1002) '03', NSN, FLH(1), FLH(2), FLH(3), FLH(4), FLH(5),
     &
                    FLH(6),FLH(7),FLH(8),FLH(9),FLH(10),FLH(11),
     &
                    FLH(12), FLH(13), FLH(14), FLH(15), FLH(16)
         ENDIF
         IF (RECORD.EQ.04) THEN
           READ (LINE, 1001) NSN
           DO 40 I=1,25
                PROG(I) = 2500
   40
           CONTINUE
** Writing Flying Program **
           WRITE(2,1003) '04', NSN, PROG(1), PROG(2), PROG(3), PROG(4),
                    PROG(5),
     &
     &
                    PROG(6), PROG(7), PROG(8), PROG(9), PROG(10), PROG(11),
     &
                    PROG(12), PROG(13), PROG(14), PROG(15), PROG(16),
     &
                    PROG(17), PROG(18), PROG(19), PROG(20), PROG(21),
     &
                    PROG (22), PROG (23), PROG (24), PROG (25)
         ENDIF
```

.

GOTO 10 999 CLOSE(1) CLOSE(2) STOP END 2) Seasonal Times Series Component

****** ** The purpose of this program is to generate seasonal times series ** ** component data. * * ******* ****** PROGRAM SEASONAL ** Variables ** CHARACTER LINE*190,NSN*17 INTEGER RECORD, X, J, I, VALUE (16), FLH (16), PROG (25) X=100 J=2Z=1** Format ** 1000 FORMAT(I2,A190) 1001 FORMAT (A17) 1002 FORMAT(A2, A17, 4X, I5, 15(2X, I5)) 1003 FORMAT(A2, A17, 4X, 15, 24(2X, 15)) 1004 FORMAT(A2,A190) ** Opening Files ** OPEN(1, file='SDFRDB2.TXT', form='formatted', status='UNKNOWN') OPEN(2,file='SEASONAL.TXT',form='formatted',status='UNKNOWN') ** Reading Input File for NSNs information only ** READ (1,1000,end=999) RECORD,LINE 10 IF (RECORD.EQ.01) THEN WRITE (2,1004) '01', LINE ENDIF ** Generating Demand ** IF (RECORD.EQ.02) THEN READ (LINE, 1001) NSN VALUE(1) = X + JVALUE(2) = X+J+1+ZVALUE(3) = X + J + 2 + ZVALUE(4) = X + J + 1 + ZVALUE(5) = X + JVALUE(6) = X+J+1+ZVALUE (7) = X + J + 2 + ZVALUE(8) = X + J + 1 + ZVALUE(9) = X + JVALUE(10) = X + J + 1 + ZVALUE(11) = X + J + 2 + ZVALUE(12) = X + J + 1 + ZVALUE(13) = X + JVALUE(14) = X + J + 1 + ZVALUE(15) = X + J + 2 + ZVALUE(16) = X + J + 1 + ZX = X + 10J = INT(RND() * 10)25 Z = INT(RND() * 10)IF ((Z.LT.1).OR.(Z.GT.5)) THEN GOTO 25 ENDIF

** Writing Demand ** WRITE(2,1002) '02', NSN, VALUE(1), VALUE(2), VALUE(3), VALUE(4), VALUE(5), VALUE(6), VALUE(7), VALUE(8), VALUE(9), VALUE(10), & VALUE(11), VALUE(12), VALUE(13), VALUE(14), VALUE(15), & VALUE(16) \$ ENDIF ** Generating Flying Program ** IF (RECORD.EQ.03) THEN READ (LINE, 1001) NSN DO 30 I=1,16 FLH(I) = 2000 + X30 CONTINUE ** Writing Flying Program ** WRITE(2,1002) '03', NSN, FLH(1), FLH(2), FLH(3), FLH(4), FLH(5), FLH(6), FLH(7), FLH(8), FLH(9), FLH(10), FLH(11), & & FLH(12),FLH(13),FLH(14),FLH(15),FLH(16) ENDIF IF (RECORD.EQ.04) THEN READ (LINE, 1001) NSN DO 40 I=1,25 PROG(I) = 250040 CONTINUE WRITE(2,1003) '04', NSN, PROG(1), PROG(2), PROG(3), PROG(4), & PROG(5), PROG(6), PROG(7), PROG(8), PROG(9), PROG(10), PROG(11), & & PROG(12), PROG(13), PROG(14), PROG(15), PROG(16), & PROG(17), PROG(18), PROG(19), PROG(20), PROG(21), PROG(22), PROG(23), PROG(24), PROG(25) & ENDIF GOTO 10 999 CLOSE(1) CLOSE(2)

> STOP END

3) Cyclical Times Series Component

****** ** The purpose of this program is to generate cyclical times series ** ** component data. PROGRAM CYCLICAL ** Variables ** CHARACTER LINE*190, NSN*17 INTEGER RECORD, X, J, I, VALUE (16), FLH (16), PROG (25) X=100 J=2Z=1** Format ** FORMAT(I2,A190) 1000 1001 FORMAT (A17) 1002 FORMAT (A2, A17, 4X, I5, 15(2X, I5)) 1003 FORMAT (A2, A17, 4X, I5, 24 (2X, I5)) FORMAT(A2,A190) 1004 ** Opening Files ** OPEN(1,file='SDFRDB3.TXT',form='formatted',status='UNKNOWN') OPEN(2, file='CYCLICAL.TXT', form='formatted', status='UNKNOWN') ** Reading Input File for NSNs information only ** READ (1,1000, end=999) RECORD, LINE 10 IF (RECORD.EQ.01) THEN WRITE (2,1004) '01', LINE ENDIF ** Generating Demand ** IF (RECORD.EQ.02) THEN READ (LINE, 1001) NSN VALUE(1) = X + JVALUE(2) = X+J+1+ZVALUE(3) = X + J + 2 + ZVALUE(4) = X + J + 1 + ZVALUE(5) = X + JVALUE(6) = X + J - 1 - ZVALUE (7) = X + J - 2 - ZVALUE(8) = X + J - 1 - ZVALUE(9) = X + JVALUE(10) = X + J + 1 + ZVALUE(11) = X + J + 2 + ZVALUE (12) = X + J + 1 + ZVALUE(13) = X+JVALUE(14) = X + J - 1 - ZVALUE(15) = X + J - 2 - ZVALUE (16) = X + J - 1 - ZX = X + 10J=INT(RND()*10)25 Z = INT(RND() * 10)IF ((Z.LT.1).OR.(Z.GT.5)) THEN GOTO 25 ENDIF

** Writing Demand ** WRITE(2,1002) '02', NSN, VALUE(1), VALUE(2), VALUE(3), VALUE(4), VALUE(5), VALUE(6), VALUE(7), VALUE(8), VALUE(9), VALUE(10), & VALUE(11), VALUE(12), VALUE(13), VALUE(14), VALUE(15), & Sc. VALUE(16) ENDIF ** Generating Flying Program ** IF (RECORD.EQ.03) THEN READ (LINE, 1001) NSN DO 30 I=1,16 FLH(I) = 2000 + XCONTINUE 30 ** Writing Flying Program ** WRITE(2,1002) '03', NSN, FLH(1), FLH(2), FLH(3), FLH(4), FLH(5), FLH(6),FLH(7),FLH(8),FLH(9),FLH(10),FLH(11), & & FLH(12), FLH(13), FLH(14), FLH(15), FLH(16) ENDIF IF (RECORD.EQ.04) THEN READ (LINE, 1001) NSN DO 40 I=1,25 PROG(I)=2500 40 CONTINUE WRITE(2,1003) '04', NSN, PROG(1), PROG(2), PROG(3), PROG(4), PROG(5), & PROG(6), PROG(7), PROG(8), PROG(9), PROG(10), PROG(11), & & PROG(12), PROG(13), PROG(14), PROG(15), PROG(16), & PROG(17), PROG(18), PROG(19), PROG(20), PROG(21), & PROG(22), PROG(23), PROG(24), PROG(25) ENDIF GOTO 10 999 CLOSE(1)

.

CLOSE(2) STOP END

.

4) Random Times Series Component

```
*************
** The purpose of this program is to generate random times series
** component data.
                                                                    * *
                                                                     * *
                     *******
******
        PROGRAM RANDOM
** Variables **
        CHARACTER LINE*190,NSN*17
        INTEGER RECORD, X, J, I, VALUE (16), FLH (16), PROG (25)
       X=100
        J=2
       Y=1
** Format **
       FORMAT(I2,A190)
 1000
       FORMAT (A17)
1001
       FORMAT (A2, A17, 4X, I5, 15(2X, I5))
1002
 1003
        FORMAT(A2, A17, 4X, I5, 24(2X, I5))
1004
       FORMAT(A2, A190)
** Opening Files **
        OPEN(1,file='SDFRDB5." XT',form='formatted',status='UNKNOWN')
        OPEN(2,file='RANDOM.TXT',form='formatted',status='UNKNOWN')
** Reading Input File for NSNs information only **
         READ (1,1000,end=999) RECORD,LINE
   10
         IF (RECORD.EQ.01) THEN
            WRITE (2,1004) '01', LINE
         ENDIF
** Generating Demand **
         IF (RECORD.E0.02) THEN
           READ (LINE, 1001) NSN
           DO 20 I=1,16
              VALUE(I) = X + INT(RND() * 10)
          CONTINUE
   20
          X = X + 10
** Writing Demand **
           WRITE(2,1002) '02', NSN, VALUE(1), VALUE(2), VALUE(3), VALUE(4),
                 VALUE(5), VALUE(6), VALUE(7), VALUE(8), VALUE(9), VALUE(10),
    £
    &
                 VALUE(11), VALUE(12), VALUE(13), VALUE(14), VALUE(15),
                 VALUE(16)
    &
         ENDIF
** Generating Flying Program **
         IF (RECORD.EQ.03) THEN
           READ (LINE, 1001) NSN
          DO 30 I=1,16
              FLH(I) = 2000 + X
   30
          CONTINUE
```

** Writing Flying Program **

ર્સ &	WRITE(2,1002) '03',NSN,FLH(1),FLH(2),FLH(3),FLH(4),FLH(5), FLH(6),FLH(7),FLH(8),FLH(9),FLH(10),FLH(11), FLH(12),FLH(13),FLH(14),FLH(15),FLH(16) ENDIF
	IF (RECORD.EQ.04) THEN READ (LINE,1001) NSN DO 40 I=1,25 PROG(I)=2500
40	CONTINUE
	WRITE(2,1003) '04', NSN, PROG(1), PROG(2), PROG(3), PROG(4),
&	PROG(5),
&	PROG(6), PROG(7), PROG(8), PROG(9), PROG(10), PROG(11),
&	PROG(12), PROG(13), PROG(14), PROG(15), PROG(16),
&	PROG(17), $PROG(18)$, $PROG(19)$, $PROG(20)$, $PROG(21)$,
&	PROG(22), PROG(23), PROG(24), PROG(25)
	ENDIF
	GOTO 10
99	CLOSE(1)

.

.

999

CLOSE(2) STOP

END
5) Outlier Times Series Component

```
** The purpose of this program is to generate outlier times series **
** component data.
**
                      *****
        PROGRAM OUTLIER
** Variables **
        CHARACTER LINE*190,NSN*17
        INTEGER RECORD, X, J, G, Z, F, I, VALUE (16), FLH (16), PROG (25)
        X=100
        J=2
        F=0
        G≃0
        Z=50
** Format **
 1000
       FORMAT(I2,A190)
        FORMAT (A17)
 1001
 1002
       FORMAT(A2, A17, 4X, I5, 15(2X, I5))
 1003
       FORMAT(A2, A17, 4X, I5, 24(2X, I5))
1004
       FORMAT(A2,A190)
** Opening Files **
        OPEN(1, file='SDFRDB4.TXT', form='formatted', status='UNKNOWN')
        OPEN(2, file='OUTLIER.TXT', form='formatted', status='UNKNOWN')
** Reading Input File for NSNs information only **
   10
         READ (1,1000,end=999) RECORD,LINE
         IF (RECORD.EQ.01) THEN
            WRITE (2,1004) '01', LINE
         ENDIF
** Generating Demand **
         IF (RECORD.EQ.02) THEN
           READ (LINE, 1001) NSN
           VALUE(1) = X + J
           VALUE(2) = X + J
           VALUE(3) = X + J
           VALUE(4) = X + J
           VALUE(5) = X+J
           VALUE(6) = X + J
           VALUE(7) = X+J
           VALUE(8) = X + J
           VALUE(9) = X+J
           VALUE(10) = X+J
           VALUE(11) = X + J
           VALUE(12) = X+J
           VALUE(13) = X + J + F
           VALUE(14) = X + J + G
           VALUE(15) = X+J+Z
           VALUE(16) = X + J
           X = X + 10
```

```
J=J+INT(RND()*10)
            IF (Z.GT.0) THEN
              G=10*INT(RND()*10)
              F=10*INT(RND()*10)
              7 = 0
            ELSE
              IF (F.GT.0) THEN
                G=10*INT(RND()*10)
                F=0
                Z=0
              ELSE
                IF (G.GT.0) THEN
                   G=0
                   F=10*INT(RND()*10)
                   Z=0
                ELSE
                   G=0
                   F=0
                   Z=10*INT(RND()*10)
                ENDIF
              ENDIF
            ENDIF
** Writing Demand **
            WRITE(2,1002) '02', NSN, VALUE(1), VALUE(2), VALUE(3), VALUE(4),
                  VALUE(5), VALUE(6), VALUE(7), VALUE(8), VALUE(9), VALUE(10),
     &
     &
                  VALUE(11), VALUE(12), VALUE(13), VALUE(14), VALUE(15),
                  VALUE(16)
     &
         ENDIF
** Generating Flying Program **
         IF (RECORD.EQ.03) THEN
            READ (LINE, 1001) NSN
            DO 30 I=1,16
                FLH(I) = 2000 + X
   30
            CONTINUE
** Writing Flying Program **
            WRITE(2,1002) '03', NSN, FLH(1), FLH(2), FLH(3), FLH(4), FLH(5),
                    FLH(6),FLH(7),FLH(8),FLH(9),FLH(10),FLH(11),
     &
     &
                    FLH(12), FLH(13), FLH(14), FLH(15), FLH(16)
         ENDIF
         IF (RECORD.EQ.04) THEN
            READ (LINE, 1001) NSN
            DO 40 I=1,25
                PROG(I) = 2500
   40
            CONTINUE
            WRITE(2,1003) '04', NSN, PROG(1), PROG(2), PROG(3), PROG(4),
                    PROG(5),
     33
     &
                    PROG(6), PROG(7), PROG(8), PROG(9), PROG(10), PROG(11),
                    PROG(12), PROG(13), PROG(14), PROG(15), PROG(16),
     &
                    PROG(17), PROG(18), PROG(19), PROG(20), PROG(21),
     &
     &
                    PROG(22), PROG(23), PROG(24), PROG(25)
         ENDIF
         GOTO 10
                     .
 999
         CLOSE(1)
         CLOSE(2)
          STOP
         END
```

Appendix B: Sample Sizes Computation

1) Air Force Data - VTMR

Descriptive Statistics

Population		
Mean	2.3626	
Standard Error	0.0480	
Median	1.3267	
Mode	0.8750	
Standard Dev.	3.8715	
Variance	14.9886	
Kurtosis	120.9590	
Skewness	8.5627	
Range	90.4566	
Minimum	0.0000	
Maximum	90.4566	
Sum	15354.7025	
Count	6499.0000	

Sample	
Mean	4.9175
Standard Error	0.2921
Median	2.5071
Mode	0.8755
Standard Dev.	6.8701
Variance	47.1984
Kurtosis	15.5797
Skewness	3.4689
Range	60.6485
Minimum	0.2954
Maximum	60.9439
Sum	2719.3509
Count	553.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	4.9175
Beginning Sample Std. Dev.	0.2921
Value within	0.0480
Mean	
Sample size=	245.3817

2) Trend Data - VTMR

Descriptive Statistics

Sample	
Mean	0.7905
Standard Error	0.1128
Median	0.4416
Mode	#N/A
Standard Dev.	0.7135
Variance	0.5091
Kurtosis	-0.6359
Skewness	0.7693
Range	2.3191
Minimum	0.0420
Maximum	2.3611
Sum	31.6218
Count	40.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	0.7905
Beginning Sample Std. Dev.	0.1128
Value within	0.0480
Mean	
Sample size=	36.59026

3) Cyclic Data - VTMR

Descriptive Statistics

Sample	
Mean	0.0613
Standard Error	0.0075
Median	0.0465
Mode	#N/A
Standard Dev.	0.0476
Variance	0.0023
Kurtosis	0.4166
Skewness	1.0528
Range	0.1801
Minimum	0.0085
Maximum	0.1886
Sum	2.4538
Count	40.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	0.0613
Beginning Sample Std. Dev.	0.0075
Value within	0.0480
Mean	
Sample size=	0.163108

4) Seasonal Data - VTMR

Descriptive Statistics

Sample	
Mean	0.0156
Standard Error	0.0018
Median	0.0124
Mode	0.0257
Standard Dev.	0.0117
Variance	0.0001
Kurtosis	0.3812
Skewness	1.0331
Range	0.0442
Minimum	0.0024
Maximum	0.0466
Sum	0.6223
Count	40.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	0.0156
Beginning Sample Std. Dev.	0.0018
Value within	0.0480
Mean	
Sample size=	0.009829

5) Outlier Data - VTMR

Descriptive Statistics

Sample	
Mean	0.6746
Standard Error	0.1112
Median	0.3918
Mode	0.0000
Standard Dev.	0.8585
Variance	0.7369
Kurtosis	7.8937
Skewness	2.4544
Range	4.3523
Minimum	0.0000
Maximum	4.3523
Sum	26.9820
Count	40.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	0.6746
Beginning Sample Std. Dev.	0.1112
Value within	0.0480
Mean	
Sample size=	35.55079

6) Random Data - VTMR

Descriptive Statistics

Sample	
Mean	0.0307
Standard Error	0.0024
Median	0.0274
Mode	0.0481
Standard Dev.	0.0149
Variance	0.0002
Kurtosis	-0.1467
Skewness	0.7709
Range	0.0582
Minimum	0.0087
Maximum	0.0669
Sum	1.2267
Count	40.0000

Computing Sample Size with 99% Confidence

	DATA
Mean	0.0307
Beginning Sample Std. Dev.	0.0024
Value within	0.0480
Mean	
Sample size=	0.016007

Appendix C: RDB Eight Ouarter Moving Average

* * * *** THIS PROGRAM IS TO SIMULATE THE RDB EIGHT OUARTER MOVING *** AVERAGE FORECASTING TECHNIQUE. *** *** FORECASTING TECHNIQUE TO FORECAST OIM DEMAND. *** *** SIMULATION PROGRAM DEVELOPED BY CAPT CHRISTIAN DUSSAULT. * * * ************ PROGRAM MOVAVE *** VARIABLES DECLARATION INTEGER TYPE, COUNT/0/, TOTALCOUNT/0/ CHARACTER * 15 NSN CHARACTER * 9 NIIN CHARACTER * 200 LINE REAL FORECAST(16), DEMAND(16), PROGRAM(16), OIMDEMANDRATE(16), MAD, MSE, MPE, MAPE, TOTALPROGRAM/0.0/, TOTALDEMAND/0.0/, & ERROR(4) æ COUNTERROR/0.0/, COUNTMAPE/0.0/, & MAPETOTAL/0.0/, COUNTMAD/0.0/, MADTOTAL/0.0/, & COUNTMSE/0.0/, MSETOTAL/0.0/, COUNTMPE/0.0/, MPETOTAL/0.0/ & *** FILES OPEN (1,FILE='trend.TXT',FORM='FORMATTED',STATUS='UNKNOWN')
OPEN (2,FILE='trend.RDB',FORM='FORMATTED',STATUS='UNKNOWN') *** FORMATS 1000 FORMAT(2X,A15,2X,1617) 2000 FORMAT(12, A200) 3000 FORMAT(A2,2X,A15,2X,4(2X,F8.2)) 4000 FORMAT(A2,2X,A9,4(2x,F10.4)) 5000 FORMAT ('+NSN COUNT: ', I5) 8000 FORMAT (4X, A9) *** READING INPUT FILE DO READ(1,2000, END=110) TYPE, LINE IF (TYPE.EQ.1) THEN COUNT=COUNT+1 TOTALCOUNT=0 GOTO 100 ENDIF IF (TYPE.EQ.2) THEN READ(LINE, 1000) NSN, DEMAND(1), DEMAND(2), DEMAND(3), 3 DEMAND(4), DEMAND(5), DEMAND(6), DEMAND(7), DEMAND(8), DEMAND(9), DEMAND(10), DEMAND(11), DEMAND(12), DEMAND(13), & DEMAND(14), DEMAND(15), DEMAND(16) æ GOTO 100 ENDIF

```
IF (TYPE.EQ.3) THEN
         READ(LINE, 1000) NSN, PROGRAM(1), PROGRAM(2), PROGRAM(3),
     $
           PROGRAM(4), PROGRAM(5), PROGRAM(6), PROGRAM(7), PROGRAM(8),
     $
           PROGRAM(9), PROGRAM(10), PROGRAM(11), PROGRAM(12),
     &
           PROGRAM(13), PROGRAM(14), PROGRAM(15), PROGRAM(16)
      ENDIF
      IF (TYPE.EQ.4) THEN
         GOTO 100
      ENDIF
*** FORECAST FOR PERIOD 9 USING THE PREVIOUS 8 QUARTERS
      TOTALDEMAND=DEMAND(1)+DEMAND(2)+DEMAND(3)+DEMAND(4)+
     &
                   DEMAND(5) + DEMAND(6) + DEMAND(7) + DEMAND(8)
      TOTALPROGRAM=PROGRAM(1)+PROGRAM(2)+PROGRAM(3)+PROGRAM(4)+
     3
                   PROGRAM(5) + PROGRAM(6) + PROGRAM(7) + PROGRAM(8)
      IF (TOTALPROGRAM.EQ.0) THEN
         FORECAST(9) = 0.0
         GOTO 10
      ELSE
         OIMDEMANDRATE(9)=TOTALDEMAND/TOTALPROGRAM
         FORECAST(9)=OIMDEMANDRATE(9)*PROGRAM(9)
      ENDIF
*** FORECAST FOR PERIOD 10 USING THE PREVIOUS 8 QUARTERS
10
      TOTALDEMAND=DEMAND(2)+DEMAND(3)+DEMAND(4)+DEMAND(5)+
     $
                  DEMAND(6) + DEMAND(7) + DEMAND(8) + DEMAND(9)
      TOTALPROGRAM=PROGRAM(2)+PROGRAM(3)+PROGRAM(4)+PROGRAM(5)+
     &
                    PROGRAM(6) + PROGRAM(7) + PROGRAM(8) + PROGRAM(9)
      IF (TOTALPROGRAM.EQ.0) THEN
         FORECAST(10) = 0.0
         GOTO 20
      ELSE
         OIMDEMANDRATE(10)=TOTALDEMAND/TOTALPROGRAM
         FORECAST(10) = OIMDEMANDRATE(10) * PROGRAM(10)
         TOTALCOUNT=TOTALCOUNT+1
      ENDIF
*** FORECAST FOR PERIOD 11 USING THE PREVIOUS 8 QUARTERS
20
      TOTALDEMAND=DEMAND(3)+DEMAND(4)+DEMAND(5)+DEMAND(6)+
                  DEMAND(7)+DEMAND(8)+DEMAND(9)+DEMAND(10)
     &
      TOTALPROGRAM=PROGRAM(3)+PROGRAM(4)+PROGRAM(5)+PROGRAM(6)+
     $
                  PROGRAM(7) + PROGRAM(8) + PROGRAM(9) + PROGRAM(10)
      IF (TOTALPROGRAM.EQ.0) THEN
         FORECAST(11) = 0.0
         GOTO 30
      ELSE
         OIMDEMANDRATE(11) = TOTALDEMAND/TOTALPROGRAM
         FORECAST(11) = OIMDEMANDRATE(11) * PROGRAM(11)
         TOTALCOUNT=TOTALCOUNT+1
     ENDIF
```

```
*** FORECAST FOR PERIOD 12 USING THE PREVIOUS 8 QUARTERS
30
      TOTALDEMAND=DEMAND(4)+DEMAND(5)+DEMAND(6)+DEMAND(7)+
                  DEMAND(8)+DEMAND(9)+DEMAND(10)+DEMAND(11)
     &
      TOTALPROGRAM=PROGRAM(4)+PROGRAM(5)+PROGRAM(6)+PROGRAM(7)+
                   PROGRAM(8)+PROGRAM(9)+PROGRAM(10)+PROGRAM(11)
     &
      IF
         (TOTALPROGRAM.EQ.0) THEN
         FORECAST(12) = 0.0
         GOTO 40
      ELSE
         OIMDEMANDRATE(12)=TOTALDEMAND/TOTALPROGRAM
         FORECAST(12) = OIMDEMANDRATE(12) * PROGRAM(12)
         TOTALCOUNT=TOTALCOUNT+1
      ENDIF
*** FORECAST FOR PERIOD 13 USING THE PREVIOUS 8 QUARTERS
 40
      TOTALDEMAND=DEMAND(5)+DEMAND(6)+DEMAND(7)+DEMAND(8)+
     &
                  DEMAND(9)+DEMAND(10)+DEMAND(11)+DEMAND(12)
      TOTALPROGRAM=PROGRAM(5)+PROGRAM(6)+PROGRAM(7)+PROGRAM(8)+
                 PROGRAM(9)+PROGRAM(10)+PROGRAM(11)+PROGRAM(12)
     8
      IF (TOTALPROGRAM.EO.0) THEN
         FORECAST(13) = 0.0
         GOTO 50
      FLSE
         OIMDEMANDRATE (13) = TOTALDEMAND/TOTALPROGRAM
         FORECAST(13)=OIMDEMANDRATE(13)*PROGRAM(13)
         TOTALCOUNT=TOTALCOUNT+1
      ENDIF
*** FORECAST FOR PERIOD 14 USING THE PREVIOUS 8 QUARTERS
50
      TOTALDEMAND=DEMAND(6)+DEMAND(7)+DEMAND(8)+DEMAND(9)+
                   DEMAND(10)+DEMAND(11)+DEMAND(12)+DEMAND(13)
     &
      TOTALPROGRAM=PROGRAM(6)+PROGRAM(7)+PROGRAM(8)+PROGRAM(9)+
                   PROGRAM(10)+PROGRAM(11)+PROGRAM(12)+PROGRAM(13)
     &
      IF (TOTALPROGRAM.EQ.0) THEN
         FORECAST(14) = 0.0
         GOTO 60
      ELSE
         OIMDEMANDRATE (14) = TOTALDEMAND/TOTALPROGRAM
         FORECAST(14) = OIMDEMANDRATE(14) * PROGRAM(14)
         TOTALCOUNT=TOTALCOUNT+1
      ENDIF
*** FORECAST FOR PERIOD 15 USING THE PREVIOUS 8 QUARTERS
60
      TOTALDEMAND = DEMAND (7) + DEMAND (8) + DEMAND (9) + DEMAND (10) +
                   DEMAND(11) + DEMAND(12) + DEMAND(13) + DEMAND(14)
     &
      TOTALPROGRAM=PROGRAM(7)+PROGRAM(8)+PROGRAM(9)+PROGRAM(10)+
                   PROGRAM(11) + PROGRAM(12) + PROGRAM(13) + PROGRAM(14)
     8
      IF (TOTALPROGRAM.EO.0) THEN
         FORECAST(15) = 0.0
         GOTO 70
      ELSE
         OIMDEMANDRATE (15) = TOTALDEMAND / TOTAL PROGRAM
         FORECAST (15) = 0 IMDEMANDRATE (15) * PROGRAM (15)
         TOTALCOUNT=TOTALCOUNT+1
```

```
ENDIF
```

```
*** FORECAST FOR PERIOD 16 USING THE PREVIOUS 8 QUARTERS
70
      TOTALDEMAND=DEMAND(8)+DEMAND(9)+DEMAND(10)+DEMAND(11)+
     &
                     DEMAND(12) + DEMAND(13) + DEMAND(14) + DEMAND(15)
      TOTALPROGRAM=PROGRAM(8)+PROGRAM(9)+PROGRAM(10)+PROGRAM(11)+
                     PROGRAM(12) + PROGRAM(13) + PROGRAM(14) + PROGRAM(15)
     &
      IF
         (TOTALPROGRAM.EO.0) THEN
         FORECAST(16) = 0.0
         GOTO 80
      ELSE
         OIMDEMANDRATE(16)=TOTALDEMAND/TOTALPROGRAM
         FORECAST(16) = OIMDEMANDRATE(16) * PROGRAM(16)
         TOTALCOUNT=TOTALCOUNT+1
      ENDIF
*** MAD & MSE
     MAD = (ABS(FORECAST(13) - DEMAND(13)) + ABS(FORECAST(14) - DEMAND(14)) +
80
           ABS (FORECAST (15) ~ DEMAND (15)) + ABS (FORECAST (16) ~ DEMAND (16))
     &
     &
          )/4.0
     MSE=((FORECAST(13)-DEMAND(13))**2+(FORECAST(14)-DEMAND(14))**2
          + (FORECAST(15) - DEMAND(15)) **2+ (FORECAST(16) - DEMAND(16)) **2
     $
          )/4.0
     $
       MADTOTAL=MADTOTAL+MAD
       COUNTMAD=COUNTMAD+1
       MSETOTAL=MSETOTAL+MSE
       COUNTMSE=COUNTMSE+1
*** MPE & MAPE
       COUNTERROR=0
  82
       IF (DEMAND(13).EQ.0) THEN
         ERROR(13) = 0.0
         GOTO 84
       ELSE
         COUNTERROR=COUNTERROR+1.0
         ERROR(13) = (DEMAND(13) - FORECAST(13)) / DEMAND(13)
       ENDIF
       IF (DEMAND(14).EQ.0) THEN
  84
         ERROR(14) = 0.0
         GOTO 86
       ELSE
         COUNTERROR=COUNTERROR+1.0
         ERROR(14) = (DEMAND(14) - FORECAST(14)) / DEMAND(14)
       ENDIF
       IF (DEMAND(15).EQ.0) THEN
  86
         ERROR(15) = 0.0
         GOTO 88
       ELSE
         COUNTERROR=COUNTERROR+1.0
         ERROR(15) = (DEMAND(15) - FORECAST(15)) / DEMAND(15)
       ENDIF
```

```
88
       IF (DEMAND(16).EQ.0) THEN
         ERROR(16) = 0.0
         GOTO 90
       ELSE
         COUNTERROR=COUNTERROR+1.0
         ERROR (16) = (DEMAND(16) - FORECAST(16)) / DEMAND(16)
       ENDIF
  90
       IF (COUNTERROR.EQ.(0.0)) THEN
          MPE=0.0
          MAPE=0.0
          GOTO 95
       ENDIF
       WRITE(*,5000) 1
       MPE = ((ERROR(13) + ERROR(14) + ERROR(15) + ERROR(16)) / COUNTERROR) *100.0
       MAPE = ((ABS(ERROR(13)) + ABS(ERROR(14)) + ABS(ERROR(15)) + ABS(ERROR(16)))
             ))/COUNTERROR)*100.0
     Sc.
       MAPETOTAL=MAPETOTAL+MAPE
       COUNTMAPE=COUNTMAPE+1
       MPETOTAL=MPETOTAL+MPE
       COUNTMPE=COUNTMPE+1
** WRITING OUTPUT FILE. IT INCLUDES THE FORECASTS AND FORECASTING **
**
   ERRORS **
  95
       WRITE(2,3000) '01', NSN, DEMAND(13),
              DEMAND(14), DEMAND(15), DEMAND(16)
     δc
       WRITE(2,3000) '02', NSN, FORECAST(13)
              FORECAST(14), FORECAST(15), FORECAST(16)
     &
       READ(NSN, 8000) NIIN
       WRITE(2,4000) '03',NIIN,MAD, MSE, MPE, MAFE
 100
       WRITE(*,5000) COUNT
       ENDDO
 110
       PRINT, MADTOTAL/COUNTMAD
       PRINT, MSETOTAL/COUNTMSE
       PRINT, MPETOTAL/COUNTMPE
       PRINT, MAPETOTAL/COUNTMAPE
       CLOSE(1)
       CLOSE(2)
```

END

Appendix D: Data Elements for SDF and RDB

Record #1 - Data Information

Data Element	Position	Length	Comment
Data Type	1-2	2	
Air Logistic Center	3-4	2	
NSN	5-19	15	
Blank	20-22	3	
Item Name	23-32	10	
Blank	33-34	2	
Cost	35-41	7	Dollar Value = integer
Blank	42-43	2	
Consumable/Reparable Code	44-44	1	All items are reparable = R
Blank	45-46	2	
Previous Demand Average	47-53	7	Determined by Navy
Blank	54-55	2	
Previous Demand Variance	56-62	7	Determined by Navy
Blank	63-64	2	
Previous Demand Forecast	65-71	7	Determined by Navy
Blank	72-73	2	
Previous Demand Leadtime	74-80	7	Determined by Navy

Record #2 - Demands

Data Element	Position	Length	Comment
Data Type	1-2	2	
Air Logistic Center	3-4	2	
NSN	5-19	15	
Blank	20-21	2	
Demands	22-133	16 * 7	Qtr 1(1989) - Qtr 4(1993)

Record #3 - Past Programs

Data Element	Position	Length	Comment
Data Type	1-2	2	
Air Logistic Center	3-4	2	
NSN	5-19	15	
Blank	20-21	2	
Past programs	22-133	16 * 7	Qtr 1(1989) - Qtr 4(1993)

Record #4 - Future Programs

Data Element	Position	Length	<u>Comment</u>
Data Type	1-2	2	
Air Logistic Center	3-4	2	
NSN	5-19	15	
Blank	20-21	2	
Future programs	22-189	24 * 7	Qtr 1(1994) - Qtr 4(1999)

Appendix E: Aircraft Sustainability Data Values

LRU COMPONENT DATA FILE - prefx. 1

Each line replaceable unit (LRU) component will have a corresponding series of seven records in this file. These are read as FORTRAN free-format records with fields separated by a blank space and column positioning is insignificant.

Record No. 1

NSN	=	National stock number of the component.
COST	=	Unit cost.
IQPA	=	Quantity installed per aircraft. Assumed that all items had a IQPA
		of one.
FAP	=	Future application fraction: the fraction of aircraft that will be
		configured with this NSN. Assumed that all items had a FAP of
		100%.
PLTT	=	Procurement lead-time in months. Assumed that all items had a
		PLTT of zero. As soon as we buy the item, we get the item.
ITASSE	=	The starting asset position for the NSN before any buys are made
		by the Aircraft Sustainability Model (ASM). Assumed that all
		items had a ITASSE of 0.
NHANSN	=	NSN of the next higher assembly (NHA); the next higher assembly
		for LRUs will be the weapon system, in this case FCA1 (Fictitious
		Canadian Aircraft One).
IBUDCODE	=	A budget code integer from 1 to 9 that permits cost subtotals to be
		generated by budget code. Currently, a value of 1 denotes an LRU

E-1

with shop replaceable units (SRUs) and 2 denotes an LRU without SRUs. Assumed that all items had a value of two.

- NEGLV = Negotiated level for this NSN. Sometimes, requirements levels are set without regard for optimization. If NEGFLAG [in the parameters (PARAMS) file] is set to true, the model will buy up from ITASSE to NEGLV sacrosanct. Assumed that all items had a value of zero.
- MAINTCON = Specifies whether the LRU is remove and replace (RR) or remove. repair, and replace (RRR). This affects when (if ever) wartime LRU base repair begins. Assumed that all items had a value of RRR.
- ITEMPBUY = Fraction of the pipeline to be bought sacrosanct for this component. This value is used only if the PBUYA field on the PARAMS file is coded "ITEM". Assumed that all items had a value of 0.00.
- CANNFLAG = A value of "N" indicates this item may not be cannibalized, a value of "Y" indicates that it can. This value is only used if the CANN field of the PARAMS file is coded "P" for partial cannibalization. Assumed that all items had a value of N.
- NOPFLAG = Applicable only to data drawn from the Air Force's WRSK/BLSS. A value of "NOP" indicates that the item is non-optimized (NOPed). However, NOPed items are still a factor in constrained budget analysis. Processing of NOPed items is currently being developed. Assumed that all items had a value of AAA.
- NRTSDEC = Decision to ship this component to the next higher servicing facility is made before attempting repair (1) or after repair (0).

E-2

Assumed that all items had a value of one.

Record No. 2

IBRTP	Ξ	Peacetime base repair time in days for this component.	Assumed
		that all items had a value of four.	

- IBRTW = Wartime base repair time in days for this component. Assumed that all items had a value of four.
- Record No. 3

IOSTP	=	Peacetime order and ship time in days for this component.
		Assumed that all items had a value of 17.
IOSTW	-	Wartime order and ship time in days for this component. Assumed

- that all items had a value of 17.
- Record No. 4
- IDRTP = Peacetime depot repair time in days for this component. Assumed that all items had a value of 30.
- IDRTW = Wartime depot repair in days for this component. Assumed that all items had a value of 30.
- Record No. 5
- TOIMDRP = Peacetime demand per flying hour for this component.
- TOIMDRW = Wartime demand per flying hour for this component.

Record No. 6

BNRTSP = Base not reparable this station rate - peacetime percentage of demands that are either condemned or sent to the depot for repair (overhaul) for this component. Assumed that all items had a value of 40%.

BNRTSW = Base not reparable this station rate - wartime percentage of demands that are either condemned or sent to the depot for repair (overhaul) for this component. Assumed that all items had a value of 40%.

Record No. 7

CONPCTP	Ξ	Peacetime condemnation fraction for this component. As	ssumed
		that all items had a value of 1%.	

CONPCTW = Wartime condemnation fraction for this component. Assumed that all items had a value of 1%

SRU COMPONENT DATA FILE - prefx. 2

No SRU file was used since items were considered as LRUs.

PARAMETERS FILE - prefx.PRM

The parameters file contains all the processing options for a particular ASM run such as the weapon system name, the flying program for the scenario, the day to be analyzed, the direct support objective (DSO), the first day that base repair of LRUs is permitted, and the type of computer on which the model run is being made (PC for personal computer, or HON for Honeywell). The ddd in the file name is the day(s) in the days of analysis card. The parameters in each file are determined on the ENMCS objectives on the Option 25 card.

These are read as FORTRAN free-format records. In this file, each field must be on a separate line.

ITODAY = The day to be analyzed. Must be between 0 and 99. Took the

E-4

value of zero.

- DATADIR = The drive/directory that contains the ASM input data. For example, C:\ASM\DATA or \ASM\F111DATA\. Note the trailing backslash (\) that is required.
- OUTPDIR = The drive/directory that contains the ASM output. For example, \ASM\OUTPUT\F111\.
- DEBUGER = Specifies the extent to which debug output should be printed. Must be FULL, SOME, NONE, or NSNS; defaults to NONE.
- PIPEFLAG = Specifies whether the computed pipeline quantities will be written to the OUTPIPE file. Must be T or F; defaults to T.
- CANN = Specifies the type of cannibalization allowed. A value of "F" means all items, a value of "N" means no items, and a value of "P" means those items coded "Y" in the CANNFLAG of the component data files may be cannibalized. Took the value of N.
- NSNFILE = If DEBUGER is set to NSNS, it specifies the file where a list of NSNS is stored. This file must be in the DATADIR directory and must contain one NSN per record. The ASM will then print debug output for each NSN in that list.
- NEGFLAG = Specifies whether the model is to treat NEGLV as a sacrosanct level. Must be T or F. T indicates purchase of NEGLV quantity as a floor. Took the value of F.
- EXPRESUP = Specifies that resupply is exponential rather than deterministic. Must be T for exponential or F for deterministic. Took the value of F.

- OPTMTHD = A value of C indicates confidence-level optimization; a value of E indicates ENMCs optimization; a value of M indicates the interim (ENMCS/EBOs optimization) method. Took the value of E.
- BUYPEAK = Specifies whether the peak pipelines for the whole scenario (T). the peak pipe pipelines through a specified day (for example, 30), or the pipelines on the day to be analyzed (F) are to be bought sacrosanct to the level specified by PBUY (see below). Took the value of T.
- COMPUTER = Identifies host computer for the ASM. Should be set to "PC" for any microcomputer. Took the value of PC.
- VMOPTION = Specifies how the variance-to-mean ratio (VMR) computation is to be performed. May be 1, 2, 3, or 4 but anything greater than 1 (fixed VMR) is highly experimental. Took the value of one.
- Q = For VMOPTION=1, specifies the constant VMR. Must be at least 1.0. Took the value of 1.5.
- PBUYA = Specifies the percentage of the pipeline to be bought sacrosanct:
 either peak or for ITODAY, see BUYPEAK. A value of 1.0
 would specify buy the whole pipeline, 0.5 would buy half. 0.0
 would buy none. PBUYA consists of two numbers: the first is the value for LRUs, the second for SRUs. A value of "ITEM" may also be used to indicate that the percentage coded in ITEMPBUY on the component data files will be bought sacrosanct. A value of "QPA" overrides the ITEMPBUY field and buys the floor quantity for items with QPA > 2. Took the value of 0.0.
- WSNAME = Weapon system name (e.g., F111, F004, etc.). Took the value of FCA1.

E-6

NUNITS = Number of units of the weapon system at each base (PAA). Took the value of 24.

NBASES = Number of bases. Took the value of one.

- NFIRSTBR = The first day base repair is allowed. Base component repair is suspended for days 1 through NFIRSTBR-1. NFIRSTBR is an array of three numbers: NFIRSTBR(1) is the first day that RR LRUs are repaired, NFIRSTBR(2) is the first day that RRR LRUs are repaired, NFIRSTBR(3) is the first day that SRUs are repaired. Took the value of one.
- NFIRSTDR = The first day depot repair is allowed. Depot component repair is suspended for days 1 through NFIRSTDR-1. NFIRSTDR is an array of three numbers: NFIRSTDR(1) is the first day that RR LRUs are repaired, NFIRSTDR(2) is the first day that RRR LRUs are repaired, NFIRSTDR(3) is the first day that SRUs are repaired. Took the value of one.
- NFIRSTOS = The first day that shipment from the depot becomes available. Took the value of one.
- DSO = The number of not mission capable for supply (NMCS) aircraft allowed. The model optimizes the probability that the number NMCS is not greater than the DSO. Took the value of 7.2.
- FNAME = The name (without extension) of the files containing the LRU and SRU component data.
- NDAYS = The last day for which the component data will change. The component data is specified for day 0 through day NDAYS (in the COMPDATA file). The component data on days before day 0 are assumed identical to day 0. The component data on days after day

NDAYSFH are assumed to be identical to day NDAYSFH. For now, NDAYS is set to 1 -- i.e., resupply times, failure rates -- are assumed to be constant for each day of the war. Took the value of zero.

- NDAYWARN= The number of days warning before the start of the scenario (normally set to 0). Allows the resupply times to shift to the wartime values before the start of the scenario. Took the value of zero.
- COMMENT = Up to 60 characters of notes. This is a separate record in the file and may contain blanks.

SCENARIO FILE - prefx. SC

The scenario file contains specific items about the flying-hour program for an ASM run. These are read as FORTRAN free-format records.

- NDAYSFH = The last day for which the flying program will change. The flying program is specified for day 0 through day NDAYSFH. (See the next field, FHP.) The flying programs on days before day 0 are assumed identical to day 0. The flying programs on days after day NDAYSFH are assumed to be identical to day NDAYSFH. Took the value of zero.
- FHP = The array of the flying-hour program in hours per day, for days () through NDAYSFH. Took the value of 10.

Pierwas		3 1211	2 5242	0.7030	1 7316	4 7653	1 5874	2 8619	2 7670	1 2086	2 1602	1.1528	4.3742	11174	2 4306	2 3729	23178	0 5122	2 2250	066/1	1 5386	5/100	0.8960	0.6630	0 8696	1 2487	0.4296	CODO 0	-022.0	2 7503	0000	1 1908	3.3252	10127	2 1742	27125	1 6500	3 8405	2 0/28	X 100	1 9255	12:52									
a a Š		3 6013	3 1552	0.8787	2 1647	5 9566	- 06M3	35756	3.4586	15106	7:227	24	5 4677	1 3067	3 0362	70061	2 89:14	0 6402	2 /813	1 2424	1 9232	1406	2		8	0.95	1.530		17100	10141	0.48.0	5.2385	4 1566	1 2659	27178	3 3906	20-10	4 800	25010	1	1 4050	76441		10.00m	3 4066	1 4332	40,000				
13		7.0224	5 6794	15617	3 8965	10 7219	3.5717	6.4304	6 2256	27192	4 9054	2 5936	01080	25141	5.4688	5 3390	5 2152	1 1524	5.0063	10163	3.4618	2 0043	2.0180	0990	9966	2 800	9960	97181		100.0	(9:90	64263	7.4818	2 2780	4 8920	6 1031	37,346	8 6412	4 60.38	2 0566	4 3324	6 458)		v atobe	43324	6 4561	40.000	0.000	1981 1	1645	1645
ž		3 1211	2 5 2 4 2	0507 0	17318	1 7653	1.5674	2.6619	2 7670	1 2086	2 1802	11526	t 3742	11174	2 4306	2 3729	23178	15122	2 2250		5386	01/5	6946		1 6696	1.2487	0.4296			2 7503	0 3003	1006	3 3252	10127	2 1742	27125	5599	6405	87.00	0 915M	1 9255	1 2757	z-Text Two-Sample to Means	•	t-lean	known . dignee	Obser. alions	H,pothey.sd Meon Difference	••	2 Cathool 12:0-tail - 90%	2 Critical one-tail - 95%
COFFERE		500	1552	787	1947	355	5	ŗ	586	5106	1252	10	192	1067	2992	1990	7	3	613	2424	22	1468	2		0/90	99			1710		8/9	2005	365	5650	9:1:	300	24.1		1	Ĩ	4069	2644		ž	80	2660	000				
a S		0224 3(2.4	20) 00	1045 2	7219 55	5717 15	ie Moen	2256 3.4	2192 15	2054 23	FI 9609	H 10 27	5141 13	1000	3300 2	5125	1524 0.0		2 1000	808		80		305	1000 I		9140			19.9	1203 5.	4016 41	2786 1	0700 5	1031	2 87		200	- %6	3324 2.	1281 11		tere i varat	3324 2.	4581 10	000	000	1961	5150	5120
3 5		2	š	Ξ	Ξ	0		ō		ñ	ž	ä	5	2	ŝ	5	5	= :	S :	.		2	ž	= :	ž i	23	53		-		5	å	12	~	Ŧ	\$	n	ě	¥ ;	ž	4	¢.		10-01	4	ġ.	Ŭ.	ă	7	Ξ	2
ENN-CR		350 0000	224 0000	14 0000	14 0000	224 0000	54 0000	350 0000	350 0000 055	54 0000	224 0000	56 0000	224 0000	54 0000	350 0000	350 0000	350 0000	14 0000	350 0000	224 0000	26 (000)	26 0000	0000 %	20000	26 0000	126 0000	14 0000	56 0000			14 0000	224 0000	126 0000	14 0000	56 0000	224 0000	56 0000	350 0000	56 0000	14 0000	0055 (11)	0_42 JJ08	z-Test five-Sample for Means	•	I.tean	NY ON THE CHERKS	Obser. ahors	H.potnesited Lleon Difference	••	 Catical taxe tail - 90% 	: Childed one tail - 95%
ŧ		\$ 2500	0000	6.2500	6.2500	00000	5.0000	6 2500	6 2500	5 0000	00000	5 0000	00000	5 0000	9 2200	9 2500	\$ 2500	2200	8 2800	0000	2000	2000	000	2 000	2000	992	9 2200	0000		0052.9	6 2500	00000	6 2500	6 2500	5 0000	00000	5 0000	9 2500	2000	6 2500	981. 9	1 0911 8		2 9420	6 ⁻ 188	8 1160	00000				
÷ i		\$ 2500 15	00001	0.2500	02200	00001	N 0000	52500 15	5 2500 15	0000	10000 101	2000	00001	× 0000	\$ 2500 15	\$ 2500 15	52500 15	2200	5 2500 15	0000	800	800	5000	800	80	5 2200	82.0				0052 0	1 0000	2500 5	0 2500	2000	9000	0000	5 2500 15	88	8052	5 1688 6	2004 333		ote l vo	5 1660 6	2064 333	0000	0000	1 8 2 4 ⁻	16450	051091
FFERENCE RDA	•	10 0000	8 0000 B	2 0000 -	2 0000	6 0000 32	0000 *	10 0000	10 0000	4 0000	9 0000	4 0000	6.0000 32	-1 0000	10 0000	10 2000	10 0000	2 0000	10 0000	8 0000	1 0000	4 0000	40 0000 7	6 0000 F	B	6 0000	2 0000				2 0000	\$ 0000	6 0000 9	2 0000	4 0000	8 0000	4 0000	10 0000	4 0000	2 (6000	5 8500 21	B 6249 3564	z-test Two-Sample for Means		Liedn 21	Prown upperson 3504	Ocser.ators	H, poliries, to d. I bon Gillerence	••	t Celection and 90%	2 Ontroat we tail 95%
5 * 9	2	12 5000	00000	2 5000	2 5000	10 0000	5 0000	12.5000	12 5000	5 0000	10 0000	5.0000	000001	5 0000	12 5000	12 5006	12 5000	5,5000	12 5000	000001	2 0000	2 000	2 000	2 000	2000	003	22000	0004		0005	2 5000	10 0000	15000	2 5000	5 0000	10 0000	5 0000	12 5000	2 0000	2,5000	5216-	13 585 -		andre 2	3125	- 285 E I	40.0000				
* 3		22:5000	0000	4 5000	7 5000	18 0000	00006	22 5000	22 5000	0000 6	16 0000	00006	18 0000	00006	22 5000	22 5000	22 5000	1 5000	22.5000	0000 81	0000	0000	0000	0000	00006	13,5000	4 5000			0005 61	0005 7	18 0000	13 5000	4 5000	00006	18 0000	\$ (000	52 5000	0000	15000	5261 61	41 01 78			13 1625	410178	10 0000	0 0000	57,81	16450	1 6450
	E																																										s-lest Iwo-Sample for Means	÷	Liean	PLANT, CROKE	Coter. chore	H.pothested Mean Citherence	••	: Catical two-tail - WS	2 Onliced pre-feet - 95%

Appendix F: Forecasting Measurement Errors Results

F-1

	13	8 23	HERING		83			45	2 2			43	8 	Head
	05:50	0.8500	0500		1 1875	00671	-0.00 A	11100	-0.0593	0 0462		0846	0 8230	0 0237
	2 0000	2 0000	00000		20005 5	5 5000	0,0000	00400	0 0404	00000		17140	91	00000
	2 0000	2 0000	00000		5 5000	5 5000	0 0000	00317	1600	0 0000		1.5187	15167	00000
	2.0000	2 0000	00000		5 5000	5.5000	00000	-0.0262	-0 0,282	0 0000		14317	14317	0,000
	1 6250	1 6500	0.0250		3.6875	3.6900	-0 025	-00162	0.0167	0.0349		1.1425	1 1596	0.01/1
	1 2500	1 2500	00000		2.2500	2 2500	0 0000	0.0080	4900 0-	0 0000		0 7873	E/R: 0	0000
	1 2500	1 2500	0 0000		2 2500	2.2500	0 0000	00000	00000	0 0000		0110		00000
	1.6250	0009	0.0250		3 68.5	3 6500	52000	51100	0 0392	0.02		99060	06990	0.0136
	08:20	0 8500	0 0 2 50		5.81	1,1900	\$00¢	00092	10000	0 0260		04/21	1985	66100
	23750	2 3500	0.0250		1.66	0069 1	-0.0025	00200	0 0453	0.0753		1 2106	1000	0.0123
			00000				0000 0 C200 0-		0.200	7570 0		10(1)0	10.50	0000
	1 2500	1 2500	00000		2 2500	2 2500	0.0000	1000	H00 0-	0,000		0.5512	0 5512	00000
	1250	1 2500	00000		2 2500	2 2500	0 0000 0	0004	(MOD ()	0 0000	-	0 5324	0 5324	0 0000
	2 0000	12 0000	0 0000		5 5000	5,5000	0 0000	-0 0003	£ 600 0-	0:0000		0.8206	0 8206	00000
	2 3750	000 1 7	-0 0250		7.6875	0049 :	5200 0-	-110.0-	2.000	0 0104		0.260	0 9365	5000
	5000	2 0000	0000		2200	2000	0 0000	0.00	0.0078	0 0000		0.752	/75:0	
	08:90	0000	09200-		5.91	8	9 00 025	00016	0.0167	-0.0183		0.1213	0.1304	0000
	23/50	0001-2	0.0250		8	0069 /	5000-P			100		0 132/		
		00017					C700 0-			0000				
		00001				0007 Y			-0.005			36170		
	1 7600	0057					0.0000	0003	2000	0000			0.0005	00000
	1 2500	1 2500	00000		2 2500	2,2500	0 0000	0200.0	0 00 0-	00000		03756	0.3756	00000
	2 3750	2.4000	-0.0250		7.0675	7 6000	-0.0025	0000	0 0000	-0.0144		0.68-60	1109 0	1,000
	23750	2-4000	-0 0250		7 6875	2 6000	52000-	09000	0.0079	00130		0 6640	0.6718	09000
	23750	2 4000	-0 0250		6.99	0009	5200 0-	500.0	0.000	9610.0-		0 6468	0 6535	9000
	08:50	0.000	0 0 2 5 0		1 1875	1 1000	-0.0025	00000	100	-00132		0 2313	0 2378	0.000
	23:50	0017	05200		8	0060	-0005	79000	/:000	6710 Q		0.0100	N200	
	70007	7 0000							60000	00000				
	00X					0057		1000	00013				1202.0	00000
	0052 1	1,2500	0000		2 2500	2 2500	00000	0.0012	00012	00000		0 2022	0 2622	00000
	1 2500	1 2500	0 0000		22500	2 2500	0 0000	00017	-0 0012	0 0000		0 2875	0 2875	00000
	1 6250	1 6500	-0 0250		3 6875	3 6900	5200.0-	0 00 10	0 0004	-00113		0.36	03730	0.0056
	06:30	0 2000	0 0250		1 1875	8051	-0.0025	0.0006	00100	01100		01030	0 1965	0055
	20052	0097 1	00000		2 2500	22500	0 0000	01000	0 (00) 0	00000		0.2655	0 2655	00000
	00 17		N000 0		8		627m0 /1-			0000 C				
	05:00	0005 0	0.0250		11675	00511	0 0025	00000	5000 0	0 0100		01240	01799	0500 0-
	1 6040	3007.1	1,000 it		10441	1 046.1	C 100 D	2000	0.0058	1000		0.436.2	0.4140	0000
	1946				10/04	A FAMIL							0110	
			10000			2000 0			2000	1000 D				
2-Test Two-Sangle to Means				z-leat Two-Sanple for Means			z-Test Two-Sample for Means			at h o	-Sanpie la Mean			
	1 6040	1 ADX			104010	1 0461		1 note	A M TA			14000	0.6026	
Merce and		UK IL U				A DAMA				in the second		1110	01110	
Ócter, ahors	10,000	40.0000		Octor, abons	00000	00000	Obter, attors	36 0000	0000.46	Objert: Uhor		39 0000	3V 0000	
Hupphrested Mean Eifference	0 0000			H. poines: ed f. lean Eiflerence	0 0000		H, potreu;ed l.lean Eillerence	00000		K.Reflog, H	ed fileon Ditterence	0 0000		
	-0.0453				-0 0022		••	0129.0-				9:100		
z Untrodit vortali - 90%	1 6450			2 Critical factorial - 90%	1 6450		 Collected two-tools 90% 	051791		: Unhood ta	io tal - 90%	1 6450		
: Catron or e-ton - 95%	557			2 Chical are tail 95%	0,19		2 Ontrod wastell 95%	16450			etar 95%	05191		

FAIONAL

	0.0000	0,0000	0 0000	00000					0.000	00000	00000	00000	00000		00000	00000	000000	00000	00000	0,000	00000				0000	-1 6251	0 0000	00000		0.0000	0,0000	00000	0 0000	0 0000		0010	0.0660								
a	0 831	0460 1	0.6164	0 6015	0990		91AC 0	0.401	1912.0	0.3603	0 5369	10179	05180	01480	1.84	1 9260	1 5526	909:0	0 0510	0,7631	1 4066		7975	09011	0.4672	3 27.65	1 75:0	200 5	0467 F	2 3045	1 6276	15375	02.80 1	0 9638	2 5451	1356	117:0		10,000 2	1 356	117_0	40.000			
83	0.6317	1.0346	06164	0 6015			OFVC U	0.5010	0 7461	E08E 0	0.5369	1.0179	0915.0		1.187	1 9260	1 5526	0.7896	0 6516	0 7631	1 1069	700			0.4672	1 6514	1 75 %	3 6825	3 2330	2,3065	1 6276	1 5375	1 6628	96990	2 5451	13161	0.6272		+ arlobe	13161	0 6202	40.000	0.0000	C127 0-	1919
ğ	0000	0000	0000	0000	0000					0000	0000	0000	0000		0000	0000	0000	0000	0000	0000	0000	0000	000		0000	6251	0000	0000			0000	0000	0000	0000	0000	0400	0660	riest two-Sample to Mean		Mech		Croser utions	H., olnested Mean Ofference		
DAFFEREN	5	9	3	٤ د		33	20			5	0	70	8 7	1,2	12	8	29	29 20	916	5	9 9	3	22		12	۲ 53	29	83	88		20	2	128	2	23	2.9	5		2	.9	Ξ	8			
à ŝ	17 -0.83	103	190	15 	8		8 9 7 9 7		20 12		0.50	107- 6.	93 9 9 9		27	0 1 92	SS 1- 92	29	16 -0 65	1 -0.76	94 : 	2 		20		14 -327	5 <u>.</u> - 9	5 36	88	2 2 2	1 62	151 23	100	96 0 66	5 7 7 7 7 7 7 7	51 - 135	2 0 2		1 1 0100	51 -135	2 0 2	0007 00	8:	-	35
35	EB 0-	3	-061	9					72.0	98.9	-053	101	1150	6 2 7 7	9	-1.926	-1 55	-0.7BK	-0.65	0.76	ě.	2			4	-1 65	5	99	575		1 62	1 53	198 T-	8	1 ×	-131	0 62		10-014	1316	0 62	00 01	000	22.9	3 2
FIRMOR	0000 0	0 0000	00000	0 0000	0 0000					00000	0 0000	0 0000	0 0000		0 0000	0000.0	0 0000	0 0000	0 0000	0 0000	0 0000	0 0000		0.000	00000	66 7402	0 0000	0 0000			0 0000	0.0000	0.0000	0 0000	0.0000	-1 0085	111 3564	2-Test Two-Sample for Means		1. Hear	Mr.o.viv Geodole	Closer . other a	H. potresced Llean Eitlerance		Lenteria (Active) With
	9 5000	21 5000	9:5000	8 5000	9 5000	000512			0052 1	1 2500	8 5000	0 2500	8.500		9 5000	0 2500	00051	8 5000	1 2500	9 5000	0 2500	0.2500	0052.00	0002 R	12500	6 9902	1 2500	2 5600	000612		9 5000	0 5000	11 2500	4 2500	820	0246	_ HOF- 00		Cope 2	0248	_101-6	00000			
3 7	00058	15000	9,5000	8.5000	0.200	8				12500	9 5000	0.2500	8,5000		0005	0,2500	1 5000	8 5000	1 2500	9,5000	0 2200	02200			12500	0.2500	1 2500	0005	89		9 5000	0005 9	1 2500	1 2500		5 356.3	2 10:01		abel vo	5 3563	7 H .0.	0000	0.00.0	02260	257
ftENG	0 0000	0 0000	0.0000	0 0000	0.000	7 00000				00000	0 0000	0 0000	0 0000		00000	00000	2 00000	0 0000	0 0000	0 0000	00000	00000	0000		00000	4 7000	0 0000	00000			00000	. 0000 0	00000	0 0000	00000	0.1125	0 5523 9	z-Test Two-Sample to Means		1 month	PERSONAL ADDRAGE BE	úcser. ahors	H.p.stressed Lleon Eitherense		1991年1月1日(1991年)) 1991年 - 東京市区 - 東京市区 - 1
* 	2 5000	1 0000	2 5000	25000	2 5000	1000	, max		12500	905: E	2 5000	1 500	2 5000		2,5000	1,500	10000	2 5000	005:1	2 5000	9091	1200	n	2005	1 7500	0 4500	35-1	0000		1052	2 5000	2 5001	3 2500	905-1	000 7	1111	5 1501		2002	13113	2 1501	0.000			
9 ž	2 5000	10000	2 5000	2 5000	2 5000		00007		1050	005-1	2 5000	1,500	25000	89	2 5000	005:1	4 0000	5500	005.1	2 5000	1.500	8	2	2 5000	1,560	4.7500	200	00007		0057	25000	2 5000	3 2500	1.560	005.7	91930	1 2227		0. 1000	3 1938	1 222	00000	00000		12121
33																																						I- iest Iwo-Sample for Means	2	l.lear.	Frach . Charge	Coser.ahara	H, potrasued I. le in Cilitatinoe		r China anna 101 - Mari

CCUCAL

-
2
а
a
-
3
-

		2	đ	-	!		i	i					
	2 0938	005, 1	0 1436	0 3164	7 5000	1 264	0.4966	04315	0 0651		09631	0.0000	0 156
	2 7166	3 1500	0 4312	8 1055	12 5899	-1 1841	9634-0-	-0 6654	02116		0.6445	0 1475	101 0-
	2 5063	1 2000	-1 293"	5 ö6 8 0	24 1401	-14.4721	2026.0-	00735	0.6450		0 47 10	04735	
	2 0938	2 2000	-0 1062	1 9805	5 8600	-06-60	0.4250	0-40.0	0.0629		05306	0.566	10:0
	2 5000	2 5000	0 0000	9 7266	8 9100	0 8160	6810'R	0 1564	01781		11158	9.111	700007
	BCHE E	4 1500	-0 5062	15 602	20 9100	-5.2106	-14472	1 7936	0.3466		14472	96 0:	497 Q
	1 0938	000000000000000000000000000000000000000	-0 2062	1 6523	2 3100	-0.6577	1910-0-	0.14.0	0 1318		04602	0 5356	980 Q
	2 5938	2 5000	0.0038	1966	7 8600	0 1361	-2000	01360	0 0436		0 5052	0 5644	0 0 20
	5 tot	3 2500	0 1563	13 3164	12 3100	1.0064	01110	0.0965	-001#2		0 8645	0.6245	0.040
	BRAL (/ 1000	-0 6312	3 1680	10100	1.7420	0 5725	0.8196	-0.2460		0 5727	0.8196	9770
	0.5030	0,500	9660.0	0.4663	0 5000	-0011	66635	0.3472	04107		0410	2777 0	0.063
	3 2500	1 2000	0 0 0 0 0	13.0078	12 1100	6.60.0	0 2698	0 3683	20000		2 1032	2 0683	0.034
	2 01-5	2 8000	5.2.0	0090-01	12 2100	0052.0	9000	0.0360	0.0327		0.646	0.6167	0.000
	ELEO E	2 6000	Elet 0	0215.01	0002.8	2 6420	0.6600	0.5340	0.1240		11360	0.9750	0 162
	2,5000	2 5000	0.0000	0.10	9,5000	10100	0.2324	0.2100	100		NOV5 O	0100	0000
	1.00	1 3000	0 1063	3 0606	001616	-0.2205	0 0185	0.072	0.0542		0.202	0.2748	0 0 2 2
	1 3125	1 2500	0.0625	2 5703	2 4000	0.0803	01260	5711.0	0.0155		0.2704	0.25.14	N 10 0
	1 5936	1 5000	0.09.38	1001	3,7500	0.41	0 2196	0 2513	1800-		0.1208	0100.0	0.0181
	1 7188	2 1500	0.4312	3 3086	5 3100	2 0014	£00%* 0-	PER: 0	1642.0		0 6262	NE8. 0	-0.15
	21250	2 6000	0522 0-	5 4022	0.1100	8_1F C	16E2 0	1 0062	-0.2701		1967.0	1 0002	0.2.0-
	2,2188	2 0000	0.2188	1 2530	6 5400	0E1:0	01300	E5:00-	0 205.1		0 7523	ŭ 6802	0 012
	24.13	2 5000	-C 60 0-	15664	8 4400	-0.6~36	0.6984	1 3202	0 6216		2 2494	2 4523	201 0-
	ねがつ	1 2500	-0.2812	1756	22 7500	2F2E \$-	0 95:50	1 2037	1956 0		0.021	13762	1990 9
	ŝ	1 8000	05200	5 8359	5 2100	0 6259	0.0745	0.0428	1800		0.5980	05.43	0 023
	36.00 5	3 0000	0.0638	90. II	10 5000	1 2305	0 3215	0 2664	0 0551		21:97	18153	0 055
	2 3750	2 2000	01220	-070	0090	0 869 ⁻	-0.7326	0 5332	90610		1 3613	- 282	101 0
	2.6750	5 7506	0 1250	10 9453	10 0100	0 6353	0168	0 9324	0.0644		2 400	23-2	0
	5-14-0	3 0000	043.5	34:66	11 2500	2 2266	8 0 0	0.066	SFII 0		1 0603	0 9255	
	28125	3650	S-17.0-	9.19	10.4100	- 2 2303	1002	0 5235	20010		949 0	F95 0	
	2 4688	8	2112 0-	0 0000	8	2 0420	19:01	20.23	0.000		1650	2112	Ģ
	3 6563	3 6000	-0 143	145.42	16 2100	1 6358	0578	0 6015	0113		1080	201	100
	1 0000	1000	0050 0-	1.0850	0014 61	- 2 5 2 4 1	Ŷ. P	BB2 6 7	1001 0		1 1033	511	100
	1.50	2 (000	-01250	4 7422	S 2500	9.050	0 1568	0 52%	82.50		10146	10.01	0.003
	2 6250	00577	05-10	10 2266	0 0 0 0	1 6100	1606.0	0.3114	1900			2	
	0005	3-4040	0.000	200	0000 61			10	5108.0			0	
	2		AC/10			0 1641		1088 0-	0.16.30			5	
	5290 5	3 (000	0.06.5		909 	10001	9 - 1 - 0 - 0 - 0 - 0	0 0 0	0 0000		PA190	9709.0	00100
	06791						5 90 0	1100	09900			N/NS 0	
		225.0	8.000	6 6523	00179	0 2423	01210	0.2021	0.00		05655	225.0	0021
										-			
	7497	. 25600	40.76	8 5395	95103	90/30	0.0686	0 0359	2760.0		8:960	10124	7007
	0 6184	0E 0	0140	18 9599	31 6613	93742	0 3102	0.550	0.0824		1116 0	9826.0	00700
t. hro-Sample for Means	_		s-lest five-fample for Means			1-let Ivo-Sanple la Mean			2-leet	t Iwo-Sangle to Means			
	1 94000			1 01000 v	V Orobe 2		V CROCKE 1	1 onthe 2			1 of obs	Contro 2	
	7497	2 5600	t.Neor.	8 5305	9 5103	Litean	0 0686	0 0350	Lileon	Ē	9,96,0	10124	
9.00X0	0 6184	1.0	AFAND, CHERTER	18 9599	31 6613	hrown control	0 3102	5.650	WON	11 . GIONCO	0 3116	0.5230	
r. ahore	0000.01	10 2000	Observations	100000	0000 OF	Cleaser, ohuns	40 0000	9000 OF	OLAN	r. altora	40 000	0000 UF	
Frested Lison Cillerence	e 0000		Huppetresues Likeon Citterence	0 0000		H, p. Jtres, to 1. loon Eiliteene	0 000		H, POI	trested theon Eifference	00000		
	79070		•••	0.6630							2		
	1 1 160								•		VCAL P		

- 1	2	5	HERNOS				53	3 3 1	IN THE REAL	83	33	Diff.	104
	}												
	22 5000	20 00:00	2 5000		1625 0000 1600 0000	25 0000	26148	3 0488	-0 4340	-	14821 3	166	04240
	20 0625	25 0000	1 0625		21035156 2050 0000	53.5156	2 2034	3 366	1 5332	7	14336 3	36	0 69:12
	12 5000	10 0000	5 5000		412 5000 400 0000	12 5000	11456	1 5625	-0 4167	-	0.02	50X	04167
	005. EX	10 0000	905. E		116 7500 440 0000	16 7500	0/160	70_61	-0 6007	~	1 365 1	5.420	0 6098
	15 6250	12 5000	3 1250		644 5313 625 000	19 5313	1 6029	2 2085	-0 6056	2	8141 2	Zue:	0 4050
	28125	2,5000	0 3125		25.3906 25.0000	0 3906	0.6742	041210	0.000	0	0 96.90	P	0.0998
	0005 (1	10,000	2 5000		412 5000 400 0000	12 5000	10057	1407	800F 0-	-	108	5.05	0.3960
	U L	5,0000	95.0			52477	0.5553	0.00	M SE U		26.20	LOCA.	0.35.36
	05.2011	35 0000	05.8.9		2367 1875 2500 0000	132.8125	5 6534	000.1	99EL E:	=	1900	000	22151
	15.6750	10,500	31250		MMARA ELEVANA	10511	2 2015	MICE	0100		1160	ALM.	0 0218
	N N N		2018.0		200 200 200 200 200 200 200 200 200 200	10 5 4 4 K	1 1472	1 October	0.0013		7606	ý	0.0013
	A 2500	2000	1 2500			1 1 264	0 0666	ECTE	0 1462	• ~	4540		EAML O
	240526	15 5000	2007 V				1410	4274 (101				2101
	05/70	15,000	05095				1090	1024		• •	198	ĉ	12121
	A 2500	2000	0.50				10150	0.7306	50010-		0 (000)		0 1000
	25.11.25	22 5000	28125		A056 6406 2025 0000	31 6406	3.0510	4 5455	61 0 00		2300	557	0 00444
	25 0000	20 0001	5 0000		1450 0000 1400 0000	50 0000	2,2895	5012 E	0.9208		1111	2103	0 9206
	20 06 25	25 0000	4 0625		1416 0156 1450 0000	LAND EL	3 2703	5 2401	90,51	• • •	25.36	IEFC	500
	15 6250	12 500	3 1250		0000 529 5155 449	16591	0.460	25015	GE11-0-		2746 2	5015	HC1.0
	2_5000	20 000	- 5000		16~5 0000 1600 0000	5 0000	2 1025	3 7005	1 66.30		6 1021	900	1 6629
	14 0625	12 5000	1 5625		0000 526 625 0000	9 656	6 6918	6 2237	1 5310		0 7555 B	223	1 5318
	3-812	32 5000	5 31 25		2363 0710 2425 0000	Late lo	8 5254	17 3326	6.0072		- m,	3326	5 2014
	21.0750	1, 5000	05.01		1255 2013 1225 0000		5 3846	8,7500	-3 365a	2	8 7511-	25,	3054
	2: 5000	20 0000	0005		1675 0000 1600 0000	22 0000	3 7065	8 8 106	5 1021		9126 8	6100	5 1020
	12 5000	10 0000	2 5000		412 5000 402 0000	12 5000	1 4316	1 9646	0 5330	~	- 54	Vore	0 5331
	19 6875	0003-01	2.012		1244 1406 1225 0000	19 1406	5 9149	12:1:	1.55.1		2 60211	5	1.25.2
	3-13-5	2 5000	5_150		26 1719 25 0000	51-11	03140	0510	-0 1953	•	0, 2055 Ú	£103	61991 0
	167500	15 0000	005, 6		0000 005 0521 826	28 1 250	1001	9:00 9	-20162	•	1113. 6	00.º	20161
	96.20	5 0000	18,50		104 6175 100 000	5-89-1	1 2240	2,252	0 0200	ſ	1803 2	523	0 9282
	15 6250	12 5000	3 1250		644 5313 625 0000	16 5 3 1 3	16711	2 3063	0 6352	~	outs :	Jue.]	0 6351
	21 8750	0005	05_61		1263 2013 1225 0000	36 2813	105%	1.59	8:00	•	10531 c	35	1 9013
	24 06 25	1. 5000	6 50/5		1262421912550000	5124-25	2 9245	5 4818	2 7573	•	14362 5	ce le	2.1574
	20 6250	15 0000	5 6250		942 1675 900 0000	42 1815	1 5385	2 6502	-1117	-	1.2018 1	6502	1116
	000 <u>5</u> 21	10 0000	5000		112 5000 400 0000	12 5000	24404	14364	09000 0-	•	14324 3	4304	0 9960
	10 31 25	8	28125		235 5469 225 0000	10 5-469	0507	2 5685	10:45	•	2 0219	5065	10.35
	15 6250	12 5000	31250		644 5313 625 0000	19 5313	26969	3 8226		•	6 90561	852¢	792 I I
	11.9514	14.3"50	15704		915 1259 667 9167	17 2042	2 5063	1001	14384	5	26.1	, mai	6292 1
	82 8150	53 0625	3 5293		********	2622 1361	9 <i>:2</i> 9 E	10 9666	2 0008	01	01 9.00	-086	14364
in the family of the family of the family			•	the functional for Manual		and the forest the first of			t of all models and the first				
		2 - 1100	-		Contract I address						1	Ĭ	
(tech	1.0514	11.750	1~	unet .	015 1250 B0" 61A"	Litera .	1995 (1001			F 1.90	10	
MADAR . CHARGE	82.8150	50.0675	•	restants activities		Meason common	3 6276	10 9888	Michael Charles	9	01.01.01.0	CRAP	
Ocser. allons	36 0000	36 0000	0	deter altars	34,0000 34,0000		36 0000	36 0000	Obser, aliving		0000 36	200	
H, potrested Liban Editerance	0,0000		-	4, polinested Maan Citiarence	0000	H. P. Sinsking theory fullerers.	0.000		The number of the sector of the	eerke 0	0000		
••	1 8015		••		0 1051		2.25			-	3040		
2 Critical 14 2 101 - 505	1 6450		••	integration tool w0%	1.50	Contractor 40%	9513-		2 Calical task tail VOL	-	3,19		
: Onliced we tell 95%	1 6450			Throat or a har VSA	051-91	2 (î nhejal ares tali - 95%	1 6450		2 Calical one-tail 95%	-	(X100		

OUT

.

F-5

AR FORCE DATA

83		HIMNC		- 3 #	HERINCE		22	* * #	ENENCE
100001	00.00	0.4641	368 4063	311500	E62 71		14.2.35	££03.52	-2 6814
20116	05.17	0.5548	11 1000	A 8.75	2115 6	-	111 0.05	60 00 C	67 2620
1 1000	20% I	10400	3 5 100	- Ser	0.010		0 0000	1114	5111 0
1440	0.520	0.0101	12070	0.10	0.0266		0,000	0,000	0,000
11.12	00000	18-52	135 3854	0509	146104		204252	-5 5941	14 8311
0 6550	000, 0	-0 0 4 01	0.5735	0 6650	-0.0015		31 4236	22 5000	8 9236
0-19-1	95 13	22 1560	6230 4436	*******	-4155 2837		36.3704	505141	11 1437
1 3051	2 6240	-0.0552	4.46.5	5.º. F	0 3000		69 798)	2000 7	4 2119
2 1466	95 21	0.2746	5 2009	6 3425 50 1050	0.4416		- 03 00.76	0005 671	35.6924
97-0 C	0001	0750 1 07 1 10 0 1	16083	05:17	1.72		1970 7	719_51-	NAME OF
1110	00011	61600	2 1611	20-50	01161		23 0316	25 0000	1906
11375	1 3500	-0 2125	2 öl 88	3 6300	04112		9506 9.	-67 1250	90/18-6-
1 1960	12,50	-0.0761	2 3669	27525	-0 3856		32 0649	42 5000	104151
1950	3 5500	100	145448	15 6750	11302		201 0468	20, 5000	6.4532
19156	5 0250	-0 1044 0 1440	25 93.0	\$295.2	-1 6255		-3 6856 2111	-2916	1096.0-
2002	35 S J	SOULD.	CC/15-4	199-119F	1995. EZ		05157	5105.4	59981
1.91	951	0.046	5410	5 9625	1 5785	-	133 8676 -1	1160714	-17 7962
12150	0051-0	0.0794	0.4682	0306.0	0 1632		0000 09	70 0000	-10.0000
1652 :	18 ⁻ 50	61 5E O-	66 0.72	9625	-11 6633		56 072	·61 1223	5 0496
1 201	05_20	0 9324	87.7	0 0025	E20E 1		0000	0000	00000
21221	(G.21	0.0538	570.1	200.5	0.2430		50.7246	50 1667	6 4421
1 3001 L		2170 O-	7 1817		6160 D		- 31 4312	-20 0111	1075.0
	0.575.0	10070	CHANG O	5211 0	0204-0		ALC: LA		APD CT
	10500	0.0068	2 2504	0066.5	9610 Q		- 197 Y	10000	1, 163
55 4893	05.005	15 405°	3694 6296	9183.428	100-895-5-		-26300	10 3956	2,7656
2,7000	2 5500	0 1505	8 7963	0544	1 3533		-82-4812	-14.3750	-8 1062
19 5242	18 5 20	2010 0	465 9026	5:0E BHF	1: 5051		- 1 3232	75.8736	4.5506
0 6355	3	-0 1395 	0 6259	10125	-0 3820		0 8466	5 5580	6 4046
1058 1	5 3250	(#1.FO	37 5923	52 II 84	10 5202		13.4073	15 01 23	05091
	R 2 X	× 00	1061 5	C2002	1 4054		VC005 VC		
1 2612	18.50	0.6138	2.01.2	5175	80.9 6-			8028	105.1
91-00-91	20.55.02	15551	422 2110	66 250	245 5140		-33 6740	45 1612	11.4872
1 659 1	18,20	-0.0157	5.8736	5 85.AS	11200		03 8230	-94 7222	0 8992
1 2892	0.561	-U lóGe	5.128	5 8850	-0.3672		-21 0441	196: 22	1 6920
101 91	20 6250	-14546	52 0.03	505 60 5	158 5282		15 1866	20 : 022	55156
6147- 61	0625011	4 10V5 0.0758	1151	5205.11	CINE 0		0.10 X	0512.0	ACRA A
10476	N. 50	80.00	14292	1111	5000 O		900018	95 0000	3 9914
2 1402	20,50	0 0652	10 3728	5261 01	0 2403		60.9574	5: 85:1	3 1003
191.2	5 :250	\$300 D-	35.4332	3.94° BC	EPEO E-		106 2372 -1	1119511	95-16-8
27 2628	27 5500	2.920	8195 549 B	1345 1099	-449 5281		17.1-60	24942	11 4582
920X 1	1000	SOL: 0		01001					9211 C
SONOE	2 6500	0 0405	5169 61	059_ 11	0 1665		27 063	25 6023	1 3914
0.4038	6.400.	0.0038	SFIE 0	051E 0	-0 ()005		46 9332	26 0000	9990 E
1010	e 1-50	-3 2552	313516	83 9825	50 e 309		24 6081	11 20-4	16 6993
21-0	2 1000	0.0.0	09-99 2 4 4 1 4	06AZ 5	0 2836		1920.96	52 5556	97.7°E
26 8030	02520	017.51	13713 2666	******	101912			onon cry	10,2210
3.168	2 8500	(r 5058	0.1911	10 1650	14520		31 9894	26 2500	5 104
0.8316	0.570	1911.0	0.61.44	1 0550	0.2406		42.8651	1, 5000	46349
1 2465	1 2000	0 0455	2 382	2 3250	0.05-7		26 21 33	39.3~50	11 1617
1678	64-50	1415-	6505 501	5-14-5-	25 4484		333-0	77.00	0.216
1_19E	35-56	0 2421	1 6359	1e 9575	06784		ANZ : 59	56 55 7	77, 1 81
25122	2 55/0	003-8	1945	8	94921		(90) 7	10 8333	12 9414
1 1535 1 2017 0	06. F (-0.2802 Arete	0006 F	2.35.2	-0.8915 14.494.4		11 2430	0000	25.15.0
183	1 760	2010	1919	an a	1252 U		01. 8 14	1961	0.82 o
54 av. 12	10 12 Fo	15191	1240 MEZT	1.1.1.161	272 5693		59365	6 2016	0 2044
	1651.5	(Tal 1	1326 12	16-45-51	1061 11-			115.000	11111

FERINCE		10.00			070 1	00774.0	17 4051	192.01	ALC: N	1 0.01	A LAN	01,64.6-	0.4061	0 6586	1 944	14713	16 1260	-10 COOO	9906 17	00000	8.442	10007-		12230	4 0440	9 2054	2 1908	1 0840	2.019	1211		11 4626	2 5650	1 6920	5 5229	3 2035	1000	5 1003	-1 7786	EDITY E:	109: 95	10630	9000E	-16 6893	34725	1.0F II	181	5 7344	APC0 -	3 1052	1.96.01	0 6021	J. S. S.	0 2880	15 VS 0.000	00.001
2	20.204		10.6004			nne 77				www.x	UX 1 38	0005.77	100,000	6693 68	\$6 9375	E 08: 1	125 9286	70 0000	-C 252-	00000	201 65	A000 C 1	0005 01	0005 94	10 3956	120 6250	75.8138	1.94-9	9, 15 ¢E	005 BP	7700.00	1155.051	60 3060	196. 22	PL69 22	9 2072	2000	1.58.5	124 0555	32 6600	0000 017		0000 05	41 1074	52 5556	205 0000	н 22 г.	0052 02		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		65E8 (K	10000	24017	6 19 1 1 2 3 1	(0,0 , it
3	1007712	150 6760				0628 IC	115.00	20174	SAMPLE I	Alfore	21.00 M	25.00 CU	1900 120	80 7245	106 8622	9 2606	142.0546	60:000	99 5 90	00000	97.93	CACO I V		40.730	056.9	129 8304	78.0646	5 3822	36 5250	59 8859		CITY C	93 8230	170 IZ	174115	12500	0.540	60.0574	122 2769	28 91 92	196: 961	000713	46 0332	24 6081	\$4 0.281	216.40	13 669	199916	1008 24	005501	FE70 70	1354.06	2017	27.2	50 TA	2346.51

¢	, á	9	ŝ	Ŕ		- 4	• •	· 0·	•		7	-	• :	<u>e</u> .	ņγ	3	7	3 4	<u>ጉ</u> ድ	: =	Ŷ	-	₽ :		9	-	7	φ	4 5	~	~	? '	ŅC	, vi	1	÷,	2 4	ù ú	-	• •	90	Ģ	2	so (, r	* <u>2</u>	~	7	0	N 0	• =		Ξ.		n eo	-
00000	0033	2° 5000	45.0780	50 0504	6 8333 1 1 1 2	2515 515	154 666	31.145	10 4446	nn	67 5555	669: 15	22 0678	0.100	25 0524	126 066	005, 651	38 0614	20 - 20 21 - 21 - 20	60 1314	68 0952	36 4464	101 3333	40 000 A1 6667	2000 10	9639 PZ	204530	11 5450	7763 15	23 9002	6 5014	62 2443	6 6 6 7 7	41 5598	40 0000	5, 5000	-71-51 AT A 100	50000 AS	20 3505	11 8 50	VPCC 8	141 044	5' 68'5	7 00 T	23 8335 31 AG ⁻ 5	9.9109	21.321	\$0.6000	119 6980		60.000	1011.48	100		2 2	e 1 (Nev
900 - 90 90	1000 P	27 2645	20 5367	34 7655	75 3045	202/00/	15443	37 55:7	22 Bu57	6577 7A	62.9160	56 6276	22 7173	62 1/94 12 231	78.3271	0000 951	152.1782	23.069	4810 000	21 55-55	74 6648	35 2232	121 6409	2020 /01	HC 18 PS	26 7628	15 9461	8906 01	2009 05	26 4605	8815	123.230	01 3148	53 31 25	32 6684	44 41 85 55 10 10 10 10 10 10 10 10 10 10 10 10 10		00.0417	27.8696	42 1205	0000	140 7726	01 7-32	16 1360	061616	10 6201	24.3401	65 3600	110 000	10 01 01 0 00 01 01	718_111	631150	288 23.45	1906 12	20 84c1	1771 AS
	V 146V	5 8136	-4 9229	25 1939	-6 2063	6150 J	0 2234	6 0353	-9579	1004-01-	46791	-3 67 88	3.6702	9696 cl -	2010 cr	30 1722	14174	16 5531		-12 4281	-B 2059	12 5982	-18 6631 	CECT 10:	0 1472	-0.6795	7 6940	0 3566	-16 7147 13 4661	-6 1212	4 6917	-53 3011	-3 4224 0 6673	10 7761	-7 5110	3199 FC	1015	26 7017	-18.7524	2671.0-	0,000	2.792	910617	84714	- CCV	-21 2051	4 5821	4 6400	7 5354	4 8555 F	37 :426	145756	3262 EI	4285.01 9200	8 8015	2 2108
	17 000	15 0000	25 2923	P050-05	42 8333	48.48.48	.999 J	13 0649	81753 81753	N062 04-	901509	1981-02	22 0678	20955 AZ	-V 4102	26 6667	EEEE EM	1908	252V C2-	19 8686	40 2381	-12 1964	96 6667	-20 000- A1 6667	1111	-6 7522	20.4530	-7 47 28	12 5845	21 0430	5 5337	-35.255°	2/021	35.4765	40 0000	-57 5000	C2007 -	0005 00	20 3005	368750	0,000	IQ4 3553	-25 3125	7 3 3 7 3 3	70 28 CCO	1 5850	3 801	0000 05	10. 7. 8 10. 7. 8	10.5 20	00000	46 ° 637	15 U000	10 20 10 20	38 69 7	Ze 2500
	- 0999 P	9 1864	- 2152 -	- 5597 HE-	49 0416	1 - SEEA AL	1- EEH+ PSI	-21 1002	-1 4026	0003.0	- 9089 55-	91-61-66-	18.30.6	- 92FI SP-	000 000 000	1- 0968-951-	- 141 9159 -1	19 5083	- 0450 02-	-32 2067	48 4440	0.4018	- 115 3208 -	- 707A /01-	1981 0	14317	12 7590	-7 6140	41302	14 9218	0.5420	-98 6528	(1899 L-	46 2526	32 4890	-22 8463	2 6110	E802 22-	109901	36.7018	0,0000	-101 5626 -1	-67 2141	-45 1360	21.710	1029 61	1049 0-	85 3600	1 P2P2 001	5077 F7	10.7426	-55 3395	288 2325		27.8964	2010 PZ-
				•	~ ·				-0	0 ^		•	-	_	0 5	,	a		- 0		•			a ~	4 1 .			1.	- ,		•	-	~ •		7	æ .			2		- 0		•	-		2 -11		7	~	- 4	0 77	•	æ.			2
		5:01 0	26.2740	1306 56	2.02	0.9080	0.064	20 586.	2 3574	20011	044	1 9735	2 964	197.6	1 120 E	0.274	0 6369	0110 10	A60 F	154081	2.6: 0	15 0620	00.30	0110	0000	248 5940	2031 938	306 241	28,982	10201	500 19	3 936	1908	22.247	0 005	98 + 8 0-	CON CI	80	26 531	1.10	191 834	4 432	1133	-1 523. 10 51 -2	1264 01-	020 9	0 328(0 100	00000		130	987.0	1150	3	10.340	0.0144
	6 FC 0	3.54.5	111 3900	1956 41 26	124175	0C0A 0	7950	89 8100	11 03 15	00242	40,4650	26 7 300	32 6950	1.025	030815	2.2150	218182	285 9675	57FA 91	60 125 60 125	5.1950	28 \$200	95017		3 2525	1862 1953	600 0449	9314-1661	110 1025	05H96	1200 8402	1050	11 3250	85 55 75	05:10	27250	0021 9	16 2900	100 0025	10 5200	9292.0	10.1-00	4 9350	28 4950	2000	09H7	3-4425	1 8325	3 3500	074571	2 - 7 - 7 - 7 - 7	18:0-5	0598.5	10100 F	0563.65	1901 \$
	11/000	3 6554	13" 6640	1 1448 GPQ	14 6250	900 H	9007 L	115 3983	13051	34126	42.0158	28 7039	35 6594	109 1636		5484-2	28 8244	101 0505	FEUM CI	76.2106	5 9926	0290 11	1 8080	1.13-1	3 2428	2130 7803	2868 1062 4	2035 2039 1	BI 1131	1999 01	1 105 9343	18 0414	991F 4	100 B101	0.8:02	1 8762	LACC PA	8 5820	512FE:	1100 (1	1 2000 E 1 2 1 E A 25 E	200 11	6 0689	-196 0Z	26 1380	959F 8	30.1105	1 8661	3 0498	11 1455 65 0 16 6	50000	15 1964	8570 II	5. M. 18	22 1444	Q 1240
	0.0540	50205	007-0	16 6024	ŭ 2781 A 1760	90010	00133	1 2045	0.64_ 0	0 2235	0.051	F1210	0 1594	2 2163	77 00 00-02	0 1044	0 1123	5 1750	19671.0-	0.020	0 1672	0 4438	0 0390	0.0654	-0010-	2 8013	14 0068	2 5432	0.0993	1.10	6 H ⁻ 2	0.4506	0.2440	0 1728	-0.0032	0.2134	6276 OF	-0.6312	08157	50134	10/201	0.0594	0 305	0.8252	7445 O	1 1001	0.3075	÷0145	0.0023	12210	1020	0.0431	0 1358	1100	1 2004	0.0389

.

.

•

Hereits and the second se

																											·																															
06,20 76,20	1 2250	3 91 - 1	415250	91250	1 8000	35,50	2500	8 5500	28250	0031	0.6500	25500		05417	1 3000	1.4500	1 9250	15 6250	3-250	13250	3	2 200	05.90	1 8500	05/61	39 5000	62 5500	47 1000	8 6250	23 1000	25500	1.500		15 3250	9.4750	0.8000	0001	0200	1 8500	0021	2,5600	2_4000	3 0250	89.7	1.1	4 6000	3 6750	1,2000	6 27 80	3 2	000 1	1 200	15,20	18	3 P.00	5350	1.225	100
0.250	1 1055	00:19	24 7226	1504-6	1 9259	3 6758	2 2633	3 8445	36180	1:235	9.1328	1095	17	244	1 2912	15544	5 0373	10.4500	3 5992	6533	0789	7 96 7	1991	56721	3446	42 3013	18 5412	44 55öB	8 525	17 1351	2.22	7 4 0	2650	15 2913	8 44 8	89610	1 1866	100	BZ09 (60 C	25134	2_4_61	81:01	1,504	6007	4 0506	3 2490	2 3091	5 6224	10911	3	2 53%	18756	3.315	32368	5 2025	10 F	2016.2

	10110	56127	1.3672	-7.4693	-2.0116	071001	20110	36 2033	9:7856	-5 3562	0,6360	94121		12,4255	9901 17	6 8 213	-2 5800	1120.01	55 3033	4 1686	-0.2009	75119	2.4815	0616	2020	1004	10714	-4 1892	04108	65134	21 61 78		3 3627	1 107	21 1105	8	0420	1 1376	3 6286	-1 2315	6 2060	3 9474	15.0008		2.0066	26 3194	22 34 21	2005 5	10.02 01	6 1606	-3 6026	12415	11.320	500 5 1902 (L)	20 452	1.3631
20.001	1072 EV	02 916	46.767.34	EFFE E.	1/22 81		755.00	115 9762	2000005	63 0000 19 0000	6000 G		1262.521	76 9235	1519 02	0615 BZ	57 3820	20 0000 DZ	2968	20 0000	16 8-44 5	23 3333	58 8689	51 3333			00000	0000 OF	24 3333	10 PO48	65 0000	10 606V	22 5662	-5 0000	221100	25 5341	89 420V	60 162	25 4518	14.87.62	005.99	40.6430	0000 06	8 4706	15151	100 2381	2.0. 2	40 5 9 0 6	B 01 02	33 500	51 656	644	59 1333 1445	137.5000	1819.52	
996 H	SET 16	77 3040	46.4001	05 8640	16 2655	F/0/ /5	42 / 35 V	152 2695	58 7855	57 6438		1201 05	0550 V2	B9 3490	22,8105	37.3352	2000 15		126 5001	24 1686	16 6436	30.8452	61 3704	52 5146		NACC IN	41 07 14	35 8108	24/141	53 4182	63.3622		25 9289	2.01 92	54 0005	24.7563	21 0563	61 3005	20 0804	10	75 0460	44 7004	74 9992	61 1663	3F59 0F	126 55 75	52 1307	43.0726	200 10 10	30.9106	1790 87	18 303	10120	201 2016	45 3654	31.352
	•	•																																																						
_				_				_	_		-				_		_									-			_	_	-				_				_				-	_								_				
	ATA T	0.020	6.8.740	-7.4693	-2.153	1991 ¢	1991 65	43 9434	-27 2360	-5 3562	00100	13.548/	32.870	-13.406	-23 6556	-0.6134	-2.5600	10.021	2007 19	44 1666	1921 7.	-65132	2.461	1 2666	-10353	WOY U	1.01	4 1892	-0.2964	- 984	-21.617	2011/2011	3362	1 1077	29 457	8	2017 N 102	-1.1376	198 2 6-	10 4466	1902.9-	3 9474	-15 000	262.92	-24064	37.2715	-22 425		2693 01	6 1606	001	095 7	21.25	907 (1	12Eù -E	15.12
28 003	AHOC :	62 0633	33 0105	73 3333	87878	0092.00	0000 5	105 6905	00000	63 0000	000 69	-1 2500	02 2670	47 0081	269151	1967.01-	57.3820	10 4740	52 4632	20 0000	10E0 9	5666 f	58.6689		2000007		00000	0000 0*	12 3333	14 7619	85 0000	10.000	22 5662	0000 \$?	26115	20 7159	-91 0 L9	60 162	6 35-48	14 8762	005:69	40 6430	0000 06	87 4206	5151 64	53 0952	0186 02-	46 5806	8 U C	33.500	46 3333	20 6324	8 3333 81 34	000;7ft	45 (1338	8 1250 12 016 ⁻
9 7 7 7	2001 01-	52 1529	-26 1365	65 8640	6 6336	1000	INCA 77-	149 6339	-27 2360	57 6438		-14./98/ 30.0464	8/15 6478	-60.4163	3 2592	-19 3497	54 8020		116 8639	24 1686	-0.2200	31700	61 3704	211.92		DECK PI-	11 0714	35.8108	-12 6297	21 .463	63 3822	101 007	25 9289	29192	45 6612	-21 7208	26/1 V0	6005 19	-16 1432	14296	-75 0460	100.11	74.9992	001 1003	10 6549	-90 3667	51 8067	12 26	8700 47	3010.05	-39 2922	15 5233	30.0006	201 2016	100 8	5 9482 25 0859
5.04 EF-	0 2003	0.900	4 6366	01169	10.4990	con : 0	DACA SD	31116	0 1024	20110	0.2393	8796 0	0.2568	35.8945	-5 9413	14619	-11.8076	1470:D	28 5865	00556	94396	0.8306	0.0882	0.660	E/90 0	V1110	-00330	0 0032	0.3396	91018	0.9490	C10C 00+-	10 6618	0 0 391	101-6	00200-	01 24 30	8 6362	66 4221	211 3036	8310	16 2092	00100	2112 2110	2216.6-	169:0	16 0654	0 2432	N007 0	6 3300	ò ch) 0	10 8512	0.4065		5 3369	77.70 1980
86 3300	0101	1 5825	0516 161	1 8425	142.7675	4 0025	521F0	101	1.000	19125	0448 5	0619.6	43 2250	112 1:00	13 1550	37475	140.7525	C 17 7	22.025	0.6300	50.1550	2.4500	1 8450	2 2300	0.0000	C7C0-77	10150	0.3100	6 9650	4 7 25	1.475	5/00/00/0	421.8950	0.3675	2	6 2300 46 4776	00000	201 98 75	411:0051	612 1400	5:11-2	89 1825	0.21.5	40.0.25	0511.05	6 6550	0519 :	24 3350	3CF1 CF	2 9300	5.1.0	32.66.5	2 2500	051-0	189 1425	2.625 5.1975
5224.24	9000 C	1 4055	130.2.64	1 7236	102 2685	000-1	20107 41-7	1050 :	1 1024	5.0322	3015	0.0344	52 4818	1-8 0645	75137	5 2094	128 9449	00107	51 2850	05744	1912 01-	3 2806	1 9332	9095	67E: 0	ACR81	0.9820	0 3132	3046	5 2673	11285	1.182.0	1 995 2298 1	0.4066	196	0012 9	1 2530	210 623	4-:42-2	334 8364	ELIE I	105 3017	0 2284	31 8283	33 8028	1424)	23 9104	24 5782		3 2600	01:90	691-1 27	18434 1	17 NOLL	183 8026	1 8408
a :	* 7	. 2	5	3	1	3.6		. 3	-8	<u>e</u> ×	8 ¥	s :		8	8	0	9:	8 9		5	83	2	8	8 8	83	2 3	. 53	5	z	3	83	3 #		5	8	8.3	383	8	80	2 2	3 -	2	8		: 8	3	I. 1	8 3	5 3	5 2	8	÷.	8 3	* *	1 :	5'0
~ ~		100	120	F1 0	A : 			970	000	\$0 0 0 0 0	8		990	2	0.65	0.43	3.5		222	00	97 O	024	80	88			00	000	50	10	900			0 03	65	800	900 7	0.25	0 03	5. 9 7	20	800	5		21.0	018	1: -	8 9		00	000	90	90 Q	25	.80	00 000
0055.0	00011	11250	10 8000	09-50	10 7250	06-91	05250	16.50	1 0000	1 5250	89	2 3500	0000 5	11 3500	3 0500	1726	11 5750	06.21	05:51	0 6500	6 3000	1 3500	1150	0911	0.500	3.9	00001	0 5500	2 5500	1 7250	06.50	05/00	33 3500	05:50	21.50	00691	0003.0	13 4250	16 8000	20 8000	0 9250	6 6250	0 3250	00.00	2,000	2 3000	2 3500	4 3000	05.29.3	1 5500	0 250	16251	1 2500	30505	062571	1227) 1227)
0.64.0		1112	11 0197	11152	096.0	1924	27FA FI	21302	1000	691		2.000	0000	12 6049	2,4000	2 1560	9060 11	01101	6 8031	06349	60132	1 592	11568	0,90	N9C 0	APART 1	0 983	0 5465	2 5004	1 8008	1 0358	ENOL 1	34 8482	0 6122	15051	1 8672	- 907- C	13 6849	16 8289	1906	1026	7 6142	0.4389	2562 6	5 3495	2 4860	4 1277	3 6305	1001	170	05210	3 8805	1032	11-7	11 6273	1.555

F-8

1 1507	4.6319	3 6568	6 0315	00000	1 9242	2 0231	-9 2300	8 1206	5 1460	4.4699	0/1300	-37226	14051	3 1640	2 6358	30 1243	-5 5165	15641	-3 2026	2010		CAC7 0		0010 0-		2105 21	23118	0/11/91	3.48.46	12 2187	2 2047	0669 0	31/08	ACC 7		24.44	:0;01	7 0229	1511 6-	-50 6086	0956 0	17 986									
135673	22 3519	36 8512	10 0000	10 0000	107, 51	15 (1660	1967 12	37 3976	39 5000	30.6250	385714	55 8333	72 8571	52 5000	150417	36 666	20 8650	3° \$000	0011	00 8303			112 7403	240. 261	120502	185,2500	95 0000	EEEE 59	1201-55	27 5417	0000	36 16	60. T	7500.57	5 1 B	1204 001	34 0685	200 000	36 6667	160.416	01 0411	*****		2 400-0-1	61 CHI 1	******	245 000				
010.11	27 1838	40,5080	16 0315	10 0000	73 8165	17 1091	62 0001	29.2770	44 6460	35.0946	37 6315	52 1105	6 0 2622	55 6640	176775	66 7910	58/F 51	1990.62	14 4574	64 4330	00000		124 4607			152 6580	67 3116	621112	30.00.75	109/: 06	100	35 2687	F006 11		7670 C	151 DAMA	36130	63 0896	27 5476	1909-901	1-06 19			V onotine /	1_06 19		245 0000	0,000 0	10.10	1 6450	:
																																											t-fest two-Sample for Means		klean	NIOAN LONDICE	Obser. chors	H,pothested (Nean Difletence	••	z Chical two-tail 90% 2 Chical one-tail 95%	
F801- 2 -	7 0122	36710	6.0315	00000	1 6851	-5.6250	17 5526	·8 1206	-13.3692	17.1266	0.3228	37226	-7.4683	3 1640	3.3505	E8/0:0F-	-5 5165	-15.8868	-3 2626	26.4063	00000	7190.0-		1244 CI	PCDC 10-	2105 28	23116	- No 7454	-3.4846	16 2902	2 2947	0669.0		NICA 71-	1176-6-	7744 66.	58155	24 5122	618363	50.6086	5100 E-	21 2979									
5 69:72	14 4947	-32 2860	10 0000	10 0000	-65.3704	12 6902	-69 0952	37 3976	11667	-15 6250	-11.4286	55 8333	47 1429	52.5000	1.2917	0.3333	20 8050	7 5000	001/2/21	00 8303	0000		0/00 0	132 / 0V3	FFILL	-185 2500	0000 56	-26 0000	33 4921	8.2063	0000 00	36 16	0810.0	2018 (1	2777 B	1204 861-	5 0685	36 000	36 666	160 4167	-23 3070	******		voidte 2	-23 3070	*******	245 0000				
9501 8-	-21.5069	-35 9570	16 0315	10 0000	-63 6853	7 0652	51 5426	29.2770	12 2225	-32 7516	11:514	52 1105	54 6112	55.6649	-2.0588	48.4116	15,3785	-6.3648	14 4574	64.4330	00000	10001	1022 711	2010-011-	0000 5	152 6589	9116 79	H222 H	30 0075	6190.8	1.053	35 2687	1508.8	7700 5	1008 1	153.054	0.110	12 1545	25 1696	1008 601-	26.3983	*******		V ONDRO 1	26.3083	******	245 0000	00000	-0-4662	05179 1	
3.4270	2 2592	30 4502	-0.0509	0 0396	0 8462	25 1196	-2 3516	48.4572	-0.3577	8.0072	-0 2687	0 5003	03164	0 7269	0.3587	0 6811	1202 B-	0.3015	23.3003	10 6563	0.4013		-2010		2 10 2	5 400 J	0.0424	0.6768	-3.5141	5 7207	-0 0030	-7 2639	15 6601		1350		-17206	0 1686	-3 6842	19.450 ⁻	65 9435	69 342.	t-fest Two-Sample to Means		Lieon	From anarce	Ocser. alwrs	H, potressed f. fean Difference	**	z Critical (A. o tal - 90%) z Critical orio-tal - 95%	
8.4675	5.0150	15 58:56	06150	0 5300	0.8125	50124	7,8950	4 1050	8 1025	1 8575	41175	1 0425	4 4050	3 6025	0.5650	0.5300	0.6475	30725	F 62P618	1650 ·	8011	0.210	1 2.00 2				00101	3 9225	2 1150	5 6325	0.2000	08150	0 0050	06.70	7. NOVE101		500.5	09.171	é 3325	5- 2450	12 6951	-		victore 2	12 6951	*****	15 0000				
21.8951	17 2742	1016 0378 0	0 5551	0.4902	21 6587	509 8928 5	55434	165.6478 2	Bit 2	19.9547	3 6466	1.5518	47214	4 3294	0 9237	12111	12 2554	3 3740	805 6470 13	34 5087	15113	cct+7 0		10 BOVE 18C	407 -0	1 21/2 20	1 0524	4 5993	6009 8	2635.66	0/61 0	112 5511	62 (PT)	ARG E11	1.000031	10415	0.90	1 6386	2 6483	EP02 21	246 7516 3	** ******		ov ladore.	246 516 3		245 0000 245	00000	0 5813	1 6450	
0.3146	0 ~ 166	E 656 7	00162	00342	00.6	1 6532	-01103	-2 6351	0 0298	-0 000 C	-0.0402	0.200	62210	0 1599	0.0004	0.4006	-1 1477	-0.1523	-6.3590	-1 3518	0.1727	A7700-	-01/10	2 20 45	6077 7 6079 0	10195.	00025	0 1907	-0.3743	1 1 1 6 3	0.0076	-0.2446	1 3334	-715.0-	751B 0-	1011	6000 U-	0110	0.7126	-1 6140	56 <u>1</u> †0-	4 E005 E	rlet ivo-Sancie la Means		t,lear.	Krown, chance	Obser of the	H. potresced Lison Littererice	••	z Chikad two tai - 908. z Chikad vrestal - 958.	
3 9250	3 0000	24,750	000, 0	0 4500	10250	18 0250	2 3000	000.: 61	2 2750	31750	05:171	0.9250	1 6000	05-19	000:0	0 6000	12750	1.6250	33 7250	9 4000	1.0500		00047	01.0 77		005-11	0.7500	1 7250	3 0500	4 2750	03000	0 2 20	1 5500	000	00011	1.1	30.50	1000	2 1250	5 7500	5 3639	198 2214		10100e2	7 3639	198 2214	245 0000				
1 2396	3-166	27 7243	0.6611	0 6156	101 F	19 6:82	2 1697	11.0649	2 3048	3 0945	9777-1	1.0220	87 T	2 0349	100.0	1 0006	3 1273	14727	27 3660	5 0482	1 222			SHC0 77	54-0 B	01101	0.575	1 915	26:55	5 3913	9:00:0	10.0	9 8634	0.00	04101		15:00	12101	1 4124	11360	6 8044	141 5291		1 anotes	6 8644	141 5261	245 0000	e 0.000	0.4672	04490	
																																									Mean	Valiance	riest ivo-Sampte la Means		t.lean	Known variance	Obser. abons	H.potheuted Mean Differency		2 Critical face tate - 90% 2 Critical orde tail - 75%	

.

7

F-9

Appendix G: Aircraft Availability Results

.

TREND - % AVAILABLE AIRCRAFT	r	
	RDB	SDF
QUARTER 1	74.30%	75.08%
QUARTER 2	74.27%	74.98%
QUARTER 3	74.10%	74.95%
QUARTER 4	74.12%	74.90%
t-Test: Paired Two-Sample for #	leans	
	Variable 1	Variable 2
Mean	0.7420	0.7498
Variance	1.05E-06	5.86E-07
Observations	4.0000	4.0000
Pearson Correlation	0.8216	
Pooled Variance	0.0000	
Hypothesized Mean Difference	0.0000)
df	3.0000	
t	-26.6226	
t Critical two-tail -90%	3.1824	
t Critical one-tail - 95%	3.1824	

SEASONAL - % AVAILABLE AIRC	RAFT	
	RDB	SDF
	78.93%	80.93%
QUARTER 2	78.71%	79.13%
QUARTER 3	78.92%	78.97%
QUARTER 4	78.90%	80.31%
t-Test- Baked Two-Samole for b	leans	
	Variable 1	Variable 2
Mean	0.7887	0.7983
Variance	1.05E-06	8.84E-05
Observations	4.0000	4.0000
Pearson Correlation	0.5339	
Pooled Variance	0.0000	
Hypothesized Mean Difference	0.0000	
df	3.0000	
t	-2.1723	
t Critical two-tail -90%	3.1824	
t Critical one-tail - 95%	3.1824	

CYCLICAL - % AVAILABLE AIRC	RAFT	
	RDB	SDF
	96 099	97 75%
GUARIER I	00.70%	07.2370
QUARTER 2	60.03%	50.3/%
QUARTER 3	86.64%	87.23%
QUARTER 4	86.90%	86.83%
1-lest: Paired Iwo-Sample for M	Aecins	
	Variable 1	Variable 2
Mean	0.8679	0.8697
Variance	3.06E-06	1.11E-05
Observations	4.0000	4.0000
Pearson Correlation	0.3547	
Pooled Variance	0.0000	
Hypothesized Mean Difference	0.0000	
df	3.0000	
t	-1.1481	ļ
t Critical two-tail -90%	3.1824	1
t Critical one-tail - 95%	3.1824	

OUTLIER - % AVAILABLE AIRCRA	.FT	1
	RDB	SDF
QUARTER 1	83.25%	84.05%
QUARTER 2	82.99%	83.97%
QUARTER 3	83.15%	83.98%
QUARTER 4	82.85%	84.04%
t-Test: Paired Two-Sample for I	Veans	Variable 2
	0.0000	1 475 07
	3.085-00	1.4/E-0/
	4.0000	4.0000
Pearson Correlation	0.0159	
Pooled Variance	0.0000	
Hypothesized Mean Difference	0.0000	1
df	3.0000	
t	-10.6221	
t Critical two-tail -90%	3.1824	ļ
t Critical one-tail - 95%	3.1824	

.

4

>

RANDOM - % AVAILABLE AIRCR	AFT			
	RDB	SDF		
QUARTER 1	91.88%	90.63%		
QUARTER 2	88.36%	90.55%		
QUARTER 3	91.00%	90.45%		
QUARTER 4	90.77%	90.51%		
t-Test: Paired Two-Sample for Means				
Magn	0.0050	0.0054		
Variance	2 275-04	5 635-07		
	2.2/2-04	4 0000		
Pearson Correlation	0.1171	4.000		
Pooled Variance	0.0000			
Hypothesized Mean Difference	0.0000	4		
df	3.0000			
1+	-0.0449			
t Critical two-tail -90%	3.1824			
t Critical one-tail - 95%	3.1824			

REAL DATA - % AVAILABLE AIRCRAFT				
	RDB	SDF		
QUARTER 1	79.84%	78.73%		
QUARTER 2	80.28%	80.50%		
QUARTER 3	80.36%	80.66%		
QUARTER 4	80.59%	80.33%		
. Task Britad Two templa for A	lama			
I-lest: Folled Iwo-Solitiple for F	Variable 1	Variable 2		
Mean	0.8027	0.8006		
Variance	9.95E-06	7.98E-05		
Observations	4.0000	4.0000		
Pearson Correlation	0.8514			
Pooled Variance	0.0000			
Hypothesized Mean Difference	0.0000			
df	3.0000			
t	0.6514			
t Critical two-tail -90%	3.1824			
t Critical one-tail - 95%	3.1824			

Bibliography

- Abell, John B. Researcher, Personal Interview. RAND Corporation, Santa Monica CA, 27 July 1994.
- Ammer, Dean S. <u>Materials Management and Purchasing</u> (Fourth Edition). Homewood IL: Richard D. Irwin, Inc., 1980.
- Augarde, Tony. <u>The Oxford Dictionary of Modern Quotations</u>. Oxford NY: Oxford University Press, 1991
- Bachman, C. Tovey. <u>Demand Forecasting: Isolating Problem Items</u>. Technical Report AF101LN2. Bethesda MD: Logistics Management Institute, March 1993.
- Bond, A. Craig and Marvin E. Ruth. <u>A Conceptual Model of the Air Force Logistics</u> <u>Pipeline</u>. MS thesis, AFIT/GLM/LSM/89S-2. School of Systems and Logistics, Air Force Institute of Technology(AU), Wright-Patterson AFB OH, September 1989 (AD-A216158).
- Bovas, Abraham and Ledolter Johannes. <u>Statistical Methods for Forecasting</u>. New York NY: John Wiley & Sons, 1983.
- Crawford, G.B. <u>Variability in the Demands for Aircraft Spare Parts:</u> Its Magnitude and <u>Implications</u>. RAND Report R-3318-AF. Santa Monica CA: RAND Corporation, January 1988.
- Department of the Air Force. <u>Recoverable Consumption Item Requirements System</u> <u>D041</u>. AFMCR Manual 57-4, Wright-Patterson AFB OH: HQ AFMC, 1 August 1991.
- Department of the Air Force. <u>RDB Process Functional Description</u>. PFD-D-12020, Wright-Patterson AFB OH: HQ AFMC, 29 December 1988.
- Department of the Air Force. <u>USAF Supply Manual.</u> AFM 67-1, Vol II, Pt 2. Washington: HQ USAF, 1 November 1987.
- Department of the Air Force. <u>Quantitative Analysis and Forecasting Methods for Air</u> Force. AFMCM 66-17, Wright-Patterson AFB OH: HQ AFMC, 20 August 1980.
- Emory, C. William and Donald R. Cooper. <u>Business Research Methods</u> (Fourth Edition). Homewood IL: Irwin, Inc, 1991.
- Evans, R. James. <u>Applied Production and Operations Management</u> (Fourth Edition). St-Paul MN: West Publishing Company, 1993.

- Gitman, Kandus., Rob Lucas and Christian Dussault. Meeting on the SDF Double Exponential Smoothing Technique for RDB. HQ AFMC, Wright-Patterson AFB OH, 9 February 1994.
- Gluck, Fred, Lt Col, USAF. <u>A Compendium of Authenticated Logistics Terms and</u> <u>Definitions</u>. Technical report. U.S. Department of Commerce/National Bureau of Standards, School of Systems and Logistics, Air Force Institute of Technology. Wright-Patterson AFB OH, February 1970 (AD 700 066).
- Hanke, John E. and Arthur G. Reitsch <u>Business Forecasting</u> (Fourth Edition). Boston: Allyn and Bacon, 1992.
- Klinger, Karen. <u>The Application of a Readiness Sparing Model to Foreign Military Sales</u>. MS thesis, AFIT/GOR/ENS/94J-1. School of Engineering, Air Force Institute of Technology(AU), Wright-Patterson AFB OH, May 1994
- Klugh, R. James. <u>Memorandum for the DOD Comptroller</u>. Department of Defense, Pentagon, Washington DC: Deputy Under Secretary of Defense (Logistics), March 24, 1994a.
- -----. Proposed Intensive Management Organization for Managing the Depot Maintenance and Materiel Management CIM. Department of Defense, Pentagon, Washington DC: Deputy Under Secretary of Defense (Logistics), March 24, 1994b.
- Lucas, Rob. <u>Air Force Reparable Items</u>. Electronic mail. HQ AFMC/LGIB, Wright-Patterson AFB OH, 14 February 94.
- -----, Management Sciences Operational Analyst RDB. Personal Interview. HQ AFMC/LGIB, Wright-Patterson AFB OH, 22 November 1993.
- Maitland, Bob. <u>Ouestions on SDF</u>. Electronic mail. Navy Supply System Command SPCC, Mechanicsburg PA, 21 April 1994a.
- -----. <u>Navy Reparable Items</u>. Electronic mail. Navy Supply System Command SPCC. Mechanicsburg PA, 22 March 1994b.
- McClave, T. James and George P. Benson. <u>Statistics for Business and Economics</u> (Fifth Editio₃). San Francisco CA: Dellen Publishing Company, 1991
- Moore, Rich. <u>Ouestions on RDB and SDF</u>. Electronic mail. JLSC/MMR, Wright-Patterson AFB OH, 30 March 1994.
- O'Malley, T.J. <u>The Aircraft Availability Model: Conceptual Framework and</u> <u>Mathematics</u>. Contract No. MDA903-81-C-0166. Bethesda MD: Logistics Management Institute, June 1983.
- Pohlen, L. Terrance. <u>Characteristics and Definitions of Reparables</u>. Course Handout. School of Logistics and Acquisition Management, Air Force Institute of Technology(AU), Wright-Patterson AFB OH, 28 March 1994.

Rexroad, Fred, Management Sciences Operational Analyst. Personal Interview. HQ AFMC/XPS, Wright-Patterson AFB OH, 24 November 1993a.

-----. <u>Aircraft Availability Research Model Analyst's Manual</u>. HQ AFMC/XPS, Wright-Patterson AFB OH: 24 November 1993b.

- Roberts, Benedict C. <u>Forecasting Submodule in the CIM Requirements System</u>. Technical Report DLA-94-P30166. Alexandria VA: Defense Logistics Agency, Operations Research Office, June 1994.
- -----. Composite Forecasting and the Estimation of Outperformance <u>Probabilities</u>. MS thesis, Department of Mathematical Sciences, Virginia Commonwealth University, December 1991.
- Searock, Lt Gen Charles J. <u>Requirements Data Bank</u>. Operational Requirements Document AFLC 001-91-I/II/III. Wright-Patterson AFB OH, HQ AFMC, 12 August 1992.
- Sherbrooke, C. Craig. <u>Optimal Inventory Modeling of Systems</u>. New York: John Wiley & Sons Inc, 1992.
- -----. Evaluation of Demand Prediction Techniques. Technical Report AF601R1. Bethesda MD: Logistics Management Institute, March 1987.
- Slay, F. Michael and Randall M. King. <u>Prototype Aircraft Sustainability Model</u>. Contract MDA903-85-C-0139. Bethesda MD: Logistics Management Institute, March 1987.
- Syzdek, Capt Mark. <u>The Identification and Forecast of Seasonal Demand Consumable</u> <u>Items in Base Supply</u>. MS thesis, AFTT/GLM/LSM/89S-64. School of Logistics and Acquisition Management, Air Force Institute of Technology(AU), Wright-Patterson AFB OH, September 1989. (AD-A215094).
- Tersine, J. Richard. <u>Principles of Inventory and Materials Management.</u> (Third Edition). New York: North and Holland, 1988.

- Theil, H. <u>A Rank-Invariant Method of Linear and Polynomial Regression Analysis</u>. Nederl. Akad. Witensch. Proc., 53 (1950).
- Urban, Anton and Bob Maitland. Forecasting LT/TAT Requirements Model Functional Description - FD-PD80. FMSO Document NO. N9312-H44-7050, FMSO 9322, Mechanicsburg PA, June 1994a.
- -----. <u>Seminar on Statistical Demand Forecasting PD80</u>. FMSO 9674, Navy Supply System Command FMSO, Mechanicsburg PA, 10 January 1994b.
- -----. Handout SDF Statistical Demand Forecasting PD80 (A Walkthrough). FMSO 9674, Navy Supply System Command FMSO, Mechanicsburg PA, 10 January 1994c.
- -----, James Zerbe, Erin Schetz, Steve Chizar. Forecast Model. FMSO Document No. N9312-H44-7050. PS-PD80, 31 December 1993a.
- -----. <u>Handout SDF PD80 Forecasting (A Walkthrough)</u>. Navy Supply System Command FMSO, Mechanicsburg PA, 14 October 1993b.
- Wehde, Eric. <u>Army Reparable Items</u>. Electronic mail. Army Operational Research Office, Philadelphia, 04 June 1994a.
- ----- and Eric Grove. <u>Evaluation of the Statistical Demand Forecasting</u>. U.S. Army Materiel Systems Analysis Activity, Aberdeen Providing Ground MD, June 1994b.

<u>Vita</u>

Captain Christian J.H. Dussault was born on 3 September 1965 in Thetford-Mines, Quebec, Canada. He graduated from high school in Thetford-Mines, Quebec, Canada and attended the College De La Region De L'Amiante, where he obtained an Associate Degree in Pure Sciences. In 1989, he graduated from Laval University in Quebec city where he obtained a Bachelor of Science in Business Administration and specialized in Operations Management. In September 1989, he enrolled in the Canadian Armed Forces as an Air Force Logistics Officer. He attended the Officer Training School and the Officer Logistics School before he was assigned as a supply officer to the Canadian Forces Base Goose Bay. In 1992, he was assigned as a Canadian Exchange Officer with the Division of Management Sciences, Headquarters Air Force Materiel Command at the Wright Patterson Air Force Base in Dayton, Ohio. He is currently still working with the Division of Management Sciences. He entered the Graduate School of Logistics and Acquisition Management, Air Force Institute of Technology in January 1993.

Permanent address: 441 Lapierre

Thetford-Mines, Quebec Canada, G6G 4L7

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
Public reporting burden for this collection of gathering and maintaining the data needed collection of information, including suggesti Davis Highway, Suite 1204 Arlington, vA 22	nformation is estimated to sversige 1 hour per for and completing and reviewing the collection of inf ins for reducing this burgen to svision(ton meade 2024)02, and to the Office of Stanagement and du	poonse, including the time for revi- ormationSend comments regardi Juarters Services, Directorate for in lagetPaperwork Reduction Project	ewing instructions, searching existing data sources, ing this burden estimate or any other aspect of this information Operations and Reports (2215 Jefferson t (2704-0158), Washington, DC (20503
1. AGENCY USE ONLY (Leave of	AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE March 1005 Monta in T		DATES COVERED
4. TITLE AND SUBTITLE	March 1995	<u> Master's Thesis</u>	FUNDING NUMBERS
EVALUATION OF ALL FORECASTING SYST	R FORCE AND NAVY DEM TEMS	IAND	
6. AUTHOR(S) Captain Christian J.H. E	Dussault		
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		. PERFORMING ORGANIZATION REPORT NUMBER
Air Force Institute of Te WPAFB OH 45433-658	echnology, 33	1	AFIT/GLM/LAL/95M-1
9. SPONSORING/MONITORING A	GENCY NAME(S) AND ADDRESS(ES)		0. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILIT	Y STATEMENT		26. DISTRIBUTION CODE
Approved for public rele	ease; distributed unlimited		
13. ABSTRACT (Maximum 200 wo	rds) The purpose of this study		
and accuracy between the Data Bank forecasting sys approach looked at time se different data patterns. It generated more accurate f of outliers, the SDF syster approach looked at the act forecasting technique. Th accuracy between the two system would affect aircra outliers, there was a signif However, it was found tha difference in aircraft availa	Navy Statistical Demand Fore tem. Three different approact eries components and evaluate was found that under the press orecasts than the RDB system in computed more accurate for cual Air Force data and evaluate e results demonstrated that the forecasting systems. The this forecasting systems. The this fit availability. It was found the icant difference in aircraft ava- at under the presence of actual ability between the two foreca	was to evaluate and ecasting system and the hes were used for the ed how each forecast ence of a trending con- n did. It was also fou- recasts than the RDB ted the forecast accu- ere was no significant rd approach looked a hat under the presence ilability between the I Air Force data, ther sting systems.	compare the performance the Air Force Requirements e research. The first ting system reacted to omponent, the SDF system and that under the presence 8 system did. The second tracy established by each at difference in the forecast at how each forecasting the of trending data and two forecasting systems. e was no significant
and accuracy between the Data Bank forecasting sys approach looked at time se different data patterns. It generated more accurate f of outliers, the SDF syster approach looked at the act forecasting technique. Th accuracy between the two system would affect aircra outliers, there was a signif However, it was found tha difference in aircraft availa 14. SUBJECT TERMS Forecasting, Requirement Aircraft Availability, Log	Navy Statistical Demand Fore tem. Three different approact eries components and evaluate was found that under the press orecasts than the RDB system in computed more accurate for rual Air Force data and evaluate e results demonstrated that the forecasting systems. The this for availability. It was found the icant difference in aircraft availability between the two forecast ability between the two forecast ints Determination, Recoverable gisitics	was to evaluate and ecasting system and thes were used for the ed how each forecast ence of a trending con- n did. It was also fou- recasts than the RDE ted the forecast accu- ere was no significant rd approach looked a hat under the presence ilability between the I Air Force data, ther sting systems.	compare the performance the Air Force Requirements e research. The first ting system reacted to omponent, the SDF system and that under the presence 8 system did. The second racy established by each at difference in the forecast at how each forecasting the of trending data and two forecasting systems. was no significant
and accuracy between the Data Bank forecasting sys approach looked at time se different data patterns. It generated more accurate f of outliers, the SDF syster approach looked at the act forecasting technique. Th accuracy between the two system would affect aircra outliers, there was a signif However, it was found tha difference in aircraft availa 14. SUBJECT TERMS Forecasting, Requirement Aircraft Availability, Log	Navy Statistical Demand Fore tem. Three different approact eries components and evaluate was found that under the press orecasts than the RDB system in computed more accurate for rual Air Force data and evaluate e results demonstrated that the forecasting systems. The thir fit availability. It was found the icant difference in aircraft availability between the two forecast at under the presence of actual ability between the two forecast isitics	was to evaluate and ecasting system and thes were used for the ed how each forecast ence of a trending con- n did. It was also fou- recasts than the RDB ated the forecast accu- ere was no significant rd approach looked a hat under the presence ilability between the I Air Force data, ther sting systems.	compare the performance the Air Force Requirements e research. The first ting system reacted to omponent, the SDF system and that under the presence 8 system did. The second tracy established by each at difference in the forecast at how each forecasting the of trending data and two forecasting systems. The was no significant 15. NUMBER OF PAGES 145 16. PRICE CODE

>