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Abstract

Normalization and Prediction
of Geotechnical Properties
Using the Conc y’enetrometer Test (CPT)
by
Richard Scott Olsen
Doctor of Philosophy in Civil Engineering
University of California at Berkeley

Proiessor James K. Mitchell, Chair

The objectives of this research were to develop techniques for (1) stress
normalization of CPT measurements (and geotechnical properties) and (2) CPT
prediction of geotechnical properties using cone and sleeve friction resistance values.
Stress normalization allows a variable geotechnical property to be reduced to an

equivalent vclue at a standard confining stress.

A new concept, the Stress Focus, was identified which provides a basis for
understanding soil strength as a function of confining stress. This study
demonstrated that sand friction angles for different initial relative densities converge
to a Stress Focus at high confining stress (approximately 100 atm), where the
strength behavior is similar to that of a sedimentary rock. Dilation of dense sands
decreases with increased confining stress until the Stress Focus is reached, as
confirmed using historic high pressure triaxial test data as weli with CPT
measurements from laboratory chamber tests and uniform soil layers. The paths of
convergence to the Stress Focus are exponentially related to confining stress and are

the basis for development of CPT cone and sleeve iriction resistance normalization

techniques. The overburden stress at the Stress Focus is soil type dependent.
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The stress exponent for SPT normalization was shown to be equal to the CI'T

derived stress exponent.

CPT correlations to geotechnical properties were established using both CPT
cone resistance and friction ratio. These correlations were based on a large database
which was developed for this research effort. Statistical evaluation during the
de;/elopment of these correlations concentrated on excluding biased data. CPT
based correlations were established for the following geotechnical properties: SPT
blow count, unconsolidated undrained triaxial test strength, field vane shear test

strength, and shear wave velocity.

issertation Committee Chairman
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Chapter 1 :

Introduction

General

Site characterization, in terms ot geotechnical properties, can be the single most
important task for geotechnical engineering investigations. Characterization is
defined as "To r.veal and separate into categories” (Webster’'s New Collegiate
Dictionary, 1975). Once a site has been realistically characterized in terins of
geotechnical property distribution, to the needs of a project, the foundation design or
foundation performance evaluation (e.g. liquefaction evaluation) can be done with
greater econory and reliability. Site characterization by drilling and sampling is
economically limited because of the small proportion of the subsurface sampled and

the relatively bigh cost of laboratory tests.

When the Cone Penetrometer Test (CPT) is used for a site investigation, the
industry standard practice for CPT data reduction has generally been to use only the
CPT cone resistance and calculated friction ratio; The measured dynamic pore :
pressure is become more common as an additional CPT mecasurement. Most
CPT-based theories are derived cither for clay or sand and therefore are not directly .
applicable in a world of soil mixtures, dirty sands, and silty clays. Use of
techmigues for CPT prediction of geotechnical properties that are applicable to all i

soil types (Olsen 1984, 1988, Olsen and Farr, 1986) have been constrained by the !

limited amount of published verification.
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The goal of this research program was to develop improved techniques for CPT ‘
prediction of geoiechnical properties. This goal was achieved by creating a large B
database (of CPT and soil test results), developing new stress normalization
techniques, accounting for bias error due to stratigraphy changes (bstween CPT
soundings and borings), and finally, by using the CPT soil characterization chart
(Olsen, 1988) to develop predictive correlations for Standard Penctration Test (SPT)
blow count, clay undrained strengths (laboratory unconsolidated undrained triaxial

test and field vane shear test), and shear wave velocity.

The CPT Test

The CPT test is performed by pushing a 3.57 ¢m (1.4 inch) diameter

instrumented probe into the earth at 2 cm/second while simultaneously measuring the

resistance (4.) is the axial component of the stress acting on the tip of the probe (10

cm? horizontal cross sectional area) and sleeve friction resistance (f,) 1s the cliding

siress developed on a short cylindrical scction of steel just above the tip (surface area

of 150 cm?). The electric CPT has received wide acceptance throughout the world

and its use continues to grow. The advantages of the electrical CPT are: fast rate of

penctration (production rate up to 600 ft per day), higher accuracy and repeatability

(compared to the Standard Penetration Test (SPT)), and use of a computer data B
acquisition system which allows for computer based evaluation. While there are
numerous additional sensors (Figurc 1.1) that can be added w0 a CPT probe
(Licberman, ct.al, 1991, Cooper, ct.al., 1988, Robertson, ct.al., 1986, FUGRO, 1980),
approximately 60% of all CPT work in the U.S. is done using only the two basic
mcasurements (i.c. q. and f,). The CPT is also becoming the geotechnical tool of

choice for investigations where there are local CPT contractors and the site is

composed of clays, sands, or soil mixtures containing little or no gravel.

la}
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The CPT can provide a large quantity of low-rost, repeatable, well-distributed
measurements distributed throughout a site. Alternatively, a few relatively
undisturbed soil samples may be tested in laboratory, but site variability generally
overshadows the benefits gained from a few specialty tests. CPT is becoming the
choice in situ exploration tool over the SPT because of the lower cost, repeatability,
contincous record, and quantitative nature of the data. The CPT is also easier to
interpret because the measurements are morc fundamental. However, unlike the SPT,

it provides no soil sample.

The CPT Measurements

The two CPT measurements are remarkably unique. The cone resistance is
influenced by many geotechnical properties—it varies exponentially, in fact, with soil
the cone resistance can be 200 tons/ft? (tsf)

(20 MPa) in a sand, and as low as 3 tsf (300 KPa) in clays. The cone resistance can
therefore be considered an index of the sand skeleton strength (Douglas and Olsen,
1981). The CPT sleeve friction measurement is a high-strain sliding measurement
along a steel cylinder (after the soil has navigated around the cone tip) and is a good
indicator of loose or unstable soil structures (Olsen and Farr, 1986). While the cone
resistance has been the topic of extensive theoretical and experimental rescarch (too

numerous to reference), there has only been limited rescarch on sleeve friction

resistance (Olsen, 1984, 1988, Olsen and Farr, 1986, and Masood, 1990).

Developing CPT Prediction Relationships for Geotechnical Properties

There are numerous means for establishing correlations of CPT measurements

with gcotechnical properties. Laboratory chamber testing, while very useful, has

historically been done only on clean sands (siity sands have recently been tested in '




laboratory chambers (Rahardjo, 1989)). Also, the results of CPT chamber tests are
sensitive to chamber boundary conditions. Theoretical formulations are typically
derived only for a particular soil type and must always be thoroughly verified with
laboratory and/or field test data. Laboratory-based correlations, while attractive for
pure sands and pure clays may be of limited usefulness in evaluating soils composed

of mixtures o these materials.

Historically, quantitative CPT correlations with geoiechnical properties have been
based only on the cone resistance. CPT sleeve friction resistance was used only for
soil classification (Douglas and Olsen, 1981, Robertson and Campanella, 1984).
Researchers have typically compared CPT cone resistance (q.) and laboratory
strength test results (or field strength measurement results) in an X-Y scatter plot to
develop best fit correlations. CPT prediction of geotechnical properties should be
based on combination of the two basic CPT measurements (q, and f) because these
measurements are always performed and each reflects different aspects of

geotechnical behavior.

Stratigraphic Influences on CPT Correlations

Using field data to correlate CPT results witn geotechnical properties is an
attractive approach, however there arc limitations. Stratigraphic vasiation of soil
types and geotechnical properties between a CPT sounding and a ncarby borchole
can introducc major errors into a correlation. The use of uniform sites only would
significantly reduce correlation error, however, there are only a limited number of
well-documented uniform sites in the world, These uniform sites also do not
represent all soil types, and most importantly do not represent a wid. range of
strengths (e.g. relative density for sand) for each soil type. It is therefore preferable
to represent many soil types and relative strength levels by using sites with less than

perfect soil uniformity. Site stratigraphy (i.c. uniformity) must still be accounted for




when developing CPT correlations. A subjective quality index can be assigu.ed to
cach CPT-to-boring comparison and used as a index for quantifying bias ertor
potential (e.g. a CPT encounters a clay layer but the nearby borehole encounters a

sand at the same elevation).

Accounting for Factors that Influence Geotechnical Properties

Many factors influence geotechnical properties and should be accounted for when " §
developing CPT-based correlations. The three factors of strongest influence are: l
1) soil type, 2) soil state, and 3) confining stress level. Secil type and confining stress
are self explanatory. The soil state (i.e. void ratio at a standard confining stress
level) can be defined as the normaliz::d geotechnical property level (e.g. Standard
Penetration Test (SPT) normalized blow count, N,). Therefore, a CPT technique for
predicting geotechnical properties must directly or indirectly account for all three of

these influencing factors.

Using CPT based Soil Classification

Soil type reflects the bulk soil composition in terms of sand and silt grain types
and sizes (if present) together with the clay type (if present). The CPT soil
characterization chart (Douglas and Olsen, 1981, Olsen, 1984, Olsen and Farr, 1986,
Olsen, 1988) can approximately predict soil type, primarily based on the observation
shat the cone resistance is exponentially influenced by sand grain frictional behavior
and is therefore an index of the soil structure. The Olsen (1988) CPT soil
characterization chart, shown in Figure 1.2, represents the staic-of-the-art for CPT
prediction of soil type from knowledge of the conc resistance (log scale) and friction

ratio (which 1s defined as the sleeve friction resistance az a percent of the cone

resistance level).
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Accounting for Stress Ejffects in CPT Correlations
&5

Confining stress influences CPT measwements 2id geotechnical propertics ER
differently. It will be shown that confining siress infiuences are dzpendent on soil o

type and relative strength. The influence of confining stress raust be properly

accounted for when developing correiations of CPT to geoivuchnical vroperties.

These confining stress influences are also important during prediction of geotechnical A

properties using field CPT data. If stress influences are not properly considered,

geniechnical properiies for shallow (e.g. 5 fret) or deey (¢.g. 200 fect) situations may

be over- or under-predicted by 50% or rnore. CPT predicrion of normalized
geotechuical properties accounts for confining stress influences on properties.
i
T
The process of using stiess normalization to precict geotechnical properties is )
illustrated in Figure 1.3. CPT data ar< iniiially normalized to an equivaioat value at i
standard vertical effective stress (3.¢. aimospheric pressure) using stress expenent *
techniques. The normalized peoiechnical property is then predicted using the b
normalizea CPT values. Finally, the iy situ property is determined using stress ‘f
exponent concepts. The stress normaiization technique for CPT measuremenss and .
two geotechnical properties (i.c. SPT-N value and shicar viave velocity) are fully
exainined in this dissertation. Ncormelized geotechnical properties will be derived R0
tased on tha CPT soil characterization chart. ” o
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Outline of Dissertation

High pressnre triaxial testing of sands and the effect of confining stress level on
Mohr enve pe curvature are reviewed in Chapter 2, because for a given relative
density, the friction angle decreases with increasing confining stress. It will be
shown that this friction angle decrease continues until a specific confining stress 1s
achieved, namely the Stress Focus (corresponding to an approximate depth of a few
thousand feet). Specimens of all initial relative densities for a particular sand type
will have approximately the same strength (and density) at the Stress Focus, which
corresponds to a uncemented sedimentary rock strength. It will also be shown that
the decrease of friction angle with increasing vertical effective stress can be
explained in terms of dilation effects, grain crushing, and grain-to-grain rolling

influences.

The basi stress exponznt concept required for stress nornalization and 2
determinatic1 of tne Stress Focus 1s described in Chapter 3. Stress normalization is

achieved usi1  a stress exponent on the vertical effective stress.

CPT conc¢ resistance normalization formulation for all soil types based on limit
equilibrium a1 d cavity expansion theories is develop~d in Chapter 4. This
formulation al..o accounts for the observed exponential relationship between cone

resistance and vertical effective stress.

CPT laboratory chamber test data are evaluated in Chapter 5. This evaluation
supports the contention that cone resistance can be represented by stress exponents Y
and the Stress Focus. Standard Penctration Test (SPT) chamber test data are also

used to show that the Stress Focus location is dependent on the sand classification.

10




CPT data from uaiform in situ soil layers are used in Chapter 6 to establish a
technique for CPT prediction of the stress exponent (required for normalizing CP'T
data). These data also show that the Stress Focus location depends on soil

classification.

New stress normalization techniques for SPT and the shear wave velocity are
given in Chapter 7. For the SPT, the constant drilling mud height used for
laboratory SPT chamber tests produces stress exponents that are too low. The
CPT-determined stress exponent (from Chapter 6) is thus recommended to be used
for SPT normalization. Shear wavc velocity discussion will emphasize the need for a

soil type-dependent stress exponent that cun be estimated using the cone resistance

stress exponent.

‘ In Chapter 8, correlations are given for normalized CPT parameters with the

yerties: SPT blow count, undrained cohesive

eaivy weaa

hnical nro
! strength based on the unconsolidated undrained triaxial test (TxUU), undrained
cohesive strength based on the field vane shear (FFVane), and shear wave velocity.
These correlations are represented as contours on the CPT soil characterization chart.
. Each contour was established using an Academic Quality Index (AQI) to subjectively
| remove bias due to stratigraphic soil type changes between CPT soundings and
borcholes. Increasing the inclusionary AQI level increases the data group quality by

removing lower quality data.

The dissertation conclusions and recommendations for future rescarch are given

in Chapter 9.
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Chapter 2 b

Mohr Envelope Curvature and

Development of the Stress Focus Concept

Introduction

Curvature of the Mohr failure envelope (i.e. a gradual decrease in failure
envelope slope with increasing effective stress) is well-known. It is incorporated in
many nonlinear behavior thearies but is rarely used in geotechnical engineering
practice. Mohr envelope curvawre can be quantified analytically, but there are no
comprehensive means for predicting the actual curvature parameters based on soil
type and relative strength (e.g. friction angle for sands). At present, these Mohr
envelope curvature parameters can only be determined with a series of triaxiai tests
cenducted using a wide range of confining stresses for a given sand type and a given
initial relative density. Mohr envelope curvature and the Stress Focus concepts
presented in this chapter arc the foundation for the CPT stress normalization

techniques in this dissertation.

Baligh Formulation of Curvature Envelope i

Baligh (1976) imfroved precedent cavity expansion theory by incorporating the

effects of Molr failvre envelope curvatuie. Figure 2.1 summarizes the effecis of

12




failure envelope curvature observed by Baligh (1976) in terms of friction angle for
several types of sanus and relative densities. Baligh (1976) quantified failure
envelope curvature and incorporated its effects into cavity expansion theory. He

proposed Ecuation (2.1) to express failure envelope curvature for laboratory triaxial

tests.
T = g|tand,_ + tanq ——1——log]0i (2.1
? 23 g,
where
o, = Reference friction angle at ¢ =1 ton/ft? (tsf)
o = Balighs' Mohr failure envelope curvature parameter

The curvature parameter, o, can be used to modify the reference friction angle, ¢,

at the reference stress level, o, as shown in Equation (2.2).

tand = tzmcbo - tauo Logmolv (2.2)
where
a, = vertical effective stress (tsf)
b, = friction angle at ¢,

This curvature parameter (tan «) is simply the semi-log slope for given relative
density trend in Figure 2.1.  Baligh made no other inference concerning the trends

in Figure 2.1 concerning sand type or relative density toward the Mohr envelope

curvature parameter, «.
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Yareshenko (1964) proposcd an expression for the Mohr failure envelope

curvature of the form

T = (ko)lln (2.3)

Baligh (1976) believed that Equation (2.3) was elegant and convenient for analytical
computations, but that it was inadequate for practical applications. He maintained
that there were many combinations of k and n that could fit experimental results

because they were obtained from log 1 versus log o plots.

New Strength Normalization Based on

Failure Envelope Curvature

A new exp:ession was developed by the author (Equation (2.4)) to describe
failure envelope curvature. This "stress normalization” technique will be fully
expiained in Chapter 3. The normalized shear strength, t,, in Equation (2.4) is the
shear strength at a vertical effective stress of 1 atm. The proposed exponent-based
normalization formulation in Equation (2.4) is similar to that of Equation (2.3),

except that normalization concepts are used.

T =T, (ov);ml (2.9)
where
(0) jem = Vertical effective stress in units of atm pressure
(approximately tons/ft%)
T = Shear strength at g, in units of atm pressure
T, = Shear strength at ¢, =1 atm (i.c. tan(¢,))
t = shear strength stress exponent

15
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This formulation overcomes the limitation stated by Baligh (1976) concerning the

Yareshenko (1964) equation, namely that several combinations of k and n can fit the 3
same set of data. For loose sands or clays which have little or no failure envelope 3
curvature, the Baligh Mohr envelope curvature parameter, «a, is approximately zero R

and the stress exponent is approximately 1 (or slightly less). For the dense Ottawa
sand in Figure 2.1, « is approximately 8° and the stress exponent (i) is 0.86. Each
of the constant relative density trends in IFigure 2.1 can be expressed using

Equation (2.4) with a constani stress exponent.

The Stress Focus Concept

It would appear from Figure 2.1 that the only means to determine the stress
exmnerﬁ (e.g. curvature parameter) is with a thorough laboratory strength testing :
program. However, <lose examination indicates that all sands have approximately '
the same friction angle at some high overburden stres: between 70 and 300 atm
irrespective of the initial relative density. The overburden stress (Gg) where
specimens of all initial relative densities have the same approximate friction angle
(49, is defined as the "Stress Focus”. The Stress Focus is therefore a "hinge” to
which trends associated with a given soil type and all relative densities converge with
increased overburden stress as illustrated in Figure 2.2. This Stress Focus ceeurs at

a confining stress equivalont to a depth of several thousand feet below groi.nd

surface. ‘

Data for the Chatahoochee and Sacramento sands in Figure 2.1 werc replotted as
shown in Figure 2.3 and Figure 2.4, respectively, to illustrate the effects of failure
envelope curvature and the resulting Stress Focus. These plots depict vertical
effective stress on the vertical axis as a log scale with the values increasing in the
downward direction. The dashed least square fit lin:s are also shown for each initial

relative density group. These 30 year old data represent the best quality high stress

16
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tests available on sand. Other published data do not encompass the range of
confining stresses and the number of relative density groups represented in this data

set.

Figure 2.3 and Figure 2.4 indicate that at the Stress Focus the friction angle is
the same irrespective of the initial relative density from which the samples were
consolidated. Dense sands therefore have decreasing friction angle with increasing
confining stress until the Stress Focus is reached. At the Stress Focus, initially
dense and loose sands have the same friction angle. Loose sands have little Moh1
envelope curvature and therefore very little change of friction angle with depth.
When the figures are combined (Figure 2.5), the result suggests that the Stress Focus
location is dependent on sand type. Stress Focus location dependence on soil type

wiil be further demonstrated in Chapters 4 through 6.

Figure 2.3 and Figure 2.4 are plotted in terms of friction angle whereas

Equation (2.4) is expressed in terms of strength. If data for Sacramento sand (from
Figure 2.4) is replotied in terms of drained Mohr Coulomb strength (i.e. g, tan($))
versus g, the result is shown in Figure 2.6. The effect of Mohr envelope

curvature in Figure 2.6 is not as obvious as in Figure 2.4, but the stress exponent (1)
(i.e. slope) and t; can be determined directly from this figure and used with
Equation (2.4).

Rock Mechanics and Friction Angle

at High Confining Stresses

The Stress Focus (for friction angle) appears to occur at a overburden stress
range between 70 and 300 atm. Barton (1976) summarized rock strengths at high

stresses (greater than 80 atm) for scdimentary rocks (e.g. sandstone, shale and

18
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siltstone) as shown in Table 2.1. This table indicates that the friction angle (at high
confning stress levels) increases from a range between 25° and 30° for clay based
sedimentzry rock (e.g. chalk, shale, and slate) to a range between 30° and 34° for
quartz-based sedimentary rock. The friction angles at the Stress Focus (¢,) for
Chatahoochee and Sacramento sands are approximately 32° and 31°, respectively
(from Figure 2.3 and Figure 2.4). This is within the range of 3C to 34° for quartz
basea sedimentary rock at high confining stress. It therefore appears that sand starts

to behave similarly to a sedimentary rock at the Stress Focus.

Table 2.1 High stress friction angle for sedimentary materials (Barton, 1976)

Material High pressure friction Reference
angle (not having
dilative behavior)
——— T ————
Sandstonc 31-34 Coulson, 1972
1
River sand 30 Vesic & Barksdale,
(normal stress of 1964
30 to 630 atm)
Siltstone 27-32 Coulson, 1972
31 Hobbs, 1970
Shale 27 Ripiey & Lee, 1962
32 Hobbs, 1670
Chalk 30 dutchinson, 1972
Mudstone 27 Hobbs, 1970
L_Slate 25-30 Barton, 1971 ,

Dilation effects in granvlar materials can explain the friction angle versus
confining behavior at stresses less than that at the Stress Focus. Dilation is defined
as volume increase with shear. Figure 2.7 shows that the observed friction angle

during shear at typical geotechnical confining stress is caused by the accumulative

effect of: volume increasc effects during shear (i.e., dilation), grain-to-grain




rearrangement and material frictional behavior (¢>u). All influences except the
material frictional angle (¢#) vary with confining stress level (Mitcheli, 1993). This
figure illustrates that dense sands have high measured friction angles due to the
dilation and frictional effects. On the other hand, very loose sands, at the critical
void ratio, exhibit a friction angle due only to grain-to-grain rearrangcment and
material frictional effects. For dense sands at low confining stresses (e.g. 1 atm),
dilation behavior is a major comutributing factor toward the strength level. For
example, gravel ballast for railroads has a low overburden stress but very high
resistance to dilation. Dilation effects therefore increase the apparent friction angle

for dense sands.

Initially dense sand appears to have the same strength as initially loose sand at
the Stress Focus ac shown in Figure 2.5. Very loose sands do not dilate at any
confining stress and therefore exhibit no dilation effect at the Stress Focus. Dense
sands at the Siress Focus musi also have no dilation cffcct. Dilation effects therefo
decrease with increased depth t0 @ minimum (or near zero) level when the Stress

Focus is achieved as illustrated in Figure 2.8.

The density for different initial relative densities at the Stress Focus is an
important issue. Sand density will incicase with increasing consolidation pressure.
Initially loose sands will consolidate (i.e. density increase with increasing confining
stress level) at a higher rate than initially dense sands. If initially loose sands and
initiaily dense sands have the same strengtn at the Stress Focus, then the densities
may also be equal 2t the Stress Focus. Moru likely, the density difference between
initially loose and initially dense sands at the Stress FFocus are probably evident but

minor.

The Stress “ocus represents the overburden stress where soil-like behavior
becomes (sedimentary) rock-like behavior. It also provides a comprehensive means

of relating the initial relative density to confining stress level. The Stress Focus
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therefore appears to be a fundamental geotechnical property which can be useful for

soil behavior evaluation at all overturden stress conditions.

For confining stresses greater than the Stress Focus, strength is achieved by
material friction, grain crushing, and grain rearrangement effecis (which can be
considered as a minor dilative behavior (Bruce, et.al, 1966). Shear occuss through
the grains or at the grain-to-grain contacts because there is little potential for

granular rearrangement at high confining stress levels (Vesic and Clough, 1968).
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Chapter 3

Stress Normalization

Introduction

Nonnalization as defined by the Webster's New Collegiate Dictionary (1975) is
"to reduce to a norm or standard”. In geotechnical engineering, stress normalization
allows a variable geotechnical property to be reduced to an equivaient value at a
geotechnical stress normalization is the vertical effective stress. It is the only
confining stress parameter that can be accurately calculated. The standard confining
stress unit should also be atmospheric pressure because English or metric units, are

arbitrary stress units.

Stress normalization enables an equation together with correlation curves to
cover a wide range of confining stress conditions (analogous to dimensionless
analytical solutions). Therefore, normalized CPT measurements can be used to
directly predict normalized geotechnical properties even though the confining stress
influences on the CPT parameters and on the geotechnical properties may be

different.

This chapter will describe the basic stress normalization concept using stress
exponents. While the exponent 1s a basic mathematical concept, a full explanation

using geotechnical engineering terminology will simplify the discussion in this
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dissertation. The Stress Focus, introduced in Chapter 2, will also be described in

terms of the stress exponent.

The Stress Exponent for Geotechnical Engineering

CPT measurements (in fact, all geotechnical properties) have some degree of
aonlinear dependence on increasing vertical effective siress. Curvature of the Mohr
envelope was quantified using a stress exponent in Chapter 2. When the behavior of
a geotechnical propcrty is represented with an exponent of the vertical effective
stress, the representation is referred to as stiess exponent-based stress norrnalization.
Linear and exponcntial behaviors shown at the top of Figure 3.1 become straight
lines on a Jog-log plot as shown at the bottom. Linear behaviors have slopes of onc
to one and exponential behaviors have slopes which are not one to one. The
exponential slope 1s equal to the horizontal stress exponent (e) for a given log unit of

vertical overburden stress.

An exponentially curved line in Figure 3.1 becomes a straight line on a log-log

plot and can be expressed numerically with the following equation;

H=CV¢ @.1)
where
H = horizontal ax’s
\% = vertical axis
¢ = V ¢exponent
C = Constant
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This expression can be rewritten to represent the horizontal value when the vertical

axis is equal to 1:

H = 3.2)
VC
where
H, = Horizontal axis value vhen V=1

The exponent in Equation (3.2) must be specified with a reference such as the
"V exponent” because the exponent is applied to V arnd the slope is equal to the
fraction (or multiple) of the log,;, H for one log,, V cycle. This V exponent (e) is
the transformed slope on the log-log chart, namely the distance e for a given V as
shown in Figure 3.1. Lines which are nearly vertical have very little V axis
dependence and therefore a V exponent of approximately zero. A linear relationship

with a 1:1 slope (i.e. 45° line) has a V exponent of 1.

In geotechnical engineering the vertical axis is generally taken to represent

vertical effective stress (o) and the exponent is referred to as the stress exponent.

The stress exponent is thus equal to a fraction or multiple of the Alog,,( property )

over one log,q o, cycle. The normalized property value (e.g. H, in Equation (3.2))

1s simply the H data wrend projected from a uniform depth zone to the g, =1

nie?




horizontal line as shown in Figure 3.2. Stress exponent-based stress normalization

for geotechnical engineering is therefore defined as:

H

H = 2L 33)
(a,)
where
g, = vertical effective stress (atmospheric pressure units)
H, = The K property at ¢, =1 atm
H = The H property at the o, stress 1=vel
e = Stress exponent
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The Stress Focus and Stress Exponent Interrelationship

The Stress Focus, introduced in Chapter 2, represents the vertical effective stress
where all trends of relative density (i.e. curved Mohr envelopes) intersect.

Figure 3.3 is a generalization of the Stress Focus concept with one stress exponent
trend shown. Equation (3.4) is a simple representation, in terms of log scales, of the

stress exponent line in Figure 3.3 which can be simplified as shown in

Equation (3.5).

LogH, + (log o, - log(1))e = LogH, 3.4)
H, = H, (o) 3.5

Equation (3.5) shows that the H level at Stress Focus (H;) is equal to the
normalized value (1.e. H; at g, = 1 atm) times the confining stress at the Stress

Focus (6g,) raised to the e power. Only three of the four parameters in
Equation (3.5) are required to define an expression. For example, if H; and e are

known and og; can be reasonably estimated, then the H level at the Stress Focus

(H;) can be calculated.

Stress Type and Stress Normalization

Stress normalization using the vertical cffective stress will be shown in this scction
not to introduce error even when a particular geotechnical property 1s dependent on,
for example, lateral stress. CPT measurcments and geotechnical properties are
controlled by either vertical, mean, octagonal, or lateral stress. This stress type
merely reflects a multiple or fraction of vertical cffective stress. For example, mean

stress is equal to the average of body stresses on the three principle axes as shown ip
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Equation (3.6);

_ 0t o) * Oy (3.6)
mean 3

All the terms in Equation (3.6) can be defined in terms of vertical effective stress

(o,) ‘as shown by Equation (3.7) and finally by Equation (3.8).

O pean = Olv (——-—-1 +32 Ko] (3-7)
o;rtean = 0"' Fman (3.8)

The mean stress in Equation (3.8) is a product of o, and the stress factor, F, ;

1+ 2K,

mean 3

3.9)

This stress factor can be generalized as F, with the * representing vertical, mnean,

octagonal, or lateral stress. If K does not change appreciably with confining stress

level then F. will remain consiant for all siress levels. The o, F, expression can be
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substituted into the basic normalizad stress equation (Equation (3.3)) with the result

shown below;

H
B, = — (3.10)
(o F.)
which equals;
H
H, = (3.11)

where

R, = B (F) (3.12)

(Equation

(3.3)) with H, in terms of F. (Equation (3.12)). If K (i.e. F_, ) does not change

mean
with vertical efiective stress level, then H, is a constant (for a given soil type and
relavive strength). Correlations by Kulhaway and Mayne (1990) have shown that K

(e.g. F .., ) changes very little with increasing ¢,. Therefore, the stress type

mean
(mesn, lateral, etc.,) or K, are not required for stress normalization as long as the

overconsolidation level (or normally consolidation condition) remains constant for all

stress levels.  As a result, °’v can be used as the normalization stress type even if

the geotechnical property is controlled by another confining stress factor (e.«;. mean

or lateral stress).




The Atmospheric Pressure Standard 3

Standard atmospheric pressure provides a convenient basis for expressing
geotechnical propertics. There is only one standard stress level and that is the
atmospheric stress—any other stress units such a KPa or psi (pounds/inch?) are based
on arbiuary units. Atmospheric pressure (atm) is not a usual engineering pressure
level but is very close to the English ton/foot® (isf) or one kilogram force per
cm? (Kgf/cm? ) or bars units as shown below:

1 amm =1.058 1% - 1033 K8.Sorce | 013 bar = 101.32KPa (3.14)
ﬁ? sz

The conventional geotechnical engineering method for expressing normalized

parameters is shown in Equation (3.15) with P, equal to the atmospheric pressure.

o H

— K

¢ (3.15)

B

\

g,
Pa

Equation (3.15) adds an additional factor of complexity to a simple concept.

Moreover, if Equation (3.15) expressed in terms of H; the following is produced;

_fq ‘
(a, ) (3.16)
K |

H =

This final expression is more complicated than Equation (3.3) for stress
normalization because stress units are not atmospheric pressure units. Therefore,
atmospheric pressure (am) is used for stress units throughout this dissertation to
keep the stress notation simple and because normalization concepts will become more

complex.
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Chapter 4

Developing the Cone Resistance

Normalized Formulation

Introduction

A cone resistance normalization formulation allows the equivalent cone resistance

at g, = 1 atm to be determined. Cone resistance normalization is an intcgral part

of the process toward predicting gectechracal properties. 1t possible, 1t should have a
theoretical background rather than only match the trend of laboratory data. The
formulation should be simple and not requirz claborate laboratory test-based
properties as input to the formulation. It should also account for exponentia!

behavior using the stress exponent concept from the previous chapters.

A CPT cone resistance normalization formulation, based on gencralization of
bearing capacity formulations, 1s developed in this chapter. The bearing capacity
formulation considers both limit equilibrium techniques (for shaliow bearing failures)
and cavity expansion theory (for deep bearing failures). The observed non-linearity
of cone resistance with veracal effective stress will also be introduced and analyzed

further in Chapters 5 and 6.




Comparisor: of

Limit Equilibrium and Cavity Expansion Theories

Most thecries for the bearing capacity of both deep foundations (e.g. piles) and
penetrometers have severe shortcomings. During the initial half the 20™ century,
bearing failure were evaluated using bimit equilibrium (1.e. surtace expression)
theories. These classical limit equilibrium theories assume 501l movement upward to
the ground surface using resisting stresses on wedges (Vesic, 1972, Terzaghi, 1943)
as shown at the left of Figure 4.1. Limit equilibrium theories are based only on
Mohr envelope strength parameters (i.e. ¢ and ¢). In the 1960's and 1970's, cavity
expansion theories (Vesic, 1963, 1972) were shown to better describe bearing failure
at great depth. Cavity expansion theory assumes a hypothetical spherical or
cylindrical expansi
ngnt of Figure 4.1, Cavity expansion theories are based on non-linear strength
descriptore and volume change parameters. The cone resistance behavior In
laboratory chambers has also been computer modeled using cavity expansion theory

together with hyperbolic modeling of the elastic zone (Tseng, 1989).

Exponential Behavior of the Cone Resistance

Classical limit equilibriuin (surface expression) theories esult in bearing stresses
which arc linearly proporiional to vertical effective stress (Terzaghi and Peck, 1967,
Durgunoglu ana Mitchell, 1973, 1975).  Cavity expansion theories, on the other
hand, produce a non-linear exponcnt-based relationship of cone resistunce with
overburden stress (Vesic, 1972). Cavity expansion theories also show more
exponential curvature when soil compressibility and Mohr envelope curvature effects

arc included (Baligh, 1975).
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Figure 4.1  Comparison of the Classical Limit Equihibrium based bearing tailure to
Cavity Expansion bearing failure ‘1
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Combining a curved Mohr envelope effect with the simplistic limit equilibrium
bearing formulation, as illustrated in Figure 4.2, can also create a decreasing,
non linecar exponential dependence of cone resistance on vertical effective stress.
However, the magnitude of curvature is less than observed in laboratory chamber
tests. Therefore, the cffects of Mohr envelope curvature provide only part of the

answer toward defining cone resistance to vertical effective stress behavior.

It will be shown that an exponent of the vertical effective stress (introduced in
Chapter 3) can characterize the curved cone resistance behavior observed from
chamber tests (in Chapter 5) and from CPT tests in uniform soil layers
(in Chapter 6). TlLis stress exponent is based on observed data and accounts for
contributing factors such as Mohr envelope curvature, cavity expansion effects,

compressibility, grain crushing effects, and others. The cone res stance normelization

tnnlhmi~iia Aaeivrnd e 4hiln Aliccisaw 20 shn Lol £a coaaliaal o LS Lo bl L) D s
WhllUuyde ULIveud 1 UUD LHApill 13 UIC vadld 1UL Cvalileliv.s UL GO ol Ll ditd

data in later chapters.




Non linear failure envelope:
T ) Linear failure envelope—
The linear and i %,

non linear envelopes | OQ‘ 1 tsf ///Q\
equal at this pomt-—q'\ -
|~
L/‘ 3 P
/ ! 0
//’ /
OV -
qC
(Linear envelope)
qC
(Non linear envelope)
o
|
! i
i

Figuve 4.2 Approximately combining the classical limit equilibrium bearing
capacity formulation with non linear Mohr envelope behavior
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Deveiopment of the

e 1 1zatl ‘ormuiat
Cone Resistance Normalization Formuiation

Limit equilibium and cavity expansion bearing theones ure similar in that they
both have cohesive and frictional bearing factor components. The classic limit
cquilibrium formulation for bearing failure stress is shown v Equation (4.1)

(Terzaghi, 1943):

44 A

g, = cN.{ + ON,{, + 2BYN,{, (4.1)
' where
! : .
§ 4 = Bearing capacity !
: N, N, N, = Bearing capacity factors as a function of ¢
®
1 Cor Gy : G = Bearing capacity shape factors which depend on the soil
{
¢ angle of internal “riction (during shear) and shape of the
b
d bearing surface
i c = Cohesion {or shear streagth intercept)
o = Confining stress
l Y = Seil umnit weight
ﬁ B = Strip footing width .
:
5
§ o
#
!
i
|‘.. I::AI
R A
i’.




The ciassic spherical cavity cxpansion formulation is shown in Equation (4.2)

(Vesi:, 1972).

P, =cF  +o,F, (4.2)
where
p; = Cavity expansion pressure
F, and F, = Dimensionless cavity expansion factors
On = Effective mean normal stress
c = Soil cchesion
- . 4sin
F, = 5 (1 +sing) o )T(ﬁ??ﬁw
3 - sin¢ Tr
F, = (F, - 1)cotd
II
o - 1+ 1A
r
. ey 7 E 1
I = Rigidity Index = (i’ ==
! oty S S2(1 +v)
A = Average compressive volumetric strain in plastic zone
G = Shear modulus
E = Young's modulus
S = Soil shear strength (¢ + o'tang)

The cavity expansion pressure is the pressure required to expand a cavity in situ
(*.e. pressure required to expand a balloon at some depth). Cavity expansion
pressure is related to bearing pressure because a cavity must be opened for the
penctrometer to advance. While cavity expansion is simple in concept, converting it
to bearing pressure is not a trivial task. The cavity expansion pressure level iy still

related to the bearing pressurce level, in general.
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Both of these formuiations can be summarized for penctrometers as shown in

Equaticn (4.3) using the Z_ and Z; bearing factors.

q.=Z2.c+Zo (4.3)
where
q. = bearing siress
Z, = cohesive bearing factor
Z, = frictional bearing factor
c = cohesion strength
c = overburden stress

The bearing stress (q,) or cavity pressure ( p;) was replaced by q. in Equation

(4.3) for the cone penetrometer representation. The Y2ByN,G, component in

Equation (4.1) can be ignored because the penctrometer width (B) is very small
compared to the depth. At any depth the Z, and Z; can be determined (theory
dependent) and the bearing stress, q., may be calculated. The Z_and Z_ bearing
factors are dependent on friction angle and cohesive strength for limit equilibrium or
on several geotechnical parameters for the cavity expansion theory. The principal
difference between the limit equilibrium and cavity expansion theories lies in how
the Z bearing factors are determined. The Z, for example, is as simple as the
equivalent N, factor (Terzaghi, 1943) which is based only on the friction angle, or Z,
can be based on numerous geotechnical properties which are also influenced by

stress level (Vesic, 1972, Baligh, 1976).

The following discussions separately derive a normalized cone resistance
expression for clay and sand. Nonlinear exponential effects ¢ > then be included
using the stress exponent concept. The final step s a normalized cone resistance

formulation for all soil types.




Development of the Bearing Capacity Formulation for Clay

The clay based normalized cone resistance can be derived from the generalized
bearing capacity formulation in Equation (4.3). Penetration of clay occurs as
undrained behavior. Therefore, the bearing stress for quickly loaded saturated clay is
not influenced by confining stress. As a result, the Z_ frictional bearing factor is
equal to one (1) (Terzaghi and Peck, 1967)Vesic, 1972) which reduces Equation
(4.3) to:

q. = 2,5, + ¢ 4.4)

a®u total

The cohesive strength (c) in Equation (4.2) was replaced with the conventional
notation S for undrained shear strength. The next step is to define the net cone
resistance. If the clay deposit has zero strength (i.e. $,=0) then Equation (4.3)

implies that buoyant total force will act upward on the cone bearing surface:

4, = 0, 4.5)

The net cone resistance shown in Equation (4.6) is that remaining after removal of

buoyancy.
<qc)n¢t “ 4 7 Y%l (4.6)
Equation (4.4) can now be rearranged as shown using the net cone resistance:

(qc)net = qc - owtal - ZcSu (47)

The net cone resistance, (q,),, » is now only dependent on the soil strength. The

next step requires dividing both sides of Equation (4.7) by the normnalizing vertical

effective stress, o, to produce the following:
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The normalized clay undrained strength, — , in Equation (4.8) is often represented
g

v

by IC; which can also be expressed using normalization terminology as S;:

h~ T oY

Su
= = Sul (4'9)
g,

Equation (4.8) « an now be expressed as the normmalized expression for clay as:

-0
qt : total  _ [ ZS (4.10)

o c “ul ]clay

v

Development of the Bearing Capacity Formulation for Sand

Bearing stress in sands is entirely a function of the effective stress, since sands
are frictional materials. Therefore, cohesive undrained strength, c, is zero and

Equation (4.3) simplifies to:

g =0,Z (4.11)

a

I a sand has no shear sirength (i.e. $=0), then the frictional bearing factor (Z ) is
equal to one (i.c. Nq=1) (Terzaghi and Peck, 1967)(Vesic, 1972). Therefore, q,
equals g, according to Equation (4.11) because N =1. However, for a ¢=0
condition, 0 ., ,,=u (hydrostatic stress) which means g,=0, which translates to q_=0

according to Equation (4.11) which is incorrect (it stwuia instead equal a buoyancy

48



stress). The q, in Equation (4.11) must thercfore reflect a net cone resistance similar
to that shown in Equation (4.6) for bearing stress of clay. I:quation (4.11) can now

be rewritten using the net cone resistance as shown below:

! 2
4 7 Opa = Oy Zo (41‘-)
with rearrangement, the normalized expression for sand is:
9 ~ O
- = [ Z }md (4.13)

Modification to the Bearing Formulation for

Non-linear Exponential Behavior

The vertical effective stress, o, in the denominator of Equations (4.1V)

and (4.13) is the normalizing stress. This o, requires a stress exponent to reflect the

observed non-linear behavior of cone resistance with vertical effective stress (concept
introduced in Chapter 2 and to be illustrated in Chapter 5). The resultin;: normalized
" cone resistance shown in Equation (4.14) is equal to the left side of either Equations
(4.10) or (4.13) with a stress exponent (c) included. The normalized cone resistance
(q.;.) subscripts have specific representations: "c" for cone resistance, "1" for

normalization to an equivalent valuc at a vertical effective stress of 1 atm, and "e" to

represent that normalization accounts for exponential curvature.

-— O ,
Qe = 2ol (4.14)

(o)

where

c = Conc resistance stress cxponent
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Bearing Stress Formulation for All Soi1l Types

The normalized cone resistance expression for all soil types is the combined
effect of the cohesive bearing stress expression from Equation (4.10) and the

frictional sand bearing stress expression frcm Equation (4.13) as shown below:

- qc.’e = SuI Zk * Zq (4‘15)

This new stress-normalized expression is remarkably similar in appearance to the

Terzaghi bearing formulation (expressed for deep penetrations) as shown below:

g=cN +aN, (4.16)

Equation (4.15) is expressed in terms of the normalized cone resistance, normalized
undrained cohesive strength, and bearing factors. It represents a new technigue for
cone resistance normalization that will be validated using laboratory chamber data

in Chapter 5 and using uniform soil layer data in Chapter 6. It is also the basis for a

new technique for prediction of undrained strength f clays in Chapter 8.

It will also be shown, in later chapiers, that the bearing factors and the stress

exponent in Equation (4.15) are all related 1o the combination of void ratio anc soil

type at o'v=1 atm. The bearing factors (i.e. Z, and Zq) define the mechanical

(strength) behavior at a 0'v=1 atm. And the stress exponent (c) defines the

exponential stress curvaturc of cone resistance to vertical effective stress. Therefore,
the bearing factors define mechanical strength behavior and the stiess exponent
defines the curvature of cone resistance to vertics] effective stress. Chapters < and 6
will specifically show that increasing the initial relative density, of a givea sand,

creates a higher strength (at ¢, =1 atm) and a lower stress exponent (c).

It
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Chapter 5

Cone Resistance Stress Focus—
Coniirmation Using

CPT Chamber Test Data

Introductior

The Stress Focus concept. introduced in Chapter 2, cen also be used 1o deseribe
the relationship of CP{ core resistance with overburden stiess. A cone resistance
Stress Focus concept can be used to generalize numerous effects such as cavity
expansion, Mohr envelope curvi ture, grain crushing. compressibility, and others.
Stress Focus will be confirmed based on cone resistance measurements obained from
CPT laboratory large diamcter chamber tests.  As addiiona! confirmatio.. of the
;tress Focus for in sita peineirometers, the Standard Penctation ‘test (SP) chamber

t resuits will alzo be examined. It will be shown in this chapier that the

wnship of cone esistance to vertical effective stress observed in laboratory
chanzt v tests become straight Tmes when plotted logarithmicually indicating o
corstant .tress exporent. 1 will also be shown that the trends of all relative densities
on this lugarithmic plat convarge to the Stress Focus at great depth ag itusuwawed 1n

Figure 5.1.
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It is proposed to show in this chapter tnat:

1) Cone resistance may be expressed as a function of vertical effective stress for
a given initial relative density using a constant siress exponent (indicating a
straight line on a logarithmic plot)

2) The stress exponent decreases with increasza 1aitial relative density n sands
3) The relationships between cone resistance and vartical c¢ffeciive stress
(regardless of initial relative density) converge at great depth (wnich 15 defined as
the cone resistance Stress Focus)

4) Overconsolidation causes a lower stress exponent

Interpretation of Large Diameter Test Chambe Data

The best means of introducing and defining the components of the one
resistance Stress Focus is with a good example. Figure 5.2 (Baldi, et al., 1961)
summarizes relative density contours for Ticino sand derived from a large number of
chamiber tests at various initial relative densities aad confining stress levels. These
contours were carefully established by the original resecarchers for each relative
density range. The same contours are replotted in terms of log,, net cone resistance

(e.g. (q.),c ) versus log,, o, in FFigure 5.3 (net cone resistance 1s the measured cone

resistance minus the vertical total stress as described in Chapter 4). The relationships
shown for different initial relative densities in Figuse 5.5 all converge to a common
Stress Focus for a given sand type. Relative density contours in Figure 5.3 are
remarkably straight in spite of the fact that the (q,),,, versus o, relationship
(Figure 5.2) were produced by the original authors from scattered test data without
forcknowledge of the Stress Focus concept. These relationships have also been
verified by replotting the original data as shown 1 a later section of this chapter.

‘The lines for all relative densities converge to the Stress Focus because cavity
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expansion, Mohr envelope curvature, grain crushing, and compressibility influences
are changing. A sand of initially high relative density (dense) will thus have the
same conc resistance {(and density) as a initialiy low relative density (loose) sand at

the depth of the Stress Focus.

Explaration of the Cone Resistance Stress Focus

The cone resistanc: at the Stress Focus (q,) in Figure 5.3 is at 2200 atm, and the
vertical effective stress at the Stress Focus (o) 1s 140 atm. The normalized cone
resistance 2t the Stress Focus (q.q,) 1s 16 as shown in Equation (5.1) and illustrated

in Figure 5.4.

Qory = N, = _2424000- = 16 (5.1)
4

The q.q represents the bearing factor Z; (t.e. Ny) for confining stresses greater than
the Stress Focus. This Z represents an approximate friction angle between 28 and
31 using the simplistic bearing factors ot Janbu and Senneset (1974) (sce Figure 5.5)
or using cavity expansion techniques (using a low rigidity index) (Vesic, 1972).

This friction angle is also within e range (i.e. 30° to 34°) of most granular

scdimentary rocks tested at high stresses as was reported in Chapter 2.

Figure 5.4 is an an..otated version of Figure 5.3 intended to illustrate all aspects
of the stress exponent and Stress Focus concepts. As pieviously stated, a sand of a
given relative density wili follow, with increased vertical effective stress, a straipht
pathh on a logarithamic plot to the Stress Focus.  Dense sands have a low stress
exponent, whereas loose sauds have the highest stress exponent: the exponent may
approach 1 (one¢).  Any point along a given path can be definea by the combination
of stress exponent (c) and the nonnalized cone resistance (¢, ). Ahcernatively, any

point can be defined by the stress expouent (¢) and the Stress Focas point (thei is
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defined by q . and o) a5 descrihed 1n Chapter 3.

Shallow and Deep Bearing Stress in Terms of the Stress Focus

The bearing stress conditions for shallow ind decep conditions may now be better
expiained as a result of the Stress Focus concept as itlustrated in Figure 5.4.
Shallow conditions are controlled by vertical expansion hased bearing capacity
failure (defined by limit equilibrium theorics) and deep conditions are controlled by
lateral expansion based cavity expansion cffects. Shallow bearing stress is associated
with a linear relationship between cone resistance and vertical effective stress as
reilected by limit equitibrium theories (Terzaghi, 1943, Durgunogiu and Mitchell,
1975) and shown by the transfornmed lincar behavior lines at the top of Figure 5.4,
Decp bearing swress conditions are controlled by cavity expansion (Vesic, 1972,
Baligh, 1975) and can be expressed exponentiaily (i.c. transform slope of ¢) as

shown at the bottom of this figure,

The transiticn between vertical (limit equilibrium) and horizontal (cavity
vipansion) bearing cxpansion is the "Critical depth” line. Historically, this transition
was expressed as the D/B ratio (penetrometer diameter to depth ratio) and is typically
10 10 20. Increasing relative density causes a greater cuucal depth transition as

shown in Figure 5.4 (Ketisel, 1964, Olsen, 1992} for normal penectromncier diameters.
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Using Chamber Data to Establish Trends of

Stress Exponent and the Stress Focus

Large diameter chamber tests provide the best experimental means for evaluating
stress effects on the cone resistance, because vertical and horizontal stresses can be
controlled independently. Numerous researchers over the last 30 years have
performed CPT chamber tests using a variety of sands and confining stress
conditions. This section will critically examine chamber data toward proving that the
cone resistance behavior indeed has a Stress Focus. Standard Penetration Test (SPT)
chamber tests results are also examined in a subsequent section because they inclua. =
data for a large number of well documented sand types. SPT chamber rest resuits

verify that the Stress Focus location is sand type dependent.

A computerized database of chamber tests was created based on a data listing
provided to the auihor by Professor M. Jamiolkowski in 1989. This listing represents

410 chumte, vects performed by ENEL, ISMES, and NGJ over a period of 12 ycars

LT

and represents two sand types, namely Hokksund sand and several variations of

Ticino sand.

Evaluation of the Chamber Data

The laboratory chamber data were initially divided according to sand types and
further divided into groups representative of normally consolidated and
overconsolidated conditions. Each sand type (o1 batch of a sand) was then divided
into groups based on relative densit . each having an adequate number of points

(e.g. 6 minimwm) for statistical e nuation.  For cach relative density group (of a " g
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given sand type), the individual chamber test data points were plotted as log (q )y

versus log;, ¢! as shown in Figure 5.6 through Figure 5.9.

Using statistical least square fit correlations for each relative density group, for
the purpose of determining the Stress Focus, was not successful because one or twe
poor data points will shift the best {it line; statistical correlations are easily biased by
poor data at or beyond the limits of data ranges (Taylor, 1990). Therefore a new
means was required to determine Stress Focus location. The Stress Focus location

can be iteratively varied (in the (q.),. and o, directions) until the optimum locatien

nct
is found. For each Stress Focus location, lines are projected from the Stress Focus
through each relative density data group. The optimum Stress Focus location has the

best data fit for all of the relative density lines.

The Stress Focus locations from the preceding figures are summarized in
Figure 5.10. The main observation from these plots s that a cone resistance Stress

Focus can be established using CPT chamber test data.

CFT Stress Exponent Evaluation

As shown in the preceding figures, cone resistance for cach relative density range
1. associated with a constant stress exponent relationship (e.g. straight line on a
logarithmic plot) to the Stress Foecus. The relationship of cone resistance stress
exponent (c) to relative density for the various sands (i.c. Figure 5.6 to Figure 5.9) 1s
summarized in Figure 5.11. There is an apparent trend of decreasing stress exponent

with increasing initial relative density.

Also shown in Figure 5.11 is the cone resistance stress exponent of ¢=0.61

suggested by the late H. Bolton Seed (Seed, et al., 1981) for rclative densitics
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betwe . 1% and 80%. The stress exponent is calculated frem C, using:.

sz “wce (5-2)

The Cp-based stress ¢xponent was established by Seed, et al., (1981) based on
chamber tests performed at the University of Florida. These chamber tests were, at
the time, interpreted to have a constant stress exponent for all relative densities
(Schmertmann, 19781). Tue C, based stress exponent of ¢=0.61 in Figure 5.11
envelops all of the chamber based relative densities from 4% to 80% and
specifically represcnts a relative density of approximately 60%. The overriding
conclusion from this figure is that the cone resistance stress exponent is inversely

proportional to relative density.

Overconsolidation Effects on the Stress Exponent

There is a consistent observation from chamber test results (and field uniform
layer trends discussed in Chapter 6) that overconsolidated soils have low stress
exponent values. Figure 5.12 is ar example of overconsolidated chamber data having
a wide range of relative density levels and numerous overconsolidation levels. The
solid lines represent the normally consolidated trend (from Figure 5.9) while the data
points and dashed lines represent increasing overconsolidation level. The stress
cxponents (c¢) for overconsolidation range from 0.06 to 0.24, which alsc represents
the lower range for normally consolidated very dense sand. Overconsolidation at any
initial relative density therefore produces low stress exponents. A simple means of
explaining overconsolidation effects is to compare the conventional consolidation
relationship (e.g. odometer test results) to the cong resistance versus vertical efiective
stress relationship in Figure 5.13—both have steep slopes associated with
overconsolidation. Interestingly, dense sands and overconsolidated conditions are

both locatcd in the upper right portion of the CPT soil characterization chart
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(Olsen, 1988)(Figure 1.2).

Chamber Boundary Effects for Dense Sands

Chamber size and chamber boundary conditions can affect CPT measurements.
Dense sands tested in laboratory (constant stress boundary) chambers produce
cone resistances that are lower than measured in situ (Bellotti et al., 1979; Keaveny,
1985). Typical laboratory chambers are too small to accommodate the full cone
resistance stress field produced in dense sand by a 3.6 cm diameter probe. Shear
stresses that would be generated beyond the radius of a typical chamber do not
develop because the pressurized confining water beyond the flexible boundary cannot
sustain shear stress or generate elevated lateral pressure. This results in lower
measured cone resistance in most chamber tests than are measured in situ for dense

A Torems ll

n ~n tnem Fnmtbmnan hnnoed A 4l oD vem o — ol G PR S
Wi, 1y pva UL 1aviUly vashyu Ul LG sdulld _Y!JC, 1aLiv Clidiluel

175}

diameter to probe diameter, and sand relative density are shown in Figure 5.14. This
figure implies that initially very loose, loose and medium dense sands are not
influenced by boundary effects with typical chamber diameters (i.e. diameter ratios

greater than 40).

The cone resistance Stress Focus concept developed using chamber data in this
chapter is valid for very loose to medium dense sands but questionable for dense
sands because of chamber boundary effects. Dense to very dense sand must exhibit
artificially low measured cone resistances because of chamber boundary effects.
However, it appcars that conc resistance behavior at all relative densities (for
chamber tests on a singlc sand type) converge to a common Stress Focus (Figure 5.7
to Figure 5.9). This convergence to a Stress Focus aid the fact that dense sands
must have lower-than-expected cone resistance (¢ g. Figure 5.14) must be attributable
to chamber-tested dense sands having elevated stress exponents as shown in

Figure 5.15. Dense sand tested in chambers and in situ may therefore have the same
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Stress Focus but difterent stress exponents. Bulging at the chamber boundary limits

the size of the bearing pressure bulb in front of the probe to that developed i1 a

lower relative density sand (i.e. having a higher stress exponent). A sand with an

elevated stress exponent is therefore equivalent t5 a lower relative density sand.

The elevated chamber stress exponent of dense sands in chamber tests can be
further illustrated by examining trends of stress exponent versus relative density.
Stress exponent versus relative density trends from Figure 5.11 having at least 3
relative density groups were replotted in Figure 5.16. The elevated chamber stress
exponents for dense sand are shown by the vertical arrows. This approximated

correlation of stress exponent to relative density is more linear than the relationship

derived from chamber results.
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relative densities appear to have a common Stress Focus.
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SPT Chambver Evaluation

This section will evaluatc SPT chamber test data on sand to show that the Stress
Focus location is soil type dependent. These SPT charnber data consisted of tests in
4 well documented sand types and were used to study sand type effects on location
of the Stress Focus. Data from SPT Chamber tests were therefore examinad for two
purposes; 1) to show that SPT data can be expressed with stress exponents and the
Stress Focus, and 2) to show that sand composition affects the Stress Focus location.
If the Stress Focus is a genuine geotechnical property then SPT chamber tests results

should also reflect it.

The Standard Penetration Test (SPT) blow count is defined as the number of

blows required to advance a split-spoon SPT soil sampler one foot into the bottom of

ed hammer. The SPT sampler is resisted during

ELY Siecaapawa

a borehole using a standardi

penetration by both static and dynamic end bearing and side forces on the sampler

(Schmertmann, 1979a, 19790, Douglas, Olsen, and Martin, 1981, Olsen 1988).

A comprehensive laboratory study of the SPT was performed using large
diameter chamber tests at the U.S. Army Waterways Experiment Station (WES) in
the mid 1970's by Bieganousky and Marcuson (1976, 1977). SPT chamber tests
were performed in a 4-foot diameter chamber very similar in concept to the large
diameter chambers used for CPT testing. For an SPT chamber test, a sand specimen
is prepared, confining stress applied, a borehole drilled into the sand using rotary
wash techniques (and drilling mud), and finally the SPT sampler is driven into the
sand beginning at the bottom cf the mud-filled borehole. SPT sampler blow counts
were obtained from different chamber depths, along the center of the chamber as
well as radially out from the chamber center. Only the center tcst values were used

for the currert evaluation.
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SPT Chamber Data Plotting

The procedures for evaluating WES SPT chamber data are the same as used for
CPT cone resistance data in the last section. For Reid Bedford sand, trends related
to individual relative density groups are shown in Figure 5.17 to Figure 5.19; all
relative density data and trends are combined in Figure 5.20. For Standard Concrete
sand, all relative density group trends are shown in Figure 5.21, for Platte River
sand, all of the relative density groups trends are shown in Figure 5.22, and finally
for Ottawa sand, only ore relative density group is available as shown in Figure 5.23
(all data from Bieganousky and Mz ~uson, 1976, 1977). The correlations by
Gibbs and Holtz (1957) are shown , Tigure 5.24 for comparison.

SPT Stress Focus and Sand Type

The SPT Stress Focus information from the preceding figures are summarized in
Figure 5.25 together with trends of mean grain size and material composition in
terms of feldspar percentage. Quartz is the primary material type of these sands
. with feldspar being the secondary material type—-increasing feldspar content may
reflect a lower overall sand strength. Compared to quartz, {eldspar is softer, has N
lower compressive strength, and has distinct cleavage. In Figure 5.25, as feldspar
content increases, the depth for the Stress Focus incrc1ses. A decper Stress Tocus
(due to feldspar content increase) has a lower calculated normalized cone resistance
at the Stress Focus (q.q) (see page 54 for definition) which means that ihe friction
angle at high confining stress is also lower. Chapter 6 will alsc show that the cone
resistance Stress Focus is soil type dependent and exhibit the same general trend as

the sand mean grain size in Figure 5.25.
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Chamber Test Stress Exponent Discussion

The SPT stress exponents calculated for data at each relative density (from the
proceeding figures on SPT chamber test evaluation) are summarized in Figure 5.26.
These SPT stress exponents confirm the general trends based on normalized SPT
stress exporent presented by Scud et al. (1981) that are also shown in this figure.
However, it is shown in Chapter 7 that the SPT stress exponent should be higher

because of mud pressure effects associated with SPT chamber testing.

The stress exponents developed from SPT and CPT chamber evaluations are
shown in Figure 5.27 and indicate a difference of approximately 0.18. This figure
will also be referenced in Chapter 6 during the introduction of the new SPT
normalization technique.

It is also impoitait 10 1oie thai e disiribuiion of SET siress exponent for a
given relative density in Figure 5.26 may not be due entirely to data scatter. The
stress exponent can be related to sand type composition as shown in Figure 5.28 of
which is plotted in terms of feldspar content at a relative density of 36% (likely a
contractive condition). As previously stated on page 77 and shown in Figure 5.25,
increasing feldspar content increases the Stress Focus vertical effective stress.
Increasing feldspar content also appears decrcase the stress exponent as shown in
Figure 5.28. Therefore, conceptually, the combined effects of increasing vertical
effective stress and decreasing stress exponent can be illustrated in Figure 5.29. The

Stress Focus location and stress exponents therefore appear to be interrclated.
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Figure 5.29
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Conclusion

Tiie CPT cone resistance can be represented with the Stress Focus concept. The
cone resistance versus confining stress relationship for different relative densities will
converge with increasing vertical effective stress to a Stress Focus tnat is dependent
on sand type. This sand type dependent Stress Focus location appears to be based on
gradation effects and material composition. The Stress Focus location appears to
occur at a overburden stress ranging from 70 to 300 Atm. Dense sands have the

lowest stress exponent and loose sands have a stress cxponent of approximately one.
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Chapter 6

CPT Prediction of
CPT Normalization Parameters—
Developed using

Uniform Soil Layer Data

Introduction

Stress normalization provides the means to account for confining stress influence

- L, N e o i e an ™ ' e A g A e
- SRR T P T T-<o s T NS Al N T T ST o i

on in situ measurements and geotechnical properties. However, to be useful the
stress normalization parameters must be predictable using the field CPT
measurements without auxiliary information. Data from CPT tests in uniform soil
layers can be used to establish correlations for prediction of the CPT cone resistance
stress exponent. Specifically, field CPT dawa from tests in uniform soil layers can be
used for several purposes: 1o show that the Stress Focus exists, the Stress Focus
location (i.e. equivalent overburden stress and cone resistance) is dependent on soil
type, the cone resistance stress exponent can be estimated using field CPT data, and

to prove that the CF™ svil characterization chart concepts are valid.
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Limitations and Merits of Using

In Situ Data for Stress Normalization

Evaluation of uniform soil layers is more difficult than evaluation of chamber test
data. The main difference between in situ uniform layer CPT data and chamber test
data is that in situ data can represent all soil types, whereas, to date chamber data
can only represent clean sands (and in some cases sand with fines) of low to medium
relaiive density. On the other hand, the initial relative density and confining stress
levels can accurately be varied in chamber test programs. The principal merit of

in situ uniform soil laver data is that it can represent the full spectrum of soii types

and thus that it can be used to determine the Stress Foci for all soil types. However,
| when a very uniform soil layer is found, it represents only one relative strength level; :
e.g. a sand with a 70% relative density or a clay with an undrained normally

consolidated strength ratio (c/p) of 0.32.

A single uniform soil layer has a constant trend of log net cone resistance versus
log Olv that can be represented with a constant exponent slope. To establish the
Stress Focus for a single soil type requires numerous uniform layers of varying

i relative strength consistency levels. A database representing uniform soil layers must

therefore be large enough for the purpose of establishing the Stress Focus for

numerous soil types.

N R LNV B

CabeiXL v L
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Establishing In Situ Uniform Layer Trends 3

A uniform soil layer is defined as a constan: soil type at a constant initial relative

5l . e - LT Tt e

strength (e.g. friction angle for sand or £ for clay). A plot of Log (q,), Versus
p

Log (g'v) (and Log (f,) versus Log (C"v) ) will follow a straight path over the uniform

soil layer interval as illustrated in Figure 6.1. These net cone resistance relationships
can be projected to the normalizing stress of 0'v=1 atm to determine the normalized
cone resistance, q.;.. The log-log slope is the cone resistance stress exponent (c).

Soil samples are not required for this technique, although proper soil classification is

useful for indexing purposes. ’

Logarithmic plotting emphasizes the lower stresses, therefore special care was

exercised while identifying uniform soil layers—For example, a depth interval of

3 1o 8 ft has approximately the same log ( g'v) differential (i.e. 0.3) as the depth range

from 30 to €0 ft. Shallow uniform soil depth zones are artificially emphasized. It

would be easy to use a simple Alog,, (o'v) criterion such as 0.2 to represent a
minimum uniform depth zone. However, it was important to examine deep layers

for small ALog,, (o'v), such as (.08, that could represent a uniform 12 foot layer at

olv= 2 atm.

Approximately 600 field CPT soundings werc examined for depth zones having a

constant relative strength. This was accomplished by plotting all CPT soundings

using the Log,, (nct q ) versus Log,, (g,) and then examining the traces for any
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v

Dctermining the conc resistance normalization value (q,,,) and
corresponding stress exponent (c) using uniform soil layers

96




depth zone having constant slope (indicating a uniform relative strength level).
Identifying uniform soil layers using CPT data was a developed skill that improved
as more data was evaluated. Only 78 uniform soil layers were extractable from the
600 CPT soundings. An example of a uniform soil layer is shown in Figure 6.2 with
the soil layer limits and normalized parameters shown by computer-plotted lines
based on the data from the database. For each uniform soil layer, the following

information was extracted,
1) normalized cone resistance, q,. (e.g. equivalent (q.),., at o'v= 1 atm)
2) q. log-log stress exponent (c)
3) Normalized sleeve friction resistance, f,,
(e.g. the equivalent f, at ¢ = 1 atm)

4) {, log-log stress exponent (s)

5) Calculated normalized friction ratio, R

e pased on f, and q_,,
L

N
N’
[¥p]
@)
g
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[T )
-y
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=
g}
o]
(ia°]
n
b
3
[ty
]
(v 4
g
o
]
»
i3°
[(]=]
]

r the deposit type it
7) The Academic Quality Index (AQI) which is based on soil layer uniformity
potential and quality of the cone and sleeve fiction resistance measurements-(see
Chapter 8 for description). The AQ! is a subjective quality index based on the

academic grading scale; 75% is average, 85% is gocd and 95% is excellent.

8) Top and bottom ¢, limits of the soil layer.

Establishing Cone Resistance Stress Exponents

using the CPT Soil Characterization Chart

The CPT soil characterization chart was used to develop predictive contours for
the cone resistance stress exponents using data from uniform soil layers. As
illustrated in Figure 6.3, uniform soil layers are identified (Step #1), normalized CP7T

paramcters arc calculated (Step #2 & #3), the results arc assigned to a point on the
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Figure 6.2  Example of in situ cone resistance data having a uniform soil layer
with the stress cxponent, ¢, and normalized cone resistance, qg,,
defined
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CPT soil characterization chart (Step #4), and the point is assigned the cone
resistance stress exponent (c) (Step #5). This point represents one uniform soil 1ayer.
Figure 6.4 to Figure 6.13 represent a few interpreted uniform soil layers for different
soii types and relative strengths. Also shown at the bottom left corner of each figure
is a representation of the CPT soil classification chart (logarithmic 3 cycles by 2
cycles) and the normalized point that represents the uniform soil layer. All available
data from uniform soil layers are plotted in Figure 6.14 using the techniques
illustrated in Figure 6.3. The estimated contours of cone resistance stress exponent

based on the trends of plotted data points are also shown in Figure 6.14.

Discussion of Cone Resistance Stress Exponent on the CPT Soil

Characterization Chart

Figure 6.15 is a replot of Figure 6.14 with the soil type ot each un.form soil
layer data point indicated. Also shown in this figure are CPT soil classification lines
from Olsen (1988). The soil classifications of the uniform soil layers approximately
match the CPT soil classifications. Figure 6.16 is an annotated version of
Figure 6.14 that also describe various soil characterization zones. Note the lack of
uniform soil dats for soil mixtures and silt in the middle of Figure 6.14; Thick
layers of a soil mixture or silt are seldom found in nature because the required

deposition dynamics are difficult to maintain over large soil depths.

The contours of cone resistance stress exponent in Figure 6.16 reveal important
intormation about the estimated cone resistance contours. Loose sands typically have
low friction ratios (Masood, 1990) because the N bearing factor is low. Loose
sands should also exhibit littlc Mohr envelope curvature and, therefore have a stress
exponent very close to one as described in Chapter 2. The stress exponent contour
of one approaches the annotated loose sand zone on the CPT soi! characterization

chart, as expected. Also, normally consolidated clays should have stress exponents
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Figure 6.5
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of one or slightly less; the stress exponent contour for normally consolidated clay is
between 0.8 and 1, as expected. Dense and overconsolidated sands have stress
exponents contours between 0.15 and 0.55, as expected. Overconsolidated clays are
shown to have stress exponent contours between 0.55 and 0.75, also as expected.
Unstable silty clay (i.e. silt structure with underconsolidated clay matrix) have stress
exponznts of about 1.1 to 1.5 and are located at the bottom right of the CPT soil

characterization chart, which is a new finding.

The cone resistance stress exponent contours displayed in Figure 6.16 are
approximately perpendicular to the CPT soil characterization (classification) lines.
For a given soil type, increasing the relative strength (e.g. relative density for sand)
should move the CPT-based soil characterization (i.e. q;, and FR;, point on the
chart) along a contour of constant soil type to the upper right (Olsen, 1988, 1984). It
was shown in Chapter 2 that as relative strength increascs, the stress exponent

decreases. Soil type and rela

iue etrancth chanld
e WwWwTAI WSt S ASAA J WwALAML ¥ &% WWL

ength should be in
because they define different aspects of a soil; i.e. what it is and the state that it's in.
For a given soil type, a relative strength increase can be represented on the CPT soil
characterization chart as a decreasing stress exponent contour level (i.e. increasing
relative strength) along a given soil type contour as shown in Figure 6.16. The CPT
soil characterization chart is therefore, verified in part, therefore, becausc the soil

classification contours are approximately perpendicular to the stress exponent

contours.




Establishment of the

Sleeve Friction Resistance Stress Exponent

The CPT sleeve friction resistance is obtained through a high-strain strength
measurement where the confining stress on the sleeve is equal to the cylindrical
cavity expansion pressure (Masood, 1990). Sleeve friction resistance is also
influenced by many of the same geotechnical properties as the cone resistance.
However, the sleeve friction is a high strain strength measurement; wher=as the cone
resistance is a bearing stress (many times higher than confining stress) that is
dependent on both small and large strains. Therefore, the sleeve friction stress

exponent should not be equal to the cone resisiance stress exponent.

Direct Correlation of Sleeve and Cone Stress Exponernts

The first attempt toward developing a correlation between sleeve friction stress
exponent and cone resistance stress exponent using uniform soil layer data was
simply a scatter plot of sleeve resistance stress exponent (s) versus cone resistance
stress exponent (c) as shown in Figure 6.17. This figurc shows a large data scatter
but suggests that both stress exponents are approximately equal without considenng
soil type or relative strength consistency contributions. The large scatter does

indicaie that other factors are influencing the relationship between the two exponents.

The sleeve friction is more difficult 10 measure accurately than the cone
resistance because of mechanical constraints such as strain-gauge accuracy, thermal
effects, and dirt clogging the ioints (Olsen, 1994). As a result, it was not possiblc to
establish contours of the sleeve friction stress exponent (s) or the ratio of s/c on the

CPT soil characterization chart. A reliable s/c ratio would allow the less accurate
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sleeve resistance stress exponent (s) to be indexed to the more accurately determincd
cone resistance exponent (c). The only correlation that proved satisfactory was that
between the s/c ratio and normalized slecve friction resistance, as shown in

Figure 6.18. The s/c ratio is interesting because it is analogous to the ratio of
cylind-ical expansion pressure (on the sleeve) to the spherical plus cylindrical
expansion pressure (for the cone) as illustrated by Equation (6.1). The s/c appears
to correlate to the normalized sleeve friction resistance quite well probably because

the sleeve measurement is primarily influenced by cylindrical cavity eftects.

sleeve stress exponent (s) cylindrical pressure (6.1)
cone resistance exponent (c) cylindrical pressure effects + spherical pressure
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Determining the Soil Type Dependent Stress Focus

using Uniform Soil Layer Data

CPT data from tests in uniiorm soil layers was used to show that the Stress
Focus iocation is soil type dependent. The first step in this process involved dividing
the in situ uniform soil layer database into 3 soil classification groups: clays, soil
mixtures, and sands. This grouping of data was accomplished based primanly on
soil type observed in nearby borings and secondarily on the information about the
sitc geology. Only a smail portion of the database was composed of uniform soil
mixtures due to the geologic scarcity of such deposits. These soil classification
groups were also further distinguished as either normally consolidated or
overconsolidated soils. Overconsolidated soils have very low stress exponents
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cf *he moderately overconsolidated sands probably were classified as normally

consolidated dense sands hecause their behavior is similar (o that of a dense sand.

Developing the Stress Focus Relationship for Ditferent Soil Types

All uniform clay layer data collected in this research program are shown in
Figure 6.19. The projections for normally consolidated uniform clay layers (using
different clay types) produces a Stress Focus at an overburden stress of

approximately 9 atm.

A clay Stress Focus can also be observed using Figure 6.20 by ploiting the clay
and silty clay trends using the stress normalization format from Chapter 3 with the
resultant shown in Figure 6.21. The clay trends in Figure 6.21 appear to converge to

a Stress Focus at an overburden stress of appreximately 5 to 10 atm, that is
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Figure 6.19  Prejections of trends for uniform in situ clay layers in terms of log net
cone resistance versus log vertical cffective stress
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approximately the same as 9 atm from Figurc 6.19.

The data in Figure 6.19 indicate that normally consolidated clays have a stress
exponent (c) of about 0.8 to 1.0 and a normalized cone resistance (q,) of about
3.5 atm. A cone resistance stress exponent of 0.8 (also shown in Figure 6.16) is
significant because prior geotechnical property formulations (e.g. prediction of S, for
clay) have historically implied a stress exponent of one. The stress exponent of 0.8
to 1 results because net cone resistance rather then the raw cone resistance was used
to establish the trend—soil strength level is more proportional to the

net cone resistance than the raw cone resistance (Chapter 4).

The Stress Focus for clay occurs at a vertical effective stress of approximately
9 atm. The undrained strength at the clay Stress Focus, assuming a ¢/p of 0.31, is
approximately 5600 psf (280 KPa). A clay strength of 4000 psf (200 KPa) has a
strength discriptor of hard (Peck, et al., 1974) aud 1s af the lower boundary for
classification as a compaction sha'e. It is therefore reasonable to assume that a shale

like behavior starts at the Stress Focus for clay deposition.

Overconsolidated clays were observed to have a higher q . and lower stress
exponents than for a normally consolidation condition. The overconsolidated stress
exponents typically ranged from 0.4 to 0.6, whereas normally consolidited clay stress
cxponents range from 0.8 to 1. The clay stress exponent due to overconsolidation is
therefore approximately 50% to 60% of that associated with the normally

consolidated condition.

All uniform sand layer projections are¢ shown in Figure 6.22.  The uniform sand
layer trends are shown to project to a general Stress Focus because different sand

types can not be distinguished.  Overconsolidated sands have low observed stress

exponents, as expecied.
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All uniform soil mixture layer projsctions are shown in Figure 6.23. Soil
mixtures arc more complex and cover a wider range of conditions than do clays or
sands. As a result, the soil mixture layers projections are more complicated than for
clay or sand. For example, dense silty sand can be stronger than a dense clean sand
and a honeycombed silty clay may have a moderately high sensitivity much like
salt-leached clay. The locus of Stress Focus trends in Figure 6.23 represents the
zone projection for all soil mixture classifications. Clayey soil mixtures project to
the upper left of the elliptical locus and stronger sandy silts with higher q,, are
project to the lower right of the elliptical locus. Unstable soil mixtures are also
depicted and project into the soil mixture Stress Focus to the upper left of the

eliptical locus.

Soil Type Dependent Trend of the Stress Focus

There is enough information at this point to support establishment of a
soil type-dependent Stress Focus that will be called the "Stress Focus boundary™.
Shown in Figure 6.24 arc the Stress Foci for clay (from Figure 6.19), soir mixtures
(from Figure 6.23), and sands (from Figure 6.22). Also shown are the Stress focus
locations for Hokksund and Ticino sands from laboratory chamber test evaluations
(from Chapter 5). The soil type dependent Stress Focus boundaiy is shown as a
thick dashed line that passes through all of the Stress Foci. This boundary is curved
and represents an increasing normalized Stress Focus (q.q) (see Chapter 5 for
definition) as the soil classification changes fiom clay to sand. Conceptually, the
Stress Focus boundary represents the boundary between a soil-like and (sedimentary)

rock-like mechanical behavior.

The soll type dependent Stress Focus boundary is depicted agrain in Figure 6.25
to show behavior at coniining stresses iower and higher than th Stresz Focus. Fo.

confining stress less than the Stress Focus, a few example soil types are Jdepicted
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together with different relative strength trends.  Also shown is the probable behavior
for all soil types at cenfining stresses beyond the Stress Focus; this behavior is likely
at a stress exponent of one and in a domain where strength behavior is

(sedimentary) rock-like.

Conclusions

The main requirement for normalizing the CPT measurements is the stress
exponent. Figure 6.16 can be used to determine the cone resistance stress exponent
using field CPT data. The sleeve fiiction resistance stress exponent is estimated
using Figure 6.18 in conjunction with Figure 6.16. Cons resistance stress exponent
contours are approximately perpcndicular to soil classification lines in the CPT soil
characterization cnart; representing indirect support for the validity of the ckart.
Finally, in situ uniform soil laver data and chamber test data were used to establish

the soil type dependeni Stress Focus boundary.
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Chanpter 7

Normalization of

Selected Geotechnical Properties

Introduction

Geotechnical property normalization is vital toward development of CPT-based
prediction correlations and prediction of in situ geotechnical properties. CPT
prediciion of geoiechnical properiies requires accuraie siress normailzation;
otherwise, for very shallow or very deep conditions, the stress normalization will
itself induce errors into the predictive process. This chapter will describe new
normalization techniques for the Standard Penetration Test (SPT) blow count and the

shear wave velocity.

Standard Penetration Test (SPT) Normalization

Normalization is required to convert the measured SPT blow count, N, to a
representative value that would be measured when vertical effective stress
equals 1 tsf (e.g. approximately 1 atm). This normalized SPT blow count can then
be used to predict a variety of normalized geotechnical properties, such as
liquefaction resistance and friction angle. A new obscrvation will be introduced that

results from the fact that SPT laboratory chamber tests are subject to a stress relief
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associated with the constant mud pressure in the chamber borehole. During a SPT
laboratory chamber test, the borehole mud height is always the same (approximately
6 feet), regardless of the chamber confining stress level. Quantifying this pressure
relief will show that the SPT chamber-derived stress exponents are too low. It will
also be shown that the correct SPT-based stress exponent for field applications is

equal to the CPT-based stress exponent.

Historical SPT Blow Count Normalization

The state-of-the-practice for Standard Penetration Test (SPT) blowcount
normalization for the last 12 years was developed by Sced et al. (1983) and later
confirmed by Skempton (1986). This SPT normalization technique uses an exponent
of the vertical effective stress for two relative density ranges. Seed et al. (1983)
used data from the Bieganousky and Marcuson (1976, 1977) study to develop the
SPT Cy normalization parameter shown in Figure 7.1. The SPT blow count, N,
(i.e., measured using equipment that delivers 60% of theoretical maximum free-fall

hammer impact energy or adjusted to simulate same) is converted to a

stress-normalized value, (N,),, at an equivalent vertical cffective stress of 1 ton/ft?
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using the following equation:

(N)g = Ngo Cy = Ngg (7.1)

where

N = Normalized SPT blow count, equivalent SPT at a vertical
effective stress of 1 ton/ft? (approximate atmospheric pressure)

Ngo = SPT measured blow count at 60% of theoretical maximum free-
fall energy which is the US approximate average achieved in
practice

g, = Vertical effective stress in tons/ft* (e.g. approximately
1 atm, 100 KPa, 0.1 MPa, etc.,)

n = SPT overburden stress exponent
(n~0.55 for relative densities from 40 to 60% and
n=0.45 for relative densities from 60 to 80%)

Cx = SPT normalization factor (See Figure 7.1)

A range of Cy values back-calculatcd from field and laboratory chamber test
results 1s shown in Figure 7.2 (Skempton, 1986) in terms of overburden stress.
Overburden stress is always represented in terms of tons/ft> (approximately 1 atm)
and Cy is equal to 1 when the vertical effective stress is 1 tsf (i.e. approximately 1
atm). For the last 12 years, equivalent SPT stress exponents of 0.45 for relative
densities from 60 to 80% and 0.55 for relative densities between 40 to 60% as shown
Figure 7.1 have becn widely used. The CPT chamber-based stress exponents arc
typically 0.6 to 0.7 (Schmertmann, 1979a), with 0.61 commonly used for relative
densities between 40 and 80% (Seed, et al., 1983). Thereforc different stress

exponents for CPT and SPT normalization have been inferred from chamber test.
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There appear to bave been no theories developed to explain why the stress cvponents
for Equation (7.1) decrease with increased relative density or why therc is a

difference between CPT and SPT chzmber derived stress exponents.

SPT Blow Count Normalization

As background, SPT chamber data were evaluated in Chapter 5 and show that the
SPT Stress Focus location is sand type dependent. Also shown were correlations of
SPT chamber derived stress exponent versus relative density. The SPT chamber
testing procedures used by Waterways Experiment Station (WES) were also

described in that chapter.

Stresses at the SPT Sampler

Distinguishing the stress states developed during penetration at and nearby the

SPT sampler is important for the discussions to follow. These stresses are illustrated

i Figure 7.3, The SPT blow count reflects a complex combination of static and

dynamic forces acting at the end and along the side of an SPT sampler. The
combinition of all these forces on the SPT sampler determines the SPT blow count.
The SPT blow count is also dependent on confining stress as reflected in the C|
normalization technique. Therefore, because the SPT blow count is proportional to
the confining stress, the stresses influencing the SPT sampler (o) are dependent on
the confining stress (o, ) adjacent to the SPT sampler. 1f the mud pressure
iniluences the confining stress ner to the SPT sampler (o, ) then the stresses that

infiuence the SPT blow count (o) will be affected.
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Mud Stress Influence at the SPT Sampler

i i
GRPI

In the field, the borehole mud pressure is approximately equal to the soil vertical

effective stress. 1f the borechole mud pressure is low (which is true in chamber

L

testing) in comparison to the soil vertical effective stress, then ihe confining siress

{o,.) next to the SPT sampler will be reduced. It is outside the scope of this

3

dissertation to determine analytically the exact reduced stress level at the sampler due

to reduced mud pressure effects; however, an approximation will be examined. At

£
A
g

f Ta

the bottom of the chamber borehole, the reduced mud pressure decreases the effects
of the in situ vertical effective stress around the SPT sampler. The typical S-inch

diameter borehole bottom can be thought of as an equivalent "reversed” circular

i footing exerting an upward stress equal to the difference between the in situ verticel
effective stress and thc mud pressure as shown in Figure 7.3. At a SPT sampler

penetration of 18 inches (1% feet), the ratio of equivalent footing diameter to depth

ig 3!%; this results in a "reversed footing" stress transmission of approximately 5%

based on the simplistic Boussinesq stress distribution theory (Lambe and Whitman, ‘.:;';-:‘

1969). However, the SPT blow count is determined by advancing the SPT sampler

from 6 to 18 inches below the bottom of the borehole. At a depth of 6 inches, the
ratio of equivalent footing diameter to the depth is 1.1 which corresponds to a Jq
“reverse footing" stress transi.issien of apareximaely 30%. Therefore, the mad ‘

pressure cfiects on the SPT sampler end bearing forces during penetration starts at a

transmission of 30% and reduccs to 5% at the end of penetration.

R,

IO,
R
";" -

% The side frictional forces generated duning, 18 inches of SPT sampler penctration

o arc also affected by the mud pressure effects. The SPT sampler side friction
12 ,
! cveloped fiom O to 6 mches below the bottorn of the borehioic dominates the
] !

sampler side frictional force duwitng sampler penctrations from 6 to 1¥ inches
(Schmerimann, 1979a). Morcover, the side fiiction at 18 inches below the bottom of

the borchole will only 1nflucnce the final blow couni. Side friction contributions "y

from the first 6 inches are several timnes more infivential than ftom the last 6 inches
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of penetration. Sampler side friction influence therefore decreases with depth below
the bottem of the borehole. As a result, the mud pressure transmission from the
cquivalent mud pressure "reverse footing" on the SPT side friction is probably

greatel than 60% because the first 6 inches of side friction is so dominant.

The SPT sampler is resisted during peretration by a combination of end beanug
and side frictional forces (Schmertisann, 1979a, and Douglas, et.zl, 1981). Reduced
mud pressure influences will afiect both of these SPT sampler forces. The stresses
sarrounding the sampler (G,.) should therefore be reduced by an amcunt equa; to 10
10 50% of the difference between the in situ vertical effective stress and the mud
stress at the bottom of the bore hole (1.e. mud pressure "reverse footing” etfect).
This 10 to 50% range 15 based on the 60% value given f{or side frictional force
in’ 1ence and the 5 to 30% range for end bearing forces. Tor the inumediate
discussion to follow, an arbitrary 30% reduction will be assumed. However, other
mud pressure reduction factors will also be evaluated at the end of the SPT

norrmaltzation section.

Stresses ai the SPT Sampler for Field In Situ conditions

For a {icid condition, the mxd pressure at the bottom of a bore bole shown as
line B in Figure 7.4. The vertical effective stress 1s shown as line V. The caiculated
confining stress at the SPT sampler for the field condition, (o), is shown as line F
using the 30% mud pressure influcnce.  The resulting confining stiess on thie SPT

sampler (o), is lincar and very close to the vertival effective siress. Therafore, mud

pressure does not significantly influence the SPT sarapler {or field conditions.
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Stresses at the SPT Sampler for Chamber Testing Conditions

SPT laboratory chamber tests have a constant borehole mud heig.¢ for all
clhramber overburden stresses. This mud pressure is always equal 10 a 4 10 6 feet
colunmn of mud having an approximate pressure of 0.1¢ 1sf 25 shown as Line M in
Figure 7.5. The calculated confining siress at the SPT can:pler for the chamber
condition, (g,.), , is shown as line C using the 30% mud presswe influence
assumption previously discussed. The slope of Line C on the log log plot in terms

.

of vertical effective stress is 0.70.  Line C represents the relationship between

confining stress surrounding the sampler (for chamber tests) (e¢,.) . and o).

SPT Chamber tests yield blow count versus ), relationships that are analogous
to the stress influencing the SPT sampler (o), versus ... From historic SPT
charaber tests, this relationship between (o). and g, has a SFT stress @xponent of

approximately 0.50. The 0.50 stress exponent is the average of 0.45 to 0.55 by Seed
et al. (1983) or is the average of the range at a relative dersity of 60% from
Chapter 5. A suess exposent is simply the log log slope as shown as Line L in

Figure 7.5 for the (o), to ..

All the stress relationships that influence th : SPT sampler have been described
and are in terms of g, . Line C (mud pressure influence) describes the reduced

confining stress next to the SPT sampler (0,.) ., and line L (from interpretation of

chamber tests) describes the stresses on the SPT sampler that influence the blow
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count, (0;) .. Both are in terms of vertical effective stress. Line C can be

represented as;

(osc)c

C, = — (7.2)
(ov)0.70
where
(0,0 = SPT sampler gonfining stress level
for the chamber condition
C, = normalized parameter (equivalent value at 1 Atm)
Likewise, Line L can be represented as:
g._.
L = ( I")C (7.3)
( OV)O'SO

where
(o). = SPT sampler influencing stresses
for the chamber condition
L, = normalized parameter (equivalent value at 1 Atm)
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Equations (7.2) and (7.3) can be combined to determine the ratio of stresses

influencing SPT sampler (i.e. blow count) to the confining stress next to the SPT

sampler:
_ (osc)c
- | 070 (7.4)
(Osi)v 0.50
L
with further reduction and condensing:
x, = 0 (7.5)
1 (071 )
O

where

X, combined normalized effect

This formulation relates the stresses influencing the SPT blow count, (a ;) ., to
the confining stress next the SPT sampler in the chamber, (o, ) . with a stress
exponent of 0.71. Equation (7.5) therefore relates the SPT blow count (as reflected
by (o, ).) to the actual confining stresses at the SPT sampler ( (o). ). For the

field SPT condition, the confining stress next to the device is approximately equal to
.- In both cases, SPT blow count is related to the confining stresses surrounding
the SPT sampler as shown in Figure 7.6. For the fiel? FPT condition, the confining

stress is equal to the vertical effective stress (g,). However, for chamber SPT tests,

the contining stress is equal to the mud pressure reduced confining pressure ( (o))

The ultimate goal for field SPT normalization is a relationship of SPT blow count

(N) o g.. Equation (7.5) reflect this N to a,, relationship because the chamber

reduced confining stress (o). influences the SPT sampler just like the field ¢

influen es the SPT sampler. Therefore, the stress exponent of 0.71 in Equction (7.5)
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(rather than 0.5 for Line L in Figure 7.5) is the correct stress exponent for field SPT
situations. The next few paragraphs will show that the SPT field condition (i.e. SPT

stress exponent) is equal to the CPT chamber conditions (i.e. CPT stress exponent).

A simple means of determining the stress exponent for (o) . based on the mud

- pressure reduction value and the chamber test stress exponent can be developed

based on logarithmic construction with the result shown below:

b= "1
7.6
1R o
100
for
(o
X, = _‘_,’f)_f (1.7)
(9 \,“‘
v M
where
b = Stress exponent for confininy stress adjacent to SPT sampler
n = Stress exponent determined from SPT chamber tests
(from historic SPT chamber test.)
R, = Percent reduction of confining stress on the SPT sampler due to

the mud pressure

Using the initial example of n=0.5 and R_=30%, the result is b=0.71 using
Equation (7.6). For a loose sand, the mud pressure reduction (R_) at the SPT
sampler conld be 20% (low end of the range of S to 50% on page 137), the chamber
stress exponent could be n=0.6 (see Chapter 5), and the result is calculated to be
b=0.75. For a dense sand, the reduction factor could be R =45% (high end of the
range of 5 to 50%;, the chamber stress exponent could be n=0.22 (see Chapter 5),

and the result is calculated to bc b=0.40. The average stress exponcat (n) for the
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probe) for chamber and field conditions
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SPT chamber stresses influencing the sampler ((9,;) ) to g, for these three

examples is approximately 0.44; which is at the lower range of the

Seed, et al. (1983) range of 0.45 to 0.55. The stress exponent (b) for the SPT feld
stresses influencing the sampler ((0;),) to g, for these examples is approximately

0.62; which is within the range of 0.6 to 0.7 from CPT cone resistance chambei
tests. For these examples, the difference between stress exponents (n) and (b) arz
specifically 0.21, 0.15, and 0.18, with an average of 0.18.

The difference between the CPT chamber stress exponents (c) and SPT cham:ber
derived stress exponent (n) are shown in Figure 7.7 (taken from Chapter 6). This
stress exponent difference (i.e. c-n) in Figure 7.7 is about 0.18, which is also the
approximate difference between the SPT stress exponent (n) and (b) from the
previoﬁs paragraph. If c-n approximately equals b-n then ¢=b. Therefore, the cone

resistance stress exponent (c) equals the field based SPT stress exponent (b). This is

additional evidence that the CPT cone resistance stress exponent (c) 1s the correct

SPT stress exponent for field SPT data normalization.

Conclusion

The Seed SPT stress exponents of 0.45 to 0.55 are in error because of muc
prassure influences for chamber tests at high confining stresses. Drnlling mud
pressures at the SPT sample in chamber tests are too low compared to those that
exist in the field. The best stress exponent for SPT normalization is the CPT cone
resistance stress exponent. The CPT cone resistance stress cxponent also falls within
the range of back-calculated Cy in Figure 7.2. Chapter 6 introduced a technique ard
chart for determinirg the CPT cone stress exponents using field CPT data from
which the SPT normalization stress exponents can be taken as weii. To determine
the best stress exponer’ for SPT stress normalization therefore requires a nearby CP}

sounding where CPT stress exponent can be estimated.
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Normalization of the Shear Wave Velocity

Introduction

CPT prediction of shear wave velocity requires a good technique for
normalization of the shear wave velocity——and the shear wave velocity normalization
requires a technique for estimating the shear wave velocity stress exponent.
Correlations for CPT prediction of shear wave velocity will be developed in
Chapter 8. A shear wave velocity normalization forraulation must be simple
(following the stress normalization concepts from Chapter 3) and be relatable to
previously proposed formulations. A variable shear wave velocity stress exponent
will be introduced and shown to be dependent on soil type, and predictable using the

CPT cone resistance stress exponent.

This shear wave velocity normalization formulation should also be based on the
maximur shear modulus formulation because the two arc theoretically related. The
first step will be to introduce the maximum shear modulus fermulation and then
show that the historical formulations can be related to it. The next step is converting
the normalized maximum shear modulus formulation to the normalized shear wave
velocity formulation. The final step is to correlate historical stress exponents for the

wave velocity 1o the stress exponent for the CPT cone resistance.
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Definiticr of Normalized Maximun: Shear Modulus

Using the stress normalization concepts in Chapier 3, the normalized maximum

shear riodulus can be defined as (Olsen, 1988):

Grnax = (Cam), (o'v):m (7.8)
whers
S = shear maodulus (in Atn units)
Gpai = NomnalizeG shear modulus at an equivalent vertical effective
stress of | atmospheric pressure
m = Shear meduius exponent value

This equation requires verification that it does represent a generalized maximum
shcar modulus formulation. Verification is shown in Table 7.1; (G_,,); are shown
that are derived from historic maximum shear modulus formulaticns. The next step is

converting (G,,,,), to a normalized shear wave velocity (V) using theoretical

relationstups.

Relating Maximum Shear Modulus to Shear Wave Velocily

For linear elastic behavior, the maximum shesr modulus is theoretically velated to

shear wave velocity, V,, (Telford, et.al., 1976) as shown below:

GM = p l/; (7‘9}
where
V, = Shear wave velocity (in units consistent with G, and p)

p o= Mass density
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This equation can be combined with the normalized shear modulus relationship

(Equation (7.8)) to produce the following:

ame 2 7.11
(Gmﬂ)j (.OV)am, =P V5 ( )
where
(0,) aem = Vertical effective stress in teims of Atinospheric pressure
(mean stress {0,,,,,) 15 historically used in thi~ place however
Omean 1S Simply equal to £ (o,) (See Chapter 2) )
m = Stress exponent for G,

With simple rearrangement, shear wave velocity, V, 1s equal to:

This is the basis for the normalized shear wave velocity formulation.

normalized shear wave velocity, V,,, from Equation (7.12) is defined as:

| (G,

p

with the shear wave velocity stress exponent (v) equal to m/2. The normalized shear

The

(7.12)

(7.13)

wave velocity formulation is thercfore defined as the following, based vn Equation
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(7.12) and using Equation (7.13) with v=m/2:

4 = ) ( ')V (7':4)
(I”)fp.f (V-"”fl” ) am
where;
v = Shear wave veiccity exponent = =
Vedgps = Normalized shear w2ve velocity in terms of feet/secend

(V,, can be defined n: any velocity units)

Relationships of Shear Wave Velccity Stress Ezponent to Snil Type

Lee and Campbell (1985) presented generalized relationships of <hear wave
velocity versus depth based on 15 years of project work. Th's summary o. shear
wave data obtained for ditfering site conditions are in terws of log shear wave
velocity versus log depth. The publication does not present the actval data; however,
it presents the general trends and range based on the data. An exaivole fur firm
natural scils is shown in Figure 7.8. These shear wave velocity verses depth weads

were also represented as showu below,

V.=Kd+ c) (7.15)
where
V, = Sircar wave velocity, 1a uaits of ft'second
d = depth, units of feet
¢ = depth, accoums for the non-liear intersection of shear wave velocity
at the ground surface
n = depth exponent
K = consteat ia tenns of ips/A”



The cepth exponent (n} can be related vo the shear wave velocity stress
eaponent (v), because depth is nsed to calculate the vertical effective stress from the

eflective unit weight (y') as shown below;

() = (v Hy ) = (V) (Hyp) (7.16)

The wrertical effective stress and depth parameicrs in Equation (7.16) both have the
sae exponent. Therefore the depth exponent (n) in Equation (7.15) is
approximately equal to the shear wave velocity stress exponent {v), at least for
normalization purposes. Lee and Campbell's (1985) data were summarized for soft
natural soils, intermediate firm nzatural soils, and firm soils as shown in Table 7.2.
The depth exponent (i.e. strecs expouent) from this table will be related to soil type
and the CPT cone resistance siress exnonent at the end of this discussion.

Tahle 7.2 Shear wave velocil, parameteis detennined from daw: presented by

Lee and Campbeil (1985) for differing scil conditions

T % Probably medium dvuse sands and ni cium sig days

A RRNTTIIALITT

** Probably dense sanas
¥*1= Approximately VYV, at o’ =1 At
*a¥r Approximately equal to the siear wave velocity stiers exponsnt (v)

Soil V (ﬁ.’sea) ata d\,pth oi | Demb exponent (n)
classification AU 1 for shear wave velo.,lty
- A e — '..‘."—":'v\.-‘- e B AR AL gl ol R LA g L R TR L T —————
] Soft nnural soils 780 0.46
Intermediate fin 950 0.43
natural soils
Fi'm soils 1300 0. 1

Shear Wave Veiacity Stress Exponent trevd from a Sand Site

Biidv, Droezd, Superbo, Bettaglio aud lemioli-ewski (1688) siudied the meastved

shear wave velocliies icr Po iver sana:.
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These sands have a fines content (in termns
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of the percent passing the #200 sieve) ranging from 3 to 9%. They related
overburden stress and maximum shear modulus in a form indexable to Equation (7.8)
but also related fines content to the stress exponent (m) for the maximum shear

modulus as shown below:

[P
m = 043 + 03922 (7.17)
100
where
m = Stress exponent for the maximum shcar modulus
Paoo = percent passing the #200 sieve as a percent

This equation can be expressed for the shear wave velocity stress exponent (v) as

shown below, because (v) is theoretically equal to half of (m).

{n \
v = 0215 + 0.195|-2% (7.18)
100

For a clean sand (i.e. P,y;=0%) the shear wave velocity stress exponent (v) is 0.21
and for a sand with 10% fiues content (P,,=10%) the stress exponent (v) is 0.24.
Therefore for the transition from clean sand to dirty sand, the shear wave velocity

stress exponent changes from 0.21 to 0.24.

Relating Stress Exponents for Shear Wave Velocity & Cone Resistance

Table 7.3 presents additional data relating the soil type to the shear wave velocity
stress exponent fromn published sources and this research. The table indicates that the
shear wave velocity siress expoient for clay ranges between 0.42 to 0.50 and for
sands ranges between 0.18 and 0.28. These ranges from Table 7.3 together with the

Baldi et al.{1988) and Lee and Campbell (1985) data are summarized in Figure 7.9
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in terms of soil type. Also shown in this figure are typical cone resistance stress

exponents from Chapter 6 based on soil type. The trends from Figure 7.9 indicate

that the shear wave velocity stress exponent (v) is approximately 45% of the

estimated cone resistance stress cxponent (c).

While this stress exponent prediction

technique can only be considered an estimate, it represent the best method when

there are no uniform layers to support establishment of a stress trend.

Table 7.3 Published stress exponent for shear wave velocity
' V., [ Stress R
Basxc ‘n‘s pecific (ft/sec) exponent,
soil type Soil type P N Reference
Review of 0.18to 0.25 étokoe, Lee & Knox, 1985
published
dry sands
Wftawa sand | equation 03 Mardin & Richart (1963)
tawa sand | equation 0.25 ardin chart (1963) |
rine quartz 182 0.28 amilton (1971)
Sand e quartz 846 0.31 amilton (1971)
.0arSe 941 V.26 amilton (1971)
uartz
C ay J-=%=T- ardin and Drmevich
Clays (1972)
(Normally askan 375 0.42 Singh & Gardner (1979)
Consolidated)klays
over 1 1 Singh & Gardner (1979)
consolidated
Clays Alaskan clay
(Over  kompacted 420 0.09 arding Lawson Assoc
Consolidated)kandy clay (1978)
fill
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Conclusions

The shear wave velocity stress exponent for normalization is related to soil type
and can be estimated based on the CPT cone resistance siress exponent. The shear
wave veiocity (V) stress exponent (v) is approximately 45% of estimated cone g
rzsistance stress exponent (c) (from Chapter 6). This procedure represents a new
approach for n~malizing shear wave velocity and seems to give good results. To
successfully normalize the shear wave velocity, thereiore, recuires a nearby CPT b
sounding where the CPT stress exponent can be estimated and then converted to the

shear wave velocity stress exponent (v).
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Chapter 8

Development of Correlations for

CPT Prediction of Geotechnical Properties

Introduction

One of the ultimate goals of using the CPT as a geotechnical investigation tool is
direct prediction of geotechnical properties. Prediction of geotechnical properties
usinp UPT data is 1justrated in Figure 8.1; CPT data is normalized, the normalized
geotechnical property is predicted, and finally the geotechnical property is calculated

for the in situ stress condition.

Historically, research has concentrated on developing relationships between cone
resistance and various geotechnical properties. In this chapter, CPT correlations
using CPT cone resistance and sleeve friction resistance are developed for prediction
of SPT blow count, clay undrained strength, and shea- wave velocity. Several
important ingredients were required for developing these correlations, namely 1)
stress normalization techniques for the CPT (and geotechnical properties), 2) a large

database of CPT and soil sample data, and finally, 3) accounting for bias data caused

by soil profile differences between CPT soundings and borcholes.




Figure 8.1

CPT measurements
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The CPT and soil sample database

A large database of CPT and soil sample information that represents soils from
around the world is described in the Appendix. This database contains data from
approximately 90 projects, 670 CPT soundings, 580 borings, and approximately 8100
laboratory and field test values. The soils include weak clays in San Francisco,
Sweden, Hong Kong, (and sensitive ciays in Norway), liquefiable soil mixtures from
China, stiff clays from South Carolina, and sands from Po River and desert alluvial

sands from Nevada (this is only a partial list of the total database).

o1l Characterization Chart

-
!

to Predict Properties

Two measurements are always better than one when establishing a correlation.
Moreover, the CPT provides two measurements which are unique, repeatable, and
accurate. The CPT soil characterization chart shown in Figure 8.2 (Olsen, 1988) is B
based on normalized CPT measurements. This chart provides the means of ‘
characterizing soil behavior in terms of soil type and relative strength—-the relative
strength 1s in terms of increasing overconsolidation at onc extreme and increasing
clay sensitivity or a metastable condition in sand at the other extreme. While the
underlying normalization technique for this chart was substantially improved as a
result of the current research effort, the fundamental aspects of this chart arc still
valid. This chart thereforc provides the two soil behavior indexes based on the
normalized CPT measurements. namely soil type and relative strength consistency.
The conc resistance stress exponent (¢) was shown in Chapters 5 and 6 to be

inversely related to the relative strength (c.g. relative density for sands). In
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Chapter 6, the stress exponent (c) contours on the CPT soil characterization chart
was demorstrated to be perpendicular to soil classification contours. Soil type and
relative strength are independent of each other and this perp=ndicularity of soil type
to stress expouent signifies independence. Consequently, any soil type and relative
strength level combination will correspond to a unique point on this chart.
Therefore, contours of geotechnical property levels can be established on the CPT

soil characterization chart because the chart characterizes soil type and relative

strength.

Statistics and CPT Correlations

Statistical errors can be divided into threc categories; systematic (bias) errors,

random (variance) errors, and mistakes (Taylor, 1990). Random errors are

fluctuation errors about the mean and are statistically characterized by the standard
deviation. Bias errors are offset errors from the mean. For CPT data evaluation,
bias errors are caused by stratigraphic soil type differences between CPT soundings
and nearby boreholes. This type of bias error will be shown to account for most of
the statistical error during CPT correlations. However, there is little written about
bias errors (Taylor, 1990, Mosteller & Tukey, 1977, Huaslin, Mosteller, and Tukey,
1983). Thercfore a subjective quality index and evaluation technique were developed
to account for data having bias error. Reducing bias error effects represented the

primary statistical evaluation effort used in establishing CPT correlations in this

chapter.
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163

4¥]




PR S R S il

Bias Error Results from Stratigraphy

There is always some geological difference between field CPT soundings and
nearby boreholes at the same elevation. At a given elevation and for short lateral
distances between a CPT sounding and a borehole (such as 10 to 25 feet) the
following can be generally assumed; 1) the soil types may be different, 2) the
formational environment is generally the same, 3) the vertical effective stress is
constant, and 4) the vertical stress history (i.e. overconsolidation level) is generally
the same. Soil type changes between CPT soundings and boreholes is therefore
more likely the cause of bias error than differences in overburden stress,
overconsolidation, or lateral stress. The potential for soil type change for a given
elevation interval is dependent on the depositional environment; e.g. a lake or :ailings
deposit generally has uniform layers and lenses whilc a rapidly flowing, meandering

river produces the most non-uniform deposit.

Stratigraphic soil type change (i.e. geologic change) is a bias error because it
shifts the average and increases the variance—other types of random statistical errors
only increase the statistical variance level without affecting the average. For
example, clay lenses within a sand deposit will move the average downward to the
clay trend and away from a sand trend as shown in Figure 8.3. Likewise, silt or
sand seams within a clay deposit will create a higher average as also shown in
Figure 8.3. Bias error direction is thercfore different for clay and sand correlations

(or dense/stiff and loose/soft correlations).

The Academic Quality Index (AQI)

The Academic Quality Index (AQI) was developed during this rescarch program

as tool for accounting for bias error. It also provides a basis for weighting data from
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Figure 8.3  Hypothctical examplce showing that soil lenses of differing soil type
(or strength) can bias correlations
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the different sites in the development of CPT to property correlations. This ranking
scale is almost a universal scale because it's based on the student academic grading
scale understood by all ages and professions. For example, data with average quality
has an AQI of 76%, good data has an AQI of 80 to 85% and excellent data has a
AQI of 90 to 95%. This index, while subjeciive, does allow excellent quality data to

be isolated from good or poor quality data.

An Academic Quality Index (AQI) can be individually assigned for stratigraphic
change potential, CPT work quality, and boring/laboratory qualitv. The overall CPT
AQI is equal to the stratigraphic change potential together with any decreasing
influence of measurement quality. The overall CPT AQI therefore reflects the
potential for lateral matching of the soil type (and relative strength) between a
excelicnt quality CPT sounding ana adjacent quality borehole. Some of the
commercial CPT data in the database has poor quality, for example, a high capacity

cone used in weak/soft soil where a low capacity, high accuracy cone would have
been more appropriate. If the CPT or laboratory testing data quality is not excellent,
the overall AQI is less than the stratigraphic AQI. For example, if the stratigraphic
continuity is excellent (i.e. AQI of 95%) but the CPT measurements are near the
equipment noise level, the overall AQ: might only be 80%. 1f there is little
information about site geology or testing quality, then an overall AQl of 76% is

assigned. While these are obviously arbitrary distinctions they are casily

remembered and useable.

The stratigraphic AQI is based on a simple arbitrary system cqual to the

estimated percent of soil depth which are continuous between a CPT sounding and

nearby borehole. For example, if 76% of the soil layers are continuous between a

-% C ’T sounding and borehole then the stratigraphic AQI is 76% as shown in

Figure 8.4. This stiatigraphic AQI must also account for the CPT-to-borchole
distance because AQI will increase us the lateral distance decreases. For example, if

i the AQI is equal to 76% for a lateral distance of 20 feet, then the AQI might
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increase to 85% for a distance of 10 feet. Research sites with thick uniform
horizontal deposits can have a stratigraphic AQI of 95% for CPT-to-borehole
spacings of 20 feet.

Overall AQI values were assigned for each geotechnical project in database based
on the concepts just described. The overall AQI values are shown in the fourth

column of table A-1 in the Appendix.

Developing CPT Predictive Contours

Consider the ncn-linear response surface based on two dependent parameters as
shown in Figure 8.5. The two dependent parameters are the X and Y axis with the
contoured (predictive) response surface (or blanket or contours) in the Z direction.
This responsc surface is always non-linear in geotechnical engineering and can be
determined by fitting the data points in the 3 dimensional space using gridding
techniques (Box and Draper, 1987) if the data noise (i.e. error distribution) is
random. Contouring techniques do not account for bias error. The next section will
describe a technique using the AQI quality index for establishing the best fit
correlation for each contour by excluding biased data. The response surface (i.e. set
of contours) is established by separately generating cach individual contour and then
combining all the contours. Each contour was developed using 2D data scatier
plotting software program while also accounting for the shapes of the other contour

levels.
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Process for developing CPT Predictive Contours

Developing contours of geotechnical properties on the CPT soil characterization
diagram required numerous steps that are described in this section. All data for a
given geotechnical property are extracted from the database and placed into a single
sequential computer file list (composed of nermalized CPT measurements and
corresponding normalized geotechnical properties). Also included in cach list are the
AQIs for each CPT to geotechnical property comparison. The list is then imported
into a spreadsheet for the goal of creating scientific graphics. This spreadsheet data
list is initially sorted by the data column having the geotechnical property. The
spreadsheet data list is then divided into 6 to 7 geotechnical property level groups
(1.e. 100 to 200, 200 to 400, 400 to 800, etc.,) for the purpose of establishing CPT

based correlations based on data groups. Each of these geotechnical property level
QI column, This final sort
differentiates potentially biased data from good data for each geotechnical nroperty
level group. To establish a trend for a given geotechnical property level data, all or
part of the data within each data group can be plotted. The best correlations (i.e.
contours) are established by using the highest quality data which means using the

highest AQi level for each data group.

Use of the AQI for Developing Predictive Contours

A low stratigraphic AQI implies a higher likelihood for soil type change between
a CPT sounding and borehole. When a group of data having a minimum AQ! of, for
example, 80% is used for a correlation then this is defined s the "minimum
inclusionary AQI" ot 80%. If all data is included for a correlation then the minimum
inclusionary AQI is zero. By increasing this minimum inclusionary AQI, low quality

biased data is excluded and the predictive cerrelation will shift away from the biased
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data. If the minimum AQI is raised too high, there will be insufficient quantity of
data to develop a trend. For a particular data set, the optimum AQI mignt be 85%
but if this minimum AQI is increased to 95%, there might only be 2 points which
may not be enough data to establish a trend. For a given predictive property the
minimum inclusionary AQI must therefore be carefully increased until the optimum

trend is est=' “ished.

An illustrated example will show how the inclusionary AQI concept is used to
determine a best fit contour. Consider a hypothetical data range for a normalized
shear wave velocity (V) of 300 to 500 feet/second (fps) (with an average of 400 |
fps) shown in Figure 8.6-a. The displayed data points represent data having a V, A
between 300 and 500 fps and are plotted in terms of q_,. versus FR;,. A V,, of 400 '_;.-,1’?,_.
fps can be considered at the low range typically considered in geotechnical
engineering (i.e. 300 to 2000 fps). Therefore, biased data for 400 fps dawa will tend
to skew the average to higher q,. and f,, levels. The total data in Figure §.6-a can
be divided into two inclusionary AQI ranges (as shown in Figure 8.6-b) in terms of
the data range and average for each inclusionary AQI range. With increasing
inclusionary AQI ranges, the lower quality data is excluded ai.d the average moves
away from the skewed group average. Figure 8.6-c is probability distribution along a
cut through the data set in Figure 8.6-b to show how increasing the inclusionary

AQI moves the data average by excluding biased data.

The next example is taken from the next section on CPT prediction of the
noimalized SPT N,. All data from the database for SPT N, ranging from 1 to 3
(average of 2) are shown in Figure 8.7. For sands, a SPT N, of 2 is considered a
Joose sand and therefore can be biased by dense and medium dense sand layers.
When the minimum inclusionary AQI is raised to 89% (shown with solid circles in
Figure 8.7), only the best data are included and clearly show a correlation at the

lower boundary of the total data scatter. '_.'_-{_

U
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CPT Prediction of the SPT blow count

Introduction

Prediction of the Standard Penetration Test (SPT) blow count using CPT data is a
complex task because the SPT sampler resistance during penetration is dependent on
the combination of end bearing and side friction forces which are dependent on soil
type and soil strength (Douglas, et.al., 1981). The SPT sampler is resisted by the
same types of forces that are measured by the CPT, therefore using both CPT
measurements to predict the SPT blow count (Schmertmann, 1979a) is a better
approach tnan using only the ratio of cone resistance to SPT blow count (e.g. q/N).
The forces acting on the SPT sampler are reflected in the final CPT-t0-SPT

correlation if both CPT measurements are used for the evaluation.

It was shown in Chapter 7 that the historic SPT stress exponents (i.e. 0.45 to
0.55) for normalization are incorrect and the actual values are equal to the CPT cone
resistance stress exponents. This also implies that the SPT normalization is
dependent on soil type and relative strength consistency as is the CPT normalization
(Chapter 6).

Historically, there have been two generai techniques for CPT prediction of the
SPT blow count; 1) the q/N ratio to predict the SPT N (Rodin, ct.al., 1974,
Robertson, et.al., 1983, Seed and De Alba, 1686, Kuihawy and Mayne, 1990), and
2) using both CPT measurements to predict the normalized SPT N, (Olsen, 1984,
1986, 1988). What dif erentiates these two techniques that the first technique is

based on an empirical correlation and the second technique indirectly accounts for

the end bearing and side friction forces that act on the SPT sampler.




SPT Prediction using Both CPT Measurements

Research indicates that the resisting stresses on the SPT sampler are analogous to
the CPT stresses as shown in Figure 8.8 (Schmertmann, 1979a). McLean, Franklin,
and Dahlstrand (1975) developed a computer model of the dynamic forces
influencing SPT sampler based on work by Schmertmann (1971). Douglas, Olsen
and Martin (1981) also developed a computer model to predict SPT using the CPT
measurements based on work by Schmertmann (1979a, 1979b) in terms of the static
and dynamic forces on the SPT sampler. This work evolved to a technique of
predicting the SPT blow count which uses both CPT measurements (Olsen, 1984)
with the most recent published version shown in Figure 8.9 (Olsen, 1988). However,
in 1987, there was no realistic means of showing the data that was used to develop
the contours of SPT N, on the CPT soil characterization chart. Also, the database
tor this research program is approximately 7 times larger than existed in 1987 for

developing SPT N, contours.
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CPT Prediction of N, using the CPT Soil Characterization Chart

Establishing correlations of normalized CPT parameters to SPT N, was found to
be very dependent on the AQI statistical technique. AQI was used to remove biased
data effects thereby allowing the best correlation of CPT to SPT. All SPT data
from the database, for all projects, were divided into seven N, ranges for the purpose
of establishing individual coirelation contours on the CP1 soil characterizatioa chart.
The resuits of the SPT N, correlations are shown in Figure 8.10 to Figure 8.16 for
average N, levels of 2, 4, 7, 15, 25, 35, and 50. The best fit correlation contour in
each figure was based prirnarily on highest inclusi~nary AQI but also accounted for
the lower quality data together with the shape of the other SPT N, contour groups.

Figure 8.17 shows all the SPT N, predictive contours together with soil classification

Discussion of CPT Prediction of the SPT Blow Count

The new contours for predicting normalized SPT blow count (Figure 8.17) in
general have more curvature compared to the 1988 version (Figuie 8.9); however, for
fiiction ratios less than 0.5%, the contours arc paralle! to cone resistance, which was
not expected. The contour shapes and intervals for the 1988 version are symmetric
due to the lack of data; newer version contour shapes and intervals are not in general
symuaetric.  The shape of the contours for the newer version reflect soil type and
relative strength contribution. Within the sands area of the chart for fricticn ratios
less than 0.5%, the contour shapes and intervals are symmetric. Within the clay area
of the chart (from normally consolidated to overconsolidated), the contour shapes and
intervals are also symmetric. However, the contour shapes are changing in the

middle of the chart withia the soil mixture arca (transition between clays and sands).
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When the CPT friction ratio is low, such as 0.6%, the contours of predicted SPT
N, are almost parallel to the normalized cone resistance (q,;.) which indicates that
the SPT sampler end bearing force dominates the SPT resistance. Thevefore, for
loose to medium dense sands (which produce low friction ratios, less than 0.6%)

(Douglas, 1982) the SPT sampler is resisted primarily by end bearing forces.

For CPT friction ratios greater than 3% in Figure 8.17, the predicted normalized
SPT N, contours are approximately parallel to the normalized CPT sleeve friction
resistance, f;,. (contours of constant normalized sleeve friction resistance are shown
in Figure 8.18). This indicates that the SPT sampler resistance is primarily
dependent on the side friction resistance for dense and overconsolidated sands
together with all clays. Dense sands and overconsolidated soils also have high lateral
stress ratios (K_). For sands, a high lateral stress produces a higher CPT sleeve
resistance (Masood, 1990) and therefore would aiso produce a higher SPT sampler
resistance. The relative contribution of SPT side friction forces to SPT end bearing
forces can be calculated from the product of factors: the area ratio (i.c. SPT sampler
side area to SPT end bearing area) and stress ratio (i.e. the CPT iTiction ratio). Tn:
area ratio is the SPT side friction area to the SPT end bearing area which is equal to
28 at 1% foot penetration. For clays and overconsolidated sand, the CPT friction
ratio is approximately 5% (i.e. stress ratio of 0.05), therefore the SPT side force to
end bearing ratic is calculated to be 1.4 (i.e. 28 times 0.05). The SPT side friction
force is 1.4 times higher than the end bearing force. However, if side friction forces

inside the sampler are included, then the area ratio increases to 44 and the SPT side

force to end bearing ratio increases to 2.2.

An example of CPT predicted (using Figure 8.17) versus field measured SPT
blow counts is shown in Figure 8.19 together with annotations. Numerous other
examples of CPT pradicted versus ficld measured SFT blow counts are shown in

Figure 8.20 to Figure 8.27. Prediction of the SPT blow count 1s difficult as
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Normalized Cone Resistance

Normalized Friction Ratio (%)

Figure 8.18 Contours of constant normalized sleeve friction resistance on the CPT
soil characterization chart
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illustrated by large variance for each predictive SPT blow count contour (for example
Figure 8.14). However, as seen from these predicted versus measured examples, the
match of predicted versus measure does support this technique of using both CPT
measurements to predict the SPT blow count. These figures also show how much

detail is missed by having only discontinuous SPT measurement records.
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CPT Prediction of Clay Undrained Strength, S,

Introduction

The undrained strength, S, of clay is one of the classic geotechnical properties
and is critical for many design applications. In e U.S., the standard practice for
obtaining clay undrained strength requires retrieval of relavively undisturbed soil
samples, typically with a 3 inch shelby tube, for unconsolidated undrained (UU)
triaxial testing. However, only a few laboratory strength tests are typically
performed for most geotechnical projects and it is assumed ttat they represent the

character of the total site.

In Europe, the standard practice for obtaining the undrained strength of soft clays &
is the field vane shear test. However, the vane shear strength is always too high
because of sili  unent, overconsolidation effects, the high vane rotation rate, and/or
vane geometriv effects. A correction factor (p) is required to reduce the field vanc
shear strength to the field strength level (typically the equivalent unconsoliuated
undrained triaxial test level). This correction factor (i) is dependent on many

factors, but generally established based on site specific correlatious.

CPT Prediction of S,

Clay undrained strength was the first geotechnical property predicted using CPT
data in the 1930's (reported by Broms and Flodin, 1988). For the last six decades,

the literature has been filled with thcoretical and case studics on the topic of
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undrained strength prediction. It was difficult task then and is still a challenge today.
Historically, the problem has been to select the comrect bearing N, factor in order to
calculate the undrained strength from the CPT cone resistance measurement. This N
factor, which ranges from 8 to 25 (Aas, Lacasse, L.unne, and Hoeg, 1986, Lunne

and Kleven, 1981), depends on overconsolidation, clay type, sensitivity, silt content,
reference testing device, and to a lesser degree on overburden stress. A new
technique is developed in this chapter that uses both CPT measurements to directly

predict the undrained strength without the need to estimate the N, factor.

Historical Means of Estimating N, for CPT Prediction of S,

The classical means of predicting undrained strength using the CPT uses the N,
factor which can be estitnated using Table 8.1 (Olsen, 1994). However, this
procedure reguires prior knowladge of the in situ state of the soil. The best
procedure for calculating S, is to estimate N, assuming a medium stiff norme.ly

consolidated condition (i.e. N, = 13) then calculate S v.ing Equation (8.1) and then

S, .
calculate the — ratto.
Ty

S, = "= 3.1

Equation (8.1) was introducted in Chapter 4 during the development of the

S
normalized cone resistance formulation. If the calculated — is 0.29 to 0.33 and S,
Oy

is 250 to 500 psf (medium stiff condition) then the soil is probably normally

consolidated with N, equal to approximately 13 (within the range of 10 to 16). If




) .
the calculated — is high, than the clay is probably overconsolidated or a stiffer
condition prevails which requires a higher N,. Iterations might be required until the
conditions regarding N, in Table 8.1 are matched. A few reference laboratory

strength tests for each project should still be required. This discussion has shown the

S :
importance of the — toward estimating the N, .
g,

g e

Determining S,,; using CPT Soil Characterization Chait

~

. . . S -
The normalized undrained strength S, (i.e. Zc’ or —) can be correlated toc CPT
v

measurements using the CPT soil characterization chart. This section will introduce
the concept of predicting S, based on beaiing capacity forinulation and ti.e next
section wili describe the process of establishing S, contours on the CPT soil

characterization chart.

The cone resistance bearing formulation (Equation (8.2)) was developed in

IO DRe < GRZIRDT W Lok LW N DTS L L ST T P S U K BTN TS S TR s RN IAT e T T PN TR .

Chapte: 5 and is in terms of the normalized undrained strength (S,,), cohesive

bearing factor (N,) and the normalized cone resistance (q,.):

S — qCIC (8.2)

ul
Nk

LTV A DL PTG T

rieAe

This equation can be rearranged as shown below:

qr:le = Sul Nk (8"3)

Equation (8.3) can also be represented in a graphic form based on the CPT soil
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Table 8.1 Typical N, values for estimating the unconsolidated undrained strength
' of clays using the CPT cone resistance (Olsen, 1994)

F === —— =
Unconsolidated Undrained (UU)
Triaxial Test
as the
reference strength standard
Clay condition
N, 1 Ny
range average
(typical)
Normally « snsolidated, 10w 16 13
normal se 1 itjvity,
soft to me: um stiff
Normally ¢ solidated, 91t 13 11
moderately nsitive,
soft to ver oft
Moderately ver 15 to 20 17
consolidatec
non-fissured
r Highly over 17 to 23 19
consolidated
fissured




characterization chart as shown in Figure 8.28. The q_,, in Equation (8.3) is equal to
the combined effect of S; contowrs and N, contours in Figure 8.28. For a given S,
contour, increasing q.. (vertical axes) will correspond to an increasing contour

of N,. Increasing the overconsolidation or siit content will also increase the S,
contour level as also shown with arrows and annotations. Therefore, any point on
the CPT Soil Characterization Chart (for example point "A") has a N, contour value,
a S, contour value, and a g, value from the vertical axis. Contours of S, can be
established directly on the CPT Soil Characterization Chart using laboratory
uncensolidated undrained triaxial strength data ((S,,),yy) or field vane shear
strength data ((S,,)py) together with the normalized CPT data. There is no need to

determine the N, contour because S, is the ultimate goal.

Establishment of S,,; contours on the CP1 soil characterization chart

The procedure used for establishing contours of normalized undrained strength
(Syy) for clays on the CPT soil characterization chart was the same as was used in
the last section for prediction of the SPT blow count. Two scts of S, contours were
established using measured undrained strength data from the database developed for
this research program (and described in the Appendix). The first set of S, contours
were tused on data frem laboratory unconsolidated undrained triaxial (TxUU) tests
and the second set were based on data from field vane (FVanc) shear tests. The S,
contours were also estat-lished based on the knowledge (from the last section) that

the contours should increase in value with increased q,, and f,, levels.

Al measured strength data from the database, for all projects, were divided into
unconsolidated undrained triaxial and field vanc shear tests and then further divided
into 6 strength ranges for the purpose of establishing individual correlation contours
on the CPT soii characterization chart. I3cst fit contours of normalized

unconsolidated undrained triaxial strengths are shown in Figure 8.29 to Figure 8.35
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based on the minimum inclusionary AQI levels for average (S,;)y,uy levels of 0.15,
0.25, 0.31, 0.39, 0.54, and 2.0. The final plot having all the best fit (S,,)1,uu
contours is shown in Figure 8.36. The best fit contours of normalized field vane
strength are shown in Figure 8.37 to Figurc 8.41 for average (S,;);y levels of 0.25,
0.31, 0.54, 0.80, and 2.0. The final plot having all (S,,)ryan. contours is shown in
Figure 8.42. '

Several exampias of CPT predicted versus measured triaxial unconsolidated
undrained (CU) tost results ((S )1, ry) are shown in Figure 8.43 to Figure 8.49.
These evamples repvesent sites composed of soft to stiff clay including several sites
composzd of sandy to silty clay. There zre also several examples of desiccated

layers with proyerty predicted (S ),y levels.

Severa!l examples of CPT predicted versus measured field vane shear test results

N e plosiare fen T. rovveer~ Q&
a ] GUL OLIUYYE) L)) ). Uuve 0.J

<O

Sy rvan w Figure 8.5¢. Th
soft to medivra stff clay sites and contain a fow examples of desiccated strength.
There is more ficld vane strength data compare:d w laboratory triaxial strength data,

probably because the ficid vane test is easicr to perform and less cxpensive.

The contours of (5 )1,y and (S,;)py 4., have the same general contouring
charactenistics, namely increasing 5, with increasing q.,, and f,.. The differences
between these coniours is important.  The satio o (Sy)ruu 10 (Suivane 1S the

historic Bjerrum wvane shear correction fact r, p. (Bjerrum, 1972) as shown:

Su‘
(S”)'J’ vu % Jxvu (5“1)7' vU
po= 5 = ad =S X (8.4)
( ")FVane ;S_y_ ( "I)l"Vanc
a,
FVane
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This u factor is used to reduce the measuied field vane shear strength to an
equivalent undrained triaxial test strength icvel (i.e. field strength value for slope
stability evatuation). The u is theretore the ratio of (S, contours in Figure 8.36
12 the (8,;)pv contours in Figure 8.42 as illustrated in Figure 8.57, with the results
showr in Figure 8.58, The p contours in Figure 8.58 (i.e. 0.5 to 1.0) have the same
general range as from historic observations in Figuie §.5¢ (i.e. 0.4 to 1.0). The
Bjerrum = factor was hiztorically indexed to Plasticity Index (PI) as shown in
Figure 8.59 (Bjerrum, 1972). PI is now used only to index overconsolidation
character as shown at the top of Figure 8.60 (Aas, Lacasse, Lunnc, and Hoeg, 1985).
After the overconsolidation character is estimated, the Bjeiruni p factor is then
estimated using the chart & the bottom of Figure 8.60. This figure shows that the
u facior is approximaicly 0.6 to 1.0 for normally consolidated clay and 0.35 to 1.0
for overconsolidated clay. The contours in Figure 8.58 show a calculated p factor of
about 0.9 to 1.0 for normally consolidated clays desreasing to 0.5 with increasing
Gverconsolidation or increasing silt content. The lack of field vane shear daty for
highly overconselidated clays prevents establishing pn contours which ave lower than

0.50.
Conclusions
This section introduced a new technique for estimating undrained strength of clay

which is appears to be as accurate as methods which require ectiumating the cohesive

N, bearing factor. These correlations were shown to give good agrectaent botween

measured and predicted values for clays around the world.
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CPT Prediction of Shear Wave Velocity (V)

Introduction

As noted earlier, accurate prediction of the shear wave velocity, V., using the
CPT results may not be possible because V is a low strain measurement while the
CPT is a high strain measurement. Nonetheless, there have been several attempts to
establish useful correlations. Typically, V, has been predicted using the CPT cone
resistance (Baldi, et.al., 1988) or more recently by using both CPT measurements
(Olsen, 1988). The Olsen (1988) publication developed a technique for CPT
prediction of the maximum shear modulus (G_,,) (G, and V, are theoretically
related). This section will extend the Olsen (1988) iechnique for CPT prediction of
V, based on improved stress normalization techniques (Chapters 6 & 7) and use of
(G

described in Chapter 7 during the development of the shear wave velocity

the new larger database (Appendix A). V,, G and V_; were fully

-
max? max)l’

normalization stress exponent (v).

Minimal Stratigraphic Error when V, Measured by CPT sounding -

There are two general means of measuring shear wave velocity in the field: with
borehole(s), or with the CPT probe. Borehole based shear wave measurements are
performed cither using crosshole (i.e. borehole-to-borehole) or downhole (surface
encrgy source and geophones in the borehole) techniques. The CPT based shear
wave velocity measurements use downhole measurement with the geophonces inside
the CPT probe (about 1 meter up from the cone tip) (FUGRO, 1980; Carpanclia and i
Robertson. 1984). During a shear wave test with a seismic CPT probe, the shear

wave tra: els dowr Lirough the soil directly adjacent to the probe. The soil tested by
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the CPT probe is the same soil traversed by the shear waves, therefore, there should
be litile if any stratigraphic bias when establishing correlations. However,
developing a correlation is still difficult because shear wave velocity is a low strain

measurement and the CP1 measurements are high strain measurements.

Historical use of both CPI Measurements to Predict V, or G,

The first technique for estimating V, (i.e. G_,,) using the normalized cone and

max
sleeve resistances is shown in Figure 8.61 (Olsen, 1988). The contours of (G,,,); In
this figure are parallel to normelized sleeve resistance. G, appears to be
proportional to the sleeve friction resistance, more so than to the cone resistance.
The proportionality of V, (i.e. (G, ) to f,. was believed in 1987 because both

parameters are influenced by horizonial stress. It wviil be shown in a later section

that this proportionality is more likely because both pamaet. are dependent on

void ratio and soil type.

CPT Prediction of V,, using Both CPT Measuremenis

The procedures for establishing contours of norrnalized shear wave vclocity (V)
on the CPT soil characterization chart using the minimal inclusionary AQI technique
is the same as used for establishing the N, and S, centours in previous secuiny of
this chapter. All shear wave velocity data frem the database, for all projecis, werc
divided into five V, ranges for the purpose of establishing indwvidual correlations
contours on the CPT soil characterization chart. The best-fit contours of normalized
shear wave veigcity using the highest hiclusiorary AQU ave shown in Figure §.62 (o
Figure 8.66 for average V, levels of 150, 400, 650, 900, and 1200 fecusecond. the

final best fit V; contours ar: shown in Figure § 67
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Sevcral examples of CPT predicted versus measured normalized shear wave
valocity (V) are shown in Figure 8.68 to Figuie 8.76. These plots represent all soil
type and all relative strength Jevels. The imporant observation from these figures is
that the CPT predicted V,, agrees well with both the measured values and their
variation with depih. It is also important 10 noie that atout 804 of the shear wave
velocity data was measured usiag the seismic CPT probe so there is very hittle

stratigraphic bias error.

Discussion of CPT prediction of 7,

For clays and silts, the nermalized shear wave velocity (V,;) comours in
Figure 8.67 are parallel to normalized sleeve friction, £, (f;,,. contours are shovi in
Figure 8.18). This indicates that overburden stress sunilarly intluences V; and {...
However, sleeve triction resiswunce reflects a high-strain sirengin (Douglas and
Olsen, 1981) while the shear wave velocity represents a modulus at extremely small
strains (107 percent). Shear wave velocity is indexable o void 17 tio, confining stress
and soil type (Ricrun, Hall, and Woods, 1970, Sced and 1duss, 1970). Sleeve
friction 1esistance approaches steady state strength (if thove is no volumetric shear)
(Wahl, et.al, 1991, Castro, el.al., 1989). Siceve friction resistance should be
indexabls to the same properiies as steady state strength, namely; voud ratio,
confiniug stress and soil tyne (Castro, 1969, Schofield and Wroth, 1968). Because,
the Vg, and {  coutours are parallel (for clayey soils), it suggests that they are alsu

dependent to the samc combination of peotechnical properties.

The V,, contours bend within the sand zones of the CPT soil characterization
chart (Figure 8.67) for loose and medium dense sands. CPT probing of these sands
causes voluime enaigs due 16 the high beaning st esses which results in a denser soil.

For loose clean sands, the measured cone resisiance therefore reflecy a denser state

than the in situ condition because of grain rearrangemant, grain crashinge, and
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densification. However, for dense sand, the V_, contours appear to be parallel to f, .

LIUAT. L

Dense sands do not densify during shear. Therefore, for dense sands, the in situ void

ratio is approximately equal to (or even greater than) the void ratio surrounding the

BRADP s o LA STV

sleeve and cone units during penetration. The resultant is a V; contour which is
approximately parallel to a f;, contour from clay to dense sand as shown in

Figure 8.67 for V,=1200 ft/second.

ek LRSI L MEARARENT U0

The V,, contours in Figure 8.67 can also be generalized as shown in Figure 8.77

as a means to explain densification effects for loose to medium dense sand during

M VIR

penetraticn. A line of constant ncrmalized sleeve friction resistance is shown as Linc

-
-

? CF in Figure 8.77. Line CF would be parallel to the V, contour if there was no

?' volume change in the clean sands. However, line VF is a typical V, contour. The

: difference between Lines CF and VF could be the effeci of sand volume change

Q during probing resulting in a denser soil for loose to medium dense sands. Point N

E is along a constant f,, contour (Line CF) representing no volume change for clean

EE; loose sand. Point S represents a denser sand condition due to probing and a higher
El measured {;;, (and q.,.) because the sand surrounding the sleeve unit is denser.

E Therefore, CPT probing of clean loose to mediumn dense sand produces a denser

ig condition than exists in situ which results in an explainable bending of the V, ,
::: contours.
i
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Chapter 9

Conclusions

The primary objective of this research was to develop techniques and correlations
for predicting geotechnical properties using CPT cone resistance and sleeve friction
resistance measurements. Stress normalization provided the means for taking
confining stress dependence into account when predicting geotechnical properties

using CPT measurements.

A new concept, the Stress Focus, was discovered and confirmed which provides
a basis for understanding strength behavior (e.g. friction angle, cone resistance, etc.,)
as a function of confining stress. This study demonstrated that the relationships of
sand friction angle to confining stress for different initial densities converge to a
Stress Focus at high pressure, where the strength behavior is similar to that of a
sedimentary rock. This convergence to a Stress Focus was also confirned using the
CPT cone resistance measurement. The paths of convergence to the Stress Focus are
exponentially related to overburden stress and can be represented as straight lines on
a log-log plot of strength versus vertical effective stress. A sand at a given relative
density can be represented by a straight line on this log-log plot with all relative
density lines converging to the Stress Focus. The slope of this line, termed the stress -

exponent, is inversely prcportional to sand initial relative density.

The strength of dense sand is strongly influenced by dilation effects. Dilation
effects for a dense sand will decrcase with increased vertical effective stress until the

Stress Focus is reached where its behavior is similar to that of a sedimentary rock.
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The convergence of relative density lines to the Stress Focus for sand is caused by
consolidation (i.c. decreasing void ratio) which is reflecied in numercus geotechnical
properties such as Mohr envelope curvature, gr=in crushing, compressibility, eic.,
Sands of all relative densities will have approximately the same bulk deusity

(i.e. void ratio) at the Stress Focus and, as a result, approximately the same strength
behavior. The Stress Focus should therefore be considered a fundamental
geotechnical property. The Stress Focus concept replaces the variable soil type
dependent stress exponent technique for normalizing cone resistance previously

developed by the author (Olsen, 1984, 1988).

The Stress Focus concept was confirmed using historic high pressure triaxial test
data in Chapter 2 (collectively shown by Figure 2.5). Sand strengths arc shown to
converge to a Stress Focus at a vertical effective stress of approximately 100
atmospheres. A simple yet unique CPT cone resistance normalization formula,
which accounts for exporential stress depenaence of the tip stress, has been derived
in Chapter 4. The Stress Focus for CPT cone resistance is demonstrated using CPT
laboratory chamber data in Chapter 5.

The Stress Focus location (i.e. vertical effective sicess and strength level) wes
shown to be soil type dependent using field CPT data from uniform soil layers
(Figure 6.24). For clay, the Stress Focus occurs at a vertical effective stress of
approximately 9 atm. For sands the Stress Focus occurs at a vertical effective stress

of approximately 70 to 200 atm.

A technique to estimate the stress exponent required for cone resistance
normalization was also developed using CPT data from uniform soil layers.
Contours of cone resistarce stress exponent were established on the CPT soil
characterization chart (Figure 6.16). These stress exponent contours also support the
validity of the CPT soil characterization chart (Olsen, 1928) to characterize soil in

terms of soil type and state.
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The constant drilling mud height (i.e. constant pressure) used in SPT clamber
tests, for all confining stress levels, reduces the confining stresses next to the SPT
sampler (Chapter 7). All SPT chamber tests in the pasi have had this problem. This
reduced confining stress results in a SPT based stress exponent which is too low if
derived from the results of chamber tests. The SPT-N to N, normalization ccncept,
develuped over 10-years ago, is based on SPT chamber test results and therefore uses
stress exponents that are too low. The stress exponent for SPT borehole applications
were shown to be equal to the CPT cone resistance stress exponents. Therefore, the
CPT determined cone resistance stress exponent should be used for SPT
normalization. To achieve the best SPT normalization, therefore, requires a nearby

CPT sounding wherc the cone resistance stress exponent can be estimated.

The stress exponent for shear wave velocity is shown to be soil type dependent,
and it can be approximated as 45% of the CPT cone resistance stress exponent as

shown in Chapter 7.

Developing CPT correlations to geotechnical properties required a large databaze
of CPT and tested soil sample data (described in the Appendix). The largest error
during correlating of CPT measurements to nearby borehole soil samples is
geologicai change of soil type. A change of soil type is considered a bias condition
because it will skew the data trend. Bias date must therefore be discounted when
developing correjations. A quality index was developed in an attempt to account for
possible soil type difference between CPT soundings and boreholes—namely the
Academic Quality Index (AQM). The overall AQI accounts for possible stratigraphic
change and CPT ineasurement quality. Establishing predictive contour trends on the
CPT soil characterizetion chart was accomplished with a new technique that uses the
AQI quality index to account for bias error. Correlations were established for the
following normalized geotechnical properties; SPT blow count, undrained cohesive
strength from the unconsolidated undrained triaxial test, undrained cohesive strength

from the field vane shear test, and the shear wave velocity.
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The contours of normalized SPT blow count on the CPT soil characterization
chart have a predictable trend (Figure 8.17). In loose to medium dense sands, the
SPT sampler is primarily resisted by end bearing force (while the sampler side
friction force is minor). Cn the other hand, for dense (and overconsolidated) sands
and clays, SPT sampler side friction force dominates. This relative contribution of
SPT samples end bearing to side friction forces for different relative densities is
confirmation of work by Schmertmann (1)79a). The technique for predicting the
SPT-N values based on the CPT cone resistance and sleeve friction resistance models
the forces on the SPT sampler and demonstrates the potential for reliable prediction

of SPT N values from knowledge of CPT cone and sleeve friction resistances.

0 . . . S
Contours of normalized undrained cohesive strength (i.c. < , —, or S,y) for
D

v

unconsolidated undrained triaxial tests (Figure 8.36) and field vane shear tests
{Tiguie 8.42) were esiablisned on the CPT soil characterization chart. Hisiorically,
the N, (i.e. ratio of net cone resistance to measure undrained strength) must be either
be estimated or deveioped as a site specific value. An estimation of the N, bearing
factor is not required with this new technique for CPT prediction of clay undrained
strength. The ratio of the (S ),y versus (S,)py is the historic Bjerrum p ~orrection
factor used for reducing the field vane shear test results to unconsohdated undrained
triaxial (TxUU) strength levels. The calculated p (Figure 8.58), based on these new
correlations, has the same range published by NGI, namely 0.9 to 1 for normally
consolidated clays and decreases to 0.5 for overconsolidation (or increased

silt content).

Contours of normalized shear wave velocity were also established on the CPT
soil characterization chart. These contours are parallel to the normalized sleeve
friction resistance contours when there is no volume change during shear (e.g. clays,
clayey silts, clayey sands, dense sands, etc.,). It appears that the friction sleeve

resisiance and shear wave velocity are influenced by the same geotechnical properties
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and in the same proportion. The normalized shear wave velocity contours were also

observed to bend within the loose to medium dense clean sand area of the CPT soil
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characterization chart because volume change during shear causes a denser state.

The predicted shear wave velocity agreed well with the measured values.

- T Pl L

Future Research

o o A

* Integration of the Stress Focus concept int~ critical state soil mechanics.

» Continue to evaluate chamber test results toward better understanding and

definition of the Stress Focus.

T TTITERNE ST T

» Evaluate man-compacted soils (e.g. earth dams, fills, etc.) toward establishing

better techniques for stress normalization and prediction of geotechnical properties.

* Investigate the soil property and bulk density at the Stress Focus.

» Seek more verification or the CPT predicted geotechnical properties.

» Continue to develop the AQI as a subjective index for excluding bias error.

» Develop a computer technique for locating the Stress Focus using several relative
density groups (this is an iterative procedurs which searches for the optimum
location for the Stress Focus by minimizing the relative density trend variances).

» Develop improved techniques for calculating the CPT stress exponents using field
data.
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Appendix

The Database Contents

Introduction
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Collecting the CPT and boring data represented the single largest effort (and
longest time effort) for the purpose of developing CPT correlations of geotechnical
properties. There were three major sources for this data, namely, 1) the author's

project files, 2) requests for data by letter, and 3) requests for data after a lecture was

presented. Overall, the best CPT and boring data originated from the author's project

files. This data base represents the largest coherent accumulation of CPT cone and

AL T LIVET P TG O T N, U S T LT e

slecve with boring/laboratory project/research data in the world (1994). This
collection of data aiso contains two types of data: field CPT/boring data and

T TP e

laboratory large diameter chamber test data. Most of the collection emphasis was

g directed toward field CPT/boring data.
’
a Requesting Data by Letter

From 1986 to 1988, about 120 letters were sent to government, utility and
consulting firms rcquesting CPT and boring data. Only 15% of the requests for data
resulted in data and only 5% of the total database came from these blind requests for
data. Ouly 60% of the data received during this research program was uscable. Less
than 15% of the geotechnical engineering publications which describe projects having

CPT data actually show a CPT sounding log. When a CPT sounding log was

282




presented in a publication, less than 10% of the total also show sleeve friction
measurements. Therefore, only a small fraction of this database originated from

publications.

Requesting Data by Presenting Lectures

Approximately half of the geotechnical data came from professional contacts and
as a result of presentation lectures on CPT technology. A total of 23 lectures were
presentations by the author to consulting engineering companies and state/federal
organizations from 1988 to 1992. Engineers typically felt obligated alter a lecture
was presented to search for and copy at least one geotechnical project for this

research program.

The Data in the Database

This database contains approximately 670 CPT records and 580 borings from 90
projects. The CPT records represent approximately 51,000 ft of data and t :re are at
least 1,200 boring soil samples with a towal of approximately 8,100 laboratory and
field test values. The following is a partial list of the types of data in the database:
CPT measurements (cone resistance, sieeve friction resistance, and dynamic pore
pressure), SPT blow count, measured shear wave velocity, water content, plastic
limit, liquid limit, total density, percent passing #200 sieve, Dy, ficld vane shear
strength, laboratory triaxial strength test results (and testing method). Unificld Soil
Classification System designation, word descriptor based seil classification,

consolidation parameters (e.g. C., C,, OCR, P_,,, etc.,), void ratio, etc.,

max’




Test Chamber Data

Data from several large diameter test chambers are also included in the database
for establishing new CPT and SPT normalization techniques. The CPT chamber data
was provided by Jamiolkowski (1988). SPT chamber data by Bieganousky and
Marcuson (1976, 1977) and Gibbs and Holtz (1952) were alsc included in this data
base collection. A complete listing and description of the CPT and boring data base
are shown in Table A-1. The soil conditions column provides a general descriptor

only for comparison between siies.

Data Sensitivity

Most of the data used in this research program originated from military,
senstilve security, or sensitive private projects where the data source must be kept
confidential. Much of the private project data (classified as sensitive private sites)
were provided by geotechnical engineering consulting firms with the understanding
that the data and source wnuld be kept confidential. In all cases, the data could be g
used to establish data correlations and the data points on the correlation plots could

be published; however, the provider would not allow the site name to be published.

284




(insIg eiem BlEM

*s13aui8uy jo sdio))

(£861) wodar DA 1¥d oyep] ‘uonEnjesy JHUSIAS

ss|lj uss| A %9L z / T | spuss Aps prs umipspy ‘we(q 100J37e]d

()oLusIQ 3[JIAYSEN

rodar gam  (6861) *A pue _ ‘sisawidug jo sdioD)

‘UOSTdIBJA] pUB QA | ‘jeIs Apesis spues A1s uoijenjeay SHUSISS

‘SAUAY ‘unnig ‘ussiC| ‘xopul ‘1dS %9L 0€ / $9 | pue £a4e]> Gus wmipaw ‘ureq {opjred

( ASN 03

poday yoressay) axenbyuey 6861 2yl Suunp

(S861) sej3noq *A pue SUMYXIW IS PUE payanbl; yorym sajlg sald
pue ‘Ajsufyung ‘umoly) “Xsput ‘LdS 9L s/ spues Auip a]qeyanbr] BUIYD|
— oS
(z861) sivsuidug| ySuans pue saunmxiw £epo vlOLEPQ “eany Yo daag|

o sdio) oinsig esjry|  xapul “IdS %9L 6 /S | pue Spues aSusp WRIpIN wed elpedly

(s133ui8ug jo sdio)y)

Apmg 23pai(

— (s861) sa[t uas|O auou 07/ LST SIU3WIPUS +IATY ‘I3ATY BARJRJEYOYY

(ssequiep w)
H _ 33[04aloq
dUSI}IY 10V / s3ujpunos | SUONIpUOod jl0S 10alo1d

SIS siydeidneng 1dD
A101810Q87 eisusn JO J3jumpN

aseq ejep auy ut pauieluod spafoid 14D Jo Arewumg [-y J[Ger




UOIEN[BAS UOIBABIXT

S31y uss|o spues| ,HO-TH 9poo 13l01d "3jeand
UoJBpI[OSU0?

‘(auea10)) "' (uoyepodsuel]
(£861)] ‘sis3y xopul SaIMXIW is pue Jo uaupeda( erojije])
suodal 10)0enU0d Uenge) ‘LdS %9L SAE[D JJUIS WRIP3W 0} YOS Aeajleq eoUaWY jB31D)
(s1asuiduy
Jo sduony “ownsi(q sjuess)
1dS pue spis Kaked pue spues uonenjeag uonoejanbiy
(£661) S9J1,f uasjO|  s1Sa) Xapul %IL AP ‘SIUBUIIPIS ALY *3[neas ‘10QsBH SAEBID
Apoeder alig
(1861) sa[td uasjO| 'S ‘1531 Xoput %56 pnw Aeg oospouery wes| | JS-1d 9pod 193l01d ‘ajeAnd
iS ‘51593 .DD-D 3po3 osford
{(€661) S3[1] UIS[O X3pul ‘1dS %6L ! SI|Is 2ARISUIS pue I3 JUDUIIDAOS
‘A pue uosiredwos
(1561) ejjsuedwze)|‘uoliepijosuod skejo ZJEp UONEPIOSUO) ‘BpEUR)
Due piojmel]|  ‘s)sa) xspul AV pue syjis 3jqissarduwio) ‘98pug &[o( 12ArY 1aseiy
uonIppe [eNdsoy
S)S9) Xapul e JO uonenfeas uonoejenbi
S3[L] U3S|O pue 1dS %3L SpURBS JSUIP WnIpaus LA-DT 2pad a3fo1d ‘ajeatig
wep 3ul|ie)
€ ]o ucnen{ead uonoejonbi
Sa[i] uds[OQ]  sissy xopul %9, [euajew 3uijie) ‘. 0D 2po2 sfoid ‘esild

(6861) uue1dcaioz
pue ‘spyeyeiqes 323310 ‘uonenjeaqy uonoejanbi]
‘soizajey ‘sejeacyonog| sp pue 'S %59 Sp.Ies 3S00] s1314 23pug soue}ais soidy

286




SDOSN 0§ Hodas

spues Aui(

pUBIS[ SMISBAI] X ZIU)) TIUES 1B
syenbuyey

(0661) m1AH| *A pue 1dS %Ll 91 / 11 IsUsp umipsl 0} 850071 glaUd BWOT 1504 5DSM
(Z861)| uonepijosuo? yodie Juswadeiday ‘Aeg
noo pue seyosinoy|  ‘sisay xopus guryp sunj je ne] s eByS
(Z861) 2100 79 saure(y “s %6l ARV sysodap £eq yos Buoy] SuoH
{r861) DA L¥A| wis Apeals
($861) "1e19 ‘onse) 'S ‘5159) UoIjepuUNO} puUR ‘[ELIdjRW G861 Ui uonenjeay OIWsI3S
(s861) 'fe1d ‘pasg|  xopul ‘14S %0L 9 / 1 ONnEIpAY PajedIsag Wwep OpUBlisd UBS 13m0
S ‘sis9) spues dsusp wmipau| uonedusaaur uoisuedxs podity
§3J USS|O]  Xdput LdS %0L st /7 Ll pue sAejd yus wmpaw| M [-TH 3pod 123f01d ‘dreand
A ‘S1S9) SpUES JSUap WMpauwi M-S-9q spoo 1wsfoid
sa|y uasig| xaput ‘14s %40 6/t pue s£2[3 JjiIs WPy JUIUNLIIAVD
*A ‘qiBuang
‘$)S3) Xapul SpUES JSUIp Wnipatu 4-S-3Q 9pod 103i01d
St} UIS[O ‘1ds 2,88 AAYA! PueB SAEB[> JJiIS Wwnipsw JUSLIULISA0N)
. JHN-NG 3p0d dsicid
SaJy U3s[O A 8 / 8 pues uucjiun pajoeduwod SUSWLIRAGD
LTH-NQ 3po3 123fo1g
S3[1] U3S{O A 2l F U pues uuojiun pajoedwos JUSURLISAOD)
,IfH-NQ 3pos 123foid
S3[1J U3s|0 0/ L pues udojiun pajoedwiod “USWUISAOD)

287




Uoljelnijtas UONRABIXH

Saly Ussig %¥8 ARVARS Aepo yos| | LIN-NQ 3p0d 1o3foid *areatid

(L861) 1S3y SaNs €

‘Juroey ‘aidsalin epeue)) ‘83§ Hojneag

‘uospaqoy ‘ejjauedure) ‘A %08 P/ € | SHIS yus weipsw 0] yos Aeq B)[2Q 1ZUMIEN

uclienjeaqy uoyoejanbiy

S3[y ussio "A %8L v/ T | IS Ae[o asusp wmipay] ‘wre( yead AYonT
uolepI[OSU0d

(zeol) puz "g SJUSWIPaS YOS5 U0 YIIeasay

3z3s3(] pue Aeumy| ‘s)sa) Xapuj %84 € /€ sAejo yos Alaa BUBISINOT ‘00407]

Hoda1 udsleasay

(6861) Aewmj Apnis uotjenfeas uonogjanbi

pue ‘uedopezproowyey S159) pues enuojIe)

‘wzmff  xapul ‘1dS %<8 ¢ / T | Aususp umipaw 0} 3500} ‘SSUS AJUPIIM % PEOL JaG3H
159}

SY UISJO|  Xdpul ‘148 %09 ¢ / T |SSImXiW JI0S J34s wnipaiu NI-37 3po3 yosfoid *apeaug

(s861) me] 5153} | pue|sj 22

pue ‘ynzozog ‘peiuocy xopur ‘g %€8 AN | AB[D pUE SjjIs Yos epeue)) ‘HOdNY ISANOIUBA

UOHEWE[OSY JO neamg

Saty uss|o 0/ 61 pues A1p 3500] e uosyoEf
UOIJEPIOSUOD

g AB]O YOS I3A0 UOIIEN[eAd INIP

S3JIJ UIS]Q|  ‘S1S9) X3pul %G1 g /L Lepd> yos LI-dd 2po2 wafoid ‘ayeaud

{uonednsaaul ucnepunoy)

A ‘sis3y spues asuap =N e

SIJij UAS|Q| Xopul ‘I dS %58 v/ v | A10a pue shepd Jus Aoa|  109loig 1amod usumowajujl

[N

288




1ddiss:ssipN

280

"S ‘1dS sjuauNpas ‘uonenjsayg uonoe;anbij
S9JIJ UIS[O|  ‘s1S9) Xapul 9%46S | 96¢ / 9. | 19AU pue pues 2i[neIpAH wreq sipreg
_ uoljBUIR|33Y JO neasyg
S1591 Xaput uonenjeay uonoejantiy
SS[Y UsS|O puz 1dS %9L v /8 pues pue SIS "Apnis wre(} Cidid
Lds pue g Kpas 214
(6861) &ysulinng)  4s3) xopu| %08 €/ 1 Ae[o pue ({14) pues AYISI2AIU() UIBISEAYHON
%06 - :
uoHEpIOSU0d 9/t SAEBIS YOS Aosug Al yoreass'd
(8861 01 0861 woy)| pue “A 'S , {IDN) amnsy]
syodel [DN snosawmy|  ‘sise) xaput t /¢ sdejo yos|  WNISMA [BOIUY03}030)
pues UB.GIMION
S/ € JSuSp winpaw 03 3s00] usw{oy
(8861) [I'H pue ‘1Y933¢g} UOHEpPIJOSUOD epeue)) ‘eag ojneag
"SH00I]) ‘SIURJIIf] SIS Xapul %06 171 Sarmxw J:0s pue pues ‘Sp-d ISl
syaaurdug jo sdio)
$3[1J U3s[O uofjenjeay oIWSIAS
(L861) DILII A %06 1 / 1 |spues pue syis pajoedwio) wreq aury
(L861) 2purys "s1330y
‘sauagiar “yowedag 'S uonenjeas spifs uondejanbi]
‘$Y001D) ‘UU0)) ‘U3IF| ‘SISA) Xapu] %61 [ /T sammxiu 10§ BoG UOjtieaq ‘uusg YIS[ON




%59 1 / 1 | pues A&uip asusp umipaw gRg
%59 Vo SpuESs asuap 19 2)uate)
S1amoj}
Spuest  BRUORIEDL  uy uoissiwsuen
(9861) Je1o stpunEIsUOY %<8 [ / i |osudp pue skepoyus &19A)  UPE) o5 suonepunog
dmyxiw
%S9 P /1 pue 5480 Jjus LA AN oWV
13ATy 1ddississI
1dS %09 1) i v S}jis pue spues ZIIOW ayl jo memomuv
(uodar ggm)l  ‘siss1 xapuj sjutog!  spues ul sainjig)
(88615 am) uoissaidonoy
uosIalRg ‘requny ‘Asiio] 24,09 71T Si|Is pue spues puuog| Isany 1ddississi
%96 1/ 1 Ae[o onredio usjeA
%96 171 ske}d yos aan|
%96 i /1 Aepd yos A1aa] Aqap3-eys
%96 I /1 skejsi SurdojuoN SIS oIEssTY
b yodal DS sfe[d aruedio 2SO[[o]N
UOLJRPIJOSLOD %96 I /1 pue sAed Yos Ao BUILUL] (1DS) amusu|
(1661) pue “'g pue[s] [eoIy32)030)
JIpqe[njy P uossrej| ‘siso) Xapuj uaduistyg ysipams
%96 LA | s{ejo yos| ‘jogoyoeg
009-L
%96 i1 sAejo yos| peoy eIes§
006-9
%96 I /71 skejd yos! peoy z2reg

]

290



SVN

“%b8 . 8/ L spues Aui| 0321 ues

Suipue]

SOHSM 01 Wodai yoreasas %58 v/ v Spues put spues Ayl seuljes
Suipue; {S3Is eRUOJI[ES)
(0861)]  sisa) xopul 0491 71z Ae[d puE SpUES ssopy|uewssassy brezeH
se|3no( pue UlIB pue [dS uonoejanbi 10§
ROS| 14D o uonenfesy

%L T/t siis @ Aejo ‘spueg|  31040)

HHON

%8L £€/¢C S}|is pue spues )
(1odax yoareasar JSN) (uonenjeas
(z861) uonoeganbl) elwopE)
ulely pue sej3noq 0/¢§ Spueg ‘onus) [4 ‘peoy 339°H
QIS Yyoreasay
(z861) audsa(up puef S pue *A BIQUM[OD) YSBUE JO Asiealuf)
‘uospaqoy ‘gjjeuedure])|  ‘s1say xapu %06 1 /71 i[is pue pueg ‘ure.] pleHoon
(z861) 21dsajin pue 'S pue epeue) ‘BlQUIMO) USBUY
‘uosuaqoy ‘gjjouedure))|  S1S9) Xapu| %06 1 /1 IS pue Ae[D 1930 TET 1m0y

(8861) 90%401S
pue exereyy ‘Jjowryds 'S pue TV ‘oBeioyouy
"H uas[0 ‘qipdny| - $1839) Xopu] %L9 €/ € sifis pue sde[s| ‘opjspueT syaioY uredeumy
s
‘UOTIRPL[USU0D

. ‘1dS DUES doljneIpAYy plo LL-TH spoo 12foid
safy uasjQ| ‘s1sa1 xapuy| %0L €/ ¢ Spues Jsusp wnipow Jeaud

e VL Lo eTREETLTLY,

LTTATYY S AEDATITEER T 1 SR N T T (T LT R G R T

T WK PSRRI T

R T N e T

291



[enuapyuos a3q Isnw urduo eep ‘1o3foid sanIsusg

LdS pue
SOy UasjO]  s1s9) Xapu] %LL ¢ 1 T | spues sawos pue Aejs {ynsg .SS1-OA\ 3p0d 199fo1d ‘sBALy
§1S3) Xapul SIS
$3jy uas[Q} pue g ‘1dS %0L €/ € pue SAB[d JJils WIpSN| GUH-OM 2p0d 1afoad ‘Jjeany
1S3} Xapul ¥
‘ucnepijosuod
S3}Y LAS[Q ™S 1dS %bL /v sHis pue sde[o s AH-OM 103foxd ‘ajeany
S1S9} Xaopur %
sapy uasjof A S ‘1LdS %8L €/C siis pue se[D J04-Om  waload ‘areauy
'S pue ‘sis3) SIS 7G-M PUE 9p-m
S3[y USS|Of  Xapul ‘LdS %9L AR/ ZB]D)  ‘anjiej YIp ALy 1ddississin
uopenjeas renuajod uoljoeianby)
Hodox goreasar gognl  sisay Xaput 10j uonezuajoRIeYd NS
(¥861) 'Te12 ‘Nouuag)  pue 14§ %6L I/ s1 Ae[> pue sjjis ‘spues BIWIOJIED) ‘OJHPIIM

292




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188

repont rgen . hing exrsting data sources.
for this collection of INTOrmMAation s eslimated 10 average | hour per response. Inciuding the ime 107 reviewing inmgtrucuons, searching

;:::rmq nn:in;mummgrt:w“da% necded, and completing and reviewing theg:oﬂedlon ot information  $end comments ardnr‘rg this burden estimate or any other aspect of thr

collection 0f information. including suggestions for reducing thrs burden. 1o Washington Headquarters Services. Directorate for inicemation Operations and leo%t;é,ﬂ‘s letterson

Daviy Kighway, Sutte 1204, Arlington, VA 222024302, and 10 the Office of Management ang Bucqet, Peperwork Reduction Project (0704-0188), Wastington. DC .

. AGENCY I1SE ONLY (Leave blank) | 2. REPORT DATE 3. REPOR] TYPE AND DATES COVERED
1. Act ¢ ugust 1994 Final report

4. TITLE AND SUBTITLE S. FUNDINS MUMBERS
Normalization and Prediction of Geotechnical Properties Using the
Cone Penetrometer Test (CPT)

6. AUTHO_R(S)
Richard S. Olsen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANiZATION
U.S. Army Engineer Waterways Experiment Station REPORT NUMBER
3909 Halls Ferry Road Technical Report
Vicksburg, MS 39180-6199 GL-94-29

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

. ' REPORT NUMBER
U.S. Army Corps of Engineers AGENCY REPORT NU

Washington, PDC  20314-1000

11. SUPPLEMENTARY NOTES
Availablc from the National Technical Information Service, 5285 Port Royal Road, Springtield, VA 22161,

12, DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This research was to develop techniques for (1) stress normalization of CPT measurements (and
geotechnical properiies) and (2) CPT prediction of geotechnical properties using cone and sleeve friction
resistance values. Stress normalization allows a variable geotechnical property to be reduced to an equivalent
value at a standard confining stress.

A new concept, the Stress Focus, was identified which provides a basis for understanding <oil strength as
a function of confining stress. This study demonstrated that sand friction angles for different initial relative
densitics converge to a Stress Focus at high confining stress (approximately 100 atm), where the strength
behavior is similar to that of a sedimentary rock, Dilation of densc sands decreases with increased confining
stress until the Stress Focus is reached, as confirmed using historic high pressure ti’axial test data as well with
CPT measurements from laboratory chamber tests and uniform soil layers. The paths of convergence to the
Stress Focus are exponentially rclated to confining stress and are the basis for development of CPT cone and
sleeve friction resistance normalization techniques. The overburden stress at the Stress Focus is soil type
dependent.

(Continued).
14. SUBJECT TERMS 15. NUMBER OF PAGES
See reverse, 2

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED

NSN 75480-01-280-5500 Standard Form 298 (Rev 2-89)

Prewcribed by ANSI Stg 239-18
98 19




13. (Concluded).

The stress exponent for SPT normalization was shown to be equal to the CPT derived stress exponent.

CPT correlations to geotechnical properties were established using both CPT cone resistance and
friction ratio. These correlations were based on a large database which was developed for this research
effori. Statistical evaluation during the development of these correlations concentrated on excluding biased
data. CPT based correlations were established for the following geotechnical properties: SPT blow count,
unconsolidated undrained triaxial test strength, field vane shear test strength, and shear wave velocity.

14. (Concluded).

Geotechnical properties Stress exponent
Sand friction angles Stress normalization
Soil strength




